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Abstract

Ensemble-based systems are software-intensive systems consisting of large numbers of
components which can dynamically form goal-oriented communication groups. The
goal of an ensemble is usually achieved through interaction of some components, but
the contributing components may simultaneously participate in several collaborations.
With standard component-based techniques, such systems can only be described by
a complex model specifying all ensembles and participants at the same time. Thus,
ensemble-based systems lack a development methodology which particularly addresses
the dynamic formation and concurrency of ensembles as well as transparency of partic-
ipants.

This thesis proposes the Helena development methodology. It slices an ensemble-
based system in two dimensions: Each kind of ensemble is considered separately. This
allows the developer to focus on the relevant parts of the system only and abstract
away those parts which are non-essential to the current ensemble. Furthermore, an
ensemble itself is not de�ned solely in terms of participating components, but in terms
of roles which components adopt in that ensemble. A role is the logical entity needed
to contribute to the ensemble while a component provides the technical functionalities
to actually execute a role. By simultaneously adopting several roles, a component can
concurrently participate in several ensembles.

Helena addresses the particular challenges of ensemble-based systems in the main
development phases: The domain of an ensemble-based system is described as an en-
semble structure of roles built on top of a component-based platform. Based on the
ensemble structure, the goals of ensembles are speci�ed as linear temporal logic formu-
lae. With these goals in mind, the dynamic behavior of the system is designed as a set
of role behaviors. To show that the ensemble participants actually achieve the global
goals of the ensemble by collaboratively executing the speci�ed behaviors, the Helena
model is veri�ed against its goals with the model-checker Spin. For that, we provide
a translation of Helena models to Promela, the input language of Spin, which is
proven semantically correct for a kernel part of Helena. Finally, we provide the Java
framework jHelena which realizes all Helena concepts in Java. By implementing a
Helena model with this framework, Helena models can be executed according to
the formal Helena semantics. To support all activities of the Helena development
methodology, we provide the Helena workbench as a tool for speci�cation and auto-
mated veri�cation and code generation. The general applicability of Helena is backed
by a case study of a larger software system, the Science Cloud Platform. Helena is
able to capture, verify and implement the main characteristics of the system. Looking
at Helena from a di�erent angle shows that the Helena idea of roles is also well-suited
to realize adaptive systems changing their behavioral modes based on perceptions. We
extend the Helena development methodology to adaptive systems and illustrate its
applicability at an adaptive robotic search-and-rescue example.
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Zusammenfassung

Ensemble-basierte Systeme sind software-intensive Systeme mit einer groÿen Anzahl
von Komponenten, die sich dynamisch zu kleineren, ziel-orientierten Kommunikation-
sgruppen zusammenschlieÿen können. Das Ziel eines Ensembles kann üblicherweise
nur erreicht werden, indem mehrere Komponenten interagieren. Allerdings können die
beitragenden Komponenten auch an mehreren Kollaborationen gleichzeitig teilnehmen.
Mit den üblichen komponenten-basierten Entwicklungstechniken können solche Systeme
nur durch ein komplexes Modell beschrieben werden, das alle Ensembles und Teilnehmer
gleichzeitig spezi�ziert. Deshalb bedarf es einer Entwicklungsmethodik für ensemble-
basierte Systeme, die die dynamische Bildung und Nebenläu�gkeit von Ensembles sowie
die Transparenz der Teilnehmer adressiert.

Die vorliegende Arbeit schlägt die Helena-Entwicklungsmethodik vor, die ein ens-
emble-basiertes System entlang zweier Dimensionen aufspaltet: Jede Art von Ensem-
ble wird einzeln betrachtet. Dies erlaubt dem Entwickler, sich nur auf die relevanten
Teile des Systems zu konzentrieren und von den Teilen zu abstrahieren, die nicht das ak-
tuelle Ensemble betre�en. Ein Ensemble selbst wird nicht nur über seine teilnehmenden
Komponenten de�niert, sondern durch Rollen, die Komponenten in einem Ensemble
annehmen können. Eine Rolle ist die logische Einheit, die zum Ensemble beiträgt,
während eine Komponente nur die technischen Funktionalitäten bereitstellt, um eine
Rolle auszuführen. Indem eine Komponente mehrere Rollen gleichzeitig annimmt, kann
sie zur gleichen Zeit an mehreren Ensembles teilnehmen.

Helena adressiert die speziellen Herausforderungen eines ensemble-basierten Sys-
tems in den Hauptentwicklungsphasen: Die Domäne eines ensemble-basierten Systems
wird durch eine Ensemblestruktur von Rollen beschrieben, die auf einer komponenten-
basierten Plattform aufbaut. Basierend auf der Ensemblestruktur werden die Ziele des
Ensembles als Formeln in linearer temporaler Logik erfasst. Mit diesen Zielen vor Au-
gen wird das dynamische Verhalten des Systems als eine Menge von Rollenverhalten
modelliert. Um zu zeigen, dass die Ensemble-Teilnehmer die globalen Ziele des Ensem-
bles tatsächlich durch kollaborative Ausführung der spezi�zierten Verhalten erreichen,
wird das Helena-Modell mit dem Model-Checker Spin veri�ziert. Dafür stellen wir
eine Übersetzung von Helena Modellen nach Promela, der Eingabesprache für Spin,
bereit, die für eine Kernsprache von Helena als semantisch korrekt bewiesen wird.
Schlieÿlich stellen wir die Java-Bibliothek jHelena zur Verfügung, die alle Helena-
Konzepte in Java realisiert. Indem ein Helena-Modell mit dieser Bibliothek implemen-
tiert wird, kann es anschlieÿend gemäÿ der formalen Helena-Semantik ausgeführt wer-
den. Um alle Aktivitäten der Helena-Entwicklungsmethodik zu unterstützen, bieten
wir die HelenaWorkbench an, die als Werkzeug zur Spezi�kation und automatisierten
Veri�kation und Codegenerierung dient. Die allgemeine Anwendbarkeit von Helena
wird durch eine Fallstudie eines gröÿeren Softwaresystems, der Science Cloud Plattform,
gezeigt. Helena erlaubt es die Hauptmerkmale des Systems zu erfassen, zu veri�zieren
und zu implementieren. Auÿerdem betrachten wir Helena noch von einem anderen
Blickwinkel aus: Wir zeigen, dass die Helena-Idee von Rollen sich gut dafür eignet,
adaptive Systeme zu realisieren, die ihre Verhaltensart aufgrund von Wahrnehmungen
ihrer Umgebung ändern. Wir erweitern die Helena-Entwicklungsmethodik für adap-
tive Systeme und veranschaulichen ihre Anwendbarkeit an einem adaptiven roboterzen-
trierten Rettungsszenario.
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Chapter 1

Introduction

Ensemble-based systems are software-intensive systems consisting of a large number of
components which can dynamically form goal-oriented communication groups and ac-
complish a common goal in collaboration. In general, the intended goal of an ensemble
can only be achieved by interaction between its constituent members and requires cer-
tain local functionalities to be o�ered by the participants of the ensemble. As soon as
appropriate components join the collaboration and contribute the desired functionali-
ties, the ensemble becomes e�ective. Conversely, this means that an ensemble a�ects
only a part of the global system, which may be a large distributed system, since only
particular participants have to chip in. When performing a goal-oriented task in an
ensemble-based system, only the components participating in the ensemble are of inter-
est and need to be coordinated. But at the same time, components may be employed
in several collaborations simultaneously allowing the ensemble-based system to concur-
rently work on several goals.

Ensemble-based systems especially target two new trends in computing: ubiquitous
computing and autonomic computing. Ubiquitous computing [Wei99] introduces more
and more computing devices into our systems. The contributing components are no
longer restricted to powerful work-stations. They are augmented with small and cheap
mobile devices like laptops, handhelds, and mobiles. Wide heterogeneity is an inher-
ent property of such systems and the number of globally interconnected components
grows daily. Mobile devices also introduce mobility into ensemble-based systems. That
means that on the one hand moving components like mobiles are faced with continu-
ously changing and possibly unknown environments. On the other hand, the overall
system is subject to changes of participating components and cannot rely on a �xed
set of contributors. Performing distributed goal-oriented tasks in such a volatile and
pervasive system calls for dynamically formed collaboration groups as we envision them
by ensembles.

Autonomic computing [KC03] introduces a certain degree of autonomy to the indi-
vidual components of the ensemble-based system. The paradigm advocates that we no
longer create systems which are thoroughly administrated by hand. Once employed the
system should rather manage itself and keep itself alive and running. The contributing
components have the autonomy to coordinate themselves and their interactions accord-
ing to high-level objectives without any external supervision. This is especially helpful
in ubiquitous systems since the responsibility for coordination is distributed among the
participants of the system.

1



2 CHAPTER 1. INTRODUCTION

Ensembles appear in the human world in a similar way as we described them for
software systems. In the domain of soccer, the underlying platform of distributed com-
ponents consists of the players, trainers, medical sta�, managers etc. On top, di�erent
ensembles are formed like national teams or soccer club teams. Each member of such
a team can dynamically join and leave the team, takes over responsibility for di�erent
tasks and can changes his tasks. For example, in the German national team, the player
Manuel Neuer is goal keeper, the trainer Joachim Löw is head coach, and the medical
sta� member Dr. Hans-Wilhelm Müller-Wohlfahrt is medical doctor. We say that each
component like the player Manuel Neuer participates in a certain ensemble by adopting

a particular role like goal keeper. Fig. 1.1a illustrates this situation. The boxes in
the lower part represent the components contributing to the ensemble (note that there
might be more components in the overall system which do not contribute to the ensem-
ble under consideration and are thus not shown here). The dashed ellipse encompasses
all roles which are needed for the functionality of the ensemble. Most importantly, we
represent the adoption relation between role and component by an arrow from role to
component. Connections between the roles denote which roles interact.

However, it is not unusual that one component (sequentially or concurrently) adopts
di�erent roles in the same ensemble as shown in Fig. 1.1b. For example, in the German
national team, the player Bastian Schweinsteiger was center mid�eld, but also captain.
One component can even (concurrently) adopt several roles in di�erent ensembles as
shown in Fig. 1.1c. For example, a game of the German national team could be organized
as a charity game. Then, two ensembles exist in parallel, the German national team
as well as the charity ensemble. The latter consists of organizers, donors and charity
players such that a player like Bastian Schweinsteiger not only adopts the roles of center
mid�eld and captain in the German national team, but at the same time also the role
of a charity player in the charity ensemble.

(a) One component
adopts one role

(b) One component
adopts two roles

(c) A component adopts several roles in
the same and di�erent ensembles.

Figure 1.1: Participation of components in ensembles

1.1 Challenges of Ensemble-Based Systems

Ensembles are characterized by the goal-oriented collaboration of participants, building
on top of a common component-based platform. These characteristics bear challenges
for the development of ensemble-based systems which are partially known from dis-
tributed systems [CDKB11], but ensembles add a new layer of di�culty to them. The
following list presents important challenges and illustrates some of them on the basis of
the domain of soccer:

Concurrency: Concurrent execution has to be managed on two levels. Within an en-
semble, the goal-oriented work has to be appropriately distributed among the
participants of the ensemble and collaboration must be coordinated. In the do-



1.1. CHALLENGES OF ENSEMBLE-BASED SYSTEMS 3

main of soccer, defense and o�ense have to be assigned to the di�erent positions in
the team like defenders and strikers. On system level, several ensembles must be
able to concurrently perform their goal-oriented tasks possibly sharing the same
participating components and taking care of con�icting participations. In the do-
main of soccer, national tournaments have to be coordinated with international
tournaments to allow di�erent players to participate in both.

Heterogeneity: In the ubiquitous computing paradigm, heterogeneity is increased by
including small and cheap components like mobiles into the system. In such a set-
ting, ensembles have to be formed una�ected or even have to exploit heterogeneity
of available components in the system. They must be able to assign work accord-
ing to the individual properties of each contributing component. In the domain
of soccer, players show di�erent strengths for abilities like dribbling, heading, cor-
ner kicks, free kicks etc. Depending on their particular abilities, they have to be
assigned to the di�erent positions of a soccer team.

Extensibility: On the system level, mobility of mobile devices requires that the overall
system is able to cope with new component instances and it can make them avail-
able to the currently running ensembles. In the domain of soccer, scouts should
continuously discover new talents which organizations like UEFA or Bundesliga
trade between the di�erent clubs. On the ensemble level, an ensemble has to be
able to specify when new participants are allowed to join in and how they are in-
tegrated in the collaboration. This dynamism has to be re�ected in the system's
architecture to allow for connections between component instances to be set up
dynamically. In the domain of soccer, tournaments rules have to de�ne when a
player can join the team on the �eld in exchange for another player leaving the
�eld.

Dynamism: Ensembles are dynamically formed collaboration groups. Not only can new
members join the collaboration during the life-time of an ensemble, but also the
participation of a component can change. A component may communicate with
di�erent partners during operation of the ensemble such that communication links
are dynamically recon�gured. Furthermore, a component may take over di�erent
tasks for the accomplishment of the global goal of the ensemble such that the con-
tribution of a single component to the overall ensemble dynamically changes. In
the domain of soccer, the task and preferred communication of a mid�eld player
may change depending on whether his team is currently attacking or defending.
When attacking, the mid�eld player may interact more frequently with the strik-
ers; conversely, and when defending, the same player may be integrated into the
line of defense. It may even happen that a player adopts an additional role in the
team during a tournament, e.g., if Bastian Schweinsteiger leaves the �eld, the role
of the captain is assigned to Manuel Neuer.

Transparency: It should be transparent from the user which components form an en-
semble. It is only relevant that the ensemble achieves its goal while the concrete
participants do not matter as long as they provide the required capabilities. This
special kind of transparency allows dynamic composition of ensembles since they
do not rely on particular components, but on their provided capabilities. In the
domain of soccer, di�erent moves can be planned and trained only based on the
positions of those involved. Di�erent players can transparently �ll in on these
positions without changing the overall plan of the move.
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Goal-Orientation: Despite heterogeneity, and transparent and dynamic composition, an
ensemble must always work towards the intended goal. It should be guaranteed
that the goal is actually achieved. In the domain of soccer, a team should always
be able to compete in a tournament despite di�erent abilities of the current players
in the squad (e.g., because of players changing a�liations, current assembly of the
team, injuries etc.).

Autonomy: Due to the large number of components in the system and their mobility,
global supervision of the whole ensemble-based system must be avoided. The
organization of ensembles has to be coordinated locally such that each ensemble
determines its composition and behavior itself. The individual components have
to be granted with a certain kind of autonomy to self-organize their contribu-
tion to goal-oriented collaborations. In the domain of soccer, each club should
organize itself independently from other clubs. However, internally, each club is
mostly centrally coordinated. In an ideal ensemble-based system, those central
coordinators should be avoided for the bene�t of self-managed collaborations.

1.2 Shortcomings of Existing Approaches

A central approach to describe the structure and behavior of interacting systems is
component-based software engineering (CBSE) [Szy02, RRMP08]. It aims at develop-
ing self-contained, reusable components. For each component, its structure, interface to
communication partners and behavior is precisely speci�ed to allow integration of sev-
eral components to larger interacting systems. A wide variety of architecture description
languages (ADLs) like Wright [AG94, AG97], Darwin [MK96], ACME [GMW97], and
PADL [BCD00, BCD02] allow description of the high-level structure of a system in terms
of components and their interactions and to reason about system properties at this high
level of abstraction. Frameworks like Fractal [BCL+04, BABC+09], SOFA [BHP06],
ArchJava [ACN02], and Java/A [BHH+06] do not only provide formal component-based
architecture models, but also implement them in Java. ADLs and their frameworks
are mainly used for the speci�cation and implementation of component-based archi-
tectures via appropriate tool support. Their speci�cation power is often limited and
veri�cation is only supported for a �xed set of properties [BvVZ06]. In contrast, a set
of formal approaches like team automata [tEKR03], interaction automata [BvVZ06],
assemblies [HK11] or multiparty session types [CDPY15] focuses on the precise speci�-
cation of component interactions with less attention to the system's architecture. These
approaches aim at automated veri�cation, but are often too abstract to serve as imple-
mentation models [BvVZ06].

All of these approaches share a similar understanding of components and their com-
position to larger systems. An atomic component is thought of as a self-contained
computational unit of the system. Its interface to the outside world is described by
ports which handle communication with other components1. Such atomic components
can be composed to hierarchical components and �nally whole systems. The main ar-
chitectural element are connectors which handle interaction and coordination between
components. A connector speci�es properties (often by a communication protocol,

1For communication, we only consider bi-directional message exchange in this thesis as opposed to
broadcast messaging, remote procedure call or knowledge exchange via shared knowledge bases. We
assume that the behavior of a component is speci�ed by a single sequence of actions which conversely
means that an atomic component is not able to simultaneously execute di�erent behaviors.
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e.g., [AG94, AG97]) which the ports of components interacting through this connector
have to ful�ll. That means that sets of interacting components, like we consider them
in ensemble-based systems, are already a main characteristic of CBSE and its di�erent
proposed component models. However, standard component models are not able to
express some of the distinguishing features of ensemble-based systems:

Explicit Notion of Ensembles: The notion of an ensemble as a group of collaborating
components is central to ensemble-based systems. In standard component models
like Wright [AG94, AG97] or ACME [GMW97], such ensembles are only implic-
itly de�ned by sets of connected components. Hierarchical component models
like Fractal [BCL+04, BABC+09] or SOFA [BHP06] allow to simulate the explicit
notion of an ensemble by encapsulating the interacting components in a single
composite component. As soon as we envision several ensembles which overlap in
terms of participants, hierarchical composition of components cannot express the
notion of ensembles anymore. Fractal [BCL+04, BABC+09] thus introduces the
concept of shared components. They are able to contribute to di�erent collab-
oration groups, but while the concept of sharing is made explicit, groups which
share a component are again only implicitly determined by the sets of connected
components. We still miss an explicit notion of ensemble. Such a notion would
allow focusing design and analysis on the relevant participants of an ensemble
only.

Explicit Notion of Active Roles: If a component is shared between several ensembles,
it has to provide all communication capabilities and behaviors which it needs to
contribute to the di�erent ensembles. To describe a component with di�erent
tasks distributed over several ensembles, standard component-based techniques
propose to design a one-�ts-all component which combines all required capabili-
ties and behaviors for such tasks. Some capabilities might be needed in several
ensembles, but others are speci�c for only one ensemble. Nevertheless, they are
all pooled together into one large component. Which interface is needed in which
ensemble is only implicitly given, e.g., by the involved communication ports. Fur-
thermore, such a one-�ts-all component must be able to work on every task which
an ensemble requires from it. Therefore, it has to o�er and execute a large parallel
behavior. The design of such a behavior is complex and error-prone due to the
large number of possible interleavings.

This design su�ers from two disadvantages: Firstly, the shared one-�ts-all com-
ponent cannot be reused to perform other tasks. If we want the component to
perform a di�erent task, the component has to be broken up and appropriate
capabilities and behaviors have to be included. Secondly, we lack an explicit con-
cept to de�ne which functionalities need to be contributed by the participants of
an ensemble and which components of the underlying component-based platform
are able to provide those functionalities. Ensembles do not require a particular
component to contribute to the collaboration. They only require certain capabil-
ities to be o�ered and tasks to be ful�lled. In general, these requirements could
be o�ered by di�erent components, but only one will later on contribute to the
ensemble. Thus, the functionalities needed by the ensembles should be described
separately from the capabilities o�ered by components.

Dynamic Architecture: In ensemble-based systems, components should dynamically col-
laborate towards a global goal. Therefore, they need to establish communication
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links between each other on demand to allow dynamic interaction. Additionally,
they should be able to dynamically request and integrate new participants into the
ensemble if the current ensemble composition is not appropriate to achieve the
global goal anymore. Recon�guration of the communication structure between
components is already supported by dynamic architecture approaches. For exam-
ple, SOFA [BHP06] introduces speci�c recon�guration patterns to allow controlled
modi�cation of the system's architecture. Wright [ADG98] proposes a special con-
�gurator component which takes care of establishing connections between com-
ponents on demand. Other dynamic architecture approaches like Darwin [MK96]
allow the dynamic instantiation of components at runtime such that collabora-
tions can be extended by new participants on demand. Those techniques can be
transferred to ensemble-based systems, but a developer can soon get lost in the
recon�guration options if the system grows large and consists of many di�erent
ensembles. Indeed, software development could bene�t from the introduction of
the notion of ensembles to only focus on one collaboration group when recon-
�guring and from the introduction of the notion of roles to describe communica-
tion partners separately from the components currently serving as communication
partners.

Some dedicated techniques and tools like the SCEL/PSCEL [DLPT14, MPT13],
DEECo [BGH+13], DCCL [BBvP13] and BIP/Dy-BIP [BBB+12, BJMS12] already ad-
dress the speci�c characteristics of ensemble-based systems. Apart from BIP/Dy-BIP,
they all use membership predicates to express ensembles. A membership predicate de-
termines through properties of components which components are currently considered
part of an ensemble. Since the predicate is dynamically evaluated, an ensemble is a
volatile snapshot of a system. This adds �exibility, but the conceptual structure of an
ensemble describing potential participants and their interaction relationships cannot be
explicitly speci�ed. Besides that, all ensemble-based approaches do not propose the
concept of roles. Components are thought of as one-�ts-all entities which combine all
functionalities needed in the di�erent ensembles into one large extensive component.
The ensemble-based approaches do neither provide a concept which helps to structure
a component according to the di�erent roles it can adopt nor a concept which allows to
explicitly describe the participants of an ensemble separately from the underlying com-
ponents. One exception is PSCEL [MPT13] which integrates FACPL policies [MMPT14]
into SCEL speci�cations. These policies de�ne when certain actions of a component are
allowed or how behaviors of components have to be adapted to cope with the current
situation. This resembles the idea of roles which are dynamically adopted according
to the current task which a component has to ful�ll. However, all ensemble-based ap-
proaches heavily focus on dynamic communication structures although they rely on
di�erent communication paradigms: In SCEL/PSCEL, components explicitly exchange
knowledge by putting data items to and retrieving them from knowledge repositories.
These knowledge repositories can be dynamically selected by variables or predicates
analogously to membership predicates. DEECo and DCCL support implicit knowledge
exchange by periodically updating the knowledge of all members of an ensemble. Since
the members of an ensemble are dynamically determined from the evaluation of the
membership predicate, knowledge is exchanged between varying partners. In BIP/Dy-
BIP, components send and receive messages via connectors which can dynamically be
bound. Interaction constraints guide the possible connection of communication part-
ners. Finally, SCEL/PSCEL even supports the creation of new components which can
dynamically be integrated into ensembles. In conclusion, all ensemble-based approaches
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make a big step towards the dynamics of ensemble-based systems. However, they lack
structural concepts like ensembles and roles as �rst-class entities which reduce the com-
plexity of ensemble models on the one hand and support the dynamics of ensembles on
the other hand.

1.3 Problem Statement

The development of ensemble-based systems should be supported by an appropriate de-
velopment methodology aimed at the particular challenges of ensemble-based systems.
Special focus has to be directed towards the most prominent development phases, goal
speci�cation, system modeling, veri�cation, and implementation: We must provide ab-
stractions to describe ensembles, their participants and relationships as �rst-class en-
tities. Ensemble goals should be speci�ed on the level of participants of the ensemble.
Veri�cation should allow to check goal satisfaction for a single ensemble to reduce com-
plexity of the state space to be searched, but should nevertheless consider the ensemble
in the context of the underlying component-based platform. The abstractions used to
describe ensemble-based systems should be transferred to the implementation to al-
low a transparent participation of components in goal-directed ensembles and to allow
management of each ensemble independently from all other ensembles.

Ensemble Description: The structure of distributed systems is in general de�ned
by the contributing components of the system and their interaction patterns. In such
structural models, the collaborating components are assigned with responsibilities and
interaction capabilities to represent the purpose of the system. However, the system
structure of an ensemble-based system is inherently complex since several ensembles and
transitively even more participants have to be captured in one structural model. With
standard component-based techniques, we would create a large and extensive model
which speci�es all ensembles at the same time.

To re�ect the requirements and the dynamics of ensemble-based systems, the stan-
dard component-based models must be extended. We want to be able to describe the
structure of an ensemble separately from, but on top of a standard component-based
platform. This allows to model each ensemble and its participants as self-contained
entities where other ensembles do not have to be considered. Contributing components
should be able to participate in several ensembles simultaneously without prede�ning
the composed behavior. Ensembles themselves should support dynamic composition in
terms of contributing components such that the collaboration is formed on demand. At
the same time, the ensemble � or rather the participants � should be able to decide
themselves which components should contribute to the ensemble to allow autonomic
self-management of the system.

Goal Speci�cation and Veri�cation: Ensembles are dynamically formed goal-
directed communication groups. Thus, the question arises how goals, which directly
aim at these dynamically formed communication groups, can be speci�ed and veri�ed.
Goal speci�cation should focus on the ensemble under consideration within the context
of the underlying component-based platform.

When specifying goals in a standard-component-based design with one-�ts-all com-
ponents for an ensemble-based system as described in the �rst paragraph, the goals
would have to be speci�ed on the level of these all-mighty components. It would not
be possible to focus only on the relevant parts for the ensemble under consideration.
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Similarly, when verifying the standard component-based design against its goals, the
model would have to be abstracted to the relevant parts of the ensemble only. The
full-blown model would be too large and would contain many parts which would not
a�ect the ensemble at all. A more modularized ensemble model would help to facili-
tate speci�cation and veri�cation of goals for ensemble-based systems. Therefore, we
look for an ensemble model which describes the structure of the ensemble-based system
more modularized and which is grounded on a solid formal foundation allowing rigorous
analysis. Appropriate goal speci�cations capture the purpose of an ensemble and can
be veri�ed in the formal ensemble model.

Implementation: Another question is how to realize an ensemble-based system in im-
plementation. In principle, complexity issues similar to �nding an appropriate abstrac-
tion for the system description arise, i.e., how to break down the overall ensemble-based
system into groups of communicating entities which can be shared between ensembles.
A modularized structural model, as envisioned before, already provides abstractions to
describe the underlying component-based platform of an ensemble-based system and
all its employed ensembles independently. By transferring these ideas to the implemen-
tation, we would be able to sustain complexity reduction on this level as well. The
separate implementation of the participants of one ensemble from all other ensembles
furthermore allows to add, change and remove ensembles detached from each other.
However, special care has to be taken to avoid interferences between members of di�er-
ent ensembles if they access and change the data of the same underlying components.

1.4 Solution Idea

To tackle the development of ensemble-based systems, we introduce the Helena de-
velopment methodology to specify ensemble-based systems and their goals as well as to
verify and to implement them. The acronym Helena stands for �Handling massively

distributed systems with ELaborate ENsemble Architectures�. Helena's main idea is
that an ensemble is not speci�ed in terms of participating components, but in terms of
roles a component can adopt. A role is the logical entity needed to contribute to the
ensemble while a component provides the technical functionalities to actually execute
a role. Like that, we separate the basic capabilities which a component o�ers from the
goal-directed behavior an ensemble requires from its participants. Components take
over responsibility for a certain task in the ensemble by adopting roles. They therefore
no longer have to combine all capabilities in a one-�ts-all implementation, but extend
their behavior on demand by acting in a certain role. By adopting several roles in
parallel, they are even able to participate concurrently in several ensembles without
prede�ning the composed behavior. We also address the heterogeneity of components
since we allow any component with appropriate capabilities to take over responsibility
for a certain role in an ensemble.

Helena's main features are best described by looking at a certain state of an
ensemble-based system modeled with Helena. Fig. 1.2 shows a state of a system with
di�erent components and roles. The bottom layer depicts the component-based platform
building the foundation of the ensemble-based system. In this system, three compo-
nents c1, c2, and c3 exist (which are of two di�erent types CompType1 and CompType2).
They are passive entities in the system and merely provide their capabilities to form
ensembles on top of them. The upper layer represents ensembles of collaborating roles
which are adopted by the underlying components. In this case, the system employs
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Figure 1.2: Ensemble state

two ensembles as shown by the dashed ellipses. In each ensemble, two roles (of di�er-
ent types RoleType1, RoleType2, and RoleType3) collaborate towards a common goal.
These roles are the active entities in the system which actually work towards the goals.
Therefore, a control state (indicated by ellipses in Fig. 1.2) is associated to each role
instance which represents the current progress of the execution of the behavior of the
role. To become active, a role has to be adopted by a component as shown by the de-
pendency arrows linking to the underlying component-based platform. The components
provide their resources to their adopted roles to persistently store data and to perform
(possibly complex) computations.

From this picture of a state of an ensemble-based system in Helena, the main
di�erences between component-based design and role-based design become apparent.

Technical Functionalities vs. Goal-Oriented Behavior: The system is modeled
by two layers. One layer represents the underlying component-based platform.
Components merely serve as persistent data storage and o�er services in the form
of operations which can be called. They do not exhibit any active behavior and
do not interact with each other (neither via message exchange nor via operation
calls). Thus, in contrast to a component-based design, components in a role-based
design are always passive objects which simply provide their resources, may it be
storage or computing power, upon request from a role. The second layer represents
goal-oriented ensembles of collaborating roles. Roles only exist within a certain
ensemble and have to be adopted by an appropriate component. In contrast to
components, they have a volatile nature in the sense that they only exist as long
as their comprising ensemble has not yet reached its goal. During their lifetime,
they allow to store data; however, and di�erently from components, the data is
lost as soon as the embracing ensemble terminates since the role does not persist
beyond the ensemble. Furthermore, roles are the active and interacting entities
in the system, i.e., they execute a dynamic behavior contributing to achieving the
ensemble goal in collaboration. In their behaviors, they use three di�erent types
of actions: The �rst type of actions purely refers to the role layer. Roles can
(synchronously or asynchronously) exchange messages between each other and
store data on themselves. The second type of actions allows the role to access
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its owning component and thus fuses the two layers of roles and components
together. The role can store data on its owning component persistently or call
operations o�ering a particular service. The latter action is the only way to
involve a component into the goal-oriented behavior of the ensemble. By calling
an operation on the component, a role requests a particular service o�ered by the
operation from the component and temporarily hands over the control �ow to the
component. Finally, the third type of actions supports management operations
for roles. Roles can create other roles and retrieve references to them in order to
communicate with them. This kind of dynamism stands out since it provides an
autonomic and �exible way of managing the composition of an ensemble.

Ensemble Views: The upper goal-directed layer is organized in ensembles. This al-
lows to model each collaboration from the viewpoint of a single ensemble only
and independently from other ensembles. Each ensemble merely has to focus on
its constituent participants in the form of roles. Thereby, each role represents one
particular behavior required in the collaboration of an ensemble. In contrast to a
component-based design, the component is therefore not a collection of all o�ered
behaviors, but rather is structured by its adopted roles.

The Helena development methodology is based on a rigorous typing discipline
which distinguishes between types and instances. Fig. 1.2 is only concerned with the
instance level. It shows a snapshot of the currently existing component instances of
the underlying component-based platform and shows how ensembles are formed and
executed from active role instances on top of it. However, these instances are rigorously
typed and are only allowed to interact according to the conceptual relationships between
their types de�ned on type level. On the one hand, we specify the properties and
capabilities of types on this type level. For example, a component instance of a certain
component type is able to persistently store certain data items in attributes and can
o�er particular services through operations. A role instance of a certain role type is able
to store volatile data items in attributes and can communicate with instances of other
role types through certain messages. On the other hand, the type level determines the
conceptual relationships between those types in an ensemble structure. For example,
the ensemble structure speci�es which component types can actually adopt a certain
role type and which role types must interact to form a goal-oriented ensemble.

1.5 Contributions

The contributions of this thesis lead to the Helena development methodology for
ensemble-based systems (cf. Fig. 1.3). The methodology addresses the particular chal-
lenges of ensemble-based systems in the most prominent development phases: domain
modeling, goal speci�cation, design, veri�cation, and implementation.

Let us �rst summarize the Helena development methodology in general before
we introduce the particular contributions which this thesis provides to each of the
phases. In the �rst step, the domain of an ensemble-based system is described as
an ensemble structure building on top of a component-based platform. The ensemble
structure captures the properties and capabilities of all participants of an ensemble and
the structural relationships between them. Based on the domain model, the goals of the
ensemble are speci�ed as linear temporal logic (LTL) formulae. The goal speci�cation
thereby formalizes in terms of formulae over the participants' properties which state each
participant should reach or maintain. With these goals in mind, the dynamic behavior
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Figure 1.3: The Helena development methodology for ensemble-based systems

of the system is designed as a set of behaviors for the participants. Together with the
ensemble structure as the system's structural model, these behaviors form the Helena
design model. To show that the speci�ed behaviors of the ensemble participants actually
achieve the global goals of the ensemble (in the context of the ensemble structure),
the Helena design model is then veri�ed against the goals. For that purpose, we
translate the Helena LTL goals and the Helena design model to Promela, the
input language of the model-checker Spin, and check goal satisfaction in the translated
Promela veri�cation model. On the other hand, we also execute those Helenamodels
after veri�cation. We provide the Java framework jHelena which realizes all Helena
concepts in Java. By implementing the Helena design model with this framework, we
are able to realize the model using the Helena abstractions. Both translations, from
Helena to Promela and to jHelena are supported by automated code generators.

The Modeling Approach of Helena: Syntax and Semantics

In Helena, we employ a formal modeling approach building on a component-based
model of the underlying system. The basic entities of the model are components spec-
i�ed by their type which provide common capabilities available across all the roles the
component can adopt. On top of that, we de�ne roles, more precisely role types, which
are able to take over responsibility for a certain part of the ensemble task. Each role
type must be supported by at least one component type whose instances are able to
adopt that role. The role types add role-speci�c attributes and communication abilities.
To de�ne the structural characteristics of collaborations, we use ensemble structures.
They de�ne which role types are needed in a collaboration and determine which role
types may exchange which message types. Besides the structural relationships in an
ensemble, we specify the dynamic behavior of each role type in a special kind of process
algebra. We use standard process constructs like termination, action pre�x, guarded
choice, and process invocation to form process expressions. However, speci�c actions
address the particular properties of an ensemble-based system. We support role cre-
ation and retrieval on top of a component-based platform, communication between roles
by (synchronous or asynchronous) message exchange, but also communication with the
underlying components via operation calls. The complete ensemble speci�cation de�nes
an ensemble structure together with behavior speci�cations for all involved roles, thus
determining the collaboration needed to solve a speci�c task. Although all behaviors
of the contributing roles are prede�ned, the collaboration remains adaptive since role
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behaviors allow to start new roles on demand and therefore to change the composition
of the ensemble at runtime.

The evolution of an ensemble (and therefore its semantics) is described by labeled
transition systems. The states of the semantic labeled transition system describe the
currently existing role instances and which component instances currently adopt which
roles. Transitions between ensemble states are triggered by role instance creation or
retrieval, (synchronous or asynchronous) message exchange between roles, and access
to the underlying components. The semantic labeled transition system follows general
preconditions for �ring transitions and postconditions determining the e�ects of dynam-
ically changing ensemble compositions. Structural operational semantic rules de�ne the
allowed transitions.

Goal Speci�cation and Veri�cation for Helena Models

Exploiting the formal semantics of Helena, we propose how goals can be speci�ed
and checked for a given Helena model. A goal can be an �achieve goal� such that
the ensemble will terminate when the goal is reached, or a �maintenance goal� such
that a certain property is maintained while the system is running. We specify those
goals with linear temporal logic (LTL). The basic atomic propositions for Helena LTL
goals can refer to data stored on roles or components as well as states reached in the
behavior of roles. Representing the Helena semantics in Promela, the input language
for the explicit state model-checker Spin, we are able to verify those LTL properties in
a given Helena model. For that, we de�ne a formal translation from Helena to
Promela. Furthermore, we formally prove for a subset of Helena that its Promela
translation satis�es the same set of LTL formulae such that model-checking results can
be transferred from Promela to Helena.

Implementing Helena Models with Object-Orientation

To express role-based Helena models with object-orientation, we have to realize the
two key principles underlying Helena. For each ensemble view, we introduce a separate
container composing all participants of the collaboration and allowing communication
between the members. To separate the technical functionalities from goal-oriented be-
havior when contributing to an ensemble, we slice the realization of an ensemble into
components and roles. To make roles active, they are implemented as Java threads on
top of a component. Role instances are bound to speci�c ensemble containers while
components can adopt many roles in di�erent concurrently running ensembles. As a
proof of concept, we provide the jHelena framework, a Java implementation of the He-
lena syntax and semantics following the ideas for expressing role-based model elements
with object-oriented concepts. The framework consists of two layers, a metadata layer
and a developer interface, and an orthogonal system manager as shown in Fig. 1.4.
The metadata layer allows to de�ne ensemble speci�cations in terms of component types
and ensemble structures (and thus role types etc.). The developer interface provides
the basic functionality to realize an actual ensemble-based application and implements
the execution semantics of Helena. The system manager is responsible to instantiate
ensemble structures, to create the underlying component-based platform, and to create
and run ensembles on top of it.
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Tool Support for Helena

To support the whole development cycle of ensemble-based systems, we provide an
Eclipse plug-in for speci�cation, veri�cation and execution of ensembles. The domain-
speci�c language HelenaText provides a concrete syntax for ensemble speci�cations
supporting roles and ensembles as �rst-class citizens. Building on Xtext, it is fully in-
tegrated into Eclipse providing a HelenaText editor with syntax highlighting, content
assist, and validation. From a HelenaText speci�cation either a veri�cation model in
Promela or an execution model in Java can be generated. The model transformation
from HelenaText to Promela realizes the rules introduced in the formal translation
from Helena to Promela in Xtend. The generated Promela veri�cation model
can be used directly for veri�cation with the model-checker Spin. The code generation
from HelenaText to Java, also written in Xtend, generates executable code for the
jHelena framework.

Case Study

As a proof of concept, the Helena development methodology is illustrated by a small
peer-to-peer example for distributed �le sharing throughout the thesis. However, to
show general applicability, we provide a larger case study in the �eld of voluntary
peer-to-peer cloud computing. The case study builds on a platform of distributed,
voluntarily provided computing nodes. The nodes interact in a peer-to-peer manner to
execute, keep alive, and allow use of user-de�ned software applications. Starting from
the description of the case study, we derive an ensemble structure describing the domain
and formulate Helena LTL goals to capture the main purpose of the system. Based on
the ensemble structure and the goals, we develop an ensemble speci�cation with goal-
directed behaviors for all employed roles. Goal satisfaction is checked for the Helena
model using the model-checker Spin and we report on experiences of model-checking
in terms of usability, performance and memory consumption. Finally, we realize the
model with Helena concepts gaining a clear and easy to understand implementation
from the encapsulation of responsibilities in roles.

Modeling Awareness and Adaptation with Helena

We show that the concept of roles is also well-suited to model self-adaptive systems
situated in an environment. A self-adaptive component keeps track of its individual
and shared goals, perceives its internal state as well as its environment, and adapts
its behavior accordingly. Such adaptations result in changing the behavioral mode
in response to perceptions. Following the idea of roles, di�erent behavioral modes
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can be realized as roles. Changing the behavioral mode then means to adopt another
role. Therefore, we propose a rigorous methodology to develop self-adaptive systems
extending our Helena development methodology (cf. Fig. 1.5).

          Design

Adaptation 
Specification

Verification

Implementation

Goal Specification

HELENA 
LTL Goals

HELENA 
Design Model

PROMELA 
Verification 

Model

jHELENA  
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Mode 
Behaviors

Adaptation 
Specification

Role-Based 
Adaptation 
Specification

HAM Pattern

Model
Transformation

HAM Pattern

Model
Transformation

Model
Transformation

Code 
Generation

Verification

Execution

Figure 1.5: The Helena development methodology for self-adaptive systems

We start from an adaptation speci�cation. It de�nes the problem domain by em-
ploying a so-called signature of the self-adaptive system and the triggers (when) and
actions (what) for self-adaptation by employing a so-called adaptation automaton. To
realize the self-adaptive system, we propose the Helena Adaptation Manager (HAM)
pattern as a blueprint for how the system adapts and how the application logic is
performed. By applying this pattern, the adaptation speci�cation is transformed to a
role-based adaptation speci�cation. The key idea of the transformation is to express
di�erent behavioral modes of a component by roles, thus encapsulating independent
parts of the application logic in self-contained roles. Being aware of the environment is
realized monitoring awareness data via dedicated sensor roles. Furthermore, an adapta-
tion manager � yet another role of the component � controls switching between di�erent
mode roles based on the adaptation automaton. Relying on the role-based adaptation
speci�cation, the application logic executed in each behavioral mode is speci�ed by a set
of mode behaviors for each mode role. Finally, we integrate the role-based adaptation
speci�cation with the mode behaviors by a second model transformation and gain a full
Helena design model with an ensemble structure describing the proposed role-based
architecture of the self-adaptive system and a set of role behaviors for all contributing
roles, behavioral modes, sensors and the adaptation manager. This model can then be
analyzed and executed with the veri�cation and implementation techniques and tools
of Helena as described above. All steps in the Helena development methodology are
illustrated at an adaptive robotic search-and-rescue scenario.

1.6 Outline

The remainder of this thesis is structured as follows:

Chap. 2: Syntax � Speaking Helena: The formal syntax for the speci�cation of
Helena models is introduced in this chapter. An ensemble structure describes
the structural relationships between participants of an ensemble and a particular
process algebra is used to specify the dynamic behavior of participants.

Chap. 3: Semantics � Understanding Helena: This chapter de�nes the formal
semantics for ensemble speci�cations. The semantic domain is labeled transition
systems which evolve ensemble states through role creation and retrieval, message
exchange between roles, and access to the underlying component-based platform.
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Chap. 4: Goal Speci�cations � Being Successful with Helena: Ensembles are
formed to collaborate towards a global goal. In this chapter, we introduceHelena
LTL, a logic based on LTLwith Helena speci�c atomic propositions. With this
logic, global goals can be speci�ed for a Helena ensemble speci�cation.

Chap. 5: Veri�cation � Being Sure about Goal Satisfaction: In this chapter,
analysis techniques are proposed to verify goals in Helena models. We represent
the Helena model in Promela and verify the resulting model against the given
properties by employing the explicit state model-checker Spin.

Chap. 6: Correctness Proof � Allowing Helena to Rely on Spin: To be able
to transfer model-checking results from Promela to Helena, we prove semantic
equivalence between the two speci�cations. In this chapter, we formally show that
the semantic labeled transition systems of an ensemble speci�cation in a simpli�ed
version of Helena and its Promela translation are stutter trace equivalent.
They therefore satisfy the same set of LTL formulae such that our approach of
model-checking with Spin is correct.

Chap. 7: Implementation � Vivifying Helena with jHelena: In this chap-
ter, we show how the role-based modeling elements in Helena can be expressed
through object-oriented concepts. The jHelena framework serves as a proof of
concept of the translation from Helena to Java.

Chap. 8: HelenaWorkbench �Working withHelena: To support the develop-
ment with Helena in practice, we present the Helena workbench in this chapter.
The workbench is fully included into Eclipse and allows to specify Helena models
in the dedicated domain-speci�c language HelenaText. For veri�cation, He-
lenaText models are automatically transformed to Promela to serve as input
for the model- checker Spin. For execution, Java code is generated which relies
on the jHelena framework to express all Helena concepts as �rst-class entities
in Java.

Chap. 9: Helena Development Methodology � Developing with Helena:
In this chapter, we combine all techniques from the previous chapters together
resulting in the rigorous Helena development methodology for ensemble-based
systems which has already been sketched before.

Chap. 10: Helena@Work � Applying Helena to the Science Cloud Plat-
form: We apply Helena to a larger case study from the �eld of voluntary peer-
to-peer cloud computing. The Helena development methodology is exemplarily
exercised at the case study and we present a real-life implementation. The imple-
mentation combines the Helena concepts and their object-oriented realization
with underlying network and communication technologies.

Chap. 11: Role-Based Adaptation � Being Adaptive with Helena: We pro-
pose a rigorous methodology to develop self-adaptive systems from speci�cation
to design. We specify the system's adaptation logic through adaptation automata.
The design is realized in Helena re�ning the speci�cation by providing a role-
based architecture and adding application logic in terms of role behaviors for
di�erent modes of the system.
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Chap. 12: Conclusion: Lastly, we conclude by providing a résumé of our experiences
with Helena. We summarize advantages, challenges, and limitations of applying
it and suggest further research directions in order to progress Helena.

The appendices contain the detailed correctness proof which was only outlined in
Chap. 6, a user guide for the Helena workbench and the speci�cation and generated
source codes of the p2p example, the science cloud case study and the search-and-rescue
scenario.

Before the bibliography, the author's publications are listed separately including
statements about her contributions to joint works used in this thesis. Moreover, in each
chapter, the section on �publication history� explains which publications provided the
basis for the content of the chapter and how they were extended for this thesis. Related
work, a summary and future perspectives are discussed for each chapter separately.



Chapter 2

Syntax
Speaking Helena

The role-based modeling approach Helena provides concepts to describe systems of a
large number of components which dynamically team up in possibly concurrently run-
ning ensembles to perform global goal-oriented tasks. To participate in an ensemble, a
component adopts a certain role. This role adds role-speci�c behavior to the component
and allows collaboration with other components playing roles. By switching between
roles, a component changes its currently executed behavior. By adopting several roles
in parallel, a component concurrently executes di�erent behaviors.

Helena ensemble speci�cations describe the structural and dynamic properties of
an ensemble on type-level. To de�ne the structure of an ensemble, an ensemble speci�-

cation determines which types of roles have to participate in an ensemble, which types
of components are allowed to adopt the roles, and how many instances of each role type
can collaborate in the ensemble. To de�ne the dynamic behavior of an ensemble, each
role type is equipped with a role behavior which is later on executed by each existing
instance of the role type possibly interacting with other role instances.

In Sec. 2.1, we introduce a peer-to-peer �le sharing scenario which is used as a
running example throughout this thesis. Afterwards, we outline the syntax of Helena
ensemble speci�cations. We start by describing the speci�cation of the underlying
component-based platform in Sec. 2.2. In Sec. 2.3, we introduce ensemble structures
which determine the structural relationships in a collaboration of components by roles.
To gain a complete ensemble speci�cation, each role type is equipped in Sec. 2.4 with
a dynamic role behavior speci�ed as a process term. We conclude with related work
on the concepts used in Helena in Sec. 2.5 and a short summary in Sec. 2.7. All
subsections are illustrated with the p2p example introduce in the previous chapter.
The full ensemble speci�cation of the p2p example can be found in Appendix C.1.

Notation: Whenever we work with tuples t = (t1, . . . , tn), we may use the notation
ti(t) to refer to the value ti of t. If t1 denotes a name, we often write t synonymously
for the name t1.

Notation: −→z denotes a list of z.

2.1 P2P Example

Throughout this thesis, we illustrate the Helena concepts and tools based on the
example of a peer-2-peer (p2p) network supporting the distributed storage of �les which

17
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can be retrieved upon request. Several peers form the underlying component-based
platform. They are connected in a ring structure and are able to store �les and to print
their contents. Whenever a �le is requested, some peers work together to �nd the �le in
the network and to transfer it to the requester. To this end, an appropriate ensemble is
formed whose goal is to �nally deliver the requested �le to the requesting peer. Three
di�erent roles are necessary in the ensemble: One peer plays the role of the requester
of the �le, other peers act as routers and the peer storing the requested �le adopts the
role of the provider of the �le. All these roles can be adopted by peers and rely on their
capabilities to store �les and print them. In the following chapters, we will derive the
full speci�cation of this example in Helena. We will formally de�ne the goal of �le
transferal and check it in the ensemble speci�cation. Finally, we provide an executable
implementation of the example based on the jHelena framework.

2.2 Component-Based Platform

Ensembles are built on top of a component-based platform. The component-based plat-
form describes the architectural and functional properties of the underlying target sys-
tem on which ensembles are dynamically formed. Hence, the components provide the
persistent foundation of ensemble-based systems. Components store data and main-
tain associations to other components. Both, data and associations, persist across the
life-time of di�erent dynamically evolving ensembles. They additionally provide their
computing resources in the form of operations which can be called by the roles which
components adopt in ensembles.

Therefore, components are pure data containers and computing resources without
any active behavior. They are just passive objects on which the active entities, the
roles, rely on for storing persistent data or performing computations. Components are
not meant to exchange any messages or data between each other which the adopted
roles are responsible for.

To represent data in Helena, we assume given a set D of data types (like bool

for boolean values, int for integer values, or double for �oating-point numbers). The
semantic domain of a data type dt ∈ D is given by JdtK. To store persistent data, each
component type o�ers a set of attributes. Attributes are characterized by their name
and typed by a data type from D.

Def. 2.1: Attribute

An attribute is of the form atnm:dt such that atnm is the name of the attribute

and dt ∈ D its data type.

To store connections to other components, each component type o�ers a set of
directed component associations. An association is identi�ed by its name and the type
of the component to which this association refers to.

Def. 2.2: Component Association

A component association is of the form assocnm:ct such that assocnm is the

name of the association and ct the component type referred to by this association.

To provide computing resources, each component type o�ers a set of operation types

which can be called by role instances later on. An operation is identi�ed by its name
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and a list of typed formal data parameters for inputs. The e�ect of the operation is
not further speci�ed by the operation type (e.g., by pre- and post-conditions), that
means the operation could have side-e�ects. An operation can just use the resources of
a component to compute something.

Def. 2.3: Operation Type

An operation type op is of the form opnm(
−−−→
x : dt) such that opnm is the name of

the operation type and
−−−→
x : dt is a list of formal parameters for data with type

−→
dt .

To classify components, we use component types. Each component type is identi�ed
by its name and o�ers a set of attributes to store data, a set of component associations,
and a set of operation types which can be called on and executed by (instances of)
the component type. Note that by using sets, we consider all attributes, component
associations, and operations unique per component type.

Def. 2.4: Component Type

A component type ct is a tuple (ctnm, ctattrs, ctassocs, ctops) such that ctnm
is the name of the component type, ctattrs a set of attributes, ctassocs a set of

component associations, and ctops a set of operation types.

Example: In the p2p example introduced in Sec. 2.1, we employ a set of components
connected in a ring structure. They support the distributed storage of �les and allow
to retrieve the �les upon request. For simplicity, we only consider one single �le which
is stored and exchanged in the network. All components in the network are of the same
type Peer. Formally, the component type for a peer is given by

Peer = ("Peer", {hasF ile:bool, content:int}, {neighbor:Peer}, {printF ile()}).

The component type Peer has the name "Peer". The attribute hasF ile of type bool

indicates whether the peer has the �le independently from the �le's content information
represented by the attribute content of type int (we assume that the content can be
stored as an integer). A peer is furthermore connected to its neighboring peer given
by the association neighbor:Peer. Lastly, a peer can print the content of the �le by
executing the operation printF ile which does not have any parameters. Note that the
e�ect of the operation is not speci�ed by the operation type, i.e., printing the �le is just
the intuitive meaning of the operation printF ile.

For visualization, we use a graphical representation inspired by UML class diagrams
which is depicted in Fig. 2.1. It consists of three parts: the name of the component
annotated with the stereotype «component type», the component attributes, and the
component operations. Component associations are shown by arrows pointing to com-
ponent types.

«component type»
Peer

hasFile:bool
content:int

printFile()

neighbor

Figure 2.1: Component type Peer in graphical notation
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2.3 Ensemble Structures

For becoming active and performing certain tasks, components team up in ensembles.
Each participant in the ensemble contributes speci�c functionalities to the collaboration,
we say, the participant plays a certain role in the ensemble. Roles are the active entities
in the system and collaborate with each other to reach a goal, possibly commonly shared
in the ensemble.

2.3.1 Role Types

For collaboration, roles exchange messages which are classi�ed by their type. Each
message type has a name, a list of formal parameters to pass references of role instances
for further communication, and a list of formal parameters to pass ordinary data.

Def. 2.5: Message Type

A message type msg is of the form msgnm(
−−−→
X : rt)(

−−−→
x : dt) such that msgnm is

the name of the message type,
−→
X is a list of formal role instance parameters with

type
−→
rt , and

−−−→
x : dt is a list of formal data parameters with type

−→
dt .

Roles themselves are also classi�ed by their type. The de�nition of a role type always
builds upon a given component-based platform speci�ed by a set of component types.
A role type determines the types of the components that are able to adopt this role.
It also de�nes a set of role-speci�c attributes to store data which is only relevant while
performing the role (and hence is volatile just as role-playing), and sets of message types
for outgoing and incoming messages for interaction and collaboration with other roles.
Note that by using sets, we assume that all attributes and messages types as well as
adopting component types are unique per role type.

Def. 2.6: Role Type

Given a set CT of component types, a role type rt over CT is a tuple rt =
(rtnm, rtcomptypes, rtattrs, rtmsgsout, rtmsgs in) such that

� rtnm declares the name of the role typea,

� rtcomptypes ⊆ CT is a �nite, non-empty set of component types whose

instances can adopt the role,

� rtattrs is a set of role-speci�c attributes,

� rtmsgsout and rtmsgs in specify sets of message types for outgoing and in-

coming messages resp. supported by the role type.

aIn the following, we often write rt synonymously for the name rtnm of the role type.

Example: In the context of our p2p network, we consider the task of requesting and
transferring a �le. To perform this task, we envision three role types: requester, router,
and provider. The requester wants to download the �le from the network. Thus, it
requests the address of the peer storing the �le from the network, while using the
routers as forwarding peers of its request. Once the requester knows the address, it
directly requests the �le from the provider for download. Each role can be adopted
by instances of component type Peer, but exhibits di�erent capabilities to take over
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responsibility for the transfer task: the requester must be able to request the address of
the provider from a router and receive the reply. Afterwards, it must be able to request
the �le from the provider and receive the content. The router must be able to receive a
request for the address, to send a reply back to the requester or to forward it to another
router. The provider of the �le must be able to receive a request for the �le and send
the content back to the requester.

The formal speci�cation of the three role types is given in Fig. 2.2. A Requester has
the name "Requester" and can be adopted by a component instance of type Peer. It
has a role-speci�c attribute hasF ile of type bool to store whether it already received the
requested �le or not. To request the address of the provider, it supports the message
reqAddr(req:Requester)() as outgoing message. The parameter req is used to transfer
the reference of the requesting peer to the receiver of this message such that an answer
can be sent back to the requesting peer via this reference. To receive the address of
the provider, the requester supports the message sndAddr(prov:Provider)() as incoming
message. The parameter prov thereby holds the reference of the provider of the �le.
Downloading the �le is requested with the message reqF ile(req:Requester)() supported
as outgoing message by the requester. The actual content is transferred to the requester
with the incoming message sndFile()(content:int) where the parameter content of type
int holds the actual content. The other two role types support the corresponding
messages, e.g., the Router supports receiving a request for the address of the provider,
replying to the request and forwarding the request while the Provider supports receiving
a request for the content of the �le and transferring the �le's content.

Requester = ("Requester", {Peer}, {hasF ile:bool},msgsout(rq),msgsin(rq))

with msgsout(rq) = {reqAddr(req:Requester)(), reqF ile(req:Requester)()}
and msgsin (rq) = {sndAddr(prov:Provider)(), sndF ile()(content:int)}

Router = ("Router", {Peer}, ∅,msgsout(ro),msgsin(ro))

with msgsout(ro) = {reqAddr(req:Requester)(), sndAddr(prov:Provider)()}
and msgsin (ro) = {reqAddr(req:Requester)()}

Provider = ("Provider", {Peer}, ∅,msgsout(pv),msgsin(pv))

with msgsout(pv) = {reqF ile(req:Requester)()}
and msgsin (pv) = {sndF ile()(content:int)}

Figure 2.2: All role types for the p2p example

A graphical representation of all three role types is given in Fig. 2.3. Similarly
to the graphical representation of component types, it again consists of three parts
inspired by UML class diagrams: The �rst compartment speci�es the name of the
role type annotated with the stereotype «role type». The notation RoleType:{Peer}

indicates that any component instance of type Peer can adopt the role RoleType. The
second compartment speci�es role-speci�c attributes and the third compartment lists
all supported messages together with the modi�ers in and out.

2.3.2 Ensemble Structures

To de�ne the structural characteristics of a collaboration, an ensemble structure deter-
mines the type of an ensemble which is able to perform a certain task. It speci�es the
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«role type»
Requester:{Peer}

hasFile:bool

out reqAddr(req:Requester)()
in sndAddr(prov:Provider)()
out reqFile(req:Requester)()
in sndFile()(content:int)

(a) Role type Requester

«role type»
Router:{Peer}

out reqAddr(..)()
in reqAddr(..)()
out sndAddr(..)()

(b) Role type Router

«role type»
Provider:{Peer}

in reqFile(..)()
out sndFile()(..)

(c) Role type Provider

Figure 2.3: All role types for the p2p example in graphical notation

set of role types which are needed in the collaboration and how many instances of each
role type may (or must) contribute (note that by using a set of role types, we assume
that role types are unique per ensemble structure). The roles contributing to the en-
semble can then exchange messages which are outgoing at the source role and incoming
at the target role. Interacting role instances can use synchronous or asynchronous com-
munication via input queues. An ensemble structure speci�es, for each role type, the
(�nite) capacity of the input queue of each role instance of that type where the value 0
expresses synchronous communication. An ensemble structure is always built on top of
a given set CT of component types whose instances can adopt roles as speci�ed in the
ensemble structure.

Def. 2.7: Ensemble Structure

Let CT be a set of component types. An ensemble structure Σ over CT is a tuple

Σ = (nm, roletypes, roleconstraints) such that

� nm is the name of the ensemble structure,

� roletypes is a set of role types over CT and for each rt ∈ roletypes,

� roleconstraints(rt) is a triple of

� the minimal number min ∈ N+ of role instances of rt ,

� the maximal number max ∈ N+ ∪ {∗} of role instances of rt (* refers

to the UML multiplicity of arbitrarily many instances), and

� the �nite capacity cap ∈ N of the input queue of rt .

An ensemble structure Σ is called closed ensemble structure if each outgoing mes-
sage type supported by some role type of Σ is matched by an incoming message type
supported by any (possibly the same) role type of Σ, i.e.,

∀rt ∈ roletypes(Σ),msg ∈ rtmsgsout(rt) . ∃rt ′ ∈ roletypes(Σ) : msg ∈ rtmsgs in(rt ′) ∧
∀rt ∈ roletypes(Σ),msg ∈ rtmsgs in(rt) . ∃rt ′ ∈ roletypes(Σ) : msg ∈ rtmsgsout(rt

′).

Otherwise the ensemble structure is called open. In the following, we only consider
closed ensemble structures.

Example: The ensemble structure for the p2p example consists of the three role types
Requester, Router, and Provider where we now associate a minimal and maximal number
for the allowed instances per role type and capacities for their input queues. Its formal
representation is given in Fig. 2.4

For instance, exactly one instance of the role type Requester is required in a �le
transfer ensemble while arbitrarily many instances of the role type Router might be
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Σtransfer = ("Σtransfer", {Requester,Router, Provider}, roleconstraints)

with roleconstraints(Requester) = (1, 1, 2),

roleconstraints(Router) = (1, ∗, 2),

roleconstraints(Provider) = (0, 1, 1).

Figure 2.4: Ensemble structure Σtransfer for the p2p example

necessary to route messages through the network. The input queue of an instance of
the role type Requester or Router can store up to two messages, of an instance of the role
type Provider only one message. Which messages can be exchanged between each of
the role types is implicitly given by the intersection of outgoing and incoming message
types of two role types.

Fig. 2.5 shows a graphical representation of the ensemble structure Σtransfer for
the p2p example. This graphical representation makes some of the implicitly speci�ed
properties more explicit. Firstly, it depicts by dependency arrows with the stereotype
«adoptedBy» that each role type in the p2p example can be adopted by the component
type Peer. Secondly, minimal and maximal numbers, and capacities are explicitly shown
in a separate compartment of each role type. Lastly, arrows between role types denote
sets of messages which can be exchanged between the roles, i.e., which are outgoing
for the source role and incoming for the target role. For instance, the Requester can
send the message reqAddr(req:Requester)() to a Router. This message will be used
for requesting the address of a Provider for the requested �le such that the �le can be
directly downloaded afterwards using the messages between Requester and Provider.

«role type»
Requester

min = 1
max = 1
cap = 2

«component type»
Peer

«role type»
Router

min = 1
max = *
cap = 2

«role type»
Provider

min = 0
max = 1
cap = 1

reqA
ddr(

..)(
)

sndA
ddr(

..)(
)

reqFile(..)()
sndFile()(..)

reqAddr(..)()

«adoptedBy»

«adoptedBy» «adoptedBy»

Figure 2.5: Ensemble structure Σtransfer for the p2p example in graphical notation

2.3.3 Well-Formedness of Ensemble Structures

An ensemble structure has to satisfy two conditions to be well-formed. Firstly, the
ensemble structure determines the minimal number and maximal number of instances
for each role type. Thus, we must take care that those two numbers are ordered.
Secondly, in the context of an ensemble structure, only the role types named in the
ensemble structure are known. Thus, the messages exchanged between role types of
the ensemble structure can only refer to those known role types as parameters. These
conditions are expressed by well-formedness of ensemble structures.
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Def. 2.8: Well-Formedness of Ensemble Structures

An ensemble structure Σ = (nm, roletypes, roleconstraints) is well-formed if for

all role types rt ∈ roletypes(Σ),

(1) the minimal number of allowed role instances is less or equal to the maximal

number of allowed role instances,

i.e., min(roleconstraints(rt)) ≤ max (roleconstraints(rt)), and

(2) all types rt ′ of role instance parameters of all message types

msg ∈ rtmsgsout(rt) ∪ rtmsgs in(rt) are part of the ensemble structure Σ,
i.e., rt ′ ∈ roletypes(Σ).

Example: The ensemble structure Σtransfer for the p2p example shown in Fig. 2.4 resp.
Fig. 2.5 is well-formed according to Def. 2.8. Firstly, the minimal and maximal number
are ordered. Secondly, from Fig. 2.2 resp. Fig. 2.3, we know that only the message
types reqAddr(req:Requester)(), sndAddr(prov:Provider)(), and reqF ile(req:Requester)()

have role instance parameters. Their role types Requester and Provider are part of the
underlying ensemble structure Σtransfer .

2.4 Ensemble Speci�cations

After having modeled the structural aspects of ensembles, we focus on the speci�cation
of behaviors for each role type of an ensemble structure. A role behavior declaration is
given by a process expression and a set of process declarations which can be called in
that process expression.

2.4.1 Process Expressions

In Helena, process expressions are built from termination, action pre�x, nondetermin-
istic choice, if-then-else, and process invocation. Note that Helena process expressions
do not support parallel composition. In Helena, a role is always responsible for a
speci�c task which we consider to be achieved by a (possibly branching) sequential pro-
cess. If a component is meant to perform two tasks in parallel, it has to adopt two roles
in parallel and therefore to concurrently execute their sequential role behaviors. The
Helena semantics presented in the next chapter will support this kind of concurrency
since it formalizes the concurrent execution of all roles of a component in the context
of an ensemble.

There are eight di�erent kinds of actions which can be used in action pre�x: creation
and retrieval of role instances, sending (!) and receiving (?) a message, operation calls
on the owning component, setting attribute values for the role instance or the owning
component1, and state labels. Intuitively, these actions must �t to the declared ensemble
structure, e.g., messages can only be sent by roles which declare them, as we discuss it
more formally in the following subsection about well-formedness of process expressions.

Guards used in if-then-else constructs are the boolean primitives true and false,
data variables (e.g., from a message reception or the result value of an operation call),
access of component attributes or role attributes, the prede�ned query plays(rt ,C ) to
request whether the component instance identi�ed by C currently plays the role rt ,

1Getters are not provided as distinct actions, but the values of attributes can be retrieved and
accessed in data expressions as we will present in the following.
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data expressions (e.g., summation and subtraction or relations comparing expressions
and constants with the usual relational operators) or any boolean expression built from
these primitives using propositional operators like ! and &&. In the following subsection,
we will formalize well-formedness of guards to determine that they are actually boolean.

Notation: We use the special, prede�ned role instance variable self to refer to the
current role instance and the special, prede�ned component instance variable owner
to refer to the owning component instance. Furthermore, the notation owner.assocnm
is used to refer to the name of the component association assocnm:ct of the owning
component instance.

In the following de�nition, P , P1, and P2 are process expressions, a is an ac-
tion, guard, guard1, and guard2 are guards, N is the name of a declared process,
rt is the name of a role type, C is either the special, prede�ned variable owner or
owner.assocnm referring to the name of a component association of the owning compo-
nent instance, msgnm is the name of a message type, opnm is the name of an operation
type, attr is the name of an attribute (either of a component type or a role type), X
and Y are role instance variables (including the special, prede�ned variable self), x is
a data variable2, and e is a data expression.

Def. 2.9: Process Expression

A process expression P is built from the following grammar:

P ::= quit (termination)

| a.P (action pre�x)

| P1 + P2 (nondeterministic choice)

| if (guard) {P1} else {P2} (if-then-else)

| N (process invocation)

a ::= X←create(rt , C) (role instance creation)

| X←get(rt , C) (role instance retrieval)

| Y !msgnm(
−→
X )(−→e ) (sending a message)

| ?msgnm(
−−−→
X : rt)(

−−−→
x : dt) (receiving a message)

| [x =] owner.opnm(−→e ) (component operation call)

| owner.attr = e (component attribute setter)

| self.attr = e (role attribute setter)

| label (state label)

guard ::= true | false (boolean primitives)

| x (data variable)

| owner.attr | self.attr (attribute access)

| plays(rt ,C ) (plays query)

| e (data expression)

| !guard | guard1 && guard2 | . . . (propositional operators)

2We distinguish between role instance variables and data variables since role instance variables can
be used as recipients for messages later on, for instance for callbacks.
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In the following, we give an intuitive meaning for each of the process constructs and
actions in the context of an ensemble structure. The explanations anticipate the formal
semantics in Chap. 3.

Termination is expressed by the process construct quit. When using a process expres-
sion to describe the behavior of a role, quit �rst advises the owning component
of the role to quit playing the role and then terminates the execution of the role
behavior.

Action pre�x is of the form a.P . This process construct �rst executes the action a
and then behaves like the remaining process P .

Nondeterministic choice is of the form P1+P2. Nondeterministic choice in Helena
realizes external (nondeterministic) choice: The executability of the �rst action of
either branch, the process expression P1 and the process expression P2, is checked.
If both branches are executable, one branch is selected nondeterministically for
execution. If only one is executable, this branch is selected for execution. If none is
executable, the execution of the whole nondeterministic choice process construct
is blocked until at least one of the branches becomes executable. Importantly,
the question of executability just arises in the context of an ensemble. A single
role instance can always execute its actions, but in collaboration with other role
instances, some actions might not be executable, e.g., one role instance wants to
send a message to another role instance which is currently not able to receive it.

If-then-else is of the form if (guard) {P1} else {P2}. This process construct allows
to choose between two process expressions P1 and P2 based on the value of the
boolean guard guard. The if-then-else process construct can only be executed
if either the guard evaluates to true and the �rst action of the �rst process
expression P1 is currently executable or the guard evaluates to false and the �rst
action of the second process expression P2 is currently executable. Otherwise
the whole if-then-else process construct blocks until one of the aforementioned
execution conditions holds.

Process invocation is of the form N . This process construct simply invokes the
process with the name N and instantaneously continues by executing this process.

A create action is of the form X←create(rt , C). It creates a new role instance of
type rt which is adopted by the component instance identi�ed by C, and referenced
by the variable X of type rt in the sequel.

A get action is of the form X←get(rt , C). It retrieves an existing role instance of
type rt already adopted by the component instance identi�ed by C and binds a
reference to the found role instance to the role instance variable X. This actions
blocks if the component instance does not currently adopt such a role. Note
that there can only be one active instance of each role type per component in an
ensemble.

A send action is of the form Y !msgnm(
−→
X )(−→e ). It expresses that a message with

name msgnm and actual parameters
−→
X and −→e is sent to a role instance referenced

by Y . The �rst parameter list
−→
X consists of role instances to be passed to the

receiver; with the second parameter list −→e , data is passed to the receiver. This
action blocks if the message queue of the receiving role instance is full.
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A receive action is of the form ?msgnm(
−−−→
X : rt)(

−−−→
x : dt). It expresses the reception of

a message with name msgnm. The values received on the parameters are bound
to the variables

−→
X for role instances and to the variables −→x for data. This action

blocks if the message queue of the receiving role instance is empty.

A component operation call is of the form [x =] owner.opnm(−→e ). It calls the
corresponding operation with the name opnm on the owning component of the
role instance with the given parameters −→e and binds the retrieved value to the
data variable x if the operation returns a value in one atomic step. Note that in
Helena, we do not specify any e�ect of operations in an ensemble speci�cation
(i.e., when de�ning a component type with its operations). That means that
semantically, an operation call can change the state of an ensemble other than
progressing a role behavior; more speci�cally, it can have side-e�ects on the state
of the owning component instance as we will see in the next chapter about the
semantics of Helena.

A component attribute setter is of the form owner.attr = e. It sets the value of
the attribute attr of the owning component of the current role to the value e in
one atomic step.

A role attribute setter is of the form self.attr = e. It sets the value of the attribute
attr of the current role to the value e.

A state label is of the form label . It can semantically be seen as a silent non-
communication action. We will only use state labels during veri�cation to explic-
itly refer to a particular state in a role behavior. State labels do not contribute to
the actual goal-directed behavior of a role except labeling a certain state in the
role behavior.

The variables
−→
X,−→x used in message reception and operation call, and the variable

X for role instance creation and retrieval open a scope which binds the open variables
with the same names in the successive process expression. The bound variables receive
a type as declared by the role types

−→
rt and rt or

−→
dt resp.

2.4.2 Well-Formedness of Process Expressions

In the context of an ensemble structure Σ = (nm, roletypes, roleconstraints), a pro-
cess expression has to satisfy some conditions to be well-formed. First of all, actions
and guards employed in the process expression have to be well-formed, i.e., they must
conform to the underlying ensemble structure.

We do not allow mixed states in nondeterministic choice such that the �rst actions
of both branches have either to be incoming messages or any other actions than an
incoming message. Otherwise, it would be possible for example to nondeterministically
choose between sending and receiving a message. Intuitively, sending a message can
internally be decided, but receiving a message is externally triggered if a message from
another role is available. Due to this di�erent kind of decision it does not make sense
to allow selecting between those two options.

Furthermore, state labels are not allowed as �rst actions of any branch in nonde-
terministic choice or if-then-else. State labels mark a certain progress of execution in
a process expression. If used as a �rst action in nondeterministic choice, it is unclear
when the designated point of progress is reached. Before executing nondeterministic
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choice, the point is not yet reached since we can still decide for either of the branches.
When choosing one of the branches, we immediately execute the �rst action such that
after executing the �rst action the designated point is not reached either since the state
label was already passed. Therefore, we cannot allow state labels as �rst actions of
branches in nondeterministic choice. The same argumentation applies to state labels as
�rst actions of branches in if-then-else.

Lastly, a process expression must not immediately invoke itself. An immediate
recursive process invocation would not progress the process since process invocation is
not a separate step in the semantics (as we will see in the next chapter), but immediately
executes the �rst action of the invoked process.

Def. 2.10: Well-formedness of a Process Expression

A process expression P is well-formed for a role type rt ∈ roletypes(Σ) w.r.t. Σ,
if

(1) in any action pre�x construct of P , all actions are well-formed for rt with
respect to Σ,

(2) in any if-then-else construct of P , all guards are well-formed for rt with

respect to Σ,

(3) in any nondeterministic choice construct of P , the �rst actions of the two

branches are either incoming messages or any other action than an incom-

ing message,

(4) in any nondeterministic choice construct or if-then-else construct, state la-

bels are not the �rst action of any branch,

(5) a process expression does not immediately invoke itself, also not by a chain

of process invocations being the �rst and last invocation the same.

An action is well-formed for a role type rt ∈ roletypes(Σ) w.r.t. Σ, if

(1) for X←create(rt ′, C) and X←get(rt ′, C) resp.,

(a) rt ′ ∈ roletypes(Σ), i.e., rt ′ is a role type in the ensemble structure Σ,

(b) C is either the special, prede�ned variable owner or owner.assocnm refer-
ring to the name of a component association assocnm:ct′ which is de�ned for
all component types ct ∈ rtcomptypes(rt) which can adopt a role of type rt ,

(c) the component instance identi�ed by C is of a type ct ∈ rtcomptypes(rt ′),
i.e., the instances of the component type ct can adopt a role of type rt ′,

(d) the variable X has not been declared before,

(2) for Y !msgnm(
−→
X )(−→e ),

(a) msgnm(
−−−−→
X ′ : rt ′)(

−−−−→
x′ : dt ′) ∈ rtmsgsout(rt), i.e., the role type rt supports the

message type msgnm(
−−−−→
X ′ : rt ′)(

−−−−→
x′ : dt ′) as outgoing message,

(b) the type of the role instance variable Y supports the message type

msgnm(
−−−−→
X ′ : rt ′)(

−−−−→
x′ : dt ′) as incoming message,
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(c) the actual parameters
−→
X and −→e �t in number, ordering, and type to the

formal ones
−→
X ′ and

−→
x′ ,

(d) the expressions Y ,
−→
X , and −→e only name the prede�ned constant self , con-

crete values, or variables or parameters which have been declared before,

(3) for ?msgnm(
−−−−→
X : rt ′)(

−−−→
x : dt),

(a) msgnm(
−−−−→
X : rt ′)(

−−−→
x : dt) ∈ rtmsgs in(rt), i.e., the role type rt supports the

message type msgnm(
−−−−→
X : rt ′)(

−−−→
x : dt) as incoming message,

(b)
−→
X and −→x have not been declared before,

(4) for [x =] owner.opnm(−→e ),

(a) ∀ct ∈ rtcomptypes(rt) . opnm(
−−−→
x : dt) ∈ ctops(ct), i.e., all component types

which can adopt a role of the type rt support the operation type opnm(
−−−→
x : dt),

(b) the actual parameters −→e �t in number and ordering to the formal ones −→x ,
(c) −→e only names concrete values or variables and parameters which have been

declared before,

(d) the variable x has not been declared before,

(5) for owner.attr = e and self.attr = e resp.,

(a) ∀ct ∈ rtcomptypes(rt) . attr ∈ ctattrs(ct), i.e., all component types which
are able to adopt a role of type rt provide the attribute attr,

(b) attr ∈ rtattrs(rt), i.e., the role type rt provides the attribute attr resp.,

(c) e must be an expression with the same type as attr,

(d) e only names concrete values or variables and parameters which have been
declared before,

(6) all state labels are unique.

A guard is well-formed for a role type rt ∈ roletypes(Σ) w.r.t. Σ, if the guard is

(1) a data variable x which was declared before and is of type bool,

(2) an attribute access owner.attr with ∀ct ∈ rtcomptypes(rt) . attr ∈ ctattrs(ct),
i.e., all component types which are able to adopt a role of type rt provide the
attribute attr, and attr is of type bool,

(3) an attribute access self.attr with attr ∈ rtattrs(rt), i.e., the role type rt provides
the attribute attr, and attr is of type bool,

(4) a plays query plays(rt ′,C ) which only refers to a role type rt ′ ∈ roletypes(Σ)
and C is either the special, prede�ned variable owner or owner.assocnm refer-
ring to the name of a component association assocnm:ct′ which is de�ned for all
component types ct ∈ rtcomptypes(rt) which can adopt a role of type rt ,

(5) a data expression e in which operators (e.g., summation, subtraction or relational
operators like <, ==, . . . ) are applied to expressions with matching data types
and where type of the complete data expression is bool.
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2.4.3 Role Behavior Declarations

Building on process expressions, we �rst introduce the notion of process declarations
which the speci�cation of role behavior declarations relies on.

Def. 2.11: Process Declaration

A process declaration is of the form process procnm = P such that procnm is

the name of the declared process and P is a process expression.

Relying on process expressions and process declarations, we can now de�ne role
behavior declarations which specify the dynamic behavior of instances of a role type.

Def. 2.12: Role Behavior Declaration

Let Σ be an ensemble structure and rt ∈ roletypes(Σ) be a role type in Σ. A role
behavior declaration for rt has the form

roleBehavior rt = P

where P is a process expression which is well-formed for rt with respect to Σ.a

Additionally, a set procdecls(rt) of (local) process declarations can be associated

to the role behavior rt such that

� the expressions of all process declarations in procdecls(rt) are well-formed

for rt w.r.t Σ and

� all process invocations in P and in the expressions of all process declarations

in procdecls(rt) only invoke processes in procdecls(rt).

aNote that we use rt also as a process name for the role behavior of the role type rt .

Notation: The notation rivars(rt) denotes all role instance variables from message
reception, role instance creation, and role instance retrieval in the role behavior decla-
ration (and the associated process declarations) for role type rt . Similarly, the notation
datavars(rt) denotes all data variables from message reception and operation call.

Example: The three role types Requester, Router, and Provider in the p2p example are
equipped with a role behavior to ful�ll their responsibilities. To download the �le from
the network, the role behavior of the Requester is given in Fig. 2.6. The requester �rst
creates a router on the neighboring peer of its owner and sends a request for the address
of the provider to the newly created router. The message reqAddr thereby includes the
self -reference to the requester itself such that a reply can be sent back via this reference.
Afterwards, the requester waits for the message sndAddr which transmits a reference of
the provider. Via this reference, it sends a request for the �le to the provider (again
equipped with a self -reference to itself). Lastly, it waits to receive the content of the
�le with the message sndFile, stores the content in the attribute content of its owner,
sets the attributes hasF ile of its owner and of itself to true, prints the �le by calling
the operation printF ile on its owning component, and �nally quits its execution.

To retrieve the address of the provider by forwarding the request for it through the
network, the role behavior of a router is given in Fig. 2.7. The set procdecls(Router) is
here implicitly given by the three process declaration Pprovide, Pfwd, and Pcreate. Initially,
a router is able to receive a request for an address of the provider of the requested �le.
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roleBehavior Requester = router←create(Router,owner.neighbor) .

router!reqAddr(self)() .

?sndAddr(prov:Provider)() .

prov!reqF ile(self)() .

?sndF ile()(content:int) .

owner.content = content .

owner.hasF ile = true .

self.hasF ile = true .

owner.printF ile() .

quit

Figure 2.6: Role behavior of a Requester for the p2p example

roleBehavior Router = ?reqAddr(req:Requester)() .

if (owner.hasFile) {Pprovide}
else {Pfwd}

Pprovide = provider←create(Provider,owner) .

req!sndAddr(provider)() . quit

Pfwd = if (plays(Router ,owner.neighbor)) {quit}
else {Pcreate}

Pcreate = router←create(Router,owner.neighbor) .

router!reqAddr(req)() . Router

Figure 2.7: Role behavior of a Router for the p2p example

Depending on whether the router's owner has the �le or not, it either provides the �le
to the requester in the process Pprovide or forwards the message to another router Pfwd.
To provide the �le in Pprovide, the router creates a new role instance of type Provider
on its owning component and sends the reference of the newly created provider back to
the requester before it quits its execution. To forward the message in Pfwd, the router
checks whether the neighboring component of its owner already plays the role Router.
If so, the neighboring component does not have the �le (since it already forwarded
the message in its role as a router) and the router can stop to forward the message
(represented by quit). That means for the whole ensemble that the �le does not exist
in the p2p network. If the neighboring component does not play the role Router, a
new router is created on the owner's neighbor and the request is forwarded to this new
router (cf. process Pcreate). Afterwards, it resumes its behavior from the beginning.
Note that a router only terminates if its owning component has the �le, i.e., the owning
component serves as provider of the �le, or the neighboring component of its owning
component already plays the role of a router, i.e., the message traversed the whole chain
of routers and none of the owning components had the �le. The extension to always
terminate the router is easily done by a second round-trip throughout the p2p network,
but not presented here to keep the example simple.
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To provide the �le to the requester, the role behavior of the provider is given by
Fig. 2.8. The provider waits for a request for the �le. Via the received reference to the
requester it sends back the content of the �le which is stored in the attribute content of
its owner.

roleBehavior Provider = ?reqF ile(req:Requester)() .

req!sndF ile()(owner.content) .

quit

Figure 2.8: Role behavior of a Provider for the p2p example

2.4.4 Ensemble Speci�cations

The full ensemble speci�cation in Helena consists of two parts: an ensemble structure
describing the structural composition of the ensemble and a set of role behavior decla-
rations describing the interaction behavior of the ensemble by introducing a dynamic
behavior for each role type occurring in the ensemble structure.

Def. 2.13: Ensemble Speci�cation

An ensemble speci�cation over CT is a pair EnsSpec = (Σ, behaviors) such that Σ
is an ensemble structure over CT and behaviors is a set of role behavior declara-

tions which contains exactly one role behavior declaration roleBehavior rt = P
for each role type rt ∈ Σ.

Example: The ensemble speci�cation for the p2p example consists of the ensemble
structure Σtransfer in Fig. 2.4 and the behaviors for the three role types Requester,
Router, and Provider in Fig. 2.6, Fig. 2.7, and Fig. 2.8 resp. For a complete overview,
we refer the reader to Appendix C.1.

2.5 Related Work

Helena as we presented it in this chapter is related to di�erent �elds of research: It
builds on a component-based platform and therefore shares concepts with component-
based software engineering (CBSE). However, it enhances standard component models
by the dynamic formation of ensembles from a set of components, similarly to works in
the �eld of ensemble-based systems. In contrast to these ensemble-based approaches,
Helena furthermore introduces the notion of roles to model participants of ensembles
independently from the actual components adopting the roles in ensembles. Role models
in general already have a long history. Our understanding of roles is highly in�uenced
by existing work in this �eld, but Helena is the �rst to apply roles to ensemble-
based systems. However, in multi-agent systems roles are also already used to describe
participants of interacting agent organizations similarly to participants of ensembles.
Finally, we introduce a dedicated process algebra for the description of roles which
shares ideas with other common process algebras. In the following, we will consider
each of the �elds separately.
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2.5.1 Component-Based Models

As we already discussed in the introduction, component-based software engineering
(CBSE) [Szy02, RRMP08] is concerned with the development of self-contained com-
ponents, their composition and interaction. For each component, its interface to the
outside world is described by a set of ports. Connectors allow and coordinate interaction
between components whose ports �t to the required properties of the connector.

Component models like Wright [AG94, AG97], Darwin [MK96],
ACME [GMW97], and PADL [BCD00, BCD02], component frameworks like Frac-
tal [BCL+04, BABC+09], SOFA [BHP06], ArchJava [ACN02], and Java/A [BHH+06] or
formal component approaches like team automata [tEKR03], interaction
automata [BvVZ06], assemblies [HK11] or multiparty session types [CDPY15] already
consider sets of interacting components. However, CBSE approaches are not su�cient
for the description of ensemble-based systems in three main points: They do not intro-
duce an explicit notion of ensembles such that they do not allow to focus design and
analysis on the participants of an ensemble only. They lack an explicit notion of active
roles which would help to structure the di�erent functionalities needed to contribute
to an ensemble and the di�erent behaviors which a component o�ers. They do not
handle recon�guration and dynamic instantiation transparently from components par-
ticipating in ensembles which Helena allows due to the introduction of the two levels
of components and roles.

Let's take a closer look how standard component-based techniques like Wright [AG94,
AG97, ADG98] or Darwin [MK96] could be used to model an ensemble-based system
like the p2p example which we used for illustration throughout this chapter. We only
focus on the architectural description of an ensemble leaving the behavior aside for now.
Fig. 2.9 shows a modular component model of the p2p example. Each contributing role

Requester

ProviderRouter

req2rout req2prov

Figure 2.9: P2P example described by a modular component model

of the ensemble is speci�ed by a separate component, i.e., a Requester component,
a Router component, and a Provider component. Ports expose the interface for bi-
nary interactions. For example, the port req2rout handles the communication of the
Requester with the Router while the port req2prov handles the communication of the
Requester with the Provider. The components thus o�er a port for each type of binary
communication which they can be involved. Some components like Requester expose
several ports while others like Router or Provider only expose one port. All ports of
a component together describe its communication facilities. This modular component
model of the p2p example has two disadvantages: Firstly, the model does not show that
depending on the actual peer network, a chain of routers has to forward the request
for the �le through the network. If we wanted to specify that, we would have to use
techniques like lazy or dynamic instantiation in Darwin [MK96]. It allows to describe
structures evolving according to a �xed pattern. However, most component models
do not support this kind of dynamism. Secondly, the p2p example is not su�ciently
described by this modular component model. The underlying peer network does not
consist of dedicated Requester, Router, or Provider components. It rather is composed
of general purpose components which can serve in the role of a Requester, Router, or
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Provider. A more suitable model would therefore combine all these sub-components to
a larger composite Peer component.

Fig. 2.10 shows a component model where the Peer component is modeled as a
one-�ts-all component. It combines all functionalities and behaviors needed in all of the

Peer

req2rout req2prov

providerrouter

Figure 2.10: P2P example described by a one-�ts-all component model

three roles discussed before. The four ports of the one-�ts-all component expose the
di�erent communication facilities: The port req2rout exposes the interface of the Peer

component acting in the role of a requester when communicating with another Peer

component acting in the role of a router (and vice versa for the port router). Similarly,
the port req2prov exposes the interface of the Peer component acting in the role of
a requester when communicating with another Peer component acting in the role of a
provider (and vice versa for the port provider). However, this one-�ts-all component
su�ers from two disadvantages. Firstly, the functionalities and behaviors for all possible
roles of the Peer component are mixed together into one large component without any
structure depending on the di�erent tasks the component has to ful�ll in the di�erent
roles. Secondly, ports only expose a binary communication interface such that a role like
the requester has to be represented by two di�erent ports, one for each communication
partner of the requester. Already crammed, this one-�ts-all component model gets even
more overloaded if we imagine a second type of ensemble built on top of the same Peer
component. Even more goal-directed behaviors would be introduced to the large one-
�ts-all component and even more ports and connections to form the new ensemble would
be needed. To overcome this overly large component model, we propose a separation
between component and role in Helena. A role describes the functionalities needed in
an ensemble and an adoption relation between role and component allows the component
to provide its capabilities to the adopted role.

The notion of roles already appears in CBSE techniques in a di�erent meaning: A
connector describes the partners required for binary communication by roles [AG94,
AG97] as shown in Fig. 2.11. Each role of a connector normally prescribes a certain

connector

Component1 Component2
port1 role1 role2 port2

Figure 2.11: The role concept used in binary communication via connectors

interaction protocol. A component which is later on bound via its port to this role has
to ful�ll this interaction protocol (cf. compatibility of protocols [AG94]). The connector
itself coordinates the interaction between the two communication partners by prescrib-
ing a certain sequence of interactions. In contrast, in Helena, roles are not restricted
to one part of binary communication only, but rather which part a participant of an
ensemble contributes to the overall ensemble. Furthermore, roles are active instances
in Helena which de�ne a goal-directed behavior relying on the capabilities of the un-
derlying component. In CBSE, a role at a connector only constrains the behavior of a
component which adopts the role at the connector.
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Standard CBSE techniques focus on some of the aforementioned aspects of ensemble-
based systems like sharing components between several collaboration groups [BCL+04,
BABC+09], recon�guration [ADG98, BHP06], and dynamic instantiation [MK96]. How-
ever, none of them combines these aspects with an explicit concept for ensembles and
their participants which allows dynamic recon�guration and instantiation as we do it
in Helena. For a more detailed comparison of component-based approaches we refer
the reader to [BHP06] or [Jan10].

2.5.2 Ensemble-Based Models

Approaches from the �eld of ensemble-based systems take into account the notion of
ensembles, but do not yet explicitly separate the functionalities needed for a particular
goal-oriented ensemble from the components actually contributing the functionalities.
We focus on four works from this �eld.

SCEL [DLPT14] provides a kernel language for abstract programming of autonomic
systems. The entities of the systems are autonomic components which rely on knowledge
repositories to store knowledge items and interact via explicit knowledge exchange on
these repositories.

In SCEL, ensembles are understood as group communications. Such groups are
de�ned by predicates over properties of components, e.g., a predicate describes all com-
ponents in range of the acting component. With these predicates, an action to put or
retrieve knowledge items can be directed to a set of knowledge repositories all satisfying
the given predicate. Like that, all components which can access the involved reposi-
tories are included in this group communication. An ensemble is thus a very dynamic
concept which is evaluated at runtime and might only exist for a single interaction. Op-
posed to ensemble structures in Helena, these predicates do not specify the conceptual
structure of an ensemble collaborating to achieve a certain global goal.

SCEL components are in principle modeled as one-�ts-all components. However,
it is possible to simulate the idea of roles by starting parallel processes on top of a
component, even dynamically at runtime.

The behavior of a component is also described by a dedicated process algebra. On
the level of process constructs, SCEL goes beyond Helena by providing a controlled
composition construct. This allows to compose parallel processes which is not allowed
in Helena since parallel behaviors should be expressed by di�erent roles on top of
a component. In contrast to Helena, SCEL relies on knowledge exchange instead
of message exchange. As already mentioned before, knowledge exchange allows group
communications which are not yet part of Helena. Furthermore, components can
dynamically create other components. In Helena, we do not create new component
instances during the run of an ensemble because we assume them to be already given
by an overall system management when an ensemble is started. However, component
instances can dynamically join and leave an ensemble by dynamically creating new role
instances and letting components adopt these new roles during ensemble execution.

An interesting extension of SCEL is PSCEL [MPT13]. It integrates FACPL poli-
cies [MMPT14] into SCEL speci�cations to de�ne adaptation actions of ensemble-based
systems. With these adaptation actions, an ensemble-based system is able to react to
changes in the environment, can allow or forbid certain actions, and can switch to be-
haviors more suitable to the current situation. In Helena, this can be expressed by
components which adopt roles depending on the current state of the environment. A de-
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velopment methodology for adaptive systems based on Helena roles will be presented
in Chap. 11.

DEECo [BGH+13] is a component-based framework which introduces an explicit
speci�cation artifact for ensembles. An ensemble is a dynamic group of components
characterized by a membership predicate similarly to a former variant of SCEL. DEECo's
runtime infrastructure dynamically determines the current members of an ensemble
according to this membership predicate. Thus, in contrast to SCEL, ensembles are
more explicit since DEECo provides an explicit speci�cation artifact, but in contrast
to Helena, it still does not support any structural description of members and their
interactions like in Helena's ensemble structures.

On the level of components, DEECo o�ers a structural element to describe the
di�erent tasks which a component can perform. For each task, a separate process can be
de�ned which manipulates the local knowledge appropriately. Depending on the given
scheduling policy, this process is executed periodically or whenever a certain trigger
condition is met. Although the behavior of a component is thus structured into separate
processes (which can be started on demand), these processes are not directly associated
to particular ensembles where the component contributes to. Furthermore, DEECo does
not allow to instantiate new members of an ensemble by component instance creation.
The set of components which can contribute to an ensemble is �xed during runtime,
only the membership predicate controls when a component joins or leaves an ensemble.
In Helena, we achieve the clear assignment of goal-directed behavior (represented by
processes on components) to ensembles by structuring ensembles in roles. These can
dynamically be instantiated and adopted by components.

Instead of direct communication between the components of an ensemble, DEECo's
runtime infrastructure manages implicit knowledge exchange between the participants
of an ensemble which can then operate on their local knowledge. A computational
model for DEECo is de�ned in terms of automata [ABG+13] which express knowledge
exchange by bu�ered updates of the components' knowledge.

DCCL [BBvP13] is a similar approach to DEECo. It also de�nes an ensemble by a
membership predicate which is dynamically evaluated during runtime of the ensemble.
Components do also not communicate directly via message exchange, but implicitly via
knowledge exchange among the participants of an ensemble. Components only operate
on their local knowledge. While DEECo focuses on the implementation and execution
of ensemble models, DCCL is a veri�cation-oriented modeling language. It allows to
verify the modeled ensemble-based system against properties over the local state of a
component or the global state of the system. Compared to Helena, it comes with the
same restrictions as DEECo: no explicit structure for ensembles, no explicit structure
for roles, no instance creation, and only implicit knowledge exchange.

BIP [BBB+12] and DyBIP [BJMS12] are component-based frameworks which
focus on a clear separation between components and interactions while DyBIP addi-
tionally supports change of interaction models. The BIP framework can be viewed as
an architecture description language with a rigorous formal semantics. Atomic com-
ponents are �nite-state automata which basically interact with other components via
shared actions called ports (they should not be confused with ports in standard compo-
nent models which expose an interface). The concept of shared actions is extended by
connectors: They de�ne which actions are synchronized between components even if not
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sharing the same name. They de�ne the type of interaction, e.g., whether the actions
are executed synchronously or asynchronously. Finally, priorities at connectors specify
which interaction is taken if several interactions are possible. DyBIP extends the BIP
framework by dynamic connectors between components. These dynamic connectors are
de�ned by interaction constraints on the transitions of the �nite state-automaton of
an atomic component. Dynamic connectors nicely support the dynamic architecture of
ensemble-based systems where components dynamically form ensembles and therefore
new connections to collaborate for some global goal. However, compared to Helena,
BIP and DyBIP do not introduce any notion of ensemble or role. Components have
to be designed again as one-�ts-all components; there does not exist any structuring
element which allows to separate the di�erent behaviors which a component o�ers. Fur-
thermore, it is not possible to create new instances for a particular task on demand like
Helena allows by role instance creation.

2.5.3 Role-Based Models

Helena is centered around the notion of roles. Bachmann and Daya [BD77] were the
�rst to propose role-based modeling. They observed that an item in a data model often
only represents a certain subset of properties of a real-world entity. According to them,
this is �in contrast with integrated database theory which has taught that each record
should represent all aspects of some one entity in the real world�[BD77]. They therefore
suggested to de�ne roles which allow to consider a real-world entity from a certain
viewpoint or in a certain context. In this context, only some particular properties of
the entity are relevant.

The role models which emerged starting from this vision all focus on di�erent aspects
such that no common understanding of roles was formed. Thus, Steimann [Ste00b]
identi�ed a set of features according to which the di�erent approaches can be evaluated.
Most prominently among these are whether a role has its own properties, state and
behavior, whether it shares identity with the underlying real-world entity, and whether
an entity can play several roles simultaneously. Later on, Kühn et al. [KLG+14] observed
that most role models nowadays especially focus on the context in which the roles exist.
Dedicated concepts are introduced in many approaches which particularly specify this
context, called �compartments� in [KLG+14]. Helena is an approach where roles are
represented by volatile instances which can only exist bound to an owner, but which
have their own properties, state and behavior. A Helena component can adopt several
roles simultaneously, but not of the same type in the same ensemble. Furthermore,
Helena particularly considers ensemble structures, i.e., compartments in which several
roles collaborate for some global goals.

Apart from these features, Steimann [Ste00b] concluded that existing role mod-
els mainly fall into three categories which we extend by one category contributed
by [KLG+14]: roles as named places of a relationship, roles and real-life entities as
conglomerates, roles as adjunct instances, roles as participants of collaborations. In
the following, we review each of the categories together with some representative ap-
proaches. For a more detailed review, we refer the reader to [Ste00b] and [KLG+14].

Roles as Named Places: Relational models mainly describe types and their rela-
tionships. However, as soon as there exist more than one relationship between two
types or one type participates several times in one relationship, it is not enough to just
name the related types. They have to be distinguished by the contribution which they
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bring to the relationship. Such contribution is identi�ed by a meaningful name which
expresses the role of the type in the relationship.

This notion is for example used in UML [HKKR05]; other representatives of this
category are the well-known ER model [Che76] or the ORM model [Hal09]. In a UML
class diagram, the ends of an association between two classes are provided with a role
name; in sequence diagrams, interaction partners are identi�ed by a role name. In both
cases, the role is just a name expressing the contribution which the entity o�ers to the
relation or interaction. It does not support the characteristic that roles have their own
properties and behavior as we consider it central for the notion of roles in Helena.

Roles and Real-Life Entities as Conglomerates: The main characterization of
this category is that roles are mapped onto the type hierarchy of the underlying real-
world entities. Roles can be seen as subtypes of the types of real-world entities. They
specialize a real-world entity by focusing only on particular properties. However, with
roles as specialization, we experience problems if several di�erent types of real-life enti-
ties can adopt the same role. The role then has to specialize both supertypes although
a concrete instance of the role at runtime will never specialize both supertypes. Taking
an example from [Ste00b], a person as well as an organization can adopt the role of a
customer, i.e., the role customer has to specialize both supertypes, person and organiza-
tion. However, at runtime, a customer will always be either a person or an organization
and not both.

Therefore, roles can also be considered as supertypes of types of real-world entities.
A role only provides a certain set of role-speci�c properties and operations while the
whole real-life entity combines all these. With roles as generalizations, we are able
to express that either subtype can adopt the role, but we also force each subtype to
actually adopt the role. Taking the same example as before, a person as well as an
organization can adopt the role of a customer if the role of a customer is the supertype
of persons and organizations. However, consequentially each person and organization
must automatically always be a customer and can never drop the role.

Most approaches in this category [SD96, BO98, JSHS96, GWGvS04] solve the prob-
lem whether a role is a subtype or a supertype of the type of a real-world entity by
using dynamic specialization. They de�ne roles as a dynamic type which comprises all
objects which are currently engaged in a certain relationship.

A further example for this category which we want to consider more closely are UML
composite structure diagrams for classes as presented in [HKKR05, Chap. 3.5.1]. This
type of diagram allows to re�ne the classes and their relationships already structured in
a UML class diagram from the viewpoint of a single context class. The underlying class
diagram speci�es the general associations and interaction relationships between classes.
In the context of a certain class, only some of these classes and relationships might be
used and some of them might even be restricted. The composite structure diagram for
a context class therefore provides a view on the modeled system from the perspective of
this context class. In the manner of speaking of UML, the composite structure diagram
determines the roles in which classes of the complete system act if considered from the
viewpoint of the context class. This category of roles thus requires that a role and its
underlying real-world entity share identity and state, but the role serves as a view on
particular properties of the real-world entity. Therefore, it is not allowed that roles have
their own properties and behavior as we consider it essential in Helena.
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Roles as Adjunct Instances: Instead of mapping roles directly onto the type hi-
erarchy of the underlying real-life entities, this category introduces roles as own types.
Role types de�ne role-speci�c properties and behavior, instances of those types have
their own state. However, role instances cannot exist without a real-life entity adopt-
ing it. Therefore, a role instance must always be bound to its owner. The owner can
adopt several roles in parallel and can dynamically pick up or drop them. Simultane-
ous role adoption naturally allows the underlying owner to simultaneously be in several
role-speci�c states. By using roles as facades for the underlying real-life entities, inter-
action partners only communicate via their adopted roles such that their mutual view
is restricted to the role-speci�c properties only.

Kristensen and Østerbye [KØ96] as well as Gottlob et al. [GSR96] are the most
prominent authors to transfer this idea of roles to conceptual modeling and program-
ming. Their understanding of roles builds the foundation for Helena: Intrinsic proper-
ties describe the core information about a real-world entity. For example, for a person,
these are properties like date of birth. Extrinsic properties describe the properties which
are only relevant in a certain context. They are de�ned as a role which can temporarily
be bound to a real-world entity. For example, a person can adopt the role of a teacher
whose main property is the subject the person teaches. Helena is in�uenced by the
characteristics proposed in this role model: A role has its own state and its own opera-
tions to manipulate that state, a role is dependent on a real-world entity and can only
exist bound to an entity currently adopting the role, a role is dynamically bound to
an entity and is therefore of a temporary nature. Opposed to Helena, the role model
by Kristensen, Østerbye and Gottlob does neither consider active entities nor active
roles. Furthermore, the context in which the roles exist is not considered which is in
contrast to Helena where we explicitly model ensemble structures consisting of roles.
Kristensen, Østerbye and Gottlob mainly focus on the dynamism of role playing and
interferences between concurrent roles.

The modeling language LODWICK by Steimann [Ste00b] is one important formal
approach to modeling roles as adjunct instances sharing ideas with Helena. A �model
speci�cation� in LODWICK consists of three parts: a signature, a static model and
a dynamic model. The signature relates types and roles which the types can adopt.
The static model determines all instances of types and roles as well as their adoption
relationships which may potentially exist during the lifetime of the system. The dynamic
model consists of sequences of sets of concrete (type and role) instances and their
adoption relationships over time. Helena follows the same idea of roles and their
dynamic adoption by components (as we will see in Chap. 3 aboutHelena's semantics).
However, it goes one step further by allowing to dynamically create new role instances
on demand while in LODWICK all instances are prede�ned. Furthermore, LODWICK
is only designed as a rudimentary modeling language. The properties and capabilities of
types and roles is not part of the modeling language while it is in Helena. LODWICK
does not contain collaboration speci�cations opposed to ensemble structures inHelena.
Most importantly, it does not support interactions in the dynamic models as we consider
it central to describe ensembles and the goal-oriented behaviors of their participants.

Roles as Participants of Collaborations: According to Kühn et al. [KLG+14],
more recent role-based approaches do not only model roles and their relationships to
real-world entities, but also the context in which they exist. The �context represents
a collaboration or container of a �xed, limited scope� [KLG+14]. In some approaches,
the context is called team [Her03], institution [BSI07], role model [Ree96], or compart-
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ment [KLG+14]. In Helena, we call the context ensemble. Following Kühn et al., roles
operate in a certain context or collaboration, but can also be shared between di�er-
ent collaborations. By introducing an explicit notion of such collaborations, they can
be handled as �rst-class modeling concepts which may have their own identity, may
play roles themselves, may be hierarchically composed etc. [KLG+14]. In Helena,
collaborations are represented by ensemble structures. The participants of an ensem-
ble structure are speci�ed by role types which can be shared between several ensemble
structures. It is considered future work in Helena to allow hierarchical composition of
ensembles or to let several ensembles collaborate for a higher shared global goal.

UML [HKKR05, Chap. 3.5.2] already proposes composite structure diagrams for
collaborations to model the structure of a system in the context of a collaboration. The
composite structure diagram provides a structural view on the whole system which only
shows the relationships between elements of the collaboration. Thereby, the elements
do not need to be actual structural elements of the system, but can be aggregations or
abstractions of them. Each element of the collaboration contributes under a certain role
which describes the function which the element ful�lls in the collaboration similar to
role names in class diagrams or sequence diagrams. However, UML composite structure
diagrams are very limited compared to other role-based approaches. They only describe
the structure of a collaboration. Since their elements are not integral parts of the
system, behavioral UML diagrams cannot directly refer to these elements to specify
their behavior. Furthermore, collaborations cannot be instantiated such that they are
mostly used to specify structural patterns.

Other approaches which include collaborations as �rst-class entities mostly reside
in the area of programming languages. For example, ObjectTeams/Java [Her03] intro-
duces aforementioned �teams� as a �rst-class programming construct, powerJava [BSI07]
�institutions�, and OOram [Ree96] �role models�. Like in Helena, they all de�ne the
structural model of a collaboration by participating roles. However, in ObjectTeam-
s/Java and powerJava, roles are not active, but only react to operation calls. In the
OOram method, roles are autonomic entities which start to exchange messages for col-
laboration upon external stimulus (like a �le being requested from the outside). In
contrast to Helena, all role models representing collaborations are composed to a sin-
gle composite role model. Thus, the OOram method only considers composite behaviors
while Helena explicitly considers the parallel execution of role behaviors as we will see
in Chap. 3.

Apart from programming languages, role modeling is also incorporated as a central
part in methodologies for analysis and design of (multi-)agent systems. For instance, the
GAIA methodology [WJK00] and its extensions [CJSZ04] consider a multi-agent system
as a computational organization consisting of various interacting roles; this is very sim-
ilar to our interpretation of ensembles. Most speci�cations in these methodologies are,
however, rather informal or at most semi-formal, like the UML-based notation Agent
UML [BMO01]. Agent UML models collaborations by interaction protocols which com-
bine sequence diagrams with state diagrams. Another approach has been pursued in the
ROPE project [BGKM99], which proposes to use �cooperation processes� represented
by Petri nets for the speci�cation of collaborative behavior. A model-driven approach
to the development of role-based open multi-agent software is presented in [XZP07]. It
uses Object-Z notation and focuses merely on structural properties of role organizations
and agent societies and not on interaction behavior. The structural concepts involve,
however, speci�cations of role spaces as containers of role instances (that can be taken
by agents), which resembles ensemble states in Helena. All these methods are not



2.5. RELATED WORK 41

based on a formal semantics and do not provide veri�cation techniques which we will
present in the next chapters. In particular, they do not formalize concurrent executions
which is built-in in Helena's semantics as shown in Chap. 3.

2.5.4 Process Calculi

Helena also shares ideas with process algebras and multiparty session types.

Process Algebras

In Helena, the behaviors of roles are described by process expressions. Leading process
algebras like CSP [Hoa78], CCS [Mil82], ACP [BK89] or the π-calculus [Mil99] already
propose the main process constructs which we use similarly in the Helena syntax:
termination, action pre�x, nondeterministic choice, the if-then-else construct and pro-
cess invocation. Apparently, Helena does not support a parallel composition operator
which is contrast to standard process algebras. The main reason is that a role provides
a behavior which is responsible for exactly one task in the collaboration of an ensemble.
If we allowed parallel composition in role behaviors, we would be able to specify several
processes which are all executed in parallel in one single role behavior. Thus, a role
would be able to simultaneously work on several tasks. This would contradict the idea
to extract each task to a separate role type and its behavior. As we will see in Chap. 3
about the semantics of Helena, termination is also not formalized in a standard way.
Since we introduce two layers in Helena, components and roles which are adopted by
components, termination does not only terminate the execution of the role behavior,
but also advises the owning component of the role to quit playing the role. More details
on that can be found in Chap. 3.

On the level of actions, Helena provides the standard message passing actions for
sending and receiving messages. These messages are directed towards one particular
receiver only and are sent and received synchronously or asynchronously. Compared
to leading process algebras, the following two types of actions in Helena stand out:
Firstly, Helena allows to create and retrieve role instances. Therefore, new role in-
stances can dynamically be created by another role instance during runtime of the en-
semble and references to existing role instances can be retrieved on demand. Secondly,
since Helena introduces two layers, components and roles adopted by the underlying
components, Helena also introduces a special action to bridge these two layers. A
role can call an operation on its owning component to exploit the capabilities of the
underlying component. A deeper comparison of Helena and its communicating roles
is left to Sec. 3.5 since di�erences mainly become apparent on the level of semantics.

Multiparty Session Types

Finally, we want to highlight a process calculus which particularly focuses on groups of
interacting components, multiparty asynchronous session types [CDPY15]. This calcu-
lus allows to model and reason about interactions between several components within a
certain scope of a distributed system. This scope is called a multiparty session since sev-
eral di�erent parties communicate within a private session. Outsiders cannot interfere in
this private session since communication relies on a private session channel. Multiparty
session types are used to describe the interaction protocol between the participants of
the multiparty session. The goal of the formalization of the interaction protocol is to
guarantee communication safety, protocol �delity and progress [CDPY15].
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An interaction protocol is �rst designed at global level. A global type describes the
communication from a neutral global viewpoint and gives an abstract overview about
the whole interaction structure. From the global type, local types are derived by a
strict projection operation. Each local type abstractly describes the interaction from the
viewpoint of a single participant of the multiparty session. Finally, processes following
a dedicated process calculus describe the concrete implementation of the behavior of
a single participant. A strict type system takes care that each process respects its
derived local type. The main advantage of this approach is that the global properties
of communication safety, protocol �delity and progress can be checked on the local
types only. Due to the type system relating a local type and its concrete process
implementation, their satisfaction is preserved by the concrete implementation.

Compared to Helena, the �rst thing to note is that multiparty session types do
not de�ne the architecture of the underlying system. They only consider the abstract
and concrete speci�cation of behaviors without the underlying component types. He-
lena goes beyond that by introducing component types which de�ne the capabilities
of the underlying component-based platform and by introducing role types which allow
a component to dynamically join a certain ensemble contributing a certain behavior.

Leaving the point of architecture aside, multiparty session types focus on the global
description of the interaction protocol of a group of components. Local types are only
derived for analysis and implementation proposes. Helena, however, supports to spec-
ify local role behaviors and the interaction is treated on ensemble level. The systematic
derivation of local role behaviors from a global interaction speci�cation is future work
for Helena.

When we look into type and process description of multiparty session types more
closely, we observe that Helena is more �exible. A multiparty session is always started
by an initiation action which makes all participants known to each other. Compared
to Helena, multiparty session types employ just one single global channel where all
messages are put and retrieved from one single message queue. The message itself
contains sender and receiver to distribute the message to the correct participant. In
Helena, role instances directly communicate with each other and each role instance
manages its own (asynchronous) message queue, as we will see in Chap. 3. This might
not preserve message ordering on global level, but is more �exible and does not require
a central message queue which is not e�cient in dynamically evolving ensembles.

Another di�erence is the dynamic participation of components in the collaboration.
In multiparty session types, new participants cannot be created on demand, but they can
dynamically join a multiparty session by channel delegation. Dynamic multirole session
types [DY11] furthermore allow participants to join a collaboration under a certain role.
However, participants under certain roles are also not created on demand. The notion of
roles is only used to dynamically communicate with all participants of a session which
currently adopt the role, similarly to the concept of broadcasting. Helena is more
�exible here since it supports the dynamic creation of new role instances which can join
the ensemble on demand, albeit leaving broadcast messaging still open for future work.

2.6 Publication History

The notion of an ensemble speci�cation as presented in this chapter is based on [HK14]
and [KMH14]. In [HK14], ensemble speci�cations still rely on role connectors for mes-
sage exchange between roles and on labeled transition systems to describe role behaviors.
To simplify ensemble speci�cations, role connectors have been removed from Helena
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in [KMH14]. Thus, messages can now be exchanged between two role types which are
outgoing for one role type and incoming for the other. Additionally, [KMH14] proposes
a process algebra for the description of role behaviors as a more compact notation than
labeled transition systems.

Compared to these publications, ensemble speci�cations as presented in this chapter
include a more sophisticated notion of data. Types are introduced for all attributes of
component types and role types and parameters of messages. The process algebra
introduced in [KMH14] is extended and improved, in particular to include data and to
allow branching according to guards. Furthermore, we add component associations to
component types, rely on operations provided by component types instead of internal
operations or messages provided by role types, and all role types of an ensemble structure
are equipped with a capacity of their input queues. Speci�c criteria de�ne the well-
formedness of ensemble structures and process expressions.

2.7 Present Achievements and Future Perspectives

Present Achievements: The main concept for describing ensemble-based systems is
the notion of roles. Components team up in concurrently running ensembles by adopting
particular roles. While the components are just pure data containers and computing
resources, the adopted roles are the active entities exhibiting a goal-directed behavior
and collaborating with each other in ensembles.

The whole system is structured into independently running ensembles. They are
goal-oriented communication groups of roles which do not rely on any other ensembles
or any components not participating in the very same ensemble.

The syntax for the description of Helena ensembles is following a model-based
speci�cation technique. An ensemble speci�cation consists of two parts: the structural
relationships between participants of an ensemble are speci�ed by an ensemble structure
and its collaborating roles; the dynamic behavior is given as a set of role behaviors, one
for each contributing role. The behaviors describe how an ensemble evolves via message
exchange between the participating roles.

Future Perspectives: On the level of syntax, several extensions of the Helena
approach come to mind:

Broadcasting: The set of actions could be extended by broadcast messages. Those
messages could either be used to broadcast information to a whole ensemble, to
instances of a particular role type, or even to a set of role instances speci�ed by a
logical predicate.

Component Interfaces: It might be useful to introduce component interfaces which com-
ponent types implement. With that extension, a role type does no longer have
to name all component types whose instances are allowed to adopt the role, but
rather just indicates the required component interface. The component interface
exposes all attributes and operation types the implementing component types
share. On the one hand, this facilitates the criteria for well-formedness of process
expressions. On the other hand, this allows to extend the underlying component-
based platform by new component types independently from an ensemble-based
system since the ensemble speci�cations do not have to be adapted.
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Open Ensembles: Lastly, the use of open ensembles would allow to interact with com-
ponents or actors outside of an ensemble. Open ensembles could communicate
with other ensembles or roles inside of other ensembles which allows information
exchange between ensembles. An ensemble could rely on another ensemble to
perform a task divided into several subtasks. Open ensembles could also com-
municate with actors outside the ensemble, e.g., humans. Thus, humans could
employ an ensemble with a certain task, contribute to the completion of the task,
and retrieve the results of work from the ensemble.



Chapter 3

Semantics
Understanding Helena

The semantic domain of ensemble speci�cations are labeled transition systems describ-
ing the evolution of ensembles. Informally, a labeled transition systems consists of a
set of states and a set of labeled transitions between states. In the context of ensem-
ble speci�cations, the states are the states which an ensemble can be in. Structured
operational semantics (SOS) rules de�ne the allowed transitions between those states.
We pursue an incremental approach, similarly to [HL93] and [Wei97], by splitting the
semantics into two di�erent layers. The �rst layer describes how a single role behavior
evolves according to the constructs for process expressions of the last section. The sec-
ond layer builds on the �rst one by de�ning the evolution of a whole ensemble from the
concurrent evolution of its constituent role instances.

3.1 Notations

In the de�nition of the semantics of Helena, we will make use of functions to describe
the state of a Helena ensemble. To facilitate the notation of the following subsections,
we de�ne some preliminary properties of functions.

We assume given a function f : D → V which maps elements d of its domain given
by the set D to values v of its range given by the set V .

� The notation f(d) = ⊥ expresses that the value for the item d is unde�ned.

� The function f is partial if there exists d ∈ D such that f(d) = ⊥; otherwise, f is
total.

� The function f for which holds that f(d) = ⊥ for all d ∈ D is denoted by ∅.
� The maximal set D′ ⊆ D, for which holds f(d) 6= ⊥ for all d ∈ D′, is called the
de�nition domain of f and is denoted by dom(f).

� If the value for an element d ∈ D is either newly de�ned or rede�ned to the value
v ∈ V for a function f , we denote the rede�ned function by f [d 7→ v].

� The function f is non-extensible if the de�nition domain is not allowed to be
extended by any new element; otherwise, it is extensible.

For the special case of a function f : N+ 7→ V which maps positive natural numbers
i ∈ N+ to values v ∈ V , we introduce some additional notations.

� The function f is �nite if there exists n ∈ N+ such that f(i) 6= ⊥ for all 0 < i ≤ n
and f(i) = ⊥ for all i > n.

45
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� The index n ∈ N+ for which holds f(i) 6= ⊥ for all 0 < i ≤ n and f(i) = ⊥ for all
i > n describes the size of a �nite function f and is denoted by size(f).

� The �rst free index whose value is unde�ned in a �nite function f is size(f) + 1
and is denoted by next(f).

� The de�nition domain of a �nite function f can also be extended by de�ning a
value v for the �rst free index next(f). The extended function is denoted by
f [next(f) 7→ v].

Furthermore, the semantic domain of a Helena ensemble speci�cation are labeled
transition systems. They consist of a set of states and labeled transitions between those
states. A traversal of the labeled transition systems starts in some initial state and
follows a path of transitions which are labeled with actions.

Def. 3.1: Labeled Transition System

A labeled transition system (LTS) T is a tuple (ST , IT , AT ,−→T ) such that

� ST is a set of states,

� IT ⊆ ST is a set of initial states,

� AT is a set of actions such that the silent action τ /∈ AT , and
� −→T ⊆ ST × (AT ∪ τ)× ST is a labeled transition relation.

3.2 Ensemble States

For the semantics of a Helena ensemble speci�cation, we describe the states which an
ensemble can be in and how the ensemble evolves from one ensemble state to another.
In this section, we consider ensemble states and their formal description. Intuitively,
an ensemble state captures the local states of all components composing the underlying
component-based platform and the local states of all roles currently participating in
the ensemble. Components are considered as persistent data storage which can be
accessed from their owning roles while roles only store data which is needed for the
execution of their goal-directed behavior. In the following, we �rst explain the local
states of components and roles before we merge them together to describe the state of
a complete ensemble.

Assumption: For simpli�cation, we assume that role instance parameters as well as
data parameters of messages are unary during the remainder of this chapter, i.e., we do
not consider lists of parameters, but only a single role instance parameter and a single
data parameter. The extension to lists of parameters is straightforward.

3.2.1 Component Instance State

The local state of a component instance represents all information locally stored on the
component: the (unmodi�able) type of the component instance, the values of all its
attributes and the references to all its associated components and to itself.

Def. 3.2: Component Instance State

Let V be the domain of data values. The local state of a component instance is

a tuple (ct, atc, as) which stores the following information:
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� the unmodi�able component type ct = (ctnm, ctattrs, ctassocs, ctops) of the
component instance,

� a total attribute value function atc : ctattrs → V mapping attributes of the

component type ct to values in V ,

� a (possibly partial) association value function as : ctassocs ∪ {owner} →
N+ mapping component associations of the component type ct and the spe-

cial, prede�ned variable owner to component instances identi�ed by natural

numbers.

The set Lcomps denotes all local states of component instances.

The tuple (ct, atc, as) contains three parts: the (non-modi�able) type of the compo-
nent instance and two value functions atc and as.

The type ct of the component instance is unmodi�able and therefore �xed throughout
the lifetime of the component instance.

The function atc maps attributes to data values. Therefore, its domain encompasses
the set ctattrs of all attributes of the component type ct and its range all data
values in V . Most importantly, we require the function atc to be total, i.e., for each
attribute attr ∈ ctattrs, there must exist a value v ∈ V such that atc(attr) = v.
Intuitively, that means that each attribute of a component instance must always
have a de�ned value.

The function as maps component associations and the special, prede�ned variable
owner to component instances. Therefore, its domain encompasses the
set ctassocs of all component associations of the component type ct and the vari-
able owner. Component instances are identi�ed by natural numbers such that
the image of the function as is the natural numbers N+. We do not require the
function as to be total, i.e., a component association can be unspeci�ed. For all
other component associations and the special, prede�ned variable owner we re-
quire that they must link to an existing component instance identi�ed by a natural
number. In the formal de�nition of the local state of a component instance, we
cannot guarantee that these natural numbers always represent an existing com-
ponent instance, but we formalize this restriction as a well-de�nedness condition
for global ensemble states in Def. 3.5.

3.2.2 Role Instance State

The local state of a role instance represents the connection to its owning component,
all information locally stored on the role, and all information related to the progress of
execution of its role behavior. Thus, the local state of a role instance is composed of
the (unmodi�able) type of the role instance, the reference to its owning component, the
values of all its attributes, the values of all declared role instance variables including the
special, prede�ned variable self and data variables used in its role behavior (resulting
from role creation and retrieval, message reception and operation call), all messages
which were sent to the role, but not yet received (i.e., the current content of its message
input queue), the current progress of executing its role behavior.
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Def. 3.3: Role Instance State

Let V be the domain of data values. The local state of a role instance is a tuple

(rt , ci, atr, v, w, q, P ) which stores the following information:

� the unmodi�able role type rt = (rtnm, rtcomptypes, rtattrs, rtmsgsout,
rtmsgs in) of the instance,

� the owning component instance ci ∈ N+ of the role instance or ci = ⊥ if

the role instance terminated its role behavior,

� a total attribute value function atr : rtattrs → V mapping attributes of the

role type rt to values in V ,

� a (possibly partial) extensible local environment function v : rivars(rt) ∪
{self} → N+ mapping local role instance variables to values, i.e., role in-

stances identi�ed by natural numbers,

� a (possibly partial) extensible local environment function w : datavars(rt)→
V mapping local data variables to values in V ,

� the current content q of the input queue of the instance (the empty queue

is denoted by ε, the length of q is denoted by |q|), and
� a process expression P representing the current control state of the instance

or ⊥ representing termination.

The set Lroles denotes all local states of role instances.

Let us explain the individual parts of the local state (rt , ci, atr, v, w, q, P ) of a role
instance in more detail:

The type rt of the role instance is unmodi�able and therefore �xed throughout the
lifetime of the role instance.

The component instance ci adopts the role instance. It is identi�ed by a natu-
ral number (similarly to associations in the local state of components). Well-
de�nedness conditions of ensemble states in Def. 3.5 formalize that this number
must always represent an existing component instance. However, if the role in-
stance terminated execution of its role behavior, the adopting component can also
quit adopting the role meaning the role does no longer have an owner. This is rep-
resented by the value ⊥ for the owning component instance. Again, we formalize
in Def. 3.5 about well-de�nedness of ensemble states that ⊥ is only allowed as a
value for the owning component instance if the role instance terminated execution
of its role behavior.

The function atr maps attributes to data values. Therefore, its domain encompasses
the set rtattrs of all attributes of the role type rt and its range all data values in V .
The function atr is total, i.e., the values of all attributes have to be speci�ed. Like
in Java, we therefore assume that all attributes are initialized to default values at
the beginning.

The function v maps role instance variables to role instances. Therefore, its domain
encompasses the set rivars(rt) of all role instance variables of the role behavior
declaration of the role type rt and the special, prede�ned variable self . The
variables originate from role creation, role retrieval, and message reception (see
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notation associated to Def. 2.12 on page 30). Similarly to component instances,
role instances are identi�ed by natural numbers such that the image of the function
v is N+. The function v can be partial and is extensible, i.e., the value of some role
instance variable might be unspeci�ed at �rst, but can be changed to a speci�c
value during the lifetime of the role instance. However, in the formal de�nition of
the local state of the role instance, we cannot guarantee that the natural numbers
always represent an existing role instance. Therefore, we formalize this restriction
as a well-de�nedness condition for global ensemble states in Def. 3.5.

The function w maps data variables to data value. Therefore, its domain encom-
passes the set datavars(rt) of all data variables of the role behavior declaration of
the role type rt and the image all data values in V . The data variables originate
from message reception and operation call (see notation associated to Def. 2.12 on
page 30). Like the previous two functions atr and v, the function w can be partial
and is extensible, i.e., the value of some data variable might be unspeci�ed at �rst,
but can be changed to a speci�c value during the lifetime of the role instance.

The content of q represents the input queue of the role instance. The queue lists all
messages, which were sent to the role but not yet received, in order of reception.
If the role instance communicates synchronously, the input queue is always empty
since messages have to be received synchronously with sending the message from
another role. Thus, the input queue only contains elements if the role instance
communicates asynchronously with other roles. The number of elements in the
input queue (and therefore asynchronous or synchronous communication) is re-
stricted by the maximal capacity of the input queue which is given in an ensemble
structure. We formalize this restriction as a well-de�nedness condition for global
ensemble states in Def. 3.5.

The process expression P represents the current progress of execution of the cor-
responding behavior of the role instance. If the role instance terminated the
execution of its role behavior, the remaining behavior is represented by ⊥. The
process construct ⊥ is a semantic extension of the syntax of process expressions
to describe that the role �nished its role behavior and the owning component quit
playing the role. In contrast, the process construct quit expresses that the role in-
stance reached the end of its role behavior, but still the owning component has to
quit playing the role. In the formal de�nition of the local state of a role instance,
we cannot guarantee the role instance is no longer adopted by a component (de-
noted by ⊥ for the owning component) if the remaining process expression is ⊥.
We formalize this restriction as a well-de�nedness condition for global ensemble
states in Def. 3.5.

3.2.3 Ensemble State

The state of an ensemble is characterized by the component instances which provide
computing and storage resources and by the role instances which execute their goal-
directed behavior and therefore participate in the ensemble. The ensemble state man-
ages two functions, one mapping component instance identi�ers to local states of com-
ponent instances and another one mapping role instance identi�ers to local states of
role instances.
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Def. 3.4: Ensemble State

The global state σ of an ensemble is a pair (comps, roles) such that

� comps : N+ → Lcomps is a non-extensible �nite function mapping each

component instance identi�er to a local state,

� roles : N+ → Lroles is an extensible �nite function mapping each role in-

stance identi�er to a local state.

Component instances and role instances are both identi�ed by identi�ers taken from
the natural numbers. These identi�ers are unique if considering component instances
and role instances separately, but might overlap if considering both at the same time.
Therefore, the ensemble state manages two separate functions: comps maps a com-
ponent instance identi�ed by a natural number to a local component instance state
and similarly, roles maps a role instance identi�ed by a natural number to a local role
instance state. In the following, we focus on the speci�c features of both functions:

The function comps is non-extensible, i.e., it has a �xed de�nition domain which
cannot be extended throughout the lifetime of the ensemble. Intuitively, that
means that the component-based platform building the foundation of the ensemble
relies on a �xed set of components. Components cannot be added or removed
during the execution of the ensemble. The current version of Helena is focused on
roles dynamically being created and adopted, apart from focused on components
dynamically joining and leaving the underlying component-based platform.

The function comps is �nite, i.e., the function comps maps local states to component
instance identi�ers beginning from the identi�er 1 continuously up until a maximal
identi�er n. That means that we identify the �xed set of component instances by
a set of monotonously increasing natural number identi�ers.

The range of component instance identi�ers will never change throughout the
lifetime of the ensemble since the function comps is non-extensible (and therefore
the number of component instances is �xed) and �nite. However, we strongly
emphasize that the local state of a component instance can change nonetheless,
e.g., by attribute setters.

The function roles is extensible, i.e., the de�nition domain can be extended through-
out the lifetime of the ensemble. That means that new role instances can be cre-
ated during the execution of the ensemble and their local states are managed in
the global ensemble state as well. Though, role instances are never deleted from
a global ensemble state, even when they have been terminated. A role instance
remains in the global ensemble state after termination, but it quits its connection
to its owning component by setting the value ⊥ as its owning component.

The function roles is �nite. That means similarly to the previous function comps
that role instance identi�ers are monotonously increasing beginning from the iden-
ti�er 1 up until a maximal identi�er m. Whenever a new role instance is created,
the range of identi�ers is increased by 1 and the new role instance is identi�ed by
the new maximal identi�er.

The de�nition domain of the function roles can be monotonously extended
by new role instances since the function roles is extensible and �nite. However,
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we want to highlight that we can also change the local state of already existing
role instances, e.g., by any action in the executed role behavior.

As we already hinted in the description of local states of components and roles, an
ensemble state has to satisfy some conditions to be well-de�ned, e.g., identi�ers must
point to currently existing components and roles resp. The following de�nition lists all
those restrictions for an ensemble state in the context of a given ensemble speci�cation.

Def. 3.5: Well-De�nedness of an Ensemble State

A global ensemble state σ = (comps, roles) is well-de�ned w.r.t. an ensem-

ble speci�cation EnsSpec = (Σ, behaviors) over CT with Σ = (nm, roletypes,
roleconstraints) if

(1) for all i ∈ dom(comps) and comps(i) = (ct, atc, as):

(a) ct ∈ CT ,
(b) as(owner) = i,

(c) for any C ∈ dom(as) : as(C) ∈ dom(comps),

(2) for all i ∈ dom(roles) and roles(i) = (rt , ci, atr, v, w, q, P ):

(a) rt ∈ roletypes,

(b) if P 6= ⊥: ci ∈ dom(comps),
if P = ⊥: ci = ⊥,

(c) v(self) = i

(d) for any X ∈ dom(v) : v(X) ∈ dom(roles),

(e) for roleconstraints(rt) = (min,max , cap): |q| ≤ cap,

(f) for q = msgnm1(k1)(e1) · . . . ·msgnmm(km)(em) :
k1, . . . , km ∈ dom(roles),

(g) if P 6= ⊥, P is well-formed for rt w.r.t. Σ with the exception of all

(local) variables X occurring in dom(v) and all (local) variable x oc-

curring in dom(w),

(3) for all rt ∈ roletypes and roleconstraints(rt) = (min,max , cap):
min ≤

∣∣{i | roles(i) = (rt , ci, atr, v, w, q, P ) and ci 6= ⊥}
∣∣ ≤ max .

Let us explain the speci�c conditions for well-de�nedness of ensemble states:

We �rst consider the restrictions on the local states of component instances stored in
the function comps: Item (1a) expresses that every existing component instance
must be of a component type ct which is part of the component-based platform
CT building the foundation for the ensemble speci�cation EnsSpec. Furthermore,
we require that the association value function as of each component instance maps
the variable owner to its own identi�er in item (1b). This condition is necessary
to be able to use the variable owner as a prede�ned constant in the speci�ca-
tion of role behaviors. Lastly, since the function as is total, every association is
mapped to a natural number identi�er representing a component instance. How-
ever, item (1c) requires that every such identi�er actually represents a currently
existing component instance.
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Similar conditions restrict the local state of role instances stored in the function roles:
Item (2a) expresses that every existing role instance must be of a role type rt
which is part of the ensemble structure of the underlying ensemble speci�cation
EnsSpec. As item (2b) states, the identi�er of the owning component instance of
a role instance must refer to an actually existing component instance if the role is
not yet terminated. However, if the role is terminated (expressed by the process
construct ⊥ as the remaining process expression), the owning component instance
must be unspeci�ed (expressed by the value ⊥ for the owning component in-
stance). Similarly to the prede�ned constant owner for component instances, the
prede�ned constant self must be mapped to the role's own identi�er in the local
environment function v, as stated in item (2c). Furthermore, item (2d) requires
that every role instance variable in the de�nition domain of the local environment
function v represents an actually existing role instance (which might already be
terminated). For the input queue q, the number of possible entries is restricted
to the maximal capacity given for that role type in the ensemble speci�cation
(item (2e)) and we require all role instance parameters of messages in the input
queue to refer to actually existing role instances (item (2f))1. Finally, the pro-
cess expression P describing the remaining behavior to be executed for this role
must be well-formed (item (2g)) except that all variables occurring in the local
environment functions v and w must not be declared before.

Apart from these individual restrictions for each role instance, a well-de�ned ensemble
state must contain at least as many role instances per role type as the minimal
multiplicity for the corresponding role type in the ensemble structure states and
at most as many as the maximal multiplicity in the ensemble structure states
(item (3)).

The semantics of aHelena ensemble speci�cation evolves ensemble states beginning
from an admissible initial ensemble state. Such an admissible initial ensemble state must
capture (1) at least one component instance such that there can be (2) at least one role
instance being adopted by the former component instance. (3) All role instances existing
in the initial state must be initial, in the sense that they must be at the beginning of
their corresponding role behavior without having executed any actions so far. That
means that the role instance is adopted by a component instance, but all values for
attributes, role instance parameters and data parameters are unspeci�ed (except for
the prede�ned constant self) and the input queue is empty.

Def. 3.6: Admissible Initial Ensemble State

A well-de�ned ensemble state σ = (comps, roles) is an admissible initial state
for the ensemble speci�cation EnsSpec = (Σ, behaviors) over CT with Σ =
(nm, roletypes, roleconstraints) if

(1) there exists i ∈ dom(comps),

(2) there exists i ∈ dom(roles),

(3) for all i ∈ dom(roles): roles(i) = (rt , ci, ∅, ∅[self 7→ i], ∅, ε, P ) such that

behaviors contains the declaration roleBehavior rt = P , i.e., P is the

process expression in the declaration of the role behavior for rt ,

1Note that we assumed that parameter lists are unary at the beginning of this section.
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If we consider that the execution of an ensemble must start in an admissible initial
ensemble state, well-de�nedness of ensemble states is not a real restriction. Any admis-
sible initial state is well-de�ned per de�nition. Furthermore, the structural operational
semantics rules to evolve an ensemble which are de�ned in the next section preserve
well-de�nedness. This follows from the syntactic restrictions for well-formed process
expressions, and therefore role behavior declarations. The most important restrictions
result from send actions. A send action in a process expression in Helena is only well-
formed if (amongst others) the variables X and Y have been declared before (or refer
to the prede�ned variable self). Declaration however is done via receive, create, or get
actions such that each send action must be preceded by appropriate receive, create or
get actions if a process expression is well-formed. That matches the requirements for
well-de�nedness of the ensemble states described in Def. 3.5.

3.3 Structured Operational Semantic Rules

To evolve an ensemble from one state to another, we determine the allowed transi-
tions by structured operational semantic (SOS) rules. Thereby, we split the rules into
two di�erent layers. The �rst layer describes the evolution of a single role behavior
without taking into account interaction with other roles and components. The second
layer describes the evolution of a complete ensemble by considering the communication
between roles and between roles and components. It builds on the �rst layer to concur-
rently evolve the constituent role instances of an ensemble. In the following, we present
both layers of rules.

Assumption: For simpli�cation, we assume as in the previous chapter that role in-
stance parameters as well as data parameters of messages are unary, i.e., we do not
consider lists of parameters, but only a single role instance parameter and a single data
parameter.

3.3.1 Evolution of Roles

On the �rst level, we formalize the progress of a single role and its role behavior. The
progress only captures how a process expression can evolve according to its structure
without taking into account any interaction with other roles and components. The
SOS rules in Fig. 3.1 de�ne this progress inductively over the structure of well-formed
process expressions (cf. Def. 2.9 on page 25). The symbol

a
↪−→i,σ describes a transition

on the role level when executing an action a for the role instance with identi�er i in the
global ensemble state σ. The role instance identi�er i and the global ensemble state σ
are necessary to be able to evaluate the guards of if-then-else constructs.

Let us consider each process construct individually: Termination with the process
construct quit cannot evolve at role level. Intuitively, termination requires the owning
component instance to quit playing the role. However, this means that on the role level
no action is possible and the role simply terminates.

Action pre�x a.P can always evolve on the role level by executing the action a.
Restrictions on the execution of an action only result from the communication between
roles and components, e.g., for sending a message the input queue of the receiving role
must be able to store one more element. These restrictions are taken into account when
we consider the second layer, i.e. the evolution of the whole ensemble and therefore all
interactions and dependencies between roles and components.
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(action pre�x) a.P
a
↪−→i,σ P

(nondet. choice-1)
P1

a
↪−→i,σ P

′
1

P1 + P2
a
↪−→i,σ P ′1

(nondet. choice-2)
P2

a
↪−→i,σ P

′
2

P1 + P2
a
↪−→i,σ P ′2

(if-then-else-1)
P1

a
↪−→i,σ P

′
1

if (guard) {P1} else {P2}
a
↪−→i,σ P ′1

if JguardKi,σ

(if-then-else-2)
P2

a
↪−→i,σ P

′
2

if (guard) {P1} else {P2}
a
↪−→i,σ P ′2

if not JguardKi,σ

(process invocation)
P

a
↪−→i,σ P

′

N
a
↪−→i,σ P ′

if roleBehavior N = P

or process N = P

Figure 3.1: SOS rules for the evolution of roles

Nondeterministic choice can evolve any branch for which the corresponding process
expression can evolve. If both process expressions can evolve, one of the branches
is nondeterministically selected for execution. Consequently, nondeterministic choice
cannot evolve if none of the process expressions of the branches can evolve. On the �rst
level of a single role instance, only quit cannot evolve, all other process constructs and
especially all actions can always evolve. On the second level of roles collaborating in
an ensemble, we will see that some actions cannot evolve, e.g., if a role wants to send a
message to another role which currently cannot receive it. This means, nondeterministic
choice is realized in Helena as an external choice between its two branches. It does
not internally decide for one of the branches, but decides based on the executability
of the branches which one to execute. Nondeterministic choice is therefore externally
triggered since, e.g., we cannot internally decide to receive a message, but have to wait
for the external action of sending a message from the outside to be able to receive it.

The if-then-else construct can evolve its then-branch if the guard evaluates to true
and the corresponding process expression of the then-branch can evolve. It evolves its
else-branch if the guard evaluates to false and the corresponding process expression
of the else-branch can evolve. If the process expression of the branch chosen based on
the evaluation of the guard is not executable, the whole if-then-else process construct
cannot evolve. Note again that on the �rst level of a single role instance, only quit
cannot evolve, all other process constructs and especially all actions can always evolve.
On the second level of roles collaborating in an ensemble, branches might become not
executable. To evaluate the guards of guarded choice, we assume that guards are well-
formed as presented in Sec. 2.4.2. Fig. 3.2 inductively de�nes the evaluation JguardKi,σ
of a guard guard based on its syntactic structure according to Def. 2.9 on page 25.
The evaluation depends on the role instance i in whose behavior the guard occurs.
Furthermore, it depends on the current state σ of the ensemble, e.g., when evaluating
attributes of the role instance or its owner.
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JtrueKi,σ = true

JfalseKi,σ = false

JxKi,σ = w(x) i� σ = (comps, roles) and

roles(i) = (rt , ci, atr, v, w, q, P )

Jowner.attrKi,σ = atc(attr) i� σ = (comps, roles),

roles(i) = (rt , ci, atr, v, w, q, P ), and

comps(ci) = (ct, atc, as)

Jself.attrKi,σ = atr(attr) i� σ = (comps, roles) and

roles(i) = (rt , ci, atr, v, w, q, P )

Jplays(rt ,C )Ki,σ = true i� σ = (comps, roles),

roles(i) = (rt i, cii, at
r
i , vi, wi, qi, Pi),

comps(cii) = (cti, at
c
i , asi), and

there exists j such that

roles(j) = (rt , asi(C), atrj , vj , wj , qj , Pj) and

asi(C) 6= ⊥
= false otherwise

JeKi,σ = . . . (usual evaluation of data expression)

J!guardKi,σ = true i� not JguardKi,σ
= false otherwise

Jguard1 && guard2Ki,σ = true i� Jguard1Ki,σ and Jguard2Ki,σ
= false otherwise

. . .

Figure 3.2: Evaluation of guards

� The boolean primitives true and false directly evaluate to their corresponding
semantic value.

� A data variable x is evaluated based on the current state σ of the ensemble.
The value w(x) of the data variable x is retrieved from the local environment
function w of data variables stored for the role instance i in the ensemble state σ.

� Similarly, the guard owner.attr, i.e., the attribute attr of the owning component
of the current role instance, is evaluated. We access the attribute value function atc

of the owning component ci of the role instance i and retrieve the value atc(attr)
for the attribute attr. Thereby, it is important that the guard owner.attr is well-
formed, in the sense that the attribute attr of the owning component must be of
type bool to serve as a guard.

� For the guard self.attr, we access the attribute value function atr of the role
instance i and retrieve the value atr(attr) for the attribute attr. Again, the guard
self.attr must be well-formed to retrieve a boolean value.

� Intuitively, a plays query plays(rt ,C ) evaluates to true if the component instance
identi�ed by C adopts a role of type rt . However, C is not a component instance
identi�er, but is either the special, prede�ned variable owner or owner.assocnm
referring to the name of a component association of the owning component in-
stance. Thus, we have to retrieve the corresponding component instance identi�er
asi(C) from the association value function asi of the owning component instance
cii of the current role instance i. If this identi�er asi(C) is not ⊥, we then deter-
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mine whether there exists a role instance j in the current ensemble state σ which
is of type rt and is adopted by the component with the identi�er asi(C).

� Data expressions e are not further speci�ed in the syntax of Helena. We assume
them to be built from constant values, data variables, and attribute getters com-
bined with the usual arithmetic and relational operators. These expressions are
evaluated as usual, e.g., self.count < 1 + 2 evaluates to true if the current value
of the attribute count of the role instance i is smaller than 3.

� Finally, propositional operators like ! and && can be used in guards. In Fig. 3.2,
the evaluation of negation with ! and conjunction with && is speci�ed as usual.
The evaluation of further propositional operators is omitted here, but is straight-
forwardly de�ned.

To come back to the evolution of roles, we �nally consider the evolution of process
invocation. In the context of a role behavior, only the role behavior itself or a process
from the set of associated local process declarations can be invoked. In either case, we
assume that the role behavior N or the process N is de�ned by the process expression P .
Then, if the process expression P can evolve by an action a to the process expression P ′,
the process invocation N can evolve by the same action a to the process expression P ′.
The semantics of Helena does not prescribe a separate step for process invocation,
but immediately executes the �rst action of the invoked process.

3.3.2 Evolution of Ensembles

On the second level, we formalize the concurrent evolution of roles based on the under-
lying component-based platform. This level takes into account the interaction between
roles and components and therefore evolves the state of a complete ensemble. The SOS
rules in Fig. 3.3, Fig. 3.4 and Fig. 3.5 de�ne the evolution of an ensemble state in the
context of an ensemble speci�cation under the assumption of asynchronous communica-
tion. The symbol i:a−→Hel describes a transition from one ensemble state to another when
executing an action a for the role instance with identi�er i on the ensemble level. For
each rule, the transition between the two ensemble states is inferred from a transition
of a process expression on the role level, denoted by

a
↪−→i,σ.

If a role terminates the execution of its role behavior by the process construct quit
(rule quit), the role cannot execute any action on the role level, but on the ensemble level
the owning component has to quit playing the role. Thus, the SOS rule for quit takes
care that the owning component of a terminating role is set to the value ⊥ (expressing
that the role is no longer owned or played by any component) and likewise that the
remaining behavior is set to ⊥ (expressing that the execution of the role behavior is
completely �nished). However, the role is only allowed to terminate its execution if
the number of adopted (i.e., not terminated) instances of its role type is greater than
the minimal number of instances for its role type required in the ensemble speci�cation
(item (2)).

The SOS rule of a create action formalizes three conditions when a role instance i
can issue the creation of a role instance of type rt j on a component instance identi�ed
by C (rule create): Firstly, the component identi�ed by C2 must exist and be de�ned

2Similarly to plays queries, C is not a component instance identi�er, but C is either the special,
prede�ned variable owner or owner.assocnm referring to the name of a component association of the
owning component instance. Thus, we have to retrieve the corresponding component instance identi�er
asi(C) from the association value function asi of the owning component instance cii of the role instance
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(quit)
(comps, roles)

i:quit−−−−→Hel (comps, roles[i 7→ (rt ,⊥, atr, v, w, q,⊥)])

if


(1) i ∈ dom(roles), roles(i) = (rt , ci, atr, v, w, q,quit)

(2) roleconstraints(rt) = (min,max , cap),∣∣{k | roles(k) = (rt , cik, at
r
k, vk, wk, qk, Pk) and cik 6= ⊥}

∣∣ > min.

(create)
Pi

X←create(rtj ,C)
↪−−−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:X←create(rtj ,C)
−−−−−−−−−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if



(1) i ∈ dom(roles), roles(i) = (rt i, cii, at
r
i , vi, wi, qi, Pi),

comps(cii) = (cti, at
c
i , asi)

(2) asi(C) ∈ dom(comps)

(3) there does not exist k ∈ dom(roles) such that,

roles(k) = (rtj , asi(C), atrk, vk, wk, qk, Pk),

(4) roleconstraints(rtj) = (min,max , cap),∣∣{k | roles(k) = (rtj , cik, at
r
k, vk, wk, qk, Pk) and cik 6= ⊥}

∣∣ < max

(5) roleBehavior rtj = Pj ,

(6) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi[X 7→ next(roles)], wi, qi, P

′
i )]

[next(roles) 7→ (rtj , asi(C), ∅, ∅[self 7→ next(roles)], ∅, ε, Pj)].

(get)
Pi

X←get(rtj ,C)
↪−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:X←get(rtj ,C)
−−−−−−−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if



(1) i ∈ dom(roles), roles(i) = (rt i, cii, at
r
i , vi, wi, qi, Pi),

comps(cii) = (cti, at
c
i , asi)

(2) asi(C) ∈ dom(comps)

(3) there exists j ∈ dom(roles), roles(j) = (rtj , asi(C), atrj , vj , wj , qj , Pj)

(4) roles ′ = roles [i 7→ (rt i, cii, at
r
i , vi[X 7→ j], wi, qi, P

′
i )].

Figure 3.3: SOS rules for the evolution of ensembles (part 1)

(item (2)). Secondly, the new role instance of type rt j can only be created on a com-
ponent identi�ed by C which does not yet play a role of the same type rt j (item (3)).
Intuitively, this restriction is reasonable since a component cannot play the same role
twice in one ensemble. It can only play it twice when participating in two di�erent en-
sembles. Thirdly, the new role instance of type rt j can only be created if the maximal
number of instances for this role types required in the ensemble speci�cation has not yet
been reached (item (4)). Other conditions, like that the component instance identi�ed
by C is of a type which is allowed to adopt a role of type rt j , are already guaranteed
due to well-formedness of process expressions (cf. Sec. 2.4.2). If the two aforementioned
conditions are satis�ed and the role instance i can execute the create action on role
level, the ensemble can also evolve by the corresponding create action. In the resulting
ensemble state (item (6)), a new role instance with the identi�er next(roles) has been
added which is in its initial state. Furthermore, the role instance i which issued the

i which wants to create the new role instance. With this identi�er asi(C), we then determine whether
there currently exists a role instance k which is of type rtj and is adopted by the component with the
identi�er asi(C).
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creation stores a reference to the newly created role by setting the value of the role
instance variable X in its local environment function vi to next(roles). Obviously, also
the remaining behavior of the role instance i changed to P ′ after executing the create
action.

To be able to execute a get action on ensemble level (rule get), two conditions have to
be satis�ed: the component identi�ed by C must exist and be de�ned (item (2)) and in
the current ensemble state, there must exist a role instance j of the desired role type rt j
which is currently adopted by the component instance identi�ed by C, or rather the
component instance with the identi�er asi(C) as before (item (3)). If this condition is
satis�ed and a role instance i can execute the get action on role level, the ensemble can
also evolve by the corresponding get action. In the resulting ensemble state (item (4)),
the role instance i which issued the get action stores a reference to the retrieved role
by setting the value of the role instance variable X in its local environment function vi
to j. Obviously, also the remaining behavior of the role instance i changed to P ′ after
executing the get action.

(send)
Pi

Y !msgnm(X)(e)
↪−−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:Y !msgnm(X)(e)−−−−−−−−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if



(1) i ∈ dom(roles), roles(i) = (rt i, cii, at
r
i , vi, wi, qi, Pi),

(2) vi(Y ) = j ∈ dom(roles), roles(j) = (rtj , cij , at
r
j , vj , wj , qj , Pj),

roleconstraints(rtj) = (min,max , cap), |qj | < cap,

(3) vi(X) = k ∈ dom(roles)

(4) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi, wi, qi, P

′
i )]

[j 7→ (rtj , cij , at
r
j , vj , wj , qj ·msgnm(k)(JeKi,σ), Pj)].

(receive)
Pi

?msgnm(X:rtj)(x:dt)
↪−−−−−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:?msgnm(X:rtj)(x:dt)−−−−−−−−−−−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if


(1) i ∈ dom(roles), roles(i) = (rt i, cii, at

r
i , vi, wi,msgnm(j)(e) · qi, Pi),

(2) j ∈ dom(roles),

(3) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi[X 7→ j], wi[x 7→ e], qi, P

′
i ).

Figure 3.4: SOS rules for the evolution of ensembles (part 2)

The SOS rule of a send action formalizes one condition when a role instance i
can send a message msgnm(X)(e) to a role instance identi�ed by the variable Y (rule
send): The input queue of the role instance Y has not yet exceeded its maximal capacity
determined in the underlying ensemble speci�cation (item (2)). Thereby, the variable Y
is not a role instance identi�er, but refers to a variable whose value vi(Y ) = j has to
be retrieved from the local environment function vi. Other conditions, like that the
sending role must support the message as outgoing message and the receiving role as
incoming message, are already guaranteed due to well-formedness of process expressions
(cf. Sec. 2.4.2). If the aforementioned condition is satis�ed and the role instance i can
execute the send action on role level, the ensemble can also evolve by the corresponding
send action. In the resulting ensemble state (item (4)), the message has been placed at
the end of the input queue of the receiving role instance j. Obviously, also the remaining
behavior of the role instance i changed to P ′ after executing the send action.
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To receive a message msgnm(X:rt j)(x:dt) on a role instance i in an ensemble (rule
receive), only one condition has to be satis�ed: The �rst entry of the input queue of
the role instance i must be an appropriate message (item (1)). Other conditions, like
that the receiving role must support the message as incoming message, are already
guaranteed due to well-formedness of process expressions (cf. Sec. 2.4.2). If the afore-
mentioned condition is satis�ed and the role instance i can execute the receive action
on role level, the ensemble can also evolve by the corresponding receive action. In the
resulting ensemble state (item (3)), the role instance i has received the message and has
stored the received value j for the role instance parameter X in its local environment
function vi and the received value e for the data parameter x in its local environment
function wi. Obviously, also the remaining behavior of the role instance i changed to
P ′ after executing the receive action.

When calling an operation from a role instance i on its owning component (rules
op call 1 and op call 2) in an ensemble, no special conditions have to be satis�ed.
Whenever the role instance i can execute the operation call, the ensemble can also
evolve by the corresponding operation call. Most interesting is the resulting ensemble
state after the execution of the operation call. In Helena, we do not specify any
e�ects of an operation, e.g., by pre- and post-conditions. Thus, an operation can have
arbitrary side-e�ects on the owning component instance where the operation is called.
That means if an operation without return value is called (rule op call 1), it evolves
the global ensemble state by locally evolving the remaining behavior of the calling role
instance i to P ′ (item (2)) and by arbitrarily, but well-de�nedly changing the local state
of the owning component instance cii while all other local states of component instances
have to remain unchanged (item (3)). If an operation with a return value is called (rule
op call 2), the variable x for storing the return value is set to an arbitrary value e in
the local environment function wi of the role instance i in the resulting ensemble state
(item (2)). This re�ects that in Helena we do not specify the e�ect of an operation and
therefore the return value is arbitrary. Furthermore, the operation can have side-e�ects
on the local state of the owning component instance cii as before (item (3)).

If data should be changed on the owning component of a role instance i in a de�ned
way, the role instance uses the component attribute setter i:owner.attr (rule comp
attr). No special conditions have to be satis�ed to execute that action on the ensemble
level. Whenever the role instance i can execute the component attribute setter, the
ensemble can also evolve by the corresponding action. In the resulting ensemble state,
the value of the attribute attr in the attribute value function atci of the owning compo-
nent instance cii of the role instance i is set to the evaluation JeKi,σ of the expression e
(item (2)). Obviously, also the remaining behavior of the role instance i changed to P ′

after executing the receive action (item (3)).
Similarly, if data should be changed on the role instance i in an ensemble, the role

instance uses the role attribute setter i:self.attr (rule role attr). No special conditions
have to be satis�ed to execute that action on the ensemble level. Whenever the role
instance i can execute the role attribute setter, the ensemble can also evolve by the cor-
responding action. In the resulting ensemble state (item (2)), the value of the attribute
attr in the attribute value function atri of the role instance i is set to the evaluation
JeKi,σ of the expression e. Obviously, also the remaining behavior of the role instance i
changed to P ′ after executing the receive action.

Finally, whenever a role instance i in the current ensemble state can execute a state
label action label , the action can also be executed in the ensemble (rule label). In the
resulting ensemble state (item (2)), only the remaining behavior of the role instance i
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changed to P ′ after executing the label action. That means that state labels do not
contribute to the goal-oriented behavior of a role. They are used for veri�cation purposes
only.

(op call 1)
Pi

owner.opnm(e)
↪−−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:owner.opnm(e)−−−−−−−−−−−→Hel (comps ′, roles ′)

with σ = (comps, roles)

if


(1) i ∈ dom(roles), roles(i) = (rt i, cii, at

r
i , vi, wi, qi, Pi),

(2) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi, wi, qi, P

′
i )],

(3) (comps ′, roles ′) well-de�ned

and for all ci ∈ comps with ci 6= cii holds comps ′(ci) = comps(ci).

(op call 2)
Pi

x=owner.opnm(e)
↪−−−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:x=owner.opnm(e)−−−−−−−−−−−−−→Hel (comps, roles ′)

with σ = (comps ′, roles)

if



(1) i ∈ dom(roles), roles(i) = (rt i, cii, at
r
i , vi, wi, qi, Pi),

(2) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi, wi[x 7→ e′], qi, P

′
i )]

for an arbitrary value e′,

(3) (comps ′, roles ′) well-de�ned

and for all ci ∈ comps with ci 6= cii holds comps ′(ci) = comps(ci).

(comp attr)
Pi

owner.attr=e
↪−−−−−−−−−→i,σ P

′
i

(comps, roles)
i:owner.attr=e−−−−−−−−−−→Hel (comps ′, roles ′)

with σ = (comps, roles)

if


(1) i ∈ dom(roles), roles(i) = (rt i, cii, at

r
i , vi, wi, qi, Pi),

(2) comps ′ = comps[cii 7→ (cti, at
c
i [attr 7→ JeKi,σ], asi)]

(3) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi, wi, qi, P

′
i )].

(role attr)
Pi

self.attr=e
↪−−−−−−−→i,σ P

′
i

(comps, roles)
i:self.attr=e−−−−−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if

{
(1) i ∈ dom(roles), roles(i) = (rt i, cii, at

r
i , vi, wi, qi, Pi),

(2) roles ′ = roles[i 7→ (rt i, cii, at
r
i [attr 7→ JeKi,σ], vi, wi, qi, P

′
i )].

(label)
Pi

label
↪−−→i,σ P

′
i

(comps, roles)
i:label−−−−→Hel (comps, roles ′)

with σ = (comps, roles)

if

{
(1) i ∈ dom(roles), roles(i) = (rt i, cii, at

r
i , vi, wi, qi, Pi),

(2) roles ′ = roles[i 7→ (rt i, cii, at
r
i , vi, wi, qi, P

′
i )].

Figure 3.5: SOS rules for the evolution of ensembles (part 3)

3.4 Semantic Labeled Transition System

The semantic rules given in the previous subsection generate a labeled transition system
with ensemble states evolving by role instance creation and retrieval, communication
actions of roles, and access to the owning component.
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Def. 3.7: Semantics of an Ensemble Speci�cation

Let EnsSpec be an ensemble speci�cation over a set CT of component types.

Given an admissible ensemble state σinit, the semantics of the ensemble speci�-

cation EnsSpec is the labeled transition system THel = (SHel, IHel, AHel,−→Hel)
with IHel = {σinit} which is generated by the structured operational semantic

rules in Fig. 3.3, Fig. 3.4 and Fig. 3.5.

The states SHel of the generated labeled transition system are all (well-de�ned)
ensemble states of the ensemble speci�cation EnsSpec, the set IHel of initial states only
contains σinit, the actions AHel are all actions on ensemble level, and the transitions in
−→Hel are described by the SOS rules in Fig. 3.3, Fig. 3.4 and Fig. 3.5.

3.5 Related Work

In the literature, many process algebras of concurrent communicating processes exist.
We focus on three representatives of them which are quite similar to our Helena ap-
proach: The Fork Calculus by Havelund and Larsen [HL93], a process algebra using
the special fork operator to put processes in parallel; Promela, a language for mod-
eling systems of concurrent processes and the input language for the model-checker
Spin [Hol03], and its incremental semantics by Weise [Wei97]; and SCEL by De Nicola
et al. [DLPT14], a language to model systems of autonomic components.

First of all, they all share the idea of concurrently executing, communicating pro-
cesses, but they employ di�erent communication styles. In the Fork Calculus, two
processes synchronously communicate on complementary actions. Promela allows
synchronous and asynchronous message passing via global channels. Components in
SCEL exchange knowledge via dedicated knowledge repositories, similarly to tuple
spaces, where knowledge is asynchronously put and retrieved in the form of data tu-
ples. Helena is most similar to Promela in its communication style. Messages are
asynchronously exchanged (the extension to synchronous message passing is straight-
forward). However, in contrast to Promela, messages in Helena are received on a
dedicated input queue per role which is not globally available like channels in Promela.

The three approaches also di�er in the handling of data. The Fork Calculus does not
include data. In Promela, data is allowed as global and local variables of processes,
as parameters of processes and as content of messages. In SCEL, data is stored as
tuples in knowledge repositories and put and retrieved from them via special knowledge
repository manipulation actions. Helena again resembles Promela in the treatment
of data. Data is stored in attributes of components and roles similarly to local variables
and parameters of processes. Furthermore, roles exchange data as content of messages.

Dynamic process creation as proposed by dynamic role creation in Helena has
not found much attention in the literature about concurrent communicating processes.
Bergstra [Ber92] uses an environment operator which allows to place the newly created
process in parallel with the process initiated the process creation. Thus, he mainly ex-
ploits parallel composition to express process creation. Baeten [BV92] proposes a more
direct way to express process creation. He uses continuations which allow a process with
dynamic process creation to continue with either process expression, the newly created
process or the process which initiated the process creation. The three approaches, to
which Helena is mainly related, all allow to create a new process which is executed in
parallel to all existing processes in the system. The Fork Calculus introduces the special
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fork operator. The operator allows to start a separate evaluation of a process expression
and runs it in parallel with all other processes. The run operator of Promela spawns
a new process instance of a certain process type. Again, this new process is run in par-
allel with all other processes of the system. SCEL provides the new action to create a
new component. This component executes its behavior modeled as a (possibly) parallel
process concurrently to all other components in the system. Similarly, Helena allows
to dynamically create a new role instance from within another role behavior. The newly
created role then executes its behavior in parallel to all other roles.

The main di�erence to all these approaches is that Helena not only has the concept
of active role instances executing their goal-directed behavior. The approach addition-
ally employs components which serve as data storage and computing resources for the
active roles. Components thereby provide their capabilities to their adopted roles such
that in the semantics of a Helena ensemble speci�cation, roles and their progress of
execution as well as components with their data state have to be handled.

In general, Helena and the three approaches share the idea of describing their
semantics by transition systems. They all split the semantics in two levels, the �rst
level representing the evolution of a single entity and the second level representing the
concurrent execution of all entities. In the Fork Calculus, structured operational se-
mantics (SOS) rules are de�ned for the execution of a process in isolation. The SOS
rules for programs are derived from the single process rules as an interaction between
a multiset of processes. Similarly, in Promela, �rst the semantics of the behavior of
a single process is de�ned before the behavior of the complete system is derived from
a set of interacting processes. In SCEL, the execution of a process retrieves commit-
ments for the process, i.e., actions which the process can perform and continuations
how the process would proceed after executing the actions. With these commitments, a
system con�guration composed from several components executing the aforementioned
processes is evolved. Similarly, in Helena, we describe the evolution of a single role
instance without considering the interaction with other roles and components on the
�rst level. On the second level, we evolve all role instances of an ensemble in parallel
and take into account communication. In contrast to the other three approaches, roles
thereby do not only communicate with other roles in Helena, but also with compo-
nents. Therefore, we have to manage not only the local states of roles for an ensemble,
but also the local states of components.

3.6 Publication History

The semantics of ensemble speci�cations has �rst been de�ned by ensemble automata
in [HK14] and [KH14]. These publications verbosely describe ensemble states by families
of functions and ensemble automata by the evolution of ensemble states by ensemble
actions. In [HKW15], we propose a precise SOS semantics for a subset of Helena
ensemble speci�cations which is based on the previous notion of ensemble states and
their evolution. This chapter extends the SOS semantics to full Helena ensemble
speci�cations. In particular, the simpli�ed SOS semantics in [HKW15] does not consider
the level of components which is an essential part of the full semantics. The simpli�ed
semantics omits any notion of data which is included in the full semantics as values
of (component or role) attributes, content of messages, and guards in role behaviors.
Finally, the semantics of the restricted set of process constructs and actions is extended
to the full syntactic constructs of Helena. This extension is particularly important for
the treatment of guards, the if-then-else construct, and nondeterministic choice.
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3.7 Present Achievements and Future Perspectives

Present Achievements: The semantics of Helena ensemble speci�cations is de-
scribed by labeled transition systems. These labeled transition systems follow struc-
tured operational semantics (SOS) rules to evolve the states an ensemble can be in
according to the ensemble speci�cation.

An ensemble state captures the states of the components and roles forming the
system. Since a component is thought of as a pure data container and computing
resource in Helena, the state of a component is just characterized by information
currently stored on the component. In contrast, a role is meant to execute a goal-
directed behavior and to store information only relevant for that behavior. Thus, the
state of a role is characterized by the information currently stored on the role and all
information related to the progress of behavior execution (like the current content of
the input queue or the remaining behavior to be executed). Furthermore, the role keeps
a reference to its owning component to access the data stored on the component and to
exploit the computing resources of the component by calling operations.

SOS rules determine the allowed transitions between those ensemble states according
to the ensemble speci�cation. Inspired by [HL93] and [Wei97], we split the rules into
two layers: The �rst layer describes the evolution of a single role instance and its
corresponding role behavior without considering the interaction with other roles and
components. The second layer describes the concurrent evolution of all role instances
of an ensemble. It formalizes the interaction between roles, like sending a message to a
role by putting it into its input queue, and the communication with components, e.g.,
to access data stored on the components or to call operations on the components.

The main aspects of the semantics are that Helena allows to dynamically create
new role instances and employs asynchronous communication between roles. From the
technical side, it is important to note that in the Helena semantics neither the selection
of a branch in guarded choice nor process invocation does take a separate step. Both
directly execute the �rst action of the selected branch or the invoked process resp. This
is in-line with other process algebras like SCEL [DLPT14], but is sometimes di�erently
handled as in Promela, the input language for the model-checker Spin [Hol03]. In
contrast, termination of a role behavior has to take an additional step to allow the
owning component to quit playing the role before the role terminates its execution.
Lastly, it remains to mention that no e�ects are speci�ed for operations in Helena and
thus operations can have arbitrary side-e�ects on the owning component instance of the
calling role instance.

Future Perspectives: For future work, there exist some interesting extension points:

E�ect of Operations: So far, we cannot formalize any speci�c e�ects of operation calls.
To be able to formalize speci�c e�ects, operations could be extended by pre-
and post-conditions. These would allow to specify the particular tasks which a
component can ful�ll for a role by executing operations.

Interferences between Roles: According to the proposed semantics, an operation call is
handled as an atomic step such that concurrent operation calls cannot happen.
However, if we allowed an operation to consist of several steps and additionally
allowed to specify precise e�ects of operations, it might happen that two con-
currently called operations interfere which each other and their e�ects contradict
each other. For example, one operation tells the component to move to a certain
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location while another advises the component to remain at the current location.
Solutions to this problem could be to only allow the execution of a single operation
at a time (known as synchronized methods in Java) or to de�ne which roles can
only mutually exclusively be adopted.

Shared Components between Ensembles: In the semantics of Helena, the local states
of components are part of the state of an ensemble. However, the idea of Helena
is to employ several ensembles concurrently on the same underlying component-
based platform. Hence, the local states of components should be shared between
di�erent ensembles, but this comes with the problems of interferences again.
Whenever, the data on a component is changed during the execution of one en-
semble, it is also changed for all other ensembles which rely on the same set of
components. Problems similar to database reads and writes may arise, i.e., an
ensemble reads data from a component which is immediately outdated due to a
write from another ensemble.

Openness for New Components: Finally, we restricted the set of components to a �xed
number. In the semantics, the local states of components can be changed, but new
components cannot be added or removed. However, if we allow to dynamically
extend or shrink the set of represented components, we come across the problem
what happens to roles which are currently played by a leaving component. A new
action to transfer a role to another owning component may solve the problem of
a leaving component, but could also help to exploit new resources if a component
joins.



Chapter 4

Goal Speci�cations
Being Successful with Helena

Ensembles are formed to collaborate for some global goal. Following [vL09], a goal can
be an achieve goal, such that the ensemble terminates when the goal (speci�ed, e.g., by
a particular state) is reached, or a maintenance goal, such that a certain property (spec-
i�ed, e.g., by an ensemble invariant) is maintained while the ensemble is running. Such
goals are often described by linear temporal logic (LTL) formulae [DvLF93, DAC99] to
allow formal veri�cation of goal satisfaction in the underlying model. In this chapter,
we introduce Helena LTL, a logic based on LTL with Helena-speci�c atomic propo-
sitions to be able to specify goals for a Helena ensemble speci�cation. We rely on
the formal semantics of Helena to de�ne satisfaction of LTL formulae over a Helena
speci�cation.

In the following, we �rst explain the general notion of goals and their representation
in LTL in Sec. 4.1. Sec. 4.2 de�nes Helena LTL formulae and their satisfaction over
Helena speci�cations. We conclude this chapter with a short outlook about future
work in Sec. 4.4.

4.1 Goals and their Speci�cation in LTL

The notion of goals has widely been used in the �eld of requirements engineering.
KAOS [vL09] is one of the most famous frameworks of goal-oriented requirements engi-
neering and we base our understanding of goals on their notions. In KAOS, the system
and its environment is seen as a collection of active components or agents, i.e., some
agents de�ne the system while others de�ne its environment. According to van Lam-
sweerde [vL03], a �goal is a prescriptive statement of intent about some system (existing
or to-be) whose satisfaction in general requires the cooperation of some of the agents
forming that system�. That means that a goal is a high-level strategic objective which
the system should achieve. Each agent plays a certain role towards achieving the goal.
By re�ning a goal into a set of subgoals where each subgoal is realizable by a single
agent, the high-level goal is operationalized into low-level requirements. A requirement
thus represents a way of achieving a (part of a) goal. It de�nes the contribution of a
single agent and therefore its role in the collaboration.

Ensemble-based systems as considered in theHelena approach are large distributed
systems where components dynamically collaborate for a high-level objective. Each
component participates in a certain role in the ensemble. Similarly to KAOS, we de-
scribe the high-level objective of an ensemble by a global goal. Each role in the ensemble
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intends to contribute a particular functionality to achieving the goal and is thus an op-
erationalization of (a part of) the goal.

4.1.1 Goal Types

In the literature of goal-oriented requirements engineering, goals have been classi�ed
according to di�erent axes [vL01, vL09].

Concern: The �rst axis describes the kind of properties the goal is concerned with.
Functional goals are services or functions which the system should provide. Given
a certain input, the system should execute a speci�c behavior to produce the de-
sired output. Opposed to that, non-functional goals are concerned with the quality
of the system. Thus, they describe the performance of the system and constraints
on how the system provides the desired functionalities, e.g., time bounds or secu-
rity levels.

Time: A taxonomy that is especially chosen when considering goals is the types of
temporal behavior prescribed by the goal. Achieve goals describe a property or
a system state that is established at some point in the future; analogously, cease
goals describe a property which is ceased at some point in the future. Maintain

goals require the system to maintain a certain property throughout the whole
lifetime of the system; analogously, avoid goals require it to avoid a certain state.

Achievement: The third axis considers whether a goal can explicitly be achieved. A
hard goal is a property of the system whose satisfaction can strictly be veri�ed
while a soft goal is not characterized by a clear-cut criterion. A soft goal is al-
ways only satis�ed to a certain degree and complete achievement is not possible.
Soft goals can be specialized to optimize goals. Optimize goals de�ne an objec-
tive function according to which di�erent behaviors are evaluated. The behavior
maximizing the function is favored over the others.

In ensemble-based systems, components collaborate to perform goal-oriented tasks.
Therefore, we focus on functional goals, i.e., the ensemble executes a speci�c behavior to
provide a certain functionality. Furthermore, an ensemble can pursue two types of goals:
either it strives to achieve a certain goal or to maintain a certain property throughout
execution. In both cases, we only consider hard goals to be able to verify satisfaction.

Example: The transfer ensemble in the p2p example pursues two goals. On the one
hand, the ensemble is formed to transfer a �le from the providing peer to the requesting
peer if the �le is present in the p2p network. Hence, we formulate an achieve goal to
reach a state in the running system where the requesting peer has the �le. On the other
hand, the ensemble has to guarantee that whenever the �le is available in the system
it should not accidentally be deleted. Thus, the system has to ful�ll the maintain goal
that one peer always has the �le if it was present in the initial state.

4.1.2 Linear Temporal Logic

Besides giving an informal (but intuitive) description of goals as in the previous sub-
section, we formally specify them. Together with a formal speci�cation of the system,
this allows to check satisfaction of goals for the intended system.

A popular approach to specify goals is linear temporal logic (LTL). It is especially
suitable to describe properties which have to be achieved at some point of time or
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maintained throughout the whole lifetime of a system. LTL are formulae built from a
set of atomic propositions and logic operators. The atomic propositions of LTL formulae
are simple properties which have a speci�c boolean value in each state of the system.

Def. 4.1: Linear Temporal Logic [BK08]

Let AP be a set of atomic propositions. LTL formulae over AP are then induc-

tively de�ned by:

φ = p ∈ AP (atomic proposition)

| ¬φ | φ ∧ ψ (proposition logic operators)

| Xφ | ♦φ | �φ | φUψ (linear temporal logic operators)

The set of LTL formulae over AP is denoted by LTL(AP ).

Disjunction, implication, and equivalence are given by the usual abbreviations:
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),

φ⇒ ψ ≡ ¬φ ∨ ψ, and
φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ).

LTL in Kripke Structures: To de�ne when a given system satis�es an LTL formula,
the system must be formally described. The �rst possibility is to use the notion of Kripke
structures. They consist of a set of states connected by (unlabeled) transitions. The
states are labeled by sets of atomic propositions which hold in the state and some states
are marked as initial states.

Def. 4.2: Kripke Structure

Let AP be a set of atomic propositions. A Kripke structure K over AP is a tuple

(SK , IK ,−→K , FK) such that

� SK is a set of states,

� IK ⊆ SK is a set of initial states,

� −→K ⊆ SK×SK is an (unlabeled) transition relation without terminal states

(i.e., ∀s ∈ SK∃s′ ∈ SK . s −→K s′), and

� FK : SK → 2AP is a labeling function associating to each state the set of

atomic propositions that hold in it.

For a Kripke structure K = (SK , IK ,−→K , FK), we further de�ne:

� A path of K is an in�nite sequence p = s0s1s2 . . . (with si ∈ SK for all i ∈ N)
such that s0 ∈ IK and si −→K si+1. A path fragment of K is an in�nite sequence
p = s1s2 . . . (with si ∈ SK for all i ∈ N) such that si −→K si+1.

� A trace of K is an in�nite sequence t = t0t1t2 . . . such that there exists a path
p = s0s1s2 . . . in K and ti = FK(si) for all i ∈ N. A trace fragment of K is an
in�nite sequence t = t1t2 . . . such that there exists a path fragment p = s1s2 . . .
in K and ti = FK(si) for all i ∈ N.

When a system described by a Kripke structure satis�es a goal described by an LTL
formula is de�ned by the usual inductive de�nition [BK08]. Note that satisfaction is
always evaluated according to an in�nite trace of the Kripke structure.
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Def. 4.3: Satisfaction of LTL in Kripke Structures

Let K = (SK , IK ,−→K , FK) be a Kripke structure over AP , t = t0t1t2 . . . a trace

fragment of K, and φ ∈ LTL(AP ); t|i denotes the subsequence titi+1ti+2 . . . of t.
The satisfaction of φ for trace t, written t |= φ, is inductively de�ned by

� t |= p, if p ∈ t0,
� t |= ¬φ, if t 6|= φ,

� t |= φ ∧ ψ, if t |= φ and t |= ψ,

� t |= Xφ, if t|1 |= φ,

� t |= ♦φ, if there exists k ≥ 0 such that t|k |= φ,

� t |= �φ, if for all k ≥ 0 holds t|k |= φ,

� t |= φUψ, if there exists k ≥ 0
such that t|k |= ψ and for all 0 ≤ j < k holds t|j |= φ,

The Kripke structure K satis�es an LTL formula φ, written K |= φ, if all traces
of K satisfy φ.

LTL in Labeled Transition Systems: A second possibility is to describe systems
as labeled transition systems. In contrast to Kripke structures, they do not label states
with atomic propositions, but transitions with actions. Let's recall the de�nition of
labeled transition systems from Def. 3.1 on page 46. A labeled transition system T is a
tuple (ST , IT , AT ,−→T ) such that ST is a set of states, IT ⊆ ST is a set of initial states,
AT is a set of actions such that the silent action τ /∈ AT , and −→T ⊆ ST × (AT ∪ τ)×ST
is a labeled transition relation. For an LTS T = (ST , IT , AT ,−→T ), we further de�ne:

� a∗ denotes a (possibly empty) sequence of a actions.

� If w = a1 . . . an holds for some n ∈ N and a1, . . . , an ∈ (AT ∪ τ), then s w−→T s′

stands for s = s′, if n = 0, and s
a1−→T s1 . . . sn−1

an−→T s′ with appropriate
s1, . . . , sn−1 otherwise.

� The LTS T together with a set of atomic propositions AP and a satisfaction
relation s |= p (for s ∈ ST and p ∈ AP ) induces a Kripke structure K(T ) =
(ST , IT ,−→•T , F):

� The labeled transition relation −→T is transformed into an unlabeled, total
transition relation −→•T which forgets the actions and adds a new transition
s −→•T s for each terminal state s ∈ ST .

� The labeling function F : ST → 2AP is de�ned by F(s) = {p ∈ AP | s |= p}.

When a system described by a labeled transition system satis�es an LTL formula is
de�ned relying on the induced Kripke structure.

Def. 4.4: Satisfaction of LTL in Labeled Transition Systems

Let T = (ST , IT , AT ,−→T ) be a labeled transition system, AP a set of atomic

propositions, s |= p a satisfaction relation for s ∈ ST and p ∈ AP , and φ ∈
LTL(AP ) an LTL formula over AP .
T satis�es φ, written T |= φ, if K(T ) |= φ, i.e., the induced Kripke struc-

ture K(T ) satis�es φ.
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4.1.3 Goal Patterns

To support the engineer of a system, goal-oriented requirements engineering recom-
mends a set of temporal logic patterns to describe achieve and cease goals as well as
maintain and avoid goals. Dwyer et al. [DAC99] recommends a set of patterns for the
speci�cation of properties in �nite-state veri�cation which are similarly proposed for the
speci�cation of temporal goals by the KAOS methodology [DvLF93, vL09]. We only fo-
cus on the most general form of achieve, cease, maintain, and avoid goals (cf. Fig. 4.1).
They can be extended to cope with more complex goals like that a system has to
maintain a certain property until a new (possibly more desirable) property is achieved
(cf. [vL09, Chap. 17]).

Achieve Goal: P ⇒ ♦Q,

Cease Goal: P ⇒ ♦¬Q,
Maintain Goal: P ⇒ �Q,

Avoid Goal: P ⇒ �¬Q,

Figure 4.1: Patterns for temporal goals formulated in LTL (taken from [DvLF93])

An achieve goal expresses that a certain state of the system has to be reached at
some point of time in the future. The formalization in LTL thus requires by the term ♦Q
that the property Q eventually holds at some point in the future. However, it might be
that the system only has to achieve Q if it is started in a certain state. This is expressed
by the implication P ⇒ to indicate the initial property P which requires achieving the
property Q at some point in the future. Analogously, a cease goal requires the system
to cease the property Q at some point in the future expressed by the term ♦¬Q.

In contrast, a maintain goal demands to ful�ll a certain property throughout the
lifetime of the system. The formalization in LTL thus requires by the term �Q that the
property Q always holds. Similarly to an achieve goal, it might by that the property
Q must only be maintained if the system is started in a certain state expressed by the
implication P ⇒. Analogously, an avoid goal requires the system to always avoid the
property Q expressed by the term �¬Q.

Example: To express the goals for the p2p example which were informally de�ned in
the previous section, we have to assume that the system exposes some properties about
its state. Firstly, it exposes by Peer[i]:hasF ile whether the ith peer currently has the
�le. Secondly, the term Requester:hasF ile denotes whether the single requester in the
�le transfer ensemble has the �le. Since LTL does not allow quanti�cation, we have to
assume given a set of peers Peer[1], Peer[2], and Peer[3] to express our goals.

The achieve goal that the requester has the �le at some point in the future if it
exists in the p2p network is expressed by the LTL formulae in Fig. 4.2

(Peer[1]:hasF ile∨Peer[2]:hasF ile∨Peer[3]:hasF ile)⇒ ♦Requester:hasF ile.

Figure 4.2: Achieve goal for the p2p example in LTL

The �rst part of the implication determines whether the �le exists in the p2p network
in the initial state of the system. Since we assumed that the system only consists of three
peers, it is enough to include them in the premise. The second part of the implication
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indicates that the ensemble actually achieves its goal at some point in time by specifying
that the single requester in the network eventually has the �le. Since we formulated
the goal as an implication, we require the system only to transfer the �le if the �le is
present in the p2p network; otherwise, the system does not have any achieve goal.

The maintain goal for the transfer �le ensemble that the �le is not accidentally
deleted throughout the lifetime of the system if it was present in the initial state of the
system is expressed by the LTL formula in Fig. 4.3. We start from the same premise as

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile)

⇒ �(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile).

Figure 4.3: Maintain goal for the p2p example in LTL

before that one peer should have the �le. Then, the system has to always maintain the
�le in the system which is expressed by the second part of the implication. It indicates
that at least one peer has the �le at all points of time (this must not be the initial owner
of the �le).

4.1.4 Reasoning about Goals

A formal speci�cation of goals does not only provide a precise formulation of the criterion
when a goal is satis�ed. The formal speci�cation can also be used for reasoning about
goals [vL01].

Firstly, we can use the formalization of goals to validate them. From their formal
representation, concrete scenarios can be generated. They describe typical examples
or counterexample of the intended system behavior which helps to identify the desired
system behavior. We can even go further and detect overlapping or con�icting goals
which must be resolved to gain a clear goal speci�cation.

Secondly, we can apply goal veri�cation on a given system speci�cation such that
the satisfaction of goals is checked for a the system speci�cation. Techniques of model-
checking are used to verify that the speci�ed system actually meets its goal. We therefore
can guarantee that the speci�ed system is an operationalization which achieves the
desired goals.

Thirdly, formal goal speci�cations can be used to derive a system's operationaliza-
tion. Requirements of single agents are derived from goal speci�cations, for example,
by goal re�nement. They in turn are used to elicit concrete pre- and post-conditions
for operations of agents.

In the following, we will focus on goal veri�cation for ensemble-based systems. We
describe goals for ensembles by LTL formulae and verify their satisfaction for a given
Helena ensemble speci�cation.

4.2 Helena LTL

To express achieve and maintain goals over Helena ensemble speci�cations, we use
LTL formulae over a set of particular atomic Helena propositions. Thereby, we can
refer to properties of role instances and component instances, but also to states in
role behaviors. In the following, we formally de�ne LTL formulae over a Helena

speci�cation in Sec. 4.2.1. In Sec. 4.2.2, we discuss satisfaction of LTL formulae over a
Helena speci�cation based on the semantics presented in Chap. 3.
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4.2.1 Helena LTL Formulae

To express Helena LTL formulae, we assume given a Helena ensemble speci�cation
EnsSpec = (Σ, behaviors) (over a set of component types CT ) where Σ is an ensemble
structure and behaviors is a set of extended role behaviors for each role type occurring
in Σ. In the Helena LTL formulae, we can either refer to particular states of role
behaviors by state labels or to values of role attributes or component attributes.

Def. 4.5: Helena LTL

Let EnsSpec be a Helena ensemble speci�cation. The set AP (EnsSpec) of
atomic propositions for EnsSpec consists of either state label expressions or a

boolean expressions over attributes.

(1) A state label expression is of the form rt [n]@label where rt is a role type

of Σ, n ∈ N+ is the identi�er of a role instance of rt , and label is a state

label in a role behavior of the set behaviors.

(2) An attribute expression has to be boolean and is built from the usual arith-

metic and relational operators, data constants, and expressions of the form

rt [n]:attr or ct[n]:attr where n ∈ N+ is the identi�er of a role instance or

component instance, rt is a role type and attr is a role attribute of rt , or
ct ∈ CT is a component type and attr is component attribute of ct.

A Helena LTL formula for EnsSpec is an LTL formula over the set AP (EnsSpec)
of the atomic Helena propositions.

Example: For our p2p example, we repeat the two goals from Sec. 4.1. To recap, the
achieve goal that the requesting peer eventually has the �le is expressed by the LTL
formula in Fig. 4.4 (which is the same as in Fig. 4.2). In the formula, only state label

(Peer[1]:hasF ile∨Peer[2]:hasF ile∨Peer[3]:hasF ile)⇒ ♦Requester:hasF ile.

Figure 4.4: Achieve goal for the p2p example in Helena LTL

expressions are used. Peer[1]:hasF ile refers to the value of the attribute hasF ile of the
component instance with the identi�er 1 of component type Peer; analogously for the
state label expression Requester:hasF ile. However, the latter is a shorthand notation
for Requester[1]:hasF ile which can be used since we know by the minimal and maximal
multiplicity constraints for the role type Requester in the ensemble structure Σtransfer

(cf. Fig. 2.4 on page 23), that there exists exactly one requester instance in the running
ensemble.

Similarly, the maintain goal that the �le will never be accidentally deleted is ex-
pressed in Helena LTL in Fig. 4.5 (which is the same as in Fig. 4.3).

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile)

⇒ �(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile).

Figure 4.5: Maintain goal for the p2p example in Helena LTL
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4.2.2 Satisfaction of Helena LTL Formulae

To determine when an ensemble speci�cation satis�es a Helena LTL formulae, we rely
on Def. 4.4 on page 68 which requires a set of atomic propositions and a satisfaction
relation to de�ne satisfaction of LTL formulae for a labeled transition system.

For an ensemble speci�cation EnsSpec, the semantic rules of Helena in Fig. 3.3,
Fig. 3.4, and Fig. 3.5 generate a labeled transition system (SHel, IHel, AHel,−→Hel)
for a given admissible initial state σinit ∈ IHel. The atomic propositions for EnsSpec
which are used to formulate LTL formulae are the state label expressions and attribute
expressions de�ned by the set AP (EnsSpec) in the previous subsection. Therefore, it
remains to de�ne a satisfaction relation σ |= p for σ ∈ SHel and p ∈ AP (EnsSpec)
(the satisfaction relation serves as labeling function when inducing a Kripke structure
from the labeled transition system). Satisfaction of LTL formulae in labeled transition
systems was already de�ned in Def. 4.4 and satisfaction in Kripke structures in Def. 4.3.

Def. 4.6: Satisfaction of Helena LTL Formulae

Let THel = (SHel, IHel, AHel,−→Hel) be the labeled transition system of a He-

lena ensemble speci�cation EnsSpec, σ = (comps, roles) ∈ SHel be a well-

de�ned ensemble state, and let AP (EnsSpec) be the set of atomic propositions

for EnsSpec.
The ensemble state σ satis�es an atomic Helena proposition p ∈ AP , denoted
by σ |= p, if

(1) p is a state label expression p = rt [n]@label and there exists n ∈ dom(roles)
such that roles(n) = (rt , ci, atr, v, w, q, label .P ) and ci 6= ⊥,

(2) p is an attribute expression p = e and

� for every subexpression rt [n]:attr of e:
there exists n ∈ dom(roles) with roles(n) = (rt , ci, atr, v, w, q, P ) and

ci 6= ⊥ such that the value atr(attr) combined with the values of the

other subexpressions of e evaluates to true and

� for every subexpression ct[n]:attr of e:
there exists n ∈ dom(comps) with comps(n) = (ct, atc, as) such that

the value atc(attr) combined with the values of the other subexpressions

of e evaluates to true.

Example: For our p2p example, we can show that both goals are actually met by
the �le transfer example. However, the representation of ensemble states is quite large
and the application of the semantics rules is soon hard to do by hand. Therefore, we
support checking our Helena models for goal satisfaction by an automated model-
checking approach which is presented in the following sections.

4.3 Publication History

The content of this chapter relies on [HKW15]. In [HKW15], we propose to specify
goals of ensembles by linear temporal logic for a simpli�ed version of Helena.

This chapter extends [HKW15] by an overview about goals, their speci�cation and
reasoning about them. It signi�cantly extends the expressive power of the logic to
describe goals by attribute expressions to be able to reason about data states.



4.4. PRESENT ACHIEVEMENTS AND FUTURE PERSPECTIVES 73

4.4 Present Achievements and Future Perspectives

Present Achievements: Ensembles normally collaborate to achieve some global
goal. In this chapter, we proposed to express these goals by LTL formulae to allow
to check for an ensemble speci�cation whether the speci�ed ensemble reaches its global
goal. Atomic propositions in LTL formulae refer two types of expressions: state la-
bel expressions and attribute expressions. A state label expression denotes whether a
particular role instance reached a certain state label in its executed role behavior. An
attribute expression reasons about the value of attributes of particular role instances or
component instances.

Future Perspectives: The logic for goal speci�cation gives rise for future advance-
ment. In particular, the formulation of goals is sometimes tiresome. Since we cannot
use any quanti�ers, full enumeration of all possibilities is needed. For example instead
of specifying that all peers have a �le, we have to enumerate all peers in the system and
must specify for each peer that it has the �le. An interesting extension would therefore
be to use �rst-order LTL, i.e., LTL with quanti�ers. There also exist approaches on
model-checking �rst-order LTL [WTM04, XSCM04], but most of these approaches only
o�er prototypic implementations which cannot be used as an o�-the-shelf model-checker
like Spin.
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Chapter 5

Veri�cation
Being Sure about Goal Satisfaction

The previous chapters introduced how to specify an ensemble by its structure and be-
havior as well as how to formulate the global goals which it strives to achieve in Helena
LTL. In this chapter, we focus on the early (pre-implementation) veri�cation of such
Helena models for their intended global goals. To support automated model-checking,
we propose to translate Helena speci�cations to Promela and check satisfaction of
LTL properties with the explicit state model-checker Spin [Hol03]. Promela is well-
suited as a target language since it supports dynamic creation of concurrent processes
and synchronous and asynchronous communication as required by Helena ensembles.

In the following, we informally describe in Sec. 5.1 our approach of model-checking
Helena LTL formulae for Helena ensembles speci�cations by translating them to
Promela and give an intuition why model-checking results from a Promela trans-
lation can be transferred back to the original Helena speci�cation. In Sec. 5.2, we
present how Helena is translated to Promela. In Sec. 5.3, we explain the practical
application of the model-checker Spin to the translated Promela speci�cation and how
model-checking results can be mapped back to the original Helena ensemble speci�-
cation. We conclude this chapter in Sec. 5.4 by related work and give a short outlook
about future work in Sec. 5.6.

We illustrate the translation from Helena to Promela by the p2p example. The
translated Promela speci�cation together with all goals is shown in Appendix C.2 and
on the attached CD in the project eu.ascens.helenaText.p2p in the �le
promela-gen/p2p-check.pml.

5.1 Approach for Checking Helena LTL Formulae

To support automated model-checking of Helena models against Helena LTL for-
mulae, we do not provide a Helena-speci�c model-checker. We rather rely on the
well-established explicit state model-checker Spin [Hol03] by translating Helena spec-
i�cations to Promela, the input language of Spin. Promela [Hol03] is a language for
modeling systems of concurrent processes. Its most important features are the dynamic
creation of processes and support for synchronous and asynchronous communication via
message channels. Promela veri�cation models serve as input for the model-checker
Spin [Hol03]. On the one hand, Spin can be used to run a randomized simulation of the
model. On the other hand, it can check LTL properties, formulated over a Promela
speci�cation, and �nd and display counterexamples.

75
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To verify LTL properties for Helena speci�cations, we exploit Promela and Spin.
We systematically translate a Helena speci�cation to Promela1 and check the spec-
i�ed LTL properties in the translated speci�cation with Spin. Thereby, Promela is
well-suited as a target language: dynamic role creation in Helena can be expressed by
dynamic process creation in Promela, and asynchronous message exchange between
roles in Helena by asynchronous communication via message channels in Promela.

In the translation, we have to make two assumptions concerning nondeterministic
choice:

(1) Process invocation is not allowed as one of the branches of nondeterministic choice.
In Helena, one of the branches of nondeterministic choice is selected based on
its executability. If one branch is a process invocation, executability is decided
based on the executability of the �rst action of the invoked process.

In Promela, nondeterministic choice will be represented by the Promela if -
construct which nondeterministically executes one of the branches whose �rst
statement is executable, i.e., nondeterministic choice is not a separate action, but
is executed together with the �rst action of the chosen branch. Furthermore,
process invocation will be represented by a goto-jump to the beginning of the
invoked process. Therefore, for nondeterministic choice, executability of a branch
consisting of process invocation would be decided based on the executability of the
goto-jump rather than the executability of the �rst action of the invoked process
if we allowed process invocation as a branch of nondeterministic choice.

Process invocation is easily avoided as a branch of nondeterministic choice by
inlining at least the �rst action of the invoked process into nondeterministic choice
and then invoking the desired process.

(2) The �rst action of a branch of nondeterministic choice has to be executable if it
is translated to a sequence of several Promela statements. As we will see in
the following, all actions concerning components are translated to a sequence of
Promela statements, i.e., the create- and get-action which advise a component
to adopt or retrieve a role, calling an operation on a component, and setting a
component attribute.

To explain why this assumption is necessary, let's consider a nondeterministic
choice construct where the �rst action of one branch is one of the aforementioned
and is not executable. In Helena, this branch would never be selected for exe-
cution since the �rst action of the branch is not executable.

In Promela, nondeterministic choice will be represented by the Promela if -
construct which nondeterministically executes one of the branches whose �rst
statement is executable. However, as we assumed it, the Helena action will be
represented by a sequence of Promela statements, i.e., a request to a component
instance, some internal computation, and an answer from the component instance
(details about the translation follow in the next section). Thereby, the request
to the component would always be executable while the latter steps would not
be executable if the corresponding Helena action is not executable. Thus, in
Promela, the branch with the non-executable Helena action as �rst action
could be selected for execution since executability in Promela is only decided

1An automatic code generator exploiting the systematic translation from Helena to Promela is
presented in Sec. 8.3



5.1. APPROACH FOR CHECKING HELENA LTL FORMULAE 77

based on the request to the component (and not based on the whole sequence
of Promela statements representing the Helena action). Even composing the
statements to an indivisible sequence with the atomic-block of Promela would
not overcome this problem, since also for an atomic-block executability is decided
based on the executability of its �rst action and not based on the executability of
the whole sequence of actions in the block.

However, we do not have to completely forbid all Helena actions, which are
translated to a sequence Promela statements, as �rst action of a branch of
nondeterministic choice. It is enough to require that they have to be executable.
In terms of actions, the following assumptions must be ful�lled:

(a) The create-action is only allowed if the multiplicity of instances of the role
type to be created is not yet exceeded and the owning component instance
does not yet play the role.

(b) The get-action is only allowed if the requested owning component is guar-
anteed to currently adopt the requested role.

These assumptions are not a real restriction of the expressibility of Helena.
On the one hand, nondeterministic choice is mainly used to allow waiting for
several incoming messages like in a server-client-architecture. Then, the control
�ow is externally triggered by the reception of messages. Therefore, it is mostly
important to support nondeterministic choice between message receptions and not
between any internal actions like role creation or retrieval. On the other hand,
if the application requires to decide between role creation and retrieval and we
cannot guarantee aforementioned conditions, we can avoid nondeterministic choice
and rather use the if-then-else construct. In the if-then-else construct, we inquire
with a plays query whether a component currently plays a certain role. Based on
this plays query as a guard of an if-then-else construct, we select from the options
to create or to retrieve the corresponding role.

For all other actions, we do not require any assumptions since sending and receiv-
ing a message translates to one Promela statement only2, calling a component
operation, setting a component attribute or role attribute are always executable.
Note that labels are not allowed as �rst actions of nondeterministic choice due to
the well-formedness conditions in Def. 2.10 on page 28.

Two more assumptions concern the if-then-else construct:

(3) Process invocation is not allowed as one of the branches of the if-then-else con-
struct. In Helena, the evolution of the if-then-else construct evaluates the guard
and executes the �rst action of the corresponding branch in one single step. If
the corresponding branch is a process invocation, the �rst action of the invoked
process is directly executed in the same step.

In Promela, the if-then-else construct will be represented by the Promela if -
construct where the �rst statement is the translated guard and the following state-
ments are the translated process expression. The guard and the �rst (possibly-
nested) action are executed as one indivisible sequence by enclosing them into

2To be able to translate message reception to only one Promela statement, the declaration of local
variables to receive the content of the message is shifted to the beginning of the translated role behavior
in Promela as we will discuss in Fig. 5.12.
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the atomic-block of Promela. However, as already mentioned, process invoca-
tion will be represented by a goto-jump to the beginning of the invoked process.
Therefore, atomicity of the if-then-else construct would be lost in Promela if we
allowed process invocation as a branch of the if-then-else construct.

Process invocation is easily avoided as a branch of the if-then-else-construct by in-
lining at least the �rst action of the invoked process into the if-then-else construct
and then invoking the desired process.

(4) The �rst action of the branch of the if-then-else construct which is chosen based
on the evaluation of the guard has to be executable.

To explain why this assumption is necessary, let's consider an if-then-else construct
where the guard evaluates to true, but the �rst action of the corresponding process
expression in this branch is not executable. In Helena, the if-then-else construct
as a whole would not evolve since executability is decided based on the evaluation
of the guard and the executability of the �rst action of the corresponding process
expression.

As already mentioned, in Promela, the Helena if-then-else construct will be
represented by the Promela if -construct where the �rst statement is the trans-
lated guard and the following statements are the translated action. In principle,
the Promela if -construct nondeterministically chooses between branches whose
�rst statement is executable, i.e., for the translated Helena if-then-else construct,
it decides for the branch where the guard evaluates to true. Only after the se-
lection of the branch, it would check the executability of the translated Helena
action. Since we assumed the action not to be executable, the Promela transla-
tion would not further evolve. However, in Promela, a branch would have had
already been chosen while in Helena the evolution blocked before the complete
if-then-else construct and can still choose between both branches.

However, we do not have to completely forbid all Helena actions as �rst action
of a branch of an if-then-else construct. It is enough to require that they have to
be executable. In terms of actions, the following assumptions must be ful�lled:

(a) The create-action is only allowed if the multiplicity of instances of the role
type to be created is not yet exceeded and the owning component instance
does not yet play the role (assumption shared with nondeterministic choice).

(b) The get-action is only allowed if the requested owning component is guar-
anteed to currently adopt the requested role (assumption shared with non-
deterministic choice).

(c) Sending a message is only allowed if the capacity of the message queue of the
receiving role is not yet exceeded.

(d) Receiving a message is not allowed since we cannot guarantee that a corre-
sponding message can always be received.

These assumptions are not a real restriction of the expressibility of Helena. For
create- and get-actions, the assumption can be guaranteed by a corresponding
plays query in the guard and the multiplicity limit can be set to the number
of the underlying components to avoid exceeding it. For sending a message, we
normally can assume that capacity limits are not reached if the application is
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correctly modeled. Even that message reception is not allowed in the if-then-
else construct is not a real restriction since waiting for several incoming messages
should normally be expressed with nondeterministic choice.

For all other actions, we do not require any assumptions since calling a compo-
nent operation and setting a component attribute or role attribute are always
executable. Note again that labels are not allowed as �rst actions of nondeter-
ministic choice due to the well-formedness conditions in Def. 2.10 on page 28.

We make two further general assumptions which can be alleviated in future work:

(5) For simplicity reasons, we assume that each role type can only be adopted by a
single component type. This is not a restriction of generality since we plan to
extend Helena by component interfaces which would combine all shared features
of a set of similar component types into a single interface which can be translated
similarly to one single component type.

(6) Additionally, we only verify a single ensemble per translation. Arrays in Promela
will help us in future work to realize the extension to several parallel ensembles
(possibly of di�erent types).

To be able to transfer model-checking results to the original Helena speci�cation,
we need to formally show that a Helena speci�cation and its Promela translation
satisfy the same set of LTL formulae. To prove that kind of semantic equivalence, we
establish a stutter trace equivalence between the induced semantic Kripke structures of
a Helena speci�cation and of its Promela translation. In Chap. 6, the formal proof
of semantic equivalence is shown in full detail for two simpli�ed variants of Helena
and Promela and is informally extended to full Helena and Promela.

The following two sections will �rst introduce the translation from Helena to
Promela in full detail. Afterwards, we explain the practical application of the model-
checker Spin to Promela translations and illustrate it at our p2p example.

5.2 Translation from Helena to Promela

In this section, we discuss how a Promelamodel can be constructed from aHelena en-
semble speci�cation. The Promela veri�cation model is then used for model-checking
LTL properties with Spin [Hol03]. In Sec. 5.2.1, we �rst give an overview about the fea-
tures of Helena and how they are represented in Promela. Afterwards in Sec. 5.2.2,
we explain the translation to Promela in detail by specifying translation functions for
each feature of Helena. As a proof of concept, we provide an automatic code generator
implementing the transformation in Sec. 8.3.

Assumption: In the translation, we make several assumptions as described in the
previous section:

� Process invocation is not allowed as one of the branches of nondeterministic choice
or the if-then-else process construct(cf. item (1) and (3) in Sec. 5.1).

� The create-action is only allowed as �rst action of a branch in nondeterministic
choice or an if-then-else construct if the multiplicity of instances of the role type
to be created is not yet exceeded and the owning component instance does not
yet play the role (cf. item (2a) and (4a) in Sec. 5.1).
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� The get-action is only allowed as �rst action of nondeterministic choice or an if-
then-else construct if the requested owning component is guaranteed to currently
adopt the requested role (cf. item (2b) and (4b) in Sec. 5.1).

� Sending a message is only allowed as �rst action of a branch of an if-then-else
construct if the capacity of the message queue of the receiving role is not yet
exceeded (cf. item (4c) in Sec. 5.1).

� Receiving a message is not allowed as �rst action of a branch of an if-then-else
construct (cf. item (4d) in Sec. 5.1).

� Each role type can only be adopted by a single component type and we only verify
a single ensemble instance per translation (cf. item (5) and (6) in Sec. 5.1).

� For simplicity, we additionally only allow integers as data parameters of messages.

In the following, the translation idea is showcased at the p2p example. In particular,
we show how the p2p example has to be adapted such that it meets all assumptions
without changing the goal-directed behavior. With these adaptations, the complete
translated Promela speci�cation has 531 lines of code and is listed in Appendix C.2.

5.2.1 Overview

Promela is a language for modeling systems of concurrent processes. Helena, though,
employs a two layered approach where components adopt roles. Components are passive
and only provide storage and computing resources to their adopted roles while the roles
themselves are the active entities in ensembles. To transfer the two layered approach
of Helena to Promela, we represent both, components and roles, as processes in
Promela, but with di�erent communication abilities and behavior.

The process for a component does not actively communicate with other processes.
It only waits for requests from its adopted roles on a dedicated input channel, executes
some internal computations, and responds with an appropriate answer. Hence, a He-
lena component is represented by a long-running Promela process. The Promela
component process is repeatedly able to receive requests form its adopted roles and its
progress is completely triggered by those requests.

In contrast to a component, aHelena role is represented by a short-living Promela
process. The Promela role process re�ects the corresponding role behavior declara-
tion speci�ed in Helena by issuing requests to its underlying component process and
actively communicating with other role processes. Therefore, the role process needs a
kind of connection to its underlying component process and its communication abilities
have to include role-to-component facilities and role-to-role facilities.

In the following, we outline which facilities are needed to allow role-to-component
communication and role-to-role communication between the processes in Promela and
how data stored in component and role attributes is represented in Promela. Based on
these communication and storage facilities, the main ideas of the translation from He-

lena to Promela are explained: the (long-running) repeated and externally triggered
process for a component, the (short-living) active process for a role, and the interplay
between both. Each step is showcased at the p2p example.

5.2.1.1 Role-to-Component Communication

InHelena, roles communicate with components to advise them to adopt or quit playing
other roles, to request references to already adopted roles from them, to request and
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set the value of component attributes, or to invoke operations on them. Thus, each
Promela component process relies on a dedicated synchronous channel self , only used
for communication between itself and its adopted roles. Conversely, each Promela

process for a role adopted by the component stores a reference to the very same channel
by the name owner.

The type of requests which can be sent via this channel is restricted by a dedicated
user-de�ned data type. It only allows to send requests for the creation, retrieval and
termination of roles which the component can adopt, for access of component attributes,
and for invocations of component operations.

Example: We illustrate the translation at our p2p example. For now, we do not show
the process of the component Peer since we so far just discussed its self channel and no
behavior. The component process for a Peer is shown Sec. 5.2.1.5. However, Fig. 5.1
depicts the used-de�ned data type for role-to-component communication in our p2p
example. Since we have just one component type Peer, there is only one user-de�ned
data type PeerOperation which restricts the communication of all role types with this
component type. The most important feature of the data type PeerOperation is the
enumeration type in line 2�10. It lists all types of requests which can be sent to a
Peer: there are constants for the request for role creation, retrieval and termination of
the role types Requester, Router, and Provider, for access to the component attributes
hasF ile and content, for access to the component association neighbor, and for invoking
the operation printF ile. The �elds optype, parameters, and answer will be used to
built the actual request with concrete values (more details on that can be found in
Sec. 5.2.2.2).

1 typedef PeerOperation {
2 mtype {
3 CREATE_REQUESTER, GET_REQUESTER, QUIT_REQUESTER, ...
4 CREATE_ROUTER, GET_ROUTER, QUIT_ROUTER, ...
5 CREATE_PROVIDER, GET_PROVIDER, QUIT_PROVIDER, ...
6 GET_HASFILE, SET_HASFILE,
7 GET_CONTENT, SET_CONTENT,
8 GET_NEIGHBOR,
9 OP_PRINTFILE,

10 };
11 mtype optype;
12 chan parameters;
13 chan answer;
14 }

Figure 5.1: Data type for role-to-component communication
for the p2p example in Promela

5.2.1.2 Role-to-Role Communication

In Helena, roles additionally interact with other roles by exchanging directed messages
on input queues. Thus, each Promela role process relies on a dedicated (possibly
asynchronous) channel self to model its input queue. Since channels are global in
Promela, but input queues are local in Helena, special care has to be taken that the
channel self of the current role process is only available to Promela processes of roles
which are allowed to communicate with the current role in Helena. Additionally, each
Promela role process relies on the synchronous channel owner to communicate with
its owning component as described in the previous section.
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The type of messages which can be sent to this channel is restricted by a list of
Promela types. The list requires the messages to consist of a constant representing
the message type declared in the Helena ensemble structure, a �xed number of channel
references representing the role parameters of the message type, and a �xed number of
integers representing the data parameters of the message type. Since all messages might
di�er in the number of parameters, the channel references and integer values might later
on be �lled up with dummy values.

Example: We illustrate the translation at our p2p example again. Similarly to role-
to-component communication, we do not show any role process here since we so far
just discussed its self channel (and owner channel in the previous subsection), but did
not yet discuss its behavior. An example for a role process is shown in Sec. 5.2.1.6.
However, Fig. 5.2 depicts the enumeration type representing all message types for role-
to-role communication in our p2p example. It used for all communications between
roles, independently between which particular role types. It lists all types of messages
which can be sent between roles. These constants can directly be determined from the
set of all message types in our p2p example.

1 mtype { reqAddr, sndAddr, reqFile, sndFile }

Figure 5.2: Enumeration type for role-to-role communication
for the p2p example in Promela

The channel self of any role in the p2p example then requires that only messages
of the signature { mtype,chan,int } are sent to it. First, a constant representing the
message type to be sent must be given. Afterwards, exactly one channel representing
a role instance parameter and exactly one integer representing a data parameter have
to be transmitted. The number of role instance parameters is restricted to exactly one
since this is the maximal number of role instance parameters in message types in the
ensemble structure of the p2p example (and similarly for data parameters). If a message
type does not declare any role instance parameters (or similarly for data parameters),
like the message sndFile, this will be �lled up by dummy parameters later on.

5.2.1.3 Data Storage on Components

In Helena, a component stores data in component attributes and links to other com-
ponents in associations. Both are re�ected in the Promela component process by
parameters with corresponding type. Thus, they are only visible for the current process
instance, similarly to attributes and associations of components in Helena.

To access component attributes and associations from an adopted role in Promela,
an appropriate request can be sent via the aforementioned channel owner of the
Promela role process corresponding to the channel self of the Promela process
for the owning component. Internally, the component process accesses its attributes
by retrieving the values of its parameters or by assigning new values to its parameters
depending on the issued request.

We show an example for data storage on components in Sec. 5.2.1.5.
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5.2.1.4 Data Storage on Roles

In Helena, a role stores data either permanently in the attributes of its owning compo-
nent or volatile in its own attributes. Role attributes are re�ected in the Promela role
process by local variables with corresponding type (component attributes are re�ected
in the corresponding Promela component process). Thus, they are only visible for the
current process instance, similarly to attributes and associations of components. How-
ever, we opted for local variables (instead of parameters as for components) since when
we create a new role instance in Helena, we do not explicitly set the role attributes in
the create-action. In the Promela translation, creating a role instance will correspond
to spawning a new role process such that we do not want to have any parameters for
that process.

To access role attributes, the set of actions in Helena is extended by (getters and)
setters. They are realized in Promela by (access of and) simple assignments to the
local variables for role attributes.

We show an example for data storage on roles in Sec. 5.2.1.6.

5.2.1.5 Behavior of Components

On the behavioral side, a component must be able to react to requests and invocations
from roles. Thus, the Promela component process implements a do-loop to wait for
requests from its roles on the self channel. Depending on the request, it runs some
internal computation and sends back a reply. To later on preserve the evolution of the
translated if-then-else construct of a role as one indivisible sequence of actions, it is
important that the reception of the request from the role and the reaction to it are exe-
cuted as an indivisible sequence of actions. By introducing an atomic-block embracing
the reception of the request and the reaction these two steps cannot be interrupted by
other processes. Details on the translation and preservation of the semantics of the
if-then-else construct will be given in the next section.

The internal computations of a component di�er depending on the request from the
role. We will walk through all types of requests a role process can send to a component
process. Let us �rst consider role creation which is expressed in Helena by the action
X←create(rt , C). Fig. 5.3 depicts the sequence of actions in Promela representing
role creation. First, the role process which wants the component process C to create
another role process X sends an appropriate request to the component process C. The
request contains the type rt of the role process to be spawned. The component process C
spawns a new process (representing the role) with the run-command of Promela. To
the newly spawned process, it hands over a reference to the channel self variable and
a reference to a special channel rtchan variable. Afterwards, it sends the reference to
the special channel rtchan variable back to the role process requesting the role creation
which stores the reference to the channel rtchan in its local variable X.

By this sequence of actions, the component process takes care to initialize the owner
channel variable and the self channel variable of the newly created role process as shown
in Fig. 5.4. In the run-command, the component process hands over the reference
its own self channel variable as �rst parameter. It is stored in the owner channel
variable of the newly created role process and can then be used for role-to-component
communication. Furthermore, the component process hands over the reference to the
special channel rtchan as second parameter. It is stored in the self channel variable
of the newly created role process. By sending the reference to the very same channel
rtchan variable also to the role process issuing the role creation, the two role processes
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:Role C:Component

X:rt

create(rt,C)

run rt(self,rtchan)

X = rtchan

Figure 5.3: Interactions between component process and role processes
during creation of a new process X for the role type rt

can later on communicate via this channel. However, also the component process stores
the channel rtchan variable such that whenever another role process requests a reference
to the newly created role process again (i.e., a request for role retrieval was sent), the
component process sends back the stored channel variable as a reference to the role
process.

:Role C:Component X:rt

owner

selfX

rtchan

self

Figure 5.4: Shared channels between a component process and role pro-
cesses during creation of a new process X for the role type rt

To retrieve or change the value of component attributes or component associations,
the component process evaluates the request from the role process to determine the
requested attribute or association and possibly the value to be set. Afterwards, it
accesses the parameter corresponding to the attribute or association and either sends
the value to the requesting role process or assigns the new value.

Similarly for operation calls, the component process evaluates the request from the
role process to determine which operation was invoked. However, the e�ect of the
operation is not speci�ed in Helena. Therefore, in the Promela translation, the
operation call does not have any other e�ect than being processed by the component
process. Any e�ect of the operation must be speci�ed in Promela by hand.

Example: Let us illustrate the complete structure of the Promela process for the
component type Peer in our p2p example. Fig. 5.5 shows the corresponding process
type in Promela.

Its parameters re�ect the component attributes hasF ile and content as well as the
component association neighbor as explained in Sec. 5.2.1.3. Furthermore, the last
parameter is the self channel which is used for role-to-component communication as
explained in Sec. 5.2.1.1.

Before starting the actual behavior of the component process, a dedicated channel
is declared for each role type the component can adopt, e.g., line 2 declares the channel
requester for the role type Requester. The capacity of the channel in Promela is
initialized with the capacity of the message of the role type in Helena, i.e., 2 for the
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1 proctype Peer(bool hasFile; int content; chan neighbor; chan self) {
2 chan requester = [2] of { mtype,chan,int };
3 ...
4

5 PeerOperation op;
6 do
7 ::atomic {
8 self?op ->
9 if

10 ::op.optype == GET_HASFILE -> op.answer!hasFile
11 ::op.optype == SET_HASFILE -> op.parameters?hasFile
12 ...
13 ::op.optype == CREATE_REQUESTER ->
14 ...
15 run Requester(self, requester);
16 op.answer!requester
17 ...
18 }
19 od
20 }

Figure 5.5: Excerpt of the component process for the component type Peer
for the p2p example in Promela

role type Requester in line 2. Furthermore, the channel can only receive elements which
have the form {mtype,chan,int} (cf. line 2) corresponding to a message name, a single
role instance parameter and a single data parameter of type int. If the component is
later on advised to create a new instance for the role type Requester, it hands this channel
over to the newly created role as its self channel (providing role-to-role communication
as described before). If the component is later on requested to retrieve a reference to
the very same role instance, it can then send back this channel as reference.

The behavior of the component process is basically a do-loop (line 6�19) which con-
tinuously waits for a request from a role on its self channel (line 8). To decide which re-
quest was sent, a large if -statement provides branches for every possible request (line 9�
17). Depending on the request, the component reacts di�erently. For example, if the
value of the component attribute hasF ile was requested (op.optype == GET_HASFILE in
line 10), the component process answers on the channel op.answer with the value of the
corresponding parameter hasFile (op.answer!hasFile in line 10). Similarly, if the value
of the component attribute hasF ile was requested to be set (op.optype == SET_HASFILE

in line 11), the component process waits on the channel op.parameters for the new
value and assigns it to the corresponding parameter hasFile (op.parameters?hasFile
in line 11). Another example is role creation in line 13�16. The component process
spawns a new process for the role where it hands over its own self channel as the role's
owner and the channel requester as the role's self channel (line 15). Afterwards, it
sends back the reference (here requester) to the newly created role via the channel
op.answer (line 16).

5.2.1.6 Behavior of Roles

On the behavioral side, the Promela process for a role must re�ect the corresponding
role behavior declaration of the Helena ensemble speci�cation. We translate each
process construct and action of the role behavior declaration:
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(1) Termination quit is translated to two steps in Promela. Similarly to the se-
mantic rule of quit in Fig. 3.3 on page 57, the role process �rst requests that the
component process quits playing the role. Afterwards, it stops execution by the
statement false.

(2) Action pre�x is translated to sequential composition. Thereby, role creation is
expressed by issuing an appropriate request to the owning component process
which spawns the new role process and sends back the self channel of the newly
created role process. Role retrieval also issues an appropriate request to the owning
component process which sends back the stored self channel of the requested role
process (as explained in the previous subsection). Sending and receiving messages
is mapped to message exchange on the self channel of role processes. Operation
calls and access to component attributes issue appropriate requests to the owning
component process. Access to role attributes is given by access and assignments
to the local variables of the role process.

(3) Nondeterministic choice is translated to the if -construct in Promela. Similarly
to nondeterministic choice in Helena, the if -construct in Promela allows to
nondeterministically choose between the branches whose �rst statement is cur-
rently executable. However, special care has to be taken since some process con-
structs and actions in Helena need additional preparation steps in Promela

such that they are not expressed by a single Promela statement. This leads to
a di�erent set of executable branches if in Helena the action is not executable,
but in Promela the �rst preparation steps are executable (and therefore the
branch can be selected for execution) while the �nal steps are not. As explained
in Sec. 5.1, process invocation is not allowed as a branch of nondeterministic choice
and the create- and get-action are only allowed as �rst action of a branch only
if the two actions are guaranteed to be executable.

(4) The if-then-else construct is also translated to the if -construct in Promela where
the �rst statement is the translated guard and the following statements are ob-
tained from the translated process expression. The guard and the �rst (possibly-
nested) action are executed as one indivisible sequence by enclosing them into the
atomic-block of Promela. Since in Helena the evaluation of the guard and the
executability of the �rst action determines the executability of the whole if-then-
else construct, but in Promela only the �rst statement of each branch determines
the executability of the whole if -construct (even if employing the atomic-block),
special care has to be taken. If in Helena the �rst action is not executable,
the whole if-then-else construct will not evolve. In Promela, one branch has
already been selected before checking the executability of the �rst action. Thus,
as explained in Sec. 5.1, process invocation is not allowed as a branch of the if-
then-else construct, the create- and get-action are only allowed if preceded by
a corresponding plays query, sending a message is only allowed if the capacity of
the message queue of the receiving role is not exceeded, and receiving a message
is not allowed at all.

(5) In Helena, we can furthermore invoke arbitrary process declarations from a �xed
set of process declarations for each role behavior declaration. We do not trans-
late these auxiliary process declarations to self-contained processes in Promela.
We rather inline them into the calling role behavior adhering to the following
procedure:
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� When reaching the invocation of a certain process for the �rst time during the
translation from Helena to Promela, we inline the translation of the whole
process into the translation of the role behavior declaration. Additionally,
we pre�x the translation of the process with a particular state label denoting
the invoked process.

� When reaching the invocation of the same process once again during the
translation of the role behavior declaration (and its invoked processes), we
translate the repeated invocation to a goto action which jumps to the state
label we introduced for this process before.

Example: Let us �nally illustrate the complete structure of the process for the role
type Requester in our p2p example. Fig. 5.6 shows the corresponding process type
in Promela. Its parameters are only its owner channel which is used for role-to-
component communication as explained in Sec. 5.2.1.1 and its self channel which is
used for role-to-role communication as explained in Sec. 5.2.1.2. The attribute hasF ile
of the role type Requester is represented by a local variable roleAttr_hasFile in line 2.
Local variables for all created role instances and formal parameters are listed afterwards,
we only show the variables for the created router in line 4 and for the formal parameter
prov of receiving the message sndAddr in line 5.

1 proctype Requester(chan owner, self) {
2 bool roleAttr_hasFile;
3

4 chan router;
5 chan prov;
6 ...
7

8 PeerOperation op;
9 op.optype = CREATE_ROUTER;

10 chan answer = [0] of { chan };
11 op.answer = answer;
12 neighbor!op;
13 answer?router;
14

15 router!reqAddr,self,1;
16

17 self?sndAddr,prov,1;
18 ...
19 }

Figure 5.6: Excerpt of the role process for the role type Requester
for the p2p example in Promela

The behavior of the role process is basically the translation of the role behavior
declaration for a Requester (cf. Fig. 2.6 on page 31). The �rst block (line 8�13) is the
translation of the create action for a Router. The block basically creates a request for
role creation in line 8�11 and sends the requests to the neighboring component of its
owner in line 12 (the retrieval of the neighbor from the owning component is not shown
here, but is analogous to the role creation request). The neighboring component sends
a reference to the self channel of the newly created role which is stored in the local
variable router (line 13). The next part (line 15) is the translation of sending the
message reqAddr(self) to the newly created router. The content consists of the type of
the message reqAddr, the reference to the requester itself by the channel variable self

and a �nal dummy parameter since the message does not have any data parameters.
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The last shown part (line 17) is the translation of receiving the message sndAddr with
the parameter prov. The role process waits for a message on its self channel. The
type of the message has to match the value sndAddr and the sent channel reference
representing the provider is stored in the local variable prov. The �nal parameter is
again a dummy parameter since the message does not have any data parameters.

To meet the discussed assumptions for if-then-else construct, the role behavior of the
role type Router (cf. Fig. 2.7 on page 31) needs adaptation before it can be translated to
Promela. All process invocations except the recursive role behavior invocation must
be removed since they occur as branches in if-then-else constructs. The resulting role
behavior is shown in Fig. 5.7.

roleBehavior Router = ?reqAddr(req:Requester)() .

if (owner.hasF ile) {
provider←create(Provider,owner) .

req!sndAddr(provider)() .

quit

}
else

if ( !plays(Router ,owner.neighbor) ) {
router←create(Router,owner.neighbor) .

router!reqAddr(req)() .

Router

else { quit }

Figure 5.7: Role behavior of a Router for the p2p example (adapted)

5.2.1.7 Multiplicities of Role Instances

Lastly, in Helena, an ensemble structure determines for each role the minimal and
maximal number of instances per participating role type. These multiplicities have to
be respected throughout the execution of the ensemble. Therefore, we include three
global variables in Promela per role type: Two global variables are used to represent
the minimal and maximal number of instances per role type. The third global variable
counts the current number of instances per role type in the evolving ensemble.

The two variables for minimal and maximal number are �nal and should not be
changed throughout the lifetime of an ensemble. The variable for the current number,
however, is accessed and changed whenever a new process instance for that role type is
created or quit since the process instance �nished its translated behavior. The owning
component process is responsible for the creation and the termination of role instances
and therefore for the update of the current number of process instances per role type.
Before a new role process instance is created in Promela, the component process checks
whether the current number of process instances for that role type is smaller than the
maximal allowed number of instances. If the creation action is allowed, the role process
instance will be created and the current number of process instances for that role type
is increased by one; otherwise the creation action is blocked. Similarly, the component
process checks whether the current number of process instances for a certain role type
is bigger than the minimal allowed number of instances before it quits playing a role
instance. If the quit action is allowed, the component process will quit playing the
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role and the current number of process instances of that role type is decreased by one;
otherwise the quit action is blocked.

5.2.2 Translation Functions

After the informal overview about the translation of the features of Helena, we in-
troduce formal translation functions for all of them. We assume given a full Helena
ensemble speci�cation EnsSpec = (Σ, behaviors) over CT . The translation proceeds in
�ve steps:

� For each role type in Σ, we introduce three global variables to re�ect the minimal,
maximal and current number of process instances of that type (cf. Sec. 5.2.1.7).

� For each component type in CT in Helena, we introduce a user-de�ned data
type in Promela to represent all requests which can be invoked on a component
by its adopted roles (cf. Sec. 5.2.1.1).

� For each component type in CT in Helena, we create a process type in Promela
which is able to adopt roles and repeatedly handle requests from its adopted roles
(cf. Sec. 5.2.1.5 together with Sec. 5.2.1.1 and Sec. 5.2.1.3).

� We introduce a user-de�ned data type in Promela to represent all messages
which can be exchanged between any roles in the Helena ensemble speci�cation
(cf. Sec. 5.2.1.2).

� For each role type and its corresponding role behavior declaration in Helena,
we create a process type in Promela which re�ects the execution of the role
behavior where any invoked processes are inlined (cf. Sec. 5.2.1.6 together with
Sec. 5.2.1.1, Sec. 5.2.1.2, and Sec. 5.2.1.4).

In the following, we will present translation functions for each of the steps. Everything
notated in normal or bold font is pure Promela code, everything notated in italic font
has to be evaluated to get Promela code, especially functions pre�xed with a $-sign
are �xed names in Promela which are not further speci�ed here. We furthermore
use the notation ∀e . expr(e). It means that the expression expr(e) is evaluated for all
elements e identi�ed by the quanti�er.

5.2.2.1 Multiplicities of Role Instances

The multiplicities of role types in Helena and the current number of corresponding
role instances is re�ected in Promela by three global variables. These variables are
created by the function transmult shown in Fig. 5.8 for each role type rt in a Helena
ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ = (nm, roletypes, roleconstraints).

transmult(EnsSpec) =
∀rt ∈ roletypes(Σ) . int $min(rt) = min(roleconstraints(rt));
∀rt ∈ roletypes(Σ) . int $max(rt) = max (roleconstraints(rt));
∀rt ∈ roletypes(Σ) . int $current(rt) = 0;

Figure 5.8: Promela translation of multiplicities

To recap our notation, ∀rt ∈ roletypes(Σ) . int $min(rt) = min(roleconstraints(rt));

means that for each role rt in the ensemble structure Σ, a new global variable (whose
name expressed by the function $min(rt)) of type int is created. It is meant to store the
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(�nal) minimal number of instances allowed for the role type rt and is thus, it is initial-
ized by this minimal number according to the role constraints of the ensemble struc-
ture. Similarly, the notation ∀rt ∈ roletypes(Σ) . int $max(rt) = max (roleconstraints(rt));

creates a second variable (expressed by the function $max(rt)) to store the (�nal) max-
imal number of instances allowed for the role type rt . Thus, it is initialized by the
maximal number of allowed instances according to the role constraints of the ensemble
structure. A third variable per role type rt (expressed by the function $current(rt))
stores the (non-�nal) current number of instances of the role type rt and is initialized
by 0.

5.2.2.2 Role-to-Component Communication Facilities

To re�ect all requests in Promela which roles can sent to a component of a certain
type3, we declare a user-de�ned data type per component type. The function transops
creates this user-de�ned data type per component type ct = (ctnm, ctattrs, ctassocs, ctops)

and is shown in Fig. 5.9. Thereby, the set of all role types rt = (rtnm, rtcomptypes, rtattrs,

rtmsgsout, rtmsgsin) in a Helena ensemble speci�cation EnsSpec = (Σ, behaviors) with
Σ = (nm, roletypes, roleconstraints) which can be adopted by the component type ct is
given by:

roletypes(ct,EnsSpec) = {rt | ∃rt ∈ roletypes(Σ) . ct ∈ rtcomptypes(rt)}

transops(ct,EnsSpec) = typedef $op(ct) {
mtype {

∀attr ∈ ctattrs(ct) . $getter(attr),
∀attr ∈ ctattrs(ct) . $setter(attr),
∀assoc ∈ ctassocs(ct) . $getter(assoc),
∀op ∈ ctops(ct) . opnm(op),
∀rt ∈ roletypes(ct,EnsSpec) . $create(rt),
∀rt ∈ roletypes(ct,EnsSpec) . $get(rt),
∀rt ∈ roletypes(ct,EnsSpec) . $quit(rt),
∀rt ∈ roletypes(ct,EnsSpec) . $playsreq(rt),

};
mtype optype;
chan parameters;
chan answer;

}

Figure 5.9: Promela translation of component-to-role communication facilities

The name of the user-de�ned data type, called �typedef �, is given by the function
$op(ct). The function is not further speci�ed here since its actual value is not important
here. The data type declares three �elds which are listed at the end of Fig. 5.9:

The �rst �eld �optype� determines the type of the request. Its values are given by the
enumeration type, called �mtype�, listed at the beginning of the data type de�nition.
There are constants for getting or setting the value of a component attribute, for getting
the value of a component association, for invoking a component operation, creating,
retrieving or quitting to play a certain role with the current component itself as owner,
or for determining whether the component already plays a certain role. The constants
are represented by functions, e.g., $getter(attr), which are again not speci�ed here. Note

3Note that we assumed that a role type can only be adopted by a single component type.
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that again the notation ∀e . expr(e) means that the expression expr(e) is evaluated for
all elements e identi�ed by the quanti�er as explained before.

The second �eld �parameters� introduces a channel via which parameters for the
request can be sent. For example, if the value of a component attribute should be set,
this channel is used to transfer the value to the component.

The third �eld �answer� again introduces a channel. Via this channel any answer to
the request can be sent. For example, if the value of a component attribute should be
retrieved, this channel is used to transfer the value to the requesting role process.

In summary, a concrete instance of this user-de�ned data type represents a request
from a role process to a component process. The request itself is identi�ed by the �eld
�optype�, the channel through which any parameters for the request can be sent is given
in the �eld �parameters�, and the channel through which an answer can be sent from
the component process to the role process is given in the �eld �answer�.

5.2.2.3 Behavior of Components

Component types themselves are re�ected by process type declarations in Promela.
These process type declarations manage the currently adopted role types and can handle
requests from roles. The function transcomp creates such a process type declaration for
a component type ct = (ctnm, ctattrs, ctassocs, ctops) in a Helena ensemble speci�cation
EnsSpec = (Σ, behaviors) with Σ = (nm, roletypes, roleconstraints) and is shown in Fig. 5.10.

The component type is represented by a new process type declaration (with the
same name) with parameters in Promela. We explain the parameters beginning from
the last one: Firstly, the parameter self is a channel which is used for communication
from a role process to this component process. Every request for component attributes,
operation calls, or role creation, retrieval or termination or plays queries is sent via this
channel. Secondly, for each association declared by the component type, a parameter
is added with the same name (expressed by the function $name(assoc)). The parameter
is typed as channel since references to other components are represented via their self
channel. Lastly, for each attribute declared by the component type, a parameter with
the name of the attribute (expressed by the function $name(attr)) and its type (expressed
by the function $type(attr)) is added to the process type declaration. Note that we can
only support the Promela data types byte, short, int, and bool.

During the execution of the process for the component type, we have to store refer-
ences to all roles which the component currently plays. Therefore, for each role type the
component can adopt, we de�ne a boolean local variable $plays(rt) in the process type
declaration which stores whether the component currently plays the corresponding role.
A boolean variable is enough since in Helena each component can adopt a role only
once per ensemble and we assumed that we only check one ensemble instance in each
Promela run. Furthermore, we initialize a new channel for each role type the compo-
nent can adopt. This channel will be used as the self channel of the corresponding role
instance as soon as it was created.

Afterwards, we add a state label $startlabel(ct) : true to mark the point in the process
where initialization was �nished.
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transcomp(ct,EnsSpec) =
proctype ct(∀attr ∈ ctattrs(ct) . $type(attr) $name(attr),

∀assoc ∈ ctassocs(ct) . chan $name(assoc),
chan self) {

∀rt ∈ roletypes(ct,EnsSpec) . bool $plays(rt) = false;
∀rt ∈ roletypes(ct,EnsSpec) . chan $chan(rt) = [cap(roleconstraints(rt))] of {Msg};

$startlabel(ct) : true;

$op(ct) op;

do
::atomic {

self?op ->
if
∀attr ∈ ctattrs(ct) . ::op.optype == $getter(attr) -> op.answer!$name(attr)
∀attr ∈ ctattrs(ct) . ::op.optype == $setter(attr) -> op.parameters?$name(attr)
∀assoc ∈ ctassocs(ct) . ::op.optype == $getter(assoc) -> op.answer!$name(assoc)
∀op ∈ ctops(ct) . ::op.optype == opnm(op) -> \\ add intended behavior here
∀rt ∈ roletypes(ct,EnsSpec) . ::op.optype == $create(rt) ->

if
::!$plays(rt) && $current(rt) < $max(rt)− >

run rt(self, $chan(rt));
$plays(rt)=true;
$current(rt)++;
op.answer!$chan(rt)

�
∀rt ∈ roletypes(ct,EnsSpec) . ::op.optype == $get(rt)− >

if
::$plays(rt) -> op.answer!$chan(rt)
�

∀rt ∈ roletypes(ct,EnsSpec) . ::op.optype == $quit(rt) ->
if
::$plays(rt) && $current(rt) < $min(rt) ->

$plays(rt)=false;
$current(rt)−−

�
∀rt ∈ roletypes(ct,EnsSpec) . ::op.optype == $playsreq(rt) ->

op.answer!$plays(rt)
�
}

od
}

Figure 5.10: Promela translation of a component type

Finally, the main behavior of the process of a component is given by a do-loop.
The loop is responsible for continuously waiting for requests from role processes and
for appropriately reacting to the request. Thereby the whole block from waiting for
the request until the �nal reaction has to be executed as one indivisible sequence of
actions caused by the keyword atomic in Promela. Atomicity is needed to re�ect the
semantics of the if-then-else construct in role behaviors. In Helena, the if-then-else
construct evaluates the guard and executes the �rst action of the selected branch in
one single step. To guarantee this atomicity even if the �rst action is a request to the
owning component (e.g., a create-action), the atomic execution of the reception of the
request, the internal computation and the answer from the component is established by
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the atomic-block. In this atomic-block, the component waits for the guard �self?op�
representing a message on the self channel of the component. The content of the
message is the request from the role process and is stored in the local variable �op�
which is typed by the user-de�ned data type $op(ct). The request consists of three parts
as explained in Sec. 5.2.2.2: the type of the request given by the �eld �optype� of the
local variable �op�, a channel �parameters� allowing to send parameters for the request
from the requesting role process to the component process, and a channel �answer�
allowing to send back a reply to the requesting role process. Depending on the type of
the received request, we decide how to react in the following if -statement.

� The �rst line of the loop represents the request of the value of an attribute. For
each attribute of the component type, an option of the if -statement is created.
It checks which attribute was requested by �op.optype == $getter(attr)� where
$getter(attr) determines the type of the request as in Sec. 5.2.2.2. Afterwards,
the value of the attribute is sent by the expression �op.answer!$name(attr) where
$name(attr) is the parameter representing the attribute in the component process.

� Similarly, the request to set the value of an attribute is handled in the second
line of the loop. However, this time the component waits for the new value with
the expression �op.parameters?$name(attr)� where $name(attr) is the parameter
representing the attribute in the process type declaration and is automatically set
as soon as a value is sent via the channel �op.parameters�.

� For the retrieval of associations to other components in the third line of the loop,
we proceed exactly like for the retrieval of attribute values.

� The call of operations is handled in the fourth line of the loop. Since the behavior
of the operation is not speci�ed in Helena, we only add a placeholder for the
behavior of the operation to the translated Promela �le.

� Most interesting is the handling of role instance creation, retrieval and termination
which is represented in the following three blocks of the loop. If role instance
creation was requested by �op.optype == $create(rt)� for any role type rt , we
check in the if -statement of the �rst block that the component does not yet play
the role by the expression !$plays(rt) and that the number of current instances
of that role type did not yet reach the maximum number of allowed instances
by $current(rt) < $max(rt). If the check is passed, the following statements are
executed: A new process representing the role is started by �run rt(self, $chan(rt))�
where the self channel of the component is passed as the owner channel of the
newly created role and the channel $chan(rt) is passed as the self channel of
the newly created process. The value of the boolean variable $plays(rt) is set
to true, the global variable $current(rt) for the current number of instances of
that type is increased, and the channel $chan(rt) representing the self channel
of the newly created role instance is sent back to the requesting role process by
�op.answer!$chan(rt)� such that the requesting role process can now communicate
to the newly created role process. Similarly, role retrieval and role termination
are handled, but in these cases we do not need atomicity since no new processes
are spawn.

� The last line in the loop takes care to answer requests whether the component
currently plays a certain role and is self-explanatory with the previous explanation
of role creation.
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5.2.2.4 Role-to-Role Communication Facilities

To re�ect all messages which can be sent between roles of a Helena ensemble speci-
�cation, we declare a an enumeration type which lists constants for all messages. The
function transmsgs creates this enumeration type for all message types of an ensem-
ble speci�cation and is shown in Fig. 5.11. Thereby, the set of all message types of
a HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ = (nm, roletypes,

roleconstraints) is given by:

msgs(EnsSpec) = {msg | ∃rt ∈ roletypes(Σ).

msg ∈ rtmsgsout(rt) ∨msg ∈ rtmsgs in(rt)}.

The enumeration type consists of constants for every message type which is declared
as outgoing or incoming message of a role type in the underlying ensemble speci�cation.

transmsgs(EnsSpec) = mtype { ∀msg ∈ msgs(EnsSpec) . msgnm(msg) }

Figure 5.11: Promela translation of role-to-role communication facilities

5.2.2.5 Behavior of Roles

Role types themselves are re�ected by process type declarations in Promela. These
process type declarations are responsible to execute the behavior prescribed by the
corresponding role behavior declaration in Helena. They thereby issue requests on
their owning component using their role-to-component communication facilities and
exchange messages with other roles using their role-to-role communication facilities.

Process Type Declaration: The function transrole in Fig. 5.12 creates such a process
type declaration for a role type rt = (rtnm, rtcomptypes, rtattrs, rtmsgsout, rtmsgsin) with
the corresponding role behavior declaration roleBehavior rt = P in a Helena

ensemble speci�cation EnsSpec =(Σ, behaviors). As we mentioned at the beginning of
this section, we assume that each role type can only be adopted by one component
type.

transrole(rt ,EnsSpec) =
proctype rt(chan owner, self) {
∀attr ∈ rtattrs(rt) . $type(attr) $name(attr);
∀inst ∈ roleinsts(rt) . chan $name(inst);
∀param ∈ dataparams(rt) . $type(param) $name(param);
∀re ∈ opereturnvals(rt) . $type(re) $name(re);

$startlabel(rt) : true;

transproc(rt ,EnsSpec, P )

$endlabel(rt) : false;
}

Figure 5.12: Promela translation of a role type
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The role type is represented in Promela by a new process type declaration (with
the same name) with parameters. The parameter owner is a channel which is used for
communication from the role process to its owning component process. Every request
for component attributes, operation calls, or role creation, retrieval or termination is
sent via this channel. The parameter self is another channel which is used as input
channel of the role process. Every message addressed to the role process is sent via this
channel.

The �rst statements in the process type declaration for the role type declare local
variables for all role attributes. For each role attribute attr of the role type rt , a new
uninitialized local variable with the name of the attribute (expressed by the function
$name(attr)) and its type (expressed by the function $type(attr)) is added. Note again
that we can only support the Promela data types byte, short, int, and bool. After-
wards, local variables for all role instances which are created in the role behavior or
received via message exchange are created. Similarly, local variables for all data param-
eters received via message exchanged or created as return values of operations calls are
added.

After the declaration of all local variables, we add a state label $startlabel(rt) : true

to mark the point in the process where initialization was �nished. Finally, the process
expression P of the role behavior declaration for that role type is translated as the main
behavior of the process which is expressed by the function call transproc(rt ,EnsSpec, P ).
The process is terminated by a dedicated end state label $endlabel(rt) : true.

Process Expressions: The function transproc itself is inductively de�ned over the
structure of process expressions and is shown in Fig. 5.13.

To translate termination with quit, we follow the formal semantics in Fig. 3.3 on
page 57. The role process �rst requests that its owning component process quits play-
ing it. To this end, a new local variable �op� is created which is used to compose the
request to the owning component. The local variable is typed with the user-de�ned
data type for role-to-component communication (cf. Sec. 5.2.2.2). Thereby, we have to
assume that the role type can only be adopted by a single component type (denoted by
rtcomptypes(rt)) to uniquely determine the user-de�ned data type of �op�. Afterwards,
the �eld �optype� of the local variable �op� is set to $quit(rt) to express that the ter-
mination of the adoption of the role is requested. With this information the request is
ready to be sent to the owning component process by the statement owner!op. Finally,
the role process stops execution jumping to the end label goto $endlabel(rt).

Action pre�x a.P is simply translated to sequential composition in Promela. We
sequentially compose the translation of the action a with the translation of the remaining
process expression P . The translation of actions is denoted by the function transact
(cf. Fig. 5.16) and will be described later on.

Nondeterministic choice is translated to nondeterministic choice with the if -
construct in Promela. Each branch is thereby the direct translation of one option
of nondeterministic choice. To preserve the semantics of Helena that a branch is se-
lected based on the executability of the �rst action of each branch, it is essential that
the assumptions explained in Sec. 5.1 are respected: Firstly, process invocation is not
allowed as a branch of nondeterministic choice. Secondly, the create- and get-action
are only allowed as �rst action of a branch if they are executable.

The if-then-else construct is translated to nondeterministic choice with the if -
construct in Promela as well. To guarantee that the evaluation of the guard and
the execution of the �rst action of the selected branch are performed without interrup-
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transproc(rt ,EnsSpec,quit) = $op(rtcomptypes(rt)) op;
op.optype = $quit(rt);
owner!op;
goto $endlabel(rt)

transproc(rt ,EnsSpec, a.P ) = transact(rt ,EnsSpec, a);
transproc(rt ,EnsSpec, P )

transproc(rt ,EnsSpec, P1 + P2) = if
:: transproc(rt ,EnsSpec, P1)
:: transproc(rt ,EnsSpec, P2)
�

transproc(rt ,EnsSpec, = atomic {
if (guard) {P1} transretrieval(guard)
else {P2}) if

:: transguard(guard)
-> transproc-�rst(rt ,EnsSpec, P1)

:: else
-> transproc-�rst(rt ,EnsSpec, P2)

�
};
transproc-remaining(rt ,EnsSpec, P1);
transproc-remaining(rt ,EnsSpec, P2);

transproc(rt ,EnsSpec, N) = $startlabel(N) : true;
transproc(rt ,EnsSpec, Q)

if N is invoked for the �rst time and process N = Q ∈ procdecls(rt)

transproc(rt ,EnsSpec, N) = goto $startlabel(N)
if process N has already been invoked

Figure 5.13: Promela translation of a process expression

tions, we enclose the following translation into an atomic-block: If the guard of the
if-then-else construct contains plays queries or refers to component attributes, they have
to be retrieved before the guard is evaluated. The retrieval is expressed by the function
transretrieval which is not further speci�ed here since it resembles the translation of op-
eration calls shown in Fig. 5.16. Afterwards, the if-then-else construct is translated to
the if -construct of Promela. The guard of each branch in Helena is re�ected by the
�rst statement of the corresponding branch in Promela. The Helena guard is trans-
lated to Promela by the function transguard which is not further speci�ed here, since
it is mainly a direct translation of the boolean expression from Helena. Afterwards,
the �rst (possibly nested) action of the corresponding process expression is translated
before leaving the atomic-block. This is expressed by the function transproc-�rst shown
in Fig. 5.14.

Intuitively, this function follows the nesting of process constructs until it �nally
reaches a single action to be executed. This action is translated as we will describe
in Fig. 5.16 followed by a jump outside the atomic-block where the remaining pro-
cess expression of this branch is described. Note that also here it is essential that the
assumptions explained in Sec. 5.1 and at the beginning of this section are respected
to preserve the semantics of Helena: Firstly, process invocation is not allowed as a
branch of the if-then-else construct. Secondly, the create- and get-action are only
allowed as �rst action of a branch if they are preceded by guards with corresponding
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transproc-�rst(rt ,EnsSpec,quit) = transproc(rt ,EnsSpec,quit)

transproc-�rst(rt ,EnsSpec, a.P ) = transact(rt ,EnsSpec, a);
goto $proclabel(rt)

transproc-�rst(rt ,EnsSpec, P1 + P2) = if
:: transproc-�rst(rt ,EnsSpec, P1)
:: transproc-�rst(rt ,EnsSpec, P2)
�

transproc-�rst(rt ,EnsSpec, = transretrieval(guard)
if (guard) {P1} if
else {P2}) :: transguard(guard)

-> transproc-�rst(rt ,EnsSpec, P1)
:: else

-> transproc-�rst(rt ,EnsSpec, P2)
�

Figure 5.14: Promela translation of the �rst (possibly nested) action
of a process expression

plays queries. Thirdly, message reception is not allowed as �rst action of a branch
at all. Afterwards, the else-branch of the if-then-else construct is analogously trans-
lated. Finally, the atomic-block is closed since the guard and the �rst action of each
branch have been translated now. After the atomic-block, we add the translation of
the remaining process expressions of both branches such that each branch inside the
atomic-block can jump to its remaining process expression after having executed its
�rst (possibly nested) action. The translation of the remaining process expression is
given by the function transproc-remaining and shown in Fig. 5.15.

transproc-remaining(rt ,EnsSpec,quit) =

transproc-remaining(rt ,EnsSpec, a.P ) = $proclabel(P ) : true
transproc(P )

transproc-remaining(rt ,EnsSpec, P1 + P2) = transproc-remaining(rt ,EnsSpec, P1)
transproc-remaining(rt ,EnsSpec, P2)

transproc-remaining(rt ,EnsSpec, = transproc-remaining(rt ,EnsSpec, P1)
if (guard) {P1} transproc-remaining(rt ,EnsSpec, P2)
else {P2})

Figure 5.15: Promela translation of the remaining process term af-
ter having executed the �rst (possibly nested) action

The idea of the translation of process invocation is to inline the behavior of the
process into the behavior of the role. We pre�x the inlinement with a particular state
label to mark the beginning of the invoked process. Whenever the process gets called
in the behavior again, we simply jump back to this state label with a goto-statement.
Therefore, we distinguish two cases in the translation of process invocation: If the
process N is invoked for the �rst time, we add the dedicated state label (expressed by
$startlabel(N) : true) followed by the translation of the process expression Q representing
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the behavior of the processN . If the processN has already been invoked, the translation
is just a goto-statement to the state label $startlabel(N) : true representing the beginning
of the inlinement of the process N .

Actions: Finally, we describe the translation of actions which is given by the func-
tion transact in Fig. 5.16. All actions from Def. 2.9 on page 25 are covered. While
create- and get-actions, operation calls, and component attribute setters use the role-
to-component communication facilities, sending and receiving messages requires the
role-to-role communication facilities. Role attribute setters and state labels can be
translated straightforward in the role process itself.

For the translation of role creation with the actionX←create(rt , C), an appropriate
request must be sent to the component C which should adopt the newly created role of
type rt . This component will internally spawn a new process for the role and sent back
the role's self channel as a reference to the newly created role (cf. Sec. 5.2.2.3). To store
this local reference, the local variable X of type chan was created at the beginning of
the process type representing this role type (cf. Fig. 5.12). Afterwards, the request for
the component is built by creating a new local variable �op�. The local variable is typed
with the user-de�ned data type for role-to-component communication (cf. Sec. 5.2.2.2).
Thereby, we again have to assume that a role type can only be adopted by a single
component type (denoted by rtcomptypes(rt)) to uniquely determine the user-de�ned
data type of �op�. Afterwards, the �eld �optype� of the local variable �op� is set to
$create(rt) to express that the creation of a new role is requested. Furthermore, we
have to add a channel �answer� to the request which serves as a callback channel to
transmit the reference of the newly created role process from the owning component to
the requesting role. The channel �answer� is therefore initialized to transmit messages
of type chan which is the type of the self channel used as the reference. This channel
is added in the �eld �answer� of the request �op�. With this information, the request is
ready to be sent to the component process which should own the newly created role by
the statement C!op. Finally, we wait for the reference of the newly create role process
to be sent via the channel �answer� by the statement answer?X and assign the received
channel to the local variable X.

Thereby, it is important that the semantic rule for role creation in Helena (cf.
Fig. 3.3 on page 57) prescribes only one step for the role creation and the assignment
to the variable X. To re�ect that in Promela, spawning the new role process from the
component process and assigning a value to the local variable X in the requesting role
process has to be done in one indivisible step. This has already been taken care of in
the behavior of the component process in Promela (cf. Fig. 5.10). There, receiving a
request from a role up until the appropriate reaction to it was declared as one indivisible
sequence. It only remains to include the assignment of the self channel to the variable
X in this indivisible sequence. Although this assignment is done by the statement
answer?X in the role process and not in the component process, atomicity is not lost. If
in Promela synchronous message exchange is used inside an atomic sequence, control
passes from sender to receiver. That means that control passes from the component
process with the send statement op.answer!$chan(rt) to the role process with the receive
statement answer?X. Thus, the assignment of the variable X in the role process is
directly executed after the indivisible sequence of statements in the component process
and therefore we can consider all statements from spawning the new role process until
the assignment of the variable X as one atomic step.
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transact(rt ,EnsSpec, X←create(rt , C)) = $op(rtcomptypes(rt)) op;

op.optype = $create(rt);

chan answer = [0] of {chan};
op.answer = answer;

C!op;

answer?X

transact(rt ,EnsSpec, X←get(rt , C)) = $op(rtcomptypes(rt)) op;

op.optype = $get(rt);

chan answer = [0] of {chan};
op.answer = answer;

C!op;

answer?X

transact(rt ,EnsSpec, Y !msgnm(
−→
X )(−→e )) = Y !msgnm,

for i ∈ size(
−→
X ) .

−→
X [i],

for size(
−→
X ) < i ≤ $maxroleparams(EnsSpec) . 1,

for i ∈ size(−→e ) . −→e [i],

for size(−→e ) < i ≤ $maxdataparams(EnsSpec) . 1

transact(rt ,EnsSpec, ?msgnm(
−→
X :
−→
rt )(−→x )) = self?msgnm,

for i ∈ size(
−→
X ) .

−→
X [i],

for size(
−→
X ) < i ≤ $maxroleparams(EnsSpec) . 1,

for i ∈ size(−→x ) . −→x [i],

for size(−→x ) < i ≤ $maxdataparams(EnsSpec) . 1

transact(rt ,EnsSpec,owner.opnm(−→e )) = $op(rtcomptypes(rt)) op;

op.optype = opnm;

chan parameters = [0] of {$type(−→e )};
op.parameters = parameters;

owner!op;

parameters!−→e
transact(rt ,EnsSpec,owner.attr = e) = $op(rtcomptypes(rt)) op;

op.optype = $setter(attr);

chan parameters = [0] of {$type(attr)};
op.parameters = parameters;

owner!op;

parameters!e

transact(rt ,EnsSpec, self.attr = e) = $name(attr) = e

transact(rt ,EnsSpec, label) = label : true

Figure 5.16: Promela translation of an action

The translation of the get-action for role retrieval is exactly the same as for role
creation except that the �optype� of the request is set to $get(rt). Internally, the request
for role retrieval triggers a di�erent behavior on the owning component than for role
creation. Instead of spawning a new role process, the component will just sent back the
self channel of the requested role (cf. Sec. 5.2.2.3).

For the sake of simplicity, we postpone the explanation of the translation of sending
and receiving messages and go on with the explanation of the translation of operation
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calls and component attribute setters. For both, the role process must also send requests
to its owning component process. Therefore, in both cases, a local variable �op� is
created to hold the request as before. For operation call, the �eld �optype� is set to the
name of the operation to be called (expressed by opnm; for the component attribute
setter, it is set to $setter(attr). In both cases, we furthermore add a channel �parameters�
to the request which will be used to transmit the values of the parameters of operation
call or the value of the component attribute to be set to the owning component. With
this information, the request is ready to be sent to the owning component process by
the statement owner!op. Afterwards, the values of the parameters or the attribute are
sent to the owning component process by the statement parameters!−→e or parameters!e.

For sending and receiving messages, we use the role-to-role communication facilities
of Promela role processes, especially the enumeration type for messages and the input
channel self of role processes (cf. Sec. 5.2.1.2 and Sec. 5.2.2.4). The translation of
sending a message with the action Y !msgnm(

−→
X )(−→x ) sends a message to the receiving

role process Y which contains several items. The �rst item msgnm represents the type
of the message to be sent and is one of the constants of the aforementioned enumeration
type. Afterwards, the values of all role parameters and data parameters are added. We
use the notation ∀i ∈ size(

−→
X ) .

−→
X [i] to denote that we iterate over all role parameters of

the list
−→
X and add the value of the ith role parameter of the list

−→
X to the content list of

the message. Afterwards, the list of role parameters is �lled up with entries of value 1
to match the maximal length of a role parameter list over all messages in the ensemble
speci�cation. Thereby, $maxroleparams(EnsSpec) denotes the maximal number of role
parameters in a message in the ensemble speci�cation EnsSpec Similarly, the values of
the data parameters given in the list −→x are added and �lled up with entries of value 1.
In summary, a message is sent to the role process Y containing the message type as the
�rst entry followed by all role parameters (possibly extended by dummy role parameters
to match the maximal length of a role parameter list) and all data parameters (again
possibly extended by dummy data parameters).

In contrast to the translation of sending a message, the translation of receiving a
message with the action ?msgnm(

−→
X :
−→
rt )(−→x :

−→
dt ) has to bind all received values to the

local variables representing the formal parameters. A message is received on the self
channel of the role process. The �rst entry of this message represents the type of the
message to be received and is one of the constants of the aforementioned enumeration
type. Via pattern matching, this constant will be matched to the received message4.
Afterwards, all received values are bound to the local variables representing the formal
parameters. The local variables have already been declared at the beginning of the
process type representing this role type (cf. Fig. 5.12). We use the same notation as
before to iterate over the list of parameters. The ith received value of a role parameter
is stored in the ith local variable for role parameters (if the list was �lled up with
entries of value 1, these values are dismissed). Similarly, the ith received value of a data
parameter is stored in the ith local variable for data parameters (while �ll-up entries
are dismissed).

Setting a role attribute with the action self.attr = e is translated to a simple
assignment in Promela. The local variable for the attribute is accessed by $name(attr)

and is assigned with the new value e.
Finally, a state label in Helena is translated to a state label with the same name

in Promela. Furthermore, state labels in Promela always have to label a certain
4If the �rst message on the channel does not match this constant, message reception blocks until a

matching message is at the �rst position of the channel
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statement. To simulate the semantics of labels in Helena which takes a single step, we
use true as statement for the state label to also execute a separate step for the state
label in Promela.

Summary: This concludes the description of the translation functions from Helena

to Promela. We showed that we can �nd a mapping between Helena and Promela
and could thus express all Helena concepts in Promela. However, it remains to
show that a Helena ensemble speci�cation and its Promela translation are seman-
tically equivalent such that model-checking results from the Promela translation can
be transferred back to the original Helena ensemble speci�cation. The formal proof of
semantic equivalence is discussed in Chap. 6 for two simpli�ed variants of Helena and
Promela in full detail and is informally extended to full Helena and Promela.

5.3 Model-Checking Helena with Spin

The previous section outlined how to translate a Helena ensemble speci�cation to
Promela. This section explains the practical application of Spin to the Promela
translation. We summarize in Sec. 5.3.1 how a concrete initial ensemble state is estab-
lished in Promela and how Helena LTL formulae need to be adapted to conform
to the Promela translation. Afterwards in Sec. 5.3.2, we explain the principles of
model-checking with Spin and two di�erent state compression techniques in Spin. Both
subsections are illustrated by our p2p example. The full Promela speci�cation for
model-checking has 512 lines of code (the speci�cation has automatically been gener-
ated with the code generator presented in Sec. 8.3) and is listed in Appendix C.2. It
can also be found on the attached CD in the project eu.ascens.helenaText.p2p in the
�le promela-gen/p2p-check.pml

5.3.1 Preparation of the Promela Translation

Establishing an Initial Ensemble State: To prepare the Promela translation
for model-checking with Spin, we �rst have to take into account that the semantics
of Helena and therefore satisfaction of LTL formulae is de�ned relatively to a given
initial state σinit. Thus, when model-checking the corresponding Promela translation,
we have to establish the corresponding initial state trans init(σinit) in Promela and
verify properties relatively to this initial state. We setup the initial state in a dedicated
init-process. This process is mainly used to initialize the self channels of components
and to start component processes as well as to start the initial role instances in σinit with
the appropriate owning component. Thereby, it is important that component processes
are started before role processes since role processes need a reference to their owning
component. We will later on explain the init-process for the p2p example (cf. Fig. 5.17).

TranslatingHelena LTL Formulae in Promela Furthermore, we have to trans-
late the Helena LTL formulae to Promela. In Helena LTL formulae, we use
state label expressions and attribute expressions as atomic propositions (cf. Def. 4.5
on page 71). In principle, they can directly be reused in Promela with small adapta-
tions to express operators in ASCII. Additionally, some Promela-speci�c adaptations
and scoping adaptations need to be done:

Let's consider a state label expression rt [n]@label where rt is a role type, n an iden-
ti�er of a role instance, and label a state label in a role behavior declaration. Since we
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express Helena role behavior declarations by Promela process declarations with the
same name and reuse the name of a Helena state label for the corresponding Promela
state label, we can directly employ the same syntactic expression in Promela LTL for-
mulae. The individual ingredients are thereby newly interpreted: rt is a process type, n
an identi�er of a role process instance, and label a state label in a process declaration.
However, special care has to be taken for the identi�er of the role process instance in
Promela. In Helena, we start counting role instances beginning from 1 (cf. Def. 3.4
on page 50). In Promela, however, the identi�ers of processes for components and
roles are shared, but we create component processes before role processes in the init-
process explained in the previous paragraph. Therefore, we have to add the number
of components to the Helena identi�er of a role instance to get the identi�er of the
corresponding role process in Promela.

Let's move on to attribute expressions. In Helena, an expression rt [n]@attr refers
to the value of the attribute attr of the role instance with identi�er n of type rt . To
transfer this expression to Promela, we make two adaptations. Firstly, the identi�er is
increased as explained before. Secondly, to distinguish role attributes from component
attributes, we pre�x role attributes with roleAttr_ in the Promela translation.

However, attribute expressions can also contain expressions like ct[n]@attr where n
is an identi�er of a component instance, ct is a component type and attr is a component
attribute of ct. In contrast to expressions over role attributes described before, the
expression ct[n]@attr can directly be reused in Promela. The identi�er does not need
to be adapted since component identi�ers start at 1 in both, Helena and Promela5.
Furthermore, component attributes are re�ected by parameters of component processes
and therefore do not get a pre�x as local variables.

With these adaptations, LTL formulae are added to the Promela �le by using the
inline speci�cation facilities of Promela. The syntax for inline speci�cation is:

ltl <name> { <formula> }

After the pre�x ltl, a name identifying the ltl formula is given followed by the desired
ltl formulae in curly braces.

De�ning LTL Formulae in Promela relatively to an Initial Ensemble State:
Lastly, as mentioned before, the semantics of Helena and therefore satisfaction of
LTL formulae is de�ned relatively to a given initial state σinit. Therefore, all translated
Promela LTL formulae have to be extended such that they are de�ned relatively to
the initial state trans init(σinit). We extend the translated Promela LTL formula φ to
�(init⇒ φ). init is thereby a property which only holds when the initialization in the
init-process in Promela according to the given initial state in Helena was �nished.

P2P Example: At the beginning of this chapter, we introduced an achieve goal and a
maintain goal for our p2p example in Helena LTL (cf. Fig. 4.4 and Fig. 4.5). To model-
check these goals in the full Helena speci�cation of the p2p example (cf. Chap. 2), we
can use the translated Promela speci�cation and verify the goals for that speci�cation.
To be able to translate the p2p example, we have to remove all process invocations as
branches in if-then-else constructs. Therefore, the role behavior of a router is adapted
by inlining all process invocations as shown in Appendix C.1. This Helena ensemble

5In Promela, process identi�ers start at 0, but the init-process always gets the identi�er 0 such
that all user-de�ned processes have an identi�er greater than 0.
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speci�cation is translated as proposed in Sec. 5.2 and excerpts of the translation are
shown in Sec. 8.3. However, to be able to allow Spin veri�cation, the adaptations
mentioned in this subsection need to be carried out. Thus, we �rst have to de�ne an
initial state according to which the goals should be veri�ed. This initial state has then
to be established in the init-process of the Promela translation. Finally, both goals
have to be transformed to Promela respecting the adaptations previously described.

As initial state in Helena, we assume that the underlying component-based plat-
form consists of three peers where each of the peers might or might not have the �le
which is stored in the network. Note that it is possible that none of the peers has the
�le and thus, the �le does not exist in the network. Additionally, only one role instance
of type Requester exists which is owned by the �rst peer. The translation of this initial
state to Promela is established by the init-process in Fig. 5.17.

1 init {
2 chan p1 = [0] of { PeerOperation };
3 chan p2 = [0] of { PeerOperation };
4 chan p3 = [0] of { PeerOperation };
5

6 if
7 ::run Peer(false,0,p2,p1);
8 ::run Peer(true,12345,p2,p1);
9 fi;

10

11 if
12 ::run Peer(false,0,p3,p2);
13 ::run Peer(true,12345,p3,p2);
14 fi;
15

16 if
17 ::run Peer(false,0,p1,p3);
18 ::run Peer(true,12345,p1,p3);
19 fi;
20

21 chan req;
22 PeerOperation op;
23 op.optype = CREATE_REQUESTER;
24 chan answer = [0] of { chan };
25 op.answer = answer;
26 p1!op;
27 answer?req;
28 }

Figure 5.17: The init-process for the p2p example in Promela

This process �rst creates three channels p1, p2, and p3 in line 2�4. These channels
are later on used as the self channels of the corresponding peers and therefore allow
role-to-component communication. Afterwards, in line 6�19, processes for the three
peers are created. A peer process in Promela has four parameters corresponding to
the peer's component attributes and associations (cf. Fig. 2.1 on page 19) and its self
channel. The �rst and second parameter re�ect the peer's component attributes hasFile
and content, the third parameter re�ects the peer's component association neighbor,
and the last parameter is the self channel of the component process. For each peer,
it is nondeterministically decided whether the peer has the �le or not, e.g., in line 7
a peer is created which does not have the �le expressed by the �rst parameter being
false and the second parameter being 0 and in line 8 a peer is created which has the
�le expressed by the �rst parameter being true and the second parameter being 1. As
a third parameter the neighbor is set, so for example for peer p1, peer p2 (re�ected
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by its self channel) is the neighbor. Finally, the corresponding channel from line 2�4
is set as self channel. Last in the initialization process, the initial role instance of a
requester is created. We use role-to-component communication facilities as they are
used during role behavior execution to create this role process. The local variable req

in line 21 will be used to store the reference to the self channel of the newly created
role process. In line 22�25, the request to spawn a new role process for the requester is
created. The request is sent to the peer p1 in line 26. The component process for peer p1
will internally spawn the new role process and therefore execution of the whole transfer
ensemble is started. Finally, the init-process receives the reference to the newly created
role process in line 27.

Furthermore, the two goals need to be translated to Promela. Respecting the
aforementioned adaptations to LTL formulae, the achieve goal for our p2p example in
Fig. 4.4 is translated and inlined in the Promela �le as shown in Fig. 5.18.

ltl Achieve {

[] ( Requester@startRequester ->

((Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)

-> <> Requester:roleAttr_hasFile)

)

Figure 5.18: Achieve goal for the p2p example inlined in Promela

We use Requester@startRequester to describe when the initialization process in
Promela was �nished. Since in the initial state, exactly one role instance of type
Requester exists, we know that as soon as its start label startRequester is reached,
initialization was �nished. Furthermore, disjunction is expressed by the operator ∨
in Helena LTL which is now translated to ||. Lastly, the role attribute hasFile

has to be pre�xed with roleAttr_ to distinguish role attributes from component at-
tributes. The adaptation of the identi�er of a role identi�er cannot be seen here, since
we used the abbreviation Requester for Requester[1]. However, if one would have used
it, the translation in the Promela goal would be Requester[4] since the underlying
component-based platform consists of three peers.

Similarly, the maintain goal for our p2p example in Fig. 4.5 is translated and inlined
into the Promela �le as shown in Fig. 5.19.

ltl Maintain {

[] ( Requester@startRequester ->

((Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)

-> [] (Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile))

)

Figure 5.19: Maintain goal for the p2p example inlined in Promela

With these adaptations, the Promela translation is ready to be checked against
the prepared LTL formulae. We will give results and statistics on model-checking the
p2p example in the next subsection.
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5.3.2 Running Spin

To perform model-checking, we rely on Spin Version 6.4.4 64Bit. Spin �rst generates a
veri�er in C. Generation for a Promela �le sample.pml is started with the command:

"spin.exe -a sample.pml"

Depending on whether a liveness property like achieve goals or a safety property
like maintain goals, the generated C �le is compiled di�erently to an executable veri�er,
called pan as abbreviation for process analyzer. However, for both types of goals, we
enable advanced code optimization techniques in the C compiler with the runtime option
-O2. This option yields a more optimized code and therefore speeds up runtime of the
later veri�cation process. For achieve goals, compilation is started with the command:

"gcc -O2 -o pan pan.c"

Afterwards, the veri�er is started for an achieve goal with the name AchieveGoal in the
original Promela �le with the command:

"pan -a -N Achieve"

For maintain goals, compilation is started with the command:

"gcc -O2 -DSAFETY -o pan pan.c"

Afterwards, the veri�er is started for a maintain goal with the name MaintainGoal in
the original Promela �le with the command:

"pan -N Maintain"

In both cases, achieve goals and maintain goals, the veri�er executes a full state space
search. Thus, nondeterminism resulting from if - and do-statements and scheduling of
processes is resolved in all possible ways and the state space is searched exhaustively.

Typical Model Size: Holzmann et al. [HB07] use di�erent case studies to evaluate
the model-checker Spin. For small models like the dining philosophers6, the size of the
vector to store a single state is a few hundred bytes, i.e., around 200 bytes and the state
space to be searched contains a few million states, i.e., 1�35 million states. For larger
models as discussed in [HB07], the state space grows to several hundred million states,
i.e., 10�600 million states, and/or the size of the vector to store a single state grows up
to 4000 bytes.

Memory Consumption: Spin can by default cope with state vectors with a size
up to 1024 bytes (B). If this upper bound is exceeded by the employed model, Spin
may be advised to allocate more memory for the state vector by adding the option
-DVECTORSZ=N to the compilation of the executable veri�er (step 2) where N is the size of
the state vector in bytes. On the other hand, Spin uses up to 200 mega bytes (MB) to
store the searched state space. If the model exceeds this memory limit, the upper bound
can be increased by adding the option -DMEMLIM=N to the compilation of the executable
veri�er (step 2) where N is the memory to be allocated in mega bytes. This number
should most certainly not exceed the amount of physical memory in the machine used
for veri�cation.

6Most of the benchmark example models can be downloaded with the Spin distribution from http:
//www.spinroot.com/spin/multicore/

http://www.spinroot.com/spin/multicore/
http://www.spinroot.com/spin/multicore/
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Lossless Optimization: To scale veri�cation to larger systems as we will handle them
later on in our case study, Spin o�ers di�erent optimization techniques [Hol03, Chap. 9]
which improve the memory consumption of the veri�cation run, but may increase the
runtime.

The �rst optimization technique Partial Order Reduction (POR) reduces the number
of reachable states to be searched during veri�cation. POR is enabled in Spin by default
and can be disabled by adding the parameter -DNOREDUCE to the second step of compiling
the C veri�er.

The second type of optimization techniques reduces the amount of memory for the
storage of states without loss of information, but possibly with increase of runtime.
On the hand, we use Collapse compression by adding the option -DCOLLAPSE to the
compilation of the executable veri�er (step 2). Collapse compression exploits the fact
that many states only di�er at a few points. Hence, the overlapping part does not need
to be stored multiple times, but only the di�ering part needs to extracted and stored.
On the other hand, we use a Minimized Automaton (MA) representation for the state
space by adding the option -DMA=N to the compilation of the executable veri�er (step 2).
where N is an estimate of the maximal depth of the graph used as the MA representa-
tion. This compression technique builds and maintains a minimal deterministic state
automaton representing states without duplicates. To achieve maximal compression,
both techniques can be used simultaneously.

Lossy Optimization: If these lossless optimization techniques are not able to reduce
the size of the searched state space su�ciently, Spin also o�ers some lossy optimization
techniques [Hol03, Chap. 9] to stay in the available memory limits for veri�cation.

The most prominent technique to tackle very large models is bit state space search. It
is added to the compilation of the executable veri�er (step 2) by the option -DBITSTATE.
Its main idea is to give the explored state space some structure by storing the states
in a hash-table. During searching the state space, every explored state is looked up in
the hash-table. If it is not contained in the hash-table, it has not been visited before,
is added the hash-table and search continues for this part of the state space. If it is
already contained in the hash-table, it has been visited before and therefore search can
stop exploring this part of the state space since it already has been searched before.
In principle, exploiting a hash-table as a structuring means for the state space is not a
lossy optimization techniques. Each state is stored in the slot of the hash-table which
is characterized by its hash-value. If several states have the same hash-value, they are
stored in the same slot as a list. However, if the memory consumption of the hash-
table exceeds the memory of the machine running the veri�cation, no more states can
be added to the hash-table and the veri�cation run starts to become lossy. States are
missed and the veri�cation run does not cover the whole state space anymore. An
indicator for this coverage is the hash-factor printed in the output of a bit state space
search with Spin. It is approximately the number of available slots in the hash table
divided by the slots which are actually engaged by a state during search. If the hash-
factor is greater than 100, we can expect a coverage of 100% since collisions are not
likely in this case. If the hash-factor approaches 1, the coverage decreases down to 0%.

Another technique is hash-compact search (HC4). It is added to the compilation of
executable veri�er (step 2) by the option -DHC4. In contrast to bit state space search,
this method is more likely to achieve a good coverage. Similarly to bit state space
search, the state space is stored in a hash-table, but it uses a hash-function which could
address a lot more slots than they are actually available. With this large hash-function,
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collision are unlikely to happen such that instead of the state, we can now just store
the hash-value of the state. This yields a compression of the state space in addition
to omitting already visited states. This means that for large models which exceed the
memory during a full state space search even with the lossless compression techniques
mentioned before, one should �rst try to run a hash-compact search which is most likely
to reach a coverage of 100% if enough memory is available. Only if hash-compact search
also exceeds the memory, one should use bit state space search to get results with a
lower coverage.

Multi-core Model-Checking: Lastly, Spin supports a multi-core depth-�rst search

mode since Version 5.0 and a multi-core breadth-�rst search mode since Version 6.2
(more details can be found in the online documentation at http://www.spinroot.
com/spin/multicore/).

The depth-�rst search mode [HB07] is enabled by adding the option -DNCORE=N to
the compilation of veri�er where N is the number of core to be used. The depth-�rst
search mode works for liveness properties like achieve goals and safety properties like
maintain goals. However, for checking liveness properties only two cores can be used
because the checking algorithm is mainly dualcore.

The breadth-�rst search mode [Hol12] is enabled by adding the option -DBFS_PAR

to the compilation of veri�er. During veri�cation, it uses by default all available cores
except one. This multi-core veri�cation mode is especially targeted at safety properties,
it was also extended to allow veri�cation of bounded liveness properties.

Spin Output: The output of Spin contains statistics about the veri�cation runs in
terms of memory consumption and execution time. It also lists the employed optimiza-
tion techniques and possibly unreached states during the full state space search. Most
importantly, Spin output whether veri�cation ended with an error or not. An error can
have two reasons: Either Spin ran out of memory which is shown at the beginning of
the output or the checked LTL property is not satis�ed in the Promela speci�cation.
For the latter, Spin also provides a counterexample by issuing the command:

"spin.exe -t -c sample.pml"

The counterexample is a trace through the Promela speci�cation. To map the coun-
terexample back to Helena, it is therefore necessary to fully understand the translation
from Helena to Promela. It is still an open problem how to generate a trace in the
original Helena speci�cation instead of the trace in the Promela translation.

Example: For our p2p example, we check both goals presented in Fig. 5.18 and
Fig. 5.19. Veri�cation is performed with Spin version 6.4.4 64-bit and GCC version
6.9.2 64-bit7 on a 64-bit Debian 8.1 desktop computer with 32GB RAM and eight
Intel(R) Xenon(R) cores each running on 3.40Ghz.

The achieve goal is satis�ed for the translated Promela speci�cation (and therefore
because of stutter trace equivalence also for the original Helena ensemble speci�ca-
tion). The statistics of di�erent veri�cation runs concerning optimization are shown in
Table 5.1: The table compares runs in full state space search without any optimiza-
tion technique, without any state compression, but with POR optimization, and with
POR optimization and both state compression techniques Collapse Compression and

7It is important to use the 64-bit versions of Spin and GCC to be able to address more than 2GB
of memory.

http://www.spinroot.com/spin/multicore/
http://www.spinroot.com/spin/multicore/
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Table 5.1: Statistics of model-checking the p2p example against its achieve goal
in a full state space search without any optimization (no opt.), with
POR optimization (POR), and POR optimization together with both
two compression techniques Collapse compression and Minimized Au-
tomaton (MA) representation (lossless opt.) and in a hash-compact
search (HC4)

no opt. POR lossless opt. HC4

search depth 283 283 283 283

state vector size (B) 736 736 736 736

stored states 24134 5069 7309 5069

transitions 130917 14991 14991 14991

theoretic memory (MB) 17.584 3.693 5.381 3.693

actual memory (MB) 10.044 2.220 0.402 0.361

elapsed time (sec) 0.11 0.02 0.05 0.01

MA representation against a run in hash-compact search (HC4). The search depth of
283, i.e., the maximal depth of a path through the search space, and the state vector
size of 736 bytes is the same for all veri�cation runs. However, the runs di�er highly in
the actual memory consumption for storing all states. Without any optimization, the
actual8 memory consumption is around 10 MB; with POR optimization but without
any state compression, the actual memory consumption is around 2 MB; with POR op-
timization and both state compression techniques, the actual memory consumption is
only around 0.4 MB; and with hash-compact search 0.4 MB. Concerning execution time,
runtime is improving from 0.11 seconds for a run without any optimization technique
to 0.02 seconds with POR optimization only. This improvement is caused by the fact
that POR optimization reduces the number of reachable states to be searched. How-
ever, execution time increases to 0.05 seconds again when state compression techniques
are additionally used. State compression techniques reduce the memory consumption
for storing states, but this comes with the disadvantage of possibly increasing runtime
because of low-performance data structures. One interesting side-e�ect of using POR
optimization together with state compression is that POR optimization might not be
able to reduce the reachable states as much as without state compression (the number
of stored states with state compression is 7309 while it is 5069 without state compres-
sion). For hash-compact search, runtime improves to 0.01 seconds again since POR
optimization can come to its full potential such that the number of searched states is
the same as with POR optimization only. As we can see, hash-compact search has a
coverage of 100% in this case and is therefore reliable since the same number of states
is search as with POR optimization only.

The output of the veri�cation runs furthermore produces an overview about the
states which were not reached during the veri�cation. Since we employ a full state
space search, these states represent dead code in the Promela speci�cation which can
never be reached. This does not impede veri�cation, but can be used to improve the

8The theoretic memory consumption is the memory consumption which would be needed if no
optimization techniques are employed at all. The actual memory consumption, however, is the memory
consumption which is really needed and results from applying optimization techniques. Note that even
without any special optimization techniques or with only POR optimization, Spin employs a simple
byte masking technique to reduce memory consumption.
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speci�cation. In our case, the end states of all role processes are not reached. This is
expected since the last statement of each role process is false which is never executable.
Furthermore, some statements in the component process for the peer are not reached.
They all refer to requests which are never sent in our p2p example, e.g., a plays query
for a requester, and thus can be tolerated as dead code.

The maintain goal is also satis�ed for the translated Promela speci�cation (and
therefore also for the original Helena ensemble speci�cation). The statistics of the
di�erent veri�cation runs concerning optimization are shown in Table 5.2. The search

Table 5.2: Statistics of model-checking the p2p example against its maintain goal
in a full state space search without any optimization (no opt.), with
POR optimization (POR), and POR optimization together with both
two compression techniques Collapse compression and Minimized Au-
tomaton (MA) representation (lossless opt.) and in a hash-compact
search (HC4)

no opt. POR lossless opt. HC4

search depth 283 283 283 283

state vector size (B) 736 736 736 736

stored states 25574 5293 5293 5293

transitions 89770 9290 9290 9290

theoretic memory (MB) 18.438 3.857 3.852 3.857

actual memory(MB) 10.541 2.318 0.306 0.459

elapsed time (sec) 0.08 0.01 0.03 0.01

depth and the state vector size are the same as for the achieve goal. Again, the runs
for verifying the maintain goal di�er highly in the actual memory consumption for stor-
ing all states. Without any optimization, the actual memory consumption is around
11 MB; with POR optimization but without any state compression, the actual memory
consumption is around 2 MB; with POR optimization and both state compression tech-
niques, the actual memory consumption is only around 0.3 MB; and with hash-compact
search 0.5 MB Concerning execution time, runtime is improving from 0.08 seconds for
a run without any optimization technique to 0.01 seconds with POR optimization only,
but again increased to 0.03 seconds when state compression techniques are additionally
used. The reasons are similar to the veri�cation of the achieve goal. Finally, runtime
is improved to 0.01 seconds again if employing hash-compact search. The veri�cation
runs furthermore produce the same set of unreached states which are again acceptable
due to the aforementioned reasons.

5.4 Related Work

Our approach of veri�cation is in-line with goal-oriented requirements approaches like
KAOS [vL09]. They also specify goals by LTL properties. However, they translate
their system speci�cations into the process algebra FSP [MK06], which is not su�cient
to represent the dynamics of ensembles since dynamic process creation and directed
communication are not supported.

To the best of our knowledge, Promela and Spin can express moreHelena features
than other model-checkers, especially dynamic process creation and directed message
passing. For example, TAPAs [CDLT08] allows to verify concurrent systems speci�ed
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in CCS. The speci�cation language does not support any notion of data and dynamic
process creation can only be simulated by parallel composition with process invocation.
CADP [GLMS13] is a software toolbox for the veri�cation of distributed processes. The
tool supports FSP and LOTOS NT (amongst others) as input language and allows to
verify LTL properties as required by Helena. However, both input languages are not
enough to support all features of Helena. FSP does not allow directed message passing
between two processes and cannot dynamically create new processes. In contrast, LO-
TOS NT is a very expressive language which merges process calculi into a programming
language. As in TAPAs, dynamic process creation can only be simulated by parallel
composition with process invocation. Furthermore, LOTOS NT only allows synchronous
communication by rendezvous on gates. mCRL2 [GM14] is a formal speci�cation lan-
guage for concurrent systems which is supported by a toolset for modeling, validation
and veri�cation. The input language resembles FSP, but allows multiactions. As in
FSP, communication between processes is achieved via synchronization between actions
such that directed message exchange is not possible. Furthermore, dynamic process
creation is again only possible by parallel composition with process invocation. It still
remains to investigate whether there exists any further model-checkers which could ex-
press the Helena features better than Spin, especially the semantics of the if-then-else
construct and atomicity of a sequence of actions. Especially, since we will present the
framework jHelena implementing Helena ensemble speci�cations in Java in Chap. 7
and a systematic translation of Helena ensemble speci�cations to jHelena in Sec. 8.4,
Java PathFinder [Lau16, VHB+03] could be an interesting option for model-checking
Helena. Java PathFinder allows to analyze executable Java programs for properties
like deadlocks, unhandled exceptions, and data races. To check an LTL formula as we
use it to express goals, the LTL formula has to be transformed to its corresponding
Büchi automaton and implemented by a user-de�ned listener for the Java PathFinder.
This transformation is not directly supported by the core Java PathFinder, but only by
an external extension [Cuo12] which is not maintained since 2012. Nevertheless, using
Java PathFinder could help us to directly check the �nal implementation of Helena
ensemble speci�cations in Java without making detour to another model speci�c for a
particular model-checker.

Techniques for the development of ensembles have been thoroughly studied in the
recent ASCENS project [WHKM15]: Closely related to our work is the SCEL language.
Therefore, we look at its veri�cation in more detail. In [DLL+14], ensemble-based
systems are described by simpli�ed SCEL programs and translated to Promela. The
main idea of the translation is to declare new Promela process types for every process
construct used in the SCEL description of the ensemble-based system. For example,
action pre�x is translated to two Promela process types, the �rst one representing
the execution of the action and the second one the execution of the remaining process.
Thus, the behavior of the �rst process type is just the execution of the action and
afterwards the spawning of a new process instance which is responsible for executing
the remaining process term. In our opinion, this translation su�ers from the excessive
creation of new process types and process instances. During veri�cation, Spin will
only allow to create 255 processes at maximum, afterwards it simply ignores additional
spawns. Apart from that, the authors omitted the new operator in the simpli�ed
version of SCEL and thus did not provide any veri�cation mechanism for dynamically
created components. In contrast, Helena allows dynamic role creation which is fully
represented in our Promela translation. Furthermore, the translation from simpli�ed
SCEL to Promela is neither proved semantically correct nor automated while our
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translation from Helena to Promela is proven correct in Chap. 6 and automated with
the Helena workbench in Chap. 8. In addition to model-checking SCEL speci�cations
with Spin, SCEL speci�cations can also be implemented in Java relying on the jRESP
framework [Lor16, De 16] which also provides a prototypic statistical model-checker.
It can verify whether the implementation of a SCEL speci�cation in jRESP satis�es a
reachability property with a certain degree of con�dence. So far, Helena is not able to
cope with uncertainty in the environment and thus exact model-checking is possible, but
as soon as changing environmental conditions are included in Helena, veri�cation of
Helena ensemble speci�cations should move to statistical model-checking as proposed
in jRESP for SCEL.

DFINDER [CBK15] implements e�cient strategies exploiting compositional veri�-
cation of invariants to prove safety properties for BIP ensemble models, but does not
deal with dynamic creation of components.

DEECo ensemble models [BGH+13] are implemented with the Java framework
jDEECo and veri�ed with Java Path�nder [CBK15]. Thus, opposed to Helena, they
do not need any translation. However, since DEECo relies on knowledge exchange
rather than message passing, they do not verify communication behaviors.

In the �eld of distributed systems, multiparty session types [CDPY15] describe
communication protocols of interacting processes on a global level. The behavior of
each process is obtained by projecting the global multiparty session type on a single
participant. These local projections are used to prove communication safety, protocol
�delity, and progress of the global multiparty session types. In contrast to our approach,
these properties can be proven in the context of interleaved multiparty sessions while
we only consider one ensemble instance during a veri�cation run so far. However,
in the Helena approach, we support the veri�cation of arbitrary LTL formulae over
the underlying ensemble speci�cation while veri�cation of multiparty session types is
restricted to communication safety, protocol �delity, and progress only.

Finally, our approach has been strongly inspired by the way how the distributed lan-
guage KLAIM has been transferred to Maude in [EMMW15]. There, the correctness of
the translation was established by a stutter bisimulation which preserves CTL∗ proper-
ties (without next). The translation of Helena into Promela is, however, not stutter
bisimilar but stutter trace equivalent and thus only preserves LTL formulae (without
next) as we will discuss in Chap. 6.

5.5 Publication History

The content of this chapter relies on [HKW15] and mostly on [Kla15b]. In [HKW15],
we introduce a formal translation from a simpli�ed version of Helena to Promela,
the input language of the model-checker Spin. In [Kla15b], we informally describe
the extension of this translation to full Helena and give some insights in the formal
translation.

This chapter extends these previous publications by fully de�ning the translation
from full Helena to Promela which has only been described in excerpts so far. Fur-
thermore, we include a comprehensive introduction to model-checking Helena ensem-
ble speci�cations with Spin, present some optimization techniques included in Spin, and
provide detailed statistics about model-checking the p2p example.
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5.6 Present Achievements and Future Perspectives

Present Achievements: To check the Helena LTL goals in a Helena ensemble
speci�cation, we proposed to translate Helena to Promela and to verify goal sat-
isfaction in the Promela translation with the model-checker Spin. The translation
mainly transfers the two-level approach of Helena components and roles to Promela
processes: A Helena component is represented by a long-running Promela process
which is repeatedly able to receive requests, like operation calls or role creation and re-
trieval requests, from its adopted roles. A Helena role is represented by a short-living
Promela process which re�ects the corresponding role behavior declaration speci�ed
in Helena. It issues requests to its underlying component process and exchanges mes-
sages with other role processes. Using this Promela translation, the original Helena
goals can be veri�ed with small adaptations in Spin. The obtained results can directly
be transferred back to Helena since we can show that a Helena ensemble speci�cation
and its Promela translation satisfy the same set of LTL\X formulae (the formal proof
is given in the next chapter).

We illustrated our approach for checking satisfaction of goals for Helena ensemble
speci�cations with our p2p example. Although being a very small example, it uses
nearly all features of Helena and provides a good proof of concept. Even at this small
example, we could see that Promela is well-suited to express the distinct Helena
features and Spin provides powerful optimization and compression methods to speed
up veri�cation and to reduce memory consumption. To show that our approach also
scales to larger systems, we provide a larger case study in Chap. 10.

Future Perspectives: Nevertheless, there exist interesting areas of future work.

Expressiveness of Spin: We had to restrict the usage of nondeterministic choice and
the if-then-else construct to preserve semantic equivalence between a Helena en-
semble speci�cation and its Promela translation. Those restrictions are mainly
caused by two design choices of Promela: Firstly, Promela prescribes that
a branch of an if -construct can only be selected for execution if its �rst action
is executable. It is not possible to extend the selection mechanism such that a
block of actions determines the executability of a branch (even not if enclosed in
an atomic-block). Since some Helena actions have to be translated to several
Promela statements, we cannot cope with them as �rst actions of nondeter-
ministic choice or the if-then-else construct if they are not executable. Secondly,
Promela's selection if -construct does not o�er the possibility to evaluate the
guard of a branch and to execute the corresponding �rst action of the branch as
one step. Therefore, the semantics of the Helena if-then-else construct cannot
be directly expressed in Promela if the �rst action is not executable. How-
ever, as discussed in Sec. 5.4, Promela can express more Helena features than
other o�-the-shelf model-checkers. Thus, these expressibility problems could at
the moment only be overcome by a custom-made Helena-speci�c model-checker.

Extension to Component Interfaces: For simplicity reasons, we made the assumption
that a role type can only be adopted by one component type. To alleviate this
assumption, component interfaces can be introduced into the Helena approach
as already proposed in Sec. 2.7 such that a role type only requires a certain com-
ponent interface from its owning component. In Promela, all component types
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would then be represented by corresponding component processes, but requests
to components would no longer be component-speci�c, but interface-speci�c.

Model-Checking of Parallel Ensembles: So far, we only check one ensemble instance per
veri�cation run. This assumption can be alleviated by allowing each component
process to adopt the same role in several ensembles. Instead of only one role
instance per type, the component process then has to manage an array of role
instances, each adopted in a di�erent ensemble. While the extension to several
parallel ensembles is syntactically easily realized in Promela, it has a huge impact
on the size of the search space. To be able to still verify several parallel ensembles,
the translation has to be optimized to reduce the amount of space to store the
state of the ensemble-based system.

Representation of Counterexamples in Helena: Currently there is no support for map-
ping model-checking results from Promela and Spin back to Helena. Spin
produces a counterexample if an LTL formulae is not satis�ed, but the counterex-
ample is given as a trace through the Promela translation. Therefore, deep
understanding of the translation from Helena to Promela is necessary to be
able to map the trace back to Helena. An automatic generation of the corre-
sponding trace through the Helena speci�cation would alleviate this problem.
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Chapter 6

Correctness Proof
Allowing Helena to Rely on Spin

In the previous chapters, we proposed to specify goals for a Helena ensemble speci�-
cation in LTL and to check satisfaction of goals by translating Helena to Promela
and using the model-checker Spin for veri�cation. However, to be able to use the re-
sults from model-checking a Promela translation for the original Helena ensemble
speci�cation, we have to show that they both satisfy the same set of LTL formulae. To
prove that kind of semantic equivalence, we establish stutter trace equivalence between
the induced semantic Kripke structures of a Helena speci�cation and of its Promela
translation. In the proof of stutter trace equivalence, we rely on a new general criterion
that Kripke structures are stutter trace equivalent if particular simulations (called ≈-
stutter simulations) can be established in both directions. This criterion is explained
and proven correct in Sec. 6.1. Relying on results from the literature [BK08], we know
that satisfaction of LTL formulae (without the next operator) is preserved in stutter
trace equivalent Kripke structures. As a consequence, we can verify LTL properties for
a Helena speci�cation by model-checking its Promela translation. Thereby, the only
restrictions we have to make is that no role behavior declaration in Helena may start
with a state label and process invocation is not a branch in nondeterministic choice.

In this chapter, we �rst explain the notion of stutter trace equivalence and LTL\X
1

preservation in general and introduce the new criterion for stutter trace equivalence
in Sec. 6.1. This criterion will be used in the formal proof of the correctness of our
approach which follows afterwards. We formally prove stutter trace equivalence for
two simpli�ed variants of Helena and Promela and informally argue that the proof
can be extended to full Helena and Promela. In Sec. 6.2, we reduce the syntax
and semantics of Helena to the main features of roles de�ning the simpli�ed variant
HelenaLight of our modeling language. In Sec. 6.3, we identify a subset of Promela,
called PromelaLight, which is su�cient to express all HelenaLight concepts, and
derive SOS rules for PromelaLight from the transition system semantics provided
for full Promela in [Wei97]. Afterwards in Sec. 6.4, we discuss the formal translation
function from HelenaLight to PromelaLight which is a simpli�ed variant from
the full translation in Sec. 5.2. Based on the formal de�nition of HelenaLight and
PromelaLight, we establish stutter trace equivalence between the induced semantic
Kripke structures of both types of speci�cations in Sec. 6.5. Finally, we argue in Sec. 6.6
that the correctness proof can be extended to full Helena and therefore justify our
approach to translate Helena to Promela and to use Spin as a model-checker.

1LTL\X is the fragment of LTL that does not contain the next operator X.
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6.1 Foundations on LTL\X Preservation

To de�ne when two Kripke structures satisfy the same set of LTL\X formulae, we in-
troduce the notion of stutter trace equivalence. This equivalence entails LTL\X preser-
vation according to the literature [BK08] and, thus, allows us to deduce satisfaction of
the same set of LTL\X formulae.

We �rst consider paths of Kripke structures (cf. Def. 4.2): two paths of Kripke
structures over the same set of atomic propositions AP are stutter trace equivalent if
their traces only di�er in the number of their stutter steps. That means that there exist
sets of atomic propositions Pi ⊆ AP (with i ∈ N) such that the traces of both paths
have the form P+

0 P
+
1 P

+
2 . . . where P+

i denotes a non-empty sequence of the same set
Pi.

The notion of stutter trace equivalence is extended to Kripke structures by consid-
ering all paths of the Kripke structures.

Def. 6.1: Stutter Trace Equivalence

Two Kripke structures K1 and K2 are stutter trace equivalent if for each path of

K1 there exists a stutter trace equivalent path of K2 and vice versa.

Stutter trace equivalence between two Kripke structures allows to �nd a path in
one Kripke structure for a path in the other one, we say the path is simulated. The
two paths exhibit the same trace of atomic propositions except stutter steps which
do not change the set of satis�ed atomic propositions. That means, we can �nd a
mapping between the two paths which sequentially maps states satisfying the same set
of atomic propositions. Stutter trace equivalence apparently preserves satisfaction of
atomic propositions on equivalent paths according to this mapping. However, stutter
trace equivalence does not preserve the behavior expressed by the compared Kripke
structures. For stutter trace equivalence, it is only necessary that for every path in
the �rst Kripke structure there exists a path in the stutter trace equivalent Kripke
structure which preserves satisfaction of atomic propositions on mapped states, but it
is not necessary that at every state on the path in the second Kripke structure preserves
the branching structure of the corresponding state of the �rst Kripke structure.

To exemplify this, we consider the excerpt of the two Kripke structures K1 and K2

in Fig. 6.1 (the set of atomic propositions which hold in each state are annotated as
subscripts A, B and C). In K1, we have the path s = s0s1 . . . with the trace AB . . .. For
this path, we �nd exactly one stutter trace equivalent path in K2, namely t = t0t1t2 . . .
with the trace AAB . . .. We can de�ne a relation ≈ = {(s0, t0), (s0, t1), (s1, t2), . . .}
which relates all states on the stutter trace equivalent paths satisfying the same set of
atomic propositions. While this relation preserves satisfaction of atomic propositions,
it does not (necessarily) preserve the branching structure of the Kripke structures in
general. In our example, we can choose between two paths in state s0, one leading to
s2 and one leading to s1, but in state t1 we do no longer have the choice. However, we
can �nd a relation ∼ which only relates those states which exhibit the same branching
behavior, here the relation ∼ = {(s0, t0), (s1, t2), . . .}.

In principle, it would be nice to de�ne a relation which simulates all paths of one
Kripke structure by the other and preserves satisfaction of atomic propositions. To this
end, we introduce the notion of ≈-stutter simulations in Def. 6.2. In the de�nition, we
combine the idea of the two relations ∼ and ≈ into one simulation relation. With the
relation ∼, we simulate all paths (and therefore the branching structure) of one Kripke
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t0
A

t1
A

t2
B

...

...

s0
A

s1
B

...

...

∼⊆≈
≈ ∼⊆≈

Figure 6.1: Stutter trace equivalent Kripke structures K1 (above) and K2 (below)

structure in the other. With the relation ≈, we allow stutter steps on the paths which
do not have to preserve branching.

Def. 6.2: ≈-Stutter Simulation
Let K1 = (S1, I1,−→1, F1) and K2 = (S2, I2,−→2, F2) be two Kripke structures

over AP . Let ≈ ⊆ S1 × S2 be a relation.

A relation ∼ ⊆ S1 × S2 is a ≈-stutter simulation of K1 by K2 if

(1) ∼ ⊆ ≈ and

(2) for all s ∈ S1, t ∈ S2 with s ∼ t: if s −→1 s
′,

then s′ ∼ t or it exists t −→2 t1 −→2 . . . −→2 tn −→2 t
′
1 −→2 . . . −→2 t

′
m −→2 t

′

(n,m ≥ 0) such that s ≈ ti for all i ∈ {1, . . . , n}, s′ ≈ t′j
for all j ∈ {1, . . . ,m} and s′ ∼ t′.

K1 is ≈-stutter simulated by K2 if there exists a ≈-stutter simulation ∼ of K1

by K2 such that s0 ∼ t0 for all s0 ∈ I1, t0 ∈ I2.

Interestingly, (mutual) ≈-stutter simulations are su�cient to provide a criterion
whether two Kripke structures are stutter trace equivalent if we require two additional
properties from the underlying stutter step relation ≈. Obviously, the relation ≈ has to
guarantee preservation of atomic propositions since stutter steps shall not change the
satisfaction of atomic propositions. Additionally, the relation ≈ has to be divergence-

sensitive, i.e., if one of ≈-equivalent states takes in�nitely many stutter steps (which do
not change satisfaction of atomic propositions), the other one also has to take in�nitely
many stutter steps. That means that divergence-sensitivity guarantees that for every
(in�nite) path of one Kripke structure there actually exists an (in�nite) path in the
other one, i.e., the paths of the two Kripke structures continuously take stutter steps.

Def. 6.3: Property-Preserving Relation

Let K1 = (S1, I1,−→1, F1) and K2 = (S2, I2,−→2, F2) be two Kripke structures

over AP . A relation ≈ ⊆ S1×S2 is property-preserving if for all s ∈ S1, t ∈ S2,
s ≈ t implies F1(s) = F2(t).
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Def. 6.4: Divergence-Sensitive Relation

Let K1 = (S1, I1,−→1, F1) and K2 = (S2, I2,−→2, F2) be two Kripke structures over
AP . A relation ≈ ⊆ S1 × S2 is divergence-sensitive if for all s1 ∈ S1, t1 ∈ S2
with s1 ≈ t1 holds: if there exists an (in�nite) path fragment s1s2s3 . . . in K1

with si ≈ t1 for all i ≥ 1, then there exists an (in�nite) path fragment t1t2t3 . . .
in K2 with s1 ≈ tj for all j ≥ 1 and symmetrically for (in�nite) path fragments

in K2.

Thm. 6.5: Stutter Trace Equivalence

Let K1 and K2 be two Kripke structures over AP with states S1, S2 resp. Let

≈ ⊆ S1 × S2 be a property-preserving and divergence-sensitive relation and ≈−1
its inverse relation. If K1 is ≈-stutter simulated by K2 and K2 is ≈−1-stutter
simulated by K1, then K1 and K2 are stutter trace equivalent.

Proof of Thm. 6.5

In the proof, we have to show that for every (in�nite) path in one Kripke
structure there exists an (in�nite) path in the other Kripke structure such
that the two paths are stutter trace equivalent.
Since K1 is ≈-stutter simulated by K2, we �nd for each path s = s0s1s2 . . .
of K1 a �nite sequence t = t0t1t2 . . . tj or an in�nite sequence t = t0t1t2 . . .
of states ti ∈ S2 (of K2) such that the properties of a ≈-stutter simulation
from Def. 6.2 hold for all states on the path s and the found sequence t. We
�rst show that the found sequence t cannot be a �nite since the relation ≈ is
divergence-sensitive. We assume that the path s in K1 is simulated by a �nite
sequence t = t0t1t2 . . . tj in K2. Since the properties of a ≈-stutter simulation
must be satis�ed for the path s and the �nite sequence t, the only possibility
is that a state si ∈ S1 on the path s of K1 is reached such that from si,
K1 takes in�nitely many steps si −→1 si+1 while the corresponding sequence t
in K2 does not take any further steps and remains in the state tj such that
si ∼ tj , si+1 ∼ tj , si+2 ∼ tj , and so on. This re�ects the �rst condition of
item (2) in Def. 6.2 of a ≈-stutter simulation. The following graphics depicts
the situation:

... si si+1 si+2 ...K1:

... tjK2:

∼ ∼ ∼

Since we assumed that the relation ≈ is divergence-sensitive and it holds
that ∼⊆≈, the relation ∼ is divergence-sensitive, too. Therefore, the depicted
situation cannot happen, i.e., the found sequence cannot get stuck in the state
tj while the path in K1 continuously evolves. The found sequence must rather
evolve according the property of a divergence-sensitive relation in Def. 6.4.
The following graphics depicts the required extension of the �nite path t:
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... si si+1 si+2 ...K1:

... tj tj+1 tj+2 ...K2:

∼

∼ ∼

≈ ≈

This means that every path s of K1 is simulated by an in�nite sequence, i.e.
path t of K2.
Secondly, we have to discuss why the two paths are stutter trace equivalent.
Since we produced the two paths by a ≈-stutter simulation, we know that
for every state si on the path of K1 we �nd a corresponding state tj on the
path of K2 such that either si ∼ tj or si ≈ tj holds. Furthermore, we know
that the relation ≈ is property-preserving and that ∼⊆≈ holds. Therefore, all
states on the paths which are related by ∼ or ≈ satisfy the same set of atomic
propositions which conforms to the de�nition of stutter trace equivalence of
paths.
Since the relation ≈ is property-preserving and divergence-sensitive, the in-
verse relation ≈−1 is property-preserving and divergence-sensitive, too. There-
fore, the argumentation from before symmetrically holds in the other direction
if we assume that K2 is ≈−1-stutter simulated by K1. �

The question arises which LTL formulae are satis�ed by two stutter trace equivalent
Kripke structures. It is clear that the next operator X of temporal logic is not preserved
since stutter steps are allowed. However, if we restrict our attention to the temporal
logic LTL\X, we can use a result of [BK08] which shows that all formulae of LTL\X are
preserved. In practice, eliminating the next operator is not a great loss since interesting
properties are not so much concerned with what happens in the next step as to what
eventually happens [Lam83].

Thm. 6.6: LTL\X Preservation

Let K1 and K2 be two stutter trace equivalent Kripke structures over AP . For

any LTL\X formula φ over AP , we have K1 |= φ⇔ K2 |= φ.

Proof of Thm. 6.6

The proof can be found in [BK08, pp. 534�535] (Thm. 7.92 and Cor. 7.93). �

6.2 HelenaLight

In HelenaLight, we simplify the full Helena approach by omitting the underlying
component types and consider only role types, whose instances can be dynamically
created, and their interactions. Additionally, we omit any notion of data such that we
do not consider attributes and data parameters anymore. Table 6.1 gives an overview
about the features of Helena and how they are abstracted in HelenaLight.

Firstly, HelenaLight omits the underlying component-based platform (marked
with (1) in Table 6.1). Because of the lack of components, roles do not have an owner.
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Table 6.1: Features of Helena vs. HelenaLight

Helena HelenaLight

components attributes � (1)

associations � (1)

operations � (1)

roles owner � (1)

attributes � (2)

messages without data (2) and

with exactly one role parameter (3)

ensemble
structures

capacity of input queues (cf. Helena)

min/max multiplicity � (4)

actions role instance creation without owner (1)

role instance retrieval � (1)

sending a message without data (2) and

with exactly one role parameter (3)

receiving a message without data (2) and

with exactly one role parameter (3)

component operation call � (1)

component attribute setter � (1)

role attribute setter � (2)

process
constructs

termination no role instance release (1)

action pre�x (cf. Helena)

nondeterministic choice (cf. Helena)

if-then-else � (2)

process invocation only recursive role behavior invocation (5)

Thus, role creation is independent from an owner and role retrieval cannot be realized
since there does not exist any owner which manages the references to its adopted roles.
Similarly, at the end of a role behavior, the role must not be released from its owner
when reaching the null process quit. Furthermore, operations cannot be called on
components and component attributes cannot be set.

Secondly, any notion of data is omitted (marked with (2) in Table 6.1). Thus, roles
do not have attributes, there are no role attribute setters, and messages do not have
any data parameters. The if-then-else construct is completely omitted.

We additionally simplify Helena in three aspects: We only allow a single role
instance parameter in messages instead of a list of role instance parameters (marked by
(3) in Table 6.1). We do not restrict the number of allowed instances for roles anymore
(marked by (4) in Table 6.1). We do not allow arbitrary process invocation anymore,
but only recursive invocation of the role behavior itself (marked by (5) in Table 6.1).
In the following, the simpli�ed variant of Helena is de�ned in detail.

6.2.1 HelenaLight Syntax

Ensemble Structures: Role types in HelenaLight are characterized by their name
and a set of outgoing and incoming message types. In contrast to full Helena, we omit
role attributes and consider message types with exactly one role parameter.
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Def. 6.7: HelenaLight Message Type

A message type msg in HelenaLight is of the form msgnm(X:rt) such that

msgnm is the name of the message type and X is a formal parameter of the

HelenaLight role type rt .

Def. 6.8: HelenaLight Role Type

A role type in HelenaLight is a tuple rt = (rtnm, rtmsgsout, rtmsgs in) such

that

� rtnm is the name of the role type, and

� rtmsgsout and rtmsgs in are sets of HelenaLight message types for out-

going and incoming messages supported by the role type.a

aIn the following, we often write rt synonymously for the role type name rtnm.

Ensemble structures specify which role types are needed for a collaboration. In
contrast to full Helena, we omit multiplicities constraining the number of admissible
role instances for each role type. We assume asynchronous communication and specify
for each role type the (positive) capacity of the input queue of each role instance of that
type, i.e., the capacity must be greater than zero.

Def. 6.9: HelenaLight Ensemble Structure

An ensemble structure Σ in HelenaLight is a tuple Σ =
(nm, roletypes, roleconstraints) such that

� nm is the name of the ensemble structure,

� roletypes is a set of HelenaLight role types, and

� for each rt ∈ roletypes, roleconstraints(rt) is a �nite capacity c > 0 of the

input queue of rt .

As in full Helena, we only consider closed ensemble structures Σ. This means that
any outgoing message of some role type of Σ must occur as an incoming message of at
least one role type of Σ and vice versa, and any parameter type occurring in a message
type is a role type of Σ.

Example: We will consider a simpli�ed variant of the p2p example of Chap. 2. The
three role types for requester, router, and provider are formally de�ned in Fig. 6.2 and
depicted in Fig. 6.3.

In contrast to the speci�cation in full Helena, we omit the underlying component
type Peer and all role attributes as well as data parameters in the speci�cation of the
three role types. However, since every message in HelenaLight must have exactly
one role instance parameter, we have to equip the message sndFile of the Requester and
the Provider with an arbitrary parameter which will not matter in the following.

The ensemble structure for the �le transfer ensemble in HelenaLight names the
participating role types and their capacity, but no multiplicities (cf. Fig. 6.4 and
Fig. 6.5).
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Requester = ("Requester",msgsout(rq),msgsin(rq))

with msgsout(rq) = {reqAddr(req:Requester), reqF ile(req:Requester)}
and msgsin (rq) = {sndAddr(prov:Provider), sndF ile(prov:Provider)}

Router = ("Router",msgsout(ro),msgsin(ro))

with msgsout(ro) = {reqAddr(req:Requester), sndAddr(prov:Provider)}
and msgsin (ro) = {reqAddr(req:Requester)}

Provider = ("Provider",msgsout(pv),msgsin(pv))

with msgsout(pv) = {reqF ile(req:Requester)}
and msgsin (pv) = {sndF ile(prov:Provider)}

Figure 6.2: All role types for the p2p example in HelenaLight

«role type»
Requester

out reqAddr(req:Requester)
in sndAddr(prov:Provider)
out reqFile(req:Requester)
in sndFile(prov:Provider)

(a) Role type Requester

«role type»
Router

out reqAddr(..)
in reqAddr(..)
out sndAddr(..)

(b) Role type Router

«role type»
Provider

in reqFile(..)
out sndFile(..)

(c) Role type Provider

Figure 6.3: All role types for the p2p example in HelenaLight in graphical notation

Σtransfer = ("Σtransfer", {Requester,Router, Provider}, roleconstraints)

with roleconstraints(Requester) = 2,

roleconstraints(Router) = 2,

roleconstraints(Provider) = 1

Figure 6.4: Ensemble structure Σtransfer for the p2p example in HelenaLight

«role type»
Requester

cap = 2

«role type»
Router

cap = 2

«role type»
Provider

cap = 1

reqAdd
r(..)

sndAdd
r(..)

reqFile(..)
sndFile(..))

reqAddr(..)

Figure 6.5: Ensemble structure Σtransfer for the p2p example
in HelenaLight in graphical notation

Ensemble Speci�cations: To perform a goal-oriented task, the ensemble needs to
exhibit a certain behavior. Therefore, we specify a behavior for each role type occurring
in the running ensemble which must be respected during execution. Given an ensemble
structure Σ, process expressions (over Σ) are used to specify role behaviors. They are
built from termination, action pre�x, nondeterministic choice, and process invocation.
We consider four types of actions: sending (!) and receiving (?) a message, role instance
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creation, and labeling a state (used for veri�cation only). Opposed to full Helena, we
omit component instances on which role instances are created and any data in message
exchange. Furthermore, we omit the get action, operation calls, and any attribute
setters since we do not have attributes in HelenaLight. Lastly, we also weaken
guarded choice to nondeterministic choice since we omitted data completely, i.e., in
message exchange and as attributes.

Def. 6.10: HelenaLight Process Expression

A process expression inHelenaLight is built from the following grammar, where

N is the name of a process, msgnm is the name of a HelenaLight message

type, X and Y are names of variables, rt is a HelenaLight role type (more

precisely the name of a role type), and label is the name of a state label:

P ::= quit (termination)

| a.P (action pre�x)

| P1 + P2 (nondeterministic choice)

| N (process invocation)

a ::= X ← create(rt) (role instance creation)

| Y !msgnm(X) (sending a message)

| ?msgnm(X:rt) (receiving a message)

| label (state label)

A receive action ?msgnm(X:rt) (and resp. a create action X ← create(rt)) declares
and opens the scope for a local variable X of type rt . We assume that the names of the
declared variables are unique within a process expression and di�erent from self which
is a special, prede�ned variable which refers to the current role instance and can always
be used.

In the context of an ensemble structure Σ = (nm, roletypes, roleconstraints), a pro-
cess expression has to satisfy some conditions to be well-formed. These conditions
are directly derived from the well-formedness conditions of process expressions in full
Helena (cf. Def. 2.10 on page 28) and do not include any new restrictions.

Def. 6.11: Well-Formedness of a HelenaLight
Process Expression

Let Σ = (nm, roletypes, roleconstraints) be a HelenaLight ensemble structure.

A HelenaLight process expression P is well-formed for a HelenaLight role

type rt ∈ roletypes w.r.t. Σ, if

(1) in any action pre�x of P , all actions are well-formed for rt w.r.t. Σ,

(2) in any nondeterministic choice of P , the �rst actions of the two branches are
either incoming messages or any other action than an incoming message,

(3) in any nondeterministic choice of P , state labels are not the �rst action of

any branch,

(4) a process expression does not immediately invoke itself, also not by a chain

of process invocations being the �rst and last invocation the same.
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An action is well-formed for a HelenaLight role type rt ∈ roletypes w.r.t. Σ if

(1) for X ← create(rt ′),

(a) rt ′ ∈ roletypes,

(b) X has not been declared before,

(2) for Y !msgnm(X),

(a) the role type rt supports the message type msgnm(X ′:rt ′) as outgoing

message,

(b) the type of the role instance Y supports the message type

msgnm(X ′:rt ′) as incoming message,

(c) the actual parameter X is of type rt ′,

(d) the expressions X and Y only name the prede�ned constant self, or

variables or parameters which have been declared before,

(3) for ?msgnm(X:rt ′),

(a) the role type rt supports the message type msgnm(X:rt ′) as incoming

message,

(b) X has not been declared before,

(4) all state labels are unique within the process expression P .

Building on process expressions, we can now de�ne role behavior declarations. Op-
posed to full Helena, a role behavior declaration cannot invoke other processes, but
can invoke itself recursively. Furthermore, we neither allow recursive process invoca-
tions as the �rst process construct nor as one immediate option of (possibly nested)
nondeterministic choice if nondeterministic choice is the �rst process construct in the
role behavior declaration (as de�ned in the well-formedness condition). That means,
we neither allow roleBehavior rt = rt nor roleBehavior rt = (rt + P ) (and nested
variants). We especially name this condition again in the following de�nition of a role
behavior declaration.

Def. 6.12: HelenaLight Role Behavior Declaration

Let Σ be a HelenaLight ensemble structure and rt be a HelenaLight role

type in Σ. A role behavior declaration for rt in HelenaLight has the form

roleBehavior rt = P

where P is a HelenaLight process expression which is well-formed for rt
w.r.t. Σ such that recursive process invocations may occur in P at most for rt
and not immediately.

An ensemble speci�cation consists, as in full Helena, of two parts: an ensemble
structure and a set of role behavior declarations for all role types occurring in the
ensemble structure.
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Def. 6.13: HelenaLight Ensemble Speci�cation

An HelenaLight ensemble speci�cation is a pair EnsSpec = (Σ, behaviors)
such that Σ is a HelenaLight ensemble structure and behaviors is a set of

HelenaLight role behavior declarations which contains exactly one declaration

roleBehavior rt = P for each role type rt ∈ Σ.

Example: In the context of our simpli�ed p2p example, we have to consider the re-
strictions HelenaLight imposes on the speci�cation of behaviors. The behavior of a
requester (cf. Fig. 6.6) does not name any component instance where the initial router
is created (line 1) and all data parameters in message exchanges are removed (e.g., line
6). To illustrate the use of state labels, we introduce two state labels (line 4 and 7) to
mark the state when the requester received the address of a provider and the �le itself.

roleBehavior Requester = router ← create(Router) . (1)

router!reqAddr(self) . (2)

?sndAddr(prov:Provider) . (3)

stateSndAddr . (4)

prov!reqF ile(self) . (5)

?sndF ile(prov2:Provider) . (6)

stateSndFile . (7)

quit (8)

Figure 6.6: Role behavior of a Requester for the p2p example in HelenaLight

Similarly, the behavior of a provider is adapted to HelenaLight (cf. Fig. 6.7).

roleBehavior provider = ?reqF ile(req:Requester) .

stateReqF ile .

req!sndF ile(self) .

quit

Figure 6.7: Role behavior of a Provider for the p2p example in HelenaLight

However, the role behavior of a router has to be fundamentally restructured (cf.
Fig. 6.8). Process expressions in HelenaLight can only use nondeterministic choice
instead of guarded choice. Thus, in contrast to the router behavior in full Helena in
Fig. 2.7 on page 31, the router nondeterministically either provides the �le or forwards
the request (cf. nondeterministic choice in line 2�8). Additionally, we do not provide
an action to retrieve an already existing role instance (action get in full Helena).
Therefore, a router can only forward the request to a newly created router (cf. line 6�8)
and not to an already existing one as in full Helena.

6.2.2 HelenaLight Semantics

On the semantic level, we reduce the formal semantics of full Helena in Chap. 3 to
the proposed simpli�ed variant HelenaLight. Therefore, as for full Helena, the se-
mantic domain of HelenaLight ensemble speci�cations are labeled transition systems
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roleBehavior Router = ?reqAddr(req:Requester) . (1)

( provider ← create(Provider) . (2)

req!sndAddr(provider) . (3)

quit ) (4)

+ (5)

( router ← create(Router) . (6)

router!reqAddr(req) . (7)

Router ) (8)

Figure 6.8: Role behavior of a Router for the p2p example in HelenaLight

describing the evolution of ensembles. The states capture the current state of an ensem-
ble with its constituent role instances. Structured operational semantics (SOS) rules
de�ne the allowed transitions between those ensemble states.

Ensemble States: Let us �rst consider the states of an ensemble. As for fullHelena,
an ensemble state in HelenaLight captures the set of currently existing role instances
with their local states, but in contrast to full Helena, we abstract from component
instances and any notion of data. Thus, the local state of a role instance in Hele-

naLight only stores its role type, the values of all role instance variables used in its
role behavior including the special, prede�ned variable self , the content of its message
queue, and a process expression describing the current progress of its role behavior.

Def. 6.14: HelenaLight Role Instance State

The local state of a role instance in HelenaLight is a tuple (rt , v, q, P ) which

stores the following information:

� the unmodi�able role type rt = (rtnm, rtmsgsout, rtmsgs in) of the instance,

� a (possibly partial) extensible local environment function v : rivars ∪
{self} → N+ mapping local role instance variables to values, i.e., role in-

stances identi�ed by natural numbers,

� the current content q of the input queue of the instance (the empty queue

is denoted by ε, the length of q is denoted by |q|), and
� a process expression P representing the current control state of the instance

or ⊥ representing termination.

The set Lroles denotes all local states of role instances.

An ensemble state in HelenaLight only has to represent the current state of
its constituent role instances. Hence, an ensemble state is a single (extensible) �nite
function which maps role instance identi�ers to local states of role instances.

Def. 6.15: HelenaLight Ensemble State

The global state of an ensemble in HelenaLight is an (extensible) �nite func-

tion σ : N+ → Lroles mapping each role instance identi�ed by a unique role

identi�er to a local state.
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A HelenaLight ensemble state has to satisfy the same restrictions to be well-
de�ned as in Helena. However, the restrictions are reduced to local states of role
instances only since we omit the level of component instances in HelenaLight com-
pletely. That means that (1) the type of the role instance is part of the underlying
ensemble structure, (2) the self reference refers to the unique identi�er of the role in-
stance, (3) all variables in the de�nition domain of the local environment function have
a value pointing to an existing role instance, (4) the input queue of the role instance
stores at most as many messages as its capacity, (5) all messages in the input queue only
name role instances as parameters which exist in the current ensemble state, (6) the
process expression P describing the current control state of the role instance is well-
formed except that variables which occur in the local environment function do not have
to be declared in P before.

Def. 6.16: Well-De�nedness of a HelenaLight Ensemble State

A global HelenaLight ensemble state σ is well-de�ned w.r.t. a He-

lenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) if for all i ∈ σ and σ(i) = (rt , v, q, P ):

(1) rt ∈ roletypes,

(2) v(self) = i,

(3) for any X ∈ dom(v) : v(X) ∈ dom(σ),

(4) |q| ≤ roleconstraints(rt),

(5) for q = msgnm1(k1) · . . . ·msgnmm(km) : k1, . . . , km ∈ dom(σ),

(6) P is well-formed for rt w.r.t. Σ with the exception of all (local) variables

X occurring in dom(v).

Similarly, an admissible initial ensemble state in HelenaLight has to satisfy the
same conditions as in Helena, but without any notion of component instances. There
must exist at least one role instance in an admissible initial ensemble state. All role
instances existing in the initial state must be initial themselves, in the sense that they
must be at the beginning of their corresponding role behavior without having executed
any actions so far.

Def. 6.17: Admissible Initial HelenaLight Ensemble State

A well-de�ned HelenaLight ensemble state σ is an admissible initial state for
the HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) if

(1) there exists i ∈ dom(σ),

(2) for all i ∈ dom(σ): σ(i) = (rt , ∅[self 7→ i], ε, P ) such that

(3) behaviors contains the declaration roleBehavior rt = P , i.e., P is the

process expression in the declaration of the role behavior for rt .

Again, well-de�nedness is not a real restriction if we consider the execution of an
ensemble starting in an admissible initial ensemble state: Any admissible initial state
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of EnsSpec is well-de�ned per de�nition and the SOS rules of HelenaLight which are
presented in the next section preserve well-de�nedness. This follows from the syntactic
restrictions for process expressions and therefore role behavior declarations in Hele-
naLight ensemble speci�cations. The most important restrictions result from send
actions. A send action in a process expression in HelenaLight is only well-formed
if (amongst others) the variables X and Y have been declared before (or refer to the
prede�ned variable self). Declaration however is done via receive or create actions such
that each send action must be preceded by appropriate receive and create actions if a
process expression well-formed. That matches the requirements for well-de�nedness of
the ensemble states described in Def. 6.16.

Structured Operational Semantics Rules: Starting from an admissible initial
state, we can now evolve ensemble states. The allowed transitions are captured by
structured operational semantics (SOS) rules. We again pursue an incremental approach
by splitting the rules into two di�erent layers. The �rst layer describes how a single
role behavior evolves according to the reduced set of constructs for process expressions
of the last section. The second layer builds on the �rst one by de�ning the evolution
of a whole ensemble from the concurrent evolution of its constituent role instances. In
contrast to full Helena, we abstract away from component instances adopting roles
and omit any data like attributes of role instances or data parameters of messages.

On the �rst level, we only formalize the progress of a single role behavior given
by a process expression in HelenaLight. Fig. 6.9 de�nes the SOS rules inductively
over the reduced structure of HelenaLight process expressions in Def. 6.10 where the
symbol ↪−→ describes transitions on this level (in contrast to full Helena, we can omit
the role instance i and the ensemble state σ at the transition).

(action pre�x) a.P
a
↪−→ P

(nondet. choice-1)
P1

a
↪−→i,σ P

′
1

P1 + P2
a
↪−→ P ′1

(nondet. choice-2)
P2

a
↪−→ P ′2

P1 + P2
a
↪−→ P ′2

(process invocation)
P

a
↪−→ P ′

rt
a
↪−→ P ′

if roleBehavior rt = P

Figure 6.9: SOS rules for the evolution of roles in HelenaLight

Termination quit cannot evolve at all. In contrast to full Helena, a role is not
adopted by a component such that the process construct quit simply terminates execu-
tion without any further internal termination action like quitting to play a role. There
are no restrictions on the execution of actions and therefore on action pre�x. Nonde-
terministic choice can either evolve the left branch or the right branch of the construct
depending on the executability of either branch. If another process rt is invoked in the
current process expression, it evolves like the process expression P declared in the role
behavior rt . Note that the rule for process invocation relies on a given role behavior
declaration (and can therefore only be evaluated in a context where this role behavior
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declaration is given). Furthermore, note that process invocations are only allowed for
the role behavior itself in HelenaLight. In summary, the rules for the evolution of
roles in HelenaLight di�er only slightly from the ones in Helena: the if-then-else
construct is omitted in HelenaLight; process invocation is restricted to recursive role
behavior invocation only such that we do not allow to call any other associated process
declaration.

On the next level, we consider ensemble states and the concurrent execution of role
instances. For a given ensemble speci�cation EnsSpec = (Σ, behaviors), the allowed
transitions between ensemble states, denoted by −→Hel, are described by the SOS rules
in Fig. 6.10. They evolve an ensemble speci�cation EnsSpec under the assumption of
asynchronous communication. For each rule, the transition between two ensemble states
is inferred from a transition of process expressions on the role instance level, denoted by
↪−→ in Fig. 6.13. The rules concern state changes of existing role instances in accordance
to communication actions, the creation of new role instances (which start execution in
the initial state of the behavior of their corresponding role type) and state label actions.
The labels on the transitions of −→Hel indicate which role instance i currently executes
which action from its role behavior speci�cation.

(create)
Pi

X←create(rtj)
↪−−−−−−−−−−→ P ′i

σ
i:X←create(rtj)−−−−−−−−−−−→Hel σ′

if


(1) i ∈ dom(σ), σ(i) = (rt i, vi, qi, Pi),

(2) roleBehavior rtj = Pj ,

(3) σ′ = σ[i 7→ (rt i, vi[X 7→ next(σ)], qi, P
′
i )]

[next(σ) 7→ (rtj , ∅[self 7→ next(σ)], ε, Pj)].

(send)
Pi

Y !msgnm(X)
↪−−−−−−−−→ P ′i

σ
i:Y !msgnm(X)−−−−−−−−−→Hel σ′

if



(1) i ∈ dom(σ), σ(i) = (rt i, vi, qi, Pi),

(2) vi(Y ) = j ∈ dom(σ), σ(j) = (rtj , vj , qj , Pj),

|qj | < roleconstraints(rtj),

(3) vi(X) = k ∈ dom(σ)

(4) σ′ = σ[i 7→ (rt i, vi, qi, P
′
i )]

[j 7→ (rtj , vj , qj ·msgnm(k), Pj)].

(receive)
Pi

?msgnm(X:rtj)
↪−−−−−−−−−→ P ′i

σ
i:?msgnm(X:rtj)−−−−−−−−−−→Hel σ′

if


(1) i ∈ dom(σ), σ(i) = (rt i, vi,msgnm(j) · qi, Pi),
(2) j ∈ dom(σ),

(3) σ′ = σ[i 7→ (rt i, vi[X 7→ j], qi, P
′
i )]

(label)
Pi

label
↪−−→ P ′i

σ
i:label−−−−→Hel σ[i 7→ (rt i, vi, qi, P ′i )]

if i ∈ dom(σ), σ(i) = (rt i, vi, qi, Pi).

Figure 6.10: SOS rules for the evolution of ensembles in HelenaLight
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� In contrast to full Helena, we do not have rules for role instance retrieval, opera-
tion call, and attribute setters since these actions are not part of HelenaLight.

� We also omit the rule for quit since in full Helena, at the end of each role
behavior we need an additional step to remove the adopted-by relation between
the role instance and the owning component instance.

� For role instance creation, we do no longer have to take care for the component
instance which adopts the new role instance and for any multiplicity restrictions
for the type of the role to be created.

� The rules for sending and receiving a message are the same as in full Helena
except that we do not have to include any data parameters.

� State labels are handled exactly as in full Helena.

Semantics: The semantic rules of HelenaLight in Fig. 6.10 generate a labeled
transition system with ensemble states evolving by role instance creation, commu-
nication actions of roles, and state labels. For an ensemble speci�cation EnsSpec
and any admissible ensemble state σinit, we retrieve the labeled transition system
THel = (SHel, IHel, AHel,−→Hel) with IHel = {σinit}. The states SHel are all He-
lenaLight ensemble states of the HelenaLight ensemble speci�cation EnsSpec, the
set IHel of initial states only contains σinit, the actions AHel are all HelenaLight
actions on ensemble level, and the transitions in −→Hel are described by the SOS rules
in Fig. 6.10.

6.2.3 HelenaLight LTL

To express goals over HelenaLight ensemble speci�cations, we use a subset of the
LTL formulae de�ned for full Helena in Def. 4.5 on page 71. In contrast to full
Helena, we omit atomic propositions involving attributes and restrict them to state
label expressions of the form rt [n]@label only where rt is a role type of Σ, n ∈ N+ is the
identi�er of a role instance, and label is a state label in a role behavior. LTL formulae
are built over these propositions as explained in Def. 4.1 on page 67.

Satisfaction: As for full Helena, we rely on Def. 4.4 on page 68 which requires a set
of atomic propositions and a satisfaction relation to de�ne satisfaction of LTL formulae
for a labeled transition system.

For an ensemble speci�cation EnsSpec, the semantic rules of HelenaLight in
Fig. 6.10 generate a labeled transition system (SHel, IHel, AHel,−→Hel) for a given
admissible initial state σinit ∈ IHel. The atomic propositions for EnsSpec which are
used to formulate LTL formulae are the state label expressions de�ned by the set
AP (EnsSpec). Therefore, it remains to de�ne a satisfaction relation σ |= p for σ ∈ SHel
and p ∈ AP (EnsSpec).

As for full Helena, an ensemble state σ satis�es rt [n]@label , denoted by σ |=
rt [n]@label , if there exists an active role instance of type rt with identi�er n in σ and
the next action performed by this role instance is the state label label . Formally, that
means that in σ there exists n ∈ dom(σ) with σ(n) = (rt , v, q, label .P ).

Example: For the p2p example, we consider both goals from Sec. 4.2.1. Since we
omit any notion of components and data in HelenaLight, we can no longer refer to
Peer[..]:hasF ile. Thus, we reformulate the achieve goal from Fig. 4.4 on page 71 in
Fig. 6.11.
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�(Provider@stateReqF ile⇒ ♦Requester@stateSndFile)

Figure 6.11: Achieve goal for the p2p example in HelenaLight LTL

In HelenaLight, we omit component types and cannot refer to attributes. There-
fore, we express that the �le exists in the network by the provider reaching its state
labeled by stateReqF ile (note that we have to add � since this state label expression
does not hold in the initial state). In this state, the provider has received the request
for the �le. Thus, since a provider was created, we know that the �le exists in the p2p
network. Similarly, we express that the �le was transferred to the requester by using
the state label stateSndFile of the requester.

The maintain goal in Fig. 4.5 on page 71 cannot be transferred to HelenaLight
since we have no notion of data in HelenaLight. Thus, we cannot express that the
�le is stored in the network or deleted from it.

6.3 PromelaLight

Promela [Hol03] is a language for modeling systems of concurrent processes. Its most
important features are the dynamic creation of processes and support for synchronous
and asynchronous communication via message channels. In our model-checking ap-
proach for Helena, we translate a Helena ensemble speci�cation to Promela and
check the translated speci�cation with the model-checker Spin [Hol03] for goal satisfac-
tion. Thus, we introduce a simpli�ed variant of Promela which is su�cient to express
all features of HelenaLight. We present syntax and semantics of PromelaLight
and discuss goal speci�cations and their satisfaction in PromelaLight.

6.3.1 PromelaLight Syntax

The following syntax is a simpli�ed version of the Promela syntax de�ned in [Wei97].
The constructs specify a signi�cant sub-language of the Promela de�nition which is
su�cient as a target for the translation of HelenaLight.

PromelaLight Speci�cations: Intuitively, a PromelaLight speci�cation con-
sists of a set of process types whose behavior is speci�ed by process expressions. We
�rst de�ne process expressions in PromelaLight based on [Wei97]. We use the same
names for nonterminals as in [Wei97], but sometimes we unfold the original de�nitions
to get a smaller grammar. In contrast to [Wei97], we added the expression false as
an explicit construct corresponding to quit in HelenaLight. Furthermore, the con-
ditional statement and the goto s tatement are not treated as process steps, but as a
process. Consequently, gotos can only occur at the end of a process expression. We also
removed guards from conditional statements, thus obtaining nondeterministic choice.

Def. 6.18: PromelaLight Process Expression

A PromelaLight process expression seq is built from the following grammar,

where label is the name of a state label (used for gotos and veri�cation), var ,
var1, and var2 are the names of variables, const is a constant, pt is the name of

a process type, and typelist is a list of types separated by a comma:
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seq ::= false (empty process)

| step; seq (sequential composition)

| if :: seq1 :: seq2 � (nondeterministic choice)

| goto label (goto)

step ::= run pt(var) (run)

| var1!const , var2 (send)

| var1?const , var2 (receive)

| label : true (state label)

| chan var (channel declaration)

| chan var = [const ] of {typelist} (channel declaration)

Note that send and receive steps concern data tuples const , var2 consisting of a
constant and a variable. Variables can only refer to channels. A channel declaration
chan var = . . . opens the scope for a local channel variable var . We assume that the
names of the declared variables are unique within a process expression and di�erent
from self , which is a prede�ned variable of type chan that can always be used.

A process expression built from the aforementioned grammar has to satisfy some
conditions to be well-formed. Thereby, we rely on the notion of initialization of a
variable: a variable is initialized if either the variable occurs in a receive step as var2
or in a channel declaration with initialization as var or is the special variable self .

Def. 6.19: Well-Formedness of a PromelaLight
Process Expression

A PromelaLight process expression seq is well-formed if

(1) all variables occurring in a send or run step have been initialized before,

(2) the variable var1 in a receive step has been initialized before and the variable

var2 has been declared before, and

(3) the variable var in a channel declaration has not been declared before,

(4) state labels are unique within the process expression seq, and

(5) state labels are not the �rst statement of seq1 or seq2 in the nondeterministic

choice construct if :: seq1 :: seq2 �.

Process expressions are used to de�ne process types. In PromelaLight, a process
type has always one parameter self of type chan which represents a distinguished input
channel for each process instance.

Def. 6.20: PromelaLight Process Type Declaration

A PromelaLight process type declaration has the form

proctype pt(chan self){seq1; startpt : true; seq2}

where pt is the name of the process type and seq1 and seq2 are well-formed process
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expressions not containing a state label startpt : true and any goto expression

occurring in seq has the form goto startpt .

The above de�nition associates a process expression to a process type pt . It allows a
restricted version of recursion by introducing the state label startpt : true and allowing
to jump back to that via goto startpt . This syntactic restriction simpli�es the semantics
since the continuation of a goto is then uniquely determined. Hence, we do not need
to carry the full body of a process type declaration in the semantic states and to search
for labels in the body to �nd the continuation as in [Wei97].

Notation: We use the notation pvars(pt) to denote all variables from channel decla-
ration in the process type declaration for the process type pt .

This allows us to �nally de�ne a PromelaLight speci�cation which just consists of
a set of PromelaLight process type declarations. For simpli�cation, PromelaLight
speci�cations often use enumerations, declared by the keyword mtype, which de�ne
symbolic names for constants. These symbolic names can then be used instead of
constants in send or receive actions as it is shown in the example in Fig. 6.12. Since
these symbolic names just improve readability, we do not formally introduce them in
the PromelaLight speci�cation, but regard them as simpli�cation constructs.

Def. 6.21: PromelaLight Speci�cation

A PromelaLight speci�cation PrmSpec consists of a set of PromelaLight

process type declarations.

Example: The formal translation from HelenaLight to PromelaLight will be dis-
cussed in Sec. 6.4. However to illustrate PromelaLight, we already present here, in
Fig. 6.12, the PromelaLight translation of the simpli�ed variant of the p2p example.
Let us brie�y look at the process type declaration for a router in comparison to the role
behavior declaration in Fig. 6.8. Nondeterministic choice is expressed by reusing the
if -construct of PromelaLight. Role instance creation in HelenaLight is translated
to starting a new process in PromelaLight (line 20 and 24). Asynchronous message
exchange is obtained by passing an asynchronous channel to the newly created process
for communication (line 11 and 12).

6.3.2 PromelaLight Semantics

The semantic domain of PromelaLight speci�cations are again labeled transition
systems. They describe the evolution of a global PromelaLight state. Such a global
state captures the states of the currently existing processes and their associated chan-
nels. Structured operational semantics (SOS) rules again de�ne the allowed transitions
between those global states.

Global States: Let us �rst consider the global state of a PromelaLight speci�ca-
tion. Similarly to ensemble states in HelenaLight, a global state in PromelaLight
captures the currently existing process instances. However, in contrast to input queues
in HelenaLight, process instances communicate via channels which are not owned
by a local process, but belong to the global state. Hence, a global state of a Prome-
laLight speci�cation captures (1) the set of the currently existing channel instances
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1 mtype { reqAddr,
2 sndAddr,
3 reqFile,
4 sndFile }
5

6 proctype Requester(chan self) {
7 chan router = [2] of { mtype, chan };
8 chan prov;
9 chan prov2;

10

11 startRequester: true;
12

13 run Router(router);
14

15 router!reqAddr,self;
16

17 self?sndAddr,prov;
18

19 stateSndAddr: true;
20

21 prov!reqFile,self;
22

23 self?sndFile,prov2;
24

25 stateSndFile: true;
26

27 false
28 }

(a) Message de�nitions and process type
declaration for Requester

1 proctype Provider(chan self) {
2 chan req;
3

4 startProvider: true;
5 self?reqFile,req;
6 stateReqFile: true;
7 req!sndFile,self;
8 false
9 }

10 proctype Router(chan self) {
11 chan req;
12 chan prov = [1] of { mtype, chan };
13 chan router = [2] of { mtype, chan };
14

15 startRouter: true;
16

17 self?reqAddr,req;
18 if
19 ::
20 run Provider(prov);
21 req!sndAddr,prov;
22 false
23 ::
24 run Router(router);
25 router!reqAddr,req;
26 goto startRouter
27 fi
28 }

(b) Process type declarations for Provider
and Router

Figure 6.12: The p2p example in PromelaLight

(together with their states) and (2) the set of the currently existing process instances
(together with their local states).

Let us now look more closely to the formal de�nition of a global state in Prome-
laLight. Intuitively, a global state describes the local states of all currently existing
channels and the local states of all currently existing process instances. Thus, �rstly,
the local state of a channel stores on the one hand the unmodi�able type of entries
which are allowed in the channel and the maximal capacity of the channel and on the
other the current entries in the channel.

Def. 6.22: PromelaLight Channel State

The local state of a channel in PromelaLight is a tuple (T, κ, ω) which stores

the following information:

� the unmodi�able type T of entries of the channel,

� the unmodi�able capacity κ > 0 of the channela, and

� the content ω which is a word of T -values
(the empty word is denoted by ε).

The set C denotes all local states of channels.

aIn PromelaLight we consider only asynchronous communication and do therefore not
allow a capacity κ = 0.
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Secondly, the local state of a process instance stores on the one hand the unmodi�-
able type of the process referring to a process type declaration. On the other hand, it
stores the current values of all local variables used in the process type declaration and
a process expression describing the current progress in its role behavior.

Def. 6.23: PromelaLight Process Instance State

The local state of a PromelaLight process instance is a tuple (pt , β, π) which

stores the following information:

� the unmodi�able process type pt of the instance,

� a local environment function β : pvars(pt) → N+ ∪ {null} mapping local

variables to values (i.e., channel identi�ers or null), and

� process expression π representing the current control state of the instance.

The set P denotes all local states of process instances.

Finally, a global state of a PromelaLight speci�cation captures the local states
of all currently existing channel instances and process instances. The channel instances
and process instances are represented by �nite functions where each channel instance
and each process instance is uniquely identi�ed by a positive natural number2.

Def. 6.24: Global PromelaLight State

The global state γ of a PromelaLight speci�cation is a pair (ch, proc) such

that

� ch : N+ → C is an extensible �nite function mapping each channel instance

identi�ed by a unique channel identi�er to a local channel state and

� proc : N+ → P is an extensible �nite function mapping each process in-

stance identi�ed by a unique process identi�er to a local process instance

state.

A global PromelaLight state has to satisfy some restrictions to be well-de�ned:
(1a) all entries in a channel only name channel instances as parameters which exist
in the current global PromelaLight state, (2a) the PromelaLight speci�cation
contains the corresponding process type declaration for each process instance, (2b) the
self reference of a process instance is in the de�nition domain of izs local environment
function, (2c) the self reference points to an existing channel instance, (2d) all variables
in the de�nition domain of the local environment function of a process instance (except
the self reference) point to an existing channel instance or are null.

Def. 6.25: Well-De�nedness of a Global PromelaLight State

A global PromelaLight state γ = (ch, proc) is well-de�ned w.r.t. a Prome-

laLight speci�cation PrmSpec if

(1) for all c ∈ dom(ch) and ch(c) = (T, κ, ω):

(a) for ω = (msgnm1, c1) · . . . · (msgnmm, cm):

2For technical reasons, explained in the discussion of initial states below, we deviate from [Wei97]
and do not use 0 as an identi�er for channels and processes.
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c1, . . . , cm ∈ dom(ch) and κ ≥ m,

(2) for all i ∈ dom(proc) and proc(i) = (pt , β, π):

(a) PrmSpec contains a process type declaration for pt ,

(b) self ∈ dom(β) and β(self) = i,

(c) β(self) ∈ dom(ch), and

(d) for any X ∈ dom(β) with X 6= self: β(X) ∈ dom(ch) ∪ {null},
(e) π is well-formed except that all (local) variables var ∈ dom(β) must

not be declared or initialized before usage in π.

Furthermore, an admissible initial global PromelaLight state has to satisfy some
restrictions: (1) all existing channel instances do not contain any entries, (2a) the
local environment function of a process instance is empty except the mapping for self
reference which points to a unique channel instance, and (2b) a process instance refers
to a process type declaration contained in the PromelaLight speci�cation and its
current control state corresponds to the complete process expression of the process type
declaration.

Def. 6.26: Admissible Initial Global PromelaLight State

A well-de�ned global PromelaLight state γ = (ch, proc) is an admissible ini-

tial state for a PromelaLight speci�cation PrmSpec if

(1) for all c ∈ dom(ch): ch(c) = (T, κ, ε) for some T and κ,

(2) for all i ∈ dom(proc): proc(i) = (pt , ∅[self 7→ ci], startpt : true; seq) such

that

(a) ci ∈ dom(ch) with ci 6= cj for i 6= j and

(b) PrmSpec contains the process type declaration

proctype pt(chan self){seq1; startpt : true; seq2}.

Concrete initial states in PromelaLight are constructed by running an appropriate
initialization as shown in line 20-23 of Fig. 6.12b where one channel and one requester
instance, using that channel as input, are created. The initialization is executed by a
root process init which implicitly obtains the identi�er 0. However, we do not consider
this process in a PromelaLight speci�cation and are not interested in the veri�ca-
tion of properties for the root process (which anyway does not have any counterpart
in a Helena speci�cation). Thus, we use in our semantic framework and in atomic
propositions of LTL formulae only positive natural numbers for process identi�ers.

As for Helena and HelenaLight, well-de�nedness is not a real restriction since
any admissible initial state is well-de�ned per de�nition and the SOS rules of Prome-
laLight (which are presented in the following) preserve well-de�nedness. This follows
from the syntactic restrictions for well-formed process expressions, and therefore pro-
cess type declarations in PromelaLight speci�cations. Again the most important
restrictions result from send actions. A send action in a process expression in Prome-
laLight is only well-formed if (amongst others) the variables var1 and var2 have been
declared before (or refer to the prede�ned variable self). Declaration however is done
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via channel declarations only. That matches the requirements for well-de�nedness of
the global PromelaLight states described in Def. 6.25.

Structured Operational Semantics Rules: Starting from an admissible initial
state, we can now evolve global PromelaLight states. The allowed transitions are
captured by structured operational semantics (SOS) rules. We also follow a two-level
SOS approach which has been advocated for the formal Promela semantics in [Wei97].
On the �rst level, the SOS rules only deal with the progress of process expressions spec-
i�ed by the nonterminal symbol seq in Def. 6.18. Process instances and their concurrent
execution are considered on the second level.

On the �rst level, we only formalize the progress determined by a single process
expression. Fig. 6.13 de�nes the SOS rules inductively over the structure of Promela-
Light process expressions in Def. 6.18 where the symbol describes transitions on this
level. In contrast to [Wei97], we postpone not only the treatment of process instances,
but also the treatment of local environments and the consideration of channel instances
to the second level.

(sequential composition) step; seq
step
↪−−→ seq

(nondet. choice-1)
seq1

step
↪−−→ seq ′1

if :: seq1 :: seq2 �
step
↪−−→ seq ′1

(nondet. choice-2)
seq2

step
↪−−→ seq ′2

if :: seq1 :: seq2 �
step
↪−−→ seq ′2

(goto) goto startpt
goto startpt
↪−−−−−−−→ startpt : true; seq

if proctype pt(chan self){seq1; startpt : true; seq2}

Figure 6.13: SOS rules for the evolution of process expressions in PromelaLight

The empty process false cannot evolve at all. Sequential composition may always
evolve by doing the �rst step of the composition. Nondeterministic choice can either
evolve the left branch or the right branch of the construct depending on the executability
of either branch. The rule for the goto expression relies on a given process declaration.
Since, in PromelaLight process expressions, it is only allowed to jump to the start
label startpt , the rule is only de�ned for a start label and the goto expression evolves
to a process expression re�ecting the initial state of a process.

On the next level, we consider global states and the concurrent execution of process
instances. For a given PromelaLight speci�cation PrmSpec, the allowed transitions
between global PromelaLight states, denoted by −→Prm, are described by the SOS
rules in Fig. 6.14 and Fig. 6.15.

Transitions between global states are initiated by the actions for sending and re-
ceiving a message, running a new process, state labels and channel declarations. They
evolve a set of process instances which execute in accordance with their process types
under the assumption of asynchronous communication. For each rule, the transition
between two global states is inferred from a transition of a single process expression,
denoted by ↪−→ in Fig. 6.13. We use the same notations as in [Wei97] with less compo-
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nents due to the simpli�ed language (with the exception that we also store the type of
a process instance in its local state). The labels on the transitions of −→Prm indicate
which process instance i currently executes which step from its process type speci�ca-
tion. In the rules, we use the shorthand notations for the extension and update of �nite
functions from Sec. 3.1.

(goto)
πi

goto label
↪−−−−−−→ π′i

(ch, proc)
i:goto label−−−−−−−→Prm (ch, proc[i 7→ (pt i, βi, π

′
i)])

if i ∈ dom(proc), proc(i) = (pt i, βi, πi).

(run)
πi

run ptj(var)

↪−−−−−−−−→ π′i

(ch, proc)
i:run ptj(var)−−−−−−−−−→Prm (ch, proc′)

if



(1) i ∈ dom(proc), proc(i) = (pt i, βi, πi),

(2) βi(var) = c ∈ dom(ch),

(3) proctype ptj(chan self){seq1; startptj : true; seq},
(4) proc′ = proc[i 7→ (pt i, βi, π

′
i)]

[next(proc) 7→ (ptj , ∅[self 7→ c], seq1; startptj : true; seq2)]

(send)
πi

var1!const,var2
↪−−−−−−−−−→ π′i

(ch, proc)
i:var1!const,var2−−−−−−−−−−→Prm (ch′, proc′)

if



(1) i ∈ dom(proc), proc(i) = (pt i, βi, πi),

(2) βi(var1) = c ∈ dom(ch), ch(c) = (T, κ, ω), |ω| < κ,

(3) βi(var2) = v ∈ dom(ch),

(4) ch′ = ch[c 7→ (T, κ, ω · (const , v))],

(5) proc′ = proc[i 7→ (pt i, βi, π
′
i)]

(receive)
πi

var1?const,var2
↪−−−−−−−−−−→ π′i

(ch, proc)
i:var1?const,var2−−−−−−−−−−−→Prm (ch′, proc′)

if



(1) i ∈ dom(proc), proc(i) = (pt i, βi, πi),

(2) βi(var1) = c ∈ dom(ch), ch(c) = (T, κ, (const , v) · ω), v ∈ dom(ch),

(3) var2 ∈ dom(βi),

(4) ch′ = ch[c 7→ (T, κ, ω)],

(5) proc′ = proc[i 7→ (pt i, βi[var2 7→ v], π′i)]

Figure 6.14: SOS rules for the evolution of concurrent process instances
in PromelaLight (part 1)

� The rules for goto and state labels are the simplest ones since they only have
to consider a single process instance. If the process instance i can execute either
a goto action or a state label action, the global state of the PromelaLight
speci�cation evolves to a state where i just executed that action.

� If a new process instance of type pt j is spawned, we create a new process instance
in proc which is in its initial control state.

� If a process instance i can send a message via var1!const , var2, we retrieve the
channel c which is referenced by var1 from the local environment βi of i, check
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whether the capacity of the channel c is not yet exceeded by |ω| < κ, and add the
message (const, v = βi(var2)) to the channel's input.

� Likewise, if a process instance i can receive a message via var1?const , var2, we
retrieve the channel c which is referenced by var1 from the local environment βi
of i, retrieve the �rst message (const, v) from the channel c, and bind the value v
to the variable var2 in the local environment βi of i.

� If a channel variable var is declared without initialization in the process instance
i, we just extend the local environment βi of i by this new (fresh) variable var ,
but only assign the value null.

� If a channel variable var is declared with initialization in the process instance i,
we create a new channel in ch and extend the local environment βi of i by the
new (fresh) variable var which is assigned to the newly created channel.

(label)
πi

label:true
↪−−−−−−→ π′i

(ch, proc)
i:label:true−−−−−−−→Prm (ch, proc[i 7→ (pt i, βi, π

′
i)])

if i ∈ dom(proc), proc(i) = (pt i, βi, πi).

(chan-1)
πi

chan var
↪−−−−−−→ π′i

(ch, proc)
i:chan var−−−−−−−→Prm (ch, proc′)

if

{
(1) i ∈ dom(proc), proc(i) = (pt i, βi, πi),

(2) proc′ = proc[i 7→ (pt i, βi[var 7→ null], π′i)]

(chan-2)
πi

chan var=[const] of {typelist}
↪−−−−−−−−−−−−−−−−−−−−→ π′i

(ch, proc)
i:chan var=...−−−−−−−−−→Prm (ch′, proc′)

if


(1) i ∈ dom(proc), proc(i) = (pt i, βi, πi),

(2) ch′ = ch[next(ch) 7→ (typelist, const, ε)]

(3) proc′ = proc[i 7→ (pt i, βi[var 7→ next(ch)], π′i)]

Figure 6.15: SOS rules for the evolution of concurrent process instances
in PromelaLight (part 2)

Semantics: The semantic rules of PromelaLight in Fig. 6.14 and Fig. 6.15 generate
a labeled transition system with global PromelaLight states evolving by sending
and receiving a message, running a new process, state labels and channel declarations.
For a PromelaLight speci�cation PrmSpec and any admissible global state γinit, we
retrieve the labeled transition system TPrm = (SPrm, IPrm, APrm,−→Prm) with IPrm =
{γinit}. The states SPrm are all global PromelaLight states of the PromelaLight
speci�cation PrmSpec, the set IPrm of initial states only contains γinit, the actions
APrm are all PromelaLight actions on global level, and the transitions in −→Prm are
described by the SOS rules in Fig. 6.14 and Fig. 6.15.

6.3.3 PromelaLight LTL

To express goals over PromelaLight speci�cations, we use LTL formulae. As in He-
lenaLight, we restrict the atomic propositions of LTL formulae to state label expres-
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sions of the form pt [n]@label . However, we explicitly exclude the state label expression
pt [n]@startn from the set of atomic propositions. The state label startn : true will
later on be used in PromelaLight process expression as markers for goto jumps to
allow recursion and should therefore not be considered as an atomic proposition. LTL
formulae are built over these propositions as explained in Def. 4.1 on page 67.

Def. 6.27: PromelaLight LTL

Let PrmSpec be a PromelaLight speci�cation. The set AP (PrmSpec) of
atomic propositions for PrmSpec consists only of state label expressions.

A state label expression is of the form pt [n]@label where pt is a process type

declaration of PrmSpec, n ∈ N+ is the identi�er of a process instance and label 6=
startn is a state label in a process declaration of PrmSpec.
A PromelaLight LTL formula for PrmSpec is an LTL formula over the set

AP (PrmSpec) of the atomic PromelaLight propositions.

Satisfaction: As for full Helena and HelenaLight, we rely on Def. 4.4 on page 68
which requires a set of atomic propositions and a satisfaction relation to de�ne satis-
faction of LTL formulae for a labeled transition system.

For a PromelaLight speci�cation PrmSpec, the semantic rules of PromelaLight
in Fig. 6.14 and Fig. 6.15 generate a labeled transition system (SPrm, IPrm, APrm,−→Prm)
for a given admissible initial state γinit ∈ IPrm. The atomic propositions for PrmSpec
which are used to formulate LTL formulae are the state label expressions de�ned by
the set AP (PrmSpec). Therefore, it remains to de�ne a satisfaction relation γ |= p for
γ ∈ SPrm and p ∈ AP (PrmSpec).

Similarly to Helena and HelenaLight, a global PromelaLight state γ satis�es
pt [n]@label , denoted by γ |= pt [n]@label , if there exists an active process instance of
type pt with identi�er n in γ and the next action performed by this process instance is
the state label label : true. Formally, that means that in γ = (ch, proc) there exists
n ∈ dom(proc) with proc(n) = (pt , β, label : true;π).

6.4 Translation from HelenaLight to PromelaLight

Since we omit the component-based platform and any notion of data in HelenaLight,
also the translation from HelenaLight to PromelaLight can be simpli�ed. The
translation only proceeds in two steps: Firstly, we provide role-to-role communication
facilities by creating a user-de�ned enumeration type in PromelaLight for all message
types from HelenaLight. The enumeration type only provides symbolic names for
the message types to the translation of role behaviors. These symbolic names are simple
constants which do not in�uence veri�cation. Thus, we do not have to consider them
in the correctness proof in the following section. Secondly, for each role type and its
corresponding role behavior declaration in HelenaLight, we create a process type in
PromelaLight which re�ects the execution of the role behavior. Thereby, the trans-
lation of the role behavior declaration is changed due to the simpli�cation of guarded
choice to nondeterministic choice and arbitrary process invocation to recursive role be-
havior invocation. Furthermore, role creation does not longer have to be requested
from a component, but can directly spawn a new process. Role-to-role communication
is additionally simpli�ed since we omit any notion of data.
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In the following, we will present translation functions for each of the steps. Ev-
erything notated in normal or bold font is pure Promela code, everything notated in
italic font has to be evaluated to get Promela code. We assume given a HelenaLight
speci�cation EnsSpec = (Σ, behaviors) with Σ = (nm, roletypes, roleconstraints) being
a HelenaLight ensemble structure.

6.4.1 Role-to-Role Communication Facilities

To re�ect all message types of the ensemble speci�cation EnsSpec, we declare an enu-
meration type in PromelaLight, called mtype, whose constants denote all message
names occurring in the role types of Σ. This enumeration type is the same as in the full
translation (cf. Sec. 5.2.2.4). For the formal proof, the introduction of the enumeration
type itself is not strictly needed and does not in�uence the equivalence proof since all
symbolic names could also be replaced by the corresponding constants. It is introduced
due to readability of the �nal PromelaLight speci�cation only.

The translation function transmsgs for message types is speci�ed in Fig. 6.16 and just
creates this enumeration type. Thereby, the set of all message types of a HelenaLight
ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ = (nm, roletypes, roleconstraints) is
given by:

msgs(EnsSpec) = {msg | ∃rt ∈ roletypes(Σ).

msg ∈ rtmsgsout(rt) ∨msg ∈ rtmsgs in(rt)}.

transmsgs(EnsSpec) = mtype { ∀msg ∈ msgs(EnsSpec) . msgnm(msg) }

Figure 6.16: Translation of role-to-role communication facilities in HelenaLight

The notation ∀msg ∈ msgs(EnsSpec) . msgnm(msg) means that for every message type
msg in the ensemble speci�cation EnsSpec a symbolic name is created which is given
by the name msgnm of the message type msg. We implicitly assume that the created
symbolic names are separated by comma. Note that the curly braces do not express
set braces, they are pure PromelaLight braces which embrace the symbolic names
constituting the enumeration type.

6.4.2 Behaviors of Roles

As for full Helena, role types and their role behavior declaration are re�ected by pro-
cess type declarations in Promela. These process type declarations are responsible
to execute the behavior prescribed by the corresponding role behavior declaration in
Helena. The translation function is speci�ed in Fig. 6.17) and relies on additional
channel declarations speci�ed in Fig. 6.18. The translation function of a role behav-
ior declaration di�ers from the translation for full Helena in Sec. 5.2 in the following
aspects: the if-then-else construct is omitted and arbitrary process invocation is sim-
pli�ed to recursive role behavior invocation only. Furthermore, role creation does not
longer have to be requested from a component, but can directly spawn a new process.
Role-to-role communication when sending and receiving messages is simpli�ed since we
omit any notion of data.

A role behavior declaration for a role type rt is translated to a process type in
PromelaLight with the same name. The process type has one channel parameter self
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transrole(roleBehavior rt = P ) = proctype rt(chan self) {
chandeclsproc(P )

startrt : true;

transproc(P )

}

transproc(quit) = false

transproc(a.P ) = transact(a); transproc(P )

transproc(P1 + P2) = if :: transproc(P1) :: transproc(P2)�

transproc(N) = goto startN

transact(X ← create(rt)) = run rt(X)

transact(Y !msgnm(X)) = Y !msgnm, X

transact(?msgnm(X:rt)) = self?msgnm, X

transact(label) = label : true

Figure 6.17: Translation of a role behavior declaration in HelenaLight

chandeclsproc(quit) =

chandeclsproc(a.P ) = chandeclsact(a); chandeclsproc(P )

chandeclsproc(P1 + P2) = chandeclsproc(P1) chandeclsproc(P2)

chandeclsproc(N) = chandeclsproc(N)

chandeclsact(X ← create(rt)) = chan X = [roleconstraints(rt)] of {mtype, chan}
chandeclsact(Y !msgnm(X)) =

chandeclsact(?msgnm(X:rt)) = chan X

chandeclsact(label) =

Figure 6.18: Channel declarations for a HelenaLight process expression

which re�ects the input queue of the corresponding role type. The process expression
de�ning the process type in PromelaLight starts with the declarations of all local
variables which will be used throughout the process (cf. the function chandeclsproc in
Fig. 6.18). Namely, for each create-action X ← create(rt) in the process expression P
de�ning the role behavior, a local variable X of type chan is declared and initialized
which will later on represent the self channel of the role to be created. For each message
reception ?msgnm(X:rt), a local variable X of type chan is declared which will later
on be used to store the reference X received with the message. Back in the translation
of the role behavior declaration, a label startrt : true follows which is used to re�ect
recursive process invocation by goto jumps in PromelaLight. The label startrt : true
must be unique, i.e., in the HelenaLight role behavior declaration for the role type
rt , there does not exist a state label startrt . Afterwards, the process expression P of
the role behavior is translated into PromelaLight with transproc(P ).

The translation of a HelenaLight process expression is inductively de�ned over
its structure. Termination with quit in HelenaLight is translated to the empty
process false in PromelaLight. Action pre�x a.P in HelenaLight is translated the
sequential composition of the translation transact(a) of the action a and the translation
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transproc(P ) of the process P . Nondeterministic choice P1 + P2 in HelenaLight is
translated to nondeterministic choice with the if -construct in PromelaLight. The
process P1 and P2 are recursively translated to PromelaLight. Process invocation N
in HelenaLight is translated to a goto expression in PromelaLight which jumps to
the state labelN in PromelaLight. Since we only allowed recursive process invocation
for at most the role type rt in a HelenaLight role behavior declaration for rt , this
goto expression can only jump to the beginning startrt : true of the process expression.

The translation of a HelenaLight action is inductively de�ned over its structure
again. The creation of a new role instance X in HelenaLight for the role type rt is
translated to running a new process instance of type rt in PromelaLight. To re�ect
the implicit input queue of the newly created role instance, we declared and initialized
a dedicated channel X with the capacity roleconstraints(rt), which is retrieved from the
associated ensemble structure, at the beginning of the PromelaLight process type (cf.
chandeclsact in Fig. 6.18). This channel X is now given as the input parameter self to
the new process instance in PromelaLight. This channel is able to receive message
consisting of a constant of an enumeration type (denoted by mtype) and a channel
instance (denoted by chan). These two values re�ect the message name and the role
instance parameter of messages in HelenaLight. A send action in HelenaLight is
translated to a send action in PromelaLight where the message name msgnm and
the role instance parameter X are now only separated by a comma. Note that while Y
is a reference to a role instance in HelenaLight, it is a reference to a channel instance
in PromelaLight. For a receive action in HelenaLight, we declared a channel
variable X at the beginning of the PromelaLight process type (cf. chandeclsact in
Fig. 6.18) representing the role instance parameter X. To actually receive the message
in PromelaLight, we wait for a corresponding message with parameter X on the
channel self which re�ects the input queue of the current role instance. A state label
in HelenaLight is directly translated to a state label in PromelaLight.

6.4.3 Translation of an Ensemble Speci�cation

In summary, aHelenaLight ensemble speci�cation EnsSpec is translated to a Prome-
laLight speci�cation by translating all role behavior declarations from HelenaLight

to PromelaLight. Moreover, we add the enumeration type transmsgs(EnsSpec) cre-
ated from all message types of the HelenaLight speci�cation for readability issues as
described before.

Def. 6.28: PromelaLight Translation

Let EnsSpec = (Σ, behaviors) be a HelenaLight ensemble speci�cation such

that any role behavior b ∈ behaviors does not contain a state label startb. Its trans-

lation trans(EnsSpec) to PromelaLight is given by the set of all transrole(b)
for b ∈ behaviors.

Example: As an example, we consider the HelenaLight speci�cation of the p2p
example. The role types are given in Fig. 6.2, the ensemble structure in Fig. 6.4,
and the behaviors of all roles in Fig. 6.6, Fig. 6.7, and Fig. 6.8. With the rules from
Fig. 6.16, Fig. 6.17, and Fig. 6.18, the speci�cation is translated to the PromelaLight
speci�cation shown in Fig. 6.12.
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6.4.4 Translation of Initial States

To be able to show semantic equivalence between HelenaLight and PromelaLight
in Sec. 6.5, we additionally have to translate admissible initial states.

Def. 6.29: Translation of Initial States

Let σ be an admissible initial HelenaLight ensemble state for a HelenaLight

ensemble speci�cation with local states σ(i) = (rt , ∅[self 7→ i], ε, P ) for all i ∈
dom(σ).
Its translation is the admissible initial PromelaLight state trans init(σ) =
(ch, proc), such that

(1) dom(ch) = dom(σ),

(2) dom(proc) = dom(σ), and

(3) for all i ∈ dom(proc):
proc(i) = (rt , ∅[self 7→ ci], chandeclsproc(P ) startrt : true; transproc(P ))
with ci = ((mtype, chan), roleconstraints(rt), ε) ∈ dom(ch)
and ci 6= cj for i 6= j.

6.5 Correctness Proof

In this section, we sketch the proof of the correctness of the translation from Hele-

naLight to PromelaLight, i.e., that a HelenaLight speci�cation and its Prome-
laLight translation satisfy the same set of LTL\X formulae. To this end, Thm. 6.5
provides a criterion for stutter trace equivalence of Kripke structures on which we can
apply Thm. 6.6 entailing preservation of LTL\X formulae. In Sec. 6.5.1, we introduce a
set of silent actions which are internal in PromelaLight and do not have any direct
counterparts in HelenaLight. In Sec. 6.5.2, we de�ne two relations ∼ and ≈ between
the Kripke structures induced from a HelenaLight speci�cation and its Promela-
Light translation. In Sec. 6.5.3, we give an overview about the proof obligations to be
able to apply Thm. 6.5. We have to show that

� the relation ≈ preserves satisfaction of atomic propositions,

� the relation ≈ is divergence-sensitive,

� any admissible initial state of a HelenaLight ensemble speci�cation and its
PromelaLight translation are related by the relation ∼,

� the relation ∼ is a ≈-stutter simulation of the Kripke structure of the Hele-
naLight speci�cation by the Kripke structure of the PromelaLight transla-
tion, and

� the inverse relation ≈−1 is a ≈−1-stutter simulation in the other direction.

Having proven stutter trace equivalence, we can then apply Thm. 6.6 entailing
preservation of LTL\X. The full proof with all details can be found in Appendix A.

6.5.1 Silent Actions

To prove stutter trace equivalence of Kripke structures, we rely on the transitions of the
LTSs which induce the Kripke structures. Thereby, PromelaLight introduces addi-
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tional transitions compared to HelenaLight: Firstly, some preparations for declaring
and initializing local variables are needed at the beginning of the translated role behav-
ior in PromelaLight. Secondly, process invocation is re�ected by several transitions
in PromelaLight, i.e., a jump to the beginning of the role behavior with the action
goto startpt , the execution of the start state label with the action startpt : true, and
the execution of the �rst action of the invoked process. Both actions, the jump and
the execution of the start state label, do not change satisfaction of atomic propositions.
Thus, we consider these actions in PromelaLight as silent and denote them by τ .

Def. 6.30: Silent Action

(1) On the level of process types in PromelaLight, we consider all actions

of the form chan var , chan var = [const ] of {typelist}, startpt : true and

goto startpt for all process types pt as silent and denote them by τ .

(2) On the level of concurrent processes in PromelaLight, we consider all

(global) actions of the form i:chan var , i:chan var = [const ] of {typelist},
i:startpt : true and i:goto startpt for all process types pt as silent and

denote them by τ .

(3) All other PromelaLight actions are considered to be non-silent.

In the correctness proof, we need an additional notation concerning transitions.

Notation: The function transact-global determines for each HelenaLight action on
the ensemble-level the corresponding PromelaLight action on the level of concurrent
processes and is de�ned as follows:

transact-global(i : X ← create(rtj)) = i : run rtj(X)

transact-global(i : Y !msgnm(X)) = i : Y !msgnm, X

transact-global(i :?msgnm(X:rtj)) = i : self?msgnm, X

transact-global(i : label) = i : label : true

6.5.2 Simulation Relations

We now de�ne two relations which both express a correspondence between Hele-

naLight ensemble states and global PromelaLight states, but require a di�erent
level of correspondence. We will later on show that they de�ne ≈-stutter simulations
between the Kripke structures obtained from the labeled transitions systems of the
semantics of HelenaLight and PromelaLight.

Def. 6.31: Relation ∼ and ≈
Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of a

HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

a PromelaLight speci�cation.

The relation ∼ ⊆ SHel × SPrm is de�ned as follows: σ ∼ γ = (ch, proc) if
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(1) dom(σ) = dom(proc) and

(2) for all i ∈ dom(σ) with σ(i) = (rt i, vi, qi, Pi) and proc(i) = (pt i, βi, πi):

(a) rt i = pt i,

(b) dom(vi) ⊆ dom(βi) such that for all X ∈ dom(vi):
vi(X) = j ⇔ βi(X) = βj(self) (where proc(j) = (pt j , βj , πj)),

(c) qi = msgnm1(k1) · . . . ·msgnmm(km) ⇔
ch(βi(self)) = (T, κ, (msgnm1, βk1(self)) · . . . ·(msgnmm, βkm(self))),
T = (mtype, chan), κ = roleconstraints(rt i) and

proc(kj) = (ptkj , βkj , πkj ) for all 1≤j≤m,

(d) πi = transproc(Pi) or

πi = chandeclsproc(Pi) startrt i : true; transproc(Pi)
with roleBehavior rt i = Pi ∈ behaviors.

The relation ≈ ⊆ SHel×SPrm is de�ned just as the relation ∼ with the exception

of item (2d) which is replaced by

(2d) transproc(Pi)
τ∗
↪−→ πi or

chandeclsproc(Pi) startrt i : true; transproc(Pi)
τ∗
↪−→ πi

with roleBehavior rt i = Pi.

Obviously, it holds that ∼ ⊆ ≈.

Firstly, in the de�ned relations, there must be as many role instances in Hele-

naLight as process instances in PromelaLight. Secondly, the local state of each
role instance i must be related to the local state of the process instance with the same
identi�er i: (a) The role type rt i must match the process type pt i. (b) The local vari-
ables in vi must have counterparts in βi, but note that the value types of HelenaLight
and PromelaLight are subtly di�erent. A local variable in HelenaLight points to
a role instance whereas a local variable in PromelaLight points to a channel. More
precisely, a local variable in HelenaLight points to the name of a role instance; in
the PromelaLight translation the same variable points to the input channel of the
corresponding process instance. Furthermore, note that vice versa, there might be local
variables in βi which do not have any counterparts in vi. (c) The content of the input
queue of the role instance must match the content of the corresponding channel of the
process instance. As for local variables, the input queue of the role instance consists
of role instance identi�ers whereas the related PromelaLight input channel contains
the identi�ers of the input channels of the process instances (corresponding to these role
instances). (d) For the process expression πi occurring in the local state of the process
instance, we either require that it is the same as the translation of the process expres-
sion Pi occurring in the local state of the role instance or that it adds declarations (and
initializations) of all local variables and the start label startrt i : true to the translation
of Pi if Pi is the process expression expressing the whole role behavior for the role type
rt i. The latter takes into account that the translation of a role behavior into Prome-
laLight adds the declaration of local variables and a start label at the beginning of
the translated role behavior. For the relation ≈, we weaken both conditions such that
πi must only be reachable by evolution with arbitrary many τ actions.
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6.5.3 Overview of Proof Structure

Table 6.2 summarizes the structure and the ideas how to prove that the induced Kripke
structures of a HelenaLight speci�cation and its PromelaLight translation sat-
isfy the same set of LTL\X formulae. The full proof with all details can be found in
Appendix A. The table lists all auxiliary lemmata and propositions with their proof obli-
gations which we need to �nally prove LTL\X preservation. We further indicate which
lemmata and assumptions were necessary to prove the di�erent proof obligations and
how the syntax de�nitions and well-formedness conditions of HelenaLight ensemble
speci�cations contribute.

The ultimate goal of the proof is to apply Thm. 6.6 which states that two stutter
trace equivalent Kripke structures satisfy the same set of LTL\X formulae. Therefore,
we show stutter trace equivalence of a HelenaLight speci�cation and its Prome-
laLight translation according to Thm. 6.5 by establishing two ≈-stutter simulations
with appropriate properties like property-preservation, divergence-sensitivity, and re-
lating initial states.

Prop. A.8 shows that the relation ∼ is a ≈-stutter simulation of a HelenaLight
speci�cation by its PromelaLight translation. In Prop. A.10, we show that
the relation ≈−1 is a ≈−1-stutter simulation in the other direction. For both
propositions, an auxiliary lemma is needed: Lemma A.7 relates one step on the role
type level of HelenaLight to the corresponding sequence of steps on the process
type level of PromelaLight for the ≈-stutter simulation of HelenaLight by
PromelaLight and vice versa Lemma A.9 for the ≈−1-stutter simulation of
PromelaLight by HelenaLight. The two lemmata are needed to be able to
reason about transitions on ensemble level in HelenaLight based on transitions
on role type level and about transitions on global level in PromelaLight based
on transitions on process type level.

Prop. A.2 shows that the relation ≈ is property-preserving based on the auxiliary
lemma Lemma A.1 which reasons about the relation of structure of process ex-
pressions in HelenaLight and PromelaLight.

Prop. A.5 shows that the relation ≈ is divergence-sensitive. To prove that lemma we
need two auxiliary lemmata Lemma A.3 and Lemma A.4 which explain which
transitions in HelenaLight and PromelaLight are stutter steps according to
the relation ≈.

Prop. A.6 shows that any admissible initial state of a HelenaLight ensemble speci-
�cation is related to its PromelaLight translation by the relation ∼.

Lastly, all �ve propositions Prop. A.2, Prop. A.5, Prop. A.6, Prop. A.8, and Prop. A.10
entail according to Thm. 6.5 that the induced Kripke structure of aHelenaLight
speci�cation and the induced Kripke structure of its PromelaLight translation
are stutter trace equivalent as stated in Thm. A.11. Therefore, we can deduce in
Cor. A.12 that they satisfy the same set of LTL\X formulae.

In the proofs, we need six assumptions which are all satis�ed by the syntactic de�-
nitions and well-formedness conditions of HelenaLight except the last two:

(1) State labels are not the �rst actions of branches of nondeterministic choice con-
structs in HelenaLight role behavior declarations. This is a well-formedness
condition of HelenaLight process expressions in Def. 6.11.
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(2) Recursive process invocation may occur in a HelenaLight role behavior decla-
ration rt at most for rt . This is a syntax restriction in Def. 6.12.

(3) Recursive process invocation may not occur immediately at the beginning of a
HelenaLight role behavior declaration. This is a syntax restriction in Def. 6.12.

(4) All state labels in HelenaLight role behavior declarations are not of the form
startrt . This is an additional assumption which is not part of the syntax restriction
or well-formedness conditions, but is required for stutter trace equivalence between
HelenaLight and PromelaLight.

(5) The �rst action of a HelenaLight role behavior declaration is not a state label.
This is an additional assumption which is not part of the syntax restriction or
well-formedness conditions, but is required for stutter trace equivalence between
HelenaLight and PromelaLight.

(6) In any nondeterministic choice in a HelenaLight role behavior declaration, pro-
cess invocation is not one of the branches. This is an additional assumption which
is not part of the syntax restriction or well-formedness conditions, but is required
for divergence-sensitivity of the relation ≈.
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6.6 Correctness of the Full Translation

The correctness proof of the simpli�ed translation is extended to the full translation.
In the following, we �rst summarize which are the main extension points in the proof to
re�ect fullHelena. Afterwards, we informally explain for each of the main propositions,
how the proof is extended to full Helena.

6.6.1 Main Extension Points of the Proof

To recap the additional features which Helena o�ers in contrast to HelenaLight, we
summarize the main points of Table 6.1 once again: (1) Full Helena extends the role-
based model of HelenaLight by components which adopt roles and serve as computing
and storage resources. (2) Data can be stored on components and roles as well as
exchanged by messages between roles. Based on the data, we also introduce an if-then-
else construct selecting between branches based on guards opposed to nondeterministic
choice. (3) Messages allow lists of role instance parameters and data parameters instead
of a single role instance parameter. (4) The number of allowed instances per role type is
restricted by a minimal and maximal count. (5) Arbitrary process invocation is allowed
instead of recursive role behavior invocation only.

For the correctness proof, these additional features mainly require to introduce more
silent actions and particular data structures to include data. Some steps have to be
composed to an atomic sequence of actions to particularly re�ect the semantics of non-
deterministic choice and the if-then-else construct. Furthermore, goto-jumps to the
beginning of a translated role behavior have to be generalized to jumps to arbitrary
points in a translated role behavior. (1) More speci�cally, some additional steps are
required in Promela to realize role-to-component communication for role creation, re-
trieval, and termination as well for access of component attributes and for component
operation calls, e.g., packing and unpacking a variable of type �Op� and exchanging
messages between the role and the component (cf. Fig. 5.10 and Fig. 5.16). These steps
are considered as silent actions in the proof which just execute some auxiliary steps
needed in Promela in contrast to Helena to �nally progress the state of the over-
all Promela system similarly to the ensemble state in Helena. However, we make
all actions executed by the component process atomic by using the atomic-block of
Promela such that they can be considered as one step and therefore do not in�uence
the formal proof. (2) Stored data in attributes of components and roles is translated to
values of parameters and local variables in Promela (cf. Fig. 5.10 and Fig. 5.12). This
just extends the representation of states and any changes to the stored data directly
results in changes in the state. To send and receive messages containing data, we extend
the transferred message by more parameters to describe messages with a payload. To
represent the Helena if-then-else construct in Promela, we use the nondeterministic
if -construct in Promela where the �rst statement is the translated guard and the
following statements are the translated process expressions. To guarantee atomicity of
the evaluation of the guard and the execution of the �rst action, we encapsulate the
whole if -construct in Promela in an atomic-block. Furthermore, we have to make
the assumption that the �rst action of each branch has to be executable (cf. Sec. 5.1).
Without this assumption, the Promela speci�cation could select a branch which would
later on not be executable while the Helena speci�cation would immediately single out
this non-executable branch (cf. Sec. 5.1 for an explanation of this problem). (3) To al-
low lists of parameters in message exchange, we extend each message by a �xed number
of parameters re�ecting the maximum number of parameters which a message has in
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the Helena speci�cation. If the actual message to be exchanged has fewer parameters
than the maximum number, dummy parameters are introduced. (4) The restriction on
the number of allowed role instances is expressed in Helena by side-conditions of the
semantic rules for role creation and the quit process (cf. Fig. 3.3). In Promela, the
restriction is expressed by the same boolean expression used as a statement pre�xing
spawning a new role process and quitting to play a role in the component process (cf.
Fig. 5.10). Thereby, we exploit the fact that a boolean expression as a statement can
only be executed if it evaluates to true. For the proof, this means that the boolean
expression is considered as a silent action which establishes the side-condition of the
semantic rule in Helena. (5) Lastly, we allow arbitrary process invocations by inlining
the translated process declarations into the translated role behavior and jumping to the
beginning of the translated process declaration with a goto-statement for every process
invocation (cf. Fig. 5.13). This is a straightforward extension of the idea of recursive
role behavior invocation which we allowed in HelenaLight. Therefore, in the proof
of the full translation, arbitrary process invocation is handled analogously to recursive
role behavior invocation. However, this requires to generalize the condition that no role
behavior declaration may start with a state label to process declarations, i.e., for the
full proof, no role behavior declaration and no (local) process declaration in Helena
may start with a state label.

6.6.2 Overview of the Proof Structure

After having summarized the main extension points of the proof, we explain in this
subsection how these extension points in�uence the proof of each main proposition.

Extended Simulation Relations: We �rst informally de�ne the relations ∼ and
≈ for full Helena based on Def. 6.31 for HelenaLight. Firstly, the mapping in
both relations between the local states of roles in Helena and the local states of the
corresponding role processes in Promela must be extended to capture the additional
features of roles in the full version of Helena: In both relations ∼ and ≈ for the
simpli�ed versions of Helena and Promela, the local environment function v for role
instance variables in HelenaLight is mapped to the local environment function β for
local variables in PromelaLight. This mapping is extended such that also all values of
role attributes and all data variables in Helena are re�ected by the local environment
function β in Promela. Thereby, we take into account that the values in Promela
are typed as channels for role instance variables and by one of the built-in Promela
data types for role attributes and data variables. Furthermore, the local state of a role
in Helena also stores a reference to its owning component. In both relations ∼ and ≈,
this reference must be re�ected in the local state of the corresponding role process in
Promela by a reference to the self channel of the owning component process. Secondly,
both relations ∼ and ≈ must map the local states of components in Helena to the local
states of the corresponding component processes in Promela. We de�ne the mapping
analogously to roles in Def. 6.31, but extend it similarly as before with a mapping
between the local environment functions for component attributes and associations.

Entire Set of Silent Actions: Furthermore, we have to assume some of the state-
ments in the Promela translation as silent. We rigorously consider all statements in
the component process as silent (cf. Fig. 5.10) as well as all statements in the role pro-
cess (cf. Fig. 5.12, Fig. 5.13, and Fig. 5.16) except the last statement (possibly a whole
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atomic block) of each translated Helena action. All Promela statements before the
last one can be considered silent since they do not change equivalence of the Helena
ensemble state and the corresponding global Promela state according to the extended
relation ≈.

Entire Set of Assumptions: As listed in Table 6.2, we require a set of assumptions
during the proof. These conditions apply to full Helena as well while some have to be
lifted to full Helena:

� The following assumptions are either guaranteed by well-formedness conditions
(cf. Def. 2.10): State labels are not the �rst action of any branch of nondetermin-
istic choice or the if-then-else construct. Role behavior declarations and process
declarations do not immediately call themselves. The last assumption also pro-
hibits a chain of direct process invocations in which one process invocation occurs
two times, e.g., N is called which immediately calls M and this immediately calls
N again.

� Role behavior declarations do not contain any start labels startN being N the
name of a role type or a process. This assumption is not guaranteed by the
syntax of Helena or any well-formedness conditions, but it is needed to show
property-preservation of the relation ≈.

� No role behavior declaration and also no process declaration may start with a
state label. This assumption is not guaranteed by the syntax of Helena or any
well-formedness conditions, but it is needed to establish stutter trace equivalence.

� Process invocation is not allowed as one branch in any nondeterministic choice
or if-then-else construct in a role behavior in the Helena speci�cation. This
assumption is not guaranteed by the syntax of Helena or any well-formedness
conditions, but it is needed to establish divergence-sensitivity of the relation ≈.

� The create-action is only allowed as �rst action of a branch in nondeterministic
choice or an if-then-else construct if the multiplicity of instances of the role type
to be created is not yet exceeded and the owning component instance does not yet
play the role. This assumption is not guaranteed by the syntax of Helena or any
well-formedness conditions, but it is needed to establish divergence-sensitivity of
the relation ≈ (cf. Sec. 5.1 for a detailed explanation).

� The get-action is only allowed as �rst action of nondeterministic choice or an
if-then-else construct if the requested owning component is guaranteed to cur-
rently adopt the requested role. This assumption is not guaranteed by the syn-
tax of Helena or any well-formedness conditions, but it is needed to establish
divergence-sensitivity of the relation ≈ (cf. Sec. 5.1 for a detailed explanation).

� Sending a message is only allowed as �rst action of a branch of an if-then-else
construct if the capacity of the message queue of the receiving role is not yet
exceeded. This assumption is not guaranteed by the syntax of Helena or any
well-formedness conditions, but it is needed to establish divergence-sensitivity of
the relation ≈ (cf. Sec. 5.1 for a detailed explanation).

With the extended relations ∼ and ≈, silent actions, and assumptions, we can now
transfer the proofs of each main proposition to full Helena:

Satisfaction of LTL\X Formulae in ≈-Equivalent States: Prop. A.2 and its
auxiliary lemma Lemma A.1 show that ≈-equivalent states satisfy the same set of
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LTL\X formulae, i.e, the relation ≈ is property-preserving. The proof can directly
be transferred to full Helena. Its argumentation is extended to the full set of Helena
process expressions and actions. It just requires to lift the assumptions to full Helena
and to extend the set of silent actions as explained before.

Divergence-Sensitivity of the Relation ≈: Prop. A.5 and its auxiliary lemmata
Lemma A.3 and Lemma A.4 show that the relation ≈ is divergence-sensitive. Here again
the proof can directly be transferred to full Helena if the assumptions are lifted to full
Helena and the set of silent actions is extended. In the argumentation, special care
has to be taken for nondeterministic choice and the if-then-else construct. As in Hele-
naLight, process invocation is not allowed as branch of nondeterministic choice which
is now also extended to the if-then-else construct. Furthermore, we have to introduce
some conditions when a create-action, a get-action or message reception are allowed
as �rst action of a branch of nondeterministic choice or the if-then-else construct (cf.
Sec. 5.1 for a detailed explanation of the conditions). These restrictions are necessary to
avoid that the Promela translation can get stuck while the Helena speci�cation can-
not. For a Helena speci�cation, a branch of nondeterministic choice is not selected for
execution if its �rst action is not executable (and similarly for the if-then-else construct).
In Promela, this Helena action might be translated to several steps where the �rst
one is executable, but a later one is not. Thus, in the Promela translation, a branch
might be selected for execution which is actually not executable. This problem cannot
be avoided by encapsulating all Promela steps into an indivisible sequence of actions
with the Promela atomic-block because executability is still decided based on the
�rst action of the atomic-block. Therefore, we have to restrict nondeterministic choice
and the if-then-else construct as described above to guarantee divergence-sensitivity of
the relation ≈.

∼-Equivalence of Initial States: Prop. A.6 shows that an admissible initial state of
a Helena speci�cation and its Promela translation can be related by the relation ∼.
With a simple extension of the translation for initial states, the proof is trivial.

≈-Stutter Simulation of Helena Speci�cations: Prop. A.8 and its auxiliary
lemma Lemma A.7 show that the relation ∼ is a ≈-stutter simulation of the induced
Kripke structure of a HelenaLight speci�cation by the induced Kripke structure of
its PromelaLight translation. The proof argumentation is again extended to the
full set of Helena process expressions and actions which again requires to lift the as-
sumptions to full Helena and to extend the set of silent actions as explained before.
Two points in the proof require special care: Firstly, the if-then-else construct is trans-
lated to the nondeterministic if -construct in Promela where the �rst statement is a
boolean expression and re�ects the guard of the branch. Similarly to the realization of
multiplicities of role instances in Promela, we again exploit the fact that a boolean
expression as a statement can only be executed if it evaluates to true. For the proof,
this means that the boolean expression is considered as a silent action which establishes
the side-condition of the semantic rule for guarded choice in Helena. Secondly, we rely
on atomicity of the if-then-else construct and all actions of the component process to
show that the Promela translation takes some silent steps compared to the original
Helena speci�cation which does not change ≈-equivalence of states.
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≈-Stutter Simulation of Promela Translations: Prop. A.10 and its auxiliary
lemma Lemma A.9 show that the relation ≈−1 is a ≈−1-stutter simulation of the in-
duced Kripke structure of a Promela translation by the induced Kripke structure of
its corresponding Helena speci�cation. The proof argumentation is extended in the
same points as the previous paragraph.

Lastly, we want to mention why we did not use the atomic keyword to make all
translation of actions atomic, but rather introduced silent actions to hide additional
steps in Promela. This would have led to a more scattered Promela speci�cation
while we wanted to keep it as clean and directly relatable to Helena as possible.
Furthermore, the atomic-block only encapsulates actions into an indivisible sequence
of actions, but the executability of the whole block is still decided based on the �rst
action of the block.. However, to actually gain an advantage from the usage of the
atomic-block, it would be nice if the Promela semantics and Spin allowed to check
the executability of the atomic-block as a whole instead of just based on the �rst action.

6.7 Publication History

The idea and the structure for the correctness proof has already been presented for
HelenaLight and its translation to PromelaLight in [HKW15]. This chapter aug-
mented by the Appendix A presents the proof for HelenaLight in full detail. All
theorems and auxiliary lemmata are precisely stated and proven correct. Particular
care is taken for the edge case of divergence-sensitivity. For that reason, the translation
had to be changed such that channel declarations are shifted to the beginning of the
translated role behavior in PromelaLight.

The extension of the correctness proof to full Helena has already shortly been
discussed in [Kla15b]. This chapter describes the extension in more detail, though not
formally showing the correctness.
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Chapter 7

Implementation
Vivifying Helena with jHelena

To realize ensemble-based systems following the role-based modeling approach He-

lena, this chapter describes the prototypic implementation and execution framework
jHelena. It is realized in Java and transfers the concepts of roles and collaborations in
ensembles to an object-oriented implementation. Roles are implemented as Java threads
on top of a component. Role objects are bound to speci�c ensembles while components
can adopt many roles in di�erent, concurrently running ensembles.

The goal of the framework is twofold: jHelena implements the structural and
dynamic rules enforced by the formal modeling concepts of ensemble speci�cations and
their semantics. It furthermore provides an interface for the developer to realize concrete
ensemble-based applications according to the Helena approach and to allow to execute
them. To support both goals, the framework contains two layers, a metadata layer and
a developer interface, and an orthogonal system manager.

� With help of the metadata layer, the developer can de�ne ensemble structures.
For that, the metadata classes must be instantiated by objects which represent
the various kinds of types that can occur in an ensemble structure, like role types,
message types, etc. Thus an ensemble structure is represented by a net of objects
which are linked in accordance with the general rules for ensemble structures.

� The developer interface contains abstract base classes to implement concrete
components, roles, messages, etc. They are related to the metadata classes by asso-
ciations determining their types. The abstract classes of the developer interface

must be extended by the developer to implement concrete ensembles in accordance
with a particular ensemble structure (de�ned on the metadata level). Most im-
portantly, for each concrete role class the behavior of the instances of that role
must be realized. The framework prescribes that any role instance is an active
object implemented as a thread whose run-method executes the role behavior.

� The system manager is responsible to instantiate ensemble structures, to create
the underlying component-based platform, and to create and run ensembles on top
of it. For a particular ensemble-based application, this class has to be extended
to prescribe the contributing types of the ensemble structure, the particular com-
ponents forming the component-based platform, and the ensemble to be run on
top of that.

In the following, we �rst present the architecture of the jHelena framework in
Sec. 7.1. The next three sections, Sec. 7.2, Sec. 7.3, and Sec. 7.4, cover the two layers and
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the abstract system manager of the framework in detail. To illustrate the application
of the framework, Sec. 7.5 walks through the implementation of the p2p example. We
�nish with a discussion of related work in Sec. 7.6 and concluding remarks in Sec. 7.8.

The complete implementation of the jHelena framework can be found on the at-
tached CD in the project eu.ascens.helena. The application of this framework to the
p2p example is exercised in the project eu.ascens.helena.p2p.

7.1 Architecture

The jHelena framework is implemented in Java and consists of two layers, the metadata
layer and the developer-interface, which both are used by a system manager. Its
architecture is shown in Fig. 7.1.
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Figure 7.1: Architecture of the jHelena framework

The metadata layer allows to de�ne the meta model of ensemble speci�cations in
terms of component types and ensemble structures (and thus role types etc.)
according to the de�nitions in Chap. 2. Thereby, the ensemble-related parts
built upon the component-related parts as indicated by the dependency arrow
from left to right, e.g., to de�ne the possible owning component type of a role
type. The classes of this layer provide the means to describe the structural as-
pects of an ensemble structure, the internals of the framework guarantee that
all syntactical restrictions from Chap. 2 are respected during the de�nition of
an ensemble structure. For example, this layer takes care that a role type rt =
(rtnm, rtcomptypes, rtattrs, rtmsgsout, rtmsgs in) is re�ected in jHelena by a role
type class which is associated to a set of component type classes which can play
this role, to a set of role-speci�c attribute classes, and to a set of outgoing and
incoming message classes for message exchange. Other associations are forbidden
by the framework.

The developer-interface provides the basic functionality to realize an actual
ensemble-based application and implements the execution semantics of Helena.
The developer extends the abstract base classes of this layer to implement con-
crete components, indicated by C1,C2,C3, as well as concrete ensembles including
roles and their behavior, indicated by E1,E2,E3,E4. As in the previous layer, the
ensemble-related parts built upon the component-related parts as indicated by the
dependency arrow from left to right. Furthermore, this layer provides the means
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to describe the dynamic aspects of an ensemble. A further set of classes allows to
de�ne role behaviors according to the syntax of Helena ensemble speci�cations
in Chap. 2. By relying on these classes, the developer is forced to adhere to the
basic structure of role behaviors and it is guaranteed that the execution semantics
of Helena is preserved.

The system manager and its concrete, application-dependent extension are respon-
sible for the con�guration of the component-based platform and ensemble struc-
tures, the creation of initial ensemble states, and the launch of concrete ensemble-
based applications running ensembles concurrently on top of the component-based
platform. Most certainly, the system manager thereby relies on the (component-
related and ensemble-related) infrastructure of the jHelena framework. Extend-
ing the abstract SysManager class guides the developer through its main activi-
ties: The developer �rst needs to implement the method configureTypes() (cf.
Fig. 7.2) which con�gures all structural types for the application, i.e., component
types and operation types, role types and message types as well as ensemble struc-
tures formed from role types relying on component types. Afterwards, the method
createComponents() initializes all component instances providing the component-
based platform for the application-speci�c ensembles. Lastly, the initial state of
each ensemble is established and the ensembles themselves are launched in the
method startEnsembles(). With this method, many concurrently running en-
sembles can be started one after the other.

In following sections, we discuss in detail how the formal de�nitions of ensemble
structures are realized in the metadata layer of jHelena, which infrastructure the
developer-interface provides for the implementation of actual ensemble-based ap-
plications, and how the system manager handles the initialization of concrete ensemble-
based applications. The complete implementation of the jHelena framework can be
found on the attached CD in the project eu.ascens.helena.

7.2 Metadata Layer

The upper package of Fig. 7.2 gives an overview of the metadata layer. All types used
to provide a component-based platform and to build ensemble structures are realized
by corresponding metadata classes; the relationships between types are represented by
associations in the metadata layer of the jHelena framework. Hence, this layer de�nes
the meta model of a component-based platform and the ensemble structures building
on top of it. Concrete instances of classes on this layer represent the types contributing
to the ensemble-based system (and not the actual instances of the types). We walk
through all classes of this layer in unison with their counterparts of the formal Helena
syntax.

7.2.1 Component-Based Platform

The main element forming the component-based platform in Helena is a component
type ct = (ctnm, ctattrs, ctassocs, ctops). Abstractly, such a component type is repre-
sented in jHelena by the class ComponentType:
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Figure 7.2: jHelena framework and its application to the p2p example (for readability
some associations are omitted and only mentioned in the following descrip-
tions, e.g., for the class NondeterministicChoice)

� The name ctnm of the component type rt is stored in an attribute name of the
class ComponentType (not shown in the diagram). The attribute name has the type
Class<? extends Component>. This ensures, using the re�ection mechanism of
Java, that only those objects of the class ComponentType can be created whose
name attribute refers to a component class extending the abstract class Component
of the developer-interface (cf. Sec. 7.3).

� The component type attributes ctattrs are determined by the association with end
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attrTypes directed from the class ComponentType to the class DataFieldType. The
super class AbstractFieldType<T> of the class DataFieldType represents abstract
�elds (like known as attributes of Java classes) which have a name and a certain
type T. The class DataFieldType instantiates the type parameter T by the class
Object such that an instance of the class DataFieldType represents an arbitrary
data attribute.

� Similarly, the component association types ctassocs of the component type ct are
determined by the association with the end assocTypes directed from the class
ComponentType to the class ComponentAssociationType. This class instantiates
the type parameter T of its super class AbstractFieldType by the class Component
such that an instance of the class ComponentAssociationType represents only as-
sociations to other components.

� Finally, the operation types ctops provided by the component type ct are deter-
mined by the association with the end opTypes directed from the class
ComponentType to the class OperationType. To represent an operation type op =

opnm(
−−−→
x : dt), the class OperationType stores the name of the operation type in an

attribute name of type Class<? extends Operation> analogously to the name of a
component type. Furthermore, it requires a list −→x of data parameters represented
by an ordered list of instances of the class DataFieldType (the association from
OperationType to DataFieldType is not shown in Fig. 7.2).

Particular component types are represented by objects of the class ComponentType. They
are constructed with the static factory method createType of the class ComponentType
(not shown in the diagram) such that the actual parameters point to objects representing
the constituent parts of a component type like its association types.

7.2.2 Ensemble Structures

Components team up in ensembles to perform certain tasks. Each participant of an
ensemble is described by a role type. The class RoleType represents such a role type
rt = (rtnm, rtcomptypes, rtattrs, rtmsgsout, rtmsgs in):

� The name rtnm of the role type rt is stored in an attribute name of the class
RoleType (not shown in the diagram). Analogously to the attribute name of the
class ComponentType, this attribute has the type Class<? extends Role>. This
ensures, using the re�ection mechanism of Java, that only those objects of the
class RoleType can be created whose name attribute refers to a role class extending
the abstract class Role of the developer-interface (cf. Sec. 7.3).

� The set rtcomptypes of component types, which are able to adopt the role type rt ,
is represented by an association with end compTypes directed from the class
RoleType to the class ComponentType which was already described before.

� Similarly to component attributes for component types, the role type attributes
rtattrs of a role type rt are determined by the association with end attrTypes

directed from the class RoleType to the class DataFieldType.

� Lastly, the sets of message types rtmsgsout and rtmsgs in representing outgoing
and incoming messages supported by the role type rt are modeled as associations
with end msgTypesOut and msgTypesIn directed from the class RoleType to the
class MessageType. Analogously to the representation of operation types, a mes-
sage type msg = msgnm(

−−−→
X : rt)(

−−−→
x : dt) is represented by the class MessageType.
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The class stores the name of the message type in an attribute name of type
Class<? extends Message>. The list

−→
X of role instance parameters is represented

by an ordered list of instance of the class RoleFieldType, the list −→x of data param-
eters by an ordered list of instances of the class DataFieldType (both associations
from MessageType are not shown in Fig. 7.2).

Particular role types used in an ensemble structure are represented by objects of the
class RoleType. They are constructed with the static factory method createType of the
class RoleType (not shown in the diagram) such that the actual parameters point to
objects representing the constituent parts of a role type.

Several role types collaborate in an ensemble. The structural relationships between
the collaborating role types are described by an ensemble structure Σ = (nm, roletypes,
roleconstraints) which is represented in jHelena by an object of the corresponding class
EnsembleStructure. The set roletypes of role types contributing to the ensemble is de-
termined by the association with end roleTypes directed from the class
EnsembleStructure to the class RoleType. The role constraints roleconstraints fur-
thermore determine how many instances per role type may and have to contribute to
the ensemble and how many messages the input queue of each role type can store. The
multiplicity constraints are represented by an additional parameter of the list of role
types of the class EnsembleStructure. However, the capacity of the input queue is
stored per role type (not shown here). Again, particular ensemble structures are repre-
sented by objects of the class EnsembleStructure. They are constructed with the static
factory method createType of the class EnsembleStructure (not shown in the diagram)
such that the actual parameters point to objects representing the constituent parts of
an ensemble structure.

7.3 Developer Interface

The goal of the developer interface is to facilitate the implementation of concrete
ensemble applications by providing abstract base classes for all formal Helena concepts
and to guarantee that the execution semantics of Helena is preserved by these abstract
classes. In contrast to the metadata layer, concrete instances of classes on this layer
represent actual instances of Helena types. For instance in our p2p example, the role
type Router is a type instance on the metadata layer while the router with ID 1 is
an instance on the developer interface layer whose type is de�ned by the role type
Router.

In the following, we divide the set of classes provided by the developer interface

into two categories: classes to represent the instances of component types, role types
and ensemble structures and their current state according to the Helena semantics (cf.
Sec. 3.2) and classes to represent role behaviors and their execution according to the
structural operational semantic rules of Helena (cf. Sec. 3.3).

7.3.1 Instances and Their Current State

The �rst part concentrates on classes which represent the Helena instances of the He-
lena types. As depicted in Fig. 7.2, the developer interface o�ers the abstract classes
Component, Role, and Ensemble for the corresponding metadata classes; the subclasses
of AbstractFieldType do not need any counterparts in the developer interface since
attribute instances are implicitly represented by Java instance variables and their values
associated to component and role instances. Each abstract class has an association with
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end type to the corresponding metadata class such that the type of an instance can be
determined.

As already mentioned, instances of the classes of the metadata layer represent He-
lena types while instances of the classes of the developer interface representHelena
instances like role instances. These two layers are necessary to guarantee compliance of
an ensemble-based system developed in jHelena with the formal rules and restrictions
of the Helena modeling approach. The metadata layer prescribes how the di�erent
Helena types can or must be connected. The developer interface takes care for the
de�nition and execution of the dynamic behavior of an ensemble-based system. Without
the metadata layer, all type information would have to be encoded into the developer

interface. For example, the class Role would have to provide static �elds to store
the allowed owning component types or the supported message types. Extracting this
static information about the relationships between types to the metadata layer allows
to focus with the developer interface just on the dynamic aspects of an ensemble,
i.e., its current state and its execution.

The relationships between the abstract classes characterize the state of an ensemble
according to the formal Helena semantics in Chap. 3.

� According to Def. 3.4 on page 50, the global state σ of an ensemble is de�ned as a
pair (comps, roles) where comps is a function mapping each component instance
contributing to the ensemble to its local state and roles is a function mapping
each role instance participating in the ensemble to its local state. In jHelena,
an ensemble is represented by an instance of the class Ensemble. The set comps
of component instances contributing to the ensemble is given by the association
with end comps directed from the class Ensemble to the class Component. The
set roles of role instances currently participating in the ensemble is given by the
association with end roles directed from the class Ensemble to the class Role.

� According to Def. 3.2 on page 46, the local state of a component instance is
de�ned as a tuple (ct, atc, as) where ct is the component type of the instance, atc

is a function mapping attributes of the component type ct to values, and as is a
function mapping component associations of the component type ct to component
instances. In jHelena, a component instance is represented by an instance of the
class Component. The component type ct of the instance can be accessed via the
association with end type from the Component to the class ComponentType. The
attribute values atc and the component association values as of the component
instance are given by the current values of the instance variables of the concrete
component class later on (cf. Sec. 7.5).

� According to Def. 3.3 on page 48, the local state of a role instance is de�ned as a
tuple (rt , ci, atr, v, w, q, P ) where rt is the role type of the instance, ci is the owning
component instance of the role instance, atr is a function mapping attributes of
the role type rt to values, v is a function mapping role instance variables to values,
w is a function mapping data variables to values, q is the current content of the
input queue of the role instance, and P is process expression representing the
current control state of the role instance. In jHelena, the role type rt of the
instance can be accessed via the association with end type from the class Role

to the class RoleType. The association with end owner navigates to the unique
component instance ci which currently adopts this role. The attribute values
atr of a role instance are given by the current values of the instance variables
of the concrete role class later on (cf. Sec. 7.5). Similarly, the values of role
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instance variables and data variables are implicitly given by the current values
of the instance variables of the concrete role which are accessed when the role
behavior is executed. The input queue q is represented by the association with
end input from the class Role to RoleInputChannel. The current control state P
of each role instance is represented by the association with end p from the class
Role to the class ProcessExpression.

To implement a concrete ensemble application, the abstract classes of the developer
interface must be extended by concrete subclasses as indicated by the inheritance
arrows to the lower p2p layer in Fig. 7.2. The framework ensures, using Java re�ection,
that concrete subclasses and the attributes of concrete component and role classes �t
to an ensemble structure represented by type instances on the metadata level.

7.3.2 Evolution of Instances

The second part of the developer interface concentrates on classes which represent
the description of role behaviors and allow their execution in unison with the Helena
semantics.

7.3.2.1 Description of Role Behaviors

As depicted in Fig. 7.2, the developer interface o�ers the abstract classes
ProcessExpression and Action together with their concrete subclasses to describe role
behaviors. The subclasses of the class ProcessExpression represent all constructs of
process expressions according to Def. 2.9 on page 25; one additional subclass Bottom

represents the semantic extension ⊥ describing that a role �nished its role behavior
(cf. Sec. 3.2.2). For these subclasses, Fig. 7.2 only shows the associations for the
simplest class ActionPrefix. Similarly to the syntactic construct of action pre�x in
Def. 2.9, the class is characterized by an action (represented by the association with
end a from the class ActionPrefix to the class Action) and the following process expres-
sion (represented by the association with end p from the class ActionPrefix to the class
ProcessExpression). All other process expressions are analogously implemented (not
all associations needed in the implementation are shown in Fig. 7.2). The subclasses
of the class Action represent all actions according to Def. 2.9. To describe the actions,
the classes Operation and Message are additionally used to represent concrete operation
calls and exchanged messages.

The class Role o�ers an abstract method initializeRoleBehavior which must be
implemented by concrete subclasses, i.e., concrete roles. The implementation of this
method uses the hierarchy of classes for process expressions and actions, concrete mes-
sage and operation classes as well as role instance and data variables to de�ne the role
behavior of a certain role (cf. Sec. 7.5).

7.3.2.2 Execution of Role Behaviors

The execution of the role behavior de�ned by the method initializeRoleBehavior is
started with the method start of the class Role. The method is responsible to initialize
and start a new Thread (depicted in Fig. 7.2 by the association with end thread).
In this thread, the method run of the class Role is then executed. With that, a role
instance becomes an active entity which executes its role behavior in parallel to all other
currently existing role instances. The method run takes care to continuously execute
one step of the role behavior until the role behavior has been terminated and the role
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has been quit, i.e., if the role behavior in Helena is in�nite, it will also be in�nitely be
executed in jHelena. This corresponds to taking one path, projected to a role instance,
through the semantic labeled transition system of the ensemble-based system according
to the semantics in Chap. 3. Each step represents the evolution of the ensemble by one
operational semantic rule on the ensemble-level (cf. Sec. 3.3), projected on a particular
role instance. The implementation of the method run is shown in Fig. 7.3. The method

1 public final void run() {
2 try {
3 while (!(this.p instanceof Bottom)) {
4 try {
5 this.p = this.p.step(this);
6 }
7 catch (ActionCurrentlyNotExecutableException e) {
8 this.log.fine(e.toString());
9 Thread.sleep(10);

10 }
11 }
12 }
13 catch (ActionNeverExecutableException
14 | WellFormednessViolatedException
15 | GuardNeverEvaluableException
16 | InvokedProcessNotSetException
17 | InterruptedException e) {
18 this.log.severe(e.toString());
19 this.quit();
20 }
21 }

Figure 7.3: jHelena implementation of the method run of the class Role

implements a while-loop (line 3�11) which continuously evolves the process expression
p, representing the role's current control state, by one step (line 5). If no exceptions
occur, the while-loop evolves the process expression until the process expression is an
instance of the class Bottom (line 3). This class represents the semantic extension ⊥ of
process expressions (cf. Sec. 3.3) which cannot evolve anymore and thus describes that
a role �nished its role behavior and has been quit. During the execution of one step,
exceptions may occur:

� If an exception of type ActionCurrentlyNotExecutableException occurs (line 7),
the evolution of the process expression is currently not possible, but at a later
point of execution, it might become executable again. Therefore, this exception
is caught and after some delay, evolution of the process expression is tried again
(line 7�10). Examples for that are that a role can currently not be created since
too many instances of the desired role type exist or a message can currently not
be received since there is no message in the input queue.

� If any other exception occurs, the process expression will never become executable
again or some assumptions are violated such that the evolution of the process ex-
pression has to be abnormally terminated (line 13�20). Each caught exception can
have di�erent reasons: The exception ActionNeverExecutableException is raised
whenever the next action to be executed will never be executable, e.g., a message
should be received, but another message is the �rst item in the input queue of the
role. The exception WellFormednessViolatedException is raised if some syntactic
well-formedness condition of process expressions according to Def. 2.10 on page 28
was violated, e.g., a message was sent which is actually not supported as outgoing
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message by the sending role. The exception GuardNeverEvaluableException is
raised if the guard of an if-then-else construct was not well-formed according to
Def. 2.10, e.g., a role attribute was requested which was not declared in the corre-
sponding role type. The exception InvokedProcessNotSetException is thrown if a
process was invoked, but internally the invoked process could not be determined.
Finally, the exception InterruptedException is thrown whenever the execution of
the role gets abnormally interrupted. In all these cases, the role behavior cannot
be executed from this point on. Thus, an error is logged and the role is quit
(line 19�20).

The subclasses of the class ProcessExpression and Action then implement the sin-
gle step according to the semantic operational rules of the Helena semantics in Sec. 3.3
on page 53. The rules for the evolution of process constructs in Fig. 3.1 on page 54 and
for the process construct quit in Fig. 3.3 on page 57 are represented by the method step

of each jHelena counterpart of a process expression. The rules for the evolution of
ensembles by particular actions in Fig. 3.3 on page 57, Fig. 3.4 on page 58, and Fig. 3.5
on page 60 are represented by the method execute of each jHelena counterpart of an
action. In the following, we walk through all process constructs and show the imple-
mentation of the method step of each jHelena counterpart of a process expression.
Furthermore, we discuss the implementation of the method execute of each jHelena
counterpart of an action when we reach the actual execution of an action (during action
pre�x).

Role Termination: According to the rule quit in Fig. 3.3 on page 57, role termination
quits the current role and evolves the process expression representing the current control
state to the semantics extension ⊥. The corresponding jHelena implementation of the
method step in the class Quit is shown in the code snippet of Fig. 7.4. It quits the role
executing the process expression by calling the method quit of the class Role (line 2)
and returns the singleton instance of the class Bottom (line 3). The implementation of
the method quit in the class Role thereby takes care to close the input channel of the
role and to remove the role from the set roles of currently existing role instances which
is linked to the class Ensemble by a corresponding association.

1 ProcessExpression step(Role source) {
2 source.quit();
3 return Bottom.getInstance();

Figure 7.4: jHelena implementation of the method step of the class Quit

Action Pre�x: According to the rule action pre�x in Fig. 3.1 on page 54, action pre�x
simply evolves by executing the current action to the remaining process expression. In
jHelena, action pre�x is described by the class ActionPrefix which represents the ac-
tion to be executed by the association with end a to the class Action and the remaining
process expression by the association with end p to the class ProcessExpression. The
implementation of the method step in the class ActionPrefix uses these two associa-
tions to realize the semantics of action pre�x. Its implementation is shown in the code
snippet in Fig. 7.5. Most importantly, the method executes the action a by calling the
method execute of the class Action in line 6 (the implementation of the method execute

is discussed in the next paragraph) and returns the remaining process expression p
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(line 17). However, it might happen that an exception is raised during the execution
of the action. The implementation then takes care to categorize the raised exceptions:
Either they violate the well-formedness conditions of process expressions in Def. 2.10
on page 28 (which raises an exception of type WellFormednessViolatedException in
line 8�10) or the action is just currently not executable (which raises an exception of
type ActionCurrentlyNotExecutableException in line 11�13) or the action will never
be executable (which raises an exception of type ActionNeverExecutableException in
line 14�16).

1 ProcessExpression step(Role source)
2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException {
5 try {
6 this.a.execute(source);
7 }
8 catch (MessageNotAllowedAsInputException | ... e) {
9 throw new WellFormednessViolatedException(this.a, source, e);

10 }
11 catch (NoMessageException | ... e) {
12 throw new ActionCurrentlyNotExecutableException(this.a, source, e);
13 }
14 catch (RoleInputChannelClosed | ...s e) {
15 throw new ActionNeverExecutableException(this.a, source, e);
16 }
17 return this.p;
18 }

Figure 7.5: jHelena implementation of the method step of the class ActionPrefix

An action is represented by the class Action with appropriate subclasses for all
possible Helena actions. The implementation of the method execute in each subclass
realizes the semantics of the corresponding action of in Fig. 3.3 on page 57, Fig. 3.4
on page 58, and Fig. 3.5 on page 60. The implementation thereby always follows the
same pattern: All static well-formedness criteria for the action according to Def. 2.10
on page 28 are checked if they are not yet guaranteed by the metadata layer. Then,
the ensemble, the issuing role or the owning component is invoked with an appropriate
method call to actually realize the action, e.g., for role creation the method createRole

in the class Ensemble is called. In this method, the side-conditions of the semantic rules
are checked and �nally the action is taken to e�ect. In the following, we summarize for
each Helena action all well-formedness criteria and side-conditions which are checked
and which method implements the actual e�ect of the action. We furthermore discuss
which actions can interfere with each other and how atomicity is guaranteed:

A create action is represented in jHelena by the class CreateRoleAction which
maintains attributes for the type of the role instance to be created, the desired
owning component, and the variable used to store the reference of the created
role instance. Its method execute �rst checks the well-formedness criteria that
the type of the role instance to be created is allowed for the underlying ensemble
structure and the type of the given component instance is allowed as owner of the
role instance to be created. Furthermore, it checks whether the desired owning
component instance is not null. If a criterion is not satis�ed, an appropriate
exception is thrown. Afterwards, the method createRole of the class Ensemble is
invoked which returns a reference to the created role instance if it could be created
(otherwise, an exception is thrown). This reference is stored in the given variable.
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The actual role creation according to the rule create in Fig. 3.3 is implemented by
the method createRole of the class Ensemble. It �rst checks the side-conditions
of the semantic operational rule that the given component instance is actually
contributing to the ensemble (i.e., that it is contained in the set comps associated
to the class Ensemble, cf. item (1) of the side-condition), that the given component
instance does not yet adopt an instance of the desired role type (item (2)), and that
the multiplicity bounds for the desired role type are not yet exceeded (item (3)). If
a side-condition is not satis�ed, an appropriate exception is thrown. Afterwards,
the role instance is created, added to the set roles of the class Ensemble repre-
senting the currently existing role instances, and �nally its behavior is started by
calling the method start of the class Role.

The execution of this action can interfere with other role creations and role ter-
mination on the same owning component and in the same ensemble because the
set of adopted roles for the component and/or the multiplicity of currently ex-
isting role instances in the ensemble is changed. Therefore, role creation as well
as role termination have to acquire the single lock of the owning component and
the owning ensemble to guarantee exclusive execution. Furthermore, role creation
can interfere with plays-queries in guard of the if-then-else construct. Therefore,
also plays-queries have to acquire the same lock of the owning component.

A get action is represented in jHelena by the class GetRoleAction which maintains
attributes for the type of the role instance to be retrieved, the desired owning com-
ponent, and the variable used to store the reference of the retrieved role instance.
Its method execute �rst checks the well-formedness criteria that the type of the
role instance to be created is allowed for the underlying ensemble structure and
the type of the given component instance is allowed as owner of the role instance
to be created. Furthermore, it checks whether the desired owning component
instance is not null. If a criterion is not satis�ed, an appropriate exception is
thrown. Afterwards, the method getRole of the class Ensemble is invoked which
returns a reference to the retrieved role instance if it already exists (otherwise, an
exception is thrown). This reference is stored in the given variable.

The actual role retrieval according to the rule get in Fig. 3.3 is implemented by
the method getRole of the class Ensemble. It �rst checks the side-conditions
of the semantic operational rule that the given component instance is actually
contributing to the ensemble (i.e., that it is contained in the set comps associated to
the class Ensemble, cf. item (1) of the side-condition) and that the given component
instance adopts an instance of the desired role type (item (2)). If a side-condition
is not satis�ed, an appropriate exception is thrown. Afterwards, the role instance
is returned.

The execution of this action can interfere with other role termination on the same
owning component because the set of adopted roles for the component is changed.
Therefore, role retrieval as well as role termination have to acquire the single lock
of the owning component to guarantee exclusive execution.

A send action is represented in jHelena by the class SendMessageAction which main-
tains attributes for the message to be sent and the target role. Its method execute

�rst checks the well-formedness criteria that sending role type supports the given
message as outgoing and the receiving role type supports the given message as
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incoming. If a criterion is not satis�ed, an appropriate exception is thrown. Af-
terwards, the method sendMessage of the class Role is invoked.

The actual transmission of the message according to the rule send in Fig. 3.4 is
implemented by the method sendMessage of the class Role. It �rst checks the side-
condition of the semantic operational rule that the sending role instance and the
receiving role instance are in the same ensemble (item (1) and (2). Afterwards, it
calls the method write of the input channel input of the target role instance. This
method checks the another side-condition that the capacity of the input channel
of the target role instance is not yet exceeded (item (2)). If a side-condition is
not satis�ed, an appropriate exception is thrown. Afterwards, the message is
written to the input channel. It depends on the implementing subclass whether
this method returns immediately (for the class AsyncInputChannel) or waits until
the message is received (for the class SyncInputChannel).

The execution of this action can interfere with other message transmissions on the
input channel of the same target role instance. Therefore, the method write of the
class RoleInputChannel is synchronized such that only one thread can exclusively
execute it.

A receive action is represented in jHelena by the class ReceiveMessageAction which
only maintains an attribute for the message to be received. Its method execute

�rst checks the well-formedness criterion that the receiving role type supports
the given message as incoming. If the criterion is not satis�ed, an appropriate
exception is thrown. Afterwards, the method receiveMessage of the class Role is
invoked which returns the received message if it could be received (otherwise, an
exception is thrown). The received parameters are stored in the message to be
returned.

The actual reception of the message according to the rule receive in Fig. 3.4
is implemented by the method receiveMessage of the class Role. The method
directly calls the method read of the input channel input of the receiving role
instance. This method checks the side-condition that a message �tting to the
expected message is actually �rst in the input channel (item (1)). If the side-
condition is not satis�ed, an appropriate exception is thrown. Afterwards, the
message is retrieved from the input channel.

The execution of this action can interfere with other message receptions on the
input channel of the same role instance. Therefore, the method read of the class
RoleInputChannel is synchronized such that only one thread can exclusively exe-
cute it.

A component operation call is represented in jHelena by the class
OperationCallAction which maintains attributes for the operation to be called
and the variable to store the return value of the operation call. Its method execute

�rst checks the well-formedness criterion that the owning component instance of
the issuing role supports the given operation. If the criterion is not satis�ed, an
appropriate exception is thrown. Afterwards, the method callOperation of the
class Component is invoked which returns the return value of the operation call.
The return value is stored in the variable.

The actual call of the operation according to the rule op call 1 and op call 2 in
Fig. 3.5 is implemented by the method callOperation of the class Component.
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The method calls the method which implements the operation on the concrete
component class via re�ection.

The execution of this action cannot interfere with other actions.

A component attribute setter is represented in jHelena by the class
CompAttrSetterAction which maintains attributes for the attribute to be set and
the value to be set. Its method execute �rst checks the well-formedness criterion
that the owning component type of the issuing role supports the given attribute.
If the criterion is not satis�ed, an appropriate exception is thrown. Afterwards,
the method setCompAttr of the class Component is invoked.

The actual update of the value of the component attribute according to the rule
comp attr in Fig. 3.5 is implemented by the method setCompAttr of the class
Component. The method sets the attribute of the concrete component class via
re�ection.

The execution of this action can interfere with the evaluation of guards of the if-
then-else construct. Therefore, setting a component attribute as well as evaluation
of a guard containing a component attribute have to acquire the single lock of the
component to guarantee exclusive execution.

A role attribute setter is represented in jHelena by the class
RoleAttrSetterAction which maintains attributes for the attribute to be set and
the value to be set. Its method execute �rst checks the well-formedness criterion
that the issuing role type supports the given attribute. If the criterion is not sat-
is�ed, an appropriate exception is thrown. Afterwards, the method setRoleAttr

of the class Role is invoked.

The actual update of the value of the role attribute according to the rule role attr
in Fig. 3.5 is implemented by the method setRoleAttr of the class Role. The
method sets the attribute of the concrete role class via re�ection.

The execution of this action cannot interfere with other actions.

A state label is not represented in jHelena since it is only introduced for model-
checking purposes only.

Nondeterministic Choice: According to the rules nondet. choice 1 and nondet.

choice 1 in Fig. 3.1 on page 54, nondeterministic choice can evolve by either branch
which is currently executable. In jHelena, nondeterministic choice is described by the
class NondeterminsticChoice which represents both branches by associations with end
p1 and p2 to the class ProcessExpression (not shown in Fig. 7.2). The implementation
of the method step in the class NondeterministicChoice uses these two associations to
realize the semantics of nondeterministic choice. Its implementation is shown in the code
snippet in Fig. 7.6. The idea of the method is to randomly select one branch and to try
to execute it. If the �rst action of the �rst branch is currently not executable, we try to
execute the second branch. In line 8�18, one branch is randomly selected to be executed
�rst (assignment to the local variable choice1) and the other to be executed in case that
the �rst was currently not executable (assignment to the local variable choice2). After-
wards, we try to execute the �rst choice in line 21. If the execution of the �rst action of
the �rst branch raised an exception of type ActionCurrentlyNotExecutableException or
ActionNeverExecutableException (line 23�24), the second choice is executed in line 25
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1 ProcessExpression step(Role source)
2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException,
5 GuardNeverEvaluableException,
6 InvokedProcessNotSetException {
7

8 ProcessExpression choice1 = null;
9 ProcessExpression choice2 = null;

10

11 if (Math.random() < 0.5) {
12 choice1 = this.p1;
13 choice2 = this.p2;
14 }
15 else {
16 choice1 = this.p2;
17 choice2 = this.p1;
18 }
19

20 try {
21 return choice1.step(source);
22 }
23 catch (ActionCurrentlyNotExecutableException
24 | ActionNeverExecutableException e) {
25 return choice2.step(source);
26 }
27 }

Figure 7.6: jHelena implementation of the method step

of the class NondeterministicChoice

since the �rst choice was not executable. If any other exception was raised during execu-
tion of the �rst choice, we do not continue with the second choice since some fatal excep-
tion occurred like well-formedness of process expressions was violated which has to be re-
ported to the developer of the ensemble-based system. However, if also the execution of
the second choice raises an exception of type ActionCurrentlyNotExecutableException
or ActionNeverExecutableException, this exception is handed over to the caller of the
method step.

If-Then-Else: According to the rules if-then-else 1 and if-then-else 2 in Fig. 3.1 on
page 54, the if-then-else construct can evolve by the �rst branch if its guard evaluates
in the current state to true and the �rst branch can evolve; the if-then-else construct
can evolve by the second branch if its guard evaluates to false and the second branch
can evolve; otherwise, the whole if-then-else construct cannot evolve. For example,
if the guard evaluates to true, but the �rst branch cannot evolve, the if-then-else
construct as a whole cannot evolve. In jHelena, the if-then-else construct is described
by the class IfThenElse which represents both branches by associations with end p1

and p2 to the class ProcessExpression (not shown in Fig. 7.2) as well as the guard
by an association with end guard to the class Guard expressing arbitrary guards over
an ensemble speci�cation (not shown in Fig. 7.2). The implementation of the method
step in the class IfThenElse uses these three associations to realize the semantics of
the if-then-else construct. Its implementation is shown in the code snippet in Fig. 7.7.
The idea of the method is to evaluate the guard (line 17) and to try to execute the
appropriate branch according to the guard's evaluation (line 17�22). If the selected
branch cannot evolve, an exception is raised during the execution of the selected branch
(i.e., in line 18 or 21) which is handed over to the caller of the method step.
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1 ProcessExpression step(Role source)
2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException,
5 GuardNeverEvaluableException,
6 InvokedProcessNotSetException {
7

8 Set<Component> locks = this.guard.lockObjects(source);
9 try {

10 for (Component lock : locks) {
11 if (lock = null) {
12 throw new ComponentIsNullException();
13 }
14 lock.lock();
15 }
16

17 if (this.guard.isTrue(source)) {
18 return this.p1.step(source);
19 }
20 else {
21 return this.p2.step(source);
22 }
23 }
24 catch (ComponentIsNullException | PropertyNotDeclaredInClassException
25 | ReflectionException | NoBooleanValueException e) {
26 throw new GuardNeverEvaluableException(this.guard, source, e);
27 }
28 finally {
29 for (Component lock : locks) {
30 if (lock != null) {
31 lock.unlock();
32 }
33 }
34 }
35 }

Figure 7.7: jHelena implementation of the method step of the class IfThenElse

In addition to that, the Helena semantics prescribes that the evaluation of the
guard and the evolution of the appropriate branch must occur as one step. That means
that it is not allowed that the value of the guard changes during the execution of the �rst
action of the selected branch. Basically, a guard is built from boolean primitives, data
variables, component or role attributes, and plays-queries (and arbitrary compositions
of these atomic propositions). Boolean primitives, data variables and role attributes
cannot change while the if-then-else construct is evaluated. The reason is that only
the role itself can access these variables and attributes and no other role can change
them. However, the values of component attributes and plays-queries can change if any
other role owned by the same component sets the component attributes from its role
behavior or a role which concerns the plays-queries is created or quit. Therefore, in
jHelena, we have to take care that for all component attributes and plays-queries in
the guard the corresponding component is locked for changes until the �rst action of the
selected branch was executed. By calling the method lockObjects on the guard (line 8),
all components are retrieved which occur in the guard. All retrieved components are
temporarily locked for modi�cations in line 8�15 by calling the method lock of the class
Component (if the component to be locked is null, an exception is raised). Then, the
if-then-else construct is evolved and �nally, the locks for all components are revoked
(line 28�35). This locking mechanism is in-line with the locking of the actions for role
creation, role termination, and component attribute setters discussed previously.
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Process Invocation: According to the rule process invocation in Fig. 3.1 on page 54,
process invocation can evolve if the invoked process can evolve. In jHelena, process
invocation is described by the class ProcessInvocation which represents the invoked
process by an association with end n to the class ProcessExpression (not shown in
Fig. 7.2). The implementation of the method step in the class ProcessInvocation uses
this association to realize the semantics of process invocation. Its implementation is
shown in the code snippet in Fig. 7.8. The method just calls the method step for the
invoked process if the invoked process is not . Otherwise, an appropriate exception is
thrown.

1 ProcessExpression step(Role source)
2 throws WellFormednessViolatedException,
3 ActionCurrentlyNotExecutableException,
4 ActionNeverExecutableException,
5 GuardNeverEvaluableException,
6 InvokedProcessNotSetException {
7 if (this.n == null) {
8 throw new InvokedProcessNotSetException();
9 }

10 return this.n.step(source);
11 }

Figure 7.8: jHelena implementation of the method step

of the class ProcessInvocation

7.4 System Manager

It remains to mention the abstract SysManager class which provides a template method
start to set-up and start an ensemble system. The method is responsible for the con�g-
uration of the component-based platform and ensemble structures, the creation of initial
ensemble states, and the launch of concrete ensemble-based applications running ensem-
bles concurrently on top of the component-based platform. Therefore, it sequentially
calls the methods configureTypes to construct ensemble structures, createComponents
to create the underlying component instances and startEnsembles to start all concur-
rently running ensembles of the ensemble-based system. All three methods have to be
implemented by the developer in a manager subclass when implementing a concrete
ensemble-based application.

7.5 Framework Application

We illustrate the use of the framework by implementing our running p2p �le transfer
ensemble. We perform the implementation in two major steps concerning the structural
aspects of the ensemble, i.e., its contributing types and their conceptual relationships
described by and ensemble structure, and the dynamic behavior of the ensemble, i.e.,
the role behaviors of the participating roles. Using the jHelena framework, the imple-
mentation of the p2p example was straightforward and could easily be derived from the
formalization in Helena. Di�erent �le transfer ensembles could be instantiated and run
concurrently. The complete implementation of the p2p example relying on the jHelena
framework can be found on the attached CD in the project eu.ascens.helena.p2p.
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7.5.1 Structural Aspects

To create all contributing types and their conceptual relationships of the ensemble, we
�rst extend the classes of the developer-interface for each type in the example as
shown in the package p2p in Fig. 7.2: Peer extends Component, Requester, Router, and
Provider extend Role, TransferEnsemble extends Ensemble, PrintFileOperation ex-
tends Operation, and ReqAddrMessage, SndAddrMessage, ReqFileMessage and
SndFileMessage extend Message. We de�ne component and role attributes as instance
variables of the concrete component and role classes, operations as methods of compo-
nent classes, and parameters of messages as attributes of the particular message classes
(not shown in Fig. 7.2). However, we do not realize the role behaviors yet.

Afterwards, we extend the abstract class SysManager by the class PeerSysManager

and implement the method configureTypes to con�gure all types of the p2p example.
This method instantiates all type classes of the metadata layer and connects them
appropriately to represent the ensemble structure Σtransfer in Fig. 2.5 on page 23. An
excerpt of the implementation is shown in Fig. 7.9. The method �rst has to create
all component types underlying the ensemble-based system. For the p2p example, we
instantiate only one component type for peers (instantiation of attribute types and
component association types is shown inline as well as for the single operation type)
and add it to the set componentTypes of the system manager by calling the method
addComponentType (cf. line 2�8 in Fig. 7.9). Furthermore, we create instances for all
message types occurring in the ensemble structure (line 10�24). Afterwards, we create
instances for all types of the ensemble structure and connect them accordingly. Line 26�
33 in Fig. 7.9 exemplify this for the role type of a requester. Lastly, we compose all
types to the desired ensemble structure and add it to the set of ensemble structures
ensembleStructures for the system (line 35�37).

7.5.2 Dynamic Behavior

The second step is to add dynamic behavior such that the ensemble-based system ful�lls
its goal-directed behavior. For this purpose, we realize the ensemble speci�cation by
implementing the method initializeRoleBehavior of all concrete role classes together
with a set of attributes representing the variables of the role behavior in the corre-
sponding role class and by implementing the methods representing operations of com-
ponents. Afterwards, we indicate how to concretely start an ensemble by implementing
the method startEnsemble of the class TransferEnsemble. Lastly, we realize a concrete
application by implementing the methods createComponents and startEnsembles of the
class P2PSysManager.

Role Behaviors: To realize the role behavior of a role, we implement the method
initializeRoleBehavior in its concrete role class. Each process expression and action
is directly translated to its jHelena representation. Concrete exchanged messages and
called operations are expressed by their jHelena counterparts. However, the represen-
tation of role instance variables and data variables needs special care. For each variable
in the role behavior of a certain role including the prede�ned constant self , we de�ne
an attribute in the jHelena class for the role. However, we do not directly type it
with the type T of the variable used in the role behavior. We rather wrap the variable
in the wrapper class Variable<T> which just stores the type T and the value of the
variable. This wrapper class is necessary since Java implements call-by-value. At the
moment of initialization of the role behavior, most of the variables occurring in the role
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1 protected void configureTypes() {
2 ComponentType peerType = ComponentType.createType(Peer.class,
3 getAsSet(DataFieldType.createType("hasFile", Boolean.class),
4 DataFieldType.createType("content", Integer.class)),
5 getAsSet(ComponentAssociationType.createType("neighbor", Peer.class)),
6 getAsSet(OperationType.createType(
7 PrintFileOperation.class, new ArrayList<DataFieldType>(), Void.class)));
8 this.addCompType(peerType);
9

10 MessageType reqAddrMsg = MessageType.createType(
11 ReqAddrMessage.class,
12 getAsList(RoleFieldType.createType("req", Requester.class)),
13 new ArrayList<DataFieldType>());
14 MessageType sndAddrMsg = MessageType.createType(
15 SndAddrMessage.class,
16 getAsList(RoleFieldType.createType("prov", Provider.class)),
17 new ArrayList<DataFieldType>());
18 MessageType reqFileMsg = MessageType.createType(
19 ReqFileMessage.class,
20 getAsList(RoleFieldType.createType("req", Requester.class)),
21 new ArrayList<DataFieldType>());
22 MessageType sndFileMsg = MessageType.createType(
23 SndFileMessage.class, new ArrayList<RoleFieldType>(),
24 getAsList(DataFieldType.createType("content", Integer.class)));
25

26 Set<ComponentType> reqCompTypes = getAsSet(ComponentType.getType(Peer.class));
27 Set<DataFieldType> reqAttrTypes =
28 getAsSet(DataFieldType.createType("hasFile", Boolean.class));
29 Set<MessageType> reqMsgsOut = getAsSet(reqAddrMsg, reqFileMsg);
30 Set<MessageType> reqMsgsIn = getAsSet(sndAddrMsg, sndFileMsg);
31 RoleType req = RoleType.createType(
32 Requester.class, reqCompTypes, reqAttrTypes, reqMsgsOut, reqMsgsIn);
33 ...
34

35 EnsembleStructure transferEnsemble =
36 EnsembleStructure.createType(TransferEnsemble.class, ...);
37 this.addEnsembleStructure(transferEnsemble);
38 }

Figure 7.9: Instantiation of types in the method configureTypes
of the class P2PSysManager

behavior have not been set yet. Their values will be received via message receptions
or role creations. However, since Java implements call-by-value, the role behavior is
initialized with empty values at all places even if the variable is used afters its initial-
ization. However, if we wrap the variables in the wrapper class Variable<T>, the role
behavior no longer refers to the value of the variable, but to an object which contains
the value. Thus, if the variable is initialized during the execution of the role behavior,
this value is changed and all later invocations of the variable refer to this new value.

Fig. 7.10 shows the implementation of the class Router in our p2p example. The
foundation for the implementation is the role behavior given in Fig. 2.7 on page 31. The
class Router declares attributes for the prede�ned constant self and all role instance
variables router, req and provider (line 2�5) which are used in the role behavior.
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1 public class Router extends Role {
2 protected final Variable<Router> self = new Variable<>(Router.class);
3 protected final Variable<Requester> req = new Variable<>(Requester.class);
4 protected final Variable<Provider> prov = new Variable<>(Provider.class);
5 protected final Variable<Router> rout = new Variable<>(Router.class);
6 ...
7

8 protected ProcessExpression initializeRoleBehavior() throws ... {
9 ProcessInvocation createInvocation = new ProcessInvocation();

10 ProcessInvocation provideInvocation = new ProcessInvocation();
11 ProcessInvocation fwdInvocation = new ProcessInvocation();
12 ProcessInvocation recursion = new ProcessInvocation();
13

14 ProcessExpression routerProc =
15 new ActionPrefix(
16 new ReceiveMessageAction(new ReqAddrMessage(this.req)),
17 new IfThenElse(
18 new CompAttrGetter<>("hasFile", Boolean.class),
19 provideInvocation,
20 fwdInvocation));
21

22 ProcessExpression provide =
23 new ActionPrefix(
24 new CreateRoleAction<>(this.prov, Provider.class, this.getOwner()),
25 new ActionPrefix(
26 new SendMessageAction(this.req, new SndAddrMessage(this.prov)),
27 Quit.getInstance()));
28

29 ProcessExpression fwd =
30 new IfThenElse(
31 new PlaysQuery(
32 new CompAssociationGetter("neighbor").getValue(this),
33 Router.class),
34 Quit.getInstance(),
35 createInvocation);
36

37 ProcessExpression create =
38 new ActionPrefix(
39 new CreateRoleAction<>(
40 this.rout,
41 Router.class,
42 new CompAssociationGetter("neighbor").getValue(this)),
43 new ActionPrefix(
44 new SendMessageAction(this.rout, new ReqAddrMessage(this.req)),
45 recursion));
46

47 provideInvocation.setInvocatedProcess(provide);
48 fwdInvocation.setInvocatedProcess(fwd);
49 createInvocation.setInvocatedProcess(create);
50 recursion.setInvocatedProcess(routerProc);
51

52 return routerProc;
53 }
54 }

Figure 7.10: jHelena implementation of the class Router

The method initializeRoleBehavior realizes the role behavior relying on the
jHelena representations of process expressions and actions. The process expression
routerProc is the starting point of the role behavior (line 14). The original role behav-
ior starts by action pre�x with the action reqAddr. The implementation translates this
to a new object of the class ActionPrefix (line 15) with two parameters. The �rst pa-
rameter represents the reception of the message reqAddr by instantiating a new object of
the class ReceiveMessageAction with an object for the message to be sent as parameter
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(line 16). The second parameter of action pre�x is the remaining process expression,
in this case an if-then-else construct. The if-then-else construct is expressed by a new
object of the class IfThenElse (line 17) where the �rst parameter in line 18 represents
the guard of the if-then-else construct (evaluating whether the attribute hasFile of the
owning component instance is true), the second parameter in line 19 the if -branch and
the third parameter in line 20 the else-branch. Both branches invoke another process
which is expressed by the local variables of type ProcessInvocation. The invoked pro-
cesses are de�ned only after this with the process expression provide (line 22�27) and
fwd (line 29�35). Thus, we cannot set the invoked process directly in the de�nition of
the process expression routerProc, but we have to set it afterwards in line 47 and 48.
The remaining process is translated analogously and depicted in Fig. 7.10.

Operations: Operations of components are implemented as methods of the corre-
sponding (subclass of the) class Component. They have to take the parameters of the
operation as input. The body of the method implements the behavior of the operation
which was not yet part of the ensemble speci�cation, but has now to be added by the de-
veloper. In our p2p example, the component type Peer has just one operation printF ile
which is implemented by the method printFileOperation of the class Peer. As shown
in Fig. 7.11, the operation just prints the String PRINT FILE to the Java output console.
However, more sophisticated behavior could be added, e.g., printing to a real printer.

1 public void printFileOperation() {
2 System.out.println("PRINT FILE");
3 }

Figure 7.11: jHelena implementation of the method printFileOperation

in the class Peer

Initial State of an Ensemble: The method startEnsemble of the class
TransferEnsemble actually starts an instance of the ensemble (cf. Fig. 7.12). The
method gets an initial component as input where the �le was initially requested. It
creates a role instance of type Requester adopted by the initial (peer) component, thus
starting to execute the requester's behavior.

1 public void startEnsemble(Component initialComponent) throws ... {
2 this.createRole(Requester.class, initialComponent);
3 }

Figure 7.12: jHelena implementation of the method startEnsemble

in the class TransferEnsemble

Lastly, a concrete scenario needs to be set up. The system is populated by concrete
peers in the method createComponents of the P2PSysManager (cf. Fig. 7.13). Five peers
are initialized as indicated in line 2�6. All peers do not have the requested �le except the
fourth peer. The network of peers as a ring structure is set up (line 8�12), and each peer
is added to the set currentComponents of the class P2PSysManager (line 14�18). After-
wards, concrete ensemble instances are created and run in the method startEnsembles

(cf. Fig. 7.14).
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1 protected void createComponents() {
2 Peer peer1 = new Peer("p1", false, 0);
3 Peer peer2 = new Peer("p2", false, 0);
4 Peer peer3 = new Peer("p3", false, 0);
5 Peer peer4 = new Peer("p4", true, 12345);
6 Peer peer5 = new Peer("p5", false, 0);
7

8 peer1.setNeighbor(peer2);
9 peer2.setNeighbor(peer3);

10 peer3.setNeighbor(peer4);
11 peer4.setNeighbor(peer5);
12 peer5.setNeighbor(peer1);
13

14 this.addComponent(peer1);
15 this.addComponent(peer2);
16 this.addComponent(peer3);
17 this.addComponent(peer4);
18 this.addComponent(peer5);
19 }

Figure 7.13: Instantiation of peers in the method createComponents

of the class P2PSysManager

1 protected void startEnsembles() throws ... {
2 Ensemble ens1 = new TransferEnsemble("ens1", this.getComponents());
3 this.addEnsemble(ens1);
4 ens1.startEnsemble(this.getComponent());
5

6 Ensemble ens2 = ...
7 }

Figure 7.14: jHelena implementation of the startEnsembles

in the class P2PSysManager

7.6 Related Work

When it comes to implementation, the Helena approach shares its foundation with
frameworks from di�erent areas: Ensemble-based systems which particularly deal with
groups of autonomic entities, role-based modeling which introduces the notion of roles
for only focus on a certain perspective of an object, and implementations of communica-
tion groups which consider the architecture and protocol throughout the collaboration
of a group.

7.6.1 Implementations of Ensemble-Based Systems

The EU project ASCENS [WHKM15] develops foundations, techniques and tools to
support the whole life cycle for the construction of Autonomic Service Component EN-
Sembles. In this context, several approaches to formalize and implement ensemble-based
systems have been developed. SCEL and its implementation jRESP [DLPT14] provide
a kernel language for abstract programming of autonomic systems, whose components
rely on knowledge repositories, and models interaction by knowledge exchange. In SCEL
and jRESP, ensembles are understood as communication groups which are de�ned by
predicates determining the participants of the group. The participants communicate by
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putting knowledge items to knowledge repositories of communication groups. In con-
trast, Helena relies on directed message exchange between participants of ensembles
and introduces a second role layer on top of a component-based platform to allow a
more �exible mechanism for dynamic ensemble composition.

DEECo and its implementation jDEECo [BGH+13] introduces an explicit speci-
�cation artifact for ensembles dynamically formed according to a given membership
predicate. Interaction is realized by implicit knowledge exchange managed by DEECo's
runtime infrastructure. However, Helena is more concrete since we include an explicit
notion of interaction and collaboration.

Compared to both implementations, jHelena introduces a clear separation between
type level and instance level. The metadata level implements the formal syntax of He-
lena and thus the type level. By using the abstractions introduced in this layer, the
developer is forced to respect the syntactic restrictions of Helena when introducing
component types, role types and ensemble structures. The developer interface im-
plements the formal semantics of Helena and thus the instance level. By relying on
the abstractions provided by this layer, the developer de�nes concrete instances of com-
ponent types, role types and ensembles. He furthermore speci�es role behaviors using
the jHelena abstractions of the formal Helena process constructs. jHelena takes
care to execute the roles and their behavior according to the semantic rules of Helena.

7.6.2 Implementations of Roles

With Helena, we o�er a rigorous approach for developing goal-oriented groups on the
basis of roles. Modeling evolving objects with roles as perspectives on objects has been
proposed by various authors [GSR96, KØ96, Ste00b, Ste00a], but they do not see them
as autonomic entities with behavior as we do in Helena.

Gottlob et al. [GSR96] propose role hierarchies to complement object-oriented sys-
tems for evolving objects. Their implementation in Smalltalk follows the same concept
as the Helena framework by binding role instances to objects. However, they do not
consider any collaboration between roles to perform cooperative tasks.

Kristensen et al. [KØ96] de�ne roles as perspectives of some objects sharing the
basic ideas with Gottlob et al. Like the Helena framework, their implementation in
BETA and Smalltalk emphasizes that objects can only be accessed through their role
references (or in the case of sets of roles, subject references). In their approach, roles can
be transferred between objects without interrupting role-speci�c behavior. This idea
could be interesting to integrate into Helena to complement the idea of ensembles.

Steimann [Ste00b, Ste00a] proposes a formal model for roles and relationships be-
tween roles. His �model speci�cations� are comprised of signature, static model, and
dynamic model similarly to Helena, but they do not specify any collaborations or
object interactions. Based on this formal model for roles, Steimann de�nes the rudi-
mentary modeling language LODWICK. Compared to Helena, this modeling language
is very high-level and not supported by an execution framework like jHelena. How-
ever, he proposes to indicate by interface realization which (component) types can adopt
which roles. Hence, roles correspond to interfaces and do not provide behavior imple-
mentations.

Steegmans et al. [SWHB05] propose a role model where agents commit themselves to
roles and therefore execute the associated behavior given by action diagrams. However,
they do not transfer the idea of roles to the implementation level as we do it with
jHelena, but rather rely on free-�ow architectures for realization.
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7.6.3 Implementations of Collaboration Groups

The idea to describe structures of interacting objects without having to take the entire
system into consideration was already introduced by several authors [Her03, BSI07,
Ree96, TUI07], but they do not consider roles as autonomic entities and do not tackle
concurrently running ensembles as we do in Helena.

Herrmann [Her03] introduces �teams� in his framework ObjectTeams/Java, Baldoni
et al. [BSI07] �institutions� in their framework powerJava, and Reenskaug [Ree96] and
Andersen [And97] �role models� in their OOram method. Like in Helena, they de�ne
the structural model of a collaboration by participating roles, but they handle behavior
very di�erently. In ObjectTeams/Java and powerJava, collaboration between roles is
initiated through operation calls while in the OOram method, roles exchange message
like in Helena. In ObjectTeams/Java and powerJava, roles are not active themselves,
but can only react to operation calls. The OOram method pursues our idea of roles
as being autonomic entities which start their behavior based on an external stimulus
(like a �le being requested from the outside). However, while in Helena we model
concurrently running ensembles, in the OOram method overlapping role models are
composed into a single composite role model. Therefore state spaces only represent
composite behaviors while we explicitly run behaviors in parallel.

The modeling approach Macodo [HWH14] introduces a set of role-based abstrac-
tions to de�ne collaborations. It is supported by a proof-of-concept middleware which
provides appropriate programming concepts to map the role-based abstractions to Web
service technologies. However, their focus is only on the collaboration-level and does
not include the concrete realization of individual role behaviors.

Related approaches have also been developed in the context of multi-agent systems
and multi-party session types with the Scribble framework [YHNN13]. It provides a
high-level language to describe collaborations or, in terms of the authors, session types
which consist of a prescribed scenario of interactions. In contrast to jHelena, Scribble
does not allow the dynamic creation of new participants and the concurrent execution
of ensembles which is built-in in the Helena semantics and its implementation.

7.7 Publication History

This chapter extends and improves the jHelena framework already presented in [KH14].
Compared to this publication, the jHelena framework in its current implementation
considers all syntactic constructs of Chap. 2 and realizes the formal SOS semantics in
Chap. 3 which was not available when the �rst version of jHelena has been presented
in [KH14]. Especially, the implementation of role behaviors has been improved with
special care to match the SOS rules in Sec. 3.3. Furthermore, this chapter describes
the jHelena framework in full detail while in [KH14] we focused only on the most
important ideas.

7.8 Present Achievements and Future Perspectives

Present Achievements: For the implementation of ensemble-based systems, we pro-
vide the Java framework jHelena. The construction of the framework was rigorously
guided by the abstract notions of ensemble speci�cations and their semantics used for
modeling ensembles in the Helena approach. Helena extends component-based sys-
tems with the notion of roles and ensembles to focus on capabilities of a component
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needed for particular collaborations. Our framework transfers this concept to an object-
oriented platform and directly implements the formal foundations and the execution
model of the Helena approach. The classes provided by the jHelena framework can
be extended for particular ensemble-based applications. The developer is forced by the
framework to respect the formal restrictions of the Helena approach. If an ensemble-
based application is executed with the jHelena framework, it is guaranteed that the
execution of the system follows the semantics of Helena.

As the reader might have noticed, the derivation of the implementation follows
a systematic translation from the formal Helena ensemble speci�cation to jHelena
code. In the following chapter, we will exploit this systematic translation to provide an
automated code generator. It takes a Helena ensemble speci�cation described with the
domain-speci�c language HelenaText as input and automatically generates a Java
implementation based on the jHelena framework.

Future Perspectives: The jHelena framework is a �rst prototype which can be
extended in several directions:

Communication Styles: Further communication styles like broadcast messaging or
knowledge exchange as envisioned in SCEL and DEECo could be supported. This
would extend the set of actions by broadcasting and knowledge repository access.
At the same time, the way of message transmission which is currently realized via
message queues must be reconsidered and special data structures for knowledge
repositories have to be included.

Distributed Deployment: To allow real distribution, the framework could be based on a
component infrastructure which supports distributed deployment of components.
So far, all components are initialized in the same Java virtual machine; only roles
are run in di�erent threads, but on the same machine. A distribution framework
would allow to set up a distributed network of components which collaborates in
ensembles across di�erent machines. However, new issues have to be addressed
like limited communication range or message loss.

Proof of Preservation of the Helena Semantics: Throughout this chapter, we argued
that the jHelena framework preserves the Helena semantics by construction.
To formally guarantee that, the semantic equivalence of a Helena ensemble spec-
i�cation with its Java implementation following the jHelena framework should
be shown similarly to the semantic equivalence with the Promela translation.
However, this would be a challenging proof which had to rely on a formal Java
semantics including threads like in [CKRW99]. Anyway, it could be an interesting
option to use Java PathFinder [Lau16] for veri�cation instead of Spin as proposed
in Chap. 5. Java PathFinder allows to analyze executable Java programs for
properties like deadlocks, unhandled exceptions, and data races, but also for LTL
properties if given in the form of a Büchi automaton.
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Chapter 8

Helena Workbench
Working with Helena

When developing ensemble-based system according to Helena from speci�cation
through veri�cation to implementation, the developer may experience some pitfalls.
Without any editor support, the developer has to ensure himself that his ensemble
speci�cations conform to Helena and respect all constraints formulated in the formal
de�nitions. To verify the satisfaction of goals for an ensemble, the speci�cation has to
be translated to Promela by hand to be able to model-check the resulting veri�cation
model with Spin. Although concrete formal rules accurately determine the translation,
it is inherently error-prone due to its manual execution. To implement an ensemble, the
speci�cation must also be translated to Java code relying on the jHelena framework by
hand. Thus, it cannot be guaranteed that the manual implementation indeed respects
the formal speci�cation, in particular, that role behaviors are implemented correctly.

We therefore provide the Helena workbench supporting the whole development
process of ensemble-based systems with Helena. The domain-speci�c language He-
lenaText serves as concrete syntax for Helena ensemble speci�cations supporting
roles and ensemble structures as �rst-class citizens. Relying on the Xtext workbench,
Eclipse integration of the domain-speci�c language is o�ered which features a full Hele-
naText editor including syntax highlighting, content assist, and validation. Moreover,
we de�ne a set of rules for the automatic generation of the Promela veri�cation model
and the Java implementation from an ensemble speci�cation. The rules are directly
derived from their formal counterparts and therefore allow a reliable translation. Both
code generators are integrated into Eclipse and the fully-�edge editor.

Table 8.1 gives an overview about the development of and with the Helena work-
bench. In Sec. 8.2, we introduce HelenaText, the domain-speci�c language realizing
the formal syntax rules of HelenaText, and the HelenaText editor integrated into
Eclipse. The two generators to Promela and Java are presented in Sec. 8.3 and Sec. 8.4.
We �nally conclude with future work in Sec. 8.6.

The complete implementation of the Helena workbench can be found on the at-
tached CD in the projects eu.ascens.helenaText, eu.ascens.helenaText.sdk,
eu.ascens.helenaText.tests, and eu.ascens.helenaText.ui. The p2p example is ex-
ercised with the Helena workbench in the project eu.ascens.helenaText.p2p.

183
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8.1 Overview of the Helena Workbench

The Helena workbench is implemented as a plug-in for the Eclipse development en-
vironment1. Fig. 8.1 shows a screenshot of the �nal Helena workbench during the
implementation of the p2p example. The Xtext workbench of Eclipse provides the
means to de�ne the domain-speci�c language (DSL) for the Helena workbench, to
generate and customize a fully-�edged editor for the DSL, and to de�ne code genera-
tors from the DSL to any other language. We give a short overview about the Xtext
workbench in the next subsection. Afterwards, we focus on the work�ow how the He-
lena workbench itself has been implemented and on the work�ow how to implement
ensemble speci�cations with the Helena workbench.

Figure 8.1: Screenshot of the Helena workbench during development
of the p2p example

8.1.1 Eclipse's Xtext Workbench

Xtext2 is a framework for the development of DSLs fully integrated into Eclipse. The
user of the Xtext workbench can de�ne a custom grammar for his DSL in a BNF-like

1http://www.eclipse.org/
2https://eclipse.org/Xtext/

http://www.eclipse.org/
https://eclipse.org/Xtext/
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notation. Xtext generates a complete language infrastructure for this DSL including
parser, linker, compiler, interpreter, and a fully-�edged Eclipse editor. All provided
tools can be extended to �t the user's needs. In particular, special validation rules can
be de�ned to detect errors in speci�cations written in the new DSL. The appearance and
provided features of the editor can be adapted, e.g., formatting of code, content assist,
or code outlines can be customized. Furthermore, code generators can be de�ned which
translate speci�cations written in the DSL to any other language. To allow adaptation
and extension of the language infrastructure, the Xtext workbench internally creates
an EMF (Eclipse Modeling Framework) metamodel which builds the foundation for the
editor and all code generators. This metamodel allows the integration with other EMF
framework of Eclipse, e.g., with the Graphical Modeling Framework (GMF) to provide
a graphical syntax and editor for the DSL.

An integral extension to the Xtext workbench is the programming language
Xtend3. Formerly part of the Xtext project, it now resides as a separate project
in the Eclipse context. Xtend is a dialect of Java which also directly compiles to Java.
However, compared to Java, it o�ers some important features which make it a perfect
companion in the context of language development:

� Type interference and lambda expressions allow e�cient programming.
Types can automatically be derived and thus method signatures can be left un-
speci�ed or variable declarations untyped. Lambda expressions allow amongst
others to map transformation functions to a whole collection of objects.

� Extension methods enhance types generated from the DSL grammar by new
methods without modifying the types themselves.

� Template expressions allow a code generator to specify abstract translation
rules which are easy to read. They de�ne placeholders which the code generator
replaces at runtime by concrete values to gain the �nal translation. Furthermore,
template expression provide control structures like conditional branching or loops
to control the composition of the template expression.

TheXtext workbench �nally relies on Java to provide the Eclipse editor for the new
DSL with all its features like syntax highlighting, content assist, validation, formatting,
and code generation. The editor is implemented as an Eclipse plug-in which can be
imported into any Eclipse installation.

8.1.2 Work�ow of the Implementation of the Helena Workbench

The Xtext workbench guides the development process of the Helena workbench as
an Eclipse plug-in. Fig. 8.2 gives an overview about the steps which are necessary to
create the Helena workbench. Boxes with rounded corners denote activities in the
work�ow and boxes with sharp corners input and output artifacts of these activities.
The gray artifacts provide theHelena workbench as an Eclipse plug-in consisting of the
domain-speci�c language HelenaText and an appropriate Eclipse editor with syntax
highlighting, validation and code generators.

The work�ow starts with the creation of an empty Xtext project in Eclipse. The
project mainly contains a stub for the grammar of the DSL to be de�ned as an .xtext-
�le. The stub for the grammar is extended with the de�nition of the domain-speci�c
language HelenaText, carefully capturing all conditions from the formal de�nitions of
the Helena syntax (we will discuss the grammar in Sec. 8.2). From the fully-speci�ed

3http://www.eclipse.org/xtend/

http://www.eclipse.org/xtend/
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Figure 8.2: Work�ow of the implementation of the Helena workbench

grammar, the generation of all artifacts required for the textual HelenaText editor is
triggered. The editor is o�ered by a set of generated Java classes which all reside in the
folder src-gen. On the one hand, they represent all constructs speci�ed in the Helena-
Text grammar in Java. On the other hand, they provide a basic Eclipse editor which
supports the DSL HelenaText as input language. To this end, the generated Java
code contains a parser, lexer and linker for HelenaText and the implementation of
the HelenaText editor with basic syntax highlighting, content assist, outline propos-
als etc. In addition to the Java classes representing the HelenaText constructs and
the editor, the generation of artifacts from the HelenaText grammar creates an ecore
metamodel of the newly speci�ed DSL. This metamodel is not further used in the cur-
rent implementation of the Helena workbench. However, if a graphical editor should
be provided in addition to the textual HelenaText editor, this metamodel serves as
foundation for the editor's development with the Graphical Modeling Framework of
Eclipse.

The next steps in the work�ow adapt and extend the basic (textual) HelenaText
editor to support the whole Helena development process. Firstly, some restrictions of
the Helena syntax cannot be expressed in the HelenaText grammar, e.g., a message
can only be sent to a role which supports it as incoming message. Such restrictions are
de�ned as validation rules using Xtend (we will discuss an excerpt of the validation
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rules in Sec. 8.2). During the usage of the �nal HelenaText editor, the rules will
be evaluated on-the-�y on concrete HelenaText speci�cations. To integrate the val-
idation rules in the HelenaText editor, the Xtext workbench automatically (and
without any interaction with the user) translates the Xtend rules to Java classes in the
folder xtend-gen. Furthermore, two generators are de�ned. The �rst generator trans-
lates a HelenaText speci�cation to Promela and the second to Java code relying
on the jHelena framework. The translation rules for both generators are de�ned with
Xtend. During the usage of the �nal HelenaText editor, the rules will automatically
translate valid HelenaText speci�cations to Promela and Java resp. To integrate
the generators the HelenaText editor, the Xtext workbench again automatically
translates the Xtend rules to Java classes in the folder xtend-gen. Finally, the ap-
pearance and features of the HelenaText editor can be further customized, e.g., to
include user-de�ned formatting. This customization is also speci�ed with Xtend and
integrated in the HelenaText editor. A user-guide how to implement and provide the
Helena workbench to ensemble developers can be found in Appendix B.1.

To make the dependencies between the created and generated artifacts of the He-
lena workbench clear, Fig. 8.3 only considers the relationships between all artifacts.
The main input artifact is the .xtext-�le. The developer of the Helena workbench
de�nes the grammar of the DSL HelenaText in this �le. From the .xtext-�le, two
artifacts are generated: The ecore metamodel represents all constructs of the Helena-
Text grammar as a metamodel according to the Eclipse Modeling Framework. It can
be used as a foundation for the development of a graphical Helena editor with the
Graphical Modeling Framework of Eclipse. The (textual) HelenaText editor is de-
�ned by a set of Java classes in the folder src-gen. The classes represent all constructs
of the HelenaText grammar in Java and provide the basic HelenaText editor. To
adapt and extend the basic HelenaText editor, a validator, the Promela genera-
tor and the jHelena generator are de�ned by Xtend rules. These rules rely on the
representation of all constructs of the HelenaText grammar in Java, i.e., on the set
of Java classes in the folder src-gen. From the Xtend �les, their representations in
Java are automatically generated in the folder xtend-gen and integrated into the basic
HelenaText editor. Thus, the Helena workbench consists of the two Java artifacts
shown in gray in Fig. 8.3: The basic HelenaText editor in the folder src-gen and the
user-de�ned customizations and extensions in the folder xtend-gen.
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Figure 8.3: Dependencies between artifacts of the Helena workbench
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8.1.3 Work�ow of the Usage of the Helena Workbench

The Helena workbench is installed in an Eclipse instance as an Eclipse plug-in. Ap-
pendix B.2 explains the installation process. Once the Helena workbench is set up,
the user can develop ensembles from speci�cation through veri�cation to implementa-
tion fully-integrated into in Eclipse. Fig. 8.4 gives an overview about the work�ow of
developing ensembles with the Helena workbench. The user creates a Helena-project
and in particular a .helena-�le. This �le is automatically opened in the HelenaText
editor provided by the Helena workbench. In the editor, an ensemble speci�cation
can be written in HelenaText with full tool support like syntax highlighting, code
completion, validation, and code generation. The particular features of the Helena
workbench are triggered by typing any letter in the HelenaText editor or by saving
the .helena-�le: Whenever a letter is added to the .helena-�le, the HelenaText
editor takes care to present the ensemble speci�cation in the .helena-�le with syntax
highlighting, content assist, code outline to the user. At the same time, the valida-
tor evaluates its validation rules and gives feedback about incorrect parts annotated
as warnings and errors to the .helena-�le. On any save action of the HelenaText
speci�cation, the two automatic code generators are started: The Promela generator
translates the .helena-�le to a .pml-�le. The translation follows the rules described
in Sec. 5.2. The resulting .pml-�le has to be enhance by an initial states and goals to
be checked to be used for veri�cation with Spin. The jHelena generator translates
the .helena-�le to Java code as described in Chap. 7. The generated code is split into
two parts: All �les in the package src-gen implement the ensemble speci�cation given
in HelenaText. However, HelenaText does not yet allow to specify the e�ect of
component operations and an initial state for the ensemble speci�cation. Code stubs
for these two open points are generated to the folder src-user. They are only created
once to not overwrite any user-de�ned code and need to be implemented by the user.
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Figure 8.4: Work�ow of the usage of the Helena workbench

8.2 The Domain-Speci�c Language HelenaText

To allow the user of the Helena workbench to specify ensemble speci�cations with
the Helena concepts as �rst-class citizens, we introduce the domain-speci�c language
HelenaText. The grammar of the DSL HelenaText is de�ned in the BNF-like
notation of Xtext. It follows the formal de�nitions of the Helena modeling elements
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like component and role types, ensemble structures and role behaviors. Constraints
which cannot be included into the DSL grammar are formulated as validation rules
written in Xtend. The grammar rules for all syntactic constructs of HelenaText
can be found in Appendix B.3. In this section, we focus on the representation of
structural aspects, in particular role types, as well as on the representation of dynamic
behavior, in particular role behaviors. We show grammar rules written in Xtext as
well as examples of validation rules written in Xtend.

8.2.1 Structural Aspects

To exemplify the derivation of the grammar rules for types, let us revisit the de�nition
of a role type from Chap. 2: A role type rt over a given set of component types CT
is a tuple rt = (rtnm, rtcomptypes, rtattrs, rtmsgsout, rtmsgs in). Fig. 8.5 shows the
corresponding grammar rule. A role type declaration in HelenaText must start with
the keyword roleType followed by its name referring to rtnm. The set rtcomptypes of
component types which can adopt the role are re�ected by the list compTypes after
the keyword over. It is a list of references to already de�ned component types which
is expressed by the square brackets, the cross reference concept of Xtext. In curly
braces, the two sets roleattrs referring to rtattrs and rolemsgs referring to rtmsgs are
de�ned in arbitrary order.

1 RoleType:
2 ’roleType’ name=ValidID ’over’ compTypes+=[ComponentType]
3 (’,’compTypes+=[ComponentType])* ’{’
4 (
5 roleattrs += (’roleattr’ type=JvmTypeReference name=ValidID ’;’)
6 | rolemsgs += (’rolemsg’ direction=MsgDirection name=ValidID
7 formalRoleParamsBlock=FormalRoleParamsBlock
8 formalDataParamsBlock=FormalDataParamsBlock ’;’)
9 )*

10 ’}’
11 ;

Figure 8.5: Xtext grammar rule for role types in HelenaText

However, the DSL grammar rule cannot express that the lists compTypes, roleattrs,
and rolemsgs (depending on the direction of the message) all have to be duplicate-free
to represent the sets rtcomptypes, rtattrs, rtmsgsout and rtmsgs in. For that, a validation
rule in Xtend is added (cf. Fig. 8.6). Each set of elements is handled separately, for
messages we even split the set according to whether they are incoming or outgoing
messages (cf. line 5-6). For each set, we call the method findDuplicates which reports
an error in line 13 if an element with the same name exists in the investigated set.

Fig. 8.7 illustrates the application of the grammar rule for role types in the Helena
workbench on the p2p example. We rely on the declaration of the role type of a router
which was already presented in Fig. 2.2 on page 21 in abstract notation and in Fig. 2.3b
on page 22 graphically. Fig. 8.7 de�nes the same role type in HelenaText.
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1 @Check
2 def check_rt_hasDuplicates(RoleType rt) {
3 findDuplicates(rt.compTypes);
4 findDuplicates(rt.roleattrs);
5 findDuplicates(rt.rolemsgs.
6 filter[direction == MsgDirection.OUT || direction == MsgDirection.INOUT]);
7 findDuplicates(rt.rolemsgs.
8 filter[direction == MsgDirection.IN || direction == MsgDirection.INOUT]);
9 }

10

11 private def void findDuplicates(Iterable<T extends AbstractDuplicateFreeObject> list) {
12 var Set<String> nameSet = new TreeSet();
13 for (AbstractDuplicateFreeObject elem : list.filterNull) {
14 if (!nameSet.add(elem.name)) {
15 error(’Duplicate declaration of ’ + elem.name, ...)
16 }
17 }
18 }

Figure 8.6: Xtend validation rule for role types in HelenaText

1 roleType Router over Peer {
2 rolemsg in/out reqAddr(Requester req)();
3 rolemsg out sndAddr(Provider prov)();
4 }

Figure 8.7: Role type of a router in the p2p example in HelenaText

Dynamic Behavior Besides capturing the structural aspects of an ensemble speci�-
cation with component types, role types and ensemble structures, the dynamic behavior
is de�ned as role behaviors. Role behaviors are composed from process expressions with
the process constructs quit for role termination, action pre�x, nondeterministic choice,
if-then-else, and process invocation. The grammar rule for de�ning such role behav-
iors (cf. Fig. 8.8) directly follows the inductive de�nitions in Def. 2.9 on page 25 and
Def. 2.12 on page 30. A role behavior can either directly declare its de�ning process
expression (line 2�3) or it can invoke another process (line 4�5) from the set processes
which it exclusively de�nes for itself (line 6). The de�nition of a process (line 9) thereby
only di�ers from the de�nition of a declaring role behavior insofar that it is declared
with the keyword process instead of the keyword roleBehavior. Furthermore, a pro-
cess can only be de�ned in the scope of a certain role behavior which is not further
shown here. The di�erent process constructs which can be used as process expression in
Helena according to Def. 2.9 on page 25 are captured by appropriate counterparts in
the HelenaText grammar (line 11�18). Their composition is a direct representation
of the abstract syntax de�ned in Chap. 2.

The actions for role instance creation and retrieval, sending and receiving messages,
operations calls, setting values of attributes, and state labels which can be executed in
a role behavior are similarly expressed in the HelenaText grammar. The rules can be
found in Appendix B.3. They follow the inductive de�nition in Def. 2.9 on page 25 and
directly transfer the abstract syntax to a concrete intuitive notation. Instead of listing
all rules here, we will rather illustrate the application of the HelenaText grammar
rules for role behaviors and actions at the p2p example later on.

In Sec. 2.4.2, we stated all conditions which a role behavior has to satisfy to be
well-formed. Those well-formedness criteria cannot be expressed in the DSL grammar.
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1 RoleBehavior:
2 {DeclaringRoleBehavior} ’roleBehavior’
3 roleTypeRef=[RoleType] ’=’ processExpr=ProcessExpression
4 | {InvokingRoleBehavior} ’roleBehavior’
5 roleTypeRef=[RoleType] ’=’ processInvocation=ProcessInvocation
6 ’{’ (processes+=Process)* ’}’;
7 Process: ’process’ name=ValidID ’=’ processExpr=ProcessExpression;
8

9 ProcessExpression:
10 {QuitTerm} ’quit’
11 | {ActionPrefix} (action=Action ’.’ processExpr=ProcessExpression)
12 | {NondeterministicChoice}
13 ’(’ first=ProcessExpression ’+’ second=ProcessExpression ’)’
14 | {IfThenElse} ’if’ ’(’ guard=Guard ’)’ ’{’ ifProcessExpr=ProcessExpression ’}’
15 ’else’ ’{’ elseProcessExpr=ProcessExpression ’}’
16 | {ProcessInvocation} process=[Process];

Figure 8.8: Xtext grammar rule for role behaviors, processes and process expressions
in HelenaText

Therefore, we add validation rules written in Xtend. We explain two validation rules.
The rule in Fig. 8.9 expresses that in any nondeterministic choice construct, the �rst
actions of the two branches are either incoming messages or any other action than an
incoming message. Line 3 recursively retrieves all �rst actions of possibly nested non-
deterministic choice or if-then-else constructs of the �rst branch. The condition of the
if-statement in line 4�5 then checks whether the �rst actions are either all incoming mes-
sages (line 4) or any other action (line 5). If so, an error is shown in the HelenaText
editor. Similarly, the �rst actions of the second branch are checked in line 9�13.

1 @Check
2 def check_rb_noMixedStates(NondeterministicChoice term) {
3 var actions = term.first.firstActions;
4 if (! (actions.forall[it instanceof IncomingMessageCall] ||
5 actions.forall[! (it instanceof IncomingMessageCall)]) ) {
6 error(’In nondeterministic choice, mixed states are not allowed.’, ...);
7 }
8 var actions2 = term.second.firstActions;
9 if (! (actions2.forall[it instanceof IncomingMessageCall] ||

10 actions2.forall[! (it instanceof IncomingMessageCall)]) ) {
11 error(’In nondeterministic choice, mixed states are not allowed.’, ...);
12 }
13 }

Figure 8.9: Xtend validation rule for nondeterministic choice in HelenaText

We illustrate the use of the DSLHelenaText for role behaviors at the role behavior
of a router in the p2p example. The role behavior is given in abstract notation in Fig. 2.7
on page 31. Fig. 8.10 de�nes the same role behavior in HelenaText. Apparently, most
formal constructs occurring in role behaviors are directly represented in an intuitive
concrete syntax.
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1 roleBehavior Router = RouterProc {
2 process RouterProc =
3 ? reqAddr(Requester req)() .
4 if ( owner.hasFile ) { Provide }
5 else { Fwd }
6

7 process Provide =
8 prov <- create(Provider, owner) .
9 req ! sndAddr(prov)() . quit

10

11 process Fwd =
12 if ( plays(Router, owner.neighbor) ) { quit }
13 else { Create }
14

15 process Create =
16 router <- create(Router, owner.neighbor) .
17 router ! reqAddr(req)() .
18 RouterProc
19 }

Figure 8.10: Role behavior of a router in the p2p example speci�ed in HelenaText

8.3 Automated Promela Code Generator

To assure that an ensemble speci�cation actually achieves its goals, we proposed in
Chap. 5 to translate it to a Promela veri�cation model and to check the translation
with the model-checker Spin [Hol03] against its goals speci�ed as LTL formulae. Ta-
ble 5.2 already proposed a formal translation function from Helena to Promela and
Chap. 6 proved (a simpli�ed version of) the translation semantically correct. How-
ever, though formally de�ned, a manual translation according to this formal translation
function is error-prone. Thus, we support the user of the Helena workbench for his
veri�cation job with an automated code generator translating a HelenaText spec-
i�cation to Promela. The Promela generator consists of rules written in Xtend

similarly to the validation rules for the DSL. The rules are directly derived from the
formal translation function proposed in Sec. 5.2. They take a HelenaText �le con-
taining a particular ensemble speci�cation as input and generate the corresponding
Promela �le containing the translated process de�nitions.

In the following, we show an excerpt of the translation rules expressed in Xtend.
We focus on role types and their behaviors only. The translation function is formally
de�ned in Sec. 5.2. Its complete implementation in Xtend has a size of 2568 lines of
code and can be found on the attached CD in the project eu.ascens.helenaText in
package eu.ascens.generator.promela.

8.3.1 Generator Rule for Role Types

Helena role types are translated to Promela processes which actively communicate
with component processes to rely on the capabilities of the components, e.g., to cre-
ate other role instances or call operations, and with other role processes to exchange
messages. They furthermore store the values of role attributes and represent the cor-
responding role behavior. The formal translation function for a role type is given in
Fig. 5.12 on page 94.

For the code generator, this function is directly expressed with template expres-
sions in the Xtend function compileProctype as shown in Fig. 8.11. The function
compileProctype is called for any role type given in a HelenaText speci�cation and
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generates the corresponding process type in Promela. Basically anything in the func-
tion compileProctype between ”’ and ”’ is written to the generated Promela �le
except text enclosed in tag brackets �� which must be evaluated �rst. For example, in
line 4 the head of the process type declaration is built. The name of the process type is
dynamically evaluated from the expression �rt.name�. This is a function of RoleType
which is called for the �rst parameter rt of the function (see line 1) and retrieves the
name of the role type rt (the resulting head of the process type for the role type Router
is shown in line 376 of Appendix C.2).

The rest of the template expressions of the function compileProctype directly corre-
spond to the formal translation function in Fig. 5.12 on page 94: Line 5�7 declare local
variables for all role attributes of the role type, line 9�11 for all role instance variables
used in the role behavior of the role type, line 13�15 for all data parameters of the role
behavior, and line 17�19 for all return values of operations. Finally, the start state label
is generated in line 21, the complete role behavior is translated to Promela by calling
the function compileRoleBehavior in line 23, and the end state label is added in line 25.
The complete generated process type for the role Router can be found in Appendix C.2.

1 def compileProctype(RoleType rt, Model model) {
2 var rb = model.headPkg.roleBehaviors.findFirst[it.roleTypeRef == rt]
3 ’’’
4 proctype «rt.name»(chan owner, self) {
5 «FOR attr:rt.roleattrs»
6 «attr.type» «attr.name»;
7 «ENDFOR»
8

9 «FOR inst : rb.abstractRoleInstances»
10 chan «inst.name»;
11 «ENDFOR»
12

13 «FOR param : rb.formalDataParams»
14 «param.type» «param.name»;
15 «ENDFOR»
16

17 «FOR op : rb.operationCalls»
18 «op.operationType.returnType» «op.variable.name»;
19 «ENDFOR»
20

21 «rt.startLabel» : true;
22

23 «rb.compileRoleBehavior»;
24

25 «rt.endLabel» : false
26 }
27 ’’’
28 }

Figure 8.11: Xtend generation rule for role types from HelenaText to Promela

8.3.2 Generator Rule for Role Behaviors

The role behavior of a role type is generated as body of the Promela process type dec-
laration for the role type. Each Helena process construct is expressed by Promela
representations and actions are simulated by message exchange on channels either be-
tween role and component or between two roles. A role behavior is translated to its
Promela representation by the function compileRoleBehavior which only translates
its de�ning process expression and is thus not shown here. The translation of pro-
cess expressions is however inductively de�ned as shown in excerpts in Fig. 8.12. Each
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dispatch variant of the function compileProcExpr speci�es the translation rule for a
speci�c process construct. The correspondence of the Xtend functions to the formal
translation functions in Fig. 5.13 on page 96 can easily be seen: For role termination
with the quit, the dispatch function in line 1�8 generates the corresponding Promela
code. Line 3 generates a new local variable for the request to the component to quit
the role, line 4 sets the type of the request to quitting the role and line 5 generates the
transmission to the owning component. Finally, a goto-statement to the end label of
the role is created in line 6. For action pre�x, the dispatch function in line 9�14 advises
the generator to �rst compile the action with a closing semicolon (line 11) and then to
compile the remaining process expression (line 12) similarly to the formal translation
function in Fig. 5.13. The translation of all further process expression constructs is not
shown here since they can be directly derived from he formal translation function and
expressed in Xtend. Similar functions are also de�ned for the translation of actions
and guards.

1 private def dispatch CharSequence compileProcExpr(RoleType rt, QuitTerm expr) {
2 ’’’
3 «rt.ownerComponentType.operationTypeName» op;
4 op.optype = «rt.quit»;
5 owner!op;
6 goto «rt.endLabel»
7 ’’’
8 }
9 private def dispatch CharSequence compileProcExpr(RoleType rt, ActionPrefix expr) {

10 ’’’
11 «expr.action.compileAction»;
12 «expr.processExpr.compileProcExpr»
13 ’’’
14 }
15 ...

Figure 8.12: Xtend generation rule for process expressions
from HelenaText to Promela

The translation functions for role behaviors, process expressions, actions and guards
together generate the body of the Promela process type for a role type according to its
role behavior. The complete generated process type for the role Router can be found in
Appendix C.2. As a side-note, the generated Promela �le corresponds to the formal
translation function given in Sec. 5.2, but it uses abbreviation macros at some points,
e.g., for message exchange such that the generated Promela �le is better readable.

Although the code generator translates the complete ensemble speci�cation to
Promela, it still remains to prepare the Promela translation for model-checking with
Spin. As explained in Sec. 5.3.1, an initial state has to be established in the dedicated
init-process and Helena LTL formulae have to be translated to Promela LTL.

8.4 Automated jHelena Code Generator

In Chap. 7, we proposed the Java framework jHelena to make Helena ensemble spec-
i�cations executable. To facilitate the realization of Helena ensemble speci�cations
with jHelena even further, this subsection introduces an automatic code generator
translating a HelenaText speci�cation to Java code relying on the jHelena frame-
work. The jHelena generator consists of rules written in Xtend similarly to the
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validation rules for the DSL. It takes a HelenaText �le containing a particular en-
semble speci�cation as input and generates a package for the ensemble application which
is split into two parts, the (sub)packages src-gen and src-user. The package src-gen

is already complete and must not be touched anymore while the package src-user o�ers
templates which must be implemented by the user. In the following, we �rst explain the
idea of the splitting of the generated code into two packages before �nally introducing the
rules de�ning the jHelena generator. The complete implementation of the jHelena
generator in Xtend has a size of 3368 lines of code and can be found on the attached
CD in the project eu.ascens.helenaText in package eu.ascens.generator.jHelena.

8.4.1 Package src-gen

Nearly all parts of the realization of an ensemble speci�cation relying on the jHelena
framework can be generated from its HelenaText speci�cation. On the one hand,
we can generate all contributing types and their conceptual relationships described by
an ensemble structure. We introduce corresponding classes for all contributing types
and a system manager which initializes all types and ensemble structures. On the other
hand, role behaviors which represent the dynamic behavior of the ensemble can also be
automatically translated to jHelena. The generated role behaviors use the jHelena
representations of process constructs and instantiate the jHelena actions appropriately
relying on the introduced classes for component and roles as well as messages and
operations.

For the p2p example, the generated package p2p with is shown in Fig. 8.13. In
comparison to Fig. 7.2 on page 160 where we explained the implementation of the p2p
example by hand, the package p2p is now split into two parts: the package src-gen

contains only classes which is completely generated from the HelenaText speci-
�cation; the package src-user provides base classes where the user implements the
parts which cannot be generated from the ensemble speci�cation. Let us focus on the
package src-gen. It contains the generated subclasses for the abstract base classes
of the developer-interface. These subclasses, like Peer, Requester, Router, and
Provider, correspond to the types of the given ensemble structure. They implement
the structural composition of a TransferEnsemble as well as the dynamic behavior of
all roles as explained in Sec. 7.5. The generated P2PSysManager implements the method
configureTypes to create objects for the metadata classes which represent types and
the ensemble structure in accordance with the p2p ensemble speci�cation (cf. Fig. 7.9
on page 175).

8.4.2 Package src-user

Only two parts which are necessary for the implementation of an ensemble-based system
cannot be speci�ed with HelenaText: the e�ect of operations and the initial state
for an ensemble (note that the e�ect of operations is left unspeci�ed in the formal
Helena syntax as well). To allow the user of the Helena workbench to implement
these two missing parts, we generate an additional package src-user which contains
implementation classes for the missing parts. For each component type underlying the
ensemble speci�cation, we generate an implementation class which contains empty stubs
for the implementation of its operations o�ered to the adopted roles of the component.
Furthermore, implementation classes for the system manager and for the ensemble are
created. They allow to implement a concrete initial state for an ensemble and to start
an ensemble.
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Figure 8.13: jHelena and its application to the p2p example (generated)

Let's revisit the p2p example once again. The lower part of the p2p-package in
Fig. 8.13 contains the subpackage src-user. It contains three classes:
P2PSysManagerImpl, PeerImpl, and TransferEnsembleImpl. They are generated with
empty code stubs for all declared methods and need to be implemented by the user of
the Helena workbench. In the class PeerImpl, the user has to add the behavior of the
operation printFileOperation which is not de�ned in the Helena (and resp. Helena-



8.4. AUTOMATED JHELENA CODE GENERATOR 197

Text) speci�cation. Additionally, he has to implement the methods createComponents,
startEnsembles, and startEnsemble in the classes P2PSysManagerImpl and
TransferEnsembleImpl to initialize the ensemble for �le transfer as explained in Sec. 7.5.

8.4.3 Generator Rules

The rules for the translation to jHelena were not formalized in the previous chapters
like for the translation to Promela. However, the ideas of implementing a concrete
ensemble-based application can be easily seen from the implementation of the p2p exam-
ple in Sec. 7.5. Following these ideas, we specify the rules of the jHelena generator as
template expressions in Xtend. As shown in the previous section about the Promela
generator, the Xtend rules are verbose enough to serve as formal translation rules
(at least a draft of them). Similarly to the previous sections, we will not present all
translation rules here, but focus on roles and their behaviors.

Fig. 8.14 shows an excerpt of the Xtend translation rule for the generation of role
classes. The operation compile is called for any role type given in a HelenaText

1 def compile(RoleType it) {
2 ’’’
3 public class «it.classname» extends Role {
4

5 «FOR field : it.roleattrs»
6 protected «field.type» «field.name»;
7 «ENDFOR»
8

9 protected final Variable<«it.classname»> self =
10 new Variable<>(«it.classname».class);
11 «FOR inst : it.roleBehavior.abstractInstances»
12 protected final Variable<«inst.type»> «inst.name» =
13 new Variable<>(«inst.name».class);
14 «ENDFOR»
15

16 public «it.classname»
17 (Component comp, Ensemble ens, Integer capacity) {
18 super(comp, ens, capacity);
19 this.self.setValue(this);
20 }
21

22 @Override
23 protected ProcessExpression initializeRoleBehavior() throws ... {
24 «it.roleBehavior.compileRoleBehavior»
25 }
26 ’’’
27 }

Figure 8.14: Xtend generation rule for role types from HelenaText to jHelena

speci�cation and generates the corresponding class declaration in jHelena. Basically
anything in the operation compile is written to the generated class �le except text
enclosed in tag brackets �� which must be evaluated �rst. For example, in line 3 the
class-header is built. The name of the class is dynamically evaluated from the expression
�it.classname�. This is a function of RoleType which is called for the �rst parameter
it of the operation (see line 1) and retrieves the name of the role type it (the resulting
class-header for the role type Router is shown in line 1 of Fig. 7.10 on page 176).
Afterwards, in line 5-7 of the Xtend rule, all attributes of the role type are generated
as instance variables (which are none for the role type Router in Fig. 7.10). Lines 9-
14 declare additional instance variables for the self -reference and any parameters of
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incoming messages or created role instances in the role behavior of the role type such
that their values can be accessed throughout the execution of the role behavior. For
example, for the role behavior of the Router, we need instance variable to store the
values of the self -reference, of the parameter req of the incoming message reqAddr as
well as of the two created role instances prov and rout (cf. line 2�5 in Fig. 7.10). A
constructor for the class is generated in line 16�19 which sets the variable for the self -
reference accordingly. For the role behavior itself the function initializeRoleBehavior

is generated in line 21�24. To this end, the method compileRoleBehavior is called whose
idea is explained in the following together with the generation of process expressions.

The rule for the generation of role behaviors is not shown here, but its basic idea is
to generate its de�ning process expression possibly with some auxiliary processes (an
example for those auxiliary processes are the processes Provide, Fwd, and Create of a
router in Fig. 8.10). Though, we show the translation function for process expressions
in Fig. 8.15. It is inductively implemented according to the de�nition of process ex-

1 private def dispatch String compileProcExpr(QuitTerm nil) {
2 ’’’Quit.getInstance()’’’
3 }
4 private def dispatch String compileProcExpr(ActionPrefix actionPrefix) {
5 ’’’
6 «IF actionPrefix.action instanceof Label»
7 «actionPrefix.processExpr.compileProcExpr»
8 «ELSE»
9 new ActionPrefix(

10 «actionPrefix.action.compileAction»,
11 «actionPrefix.processExpr.compileProcExpr»
12 )
13 «ENDIF»
14 ’’’
15 }
16 private def dispatch String compileProcExpr(IfThenElse condSel) {
17 ’’’
18 new IfThenElse(
19 «condSel.guard.compileRelation»,
20 «condSel.ifProcessExpr.compileProcExpr»,
21 «condSel.elseProcessExpr.compileProcExpr»
22 )
23 ’’’
24 }
25 private def dispatch String compileProcExpr(NondeterministicChoice choice) {
26 ’’’
27 new NondeterministicChoice(
28 «choice.first.compileProcExpr»,
29 «choice.second.compileProcExpr»
30 )
31 ’’’
32 }
33 private def dispatch String compileProcExpr(ProcessInvocation procInvocation) {
34 ’’’invoc«procInvocation.hashCode»’’’
35 }

Figure 8.15: Xtend generation rule for process expressions
from HelenaText to jHelena

pressions in Def. 2.9 on page 25. Depending on the type of the process construct, i.e.
QuitTerm, ActionPrefix, IfThenElse, NondeterministicChoice, or ProcessInvocation,
the Xtend rules prescribe to create a new instance of the representation of the process
construct in jHelena. The parameters of the new instances are the compiled actions,
guards or process expressions used in the process construct. The jHelena generator
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de�nes similar functions for them as for role behaviors and process expressions such
that the translation can rely on them. In summary, the function compileProcExpr and
similar variants for actions and guards generate the method initializeRoleBehavior.
An excerpt of this method for the router of the p2p example is shown in Fig. 7.10
on page 176. As a side-note, the jHelena code generator produces exactly the same
implementation of the class Router as we proposed it by manual implementation in
Sec. 7.5.

8.5 Publication History

This chapter brings the master thesis [Cic14] and the two publications [Kla15b], and
[KCH14] together. The overview of the Helena workbench is based on [Cic14], but
goes more into detail about the di�erent activities and artifacts.

The basis for the domain-speci�c language HelenaText has been developed in the
master thesis [Cic14] under the supervision of Annabelle Klarl. However, this thesis
extends HelenaText to be able express all syntactic constructs presented in Chap. 2.
Especially, role behaviors are now described by process expressions and not by transi-
tions of a labeled transition system.

The automated Promela code generator has already been presented in [Kla15b].
Compared to this publication, this thesis improves the code generation to precisely
follow the formal translation proposed in Sec. 5.2. Special care has been taken to
represent atomic steps correctly.

The automated jHelena code generator has already been presented in [Cic14]
and [KCH14]. Since the jHelena framework (and especially the representation of
role behaviors) has fundamentally been improved in this thesis, the code generator has
rudimentary been revised in this thesis. The translation of ensemble structures is only
slightly adapted, but the translation of role behaviors has completely been reimple-
mented.

8.6 Present Achievements and Future Perspectives

Present Achievements: This chapter proposed the Helena workbench, an Eclipse
plug-in which supports the developer of ensemble-based systems throughout the whole
development process. The Helena workbench provides the domain-speci�c language
HelenaText to be able to specify ensembles with appropriate �rst-class concepts.
HelenaText relies on the Xtext workbench of Eclipse which allows to automatically
provide an Eclipse editor for writing HelenaText speci�cations. It gives the user
assistance for writing ensemble speci�cations and checks the user-de�ned models for
validity according to the formal Helena de�nitions. Additionally, two code generators
are implemented which take a HelenaText speci�cation as input and translate them
to Promela and Java. The two generators realize the translations proposed as manual
translations in Chap. 5 and Chap. 7, but allow reliable and fast development through
the automation of the translation.

Future Perspectives: Future work will be driven by extension of the domain-speci�c
language HelenaText.

Syntactic Extension of HelenaText: At the moment, it is only possible to specify an
ensemble speci�cation, but not its initial state or its goals. If we o�ered these
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possibilities, the two code generators could be extended such that the developer
of the ensemble does not have to specify anything in generated �les anymore. For
the translation to Promela, it would be possible to generate the initialization of
processes given in the dedicated init-process (cf. Sec. 5.3.1) as well as to trans-
late goals given as the Helena LTL formulae directly to Promela LTL. For the
translation to Java relying on the jHelena framework, it would be possible to
generate the set-up of an initial state in the system manager of the ensemble-bases
system. Furthermore, the whole Helena methodology could allow the speci�ca-
tion of e�ects of component operations. If they were included in a HelenaText
speci�cation, it would be possible to also generate the implementation of oper-
ations of components such that the Java implementation could be completely
generated without manual intervention by the developer of the ensemble-based
system.

Syntactic Sugar for HelenaText: During the development of the p2p example as well
as our case study which will be presented in Chap. 10, we noticed some handy
extension of the domain-speci�c language which would ease speci�cation. On
the one hand, some syntactic sugar could be added to allow an if -construct or
nondeterministic choice with several options. On the other hand, the graphical
representation of ensemble structures used throughout this thesis helps to get
a better overview of the structure of an ensemble. The Helena workbench al-
ready provides the metamodel of HelenaText according to the Eclipse Modeling
Framework. Thus, it should be easy to extend it with a graphical notation based
on the Graphical Modeling Framework of Eclipse.

Representation of Counterexamples in HelenaText: Finally, it would be interesting
to map the results of veri�cation and execution back to the original HelenaText
speci�cation. This is particularly interesting for counterexamples generated dur-
ing veri�cation which are currently represented as traces of the Promela veri�-
cation model. They have to be mapped back to Helena by hand which requires
in-depth knowledge of the translation from Helena to Promela.



Chapter 9

Helena Development Methodology
Developing with Helena

The Helena techniques and tools support di�erent activities of engineering ensemble-
based systems. This chapter is concerned with bringing all techniques and tools pre-
sented in the previous chapters together and integrates them in a holistic development
methodology. Fig. 9.1 gives an overview of the Helena development methodology.
The methodology splits development work into �ve distinct phases (shown as dashed
boxes): domain modeling, goal speci�cation, design, veri�cation, and implementation.
Each phase is concerned with certain activities (shown as boxes with rounded corners)
and produces certain artifacts (shown as boxes with pointed corners). The intentions of
the phases in the Helena development methodology do not di�er from other classical
development methodologies since each activity is similarly relevant for ensemble-based
systems as for other software applications. That means that there is no need to in-
troduce a whole new methodology for the development of ensemble-based system, but
rather to tailor the techniques and tools for each phase to the particular characteristics
of ensemble-based systems. Thus, we introduce the Helena development methodol-
ogy as a classical model-driven approach for engineering ensemble-based systems with
systematic transitions between all phases. Most of the phases and transitions are tool-
supported and (except veri�cation with Spin) seamlessly integrated into one single tool,
the Helena workbench (cf. Chap. 8).
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Implementation

Goal Specification

HELENA 
LTL Goals

Design

HELENA 
Design Model

PROMELA 
Verification 

Model

jHELENA  
Implementation

Model
Transformation
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Figure 9.1: TheHelena development methodology for ensemble-based systems
(repeated from Sec. 1.5)
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The Helena methodology advises to start with modeling the domain of the
ensemble-based application. An ensemble structure captures the participating enti-
ties of the ensemble and serves as the Helena domain model. Based on this model,
goals for the envisioned ensemble are elicited and speci�ed as Helena LTL formulae.
Afterwards (or possibly in parallel), a goal-oriented Helena design model is derived.
It enhances the initial Helena domain model by further role types which might be
needed to accomplish the global goal of the ensemble, but are not explicitly relevant
for the domain description. Furthermore, all component types of the initial Helena
domain model are enhanced by operations to allow use of their resources, all role types
are enhanced by messages to allow communication between roles and by goal-directed
role behaviors which use the aforementioned messages for collaboration between roles.
This enhancement produces a complete Helena ensemble speci�cation serving as the
Helena design model. To assess whether the designed ensemble speci�cation actually
achieves the speci�ed goals, the Helena LTL goals and the Helena design model are
transformed to a Promela veri�cation model. This Promela veri�cation model is
veri�ed with the model-checker Spin to get feedback on the satisfaction of goals in the
Helena design model and to improve the model further to �nally achieve all goals.
Furthermore, a jHelena implementation is generated from the Helena design model.
This implementation allows to execute the ensemble-based system in Java relying on
the jHelena framework.

When examining the overview diagram of the Helena development methodology,
one might be tempted to envision it as a classical waterfall methodology. We rather
have an iterative and incremental development in mind, but did not show feedback
loops and increments in the picture.

� Iterative development means that we continuously improve the system design. In
the case of Helena, a �rst draft of the goal speci�cations and the design model
is created and analyzed with Spin. As long as veri�cation does not return the
desired positive results concerning goal satisfaction, goal speci�cations and the
design model are re�ned until the goals speci�cations �nally express the intended
goals and the design model achieves all intended goals. Similarly, the design
model is improved until the implementation satis�es all execution demands like
performance requirements.

� Incremental development means that we develop the overall system in smaller
parts or increments. In the case of Helena, we incrementally design the ensemble-
based system such that each increment of the system tries to achieve a certain
subset of all intended goals and to ful�ll its dedicated performance requirements.
On ensemble-level, we focus on a particular subset of goals and develop only the
roles and their behaviors which contribute to the achievement of these goals. On
system-level, each ensemble is considered as an increment which runs on top of
the underlying component-based platform and is developed individually.

� By combining iterative and incremental development, the system is created in
increments each of which undergoes several re�nement iterations until goal satis-
faction is reached and execution requirements are ful�lled.

In the following sections, we describe the �ve phases of the Helena development
methodology separately. For each phase, we summarize (and repeat from the previous
chapters) the activities, created artifacts, and tool support. We illustrate each step with
our running example of the p2p network for exchanging �les.
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The complete speci�cation of the p2p example in HelenaText can be found in
Appendix C.1 and on the attached CD in the project eu.ascens.helenaText.p2p in
the �le src/p2p.helena. The generated Promela speci�cation for veri�cation to-
gether with all goals is shown in Appendix C.2 and on the attached CD in the project
eu.ascens.helenaText.p2p in the �le promela-gen/p2p-check.pml. The generated im-
plementation of the p2p example based on the jHelena framework can be found on
the attached CD in the project eu.ascens.helenaText.p2p in packages src-gen and
src-user.

9.1 Domain Modeling

The �rst phase in the Helena development methodology is domain modeling. This
phase is based on the techniques and tools of Chap. 2 and Chap. 8.

Activities: We capture the domain of the ensemble application to be developed. The
domain model represents all entities which are important in the problem domain space
and therefore provides the vocabulary to describe the ensemble application. It does not
specify any behavior of the entities, but only their basic properties.

Artifacts: The domain is characterized by the underlying component-based platform
providing its resources to the application. The component-based platform is represented
by a set of component types with their mutual associations and the basic attributes they
provide to store data. On top of that, the ensemble to be developed is described by its
essential role types. The role types and their relationships to the underlying component-
based platform are represented in an ensemble structure as introduced in Sec. 2.3.

We only model the problem domain in this phase. Thus, it is enough to name the
contributing component types and essential role types together with their attributes.
Component types are not yet equipped with operations and role types are not equipped
with messages since only the speci�cation of goals can later on guide the introduction
of particular actions and behaviors.

Tool Support: The domain model with component types, role types and the ensem-
ble structure can textually be speci�ed in HelenaText. To this end, the Helena
workbench provides a HelenaText editor with syntax highlighting, content assist and
validation. Although the editor allows to specify operations for component types as well
as messages and behaviors for role types, they are left unspeci�ed since they are added
during goal-oriented solution design.

Example: We illustrate the Helena development methodology at our p2p example.
The employed p2p network supports the distributed storage of �les that can be retrieved
upon request. Therefore, the underlying component-based platform is described by a
single component type Peer as graphically shown in Fig. 9.2 (for the textual represen-
tation, we refer to Appendix C.1). For simplicity, we only consider a single �le to be
stored in the network. Thus, the component type Peer only has two attributes hasFile
and content to indicate whether it stores the �le and to represent its content.

The problem to be solved by the envisioned ensemble is to work together to allow
a requesting peer to retrieve the �le from the network. This means that the role of a
Requester is essential to describe the problem domain of the ensemble. It just has one
attribute hasFile to indicate whether it already retrieved the �le from the network. All
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«role type»
Requester

hasFile:bool

«component type»
Peer

hasFile:bool
content:int

neighbor

«adoptedBy»

Figure 9.2: Domain model for the p2p example in graphical notation

other role types which are needed to transfer the �le to the requesting peer are part of
the solution design and are hence not represented in the domain model in Fig. 9.2.

9.2 Goal Speci�cation

Following up is the phase of goal speci�cation. This phase is based on the techniques
and tools of Chap. 4.

Activities: In this phase, we use the domain model and the informal intuition about
the problem to elicit formal goals. The goals formally represent the intentions of the
ensemble under development. Requirements methods like KAOS [vL09] can be applied
to systematically derive goals. Requirements are gathered by interviewing stakeholders
and carefully analyzing the problem domain. Di�erent requirements patterns [DvLF93,
DAC99] and decomposition into subgoals [vL01] lead to a set of system goals which
systematically describe the requirements of the system and allow to deduce the system
behavior in the next phase.

A common tool for the actual goal description is linear temporal logic. It allows
to specify temporal properties which can be achieved at some point in the runtime of
the ensemble-based system (so-called achieve goals) or which are maintained during the
whole runtime of the ensemble-based system (so-called maintain goals).

Artifacts: Each goal of the ensemble is speci�ed as a linear temporal logic (LTL)
formula. LTL formulae are built from a set of Helena-speci�c atomic propositions
and the usual relational, propositional, and temporal operators (cf. Sec. 4.2). There
are two di�erent types of Helena-speci�c atomic propositions about which we can
reason: Attribute expressions refer to the current value of an attribute of a component
instance or role instance. They allow to specify goals for the problem domain. The
second type of atomic propositions are state label expressions. They refer to certain
states in the progress of executing a role behavior. Therefore, they cannot be used
to initially describe goals since the domain model does not specify any role behaviors.
However, they can later on be used as auxiliary goals when verifying and re�ning the
design model.

Tool Support: The speci�cation of goals is so far not supported by the Helena
workbench. It remains future work to allow the formulation of LTL properties based
on the Helena-speci�c atomic propositions.
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Example: For our p2p example, we derive two goals. The �rst goal is an achieve goal
and expresses that the Requester �nally receives the �le if the �le is present in the
network (cf. Fig. 9.3). The formalization makes the drawback of using LTL as the logic
for goal speci�cation apparent. Since LTL does not support quanti�ers, we have to
enumerate all peers in the network to specify the precondition that the �le has to exist
in the network. This means that we must already assume during goal speci�cation that
the system only employs three peers in the case of our p2p example.

(Peer[1]:hasF ile∨Peer[2]:hasF ile∨Peer[3]:hasF ile)⇒ ♦Requester:hasF ile.

Figure 9.3: Achieve goal for the p2p example in Helena LTL

The second goals is a maintain goal (cf. Fig. 9.4) and expresses that the �le is never
removed from the network if the �le is present in the network. As before, we have to
enumerate all peers of the underlying platform to be able to describe this goal in LTL.

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile)

⇒ �(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile).

Figure 9.4: Maintain goal for the p2p example in Helena LTL

9.3 Design

The main phase for the derivation of the solution is the design of the envisioned
ensemble-based system. This phase is based on the techniques and tools of Chap. 2
and Chap. 8.

Activities: This phase is concerned with the design of the goal-directed behavior of
the system. To this end, we have to equip component types with operations which allow
to use the resources of the components. Furthermore, role types have to be provided
with messages which they can exchange to collaborate on the task of the ensemble. To
be able to achieve the speci�ed goals, it might be necessary to even include more role
types. These role types are not essential to the description of the domain and were
therefore not part of the initial domain model. They only contribute to the solution of
the task of the ensemble. For each role type, we additionally specify how many instances
are allowed and have to contribute to the ensemble and how many message can be held
by the input queue of each instance.

Lastly, a role behavior for each role type needs to be designed such that the overall
ensemble works towards its intended goals in collaboration and interaction. We recom-
mend to prevent communication errors between the collaborating roles by visualizing the
interaction behavior of the ensemble in a notation similar to sequence diagrams. This
interaction diagram allows to design the collaboration between all contributing roles of
the ensemble together. Projection on a single role gains the desired role behavior for
each role type.

Artifacts: Resulting from the extension of component types by operations and of role
types by messages as well as the inclusion of further role types and the speci�cation of
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role behaviors is aHelena design model in the form of a complete ensemble speci�cation
in the sense of Chap. 2. It relies on a set of component types with operations. On top of
that, an ensemble structure speci�es the conceptual relationships between collaborating
roles and a set of role behaviors determines the behavior of the ensemble.

Tool Support: The Helena design model can completely be speci�ed textually in
HelenaText. The corresponding editor in the Helena workbench provides once
again syntax highlighting, content assist and validation of the speci�ed model.

Example: Fig. 9.5 depicts the full ensemble structure for our p2p example in graphical
notation (for the textual representation, we refer to Appendix C.1). The design model
includes the component type Peer and the role type Requester from the initial domain
model, but it enhances them by operations and messages (depicted by arrows between
role types) as well as by a multiplicity and a capacity of the input queue for the role
type Requester. Furthermore, the ensemble employs two more role types Router and
Provider to work towards the goal of �le transfer in collaboration.

«role type»
Requester

hasFile:bool

min = 1
max = 1
cap = 2

«component type»
Peer

hasFile:bool
content:int

printFile()

«role type»
Router

min = 1
max = *
cap = 2

«role type»
Provider

min = 0
max = 1
cap = 1

neighbor

req
Add

r(.
.)(

)

snd
Add

r(.
.)(

)

reqFile(..)()sndFile()(..)

reqAddr(..)()

«adoptedBy»

«adoptedBy» «adoptedBy»

Figure 9.5: Ensemble structure in theHelena design model for the p2p example
in graphical notation

Apart from the ensemble structure, the design model is also comprised of a role
behavior for each role type in the ensemble. These interacting role behaviors can be
developed by visualizing them in a graphical notation similar to sequence diagrams (cf.
Fig. 9.6). Afterwards, they are projected on each role type to derive the individual role
behaviors. Thereby, the two instances of role type Router are integrated into one role
behavior which calls itself recursively as indicated by the recursion box in Fig. 9.6. The
projected role behaviors were already presented in Sec. 2.4. The complete speci�cation
in HelenaText has 72 lines of code and is listed in Appendix C.1.
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Figure 9.6: Role behaviors in the Helena design model for the p2p example
in graphical notation

9.4 Veri�cation

The design model for the envisioned ensemble-based system is developed having the
speci�ed goals in mind. To actually guarantee that it achieves the speci�ed goals,
the model has to be veri�ed against its goals. For this veri�cation phase, we rely on
the well-established explicit state model-checker Spin [Hol03] instead of providing a
Helena-speci�c model-checker. The phase is based on the techniques and tools of
Chap. 5 and Chap. 6.

Activities: The veri�cation phase is mainly characterized by two activities: Firstly,
the Helena design model and its goals speci�ed as Helena LTL formulae are trans-
formed to a Promela veri�cation model, the input for the model-checker Spin. We
support this activity by a formal translation function from Helena to Promela (cf.
Sec. 5.2) which is proven semantically correct in Chap. 6.

Secondly, the Promela veri�cation model is checked for a speci�c initial state
against the translated goals with the model-checker Spin. This veri�cation step gives
feedback to the phase of goal speci�cation on the one hand and to the phase of design
on the other hand. Goals are re�ned if they are not strong enough or restrict the
solution design too much. The design model is revised to get rid of design �aws which
prevent the model from achieving the speci�ed goals. This feedback loop emphasizes
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the iterative character of the Helena development methodology insofar that the results
of model-checking help to improve the artifacts of previous phases.

Artifacts: Two artifacts are required as input: The goals for the envisioned ensemble-
based system are described as Helena LTL formulae. The structure and the goal-
directed behavior of the ensemble-based system are captured as a Helena design
model consisting of an ensemble structure with associated role behaviors on top of
a component-based platform.

These two artifacts are transformed to a Promela veri�cation model. For the He-
lena design model, the two layers of components and roles are represented as processes
in Promela. Instead of directed message exchange, channels allow the exchange of
data between role processes. Furthermore, the goals for the system speci�ed as He-
lena LTL formulae are translated to Promela LTL formulae. Their main di�erence
is to refer to properties of the Promela process types instead of Helena components
and roles.

Tool Support: Based on the design model speci�ed in HelenaText, the Helena
workbench o�ers an automated model transformation to Promela. The transformation
implements the formal translation function from Sec. 5.2 as described in Sec. 8.3. Its
output is a Promela �le representing the Helena design model which can be used
as input for the model-checker Spin. So far, the translation of Helena LTL formulae
to Promela LTL formulae is not supported by the Helena workbench and has to be
done by hand.

Model-checking with Spin is not integrated into the Helena workbench. However,
the generated Promela �le can directly be checked for a speci�c initial state against
the hand-coded Promela LTL formulae with Spin. The output of Spin provides results
and statistics about the veri�cation run. Counterexamples can be examined on the level
of the Promela veri�cation model if goals are not satis�ed. It remains future work to
map these counterexamples back to the original Helena design model and therefore to
integrate the veri�cation run into the Helena workbench.

Example: For veri�cation, the Helena design model for the p2p example is trans-
formed to a Promela veri�cation model with four process types representing the com-
ponent type Peer and the role types Requester, Router, and Provider. Excerpts were
already shown and explained in Fig. 5.5 on page 85 and Fig. 5.6 on page 87. The
complete generated Promela veri�cation model has 512 lines of code and is listed in
Appendix C.2.

Furthermore, both goals for the p2p example are translated to Promela as already
discussed in Sec. 5.3.1. To represent the Helena LTL formulae in Promela, very few
adaptations are needed: All operators are expressed by their ASCII representatives. To
refer to the role attribute hasF ile, it is pre�xed with roleAttr_. Everything else remains
unchanged. The translated goals are listed in Fig. 5.18 on page 104 and Fig. 5.19 on
page 104 or at the end of Appendix C.2 and are not repeated here.

To model-check the generated Promela veri�cation model against its translated
Promela goals, we �nally set-up an initial state for the model as already shown in
Fig. 5.17 on page 103. The init-process in Fig. 5.17 creates three peers (line 2�19),
each possibly having the desired �le. Afterwards, it starts the envisioned ensemble by
creating a requester on the �rst peer (line 21�27).

With the initial state from Fig. 5.17, both goals of the p2p example are satis�ed for
the design model. Due to the small size of the example, it was possible to design a correct
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solution model from the beginning such that no improvement iterations were needed.
However, this changes quickly if the example gets more complex. When developing the
case study of the Science Cloud platform in Chap. 10, we will soon bene�t from the
veri�cation of the design model. Design �aws and deadlocks in the structural model
and the collaboration behaviors become apparent before implementation. They can
be eliminated at early stages and the later implementation is guaranteed to achieve
its goals. Some of the errors, we detect in the design of the case study, are corner-
cases which most certainly would not have been uncovered by simple tests of the �nal
implementation.

9.5 Implementation

The �nal phase of the Helena development methodology realizes the veri�ed design
of the ensemble-based system and allows to execute it. This phase is based on the
techniques and tools of Chap. 7 and Chap. 8.

Activities: The main activities of this phase are implementation and execution of
the ensemble-based system. To ease implementation, we proposed the Java frame-
work jHelena in Chap. 7. It expresses the two-layered Helena concepts with object-
orientation in Java and realizes the execution semantics of Helena. A speci�c
ensemble-based system is thus easily implemented by relying on the general classes
provided by jHelena.

To execute the implemented system, a speci�c initial con�guration of the system is
set up, i.e., it is de�ned which components exist and how the ensemble is started. The
jHelena framework then takes care to execute the implemented system according to
the Helena semantics.

Artifacts: As for veri�cation, the Helena design model serves as input for the imple-
mentation and builds the foundation for execution. The structure and the goal-oriented
behavior of the ensemble described in this model are transferred to an implementation
in the form of a set of classes relying on the jHelena framework. jHelena thereby
represents all syntactical concepts of Helena in Java, may it be entities like compo-
nents, roles and ensemble structures or behavioral constructs like process expressions
and actions. It furthermore realizes the execution semantics of Helena for all repre-
sented concepts. By building on jHelena, we thus assure that the main artifact of this
phase, the implementation as a set of classes, only refers to Helena concepts and that
its execution respects the semantics of Helena.

Tool Support: Based on the design model speci�ed in HelenaText, the Helena
workbench o�ers an automated code generator to Java. The code generation translates
all Helena concepts to their counterparts in the jHelena framework as described in
Sec. 8.4. Its output is a set of classes representing the Helena design model relying on
the jHelena framework.

As for veri�cation, a speci�c con�guration of the ensemble-based system has to be
established before the ensemble can be started. So far, it has to be implemented by
hand which components exist and how the ensemble is started. The Helena workbench
supports the implementation of an initial state in Java (or rather jHelena) relying on
the standard Java editor of Eclipse with syntax highlighting and content assist. It
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remains future work to support the speci�cation of an initial state in HelenaText in
the Helena workbench.

The generated set of classes enhanced by an initial state can then be executed with
the Java virtual machine. By relying on the Java virtual machine of Eclipse and provid-
ing the jHelena framework, execution is fully integrated into the Helena workbench
including the well-established Eclipse features of debugging and code inspection.

Example: The generated implementation for the p2p example is split into two parts.
The �rst part resides in the package src-gen and includes all classes whose content
can directly be derived from the Helena design model and which do not have to be
adapted by the user anymore. It contains 11 classes: one class represents the compo-
nent type Peer, three classes represent the role types Requester, Router and Provider,
one class represents the ensemble structure TransferEnsemble, four classes represent
the four messages exchanged in the ensemble, one class represents the only operation
printFile provided by the component type Peer and �nally one class represents the
system manager which takes care to con�gure the ensemble structure and its contribut-
ing role types. Excerpts of the system manager and the class representing the role type
Router were already shown in Fig. 7.9 on page 175 and Fig. 7.10 on page 176. The
complete generated implementation can be found on the attached CD in the project
eu.ascens.helenaText.p2p in package src-gen.

For the implementation, a second part cannot be generated from the Helena design
model, but needs to be implemented by hand in stub-classes in the package src-user.
On the one hand, the e�ect of operations is not de�ned in Helena. Therefore, the e�ect
of an operation needs to be implemented in the generated component class (we refer
the reader to Fig. 7.11 on page 177 for the implementation of the operation printFile).
On the other hand, the initial state of the ensemble has to be de�ned, i.e., which
components exist and how the ensemble is started. All peer components are created
and connected in a ring structure in the method createComponents implemented by
the class P2PSysManager which was already shown in Fig. 7.13 on page 178. To start
transfer ensembles on top of this ring structure of peers, the method startEnsembles is
implemented as already shown in Fig. 7.14 on page 178. The complete implementation
can be found on the attached CD in the project eu.ascens.helenaText.p2p in package
src-user.

9.6 Related Work

While the list of general development methodologies is quite long, only very few have
been proposed which address the particular features of ensemble-based systems.

SCEL [DLPT14] provides linguistic abstractions to design autonomic computing
systems. With its execution framework jRESP [Lor16], SCEL speci�cations can be im-
plemented and simulated. A prototypic statistical model-checker integrated into jRESP
allows to check satisfaction of reachability properties with a certain degree of con�-
dence. However, the authors claim the development of a coherent methodology for
future work [DLPT14].

DEECo [BGH+13] is supported by a dedicated requirements-oriented design method
called Invariant Re�nement Method (IRM) [BGH+15]. It guides the transition from
high-level system goals to the architecture of autonomic components and ensembles.
IRM captures goals and requirements of the ensemble-based system to be developed by
high-level invariants. These high-level invariants are gradually decomposed to lower-
level invariants until they correspond to computation activities which can be expressed
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by a component process or knowledge exchange according to the DEECo component
model [BGH+13]. The DEECo design model can then be implemented with the Java
framework jDEECo and veri�ed with Java PathFinder [VHB+03]. Although IRM de-
�nes a comprehensive solution how to derive a DEECo architecture from high-level
goals, the further activities of veri�cation and execution are not embedded into a co-
herent development methodology.

The Scribble methodology [YHNN13] supports the development of distributed sys-
tems based on multiparty session types [CDPY15] from the speci�cation of global inter-
action protocols to local veri�cation and execution. The �rst step in the methodology
is to specify the global interaction protocol type between participants of a multiparty
session with the Scribble language. Afterwards, the Scribble tools automatically gener-
ate the local projection of the global type to every single participant of the multiparty
session. Such local types preserve communication safety by construction. Then, the
local types are implemented in a mainstream language like Java or Python using the
Scribble Conversation API and are executed by the Scribble Runtime. In theory, the
implementation of the local types preserves communication safety via a strict type sys-
tem between the local types and their implementations. However, in practice, calls
to native functions in the host languages Java or Python make the static type checks
intractable [YHNN13]. Thus, a �nite state automaton is generated from each local type
which represents all action traces possible in the local interaction protocol type. The
correspondence of the implementation with its local interaction protocol type is dynam-
ically veri�ed by monitoring and comparing the traces through the implementation and
the traces through the �nite state automaton generated from the local type. Compared
to the Helena development methodology, multiparty session type theory in general
and the Scribble methodology do not allow to de�ne speci�c goals to be achieved in a
multiparty session and to verify them for a particular multiparty session type. They
focus on general properties likes communication safety, protocol �delity and progress.
These properties are guaranteed by construction in theory and by dynamic veri�cation
in practice. Therefore, the Scribble methodology does not include a dedicated goal
speci�cation and veri�cation phase.

9.7 Publication History

The Helena development methodology has newly been proposed in this thesis and has
not yet been published before. It combines all techniques and tools presented in the
previous chapters to a coherent methodology. The contents of the individual phases
rely on the publications already named in the corresponding chapters of this thesis.

9.8 Present Achievements and Future Perspectives

Present Achievements: The Helena development methodology is a holistic engi-
neering process for ensemble-based systems. It is characterized by �ve distinct phases
which are iteratively and incrementally traversed: Domain modeling introduces all en-
tities to describe the problem space of the system to be developed. During goal speci-

�cation, the goals of the envisioned ensemble-based system are elicited and formalized.
The design phase is responsible to derive a goal-directed solution model. i.e., concrete
messages exchanged between roles are introduced and role behaviors are designed. To
actually guarantee goal-directed behavior, veri�cation checks that the design model
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achieves the speci�ed goals and gives feedback about design �aws. The �nal implemen-

tation phase realizes the veri�ed design and allows to execute it.
Altogether, the phases of the Helena development methodology have the same

intentions as in classical development methodologies, but we tailor the employed tech-
niques and tools to the particular characteristics of ensemble-based systems: The He-
lena modeling approach provides particular concepts targeted at dynamically formed
and collaborating ensembles. With a Helena model at the heart of the Helena
development methodology, we support systematic transitions between all phases to al-
low model-driven development of ensembles. Most of the phases and transitions are
tool-supported and seamlessly integrated into one single tool, the Helena workbench,
upgrading the Helena development methodology to a holistic engineering approach.

Future Perspectives: Nevertheless, the Helena development methodology leaves
some areas for future improvements.

Artifacts: The expressiveness and (textual or graphical) representation of the artifacts
can be advanced further. We refer the reader to the chapters Chap. 2, Chap. 3,
Chap. 4, Chap. 5, Chap. 7, and Chap. 8 for detailed future work on artifacts
in each of the phases. However, we want to highlight one missing feature which
became apparent during the systematical application of the Helena development
methodology to the p2p example (and the larger case study presented in Chap. 10).
When specifying the dynamic behavior of an ensemble, the designer mostly has the
global interaction behavior of the ensemble in mind. Helena, however, requires
to separately specify the projected role behaviors. Thus, Helena would bene�t
from an interaction speci�cation, e.g., in the style of UML sequence diagrams or
multiparty session types [CDPY15], which allows to �rst design the interactions
between roles and afterwards to project them on separate role behaviors. When
using UML sequence diagrams, standard modeling concepts would have to be
extended to visualize recursive role behaviors and arbitrary many instances per
role type.

Activities: Some additional activities are needed to foster the information �ow between
the phases and nurture a deeper guideline for the completion of each activity.

� The KAOS methodology [vL09] as well as Dwyer et al. [DAC99] recommend
a set of patterns for the speci�cation of temporal properties. This very
general set of patterns already provides a guideline for the formulation of
goals of ensemble-based systems, but it could be specialized to the particular
characteristics of ensembles. For example, maintain goals should always be
expressed on the level of components since they are the persistent entities of
the system while roles are volatile. On the other hand, achieve goals should
capture that the roles of the ensemble achieve a certain property from an
initial state expressed on the level of components.

� So far, the derivation of a solution design from a goal speci�cation is not
supported by any speci�c guideline, but depends on the creativity of the
designer. Thus, this activity could bene�t from rules about how to re�ne
goals to a design like in the Invariant Re�nement Method [BGH+15].

� For detailed future work on the activities for veri�cation and implementation,
we refer the reader to the chapters Chap. 5, Chap. 7, and Chap. 8.



Chapter 10

Helena@Work
Applying Helena to the Science Cloud Platform

In the last sections, we formally introduced the Helena methodology and all its tech-
niques and tools and illustrated it with a small example for distributed �le storage. In
this section, we apply the Helena methodology to a larger software system. We take
our case study from the EU project ASCENS [WHKM15]. This project investigates
ensemble-based systems as we envision them in the Helena methodology. The case
study we selected from this project is the Science Cloud Platform (SCP) [MKH+13].
The SCP is a platform of distributed, voluntarily provided computing nodes. The nodes
interact in a peer-to-peer manner to execute, keep alive, and allow use of user-de�ned
software applications. The goal of applying Helena to the SCP is two-fold. On the
one hand, we want to evaluate whether the Helena methodology helps to systemat-
ically develop ensemble-based systems even in a larger context. On the other hand,
we want to assess whether the Helena concept of slicing the ensemble-based system
into ensembles and roles is a reasonable abstraction that serves as clear documentation,
analysis model for veri�cation, and guideline for implementation.

We experienced that the Helena methodology helps to rigorously describe the
concepts of the SCP. A Helena ensemble structure with its roles divides the domain
into intuitive entities. Based on this domain model, goals can be easily speci�ed and
goal-directed behaviors be developed. During veri�cation of the model against its goals
with Spin, collaboration mismatches can be eliminated at early stages as well as goal
satisfaction guaranteed. As we shall discuss, the implementation also bene�ts from
the introduction of ensembles and roles. The ideas from jHelena how to realize the
Helena concepts in object-orientation can be transferred to the implementation of the
SCP. However, some additional e�ort is required to provide an infrastructure which
supports the role concept in unison with the required technology stack of the SCP (e.g.,
the message passing framework of the SCP). Thus, inspired by jHelena, a Helena
SCP middleware is implemented which transfers the Helena concepts of roles and
ensembles to the distributed set-up of the SCP and can therefore be seen as a prototype
of a distributed jHelena implementation, particularly tailored for nodes of the SCP.
Lastly, special care has to be taken to make the system robust against communication
failures and to provide communication facilities between ensembles and the outside
world which are not yet tackled in Helena.

In the following sections, we �rst describe the case study and its goals informally
in Sec. 10.1. Afterwards, we follow the Helena development methodology to realize
the case study with Helena. In Sec. 10.2, we introduce the domain model of the SCP.

213
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Using this domain model, we deduce a formal speci�cation of all goals of the case study
in Sec. 10.3. Table 10.4 describes the dynamic behavior executed by the ensemble to
achieve its goals. To guarantee goal satisfaction with this dynamic behavior, we verify
the complete Helenamodel against its goals in Sec. 10.5. We iteratively uncover design
errors and improve the Helena model of the SCP. Table 10.6 describes the realization
of the Helena model on the technology stack of the SCP. Lastly, we summarize our
experiences of applying Helena to the SCP case study and give an outlook in Sec. 10.9.

The complete speci�cation of the SCP case study in HelenaText can be found
in Appendix D.1 and on the attached CD in the project eu.ascens.helenaText.scp.
The generated Promela speci�cation for veri�cation together with all goals is shown
in Appendix D.2 and on the attached CD in the project eu.ascens.helenaText.scp in
the folder promela-gen. A distributed implementation of the SCP based on the Hele-
naText ensemble speci�cation can be retrieved from http://svn.pst.ifi.lmu.de/
trac/scp, version v3 of the node core implementation with gossip strategy.

10.1 The Science Cloud Platform

One of the three case studies in the ASCENS project is the Science Cloud Platform

(SCP) [MKH+13]. The SCP employs a network of distributed, voluntarily provided
computing nodes, in which users can deploy and use user-de�ned software applications.
To achieve this functionality, the SCP reuses ideas from three usually separate comput-
ing paradigms: cloud computing, voluntary computing, and peer-to-peer computing. In
a nutshell, the SCP implements a platform-as-a-service in which individual, voluntarily
provided computing nodes interact using a peer-to-peer protocol to deploy, execute, and
allow usage of user-de�ned applications. The SCP takes care to satisfy the requirements
of the applications, keeps them running even if nodes leave the system, and provides
access to the deployed applications.

To illustrate the idea of the SCP, we imagine a network of peers. Each peer can be
of a di�erent type, so for example, one might be a personal desktop computer, another
one a laptop, a third one a mobile phone, and a fourth one a powerful server. They all
voluntarily contribute to the network of peers by providing their storage and computing
resources. This means that each peer can decide whether it wants to join or leave the
network at any time. In this voluntary peer-to-peer network, users can deploy software
applications like in a platform-as-a-service cloud. A software application thereby does
not compute something, but provides a service itself. An example would be a software
application like Google Docs1. It is deployed in the network and afterwards users can
access the deployed software to create documents in the cloud.

As indicated before, the SCP implements its features by using a blend of three
usually separate computing paradigms which we shortly discuss in the following: cloud
computing, voluntary computing, and peer-to-peer computing. Afterwards, we outline
the technical setup of the SCP which serves as the basic infrastructure and describe
the process for executing an application on top of the SCP. The description is based
on [MKH+13], for more details we refer to the very same paper.

10.1.1 Computing Paradigms

Firstly, as its name implies, the science cloud platform is a cloud computing platform.
Cloud computing has been a hot topic in computing for some time now and refers to

1https://www.google.com/docs/about/

http://svn.pst.ifi.lmu.de/trac/scp
http://svn.pst.ifi.lmu.de/trac/scp
https://www.google.com/docs/about/
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the ability of users to use (shared) computing resources (storage, applications, services)
with minimum management e�ort, meaning mostly little required knowledge about how
and where the resources are provisioned [MG11]. The SCP uses a speci�c model of cloud
computing, which is the platform-as-a-service model: it provides a platform on which
user-de�ned applications can be executed. Such an application may have requirements
� for example, regarding CPU power or memory � and the platform, besides ensuring
that the application keeps running in the �rst place, needs to ful�ll these requirements
as best as possible.

The second paradigm in use in the SCP is the voluntary computing paradigm. Vol-
untary computing refers to projects in which computing resources are provided volun-
tarily by end users or organizations instead of being provisioned by a dedicated service
provider. The prototypical example of such projects are the @Home projects (especially
SETI@Home [KWA+01]). Usually, a central coordinating agency uses voluntarily pro-
vided computing power over the Internet to execute small packages of computation, the
results of which are then sent back to a central server and integrated. Each contributing
user may add and remove his resources at any time. The SCP builds on this paradigm
in that it is completely based on voluntarily provided resources (i.e., network nodes).
Each node can join or leave the network as its user sees �t, with the platform ensuring
that applications are kept running regardless (as far as possible). The nodes can thus
be vastly heterogeneous.

Finally, the SCP uses the peer-to-peer paradigm [ATS04], which refers to networking
infrastructures which perform their tasks without a central coordinator. Good examples
are the Internet itself, or the distributed storage of data in hash tables (DHTs). The
lack of a central coordinator makes such infrastructures more resilient, but introduces
certain overhead for maintenance. The SCP uses the peer-to-peer paradigm for all of
its communication, i.e., there is no central coordinator which manages the cloud nodes,
data, and applications.

10.1.2 Technical Setup

The SCP is formed by a network of computers which are connected via the Internet,
and on which the SCP software is installed (we call these nodes). The layout of an SCP
node is shown in Fig. 10.1, along with the technologies involved. The dashed boxes are
those parts which shall be developed with the Helena methodology.

Virtual and/or Physical Machine 
  (OS Layer)

SCP Node 
  (Networking Layer)

App Execution 
  (Application Layer)

App1 App2 ...

Java OSGi

Pastry PAST

SCP Role Behavior Implementations

Gossip 
Communication

TCP/IP

SCP UI

HELENA SCP Middleware

Figure 10.1: SCP architecture (Helena parts in dashed boxes)

The bottom layer shows the infrastructure: The SCP is a Java application and thus
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runs in the Java VM; it also uses the OSGi component framework2 to dynamically
deploy and run applications (as bundles). In general, plain TCP/IP networking is used
to communicate between nodes on this level.

The second layer implements the basic networking logic. The SCP uses the dis-
tributed peer-to-peer overlay networking substrate Pastry [RD01b] for communication.
Pastry works similarly to a Distributed Hash Table (DHT) in that each node is repre-
sented by an ID. Node IDs are organized to form a ring along which messages can be
routed to a target ID. Pastry manages joining and leaving nodes and contains various
optimizations for fast routing. On top of this mechanism, the DHT PAST [RD01a]
allows storage of data at speci�c IDs. On this layer, a gossip protocol [DGH+87] is used
to spread information about the nodes through the network; this information includes
node abilities (CPU, RAM), but also information about applications. Each node slowly
builds its own picture of the network, pruning information where it becomes outdated.

The third layer shall implement the application execution logic based on Helena.
The required functionality of the application layer is that of reliable application exe-
cution given the application requirements on the one hand and the instability of the
network on the other hand. This process is envisioned as follows:

(1) Deploying the App: A user deploys an application (like Google Docs) using
the SCP UI (top right in Fig. 10.1). The application is assigned an ID (based on
its name) and stored using the DHT (PAST) at the closest node according to the
ID; this ensures that exactly one node is responsible for the application, and this
node can always be retrieved based on the application name (we call this node
the app-responsible node). If this node leaves, the next adjacent node based on
ID proximity takes its place.

(2) Finding an Executor: Since each application comes with execution require-
ments (e.g., a certain amount of memory) and all nodes are heterogeneous, the
app-responsible node may or may not be able to execute the application. Thus,
it is tasked with �nding an appropriate executor (based on the gossiped informa-
tion).

(3) Keeping the App Alive: Once an executor is found, it is asked to retrieve and
run the application. Through a continuous exchange of keep-alive messages, the
app-responsible node observes the executor and is thus able to select a new one if
it fails.

(4) Providing Access to the App: Finally, the user may interact with the appli-
cation through the SCP UI. It may request a service from the application (like
writing documents with Google Docs) and receive a corresponding answer.

This third layer shall be based on the Helena concepts. Thus, a Helena SCP
middleware is needed which allows to implement roles and their collaboration in ensem-
bles on top of the distributed set-up of the SCP. The Helena SCP middleware reuses
the idea of the jHelena framework from Chap. 7 and connects the Helena concepts
of roles and ensembles with the underlying SCP technology stack. The application ex-
ecution logic is then realized by role behavior implementations which use the Helena
SCP middleware to employ ensembles on top of the SCP and to allow communication
and collaboration between roles in the style of Helena.

2https://www.osgi.org/

https://www.osgi.org/
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In the remainder of this chapter, we will be concerned with the modeling and the
implementation of the application execution layer. For this layer, including the logic for
deploying an app, �nding an executor, and serving user requests, we will derive formal
goals, model the behavior using Helena, check satisfaction of goals in the Helena
speci�cation, and subsequently implement the Helena model on the technology stack
of the actual SCP.

10.2 Domain Model

Following the Helena methodology, the �rst step in the development of the case study
is to capture the domain of the SCP, i.e., its contributing entities. We assume given the
basic infrastructure for communication between nodes (Pastry), storing data (PAST),
and deploying and executing applications (OSGi) (the two bottom layers in Fig. 10.1).
On top of this infrastructure, we apply Helena for modeling the whole process of
application execution. Therefore, we �rst identify the computation nodes and their
properties which serve as the individual peers contributing their storage and computing
resources to the SCP. Building on these computation nodes, we derive the required role
types from the informally stated requirements in Sec. 10.1.

Assumption: For simplicity, we only consider the deployment of a single application
in the network and we assume all peers in the network homogeneous, but we indicate
how the model could be enhanced to cope with several applications and a heterogeneous
network. Furthermore, we do not model failure or coordinated leaving of nodes storing
or executing the application.

(1) Deploying the Application: For this subtask, we envision two separate role
types. The Deployer provides the interface for deploying an application and takes
care to select the app-responsible node. The app-responsible node adopts the
Storage role taking care for the actual storage.

(2) Finding an Executor: Two further roles are required for �nding the appropri-
ate execution node. The app-responsible node in the role Initiator determines
the actual Executor. It selects a node as Executor which is able to satisfy the
execution requirements of the application. The Executor itself takes care to keep
the application running and provides access to it.

(3) Keeping the Application Alive: As stated before, we do not model failure or
coordinated leaving of nodes. Therefore, we do not introduce any roles to observe
and manage the execution of the application.

(4) Providing Access to the Application: Once started, the application needs to
be available for user requests. The Requester provides the interface between the
human user and the Executor and forwards requests and responses. The Executor
from the previous subtask gives access to the executed application.

Fig. 10.2 summarizes the domain model consisting of the underlying component-
based platform and an appropriate ensemble structure which just describes the basic
entities of the problem domain without any capabilities like operations and messages
so far. The individual peers contributing to the SCP (and therefore the underlying
component-based platform) are represented by components of the type Node since we
assume a homogeneous set of peers. Each Node has a unique ID given by the attribute
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id identifying it in the network. Each Node can satisfy particular requirements for
executing applications which we represent by an integer attribute reqs. It furthermore
can store the byte code of an application. We represent the byte code by an attribute
code of type int (and not of type byte) to be able to later on check the model with
Spin. To alleviate the assumption that only one application can be stored, this attribute
would have to be enhanced to an array to store the byte codes of several applications.
Finally, the attribute isExecuting denotes whether the Node is currently executing
the application or not. Once again, the assumption that only one application can be
executed is alleviated by enhancing this attribute to an array. Note that application
execution is independent from storing the application's code. Thus, the attributes code
and isExecuting can independently be set. Furthermore, the attribute isExecuting

might seem super�uous at �rst since we will later on introduce the role type Executor

to express the task of executing the application. However, the attribute is important
because once a role instance of type Executor is active, it is not guaranteed that it
currently executes the application. For example, the executor might still have to retrieve
the code of application before it actually executes the application.

«role type»
Initiator1

«role type»
Storage1

«role type»
Executor1

«component type»
Node

id:int
reqs:int
code:int
isExecuting:bool

«role type»
Deployer1

appID:int
appReqs:int
appCode:int

«role type»
Requester∗

hasResult:bool

«adoptedBy»

«adoptedBy»

«adoptedBy»

«adoptedBy»

«adoptedBy»

Figure 10.2: Domain model for the SCP case study

If we wanted to include heterogeneous peers in the network, we would add several
component types, each modeling a di�erent type of device contributing to the network
(e.g., desktop computers, laptops, mobile phones, servers). They could di�er in the
properties they o�er. For example, mobile phones might not be able to store applications
at all, but might be able to execute applications requiring a GPS sensor. Servers in
contrast might be able to store applications and to execute applications with large
memory requirements.

Furthermore, the domain ensemble structure is composed of �ve role types as ex-
plained before. Each role can be adopted by components of type Node. The minimal and
maximal number of instances per role type is denoted as a multiplicity and expresses
that a running ensemble contains just one instance per role type except for the role
type Requester. There can be as many Requesters as there are human users requesting
a service from the application. Since the given ensemble structure only captures the
solution domain of the SCP, but not yet the actual realization, all role types are not
yet equipped with messages. Messages are added to the role types when designing the
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goal-directed behavior of each roles. When specifying the domain, the role types only
have attributes which describe their properties. The role type Deployer can store the
ID (attribute id of type int), the requirements (attribute reqs of type int) and the
byte code (attribute code of type int) of the application to be deployed. The role type
Storage does not store the application's byte code itself, but rather the underlying com-
ponent Node such that the code is permanently available even if the role Storage �nishes
its execution. Similarly, the role type Executor does not execute the application itself,
but rather the underlying component Node. Lastly, the role type Requester denotes
with the attribute hasResult whether it received a response from the Executor upon
its request to the executed app.

Already when modeling the domain of the SCP, the bene�ts of using the Helena
concept of roles are apparent. In the SCP, distributed computing nodes interact to
execute software applications. For one application, several computing nodes need to
collaborate: They have to let a user deploy the application in the system, to execute
the application on a node satisfying the computation requirements of the application,
and to let a user request a service from the application. At design time, it is unclear
which node will be assigned with which responsibility (additionally in principle, each
node must also be able to take over the same or di�erent responsibilities for the execution
of di�erent applications in parallel.) In a standard component-based design, we would
have to come up with a single component type for a computing node which is able to
combine the functionalities for each responsibility in one complex behavior. This is the
case in the �all-in-one� implementation of the SCP presented in [MKH+13]. Helena,
however, o�ers the possibility to model systems in terms of collaborating roles and
ensembles. Therefore, each responsibility can be encapsulated in a dedicated role while
the underlying component stores all information which should be permanently available.
When specifying goal-directed behaviors for each role, more bene�ts arise like that
adopting di�erent roles will allow components to change their behavior on demand.

10.3 Goal Speci�cation

In Sec. 10.1, the case study and the goals of the envisioned ensemble were informally
described. To derive formal goal speci�cations from these informal descriptions, we ex-
ploit the domain model from the previous section. It lists the main entities contributing
to the ensemble-based system such that we can de�ne the formal goals relative to these
entities. Table 10.1 summarizes all goals with their type, achieve goal or maintain goal,
and their formalization in LTL according to the domain model from Fig. 10.2.

The informal description of the case study names four main tasks: deploying the
app, �nding an executor, keeping the app alive and providing access to the app. To
formally express these tasks, we derive �ve goals as shown in Table 10.1. The �rst
two goals describe the task of deploying the app, the third goal the task of �nding an
executor, the fourth goal the task of keeping the app alive and the last goal the task of
providing access to the app.

(1) Deploying the App: The goal �code gets stored� is an achieve goal. It re-
quires that the byte code is eventually stored on the node with the ID closest
to the app's ID. Exploiting the domain model, this is expressed by referring to
the attributes id and code of a node and the attributes appID and appCode of
the deployer. Node[1]:code > 0 expresses that the node with identi�er 1 stores
some code in its attribute code. Furthermore, Node[1]:code==Deployer:appCode
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states that the node with identi�er 1 stores the same content in its attribute
code as the only deployer in the ensemble stores in its attribute appCode. For
that �rst goal, it is important that the requirement Node[1]:code > 0 is added
since at the beginning, the deployer might not store any code such that the goal
without the requirement Node[1]:code > 0 might already be ful�lled in the ini-
tial state of the ensemble although the code of the application is not yet stored.
Note thereby that the identi�er 1 is not the identi�er of the node in the net-
work (i.e., the identi�er stored in the attribute id), but the identi�er of the
node in the ensemble state. Furthermore, since LTL does not o�er quanti�ers,
we cannot express that there should exists a node which stores the app's code,
but we rather have to enumerate all nodes in the network. In the formaliza-
tion in Table 10.1, we assume that the network only consists of two nodes, but
the formula is easily extended if the network contains more nodes. Similarly,
|Node[1]:id−Deployer:appID| < |Node[2]:id−Deployer:appID| means that the node
with identi�er 1 has an ID stored in the attribute id which is closer to the app's
ID expressed by the attribute appID of the deployer than the node with identi�er 2
(we use |x| to denote the absolute value of a number x). Note here again that
the identi�ers written in the square brackets are the identi�ers of the node in the
ensemble state, the values stored in the attribute id are the IDs in the network.
The goal �code stays stored� is a maintain goal. It requires that whenever the
byte code got stored on a node in the network, it remains in the network (not
necessarily stored on the same node). As before, we refer to the attribute code of
a node and to the attribute appCode of the deployer and have to enumerate all
nodes in the network. The informal goal is formalized by stating that whenever
(expressed by the �rst � and the implication) one of the nodes in the network
stores the application's byte code, then the byte code always (expressed by the
second �) remains stored in the network. For this goal, we do not specify that
the node must be closest to the application's ID since this is already guaranteed
by the previous goal �code gets stored�.

(2) Finding an Executor: The goal �app gets executed� is an achieve goal. It
requires that if there exists at least one node in the network which satis�es the
execution requirements of the application, then the application gets eventually
executed on such a node. Exploiting the domain model, this is expressed by refer-
ring to the attributes reqs and isExecuting of a node and to the attribute appReqs
of the deployer. For example, Node[1]:reqs==Deployer:appReqs means that the
node with identi�er 1 provides the same requirements (expressed by the attribute
reqs of the node) as the application requires (expressed by the attribute appReqs
of the deployer). Likewise, Node[1]:isExecuting means that the node with identi-
�er 1 executes the application. One might be tempted to express the execution
of the application by reasoning about whether a node currently plays the role of
an executor. However, this plays query is not enough since though active the ex-
ecutor might not currently execute the application, e.g., because it has to retrieve
the code of the application before. Nevertheless, even if not applicable here, this
observation gives rise to extend the atomic propositions of Helena LTL by plays
queries.
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Table 10.1: Goals for the SCP case study with two nodes in Helena LTL

Name LTL Formula

code
gets stored
(achieve goal)

♦( (Node[1]:code > 0 ∧
Node[1]:code==Deployer:appCode ∧
|Node[1]:id−Deployer:appID| < |Node[2]:id−Deployer:appID|)
∨
(Node[2]:code > 0 ∧
Node[2]:code==Deployer:appCode ∧
|Node[2]:id−Deployer:appID| < |Node[1]:id−Deployer:appID|)

)

code
stays stored
(maintain goal)

�( ( (Node[1]:code > 0 ∧
Node[1]:code==Deployer:appCode)
∨
(Node[2]:code > 0 ∧
Node[2]:code==Deployer:appCode)

)
⇒
�( (Node[1]:code > 0 ∧

Node[1]:code==Deployer:appCode)
∨
(Node[2]:code > 0 ∧
Node[2]:code==Deployer:appCode)

)
)

app
gets executed
(achieve goal)

(Node[1]:reqs==Deployer:appReqs
∨
Node[2]:reqs==Deployer:appReqs)
⇒
♦( (Node[1]:reqs==Deployer:appReqs ∧Node[1]:isExecuting)
∨
(Node[2]:reqs==Deployer:appReqs ∧Node[2]:isExecuting)

)

app
stays executed
(maintain goal)

�( (Node[1]:isExecuting ∨Node[2]:isExecuting)
⇒
�(Node[1]:isExecuting ∨Node[2]:isExecuting)

)

requester i
gets served
(achieve goal)

♦Requester[i]:hasResult

(3) Keeping the Application Alive: Even though we do not model failure of nodes,
we have to make sure that our model keeps the application alive without any node
failure. Therefore, the goal �app stays executed� is a maintain goal which requires
that whenever the application got executed, it remains executed. To express
application execution, we refer to the attribute isExecuting of a node again. The
informal goal is formalized by stating that whenever (expressed by the �rst �
and the implication) one of the nodes in the network executes the application,
then the application always (expressed by the second �) remains executed in
the network. For this goal, we do not specify that the node must satisfy the
application's requirements since this is already guaranteed by the previous goal
�app gets executed�.
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(4) Providing Access to the Application: The goal �requester i gets served� is
an achieve goal. It requires that the requester with identi�er i gets eventually a
result after its request to the application. Exploiting the domain model, this is
expressed by referring to the attribute hasResult of the requester. Since there can
be many requesters in the network, this goal is actually a generic goal and has
to be unfolded for the actual number of requesters in the network. That means,
if we employ two requesters with the identi�ers 4 and 5, we have to satisfy two
separate goals, one naming the requester with identi�er 4 and one naming the
requester with identi�er 5.

10.4 Design

After having formalized the goals for the SCP case study, we design the goal-directed
behavior of all participating entities of the Helena model. We use the domain model
from Sec. 10.2 as a basis. All its roles are equipped with messages and a goal-directed
role behavior to collaborate on the four tasks of the SCP. Furthermore, the domain
model is enhanced by further roles which were not relevant to represent the domain of
the SCP, but are necessary to allow appropriate collaboration in the ensemble.

Following the Helena development methodology, we �rst design the interaction
behavior of the complete ensemble and therefore of the collaborating roles as a whole.
We visualize it in a notation similar to sequence diagrams as depicted in Fig. 10.3. The
diagram shows how the di�erent roles of the SCP interact to �rst store the application,
then to execute the application, and �nally to provide access to the application and
request a service from it (we assume a single requester in the sequence diagram). By
projecting the overall interaction behavior on each single role, we then gain all separate
role behaviors.

In the following, we do not walk through the whole sequence diagram, but rather use
it as an accompanying visualization. We individually focus on the four tasks of deploying
the application, �nding an executor, keeping the application alive, and providing access
to the application and describe the roles and their behaviors for each of the four tasks
in the following subsections.

The complete ensemble speci�cation has 314 lines of code and is given in Ap-
pendix D.1 (the ensemble speci�cation in the appendix is slightly extended to al-
low model-checking with Spin, extensions are described in Sec. 10.5.2). It can also
be found on the attached CD in the project eu.ascens.helenaText.scp in the �le
src/scp.helena.
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10.4.1 Deploying the Application

Fig. 10.4 depicts all role types together with their attributes and messages which are
necessary to allow deployment of a software application in the SCP (attributes, mes-
sages, and operations necessary for other tasks are grayed out). As already described
in the domain model, an instance of the role type Deployer takes care to deploy the
application in the network and an instance of the role type Storage stores the applica-
tion's byte code. However, we need a third role type PotStorage whose instances are
responsible for �nding the node whose ID is closest to the ID of the application.

«role type»
Deployer1

appID:int
appReqs:int
appCode:int

out findStorage(d:Deployer)(appID:int,foundID:int)
in foundStorage(s:Storage)()
out store()(appID:int,appReqs:int,appCode:int)

«role type»
PotStorage∗

in/out findStorage(d:Deployer)(appID:int,foundID:int)
in/out createStorage(d:Deployer)(foundID:int,startID:int)
out foundStorage(s:Storage)()

«role type»
Storage1

in store()(appID:int,appReqs:int,appCode:int)
out initiate(s:Storage)(appID:int,appReqs:int)
in reqCode(e:Executor)()
out sndCode()(appCode:int)

«component type»
Node

id:int
reqs:int
code:int
isExecuting:bool

printResult():void

«adoptedBy»

neighbor

Figure 10.4: Ensemble structure for the SCP case study, part application deployment
(gray attributes, messages, and operations are not necessary for this task)

Ensemble Structure: As already described in Sec. 10.2, the deployer stores the ID,
the requirements and the byte code of the application to be deployed in its attributes. It
is able to send and receive three types of messages: By sending the message findStorage,
it triggers the search for an appropriate storage in the network, i.e., the node with the ID
closest to the application's ID. With the message foundStorage, it receives the reference
to the found storage. By sending the message store, it issues the actual storage of the
application in the network. The task of the potential storages is to determine the
appropriate node to store the application. To this end, a potential storage can receive
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the message findStorage indicating that a storage for a speci�c application should be
found. By sending the same message, it forwards the request for a storage through the
network. The second message createStorage indicates that an appropriate node for
storing the application was found and the storage role can now be created on that node.
By sending the message foundStorage, a potential storage can inform other roles that
an appropriate node was found and a new instance for the storage was created. Lastly,
the storage itself is able to receive the message store. With this message, it receives the
application's byte code and can then store it on its owning node. All other messages of
the storage are not relevant for the task of application deployment.

Role Behavior of the Deployer: Fig. 10.5 shows the role behavior of the deployer in
HelenaText. The �rst three lines (line 2�4) initialize the role attributes to store the
application's ID, computation requirements, and byte code. In the actual realization
of the SCP, these values are not �xed, but are rather given by the user who wants to
deploy the app. However, so far, the Helena methodology does not allow open en-
sembles and therefore user input is not possible. After initialization of its attributes,
the deployer creates a potential storage on its neighbor (line 5) and issues the search
for an appropriate storage by sending the message findStorage to the newly created
potential storage (line 6). The parameters of this request are essential: the �rst pa-
rameter denotes the ID of the application, the second parameter denotes the ID of the
node which is so far closest to the application's ID (which is currently the ID of the
owning node of the deployer). During searching the appropriate storage, the potential
storages will try to minimize the distance between these two parameters. After starting
the search for an appropriate storage on the potential storage, the deployer waits for the
message foundStorage (line 7) which gives it a reference to the created storage in the
parameter s. It �nally instructs the storage s to store the byte code of the application
with the message store (line 8) and quits its execution (line 9).

1 roleBehavior Deployer =
2 self.appID = 1234 .
3 self.appReqs = 1234 .
4 self.appCode = 1234 .
5 ps <- create(PotStorage,owner.neighbor) .
6 ps ! findStorage(self)(self.appID,owner.id) .
7 ? foundStorage(Storage s)() .
8 s ! store()(self.appID,self.appReqs,self.appCode) .
9 quit

Figure 10.5: Role behavior of a Deployer in the SCP case study in HelenaText

Role Behavior of a PotStorage: Fig. 10.6 shows the role behavior of a potential
storage in HelenaText. It is the most complex one, thus, we �rst informally describe
the idea of �nding the appropriate storage. We assume that all nodes in the network are
arranged in a ring structure, i.e., each node is connected to its neighbor (as indicated by
the association neighbor in Fig. 10.4) and the last node in the chain is connected to the
�rst one again. The potential storages traverse this ring structure two times: During
the �rst round trip, they determine the node whose ID is closest to the application's
ID by the message findStorage. During the second round trip, they inform each other
with the message createStorage which node is the appropriate storage, the potential
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storage on this node creates the actual storage and informs the deployer about the
creation with the message foundStorage.

1 roleBehavior PotStorage = PotStorageProcess {
2 process PotStorageProcess =
3 ? findStorage(Deployer depl)(int appID,int foundID) .
4 if ( (owner.id-appID < 0 && foundID-appID < 0 && appID-owner.id < appID-foundID)
5 ||
6 (owner.id-appID >= 0 && foundID-appID >= 0 && owner.id-appID < foundID-appID)
7 ||
8 (owner.id-appID < 0 && foundID-appID >= 0 && appID-owner.id < foundID-appID)
9 ||

10 (owner.id-appID >= 0 && foundID-appID < 0 && owner.id-appID < appID-foundID)
11 ) {
12 if (!plays(PotStorage,owner.neighbor)) {
13 psSmallest1 <- create(PotStorage,owner.neighbor) .
14 psSmallest1 ! findStorage(depl)(appID,owner.id) .
15 SecondRoundTrip
16 }
17 else {
18 psSmallest2 <- get(PotStorage,owner.neighbor) .
19 psSmallest2 ! createStorage(depl)(owner.id,owner.id) .
20 SecondRoundTrip
21 }
22 }
23 else {
24 if (!plays(PotStorage,owner.neighbor)) {
25 psNotSmallest1 <- create(PotStorage,owner.neighbor) .
26 psNotSmallest1 ! findStorage(depl)(appID,foundID) .
27 SecondRoundTrip
28 }
29 else {
30 psNotSmallest2 <- get(PotStorage,owner.neighbor) .
31 psNotSmallest2 ! createStorage(depl)(foundID,owner.id) .
32 SecondRoundTrip
33 }
34 }
35 process SecondRoundTrip =
36 ? createStorage(Deployer depl2)(int foundID2,int startID) .
37 if (owner.id == foundID2) {
38 s <- create(Storage,owner) .
39 depl2 ! foundStorage(s)() .
40 Fwd
41 }
42 else {
43 Fwd
44 }
45 process Fwd =
46 if (owner.id != startID) {
47 psFwd <- get(PotStorage,owner.neighbor) .
48 psFwd ! createStorage(depl2)(foundID2,startID) .
49 quit
50 }
51 else {
52 quit
53 }
54 }

Figure 10.6: Role behavior of a PotStorage in the SCP case study in HelenaText

In more detail, each potential storage executes the behavior given in Fig. 10.6. It
�rst receives the message findStorage (line 3). With the second parameter foundID,
the current potential storage receives the ID of the node which is so far closest to the
application's ID. It then decides whether the distance between the ID of its owning node
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and the application's ID is smaller than the distance between the received ID and the
application's ID (thereby, we assume the node IDs are greater than 0). The if -branch of
the if-then-else construct (line 4�22) describes the behavior when the distance is smaller,
the else-branch (line 23�34) when the distance is larger or equal (note that in Helena
we do not o�er |x| as the absolute value of x). If the distance is smaller (line 4�11), the
potential storage forwards the ID owner.id of its owning node to the potential storage
on its neighbor (line 12�21); if not (line 23), it forwards the received ID foundID (line 24-
33). Before forwarding, the current potential storage has to decide whether the �rst
round trip through the network was already �nished (it does so by checking whether
its neighbor already plays the role of a potential storage (line 12 and 24)). If the �rst
round trip is not yet �nished, the current potential storage uses the message findStorage
for forwarding (line 14 and 26); if it was �nished, it uses the message createStorage

(line 19 and 31). In both cases, the potential storage continues its behavior with the
process SecondRoundTrip where it waits for the message createStorage indicating that
the second round trip is on-going. During the second round trip, the current potential
storage determines whether its owning node was the closest to the application based on
ID proximity. If so, the parameter foundID2 of the received message createStorage is
the same as the ID of its owning node. Therefore, it compares the parameter foundID2
with the ID of its owning node owner.id. If they are the same (line 37), i.e., the
owning node is the closest, the potential storage creates a new role instance of type
Storage on its owning node (line 38) and informs the deployer about the creation of
the storage (line 39). Afterwards, the current potential storage forwards the creation
message createStorage to its neighboring potential storage (line 40) if the second round
trip has not already been �nished (line 46). This forwarding is necessary to allow all
potential storages to stop executing their behaviors even if they are not owned by
the node with the ID closest to the application's ID. If the owning node of the current
potential storage is not the closest node to the application (line 42), the current potential
storage just forwards the creation message (line 43). In this case, forwarding is even
more essential since the potential storage which is owned by the node with the closest
ID might reside after the current potential storage in the node ring structure.

Role Behavior of the Storage: Fig. 10.7 shows the role behavior of the storage
in HelenaText. Only the �rst two lines are relevant for deploying the application.
In line 2, the storage receives the message store indicating that it should store the
application. With the parameter appCode of this message, it receives the application's
byte code. Afterwards, it stores the byte code in the attribute code of its owning node.
The next actions in the role behavior do not contribute to the deployment, but trigger
the execution of the application which is described in the next subsection.

1 roleBehavior Storage =
2 ? store()(int appID, int appReqs, int appCode) .
3 owner.code = appCode .
4

5 i <- create(Initiator,owner) .
6 i ! initiate(self)(appID,appReqs) .
7

8 ? reqCode(Executor e)() .
9 e ! sndCode()(owner.code) .

10 quit

Figure 10.7: Role behavior of a Storage in the SCP case study in HelenaText
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10.4.2 Finding an Executor

Fig. 10.8 depicts all role types with their attributes and messages necessary to trigger the
execution of an application in the SCP (attributes, messages, and operations necessary
for other tasks are grayed out). Finding an executor is issued by the Storage which
triggers the Initiator. As already described in the domain model, the Initiator

takes care to determine the actual executor based on the computation requirements
of the application. The Executor retrieves the application's code from the Storage,
executes the application, and provides access to it. However, we need a fourth role type
PotExecutor whose instances are responsible for �nding a node in the network satisfying
the requirements of the application and is thus able to execute the application.

«role type»
Storage1

in store()(appID:int,appReqs:int,appCode:int)
out initiate(s:Storage)(appID:int,appReqs:int)
in reqCode(e:Executor)()
out sndCode()(appCode:int)

«role type»
Initiator1

in initiate(s:Storage)(appID:int,appReqs:int)
out findExecutor(i:Initiator)(appReqs:int)
in foundExecutor(e:Executor)()
out execute(i:Initiator,s:Storage)(appID:int)
in executing()()
out findRequester(e:Executor)(startID:int)

«role type»
PotExecutor∗

in/out findExecutor(i:Initiator)(appReqs:int)
out foundExecutor(e:Executor)()

«role type»
Executor1

in execute(i:Initiator,s:Storage)(appID:int)
out reqCode(e:Executor)()
in sndCode()(appCode:int)
out executing()()
in reqService(r:Requester)()
out sndService()()

«component type»
Node

id:int
reqs:int
code:int
isExecuting:bool

printResult():void

«adoptedBy»

neighbor

Figure 10.8: Ensemble structure for the SCP case study, part for �nding an executor
(gray attributes, messages, and operations are not necessary for this task)
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Ensemble Structure: The storage triggers the task of �nding an executor by the
message initiate. It furthermore can receive requests for the application's byte code
by the message reqCode and can respond with the message sndCode. The initiator's
execution is triggered by receiving the message initiate. By sending the message
findExecutor, it triggers the search for an appropriate executor in the network, i.e.,
a node which satis�es the application's computation requirements. With the message
foundExecutor, it receives the reference to the found executor. By sending the message
execute, it issues the actual execution of the application in the network and receives the
acknowledgment of the execution by the message executing. The task of the potential
executors is to determine the appropriate node to execute the application. To this end,
a potential executor can receive the message findExecutor indicating that an executor
for a speci�c application should be found. By sending the same message, it forwards the
request for an executor through the network. By sending the message foundExecutor,
a potential executor can inform other roles that an appropriate node was �nally found
and a new role instance for the executor was created. Lastly, the executor itself is able
to receive the message execute. It furthermore requests the byte code of the application
to be executed with the message reqCode and receives the byte code with the message
sndCode. With the message executing, it informs other roles that it �nally executes the
application. All other messages of the (storage,) initiator and executor are not relevant
for the task of executing the application.

Role Behavior of the Storage (continued): Fig. 10.7 shows the role behavior of the
storage in HelenaText from before. After having stored the application's byte code
as required in the previous task, the storage now triggers the search for an appropriate
executor by �rst creating an initiator on its owning node (line 5) and then sending the
message initiate to it (line 6). The storage is not part of the actual search process,
but if an executor was found, it provides the byte code to the executor. Therefore,
the storage waits with the message reqCode for a request of the byte code (line 8) and
sends it back via the message sndCode (line 9). In our design, the storage then quits
its execution since we assume only one executor in the SCP ensemble. However, if we
assumed several executors, the storage should be continuously able to answer requests
for the application's byte code via recursive process invocation.

Role Behavior of the Initiator: Fig. 10.9 shows the role behavior of the initia-
tor in HelenaText. In line 2, the initiator receives the message initiate indicating
that it should initiate the search for the executor. Most importantly, it thereby re-
ceives the computation requirements of the application with the parameter appReqs. It
then initiates the search by creating a potential executor on its owning node (line 4)
and sending the message findExecutor containing the application's requirements to the
newly created potential executor. After having received the reference to the found ex-
ecutor by the message foundExecutor, it triggers execution on that executor by sending
the message execute and waits for the acknowledgment of the execution with the mes-
sage executing. The next actions in the role behavior do not contribute to the task of
deploying the application, but to giving access to the application.

Role Behavior of a PotExecutor: Fig. 10.10 shows the role behavior of a potential
executor in HelenaText. The idea of �nding an appropriate executor resembles the
idea of �nding an appropriate storage. We again assume that all nodes in the network
are arranged in a ring structure. The potential executors traverse this ring structure
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1 roleBehavior Initiator =
2 ? initiate(Storage s)(int appID,int appReqs) .
3

4 pe <- create(PotExecutor,owner) .
5 pe ! findExecutor(self)(appReqs) .
6 ? foundExecutor(Executor e)() .
7 e ! execute(self,s)(appID) .
8 ? executing()() .
9

10 pr <- create(PotRequester,owner.neighbor) .
11 pr ! findRequester(e)(owner.id) .
12 quit

Figure 10.9: Role behavior of a Initiator in the SCP case study in HelenaText

by the message findExecutor until an appropriate executor is found, i.e., a node which
satis�es the computation requirements of the application. If such a node is found, the
current potential executor creates the actual executor on this node and informs the
initiator about the creation with the message foundExecutor.

In more detail, each potential executor executes the behavior given in Fig. 10.10.
It �rst receives the message findExecutor (line 3). With the parameter appReqs of
this message, the current potential executor receives the computation requirements of
the application. It then decides whether its owning node satis�es these requirements.
The if -branch of the guarded choice construct (line 3�7) describes the behavior if the
owner satis�es the requirements, the or-branch (line 8�12) if not. If the owner satis�es
the requirements (line 3), the current potential executor creates a new role instance
of type Executor on its owning node (line 4), informs the initiator about the creation
of this executor (line 5), and quits its behavior without any forwarding of the search
request since the executor has already been found. If the owner does not satisfy the
requirements (line 8), the potential executor forwards the request to �nd an appropriate
executor to its neighboring potential executor (line 9�10) and quits its execution.

1 roleBehavior PotExecutor =
2 ? findExecutor(Initiator i)(int appReqs) .
3 if (owner.reqs == appReqs) {
4 e <- create(Executor,owner) .
5 i ! foundExecutor(e)() .
6 quit
7 }
8 else {
9 pe <- create(PotExecutor,owner.neighbor) .

10 pe ! findExecutor(i)(appReqs) .
11 quit
12 }

Figure 10.10: Role behavior of a PotExecutor in the SCP case study in HelenaText

Role Behavior of the Executor: Fig. 10.11 shows the role behavior of the executor
in HelenaText. In line 3, the executor receives the message execute indicating that
it should execute the application. To be able to execute the application, it �rst has to
retrieve the application's byte code from the storage. Therefore, it requests the code
from the storage by sending the message reqCode (line 5) and receives it via the message
sndCode (line 6). Afterwards, we simulate the execution of the application by setting
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the attribute isExecuting of the owning node to true (line 7). Finally, the executor
acknowledges the execution to the initiator by sending the message executing (line 8).
The next actions in the role behavior do not contribute to the task of executing the
application, but to providing access to the application.

1 roleBehavior Executor = ExecutorProcess {
2 process ExecutorProcess =
3 ? execute(Initiator i, Storage s)(int appID) .
4

5 s ! reqCode(self)() .
6 ? sndCode()(int appCode) .
7 owner.isExecuting = true .
8 i ! executing()() .
9

10 ExecutorRunning
11

12 process ExecutorRunning =
13 ? reqService(Requester r)() .
14 r ! sndService()() .
15 ExecutorRunning
16 }

Figure 10.11: Role behavior of a Executor in the SCP case study in HelenaText

10.4.3 Keeping the Application Alive and Providing Access

Fig. 10.12 depicts all role types together with their attributes and messages which are
necessary to keep the application alive and provide access to it (attributes, messages,
and operations which are necessary for other tasks are grayed out). For keeping alive,
we do not envision any further role types since we assumed that nodes do not fail or
leave the network. To provide access to the application, the Initiator as the app-
responsible node �rst informs all Requesters that the application is now available for
requests. However, we need another role type PotRequester whose instances are re-
sponsible for �nding all nodes in the network which want to request a service from
the executed application, i.e., all currently existing Requesters, and inform them about
the availability of the application. Afterwards, (possibly many) Requesters request a
service from the executed application by accessing the Executor.

Ensemble Structure: For the task of keeping the application alive, no role types are
needed since we do not failure of coordinated leaving of nodes. The task of providing
access to the application is triggered by the initiator with the message findRequester. It
initiates that all currently existing requesters in the network are searched and informed
that the application is now available in the network. The task of the potential requesters
is to inform all currently existing requesters about the availability of the application.
To this end, a potential requester can receive the message findRequester indicating
that all requesters should be informed. By sending the same message, it forwards the
information through the network. By sending the message inform, a potential requester
informs a requester about the availability of the application and by receiving the message
ackInformation, it receives the acknowledgment that the requester actually received the
information. A requester itself is informed about the availability of the application by
receiving the message inform. It acknowledges the information by sending the message
ackInformation. It then can request a service from the application (e.g., to edit a
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Google Docs document) by sending the message reqService. The answer is simulated
by receiving the message sndService. As described in the domain model, the attribute
hasResult indicates whether the requester already received an answer or not. Lastly,
the executor can be asked to give access to the application by receiving the message
reqService. It sends back the answer by sending the message sndService. All other
messages of the initiator and executor are not relevant for the task of executing the
application.

«role type»
Initiator1

in initiate(s:Storage)(appID:int,appReqs:int)
out findExecutor(i:Initiator)(appReqs:int)
in foundExecutor(e:Executor)()
out execute(i:Initiator,s:Storage)(appID:int)
in executing()()
out findRequester(e:Executor)(startID:int)

«role type»
PotRequester∗

in/out findRequester(e:Executor)(startID:int)
out inform(e:Executor,pr:PotRequester)()
in ackInformation()()

«role type»
Requester∗

hasResult:bool

in inform(e:Executor,pr:PotRequester)()
out ackInformation()()
out reqService(r:Requester)()
in sndService()()

«role type»
Executor1

in execute(i:Initiator,s:Storage)(appID:int)
out reqCode(e:Executor)()
in sndCode()(appCode:int)
out executing()()
in reqService(r:Requester)()
out sndService()()

«component type»
Node

id:int
reqs:int
code:int
isExecuting:bool

printResult():void

«adoptedBy»

neighbor

Figure 10.12: Ensemble structure for the SCP case study, part for keeping the ap-
plication alive and providing access to the application (gray attributes,
messages, and operations are not necessary for this task)
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Role Behavior of the Initiator (continued): Fig. 10.9 shows the role behavior of
the initiator in HelenaText from before. After having initialized the execution of the
application, the initiator now triggers that all requesters in the ensemble get informed
that the application is available. It �rst creates a potential requester on its neighboring
node (line 10) and then sends the message findRequester to it (line 11). The data
parameter of this message is important: it denotes the ID of the node where the search
of all requesters in the ensemble started. The potential requesters will later on decide
based on this parameter that they can stop to search when they reach the node with the
ID represented by this parameter again. After that, the initiator quits the execution of
its behavior since no more tasks remain for the initiator. If we also modeled failure and
coordinated leaving of nodes, the initiator would have to take care that the application
is kept alive and running. However, under the assumption of no failures and leaving,
the initiator has �nished its task.

Role Behavior of a PotRequester: Fig. 10.13 shows the role behavior of a potential
requester in HelenaText. The idea of �nding all requesters in the ensemble resembles
the idea of �nding an appropriate storage or an appropriate executor. We again assume
that all nodes in the network are arranged in a ring structure. The potential requesters
traverse this ring structure by the message findRequester one time. Whenever a re-
quester is found during the round trip, the requester is informed about the availability
of the application.

In more detail, each potential requester executes the behavior given in Fig. 10.13.
It �rst receives the message findRequester (line 3). If its owning component currently
also plays the role of a requester (line 5), it informs the requester about the availabil-
ity of the application (line 6�8). It �rst retrieves the reference to the requester on its
owning node (line 6) and then informs the requester by sending the message inform

(line 7). Afterwards, it waits for an acknowledgment that the requester received the
information by waiting for the message ackInformation (line 8). Finally, the current
potential requester forwards the search message findRequester to its neighboring po-
tential requester (line 9 resp. line 17�19) if the round trip has not already been �nished.
This is decided based on whether the ID of the owning node is the same as the pa-
rameter startID of the received message findRequester. If its owning component does
currently not play the role of a requester (line 11), the potential requester just forwards
the search message findRequester (line 12 resp. line 15�23) if necessary.

Role Behavior of the Requester: Fig. 10.14 shows the role behavior of the requester
in HelenaText. In line 2, the requester receives the message inform indicating that
the application is now available for requests. The requester acknowledges the infor-
mation by sending the message ackInformation (line 3) to the potential requester pr

which sent the information. Afterwards, it requests a service (like editing a Google
Docs document) from the executed application via the executor e by sending the mes-
sage reqService (line 5). Waiting for a response is simulated by waiting for the message
sndService (line 6). Finally, we simulate that the result is stored by setting the at-
tribute hasResult of the requester to true (line 7) and print it by calling the operation
printResult of the owning node (line 8). With that, the requester �nishes its behavior,
i.e., all services which the requester requests from the application are represented by
the single request in line 5.
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1 roleBehavior PotRequester = PotRequesterProcess {
2 process PotRequesterProcess =
3 ? findRequester(Executor e)(int startID) .
4

5 if (plays(Requester,owner)) {
6 r <- get(Requester,owner) .
7 r ! inform(e,self)() .
8 ? ackInformation()() .
9 NextPotRequester

10 }
11 else {
12 NextPotRequester
13 }
14

15 process NextPotRequester =
16 if (owner.id != startID) {
17 pr <- create(PotRequester,owner.neighbor) .
18 pr ! findRequester(e)(startID) .
19 quit
20 }
21 else {
22 quit
23 }
24 }

Figure 10.13: Role behavior of a PotRequester in the SCP case study in HelenaText

1 roleBehavior Requester =
2 ? inform(Executor e, PotRequester pr)() .
3 pr ! ackInformation()() .
4

5 e ! reqService(self)() .
6 ? sndService()() .
7 self.hasResult = true .
8 owner.printResult() .
9 quit

Figure 10.14: Role behavior of a Requester in the SCP case study in HelenaText

Role Behavior of the Executor (continued): Fig. 10.11 shows the role behav-
ior of the executor in HelenaText. After starting to execute the application, the
executor is ready to receive in�nitely many requests for the application in the process
ExecutorRunning (line 10 resp. 12�15). It waits for a request by the message reqService
(line 13) and sends back a response with the message sndService (line 14). Note that
we did not model that the executor is stopped at some point in time. Therefore, it is
always able to receive request via the recursive process invocation in line 15.

10.4.4 Summary and Discussion of the Behavior Speci�cation

After having described each role and its role behavior for the SCP case study in detail,
we want to recap the overall interaction behavior by looking again at Fig. 10.3. It
makes the interplay between the collaborating roles clear. The diagram shows how the
di�erent roles interact to �rst store the application, then to execute the application,
and �nally to provide access to the application and request a service from it (we as-
sume a single requester in the sequence diagram). We omitted to represent the search
strategies of the potential storages, the potential executors and the potential requesters.
They all follow the same pattern to traverse the underlying node ring structure in one
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or two round trips such that the most suitable node(s) is found. That means for the
potential storages the closest node based on ID proximity is searched, for the potential
executors one node satisfying the computation requirements of the application, and for
the potential requesters all nodes which currently want to request a service from the ap-
plication. Apart from chronological order of the messages exchanged between the roles,
the sequence diagram makes it also apparent that the deployer and the requester can
independently be started. By waiting for the message inform, the requester synchro-
nizes with the application deployment and execution by waiting until it got informed
that the application is available and then requesting a service from the application.

Let us �nally summarize all assumptions, which were made during the design of the
SCP case study.

� We only consider the deployment of a single application in the network. This
assumption can be alleviated by introducing arrays for storing and executing the
application.

� We assume all peers in the network to be homogeneous. This assumption can be
alleviated by introducing several underlying component types apart from Node,
each o�ering di�erent capabilities to its adopted roles.

� We do not model coordinated leaving of nodes. This assumption can be allevi-
ated by introducing new logic for the initiator to monitor the execution of the
application on the executor.

At this point, we also want to mention some restrictions underlying the Helena
approach which especially attracted attention during the design of the SCP case study.

� Helena relies on binary communication and does not support broadcast yet.
Broadcasting would facilitate the design of the case study insofar that instead of
sequentially traversing the whole ring structure of nodes, we could just broadcast
a message to the network and wait for appropriate answers. For example, when
searching for an appropriate executor, the initiator could broadcast the request
for an executor with the desired computation requirements to the network. Every
node which satis�es the computation requirements could sent back a bidding to
indicate that it would be able to execute the application. The initiator then
simply selects one of the bidders as executor. Though (if available in Helena)
broadcast sending could be easily integrated in our process expressions, to collect
corresponding answers is still an open issue.

� We build ensemble speci�cations on a given set of components such that we cannot
model situations in which components fail uncontrolled. However, we are aware
that one of the main characteristics of our case study is that nodes may fail
at any time. We wish that such failovers are handled transparently from the role
behaviors in Helena. The idea is that components are monitored such that when
failing all adopted roles are transparently transferred to another component and
restarted there. This introduces another monitoring layer to the current Helena
methodology which is future work and not yet part of it.

� A further issue concerns robustness since we assume reliable network transmission
in our Helena models. We do not want to include any mechanisms for resending
messages in the role behavior speci�cations. Like failover mechanisms, this should
be handled transparently by an appropriate infrastructure underlying the current
Helena methodology.
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10.5 Veri�cation

Having speci�ed the SCP case study in Helena, it remains to show that the en-
semble speci�cation is directed towards achieving the goals formulated in Sec. 10.3.
As explained in Chap. 5, the Helena methodology proposes to prove satisfaction of
goals by translating the Helena model to Promela and model-checking the generated
Promela speci�cation with Spin.

The full generated Promela speci�cation from the Helena ensemble speci�cation
together with an initial state and the translated goals has 1569 lines of code and is
shown in Appendix D.2. It can also be found on the attached CD in the project
eu.ascens.helenaText.scp in the �le promela-gen/2nodes/scp.pml.

10.5.1 Translation from Helena to Promela

For the translation from Helena to Promela, we rely on the Helena workbench
in Chap. 8. The workbench allows to specify the SCP case study in HelenaText

as described in the previous section and automatically generates the corresponding
Promela speci�cation following the translation rules in Sec. 5.2.2. However, to preserve
semantic equivalence between the Helena ensemble speci�cation and its Promela
translation the assumptions described in Sec. 5.1 have to be respected. In the case
of the SCP case study, we have to take care that process invocation is not used as a
branch in any if-then-else construct. To meet these assumptions, we inline the process
invocations of the process Fwd in the role behavior of a PotStorage and the process
invocations of the process NextPotRequester in the role behavior of a PotRequester.
The extended Helena ensemble speci�cation is shown in Appendix C.1.

The full generated Promela speci�cation from this adapted ensemble speci�cation
has 1569 lines of code and is shown in Appendix D.2. It contains a process type
Node (excerpt shown in Fig. 10.15) which re�ects the corresponding component type
of the Helena model. As explained in Sec. 5.2, its parameters re�ect all component
attributes (line 2 in Fig. 10.15) and associations (line 3) as well as its own input channel
self (line 4). The component process for a Node waits with a do-loop (line 10�23) for
requests from its adopted roles on its self channel. Depending on the request, it runs
some internal computation and sends back a reply, e.g., in line 14, it sends back the
value of the component attribute id or spawns a new process representing a Deployer

in line 17�20.

Another set of eight processes represents all role types and their behaviors as spec-
i�ed in HelenaText. As an example, the role process for the Storage is shown in
Fig. 10.16. Its only parameters are the channel owner for communication to its own-
ing node and its own input channel self. In the process term itself, �rst, parameters
for all created role instance and formal role instance and data parameters are created
(line 4�7). The rest of the process re�ects the �rst four actions of the role behavior
of the Storage of Fig. 10.7. Line 9 re�ects receiving the message store (thereby, the
second and the third item of the content of the message represent only dummy values
since the message store does not have any role instance parameters). Afterwards, the
component attribute code is set by issuing a request to the owning node in line 11�16.
An Initiator is created on the owning node of the Storage (cf. line 18�23) and the
message initiate is sent to it (cf. line 25).
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1 proctype Node(
2 int id; int reqs; int code; bool isExecuting;
3 chan neighbor;
4 chan self) {
5

6 chan deployer = [1] of { mtype,chan,chan,int,int,int };
7 ...
8

9 NodeOperation op;
10 do
11 ::atomic {
12 self?op ->
13 if
14 ::op.optype == GET_ID -> op.answer!id
15 ::op.optype == SET_ID -> op.parameters?id
16 ...
17 ::op.optype == CREATE_DEPLOYER ->
18 ...
19 run Deployer(self, deployer);
20 op.answer!deployer
21 ...
22 }
23 od
24 }

Figure 10.15: Excerpt of the component process for the component type Node

for the SCP case study in Promela

1 proctype Storage(chan owner, self) {
2 ...
3

4 int appID;
5 int appReqs;
6 int appCode;
7 chan i;
8 ...
9

10 self?store,1,1,appID,appReqs,appCode;
11

12 NodeOperation op;
13 op.optype = SET_CODE;
14 chan parameters = [0] of { int };
15 op.parameters = parameters;
16 owner!op;
17 parameters!appCode;
18

19 NodeOperation op;
20 op.optype = CREATE_INITIATOR;
21 chan answer = [0] of { chan };
22 op.answer = answer;
23 owner!op;
24 answer?i;
25

26 i!initiate,self,1,appID,appReqs,1;
27

28 ...
29 }

Figure 10.16: Excerpt of the role process for the role type Storage
for the SCP case study in Promela



238 CHAPTER 10. HELENA@WORK

10.5.2 Preparation of the Promela Translation

To be able to check the satisfaction of the goals of the SCP case study in the Promela
speci�cation, we have to manually prepare the generated speci�cation.

Firstly, the initial state starting from which the goals shall be checked must be
established in the Promela speci�cation. We assume an initial state in which two
nodes, one deployer and two requesters (one on each node) exist. We do not specify
which node is closest to the deployed application based on ID proximity, but we take care
that it is exactly one and that all IDs are greater than 0. We additionally guarantee that
at least one node satis�es the application's computation requirements. The deployer
is owned by either of the two nodes and each of the two nodes adopts exactly one
requester.

This initial state is represented by the init-process in Fig. 10.17. In line 10�13, we
nondeterministically choose which node gets the ID 100 which is closest to the hard-
coded ID 1234 of the application. In line 14�17, we take care that one node satis�es
the computation requirements 1234 of the application. In line 19�20, two processes
are spawned which represent the two nodes forming the underlying peer network. In
line 22�26, it is nondeterministically decided which of the two nodes is the owner of the
deployer, and in line 27�32, which node is the owner of which of the two requesters.
In line 34�39, three processes representing the deployer and the two requesters are
spawned.

Finally, we have to take care that the behaviors of all three initial roles start at the
same time. Therefore, we need to adapt the automatically generated process types for
each initial role. Their �rst action is to wait for a dedicated message setOffInitialRole
which sets of the behavior of an initial role. In the init-process, this message is sent
to all three initial roles as the last indivisible atomic sequence in line 41�47. If we do
not care that all initial roles wait for that message before executing their role behavior,
it might happen that one role already proceeds in its behavior before the other initial
roles are initialized at all.

As a second step, the goals of the SCP case study need to be translated to Promela
as described in Sec. 5.3.1. All operators in the goals are translated to their ASCII
representatives (e.g., ∧ is translated to &&). Expressions referring to role attributes
are pre�xed with roleAttr_. To re�ect satisfaction of LTL formulae relatively to an
initial state, each translated goal φ has to be adapted to �(init ⇒ φ). init thereby
is a property which only holds when the initialization in the init-process was �nished
and thus the initial Helena state was established. We use Deployer@startDeployer

for this init property.

With these adaptations, the goals from Table 10.1 are given as the inline speci�-
cations in Fig. 10.18. All goals are directly translated except the �rst goal �code gets
stored�. In Promela, the absolute value function is not built-in. Therefore, the compar-
ison |Node[1]:id−Deployer:appID| < |Node[2]:id−Deployer:appID| must be fully expanded
for all possible values of the di�erence between Node[1]:id (or Node[2]:id) and
Deployer:appID. However, with this full expansion, Spin can no longer handle the
LTL property due to its syntactic size and fails with memory bu�er over�ow. Thus, we
removed the this comparison from the �rst goal.
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1 init {
2 chan n1 = [0] of { NodeOperation };
3 chan n2 = [0] of { NodeOperation };
4

5 int id1 = 1;
6 int id2 = 2;
7 int reqs1 = 1;
8 int reqs2 = 2;
9

10 if
11 ::id1 = 100;
12 ::id2 = 100;
13 fi;
14 if
15 ::reqs1 = 1234;
16 ::reqs2 = 1234;
17 fi;
18

19 run Node(id1,reqs1,0,0,n2,n1);
20 run Node(id2,reqs2,0,0,n1,n2);
21

22 chan ownerDeploy;
23 if
24 ::ownerDeploy = n1;
25 ::ownerDeploy = n2;
26 fi;
27 chan ownerReq;
28 chan ownerReq2;
29 if
30 ::ownerReq = n1;ownerReq2 = n2;
31 ::ownerReq = n2;ownerReq2 = n1;
32 fi;
33

34 chan deploy;
35 node_retrieveRole(CREATE_DEPLOYER,ownerDeploy,deploy);
36 chan req;
37 node_retrieveRole(CREATE_REQUESTER,ownerReq,req);
38 chan req2;
39 node_retrieveRole(CREATE_REQUESTER,ownerReq2,req2);
40

41 atomic {
42 Msg msg;
43 msg.msgtype = setOffInitialRole;
44 deploy!msg;
45 req!msg;
46 req2!msg;
47 }
48 }

Figure 10.17: The init-process for the SCP case study in Promela
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1 ltl Achieve_CodeStored { // code gets stored
2 [] ( Deployer@startDeployer ->
3 <> (
4 (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
5 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
6 )
7 )
8 }
9 ltl Maintain_Storage { // code stays stored

10 [] ( Deployer@startDeployer ->
11 [] (
12 ( (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
13 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
14 )
15 -> [] ( (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
16 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
17 )
18 )
19 )
20 }
21 ltl Achieve_AppExecuted { // app gets executed
22 [] ( Deployer@startDeployer ->
23 (Node[1]:reqs == Deployer:roleAttr_appReqs
24 || Node[2]:reqs == Deployer:roleAttr_appReqs)
25 ->
26 <> ( (Node[1]:reqs == Deployer:roleAttr_appReqs && Node[1]:isExecuting)
27 || (Node[2]:reqs == Deployer:roleAttr_appReqs && Node[2]:isExecuting)
28 )
29 )
30 }
31 ltl Maintain_Execution { // app stays executed
32 [] ( Deployer@startDeployer ->
33 [] (
34 (Node[1]:isExecuting || Node[2]:isExecuting)
35 -> [] (Node[1]:isExecuting || Node[2]:isExecuting)
36 )
37 )
38 }
39 ltl Achieve_Usage4 { // requester 4 gets served
40 [] ( Deployer@startDeployer ->
41 <> Requester[4]:roleAttr_hasResult
42 )
43 }
44 ltl Achieve_Usage5 { // requester 5 gets served
45 [] ( Deployer@startDeployer ->
46 <> Requester[5]:roleAttr_hasResult
47 )
48 }

Figure 10.18: The goals for the SCP case study in Promela

10.5.3 Model-Checking the Promela Translation

Model-checking of the Promela translation against the translated SCP goals is done
in several steps. We start from a fast and lossy search algorithm and move to slower,
but lossless optimization techniques as described in Sec. 5.3.2. In the following, we
report on experiences when model-checking the Helena design model with Spin. We
expose some pitfalls which we experienced with the original Helena model and how we
improved it to the model described in the previous section. Afterwards, we discuss the
statistics for model-checking the SCP case study with lossless optimization techniques.
We omit the statistics for the other search algorithms since they were only used for
improving the original Helena model and only give a restricted impression about the
size of the Helena model in Promela.
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10.5.3.1 Pitfalls and Improvements of the Original Helena Model:

To get a �rst impression about the satisfaction of goals, we start with bit state space
search. With this lossy optimization technique, we get a �rst and most importantly
fast impression about the satisfaction of goals and can get rid of some obvious errors
in the Helena speci�cation. If the speci�cation passes all goals in the bit state space
search, we move to the slower optimized search algorithm hash-compact. This is also a
lossy optimization technique, but it most likely reaches a coverage of 100% in contrast
to bit state space search. After having eliminated errors with hash-compact search, we
�nally use only lossless optimization techniques for model-checking. We employ Partial
Order Reduction, Collapse compression and the Minimized Automaton representation
at the same time gaining a full coverage of the model with a high compression rate at
the price of a highly increased runtime.

Veri�cation of the Helena model helped us to get rid of all design errors and to
improve the model until it �nally satis�es all goals of the SCP case study. Errors
normally lie in two categories:

� First, we �nd behavioral errors which impede the executability of the overall
system. Messages are sent to roles which are generally able to receive them, but
do not expect them at the moment, a new instance of a certain role type is created
on a component which already plays it, or an instance of a certain role type is
retrieved from a component which does not currently play it. These errors occur
if the role behaviors are not designed carefully and the semantic restrictions of
action execution are not respected.

� If all those errors are eliminated from the speci�cation, we �nd logical errors where
the overall system can be executed, but the goals are not achieved. These errors
concern the application logic represented in the role behaviors and require a deep
understanding of the application domain to be resolved.

The di�erent errors are essentially indicated by two error messages printed with
the Spin output: too many processes/queues created or acceptance cycle found. In
both cases, Spin provides a counterexample given as a trace through the Promela
speci�cation (cf. Sec. 5.3.2). To map the counterexample back to the original Helena
model, it is necessary to fully understand the translation from Helena to Promela.
It is still an open problem how to generate a trace in the original Helena speci�cation
instead of the trace in the Promela translation. However, these counterexamples
helped us to understand design errors in the original Helena model of the SCP case
study (in the previous subsection, we only showed the revised Helena model where all
errors were already eliminated):

� The error message too many processes/queues created indicated that we speci-
�ed an ensemble which created in�nitely often new role instances. This happened
for example during �rst attempts to �nd all requesters in the network. We cycled
in�nitely often through the complete peer network, every time creating a new
potential requester on each node.

� The error message acceptance cycle found had two di�erent causes. The �rst
one was that the execution of the Promela speci�cation got stuck and could
not execute any further steps. Therefore, the �nite trace was implicitly elongated
with τ actions by Spin such that the generated counterexample cycled through τ
actions. This problem is easily recognized by the phrase START OF CYCLE at the
end of the trace. Our speci�cation of the SCP case study got only stuck because
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of behavioral errors as described in the previous paragraph.

� The error message acceptance cycle found was furthermore caused by real cycles
in the speci�cation, i.e., logical errors in the original Helena model. For example,
in a second attempt to �nd all requesters in the network, we cycled in�nitely often
through the complete peer network, but this time we did not create new potential
requesters on every node, but reused the previously created one. Nevertheless,
cycling through the network did not stop in this design model and therefore an
acceptance cycle was found.

Unfortunately, we experienced problems with using the hash-compact search method
on our SCP model. It checked the goals on the same model nondeterministically satis�ed
or unsatis�ed. If the goals were unsatis�ed, the model-checking output of Spin stated
that an acceptance cycle was found, but the generated counterexample did not contain
any cycles. Therefore, we decided to explore and improve our models with bit state
space search for a �rst approximation of satisfaction of goals and then moved directly
to full state space search with all compression techniques.

10.5.3.2 Statistics of Model-Checking the Final Helena Model:

We performed model-checking of the SCP case study with Spin version 6.4.4 64-bit and
GCC version 6.9.2 64-bit on a 64-bit Debian 8.1 desktop computer with 32GB RAM
and eight Intel(R) Xenon(R) cores each running on 3.40GHz.

Model with Two Nodes: In the �rst round, the Promela speci�cation was ini-
tialized with the init-process in Fig. 10.17. That means that two nodes formed the
underlying peer network where one is closest to the application based on ID proximity
and one node satis�es the application's computation requirements. On top of that, one
deployer and two requesters (two on each node) were started while nondeterministically
choosing one of the nodes as owner. To repeat from the description of the initial state in
Sec. 10.5.2, by initializing the Promela speci�cation with this init-process, we made
three important assumptions explicit: all IDs of nodes are greater than 0, at least one
node satis�es the computation requirements, and all requesters are already created in
the initial state.

We started with bit state space search for model-checking and improving the He-
lena model. Each run lasted around 30 minutes and needed around 3GB of memory
depending on the current goal to be checked and error-freeness of the model. We do not
report an detailed statistics about these veri�cation runs since they were only used for
removing obvious errors in the �rst attempts of the speci�cation of the SCP case study.

Table 10.2 reports the detailed results of model-checking the �nal Helena model of
the SCP case study against all its goals with a full state space search with Partial Order
Reduction (POR) optimization, Collapse compression, and Minimized Automaton (MA)
representation (100 is used as the estimate of the maximal depth of the graph).

All goals from Table 10.1 are satis�ed by the �nal Helena ensemble speci�cation
described in Sec. 10.4. The corresponding Promela model (initialized as explained
above) to be checked is large: The state vector has a size of 2723 bytes (according
to [HB07], state vectors around 4000 bytes are large). The state space grows from
215 million states for the goal �code gets stored� to 645 million states for the goal �code
stays stored� with all other goals lying in-between (according to [HB07], state spaces
with 10�600 million states are large). Without any compression techniques, the memory
consumption for a full state space search would exceed today's memory capacities by
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Table 10.2: Statistics of model-checking the SCP case study with two nodes
against its goals with POR optimization, Collapse compression and
Minimized Automaton (DMA=100) representation

code
gets
stored

code
stays
stored

app
gets
exe-
cuted

app
stays
exe-
cuted

re-
quester
4 gets
served

re-
quester
5 gets
served

search depth 849 849 849 849 849 849

state vector size (B) 2723 2723 2723 2723 2723 2723

stored states (million) 215 645 219 643 483 483

transitions (million) 692 2767 708 2757 1632 1632

theoretic memory (GB) 566 1697 577 1691 1272 1272

actual memory (GB) 1.018 1.023 1.022 1.025 1.758 1.713

elapsed time (h) 3.4 12.6 3.5 12.4 7.3 7.4

far. 692 GB to 2767 GB would be necessary to check each of the goals. Fortunately,
with the three lossless optimization techniques POR, Collapse and MA, the memory
consumption can be reduced to 0.05�0.16% of the overall memory consumption such
that only 1.0�1.8 GB of memory are needed. The memory consumption reaches its
peek for the last two goals �requester 4/5 gets served� since compared to the other four
goals, model-checking here has to especially focus on the interplay between application
deployment and execution and requests to the application. The impressive compression
rate comes with the downside of a highly increased runtime. A veri�cation run of the
SCP model takes between 3.4 hours and 12.6 hours. The runtime reaches its peek for the
two maintain goals �code stays stored� and �app stays executed� since they require to
maintain a certain property throughout the lifetime of the system while for satisfaction
of achieve goals it is enough if the goal is achieved at some point in the lifetime of the
system.

Model with Three Nodes: For the second round, the Promela speci�cation was
initialized with three nodes forming the underlying peer network. As before, one node is
closest to the application based on ID proximity and one node satis�es the application's
computation requirements. On top of that, one deployer and two requesters (two on
each node) were started while nondeterministically choosing one of the nodes as owner.
By just adding this one additional node, the state space immediately exploded. Full
state space search for one goal only (e.g., �code gets stored�) ran out of memory with
a vector size of 3827 bytes and 18291 millions states stored in 31 GB of memory after
425 hours (approx. 17.7 days). It was only possible to check the model with bit state
space search (cf. Table 10.3). However, these veri�cation runs only produce a hash factor
of around 3 such that we cannot expect full coverage as we discussed in Sec. 5.3.2.

10.6 Implementation

In the last section, we showed that the ensemble speci�cation of the SCP case study
from Sec. 10.4 satis�es all goals from Sec. 10.3. In this section, we explain how we
realize the Helena model on top of the already existing technology stack of the SCP
(cf. the SCP Node layer in Fig. 10.1).
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Table 10.3: Statistics of model-checking the SCP case study with three nodes
against its goals with bit state space search and a memory limit of
30 GB

code
gets
stored

code
stays
stored

app
gets
exe-
cuted

app
stays
exe-
cuted

re-
quester
5 gets
served

re-
quester
6 gets
served

search depth 994 1114 1117 988 988 986

state vector size (B) 3571 3827 3827 3571 3571 3571

stored states (million) 48 41 12 36 15 21

transitions (million) 175 192 126 197 139 139

theoretic memory (GB) 165 149 45 123 52 71

actual memory (GB) 0.0024 0.0024 0.0029 0.0018 0.0018 0.0018

elapsed time (min) 13.32 14.1 10.68 14.1 11.85 11.45

hash factor 2.79 3.30 3.32 3.75 3.50 3.48

Our code generator in Sec. 8.4 already generates a prototypic implementation in
Java from the Helena model. The generated implementation relies on the jHelena
framework from Chap. 7 which transfers and realizes the main Helena concepts of
roles and ensembles in Java. Both the generated code and the underlying jHelena
framework are used as a basis for the experimental realization of the SCP and are
adapted to built on the existing technology stack of the SCP.

The Helena methodology separates between base components and roles running
on top of them. The technology stack of the SCP already provides the implementation
of the components, that is the SCP node layer in Fig. 10.1. Thus, we transfer the
ideas of the jHelena framework to a new Helena SCP middleware (cf. Fig. 10.1)
which connects the SCP node layer with role-related functionality. The o�ered role-
related functionality is the ability to create and retrieve roles via the network as well
as routing messages between roles by using Pastry. Furthermore, the Helena SCP
middleware also provides access to the storage capabilities of the underlying SCP nodes
using PAST. In a second step, we translate the behavioral speci�cations of all roles
to Java code following the ideas of the code generator for jHelena, but taking into
account the newly created Helena SCP middleware.

In the following two subsections, we discuss the Helena SCP middleware and the
adapted role behavior implementations, respectively, stressing where the concepts of the
jHelena framework could directly be used, where the Helena model could directly
be translated to Java and where special care had to be taken to make the realization
robust.

The �nal implementation of the SCP can be retrieved from http://svn.pst.ifi.
lmu.de/trac/scp, version v3 of the node core implementation with gossip strategy.

10.6.1 Helena SCP Middleware

The Helena SCP middleware needs to be able to manage the role layer on top of
the SCP node as well as to provide all functionalities used by roles like creating and
retrieving other roles and exchanging messages between roles as well as accessing the
storage capabilities of the underlying components, the SCP nodes.

http://svn.pst.ifi.lmu.de/trac/scp
http://svn.pst.ifi.lmu.de/trac/scp
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Role Management: We �rst focus on how roles are realized in Java and how they are
administrated on top of the SCP nodes, independently from the actual behavior each
role executes. The Helena SCP middleware must support three types of management
operations: the ability to create role types, to instantiate and execute them as well as
to directly address them for message exchange.

We reuse the idea of jHelena and naturally map a role type to a Java class and
a role instance to an instantiation of this class. To enable concurrent execution of
several role instances on one SCP node, each role instance is realized as a Java thread,
running locally in the OSGi container of the current node. A registry on each node
stores all instances currently adopted by the node such that we can easily retrieve
already existing role instances of an SCP node. To retrieve and exchange messages
with roles on other nodes, the Helena SCP middleware requires a way of addressing
roles. In Pastry, each node is already identi�ed by a unique 160-bit identi�er. It is
relatively straightforward to add a similar unique identi�er for roles. However, there is
also another kind of structuring element which is not directly visible in the behavioral
speci�cations: the ensemble which constitutes the environment for the roles. This can
clearly be seen when looking at the functions the SCP middleware needs to o�er for
role handling � these are the create and the get actions. Both require knowledge about
which ensemble is addressed for creating a new role or where to look for an existing
role. A role instance is therefore characterized by three identi�ers in the Helena
SCP middleware: the node identi�er (for addressing nodes using Pastry), the ensemble
identi�er and the role identi�er.

Infrastructure for Executing Actions: Besides managing roles, the Helena SCP
middleware must realize all actions a role can execute in its behavior. The �rst two are
role creation and role retrieval. Similarly to the jHelena framework, they are imple-
mented as Java methods (createRoleInstance and getRoleInstance) in the Helena
SCP middleware. They require a node and an ensemble ID as well as the class of the
required role as input. In contrast to the jHelena framework, the owning SCP node
of the role instance which wants to create (or retrieve) the role instance communicates
via Pastry with the target SCP node which should own the newly created (or already
existing) role instance. It instructs the target SCP node to create and start the new
role (or retrieve it). The target SCP node returns the identi�er of the newly created
(or already existing) role which can then be used for role-to-role message routing.

Furthermore, the behavior speci�cations of roles make heavy use of role-to-role com-
munication. A role must be able to send a message and to expect to receive a certain
message in its behavior. For this purpose, the SCP middleware again provides two
methods sendMessage and waitForMessage for communication between roles.

The method sendMessage takes a message and a target role. In contrast to the
jHelena framework again, the message is routed via Pastry and is put into the input
bu�er of the target role. The method only returns when this has been successfully com-
pleted (i.e., an internal acknowledge is sent back upon which the sendMessage function
returns normally). Otherwise, an exception is raised. Of course, correct collaboration
requires that any message is �nally consumed from the bu�er. Moreover, any consumed
message should also be expected by the target role as an input message in accordance
with its role behavior speci�cation. Since we already checked the Helena model with
the model-checker Spin for goal satisfaction (cf. Sec. 10.5), this is trivially satis�ed if
all goals are achieved.
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The second method is waitForMessage which instructs the SCP middleware to wait
for a message of a certain type, The method takes a timeout value such that an exception
is raised if a message does not arrive in the given time (though specifying INFINITY is
an option).

For access to the owning node of a role, we do so far not provide any generic methods.
Setting attributes of the owning node and calling operations on them is realized by calls
to application-speci�c methods in the SCP node, e.g., the method storeInPAST on the
SCP node for the realization of the operation store in the Helena model.

10.6.2 SCP Role Behavior Implementations

Given the Helena SCP middleware as a basic infrastructure for role management,
communication between roles and to the owning SCP nodes, we can now proceed to
derive the implementation of the Helena model for the SCP case study.

Direct Translation: As discussed above, role types are implemented in Java using
classes. Thus, for each of the eight role types from the previous section, a class is cre-
ated, inheriting from an abstract role template for easier access to the SCP middleware
methods. Each role is instantiated within a certain ensemble and SCP node. Upon
startup, a dedicated method implementing the role behavior is called.

The actions in the role behavior speci�cations are translated to message exchanges
and operations calls on the owning SCP node. For each message type, a message
class with an appropriate name is created, and equipped with the required parame-
ters as indicated in the role types. Instances of these classes are later transmitted
through the network (appropriately wrapped as Pastry messages). For example, the
store message shared between Deployer and Storage is implemented by an instance of
the StoreMessage class which carries the application name as a �eld. As described be-
fore, the Helena SCP middleware does not provide a generic way of setting attributes
or calling operations on the owning SCP node. They are realized as explicit calls to
application-speci�c methods of the SCP node. For example, setting the attribute code

of the owning node in line 3 of the role behavior of the Storage in Helena (cf. Fig. 10.7)
is realized by calling the method storeInPAST on the SCP node.

Relying on these realizations of actions, a role behavior is translated into Java as
follows:

� Transitions referring to the two middleware functions create and get are directly
translated to calls to the corresponding framework methods createRoleInstance
and getRoleInstance. They return role identi�ers which can then be used for
communication.

� Transitions with incoming messages, e.g., ?store()(int appID, int appReqs,

int appCode) in line 2 of the role behavior of the Storage (cf. Fig. 10.7), are
translated into a call of the middleware method waitForMessage for the corre-
sponding message class, e.g., the StoreMessage. The waitForMessage method
returns an instance of the message once received, which can be queried for the
actual ID, computation requirements and the byte code of the application.

� Transitions with an outgoing message, e.g., i!initiate(self)(appID,appReqs),
are translated into a call to the middleware method sendMessage. The message
to be sent must be given as a parameter.
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� Transitions which set the attributes of the owning node or call operations of the
owning node are translated to the call of their application-speci�c counterpart on
the SCP node.

� All other transitions, like guarded choice or recursive process invocation, are trans-
lated into their appropriate Java counterparts similarly to the code generation to
jHelena in Sec. 8.4.

With this basic description, the role behaviors are directly translatable into Java
code. As an example, Fig. 10.19 shows (in condensed form) the run-method of the
Storage role which is directly derived from its behavior speci�cation in Fig. 10.7. Line 2�
5 correspond to receiving the message store in line 2 in Fig. 10.7. As in jHelena, the
parameters of the received message are stored in attributes of the role (line 3�5). To
store the byte code of the application (line 3 in Fig. 10.7), we use the dedicated method
storeInPAST of the underlying SCP node (line 7) which stores the byte code in the
distributed hashtable provided by PAST (cf. Sec. 10.1). To create an initiator on the
owning node (line 5 in Fig. 10.7), the method createRoleInstance is called (line 9)
where the �rst parameter is the identi�er of the owning SCP node of the current role.
The message initiate from line 6 in Fig. 10.7 is sent to the newly created initiator
by calling the method sendMessage (line 11�12). Thereby, the �rst parameter repre-
sents the sending role instance and the second parameter the receiving role instance.
The following three parameters denote the actual parameters of the initiate message.
Similarly to receiving and sending before, also the message reqCode (line 8 in Fig. 10.7)
is received by calling the method waitForIncomingMessage of the Helena SCP mid-
dleware and the message sndCode (line 9 in Fig. 10.7 is sent by calling the method
sendMessage. Termination and especially quitting to play a role is not represented in
the shown run-method. The registry which manages the current role instances per SCP
node and ensemble takes care to quit the role.

1 public void run() {
2 StoreMessage storeMsg = waitForIncomingMessage(INFINITY, StoreMessage.class);
3 this.appID = storeMsg.getAppID()
4 this.appReqs = storeMsg.getAppReqs();
5 this.appCode = storeMsg.getAppCode();
6

7 this.getSCPNode().storeInPAST(this.appID, this.appCode);
8

9 RoleId iRole = this.createRoleInstance(this.getNodeId(), InitiatorRole.class);
10

11 sendMessage(new InitiateMessage(this.getRoleId(), iRole,
12 this.getRoleId(), this.appID, this.appReqs));
13

14 ReqCodeMessage reqCodeMsg = waitForIncomingMessages(INFINITY, ReqCodeMessage.class);
15 RoleId eRole = reqCodeMsg.getE();
16

17 sendMessage(new SndCodeMessage(this.getRoleId(), eRole, this.appCode));
18 }

Figure 10.19: Role behavior implementation for the Storage

E�ciency Improvements of the Translated Implementation: In principle, all
role behaviors from Sec. 10.4 can be straightforwardly translated to Java building on the
Helena SCP middleware. However, this direct translation does not exploit all bene�ts
the SCP technology stack o�ers. Firstly, in the Helena model, we modeled the search
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for the node with the ID closest to the application's ID by two round trips through the
network via potential storages. In the implementation of the role behaviors in Java, this
can be improved by using Pastry. With Pastry, the deployer can directly determine the
closest node and can immediately create the storage on this node. Thus, the potential
storages are no longer needed and replaced by more sophisticated functionalities of
Pastry which cannot be modeled directly in Helena. Secondly, in the Helena model,
we also modeled the search for an executor satisfying the computation requirements
of the application by a round trip through the network via potential executors. In
the real-life implementation, however, a gossip protocol spreads information about all
SCP nodes through the network. With this information, each SCP node builds its own
picture of the network, e.g., which nodes has which computation abilities. Therefore,
the initiator can reduce the number of potential executors to be asked for execution
to the SCP nodes which most probably satisfy the computation requirements of the
application according to the gossiped information. Lastly, in the Helena model, the
initiator informs all requesters about the availability of the application via a round trip
through the network with potential requesters. In the real-life implementation, the Java
API o�ers possibilities to register observers. Thus, the initiator can directly inform only
those nodes which registered as requesters for this application without a full round trip
through the network. The implementation on http://svn.pst.ifi.lmu.de/trac/
scp, version v3 of the node core implementation with gossip strategy, implements all
these improvements of the original Helena model.

10.6.3 Discussion of the Implementation

The formal Helena model easily guides the implementation in Java. We �rst provide
all role-related functionality by a Helena SCP middleware. This middleware amounts
to around 1000 lines of code (LOC). It reuses the idea of the jHelena framework from
Chap. 7 and connects the Helena concepts of roles and ensembles with the under-
lying SCP technology stack. On top of that, the roles from the Helena model are
implemented. Each corresponding class stays below 150 LOC with another 400 LOC in
message classes. The implementation is systematically derived from the role behaviors
and therefore does not require much implementation e�ort. The encapsulation of re-
sponsibilities in separate roles helps to make the SCP code clean and easy to understand.
On the other hand, the implementation of the Helena SCP middleware with 1000 LOC
might seem a signi�cant amount of implementation e�ort just for providing role-related
functionalities without any application logic. However, one has to keep in mind that
whenever the application logic is changed, this middleware remains unchanged and only
the role behaviors need to be changed which is much less e�ort. The SCP middleware
can be used for any type of application based on a network of components which are
voluntarily provided, store data, and interact in a peer-to-peer manner. Furthermore,
by deriving our implementation of the SCP from its formal Helena model, we can rely
on the results from model-checking the formal model (cf. Sec. 10.5). Careful analysis
guarantees that the formal Helena model satis�es all speci�ed goals from Sec. 10.3. A
direct translation to Java as we discussed it preserves satisfaction of those goals in the
implementation.

Nevertheless, some e�ort has to be taken to make the system robust against com-
munication failures on the network layer and to communicate with the outside world.
Additionally, special bootstrapping is needed to start the initial roles of the ensemble.

http://svn.pst.ifi.lmu.de/trac/scp
http://svn.pst.ifi.lmu.de/trac/scp
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Each of the framework methods may fail for various reasons, and the resulting
exceptions must be handled. Firstly, in all operations, timeouts may occur if a message
could not be delivered. Secondly, role-to-role messages may fail if the target node does
not (yet) participate in the expected ensemble or does not (yet) play an expected role;
this also applies to the getRoleInstance method. The createRoleInstance may fail
if the role class could not be instantiated or started. These errors are not captured
in the role behaviors, but may occur in practice (in particular, they may occur during
development if the implementation is not yet fully complete and stable). However,
message could also be lost due to network errors. The Helena SCP middleware has
to take care to reliably deliver message, for example by resending messages until the
reception is acknowledged.

Furthermore, there are also some points where the roles need to receive from and
to return information to an outside party. For example, the Requester role is invoked
when a UI request is made for an application; the response from the application must
be presented to the user. This requires open ensembles and therefore explicit invocation
of a role from an outside party and vice versa. One could think of specialized actions
for these communication with the outside world or introduce answers a role in general
gives to users.

A further issue is bootstrapping of Helena ensembles. At each ensemble startup,
at least one role needs to be instantiated by an outside party before messages can be
received. In this case study, there are at least two initial roles which must be instantiated
before the ensemble can be executed: the Deployer and at least one Requester. This
bootstrapping point cannot be deduced from the local behavior speci�cations, but is
given by the initial state of an ensemble. Therefore, it must be treated separately. In
the case of the SCP, this part is played by the SCP UI (top right in Fig. 10.1).

10.7 Related Work

The science cloud platform is a peer-to-peer, voluntary-computing cloud platform-as-a-
service. As one of the case studies in the ASCENS project [WHKM15], the SCP was
thoroughly studied with techniques from this project. Mayer et al. [MKH+13, MVK+15]
give an overview what type of design patterns help to capture adaptation of the SCP
and how the SCP can be modeled in Helena, speci�ed in SCEL and implemented
based on Pastry and the ContractNET protocol. In the context of the ASCENS
project [MVK+15], the SCP case study was investigated for distributed Denial-of-
Service attacks and defense patterns have been proposed, reliable routing between nodes
was veri�ed on top of Pastry, performance was monitored and predicted with SPL, and
mobile nodes which can join and leave the SCP were explicitly supported by jDEECo.

As furthermore stated in [MKH+13], the related work in the three underlying com-
puting paradigms has traditionally focused on a) routing and distributed storage of
data (p2p), b) distributing workload from a central server (voluntary computing), and
c) provisioning resources inside centralized data centers (cloud computing). Combining
these areas has started to attract attention in recent years; we believe however that this
research is far from concluded.

Voluntary clouds have been identi�ed as a recent research trend in a state-of-the-art
survey [ZCB10] in 2010. Another survey-type paper [PBF+11] by Panzieri et al. from
2011 also lists implementing cloud implementation on top of P2P networks as an open
problem, and observes the usually centralized nature of voluntary computing. Panzieri
et al. list the work by Babaoglu et al. from 2006 [BJK+06] as the �rst proposal for a
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�fully decentralized P2P cloud�. The group has since followed up with additional works,
of which a very interesting recent one is [BMT12] from 2012, which implements a similar
system to the one presented here on the infrastructure-as-a-service level.

An approach to bridge volunteer and cloud computing, but without going for a fully
decentralized organization, is the work by Cunsolo et el. [CDPS09] in 2009. There, the
idea is for users to contribute additional resources to certain centralized components.
Also in 2009, Chandra and Weissman [CW09] have come up with the term Nebulas

instead of clouds for distributed voluntary resource use. They list three requirements
for such systems, which we have addressed partially in this paper.

10.8 Publication History

The idea and the underlying concepts of the science cloud platform have already been
presented in [MKH+13]. The concept of roles have been applied to the science cloud
platform and its implementation in [KMH14]. This chapter goes beyond these two pub-
lications by exercising the whole Helena development methodology on the case study.
In particular, we improved the original Helena model of the science cloud platform
upon veri�cation results. The model is extensively veri�ed and veri�cation results and
limitations are discussed in full detail. The Helena SCP middleware has already been
proposed in [KMH14] for implementing the science cloud platform with Helena con-
cepts on its real distributed platform, but we emphasize its strong resemblance to the
jHelena framework.

10.9 Present Achievements and Future Perspectives

This chapter showed that the Helena development methodology can be applied to a
larger software system and that it enables a holistic development of the system in mind.
The Science Cloud Platform (SCP) served as our case study. The SCP is able to deploy
and execute a software application in a voluntary peer-to-peer network as well as to
provide access to the deployed application for users.

Domain Model: Starting from an informal description of this case study, we �rst
derived a domain model with one component type and �ve roles. Splitting the task of
application execution in several independent roles thereby most naturally represented
the domain and helped to understand the individual subtasks.

Goal Speci�cation: Based on this domain model, the informal (achieve and main-
tain) goals of the case study were formalized as LTL formulae. Goals which required
persistent storage or persistent execution of the application were expressed by refer-
ring to attributes of the underlying component-based platform of the SCP. Goals which
expressed individual objectives like being served exploited attributes of roles running
on top of the component-based platform. LTL proved to be an appropriate logic to
formulate the goals of the SCP case study. Nevertheless, an interesting extension would
be to use �rst-order LTL to be able to include quanti�ers in the formalization of goals.

Design Model: Having the goals in mind, we enhanced the domain model with be-
haviors for each participating entity of the Helena model as well as further roles to
allow appropriate collaboration in the ensemble. Thereby, the bene�ts of the role-based
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modeling approach of Helena became apparent: The SCP is comprised of four sub-
tasks: deploying the application, �nding an executor, keeping the application alive, and
providing access to the application. In a standard component-based design, we would
have to come up with a single component type for a computing node which is able to
combine the functionalities for each responsibility in one complex behavior (this is the
case in the previous �all-in-one� implementation of the SCP [MKH+13]). By relying on
Helena, we bene�ted from the possibility to model the system in terms of collaborating
roles: On the one hand, roles allowed to separate the de�nition of the capabilities and
behavior required for a speci�c responsibility from the underlying component. On the
other hand, adopting di�erent roles allowed components to change their behavior on
demand. Nevertheless, we missed several features in the Helena modeling approach:
Broadcast messages would improve the performance of the overall model since e.g.,
the search for an appropriate storage of the application could be realized by a bidding
process instead of a full round trip through the underlying peer network. Waiting for
several messages at the same time and proceeding according to the received message
would allow to design a more �exible and externally controlled system. Lastly, a concept
for waiting and being noti�ed (e.g., about certain component attribute values) would
increase performance since values would not have to be continuously polled.

Veri�cation: The Helena design model was translated to Promela and checked
against its goals with the model-checker Spin. Therefore, we could examine the modeled
system before implementation for any behavioral or logical error impeding the satisfac-
tion of goals. The Promela model turned out to be quite large even for only two
peers in the underlying peer network of the SCP since the Helena model prescribes
eight di�erent role types and even more instances on top of that peer network. How-
ever, Spin was able to fully model-check the Promela model with two nodes. We
could continuously improve the Helena design model with the help of counterexam-
ples generated from Spin until �nally satisfaction of all goals was proven. Nevertheless,
model-checking with Spin would bene�t from a reduction of the model size. This could
either be achieved by a new design model in Helena, e.g., with broadcasting possibil-
ities, or by a more space-e�cient translation to Promela where e.g., the data stored
on components or the currently adopted roles of components are expressed by global
variables instead of by local variables of independently running component processes.

Implementation: During implementation of the model, translating the role behav-
iors to Java code has proven to be straightforward. To gain this complexity reduction,
�rst a (reusable) Helena SCP middleware layer was needed to provide Helena-speci�c
functionalities. The Helena SCP middleware increased the development e�ort com-
pared to the previous �all-in-one� implementation of the SCP [MKH+13], but once
developed it does not have to be changed if the logic of the SCP needs adaptation. Fur-
thermore, the encapsulation of responsibilities and subtasks in separate roles helped to
make the SCP code clean and easy to understand. Special care had to be taken in four
areas which are implicit in Helena speci�cations: handling faults during communi-
cation (Helena assumes reliable communication), node identi�cation for role creation
and retrieval, handling node failures, and communication between ensembles and the
outside world. For future work, it would thus be interesting to include an infrastructure
in Helena which copes with unreliable systems and failing components. One idea is to
snapshot the system regularly such that roles can be transferred to other components
when a component fails.
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The Helena Development Methodology: Generally speaking, the Helena de-
velopment methodology allowed a rigorous development of the SCP case study. The
Helena concepts of roles and ensembles provided reasonable abstractions which served
as a clear documentation, analysis model, and guideline for the implementation. With
Helena, goals could be formally captured and checked in the Helena design model
of the SCP case study due to the formal foundation of the Helena approach. The im-
plementation of the SCP case study could systematically be derived from the Helena
model and achieves all its goals with high con�dence due to the systematic derivation
from the formally veri�ed Helena model.



Chapter 11

Role-Based Adaptation
Being Adaptive with Helena

TheHelena development methodology especially aims at the development of ensemble-
based systems. However, the ideas and concepts can be tailored to other application
domains as well. In this chapter, we propose a holistic model-driven engineering process
on top of the Helena development methodology to develop self-adaptive systems. It is
a comprehensive and coherent methodology for engineering self-adaptive systems where
adaptation logic and application logic is well separated through all development phases
and artifacts are easily traceable through the whole development process.

Key concept of the Helena approach to self-adaptive systems is to achieve adap-
tation by changing the behavioral mode of a component in response to perceptions
and to realize behavioral modes by roles which a component can dynamically adopt.
Furthermore, the new model-driven engineering process provides systematic transitions
between all phases: speci�cation, design, veri�cation, and implementation.

For speci�cation, we introduce adaptation automata which allow to specify complex
adaptation behavior by hierarchical structure and history of states similar to UML state
charts. Furthermore, we propose the Helena Adaptation Manager pattern to derive a
role-based Helenamodel from a speci�cation. The pattern exploits the concept of roles
as proposed in Helena to represent modes and their behaviors and therefore allows to
adapt a component's behavior by changing the currently active role. Due to its formal
foundation, the Helena model can then be analyzed with Spin and executed with the
Java framework jHelena.

In the following, we �rst give an overview about the current state-of-the-art of
engineering self-adaptive systems to motivate the need for a holistic development process
in Sec. 11.1. Table 11.2 gives an overview of the whole Helena development process for
self-adaptive systems. Table 11.3 introduces a robotic search-and-rescue scenario which
we use as a running example. Our speci�cation technique is discussed in Sec. 11.4. The
HAM pattern to re�ne an adaptation speci�cation to a design is presented in Sec. 11.5.
The systematic transition from a speci�cation to a formal Helena model following the
HAM pattern is divided in two parts. The derivation of the role-based architecture
is described in Sec. 11.6, the derivation of the dynamic behaviors in Sec. 11.7. The
further systematic transitions to a veri�cation model and to jHelena code are not
described here since they rely on the ideas introduced in Chap. 4, Chap. 5, Chap. 7,
and Chap. 8. In Sec. 11.8, we compare our methodology to prominent reference models
for self-adaptation. We conclude in Sec. 11.10 with a discussion and some hints on
future work.

253



254 CHAPTER 11. ROLE-BASED ADAPTATION

The complete Helena ensemble speci�cation of the running example proposed later
on has 723 lines of code and is listed in Appendix E. It can also be found on the attached
CD in the �le search-and-rescue.helena.

11.1 Introduction

To cope with changing conditions at runtime, the autonomic computing
paradigm [KC03] advocates to equip components with the capability of self-adaptation.
A self-adaptive component keeps track of its individual and shared goals, perceives its in-
ternal state as well as its environment, and adapts its behavior accordingly [C+09, ST09].
We say, a self-adaptive component changes its behavioral mode in response to percep-
tions.

Engineering Self-Adaptive Systems, State-of-the-Art: It is commonly agreed
that adaptation logic of self-adaptive systems (SAS) should be developed independently
from application logic [C+09, BMSG+09, IBM06]. Cheng et al. [C+09] even argue that
the feedback loop implementing the adaptation logic must become a �rst-class entity
throughout the whole development process. By adhering to this principle of separation
of concerns, the application logic of behavioral modes can be developed without con-
sidering changes in the environment. Conversely, adaptation logic is designed to switch
between behavioral modes without taking care how the modes perform their task.

In the literature of SAS, this separation of concerns is addressed at di�erent devel-
opment phases: Automata-based approaches [LE13, ZMLL11, MPT12, BCG+13] o�er
formal speci�cation and veri�cation techniques. Architectural patterns [PCZ13] intro-
duce design guidelines for realization. Role models [SWHB05, MT11] propose concepts
for switching between behavioral modes. Architecture-based self-adaptation[OGT+99,
GCH+04, KM07] is presented as a framework for designing and implementing SAS.

Consequences: None of the approaches addresses separation of concerns consistently
from speci�cation over veri�cation to design and implementation. We are missing a
holistic development process considering adaptation logic independently from applica-
tion logic in all main phases and supporting systematic transitions between all of them.
Therefore, artifacts cannot be easily traced through the whole process and we can-
not guarantee correct realization of requirements since we lack systematic transitions
between each of the phases.

Helena Development Methodology for Self-Adaptive Systems: Integrating
and extending existing approaches, we propose a holistic model-driven engineering pro-
cess in this chapter to develop self-adaptive systems on top of the Helena development
methodology. It consistently separates adaptation logic from application logic in all
main development phases. Key concept of the approach is to achieve adaptation by
changing the behavioral mode of a component in response to perceptions and to realize
behavioral modes by Helena roles which a component can dynamically adopt.

� We introduce hierarchical adaptation automata to specify a self-adaptive compo-
nent with its (possibly) complex adaptation behavior. They o�er history states
and hierarchical composition of states as expressive tools to specify complex adap-
tation behavior and they provide placeholders to plug application logic in.
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� For the design, we propose a role-based architecture following the Helena Adap-

tation Manager (HAM) pattern. Roles as proposed in Helena intuitively express
the di�erent tasks of self-adaptive components, like being aware of the environ-
ment, managing adaptation, and performing particular behavioral modes.

� We describe a systematic transition (which can be fully automated) from speci�-
cation to role-based design. Especially, representing an adaptation automaton as
a standard labeled transition automaton is particularly involved since hierarchical
structure and history states have to be resolved.

� By realizing the role-based design with Helena, we bene�t from its veri�ca-

tion and implementation tools through reusing its automatic transformations to
Promela (cf. Chap. 5) and jHelena (cf. Chap. 7).

Thus, we introduce the missing traceability of artifacts throughout the whole engi-
neering process while keeping adaptation logic and application logic separated.

11.2 Helena Development Methodology

for Self-Adaptive Systems

The Helena development methodology for self-adaptive systems (cf. Fig. 11.1) is a
holistic methodology to develop self-adaptive systems. It imposes the principle of sepa-
ration of concerns on all of its four main phases � speci�cation, design, implementation
and veri�cation � and supports systematic transitions between the phases.
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Figure 11.1: The Helena development methodology for self-adaptive systems (re-
peated from Sec. 1.5). Rectangular boxes denote artifacts, boxes with
rounded edges are activities. The boxes marked with a user icon are arti-
facts which have to be created by the speci�er; all other artifacts can be
systematically derived by the shown activities.

(1) Adaptation Speci�cation (Sec. 11.4): We �rst specify the self-adaptive
components which contribute to the system. The signature captures the static proper-
ties of the component, i.e., its attributes and its types of behavioral modes. Adaptation
automata are used to describe when the component switches between behavioral modes
and provides placeholders to later on plug the application logic in. Adaptation automata
provide a rich speci�cation technique by allowing to hierarchically compose states and
to keep track of the history of previously executed behaviors like in UML state charts.

(2) Design Pattern (Sec. 11.5): We propose the HAM pattern to create a role-
based Helena model for self-adaptive components. We exploit the concept of roles to
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encapsulate modes and their behaviors. A component's behavior is adapted by changing
the currently active role of the component. An adaptation manager, also represented by
a role of the component, takes care to realize switching between mode roles according
to the logic speci�ed in the adaptation automaton.

(3) Model Transformation Part 1 (Sec. 11.6): We systematically derive a role-
based architecture following the HAM pattern for the initially speci�ed self-adaptive
component and its adaptation automaton.

(4) Speci�cation of Application Logic: After the �rst model transformation,
we can now rely on the role-based architecture to specify the application logic of the
behavioral modes in the form of mode role behaviors.

(5) Model Transformation Part 2 (Sec. 11.7): We integrate the mode role be-
haviors and the adaptation automaton as a role behavior into the role-based architecture
to gain a fully speci�ed Helena design model.

(6) Veri�cation: As already explained in Chap. 5 and exercised at our Science
Cloud Platform case study in Chap. 10, Helena models can be formally analyzed for
goal satisfaction. We systematically transform Helena models to Promela which is
fully automated as described in Sec. 8.3. The generated Promela veri�cation model is
then veri�ed against goals speci�ed as temporal properties using Spin. This approach
can be reused to check the satisfaction of goals of a self-adaptive component.

(7) Implementation: Finally, the Helena methodology provides the execution
framework jHelena which transfers the concept of roles to Java (cf. Chap. 7). We can
rely on this framework to implement and execute our Helena model. An automatic
code generator from Helena speci�cations to jHelena code was already presented in
Chap. 8.

11.3 Search-and-Rescue Scenario

One of the case studies of the EU-project ASCENS [WHKM15] is a robotic search-and-
rescue scenario [DLPT14]. Robots are distributed over an unknown area where recently
some kind of disaster happened. The robots have to �nd victims and to transport them
to a rescue area. Since we do not want any human to enter the dangerous area, the
robots have to self-adaptively manage their behaviors. For example, during searching for
victims, a robot searches randomly and informs other robots about the location of found
victims. If it was informed about the victim's location by another robot, it switches
to a directed walk towards the victim. A robot also changes its behavior whenever it
reaches a victim during search and starts to help rescuing the victim. Orthogonally, the
robot may run out of battery at any time. Then, the robot has to switch to a low-power
behavior and waits for another robot to get recharged.1.

11.4 Adaptation Speci�cation

The �rst step in the development process in Fig. 11.1 is the adaptation speci�cation.
A self-adaptive system is composed of a set of self-adaptive component types whose in-
stances form the system at runtime. For each self-adaptive component type, we specify
its signature, i.e., its attributes and behavioral modes without any application logic.
Additionally, we describe the rules how each component (of a certain type) changes

1We do not claim that our speci�cation represents the robotic scenario in full detail, but rather
want to highlight the bene�ts of our methodology at a simple application.
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its current behavioral mode depending on perceptions by an adaptation automaton.
The automaton only speci�es conditions under which the component switches between
behavioral modes such that it leaves placeholders where we can later on plug the appli-
cation logic in.

In the remainder of this section, we formally de�ne the signature of self-adaptive
component types and adaptation automata. We illustrate the speci�cation with our
search-and-rescue scenario and highlight the bene�ts of the proposed speci�cation tech-
nique.

Notation: Whenever we consider tuples t = (t1, . . . , tn) in the following, we may use
the notation ti(t) to refer to ti.

11.4.1 Signature of a Self-Adaptive Component Type

The signature of a self-adaptive component type describes the static properties of the
component. It has a name and stores normal data in attributes. Additionally, it stores
perceptions about the state of the environment and its own state as awareness data.
While component data may also be perceptions, it does not directly trigger adaptation.
However, it may transitively in�uence awareness data which is then the ultimate source
to decide whether to adapt. Finally, each component type supports a set of behavioral
modes between which the component can switch in response to changes of awareness
data. At this stage, we do not take care of the actual behavior in each mode since we
concentrate on the adaptation logic only.

Def. 11.1: Signature of a Self-Adaptive Component Type

The signature of a self-adaptive component type is of the form ct =
(nm, attrs, attrsaware ,modes) such that

� nm declares the name of the self-adaptive component type,

� attrs is a set of attributes representing component data,

� attrsaware is a set of awareness attributes representing awareness data,

� modes is a set of behavioral modes supported by the component type.

Example: In our search-and-rescue scenario, we just need one self-adaptive component
type to represent the system. Its signature is shown in Fig. 11.2 in graphical notation.

The type Robot stores its own position and is self-aware of its battery level and
whether it is at a victim's position (the position is not awareness data; although it is
perceived, it does only transitively trigger self-adaptation when reaching a victim). It
is aware of the environment by storing the position of a victim (null if unknown), and
whether it was requested as recharger by another robot. A robot can switch between
�ve behavioral modes as explained in Sec. 11.3. Although we do not specify the actual
behavior of each mode at this stage, we give a short intuition: in RandomWalk the robot
randomly searches for victims, in DirectedWalk it directly goes to a speci�c location of
a victim, in Rescue it transports a victim to the rescue area, in LowBattery it switches
into a low-power behavior and waits for recharging, and in Recharge it recharges another
robot.
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Figure 11.2: Signature of the self-adaptive component type Robot

11.4.2 Adaptation Automaton

To describe the rules for switching between behavioral modes, we propose adaptation

automata. They build on the new notion of hierarchical labeled transition systems (H-
LTS) which extend standard LTS by hierarchy and history. Like UML state charts,
an H-LTS allows complex states, which are hierarchically composed, and deep history
states, which allow to return to the last visited basic sub-state of a complex state.

Auxiliary De�nitions: First, we de�ne a set Q which represents hierarchically com-
posed complex states. A state from Q is either a basic state which is not hierarchically
composed or it is a complex state which contains a set of states from Q and marks one
of its states as initial state. More formally, the set Q is de�ned as follows.

Def. 11.2: Complex States

The set Q de�nes a set of complex states over a set Qbasic of basic states. A state

q ∈ Q is either

� a basic state q ∈ Qbasic or

� a complex state q = (cset , init) such that cset ⊆ Q with q /∈ cset is a �nite,

non-empty set of states and init ∈ cset is the initial state of the set.

We denote the set of all basic states transitively included in a state q by
basic-states(q) and the set of all sub-states transitively included in a state q by
sub-states∗(q) such that

basic-states(q) = q, if q ∈ Qbasic

basic-states(q) =
⋃

q′∈cset(q)

basic-states(q′) otherwise

and

sub-states∗(q) = q, if q ∈ Qbasic

sub-states∗(q) = cset(q) ∪
⋃

q′∈cset(q)

sub-states∗(q′) otherwise.
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A state q ∈ Q is well-formed if

� it is a basic state q ∈ Qbasic or

� it is a complex state q = (cset , init) such that all q′ ∈ cset are well-formed and
all sets basic-states(q′) are disjoint.

Hierarchical Labeled Transition System: Based on these auxiliary de�nitions, we
can de�ne hierarchical labeled transition systems (H-LTS). As standard labeled transi-
tion systems (LTS), an H-LTS has states and allows labeled transitions between states.
An H-LTS extends an LTS in two ways: An H-LTS allows to hierarchically compose
states to complex states as introduced in Def. 11.2 and to de�ne transitions between
basic states and/or complex states. Furthermore, an H-LTS introduces history states
which represent that we return to the last visited basic sub-state of a complex state.

Def. 11.3: Hierarchical Labeled Transition System

A hierarchical labeled transition system over a set Qbasic of basic states is a tuple

(q ,L, δ, δ∗) such that

� q is a state from the set of (well-formed) states over Qbasic,

� L is a set of labels,

� δ ⊆ sub-states∗(q)× L× sub-states∗(q) is a transition relation, and

� δ∗ ⊆ sub-states∗(q)× L× sub-states∗(q) is a history transition relation.

The H-LTS is composed of only one state from the complex states over Qbasic . We
call it the core state of the H-LTS. Labeled transitions connect two sub-states (of any
depth) of this state. Semantically, an H-LTS can be represented as a standard LTS.
Transitions originating from a complex state are an abbreviation for adding a transition
with the same target to every basic sub-state of the origin. Transitions leading to a
complex state actually target the initial state of the complex state. A separate set
of labeled history transitions re�ects the idea of deep history states from UML state
charts. A history transition leading to a complex state q means returning to the last
visited basic state q′ ∈ basic-states(q).

Adaptation Automaton: An adaptation automaton for a self-adaptive component

type is a special instance of an H-LTS. The basic states range over all di�erent behavioral
modes of the component type. Transitions between states are initiated by predicates
over awareness data of the component type. Thus, the adaptation automaton describes
the rules when the corresponding component switches between behavioral modes.

Def. 11.4: Adaptation Automaton

An adaptation automaton over the signature ct = (nm, attrs, attrsaware ,modes)
of a self-adaptive component type is an H-LTSAAct = (q ,L, δ, δ∗) over modes(ct)
such that L is a set of predicates over attrsaware(ct).

Example: In Fig. 11.3, the adaptation automaton of a robot in the search-and-rescue
scenario is shown in a graphical notation similar to UML state charts. The initial state
of each complex state is indicated by an initial pseudo-state, transitions are labeled
with the triggering predicate as event, and history transitions are denoted by leading
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to a pseudo-state marked H∗. We just highlight complex states and history transi-
tions. The two search strategies RandomWalk or DirectedWalk are integrated into one
complex state Search of searching for victims. Therefore, we are able to express that
independently from the executed search strategy, the robot switches to rescuing as soon
as it is at a victim's position (cf. transition from Search to Rescue). Similarly, the
robot interrupts its current behavior if itself goes out of battery (cf. transition from
FullBattery to LowBattery). However, it resumes the previously executed behavior
upon recharge expressed by the history transitions from LowBattery back to the history
state of FullBattery.

Figure 11.3: Adaptation automaton for self-adaptive component type Robot

Adaptation Speci�cation: An adaptation speci�cation consists of a set of self-
adaptive component types and their adaptation automata. The components may in-
teract when executing their behavioral modes, but this interaction is not speci�ed here
since the interaction is part of application logic and not of adaptation logic.

Def. 11.5: Adaptation Speci�cation

An adaptation speci�cation is a pair AdapSpec = (sigs, auts) such that sigs is

a set of self-adaptive component types and auts is a set of adaptation automata

such that for every self-adaptive component type ct ∈ sigs there exists exactly one

adaptation automaton AAct ∈ auts.

Example: For our search-and-rescue scenario, the speci�cation of the system consists
only of the self-adaptive component type Robot and the corresponding adaptation au-
tomaton in Fig. 11.3. We might employ several robots in our �nal system, but do not
envision any other types of components here.

11.4.3 Bene�ts

Conceptually, the adaptation speci�cation realizes the idea of separation of concerns.
The transitions of an adaptation automaton are triggered by changes of awareness data
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and therefore capture only the adaptation logic of the component. The states of an
adaptation automaton are the di�erent behavioral modes of a component and serve as
placeholders where concrete application logic can be plugged in later on. Thus, we do
not take care of the actual behavior in each mode since we concentrate on the adaptation
logic only.

Methodologically, the adaptation speci�cation bene�ts from the introduction of hi-
erarchical states and history transitions which has not been proposed in the literature of
SAS so far. Hierarchical states allow subsuming transitions with the same trigger from
all sub-states of a complex state into one single transition. History transitions represent
returning to the last visited basic sub-state of a complex state and therefore prevent
unfolding the adaptation automaton for every possible last visited basic sub-state. Due
to these features, adaptation rules are speci�ed more compactly than in a standard
LTS.

11.5 HAM Pattern

In the Helena development methodology for self-adaptive systems in Fig. 11.1, we rely
on the HAM pattern to derive a Helena design model from an adaptation speci�cation.
The HAM pattern is an architectural design pattern which proposes to realize self-
adaptive systems with a role-based architecture based on the Helena methodology
according to the autonomic manager pattern [PCZ13]. The proposed pattern describes
how the system adapts and how the application logic is speci�ed and plugged in which
was not part of the initial adaptation speci�cation.

In the following, we �rst introduce the foundations for our architectural design
pattern, the autonomic manager pattern. Afterwards, we present the HAM pattern and
elaborate on the bene�ts of realizing an adaptation speci�cation with this pattern.

11.5.1 Autonomic Manager Pattern

To develop an architectural design for self-adaptive systems, we take inspiration from
the autonomic manager pattern [PCZ13, CDP+13]. In this pattern (cf. Fig. 11.4), an
adaptable component is managed by an adaptation manager (in the original pattern
autonomic manager). The manager implements an external feedback loop for the com-
ponent monitoring the environment and the component itself, analyzing and planning
appropriate reactions, and executing adaptations on the managed component as pro-
posed in IBM's blueprint for the MAPE-K loop [IBM06]. Thereby, the component
takes perceptions about the environment with its sensor. It forwards these perceptions
together with observations about its own state via its emitter to the manager. There-
fore, the adaptation manager observes the state of the component and transitively of
the environment via its sensor. Depending on these perceptions, it internally decides
about appropriate reactions. It imposes the decisions via its e�ector on the controller
port of the component. The component realizes the instructed adaptations a�ecting
the environment through its e�ectors.

The autonomic manager pattern advocates separation of concerns by externalizing
the adaptation manager which imposes its decisions on the component. Additionally,
the pattern suggests how the system adapts. Sensors perceive the environment and the
component itself, decisions are made based on the perceptions, and the component just
performs the desired adaptations without any in�uence on the adaptation decision.
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Adaptation Manager

Adaptable Component

Environment

controller

emitter

emitter

sensor

sensoremitter

outputinput

Figure 11.4: Autonomic manager pattern [CDP+13]

However, the pattern lacks a concept how the component actually changes its be-
havior. We think that roles which can be played by components are an intuitive repre-
sentation of context-speci�c behavior. They naturally resemble behavioral modes and
can therefore provide the necessary concept for adapting a component's behavior. Be-
havioral adaptation in the context of roles is easily performed by switching the currently
active role of a component since each role encapsulates application logic representing a
behavioral mode.

11.5.2 Role-Based Extension of the Autonomic Manager Pattern

To provide a guideline to engineers how self-adaptive systems can be realized, we pro-
pose the Helena Adaptation Manager (HAM) pattern (cf. Fig. 11.5). It reuses the
ideas from the autonomic manager pattern in Fig. 11.4 to separate monitoring and
adaptation logic from the adaptable component, but it augments it by the concept of
roles between which the component switches to realize the instructed adaptations. Also,
the adaptation manager and sensors to perceive the environment are realized as roles.

«role type»
AdaptationManager1

«component type»
AdaptableComponent

«role type»
Sensor∗

«role type»
Mode∗

inform
interrupt,

resume

«adoptedBy»
«adoptedBy»

«adoptedBy»

Figure 11.5: Helena Adaptation Manager (HAM) pattern

Adaptable Component: The central entity of the HAM pattern is the adaptable
component. This is the entity in the system which needs to be adapted and should
perform the desired adaptive behavior. However, since we apply the idea of roles, the
component itself is not active. It is just a data container and serves as the execution
platform for roles which are the active entities providing context-speci�c behavior.

Behavioral Modes: Opposed to the original autonomic manager pattern, we provide
a concept for realizing instructed adaptations. A component adapts its behavior by
switching between roles representing behavioral modes. The abstract role type Mode in
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the pattern in Fig. 11.5 is instantiated by concrete mode role types for every behavioral
mode the component can execute when the pattern is applied. Although there can be
many di�erent mode role types (indicated by *) which can be played by the adaptable
component (indicated by the dependency between Mode and AdaptableComponent), the
component should only adopt one mode role at a time2. The adaptation manager has
to take care of deactivating the mode roles which are not adequate anymore by sending
the message interrupt to them and activating an appropriate mode role by sending the
message resume to it (indicated by the arrows from AdaptationManager to Mode). When
a mode role is activated, it is responsible for executing its associated role behavior. Like
that, the behavior in each mode is encapsulated in a separate role behavior speci�cation
and gets activated as soon as the corresponding mode role is adopted by the adaptable
component.

Sensors: To decide which mode role should be activated, the component has to moni-
tor its awareness data. We externalize monitoring to sensors represented by roles again.
The abstract role type Sensor in Fig. 11.5 is instantiated by concrete sensor types for
every item of awareness data3. There are many di�erent sensor roles (indicated by *)
similarly to mode roles, but in contrast to mode roles the component needs to adopt all
sensor roles in parallel to monitor all items of awareness data. Each sensor is respon-
sible to continuously inform the adaptation manager about the value of its monitored
awareness data item by sending the message inform.

Adaptation Manager: The AdaptationManager is yet another role executed by the
adaptable component. It is responsible for realizing the actual adaptation logic. That
means, it continuously receives the sensor data via inform messages, internally decides
how to react to these perceptions, and switches the currently active mode role of the
underlying adaptable component by sending interrupt and resume messages.

Example: Let us illustrate at our search-and-rescue example how we can apply the
HAM pattern to derive a role-based Helena model (cf. Fig. 11.6) for the self-adaptive
component type Robot in Fig. 11.2.:

� The central entity in the design model is the robot itself. It is a component type,
i.e., it is just the resource for executing the di�erent behavioral modes.

� Each behavioral mode in the speci�cation is represented by a new role. For ex-
ample, the robot is able to execute a behavioral mode like randomly searching for
a victim by adopting the corresponding role RandomWalk.

� For every item of awareness data in the speci�cation, the corresponding sensor is
represented by a new role, e.g., the sensor role BatterySensor for the awareness
attribute battery. Thus, the robot is able to monitor each item of awareness data
by adopting all sensor roles at the same time.

� Finally, the adaptation manager is installed as a role on top of the robot4.

2Note that it is not part of the pattern how the behaviors of all introduced roles can be derived.
However, in Sec. 11.7 we explain how the speci�er adds behaviors for mode roles and how all other role
behaviors can systematically be derived from an adaptation speci�cation (cf. Sec. 11.4).

3See footnote 2.
4Note again that it is not part of the pattern how the behaviors of all introduced roles can be

derived from an adaptation speci�cation. However, in Sec. 11.7 we will explain how the speci�er
adds behaviors for mode roles and how all other role behaviors can systemically be derived from an
adaptation speci�cation.
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Figure 11.6: Applying the HAM pattern to the search-and-rescue scenario

11.5.3 Bene�ts

A design model following the HAM pattern bene�ts from the underlying concepts. The
proposed architecture respects separation of concerns as advocated in the autonomic
manager pattern. Roles intuitively express the di�erent tasks of self-adaptive com-
ponents, like being aware of the environment, managing adaptation, and performing
particular behavioral modes. The original autonomic manager pattern is furthermore
augmented with a concept for adapting behavior by switching between di�erent modes
represented by roles. We can automatically derive a formal Helena model from an
adaptation speci�cation following the HAM pattern and equip it with application logic
for each behavioral mode role. Table 11.6 and Sec. 11.7 will focus on the formal deriva-
tion. Relying on the formal foundation of Helena allows to analyze the derived model
for communication errors and goal satisfaction as explained in Chap. 4, Chap. 5 and
Sec. 8.3 and showcased in Chap. 10. With HelenaText (cf. Sec. 8.4) and jHelena
(cf. Chap. 7), it is also possible to automatically generate a Java implementation for
the Helena model and execute it.

11.6 Model Transformation Part 1 �

Derivation of a Role-Based Architecture

This section describes the �rst model transformation in the Helena development
methodology for self-adaptive systems in Fig. 11.1. It systematically derives the role-
based architecture proposed in the HAM pattern from a given adaptation speci�cation.
Afterwards, a second model transformation (cf. Sec. 11.7) will derive the dynamic be-
havior for all entities in the architecture.

11.6.1 Input Artifacts

The �rst model transformation starts from the adaptation speci�cation of self-adaptive
component types described in Sec. 11.4. It consists of the signature of each self-adaptive
component type � describing the component's (normal) data, awareness data, and be-
havioral modes � and the corresponding adaptation automaton � describing the adap-
tation logic of the component. The application logic which the component executes is
not part of the adaptation speci�cation, but the adaptation automaton provides place-
holders for it.
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11.6.2 Output Artifacts

From the adaptation speci�cation, a role-based architecture in Helena (cf. Sec. 11.5)
is derived which follows the HAM pattern. It consists of the component with attributes
and operations as well as roles for behavioral modes, sensors, and the adaptation man-
ager. However, to gain a full Helena model, the role-based architecture has to be
extended by behaviors for all roles which is pursued by a second model transformation
(cf. Sec. 11.7).

11.6.3 Model Transformation

We assume given an adaptation speci�cation AdapSpec = (sigs, auts). In the following,
we summarize the systematic derivation of a role-based architecture in Helena for
the signature ct = (nm, attrs, attrsaware ,modes) of a single self-adaptive component type
from the set sigs and its corresponding adaptation automaton AAct ∈ auts. To derive
the architecture for the whole adaptation speci�cation, each signature and adaptation
automaton in the speci�cation needs to be handled as described.

For each ct ∈ sigs together with its adaptation automaton AAct ∈ auts, four parts
need to be derived: the component's representation in Helena, its behavioral modes,
sensors, and the adaptation manager. We will describe each part separately and illus-
trate them with our search-and-rescue scenario. Therefore, the following steps show how
we derive the architecture depicted in Fig. 11.6 from the signature of the self-adaptive
component type Robot in Fig. 11.2.

11.6.3.1 Adaptable Component

The signature ct = (nm, attrs, attrsaware ,modes) of a self-adaptive component type is rep-
resented in Helena as a component type

ct′ = (nm(ct), attrs(ct) ∪ attrsaware(ct), ∅, update-ops).

Apparently, in the Helena model, we no longer distinguish between (normal) data
and awareness data attributes. However for each item of awareness data, we add a
special update-operation to the set update-ops of component operations. They will later
on be responsible for updating the values of the awareness data attributes with the
current perceptions about the state of the component or the environment (note that
we exploit the fact that the execution of an operation in Helena can have side-e�ects
on the owning component instance). Their implementation must be provided by an
implementor. For the design model, we only declare a set of update operations which
is given by update-ops = {updateAttr|Attr ∈ attrsaware(ct)}. The third part of the created
Helena component type represents component associations and is therefore here empty.

Example: For the adaptation speci�cation of our search-and-rescue scenario in
Fig. 11.2, we create only one component type

Robot′ =(Robot,

{ownPos, battery, atV ictim, victimPos, rechargeReq},
∅,
{updateB, updateAV, updateV P, updateRR}).

It represents the self-adaptive component type Robot in Fig. 11.2. All denoted
operations are the update-operations of the awareness data attributes, e.g., updateB is



266 CHAPTER 11. ROLE-BASED ADAPTATION

the update-operation for the awareness data attribute battery. The speci�cation of the
component type in HelenaText can be found in Appendix E.

11.6.3.2 Behavioral Modes

For each behavioral mode mode ∈ modes(ct), a new role type

mode = (mode, {ct′}, ∅, ∅, {interrupt, resume})

is created. It can only be adopted by the Helena representation ct′ of the self-adaptive
component type ct o�ering the behavioral mode mode. The new mode role type does
not have any attributes or outgoing messages. It can only receive the messages interrupt
and resume to allow the adaptation manager to deactivate and activate the role later
on5.

Example: For our search-and-rescue scenario, we create the �ve mode role types de-
picted in Fig. 11.6. They are all equipped with the messages interrupt and resume as
incoming messages. For example, for the behavioral mode RandomWalk, the new mode
role type

RandomWalk = (RandomWalk, {Robot′}, ∅, ∅, {interrupt, resume})

is created. It can only be adopted by a component of type Robot′ which is the Helena
representation of the self-adaptive component type Robot o�ering the behavioral mode
RandomWalk. It does not have any attributes or outgoing messages and is only able to
receive the messages interrupt and resume. The speci�cation of all mode role types in
HelenaText can be found in Appendix E.

11.6.3.3 Sensors

For each awareness data attribute attr ∈ attrsaware(ct), we create a sensor role

AttrSensor = (AttrSensor, {ct′}, ∅, {inform()(attr:String,val:Object)}, ∅)

that can only be adopted by the Helena representation ct′ of the self-adaptive com-
ponent type ct monitoring the awareness data attribute attr. The new sensor role
does not have any attributes or incoming message. However, it can send the message
inform()(attr:String,val:Object) to inform the manager about the value of its monitored
awareness data attribute later on. The name of the monitored attribute will be sent in
the parameter attr and the current value will be sent in the parameter val.

Example: For our search-and-rescue scenario, we create the four sensor role types
depicted in Fig. 11.6. They are all equipped with the message inform as outgoing
message. For example, for the awareness data attribute battery in our search-and-
rescue scenario, a new sensor role

BatterySensor = (BatterySensor, {ct′}, ∅, {inform()(attr:String,val:Object)}, ∅)

is created. It can only be adopted by a component of type Robot′ which is the Helena
representation of the self-adaptive component type Robot o�ering the awareness data
attribute battery. It does not have any attributes or incoming messages and is only able
to send the message inform. The speci�cation of all sensor roles types in HelenaText
can be found in Appendix E.

5Later on, the application logic of each mode role type will be speci�ed in form of a role behavior.
All messages used in this role behavior have to be added to the set of outgoing and incoming message
resp. when needed.
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11.6.3.4 Adaptation Manager

The adaptation manager itself is yet another role which later on takes care to adapt the
component. Formally, the adaptation manager is represented by a role type

AM = (AM, {ct′}, ∅, {inform()(attr:String,val:Object)}, {interrupt, resume})

which can only be adopted by an instance of the managed component type ct′. The adap-
tation manager does not provide any attributes, but can send the messages interrupt and
resume to deactivate and activate roles and can receive the message
inform()(attr:String,val:Object) to receive the perceptions of sensors later on.

Example: In our search-and-rescue scenario, the adaptation manager is given by

AM = (AM, {Robot′}, ∅, {inform()(attr:String,val:Object)}, {interrupt, resume}).

It can only be adopted by a component of type Robot′ which is the Helena repre-
sentation of the self-adaptive component type Robot. It does not have any attributes,
but it is able to send the messages interrupt and resume and to receive the message
inform()(attr:String,val:Object). The speci�cation of role type for the adaptation man-
ager in HelenaText can be found in Appendix E.

11.7 Model Transformation Part 2 �

Derivation of Dynamic Behaviors

In the second model transformation of the Helena development methodology for self-
adaptive systems in Fig. 11.1, each entity of the role-based architecture is equipped with
a dynamic behavior.

11.7.1 Input Artifacts

The input for the second model transformation consists of three parts: The �rst artifact
is the role-based architecture which was created during the �rst model transformation.
It results from applying the HAM pattern to the signature of a self-adaptive component
type and provides role types for all behavioral modes of the component, sensor role
types for all awareness data attributes, and an adaptation manager. However, neither
of the role types is equipped with a role behavior so far.

The second artifact is the adaptation automaton for the self-adaptive component
type which was already part of the initial adaptation speci�cation. It describes the
adaptation logic and must be incorporated into the Helena model as the role behavior
of the adaptation manager.

The third artifact are mode behaviors. Since role types were created for each behav-
ioral mode in the �rst model transformation, we can now de�ne their application logic
in the form of Helena role behaviors which were not yet part of the initial adaptation
speci�cation. By keeping the mode behaviors separated from the adaptation automaton,
we respect separation of concerns. As far as the mode behaviors require any operations
of the component or messages being exchanged between roles, the speci�er has to de�ne
them for the corresponding components and roles.
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11.7.2 Output Artifacts

The second model transformation completes the role-based architecture which was cre-
ated from the signature of a self-adaptive component type in the �rst model transfor-
mation with a behavior for each new role type. Therefore, a fully speci�ed Helena
design model is gained which consists of a component type and associated role types for
behavioral modes, sensors, and the adaptation manager as well as corresponding role
behaviors. The role behaviors are derived such that the component exhibits the desired
adaptive behavior as envisioned by the adaptation automaton: The adaptation manager
is informed by the sensors about perceptions of the environment and the component
itself. It internally decides about appropriate adaptations based on the adaptation au-
tomaton and deactivates and activates the corresponding mode roles. The activated
mode role takes care to execute its associated application logic. The component itself
does not have any behavior, it rather executes its associated roles.

11.7.3 Model Transformation

For each signature ct = (nm, attrs, attrsaware ,modes) of a single self-adaptive component
type in an adaptation speci�cation AdapSpec = (sigs, auts), we assume given

� the corresponding role-based architecture consisting of

� a component type ct′,
� a role type mode for each mode ∈ modes(ct),
� a role type AttrSensor for each awareness data attribute attr ∈ attrsaware(ct),
� a role type AM for the adaptation manager,

� the adaptation automaton AAct for the self-adaptive component type from the
initial adaptation speci�cation AdapSpec, and

� a Helena role behavior for each mode role.

For each ct ∈ sigs together with its corresponding role-based architecture, its adap-
tation automaton AAct ∈ auts, and role behaviors for each mode role, three types of
role behaviors need to be derived: the role behavior for each mode role needs to be
adapted to allow the adaptation manager to activate and deactivate its execution, the
role behavior for each sensor role needs to be created such that it continuously informs
the adaptation manager about the value of the monitored awareness data attribute, and
the role behavior of the adaptation manager needs to be derived from the adaptation
automaton.

11.7.3.1 Behavioral modes

The speci�ed role behavior for each mode needs to be extended such that the adaptation
manager is able to control the execution of the behavior.

Firstly, the behavior must initially be paused. It is only started upon request with
the message resume from the adaptation manager. Therefore, we modify each role
behavior roleBehavior mode to initially wait for an incoming message resume sent by
the adaptation manager and then execute the original role behavior.

Secondly, the role behavior always needs to be interruptible and resumable to allow
the adaptation manager to switch the currently executed behavioral mode represented
by a role and its behavior at any time. We simulate interruption by adding the op-
tion ?interrupt.?resume to every action pre�x a.P in the role behavior (the messages
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interrupt and resume will later on be sent by the adaptation manager). The option
?interrupt.?resume is prioritized over the other option of the introduced nondetermin-
istic choice. This prioritization is not part of core Helena and, thus, the semantics
of Helena needs to be adapted for nondeterministic choice with prioritization. If the
prioritized branch is currently executable, this branch will be taken independently of
whether the other branch is executable. If the prioritized branch is currently not ex-
ecutable, the execution of the nondeterministic choice construct is decided based on
the executability of the other branch. Furthermore, in nondeterministic choice with
prioritization we now also allow mixing incoming and outgoing messages as �rst ac-
tions of the branches since we prioritize one of the branches anyway. For veri�cation,
the prioritization does not have any impact since to satisfy an LTL goal, all traces of
the induced Kripke structure of a Helena ensemble speci�cation have to satisfy the
LTL goal. Some of the traces represent the traces where one option of nondeterministic
choice is prioritized, i.e., model-checking will check these particular traces amongst other
traces. For implementation, we added a class PrioritizedNondeterministicChoice to
the jHelena framework. It allows to prioritize one branch over the other such that
jHelena will �rst try to execute the prioritized branch and only if it is not executable,
it will execute the other branch.

With these two steps together, the role behavior roleBehavior mode = P is extended
to an interruptible and resumable role behavior by

roleBehavior modeinterrupt = ?resume . mode′ with process mode′ = σ(P )

and

σ(quit) = quit

σ(a.P ) = Q

such that Q is a fresh name with

process Q = ?interrupt.?resume.Q+ a.σ(P )

σ(P1 + P2) = σ(P1) + σ(P2)

σ(if (guard) {P1} else {P2}) = if (guard) {σ(P1 )} else {σ(P2)}

σ(N) = N ′

for process N = P

and process N ′ = σ(P ).

Example: Let us exemplify the modi�cation of a behavior at the mode RandomWalk in
our search-and-rescue scenario. We assume given the role behavior for that mode with
roleBehavior RandomWalk = owner.randomStep . RandomWalk. In this role behavior,
the operation randomStep takes care to let the robot randomly take a step, i.e., we
exploit the fact that operations can have side-e�ects in Helena. The role behavior is
modi�ed to

roleBehavior RandomWalkinterrupt = ?resume.RandomWalk'

process RandomWalk' = Q

process Q = ?interrupt.?resume . Q

+ owner.randomStep . RandomWalk'
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The speci�cation of the interruptible role behaviors of all mode role types in Hele-
naText can be found in Appendix E.

11.7.3.2 Sensors

Intuitively, the role behavior of a sensor takes care to continuously advise the owning
component to update the current value of the monitored awareness data attribute by
calling the corresponding update-operation on the owning component and to transmit
the new value to the adaptation manager by sending the message inform with appro-
priate values to it. Formally, the role behavior of a sensor AttrSensor is therefore given
by

roleBehavior AttrSensor = am←create(AM,owner) . AttrMonitor

process AttrMonitor = owner.updateAttr .

am!inform(“attr”,owner.attr) .

AttrMonitor

Example: Let us consider the awareness data attribute battery in our search-and-rescue
scenario. The role behavior of the corresponding sensor role BatterySensor is given by

roleBehavior BatterySensor = am←create(AM,owner) . BatteryMonitor

process BatteryMonitor = owner.updateB .

am!inform(“battery”,owner.battery) .

BatteryMonitor

The speci�cation of the role behaviors of all sensor role types in HelenaText can
be found in Appendix E.

11.7.3.3 Adaptation Manager

The adaptation manager is equipped with a role behavior that is responsible for chang-
ing the currently active role of the managed component according to the adaptation
automaton AAct . In summary, we translate the adaptation automaton in three steps
into a role behavior: (1) �attening the adaptation automaton to a standard labeled tran-
sition system, (2) deriving a process term from the labeled transition system, (3) adding
initialization of mode roles.

(1) Flattening the Adaptation Automaton: The �rst step of �attening the adap-
tation automaton to a standard LTS is rather involved since hierarchy and history needs
to be resolved. However, the procedure resembles �attening of UML state charts which
is already tackled in the literature. For details, we refer the interested reader to the
work of Wasowski [Was04] who is the only author tackling history pseudo-states dur-
ing �attening according to Devroey et al. [DPC+14]. The basic idea is to re�ect all
transitions between complex states by their counterparts on basic states. Furthermore,
history transitions are resolved by propagating the information about the last visited
state to all other states and therefore possibly duplicating transitions according to that
information. Thus, several states of the resulting LTS represent the same basic state
from the adaptation automaton, each re�ecting a di�erent previously visited state.
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(2) Derivation of a Process Term: In the next step, we derive a process term
from the LTS. The procedure follows the idea of deriving a right linear grammar from
a nondeterministic �nite automaton [HMU06]. The LTS created during �attening can
be considered as a nondeterministic �nite automaton (NFA) whose �nal states are the
deadlock states of the LTS. The NFA can be translated, with the classical procedure, into
a right linear grammar. Then, the production rules of this grammar can be considered
as process declarations such that the rule for the starting symbol provides the process
declaration of the role behavior of the adaptation manager.

During deriving the right linear grammar, we consider all labeled transitions of the
adaptation automaton. Each such transition represents self-adaptation of the underly-
ing component. For example, the transition (mode1, predicate(attr),mode2) means that
the component is currently executing the behavioral mode mode1. Whenever the tran-
sition is triggered, i.e., the predicate predicate(attr) becomes true, the component will
change its behavioral mode to mode2.

In Helena, we represent this change of the executed behavioral mode by a process
declaration. The process �rst waits for an informmessage from any sensor. If a value was
sent making the predicate true, self-adaptation is triggered and the adaptation manager
interrupts the behavioral mode mode1 and resumes the behavioral mode mode2. If the
value did not trigger adaptation, the adaptation manager waits for the next sensor
input. Formally, the resulting sequence of Helena actions is given by

process s1 = ?inform(attr, val) .

if (predicate(attr)) {mode1 !interrupt . mode2 !resume . s2}
else {s1}

(3) Initialization of Mode Roles: In the last step, we add some initialization ac-
tions at the beginning of the behavior of the adaptation manager to initialize all possible
mode roles and start the initial role of the self-adaptive component type. To this end, we
create every possible mode rolemode with the statementmodeInst←create(mode,owner).
Afterwards, we start the initial role initInst from the adaptation automaton � which
is the basic mode reached by following the init references from the core state of the
adaptation automaton � by sending a resume message to it with initInst!resume (this
role has to be created with one of the actions before). Lastly, the role behavior of the
adaptation manager continues by invoking the process term which was generated during
the �rst two steps of �attening and deriving a role behavior for the adaptation manager.

Example: Let us exemplify the result of these three derivation steps by an excerpt of
the behavior of the adaptation manager in our search-and-rescue scenario6.

roleBehavior AM = rwInst←create(RandomWalk,owner) .

. . .

lbInst←create(LowBattery,owner) .

rwInst!resume .

RandomWalkProcess

6We use the notation else in the usual meaning as an abbreviation.
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process RandomWalkProcess = ?inform(attr,val) .

if (attr==“battery” & val<0.1) {
rwInst!interrupt .

lbInst!resume .

LBFromRWProcess

}
. . .

else {RandomWalkProcess}
process LBFromRWProcess = ?inform(attr, val) .

if (attr==“battery” & val==1) }
lbInst!interrupt .

rwInst!resume .

RandomWalkProcess

}
elsif . . .

First, new instances for each of the �ve behavioral modes are created, e.g., the role
instance rwInst for the behavioral mode RandomWalk. Then, the role behavior of the
RandomWalk role is started by sending the message resume to it. This is the initial
behavioral mode in the adaptation automaton in Fig. 11.3 and therefore has initially to
be executed.

Afterwards, According to the adaptation automaton, the adaptation manager has
to change the executed behavioral mode from RandomWalk to another behavioral mode if
one of four transitions is triggered: Either it changes its behavioral mode to
DirectedWalk if the underlying component got informed about a victim's position (trig-
ger predicate victimPos != null). Or it changes its behavioral mode to Rescue if the
underlying component found a victim by itself (trigger predicate atVictim == true). Or
it changes its behavioral mode to Recharge if the underlying component was requested
as a recharger by another robot (trigger predicate rechargeRequested == true). Or
it changes its behavioral mode to LowBattery if the underlying component runs out
of battery (trigger predicate battery < 0.1). In the role behavior of the adaptation
manager depicted above, we only show the transition to the low battery mode. The
behavior shows that when the battery is low, the adaptation manager interrupts the
role instance rwInst representing randomly searching for a victim and resumes the role
instance lbInst representing the low battery mode. Afterwards, the manager continues
its role behavior in a state where it knows that the currently active role is lbInst and
the previously active role was rwInst represented by LBFromRWProcess. This informa-
tion is needed since if the robot was recharged, it has to resume the previously active
role (see history transition from LowBattery to the complex state TaskExecution in
Fig. 11.3). The complete speci�cation of the role behavior of the adaptation manager
in HelenaText can be found in Appendix E.

11.8 Related Work

In this section, we present related work from di�erent areas. We �rst discuss how
our approach relates to prominent adaptation reference models. We then compare our
adaptation speci�cation to other automata-based speci�cation techniques in the �eld of
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self-adaptive systems. Lastly, we elaborate on how the notion of roles is used to provide
an architecture for self-adaptive systems. For all approaches, we evaluate the support
of a systematic development process as we propose it.

11.8.1 Adaptation Reference Models

FORMS [WMA12] is the most prominent reference model for self-adaptive systems.
According to it, the distinguishing characteristics of SAS is the capability of re�ection
about itself. In FORMS, the base layer of a system executes the basic behavior as
simple reactions to the environment. One level higher in the re�ective layer, the system
reasons about whether the basic behavior is adequate in the current environment and
(possibly) adapts it accordingly. For this purpose, the re�ective layer retains a model of
the base layer. While the kind of re�ection model is not �xed in FORMS, in architecture-
based self-adaptation approaches like [Gat98, OGT+99, GCH+04, KM07, KM09] the
re�ection model corresponds to a representation of the system's architecture. Re�ection
then reasons about architectural recon�guration to meet the adaptation requirements.

Our methodology is aligned with the idea of re�ection in FORMS since the adap-
tation manager decides on the adequacy of the currently executed behavioral mode
separately from the application logic. Furthermore, we consider our methodology as
an architecture-based self-adaptation approach like [Gat98, OGT+99, GCH+04, KM07,
KM09] since the adaptation manager re�ects on the architecture of the self-adaptive
component in the sense of currently executed behavioral mode. In contrast, we pro-
pose a role-based architecture for switching between behavioral modes to adapt a self-
adaptive component. Basing our methodology on Helena also provides a basis for
formal reasoning about adaptation as presented in FORMS.

11.8.2 Adaptation Speci�cation Techniques

An interesting requirements speci�cation technique for adaptive systems is presented
by Luckey and Engels [LE13]. They specify adaptation logic in adapt cases (similarly
to use cases) on top of a system's architecture. The operationalization is based on
UML activity diagrams and can be checked against quality properties formulated as
temporal logic formulae. Opposed to them, we specify adaptation logic similarly to
UML state charts since they provide hierarchically composed states and history states.
Furthermore, we propose a speci�c concept how to adapt a system by changing mode
role while adapt cases have to call user-de�ned operations to recon�gure the system.
For implementation, the authors do not introduce any �rst-class concepts to realize
adapt-cases while we propose a speci�c role-based design to transfer the separation of
adaptation logic and application logic to implementation.

Automata-based approaches [ZC06, ZMLL11, MPT12, BCG+13] specify adapta-
tion by evolution of �nite state machines representing behavioral modes. Zhang et
al. [ZC06, ZGC09] specify behavioral modes as �nite state machines called steady-state
programs. An n-plex adaptive program represents adaptation by transitions between
steady-state programs. Zhao et al. [ZMLL11] also represent adaptive programs as �nite
state machines, but use mode automata to describe evolutions between them. In S[B]-
systems [MPT12], stable regions of a state machine represent behavioral modes and
special transitions between these regions characterize adaptation. Adaptable interface
automata [BCG+13] reuse the idea of special transitions to change some kind of control
data resulting in adaptation.
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We augment these approaches by H-LTS with history and hierarchy which allow
to specify adaptation rules more compactly. Additionally, we can systematically derive
veri�cation and implementation models due to relying on Helena.

11.8.3 Role-Based Adaptation

As Haesevoets et al. [HWH14] state, �roles are [. . . ] recognized as an important model-
ing concept [. . . ]. Nevertheless, [they have] not received the attention [they] deserve.�
However, we consider roles as a convenient concept to describe di�erent behaviors dy-
namically assigned to components. Therefore, self-adaptation can easily be expressed
by switching roles.

Steegmans et al. [SWHB05] propose a design process for adaptive behaviors of agents
based on roles. They realize the role model by free-�ow trees and a corresponding
framework. Opposed to our automatic model-driven realization, they do not transfer
the concept of roles to the implementation which we consider bene�cial to preserve a
clean architecture.

The framework Self-Epsilon [MT11] proposes to employ a controller on each object
in a self-adaptive system. The controller takes care to change the current role of the
object depending on the current context. While conceptually similar to our approach,
Self-Epsilon does not aim at providing a formal role-based model for reasoning or at
explicitly describing the architecture of such systems. The focus of Self-Epsilon is to
support programming role-based models by a domain-speci�c extension of Java.

11.9 Publication History

The content of this chapter is based on [Kla15a]. Compared to this publication, both
model transformations are described in more detail and the robotic search-and-rescue
scenario is completely presented in the appendix Appendix E.

11.10 Present Achievements and Future Perspectives

Present Achievements: This chapter explained how the Helena development
methodology can be extended to a holistic development process to engineer self-adaptive
systems separating adaptation logic from application logic. The key concept is to model
behavioral modes and switching between modes separately. We introduced adaptation
automata as a rich speci�cation technique of adaptation logic providing placeholders
for the application logic. Furthermore, we proposed to realize a self-adaptive system by
a role-based architecture in Helena and provided the Helena Adaptation Manager
(HAM) pattern as a guideline for the design. By relying on Helena, the resulting
Helena model can then be analyzed with Spin for goal satisfaction and executed with
the Java framework jHelena.

Discussion: The Helena development methodology for self-adaptive systems is a
holistic methodology providing systematic transitions and therefore easy traceability of
artifacts between all development phases.

During speci�cation, adaptation logic is compactly speci�ed by adaptation automata
which provide hierarchy and history of states. Though powerful, an H-LTS is more
complex than a standard LTS. Thus, a graphical representation (cf. Fig. 11.3 ) similarly
to UML state charts would be helpful for visualization.
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We initially specify the adaptation logic by adaptation automata and provide place-
holders for plugging in the application logic of modes later on. Currently, mode be-
haviors can only be speci�ed after deriving a role-based architecture. Therefore, our
speci�cation technique could be extended such that application logic can be de�ned in-
dependently from this architecture. For example, one could imagine that the application
logic of all behavioral modes can be de�ned as basic building blocks for the adaptive
component in parallel to the adaptation logic de�ned in the adaptation automaton
switching between those behavioral modes.

Furthermore, roles are an intuitive concept for encapsulating context-speci�c behav-
ior. Behavioral change is easily achieved by changing the currently active role. However,
roles cannot share behavior, e.g., obstacle avoidance in our robotic search-and-rescue
scenario. Therefore, it would be useful to introduce hierarchy of roles similar to the
subsumption architecture [Bro86] or even to allow concurrent execution of several mode
roles.

Relying on Helena allows to use its veri�cation and implementation tools (cf.
Chap. 4, Chap. 5, and Sec. 8.3 as well as Chap. 7 and Sec. 8.4). However, although
the transition to a veri�cation model for the model-checker Spin is fully automated,
the speci�cation of goals for individual modes or the whole self-adaptive component
is not yet an integral part of our proposed process. Likewise, the provided jHelena
framework is so far only a proof of concept of how to realize roles in Java. However,
we already showed with our case study of the Science Cloud Platform in Chap. 10 that
its implementation can be ported to real life platforms and the Helena abstractions
facilitate the implementation of larger software systems.

In summary, the Helena development methodology for self-adaptive systems serves
as a comprehensive and coherent methodology to develop self-adaptive systems and
provides a systematic guideline to consistently engineer such systems.

Future Perspectives: Apart from the extensions for the individual phases of the
development methodology, we see di�erent topics of interest for future work:

Adaptation of Adaptation Strategy: In our proposed methodology, the adaptation logic
of the self-adaptive component is explicitly de�ned in the adaptation automaton.
However, it might be necessary to adapt the strategy of adaptation at runtime.
Therefore, one could think about hierarchically composing adaptation managers
on top of each other. A similar approach was presented in ActivFORMS [IW14]
where a high-level goal management layer takes care to adapt the active model
representing the current adaptation manager and its behavior. Likewise, in PS-
CEL [MPT13], a policy automaton allows to change the currently active policy,
and therefore the adaptation strategy, based on conditions about the system's
state.

Generation of Adaptation Logic: Beyond the speci�cation of hierarchically composed
adaptation managers even techniques from arti�cial intelligence could be used to
generate adaptation logic like given by an adaptation automaton from a domain
speci�cation or observations.

Collective Adaptation: We also consider collective adaptation as a very interesting ex-
tension of our work. Cabri et al. [PCL14] propose adaptation patterns to cap-
ture possible collaboration forms in cooperative scenarios. In the �eld of service-
oriented computing, Foster et al. [FUKM07, Fos09] apply the idea of architectural
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modes to a set of services which have to interact to complete a given task. They
use service mode behaviors to specify the adaptation logic when to switch the
modes of the whole set of collaborating services. So far, our approach only allows
to adapt single component types. Di�erent self-adaptive component types might
interact when executing their application logic, but they cannot synchronize their
adaptation logic. We consider it very valuable to integrate them into our Helena
approach for adaptation.



Chapter 12

Conclusion

This thesis considered the whole development lifecycle of ensemble-based systems. These
systems consist of a large number of independent components which dynamically form
goal-oriented communication groups called ensembles. Not all components of the sys-
tem join such a temporary collaboration; only a subset of the overall system contributes
the required functionalities to the ensemble. We addressed the particular characteris-
tics of ensemble-based systems with the Helena development methodology shown in
Fig. 12.1.
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Figure 12.1: The Helena development methodology for ensemble-based

Its key idea has been to split an ensemble-based system into two dimensions: On
the one hand, each ensemble in the system was considered independently from other
ensembles, but on top of the same component-based platform. Each ensemble focused
on the description and execution of its participants only and did not consider the par-
ticipation of its members in other ensembles or the concurrent execution of independent
ensembles. On the other hand, each participant of an ensemble was described by a
role, separately from the particular component executing the role. Roles, featuring the
goal-directed behavior of participants, were therefore acting as the active entities in
an ensemble. Components were only passive containers which provided the technical
functionalities to adopt and execute roles.

The Helena development methodology was proposed as a holistic model-driven
engineering process for ensemble-based systems based on these two principles. It in-
troduced techniques and tools for all main development phases: domain modeling, goal
speci�cation, design, veri�cation, and implementation. All techniques consistently em-
ployed ensembles and roles as �rst-class concepts on top of a component-based platform.

277
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With the Helena workbench, we provided tool support for all activities of the develop-
ment methodology and allowed automated transitions between the phases. We showed
the applicability of the Helena development methodology and its tools to a larger
software system, the Science Cloud Platform. Finally, and in order to make further
progress towards adaptive ensembles, we extended our methodology to allow adapta-
tion of components by changing their currently active role based on perceptions of the
environment.

12.1 Contributions

In more detail, this thesis contributed the following scienti�c results:

The Modeling Approach of Helena: Syntax and Semantics: The Helena develop-
ment methodology was centered around a formal modeling approach for ensemble-
based systems. The structural relationships between participants of an ensemble
was described by an ensemble structure of collaborating roles. The interaction
of goal-directed behaviors of such roles determined the dynamic behavior of the
complete ensemble. For the description of role behaviors, a dedicated process
algebra was proposed which introduced particular actions for role creation and
retrieval, (synchronous or asynchronous) message exchange between roles, and
component access. The evolution of ensembles according to the contributing roles
was formalized through a two-level transition semantics. The �rst level de�ned
the evolution of a single role instance while the second level built upon the �rst
to evolve several role instances in collaboration.

Goal Speci�cation and Veri�cation for Helena Models: Helena LTL was introduced
as a logic to describe temporal goals for ensembles. Dedicated atomic propositions
reasoned about the current state of roles and components and were composed to
complex Helena LTL formulae with propositional and temporal operators. To
verify that a Helena ensemble speci�cation actually achieved its goals expressed
as Helena LTL formulae, we proposed to translate Helena to Promela and
to check the resulting Promela veri�cation model with the model-checker Spin.
The translation was proven semantically correct for a kernel part of Helena such
that model-checking results with Spin could be transferred back to Helena.

Implementing Helena Models with Object-Orientation: To executeHelena ensembles,
we provided the Java framework jHelena. It realized all Helena modeling con-
cepts and their semantics in Java by introducing two layers: The metadata layer
allowed to de�ne the meta model of ensemble speci�cations in terms of compo-
nent types and ensemble structures. The developer interface provided the basic
functionality to realize an actual ensemble-based application and implements the
execution semantics of Helena.

Tool Support for Helena: All proposed techniques were united into a single develop-
ment environment, the Helena workbench. At its core, the Helena workbench
supported the domain-speci�c language HelenaText to specify ensemble-based
applications according to the formal modeling approach of Helena. Helena-
Text was integrated into a fully-�edged Eclipse editor with syntax highlighting,
content assistance and code validation. Furthermore, two automated code genera-
tors instantly translated ensemble speci�cations to Promela for model-checking
with Spin and to Java for execution with jHelena.
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Case Study: The Science Cloud Platform served as a case study of a larger software sys-
tem completely developed with the Helena development methodology. It showed
Helena's general applicability to rigorously describe collaborations on top of a
component-based platform. Veri�cation ensured the elimination of collaboration
mismatches in early stages while the introduction of ensembles and roles improved
the clarity of the implementation. However, it became apparent that the state
space soon exploded during veri�cation and that special e�ort had to be taken to
make the system robust against failure of components and message loss.

Modeling Awareness and Adaptation with Helena: Finally, we demonstrated the po-
tential of the role-based modeling approach of Helena towards the development
of adaptive (collective) ensembles. We introduced adaptation automata to spec-
ify adaptation logic independently from application logic. Furthermore, we pro-
posed the architectural Helena Adaptation Manager pattern which realizes a
self-adaptive system by a role-based architecture and provides a guideline for the
design of such systems. The pattern relied on the Helena concepts of roles to
describe behavioral modes of a self-adaptive component between which it could
change to react to perceptions in the environment. Apart from the intuitive usage
of roles to represent behavioral modes, relying on Helena also allowed to bene�t
from its veri�cation and implementation techniques.

12.2 Challenges of Ensemble-Based Systems Revisited

With the proposed Helena development methodology, we addressed the challenges of
ensemble-based systems discussed in Sec. 1.1. The following discussion outlines which
challenges were completely covered; open issues will be presented together with future
work in the next section.

Concurrency: Ensembles had to manage concurrency on two levels, for the di�erent
participants of a single ensemble and for a single component contributing to dif-
ferent ensembles. Helena proposed to distribute work within a single ensemble
between several collaborating roles which were executed simultaneously on the
same or di�erent components. In principle, it also allowed a single component to
participate in di�erent ensembles by concurrently adopting several roles.

Heterogeneity: Ensembles were formed on top of a heterogeneous set of components.
Their heterogeneity should guide the assignment of work in an ensemble according
to their individual properties. Helena proposed to de�ne for each role type
contributing to an ensemble which component types can adopt it. The component
types could thereby be heterogeneous in the capabilities which they o�er, but
despite their heterogeneity they all provided the necessary capabilities to adopt
the particular role type. Consequently, in the running ensemble, the owner of
a role could be chosen from a heterogeneous set of components typed by these
heterogeneous component types.

Extensibility: Ensembles had to be extensible on two levels, for joining components to
the overall system and for joining members to an ensemble. Helena cannot cope
with new component instances in the status presented in this thesis; the number of
component instances cannot change during the execution of ensembles. However,
on the level of ensembles, Helena allows to dynamically change the number
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of participants. We introduced a dedicated action to create new role instances
participating in the ensemble and allowed roles to terminate their execution if
they �nished their behavior.

Dynamism: Ensembles should dynamically establish new communication links between
participants of the collaboration and dynamically assign additional tasks to mem-
bers of the group. Helena allowed for the establishment of new communication
links by exchanging references of role instances via message exchange. Those ref-
erences could then be used for communication with the referenced role instance.
The possibility to create new role instances on demand provided the basis for
assigning an additional task to a participant of the ensemble by letting the par-
ticipant adopt the newly created role instance.

Transparency: Ensembles should distribute work among their participants transparently
from the concrete components taking care of the di�erent subtasks. Helena pro-
vided this kind of transparency by distinguishing between roles and components.
At design time, ensembles were speci�ed in terms of roles on top of the components
which later on adopted the roles.

Goal-Orientation: Ensembles collaborated towards a global goal. Helena guaranteed
that an ensemble always worked towards its intended goal by veri�cation. Goals
were speci�ed with Helena LTL and checked with the model-checker Spin for
the speci�ed ensembles.

Autonomy: Ensembles should organize themselves without any global supervision. He-
lena allowed ensembles to autonomously guide their composition. The initial
state of an ensemble de�ned the roles which initially formed the collaboration.
By using the special ensemble-based actions for role creation and retrieval, these
initial roles could then dynamically and autonomously extend the ensemble by new
members. Thus, Helena did not have to employ any kind of global coordinator
which supervised the composition of the ensemble.

12.3 Future Work

Some of the challenges of ensemble-based systems were not fully addressed in the current
status of the Helena development methodology. Furthermore, working with Helena
gave rise to new ideas about how to further improve it. We already discussed future work
in detail for each of the phases of the Helena development methodology throughout
this thesis. Thus, this �nal section only summarizes the most important aspects for
future work for each of our contributions and gives some outlooks for increasing the
expressibility and suitability of the complete Helena development methodology.

12.3.1 The Modeling Approach of Helena

The main area of improvement is to increase the expressibility of the Helena modeling
approach and thereby to particularly address the still remaining challenges of ensemble-
based systems. We gather our ideas around three advancement �elds.

Autonomy: Ensembles are dynamically and autonomously formed communication
groups on top of a large component-based platform. In Helena, we especially
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emphasize the distinction between the underlying passive components of the sys-
tem and the active goal-oriented ensembles on top. However, so far, role creation
and retrieval in ensembles has to directly name the component which should own
a certain role. If it was possible to de�ne the desired owner via predicates over
the properties of components, the owner of the role to be created could freely
be chosen from a set of components satisfying the desired properties, either by a
centralized ensemble manager or by decentralized negotiations between the com-
ponents satisfying the desired properties.

Behavioral Guarantees and Safety: According to Helena, we guarantee goal satisfac-
tion for ensembles by veri�cation. Thereby, we assume reliable communication,
non-failing components and deterministic e�ects of actions. However, today's soft-
ware systems are situated in uncertain and possibly faulty environments and have
to cope with unexpected conditions and changes at runtime. To still guarantee
goal-directed behavior, ensembles should apply particular mechanisms for quality
assurance:

� Robust message exchange is the foundation for collaboration in ensembles.
Thus, techniques for detecting message loss and resending messages have to
be incorporated into the messaging facilities of roles.

� A component might become inappropriate or unavailable to adopt a certain
role. The component might be overloaded by concurrently contributing to
too many ensembles, it might come (mostly physically) out of range for a
certain ensemble, or another component might be better suited to play the
role under consideration. In such cases, role transferal from one component
to another would improve the overall performance of the system and should
be supported by a dedicated action.

� Besides quitting and transferring a role in a controlled way, a component
might also fail and therefore unexpectedly abandon a role. Monitoring mech-
anisms should allow the a�ected ensembles to detect these failures and to
restart the role on a di�erent owner based on previous snapshots of the
progress of the role.

� In the context of uncertain and unreliable environments, we should even
take one step further and wonder whether we really can foresee any possible
events and prede�ne an appropriate behavior coping with these changes.
Techniques from arti�cial intelligence and learning could help to generate
behaviors on-demand which take nondeterministic e�ects and unexpected
events into account.

Extensibility and Openness: Another distinguishing property of today's software sys-
tems is extensibility to new members of the system and openness towards the
interaction with the outside world. Helena currently only permits a �xed set
of components forming the underlying platform of an ensemble-based system and
only allows closed ensembles which interact solely with their own members. We
envisage several improvements for opening ensemble-based systems modeled with
Helena:

� Joining and leaving components might change the available resources in the
overall system. Joining components should be immediately included into
the component-based platform and made available to the overall system by
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informing all currently running ensembles about these new resources. If
components leave the system, the information about their loss should be
spread through the system and other components should be found to replace
the missing participants of ensembles.

� In a system of dynamically changing participants, directed message exchange
as proposed between roles might often fail. Therefore, other forms of com-
munication should be supported additionally. Broadcasting could inform all
participants of an ensemble. Group communication rendered in terms of
attributed-based communication [ADL16] could select a set of receivers via
predicates and thus only inform members of an ensemble which are interested
or relevant for this communication.

� Closed ensembles as we considered them throughout this thesis cannot in-
teract with other ensembles, with components or users outside the system
or the environment. To open ensembles to the outside, open communica-
tion is needed which is not bound to a particular receiver in the ensemble.
This open communication could then be used to compose ensemble speci�-
cations. Ensembles could collaborate on larger tasks, each ensemble ful�lling
one particular subtask.

12.3.2 Goal Speci�cation and Veri�cation

During goal speci�cation and veri�cation, we experienced two main pitfalls. On the one
hand, the formulation of goals with pure linear temporal logic did not scale to large
systems. Linear temporal logic does not allow the use of quanti�ers such that in the
worst case all components or roles of the system have to be enumerated to express a
goal. A di�erent logic like �rst-order LTL and an appropriate model-checker would
facilitate the compact formulation of goals.

On the other hand, model-checking soon reached its boundaries due to state space
explosion, especially for the case study of a larger software system, the Science Cloud
Platform. Additionally, we expect the state space to grow even larger if we do not only
check a single ensemble, but multiple concurrent ensembles. So far, the translation from
Helena to Promela directly represents all Helena concepts in Promela. A �rst
step to reduce the size of the state space could be to optimize this translation in terms of
a more compact representation, e.g., by translating components to a user-de�ned data
structure instead of processes. Another idea is to �nd inductive arguments such that
not the whole state space of a large model has to be explored during model-checking.
Rather, veri�cation could only prove an initial case and an inductive step which allows
to transfer the proof to an arbitrary model size.

12.3.3 Implementing Helena Models with Object-Orientation

The jHelena framework already provided a �rst prototype how an ensemble-based sys-
tem can be implemented and executed with Java following the formal Helena syntax
and semantics. However, an ensemble-based system is only executed on a single Java
virtual machine. To represent realistic ensemble-based systems which are often situated
in a physical environment and are distributed on di�erent machines, the framework
should allow real distribution of components. With real distribution, new issues arise
which have to be taken care of in the formal Helena approach as well as in its imple-
mentation, e.g., messages can be lost or components can get out of reach.
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12.3.4 Tool Support for Helena

Although the Helena workbench provided tool support for all phases of the develop-
ment process and is well integrated into Eclipse, it still leaves room for improvements.

� During speci�cation, we missed a graphical notation especially for the description
of ensemble structures. On the basis of the Graphical Modeling Framework of
Eclipse, a similar representation as the one used throughout this thesis could
easily be added to the textual notation of HelenaText.

� Furthermore, we experienced the bene�t of representing all role behaviors of an
ensemble together in (possibly hierarchical) interaction diagrams similar to a UML
sequence diagram. Such a combined visualization would help to better understand
the interactions between collaborating roles.

� The two code generators to Promela and Java do already translate the most
relevant parts of a Helena ensemble speci�cation. However, the domain-speci�c
language HelenaText does not yet allow to specify goals and initial states; thus,
their representation in Promela and Java cannot be automatically generated.
To relieve the developer of an ensemble-based application from any hand-coded
implementation in Promela and Java, HelenaText should provide a dedicated
notation for goals and initial states and the code generators should systematically
translate them.

� During model-checking, Spin produced counterexamples if goals were not satis�ed
by the Promela translation of the original Helena speci�cation. It required in-
depth knowledge about the translation to map these counterexamples back to
the original Helena speci�cation. Thus, a developer would bene�t from a direct
representation of the counterexample in Helena to understand model-checking
results more easily.

12.3.5 Case Study

With the case study of the Science Cloud platform, we could show the general applica-
bility of the Helena development methodology to a larger software system. However,
the case study did not yet exploit the full potential of Helena. One of the main char-
acteristics of Helena is that it allows to build ensembles from a heterogeneous set of
component types such that the ensembles can bene�t from the di�erent properties of
the underlying component types. Thus, an appropriate case study should be exercised
which builds upon a heterogeneous component-based platform. The employed ensem-
bles should distribute work una�ected by the di�erent properties of the underlying
components, maybe even bene�ting from the di�erent capabilities.

12.3.6 Modeling Awareness and Adaptation with Helena

Our approach to model awareness and adaptation with Helena was just a �rst step
towards adaptive ensembles. It showed that the idea of roles �ts well to changing
behavioral modes of components. However, it does not yet consider the adaptation of a
whole ensemble. Simultaneous role change of the participating components needs to be
planned and coordinated such that special coordination support of collective adaptation
should be added to Helena. Inspiration could be taken from Puviani et al. [PCZ13]
who propose a taxonomy of self-adaptation patterns for collective adaptation based on
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the autonomic manager pattern on which we relied for the adaptation of a single self-
adaptive component. Furthermore, our approach prescribed a �xed adaptation strategy.
If we allowed to either generate an adaptation strategy based on the current situation
or to choose between a set of strategies at runtime, we would be more �exible to deal
with the di�erent situations the system can be in.

12.4 Final Thoughts

Role-based modeling �rst made appearance as early as the late 70s. Roles proved to be
an intuitive concept to describe context-sensitive responsibilities and behavior of com-
ponents in a system. They allowed to encapsulate these constituent, but self-contained
parts of a component into dedicated entities. The recent and constant growth of software
systems in terms of participating components which cannot be handled and grasped at
once calls for concepts to focus modeling only on speci�c parts of a component instead
of the whole component. This might usher in a new era of role-based modeling. The
Helena development methodology is a step towards a holistic development methodol-
ogy for large systems viewed from di�erent perspectives exploiting the notion of roles.
Hopefully, it will help to bring role-based modeling to �ourish once again.



Appendix A

Correctness Proof in Full Detail

This appendix proves the correctness of the translation from HelenaLight to Prome-
laLight, i.e., that a HelenaLight speci�cation and its PromelaLight translation
satisfy the same set of LTL\X formulae. We thereby rely on the de�nition of silent
actions in Def. 6.30 and the two relations ≈ and ∼ de�ned in Def. 6.31. Table 6.2
gives an overview about the structure of the proof which is shown in full detailed in the
following.

A.1 Satisfaction of LTL\X Formulae in ≈-Equivalent States
To be able to apply Thm. 6.5, we �rst have to show that the relation ≈ preserves
satisfaction of atomic propositions. Thereby, we have to make the restriction that a
role behavior in the underlying HelenaLight ensemble speci�cation must not start
with a state label. The reason is the introduction of start labels in PromelaLight.
To make it clear, we consider a HelenaLight ensemble speci�cation just consisting of
the following role behavior (and the corresponding role type)

roleBehavior rt = label .rt .

In PromelaLight, this is translated to

proctype rt = startrt : true; label : true;goto startrt .

Let's consider a global HelenaLight ensemble state σ with σ(n) = (rt , v, q, rt)
and a global PromelaLight state γ with

γ(n) = (rt , β, label : true;goto startrt)

such that σ ≈ γ. With our previous de�nition of satisfaction of LTL formulae, the state
σ would not satisfy the formula rt [n]@label while the state γ would satisfy it. However,
even if we changed the de�nition of satisfaction inHelenaLight such that the recursive
call would also satisfy the formula rt [n]@label , we could not overcome the problem. If
we consider the same global HelenaLight ensemble state σ with σ(i) = (rt , v, q, rt)
and a global PromelaLight state γ with

γ(i) = (rt , β, startrt : true; label : true;goto startrt),

these two states are again ≈-equivalent, but the state σ would satisfy the formula
rt [n]@label with the changed de�nition of satisfaction while the state γ would not.

285



286 APPENDIX A. CORRECTNESS PROOF IN FULL DETAIL

Therefore, we have to make the restriction that a role behavior in the underlying He-
lenaLight ensemble speci�cation must not start with a state label.

To �nally show that ≈-equivalent states satisfy the same set of atomic propositions,
we use the following auxiliary lemma.

Lemma A.1: State Labels in Process Expressions

Let

� P, P ′ be well-formed HelenaLight process expressions such that

� they contain recursive process invocations at most for the role behav-

ior rt and

� the role behavior declaration for rt does not start with a state label,

� π, π′ be PromelaLight process expressions, and

� label 6= startrt be a state label in HelenaLight.

If transproc(P )
τ∗
↪−→ π, then P = label .P ′ i� π = label : true;π′.

Proof of Lemma A.1

The proof proceeds by induction over the structure of P .

We assume transproc(P )
τ∗
↪−→ π. Furthermore, we assume that P only con-

tains process invocations at most for rt , the role behavior for rt does not start
with a state label, and label 6= startrt .
We consider all four forms which the process expres-
sion P can have according to Def. 6.10. Thus, we have

to show that if P = label .P , then π = label : true;π′ or

if P 6= label .P , then π 6= label : true;π′ resp.

Case 1: P = quit, i.e., P 6= label .P ′.
With the de�nition of transproc in Fig. 6.17, we have

transproc(P ) = false.

The process expression false cannot evolve according to the rules in
PromelaLight in Fig. 6.13. Therefore, we know that

π = false 6= label : true;π′.

Case 2: P = a.Q.
With the de�nition of transproc in Fig. 6.17, we have

transproc(P ) = transact(a); transproc(P
′).

To elicit all forms the PromelaLight expression π can take in

transproc(P )
τ∗
↪−→ π, we have to distinguish four types of actions.

Case 2a: a = X ← create(rt j), i.e., P 6= label .P ′.
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� With the de�nition of transact in Fig. 6.17, we have

transproc(P ) = run rt j(X); transproc(Q).

� This process expression cannot evolve by τ actions according to
the semantic rules of PromelaLight in Fig. 6.13. Therefore,
the process expression π must have the form

π = run rt j(X); transproc(Q).

� Thus, this process expression does not start with a state label,
i.e.,

π 6= label : true;π′.

Case 2b: a = Y !msgnm(X), i.e., P 6= label .P ′.

� With the de�nition of transact in Fig. 6.17, we have

transproc(P ) = Y !msgnm, X; transproc(Q).

� This process expression cannot evolve by τ actions according to
the semantic rules of PromelaLight in Fig. 6.13. Therefore,
the process expression π must have the form

π = Y !msgnm, X; transproc(Q).

� Thus, this process expression does not start with a state label,
i.e.,

π 6= label : true;π′.

Case 2c: a =?msgnm(X:rt j), i.e., P 6= label .P ′.

� With the de�nition of transact in Fig. 6.17, we have

transproc(P ) = self?msgnm, X; transproc(Q).

� This process expression cannot evolve by τ actions according to
the semantic rules of PromelaLight in Fig. 6.13. Therefore,
the process expression π must have the form

π = self?msgnm, X; transproc(Q).

� Thus, this process expression does not start with a state label,
i.e.,

π 6= label : true;π′.

Case 2d: a = label , i.e., P = label .Q = label .P ′.

� With the de�nition of transact in Fig. 6.17, we have

transproc(P ) = label : true; transproc(Q).
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� Since we assumed that label 6= startrt , this process expression
cannot evolve by τ actions according to the semantic rules of
PromelaLight in Fig. 6.13. Therefore, the process expres-
sion π must have the form

π = label : true; transproc(Q).

� Thus, this process expression starts with a state label, i.e.,

π = label : true;π′.

Case 3: P = P1 + P2, i.e., P 6= label .P ′.
With the de�nition of transproc in Fig. 6.17, we have

transproc(P ) = if :: transproc(P1) :: transproc(P2)�.

We assumed that transproc(P )
τ∗
↪−→ π.

� According to the rules nondet. choice-1 and nondet. choice-2 in
PromelaLight in Fig. 6.13, transproc(P ) can evolve by τ actions
only if either

transproc(P1)
τ∗
↪−→ π

or
transproc(P2)

τ∗
↪−→ π.

� Additionally, both process expressions transproc(P1) and
transproc(P2) do not start with a state label because they
are translations of well-formed HelenaLight process expressions
which do not allow a state label as the �rst action of each branch
of a nondeterministic choice (cf. Def. 6.11).

� Thus, since both process expressions P1 and P2 are structurally
smaller than P and P1 and P2 do not start with a state label (i.e.,
P1 6= label .P ′ and P2 6= label .P ′), we can conclude by induction
that it holds

π 6= label : true;π′.

Case 4: P = rt with roleBehavior rt = Q, i.e., P 6= label .P ′.
(Since we assumed that the process expression P contains recursive
process invocation at most for rt , only the role behavior declaration of
role type rt can be invoked here).

With the de�nition of transproc in Fig. 6.17, we have

transproc(P ) = goto startrt .

We assumed that transproc(P )
τ∗
↪−→ π.



A.1. SATISFACTION OF LTL\X FORMULAE IN ≈-EQUIVALENT STATES 289

P
ro
o
f
o
f
L
e
m
m
a
A
.1

� According to the rules goto and sequential composition in Prome-
laLight in Fig. 6.13, transproc(P ) can evolve by τ actions to

goto startrt
τ
↪−→ startrt : true; transproc(Q)
τ
↪−→ transproc(Q).

� Therefore, the process expression π can either have the form

π = goto startrt

or the form
π = startrt : true; transproc(Q)

or the form
π = transproc(Q).

� Additionally, transproc(Q) does not start with a state label since
we assumed that the role behavior declaration of rt does not start
with a state label.

� Thus, since we Q is structurally smaller than P and Q 6= label .P ′,
we can conclude by induction that all three forms of π do not start
with a state label, i.e.,

π 6= label : true;π′.

�

With the auxiliary lemma Lemma A.1, we are now able to show that ≈-equivalent
states satisfy the same set of atomic propositions.

Prop. A.2: Satisfaction of LTL\X Formulae of ≈-Equivalent States

Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of a

HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) such that

� no role behavior in behaviors contains a start state label startrt and

� no role behavior in behaviors starts with a state label and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

For all σ ∈ SHel, γ ∈ SPrm, if σ ≈ γ, then FHel(σ) = FPrm(γ).
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Proof of Prop. A.2

We assume σ ≈ γ = (proc, ch) and that no role behavior in the ensemble
speci�cation starts with a state label and no role behavior contains a start
state label startrt .
To show that FHel(σ) = FPrm(γ), we have to determine
satisfaction of rt [i]@label for any i ∈ dom(σ), i ∈ dom(proc), and
any state label label 6= startrt .
The local states of the corresponding role instance and process instance resp.
are given by σ(i) = (rt , v, q, P ) and proc(n) = (rt , β, π) such that it holds
that

either transproc(P )
τ∗
↪−→ π

or chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π

with roleBehavior rt = P .

If it holds that transproc(P )
τ∗
↪−→ π , we can rely on Lemma A.1 and only have

to distinguish two cases:

Case 1: P 6= label .P ′,

i.e., σ does not satisfy any atomic proposition rt [i]@label .

Thus, we have to show that also proc(n) = (rt , β, π) does not satisfy
any atomic proposition rt [i]@label .

� We assumed that transproc(P )
τ∗
↪−→ π.

� Thus, we can apply Lemma A.1 and conclude π 6= label : true;π′.

� Therefore, γ does not satisfy any atomic proposition rt [i]@label .

Case 2: P = label .P ′,

i.e., σ satis�es the atomic proposition rt [i]@label . Note that because
of our assumption that no role behavior contains a start state label
startrt , it holds that label 6= startrt for any role type rt .

Thus, we have to show that also proc(n) = (rt , β, π) satis�es the atomic
proposition rt [i]@label with label 6= startrt .

� We assumed that transproc(P )
τ∗
↪−→ π.

� With the de�nition of transproc in Fig. 6.17, we know that
transproc(P ) = transproc(label .P

′) = label : true; transproc(P
′).

� This process expression cannot evolve by τ actions according to
the semantic rules of PromelaLight in Fig. 6.13. Therefore, we
know that

π = label : true; transproc(P
′)

� Thus, since label 6= startrt holds due to the well-
formedness of process expressions in HelenaLight,
γ satis�es the atomic proposition rt [i]@label .
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If it holds that chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π

with roleBehavior rt = P , we know that
γ does not satisfy any atomic proposition rt [i]@label since the declara-
tions in chandeclsproc(P ) cannot contain any state labels, the start label
startrt : true is not an atomic proposition in PromelaLight (cf. Def. 6.27),
and no role behavior starts with a state label. On the other hand, we also

know that σ does not satisfy any atomic proposition since we assumed that
no role behavior starts with a state label. �

A.2 Divergence-Sensitivity of the Relation ≈

The second precondition for applying Thm. 6.5 is that the relation ≈ is divergence-
sensitive. In this section, we show that the relation ≈ is divergence-sensitive. On the one
hand, neither in a HelenaLight speci�cation nor in a PromelaLight translation,
in�nitely many stutter steps according to the relation ≈ are possible. On the other
hand, whenever a HelenaLight speci�cation cannot evolve anymore, then also its
PromelaLight speci�cation cannot evolve and resides in a ≈-equivalent state.

For the formal proof, we start by showing if we evolve a HelenaLight ensemble
state σ, which is in the relation ≈ with some global PromelaLight state γ, to a
HelenaLight ensemble state σ′, then the resulting state σ′ is not in the relation ≈
with γ anymore.

Lemma A.3: ≈-Equivalence of Evolving HelenaLight Ensemble
States

Let

� THel = (SHel, IHel, AHel,−→Hel) be the labeled transition system of a He-

lenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) such that

� no role behavior in behaviors contains a start state label startrt and

� no role behavior in behaviors starts with a state label and

� TPrm = (SPrm, IPrm, APrm,−→Prm) be the labeled transition system of its

PromelaLight translation trans(EnsSpec), and

� a be a HelenaLight action.

For all σ ∈ SHel, γ ∈ SPrm,
if σ ≈ γ and σ

a−→Hel σ
′, then σ′ 6≈ γ.

Proof of Lemma A.3

For the proof, we assume σ ≈ γ with γ and it exists i ∈ dom(σ) with σ(i) =

(rt , v, q, P ) and proc(i) = (pt , β, π). Furthermore, we assume σ a−→Hel σ
′.

Then, the proof has to consider all types of actions in HelenaLight which

can evolve σ. We show that σ′ 6≈ γ holds.
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Case 1: a = i : X ← create(rt j),
From the create rule of HelenaLight in Fig. 6.10, we know that
roleBehavior rt j = Pj and

σ′ = σ[i 7→ (rt , v[X 7→ next(σ)], q, P ′)]

[next(σ) 7→ (rt j , ∅[self 7→ next(σ)], ε, Pj)].

Obviously, σ′ 6≈ γ holds since dom(σ′) 6= dom(γ) due to the introduc-
tion of the new role instance with identi�er next(σ).

Case 2: a = i : Y !msgnm(X),
From the send rule of HelenaLight in Fig. 6.10, we know j ∈ dom(σ)
with σ(j) = (rt j , vj , qj , Pj) and

σ′ = σ[i 7→ (rt , v, q, P ′)]

[j 7→ (rt j , vj , qj ·msgnm(k), Pj)].

Obviously, σ′ 6≈ γ holds due to the introduction of the new entry
msgnm(k) in the message queue of role instance j while all channels
in γ were not changed, in particular the channel associated to process
instance j.

Case 3: a = i :?msgnm(X:rt j),
From the receive rule of HelenaLight in Fig. 6.10, we know that σ(i) =
(rt , v, q ·msgnm(k), P ) and

σ′ = σ[i 7→ (rt , v[X 7→ j], q, P ′)].

Obviously, σ′ 6≈ γ holds since the value j was assigned to the variableX
while the local environment functions for all process instances in γ were
not changed, in particular the local environment function of process
instance i.

Case 4: a = i : label
Note that due to the assumption that no role behavior contains a start
state label startrt , it holds that label 6= startrt for any role type rt .

From the label rule of HelenaLight in Fig. 6.10, we know that P
label
↪−−→

P ′ and

σ′ = σ[i 7→ (rt , v, q, P ′)].

Firstly, we can easily prove by induction over the structure of P that

if P
label
↪−−→ P ′, then P = label .P ′ holds, i.e., if P 6= label .P ′, then

P 6 label↪−−→ P ′.

� If P = quit and P = a.P ′ with a 6= label holds, then P can

obviously not evolve by the transition P
label
↪−−→ P ′. However, if P =

label .P ′ holds, P can obviously evolve by the transition P
label
↪−−→ P ′.
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� Nondeterministic choice P = P1 + P2 can only evolve by the tran-

sition P
label
↪−−→ P ′ if either P1 or P2 can evolve by the action label

to P ′. Since we only consider well-formed HelenaLight process
expressions according to Def. 6.11, label cannot be the �rst action
of P1 or P2. Thus, we can conclude that P = P1+P2 cannot evolve
by the action label .

� Recursive process invocation P = rt can only evolve by the transi-

tion P
label
↪−−→ P ′ if roleBehavior rt = Q and Q can evolve by the

action label to P ′. Since we only consider role behavior declarations
which do not start with a state label, we can conclude that P = rt
cannot evolve by the action label .

Since σ ≈ γ, we further know that

transproc(P )
τ∗
↪−→ π or

chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π.

Since label 6= startrt and P = label .P ′, the process expression
transproc(P ) = transproc(label .P

′) can only evolve by the action label :
true and not by any τ action. Thus, we know that

π = label : true; transproc(P
′) or

chandeclsproc(P ) startrt : true; transproc(label .P
′)

τ∗
↪−→ π.

Since we assumed that no role behaviors in behaviors starts with a state
label and we only consider the HelenaLight ensemble states of the
ensemble speci�cation EnsSpec and the global PromelaLight states
of its PromelaLight translation trans(EnsSpec), the second part will
never happen. Thus, we �nally know that

π = label : true; transproc(P
′).

To show that σ′ 6≈ γ , we prove that

transproc(P
′) 6 τ

∗
↪−→ π or

chandeclsproc(P
′) startrt : true; transproc(P

′) 6 τ
∗

↪−→ π.

The proof proceeds by contradiction. Thus, we assume that

transproc(P
′)

τ∗
↪−→ π or

chandeclsproc(P
′) startrt : true; transproc(P

′)
τ∗
↪−→ π.

Case 4a: transproc(P
′)

τ∗
↪−→ π.

With the conclusion from σ ≈ γ, it holds that

transproc(P
′)

τ∗
↪−→ label : true; transproc(P

′).
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This is not possible which we can prove by induction over the struc-
ture of P ′. The essential arguments are that we cannot create
structurally in�nite HelenaLight process expressions by adding
the action label in�nitely often and a role behavior declaration is
not allowed to start with a state label (thus, recursive process in-
vocation cannot traverse a label action as �rst action).

Case 4b: chandeclsproc(P
′) startrt : true; transproc(P

′)
τ∗
↪−→ π.

With the conclusion from σ ≈ γ, it holds that

chandeclsproc(P
′) startrt : true; transproc(P

′)

τ∗
↪−→ label : true; transproc(P

′).

However, this is not possible since even if chandeclsproc(P
′) is

empty, it holds that label 6= startrt due to the assumption that
no role behavior contains a start state label startrt and therefore
label : true 6= startrt : true.

Thus, all types of actions were covered. �

Secondly, we show if we evolve a global PromelaLight state γ, which is in the
relation ≈ with some HelenaLight ensemble state σ, to a global PromelaLight
state γ′, then the resulting state γ′ is only in the relation ≈ with σ if the executed
action was a silent τ action. This lemma therefore also proves that silent steps in
PromelaLight do not change the satisfaction of LTL\X formulae since we showed
in the previous section that the relation ≈ is property preserving. For example, all
channel declarations in chandeclsproc(P ) at the beginning of the translation of a role
behavior declaration are considered as silent and their execution results in a state which
is ≈-equivalent to the original HelenaLight state.

Lemma A.4: ≈-Equivalence of Evolving Global PromelaLight States
Let

� THel = (SHel, IHel, AHel,−→Hel) be the labeled transition system of a He-

lenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints),

� TPrm = (SPrm, IPrm, APrm,−→Prm) be the labeled transition system of its

PromelaLight translation trans(EnsSpec), and

� a be a PromelaLight action.

For all σ ∈ SHel, γ ∈ SPrm,
if σ ≈ γ and γ

a−→Prm γ
′, then σ ≈ γ′ i� a = τ .

Proof of Lemma A.4

For the proof, we assume σ ≈ γ with γ = (ch, proc) and it exists i ∈
dom(σ) with σ(i) = (rt , v, q, P ) and proc(i) = (pt , β, π). Furthermore,
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we assume γ a−→Prm γ
′. Then, the proof has to consider all types of actions

in PromelaLight according to Def. 6.30 which can evolve γ. We show that
σ ≈ γ′ holds only if evolving γ by silent actions. That means that for non-

silent actions, σ 6≈ γ′ holds.
We start with silent actions:

Case 1: a = i : chan var .
From the chan-1 rule of PromelaLight in Fig. 6.15, we get that

γ′ = (ch, proc[i 7→ (pt , β[var 7→ null], π′)]).

Therefore, we only have to consider the changes in β and of π to show
that σ ≈ γ′.

� The local environment β is only changed for the variable var . Since
the global PromelaLight state γ is well-de�ned according to
Def. 6.25, we know that π must be well-formed. To be well-formed,
the variable occurring in a channel declaration may not be declared
before (cf. Def. 6.19). Thus, we know that var is a fresh variable,
i.e., var /∈ dom(β). That means that var does not have to re-
late to any variable in v because it holds that var /∈ dom(v) since
dom(w) ⊆ dom(β).

� Since σ ≈ γ, we know that

transproc(P )
τ∗
↪−→ π or

chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π.

Since we assumed that γ evolves by the action a = i : chan var , it
must hold that

chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π

and not transproc(P )
τ∗
↪−→ π because the function transproc can-

not produce any channel declarations according to its de�nition in
Fig. 6.17.
From the premise of the chan-1 rule of PromelaLight in

Fig. 6.15, we know that π
chan X
↪−−−−−→ π′. Since chan X is a silent

action according to Def. 6.30, we have π
τ
↪−→ π′. By appending this

to the previous evolution, we get

chandeclsproc(P ) startrt : true; transproc(P )
τ
↪−→ π

τ∗
↪−→ π′.

Therefore, it holds that

chandeclsproc(P ) startrt : true; transproc(P )
τ∗
↪−→ π′

which ful�lls the last condition for σ ≈ γ′.
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Thus, it holds that σ ≈ γ′.

Case 2: a = i : chan var = [const ] of {typelist}.
From the chan-2 rule of PromelaLight in Fig. 6.15, we have

γ′ = (ch[next(ch) 7→ (typelist, const , ε)],

proc[i 7→ (pt , β[var 7→ next(ch)], π′)]).

Again, we only have to consider the changes in β and of π to show that

σ ≈ γ′. The proof proceeds analog to Case 1.

Case 3: a = i : startpt : true.
From the label rule of PromelaLight in Fig. 6.15, we have

γ′ = (ch, proc[i 7→ (pt , β, π′)]).

In this case, we only have to consider the change of π to π′ to show that
σ ≈ γ′.

� Since σ ≈ γ, we know that

transproc(P )
τ∗
↪−→ π or

chandeclsproc(P ) startpt : true; transproc(P )
τ∗
↪−→ π.

� From the premise of the label rule of PromelaLight in Fig. 6.15,

we know that π
startpt :true
↪−−−−−−−→ π′. Since startpt : true is a silent action

according to Def. 6.30, we have π
τ
↪−→ π′.

� By appending this to the previous evolution, we get

transproc(P )
τ∗
↪−→ π

τ
↪−→ π′ or

chandeclsproc(P ) startpt : true; transproc(P )
τ∗
↪−→ π

τ
↪−→ π′.

� Therefore, it holds that

transproc(P )
τ∗
↪−→ π′ or

chandeclsproc(P ) startpt : true; transproc(P )
τ
↪−→ π′.

which ful�lls the last condition for σ ≈ γ′ .

Case 4: a = i : goto startpt
From the goto rule of PromelaLight in Fig. 6.14, we have

γ′ = (ch, proc[i 7→ (pt , β, π′)]).

In this case, we only have to consider the change of π to π′ to show that
σ ≈ γ′.

The proof proceeds analog to Case 3.
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Thus, all four types of silent actions were covered.

Secondly, we consider all types of non-silent actions:

Case 5: a = i : label : true with label 6= startpt since this was already covered
in Case 3.
From the label rule of PromelaLight in Fig. 6.15, we have

γ′ = (ch, proc[i 7→ (pt , β, π′)]).

In this case, we only have to consider the change of π to π′ to show that
σ 6≈ γ′, i.e., we only have to show that it must hold that

transproc(P ) 6 τ
∗

↪−→ π′ and

chandeclsproc(P ) startpt : true; transproc(P ) 6 τ
∗

↪−→ π′.

� Since σ ≈ γ, we know that

transproc(P )
τ∗
↪−→ π or

chandeclsproc(P ) startpt : true; transproc(P )
τ∗
↪−→ π.

� We know from the premise of the label rule of PromelaLight in

Fig. 6.15 that π
label :true
↪−−−−−−→ π′.

� Thus, with the �rst part of the conclusion from σ ≈ γ, we have

transproc(P )
τ∗
↪−→ π

label :true
↪−−−−−−→ π′.

Since label : true 6= startpt : true is a non-silent action ac-
cording to Def. 6.30, it is not possible that transproc(P ) or
chandeclsproc(P ) startpt : true; transproc(P ) evolves to π′ by τ ac-
tions only, thus

transproc(P ) 6 τ
∗

↪−→ π′ and

chandeclsproc(P ) startpt : true; transproc(P ) 6 τ
∗

↪−→ π′.

� With the second part of the conclusion from σ ≈ γ, we have

chandeclsproc(P ) startpt : true; transproc(P )
τ∗
↪−→ π

label :true
↪−−−−−−→ π′.

Again since label : true 6= startpt : true is a non-silent ac-
tion according to Def. 6.30, it is not possible that transproc(P )
or chandeclsproc(P ) startpt : true; transproc(P ) evolves to π′ by τ
actions only, thus

transproc(P ) 6 τ
∗

↪−→ π′ and

chandeclsproc(P ) startpt : true; transproc(P ) 6 τ
∗

↪−→ π′.
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Thus, it holds that σ 6≈ γ′.

Case 6: a = i : goto label with label 6= startpt since this was already covered
in Case 4.
According to the translation function in Fig. 6.17 from HelenaLight

to PromelaLight, arbitrary goto-jumps cannot happen. Thus, this
case does not have to be considered.

Case 7: a = i : run pt j(var)
From the run rule of PromelaLight in Fig. 6.14, we have γ′ =
(ch, proc′) with

proc′ = proc[i 7→ (pt , β,π
′)]

[next(proc) 7→ (pt j , ∅[self 7→ c], startptj : true; seq)]

Obviously, σ 6≈ γ′ holds since dom(σ) 6= dom(proc′) due to the intro-
duction of the process instance with identi�er next(proc).

Case 8: a = i : var1!const , var2
From the send rule of PromelaLight in Fig. 6.14, we have γ′ =
(ch′, proc′) with

ch′ = ch[β(var1) 7→ (T, κ, ω · (const , v))].

Since we only consider PromelaLight translations of a HelenaLight
speci�cation, var1 must correspond to an existing role instance in σ (cf.
well-formedness of process expression in HelenaLight Def. 2.10), i.e..,
β(var1) must refer to a channel instance which is referenced by β(self)

of an existing process instance. Therefore, obviously, σ 6≈ γ′ holds due
to the introduction of the new entry (const , v) in channel β(var1) while
all message queues in σ were not changed, in particular the message
queue of role instance var1.

Case 9: a = i : var1?const , var2
From the receive rule of PromelaLight in Fig. 6.14, we have γ =
(ch, proc) with ch(β(var1)) = (T, κ, (const , v) ·ω) and γ′ = (ch′, proc′)
with

ch′ = ch[β(var1) 7→ (T, κ, ω)].

Since we only consider PromelaLight translations of a HelenaLight
speci�cation, var1 can only be the prede�ned constant self (cf. transla-
tion function betweenHelenaLight and PromelaLight in Fig. 6.17).

Then, obviously, σ 6≈ γ′ holds since the entry (const , v) in channel
β(self) = i was removed while all message queues in σ were not changed,
so in particular the message queue of role instance i.

Thus, all four types of non-silent actions were covered. �
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With these two auxiliary lemmata, Lemma A.3 and Lemma A.4, we can show that
the relation ≈ is divergence-sensitive.

The �rst observation is that neither in a HelenaLight speci�cation nor in a
PromelaLight translation, in�nitely many stutter steps according to the relation ≈
are possible. In HelenaLight, silent actions do not exists at all and therefore stutter
steps are not possible. In PromelaLight, silent actions are only channel declarations,
goto-statements and start state labels. In the PromelaLight translation of a role be-
havior, channel declarations only occur at the beginning of the translation and initialize
a �xed set of local variables for the translated role behavior. Therefore, they cannot
produce an in�nite sequence of stutter steps. The only possibility to produce an in�nite
sequence of stutter steps are repeated goto-jumps. For example, if the role behavior
roleBehavior rt = rt was allowed, it would be translated to the PromelaLight
process type

proctype rt(chan self) = startrt : true;goto startrt .

The execution of this PromelaLight process type would result in an in�nite sequence
of τ actions while the HelenaLight role behavior might not evolve at all. Therefore,
we do not allow immediate process invocation (also not as nested in nondeterministic
choice)

Secondly, we observe that the evolution of a HelenaLight ensemble speci�cation
and also of a PromelaLight speci�cation can get stuck if no action is executable any-
more, i.e., the semantic labeled transition systems resides in a terminal state. When
inducing a Kripke structure from these speci�cations, we do not allow �nite path frag-
ments through the Kripke structure anymore and elongate those paths by an in�nite
sequence of τ actions residing in the terminal state forever. Thus, to show divergence-
sensitivity of the relation ≈, we have to prove that whenever a HelenaLight ensemble
speci�cation gets stuck, its PromelaLight translation can also not evolve anymore
(and vice versa). Since all HelenaLight actions are translated to a single semantically
equivalent PromelaLight action, the only critical case is recursive process invocation.
In PromelaLight, recursive process invocation needs two silent actions (a goto-jump
and passing the start label) to invoke the role behavior from the beginning. To guarantee
divergence-sensitivity of the relation ≈, we have to guarantee that in PromelaLight
those two silent actions only result in a terminal state (elongated by τ actions) if He-
lenaLight also does (and vice versa). The only assumption we have to make is that
process invocation is not one of the branches of nondeterministic choice. To illustrate
this, let's consider the HelenaLight role behavior

roleBehavior rt =?msgnm1(X : rt).(rt +X!msgnm2(self).quit).

which contradicts the aforementioned assumption. It is translated to the following
PromelaLight process type

proctype rt(chan self) = chan X;

startrt : true;

self?msgnm1, X;

if

:: goto startrt
:: X!msgnm2, self; false

�
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If the evolution of the role behavior reaches the nondeterministic choice in Hele-

naLight, it checks executability of both, receiving the message msgnm1 and sending
the message msgnm2. If receiving the message is not possible, but sending the mes-
sage is possible, the �rst branch will not be selected for execution (but the second
branch). In PromelaLight, however, the executability of the goto-jump and of send-
ing the message msgnm2 are checked. Therefore, in PromelaLight, the �rst branch
can be selected for execution since we only reach the non-executable action of receiv-
ing the message msgnm2 after executing some silent actions. This means, that while
HelenaLight would select the second branch, PromelaLight would select the �rst
branch and result in a terminal state which is elongated to an in�nite sequence of silent
actions. To avoid this problem, we have to assume that process invocation is not one of
the branches of nondeterministic choice to show divergence-sensitivity of the relation ≈.

Prop. A.5: Divergence-Sensitivity of the Relation ≈
Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of a

HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) such that

� no role behavior in behaviors contains a start state label startrt ,

� no role behavior in behaviors starts with a state label, and

� in any nondeterministic choice construct in a role behavior in

behaviors, process invocation is not one of the branches, and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

The relation ≈ is divergence-sensitive for K(THel) and K(TPrm).

Proof of Prop. A.5

To recap, the property of divergence-sensitivity is de�ned as follows:
For all s1 ∈ SHel, t1 ∈ SPrm with s1 ≈ t1 holds: if there exists an (in�nite)
path fragment s1s2s3 . . . in K(THel) with si ≈ t1 for all i ≥ 1, then there
exists an (in�nite) path fragment t1t2t3 . . . in K(TPrm) with s1 ≈ tj for all
j ≥ 1 and symmetrically for (in�nite) path fragments in K(TPrm).

We �rst show that a HelenaLight ensemble speci�cation as well as its
PromelaLight translation cannot evolve by in�nitely many τ actions.
In the direction from HelenaLight to PromelaLight, we can apply
Lemma A.3. The lemma proves that whenever a HelenaLight ensemble
state σ with σ ≈ γ (for a global PromelaLight state γ) evolves, its resulting
HelenaLight ensemble state σ′ is no longer in the relation ≈ with γ. Thus,
we know that there does not exist an (in�nite) path fragment s1s2s3 . . .
in THel such that all states si remain ≈-equivalent to one particular state
t1 ∈ SPrm.

In the other direction from PromelaLight to HelenaLight, we can ap-
ply Lemma A.4. The lemma proves that whenever a global PromelaLight
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state γ with σ ≈ γ (for a HelenaLight ensemble state σ) evolves, its re-
sulting global PromelaLight state γ′ is only in the relation ≈ with σ if the
executed action was a τ action. That means that we can only construct an
(in�nite) path fragment t1t2t3 . . . in K(TPrm) with s1 ≈ tj if we only execute
τ actions on the corresponding path in the underlying labeled transition sys-
tem. However, we consider a PromelaLight translation of a HelenaLight
speci�cation. Hence, we cannot deduce an in�nite sequence of τ actions as we
discuss in the following:

� According to the translation function in Fig. 6.17, both
types of channel declarations chan X and chan X =
[roleconstraints(rt j)] of {mtype, chan} only occur at the begin-
ning of the translation in PromelaLight before the start state label.
Thus, they cannot be reached again (e.g., by a goto-jump) and cannot
produce an in�nite sequence of τ actions.

� According to the translation function in Fig. 6.17, each goto-jump is
always the action goto startrt and therefore always jumps to the start
label startrt : true of the process. Thus, a goto action can only produce
an in�nite sequence of τ actions if the action startrt : true can produce
it.

� According to the translation function in Fig. 6.17, the action startrt :
true is always followed by the �rst action of the translated role behavior
declaration rt . This �rst action cannot be a silent action: (a) Channel
declarations are only included before the start state label. (b) Since we
do not allow recursive process invocation immediately at the beginning
of a role behavior declaration (cf. Def. 6.12), the executed �rst action in
PromelaLight cannot be a goto action. (c) Due to the assumption
that no role behavior contains a start state labels, start state labels
cannot be the �rst action of a role behavior declaration. (d) Every other
action cannot produce an in�nite sequence of τ action as argued before.
Thus, the action startrt : true cannot produce an in�nite sequence of τ
actions.

Thus, we know that there does not exists an (in�nite) path fragment t1t2t3 . . .
in TPrm such that all states tj remain ≈-equivalent to one particular state
s1 ∈ SHel.
Apart from that, we have to consider that in the induced Kripke structure of a
HelenaLight ensemble speci�cation and of its PromelaLight translation
all terminal states are equipped with a self-loop. This means that whenever the
evolution of a speci�cation blocks, the path is elongated by in�nitely many τ
action. To prove divergence-sensitivity of the relation ≈, we have to show that
whenever the HelenaLight ensemble speci�cation remains in a certain state
σ, then also the corresponding PromelaLight translation remains in a cer-
tain state γ with σ ≈ γ (and vice versa). Since all HelenaLight actions are
represented by exactly one semantically equivalent action in PromelaLight,
we only have to consider which process constructs might allow di�erent paths
in HelenaLight and PromelaLight. In general, only nondeterministic
choice allows two di�erent paths through the speci�cations. HelenaLight
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and PromelaLight can only select di�erently from these two paths if the �rst
actions of the branches di�er between HelenaLight and PromelaLight.
Since all HelenaLight actions are represented by a single PromelaLight
action, the only possibility for a di�ering selection is if one branch is a process
invocation. In this case, HelenaLight determines the executability of this
branch based on the executability of the �rst action of the invoked process
(which might not be executable) while PromelaLight determines the exe-
cutability based on the executability of the goto-statement (which is always
executable). However, this case was explicitly excluded from the proposition.
Thus, with all other process constructs, a HelenaLight ensemble speci�-
cation only remains in a certain state σ i� its PromelaLight translation
remains in a state γ with σ ≈ γ. �

A.3 ∼-Equivalence of Initial States
The third precondition for applying Thm. 6.5 is that any admissible initial state of a
HelenaLight ensemble speci�cation is related to its PromelaLight translation by
the relation ∼.

Prop. A.6: ∼-Equivalence of Initial States
Let σ be an admissible initial state of a HelenaLight ensemble speci�cation,

then σ ∼ trans init(σ).

Proof of Prop. A.6

Consider an admissible initial state σ of a HelenaLight ensemble speci�ca-
tion and its translation trans init(σ).

� In HelenaLight, σ consists of at least one role instance and for all role
instance states it holds that σ(i) = (rt , ∅[self 7→ i], ε, P ) with roleBe-
havior rt = P (cf. Def. 6.17).

� For the PromelaLight translation holds trans init(σ) = (ch, proc) with
(cf. Def. 6.29):

(1) dom(ch) = dom(σ),

(2) dom(proc) = dom(σ), and

(3) for all i ∈ dom(proc):
proc(i) = (rt , ∅[self 7→ ci],

chandeclsproc(P ) startrt : true; transproc(P ))
with ci = ((mtype, chan), roleconstraints(rt), ε) ∈ dom(ch)
and ci 6= cj for i 6= j.

� Therefore, all conditions for σ ∼ trans init(σ) are satis�ed, in particular
item (2d) is satis�ed since

π = chandeclsproc(P ) startrt : true; transproc(P )

with roleBehavior rt = P.

�
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A.4 ≈-Stutter Simulation of HelenaLight Speci�cations

Using the de�nition of the relation ∼ and ≈ in Def. 6.31, we can show that a Hele-
naLight ensemble speci�cation is ≈-stutter simulated by its PromelaLight transla-
tion according to the relation ∼.

To be able to show that, we need Lemma A.4 and an auxiliary lemma. The last
auxiliary lemma states that whenever a HelenaLight process expression can evolve
by a local HelenaLight action, then its PromelaLight translation can also evolve
with a sequence of τ actions and the corresponding local PromelaLight action to
the HelenaLight action, possibly preceded by some silent goto-jumps and start state
label actions. The proof of this lemma is straightforward. Only process invocation
introduces some additional silent τ steps in PromelaLight which are not part of the
translation of HelenaLight action since invocation is realized by a goto statement to
the beginning of a process declaration.

Lemma A.7: Co-Evolution of PromelaLight Process Expressions

Let EnsSpec be a HelenaLight speci�cation such that no role behavior in the

speci�cation contains a start state label and PrmSpec its PromelaLight trans-

lation. In the context of these two speci�cations, let P, P ′ be well-formed process

expressions in HelenaLight and let a be a HelenaLight action on the level

of roles.

If P
a
↪−→ P ′, then transproc(P )

τ∗transact(a)
↪−−−−−−−−→ transproc(P

′).

Proof of Lemma A.7

The proof proceeds by induction on the structure of P .

We assume P
a
↪−→ P ′ and consider all forms which the process expression P

can have according to Def. 6.10.

Case 1: P = quit.

The process expression quit cannot evolve according to the rules in
HelenaLight in Fig. 6.9. Therefore, the left side of the implication is
not satis�ed and it remains nothing to show.

Case 2: P = a.Q, a.Q
a
↪−→ Q, and Q = P ′.

Thus, we have to show that

transproc(a.Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q).

With the de�nition of transproc in Fig. 6.17, we have

transproc(a.Q) = transact(a); transproc(Q).

To evolve this process expression in PromelaLight, we have to distin-
guish four types of actions.

Case 2a: a = X ← create(rt j)
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� With the de�nition of transact in Fig. 6.17, we have

transact(a); transproc(Q) = run rt j(X); transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, we evolve this expression to

run rt j(X); transproc(Q)
run rtj(X)
↪−−−−−−−→ transproc(Q).

� By using the notation transact, we get

run rt j(X); transproc(Q)

transact(X←create(rtj))
↪−−−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that

transproc(a.Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q)

since we can always substitute τ∗ by an empty sequence of τ actions.

Case 2b: a = Y !msgnm(X)

� With the de�nition of transact in Fig. 6.17, we have

transact(a); transproc(Q) = Y !msgnm, X; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, we evolve this expression to

Y !msgnm, X; transproc(Q)
Y !msgnm,X
↪−−−−−−−→ transproc(Q).

� By using the notation transact, we get

Y !msgnm, X; transproc(Q)

transact(Y !msgnm(X))
↪−−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that

transproc(a.Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q)

since we can always substitute τ∗ by an empty sequence of τ actions.

Case 2c: a =?msgnm(X:rt j)

� With the de�nition of transact in Fig. 6.17, we have

transact(a); transproc(Q) = self?msgnm, X; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, we evolve this expression to

self?msgnm, X; transproc(Q)

self?msgnm,X
↪−−−−−−−−−→ transproc(Q).
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� By using the notation transact, we get

self?msgnm, X; transproc(Q)

transact(?msgnm(X))
↪−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that

transproc(a.Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q)

since we can always substitute τ∗ by an empty sequence of τ actions.

Case 2d: a = label

� With the de�nition of transact in Fig. 6.17, we have

transact(a); transproc(Q) = label : true; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, we evolve this expression to

label : true; transproc(Q)
label :true
↪−−−−−−→ transproc(Q).

� By using the notation transact, we get

label : true; transproc(Q)
transact(label)
↪−−−−−−−−→ transproc(Q).

Thus, it holds that

transproc(a.Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q)

since we can always substitute τ∗ by an empty sequence of τ actions.

Case 3: P = P1 + P2, P1 + P2
a
↪−→ P ′1, and P

′
1 = P ′

Thus, we have to show that

transproc(P1 + P2)
τ∗transact(a)
↪−−−−−−−−→ transproc(P

′
1).

� With the de�nition of transproc in Fig. 6.17, we have

transproc(P1 + P2) = if :: transproc(P1) :: transproc(P2)�.

� Since we assumed P1 +P2
a
↪−→ P ′1, we know from the premise of the

nondet. choice-1 rule in HelenaLight in Fig. 6.9 that P1
a
↪−→ P ′1.

Thus, since P1 is structurally smaller than P1 +P2, we can assume

by induction that transproc(P1)
τ∗transact(a)
↪−−−−−−−−→ transproc(P

′
1).

� With this as premise, we can evolve the original process expres-
sion by applying the nondet. choice-1 rule in PromelaLight in
Fig. 6.13 to

if :: transproc(P1) :: transproc(P2)�

τ∗transact(a)
↪−−−−−−−−→ transproc(P

′
1).
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Thus, it holds that

transproc(P1 + P2)
τ∗transact(a)
↪−−−−−−−−→ transproc(P

′
1).

Case 4: P = P1 + P2, P1 + P2
a
↪−→ P ′2, and P

′
2 = P ′

Proof analog to Case 2.

Case 5: P = N , N
a
↪−→ Q′ with roleBehavior N = Q, and Q′ = P ′

Thus, we have to show that

transproc(N)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q

′).

� With the de�nition of transproc in Fig. 6.17, we have

transproc(N) = goto startN .

� Additionally, with the de�nition of transrole in Fig. 6.17, we have

transrole(roleBehavior N = Q) = proctypeN(chan self) {
chandeclsproc(Q)

startN : true; transproc(Q) }.

� With this as side-condition (and since we assumed that no role
behavior contains a start state label), we can evolve the original
process expression by applying the goto rule of PromelaLight in
Fig. 6.13 to

goto startN
goto startN
↪−−−−−−−→ startN : true; transproc(Q).

� By applying the sequential composition rule of PromelaLight in
Fig. 6.13, we evolve this expression further to

startN : true; transproc(Q)
startN :true
↪−−−−−−−→ transproc(Q).

� Since we assumedN
a
↪−→ Q′, we know from the premise of the process

invocation rule in HelenaLight in Fig. 6.9 that Q
a
↪−→ Q′. Thus,

since Q is structurally smaller than N , we can assume by induction

that transproc(Q)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q

′).

Concluding, we know that

transproc(N) = goto startN
goto startN
↪−−−−−−−→ startN : true; transproc(Q)

startN :true
↪−−−−−−−→ transproc(Q)

τ∗transact(a)
↪−−−−−−−−→ transproc(Q

′).
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Thus, since goto startN and start label startN : true steps are silent τ
actions, it holds that

transproc(N)
τ∗transact(a)
↪−−−−−−−−→ transproc(Q

′).

Thus, the structure of P was completely covered. �

With Lemma A.4 and Lemma A.7, we are able to show that the relation ∼ is a
≈-stutter simulation of HelenaLight by its PromelaLight translation. Although
it would be enough to use the relation ≈ itself as a ≈-stutter simulation, we employ the
two relations ∼ and ≈ since they make the proof easier to read. The reason is that the
relation ∼ requires a stronger assumption about the process expression representing the
progress of a role instance and its translation in PromelaLight. A HelenaLight

ensemble state and a global PromelaLight state are related by the relation ∼ if for
each role instance in the HelenaLight ensemble state, the translation of the process
expression describing the role's progress of execution is exactly the same as the process
expression of the corresponding process in the global PromelaLight state (amongst
others). In contrast, in the relation ≈, the translation of the process expression must
only be able to evolve via τ actions to the process expression in PromelaLight.

In the proof, we exploit this stronger assumption to show more easily that a Hele-
naLight action can be simulated in PromelaLight. We use the relation ∼ to prove
that each action in HelenaLight can either directly be simulated in PromelaLight
or PromelaLight employs some stutter steps (keeping the states in the relation ≈)
before actually performing the translated action. Nevertheless, we want to stress here
that also the relation ≈ could be used as a ≈-stutter simulation. It could even be shown
that the relation ≈ is a weak bisimulation. However, for the lack of understandability
we will rely on the stronger assumption of the relation ∼ in the following proof.

Prop. A.8: ≈-Stutter Simulation of HelenaLight Speci�cations

Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of

a HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with

Σ = (nm, roletypes, roleconstraints) such that no role behavior in behaviors
contains a start state label and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

∼ is a ≈-stutter simulation of K(THel) by K(TPrm).

Proof of Prop. A.8

We have to show that the relation ∼ satis�es the property of a ≈-stutter
simulation described in Def. 6.2. In the proof, we rely on the underlying
labeled transition systems THel and TPrm of K(THel) and K(TPrm). We
show the following property which obviously entails the required property for
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a ≈-stutter simulation:

For all σ ∈ SHel, γ ∈ SPrm with σ ∼ γ,
if there exists σ′ ∈ SHel, a ∈ AHel such that σ a−→Hel σ

′,
then there exist n ≥ 0 and γ1, . . . , γn, γ′ ∈ SPrm such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn
transact-global(a)−−−−−−−−−−→Prm γ

′,
for all 1 ≤ i ≤ n : σ ≈ γi, and σ′ ∼ γ′.

The proof has to consider all four types of global actions possible in the tran-
sition σ a−→Hel σ

′ in HelenaLight.

We assume that σ ∼ γ = (ch, proc) and σ a−→Hel σ
′.

Case 1: a = i : X ← create(rt j) for i ∈ dom(σ).
We know from the notation in Sec. 6.5.1 that

transact-global(i : X ← create(rt j)) = i : run rt j(X).

For this case, we show that

there exist n ≥ 0 and γ1, . . . , γn, γ′ ∈ SPrm such that

(1) γ τ−→Prm γ1 . . .
τ−→Prm γn with σ ≈ γi for all 1 ≤ i ≤ n,

(2) γn
i:run rtj(X)
−−−−−−−−→Prm γ

′ with σ′ ∼ γ′.

Before tackling each item separately, we summarize what we can deduce

from the assumption σ
i:X←create(rtj)−−−−−−−−−−→Hel σ

′.

� From the premise of the create rule in HelenaLight in Fig. 6.10,

we know that the premise Pi
X←create(rtj)
↪−−−−−−−−−→ P ′i holds. With

Lemma A.7, we can therefore conclude that

transproc(Pi)
τ∗transact(X←create(rtj))
↪−−−−−−−−−−−−−−−−−→ transproc(P

′
i ).

� Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

run rtj(X)
↪−−−−−−−→ transproc(P

′
i ).

With this knowledge on the level of process types in PromelaLight,
we tackle each item separately.

We �rst map the evolution of the single process type by a sequence
of τ actions to the evolution of the global PromelaLight state by a
sequence of τ actions. Since we assumed that σ ∼ γ = (ch, proc), we
know that there exists proc(i) = (pt i, βi, πi) with πi = transproc(Pi) or
πi = chandeclsproc(Pi) startrt i : true; transproc(Pi).

Let's �rst assume that πi = transproc(Pi). We furthermore know from

above that transproc(Pi)
τ∗
↪−→ π′i. We want to prove that by applying a
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sequence of τ actions to the process instance i, we also evolve the global
PromelaLight state γ by a sequence of τ actions and only traverse γi
with σ ≈ γi, i.e., there exist n ≥ 0 and γ1, . . . , γn−1 ∈ SPrm such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn with σ ≈ γi for all 1 ≤ i ≤ n.

� transproc(Pi)
τ∗
↪−→ π′i satis�es the premise of all semantic rules for

silent actions in PromelaLight in Fig. 6.14 and Fig. 6.15, i.e.,
the rules goto, label, chan-1, and chan-2.

� The side-conditions of all semantic rules for silent actions in
PromelaLight in Fig. 6.14 and Fig. 6.15 trivially hold.

� Thus, there exist n ≥ 0 and γ1, . . . , γn such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn = (chn, procn)

= (ch, proc[i 7→ (rt i, βi, π
′
i)])

� Since we assumed σ ∼ γ and ∼⊆≈, we can apply Lemma A.4 to

conclude σ ≈ γi for all 1 ≤ i ≤ n.

Let's now assume that

πi = chandeclsproc(Pi) startrt i : true; transproc(Pi).

Since all channel declarations and the start state label are silent actions,

we know that πi
τ∗
↪−→ transproc(Pi). For the evolution of transproc(Pi),

we follow the same argumentation as for the �rst case such we can also

conclude that σ ≈ γi for all 1 ≤ i ≤ n.

Secondly, we show that there exists γ′ ∈ SPrm such that

γn
i:run rtj(X)
−−−−−−−−→Prm γ

′ with σ′ ∼ γ′ . That means that γn satis�es the
premise and all side-conditions of the run rule in the PromelaLight
semantics in Fig. 6.14 and therefore the run rule can be applied to γn
resulting in the state γ′ which is ∼-equivalent to σ′.
To this end, we know that the premise and all side-conditions of the
create rule of the HelenaLight semantics in Fig. 6.10 are satis�ed
by σ since we assumed σ a−→Hel σ

′.

� From above, we know that the premise of the create rule in
PromelaLight in Fig. 6.14 is satis�ed by

π′i
run rtj(X)
↪−−−−−−−→ transproc(P

′
i )

for i ∈ dom(procn) and with the de�nition of γn we know that
item (1) of the side-condition is satis�ed by

procn(i) = (rt i, βi, π
′
i).
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� Since we consider the PromelaLight translation
trans(EnsSpec), we can assume that the PromelaLight

process �rst declared and initialized the channel variable X
which is used in a run rt i(X) before (cf. de�nition of transrole in
Fig. 6.17 and chandeclsproc in Fig. 6.18).

� Therefore, we know that item (2) of the side-condition of the
run rule in PromelaLight in Fig. 6.14 is satis�ed by βi(X) ∈
dom(chn). Additionally, we only consider well-formed process ex-
pressions in HelenaLight. Therefore, the process expression in
HelenaLight did not use the variable X before to send messages
to it. Thus, we know that the corresponding channel variable in
PromelaLight was only declared and initialized, but never used.
With the de�nition of chandeclsproc in Fig. 6.18, we know that the
variable X was declared by

chan X = [roleconstraints(rt j)] of {mtype, chan}.

� From the create rule in HelenaLight in Fig. 6.10, we know that
roleBehavior rt j = Pj .

� Thus, since we know that trans(EnsSpec) contains transrole(b) for
every role behavior b in EnsSpec, item (3) of the side-condition of
the run rule in PromelaLight in Fig. 6.14 is satis�ed by

transrole(roleBehavior rt j = Pj) =

proctype rt j(chan self) {
chandeclsproc(Pj)

startrt j : true;

transproc(Pj)}.

Concluding, the premise and all side-conditions of applying the run rule
in PromelaLight in Fig. 6.14 are satis�ed by γn and we can conclude

that γn
i:run rtj(X)
−−−−−−−−→Prm γ′ with

γ′ = (ch[βi(X) 7→ ((mtype, chan), roleconstraints(rt j), ε)],

proc[i 7→ (rt i, βi, transproc(P
′
i ))]

[next(proc) 7→ (rt j , ∅[self 7→ βi(X)],

chandeclsproc(Pj) startrt j : true; transproc(Pj))]).

Lastly, we have to show that σ′ ∼ γ′. From the create rule in Hele-
naLight in Fig. 6.10, we know that

σ′ = σ[i 7→ (rt i, vi[X 7→ next(σ)], qi, P
′
i )]

[next(σ) 7→ (rt j , ∅[self 7→ next(σ)], ε, Pj)].

Since in this case the de�nition of the relation ∼ in Def. 6.31 requires
amongst others that if the role instance next(σ) has to execute the pro-
cess expression Pj , then the process instance next(proc) has to execute
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the process expression chandeclsproc(Pj) startrt j : true; transproc(Pj), it

holds that σ′ ∼ γ′.

Case 2: a = i : Y !msgnm(X) for i ∈ dom(σ).
We know from the notation in Sec. 6.5.1 that

transact-global(i : Y !msgnm(X)) = i : Y !msgnm, X.

For this case, we show that

there exist n ≥ 0 and γ1, . . . , γn, γ′ ∈ SPrm such that

(1) γ τ−→Prm γ1 . . .
τ−→Prm γn with for all 1 ≤ i ≤ n : σ ≈ γi,

(2) γn
i:Y !msgnm,X−−−−−−−−→Prm γ

′ with σ′ ∼ γ′.

Before tackling each item separately, we summarize what we can deduce

from the assumption σ
i:Y !msgnm(X)−−−−−−−−−→Hel σ

′.

� From the premise of the send rule in HelenaLight in Fig. 6.10,

we know that the premise Pi
Y !msgnm(X)
↪−−−−−−−−→ P ′i holds. With

Lemma A.7, we can therefore conclude that

transproc(Pi)
τ∗transact(Y !msgnm(X))
↪−−−−−−−−−−−−−−−→ transproc(P

′
i ).

� Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

Y !msgnm,X
↪−−−−−−−→ transproc(P

′
i ).

With this knowledge on the level of process types in PromelaLight,
we tackle each item separately.

We �rst map the evolution of the single process type by a sequence
of τ actions to the evolution of the global PromelaLight state by
a sequence of τ actions. The proof proceeds analogously to Case 1
and we know that there exist n ≥ 0 and γ1, . . . , γn ∈ SPrm such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn = (chn, procn)

= (ch, proc[i 7→ (rt i, βi, π
′
i)])

and for all 1 ≤ i ≤ n : σ ≈ γi.

Secondly, we show that there exists γ′ ∈ SPrm such that

γn
i:Y !msgnm,X−−−−−−−−→Prm γ′ with σ′ ∼ γ′ . That means that γn satis�es the

premise and all side-conditions of the send rule in the PromelaLight
semantics in Fig. 6.14 and therefore the send rule can be applied to γn
resulting in a state γ′ which is ∼-equivalent to σ′.
To this end, we know that the premise and all side-conditions of the
send rule of the HelenaLight semantics in Fig. 6.10 are satis�ed by σ
since we assumed σ a−→Hel σ

′.
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� We repeat: From the premise of the send rule in HelenaLight

in Fig. 6.10, we know that the premise Pi
Y !msgnm(X)
↪−−−−−−−−→ P ′i holds.

With Lemma A.7, we can therefore conclude that

transproc(Pi)
τ∗transact(Y !msgnm(X))
↪−−−−−−−−−−−−−−−→ transproc(P

′
i ).

Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

Y !msgnm,X
↪−−−−−−−→ transproc(P

′
i ),

� Thus, we know that the premise of the send rule in Promela-
Light in Fig. 6.14 is satis�ed by

π′i
Y !msgnm,X
↪−−−−−−−→ transproc(P

′
i )

for i ∈ dom(procn) with procn(i) = (rt i, βi, π
′
i).

� From the side-conditions of the send rule in HelenaLight in
Fig. 6.10, we know that i ∈ dom(σ) with σ(i) = (rt i, vi, qi, Pi).

� Thus, since σ ≈ γn, we know that item (1) of the side-condition
of the send rule in PromelaLight in Fig. 6.14 is satis�ed by
i ∈ dom(procn) with procn(i) = (rt i, βi, π

′
i).

� From the side-conditions of the send rule in HelenaLight in
Fig. 6.10, we know that vi(Y ) = j ∈ dom(σ) with σ(j) =
(rt j , vj , qj , Pj) and |qj | < roleconstraints(rt j).

� Thus, since σ ≈ γn and well-de�nedness of global PromelaLight
states, we know that item (2) of the side-condition of the send rule
in PromelaLight in Fig. 6.14 is satis�ed by βi(Y ) = βj(self) ∈
dom(chn) with j ∈ dom(procn) and chn(βj(self)) = (T, κ, ω) and
|ω| < roleconstraints(rt j) = κ.

� From the side-conditions of the send rule in HelenaLight in
Fig. 6.10, we know that vi(X) = k ∈ dom(σ).

� Thus, since σ ≈ γn, we know that item (3) of the side-condition
of the send rule in PromelaLight in Fig. 6.14 is satis�ed by
βi(X) = βk(self) ∈ dom(chn).

Concluding, the premise and all side-conditions for applying the send

rule in PromelaLight in Fig. 6.14 are satis�ed by γn and we can

conclude that γn
i:Y !msgnm,X−−−−−−−−→Prm γ′ with

γ′ = (ch[βj(self) 7→ (T, κ, ω · (msgnm, βk(self)))],

proc[i 7→ (rt i, βi, transproc(P
′
i ))]).

Lastly, we have to show that σ′ ∼ γ′. From the send rule in Hele-

naLight in Fig. 6.10, we know that

σ′ = σ[i 7→ (rt i, vi, qi, P
′
i )][j 7→ (rt j , vj , qj ·msgnm(k), Pj)].



A.4. ≈-STUTTER SIMULATION OF HELENALIGHT SPECIFICATIONS 313

P
ro
o
f
o
f
P
ro
p
.
A
.8

Thus, it trivially holds that σ′ ∼ γ′.

Case 3: a = i :?msgnm(X:rt j) for i ∈ dom(σ).
We know from the notation in Sec. 6.5.1 that

transact-global(i :?msgnm(X:rt j)) = i : self?msgnm, X.

For this case, we show that

there exist n ≥ 0 and γ1, . . . , γn, γ′ ∈ SPrm such that

(1) γ τ−→Prm γ1 . . .
τ−→Prm γn−1 with σ ≈ γi for all 1 ≤ i ≤ n,

(2) γn
i:self?msgnm,X−−−−−−−−−−→Prm γ

′ with σ′ ∼ γ′.

Before tackling each item separately, we summarize what we can deduce

from the assumption σ
i:?msgnm(X:rtj)−−−−−−−−−−→Hel σ

′.

� From the premise of the receive rule in HelenaLight in Fig. 6.10,

we know that the premise Pi
i:?msgnm(X:rtj)
↪−−−−−−−−−−→ P ′i holds. With

Lemma A.7, we can therefore conclude that

transproc(Pi)
τ∗transact(?msgnm(X:rtj))
↪−−−−−−−−−−−−−−−−−→ transproc(P

′
i ).

� Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

self?msgnm,X
↪−−−−−−−−−→ transproc(P

′
i ).

With this knowledge on the level of process types in Promela-

Light, we tackle each item separately. We �rst map the evo-
lution of the single process type by a sequence of τ actions to
the evolution of the global PromelaLight state by a sequence
of τ actions. The proof proceeds analog to Case 1 and we
know that there exist n ≥ 0 and γ1, . . . , γn ∈ SPrm such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn = (chn, procn)

= (ch, proc[i 7→ (rt i, βi, π
′
i)])

and for all 1 ≤ i ≤ n : σ ≈ γi.

Secondly, we show that there exists γ′ ∈ SPrm such that

γn
i:self?msgnm,X−−−−−−−−−−→Prm γ

′ with σ′ ∼ γ′ . That means that γn satis�es the
premise and all side-conditions of the receive rule in the PromelaLight
semantics in Fig. 6.14 and therefore the receive rule can be applied to
γn resulting in the state γ′ which is ∼-equivalent to σ′.
To this end, we know that the premise and all side-conditions of the
receive rule of the HelenaLight semantics in Fig. 6.10 are satis�ed by
σ since we assumed σ a−→Hel σ

′.
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� From before, we know that the premise and the �rst line of the
side-condition of the receive rule in PromelaLight in Fig. 6.14
is satis�ed by

π′i
self?msgnm,X
↪−−−−−−−−−→ transproc(P

′
i )

for i ∈ dom(procn) and with the de�nition of γn we know that
item (1) of the side condition is satis�ed by

procn(i) = (rt i, βi, π
′
i).

� From the side-conditions of the receive rule in HelenaLight in
Fig. 6.10, we know that i ∈ dom(σ) with

σ(i) = (rt i, vi,msgnm(j) · qi, Pi).

� Thus, since σ ≈ γn, we know that item (2) of the side-condition
of the receive rule in PromelaLight in Fig. 6.14 is satis�ed by
βi(self) ∈ dom(ch) with

ch(βi(self)) = (T, κ, (msgnm, βj(self)) · ω).

� From the side-conditions of the receive rule in HelenaLight in
Fig. 6.10, we know that j ∈ dom(σ).

� Thus, since σ ≈ γn and because of the well-formedness of global
PromelaLight states, we know that the latter part of item (2)
of the side-condition of the receive rule in PromelaLight in
Fig. 6.14 is satis�ed by j ∈ dom(procn) with procn(j) =
(rt j , βj , πj) and βj(self) ∈ dom(chn) .

� Since we consider the PromelaLight translation
trans(EnsSpec), we can assume that the PromelaLight

process �rst declared the channel variable X which is used in a
self?msgnm, X before (cf. de�nition of transrole in Fig. 6.17 and
chandeclsproc in Fig. 6.18).

� Therefore, we know that item (3) of the side-condition of the re-

ceive rule in PromelaLight in Fig. 6.14 is satis�ed by βi(X) ∈
dom(chn).

Concluding, the premise and all side-conditions of applying the receive

rule in PromelaLight in Fig. 6.14 are satis�ed by γn and we can

conclude that γn
i:self?msgnm,X−−−−−−−−−−→Prm γ′ with

γ′ = (ch[βi(self) 7→ (T, κ, ω)],

proc[i 7→ (rt i, βi[X 7→ βj(self)], transproc(P
′
i ))]).

Lastly, we have to show that σ′ ∼ γ′. From the send rule in Hele-

naLight in Fig. 6.10, we know that

σ′ = σ[i 7→ (rt i, vi[X 7→ j], qi, P
′
i )].

Thus, it trivially holds that σ′ ∼ γ′.
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Case 4: a = i : label for i ∈ dom(σ).

We know from the notation in Sec. 6.5.1 that

transact-global(i : label) = i : label : true.

For this case, we show that

there exist n ≥ 0 and γ1, . . . , γn, γ′ ∈ SPrm such that

(1) γ τ−→Prm γ1 . . .
τ−→Prm γn with σ ≈ γi for all 1 ≤ i ≤ n,

(2) γn
i:label :true−−−−−−−→Prm γ

′ with σ′ ∼ γ′.

Before tackling each item separately, we summarize what we can deduce
from the assumption σ i:label−−−→Hel σ

′.

� From the premise of the label rule in HelenaLight in Fig. 6.10,

we know that the premise Pi
label
↪−−→ P ′i holds. With Lemma A.7,

we can therefore conclude that

transproc(Pi)
τ∗transact(label)
↪−−−−−−−−−−→ transproc(P

′
i ).

� Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

label :true
↪−−−−−−→ transproc(P

′
i ).

With this knowledge on the level of process types in Promela-

Light, we tackle each item separately. We �rst map the evo-
lution of the single process type by a sequence of τ actions to
the evolution of the global PromelaLight state by a sequence
of τ actions. The proof proceeds analog to Case 1 and we
know that there exist n ≥ 0 and γ1, . . . , γn ∈ SPrm such that

γ
τ−→Prm γ1 . . .

τ−→Prm γn = (chn, procn)

= (ch, proc[i 7→ (rt i, βi, π
′
i)])

and for all 1 ≤ i ≤ n : σ ≈ γi.

Secondly, we show that there exists γ′ ∈ SPrm such that

γn
i:label :true−−−−−−−→Prm γ′ with σ′ ∼ γ′. That means that γn satis�es the

premise and all side-conditions of the label rule in the PromelaLight
semantics in Fig. 6.15 and therefore the label rule can be applied to γn.

To this end, we know that the premise and all side-conditions of the
label rule of the HelenaLight semantics in Fig. 6.10 are satis�ed by σ
since we assumed σ a−→Hel σ

′.
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� We repeat: From the premise of the label rule in HelenaLight

in Fig. 6.10, we know that the premise Pi
label
↪−−→ P ′i holds. With

Lemma A.7, we can therefore conclude that

transproc(Pi)
τ∗transact(label)
↪−−−−−−−−−−→ transproc(P

′
i ).

Formulated di�erently, we can conclude that there exists a
PromelaLight process expression π′i such that

transproc(Pi)
τ∗
↪−→ π′i

label :true
↪−−−−−−→ transproc(P

′
i ),

� Thus, we know that the premise of the label rule in Promela-

Light in Fig. 6.15 is satis�ed by

π′i
label :true
↪−−−−−−→ transproc(P

′
i )

fori ∈ dom(procn) with procn(i) = (rt i, βi, π
′
i).

� From the side-condition of the label rule in HelenaLight in
Fig. 6.10, we know that i ∈ dom(σ) with σ(i) = (rt i, vi, qi, Pi).

� Thus, since σ ≈ γn, we know that the side-condition of
the send rule in PromelaLight in Fig. 6.15 is satis�ed by
i ∈ dom(procn) with procn(i) = (rt i, βi, π

′
i).

Concluding, the premise and all side-conditions for applying the label

rule in PromelaLight in Fig. 6.15 are satis�ed by γ∗ and we can

conclude that γn
i:label :true−−−−−−−→Prm γ′ with

γ′ = (ch, proc[i 7→ (rt i, βi, transproc(P
′
i ))]).

Lastly, we have to show that σ′ ∼ γ′. From the send rule in Hele-

naLight in Fig. 6.10, we know that

σ′ = σ[i 7→ (rt i, vi, qi, P
′
i )].

Thus, it trivially holds that σ′ ∼ γ′.

Thus, all four types of global actions possible in the transition σ a−→Hel σ
′ were

covered. �

A.5 ≈-Stutter Simulation of PromelaLight Translations

The other way round, we can even show that the relation ≈−1 itself is a ≈−1-stutter
simulation of a PromelaLight translation by its corresponding HelenaLight spec-
i�cation. In this direction, we do not need two relations as from HelenaLight to
PromelaLight. The reason is that in a PromelaLight translation we may take more
steps than in the corresponding HelenaLight speci�cation, but in HelenaLight we
never take more steps than in PromelaLight.
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Before actually proving that the relation ≈−1 is a ≈−1-stutter simulation of a
PromelaLight translation by its corresponding HelenaLight speci�cation, we need
an auxiliary lemma which reasons about actions other than τ . The lemma shows that
whenever a translated process expression in PromelaLight can evolve by a sequence
of τ actions and a translated action other than τ , its corresponding HelenaLight
process expression can also evolve with the corresponding action.

Lemma A.9: Co-Evolution of HelenaLight Process Expressions

Let EnsSpec be a HelenaLight speci�cation such that no role behavior in the

speci�cation contains a start state label and PrmSpec its PromelaLight trans-

lation. In the context of these two speci�cations, let P, P ′ be well-formed pro-

cess expressions in HelenaLight, π, π′, π′′ well-formed process expressions in

PromelaLight, and let a be a HelenaLight action on the level of roles and

b a PromelaLight action on the level of process instances.

If π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(P ),

then P
a
↪−→ P ′ and π′′ = transproc(P

′).

Proof of Lemma A.9

The proof proceeds by induction over the structure of P .

We assume π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(P ) and consider all

forms which the process expression P can have according to Def. 6.10. Thus,

we have to show that P
a
↪−→ P ′ and π′′ = transproc(P

′).

Case 1: P = quit, i.e., π = transproc(P ) = transproc(quit) = false.
The process expression false cannot evolve according to the rules in
PromelaLight in Fig. 6.13. Therefore, the left side of the implication
is not satis�ed.

Case 2: P = a.Q, i.e., π = transproc(P ) = transproc(a.Q)

We can immediately show, that P
a
↪−→ P ′ holds, since in HelenaLight,

the expression P = a.Q evolves by applying the action pre�x rule
of HelenaLight in Fig. 6.9 to a.Q

a
↪−→ Q. Thus, we know that

P = a.Q
a
↪−→ Q = P ′.

It remains to show that

π = transproc(a.Q)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′

entails π′′ = transproc(Q).

With the de�nition of transproc in Fig. 6.17, we have

π = transproc(a.Q) = transact(a); transproc(Q).

To evolve this process expression in PromelaLight, we have to distin-
guish four types of actions.
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Case 2c: a = X ← create(rt j).

� With the de�nition of transact in Fig. 6.17, we have

π = transact(a); transproc(Q)

= run rt j(X); transproc(Q).

� The process expression π cannot evolve by τ actions according
to the semantic rules of PromelaLight in Fig. 6.13. There-
fore, we have

π = π′ = run rt j(X); transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13 again, the process expression evolves to

π′
run rtj(X)
↪−−−−−−−→ transproc(Q).

� By using the notation transact(a), we get

π′
transact(X←create(rtj))
↪−−−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that π′′ = transproc(Q).

Case 2b: a = Y !msgnm(X).

� With the de�nition of transact in Fig. 6.17, we have

π = transact(a); transproc(Q) = Y !msgnm, X; transproc(Q).

� The process expression π cannot evolve by τ actions according
to the semantic rules of PromelaLight in Fig. 6.13. There-
fore, we have

π = π′ = transproc(a.Q) = Y !msgnm, X; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, the process expression evolves to

π′
Y !msgnm,X
↪−−−−−−−→ transproc(Q)

� By using the notation transact(a), we get

π′
transact(Y !msgnm(X))
↪−−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that π′′ = transproc(Q).

Case 2c: a =?msgnm(X:rt j).

� With the de�nition of transact in Fig. 6.17, we have

π = transact(a); transproc(Q)

= self?msgnm, X; transproc(Q).
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� The process expression π cannot evolve by τ actions according
to the semantic rules of PromelaLight in Fig. 6.13. There-
fore, we have

π = π′ = self?msgnm, X; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13 again, the process expression evolves to

π′
self?msgnm,X
↪−−−−−−−−−→ transproc(Q).

� By using the notation transact(a), we get

π′
transact(?msgnm(X:rt))
↪−−−−−−−−−−−−−−−→ transproc(Q).

Thus, it holds that π′′ = transproc(Q).

Case 2d: a = label .

� Due to the assumption that such that no role behavior in the
Helena speci�cation contains a start state label, we can as-
sume that label 6= startrt .

� With the de�nition of transact in Fig. 6.17, we have

π = transact(a); transproc(Q) = label : true; transproc(Q).

� Since label 6= startrt , the process expression π cannot evolve by
τ actions according to the semantic rules of PromelaLight
in Fig. 6.13. Therefore, we have

π = π′ = label : true; transproc(Q).

� By applying the sequential composition rule of Promela-
Light in Fig. 6.13, the process expression evolves to

π′
label :true
↪−−−−−−→ transproc(Q)

� By using the notation transact(a), we get

π′
transact(label)
↪−−−−−−−−→ transproc(Q).

Thus, it holds that π′′ = transproc(Q).

Case 3: P = P1 + P2, i.e., π = transproc(P ) = transproc(P1 + P2).
We assume that

π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(P1 + P2).

Thus, we show that P1 + P2
a
↪−→ P ′ and π′′ = transproc(P

′).

With the de�nition of transproc in Fig. 6.17, we have

π = transproc(P1 + P2) = if :: transproc(P1) :: transproc(P2)�.

Therefore, the two rules nondet. choice-1 or nondet. choice-2 of Prome-
laLight in Fig. 6.13 might be applicable.
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� We start by assuming that the nondet. choice-1 rule is applicable.
Since we assumed that

π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(P1 + P2),

we know from the premise of the nondet. choice-1 rule that

transproc(P1)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′.

� Since transproc(P1) is structurally
smaller than transproc(P1 + P2) and

transproc(P1)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′, we can assume by induc-

tion that P1
a
↪−→ P ′ and π′′ = transproc(P

′).

� Furthermore, with P1
a
↪−→ P ′ as a premise, we can evolve the

process expression P1 + P2 by applying the nondet. choice-1 rule

of HelenaLight in Fig. 6.9 to P1 + P2
a
↪−→ P ′.

� On the other hand, the nondet. choice-2 rule might be applicable:
Since we assumed that

π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(P1 + P2),

we know from the premise of the nondet. choice-2 rule that

transproc(P2)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′.

� Since transproc(P2) is structurally
smaller than transproc(P1 + P2) and

transproc(P2)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′, we can assume by induc-

tion that P2
a
↪−→ P ′ and π′′ = transproc(P

′).

� Furthermore, with P2
a
↪−→ P ′ as a premise, we can evolve the pro-

cess expression P1 + P2 by applying the nondet. choice-2 rule of

HelenaLight in Fig. 6.9 to P1 + P2
a
↪−→ P ′.

Case 4: P = N , i.e., π = transproc(P ) = transproc(N).
We assume that

π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′ and π = transproc(N).

Thus, we have to show that N
a
↪−→ P ′ and π′′ = transproc(P

′).

� With the de�nition of transproc in Fig. 6.17, we have

π = transproc(N) = goto startN .
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� Since we assumed π
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′, we know that this ex-

pression can evolve. The only possibility according to the rules of
PromelaLight in Fig. 6.13 is by applying the goto rule which
evolves the expression to

goto startN
τ
↪−→ startN : true; seq

and we know that the following side-condition holds:

proctype N(chan self){seq1; startN : true; seq2}.

� Since we consider all process expressions in the context of a
HelenaLight speci�cation and its PromelaLight translation,
we know that the process type N in PromelaLight must be
the translation of a corresponding HelenaLight role behavior
roleBehavior N = Q which does not contain a state label startN
and therefore

proctype N(chan self) {
chandeclsproc(Q) startN : true; transproc(Q) },

i.e., seq1 = chandeclsproc(Q) and seq2 = transproc(Q).
� The expression startN : true; seq2 = startN : true; transproc(Q)
can again be evolved by the sequential composition rule of Prome-
laLight in Fig. 6.13 to

startN : true; transproc(Q)
τ
↪−→ transproc(Q).

� Since we assumed that

transproc(N)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′

and transproc(N)
τ∗
↪−→ transproc(Q), it must hold that

transproc(Q)
τ∗
↪−→ π′

transact(a)
↪−−−−−−→ π′′.

� Since transproc(Q) is structurally smaller than transproc(N), we can

assume by induction that Q
a
↪−→ P ′ and π′′ = transproc(P

′).

� Furthermore, with Q
a
↪−→ P ′ as a premise and roleBehavior N =

Q as side-condition, we can evolve the process expression N by
applying the process invocation rule of HelenaLight in Fig. 6.9

to N
a
↪−→ P ′.

Thus, the structure of P was completely covered. �
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With Lemma A.4 and Lemma A.9 which reason about the evolution by silent actions
and non-silent actions, we can �nally show that ≈−1 is a ≈−1-stutter simulation of a
PromelaLight speci�cation by the corresponding HelenaLight speci�cation. Inter-
estingly, in the direction from PromelaLight toHelenaLight, it is enough to employ
the relation ≈−1 itself as a ≈−1-stutter simulation since a PromelaLight translation
might take more steps than the corresponding HelenaLight ensemble speci�cation,
but not the other way around.

Prop. A.10: ≈−1-Stutter Simulation of PromelaLight Translations

Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of

a HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with

Σ = (nm, roletypes, roleconstraints) such that no role behavior in behaviors
contains a start state label and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

≈−1 is a ≈−1-stutter simulation of K(TPrm) by K(THel).

Proof of Prop. A.10

We have to show that the relation ≈−1 satis�es the property of a ≈−1-stutter
simulation described in Def. 6.2. In the proof, we rely on the underlying
labeled transition systems THel and TPrm of K(THel) and K(TPrm). We
show the following property which obviously entails the required property for
a ≈−1-stutter simulation:
For all σ ∈ SHel, γ ∈ SPrm with γ ≈−1 σ,

(1) if there exists γ′ ∈ SPrm such that γ τ−→Prm γ
′, then γ′ ≈−1 σ holds,

(2) if there exists γ′ ∈ SPrm, b ∈ APrm such that γ b−→Prm γ′ and b 6= τ ,
then there exist σ′ ∈ SHel, a ∈ AHel such that σ

a−→Hel σ′,
transact-global(a) = b, and γ′ ≈−1 σ′.

Item (1) directly follows from Lemma A.4.
The proof of item (2) has to consider all four types of global actions possible

in the transition γ b−→Prm γ
′ which are not silent, i.e., b 6= τ . We assume that

γ = (ch, proc) ≈−1 σ and γ b−→Prm γ
′.

Case 1: b = i : run pt j(var) for i ∈ dom(proc).
We know from the notation in Sec. 6.5.1 that

transact-global(i : var ← create(pt j)) = i : run pt j(var).

Thus, we have to show
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that there exists σ′ ∈ SHel such that

(1) σ
i:var←create(ptj)−−−−−−−−−−−→Hel σ

′, and

(2) γ′ ≈−1 σ′.

To this end, we can assume that the premise and all side-conditions of
the run rule of the PromelaLight semantics in Fig. 6.14 are satis�ed
by γ since we assumed γ b−→Prm γ

′.

Firstly, we show that the premise of the create rule in HelenaLight in
Fig. 6.10 is satis�ed.

� From the premise of the run rule in PromelaLight in Fig. 6.14,

we know that the premise πi
run ptj(var)
↪−−−−−−−−→ π′i holds.

� From the notation in Sec. 6.5.1, we know that

transact(var ← create(pt j)) = run pt j(var).

� Since γ ≈−1 σ, we know that

transproc(Pi)
τ∗
↪−→ πi or

chandeclsproc(Pi) startpt i : true; transproc(Pi)
τ∗
↪−→ πi.

However, we can simplify the second option to π = transproc(P )
since channel declarations and the start state label cannot evolve
by the action run pt j(var) as required by γ b−→Prm γ′. Further-
more, this simpli�ed option π = transproc(P ) is subsumed by the

�rst option transproc(P )
τ∗
↪−→ π and can therefore be omitted.

� Thus, we can apply Lemma A.9 and can conclude that the premise
of the create rule in HelenaLight in Fig. 6.10 is satis�ed by

Pi
var←create(ptj)
↪−−−−−−−−−−→ P ′i and π

′
i = transproc(P

′
i ).

Secondly, we show that all side-conditions of the create rule in Hele-
naLight in Fig. 6.10 are satis�ed.

� From the run rule in PromelaLight in Fig. 6.14, we know that
i ∈ dom(proc) with proc(i) = (pt i, βi, πi).

� Thus, since γ ≈−1 σ, we can conclude that
the item (1) of the side-condition of the create

rule in HelenaLight in Fig. 6.10 is satis�ed by
i ∈ dom(σ) with σ(i) = (pt i, vi, qi, Pi).

� From the run rule in PromelaLight in Fig. 6.14, we know that

proctype pt j(chan self){seq1; startptj : true; seq2}.
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� Since we know that trans(EnsSpec) contains transrole(b) for ev-
ery role behavior b in EnsSpec, we can assume that there ex-
ists roleBehavior pt j = Pj such that chandeclsproc(P ) = seq1
and transproc(Pj) = seq2 which satis�es the item (2) of the side-
condition of the create rule in HelenaLight in Fig. 6.10.

Thus, the premise and all side-conditions for applying the create rule in
HelenaLight in Fig. 6.10 are satis�ed by σ and we can conclude that

σ
i:var←create(ptj)−−−−−−−−−−−→Hel σ′ such that

σ′ = σ[i 7→ (pt i, vi[var 7→ next(σ)], qi, P
′
i )]

[next(σ) 7→ (pt j , ∅[self 7→ next(σ)], ε, Pj)]

with transproc(P
′
i ) = π′i and transproc(Pj) = seq .

Lastly, we have to show that γ′ ≈−1 σ′. From the run rule in Prome-
laLight in Fig. 6.14, we know that

γ′ = (ch, proc[i 7→ (pt i, βi, π
′
i)]

[next(proc) 7→ (pt j , ∅[self 7→ c], startptj : true; seq)])

where we know from the side-condition of the run rule in Promela-
Light in Fig. 6.14 that βi(var) = c ∈ dom(ch). Thus, it obviously

holds that σ′ ≈ γ′.

Case 2: b = i : var1!const , var2 for i ∈ dom(proc).
We know from the notation in Sec. 6.5.1 that

transact-global(i : var1!const(var2)) = i : var1!const , var2.

Thus, we have to show

that there exists σ′ ∈ SHel such that

(1) σ
i:var1!const(var2)−−−−−−−−−−−→Hel σ

′, and

(2) γ′ ≈−1 σ′.

To this end, we can assume that the premise and all side-conditions of
the send rule of the PromelaLight semantics in Fig. 6.14 are satis�ed
by γ since we assumed γ b−→Prm γ

′.

Firstly, we show that the premise of the send rule in HelenaLight in
Fig. 6.10 is satis�ed. The proof proceeds analog to Case 1 and we know

that Pi
var1!const(var2)
↪−−−−−−−−−−→ P ′i and π

′
i = transproc(P

′
i ).

Secondly, we show that all side-conditions of the send rule in Hele-

naLight in Fig. 6.10 are satis�ed.

� From the side-conditions of the send rule in PromelaLight in
Fig. 6.14, we know that i ∈ dom(proc) with proc(i) = (pt i, βi, πi).
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� Thus, since γ′ ≈−1 σ, we can conclude that the item (1) of the
side-condition of the send rule in HelenaLight in Fig. 6.10 is
satis�ed by i ∈ dom(σ) with σ(i) = (pt i, vi, qi, Pi).

� From the send rule in PromelaLight in Fig. 6.14, we know that
βi(var1) = c ∈ dom(ch) with ch(c) = (T, κ, ω) and |ω| < κ.

� Thus, since γ ≈−1 σ, we can conclude that the item (2) of the
side-condition of the send rule in HelenaLight in Fig. 6.10 is
satis�ed by vi(var1) = c ∈ dom(σ) with σ(c) = (rtc, vc, qc, Pc) and
|qc| < κ = roleconstraints(rtc).

� From the send rule in PromelaLight in Fig. 6.14, we know that
βi(var2) = v ∈ dom(ch).

� Thus, since γ′ ≈−1 σ, we can conclude that the item (3) of the
side-condition of the send rule in HelenaLight in Fig. 6.10 is
satis�ed by vi(var2) = v ∈ dom(σ).

Thus, the premise and all side-conditions for applying the send rule in
HelenaLight in Fig. 6.10 are satis�ed by σ and we can conclude that

σ
i:var1!const(var2)−−−−−−−−−−−→Hel σ′ with

σ′ = σ[i 7→ (pt i, vi, qi, P
′
i )]

[c 7→ (rtc, vc, qc · const(v), Pc)]

and transproc(P
′
i ) = π′i.

Lastly, we have to show that γ′ ≈−1 σ′ . From the send rule in Prome-
laLight in Fig. 6.14, we know that

γ′ = (ch[c 7→ (T, κ, ω · (const , v))], proc[i 7→ (pt i, βi, π
′
i)]).

Thus, it obviously holds that γ′ ≈−1 σ′.

Case 3: b = i : var1?const , var2 for i ∈ dom(proc).
Since we consider the labeled transition system of the PromelaLight
translation trans(EnsSpec) only (i.e., not an arbitrarily formed Prome-
laLight speci�cation), we know from the translation function transact
in Fig. 6.17 that b can only be of the form i : self?const , var2.

Furthermore, we know from the notation in Sec. 6.5.1 that

transact-global(i :?const(pvar2:rtv)) = i : self?const , var2.

Thus, we have to show

that there exists σ′ ∈ SHel such that

(1) σ
i:?const(pvar2:rtv)−−−−−−−−−−−→Hel σ

′, and

(2) γ′ ≈−1 σ′.
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To this end, we can assume that the premise and all side-conditions
of the receive rule of the PromelaLight semantics in Fig. 6.14 are
satis�ed by γ since we assumed γ b−→Prm γ

′.

Firstly, we show that the premise of the receive rule in HelenaLight
in Fig. 6.10 is satis�ed. The proof proceeds analog to Case 1 and we

know that Pi
?const(pvar2:rtv)
↪−−−−−−−−−−→ P ′i and π

′
i = transproc(P

′
i ).

Secondly, we show that all side-conditions of the receive rule in Hele-
naLight in Fig. 6.10 are satis�ed.

� From the receive rule in PromelaLight in Fig. 6.14, we know
that i ∈ dom(proc) with proc(i) = (pt i, βi, πi) and βi(self) = c ∈
dom(ch) with ch(c) = (T, κ, (const , v) · ω) and v ∈ dom(ch).

� Thus, since γ ≈−1 σ, we can conclude that i ∈ dom(σ) with
σ(i) = (pt i, vi, const(v) · qi, Pi) and v ∈ dom(σ).

Thus, the premise and all side-conditions for applying the receive rule in
HelenaLight in Fig. 6.10 are satis�ed by σ and we can conclude that

σ
i:?const(pvar2:rtv)−−−−−−−−−−−→Hel σ′ with

σ′ = σ[i 7→ (pt i, vi[var2 7→ v], qi, P
′
i )]

and transproc(P
′
i ) = π′i.

Lastly, we have to show that γ′ ≈−1 σ′. From the send rule in Prome-
laLight in Fig. 6.14, we know that

γ′ = (ch[c 7→ (T, κ, ω)], proc[i 7→ (pt i, βi[var2 7→ v], π′i)]).

Thus, it obviously holds that γ′ ≈−1 σ′.

Case 4: b = i : label : true,
Since we only consider b 6= τ , it holds that b 6= i : startpt j : true for
i, j ∈ dom(proc).

We know from the notation in Sec. 6.5.1 that

transact-global(i : label) = i : label : true.

Thus, we have to show

that there exists σ′ ∈ SHel such that

(1) σ i:label−−−→Hel σ
′, and

(2) γ′ ≈−1 σ′.

To this end, we can assume that the premise and all side-conditions of
the label rule of the PromelaLight semantics in Fig. 6.15 are satis�ed
by γ since we assumed γ b−→Prm γ

′.
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Firstly, we show that the premise of the label rule in HelenaLight in
Fig. 6.10 is satis�ed. The proof proceeds analog to Case 1 and we know

that Pi
label
↪−−→ P ′i and transproc(P

′
i ) = π′i.

Secondly, we show that all side-conditions of the label rule in Hele-

naLight in Fig. 6.10 are satis�ed.

� From the label rule in PromelaLight in Fig. 6.15, we know that
i ∈ dom(proc) with proc(i) = (pt i, βi, πi).

� Thus, since γ ≈−1 σ, we can conclude that the side-condition of
the label rule in HelenaLight is satis�ed by i ∈ dom(σ) with
σ(i) = (pt i, vi, qi, Pi).

Thus, the premise and all side-conditions for applying the label rule in
HelenaLight in Fig. 6.10 are satis�ed by σ and we can conclude that

σ
i:label−−−→Hel σ′ with σ′ = σ[i 7→ (pt i, vi, qi, P

′
i )] and transproc(P

′
i ) = π′i.

Lastly, we have to show that γ′ ≈−1 σ′ . From the label rule in Prome-
laLight in Fig. 6.15, we know that

γ′ = (ch, proc[i 7→ (pt i, βi, π
′
i)]).

Thus, it obviously holds that γ′ ≈−1 σ′.

Thus, all four types of global actions possible in the transition γ
b−→Prm γ′

where b 6= τ were covered. �

A.6 Stutter Trace Equivalence of HelenaLight and Prome-

laLight

In the last sections, we showed that

� the relation ≈ preserves satisfaction of atomic propositions in Prop. A.2,

� the relation ≈ is divergence-sensitive in Prop. A.5,

� any admissible initial state of a HelenaLight ensemble speci�cation and its
PromelaLight translation are related by the relation ∼ in Prop. A.6,

� the relation ∼ is a ≈-stutter simulation of the Kripke structure of the Hele-
naLight speci�cation by the Kripke structure of the PromelaLight translation
in Prop. A.8, and

� the inverse relation ≈−1 is a ≈−1-stutter simulation in the other direction in
Prop. A.10.

Therefore, we can directly infer by Def. 6.2 and Thm. 6.5 that the induced Kripke
structures of a HelenaLight ensemble speci�cation and its PromelaLight transla-
tion are stutter trace equivalent. Note that we have to make three assumptions to be
able to apply Prop. A.2, Prop. A.5, Prop. A.8, and Prop. A.10: role behavior declara-
tions may not contain a start state label, role behavior declarations in HelenaLight
may not start with a state label and in any nondeterministic choice construct of a role
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behavior, process invocation may not be one of the branches. Furthermore, in the trans-
lation, we make two assumptions which can be alleviated in future work: each role type
can only be adopted by a single component type and we only verify a single ensemble
instance per translation.

Thm. A.11: Stutter Trace Equivalence of
HelenaLight and PromelaLight

Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of a

HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) such that

� no role behavior in behaviors contains a start state label startrt ,

� no role behavior in behaviors starts with a state label, and

� in any nondeterministic choice construct in a role behavior in

behaviors, process invocation is not one of the branches, and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

Then K(THel) and K(TPrm) are stutter trace equivalent.

Proof of Thm. A.11

We showed in Prop. A.2 that the relation ≈ is property-preserving and in
Prop. A.5 that it is divergence-sensitive. It only remains to show thatK(THel)
is ≈-stutter simulated byK(TPrm) and vice versa to be able to apply Thm. 6.5.
To this end, we have already proven that the relation ∼ is a ≈-stutter sim-
ulation of the Kripke structure of the HelenaLight speci�cation by the
Kripke structure of the PromelaLight translation in Prop. A.8 and that
any admissible initial state of a HelenaLight ensemble speci�cation and
its PromelaLight translation are related by the relation ∼ in Prop. A.6.
Therefore, we can apply Def. 6.2 and deduce that K(THel) is ≈-stutter sim-
ulated by K(TPrm). In the other direction, we have already proven that the
inverse relation ≈−1 is a ≈−1-stutter simulation of the Kripke structure of
the PromelaLight translation by the Kripke structure of its original He-
lenaLight speci�cation. Thus, it remains to show that the initial states
of K(THel) and K(TPrm) are in the relation ≈ (which entails that they are
also in the relation ≈−1). With Prop. A.6, we proved that any initial state
of a HelenaLight speci�cation and its PromelaLight translation are in
the relation ∼. Since ∼⊆≈, we can conclude that any initial state of a He-
lenaLight speci�cation and its PromelaLight translation are also in the
relation ≈ (and therefore vice versa in the relation ≈−1). Therefore, we can
apply Def. 6.2 and deduce thatK(TPrm) is ≈−1-stutter simulated byK(THel).
Together, all conditions of Thm. 6.5 are satis�ed and therefore we can conclude
that K(THel) and K(TPrm) are stutter trace equivalent. �
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At this point, we want to mention that the relation ≈ could be proven as a ≈-
stutter simulation in both directions. It could even be shown that the relation ≈ is a
weak bisimulation. However, for the lack of understandability we relied on the stronger
relation ∼ in the proof.

On the result from Thm. A.11, we can furthermore apply Thm. 6.6 to show that
both Kripke structures satisfy the same LTL\X formulae.

Cor. A.12: HelenaLight LTL\X Preservation

Let

� K(THel) = (SHel, AHel,−→•Hel, FHel) be the induced Kripke structure of a

HelenaLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes, roleconstraints) such that

� no role behavior in behaviors contains a start state label startrt ,

� no role behavior in behaviors starts with a state label, and

� in any nondeterministic choice construct in a role behavior in

behaviors, process invocation is not one of the branches, and

� K(TPrm) = (SPrm, APrm,−→•Prm, FPrm) be the induced Kripke structure of

its PromelaLight translation trans(EnsSpec).

For any LTL\X formula φ over AP (EnsSpec), K(THel) |= φ⇔ K(TPrm) |= φ.
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Appendix B

Helena Workbench

The Helena workbench provides tool support for the development of ensemble-based
systems with Helena relying on Eclipse. A custom editor in Eclipse allows to de�ne
ensemble speci�cations using the domain-speci�c language HelenaText (cf. Sec. 8.2).
The editor provides syntax highlighting, content assist as well as validation of the spec-
i�cation. Furthermore, two generators take the HelenaText speci�cation as input
to generate an semantically equivalent Promela veri�cation model for model-checking
with Spin (cf. Chap. 4 and Sec. 8.3) and to generate Java code which can be executed
relying on the jHelena framework (cf. Chap. 7 and Sec. 8.4). This appendix explains
in Appendix B.1 how the Helena workbench can further be developed to include more
features and in Appendix B.2 how it can be used to de�ne ensemble speci�cations.

The complete implementation of the Helena workbench can be found on the at-
tached CD in the projects eu.ascens.helenaText, eu.ascens.helenaText.sdk,
eu.ascens.helenaText.tests, and eu.ascens.helenaText.ui. The p2p example is ex-
ercised with the Helena workbench in the project eu.ascens.helenaText.p2p.

B.1 User-Guide for Developing the Helena Workbench

The following sections explain how the Helena workbench is developed.

B.1.1 Setting-up an Xtext Project in Eclipse

Initially, an Xtext project must be set up to develop the Helena workbench. The
following steps were necessary (tested with Eclipse Neon 4.6.0):

� install Xtext plug-in in the Eclipse installation
(Xtext 2.9.1 from Eclipse Marketplace)

� install ATL plug-in in the Eclipse installation, it might be necessary to uninstall
any previous version of ATL
(ATL/EMFTVM 3.8.0 from Eclipse Marketplace)

� create new Xtext project and �nish with the default settings → four projects
are created (language, sdk, tests, ui)

In the generated .xtext-�le, the Xtext grammar for HelenaText is de�ned. To
generate the HelenaText editor as an Eclipse plug-in, this grammar needs to be run
such that the plug-in code is generated. To initiate the generation, right-click on the
.xtext-�le and select `Run As'→ `Generate Xtext Artifacts'. Whenever changes in the
grammar are made, the generation of Xtext artifacts has to be initiated again (for more

331
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information see the tutorial on http://www.eclipse.org/Xtext/documentation.
html#FirstFiveMinutes).

Afterwards the plug-in can be used either by exporting the plug-in (cf.
Appendix B.1.3) or by launching a new Eclipse instance. To do the latter, right-click
on the language-project and select `Run As' → Eclipse Application. A new Eclipse in-
stance is launched which contains the HelenaText plug-in. The usage of the Helena
workbench and its HelenaText editor is explained in Appendix B.2.

B.1.2 Projects and Packages of the Helena Workbench

The Helena workbench consists of three projects:

� The project eu.ascens.helenaText contains the de�nition of the grammar of the
domain-speci�c language HelenaText, formatting and validation for the gener-
ated HelenaText editor, and both generators to Promela and to jHelena.

� The package eu.ascens contains the grammar �le HelenaText.xtext for He-
lenaText and the work�ow GenerateHelenaText.mwe2 to create the Eclipse
editor.

� The package eu.ascens.validation contains validation rules which check
conformance of the HelenaText speci�cation with the formal Helena
de�nition. Validation checks are executed while typing in the HelenaText
editor.

� The package eu.ascens.scoping de�nes the scoping context of certain enti-
ties of the HelenaText grammar, e.g., all variables in the scope of a role
behavior.

� The package eu.ascens.formatting contains rules for formatting a Hele-
naText speci�cation automatically. Formatting is triggered in the Hele-
naText editor by pressing CTRL+SHIFT+F.

� The package eu.ascens.generator contains all generation rules for the trans-
lation from HelenaText to Promela and to jHelena. Generation is
triggered in the HelenaText editor whenever a �le is saved.

� The project eu.ascens.helenaText.tests is a project where unit tests for testing
the parser, validator etc. can be de�ned.

� The project eu.ascens.helenaText.ui provides the implementation of the Hele-
naText editor. It is mostly generated and can be adapted to make customize
the HelenaText editor, e.g., to add quick �xes, to change the appearance of the
outline, or to provide code proposals.

B.1.3 Exporting the Helena Workbench as Eclipse Plug-in

To make the Helena workbench available to users (instead of just launching an internal
Eclipse instance), it must be exported as an Eclipse plug-in. The export creates several
jar-archives. To use the Helena workbench, the user has to install the plug-in into
his Eclipse installation by copying the jar �les into the plugins folder of his Eclipse
installation.

TheHelena workbench is exported as an Eclipse plug-in by using the Eclipse export
functionality which can only be used if the Eclipse Plug-in Development Environment
and Tools are installed in the running Eclipse installation. The following steps are
necessary to export the Helena workbench:

http://www.eclipse.org/Xtext/documentation.html#FirstFiveMinutes
http://www.eclipse.org/Xtext/documentation.html#FirstFiveMinutes
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� click `File' → `Export'

� choose `Plug-in Development' → `Deployable plug-ins and fragments'

� select the projects eu.ascens.helenaText and eu.ascens.helenaText.ui

� set the target directory for the resulting jar �les

� click `Finish'

B.2 User-Guide for Using the Helena Workbench

To use the HelenaText editor, a running Eclipse installation is needed. The installa-
tion was tested with Eclipse Neon 4.6.0 with the plug-ins for Xtext version 2.9.1 and
ATL/EMFTVM 3.8.0 installed from Eclipse Marketplace (any previous version of ATL
might have to be uninstalled before). To add the Helena workbench to this Eclipse
installation, two approaches are possible: Either import the jar-archives of the Helena
plug-in (cf. Appendix B.1.3) to the plugins-folder of the current Eclipse installation.
Or launch a new internal Eclipse instance with the Helena workbench running (cf.
Appendix B.1.1).

In the Eclipse installation with the Helena plug-in, the HelenaText editor can
be used. For that, create a new Java project in the new Eclipse instance and create
a �le in the src-folder of the new project with the extension of the de�ned language,
i.e., .helena. A window will pop-up which asks whether the Xtext nature should be
added to the new project. By con�rming this pop-up, the HelenaText editor can be
used for the new project.

With that, the Java project is ready to be used for the speci�cation of an ensemble-
based system with HelenaText. The speci�cation has to be written in a .helena-�le.
Such a �le is supported by a custom HelenaText editor which provides syntax high-
lighting, content assist and validation. On save, a validHelenaText �le is furthermore
automatically translated to Promela and Java. The generated Promela �le resides
in the folder promela-gen and has the same name as the .helena, but with the exten-
sion .pml. This �le can be used for veri�cation with Spin (cf. Sec. 5.3). The generated
Java code resides in the folders src-gen and src-user. To be able to run the generated
Java code, several steps are necessary. Firstly, the two folders have to be added to the
build-path. Secondly, the jHelena framework has to be added to the build-path (either
as a jar-archive or a project). Thirdly, the missing code in the implementation classes
of the folder src-user has to be implemented (cf. Sec. 8.4).

B.3 Complete HelenaText Grammar

The domain-speci�c language HelenaText provides a concrete textual syntax to spec-
ify Helena ensemble speci�cations. Its grammar is de�ned relying on the Xtext
workbench of Eclipse. This section lists the complete HelenaText grammar written
in Xtext.

1 grammar eu.ascens.HelenaText with org.eclipse.xtext.xbase.Xbase
2

3 generate helenaText "http://www.ascens.eu/HelenaText"
4 import ’http://www.eclipse.org/xtext/xbase/Xbase’ as xbase
5

6 ////////// MODEL /////////////
7 Model:
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8 headPkg = PackageDeclaration
9 ;

10

11 PackageDeclaration:
12 ’package’ name=QualifiedName ’{’
13 (compTypes += ComponentType)*
14 & (roleTypes += RoleType)*
15 & (ensStructs += EnsembleStructure)*
16 & (roleBehaviors += RoleBehavior)*
17 ’}’
18 ;
19

20 ////////// COMPONENT TYPE /////////////
21 ComponentType:
22 ’componentType’ name=ValidID ’{’
23 (
24 attrs += ComponentAttributeType
25 | assocs += ComponentAssociationType
26 | ops += OperationType
27 )*
28 ’}’
29 ;
30 AbstractComponentFieldType:
31 ComponentAttributeType |
32 ComponentAssociationType
33 ;
34 ComponentAttributeType:
35 ’attr’ type=JvmTypeReference name=ValidID ’;’
36 ;
37 ComponentAssociationType:
38 ’assoc’ type=[ComponentType] name=ValidID ’;’
39 ;
40 OperationType:
41 ’op’ returnType=JvmTypeReference name=ValidID formalDataParamsBlock=

FormalDataParamsBlock ’;’
42 ;
43

44 ///////////// ROLE TYPE /////////////////
45 RoleType:
46 ’roleType’ name=ValidID ’over’ compTypes+=[ComponentType](’,’compTypes+=[

ComponentType])* ’{’
47 (
48 roleattrs += RoleAttributeType
49 | rolemsgs += MessageType
50 )*
51 ’}’
52 ;
53 RoleAttributeType:
54 ’roleattr’ type=JvmTypeReference name=ValidID ’;’
55 ;
56 MessageType:
57 ’rolemsg’ direction=MsgDirection name=ValidID formalRoleParamsBlock=

FormalRoleParamsBlock formalDataParamsBlock=FormalDataParamsBlock ’;’
58 ;
59 enum MsgDirection :
60 IN = ’in’
61 | OUT = ’out’
62 | INOUT = ’in/out’
63 ;
64

65 ///////////// ENSEMBLE STRUCTURE /////////////
66 EnsembleStructure:
67 ’ensembleStructure’ name=ValidID ’{’
68 rtWithMult+=RoleTypeWithMultiplicity (rtWithMult+=RoleTypeWithMultiplicity)*
69 ’}’
70 ;
71 RoleTypeWithMultiplicity:
72 ’<’
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73 roleType=[RoleType]
74 ’,’
75 ’min’ ’=’ min=MultElem
76 ’,’
77 ’max’ ’=’ max=MultElem
78 ’,’
79 ’cap’ ’=’ capacity=INT
80 ’>’
81 ’;’
82 ;
83 MultElem:
84 (’*’ | INT)
85 ;
86

87 ////////// ROLE BEHAVIORS /////////
88 RoleBehavior:
89 {DeclaringRoleBehavior} ’roleBehavior’ roleTypeRef=[RoleType] ’=’ processExpr=

ProcessExpression
90 | {InvokingRoleBehavior} ’roleBehavior’ roleTypeRef=[RoleType] ’=’

processInvocation=ProcessInvocation
91 ’{’ (processes+=Process)* ’}’
92 ;
93 Process:
94 ’process’ name=ValidID ’=’ processExpr=ProcessExpression
95 ;
96

97 ////////// PROCESS TERMS /////////
98 ProcessExpression:
99 {QuitTerm} ’quit’

100 | ActionPrefix
101 | NondeterministicChoice
102 | IfThenElse
103 | ProcessInvocation
104 ;
105 ActionPrefix:
106 action=Action ’.’ processExpr=ProcessExpression
107 ;
108 NondeterministicChoice:
109 ’(’ first=ProcessExpression ’+’ second=ProcessExpression ’)’
110 ;
111 IfThenElse:
112 ’if’ ’(’ guard=Guard ’)’ ’{’ ifProcessExpr=ProcessExpression ’}’
113 ’else’ ’{’ elseProcessExpr=ProcessExpression ’}’
114 ;
115 ProcessInvocation:
116 process=[Process]
117 ;
118

119 ///////// ACTIONS //////////////
120 Action:
121 AbstractAssignment
122 | AbstractMessageCall
123 | OperationCall
124 | ComponentAttributeSetter
125 | RoleAttributeSetter
126 | Label
127 ;
128 AbstractAssignment:
129 {GetAssignment} roleInst=RoleInstanceVariable ’<-’ ’get’ ’(’ roleTypeRef=[RoleType]

’,’ compInstance=ComponentInstance ’)’
130 | {CreateAssignment} roleInst=RoleInstanceVariable ’<-’ ’create’ ’(’ roleTypeRef=[

RoleType] ’,’ compInstance=ComponentInstance ’)’
131 ;
132 AbstractMessageCall:
133 OutgoingMessageCall
134 | IncomingMessageCall
135 ;
136 OutgoingMessageCall:
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137 receiver=AbstractRoleInstanceReference ’!’
138 msgName=ValidID
139 actualRoleParamsBlock=ActualRoleParamsBlock
140 actualDataParamsBlock=ActualDataParamsBlock
141 ;
142 IncomingMessageCall:
143 ’?’ msgName=ValidID formalRoleParamsBlock=FormalRoleParamsBlock

formalDataParamsBlock=FormalDataParamsBlock
144 ;
145 OperationCall:
146 (variable=DataVariable ’=’)? ’owner.’ opName=ValidID actualDataParamsBlock=

ActualDataParamsBlock
147 ;
148 ComponentAttributeSetter:
149 attr=ComponentAttributeTypeReference ’=’ value=DataExpression
150 ;
151 RoleAttributeSetter:
152 attr=RoleAttributeTypeReference ’=’ value=DataExpression
153 ;
154 Label:
155 name=ValidID
156 ;
157

158 //////////// GUARDS //////////////
159 Guard:
160 OrTerm
161 ;
162 OrTerm returns Guard:
163 AndTerm ({OrTerm.left=current} ’||’ right=AndTerm )*
164 ;
165 AndTerm returns Guard:
166 EqualityTerm ({AndTerm.left=current} ’&&’ right=EqualityTerm)*
167 ;
168 EqualityTerm returns Guard:
169 NotTerm ({EqualityTerm.left=current} operator=OpEquality right=NotTerm)*
170 ;
171 NotTerm returns Guard:
172 {NotTerm}
173 (not=’!’)? atom=Atom
174 ;
175 Atom:
176 DataExpression
177 | PlaysQuery
178 | Relation
179 | GuardInParentheses
180 ;
181 PlaysQuery:
182 ’plays’ ’(’ roleTypeRef=[RoleType] ’,’ compInstance=ComponentInstance ’)’
183 ;
184 Relation:
185 left=DataExpression operator=OpCompare right=DataExpression
186 ;
187 GuardInParentheses:
188 ’(’ guard=Guard ’)’
189 ;
190 AbstractDataValue:
191 BooleanValue|
192 NumberValue |
193 StringValue
194 ;
195 BooleanValue:
196 value = XBooleanLiteral
197 ;
198 NumberValue:
199 value = XNumberLiteral
200 ;
201 StringValue:
202 value = XStringLiteral
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203 ;
204 OpEquality:
205 ’==’ | ’!=’ ;
206 OpCompare:
207 ’>=’ | ’<’ ’=’ | ’>’ | ’<’ ;
208

209 //////// COMPONENT INSTANCES ///////////////
210 ComponentInstance:
211 ComponentAssociationTypeReference
212 | OwnerReference
213 ;
214 ComponentAssociationTypeReference:
215 ’owner.’ ref=[ComponentAssociationType]
216 ;
217 OwnerReference:
218 {OwnerReference} ’owner’
219 ;
220

221 /////////// ROLE INSTANCES /////////////////
222 AbstractRoleInstance:
223 RoleInstanceVariable
224 | FormalRoleParam
225 ;
226 RoleInstanceVariable:
227 name=ValidID
228 ;
229 FormalRoleParam :
230 type=[RoleType] name=ValidID
231 ;
232 FormalRoleParamsBlock:
233 {FormalRoleParamsBlock}
234 ’(’
235 ( params+=FormalRoleParam (’,’ params += FormalRoleParam)* )?
236 ’)’
237 ;
238

239 ///////// ROLE INSTANCE REFERENCES ///////////////
240 RoleInstanceReference:
241 AbstractRoleInstanceReference
242 | {SelfReference} ’self’
243 ;
244 AbstractRoleInstanceReference:
245 ref=[AbstractRoleInstance]
246 ;
247 ActualRoleParamsBlock:
248 {ActualRoleParamsBlock}
249 ’(’
250 ( params+=RoleInstanceReference (’,’ params += RoleInstanceReference)* )?
251 ’)’
252 ;
253

254 /////////// DATA INSTANCES /////////////////
255 AbstractDataVariable:
256 FormalDataParam
257 | DataVariable
258 ;
259 DataVariable:
260 name=ValidID
261 ;
262 FormalDataParam:
263 type=JvmTypeReference name=ValidID
264 ;
265 FormalDataParamsBlock:
266 {FormalDataParamsBlock}
267 ’(’
268 ( params+=FormalDataParam (’,’ params+=FormalDataParam)* )?
269 ’)’
270 ;
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271

272 /////////// DATA INSTANCE REFERENCES /////////////////
273 DataExpression:
274 SimpleDataExpression
275 | Addition
276 | Subtraction;
277 Addition returns DataExpression:
278 SimpleDataExpression ({Addition.left=current} operator="+" right=SimpleDataExpression

)
279 ;
280 Subtraction returns DataExpression:
281 SimpleDataExpression ({Subtraction.left=current} operator="-" right=

SimpleDataExpression)
282 ;
283 SimpleDataExpression returns DataExpression:
284 AbstractDataReference
285 | AbstractDataValue
286 ;
287 AbstractDataReference:
288 AbstractDataVariableReference
289 | RoleAttributeTypeReference
290 | ComponentAttributeTypeReference
291 ;
292 AbstractDataVariableReference:
293 ref=[AbstractDataVariable]
294 ;
295 RoleAttributeTypeReference:
296 ’self.’ ref=[RoleAttributeType]
297 ;
298 ComponentAttributeTypeReference:
299 ’owner.’ ref=[ComponentAttributeType]
300 ;
301 ActualDataParamsBlock:
302 {ActualDataParamsBlock}
303 ’(’
304 ( params+=DataExpression (’,’ params += DataExpression)* )?
305 ’)’
306 ;
307

308 ///////////// AUXILIARIES //////////////////
309 // Parent for Helena objects that should be duplicate free
310 AbstractDuplicateFreeObject:
311 AbstractHelenaEntity
312 | AbstractFieldType
313 | MessageType
314 | OperationType
315 | RoleBehavior
316 | Process
317 | Label
318 | AbstractRoleInstance
319 | AbstractDataVariable
320 ;
321 // Parent for all structural entities of Helena
322 AbstractHelenaEntity:
323 ComponentType
324 | RoleType
325 | EnsembleStructure
326 ;
327 // Parent for all fields (component or role attributes and component associations)
328 AbstractFieldType:
329 AbstractComponentFieldType
330 | RoleAttributeType
331 ;
332 // Parent for entities used in a role behavior
333 AbstractRoleBehaviorEntity:
334 Process
335 | ProcessExpression
336 | Action
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337 | ComponentInstance
338 | RoleInstanceReference
339 | AbstractRoleInstance
340 | AbstractDataVariable
341 | DataExpression
342 ;
343 // Parent for all instances
344 AbstractInstance:
345 AbstractDataVariable |
346 AbstractRoleInstance
347 ;
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Appendix C

P2P Example

The Helena development methodology was showcased at a small peer-to-peer (p2p)
example throughout this thesis. The envisioned showcase supports the distributed stor-
age of �les in a p2p network. Several peers in this network work together to retrieve a
�le upon request.

In this appendix, we �rst show the complete speci�cation of the p2p example in
HelenaText. Afterwards, the Promela speci�cation is given which is automati-
cally generated from the HelenaText speci�cation with the Helena workbench (cf.
Chap. 8). The Promela speci�cation is enriched by an init-process to set up an initial
state as given in Sec. 5.3 and with the goals of the p2p example explained in Sec. 5.3
formulated as LTL properties.

The complete p2p example can be found on the attached CD in the project
eu.ascens.helenaText.p2p which relies on the Helena workbench.

C.1 Speci�cation in HelenaText

This section lists the complete HelenaText speci�cation of the p2p example. It was
developed relying on the Helena workbench from Chap. 8. Compared to the initial
model of p2p example in Sec. 2.4, it was extended to meet all assumptions described in
Sec. 5.1 for model-checking with Spin.

1 // p2p example
2 package p2p {
3 componentType Peer {
4 attr boolean hasFile;
5 attr int content;
6 assoc Peer neighbor;
7 op void printFile();
8 }
9

10 roleType Requester over Peer {
11 roleattr boolean hasFile;
12 rolemsg out reqAddr(Requester req)();
13 rolemsg in sndAddr(Provider prov)();
14 rolemsg out reqFile(Requester req)();
15 rolemsg in sndFile()(int content);
16 }
17

18 roleType Router over Peer {
19 rolemsg in/out reqAddr(Requester req)();
20 rolemsg out sndAddr(Provider prov)();
21 }

341
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22

23 roleType Provider over Peer {
24 rolemsg in reqFile(Requester req)();
25 rolemsg out sndFile()(int content);
26 }
27

28 ensembleStructure TransferEnsemble {
29 <Requester, min=1, max=1, cap=2>;
30 <Router, min=0, max=*, cap=2>;
31 <Provider, min=0, max=1, cap=1>;
32 }
33

34 roleBehavior Requester =
35 router <- create(Router, owner.neighbor) .
36 router ! reqAddr(self)() .
37 ? sndAddr(Provider prov)() .
38 stateSndAddr .
39 prov ! reqFile(self)() .
40 ? sndFile()(int content) .
41 stateSndFile .
42 owner.content = content .
43 owner.hasFile = true .
44 self.hasFile = true .
45 owner.printFile() .
46 quit
47

48 roleBehavior Provider =
49 ? reqFile(Requester req)() .
50 req ! sndFile()(owner.content) .
51 quit
52

53 roleBehavior Router = RouterProc {
54 process RouterProc =
55 ? reqAddr(Requester req)() .
56 if ( owner.hasFile ) {
57 provider <- create(Provider, owner) .
58 req ! sndAddr(provider)() .
59 quit
60 }
61 else {
62 if ( !plays(Router, owner.neighbor) ) {
63 router <- create(Router, owner.neighbor) .
64 router ! reqAddr(req)() .
65 RouterProc
66 }
67 else {
68 quit
69 }
70 }
71 }
72 }

C.2 Generated Promela Speci�cation with Goals

This section lists the Promela speci�cation of the p2p example. It was automati-
cally generated from the HelenaText speci�cation of the previous section using the
Helena workbench from Chap. 8. The translation is derived following the rules in
Sec. 5.2.2. However, the translation of all actions is extracted to inline-function such
that the generated code is cleaner (e.g., an inline-function send_reqAddr is generated
for sending the message reqAddr). Furthermore, the Promela speci�cation is enriched
by an init-process to set up an initial state as given in Sec. 5.3 and with the goals of
the p2p example as explained in Sec. 5.3.
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1 ///////////// ensemble structure multiplicities //////////////////////
2 int minRequester = 1;
3 int maxRequester = 1;
4 int currentRequester = 0;
5

6 int minRouter = 0;
7 int maxRouter = (2^31)-1;
8 int currentRouter = 0;
9

10 int minProvider = 0;
11 int maxProvider = 1;
12 int currentProvider = 0;
13

14 ///////////// component operation definitions //////////////////////
15 typedef PeerOperation {
16 mtype {
17 // operations to access attributes of component
18 GET_HASFILE, SET_HASFILE, GET_CONTENT, SET_CONTENT,
19

20 // operations to access associations to other components
21 GET_NEIGHBOR,
22

23 // operations
24 OP_PRINTFILE,
25

26 // operations to manage role playing
27 CREATE_REQUESTER, GET_REQUESTER, QUIT_REQUESTER, PLAYS_REQUESTER,
28 CREATE_ROUTER, GET_ROUTER, QUIT_ROUTER, PLAYS_ROUTER,
29 CREATE_PROVIDER, GET_PROVIDER, QUIT_PROVIDER, PLAYS_PROVIDER
30 };
31

32 mtype optype;
33 chan parameters;
34 chan answer;
35 }
36

37 //////// helpers for communication between roles and Peer components /////////
38 inline peer_retrieveRole(rtOperation,component,role) {
39 PeerOperation op;
40 op.optype = rtOperation;
41 chan answer = [0] of { chan };
42 op.answer = answer;
43 component!op;
44 answer?role;
45 }
46

47 inline peer_quitRole(rtOperation,component) {
48 PeerOperation op;
49 op.optype = rtOperation;
50 component!op;
51 }
52

53 inline peer_isPlaying(playsOperation,component,plays) {
54 PeerOperation op;
55 op.optype = playsOperation;
56 chan answer = [0] of { bool };
57 op.answer = answer;
58 component!op;
59 answer?plays;
60 }
61

62 inline peer_retrieveAssociation(assocOperation,component,assoc) {
63 PeerOperation op;
64 op.optype = assocOperation;
65 chan answer = [0] of { chan };
66 op.answer = answer;
67 component!op;
68 answer?assoc;
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69 }
70

71 inline peer_getHasFile(component,hasFile) {
72 PeerOperation op;
73 op.optype = GET_HASFILE;
74 chan answer = [0] of { bool };
75 op.answer = answer;
76 component!op;
77 answer?hasFile;
78 }
79

80 inline peer_setHasFile(component,value) {
81 PeerOperation op;
82 op.optype = SET_HASFILE;
83 chan parameters = [0] of { bool };
84 op.parameters = parameters;
85 component!op;
86 parameters!value;
87 }
88

89 inline peer_getContent(component,content) {
90 PeerOperation op;
91 op.optype = GET_CONTENT;
92 chan answer = [0] of { int };
93 op.answer = answer;
94 component!op;
95 answer?content;
96 }
97

98 inline peer_setContent(component,value) {
99 PeerOperation op;

100 op.optype = SET_CONTENT;
101 chan parameters = [0] of { int };
102 op.parameters = parameters;
103 component!op;
104 parameters!value;
105 }
106

107 inline peer_callPrintFile(component) {
108 PeerOperation op;
109 op.optype = OP_PRINTFILE;
110 component!op;
111 }
112

113 ///////////// message definitions //////////////////////
114 mtype {
115 setOffInitialRole,
116 reqFile,
117 sndFile,
118 reqAddr,
119 sndAddr
120 }
121

122 //////// helper for setting up initial state /////////
123 inline send_setOffInitialRole(receiver) {
124 receiver!setOffInitialRole,1,1;
125 }
126

127 inline receive_setOffInitialRole() {
128 self?setOffInitialRole,1,1;
129 }
130

131 //////// helper for communication between roles /////////
132 inline send_reqFile(receiver,req) {
133 receiver!reqFile,req,1;
134 }
135

136 inline receive_reqFile(req) {
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137 self?reqFile,req,1;
138 }
139

140 inline send_sndFile(receiver,content) {
141 receiver!sndFile,1,content;
142 }
143

144 inline receive_sndFile(content) {
145 self?sndFile,1,content;
146 }
147

148 inline send_reqAddr(receiver,req) {
149 receiver!reqAddr,req,1;
150 }
151

152 inline receive_reqAddr(req) {
153 self?reqAddr,req,1;
154 }
155

156 inline send_sndAddr(receiver,prov) {
157 receiver!sndAddr,prov,1;
158 }
159

160 inline receive_sndAddr(prov) {
161 self?sndAddr,prov,1;
162 }
163

164 ////////////// process definition of component type Peer /////////////
165 proctype Peer(
166 bool hasFile; int content;
167 chan neighbor;
168 chan self) {
169

170 bool playsRequester = false;
171 chan requester = [2] of { mtype,chan,int };
172 bool playsRouter = false;
173 chan router = [2] of { mtype,chan,int };
174 bool playsProvider = false;
175 chan provider = [1] of { mtype,chan,int };
176

177 startPeer: true;
178

179 PeerOperation op;
180

181 do
182 ::atomic {
183 self?op ->
184 if
185 ::op.optype == GET_HASFILE -> op.answer!hasFile
186 ::op.optype == SET_HASFILE -> op.parameters?hasFile
187 ::op.optype == GET_CONTENT -> op.answer!content
188 ::op.optype == SET_CONTENT -> op.parameters?content
189

190 ::op.optype == GET_NEIGHBOR -> op.answer!neighbor
191

192 ::op.optype == OP_PRINTFILE ->
193 // add intended behavior of this operation
194

195 ::op.optype == CREATE_REQUESTER ->
196 if
197 ::!playsRequester && currentRequester < maxRequester ->
198 run Requester(self, requester);
199 playsRequester = true;
200 currentRequester++;
201 op.answer!requester
202 fi
203 ::op.optype == GET_REQUESTER ->
204 if
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205 ::playsRequester ->
206 op.answer!requester
207 fi
208 ::op.optype == QUIT_REQUESTER ->
209 if
210 ::playsRequester && currentRequester > minRequester ->
211 playsRequester = false;
212 currentRequester--
213 fi
214 ::op.optype == PLAYS_REQUESTER ->
215 op.answer!playsRequester
216 ::op.optype == CREATE_ROUTER ->
217 if
218 ::!playsRouter && currentRouter < maxRouter ->
219 run Router(self, router);
220 playsRouter = true;
221 currentRouter++;
222 op.answer!router
223 fi
224 ::op.optype == GET_ROUTER ->
225 if
226 ::playsRouter ->
227 op.answer!router
228 fi
229 ::op.optype == QUIT_ROUTER ->
230 if
231 ::playsRouter && currentRouter > minRouter ->
232 playsRouter = false;
233 currentRouter--
234 fi
235 ::op.optype == PLAYS_ROUTER ->
236 op.answer!playsRouter
237 ::op.optype == CREATE_PROVIDER ->
238 if
239 ::!playsProvider && currentProvider < maxProvider ->
240 run Provider(self, provider);
241 playsProvider = true;
242 currentProvider++;
243 op.answer!provider
244 fi
245 ::op.optype == GET_PROVIDER ->
246 if
247 ::playsProvider ->
248 op.answer!provider
249 fi
250 ::op.optype == QUIT_PROVIDER ->
251 if
252 ::playsProvider && currentProvider > minProvider ->
253 playsProvider = false;
254 currentProvider--
255 fi
256 ::op.optype == PLAYS_PROVIDER ->
257 op.answer!playsProvider
258 fi
259 }
260 od
261 }
262

263 /////////////// process definition for role type Requester ////////////////////
264 proctype Requester(chan owner, self) {
265 // role type attributes
266 bool roleAttr_hasFile;
267

268 // component type attributes
269 bool compAttr_hasFile;
270 int compAttr_content;
271

272 // component type associations
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273 chan compAssoc_neighbor;
274

275 // local variables for all role instance variables (of create/get and incoming
messages)

276 chan router;
277 chan prov;
278

279 // local variables for all formal data parameters (of incoming messages)
280 int content;
281

282 // local variables for all return values of operations
283

284 // local variables for all plays queries
285

286 // start label
287 startRequester: true;
288

289 //////// role behavior //////////
290

291 // retrieve reference to component instance
292 peer_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
293

294 // create/get role instance
295 peer_retrieveRole(CREATE_ROUTER,compAssoc_neighbor,router);
296

297 // outgoing message
298 send_reqAddr(router,self);
299

300 // incoming message
301 receive_sndAddr(prov);
302

303 // state label
304 stateSndAddr: true;
305

306 // outgoing message
307 send_reqFile(prov,self);
308

309 // incoming message
310 receive_sndFile(content);
311

312 // state label
313 stateSndFile: true;
314

315 // set comp attr
316 peer_setContent(owner,content);
317

318 // set comp attr
319 peer_setHasFile(owner,true);
320

321 // set role attr
322 roleAttr_hasFile = true;
323

324 // call operation at component
325 peer_callPrintFile(owner);
326

327 // quit
328 peer_quitRole(QUIT_REQUESTER,owner);
329 goto endRequester;
330

331 endRequester: false
332 }
333

334 /////////////// process definition for role type Provider ////////////////////
335 proctype Provider(chan owner, self) {
336 // role type attributes
337

338 // component type attributes
339 bool compAttr_hasFile;
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340 int compAttr_content;
341

342 // component type associations
343 chan compAssoc_neighbor;
344

345 // local variables for all role instance variables (of create/get and incoming
messages)

346 chan req;
347

348 // local variables for all formal data parameters (of incoming messages)
349

350 // local variables for all return values of operations
351

352 // local variables for all plays queries
353

354 // start label
355 startProvider: true;
356

357 //////// role behavior //////////
358

359 // incoming message
360 receive_reqFile(req);
361

362 // outgoing message
363 peer_getContent(owner,compAttr_content);
364 send_sndFile(req,compAttr_content);
365

366 // quit
367 peer_quitRole(QUIT_PROVIDER,owner);
368 goto endProvider;
369

370 endProvider: false
371 }
372

373 /////////////// process definition for role type Router ////////////////////
374 proctype Router(chan owner, self) {
375 // role type attributes
376

377 // component type attributes
378 bool compAttr_hasFile;
379 int compAttr_content;
380

381 // component type associations
382 chan compAssoc_neighbor;
383

384 // local variables for all role instance variables (of create/get and incoming
messages)

385 chan provider;
386 chan req;
387 chan router;
388

389 // local variables for all formal data parameters (of incoming messages)
390

391 // local variables for all return values of operations
392

393 // local variables for all plays queries
394 bool compAssoc_neighborPlaysRouter;
395

396 // start label
397 startRouter: true;
398

399 //////// role behavior //////////
400

401 // declare local process by label
402 processRouterProc: true;
403

404 // incoming message
405 receive_reqAddr(req);
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406

407 // if-then-else
408 atomic {
409 // retrieve values for guards in guarded choice
410 peer_getHasFile(owner,compAttr_hasFile);;
411

412 if
413 ::(compAttr_hasFile) ->
414

415 // retrieve reference to component instance
416

417 // create/get role instance
418 peer_retrieveRole(CREATE_PROVIDER,owner,provider);
419

420 goto label581711204
421 :: else ->
422

423 // if-then-else
424 // retrieve values for guards in if-then-else
425 peer_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
426 peer_isPlaying(PLAYS_ROUTER,compAssoc_neighbor,compAssoc_neighborPlaysRouter);
427

428 if
429 ::(!compAssoc_neighborPlaysRouter) ->
430

431 // retrieve reference to component instance
432 peer_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
433

434 // create/get role instance
435 peer_retrieveRole(CREATE_ROUTER,compAssoc_neighbor,router);
436

437 goto label1231902650
438

439 :: else ->
440

441 // quit
442 peer_quitRole(QUIT_ROUTER,owner);
443 goto endRouter
444 fi
445 fi
446 };
447

448 label581711204: true;
449

450 // outgoing message
451 send_sndAddr(req,provider);
452

453 // quit
454 peer_quitRole(QUIT_ROUTER,owner);
455 goto endRouter;
456

457 label1231902650: true;
458

459 // outgoing message
460 send_reqAddr(router,req);
461

462 // process invocation by goto label
463 goto processRouterProc;
464

465 endRouter: false
466 }
467

468

469 //////////////// start ensemble /////////////////////////
470 init {
471 chan p1 = [0] of { PeerOperation };
472 chan p2 = [0] of { PeerOperation };
473 chan p3 = [0] of { PeerOperation };
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474

475 if
476 ::run Peer(false,0,p2,p1);
477 ::run Peer(true,12345,p2,p1);
478 fi;
479

480 if
481 ::run Peer(false,0,p3,p2);
482 ::run Peer(true,12345,p3,p2);
483 fi;
484

485 if
486 ::run Peer(false,0,p1,p3);
487 ::run Peer(true,12345,p1,p3);
488 fi;
489

490 chan req;
491 peer_retrieveRole(CREATE_REQUESTER,p1,req);
492 }
493

494 ////////////////////// Goals /////////////////////////////
495

496 // achieve goal
497 ltl AchievePeer {
498 [] ( Requester@startRequester ->
499 ( (Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)
500 -> <> Requester:roleAttr_hasFile
501 )
502 )
503 }
504

505 // maintain goal
506 ltl MaintainPeer {
507 [] ( Requester@startRequester ->
508 ( (Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)
509 -> [] (Peer[1]:hasFile || Peer[2]:hasFile || Peer[3]:hasFile)
510 )
511 )
512 }



Appendix D

SCP Case Study

To apply the Helena development methodology to a larger software system, we devel-
oped the Science Cloud Platform (SCP), one of the case studies from the EU project
ASCENS [WHKM15], in Chap. 10. The SCP is a platform of distributed, voluntarily
provided computing nodes. The node interact in a peer-to-peer manner to execute, keep
alive, and allow usage of user-de�ned software applications.

In this appendix, we �rst show the complete speci�cation of the case study in Hele-
naText. Afterwards, the Promela speci�cation is given which is automatically gen-
erated from the HelenaText speci�cation with the Helena workbench (cf. Chap. 8).
The Promela speci�cation is enriched by an init-process to set up an initial state as
given in Sec. 10.5 and with the goals of the SCP case study as explained in Sec. 10.5
formulated as LTL properties.

The complete speci�cation of the SCP case study in HelenaText can be found on
the attached CD in the project eu.ascens.helenaText.scp. A distributed implementa-
tion of the SCP based on the HelenaText ensemble speci�cation can be retrieved from
http://svn.pst.ifi.lmu.de/trac/scp, version v3 of the node core implementation
with gossip strategy.

D.1 Speci�cation in HelenaText

This section lists the complete HelenaText speci�cation of the SCP case study. It
was developed relying on the Helena workbench from Chap. 8. Compared to the initial
model of SCP case study in Sec. 10.4, it was extended to meet all assumptions described
in Sec. 5.1 for model-checking with Spin. The extensions are listed in Sec. 10.5.2.

1 package scp {
2

3 componentType Node {
4 attr int id;
5 attr int reqs;
6

7 attr int code;
8 attr boolean isExecuting;
9

10 assoc Node neighbor;
11

12 op void printResult();
13 }
14

15 roleType Deployer over Node {

351

http://svn.pst.ifi.lmu.de/trac/scp


352 APPENDIX D. SCP CASE STUDY

16 roleattr int appID;
17 roleattr int appReqs;
18 roleattr int appCode;
19

20 rolemsg out findStorage(Deployer d)(int appID, int foundID);
21 rolemsg in foundStorage(Storage s)();
22

23 rolemsg out store()(int appID, int appReqs, int appCode);
24 }
25

26 roleType PotStorage over Node {
27 rolemsg in/out findStorage(Deployer d)(int appID, int foundID);
28 rolemsg in/out createStorage(Deployer d)(int foundID, int startID);
29 rolemsg out foundStorage(Storage s)();
30 }
31

32 roleType Storage over Node {
33 rolemsg in store()(int appID, int appReqs, int appCode);
34

35 rolemsg out initiate(Storage s)(int appID, int appReqs);
36

37 rolemsg in reqCode(Executor e)();
38 rolemsg out sndCode()(int appCode);
39 }
40

41 roleType Initiator over Node {
42 rolemsg in initiate(Storage s)(int appID, int appReqs);
43

44 rolemsg out findExecutor(Initiator i)(int appReqs);
45 rolemsg in foundExecutor(Executor e)();
46 rolemsg out execute(Initiator i, Storage s)(int appID);
47 rolemsg in executing()();
48

49 rolemsg out findRequester(Executor e)(int startID);
50 }
51

52 roleType PotExecutor over Node {
53 rolemsg in/out findExecutor(Initiator i)(int appReqs);
54 rolemsg out foundExecutor(Executor e)();
55 }
56

57 roleType Executor over Node {
58 rolemsg in execute(Initiator i, Storage s)(int appID);
59 rolemsg out reqCode(Executor e)();
60 rolemsg in sndCode()(int appCode);
61 rolemsg out executing()();
62

63 rolemsg in reqService(Requester r)();
64 rolemsg out sndService()();
65 }
66

67 roleType PotRequester over Node {
68 rolemsg in/out findRequester(Executor e)(int startID);
69 rolemsg out inform(Executor e, PotRequester pr)();
70 rolemsg in ackInformation()();
71 }
72

73 roleType Requester over Node {
74 roleattr boolean hasResult;
75

76 rolemsg in inform(Executor e, PotRequester pr)();
77 rolemsg out ackInformation()();
78

79 rolemsg out reqService(Requester r)();
80 rolemsg in sndService()();
81 }
82

83 ensembleStructure ScienceCloudPlatform {
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84 <Deployer, min = 0, max = 1, cap = 1>;
85 <PotStorage, min = 0, max = *, cap = 2>;
86 <Storage, min = 0, max = 1, cap = 2>;
87 <Initiator, min = 0, max = 1, cap = 2>;
88 <PotExecutor, min = 0, max = *, cap = 2>;
89 <Executor, min = 0, max = 1, cap = 2>;
90 <PotRequester, min = 0, max = *, cap = 2>;
91 <Requester, min = 0, max = *, cap = 2>;
92 }
93

94 ///////////////////////////// BEHAVIORS ///////////////////////////////
95

96 roleBehavior Deployer =
97 self.appID = 1234 .
98 self.appReqs = 1234 .
99 self.appCode = 1234 .

100 ps <- create(PotStorage,owner.neighbor) .
101 // assumption: node IDs > 0
102 ps ! findStorage(self)(self.appID,owner.id) .
103 ? foundStorage(Storage s)() .
104 s ! store()(self.appID,self.appReqs,self.appCode) .
105 quit
106

107 roleBehavior PotStorage = PotStorageProcess {
108 process PotStorageProcess =
109 ? findStorage(Deployer depl)(int appID,int foundID) .
110

111 if ( (owner.id-appID < 0 && foundID-appID < 0 && appID-owner.id < appID-foundID)
112 ||
113 (owner.id-appID >= 0 && foundID-appID >= 0 && owner.id-appID < foundID-appID)
114 ||
115 (owner.id-appID < 0 && foundID-appID >= 0 && appID-owner.id < foundID-appID)
116 ||
117 (owner.id-appID >= 0 && foundID-appID < 0 && owner.id-appID < appID-foundID)
118 ) {
119 if (!plays(PotStorage,owner.neighbor)) {
120 psSmallest1 <- create(PotStorage,owner.neighbor) .
121 psSmallest1 ! findStorage(depl)(appID,owner.id) .
122 SecondRoundTrip
123 }
124 else {
125 psSmallest2 <- get(PotStorage,owner.neighbor) .
126 psSmallest2 ! createStorage(depl)(owner.id,owner.id) .
127 SecondRoundTrip
128 }
129 }
130 // if owner.id is not smallest ID so far
131 else {
132 if (!plays(PotStorage,owner.neighbor)) {
133 psNotSmallest1 <- create(PotStorage,owner.neighbor) .
134 psNotSmallest1 ! findStorage(depl)(appID,foundID) .
135 SecondRoundTrip
136 }
137 else {
138 psNotSmallest2 <- get(PotStorage,owner.neighbor) .
139 psNotSmallest2 ! createStorage(depl)(foundID,owner.id) .
140 SecondRoundTrip
141 }
142 }
143

144 process SecondRoundTrip =
145 ? createStorage(Deployer depl2)(int foundID2,int startID) .
146

147 if (owner.id == foundID2) {
148 if (!plays(Storage,owner)) {
149 s <- create(Storage,owner) .
150 depl2 ! foundStorage(s)() .
151 if (owner.id != startID) {
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152 if (plays(PotStorage,owner.neighbor)) {
153 psFwd1 <- get(PotStorage,owner.neighbor) .
154 psFwd1 ! createStorage(depl2)(foundID2,startID) .
155 quit
156 }
157 // should never happen
158 else {
159 quit
160 }
161 }
162 else {
163 quit
164 }
165 }
166 // should not happen
167 else {
168 quit
169 }
170 }
171 else {
172 if (owner.id != startID) {
173 if (plays(PotStorage,owner.neighbor)) {
174 psFwd2 <- get(PotStorage,owner.neighbor) .
175 psFwd2 ! createStorage(depl2)(foundID2,startID) .
176 quit
177 }
178 // should never happen
179 else {
180 quit
181 }
182 }
183 else {
184 quit
185 }
186 }
187 }
188

189 roleBehavior Storage =
190 ? store()(int appID, int appReqs, int appCode) .
191 owner.code = appCode .
192

193 i <- create(Initiator,owner) .
194 i ! initiate(self)(appID,appReqs) .
195

196 ? reqCode(Executor e)() .
197 e ! sndCode()(owner.code) .
198

199 quit //finished since code is stored on Node (we do not have the concept of
undeploying)

200

201 roleBehavior Initiator =
202 ? initiate(Storage s)(int appID,int appReqs) .
203

204 pe <- create(PotExecutor,owner) .
205 pe ! findExecutor(self)(appReqs) .
206 ? foundExecutor(Executor e)() .
207 e ! execute(self,s)(appID) .
208 ? executing()() .
209

210 pr <- create(PotRequester,owner.neighbor) .
211 pr ! findRequester(e)(owner.id) .
212

213 quit //finished since all requesters have been informed (we do not have the concept
of explicitly stopping)

214

215

216 roleBehavior PotExecutor =
217 ? findExecutor(Initiator i)(int appReqs) .
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218

219 // assumption: at least one node in the network that satisfies requirements
220

221 // if the node satisfies the requirements
222 if (owner.reqs == appReqs) {
223 if (!plays(Executor,owner)) {
224 // if the node is ready to execute
225 e <- create(Executor,owner) .
226 i ! foundExecutor(e)() .
227 quit
228 }
229 // should never happen
230 else {
231 quit
232 }
233 }
234 // if the node does not satisfy the requirements
235 else {
236 if (!plays(PotExecutor,owner.neighbor)) {
237 pe <- create(PotExecutor,owner.neighbor) .
238 pe ! findExecutor(i)(appReqs) .
239 quit
240 }
241 // should never happen
242 else {
243 quit
244 }
245 }
246

247 roleBehavior Executor = ExecutorProcess {
248 process ExecutorProcess =
249 ? execute(Initiator i, Storage s)(int appID) .
250

251 s ! reqCode(self)() .
252 ? sndCode()(int appCode) .
253 owner.isExecuting = true .
254 i ! executing()() .
255

256 ExecutorRunning
257

258 process ExecutorRunning =
259 ? reqService(Requester r)() .
260 r ! sndService()() .
261 ExecutorRunning
262 }
263

264 roleBehavior PotRequester = PotRequesterProcess {
265 process PotRequesterProcess =
266 ? findRequester(Executor e)(int startID) .
267

268 if (plays(Requester,owner)) {
269 r <- get(Requester,owner) .
270 r ! inform(e,self)() .
271 ? ackInformation()() .
272 if (owner.id != startID) {
273 if (!plays(PotRequester,owner.neighbor)) {
274 pr1 <- create(PotRequester,owner.neighbor) .
275 pr1 ! findRequester(e)(startID) .
276 quit
277 }
278 // should never happen
279 else {
280 quit
281 }
282 }
283 else {
284 quit
285 }
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286 }
287 else {
288 if (owner.id != startID) {
289 if (!plays(PotRequester,owner.neighbor)) {
290 pr2 <- create(PotRequester,owner.neighbor) .
291 pr2 ! findRequester(e)(startID) .
292 quit
293 }
294 // should never happen
295 else {
296 quit
297 }
298 }
299 else {
300 quit
301 }
302 }
303 }
304

305 roleBehavior Requester =
306 ? inform(Executor e, PotRequester pr)() .
307 pr ! ackInformation()() .
308

309 e ! reqService(self)() .
310 ? sndService()() .
311 self.hasResult = true .
312 owner.printResult() .
313 quit
314 }

D.2 Generated Promela Speci�cation with Goals

This section lists the Promela speci�cation of the SCP case study. It was automati-
cally generated from the HelenaText speci�cation of the previous section using the
Helena workbench from Chap. 8. The translation is derived following the rules in
Sec. 5.2.2. However, the translation of all actions is extracted to inline-function such
that the generated code is cleaner (e.g., an inline-function send_findStorage is gener-
ated for sending the message findStorage). Furthermore, the Promela speci�cation
is enriched by an init-process to set up an initial state as given in Sec. 10.5 and with
the goals of the SCP case study as explained in Sec. 10.5.

1 ///////////// ensemble structure multiplicities //////////////////////
2 int minDeployer = 0;
3 int maxDeployer = 1;
4 int currentDeployer = 0;
5

6 int minPotStorage = 0;
7 int maxPotStorage = (2^31)-1;
8 int currentPotStorage = 0;
9

10 int minStorage = 0;
11 int maxStorage = 1;
12 int currentStorage = 0;
13

14 int minInitiator = 0;
15 int maxInitiator = 1;
16 int currentInitiator = 0;
17

18 int minPotExecutor = 0;
19 int maxPotExecutor = (2^31)-1;
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20 int currentPotExecutor = 0;
21

22 int minExecutor = 0;
23 int maxExecutor = 1;
24 int currentExecutor = 0;
25

26 int minPotRequester = 0;
27 int maxPotRequester = (2^31)-1;
28 int currentPotRequester = 0;
29

30 int minRequester = 0;
31 int maxRequester = (2^31)-1;
32 int currentRequester = 0;
33

34 ///////////// component operation definitions //////////////////////
35 typedef NodeOperation {
36 mtype {
37 // operations to access attributes of component
38 GET_ID, SET_ID, GET_REQS, SET_REQS, GET_CODE, SET_CODE, GET_ISEXECUTING,

SET_ISEXECUTING,
39

40 // operations to access associations to other components
41 GET_NEIGHBOR,
42

43 // operations
44 OP_PRINTRESULT,
45

46 // operations to manage role playing
47 CREATE_DEPLOYER, GET_DEPLOYER, QUIT_DEPLOYER, PLAYS_DEPLOYER,
48 CREATE_POTSTORAGE, GET_POTSTORAGE, QUIT_POTSTORAGE, PLAYS_POTSTORAGE,
49 CREATE_STORAGE, GET_STORAGE, QUIT_STORAGE, PLAYS_STORAGE,
50 CREATE_INITIATOR, GET_INITIATOR, QUIT_INITIATOR, PLAYS_INITIATOR,
51 CREATE_POTEXECUTOR, GET_POTEXECUTOR, QUIT_POTEXECUTOR, PLAYS_POTEXECUTOR,
52 CREATE_EXECUTOR, GET_EXECUTOR, QUIT_EXECUTOR, PLAYS_EXECUTOR,
53 CREATE_POTREQUESTER, GET_POTREQUESTER, QUIT_POTREQUESTER, PLAYS_POTREQUESTER,
54 CREATE_REQUESTER, GET_REQUESTER, QUIT_REQUESTER, PLAYS_REQUESTER
55 };
56

57 mtype optype;
58 chan parameters;
59 chan answer;
60 }
61

62 //////// helpers for communication between roles and Node components /////////
63 inline node_retrieveRole(rtOperation,component,role) {
64 NodeOperation op;
65 op.optype = rtOperation;
66 chan answer = [0] of { chan };
67 op.answer = answer;
68 component!op;
69 answer?role;
70 }
71

72 inline node_quitRole(rtOperation,component) {
73 NodeOperation op;
74 op.optype = rtOperation;
75 component!op;
76 }
77

78 inline node_isPlaying(playsOperation,component,plays) {
79 NodeOperation op;
80 op.optype = playsOperation;
81 chan answer = [0] of { bool };
82 op.answer = answer;
83 component!op;
84 answer?plays;
85 }
86



358 APPENDIX D. SCP CASE STUDY

87 inline node_retrieveAssociation(assocOperation,component,assoc) {
88 NodeOperation op;
89 op.optype = assocOperation;
90 chan answer = [0] of { chan };
91 op.answer = answer;
92 component!op;
93 answer?assoc;
94 }
95

96 inline node_getId(component,id) {
97 NodeOperation op;
98 op.optype = GET_ID;
99 chan answer = [0] of { int };

100 op.answer = answer;
101 component!op;
102 answer?id;
103 }
104

105 inline node_setId(component,value) {
106 NodeOperation op;
107 op.optype = SET_ID;
108 chan parameters = [0] of { int };
109 op.parameters = parameters;
110 component!op;
111 parameters!value;
112 }
113

114 inline node_getReqs(component,reqs) {
115 NodeOperation op;
116 op.optype = GET_REQS;
117 chan answer = [0] of { int };
118 op.answer = answer;
119 component!op;
120 answer?reqs;
121 }
122

123 inline node_setReqs(component,value) {
124 NodeOperation op;
125 op.optype = SET_REQS;
126 chan parameters = [0] of { int };
127 op.parameters = parameters;
128 component!op;
129 parameters!value;
130 }
131

132 inline node_getCode(component,code) {
133 NodeOperation op;
134 op.optype = GET_CODE;
135 chan answer = [0] of { int };
136 op.answer = answer;
137 component!op;
138 answer?code;
139 }
140

141 inline node_setCode(component,value) {
142 NodeOperation op;
143 op.optype = SET_CODE;
144 chan parameters = [0] of { int };
145 op.parameters = parameters;
146 component!op;
147 parameters!value;
148 }
149

150 inline node_getIsExecuting(component,isExecuting) {
151 NodeOperation op;
152 op.optype = GET_ISEXECUTING;
153 chan answer = [0] of { bool };
154 op.answer = answer;
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155 component!op;
156 answer?isExecuting;
157 }
158

159 inline node_setIsExecuting(component,value) {
160 NodeOperation op;
161 op.optype = SET_ISEXECUTING;
162 chan parameters = [0] of { bool };
163 op.parameters = parameters;
164 component!op;
165 parameters!value;
166 }
167

168 inline node_callPrintResult(component) {
169 NodeOperation op;
170 op.optype = OP_PRINTRESULT;
171 component!op;
172 }
173

174 ///////////// message definitions //////////////////////
175 mtype {
176 setOffInitialRole,
177 reqCode,
178 createStorage,
179 executing,
180 findStorage,
181 foundExecutor,
182 sndCode,
183 ackInformation,
184 findRequester,
185 inform,
186 initiate,
187 foundStorage,
188 findExecutor,
189 execute,
190 reqService,
191 sndService,
192 store
193 }
194

195 //////// helper for setting up initial state /////////
196 inline send_setOffInitialRole(receiver) {
197 receiver!setOffInitialRole,1,1,1,1,1;
198 }
199

200 inline receive_setOffInitialRole() {
201 self?setOffInitialRole,1,1,1,1,1;
202 }
203

204 //////// helper for communication between roles /////////
205 inline send_reqCode(receiver,e) {
206 receiver!reqCode,e,1,1,1,1;
207 }
208

209 inline receive_reqCode(e) {
210 self?reqCode,e,1,1,1,1;
211 }
212

213 inline send_createStorage(receiver,d,foundID,startID) {
214 receiver!createStorage,d,1,foundID,startID,1;
215 }
216

217 inline receive_createStorage(d,foundID,startID) {
218 self?createStorage,d,1,foundID,startID,1;
219 }
220

221 inline send_executing(receiver) {
222 receiver!executing,1,1,1,1,1;
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223 }
224

225 inline receive_executing() {
226 self?executing,1,1,1,1,1;
227 }
228

229 inline send_findStorage(receiver,d,appID,foundID) {
230 receiver!findStorage,d,1,appID,foundID,1;
231 }
232

233 inline receive_findStorage(d,appID,foundID) {
234 self?findStorage,d,1,appID,foundID,1;
235 }
236

237 inline send_foundExecutor(receiver,e) {
238 receiver!foundExecutor,e,1,1,1,1;
239 }
240

241 inline receive_foundExecutor(e) {
242 self?foundExecutor,e,1,1,1,1;
243 }
244

245 inline send_sndCode(receiver,appCode) {
246 receiver!sndCode,1,1,appCode,1,1;
247 }
248

249 inline receive_sndCode(appCode) {
250 self?sndCode,1,1,appCode,1,1;
251 }
252

253 inline send_ackInformation(receiver) {
254 receiver!ackInformation,1,1,1,1,1;
255 }
256

257 inline receive_ackInformation() {
258 self?ackInformation,1,1,1,1,1;
259 }
260

261 inline send_findRequester(receiver,e,startID) {
262 receiver!findRequester,e,1,startID,1,1;
263 }
264

265 inline receive_findRequester(e,startID) {
266 self?findRequester,e,1,startID,1,1;
267 }
268

269 inline send_inform(receiver,e,pr) {
270 receiver!inform,e,pr,1,1,1;
271 }
272

273 inline receive_inform(e,pr) {
274 self?inform,e,pr,1,1,1;
275 }
276

277 inline send_initiate(receiver,s,appID,appReqs) {
278 receiver!initiate,s,1,appID,appReqs,1;
279 }
280

281 inline receive_initiate(s,appID,appReqs) {
282 self?initiate,s,1,appID,appReqs,1;
283 }
284

285 inline send_foundStorage(receiver,s) {
286 receiver!foundStorage,s,1,1,1,1;
287 }
288

289 inline receive_foundStorage(s) {
290 self?foundStorage,s,1,1,1,1;
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291 }
292

293 inline send_findExecutor(receiver,i,appReqs) {
294 receiver!findExecutor,i,1,appReqs,1,1;
295 }
296

297 inline receive_findExecutor(i,appReqs) {
298 self?findExecutor,i,1,appReqs,1,1;
299 }
300

301 inline send_execute(receiver,i,s,appID) {
302 receiver!execute,i,s,appID,1,1;
303 }
304

305 inline receive_execute(i,s,appID) {
306 self?execute,i,s,appID,1,1;
307 }
308

309 inline send_reqService(receiver,r) {
310 receiver!reqService,r,1,1,1,1;
311 }
312

313 inline receive_reqService(r) {
314 self?reqService,r,1,1,1,1;
315 }
316

317 inline send_sndService(receiver) {
318 receiver!sndService,1,1,1,1,1;
319 }
320

321 inline receive_sndService() {
322 self?sndService,1,1,1,1,1;
323 }
324

325 inline send_store(receiver,appID,appReqs,appCode) {
326 receiver!store,1,1,appID,appReqs,appCode;
327 }
328

329 inline receive_store(appID,appReqs,appCode) {
330 self?store,1,1,appID,appReqs,appCode;
331 }
332

333 ////////////// process definition of component type Node /////////////
334 proctype Node(
335 int id; int reqs; int code; bool isExecuting;
336 chan neighbor;
337 chan self) {
338

339 bool playsDeployer = false;
340 chan deployer = [1] of { mtype,chan,chan,int,int,int };
341 bool playsPotStorage = false;
342 chan potstorage = [2] of { mtype,chan,chan,int,int,int };
343 bool playsStorage = false;
344 chan storage = [2] of { mtype,chan,chan,int,int,int };
345 bool playsInitiator = false;
346 chan initiator = [2] of { mtype,chan,chan,int,int,int };
347 bool playsPotExecutor = false;
348 chan potexecutor = [2] of { mtype,chan,chan,int,int,int };
349 bool playsExecutor = false;
350 chan executor = [2] of { mtype,chan,chan,int,int,int };
351 bool playsPotRequester = false;
352 chan potrequester = [2] of { mtype,chan,chan,int,int,int };
353 bool playsRequester = false;
354 chan requester = [2] of { mtype,chan,chan,int,int,int };
355

356 startNode: true;
357

358 NodeOperation op;
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359

360 do
361 ::atomic {
362 self?op ->
363 if
364 ::op.optype == GET_ID -> op.answer!id
365 ::op.optype == SET_ID -> op.parameters?id
366 ::op.optype == GET_REQS -> op.answer!reqs
367 ::op.optype == SET_REQS -> op.parameters?reqs
368 ::op.optype == GET_CODE -> op.answer!code
369 ::op.optype == SET_CODE -> op.parameters?code
370 ::op.optype == GET_ISEXECUTING -> op.answer!isExecuting
371 ::op.optype == SET_ISEXECUTING -> op.parameters?isExecuting
372

373 ::op.optype == GET_NEIGHBOR -> op.answer!neighbor
374

375 ::op.optype == OP_PRINTRESULT ->
376 // add intended behavior of this operation
377

378 ::op.optype == CREATE_DEPLOYER ->
379 if
380 ::!playsDeployer && currentDeployer < maxDeployer ->
381 run Deployer(self, deployer);
382 playsDeployer = true;
383 currentDeployer++;
384 op.answer!deployer
385 fi
386 ::op.optype == GET_DEPLOYER ->
387 if
388 ::playsDeployer ->
389 op.answer!deployer
390 fi
391 ::op.optype == QUIT_DEPLOYER ->
392 if
393 ::playsDeployer && currentDeployer > minDeployer ->
394 playsDeployer = false;
395 currentDeployer--
396 fi
397 ::op.optype == PLAYS_DEPLOYER ->
398 op.answer!playsDeployer
399 ::op.optype == CREATE_POTSTORAGE ->
400 if
401 ::!playsPotStorage && currentPotStorage < maxPotStorage ->
402 run PotStorage(self, potstorage);
403 playsPotStorage = true;
404 currentPotStorage++;
405 op.answer!potstorage
406 fi
407 ::op.optype == GET_POTSTORAGE ->
408 if
409 ::playsPotStorage ->
410 op.answer!potstorage
411 fi
412 ::op.optype == QUIT_POTSTORAGE ->
413 if
414 ::playsPotStorage && currentPotStorage > minPotStorage ->
415 playsPotStorage = false;
416 currentPotStorage--
417 fi
418 ::op.optype == PLAYS_POTSTORAGE ->
419 op.answer!playsPotStorage
420 ::op.optype == CREATE_STORAGE ->
421 if
422 ::!playsStorage && currentStorage < maxStorage ->
423 run Storage(self, storage);
424 playsStorage = true;
425 currentStorage++;
426 op.answer!storage
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427 fi
428 ::op.optype == GET_STORAGE ->
429 if
430 ::playsStorage ->
431 op.answer!storage
432 fi
433 ::op.optype == QUIT_STORAGE ->
434 if
435 ::playsStorage && currentStorage > minStorage ->
436 playsStorage = false;
437 currentStorage--
438 fi
439 ::op.optype == PLAYS_STORAGE ->
440 op.answer!playsStorage
441 ::op.optype == CREATE_INITIATOR ->
442 if
443 ::!playsInitiator && currentInitiator < maxInitiator ->
444 run Initiator(self, initiator);
445 playsInitiator = true;
446 currentInitiator++;
447 op.answer!initiator
448 fi
449 ::op.optype == GET_INITIATOR ->
450 if
451 ::playsInitiator ->
452 op.answer!initiator
453 fi
454 ::op.optype == QUIT_INITIATOR ->
455 if
456 ::playsInitiator && currentInitiator > minInitiator ->
457 playsInitiator = false;
458 currentInitiator--
459 fi
460 ::op.optype == PLAYS_INITIATOR ->
461 op.answer!playsInitiator
462 ::op.optype == CREATE_POTEXECUTOR ->
463 if
464 ::!playsPotExecutor && currentPotExecutor < maxPotExecutor ->
465 run PotExecutor(self, potexecutor);
466 playsPotExecutor = true;
467 currentPotExecutor++;
468 op.answer!potexecutor
469 fi
470 ::op.optype == GET_POTEXECUTOR ->
471 if
472 ::playsPotExecutor ->
473 op.answer!potexecutor
474 fi
475 ::op.optype == QUIT_POTEXECUTOR ->
476 if
477 ::playsPotExecutor && currentPotExecutor > minPotExecutor ->
478 playsPotExecutor = false;
479 currentPotExecutor--
480 fi
481 ::op.optype == PLAYS_POTEXECUTOR ->
482 op.answer!playsPotExecutor
483 ::op.optype == CREATE_EXECUTOR ->
484 if
485 ::!playsExecutor && currentExecutor < maxExecutor ->
486 run Executor(self, executor);
487 playsExecutor = true;
488 currentExecutor++;
489 op.answer!executor
490 fi
491 ::op.optype == GET_EXECUTOR ->
492 if
493 ::playsExecutor ->
494 op.answer!executor
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495 fi
496 ::op.optype == QUIT_EXECUTOR ->
497 if
498 ::playsExecutor && currentExecutor > minExecutor ->
499 playsExecutor = false;
500 currentExecutor--
501 fi
502 ::op.optype == PLAYS_EXECUTOR ->
503 op.answer!playsExecutor
504 ::op.optype == CREATE_POTREQUESTER ->
505 if
506 ::!playsPotRequester && currentPotRequester < maxPotRequester ->
507 run PotRequester(self, potrequester);
508 playsPotRequester = true;
509 currentPotRequester++;
510 op.answer!potrequester
511 fi
512 ::op.optype == GET_POTREQUESTER ->
513 if
514 ::playsPotRequester ->
515 op.answer!potrequester
516 fi
517 ::op.optype == QUIT_POTREQUESTER ->
518 if
519 ::playsPotRequester && currentPotRequester > minPotRequester ->
520 playsPotRequester = false;
521 currentPotRequester--
522 fi
523 ::op.optype == PLAYS_POTREQUESTER ->
524 op.answer!playsPotRequester
525 ::op.optype == CREATE_REQUESTER ->
526 if
527 ::!playsRequester && currentRequester < maxRequester ->
528 run Requester(self, requester);
529 playsRequester = true;
530 currentRequester++;
531 op.answer!requester
532 fi
533 ::op.optype == GET_REQUESTER ->
534 if
535 ::playsRequester ->
536 op.answer!requester
537 fi
538 ::op.optype == QUIT_REQUESTER ->
539 if
540 ::playsRequester && currentRequester > minRequester ->
541 playsRequester = false;
542 currentRequester--
543 fi
544 ::op.optype == PLAYS_REQUESTER ->
545 op.answer!playsRequester
546 fi
547 }
548 od
549 }
550

551 /////////////// process definition for role type Deployer ////////////////////
552 proctype Deployer(chan owner, self) {
553 // role type attributes
554 int roleAttr_appID;
555 int roleAttr_appReqs;
556 int roleAttr_appCode;
557

558 // component type attributes
559 int compAttr_id;
560 int compAttr_reqs;
561 int compAttr_code;
562 bool compAttr_isExecuting;
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563

564 // component type associations
565 chan compAssoc_neighbor;
566

567 // local variables for all role instance variables (of create/get and incoming
messages)

568 chan s;
569 chan ps;
570

571 // local variables for all formal data parameters (of incoming messages)
572

573 // local variables for all return values of operations
574

575 // local variables for all plays queries
576

577 receive_setOffInitialRole();
578

579 // start label
580 startDeployer: true;
581

582 //////// role behavior //////////
583

584 // set role attr
585 roleAttr_appID = 1234;
586

587 // set role attr
588 roleAttr_appReqs = 1234;
589

590 // set role attr
591 roleAttr_appCode = 1234;
592

593 // retrieve reference to component instance
594 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
595

596 // create/get role instance
597 node_retrieveRole(CREATE_POTSTORAGE,compAssoc_neighbor,ps);
598

599 // outgoing message
600 node_getId(owner,compAttr_id);
601 send_findStorage(ps,self,roleAttr_appID,compAttr_id);
602

603 // incoming message
604 receive_foundStorage(s);
605

606 // outgoing message
607 send_store(s,roleAttr_appID,roleAttr_appReqs,roleAttr_appCode);
608

609 // quit
610 node_quitRole(QUIT_DEPLOYER,owner);
611 goto endDeployer;
612

613 endDeployer: false
614 }
615

616 /////////////// process definition for role type PotStorage ////////////////////
617 proctype PotStorage(chan owner, self) {
618 // role type attributes
619

620 // component type attributes
621 int compAttr_id;
622 int compAttr_reqs;
623 int compAttr_code;
624 bool compAttr_isExecuting;
625

626 // component type associations
627 chan compAssoc_neighbor;
628
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629 // local variables for all role instance variables (of create/get and incoming
messages)

630 chan psNotSmallest2;
631 chan depl2;
632 chan depl;
633 chan psFwd2;
634 chan s;
635 chan psFwd1;
636 chan psNotSmallest1;
637 chan psSmallest1;
638 chan psSmallest2;
639

640 // local variables for all formal data parameters (of incoming messages)
641 int foundID;
642 int appID;
643 int startID;
644 int foundID2;
645

646 // local variables for all return values of operations
647

648 // local variables for all plays queries
649 bool compAssoc_neighborPlaysPotStorage;
650 bool ownerPlaysStorage;
651

652 // start label
653 startPotStorage: true;
654

655 //////// role behavior //////////
656

657 // declare local process by label
658 processPotStorageProcess: true;
659

660 // incoming message
661 receive_findStorage(depl,appID,foundID);
662

663 // if-then-else
664 atomic {
665 // retrieve values for guards in guarded choice
666 node_getId(owner,compAttr_id);;
667

668 if
669 ::((compAttr_id-appID < 0 && foundID-appID < 0 && appID-compAttr_id < appID-foundID

) || (compAttr_id-appID >= 0 && foundID-appID >= 0 && compAttr_id-appID <
foundID-appID) || (compAttr_id-appID < 0 && foundID-appID >= 0 && appID-
compAttr_id < foundID-appID) || (compAttr_id-appID >= 0 && foundID-appID < 0
&& compAttr_id-appID < appID-foundID)) ->

670

671 // if-then-else
672 // retrieve values for guards in if-then-else
673 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
674 node_isPlaying(PLAYS_POTSTORAGE,compAssoc_neighbor,

compAssoc_neighborPlaysPotStorage);
675

676 if
677 ::(!compAssoc_neighborPlaysPotStorage) ->
678

679 // retrieve reference to component instance
680 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
681

682 // create/get role instance
683 node_retrieveRole(CREATE_POTSTORAGE,compAssoc_neighbor,psSmallest1);
684

685 goto label856192689
686

687 :: else ->
688

689 // retrieve reference to component instance
690 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
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691

692 // create/get role instance
693 node_retrieveRole(GET_POTSTORAGE,compAssoc_neighbor,psSmallest2);
694

695 goto label1413919803
696 fi
697 :: else ->
698

699 // if-then-else
700 // retrieve values for guards in if-then-else
701 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
702 node_isPlaying(PLAYS_POTSTORAGE,compAssoc_neighbor,

compAssoc_neighborPlaysPotStorage);
703

704 if
705 ::(!compAssoc_neighborPlaysPotStorage) ->
706

707 // retrieve reference to component instance
708 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
709

710 // create/get role instance
711 node_retrieveRole(CREATE_POTSTORAGE,compAssoc_neighbor,psNotSmallest1);
712

713 goto label1015451289
714

715 :: else ->
716

717 // retrieve reference to component instance
718 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
719

720 // create/get role instance
721 node_retrieveRole(GET_POTSTORAGE,compAssoc_neighbor,psNotSmallest2);
722

723 goto label910184078
724 fi
725 fi
726 };
727

728 label856192689: true;
729

730 // outgoing message
731 node_getId(owner,compAttr_id);
732 send_findStorage(psSmallest1,depl,appID,compAttr_id);
733

734 // declare local process by label
735 processSecondRoundTrip: true;
736

737 // incoming message
738 receive_createStorage(depl2,foundID2,startID);
739

740 // if-then-else
741 atomic {
742 // retrieve values for guards in guarded choice
743 node_getId(owner,compAttr_id);;
744

745 if
746 ::(compAttr_id == foundID2) ->
747

748 // if-then-else
749 // retrieve values for guards in if-then-else
750 node_isPlaying(PLAYS_STORAGE,owner,ownerPlaysStorage);
751

752 if
753 ::(!ownerPlaysStorage) ->
754

755 // retrieve reference to component instance
756

757 // create/get role instance
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758 node_retrieveRole(CREATE_STORAGE,owner,s);
759

760 goto label813022984
761

762 :: else ->
763

764 // quit
765 node_quitRole(QUIT_POTSTORAGE,owner);
766 goto endPotStorage
767 fi
768 :: else ->
769

770 // if-then-else
771 // retrieve values for guards in if-then-else
772 node_getId(owner,compAttr_id);;
773

774 if
775 ::(compAttr_id != startID) ->
776

777 // if-then-else
778 // retrieve values for guards in if-then-else
779 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
780 node_isPlaying(PLAYS_POTSTORAGE,compAssoc_neighbor,

compAssoc_neighborPlaysPotStorage);
781

782 if
783 ::(compAssoc_neighborPlaysPotStorage) ->
784

785 // retrieve reference to component instance
786 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
787

788 // create/get role instance
789 node_retrieveRole(GET_POTSTORAGE,compAssoc_neighbor,psFwd2);
790

791 goto label1610764758
792

793 :: else ->
794

795 // quit
796 node_quitRole(QUIT_POTSTORAGE,owner);
797 goto endPotStorage
798 fi
799

800 :: else ->
801

802 // quit
803 node_quitRole(QUIT_POTSTORAGE,owner);
804 goto endPotStorage
805 fi
806 fi
807 };
808

809 label813022984: true;
810

811 // outgoing message
812 send_foundStorage(depl2,s);
813

814 // if-then-else
815 atomic {
816 // retrieve values for guards in guarded choice
817 node_getId(owner,compAttr_id);;
818

819 if
820 ::(compAttr_id != startID) ->
821

822 // if-then-else
823 // retrieve values for guards in if-then-else
824 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);



D.2. GENERATED PROMELA SPECIFICATION WITH GOALS 369

825 node_isPlaying(PLAYS_POTSTORAGE,compAssoc_neighbor,
compAssoc_neighborPlaysPotStorage);

826

827 if
828 ::(compAssoc_neighborPlaysPotStorage) ->
829

830 // retrieve reference to component instance
831 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
832

833 // create/get role instance
834 node_retrieveRole(GET_POTSTORAGE,compAssoc_neighbor,psFwd1);
835

836 goto label1244505886
837

838 :: else ->
839

840 // quit
841 node_quitRole(QUIT_POTSTORAGE,owner);
842 goto endPotStorage
843 fi
844 :: else ->
845

846 // quit
847 node_quitRole(QUIT_POTSTORAGE,owner);
848 goto endPotStorage
849 fi
850 };
851

852 label1244505886: true;
853

854 // outgoing message
855 send_createStorage(psFwd1,depl2,foundID2,startID);
856

857 // quit
858 node_quitRole(QUIT_POTSTORAGE,owner);
859 goto endPotStorage;
860

861 label1610764758: true;
862

863 // outgoing message
864 send_createStorage(psFwd2,depl2,foundID2,startID);
865

866 // quit
867 node_quitRole(QUIT_POTSTORAGE,owner);
868 goto endPotStorage;
869 label1413919803: true;
870

871 // outgoing message
872 node_getId(owner,compAttr_id);node_getId(owner,compAttr_id);
873 send_createStorage(psSmallest2,depl,compAttr_id,compAttr_id);
874

875 // process invocation by goto label
876 goto processSecondRoundTrip;
877

878 label1015451289: true;
879

880 // outgoing message
881 send_findStorage(psNotSmallest1,depl,appID,foundID);
882

883 // process invocation by goto label
884 goto processSecondRoundTrip;
885 label910184078: true;
886

887 // outgoing message
888 node_getId(owner,compAttr_id);
889 send_createStorage(psNotSmallest2,depl,foundID,compAttr_id);
890

891 // process invocation by goto label
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892 goto processSecondRoundTrip;
893

894 endPotStorage: false
895 }
896

897 /////////////// process definition for role type Storage ////////////////////
898 proctype Storage(chan owner, self) {
899 // role type attributes
900

901 // component type attributes
902 int compAttr_id;
903 int compAttr_reqs;
904 int compAttr_code;
905 bool compAttr_isExecuting;
906

907 // component type associations
908 chan compAssoc_neighbor;
909

910 // local variables for all role instance variables (of create/get and incoming
messages)

911 chan i;
912 chan e;
913

914 // local variables for all formal data parameters (of incoming messages)
915 int appID;
916 int appReqs;
917 int appCode;
918

919 // local variables for all return values of operations
920

921 // local variables for all plays queries
922

923 // start label
924 startStorage: true;
925

926 //////// role behavior //////////
927

928 // incoming message
929 receive_store(appID,appReqs,appCode);
930

931 // set comp attr
932 node_setCode(owner,appCode);
933

934 // retrieve reference to component instance
935

936 // create/get role instance
937 node_retrieveRole(CREATE_INITIATOR,owner,i);
938

939 // outgoing message
940 send_initiate(i,self,appID,appReqs);
941

942 // incoming message
943 receive_reqCode(e);
944

945 // outgoing message
946 node_getCode(owner,compAttr_code);
947 send_sndCode(e,compAttr_code);
948

949 // quit
950 node_quitRole(QUIT_STORAGE,owner);
951 goto endStorage;
952

953 endStorage: false
954 }
955

956 /////////////// process definition for role type Initiator ////////////////////
957 proctype Initiator(chan owner, self) {
958 // role type attributes
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959

960 // component type attributes
961 int compAttr_id;
962 int compAttr_reqs;
963 int compAttr_code;
964 bool compAttr_isExecuting;
965

966 // component type associations
967 chan compAssoc_neighbor;
968

969 // local variables for all role instance variables (of create/get and incoming
messages)

970 chan s;
971 chan e;
972 chan pr;
973 chan pe;
974

975 // local variables for all formal data parameters (of incoming messages)
976 int appID;
977 int appReqs;
978

979 // local variables for all return values of operations
980

981 // local variables for all plays queries
982

983 // start label
984 startInitiator: true;
985

986 //////// role behavior //////////
987

988 // incoming message
989 receive_initiate(s,appID,appReqs);
990

991 // retrieve reference to component instance
992

993 // create/get role instance
994 node_retrieveRole(CREATE_POTEXECUTOR,owner,pe);
995

996 // outgoing message
997 send_findExecutor(pe,self,appReqs);
998

999 // incoming message
1000 receive_foundExecutor(e);
1001

1002 // outgoing message
1003 send_execute(e,self,s,appID);
1004

1005 // incoming message
1006 receive_executing();
1007

1008 // retrieve reference to component instance
1009 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1010

1011 // create/get role instance
1012 node_retrieveRole(CREATE_POTREQUESTER,compAssoc_neighbor,pr);
1013

1014 // outgoing message
1015 node_getId(owner,compAttr_id);
1016 send_findRequester(pr,e,compAttr_id);
1017

1018 // quit
1019 node_quitRole(QUIT_INITIATOR,owner);
1020 goto endInitiator;
1021

1022 endInitiator: false
1023 }
1024

1025 /////////////// process definition for role type PotExecutor ////////////////////
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1026 proctype PotExecutor(chan owner, self) {
1027 // role type attributes
1028

1029 // component type attributes
1030 int compAttr_id;
1031 int compAttr_reqs;
1032 int compAttr_code;
1033 bool compAttr_isExecuting;
1034

1035 // component type associations
1036 chan compAssoc_neighbor;
1037

1038 // local variables for all role instance variables (of create/get and incoming
messages)

1039 chan pe;
1040 chan i;
1041 chan e;
1042

1043 // local variables for all formal data parameters (of incoming messages)
1044 int appReqs;
1045

1046 // local variables for all return values of operations
1047

1048 // local variables for all plays queries
1049 bool ownerPlaysExecutor;
1050 bool compAssoc_neighborPlaysPotExecutor;
1051

1052 // start label
1053 startPotExecutor: true;
1054

1055 //////// role behavior //////////
1056

1057 // incoming message
1058 receive_findExecutor(i,appReqs);
1059

1060 // if-then-else
1061 atomic {
1062 // retrieve values for guards in guarded choice
1063 node_getReqs(owner,compAttr_reqs);;
1064

1065 if
1066 ::(compAttr_reqs == appReqs) ->
1067

1068 // if-then-else
1069 // retrieve values for guards in if-then-else
1070 node_isPlaying(PLAYS_EXECUTOR,owner,ownerPlaysExecutor);
1071

1072 if
1073 ::(!ownerPlaysExecutor) ->
1074

1075 // retrieve reference to component instance
1076

1077 // create/get role instance
1078 node_retrieveRole(CREATE_EXECUTOR,owner,e);
1079

1080 goto label1784481001
1081

1082 :: else ->
1083

1084 // quit
1085 node_quitRole(QUIT_POTEXECUTOR,owner);
1086 goto endPotExecutor
1087 fi
1088 :: else ->
1089

1090 // if-then-else
1091 // retrieve values for guards in if-then-else
1092 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);



D.2. GENERATED PROMELA SPECIFICATION WITH GOALS 373

1093 node_isPlaying(PLAYS_POTEXECUTOR,compAssoc_neighbor,
compAssoc_neighborPlaysPotExecutor);

1094

1095 if
1096 ::(!compAssoc_neighborPlaysPotExecutor) ->
1097

1098 // retrieve reference to component instance
1099 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1100

1101 // create/get role instance
1102 node_retrieveRole(CREATE_POTEXECUTOR,compAssoc_neighbor,pe);
1103

1104 goto label442612558
1105

1106 :: else ->
1107

1108 // quit
1109 node_quitRole(QUIT_POTEXECUTOR,owner);
1110 goto endPotExecutor
1111 fi
1112 fi
1113 };
1114

1115 label1784481001: true;
1116

1117 // outgoing message
1118 send_foundExecutor(i,e);
1119

1120 // quit
1121 node_quitRole(QUIT_POTEXECUTOR,owner);
1122 goto endPotExecutor;
1123

1124 label442612558: true;
1125

1126 // outgoing message
1127 send_findExecutor(pe,i,appReqs);
1128

1129 // quit
1130 node_quitRole(QUIT_POTEXECUTOR,owner);
1131 goto endPotExecutor;
1132

1133 endPotExecutor: false
1134 }
1135

1136 /////////////// process definition for role type Executor ////////////////////
1137 proctype Executor(chan owner, self) {
1138 // role type attributes
1139

1140 // component type attributes
1141 int compAttr_id;
1142 int compAttr_reqs;
1143 int compAttr_code;
1144 bool compAttr_isExecuting;
1145

1146 // component type associations
1147 chan compAssoc_neighbor;
1148

1149 // local variables for all role instance variables (of create/get and incoming
messages)

1150 chan i;
1151 chan s;
1152 chan r;
1153

1154 // local variables for all formal data parameters (of incoming messages)
1155 int appCode;
1156 int appID;
1157

1158 // local variables for all return values of operations
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1159

1160 // local variables for all plays queries
1161

1162 // start label
1163 startExecutor: true;
1164

1165 //////// role behavior //////////
1166

1167 // declare local process by label
1168 processExecutorProcess: true;
1169

1170 // incoming message
1171 receive_execute(i,s,appID);
1172

1173 // outgoing message
1174 send_reqCode(s,self);
1175

1176 // incoming message
1177 receive_sndCode(appCode);
1178

1179 // set comp attr
1180 node_setIsExecuting(owner,true);
1181

1182 // outgoing message
1183 send_executing(i);
1184

1185 // declare local process by label
1186 processExecutorRunning: true;
1187

1188 // incoming message
1189 receive_reqService(r);
1190

1191 // outgoing message
1192 send_sndService(r);
1193

1194 // process invocation by goto label
1195 goto processExecutorRunning;
1196

1197 endExecutor: false
1198 }
1199

1200 /////////////// process definition for role type PotRequester ////////////////////
1201 proctype PotRequester(chan owner, self) {
1202 // role type attributes
1203

1204 // component type attributes
1205 int compAttr_id;
1206 int compAttr_reqs;
1207 int compAttr_code;
1208 bool compAttr_isExecuting;
1209

1210 // component type associations
1211 chan compAssoc_neighbor;
1212

1213 // local variables for all role instance variables (of create/get and incoming
messages)

1214 chan r;
1215 chan e;
1216 chan pr1;
1217 chan pr2;
1218

1219 // local variables for all formal data parameters (of incoming messages)
1220 int startID;
1221

1222 // local variables for all return values of operations
1223

1224 // local variables for all plays queries
1225 bool compAssoc_neighborPlaysPotRequester;
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1226 bool ownerPlaysRequester;
1227

1228 // start label
1229 startPotRequester: true;
1230

1231 //////// role behavior //////////
1232

1233 // declare local process by label
1234 processPotRequesterProcess: true;
1235

1236 // incoming message
1237 receive_findRequester(e,startID);
1238

1239 // if-then-else
1240 atomic {
1241 // retrieve values for guards in guarded choice
1242 node_isPlaying(PLAYS_REQUESTER,owner,ownerPlaysRequester);
1243

1244 if
1245 ::(ownerPlaysRequester) ->
1246

1247 // retrieve reference to component instance
1248

1249 // create/get role instance
1250 node_retrieveRole(GET_REQUESTER,owner,r);
1251

1252 goto label778806867
1253 :: else ->
1254

1255 // if-then-else
1256 // retrieve values for guards in if-then-else
1257 node_getId(owner,compAttr_id);;
1258

1259 if
1260 ::(compAttr_id != startID) ->
1261

1262 // if-then-else
1263 // retrieve values for guards in if-then-else
1264 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1265 node_isPlaying(PLAYS_POTREQUESTER,compAssoc_neighbor,

compAssoc_neighborPlaysPotRequester);
1266

1267 if
1268 ::(!compAssoc_neighborPlaysPotRequester) ->
1269

1270 // retrieve reference to component instance
1271 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1272

1273 // create/get role instance
1274 node_retrieveRole(CREATE_POTREQUESTER,compAssoc_neighbor,pr2);
1275

1276 goto label186050747
1277

1278 :: else ->
1279

1280 // quit
1281 node_quitRole(QUIT_POTREQUESTER,owner);
1282 goto endPotRequester
1283 fi
1284

1285 :: else ->
1286

1287 // quit
1288 node_quitRole(QUIT_POTREQUESTER,owner);
1289 goto endPotRequester
1290 fi
1291 fi
1292 };
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1293

1294 label778806867: true;
1295

1296 // outgoing message
1297 send_inform(r,e,self);
1298

1299 // incoming message
1300 receive_ackInformation();
1301

1302 // if-then-else
1303 atomic {
1304 // retrieve values for guards in guarded choice
1305 node_getId(owner,compAttr_id);;
1306

1307 if
1308 ::(compAttr_id != startID) ->
1309

1310 // if-then-else
1311 // retrieve values for guards in if-then-else
1312 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1313 node_isPlaying(PLAYS_POTREQUESTER,compAssoc_neighbor,

compAssoc_neighborPlaysPotRequester);
1314

1315 if
1316 ::(!compAssoc_neighborPlaysPotRequester) ->
1317

1318 // retrieve reference to component instance
1319 node_retrieveAssociation(GET_NEIGHBOR,owner,compAssoc_neighbor);
1320

1321 // create/get role instance
1322 node_retrieveRole(CREATE_POTREQUESTER,compAssoc_neighbor,pr1);
1323

1324 goto label834441627
1325

1326 :: else ->
1327

1328 // quit
1329 node_quitRole(QUIT_POTREQUESTER,owner);
1330 goto endPotRequester
1331 fi
1332 :: else ->
1333

1334 // quit
1335 node_quitRole(QUIT_POTREQUESTER,owner);
1336 goto endPotRequester
1337 fi
1338 };
1339

1340 label834441627: true;
1341

1342 // outgoing message
1343 send_findRequester(pr1,e,startID);
1344

1345 // quit
1346 node_quitRole(QUIT_POTREQUESTER,owner);
1347 goto endPotRequester;
1348

1349 label186050747: true;
1350

1351 // outgoing message
1352 send_findRequester(pr2,e,startID);
1353

1354 // quit
1355 node_quitRole(QUIT_POTREQUESTER,owner);
1356 goto endPotRequester;
1357

1358 endPotRequester: false
1359 }
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1360

1361 /////////////// process definition for role type Requester ////////////////////
1362 proctype Requester(chan owner, self) {
1363 // role type attributes
1364 bool roleAttr_hasResult;
1365

1366 // component type attributes
1367 int compAttr_id;
1368 int compAttr_reqs;
1369 int compAttr_code;
1370 bool compAttr_isExecuting;
1371

1372 // component type associations
1373 chan compAssoc_neighbor;
1374

1375 // local variables for all role instance variables (of create/get and incoming
messages)

1376 chan e;
1377 chan pr;
1378

1379 // local variables for all formal data parameters (of incoming messages)
1380

1381 // local variables for all return values of operations
1382

1383 // local variables for all plays queries
1384

1385 receive_setOffInitialRole();
1386

1387 // start label
1388 startRequester: true;
1389

1390 //////// role behavior //////////
1391

1392 // incoming message
1393 receive_inform(e,pr);
1394

1395 // outgoing message
1396 send_ackInformation(pr);
1397

1398 // outgoing message
1399 send_reqService(e,self);
1400

1401 // incoming message
1402 receive_sndService();
1403

1404 // set role attr
1405 roleAttr_hasResult = true;
1406

1407 // call operation at component
1408 node_callPrintResult(owner);
1409

1410 // quit
1411 node_quitRole(QUIT_REQUESTER,owner);
1412 goto endRequester;
1413

1414 endRequester: false
1415 }
1416

1417 //////////////// start ensemble /////////////////////////
1418 init {
1419 chan n1 = [0] of { NodeOperation };
1420 chan n2 = [0] of { NodeOperation };
1421

1422 int id1 = 1;
1423 int id2 = 2;
1424 int reqs1 = 1;
1425 int reqs2 = 2;
1426
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1427 // the ID of one node is closest to the ID 1234 of the app
1428 if
1429 ::id1 = 100;
1430 ::id2 = 100;
1431 fi;
1432

1433 // one of the nodes satisfies the requirements 1234 of the app
1434 if
1435 ::reqs1 = 1234;
1436 ::reqs2 = 1234;
1437 fi;
1438

1439 run Node(id1,reqs1,0,0,n2,n1);
1440 run Node(id2,reqs2,0,0,n1,n2);
1441

1442 // nondeterministically choose owner for initial roles
1443 chan ownerDeploy;
1444 if
1445 ::ownerDeploy = n1;
1446 ::ownerDeploy = n2;
1447 fi;
1448

1449 chan ownerReq;
1450 chan ownerReq2;
1451 if
1452 ::ownerReq = n1;ownerReq2 = n2;
1453 ::ownerReq = n2;ownerReq2 = n1;
1454 fi;
1455

1456 chan deploy;
1457 node_retrieveRole(CREATE_DEPLOYER,ownerDeploy,deploy);
1458

1459 chan req;
1460 node_retrieveRole(CREATE_REQUESTER,ownerReq,req);
1461

1462 chan req2;
1463 node_retrieveRole(CREATE_REQUESTER,ownerReq2,req2);
1464

1465 atomic {
1466 send_setOffInitialRole(deploy);
1467 send_setOffInitialRole(req);
1468 send_setOffInitialRole(req2);
1469 }
1470 }
1471

1472 /////////////// Storage Goals /////////////////////
1473

1474 // code gets stored
1475 ltl Achieve_CodeStored {
1476 [] ( Deployer@startDeployer ->
1477 <> (
1478 (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
1479 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
1480 )
1481 )
1482 }
1483

1484 //ltl Achieve_CodeStored {
1485 // [] ( Deployer@startDeployer ->
1486 // <> ( (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode &&
1487 // ( (Node[1]:id-Deployer:roleAttr_appID < 0
1488 // && Node[2]:id-Deployer:roleAttr_appID < 0
1489 // && Deployer:roleAttr_appID-Node[1]:id < Deployer:roleAttr_appID-Node[2]:id)
1490 // || (Node[1]:id-Deployer:roleAttr_appID >= 0
1491 // && Node[2]:id-Deployer:roleAttr_appID >= 0
1492 // && Node[1]:id-Deployer:roleAttr_appID < Node[2]:id-Deployer:roleAttr_appID)
1493 // || (Node[1]:id-Deployer:roleAttr_appID < 0
1494 // && Node[2]:id-Deployer:roleAttr_appID >= 0



D.2. GENERATED PROMELA SPECIFICATION WITH GOALS 379

1495 // && Deployer:roleAttr_appID-Node[1]:id < Node[2]:id-Deployer:roleAttr_appID)
1496 // || (Node[1]:id-Deployer:roleAttr_appID >= 0
1497 // && Node[2]:id-Deployer:roleAttr_appID < 0
1498 // && Node[1]:id-Deployer:roleAttr_appID < Deployer:roleAttr_appID-Node[2]:id))
1499 // )
1500 // || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode &&
1501 // ( (Node[2]:id-Deployer:roleAttr_appID < 0
1502 // && Node[1]:id-Deployer:roleAttr_appID < 0
1503 // && Deployer:roleAttr_appID-Node[2]:id < Deployer:roleAttr_appID-Node[1]:id)
1504 // || (Node[2]:id-Deployer:roleAttr_appID >= 0
1505 // && Node[1]:id-Deployer:roleAttr_appID >= 0
1506 // && Node[2]:id-Deployer:roleAttr_appID < Node[1]:id-Deployer:roleAttr_appID)
1507 // || (Node[2]:id-Deployer:roleAttr_appID < 0
1508 // && Node[1]:id-Deployer:roleAttr_appID >= 0
1509 // && Deployer:roleAttr_appID-Node[2]:id < Node[1]:id-Deployer:roleAttr_appID)
1510 // || (Node[2]:id-Deployer:roleAttr_appID >= 0
1511 // && Node[1]:id-Deployer:roleAttr_appID < 0
1512 // && Node[2]:id-Deployer:roleAttr_appID < Deployer:roleAttr_appID-Node[1]:id))
1513 // )
1514 // )
1515 // ) }
1516

1517 // code stays stored
1518 ltl Maintain_Storage {
1519 [] ( Deployer@startDeployer ->
1520 [] (
1521 ( (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
1522 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
1523 )
1524 -> [] ( (Node[1]:code > 0 && Node[1]:code == Deployer:roleAttr_appCode)
1525 || (Node[2]:code > 0 && Node[2]:code == Deployer:roleAttr_appCode)
1526 )
1527 )
1528 )
1529 }
1530

1531 /////////////// Execution Goals /////////////////////
1532

1533 // app gets executed
1534 ltl Achieve_AppExecuted {
1535 [] ( Deployer@startDeployer ->
1536 (Node[1]:reqs == Deployer:roleAttr_appReqs
1537 || Node[2]:reqs == Deployer:roleAttr_appReqs)
1538 ->
1539 <> ( (Node[1]:reqs == Deployer:roleAttr_appReqs && Node[1]:isExecuting)
1540 || (Node[2]:reqs == Deployer:roleAttr_appReqs && Node[2]:isExecuting)
1541 )
1542 )
1543 }
1544

1545 // app stays executed
1546 ltl Maintain_Execution {
1547 [] ( Deployer@startDeployer ->
1548 [] (
1549 (Node[1]:isExecuting || Node[2]:isExecuting)
1550 -> [] (Node[1]:isExecuting || Node[2]:isExecuting)
1551 )
1552 )
1553 }
1554

1555 /////////////// Usage Goals /////////////////////
1556

1557 // requester 4 gets served
1558 ltl Achieve_Usage4 {
1559 [] ( Deployer@startDeployer ->
1560 <> Requester[4]:roleAttr_hasResult
1561 )
1562 }
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1563

1564 // requester 5 gets served
1565 ltl Achieve_Usage5 {
1566 [] ( Deployer@startDeployer ->
1567 <> Requester[5]:roleAttr_hasResult
1568 )
1569 }



Appendix E

Search-and-Rescue Scenario

The Helena development methodology for self-adaptive systems was showcased at a
small robotic search-and-rescue scenario in Chap. 11. Robots are distributed over an
unknown area where recently some kind of disaster happened. The robots have to
�nd victims and transport them to a rescue area. Thereby, they should self-adaptively
manage their behaviors. In Chap. 11, the adaptation speci�cation for the example was
given by the signature of a robot in Fig. 11.2 and its adaptation automaton in Fig. 11.3.

In this appendix, we introduce the resulting Helena model of the example in He-
lenaText after the second model transformation (so far this model transformation
has to be done by hand and is not yet included into the Helena workbench). The
Helena speci�cation is comprised of the role-based architecture with one component
type Robot, �ve mode role types RandomWalk, DirectedWalk, Rescue, LowBattery and
Recharge, four sensor role types BatterySensor, AtVictimSensor, VictimPosSensor and
RechargeRequestedSensor, and a role type for the adaptation manager (cf. Sec. 11.6).
The speci�cation furthermore lists role behaviors for all role types. The role behaviors
for the mode roles are speci�ed by hand and transformed to be interruptible as explained
in Sec. 11.7.3.1. The role behaviors for the sensors roles are systematically derived as
explained in Sec. 11.7.3.2. Finally, the role behavior for the adaptation automaton is
derived from the adaptation automaton in Fig. 11.3 as explained in Sec. 11.7.3.3. The
complete speci�cation in HelenaText and implementation in jHelena can be found
on the attached CD in the �le search-and-rescue.helena.

1 package searchAndRescue {
2

3 componentType Robot {
4 attr int ownPos;
5

6 attr int battery;
7 attr int atVictim;
8 attr int victimPos;
9 attr int rechargeRequested;

10

11 op void updateBattery();
12 op void updateAtVictim();
13 op void updateVictimPos();
14 op void updateRechargeRequested();
15

16 op void randomStep();
17 op void directStep();
18 op void getCharged();
19 op void charge();
20 }

381
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21

22 roleType RandomWalk over Robot {
23 rolemsg in interrupt()();
24 rolemsg in resume()();
25 }
26

27 roleType DirectedWalk over Robot {
28 rolemsg in interrupt()();
29 rolemsg in resume()();
30 }
31

32 roleType Rescue over Robot {
33 rolemsg in interrupt()();
34 rolemsg in resume()();
35 }
36

37 roleType LowBattery over Robot {
38 rolemsg in interrupt()();
39 rolemsg in resume()();
40 }
41

42 roleType Recharge over Robot {
43 rolemsg in interrupt()();
44 rolemsg in resume()();
45 }
46

47 roleType BatterySensor over Robot {
48 rolemsg out inform()(String attribute, Integer value);
49 }
50

51 roleType AtVictimSensor over Robot {
52 rolemsg out inform()(String attribute, Integer value);
53 }
54

55 roleType VictimPosSensor over Robot {
56 rolemsg out inform()(String attribute, Integer value);
57 }
58

59 roleType RechargeRequestedSensor over Robot {
60 rolemsg out inform()(String attribute, Integer value);
61 }
62

63 roleType AdaptationManager over Robot {
64 rolemsg out interrupt()();
65 rolemsg out resume()();
66 rolemsg in inform()(String attribute, Integer value);
67 }
68

69 ensembleStructure RobotEnsemble {
70 <RandomWalk, min = 1, max = 1, cap = 0>;
71 <DirectedWalk, min = 1, max = 1, cap = 0>;
72 <Rescue, min = 1, max = 1, cap = 0>;
73 <LowBattery, min = 1, max = 1, cap = 0>;
74 <Recharge, min = 1, max = 1, cap = 0>;
75 <BatterySensor, min = 1, max = 1, cap = 0>;
76 <AtVictimSensor, min = 1, max = 1, cap = 0>;
77 <VictimPosSensor, min = 1, max = 1, cap = 0>;
78 <RechargeRequestedSensor, min = 1, max = 1, cap = 0>;
79 <AdaptationManager, min = 1, max = 1, cap =0>;
80 }
81

82 roleBehavior RandomWalk = RandomWalkProc {
83 process RandomWalkProc =
84 ? resume()() .
85 RandomWalk1
86

87 process RandomWalk1 =
88 RandomWalk2
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89

90 process RandomWalk2 =
91 (
92 ? interrupt()() .
93 ? resume()() .
94 RandomWalk2
95 +
96 owner.randomStep() .
97 RandomWalk1
98 )
99 }

100

101 roleBehavior DirectedWalk = DirectedWalkProc {
102 process DirectedWalkProc =
103 ? resume()() .
104 DirectedWalk1
105

106 process DirectedWalk1 =
107 DirectedWalk2
108

109 process DirectedWalk2 =
110 (
111 ? interrupt()() .
112 ? resume()() .
113 DirectedWalk2
114 +
115 owner.directStep() .
116 DirectedWalk1
117 )
118 }
119

120 roleBehavior Rescue = RescueProc {
121 process RescueProc =
122 ? resume()() .
123 RescueProc1
124

125 process RescueProc1 =
126 quit
127 }
128

129 roleBehavior LowBattery = LowBatteryProc {
130 process LowBatteryProc =
131 ? resume()() .
132 LowBatteryProc1
133

134 process LowBatteryProc1 =
135 (
136 ? interrupt()() .
137 ? resume()() .
138 LowBatteryProc1
139 +
140 owner.getCharged() .
141 LowBatteryProc1
142 )
143 }
144

145 roleBehavior Recharge = RechargeProc {
146 process RechargeProc =
147 ? resume()() .
148 RechargeProc1
149

150 process RechargeProc1 =
151 (
152 ? interrupt()() .
153 ? resume()() .
154 RechargeProc1
155 +
156 owner.charge() .
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157 RechargeProc1
158 )
159 }
160

161 roleBehavior BatterySensor = BatterySensorProc {
162 process BatterySensorProc =
163 am <- get(AdaptationManager, owner) .
164 BatteryMonitor
165

166 process BatteryMonitor =
167 owner.updateBattery() .
168 am ! inform()("battery", owner.battery) .
169 BatteryMonitor
170 }
171

172 roleBehavior AtVictimSensor = AtVictimSensorProc {
173 process AtVictimSensorProc =
174 am <- get(AdaptationManager, owner) .
175 AtVictimMonitor
176

177 process AtVictimMonitor =
178 owner.updateAtVictim() .
179 am ! inform()("atVictim", owner. atVictim) .
180 AtVictimMonitor
181 }
182

183 roleBehavior VictimPosSensor = VictimPosSensorProc {
184 process VictimPosSensorProc =
185 am <- get(AdaptationManager, owner) .
186 VictimPosMonitor
187

188 process VictimPosMonitor =
189 owner.updateVictimPos() .
190 am ! inform()("victimPos", owner.victimPos) .
191 VictimPosMonitor
192 }
193

194 roleBehavior RechargeRequestedSensor = RechargeRequestedSensorProc {
195 process RechargeRequestedSensorProc =
196 am <- get(AdaptationManager, owner) .
197 RechargeRequestedMonitor
198

199 process RechargeRequestedMonitor =
200 owner.updateRechargeRequested() .
201 am ! inform()("rechargeRequested", owner.rechargeRequested) .
202 RechargeRequestedMonitor
203 }
204

205 roleBehavior AdaptationManager = AM {
206 process AM =
207 randomWalkInst <- create(RandomWalk, owner) .
208 directedWalkInst <- create(DirectedWalk, owner) .
209 rescueInst <- create(Rescue, owner) .
210 lowBatteryInst <- create(LowBattery, owner) .
211 rechargeInst <- create(Recharge, owner) .
212 randomWalkInst ! resume()() .
213 RandomWalkProcess
214

215 process RandomWalkProcess =
216 ? inform()(String attribute, Integer value) .
217 if (attribute == "victimPos") {
218 owner.victimPos = value .
219 RandomWalkChange
220 }
221 else {
222 if (attribute == "atVictim") {
223 owner.atVictim = value .
224 RandomWalkChange
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225 }
226 else {
227 if (attribute == "rechargeRequested") {
228 owner.rechargeRequested = value .
229 RandomWalkChange
230 }
231 else {
232 if (attribute == "battery") {
233 owner.battery = value .
234 RandomWalkChange
235 }
236 else {
237 RandomWalkChange
238 }
239 }
240 }
241 }
242 process RandomWalkChange =
243 if (owner.victimPos != 0) {
244 randomWalkInst ! interrupt()() .
245 directedWalkInst ! resume()() .
246 DirectedWalkProcess
247 }
248 else {
249 if (owner.atVictim == 1) {
250 randomWalkInst ! interrupt()() .
251 rescueInst ! resume()() .
252 RescueProcess
253 }
254 else {
255 if (owner.rechargeRequested == 1) {
256 randomWalkInst ! interrupt()() .
257 rechargeInst ! resume()() .
258 RechargeFromRandomWalkProcess
259 }
260 else {
261 if (owner.battery < 1) {
262 randomWalkInst ! interrupt()() .
263 lowBatteryInst ! resume()() .
264 LowBatteryFromRandomWalkProcess
265 }
266 else {
267 RandomWalkProcess
268 }
269 }
270 }
271 }
272

273 process DirectedWalkProcess =
274 ? inform()(String attribute2, Integer value2) .
275 if (attribute2 == "victimPos") {
276 owner.victimPos = value2 .
277 DirectedWalkChange
278 }
279 else {
280 if (attribute2 == "atVictim") {
281 owner.atVictim = value2 .
282 DirectedWalkChange
283 }
284 else {
285 if (attribute2 == "rechargeRequested") {
286 owner.rechargeRequested = value2 .
287 DirectedWalkChange
288 }
289 else {
290 if (attribute2 == "battery") {
291 owner.battery = value2 .
292 DirectedWalkChange
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293 }
294 else {
295 DirectedWalkChange
296 }
297 }
298 }
299 }
300 process DirectedWalkChange =
301 if (owner.atVictim == 1) {
302 directedWalkInst ! interrupt()() .
303 rescueInst ! resume()() .
304 RescueProcess
305 }
306 else {
307 if (owner.rechargeRequested == 1) {
308 directedWalkInst ! interrupt()() .
309 rechargeInst ! resume()() .
310 RechargeFromDirectedWalkProcess
311 }
312 else {
313 if (owner.battery < 1) {
314 directedWalkInst ! interrupt()() .
315 lowBatteryInst ! resume()() .
316 LowBatteryFromDirectedWalkProcess
317 }
318 else {
319 DirectedWalkProcess
320 }
321 }
322 }
323

324 process RescueProcess =
325 ? inform()(String attribute3, Integer value3) .
326 if (attribute3 == "victimPos") {
327 owner.victimPos = value3 .
328 RescueChange
329 }
330 else {
331 if (attribute3 == "atVictim") {
332 owner.atVictim = value3 .
333 RescueChange
334 }
335 else {
336 if (attribute3 == "rechargeRequested") {
337 owner.rechargeRequested = value3 .
338 RescueChange
339 }
340 else {
341 if (attribute3 == "battery") {
342 owner.battery = value3 .
343 RescueChange
344 }
345 else {
346 RescueChange
347 }
348 }
349 }
350 }
351 process RescueChange =
352 if (owner.rechargeRequested == 1) {
353 rescueInst ! interrupt()() .
354 rechargeInst ! resume()() .
355 RechargeFromRescueProcess
356 }
357 else {
358 if (owner.battery < 1) {
359 rescueInst ! interrupt()() .
360 lowBatteryInst ! resume()() .
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361 LowBatteryFromRescueProcess
362 }
363 else {
364 RescueProcess
365 }
366 }
367

368 process RechargeFromRandomWalkProcess =
369 ? inform()(String attribute4, Integer value4) .
370 if (attribute4 == "victimPos") {
371 owner.victimPos = value4 .
372 RechargeFromRandomWalkChange
373 }
374 else {
375 if (attribute4 == "atVictim") {
376 owner.atVictim = value4 .
377 RechargeFromRandomWalkChange
378 }
379 else {
380 if (attribute4 == "rechargeRequested") {
381 owner.rechargeRequested = value4 .
382 RechargeFromRandomWalkChange
383 }
384 else {
385 if (attribute4 == "battery") {
386 owner.battery = value4 .
387 RechargeFromRandomWalkChange
388 }
389 else {
390 RechargeFromRandomWalkChange
391 }
392 }
393 }
394 }
395 process RechargeFromRandomWalkChange =
396 if (owner.rechargeRequested == 0) {
397 rechargeInst ! interrupt()() .
398 randomWalkInst ! resume()() .
399 RandomWalkProcess
400 }
401 else {
402 if (owner.battery < 1) {
403 rechargeInst ! interrupt()() .
404 lowBatteryInst ! resume()() .
405 LowBatteryFromRechargeFromRandomWalkProcess
406 }
407 else {
408 RechargeFromRandomWalkProcess
409 }
410 }
411

412 process RechargeFromDirectedWalkProcess =
413 ? inform()(String attribute5, Integer value5) .
414 if (attribute5 == "victimPos") {
415 owner.victimPos = value5 .
416 RechargeFromDirectedWalkChange
417 }
418 else {
419 if (attribute5 == "atVictim") {
420 owner.atVictim = value5 .
421 RechargeFromDirectedWalkChange
422 }
423 else {
424 if (attribute5 == "rechargeRequested") {
425 owner.rechargeRequested = value5 .
426 RechargeFromDirectedWalkChange
427 }
428 else {
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429 if (attribute5 == "battery") {
430 owner.battery = value5 .
431 RechargeFromDirectedWalkChange
432 }
433 else {
434 RechargeFromDirectedWalkChange
435 }
436 }
437 }
438 }
439 process RechargeFromDirectedWalkChange =
440 if (owner.rechargeRequested == 0) {
441 rechargeInst ! interrupt()() .
442 directedWalkInst ! resume()() .
443 DirectedWalkProcess
444 }
445 else {
446 if (owner.battery < 1) {
447 rechargeInst ! interrupt()() .
448 lowBatteryInst ! resume()() .
449 LowBatteryFromRechargeFromDirectedWalkProcess
450 }
451 else {
452 RechargeFromDirectedWalkProcess
453 }
454 }
455

456 process RechargeFromRescueProcess =
457 ? inform()(String attribute6, Integer value6) .
458 if (attribute6 == "victimPos") {
459 owner.victimPos = value6 .
460 RechargeFromRescueChange
461 }
462 else {
463 if (attribute6 == "atVictim") {
464 owner.atVictim = value6 .
465 RechargeFromRescueChange
466 }
467 else {
468 if (attribute6 == "rechargeRequested") {
469 owner.rechargeRequested = value6 .
470 RechargeFromRescueChange
471 }
472 else {
473 if (attribute6 == "battery") {
474 owner.battery = value6 .
475 RechargeFromRescueChange
476 }
477 else {
478 RechargeFromRescueChange
479 }
480 }
481 }
482 }
483 process RechargeFromRescueChange =
484 if (owner.rechargeRequested == 0) {
485 rechargeInst ! interrupt()() .
486 rescueInst ! resume()() .
487 RescueProcess
488 }
489 else {
490 if (owner.battery < 1) {
491 rechargeInst ! interrupt()() .
492 lowBatteryInst ! resume()() .
493 LowBatteryFromRechargeFromRescueProcess
494 }
495 else {
496 RechargeFromRescueProcess
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497 }
498 }
499

500

501 process LowBatteryFromRandomWalkProcess =
502 ? inform()(String attribute7, Integer value7) .
503 if (attribute7 == "victimPos") {
504 owner.victimPos = value7 .
505 LowBatteryFromRandomWalkChange
506 }
507 else {
508 if (attribute7 == "atVictim") {
509 owner.atVictim = value7 .
510 LowBatteryFromRandomWalkChange
511 }
512 else {
513 if (attribute7 == "rechargeRequested") {
514 owner.rechargeRequested = value7 .
515 LowBatteryFromRandomWalkChange
516 }
517 else {
518 if (attribute7 == "battery") {
519 owner.battery = value7 .
520 LowBatteryFromRandomWalkChange
521 }
522 else {
523 LowBatteryFromRandomWalkChange
524 }
525 }
526 }
527 }
528 process LowBatteryFromRandomWalkChange =
529 if (owner.battery == 100) {
530 lowBatteryInst ! interrupt()() .
531 randomWalkInst ! resume()() .
532 RandomWalkProcess
533 }
534 else {
535 LowBatteryFromRandomWalkProcess
536 }
537

538 process LowBatteryFromDirectedWalkProcess =
539 ? inform()(String attribute8, Integer value8) .
540 if (attribute8 == "victimPos") {
541 owner.victimPos = value8 .
542 LowBatteryFromDirectedWalkChange
543 }
544 else {
545 if (attribute8 == "atVictim") {
546 owner.atVictim = value8 .
547 LowBatteryFromDirectedWalkChange
548 }
549 else {
550 if (attribute8 == "rechargeRequested") {
551 owner.rechargeRequested = value8 .
552 LowBatteryFromDirectedWalkChange
553 }
554 else {
555 if (attribute8 == "battery") {
556 owner.battery = value8 .
557 LowBatteryFromDirectedWalkChange
558 }
559 else {
560 LowBatteryFromDirectedWalkChange
561 }
562 }
563 }
564 }
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565 process LowBatteryFromDirectedWalkChange =
566 if (owner.battery == 100) {
567 lowBatteryInst ! interrupt()() .
568 directedWalkInst ! resume()() .
569 DirectedWalkProcess
570 }
571 else {
572 LowBatteryFromDirectedWalkProcess
573 }
574

575 process LowBatteryFromRescueProcess =
576 ? inform()(String attribute9, Integer value9) .
577 if (attribute9 == "victimPos") {
578 owner.victimPos = value9 .
579 LowBatteryFromRescueChange
580 }
581 else {
582 if (attribute9 == "atVictim") {
583 owner.atVictim = value9 .
584 LowBatteryFromRescueChange
585 }
586 else {
587 if (attribute9 == "rechargeRequested") {
588 owner.rechargeRequested = value9 .
589 LowBatteryFromRescueChange
590 }
591 else {
592 if (attribute9 == "battery") {
593 owner.battery = value9 .
594 LowBatteryFromRescueChange
595 }
596 else {
597 LowBatteryFromRescueChange
598 }
599 }
600 }
601 }
602 process LowBatteryFromRescueChange =
603 if (owner.battery == 100) {
604 lowBatteryInst ! interrupt()() .
605 rescueInst ! resume()() .
606 RescueProcess
607 }
608 else {
609 LowBatteryFromRescueProcess
610 }
611

612 process LowBatteryFromRechargeFromRandomWalkProcess =
613 ? inform()(String attribute10, Integer value10) .
614 if (attribute10 == "victimPos") {
615 owner.victimPos = value10 .
616 LowBatteryFromRechargeFromRandomWalkChange
617 }
618 else {
619 if (attribute10 == "atVictim") {
620 owner.atVictim = value10 .
621 LowBatteryFromRechargeFromRandomWalkChange
622 }
623 else {
624 if (attribute10 == "rechargeRequested") {
625 owner.rechargeRequested = value10 .
626 LowBatteryFromRechargeFromRandomWalkChange
627 }
628 else {
629 if (attribute10 == "battery") {
630 owner.battery = value10 .
631 LowBatteryFromRechargeFromRandomWalkChange
632 }
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633 else {
634 LowBatteryFromRechargeFromRandomWalkChange
635 }
636 }
637 }
638 }
639 process LowBatteryFromRechargeFromRandomWalkChange =
640 if (owner.battery == 100) {
641 lowBatteryInst ! interrupt()() .
642 rechargeInst ! resume()() .
643 RechargeFromRandomWalkProcess
644 }
645 else {
646 LowBatteryFromRechargeFromRandomWalkProcess
647 }
648

649 process LowBatteryFromRechargeFromDirectedWalkProcess =
650 ? inform()(String attribute11, Integer value11) .
651 if (attribute11 == "victimPos") {
652 owner.victimPos = value11 .
653 LowBatteryFromRechargeFromDirectedWalkChange
654 }
655 else {
656 if (attribute11 == "atVictim") {
657 owner.atVictim = value11 .
658 LowBatteryFromRechargeFromDirectedWalkChange
659 }
660 else {
661 if (attribute11 == "rechargeRequested") {
662 owner.rechargeRequested = value11 .
663 LowBatteryFromRechargeFromDirectedWalkChange
664 }
665 else {
666 if (attribute11 == "battery") {
667 owner.battery = value11 .
668 LowBatteryFromRechargeFromDirectedWalkChange
669 }
670 else {
671 LowBatteryFromRechargeFromDirectedWalkChange
672 }
673 }
674 }
675 }
676 process LowBatteryFromRechargeFromDirectedWalkChange =
677 if (owner.battery == 100) {
678 lowBatteryInst ! interrupt()() .
679 rechargeInst ! resume()() .
680 RechargeFromDirectedWalkProcess
681 }
682 else {
683 LowBatteryFromRechargeFromDirectedWalkProcess
684 }
685

686 process LowBatteryFromRechargeFromRescueProcess =
687 ? inform()(String attribute12, Integer value12) .
688 if (attribute12 == "victimPos") {
689 owner.victimPos = value12 .
690 LowBatteryFromRechargeFromRescueChange
691 }
692 else {
693 if (attribute12 == "atVictim") {
694 owner.atVictim = value12 .
695 LowBatteryFromRechargeFromRescueChange
696 }
697 else {
698 if (attribute12 == "rechargeRequested") {
699 owner.rechargeRequested = value12 .
700 LowBatteryFromRechargeFromRescueChange
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701 }
702 else {
703 if (attribute12 == "battery") {
704 owner.battery = value12 .
705 LowBatteryFromRechargeFromRescueChange
706 }
707 else {
708 LowBatteryFromRechargeFromRescueChange
709 }
710 }
711 }
712 }
713 process LowBatteryFromRechargeFromRescueChange =
714 if (owner.battery == 100) {
715 lowBatteryInst ! interrupt()() .
716 rechargeInst ! resume()() .
717 RechargeFromRescueProcess
718 }
719 else {
720 LowBatteryFromRechargeFromRescueProcess
721 }
722 }
723 }
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