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Summary 

The present dissertation investigates the link between visuospatial attention, saccade 

decisions and saccade programming in the human brain, mainly relying on psychophysical 

methods, but also with the help of transcranial magnetic stimulation (TMS).   

Several lines of evidence indicate that attention is automatically allocated to the 

goals of saccades in preparation (e.g., Deubel & Schneider, 1996; Moore & Fallah, 2004) 

and a number of studies of our research group have proven that visual discrimination 

performance, as a measure of attention deployment, can be used as an index of target 

selection in early saccade planning (Baldauf & Deubel, 2008; Dhawan, Deubel, & 

Jonikaitis, 2013; Jonikaitis & Deubel, 2011; Rolfs, Jonikaitis, Deubel, & Cavanagh, 2011). 

The studies reported in this thesis also made use of this method and the second study 

extends it by showing that visual performance also indexes saccadic decision making.  

The first study (Chapter 2.1) examines attentional dynamics in the antisaccade 

task. We measured visual discrimination performance at both the cue location (the most 

salient visual stimulus) and the antisaccade goal while participants programmed 

antisaccades and found evidence for a parallel attentional selection of both locations. The 

pre-saccadic visual selection of the antisaccade goal was associated with correct saccade 

performance, suggesting that visual and oculomotor selection in the antisaccade task are 

mediated by a common attentional process. The analysis of error trials provided evidence 

that the antisaccade task may involve the automatic parallel programming of two 

competing saccade programs.   

The second study (Chapter 2.2) investigates how perceptual selection is 

modulated during the course of decisions between two alternative saccade targets, in        

a rule-based and in a free choice condition. We tracked visual selection at both possible 

saccade targets as well as at saccade-irrelevant locations and observed a parallel selection 

of both possible targets, with a clear perceptual advantage at the final saccade goal. This 

saccade-related bias was evident both before correct and before incorrect rule-based 

responses, which shows that the pattern of perceptual facilitation reflects the ongoing 

motor decision.  

The third study (Chapter 2.3) studies how TMS of the frontal eye fields (FEF) 

affects the coupling between visual selection and saccade programming. We delivered 

TMS to three possible scalp locations while participants were performing a dual visual-

saccadic task and found that TMS of the left FEF facilitated endogenous attention to the 

right visual hemifield and reduced attention at the goal of leftwards saccades, most likely 

through interhemispheric competition. This indicates that endogenous attention and 

saccade programming are separable within the FEF. 
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General Introduction  

The first part of the Introduction contains a review of the most important theories and 

findings concerning the relationship between covert attention, saccade programming and 

saccadic decisions. In the second part, I will explain our motivation for the three studies 

that constitute this cumulative thesis. 

1.1   Covert and overt attention: Two sides of the same coin?   

When inspecting a visual scene, humans frequently make rapid goal-directed eye 

movements, so-called saccades, with the purpose to bring objects of interest into their 

fovea, where visual acuity is highest. However, it is also known that we can allocate visual 

attention without making an overt eye movement and that such covert attentional shifts 

result in enhanced visual processing at the attended location (Posner, 1980). The relation 

between both types of visual orienting has been a matter of scientific debate for the last 

three decades and no consensus has been reached to date.  

In the following sections, I will first introduce the most important theories 

regarding the coupling between covert attention and saccades, including evidence for and 

against these views. I will continue by discussing findings regarding the potentially 

different relation of exogenous and endogenous orienting to the oculomotor system and 

the relation between attention and saccadic decision making. Finally, I will review 

evidence on how visual attention, saccade programming and saccadic decisions could be 

linked at the level of the brain. I hope to convince the reader that the debate whether 

covert and overt attention are linked or independent is obsolete, as they are simply two 

different consequences of the same competitive processes. 

1.1.1   The link between covert attention and saccade programming 

Findings on neural correlates of saccade programming and attention in the superior 

colliculus (Goldberg & Wurtz, 1972; Schiller & Koerner, 1971; Schiller & Stryker, 1972; 

Wurtz & Mohler, 1976) led to the view that attention might be equivalent to the readiness 

to make a motor response (Wurtz & Mohler, 1976). This idea was taken up in the 

oculomotor readiness hypothesis (Klein, 1980), which states that covert visual orienting equals 

to the programming of an eye movement that is never executed.  
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Klein (1980; Klein & Pontefract, 1994) did not find empirical support for the two main 

predictions of their hypothesis (perceptual facilitation at planned saccade goals and 

speeded saccade latencies to the attended locations) and hence rejected it. Other authors 

also adopted the view that attentional shifts are independent from eye movement 

planning and that their relationship is at best functional, in terms that they often share      

a common goal (e.g., Remington, 1980; Posner, 1980).  

The oculomotor readiness hypothesis was transformed into the very influential 

premotor theory of attention (Rizzolatti, Riggio, Dascola, & Umiltà, 1987), which vindicates the 

idea that visual attention reflects eye movement programming (on the basis of the 

authors’ own behavioral experiments and by revealing weak points in Klein’s 

methodology) and extends it to all other effector systems (Rizzolatti, Riggio, & Sheliga, 

1994).  

Further evidence in favor of a tight link between eye movements and covert visual 

attention comes from dual-task studies, in which subjects had to prepare a saccade to        

a location in space and make perceptual judgments about stimuli presented at that same 

or at different locations. Their results demonstrate that in the preparatory phase of           

a saccade visual processing is best at the future saccade endpoint (Deubel & Schneider, 

1996; Hoffmann & Subramaniam, 1995; Kowler, Anderson, Dosher, & Blaser, 1995). 

This suggests that during saccade preparation visual attention automatically shifts to the 

movement goal and cannot be allocated to saccade-irrelevant locations, except for very 

special circumstances under which a part of the attentional resources can be split off 

(Kowler et al., 1995, Montagnini & Castet, 2007).  

More recent results on the temporal dynamics of the pre-saccadic attentional 

deployment have shown that attention can only be diverted away from the saccade target 

at the very beginning of saccade preparation (Doré-Mazars, Pouget, & Beauvillain, 2004; 

Montagnini & Castet, 2007), as attentional engagement at the saccade target evolves 

gradually over time and is strongest shortly before the onset of the saccade (Castet, 

Jeanjean, Montagnini, Laugier, & Masson, 2006; Deubel, 2008; Doré-Mazars et al., 2004; 

Jonikaitis & Deubel, 2011; Montagnini & Castet, 2007). The aforementioned findings 

demonstrate that saccade programming is sufficient for attention allocation, which is one 

claim of the premotor theory of attention, but they do not support its second claim that 

saccade programming is also mandatory for attention, in the sense that visual orienting 

can only take place when a saccade is being planned. The fact that visual selection is not 

independent from saccade programming does not necessarily imply a shared control 

mechanism, but could instead mean that both processes compete for some common 

resources. 
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Along these lines, Schneider (1995) argued that saccade programming is only one realm 

where visual attention plays a functional role, the other being object recognition, and 

proposed an alternative theoretical account of the relationship between visual perception 

and motor action. His visual attention model (VAM) postulates that selection for visual 

perception and selection for space-based motor action are performed by a single attention 

mechanism, which always selects one object at a time. Low-level visual representations in 

area V1 that correspond to the selected object receive prioritized processing in higher-

level areas of the ventral and dorsal pathways (see Goodale & Milner, 1992; Mishkin, 

Ungerleider, & Macko, 1983). This leads to faster recognition and conscious perception 

of the selected object and to the computation of one or several motor programs towards 

the object, which are not necessarily executed. The first prediction of the theory (that 

motor programming facilitates visual perception) is supported by a substantial body of 

empirical evidence and has been discussed on the previous page. The second prediction 

(that visual selection also facilitates motor programming) is supported by findings that 

allocating covert attention improves saccadic performance towards the attended location 

(Hoffman & Subramaniam, 1995; Kowler et al., 1995) and biases saccade trajectories (e.g., 

(Sheliga, Riggio, Craighero, & Rizzolatti, 1995; Sheliga, Riggio, & Rizzolatti, 1994; Van der 

Stigchel & Theeuwes, 2007). 

Belopolsky and Theeuwes (2009, 2012) proposed that the relation between covert 

attention and saccade programming depends on whether shifting or maintenance of 

attention are considered. In their view, shifts of covert attention are always accompanied 

by the corresponding saccade program, while maintenance of covert attention at a 

location can either lead to activation or to suppression of a saccade program, depending 

on the situation.  

1.1.2   Differences between endogenous and exogenous attention  

A growing body of evidence suggests that the relationship between covert and overt 

orienting may depend on the way the attention shift or the saccade program are triggered. 

Covert attention and saccades can be guided through external events, such as a sudden 

onset or change in the visual periphery (“exogenous”, “stimulus-driven”, or “reflexive” 

orienting), or by internal processes, such as a behavioral goal or a task instruction 

(“endogenous”, “goal-driven”, or “voluntary” orienting. Endogenous and exogenous 

orienting differ in a number of aspects (e.g., Jonides, 1981, Müller & Rabbit, 1989; also 

see Berger, Henik, & Rafal, 2005) and are controlled through partially separate neural 

circuits (see Chapter 1.1.4). 



4 
 

 

A number of lesion studies have investigated whether exogenous and endogenous 

attention differ with respect to their dependence on the oculomotor system. This 

question was motivated by the assumption that the phylogenetically old midbrain system 

might be necessary only for reflexive orienting (as is the case in most vertebrates), while 

endogenous orienting might depend on cortical regions not so directly involved in the 

control of eye movements. Rafal, Posner, Friedman, Inhoff, and Bernstein (1988) 

investigated attentional orienting in patients with progressive supranuclear palsy (a disease 

that affects brainstem oculomotor neurons as well as the superior colliculus) and 

observed deficits in both exogenous and endogenous attention. Subsequent studies on 

patients with peripheral ocular motility disorders found impairments in endogenous 

(Craighero, Carta, & Fadiga, 2001) or only in exogenous orienting  (Gabay, Henik, & 

Gradstein, 2010; Smith, Rorden, & Jackson, 2004).  

The results of a second group of studies, which disrupted the ability to make eye 

movements experimentally (through abduction of the eye into the temporal hemifield), 

also give a mixed picture: some found evidence for a selective impairment of exogenous 

orienting at locations to which no saccade could be made (Smith, Rorden, & Schenk, 

2012; Smith, Ball & Ellison, 2014), while others observed deficits in endogenous 

(Craighero, Nascimben, & Fadiga, 2004) or in both exogenous and endogenous (Smith, 

Ball, Ellison, & Schenk, 2010) attention. In summary, the above mentioned findings 

unanimously suggest that exogenous attention relies on the ability to make (or to 

program) eye movements (except for the work of Craighero and her colleagues, in which 

exogenous attention was not explicitly tested), but they do not support any clear 

conclusion concerning the dependence of endogenous attention on oculomotor 

programming.  

Regardless of the controversy, Smith and his collaborators argue that saccade 

preparation is mandatory for exogenous but not for endogenous attention (Smith et al., 

2012, 2014; Smith & Schenk, 2012) and attempt to integrate this notion into a broader 

framework given by the biased competition model of attention (Desimone & Duncan, 

1995). According to their view, saccade preparation is just one form of bias, which relies 

on the functioning of premotor brain structures and which can be outweighed or 

completely replaced by top-down cognitive biases that are independent of the eye 

movement system (Smith & Schenk, 2012). Their position is compatible with a reduced 

version of the premotor theory of attention (valid only for exogenous attention) and can 

also be reconciled with the results of the dual-task experiments that showed an obligatory 

coupling between saccade programming and endogenous attention shortly before             

a saccade is executed (the motor system has increasing weight towards the onset of the 

movement). 
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Most dual-task studies showing an influence of saccade programming on visual 

perception employed endogenous (central or symbolic) saccade cues, eventually in 

combination with endogenous attention cues. Given the different characteristics of 

endogenous and exogenous cueing, it could be possible that perceptual and motor 

selection can be decoupled if one relies on exogenous and the other on endogenous 

control. Schneider and Deubel (2002) demonstrated that this is not the case, as the strong 

coupling of visual discrimination performance to the goal of endogenously cued saccades  

(Deubel & Schneider, 1996) also holds for exogenously triggered saccades. Instead, their 

findings suggest that attention cannot be voluntarily decoupled while it is engaged by 

saccade programming, regardless of the mechanism that led to the saccade program.  

Godijn and Theeuwes (2003) argue that genuine exogenous saccades have to occur 

against the will of the observer, which means that they can only be investigated in 

situations where an endogenous saccade goal competes with an eye-capturing exogenous 

stimulus. The two paradigms that fulfill these requirements are the antisaccade task 

(Hallett, 1978), which was used in the present thesis (see Chapters 1.2 and 2.1), and the 

oculomotor capture paradigm (Theeuwes, Kramer, Hahn, & Irwin, 1998; Theeuwes, 

Kramer, Hahn, Irwin, & Zelinsky, 1999), in which endogenous saccades to a color-

defined target compete with involuntary saccades to an onset distractor. The results of 

several studies (Godijn & Theeuwes, 2002; Irwin, Colcombe, Kramer & Hahn, 2000; 

Theeuwes et al., 1998, 1999) revealed that in as much as a third of all trials, participants 

initially made a saccade to the irrelevant distractor (oculomotor capture), before they 

redirected their gaze to the correct target. Theeuwes et al. (1999) argued that the irrelevant 

singleton always captured attention and led to the initiation of a saccade program, which, 

if fast enough, could win the competition against the voluntary saccade program. 

Attentional deployment was inferred from discrimination performance at the distractor 

location, but unfortunately it was impossible to rule out that attention was allocated to the 

distractor due to the salience or task relevance of the discrimination stimulus.                   

A subsequent study (Godijn & Theeuwes, 2003) showed inhibition-of-return at the 

distractor location, even in trials with no oculomotor capture, and thus provided indirect 

evidence that attention was automatically captured by the distractor.     

So while the oculomotor capture task is, at least in theory, well suited to elucidate 

the nature of the link between exogenous attention and saccade programming, the studies 

that used it were unable to provide a convincing or direct measure of attention. 
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1.1.3   Saccade decisions and their relation to attention 

Whenever we move our eyes to a new position in space, this action has to be preceded by 

some kind of decision process that determines why we want to look to that particular 

location and not to a different one. Saccadic decisions usually involve a competition 

between multiple spatial locations, as visual scenes rarely contain just one plausible eye 

movement target.  

It is assumed that such decision processes consist of a gradual accumulation of 

visual evidence in favor of the most conspicuous objects or spatial locations, and 

whichever of them first reaches a decision boundary, becomes the target of the following 

saccade (e.g., Brown & Heathcote, 2007; Carpenter & Williams, 1995; Ratcliff & 

McKoon, 2008). While the existence of decision-related sensory accumulation in the brain 

is supported by a wealth of neurophysiological evidence (e.g., Hanes & Schall, 1996; 

Munoz & Wurtz, 1995; Newsome, Britten, & Movshon, 1989; Schall, 2003; Shadlen & 

Newsome, 1996, 2001; Wurtz & Goldberg, 1972), it remains unclear if the resulting neural 

activation directly leads to an eye movement or if motor programming represents              

a separate consecutive processing stage.   

According to the affordance competition hypothesis (Cisek, 2007), motor decisions 

consist of a biased competition between parallel representations of possible actions in 

sensorimotor brain areas. In other words, it is assumed that the brain begins to plan all 

possible movements, before it reaches a decision which of them to execute. These motor 

plans are not to be confused with motor programs that control the execution of 

movements, they rather have to be understood as representations of motor goals or 

difference vectors between the current state and the intended state (Buneo, Jarvis, Batista, 

& Andersen, 2002; Cisek, 2005). 

In the oculomotor domain, some evidence for the parallel encoding of multiple 

saccade plans has come from recordings from the monkey superior colliculus (Basso & 

Wurtz, 1998; McPeek, Han, & Keller, 2003) as well as from behavioral results on how 

saccade trajectories are influenced by the presence of a distractor (e.g., Godijn & 

Theeuwes, 2002; McPeek et al., 2003; Nummenmaa & Hietanen, 2006; Theeuwes et al., 

1998) or by a choice between two saccade targets (McSorley & McCloy, 2009). 

Unfortunately, the observed effects might also be consequences of the parallel visual 

selection of multiple spatial locations and the only way to rule this possibility out is to 

spatially dissociate visual and oculomotor targets. Klaes, Westendorff, Chakrabarti, and 

Gail (2011) did this for reaching movements by employing a rule-selection task, where      

a peripheral visual target was combined with a color cue that determined whether a reach 

towards or away from the target was required. 
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They found that neural activity in the parietal reach region and in dorsal premotor cortex 

simultaneously represented the two possible reach goals, even though only one visual 

target was present. We are not aware of the existence of a comparable study focusing on 

eye movements, so we can only speculate that it could reveal a parallel representation of 

saccade goals in parts of the brain’s oculomotor network. While this would demonstrate 

that saccade goal selection goes a step beyond visual target selection, it would not prove 

that the representations of the two spatial locations reflected competing saccade 

programs, as there are probably neurons that do not distinguish between goals for visual 

perception and for eye movements and simply signal the behavioral priority of spatial 

locations (see next section for a detailed explanation of the concept). 

1.1.4   Attention and saccade programming in the brain 

The tight coupling between saccades and visual attention is also evident at a neuro- 

physiological level, since both are controlled by largely overlapping networks of brain 

areas (e.g., Corbetta et al., 1998; Nobre, Gitelman, Dias, & Mesulam, 2000; Perry & Zeki, 

2000; de Haan, Morgan & Rorden, 2008, Wardak, Olivier, & Duhamel, 2011). Three 

central nodes of this network, which have been extensively investigated in 

electrophysiological and microstimulation studies in monkeys, are the superior colliculus, 

the lateral intraparietal area, and the frontal eye fields, and  recent studies also increasingly 

focus on the basal ganglia. 

The superior colliculus (SC) is a structure in the midbrain that contains a retinotopically 

organized motor map for the control of saccades. The main function of the SC is to 

translate sensory information into saccadic commands (Sparks, 1986) and to select targets 

for saccades (McPeek & Keller, 2004), but SC neurons have also been found to mediate 

covert spatial attention in purely perceptual tasks (Cavanaugh & Wurtz, 2004; 

Ignashchenkova, Dicke, Haarmeier, & Thier, 2004; Lovejoy & Krauzlis, 2010; Müller, 

Philiastides, & Newsome, 2005). Kustov and Robinson (1996) provided a first proof for 

crosstalk between attention and saccade programming in the SC by demonstrating that 

shifts of covert attention influence the direction of collicular saccade programs. Further 

evidence was provided by Ignashchenkova et al. (2004), who showed that collicular 

visuomotor neurons that are known to participate in the preparation of saccades are also 

active during covert shifts of attention. 
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The lateral intraparietal area (LIP) is a region of the posterior parietal cortex that was 

long thought to contribute to the forming of oculomotor plans and was therefore named 

the “parietal eye field” (Andersen, Brotchie, & Mazzoni, 1992). More recent evidence 

suggests that LIP is not directly involved in saccade programming, but rather functions as 

a “priority map” (Fecteau & Munoz, 2006; Serences & Yantis, 2006) that integrates 

bottom-up visual saliency with top-down biases into a spatial representation of behavioral 

relevance, which is the used to guide eye movements (Bisley & Goldberg, 2010; Bisley, 

Ipata, Krishna, Gee, & Goldberg, 2009; Ipata, Gee, Bisley, & Goldberg, 2009; Goldberg, 

Bisley, Powell, & Gottlieb, 2006; Paré & Dorris, 2011). Consistent with this view, LIP 

neurons strongly respond to stimulus salience (Arcizet, Mirpour, & Bisley, 2011; Balan & 

Gottlieb, 2006; Constantinidis & Steinmetz, 2005; Gottlieb, Kusunoki & Goldberg, 1998; 

Kusunoki, Gottlieb, & Goldberg, 2000) and these responses are modulated by task 

relevance, including information about planned saccades (Buschman & Miller, 2007; 

Ipata, Gee, Gottlieb, Bisley, & Goldberg, 2006; Toth & Assad, 2002).  

Studies that investigated how LIP neurons convert sensory information into 

perceptual or motor choices arrived at the conclusion that the cells accumulate sensory 

evidence in support of the target in their response field and thus carry out a perceptual or 

premotor decision process (Hanks, Ditterich, & Shadlen, 2006; Platt & Glimcher, 1999; 

Shadlen & Newsome, 2001; Roitman & Shadlen, 2002). This process is modulated by 

reward associated with visual targets or movement goals (Bendiksby & Platt, 2006; Coe, 

Tomihara, Matsuzawa, & Hikosaka, 2002; Dorris & Glimcher, 2004; Peck, Jangraw, 

Suzuki, Efem, & Gottlieb, 2009; Platt & Glimcher, 1999; Sugrue, Corrado, & Newsome, 

2004) and by their novelty (Foley, Jangraw, Peck, & Gottlieb, 2014).  

A question that remains debated is whether LIP neurons represent visual selection 

or saccade planning. However, the distinction makes little sense in the light of the likely 

role of the LIP as a priority map that guides both overt and covert selection. If LIP is      

a priority map, its neurons simply carry a priority signal that results from a combination of 

visual, oculomotor and other biases and is used to guide both overt and covert selection. 

Depending on the timing and relative strength of the visual and oculomotor biases, the 

priority signal may sometimes give the appearance of a pure visual or saccade-related 

activation. Consistent with this view, Bennur and Gold (2011) provided evidence that LIP 

neurons act very flexibly and can represent perceptual decisions as well as saccade plans, 

depending on the momentary task requirements. 
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The frontal eye fields (FEF) is a bilateral structure in the left and right frontal lobes that 

plays a key role in the control of visually guided saccades.  

FEF motor neurons form a topographic representation of the visual field (Bruce, 

Goldberg, Bushnell, & Stanton, 1985; Robinson & Fuchs, 1969) and their output signal is 

directly transmitted to the SC (Segraves & Goldberg, 1987; Sommer & Wurtz, 2000, 

2001) and to the saccade generating network in the brainstem (Dassonville, Schlag, & 

Schlag-Rey, 1992; Segraves, 1992). Lesion studies in both monkeys and humans have 

shown that FEF involvement is necessary for the programming of endogenous saccades 

and for complex oculomotor behavior, such as memory-guided saccades, saccadic 

sequences or the suppression of inappropriate saccades (Pierrot-Deseilligny, Ploner, Müri, 

Gaymard, & Rivaud-Pechoux, 2002; Tehovnik, Sommer, Chou, Slocum, & Schiller, 2000), 

but also for a normal functioning of covert spatial attention (Wardak, Ibos, Duhamel, & 

Olivier, 2006). 

Findings by Schall and his colleagues that visually responsive FEF neurons select 

the targets of upcoming saccades (Schall & Hanes, 1993; Schall, Hanes, Thompson, & 

King, 1995; Thompson, Hanes, Bichot, & Schall, 1996) suggested that visual selection and 

saccade programming might be linked within the FEF. Later findings of the same 

research group, however, showed that both processes can be dissociated within the FEF 

(Juan, Shorter-Jacobi, & Schall, 2004; Murthy, Thompson, & Schall, 2001; Sato & Schall, 

2003; Thompson, Bichot, & Schall, 1997). Juan et al. (2004), for instance, employed an 

antisaccade task to examine whether target selection by FEF neurons requires saccade 

preparation or if both processes are independent of each other. They trained monkeys to 

saccade towards or away from a color singleton, depending on its orientation, and tested 

saccade preparation by measuring the direction of saccades evoked by FEF 

microstimulation at variable times after presentation of the search array. The results 

demonstrated that FEF neurons selected the singleton even though there was no saccade 

preparation towards it, which proves that visual selection and saccade programming are 

not obligatorily coupled within the FEF.  

The importance of the FEF for the control of endogenous attention comes from 

the fact that activity of FEF neurons can modulate the sensitivity of other visual cortical 

areas through top-down connections and thereby enhance the strength of the target 

representation, especially in the presence of competing distractors (Armstrong, Fitzgerald, 

& Moore, 2006; Ekstrom, Roelfsema, Arsenault, Bonmassar, & Vanduffel, 2008; 

Ekstrom, Roelfsema, Arsenault, Kolster, & Vanduffel, 2009; Moore & Armstrong, 2003; 

Premereur, Vanduffel, & Janssen, 2014). 
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While this contribution of the FEF to the control of endogenous attention is well 

established, its role in exogenous orienting is still a matter of debate. Several fMRI studies 

demonstrated that endogenous and exogenous orienting engage the same large-scale 

network of brain areas, including the FEF and the human homologue of area LIP (Kim et 

al., 1999; Mayer, Dorflinger, Rao, & Seidenberg, 2004; Peelen, Heslenfeld, & Theeuwes, 

2004; Rosen et al., 1999), but a weakness of these studies was that the blocked design did 

not allow to distinguish between cue-related and target-related activity. To overcome this 

problem, Kincade, Abrams, Astafiev, Shulman, and Corbetta (2005) used an event-related 

approach that separated preparatory and target-related activity and found that 

endogenous attention led to greater preparatory activity in both FEF and LIP, while 

exogenous attention recruited additional regions in the occipitotemporal cortex.  

Research findings on monkeys suggest that exogenous attention mainly depends on area 

LIP, but there is some evidence that easy visual search for “pop-out” targets activates the 

FEF (Wardak, Vaduffel, & Orban, 2010) and that FEF inactivation leads to deficits in 

visual search that do not depend on search difficulty (Wardak et al., 2006). Moreover, it 

has been shown that FEF neurons automatically select the location of targets that differ 

from distractors in a single feature (Schall & Hanes, 1993). Researchers have also tried to 

understand the roles of LIP and FEF in the control of exogenous attention by comparing 

their time courses of activation in bottom-up attention tasks. While Buschman and Miller 

(2007) observed that LIP neurons signal the target before FEF neurons (also see Ibos, 

Duhamel & Ben Hamed, 2013), Katsuki, Saito, and Constantinidis (2014) found that the 

LIP and FEF are activated in parallel (with a slight temporal advantage for the FEF), 

which raises the possibility that exogenous attention results from the joint activity of both 

areas.    

The basal ganglia (BG) are a collection of subcortical nuclei, comprising the caudate 

nucleus and putamen (together called striatum), the globus pallidus, the substantia nigra, 

and the subthalamic nucleus. These distributed nuclei act as a functional entity and one of 

their crucial roles is the selection of voluntary movements, including eye movements. The 

BG are interconnected with all cortical and subcortical areas that play a role in visual 

selection and oculomotor control (Hikosaka, Takikawa, & Kawagoe, 2000) and have been 

shown to mediate top-down attention (Van Schouwenburg, den Ouden, & Cools, 2010, 

2015; Tommasi et al., 2015) and saccade selection based on memory (Bayer, Handel, & 

Glimcher, 2004; Hikosaka & Wurtz, 1983) and on reward expectancy (see Hikosaka, 

Nakamura, & Nakahara, 2006 for a review). 
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The crucial output node of the BG for saccadic control is the substantia nigra pars 

reticulata (SNr), which exerts tonic inhibitory influence on saccade-related neurons in the 

superior colliculus that can be removed or strengthened dependent on task requirements 

and behavioral context (for reviews, see Hikosaka et al., 2000; Shires, Joshi, & Basso, 

2010). Saccade-related decisions are thought to emerge mostly from the combination of 

sensory and cognitive information in a cortico-striatal loop through the caudate nucleus 

(Vokoun, Mahamed, & Basso, 2011), but only little is known about the neural 

mechanisms so far. 

1.2   Aims of this thesis 

The goal of this dissertation was to investigate the relation between visual selection, 

saccade decisions, and saccade programming in humans by tracking these processes with 

the help of classical behavioral methods and by trying to influence the activity of frontal 

eye field neurons by transcranial magnetic stimulation (TMS). To assess the time courses 

of covert visual selection and saccade execution in great detail, we used a dual-task cueing 

paradigm, in which we measured eye movements as well as probe discrimination at 

different locations in space and different times relative to saccade or decision cues. We 

deliberately employed tasks that lead to a high degree of spatial competition, as we 

reasoned that the distribution of attention during such tasks would be maximally 

informative about the momentary priority of spatial locations and would thus allow the 

most valid conclusions about ongoing cognitive processes.  

The aim of the first study (Chapter 2.1) was to investigate the competition between 

endogenous and exogenous spatial orienting. One way to induce such a competition in    

a laboratory setting is the use of the antisaccade task (Hallett, 1978), in which observers 

are presented with a visual stimulus on one side of a visual display and are asked to make 

a saccade to the mirror identical location on the contralateral side. The antisaccade task is 

particularly well suited for the investigation of the competition between exogenous and 

endogenous orienting, as it spatially dissociates the goals of both processes. The 

dissociation results from the fact that the sudden appearance of a visual stimulus 

automatically captures attention, while an eye movement has to be is planned to the 

contralateral side.  
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Several authors have suggested that the programming of an antisaccade involves the 

parallel generation of two competing motor plans - one towards the cue/stimulus and      

a second towards the antisaccade target (Massen, 2004; Munoz & Everling, 2004; Noorani 

& Carpenter, 2013). 

  Despite its face plausibility, this claim has only been supported by indirect 

evidence on error rates and processing speeds of the competing components (Massen, 

2004; Mokler & Fischer, 1999). To our knowledge, only one study (Smith & Schenk, 

2007) measured attention allocation  in the antisaccade task, but at a very early time 

interval relative to saccade execution, where no saccade preparation was in progress and 

only reflexive attention towards the visual cue was observed. Our main goal was therefore 

to track the deployment of attention to the cue and to the antisaccade goal during the 

whole period of saccade preparation. 

The second study (Chapter 2.2) set out to examine attentional dynamics during the 

choice between two memorized saccade goals. We were particularly interested in whether 

the representation of saccade goals during the decision process would be paralleled by 

visual selection and how this sensory representation would change over time. We 

employed a rule-based choice task (similar to the one Klaes and his colleagues used with 

monkeys - see Chapter 1.1.3), but instead of recording brain activity, we measured visual 

discrimination performance at both possible saccade targets as well as at saccade-

irrelevant locations. Since we also wanted to know whether the pattern of results would 

differ between rule-based and free choice, we additionally included a condition where 

participants could choose to which of the targets they would look.  

The goal of the third study (Chapter 2.3) was to investigate the role of the human FEF in 

the control of exogenously and endogenously cued saccades and corresponding 

presaccadic attention shifts.  While the FEF is undoubtedly involved in the control of 

endogenous orienting, it is much less clear if it also participates in exogenous orienting 

(see Chapter 1.1.4).  

A suitable method to non-invasively influence human cortical activity is 

transcranial magnetic stimulation (TMS), which uses an electromagnetic coil to induce 

electric currents in underlying brain tissue. When applied on-line at previously defined 

time points during a trial, TMS permits causal inferences about the temporal dynamics of 

neural processes in the targeted brain areas, which makes it a valuable tool for the study 

of attentional and oculomotor processes.  
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Two previous studies have investigated how FEF-TMS affects the coupling between 

visual selection and saccade preparation in Deubel & Schneider’s (1996) dual-task 

paradigm, yielding inconsistent results (Neggers et al., 2007; Van Ettinger-Veenstra et al., 

2009). The third study of this cumulative thesis examines the same question with the help 

of an improved dual-task paradigm, additionally comparing conditions with endogenous 

and exogenous saccades. 
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2   Cumulative Thesis 

This doctoral thesis consists of three individual studies: One peer-reviewed and published 

article (2.1) and two manuscripts (2.2 and 2.3). The following chapter consists of these 

studies, each accompanied by a statement clarifying the contributions of the involved 

authors. 

2.1   Study 1: Attention allocation before antisaccades  

Contributions:  

A version of this chapter has been published as Klapetek, A., Jonikaitis, D., & Deubel, H. 

(2016). Attention allocation before antisaccades. Journal of Vision, 16(1):11. 

The author of this dissertation participated in designing the experiments, programmed the 

experiments, collected and analyzed the data, created plots, interpreted the results and 

wrote the journal article.  

Donatas Jonikaitis participated in designing the experiments, in analyzing and interpreting 

the results, and he commented on and helped revising the manuscript.   

Heiner Deubel conceived and supervised the project, participated in designing the 

experiments and interpreting the results, and commented on the manuscript. 
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Abstract 

In the present study, we investigated the distribution of attention before antisaccades. We 

used a dual task paradigm, in which participants made prosaccades or antisaccades and 

discriminated the orientation of a visual probe shown at the saccade goal, the visual cue 

location (antisaccade condition), or a neutral location. Moreover, participants indicated 

whether they had made a correct antisaccade or an erroneous prosaccade. We observed 

that, while spatial attention in the prosaccade task was allocated only to the saccade goal, 

attention in the antisaccade task was allocated both to the cued location and to the 

antisaccade goal. This suggests parallel attentional selection of the cued and anti-saccade 

locations. We further observed that in error trials – in which participants made an 

incorrect prosaccade instead of an antisaccade, spatial attention was biased towards the 

prosaccade goal. These erroneous prosaccades were mostly unnoticed and were often 

followed by corrective antisaccades with very short latencies (< 100 ms). Data from error 

trials therefore provide further evidence for the parallel programming of the reflexive 

prosaccade to the cue and the antisaccade to the intended location. Taken together, our 

results suggest that attention allocation and saccade goal selection in the antisaccade task 

are mediated by a common competitive process. 
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INTRODUCTION 

The ability of humans to flexibly control their behavior can be studied in the antisaccade 

paradigm (Hallett, 1978; Hallett & Adams, 1980). In this task, a visual stimulus is 

presented in one visual hemifield and the observer is asked to make a saccade to its mirror 

position in the opposite hemifield. Thus, instead of making a reflexive eye movement to  

a visually salient stimulus location, one has to program an eye movement towards the 

opposite location. For this reason, the antisaccade task provides a unique situation, in 

which the visual stimulus is dissociated from the final oculomotor command.  

Earlier research has focused mainly on motor aspects of performance in the 

antisaccade task in order to understand the mechanisms underlying antisaccade 

preparation. It has been suggested that after onset of the visual stimulus, two motor plans 

are initiated – one towards the stimulus and one towards the antisaccade target (Massen, 

2004; Munoz & Everling, 2004; Noorani & Carpenter, 2013). These two plans compete in 

reaching a threshold at which the winning motor program is executed. The idea of parallel 

prosaccade and antisaccade programming in the antisaccade task is empirically supported 

by observations that the inter-saccadic interval between an erroneous primary saccade and 

the secondary, corrective saccades directed to the antisaccade goal is often very short 

(Massen, 2004; Mokler & Fischer, 1999). Moreover, by introducing experimental 

manipulations that selectively influenced the processing speed of the exogenous 

prosaccade or the endogenous antisaccade component, Massen (2004) demonstrated that 

a slowing of the exogenous component (slowing prosaccade preparation) resulted in        

a reduced error rate, while a slowing of the endogenous component (slowing antisaccade 

preparation) led to more errors.  

However, as earlier research has mainly focused on motor performance in the 

antisaccade task, only little is known about the distribution of attention before 

antisaccades. This is surprising, especially if we consider that the antisaccade task offers 

the possibility to investigate competitive interactions between exogenous and endogenous 

attention. On the one hand, salient visual cues capture attention even if such cues are 

task-irrelevant (Carrasco, 2011; Carrasco, Ling, & Read, 2004; Müller & Rabbit, 1989; 

Nakayama & Mackeben, 1989). On the other hand, during the preparation of goal-

directed saccades, spatial attention inevitably shifts to the saccade target (Deubel & 

Schneider, 1996; Hoffman & Subramaniam, 1995; Jonikaitis & Deubel, 2011; Jonikaitis & 

Theeuwes, 2013; Kowler, Anderson, Dosher, & Blaser, 1995; Rolfs, Jonikaitis, Deubel, & 

Cavanagh, 2011). Therefore, there are two potential attentional targets in the antisaccade 

task – attention is likely to be drawn towards the visual stimulus location and/or towards 

the antisaccade target.  
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Given that saccade target selection and spatial attention are thought to be closely coupled 

(Awh, Armstrong, & Moore, 2006; Deubel & Schneider, 1996; Hoffman & Subramaniam, 

1995; Kowler et al., 1995), measuring spatial attention during the antisaccade task should 

help us to understand covert visual and motor selection during the task even before the 

eyes move. 

 Exact attentional effects in the antisaccade task are difficult to predict. Earlier 

observations contrasting endogenously cued spatial attention and attention at saccade 

targets found attentional costs either at the attended location (Deubel, 2008; Deubel & 

Schneider, 1996; Jonikaitis & Theeuwes, 2013; Kowler et al., 1995; Wilder, Kowler, 

Schnitzer, Gersch, & Dosher, 2009) or at the saccade target (Montagnini & Castet, 2007). 

Therefore, one could expect attention to be biased either towards the antisaccade target 

or towards the visual stimulus. The only direct measure of attention allocation before 

saccades was provided by Mokler, Deubel and Fischer (2000), who showed that attention 

shifts in parallel to both locations. However, this study used a spatial pre-cue to increase 

the percentage of saccade errors, which may have influenced attention in an unforeseeable 

way. 

In order to investigate the relationship between attention and antisaccade 

programming in as much detail as possible, we completed two experiments that allowed 

to measure attention at the visual stimulus location as well as at the antisaccade goal. 

Making use of the fact that probe discrimination at exogenously or endogenously cued 

locations can be used as a reliable measure of spatial attention (see Carrasco, 2006; 

Deubel & Schneider, 1996), we employed a dual task, in which observers made 

prosaccades or antisaccades and simultaneously discriminated visual probes at these 

locations. Throughout the course of a trial, there were always two (in Experiment 1) or six 

(in Experiment 2) squares present on the display, one of which was briefly marked by       

a visual onset cue that signaled to the observer to make a saccade towards this square, or 

an antisaccade to the diagonally opposite square. At a randomly selected point in time 

during saccade preparation, a perceptual probe was shown in any of the squares. This 

allowed us to track spatial attention allocation to different locations during saccade 

preparation. We were further interested how spatial attention was allocated on error trials 

- that is when participants made erroneous prosaccades instead of antisaccades. We 

increased the number of errors by introducing a temporal gap between fixation offset and 

visual cue appearance (Bell, Everling, & Munoz, 2000; Fischer & Weber, 1997; Forbes & 

Klein, 1996). Last, we also asked participants to report whether they had made an 

incorrect saccade or not, as we planned to test whether error awareness would be linked 

to attention allocation, as was reported by Mokler et al. (2000).  
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METHODS 

Participants 

Eighteen observers (most of them students) participated in the present study, after giving 

written informed consent. The participants had normal or corrected-to-normal vision and 

all except for two of the authors were naïve with respect to the goals of the study. Ten 

observers (5 male, 5 female, age 21-31) took part in Experiment 1 and sixteen observers 

(4 male, 12 female, age 21-31). The experiments were carried out in accordance with the 

Code of Ethics of the World Medical Association (Declaration of Helsinki). 

Apparatus 

The observers were seated in a dimly illuminated room in front of a 19-inch CRT monitor 

(ViewSonic G90fB, screen refresh rate: 120 Hz, spatial resolution: 1024 x 768 pixels), 

positioned at a viewing distance of 70 cm. Their head position was stabilized by a chin 

and forehead rest. Eye movements were recorded with an EyeLink 1000 desktop 

mounted eye tracker (SR Research, Canada) with a spatial resolution below 0.25 degrees, 

at a sampling rate of 1000 Hz. The eye tracker was calibrated in the beginning of the 

experiment, before each new block and whenever it was necessary. Stimulus presentation 

and response collection were controlled by an Apple Mac Mini, using MATLAB software 

(MathWorks, USA) and the Psychophysics and Eyelink Toolbox extensions (Brainard, 

1997; Cornelissen, Peters, & Palmer, 2002; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997; 

see http://psychtoolbox.org). Manual responses were recorded via the arrow keys on the 

right hand side of a standard computer keyboard. 

Stimuli and Task 

The visual display contained a central black fixation dot (diameter: 0.5 degrees of visual 

angle) and two (Experiment 1) or six (Experiment 2) green frames (edge length: 2 deg), 

positioned symmetrically on the outline of an imaginary circle (radius: 7 deg) centered on 

the fixation dot. The frame objects contained interleaved sequences of vertically oriented 

Gabor patches (spatial frequency: 2.5 cpd, contrast: 100%, random phase on each 

presentation) and white noise masks, alternating every 3 frames (25 ms). The probe,          

a brief (25 ms) leftward or rightward tilt of the Gabor patch, could appear in any of the 

squares at different SOAs relative to cue onset.  
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The SOA range differed between experiments and is specified later. The angular of the 

Gabor pattern was chosen for each observer individually, based on the results of a short 

visual pretest at the beginning of each experimental session (see Pretests section below).  

After a random fixation interval of 800 to 1200 ms, the fixation dot disappeared 

and the saccade cue (two 0.2 degrees thick horizontal black lines above and below one of 

the squares) appeared 180 to 220 ms later. Depending on the instruction screen at the 

beginning of each block, observers were asked to make a saccade to the cued square 

(prosaccade blocks) or to the diagonally opposite square (antisaccade blocks) as quickly as 

possible. After probe offset, all Gabor patches were replaced by empty squares, so that all 

objects contained noise-blank masks until the blackening of the display 700 ms after onset 

of the saccade cue. Observers had as much time as they needed to indicate the perceived 

tilt direction by pressing the left arrow key for a leftward tilt or the right arrow key for       

a rightward tilt. A new trial started 200 ms after their response. In Experiment 2, 

observers were additionally asked to indicate by a second button press at the very end of 

each trial whether their initial saccade was correct (up arrow key) or incorrect (down 

arrow key). They were instructed to use the index and ring fingers of their right hand for 

the left and right responses and the middle finger for the up and down responses.  

 

Figure 1. Schematic representation of the stimulus sequences in both experiments and examples for the 
probe and distractor streams. 
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Design 

 Experiment 1 

The first experiment consisted of 1440 trials, divided into 24 blocks of 60 trials. 

Observers were instructed to make prosaccades in one half of the blocks and antisaccades 

in the other half. The experiment was divided into four sessions (on separate days), so 

that each session consisted of three prosaccade and three antisaccade blocks in 

randomized order. For each trial within a session, the locations of the saccade target and 

the probe were determined randomly and the cue-to-probe SOA was drawn from 36 time 

points between -100 and 250 ms. 

 Experiment 2 

Our second experiment consisted of 2160 trials, divided into 36 blocks of 60 trials 

each, spread over six sessions. The design was analogous to Experiment 1, but the display 

now contained six instead of two squares, which made it possible to show the probe at     

a neutral location in one third of the trials, the remaining two thirds being randomly split 

between saccade goal and the diagonally opposite location. The position of the cued 

square was randomly selected in every trial, so that all six squares were equally likely to be 

the saccade target. For the first six observers, the cue to probe SOA was randomly drawn 

from 36 time points between -100 and 250 ms. For the remaining participants, the cue to 

probe SOA was limited to 11 time points between 100 and 200 ms. The trial number was 

accordingly reduced to 1440 trials (24 blocks of 60 trials, divided into four sessions, each 

consisting of three pro- and three antisaccade blocks in randomized order). 

Pretests 

The pretests consisted of 60 trials with identical visual stimuli as in the main experiments, 

except that the probe was always presented at the cued location 100 ms after cue onset. 

Observers were instructed to covertly attend to the cued square while maintaining central 

fixation and to discriminate the orientation of the probe at the end of the trial.                

A modified version of the QUEST procedure (King-Smith et al., 1994; Watson & Pelli, 

1983) was used to determine the two tilt angles at which observers reached 82% correct 

probe discrimination in the left and right half of the display. Tilt angles ranged between 4 

and 21 degrees in Experiment 1 (M = 9.7, SD = 6.7) and between 3 and 27 degrees in 

Experiment 2 (M = 11.0, SD = 4.3). Angles for the left and right display half were 

comparable. 
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Data analyses 

All eye movement and behavioral data were analyzed using Matlab software (MathWorks, 

USA) and the Psychophysics and Eyelink toolboxes (Brainard, 1997; Cornelissen et al., 

2002; Kleiner et al., 2007; Pelli, 1997; see http://psychtoolbox.org). Eye movements were 

recorded online during sessions and evaluated offline using Eyelink’s built-in saccade 

detection algorithm (Experiment 1), or our own customized velocity-space algorithm that 

corrected for glissades (Experiment 2). In a direct comparison, both algorithms detected 

identical saccade beginning times, but the Eyelink algorithm tended to include glissades at 

the end of saccades into the saccade duration and thus tended to yield unrealistically short 

intersaccadic intervals. Primary saccades with latencies below 100 ms or above 600 ms 

were removed from analysis. In total, we had to reject 5% of all trials due to blinks, 

missing data or not clearly separable saccades. 

Statistical analyses consisted of repeated-measures analyses of variance (ANOVA) 

and post-hoc comparisons using t-tests with a Bonferroni correction. The Greenhouse-

Geisser correction was applied whenever sphericity was violated. All analyses were based 

on a minimum of five trials per participant and condition. 

RESULTS 

Experiment 1 

Saccade latency and direction errors 

The initial saccade direction was incorrect in 3% of all prosaccade trials and in 18% of the 

antisaccade trials. To assess whether saccade latencies differed between prosaccades and 

antisaccades and whether they were affected by probe location and timing, we performed 

a repeated-measures ANOVA with saccade type (prosaccade, antisaccade), probe location 

(at cue, opposite cue) and probe presentation time (six 50 ms wide time bins between       

-100 and 200 ms) as the within-subjects factors.  

We found that antisaccade latencies were longer than prosaccade latencies (M = 

218 ms, SD = 55 ms for antisaccades vs. M = 163 ms, SD = 45 ms for prosaccades, 

F(1,9) = 138.0, p < .001). This latency difference is one of the typical characteristics of 

antisaccades (Hallett. 1978), that has been robustly replicated in many different versions 

of the antisaccade task. Furthermore, we observed that neither the location nor the timing 

of the probe had any effect on saccade latency (no significant main effects of these two 

factors).  
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This indicates that the probe discrimination task did not alter saccade preparation and can 

be used as an effective measure of attention allocation during saccade programming. 

Saccade amplitude 

In order to assess saccade accuracy, we calculated the gains of primary saccades as the 

ratio between saccade amplitude and target amplitude. We were mainly interested in 

whether gains would differ between prosaccades and antisaccades and between correct 

saccades and erroneous prosaccades. Since saccade gains did not vary as a function of 

probe presentation time, we decided to exclude this factor from analysis in order to have 

a sufficient number of trials per participant and condition (before exclusion, many bins 

had less than five trials, afterwards the minimum was 19).  

The ANOVA of the gains with saccade type (correct prosaccade, correct 

antisaccade, erroneous prosaccade) and probe location (at cue, opposite cue) as the 

between-subjects factors revealed a significant main effect of saccade type, F(2,18) = 46.1, 

p < .001, and no significant effect of probe location. While amplitudes of correct 

prosaccades and antisaccades were both very accurate (mean gain = 1.0), erroneous 

prosaccades tended to undershoot the target (mean gain = .86) and thus differed 

significantly from correct saccades (as revealed by post-hoc comparisons). 

Discrimination performance 

Since we presented the probe at different SOAs with respect to the saccade cue, it was 

possible to determine the time course of attentional deployment to both probe locations. 

For this purpose, we sorted all SOAs into 50 ms-wide bins and calculated the proportion 

of correct probe discriminations for each saccade condition and probe location in each 

time bin (see Figure 2a).  

Discrimination performance in the prosaccade condition was clearly superior for 

probes presented at the cued location (saccade goal) compared to the opposite location, 

where it was just slightly above chance level. In the antisaccade condition, in contrast, 

performance was about equally good at the cued and the opposite location (antisaccade 

goal), but generally worse than at the prosaccade goal in the prosaccade condition, which 

suggests that attentional resources were split over both locations. Interestingly, the 

benefits at the saccade goal in the prosaccade condition and at the cued location and 

antisaccade goal in the antisaccade condition can already be seen before saccade cue 

onset.  
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This is likely due to a retro-active attentional effect, which can extend into the pre-cue 

period (Sergent et al., 2013; Thibault, Cavanagh, & Sergent, 2015). The most likely 

explanation is that shifts of spatial attention to the cued location or to saccade goals 

retroactively trigger conscious access to previously unconscious sensory representations. 

Unfortunately, this effect limits the tracking of the temporal profile of spatial attention. 

For this reason, we decided to focus in our further analyses on the spatial distribution of 

attention shortly before the saccade (the last two bins pooled together). 

 

Figure 2. Discrimination performance in Experiment 1. Correct discrimination (in %) is plotted as           
a function of saccade type (prosaccade or antisaccade) and probe location (at the cued location or 
opposite from it). Error bars represent standard errors of the mean. The dashed line denotes the chance 
performance level. (a) Discrimination performance for probes appearing at various times before saccade 
onset. Only trials with correct saccades were included and each bin contains at least 10 trials per 
participant and condition (M = 37). The vertical arrows indicate the average times when the saccade cues 
were presented. (b) Discrimination performance for probes presented less than 100 ms before saccade 
onset as a function of saccade type (prosaccade or antisaccade) and probe location (at the visual cue or 
opposite from the cue). At least 40 trials per participant and condition were analyzed (M = 79 for 
prosaccades and M = 63 for  antisaccades). 

We performed a repeated measures ANOVA with saccade type (prosaccade, antisaccade) 

and probe location (at cue, opposite cue) as the within-subjects factors (see Figure 2b for 

a graphical summary of the results). The results show that probe discrimination 

performance depended upon probe location (main effect of probe location, F(1,9) = 30.0, 

p < .001, and interaction between probe location and saccade type, F(1,9) = 32.7, p < 

.001).  
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In the prosaccade task, discrimination performance (% correct) was significantly better at 

the cued location, which was the saccade goal, (M = 89.4%, SD = 5.0%) than at the task-

irrelevant opposite location (M = 54.7%, SD = 8.7%; post-hoc comparisons). In contrast 

to this, in correct trials of the antisaccade task, discrimination at the cued location (M = 

72.0%, SD = 10.7%) and at the antisaccade goal (M = 77.1%, SD = 9.8%) were not 

significantly different.  

We were also interested in whether attention allocation to the saccade goal would 

differ as a function of saccade type. The analysis revealed that discrimination performance 

at the goal of correct prosaccades (M = 89.4 %, SD = 5.0 %) was significantly better than 

at the goal of correct antisaccades (M = 77.1%, SD = 9.8%).   

Taken together, the results on discrimination performance demonstrate that during 

the programming of antisaccades, attention was about equally allocated to the visual cue 

and to the future saccade goal. Discrimination performance was clearly best at the goal of 

voluntary prosaccades, which could be explained by the summation of the effects of 

reflexive and endogenous attention. An alternative reason for this advantage could be the 

absence of attentional competition in this condition, as the opposite location was 

completely irrelevant for the saccade task. 

Experiment 2 

It is well possible that the parallel allocation of attention in Experiment 1 was, at least in 

part, a consequence of having only two possible probe locations, which may have allowed 

observers to split their attention. One of the goals of Experiment 2 therefore was to 

control for this potential bias by adding four saccade-irrelevant probe locations, thus 

introducing more visual competition. In addition, we wanted to test whether attention 

allocation would be related to awareness of direction errors and therefore added               

a measure of error awareness at the end of each trial. In contrast to Experiment 1, where 

we were interested in the time course of attention allocation, we decided to focus on the 

interval between 100 ms post-cue and the beginning of the saccade, where we had 

previously found the strongest attentional cueing effects. 
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Direction errors and awareness 

While saccade accuracy was very high in prosaccade blocks (98% correct), participants 

made a considerable amount of direction errors in antisaccade blocks.  

In 16% of all antisaccade trials, the first saccade went to the visual cue (erroneous 

prosaccade), in 12% it went to one of the squares adjacent to the antisaccade target and in 

3% it went elsewhere. 61% of the erroneous prosaccades were not declared by the 

observers, which is consistent with the 62% reported by Mokler and Fischer (1999).  

According to signal detection theory (Green & Swets, 1966), detection 

performance is a function of the detectability of the signal and the response strategy of 

the observer. To understand how these two variables influenced our results, we calculated 

discrimination sensitivity (d’) and response bias (C) for each of our participants. 

Sensitivity ranged between 0.8 and 3.4 (M = 1.9), which means that observers could 

discriminate between trials with correct saccades and those with direction errors way 

above chance level. C ranged between 0.3 and 1.7 (M = 1.2), which indicates that all 

observers adopted a conservative criterion and tended to prefer “no” responses over 

“yes” responses. This was most likely a consequence of the low base rate of errors          

(< 10%) and the payoff characteristics (no benefits, but rather expected costs associated 

with correct error detection) in our experiments. In sum, the analysis of discrimination 

sensitivity and response bias revealed that observers were reasonably good at detecting 

errors (some even very good), but they tended to report only errors that they felt certain 

about. 

Saccade latency 

Saccade latencies were analyzed in the same way as amplitudes (ANOVA with the factors 

saccade type and probe location). Figure 3 shows the saccadic latency distributions for 

correct prosaccades in the prosaccade task, and for correct antisaccades and erroneous 

prosaccades in the antisaccade task.  

Saccade latencies for correct antisaccades (M = 253 ms, SD = 63 ms) were longer 

than for correct prosaccades (M = 170 ms, SD = 39 ms) and for erroneous prosaccades 

(M = 199 ms, SD = 79 ms), this difference being significant (main effect of saccade type: 

F(2,14) = 16.6, p < .001, and post-hoc comparisons). 
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Figure 3. Saccade latencies in Experiment 2. The histograms represent relative frequency distributions of 
saccade latencies (bin size: 5 ms) of correct prosaccades (N = 13003), correct antisaccades (N = 9665) and 
erroneous prosaccades (N = 2298). The vertical dotted lines correspond to the means. 

Saccade amplitude 

Amplitudes of primary saccades were subjected to a repeated measures ANOVA with the 

factors saccade type (prosaccade, antisaccade, erroneous prosaccade) and probe location 

(at cue, opposite cue). As in Experiment 1, erroneous prosaccades (in the antisaccade 

task) had significantly shorter amplitudes (M = 5.7 deg, SD = 1.5 deg) than both correct 

prosaccades (M = 6.7 deg, SD = 0.8 deg) and correct antisaccades (M = 6.7 deg, SD = 1.1 

deg). The difference was statistically significant (main effect of saccade type, F(2,26) =

63.0, p < .001 and post-hoc comparisons). Within the group of erroneous prosaccades, 

amplitudes were significantly shorter for unperceived errors (M = 5.2 deg, SD = 1.5 deg) 

than for perceived errors (M = 6.1 deg, SD = 1.2 deg), t(15) = 6.7, p < .001. 

Corrective saccades 

Erroneous prosaccades having wrong direction and shorter amplitudes than the correct 

saccades were often followed by corrective saccades. Indeed, our analysis revealed that 

71% of all prosaccade errors were corrected in the direction of the intended antisaccade 

goal (only saccades that crossed the midline were counted as corrective saccades). The 

proportion of corrective saccades was considerably higher after unperceived errors (87%) 

than after perceived errors (47%). 
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Figure 4 displays the distributions of primary saccade amplitudes and correction times 

(intersaccadic intervals) for trials with perceived and unperceived prosaccade errors. 

About half of the corrective saccades (49%) occurred within less than 100 ms after the 

end of the erroneous prosaccade. The very short latency suggests that these secondary 

saccades were programmed partly in parallel with the primary saccade. Correction times 

were significantly shorter after unperceived (M = 101 ms, SD = 48 ms) than after 

perceived (M = 139 ms, SD = 73 ms) errors, t(15) = 3.5, p < .01. There was also              

a significant correlation between the amplitude of the initial saccade and the correction 

time of the second saccade, meaning that hypometric errors tended to be corrected faster 

than errors that landed closer to the target (Spearman correlation: p < .001 for all but one 

subject). 

 

Figure 4. Amplitudes (a) and correction times (b) of perceived vs. unperceived erroneous prosaccades. 
The histograms plot scaled relative frequency, the curves represent Weibull functions fitted to the data 
and the vertical lines correspond to the means. (a) Amplitudes of perceived (N = 907) compared to 
unperceived (N = 1391) saccades; bin size=5 deg. (b) Correction times of perceived (N = 563) compared 
to unperceived (N = 1229) errors, bin size: 25 ms. 

Figure 5 illustrates the linear relationship between amplitudes of primary and corrective 

saccades, which proves that most corrective saccades landed on the target or close to it. 

The line represents perfect error compensation, where the corrective gain (i.e., the sum of 

the amplitudes of both saccades, with leftward amplitudes reversed in sign) equals the 

target distance. This gain was higher following unperceived errors (M = 7.0 deg, SD = 0.1 

deg) than after perceived errors (M = 6.6 deg, SD = 0.1 deg) and the difference was 

statistically significant, t(15)= 28.9, p < .001.  
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Interestingly, this effect remained present in the subgroup of very quickly corrected 

saccades, which means that it cannot be explained by differences in correction time. 

 

Figure 5. Scatterplot of the amplitudes of erroneous prosaccades and their corrections. The diagonal line 
represents full correction to the intended antisaccade target. 

Discrimination performance 

We performed a repeated measures ANOVA with saccade type (prosaccade, antisaccade, 

erroneous prosaccade) and probe location (at cue, opposite cue, neutral) as the within-

subjects factors (see Figure 6 for a graphical summary of the results). The results showed 

that probe discrimination mainly depended on the location of the probe (main effect of 

probe location, F(2,26) = 28.7, p < .001, and revealed a significant interaction between 

saccade type and probe location, F(4,52) = 10.7, p < .001). Before correct prosaccades, 

discrimination performance was significantly better at the cued location, which was the 

saccade goal, (M = 83.4%, SD = 8.3%) than both at the opposite location (M = 55.1%, 

SD = 7.7%) and at the neutral location (M = 57.2%, SD = 7.4%), which were task-

irrelevant. Before correct antisaccades, discrimination at the cued location (M = 68.9%, 

SD = 12.8%) and at the antisaccade goal (M = 69.4%, SD = 15.1%) were almost equal 

and were both significantly better than at the neutral location (M = 55.3%, SD = 7.9%).  

In contrast to this, probe discrimination before erroneous prosaccades was significantly 

better at the cued location (M = 74.4%, SD = 13.9%) than at the opposite (M = 57.5%, 

SD =14.8%) and neutral (M = 51.4%, SD = 11.7%) locations. 
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Figure 6. Discrimination performance in Experiment 2. The graph compares discrimination rates for 
probes presented between 100 and 200 ms after cue onset as a function of saccade type (correct pro-
saccade, correct antisaccade, erroneous prosaccade) and probe location (at cue, opposite cue, neutral). 
Error bars represent standard errors of the mean. The dashed line denotes the chance performance level. 
The analysis was based on at least five trials per participant and condition (M = 98 for correct 
prosaccades, M = 102 for correct antisaccades, M = 19 for erroneous prosaccades). 

In summary, the results on discrimination performance in Experiment 2 tell the same 

story as in Experiment 1: Correct antisaccades were associated with pre-saccadic attention 

at both locations. We further observed that errors were associated with more attention at 

the cued location, where the saccade was made to, and less attention at the correct 

antisaccade goal. Moreover, the significant difference between performance at the anti- 

saccade goal and at the neutral location before correct antisaccades proves that attention 

allocation to the antisaccade goal is mediated by oculomotor preparation rather than by 

some strategy for maximizing discrimination performance. 

As we were interested in whether the enhanced attention at the cued location or 

rather the reduced amount of attention at the correct antisaccade goal was predictive of 

errors, we performed post-hoc comparisons of discrimination performance at the cued 

and opposite locations before correct antisaccades and before errors. The results revealed 

that only the error-related decline in performance at the correct antisaccade goal, but not 

the increase at the cued location, was statistically significant. This suggests that attention 

at the antisaccade goal is crucial for correct antisaccade programming. 
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To investigate the question of whether error awareness is related to attention allocation, 

as has been proposed in previous work (e.g., Deubel et al., 1999; Godijn & Theeuwes, 

2003b; Mokler & Fischer, 1999), we compared discrimination performance in trials with 

perceived and with unperceived errors. The results did not reveal any differences, except 

for a non-significant trend towards better discrimination performance (at all locations) in 

trials with unperceived errors. To see whether the allocation of attention in trials with 

corrected errors depended on the latency of the corrective saccade, we compared 

discrimination performance in trials with very fast (<= 90 ms) and longer (> 90 ms) 

correction times. The results did not reveal any consistent differences. 

DISCUSSION 

The goal of this study was to investigate the allocation of spatial attention during the 

programming of antisaccades. We employed a dual task, in which participants made 

prosaccades or antisaccades and concurrently discriminated visual probes at the cued 

location, the opposite location (i.e., the antisaccade goal), or at task-irrelevant locations.  

First, we replicated the findings of previous antisaccade studies, such as the 

substantially longer latency of antisaccades in comparison to prosaccades (Everling, 

Dorris, & Munoz, 1998; Hallett, 1978) and the higher error rate in the antisaccade 

condition (Hallett, 1978; Heath, Dunham, Binsted, & Godbolt, 2010). Second, we found 

that most erroneous prosaccades were not perceived and were rapidly corrected, 

suggesting that a large proportion of corrective antisaccades was programmed in parallel 

with the erroneous prosaccades (Massen, 2004; Mokler et al., 2000; Mokler & Fischer, 

1999). Our third and most important finding was that before antisaccades, attention was 

allocated in parallel to the visual cue and the antisaccade goal, rather than being first 

allocated to the cue and then to the antisaccade goal. Prosaccade errors were associated 

with an attentional bias towards the prosaccade goal, which has important implications 

concerning the relationship between attention and saccade programming.  

In the following sections, we will discuss our results in the context of existing 

theories and previous findings in this field and propose a model of how attention and 

saccades could be influenced  by a common competitive process. 
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Parallel programming of prosaccades and antisaccades 

Parallel programming of two subsequent saccades can be inferred from very short 

intersaccadic intervals (Becker & Jürgens, 1979) and has been reported not only in the 

antisaccade task (Massen, 2004; Mokler & Fischer, 1999), but also in other tasks, such as 

reading (Morrison, 1984), double-step paradigms (Becker & Jürgens, 1979; Walker & 

McSorley, 2006), visual search (McPeek, Skavenski & Nakayama, 2000) and in the 

oculomotor capture paradigm (Godijn & Theeuwes, 2002, Irwin, Colcombe, Kramer, & 

Hahn, 2000; Theeuwes, Kramer, Hahn, & Irwin, 1998; Theeuwes, Kramer, Hahn, Irwin, 

& Zelinsky, 1999). 

Recent investigations into this topic mainly focused on situations where an 

endogenous saccade is programmed along with an initial involuntary saccade to a visual 

distractor. McPeek et al. (2000), for instance, asked their subjects to saccade to a red or 

green color singleton presented along with two distractors of the opponent color (e.g., 

green or red). The fact that the same colors were used for target and distractors led to 

many erroneous saccades towards one of the distractors, especially when the distractors 

had the same color as the target in the previous trial. These erroneous saccades were often 

hypometric and many were followed by short-latency corrective saccades to the target. 

Based on these observations, McPeek et al. (2000) proposed a competition model of 

saccade programming, in which both saccade goals were represented in a common motor 

map, supposedly located in the superior colliculus. Mutual inhibitory connections between 

neurons would make sure that any increase in neural activity at one location would result 

in a decrease in activity at the other.  

Investigations using the oculomotor capture paradigm (Godijn & Theeuwes, 2002; 

Irwin et al., 2000; Theeuwes et al., 1998, 1999), where endogenous saccades to a color-

defined target compete with involuntary saccades to an onset distractor, yielded very 

similar results: a substantial proportion of initial erroneous saccades to the distractor, 

many of them followed by corrective saccades after less than 100 ms of fixation. 

After the initial assumption that exogenous and endogenous saccades were 

programmed in separate brain circuits and simply race towards a threshold (Theeuwes et 

al., 1998, 1999), Godijn & Theeuwes (2002) formulated their competitive integration model 

(also see Meeter, Van der Stigchel, & Theeuwes, 2010), which also postulates that the 

rivalry takes place on a common collicular map with lateral inhibitory connections.  

The idea of a parallel competition between erroneous prosaccades and subsequent 

corrective saccades in the antisaccade task was first addressed by Mokler and Fischer 

(1999) and further elaborated by Massen (2004).  

 



33 
 

 
 

Although Massen assumed mutual inhibition between the pro- and antisaccade programs, 

her findings (see Introduction) could not rule out an independent race model (the only 

evidence for mutual inhibition between prosaccades and antisaccades came from her 

observation that slower and faster corrected erroneous prosaccades tended to have 

shorter amplitudes, which could be due to interference from the second saccade 

program). Kristjánsson and colleagues (Kristjánsson, Chen, & Nakayama, 2001; 

Kristjánsson, Vandenbroucke, & Driver, 2004) showed that manipulations that slow 

down the prosaccade component can lead to faster antisaccades, which is more 

compatible with a model that assumes competitive interactions between both.  

The results of the present study confirm many of the above mentioned findings, 

such as the shorter amplitudes of erroneous saccades and the significant proportion of 

very short correction times. In agreement with McPeek et al. (2000), we found                  

a significant correlation between the amplitudes of initial erroneous saccades and their 

correction times: The faster a saccade was corrected, the smaller tended to be its 

amplitude. This suggests that the first saccade was influenced or even disrupted by the 

programming of the second saccade. Slower errors also tended to have shorter amplitudes 

(although this relationship was less consistent). Taken together, our findings provide 

further evidence that reflexive and endogenous saccades compete within the same or 

overlapping neural networks. 

Parallel attentional selection 

The results of our experiments revealed that antisaccades are preceded by attention 

allocation to both the visual cue and the antisaccade goal, thus suggesting that both 

locations compete for attentional resources. Our findings are consistent with previous 

evidence that visuospatial attention can be divided when this is beneficial for the task 

(Awh & Pashler, 2000; Baldauf & Deubel, 2008a, 2008b, 2009; Baldauf, Wolf, & Deubel, 

2006; Deubel, 2014; Godijn & Theeuwes, 2003a; Jefferies, Enns, & DiLollo, 2014; 

Jonikaitis & Deubel, 2011). Moreover, our data rule out the serial hypothesis, according to 

which attention first needs to be disengaged from the visual target, before it can shift to 

the antisaccade goal (e.g., Crawford, Kean, Klein, & Hamm, 2006; Olk & Kingstone, 

2003). If the serial hypothesis was true, we would have observed improved performance 

at the antisaccade target and poor performance at the cued location shortly before saccade 

onset. Instead, we found comparable performance at both locations. 
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The link between attention and (anti)saccades 

Our findings on attention allocation before correct antisaccades and before prosaccade 

errors have some important implications concerning the link between attention and 

saccade programming. The fact that attention before correct antisaccades was equally 

distributed among the cued location and the antisaccade goal is in conflict with the 

premotor theory of attention (Rizzolatti, Riggio, Dascola, & Umiltà, 1987; Rizzolatti, 

Riggio, & Sheliga, 1994), which regards attention as functionally equivalent to saccade 

preparation. If this theory was correct, correct antisaccades would be associated with 

more attention at the antisaccade goal than at the cued location, which was clearly not the 

case. Nevertheless, our results suggest that attention and saccade programming are closely 

linked, as attentional distribution was predictive of prosaccade errors.  

Current views of visual attention are tied to the concept of priority maps (Fecteau 

& Munoz, 2006; Serences & Yantis, 2006), which are thought to integrate information 

about bottom-up saliency with top-down influences into a single real-time representation 

of behavioral relevance. In agreement with this concept, we believe that during the 

preparation of antisaccades, cue-related and antisaccade-related activity compete on such 

a map (or several related maps) and that the resulting priority signal influences both 

saccade programming (through modulatory influences on the oculomotor system) and 

visual perception (through feedback to early visual areas).  

Our findings are compatible with such a model, as discrimination performance was 

clearly modulated by the saccade task and the ratio between cue-related and antisaccade-

related attention was predictive of erroneous prosaccades. Research indicates that such     

a priority map could be represented in posterior parietal cortex. Single cell recording 

studies in monkeys have shown that neurons in area LIP (lateral intraparietal area) 

combine visual, cognitive and saccadic signals – and possibly others, such as information 

about reward – into a topographic representation of behavioral priority, which can be 

used to guide eye movements and attention (Bisley & Goldberg, 2010; Bisley, Ipata, 

Krishna, Gee, & Goldberg, 2009; Ipata, Gee, Bisley, & Goldberg, 2009). Gottlieb and 

Goldberg (1999) investigated LIP activity while monkeys performed antisaccades and 

found that most neurons strongly responded to the visual stimulus, when it fell in their 

receptive field, and some also fired in response to the antisaccade target. Recently, LIP 

has been shown to implement center-surround suppression mechanisms that can account 

for the type of competitive interactions between an endogenous saccade plan and              

a visually salient distractor, as we assume are happening in the antisaccade task.  
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In humans, researchers have identified topographically organized areas within the 

intraparietal sulcus (IPS) that most likely are the human homologues to monkey LIP 

(Schluppeck, Glimcher, & Heeger, 2005; Sereno, Pitzalis, & Martinez, 2001; Silver, Ress, 

& Heeger, 2005). Corbetta and Shulman (2002) identified IPS as a central part of the 

brain’s network for endogenous attention. At the same time, IPS seems to play a role in 

selection for perception, as it has been shown to modulate activity in primary visual 

cortex via top-down attentional signals (Lauritzen, D’Esposito, Heeger, & Silver, 2009).   

A recent study by Khan et al. (2009) established a link between these two roles by 

showing that the well-documented facilitation of visual perception at the goal of               

a planned saccade crucially depends on the parietal cortex. IPS lesions lead to prolonged 

antisaccade latencies (Machado & Rafal, 2004) and a number of fMRI studies have found 

enhanced IPS activation in antisaccades as compared to prosaccades (see a recent meta-

analysis by Jamadar, Fielding, & Egan, 2013). Of particular interest are the results of           

a study by Anderson, Husain, and Sumner (2008), which suggest that human IPS 

importantly contributes to the resolution of competition in the antisaccade task.  

The idea that we try to convey here, namely that competitive integration can be 

generalized beyond the eye movement system and could occur on a parietal priority map, 

is not new, as it was already suggested by Hunt, von Mühlenen, and Kingstone (2007), 

based on their results on parallels between attentional and oculomotor capture.  

We would like to emphasize that this proposal does not contradict the idea that 

saccade programs compete on a common collicular motor map (e.g., Findlay & Walker, 

1999; Godijn & Theeuwes, 2002, McPeek et al., 2000; Trappenberg, Dorris, Munoz, & 

Klein, 2001), since we do not assume that our putative priority signal can directly drive 

eye movements. It rather seems that the SC motor map consists of a further competitive 

stage, even more specialized on oculomotor selection. Interestingly, findings from 

neurophysiological studies in monkeys revealed that stimulus-related activity bursts can be 

larger than antisaccade-related bursts even in FEF and SC, which are known to directly 

trigger eye movements (Everling, Dorris, Klein, & Munoz, 1999; Everling & Munoz, 

2000). This indicates that the final threshold for saccade generation is not localized in SC 

or FEF, but rather in the brainstem saccade generator, where outputs from the whole 

oculomotor network are integrated (see Jantz, Watanabe, Everling, & Munoz, 2013, for 

further evidence). The brain employs several strategies to down-weight target-related 

activity and up-weight antisaccade-related activity, both at the level of the SC and 

downstream from it. Examples are the increase in fixation-related and decrease in visual 

SC activity in the preparation of an antisaccade (Everling, Dorris, & Munoz, 1998) or the 

transient increase in omnipause neuron activity following the appearance of the visual 

stimulus (Everling, Paré, Dorris, & Munoz, 1998).  
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It has also been suggested that input from other oculomotor areas, such as the 

supplementary eye field (SEF), could boost the relatively weak antisaccade-related activity 

downstream from the SC (Jantz et al., 2013; Munoz & Everling, 2004). The question 

whether the antisaccade target is also favored by signals from a parietal priority map 

remains to be clarified by further research.  

Taken together, our results, as well as the research reviewed here, suggest that 

attention and saccade programming are both inherently parallel processes in which 

different spatial locations are selected along each other, rather than one after the other. 

Although attentional and oculomotor selection seem to be linked, they are not identical, 

as perceptual benefits are not limited to the goal of the upcoming saccade. In terms of 

brain economy, such a distinction makes sense: While it may often be beneficial to attend 

to several objects or locations at the same time, the eyes cannot go to more than one 

target. This constraint, along with the relatively high costs associated with an erroneous 

eye movement, entails a greater need to favor task demands over salience for saccade 

programming. Nevertheless, a parallel accumulation of information until a very late stage 

of oculomotor programming is still advantageous, as it allows the system to act fast and 

flexibly and dramatically reduces planning costs, for example when several eye 

movements are made in sequence. 

 

 

Error awareness and attention 

Some authors (Deubel, Irwin & Schneider, 1999; Mokler & Fischer, 1999) have proposed 

that error recognition in the antisaccade task is mediated by visuospatial attention, in the 

sense that our mind falsely attributes eye position to the current locus of attention. If, 

according to this hypothesis, attention first moves to the visual cue, the participant would 

recognize the saccade direction error. If, however, attention first shifts to the antisaccade 

goal and only the eyes initially make a reflexive saccade in the wrong direction, the error 

would not reach awareness and can be corrected faster, as attention does not need to 

move to the correct location anymore. Mokler et al. (2000) observed that unperceived 

erroneous prosaccades were associated with better visual discrimination performance at 

the antisaccade goal than at the visual target, while the opposite was true for perceived 

errors. From this they concluded that reflexive prosaccades can occur without a prior 

attention shift to the target.  

In our study, discrimination performance in error trials was always best at the cue 

location and error perception was associated with slightly worse performance on the 

discrimination task.  
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One attempt to explain these contradictory findings could be through the exact 

comparison of the experimental designs used in their study and ours. Notably, Mokler 

and her collaborators did not present probes at a neutral location, which makes it 

impossible to judge the amount of task-related attention at the antisaccade goal. Second, 

the 100% valid exogenous pre-cue shown 100-200 ms before the probe, which was 

intended to increase the rate of erroneous prosaccades (see Fischer & Weber, 1996), may 

have led to better discrimination performance at the cued location. Alternatively, the 

process of error monitoring may have drawn attentional resources away from the 

discrimination task.  

Such an account could explain both the better discrimination performance in 

association with unperceived errors and the shorter latencies of subsequent corrective 

saccades observed in the present study. The results of a study by Taylor and Hutton 

(2011) support this hypothesis by showing that error perception in the antisaccade task 

may require top-down attentional control. The lower frequency and reduced gain of 

corrective saccades that we observed following perceived errors would also be consistent 

with such an explanation.   

Based on their findings from the oculomotor capture paradigm, Godijn & 

Theeuwes (2003b) proposed a weaker form of Mokler’s hypothesis, which states that 

involuntary saccades to distractors may not be perceived when attention remains on the 

distractor for too little time. Our results do not support any of the two accounts, since we 

found neither a proof for attention being disengaged from the cued location nor for less 

cue-related attention before unperceived errors. Rather, the main problem associated with 

both hypotheses may be that they presume that attentional processes are strictly serial, 

which reflects the persistent influence of the attentional spotlight metaphor. Only 

recently, the notion of a single attentional focus that needs to be shifted in space has been 

replaced by newer theories, in which activations corresponding to spatial locations can be 

enhanced or suppressed through mutual interactions or through external modulatory 

influences, leading to dynamic “attentional landscapes” that are adapted to the current 

sensorimotor task (Baldauf & Deubel, 2010). 
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2.2   Study 2: Attention reflects saccade decisions  

Contributions:  

The author of this dissertation participated in data collection and analysis, interpreted the 

results and wrote the manuscript.   

Donatas Jonikaitis designed and programmed the experiment, collected and analyzed 

data, created plots, interpreted the results and participated in writing the manuscript.   

Heiner Deubel supervised the project, interpreted results and commented on the 

manuscript. 
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Abstract 

The present study investigated the allocation of visuospatial attention during free or rule-

based decisions between two memorized saccade targets. Participants were asked to 

memorize two spatial locations, highlighted by different colors. After a delay period, the 

color of the central fixation changed and either indicated one of the memorized locations 

as the saccade target (rule-based choice), or indicated to freely choose between the two 

locations. By probing discrimination performance at variable SOAs relative to this cue, we 

were able to measure the time course of the attentional selection of both targets. In both 

rule-based and free choice trials, we observed a parallel selection of the chosen and the 

non-chosen saccade target, with a clear bias towards the chosen target. This bias was 

evident before correct and before erroneous rule-based responses. Perceptual 

performance during the memory delay was influenced by top-down and bottom-up 

factors as well as by selection history and predicted the direction of saccades. During 

saccade programming, performance increased at both potential saccade goals, consistent 

with a race of both saccade programs towards a decision threshold. Our findings 

demonstrate that saccade decisions have direct visual consequences and show that 

decision making can be traced in the human oculomotor system well before choices are 

made.     
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INTRODUCTION 

Despite the fact that we, seemingly automatically, move our eyes several times per second, 

each of our saccades has to be preceded by some kind of decision making process, in 

which the saccade goal is selected amongst other possible goals. While traditional theories 

of decision making postulated that decisions are first made by cognitive systems and only 

then implemented in the form of motor actions, recent neurophysiological findings 

challenge these serial models by supporting the view that motor decisions consist of          

a biased competition between alternative motor plans that are represented in parallel in 

sensorimotor brain areas (Andersen & Cui, 2009; Cisek, 2007; Cisek & Kalaska, 2010).  

Computational models of the decision process assume that sensory evidence in 

favor of each movement alternative is integrated over time and gradually accumulated 

towards a threshold, at which the corresponding action is initiated (e.g., Brown & 

Heathcote, 2007; Carpenter & Williams, 1995; Ratcliff & McKoon, 2008). The starting 

point – or baseline – of the accumulation depends on the prior probability that the given 

movement will be executed (Ludwig, 2011), while the rate of accumulation depends on 

the strength of the sensory evidence and other variables, such as the value associated with 

the given response (Gold & Shadlen, 2007).  

Numerous single cell recordings from the monkey brain have supported these 

assumptions by showing that the outcome of saccadic decisions directly depends on 

sensory information (Newsome, Britten, & Movshon, 1989; Salzman, Britten, & 

Newsome, 1990) and that this decision-related sensory evidence is accumulated in visuo- 

motor brain areas, such as LIP (Gold & Shadlen, 2000; Ipata, Gee, Goldberg, & Bisley, 

2009; Roitman & Shadlen, 2002; Shadlen & Newsome, 1996, 2001), FEF (Hanes & 

Schall, 1996; Kim & Shadlen, 1999; Schall, 2003) and SC (Glimcher & Sparks, 1992; 

Horwitz & Newsome, 2001; Munoz & Wurtz, 1995; Sparks, 1978; Wurtz & Goldberg, 

1972). An fMRI study in humans, in which two eye movements had to be planned in 

sequence, also provided evidence that the posterior parietal cortex (containing the human 

homologue of LIP) represents goals of upcoming saccades (Medendorp, Goltz, & Vilis, 

2006).  

When monkeys have to decide between two saccade targets, neurons in visuo- 

motor brain areas represent both response alternatives – with a stronger signal 

corresponding to the selected goal (Kim & Basso, 2008; Platt & Glimcher, 1997) – and 

the representations are modulated by the perceived probability or value of the responses 

(Basso & Wurtz, 1998; Sugrue, Corrado, & Newsome, 2004). 
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Consistent with this, behavioral studies show that competitive visual environments not 

seldom lead to the parallel programming of two, or possibly even more, saccades (Becker 

& Jürgens, 1979; Godijn & Theeuwes, 2002; Irwin, Colcombe, Kramer & Hahn, 2000; 

Klapetek, Jonikaitis, & Deubel, 2016; Massen, 2004; McPeek, Skavenski & Nakayama, 

2000; Morrison, 1984; Theeuwes, Kramer, Hahn, Irwin, & Zelinsky, 1999; Walker & 

McSorley, 2006).  

Unfortunately, many of the studies that supposedly demonstrated decision-related 

neural activity investigated saccades to visual targets, which makes it difficult to judge 

whether the neural signals reflected perceptual decision making or saccade planning.       

A possible way to distinguish between the two processes is to dissociate visual 

information and saccade planning spatially (as for example in the antisaccade task, where 

saccades have to be directed away from a visual stimulus) or temporally (by presenting the 

saccade cue after the disappearance of the visual information). A few researchers recorded 

from LIP neurons while monkeys performed antisaccades (Gottlieb & Goldberg, 1999; 

Zhang & Barash, 2000, 2004), their results being contradictory. While Gottlieb and 

Goldberg found that only few LIP neurons represented purely saccade-related activity 

and most cells showed visual responses, Zhang and Barash (2000, 2004) observed that 

most neurons could carry visual as well as motor activity, depending on the context.  

To investigate saccade decisions in humans, one can take advantage of the tight 

coupling between oculomotor and perceptual selection. During saccade preparation, 

perception is automatically enhanced at the saccade target (Deubel & Schneider, 1996; 

Hoffman & Subramaniam, 1995; Jonikaitis & Deubel, 2011; Klapetek et al., 2016; Kowler, 

Anderson, Dosher, & Blaser, 1995; Rolfs, Jonikaitis, Deubel, & Cavanagh, 2011; Jonikaitis 

& Theeuwes, 2013). On the other hand, the presentation of salient visual events, such as 

irrelevant distractors, often leads to involuntary saccades in the direction of these stimuli, 

which has been termed oculomotor capture (Theeuwes, Kramer, Hahn, & Irwin, 1998; 

Theeuwes, Kramer, Hahn, Irwin, & Zelinsky, 1999). Such observations, along with           

a wealth of other findings in monkeys and humans (for a review, see Ptak, 2012) 

corroborate  the hypothesis that oculomotor and visual selection are coupled through      

a common attentional priority mechanism, which always selects the behaviorally most 

relevant location (Fecteau & Munoz, 2006; Serences & Yantis, 2006). If this is true, we 

should expect that any saccadic decision (reflected in accumulation of evidence in favor of 

a particular location on the priority map) should also be reflected in gradually improving 

perceptual performance at the corresponding spatial location. 

In order to test this hypothesis, we designed an experiment, in which human 

observers had to choose between two memorized saccade targets (either freely or on the 

basis of a color rule) and simultaneously discriminate visual probes at the two competing 
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target locations or elsewhere in the display. By probing discrimination performance at 

variable times during the trial, we were able to measure the time course of the perceptual 

selection of both target locations. Consistent with the previously reviewed evidence on 

the coupling between saccadic and perceptual selection, we expected to see a clear 

perceptual benefit at the chosen target. We were also interested whether a perceptual 

benefit would be evident at the competing (non-chosen) target location as well. It is 

possible that both saccade targets (or the oculomotor programs towards them) are 

simultaneously represented in visuomotor brain areas and facilitate perception at both 

corresponding spatial locations. A second possibility, however, is that the non-chosen 

target is treated as an irrelevant distractor and can be ignored or even inhibited from early 

on. A third possibility is that the pattern of perceptual facilitation would differ in the rule-

based and in the free-choice conditions, for example due to smaller competition of the 

non-chosen target in the rule-based condition than in the free-choice condition.  

METHODS 

Participants 

Twelve observers (age 21-29, seven female) completed the experiment for payment. All 

participants were naive as to the predictions of the study. The experiments were carried 

out with the approval of the department’s ethic guidelines committee and in accordance 

to the Declaration of Helsinki, and participants gave written informed consent. 

Apparatus 

The observers were seated in a quiet and dimly illuminated room in front of a gamma-

linearized 21-in CRT monitor (Sony GDM-F500R, 1024 x 768 pixels, 120 Hz), positioned 

at a viewing distance of 60 cm. Right-eye gaze position was recorded with an EyeLink 

1000 desktop mounted eye tracker (SR Research, Canada) at a sampling rate of 1000 Hz 

while head movements were minimized through the use of a chin and forehead rest. The 

eye tracker was calibrated before each new block and whenever it was necessary. Stimulus 

presentation and response collection were controlled by an Apple Mac Mini, using 

MATLAB software (MathWorks, Natick, USA) and the Psychophysics and Eyelink 

Toolbox extensions (Brainard, 1997; Cornelissen, Peters, & Palmer, 2002; Kleiner, 

Brainard, & Pelli, 2007; Pelli, 1997; see http://psychtoolbox.org). Manual responses were 

collected via the arrow keys on the right hand side of the computer keyboard. 
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Procedure 

Main task  

 Each trial started with a fixation target (black dot, diameter: 0.75° of visual angle) 

presented on a gray background. Five square objects (diameter: 2.8°), were positioned on 

an imaginary circle around the fixation (radius: 7°), the angular position of the first object 

was 30° plus a random jitter between -10 to 10° and the distance between objects was 72° 

(see Figure 1). Each square object consisted of an alternating stream of vertically oriented 

Gabor patches (spatial frequency: 2.5 cycles per degree, 100% contrast, random phase 

selected on each presentation) and grayscale noise masks (pixel luminance values 

randomly drawn from a Gaussian distribution with minimum 0 (black) and maximum 255 

(white), M = 128 and SD = 128). Gabor patches and noise masks alternated every 4 

display refresh frames (33 ms).  

During an initial memory cueing phase (Gaussian distribution with M = 2000 ms 

and SD = 100 ms), two of the streams were highlighted by color frames (one blue and the 

other green) and participants were asked to memorize their locations. The memory cueing 

phase was followed by a delay of 500 to 1500 ms (selected randomly from a uniform 

distribution), during which the colored frames were extinguished. After the delay,             

a central saccade cue was presented for 700 ms: the fixation target changed color to an 

equiluminant blue, green or orange color with equal probability. A green or blue fixation 

instructed a saccade to the corresponding memorized green or blue target location (rule-

based choice), whereas an orange fixation indicated to  saccade to either of the two 

memorized locations (free choice). After 700 ms, the fixation and all square objects were 

removed.   

A probe display was presented -300 to 400 ms relative to saccade cue onset (time 

selected randomly from a uniform distribution). The probe was a Gabor patch tilted 

clockwise or counterclockwise (angle of tilt determined for each participant, see below) 

and was presented for 33 ms in one of the five object streams (selected randomly with 

equal probability). 

After probe offset, no Gabor patches were further shown, so the object streams 

consisted of alternating noise masks and blank sequences. Observers reported the 

perceived probe orientation by pressing the left (counterclockwise tilt) or right (clockwise 

tilt) arrow key. We instructed observers to focus on making fast and accurate saccades 

and to guess whenever they were unsure about the probe orientation. Discrimination 

responses were not speeded. A new trial started 200 ms after the discrimination response. 
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Pretest 

We determined the probe tilt angle for each participant at the beginning of each 

recording day. The visual stimuli in the pretest were identical as in the main task, except 

that only one memory target was presented and it always predicted the location of the 

probe (100% valid cue).  

Observers were instructed to covertly attend to the memory target while 

maintaining central fixation and to report the orientation of the probe. The tilt angle at 

which observers reached 80% correct probe discrimination was determined using             

a modified version of the QUEST staircase procedure (King-Smith, Grigsby, Vingrys, 

Benes, & Supowit, 1994; Watson & Pelli, 1983) implemented in MATLAB Psychophysics 

toolbox.  

Observers participated in a minimum of 14 main task sessions, each consisting of 

eight blocks of 50 trials. They usually performed one or two sessions on a single day. 

Data analyses 

Drift correction was performed offline using the average gaze direction (given that no 

saccades of amplitude larger than 0.5º occurred) between 100 and 10 ms before memory 

delay onset. Saccades were detected offline using an algorithm that evaluates eye velocity 

changes (Engbert & Mergenthaler, 2006) with a velocity threshold of 6 SD to detect 

saccade onset and a minimum saccade duration of 6 ms. We classified saccades as correct 

if the starting point was less than 2º away from fixation, the endpoint was less than 3º 

away from the target center and the onset latency was between 50 and 700 ms. We 

removed trials due to breaking of fixation if a saccade larger than 2º occurred during the 

last  200 ms before saccade cue onset or between cue onset and correct saccade initiation. 

Trials were also removed if blinks occurred in the interval starting 100 ms before saccade 

cue onset and ending with saccade onset. On trials where the two target locations were 

adjacent (distance 72º of arc), the saccade was classified as either correct or incorrect, 

depending on whether the first saccade landed closer to the cued or to the non-cued 

location. Data from each participant was inspected manually for saccade and micro-

saccade detection accuracy and data recording noise. In total, participants selected the 

correct target on 80155 and the erroneous target on 14912 out of the total 102451 

recorded trials (7% of trials had to be removed for reasons mentioned above). 
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Statistical comparisons consisted of the calculation of the means of 10,000 bootstrap 

samples that were drawn with replacement from each condition’s data set. Differences 

between the means were computed and two-tailed p-values were derived from the 

distribution of these differences. For each comparison, Cohen’s d was calculated as a 

measure of effect size (difference between the means divided by the pooled standard 

deviation). Effect sizes of d = .20 can be cautiously interpreted as “small”, d = .50 as 

“medium”, and d = .80 as “large” (Cohen, 1988). 

 

Figure 1. (A) Schematic depiction of the sequence of stimuli. During the memory cueing period, two 
colored frames indicated the memory target locations. After a memory delay the saccade cue was 
presented. The saccade cue was a color change of the fixation: blue (1/3 of trials) or green (1/3 of trials) 
indicated that participants had to make a saccade towards the previously blue or green target (rule-based 
choice), whereas orange (1/3 of trials) indicated that either of the two targets could be selected (free 
choice). (B) During the entire trial, each of the five locations contained a rapidly alternating stream of 
white noise masks and vertically oriented Gabor patches. A probe was presented in one of the locations. 
The probe consisted of a tilt of one of the Gabors clockwise or counterclockwise from the vertical for 33 
ms and appeared between -300 and 300 ms relative to the onset of the saccade cue. 

  



53 
 

 
 

RESULTS 

Properties of saccades 

Response latency and accuracy are the two main measures of the outcome of any decision 

making process. Further measures of motor performance, such as trajectory deviations, 

have also been used as a basis for inferences about competitive processes underlying 

choices between multiple motor plans (e.g., Chapman et al., 2010; McSorley & McCloy, 

2009; Song & Nakayama, 2008; Welsh & Elliott, 2004). 

Figure 2A shows the distributions of saccade latencies. Latencies (mean ± SE) 

were shorter in the free-choice condition (234 ± 8 ms) than in the rule-based condition 

(241 ± 7 ms, p = .004, Cohen’s d = .27). A comparison of saccade latencies on correct and 

error trials in the rule-based condition (note that decision errors could not occur in the 

free-choice condition) revealed shorter latencies on error trials (230 ± 8 ms) than on 

correct trials (241 ± 7 ms, p < .001, d = .44). 

Figure 2B shows the saccade trajectories. In human studies, saccade trajectories 

tend to deviate away from competing stimuli if they are successfully suppressed on the 

motor map of the superior colliculus, and towards distractors if this suppression fails (e.g., 

Sheliga, Riggio, Craighero & Rizzolatti, 1995; Van der Stigchel, Meeter, & Theeuwes, 

2006). 

We observed that saccade trajectories deviated away from the non-chosen target 

both in the free-choice and in the rule-based condition. Surprisingly, this deviation away 

was abolished on error trials. Saccade deviation on error trials (0.03 ± 0.03 deg) was 

smaller than on both correct rule-based trials (0.30 ± 0.03 deg, p < .001, d = 2.56) and on 

free-choice trials (0.26 ± 0.05 deg, p < .001, d = 1.78). This suggests that suppression of 

the non-chosen target was reduced on error trials. However, two different reasons could 

underlie this reduced suppression. First, it is possible that both targets were represented in 

the oculomotor system and that the representation of the non-chosen target was not 

suppressed. Second, only the erroneously chosen saccade target may have been 

represented on error trials, while the correct target may simply not have been considered 

from the beginning. Unfortunately, neither alternative can be ruled out, as motor 

responses only reflect the final state of competition between possible movement targets, 

shortly before or during movement execution.   
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Figure 2. (A) Saccade latency distributions in the free and rule-based choice tasks. Errors were defined as 
wrong saccade target selection during the rule-based condition. Shaded areas represent the standard error 
of the mean (SEM). (B) Saccade trajectories towards or away from the non-chosen target. Locations were 
rotated and flipped, so that all non-chosen targets appear to the left of the saccade goal in the figure. 
Saccade trajectories towards the non-chosen target fall on the shaded background area, whereas 
trajectories away from it fall on the white background area. 

In summary, while the latency and trajectory differences observed in our study can be 

cautiously interpreted, they represent the final state of motor decisions and hence allow us 

to draw only limited conclusions on the decision making process itself. We will therefore 

focus on attention allocation during decision making, which will change or disambiguate 

some of the previously discussed interpretations. 

Attentional selection 

Based on the existing literature, we expected to find (a) that attention would be 

maintained at the locations held in working memory during the delay interval, and (b) that 

attention would shift to the saccade goal before saccade onset.   

 In order to measure attention allocation during the memory delay, we calculated 

visual sensitivity (d-prime) in the probe discrimination task at all locations in the range 

300-200 ms before the onset of the saccade cue. Visual sensitivity (M ± SE) was superior 

at both memorized locations. When compared to the average of the three task-irrelevant 

locations (0.1 ± 0.1), d-primes were higher at the location of the first (0.7 ± 0.1, p < .001, 

d = 2.01), and the second memory target (0.8 ± 0.1, p < .001, d = 2.28).  

This indicates that both locations were selected by visuospatial attention, possibly in order 

to strengthen their representation in working memory by spatial rehearsal (Awh & 

Jonides, 2001).  
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Next, we focused on discrimination performance after the appearance of the saccade cue. 

In line with earlier studies on saccade preparation and spatial attention (Deubel & 

Schneider, 1996; Hoffman & Subramaniam, 1995; Jonikaitis & Deubel, 2011; Klapetek et 

al., 2016; Kowler et al., 1995; Rolfs et al., 2011; Jonikaitis & Theeuwes, 2013), we found 

that saccade preparation was associated with improved target discrimination at the future 

saccade goal. Visual sensitivity (100-0 ms before saccade onset) was higher at the chosen 

target (2.3 ± 0.2) than at the non-chosen target (1.1 ± 0.2, p < .001, d = 1.64), as well as at 

irrelevant locations (0.3 ± 0.1, p < .001, d = 3.89). Taken together, the pattern of 

perceptual discrimination performance suggests that spatial attention shifted to the 

saccade goal whenever a saccade was prepared. 

Attentional selection is linked to decision making 

Figure 3A-B shows the spatiotemporal distribution of the pre-saccadic visual sensitivity. 

An increase in sensitivity occurred at both competing target locations, whereas there was 

little to no sensitivity increase at the irrelevant locations. Furthermore, sensitivity at the 

non-chosen location increased regardless of whether it was close to the chosen target 

(radial distance 72 degrees) or further away from it (radial distance 144 degrees), with no 

benefit at the location between the chosen and non-chosen target locations in the latter 

case (Figure 3D). This indicates that target selection is spatially specific and occurs 

before saccade onset. 

To evaluate whether spatial attention reflects the process of saccadic decision 

making, we measured how visual sensitivity after saccade cue onset changed relative to 

visual sensitivity during the memory delay. For this purpose, we subtracted the average d-

prime during the memory delay (-300 to -100 ms before saccade cue onset) from the d-

prime in each time bin, separately for chosen, non-chosen, and task irrelevant locations as 

well as for both choice conditions. Figure 3E-F shows the change in visual sensitivity in 

the rule-based and free-choice conditions over time. Visual sensitivity increased at both 

the chosen target and the non-chosen target after the appearance of the saccade cue. 

Indeed, during rule-based decisions, the visual sensitivity increase relative to the memory 

delay (change in d-primes 100 to 0 ms before saccade onset) was larger at the chosen 

target (1.3 ± 0.1) than at irrelevant locations (0.2 ± 0.1, p < .001, d = 4.20) and this 

benefit was also present at the non-chosen target (0.5 ± 0.1, p < .001, d = 1.20). 
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Comparable results were observed during the free-choice task (chosen target: 1.2 ± 0.1 vs. 

irrelevant: 0.1 ± 0.1, p < .001, d = 3.82; non-chosen target: 0.6 ± 0.1 vs. irrelevant,           

p < .001, d = 1.52). These results show that both target locations were selected by 

attention during the decision making period. 

 

Figure 3. Attentional selection during decision making. (A) Visual sensitivity before saccade onset at all 
five measured locations. Memorized target locations are labeled as T1 (chosen target) and T2 (non-chosen 
target). Radial distance between both targets: 72°. (B) Visual sensitivity before saccade onset, radial 
distance between both targets: 144°. (C) Visual sensitivity in the free-choice and rule-based conditions 
between 100 and 0 ms before saccade onset, radial distance between both targets: 72°. (D) Visual 
sensitivity in the free-choice and rule-based conditions between 100 and 0 ms before saccade onset, radial 
distance between both targets: 144°. (E) Benefit in visual sensitivity in the rule-based condition relative to 
average performance 300 to 150 ms before saccade cue onset. The bars at the bottom of the figure 
indicate the ratio between probes presented before (gray) and after saccade cue onset (empty) within each 
time bin. Shaded areas represent SEM. (F) Benefit in visual sensitivity in the free-choice condition. 

So far, the pattern of results supports the following conclusions: First, oculomotor 

decisions seem to interact with spatial attention, thus allowing us to track decision making 

before motor effects of decisions become observable. Second, memory-based saccade 

decisions involve attention allocation to both alternative saccade goals, despite the 

absence of visual information that could guide attention.  
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Both in the free-choice and surprisingly also in the rule-based choice condition, where the 

saccade target was defined by a simple stimulus-response mapping, we observed a 

simultaneous representation of both potential saccade goals during the entire decision 

making process. 

Attentional selection is associated with saccade programming 

We next investigated whether the observed attentional selection was directly associated 

with saccade responses. For this purpose, we examined the relationship between saccade 

latencies and the time course of visual sensitivity (Figure 4). If covert attention indeed 

reflects decision making, then faster decisions, as indicated by saccade latencies, should be 

preceded by earlier attentional selection. However, in this context it is important to 

distinguish two factors that can influence the speed of decisions. One is the rate at which 

sensory evidence is accumulated towards the decision boundary, and the other is the 

starting point of the accumulation (or alternatively the threshold itself).  

To compare trials with faster and slower saccades, we separated saccade latencies 

at the median for each participant (faster latencies were on average 217 ms and slower 

latencies were 269 ms). As can be seen in Figure 4A, we observed that after the onset of 

the saccade cue, visual sensitivity increased earlier during fast saccadic responses and 

improved later during slow saccadic responses. Visual sensitivity (averaged across 50-200 

ms after saccade cue onset) was better during short latency trials (2.1 ± 0.2) than during 

long latency trials (1.6 ± 0.2, p < .001, d = 1.04. Figure 4B shows discrimination 

performance relative to saccade onset. We observed comparable rise rates for fast and 

slower decisions. Visual sensitivity for the interval 150-0 ms before saccade onset was 

comparable for short latency trials (2.0 ± 0.2) and long latency trials (1.9 ± 0.3), p = .52, d 

= 0.09. These findings are compatible with the assumption that faster and slower 

decisions differ in the starting point of the accumulation, which depends on the prior 

probability of the associated movement vector (Ludwig, 2011), but not in the rate of the 

sensory evidence accumulation.  

 Figure 4C shows that saccade latency differences were also associated with 

discrimination performance differences at the non-chosen target. Visual sensitivity at the 

non-chosen target 50-200 ms after saccade cue onset was higher before short latency 

saccades (1.0 ± 0.2), than before long-latency saccades (0.7 ± 0.2, p = .006, d = .42), 

suggesting that the attention shift to the non-selected target was also linked to saccade 

onset. No such differences were present at task-irrelevant locations (Figure 4D).  
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Our results thus demonstrate that the timing of the attentional selection of the competing 

saccade targets is directly related to the timing of the saccade decision. An apparent 

interpretation is that participants were simply more alert on fast latency trials, which could 

lead to both an earlier increase in discrimination performance and to faster saccade 

programming. This explanation is unlikely, however, as discrimination performance at the 

irrelevant locations was not modulated by saccade latency. 

Visual sensitivity at the irrelevant locations (50-200 ms after saccade cue onset) did 

not differ between short latency saccades (0.2 ± 0.1) and long latency saccades (0.1 ± 0.1, 

p = .53, d = .24). The effect of saccade latency on discrimination performance was instead 

restricted to the decision-relevant locations, suggesting that a spatially specific 

competition between these two locations had taken place.  

 

Figure 4. Attentional selection before saccades with short and with long latencies. (A) Visual sensitivity at 
the chosen target relative to saccade cue onset. (B) Visual sensitivity at the chosen target relative to 
saccade onset. (C) Visual sensitivity at the non-chosen target relative to saccade cue onset. (D) Visual 
sensitivity at irrelevant locations relative to saccade cue onset. 
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Choice errors are related to attentional biases 

We observed that in the rule-based choice condition participants correctly selected the 

instructed target on 78% of the trials, and made an erroneous selection on 22%. Given 

the size of our data set, we recorded on average ~1200 error trials per participant, which 

allowed us to perform an analysis of attentional selection during error trials. Our data on 

saccade trajectory deviations (Figure 2B) permitted two opposing hypotheses – either the 

non-chosen location was not suppressed, or it was not represented from the beginning. 

Figure 5A compares visual sensitivity at the chosen target on correct and on error trials. 

It is evident that the target was selected later on error trials than on correct trials. Due to 

this, visual sensitivity (50-150 ms after saccade cue onset) was better at correctly chosen 

targets (1.4 ± 0.2) than at erroneously chosen targets (0.7 ± 0.1, p < .001, d = 1.43). 

However, discrimination performance at the non-chosen target also improved before 

saccade onset, indicating that both targets still competed on error trials. Indeed, 

discrimination performance at the non-chosen target (50-150 ms after saccade cue onset) 

was comparable on correct trials (0.7 ± 0.1) and on error trials (0.8 ± 0.1, p = .62, d = 

.16). This shows that due to later improvement at the chosen target locations on error 

trials, the competition between chosen and non-chosen locations was resolved later on 

error trials. 

To determine whether saccade decisions were biased by selection history, we 

measured whether target choice was influenced by choice on the previous trial (Figure 

5B). For this purpose, we calculated the selection bias as the difference between the 

percentages of same and different choices (target color or location) with respect to the 

previous trial. We observed that free choices tended to be biased by the color of the 

previously chosen target, as participants were less likely to choose the target of the same 

color (bias: -3.8 ± 1.3 %, p = .003, d = 0.7). Color did not affect rule-based choices, 

neither on correct (bias: 0.4 ± 0.4 %, p = .26, d = 0.26) nor on error trials (bias: 1.4 ± 

1.8%, p = .42, d = .39). The location of the previously chosen target also affected saccade 

choices, as participants were more likely to choose the same location as on the previous 

trial. This was true for both free choice trials (bias: 4.4 ± 1.0 %, p < .001, d = 1.28) and 

error trials of the rule-based condition (bias: 2.8 ± 1.5 %, p = .05, d = .84), but not for 

correct rule-based trials (bias: 0.4 ± 0.4 %, p = .28, d = .18). Taken together, we observed 

some small but detectable biases by choice history. 
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We also checked whether participants were more likely to choose a saccade target when it 

coincided with the location of the discrimination probe (Figure 5C). Indeed, on trials 

where the probe was presented at the location of one of the two targets 50 ms or earlier 

before the saccade cue, saccades were more likely to be directed towards the probed 

target than towards the non-probed target. This bias was present in the free-choice 

condition (17 ± 5 %, p < .001, d = 1.58), as well as on correct trials of the rule-based 

condition (8 ± 2 %, p < .001, d = 1.15), and was strongest on error trials of the rule-based 

condition (32 ± 9 %, p < .001, d = 1.96). This suggests that the higher discrimination 

performance at the upcoming saccade goal during the memory delay (Figure 5A) results 

in large part from this bias.  

The influence of the probe on decision making was greatly reduced when the 

probe was presented 50 ms or later after the onset of the saccade cue. In this case, the 

bias was not significant both on  correct (0.3 ± 0.1 %, p = .78, d = .03) and on error trials 

(5 ± 4 %, p = .74, d = 0.72) of the rule-based condition (5 ± 4 %, p = .74, d = 0.72) and it 

was even reversed in the free choice condition (-6 ± 3 %, p = .04, d = 0.78). This can be 

expected, as it is progressively more difficult to capture attention as more information in 

favor of the saccade goal has been accumulated (Hunt, Von Mühlenen, & Kingstone, 

2007). 

 

Figure 5. (A) Visual sensitivity  during  rule-based decisions relative to saccade onset. (B) Saccade choice 
as a function of previous choice. Selection bias is defined as the percentage of trials on which participants 
were more likely (positive bias) or less likely (negative bias) to choose a target of the same color (upper 
panel ) or same location (lower panel) as in the preceding trial. Error bars represent the SEM. Bootstrap 
comparisons between two conditions: * indicates  p<0.05, ns indicates p>0.05. (C) Target selection as a 
function of probe location. Selection bias is defined as the percentage of trials on which participants were 
more likely or less likely to choose the target at the same location as a probe presented during the memory 
delay period (upper panel) or as a probe presented after the saccade cue (lower panel). 
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DISCUSSION 

The present study investigated the allocation of visuospatial attention during free or rule-

based choices between memorized saccade targets. Decision making has been extensively 

studied in the presence of visual information, that is when one of two responses has to be 

chosen while the strength of visual information in favor of both response alternatives is 

being evaluated (for reviews see Glimcher, 2003; Gold & Shadlen, 2007; Schall, 2003), but 

to our knowledge this is the first examination of motor decisions between two goals 

stored in working memory. In our experiment, no external visuospatial information was 

available to guide the decision, but we still observed a parallel attentional selection of the 

competing saccade goals, both before and after the saccade cue.  

To our surprise, we did not find any substantial differences between the rule-based 

and free-choice conditions, except for a shorter saccadic latency under free choice 

conditions. 

Pre-selection during the memory delay 

The parallel selection of both saccade targets during the memory delay is consistent with 

evidence from other studies that spatial attention is allocated to locations maintained in 

working memory (Awh & Jonides, 2001; Awh, Jonides, & Reuter-Lorenz, 1998; Herwig, 

Beisert, & Schneider, 2010). The design of our experiment does not allow to disentangle 

the effects of attention and working memory on discrimination performance, as this was 

not one of our goals. Moreover, attention and visual working memory show so much 

overlap at the neural level that many authors consider them to be a unitary mechanism 

(Chun, 2011; Gazzaley & Nobre, 2012; Kiyonaga & Egner, 2013; Rensink, 2002; 

Theeuwes, Belopolsky, & Olivers, 2009; Wheeler & Treisman, 2002). 

Interestingly, we did not observe a balanced selection of both targets during the 

memory delay, but one that was biased by future saccadic choice. This shows that on 

some trials, one target was clearly preferred over the other, and that this target was more 

likely to become the future saccade goal. Target selection was significantly biased by the 

appearance of the visual probe at one of the two remembered locations and, to a lesser 

degree, by the color of the saccade goal on the previous trial. 
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The finding that choice on the previous trial can bias motor decisions has been reported 

by a number of authors (Gallivan, Barton, Chapman, Wolpert, & Flanagan, 2015; Klaes, 

Westendorff, Chakrabarti, & Gail, 2011; de Lange, Rahnev, Donner, & Lau, 2013; Suriya-

Arunroj & Gail, 2015) and it has been explained by the tendency of subjects to form 

probabilistic expectations that shift the starting point of the evidence accumulation closer 

to the decision boundary (de Lange et al., 2013; Suriya-Arunroj & Gail, 2015). 

Neurophysiological studies have shown that non-sensory variables, such as the prior 

probability that a certain response will be required (Basso & Wurtz, 1998; Dorris & 

Munoz, 1998; Platt & Glimcher, 1999), the reward associated with different response 

alternatives (Platt & Glimcher, 1999), or learned space-reward associations (Chelazzi et al., 

2014), directly modulate the accumulation of saccade-related evidence in SC and LIP. It is 

becoming increasingly clear that the traditional dichotomy between top-down and 

bottom-up influences is not sufficient to explain how attention is allocated and that 

selection and reward history have to be considered as equally important attentional biases 

(Awh, Belopolsky, & Theeuwes, 2012). Our findings support this notion, as we observed 

that saccade goal selection was biased by choice on the previous trial, although this bias 

reduced performance.  

We also observed that saccadic decisions in our study were biased by the 

appearance of the discrimination probe during the memory delay period, but not during 

saccade preparation. The latter finding is consistent with our earlier work, in which we did 

not observe any effects of discrimination probe appearance on saccade target selection 

(Rolfs et al, 2011, Jonikaitis, Szinte, Rolfs & Cavanagh, 2013, Jonikaitis & Theeuwes, 

2013; Klapetek et al., 2016). In those studies, the probe did not capture attention, as 

neither the location nor the time of probe onset affected the direction or latency of 

saccades. Indeed, the reason we used continuous Gabor-mask streams was to prevent 

disruption of saccade preparation due to probe onset on a static display during saccade 

preparation. Therefore, the preferential selection of the probe location during the 

memory delay in the present study indicates that the probe was not salient enough to 

attract attention per se. Instead, it only affected decisions when participants were actively 

sampling the two memorized locations in search of any evidence that could help to decide 

for one of them. Such contingencies of attentional capture on endogenous attention have 

been previously reported by other authors (Anderson & Folk, 2010; Eimer & Kiss, 2008; 

Folk, Remington, & Johnston, 1992). 

Taken together, our results on discrimination performance during the memory 

delay show that, instead of comprising a mere representation of the possible saccade 

goals, the memory interval involved some form of biased competition between the goals 

(Desimone & Duncan, 1995).  
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Choice on the previous trial, probe appearance, and possibly other intrinsic factors, biased 

participants to pre-select the saccade goal before the appearance of the saccade cue, even 

when this was not appropriate (such as in the rule-based condition, where the correct 

target was defined by the color of the cue). 

Perceptual selection reflects the decision process 

During the decision period, we observed an increase in visual sensitivity at the chosen 

saccade goal (Castet, Jeanjean, Montagnini, Laugier, & Masson, 2006; Deubel, 2008; 

Doré-Mazars, Pouget, & Beauvillain, 2004; Jonikaitis & Deubel, 2011; Montagnini & 

Castet, 2007). The time course of this pre-saccadic visual sensitivity increase was linked to 

saccade onset regardless of the saccade latency, which indicates that it reflected the 

accumulation of sensory information in favor of the saccade goal and/or the saccade 

program. Surprisingly, we also observed a saccade-related increase in visual sensitivity at 

the non-chosen target, both in the free and rule-based choice tasks. The increase in visual 

sensitivity at both the chosen and the non-chosen targets indicates that both locations 

were evaluated in the oculomotor system as potential saccade targets, even though the 

decision could have been simply made by retrieving a stimulus-response association 

stored in memory (e.g., green fixation – look at the previously green location). This 

suggests that, rather than representing the chosen saccade goal, the oculomotor system 

represents the decision making process.  

Our findings are compatible with previous neurophysiological results, which have 

shown that visuomotor brain areas simultaneously represent competing or sequential 

saccade goals (Basso & Wurtz, 1998; Kim & Basso, 2008; McPeek & Keller, 2002; Platt & 

Glimcher, 1997; Sugrue et al., 2004), or reach goals (Baldauf, Cui & Andersen, 2008; 

Cisek & Kalaska, 2005; Gallivan et al., 2015; Klaes et al., 2011; Scherberger & Andersen, 

2007). Convergent evidence also comes from behavioral research, where parallel saccade 

programming has been observed in a number of contexts (Becker & Jürgens, 1979; 

Godijn & Theeuwes, 2002; Hodgson, Parris, Gregory, & Jarvis, 2009; Irwin et al., 2000; 

Massen, 2004; McPeek, Skavenski & Nakayama, 2000; Morrison, 1984; Theeuwes, 

Kramer, Hahn, & Irwin, 1998; Theeuwes, Kramer, Hahn, Irwin, & Zelinsky, 1999; Walker 

& McSorley, 2006). We recently observed that parallel saccade programming in the 

antisaccade task was accompanied by the simultaneous attentional selection of both 

saccade goals and that the distribution of attention predicted erroneous prosaccades 

(Klapetek et al., 2016). 
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An equivalent association between perception and saccade direction was evident in the 

present study, as both correct and erroneous saccades were preceded by a discrimination 

benefit at the saccade goal. The fact that vision and saccades tend to select the same 

spatial locations suggests that they rely on shared decisional mechanisms. 

Errors follow late decisions   

The general pattern of attentional selection, by which attention was allocated in parallel to 

both saccade targets, though with a clear benefit at the chosen target, did not differ 

between trials with a correct and erroneous saccade. Nevertheless, visual sensitivity began 

to rise significantly earlier on correct trials, where it also reached a plateau shortly before 

the onset of the saccade. Sensitivity on error trials continued to rise until the moment of 

saccade initiation, which suggests that the competition was resolved at a very late point. 

Our results suggest that more than 30% of errors in the rule-based condition resulted 

from a pre-selection during the delay period that was incongruent with the rule-defined 

target (see Figure 5C). The increased competition should take additional time to be 

resolved. However, the fact that saccadic latencies were shorter on error trials suggests 

that errors may partly be a consequence of participants prioritizing speed over accuracy, 

which could have modulated the accumulation rate of the evidence in favor of the 

erroneous target (Cisek, Puskas, & El-Murr, 2009; Hanks, Kiani, & Shadlen, 2014; Heitz 

& Schall, 2012). A faster accumulation of evidence for a target on the collicular motor 

map could be associated with less suppression of other locations via local inhibitory 

interactions (Sumner, 2011), which could explain why erroneous saccades tended to show 

less deviation away from the non-selected target than correct saccades (Van der Stigchel 

et al., 2006). 

Attention, decision making, or saccade programming?  

Although it is tempting to ask whether the modulatory effects that we observed on visual 

discrimination performance reflect attention, the emerging saccadic decision, or saccade 

programming, we cannot answer this question and we doubt that the three concepts can 

be clearly distinguished.  
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The mechanism behind the spatially-selective perceptual benefits that we measured has 

been traditionally called visuospatial attention. Current theories of attention are closely 

linked to the concept of priority maps (Fecteau & Munoz, 2006; Serences & Yantis, 

2006), assuming that certain topographically organized brain areas integrate bottom-up 

and top-down signals into one or several online representations of the behavioral 

relevance or priority of spatial locations. In contrast to this type of theories, many 

decision-theoretic models of visual or saccadic choice posit that the same brain areas 

transform sensory evidence into saccade programs that compete against each other on-

line. This assumption probably goes too far, as not every decision is automatically  

transformed into a saccade program (Gold & Shadlen, 2003), but it is in principle 

compatible with the priority map theory: Both frameworks describe the situation where 

multiple stimuli or spatial locations compete for further processing and both assume that 

the outcome of the competition is used to guide saccades. Their main difference lies in 

the degree of their focus on motor actions and in the terminology used to describe the 

competing neural representations: while the former speak of attentional or priority signals, 

the latter call them decision variables or saccade programs (not claiming that these signals 

directly drive eye movements). In agreement with this, attention has even been 

conceptualized as an outcome or byproduct of decisional processes (Fernandez-Duque & 

Johnson, 2002; Krauzlis, Bollimunta, Arcizet, & Wang, 2014). 

The oculomotor system consists of a network of interconnected cortical and 

subcortical structures, most of which are known to participate in both visual and 

oculomotor selection. Neural correlates of decisions have been observed in all parts of 

the network, including the frontal eye field (e.g., Kim & Shadlen, 1999; Schall, 2003), the 

supplementary eye field (Coe, Tomihara, Matsuzawa, & Hikosaka, 2002), area LIP (e.g., 

Platt & Glimcher, 1999, Shadlen & Newsome, 2001), the superior colliculus (e.g., Horwitz 

& Newsome, 2001, Kim & Basso, 2008), the prefrontal cortex (Hasegawa, Sawaguchi, & 

Kubota, 1998; Watanabe & Funahashi, 2007) and the caudate nucleus (Ding & Gold, 

2010; Isoda & Hikosaka, 2011). Most of these areas have also been proposed to 

accommodate a priority map. The final decision where a saccade will be executed is 

probably accomplished through a distributed consensus between the above mentioned 

brain areas, possibly involving a progressive amplification of the difference between target 

and non-target representations from the parietal to the frontal cortex and onto the 

superior colliculus (Paré & Dorris, 2011). This process involves a top-down modulation 

of neural activity in lower visual areas by higher visual areas as well as local neuronal 

interactions, which have important perceptual consequences and are typically summarized 

under the term attention (Carrasco, 2011; Maunsell, 2015).  
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In our view, this shows that it is not only impossible, but also unnecessary to make          

a distinction between the terms attention, saccade programming and saccadic decision 

making when referring to processes that are clearly related to the selection of the saccade 

goal. We mainly consider important that theories move away from the traditional view 

that attention or motor programming are guided by a winner-take-all mechanism, as this 

view is incompatible with existing results on parallel movement planning and 

simultaneous attention allocation to multiple locations. While a winner-take-all 

mechanism must be necessarily applied during the final selection of the upcoming saccade 

in motor neurons of the superior colliculus, covert processes, such as visual attention or 

saccade programming, seem to be guided by the momentary priority of the competing 

targets or response alternatives. 

CONCLUSIONS 

In the present study, we investigated the allocation of visuospatial attention during 

decisions between two memorized saccade targets. Attention, as measured by visual 

discrimination performance, was allocated in parallel to the two competing saccade 

targets, both during the memory delay and in the pre-saccadic decision period, when the 

saccade was being programmed.  

The distribution of attentional resources was influenced by task requirements, 

probe appearance and selection history and predicted the direction of future saccades. 

During saccade programming, discrimination performance increased gradually at the two 

potential saccade goals, consistent with a race of both saccade programs towards              

a decision threshold. Our results therefore indicate that saccade decisions take the form 

of a biased competition between potential saccade goals, which can begin by a pre-

selection before the saccade cue.  

What remains unclear is whether both motor programs are really accumulated in 

parallel until the last stage of oculomotor programming or whether the second motor 

program becomes suppressed at some earlier stage. The former strategy would increase 

the flexibility of saccade planning, for example when participants would want to change 

their decision or if they decided to carry out both alternative eye movements in sequence, 

while the latter could speed decisions and prevent errors. While our results seem to show 

that both locations competed until the beginning of the saccade, we cannot definitely rule 

out that one motor program was suppressed at some intermediate stage of oculomotor 

programming, as the suppression may not have affected visual perception any more.  
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In the same way, we cannot rule out that attentional selection close to saccade onset did 

not reflect the saccade decision, but rather some post-decisional processes related to 

decision commitment or to the evaluation of outcomes (Ding & Gold, 2012; Resulaj, 

Kiani, Wolpert, & Shadlen, 2009). These questions will hopefully be addressed by future 

studies.         
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Abstract 

The present study investigated the effects of TMS of the frontal eye fields on the coupling 

between visual attention and saccade programming. We employed a dual task paradigm, 

in which participants made saccades towards a location indicated by a central arrow cue 

(endogenous condition) or a peripheral onset cue (exogenous condition) and 

simultaneously discriminated the orientation of a visual probe shown at the saccade goal 

or at a neutral location 100 or 150 ms after the onset of the saccade cue. In each trial, we 

applied a single TMS pulse to the left FEF, right FEF or to the vertex of the scalp 30 ms 

prior to the onset of the discrimination probe. The results indicate that TMS of the left 

FEF enhanced endogenous attention to the right visual field, independent of saccade 

programming, which in turn reduced the well-known coupling of attention to saccade 

programming in the left visual field. The fact that we observed a right-sided facilitation of 

endogenous attention that was independent of saccade programming and that seemed to 

compete with attention at the saccade goal suggests that endogenous attention and visual 

selection as a part of saccade programming are separable within the frontal eye fields. 
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INTRODUCTION 

The relation between covert visual attention and saccadic eye movements (overt 

attention) has been a matter of longstanding scientific debate. Although there is abundant 

evidence that both processes are closely linked, the precise nature of this coupling 

remains controversial.  

It is known that saccade programming and visual attention are controlled by          

a common network of frontal and parietal cortical areas (e.g., Corbetta et al., 1998; Nobre, 

Gitelman, Dias, & Mesulam, 2000; Perry & Zeki, 2000; de Haan, Morgan & Rorden, 

2008, Wardak, Olivier, & Duhamel, 2011). One of the central nodes of this network are 

the frontal eye fields (FEF), a structure in the left and right frontal lobes, where eye 

movement-related activity can be recorded in single units and electrical stimulation often 

elicits short latency saccades to the contralateral hemifield. In primates, the FEF is located 

in the rostral bank of the arcuate sulcus and its area has been defined rather functionally 

than anatomically, as the cortical area from which saccades can be elicited with currents of 

less than 50 μA (Bruce & Goldberg, 1985). In humans, it is located in the rostral bank of 

the precentral sulcus, laterally to its intersection with the superior frontal sulcus (Amiez & 

Petrides, 2009; Neggers et al., 2012). The FEF is a suitable location for investigating the 

link between saccades and visual attention, as it is known to play a crucial role in the 

visual selection of goals for eye movements but also in the control of covert attentional 

shifts in the absence of eye movements (for reviews, see Schall, 2015; Vernet, Quentin, 

Chanes, Mitsumasu, & Valero-Cabré, 2014).   

Behavioral studies in humans have demonstrated that during saccade planning 

attentional resources are automatically coupled to the saccade goal, which is reflected in 

enhanced visual perception at the saccade goal and poor visual perception at other spatial 

locations (e.g., Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995; Jonikaitis & 

Deubel, 2011; Klapetek, Jonikaitis & Deubel, 2016; Kowler, Anderson, Dosher, & Blaser, 

1995; Rolfs, Jonikaitis, Deubel, & Cavanagh, 2011; Jonikaitis & Theeuwes, 2013).            

A recent EEG study has shown that this saccade-related benefit may be achieved through 

a top-down modulation of visual activity in occipital areas by FEF activity (Gutteling, Van 

Ettinger-Veenstra, Kenemans, & Neggers, 2010).    

A number of studies investigated saccade programming and/or visual attention in 

the human FEF with the help of transcranial magnetic stimulation (TMS), a method that 

can non-invasively influence cortical activity and thus allows to draw causal inferences 

about the function of specific brain areas. During TMS, very brief magnetic pulses are 

sent out through a coil held directly over a person’s scalp, inducing an electric field in the 

underlying brain tissue, which eventually alters the transmembrane potentials of axons. 
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TMS can be applied in a single-pulse mode or as a series of pulses at rates between 1 and 

50 Hz (repetitive TMS, or rTMS). When compared to rTMS, single-pulse TMS produces 

smaller outcomes, which is simply given by the fact that when several pulses are presented 

in close temporal succession; their effects add up in a non-linear fashion (Moliadze, 

Giannikopoulos, Eysel, & Funke, 2005). Due to the short duration of their consequences 

(in the order of milliseconds), single pulses or short pulse trains are always applied in an 

“on-line approach”, i.e., at previously defined time points during an experimental trial. 

The opportunity to affect neural activity with such a high temporal resolution makes TMS 

a very valuable tool for the study of the temporal dynamics of attentional and oculomotor 

processes. 

Several investigators took advantage of the fact that TMS can create “virtual 

lesions” (Pascual-Leone, Bartres-Faz, & Keenan, 1999) and used it to transiently disrupt 

functioning in the targeted brain areas. TMS over the FEF was found to reduce spatial 

priming of pop-out (O‘Shea, Muggleton, Cowey, & Walsh, 2007) and to impair visual 

search performance (Muggleton, Juan, Cowey, & Walsh, 2003; O’Shea, Muggleton, 

Cowey, & Walsh, 2004).  

The results of another line of research, which studied the effects of TMS on 

oculomotor behavior, provided consistent evidence that FEF-TMS has inhibitory effects 

on saccadic performance. When delivered before the execution of a saccade, single TMS 

pulses over the FEF were shown to increase latencies of both prosaccades (Ro, Henik, 

Machado, & Rafal, 1997; Thickbroom, Stell, & Mastaglia, 1996), and of antisaccades 

(Müri, Hess, & Meienberg, 1991; Olk, Chang, Kingstone, & Ro, 2006; Terao et al., 1998).  

Using exactly the same dual task paradigm as Deubel and Schneider (1996), but 

with a train of three TMS pulses over the FEF shortly before the presentation of the 

discrimination target, Neggers et al. (2007) demonstrated that the coupling between visual 

selection and saccade preparation is weakened by TMS contralateral to the saccade and 

discrimination goals. Van Ettinger-Veenstra et al. (2009), however, replicated their 

experiment with a single TMS pulse delivered at three possible times during the 

presentation of the discrimination target and found that early stimulation led to enhanced 

selection of contralateral saccade targets. A number of other studies also provided 

evidence that FEF-TMS can boost visual perception in the contralateral hemifield (Bosch, 

Neggers, & Van der Stigchel, 2012; Chanes, Chica, Quentin & Valero-Cabré, 2012; 

Grosbras & Paus, 2003) and that this enhancement might be achieved through top-down 

modulations of different visual cortical areas (Ruff at al., 2006, Silvanto, Lavie, & Walsh, 

2006; Taylor, Nobre, & Rushworth, 2007).   
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The results of previous research indicate that TMS of the FEF can either enhance or 

disrupt visual processing, possibly depending on timing and intensity of the stimulation, 

coil type and orientation, and the activation state of the targeted cortical area (Nyffeler et 

al., 2004; Siebner, Hartwigsen, Kassuba, & Rothwell, 2009). Another critical factor could 

be stimulation frequency: while the majority of studies that found performance-reducing 

effects administered trains of several pulses, studies that found attention-boosting effects 

mostly used only a single pulse per trial. This could also explain why Neggers et al. (2007) 

and Van Ettinger-Veenstra et al. (2009) observed opposing effects in the same behavioral 

task.  

The goal of the present study was to replicate the results of Van Ettinger-Veenstra 

et al.(2009), using a similar dual-task paradigm. Additionally, we aimed to compare the 

effects of TMS on exogenously and endogenously cued pre-saccadic attention shifts and 

to measure the time course of those shifts. The original version of Deubel and 

Schneider’s (1996) dual-task, which was also used by Neggers et al. (2007) and Van 

Ettinger-Veenstra et al. (2009), contained a 500-1000 ms interval between the cue that 

defined the saccade goal and the go-signal for the saccade, which ensured that the saccade 

could be fully prepared by the time of the go signal. In our paradigm, saccades were cued 

by the onset of a central arrow (endogenous cue) or by a peripheral color change 

(exogenous cue), without a separate go-signal. The preparation of the saccade thus 

happened in the same interval where we measured attention allocation by probing 

perceptual performance and where we applied the single TMS pulse. In order to be able 

to sample discrimination performance at different times during saccade preparation, we 

used a Gabor patch as a discrimination probe that could be shown for a much shorter 

time than the perceptually more complex stimuli used in the previous studies. The reason 

why we chose to compare the effects of endogenous and exogenous cues is that it has 

been suggested that the FEF are less active during the programming of exogenously 

triggered saccades compared to endogenous saccades (Mort et al., 2003) and may be less 

needed for their generation (Dias & Segraves, 1999; Guitton, Buchtel, & Douglas, 1985; 

Henik, Rafal, & Rhodes, 1994; Rivaud, Müri, Gaymard, Vermersch, & Pierrot-Deseilligny, 

1994; Sommer & Tehovnik, 1997). We thus expected to find smaller effects of TMS in 

trials with exogenous cues.  

The goal of our purely behavioral Experiment 1 was to measure probe discri- 

mination performance during the whole saccade programming process in order to obtain 

a performance baseline before employing TMS. Moreover, we wanted to make sure that 

all participants could perform the dual task satisfactorily, meaning that they would 

perform fast and accurate saccades and discriminate probes at the cued location above 

chance level.  
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Experiment 2 aimed to test the effects of single pulse TMS of the left and right FEF and 

of the vertex (as a control) on visual attention and on saccade programming. We 

measured discrimination performance and delivered TMS at two possible SOAs, 

assuming that TMS at the first SOA could have stronger effects in trials with exogenous 

saccade cues, while TMS at the second SOA could affect performance more in trials with 

endogenous cues. The rationale behind this assumption was that exogenous cues typically 

elicit faster attention shifts (Müller & Rabbit, 1989; Nakayama & Mackeben, 1989) and 

saccades with shorter latencies (Forbes & Klein, 1996; Henik et al., 1994; Mort et al., 

2003; Rafal, Egly, & Rhodes, 1994; Walker, Walker, Husain, & Kennard, 2000) compared 

to endogenous cues. We wanted to stimulate the FEF shortly before the onset of the 

discrimination probe, as this would ensure that potentially modulated top-down signals 

from the FEF would reach the visual cortex simultaneously with probe-related signals 

from the retina. According to Neggers et al. (2007) the optimal moment to stimulate is 

around 30 ms before the onset of the target, which is the difference between the neural 

transmission time from FEF to visual cortex – estimated to be around 100 ms based on 

animal models (Super et al., 2004; Thompson et al., 2005) – and the transmission time 

from retina to cortex (66 ms, Leonard et al., 2011). Van Ettinger-Veenstra (2009) com- 

pared three different TMS times and found the largest effects 20 ms before the onset of 

the discrimination target. In agreement with these two studies, we decided to deliver the 

TMS pulse 30 ms before the onset of the discrimination probe. 

METHODS 

Participants 

Sixteen volunteers participated in the study after giving informed written consent. Two 

participants were excluded due to poor quality of the eye-tracking data and bad task 

performance (i.e. 40% of the saccades were not directed to the target). The data of the 

other 14 participants (age: 20-33 years, M = 26 years, 5 females) were included in the 

analysis. All participants had normal or corrected-to-normal vision, no history of mental 

or neurological illness and were naïve to the purposes of the study (except for one of the 

authors). They were screened for metal implants and general MRI compliance (UMC 

Utrecht internal guidelines), as well as for TMS compliance (Keel, Smith, & Wassermann, 

2001). The experiments were approved by the Medical Ethical Committee of the 

University Medical Center Utrecht and the TMS protocol remained within the inter- 

nationally accepted safety limits (Wassermann, 1998). 
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Apparatus 

The participants were seated in a quiet and dimly illuminated room in front of a 24-in 

LCD monitor (BenQ-XL2420T, spatial resolution: 1024 x 768 pixels, 100 Hz refresh 

rate), positioned at a viewing distance of 75 cm. Right-eye gaze position was recorded 

with an EyeLink 1000 desktop mounted eye tracker (SR Research, Canada) at a sampling 

rate of 1000 Hz while the head was supported by a chin and forehead rest and 

additionally restricted from movement by an elastic rubber band. The eye tracker was 

calibrated before each new block and whenever it was necessary. Trials in which no 

target-directed eye movement could be recorded were automatically repeated. Stimulus 

presentation and response collection were controlled by a Pentium PC using MATLAB 

software (MathWorks, Natick, MA) and the Psychophysics and Eyelink toolboxes 

(Brainard, 1997; Cornelissen, Peters, & Palmer, 2002; Kleiner, Brainard, & Pelli, 2007; 

Pelli, 1997; see http://psychtoolbox.org). Manual responses were collected via an external 

response pad (containing four standard arrow keys) placed at the participant’s right hand.  

TMS pulses were administered by a Magstim Rapid2 stimulator with a figure-of-8 

TMS coil held by a mechanical arm. The coil was triggered by TTL pulses sent out 

through the parallel port of the stimulus PC. The placement of the TMS coil was 

stereotactically guided with the help of the Neural Navigator (by Brain Science Tools BV, 

the Netherlands, also see Neggers, 2004 and www.neuralnavigator.com). For stereotactic 

guidance, T1‐weighted MRI scans were acquired for all participants in a separate session 

on a 3.0T Philips Achieva MRI scanner. Scanning parameters: whole-brain three-

dimensional fast-field echo T1-weighted scan; 200 slices; TR = 10 ms; TE = 4.6 ms; flip 

angle = 8°; field of view, 240 x 240 x 160 mm; voxel size: 0.75 x 0.8 x 0.75 mm. The 

Neural Navigator renders the skin of each participant individually and creates a cortical 

surface through a grey matter map from that same T1-weighted scan. Once the skin and 

the brain map were loaded in the graphical user interface, the positions of eight 

anatomical landmarks on the head of the participant (tip and bridge of the nose, the inner 

and outer meeting points of the upper and lower eye lids, and the upper adherence of the 

left and right ear; see Figure 1A) were measured with a 3-D digitizer and mapped to 

corresponding locations on the image of the skin rendering on the computer screen. In 

the next step, the FEFs and the vertex were located on the cortical surface map and 

labeled with target markets (see Figure 1B). Each FEF was labeled with two markers: one 

at the medial and one at the later side of the superior frontal sulcus, where it connects to 

the precentral sulcus (the likely location of human FEF according to Amiez & Petrides, 

2009 and Neggers et al., 2012). The center of the coil was placed over the medial marker 

and the coil handle was aligned with the lateral marker.  
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This ensures that TMS pulses generate currents perpendicularly to the sulcal walls of the 

superior frontal sulcus, optimizing induced neuronal activation (Kammer, Vorwerg, & 

Herrnberger, 2007). The spatial locations of the targets were then marked on a swim cap 

the participants were wearing. The position of the coil was checked after every block and 

was corrected, if necessary. In order to reduce the TMS-related noise disturbance, we 

asked participants to wear earplugs. 

   

Figure 1. (A) Facial landmarks used to calibrate the Neural Navigator. (B) Individually determined 
markers for the FEFs and the vertex site. 

Procedure 

Each trial started with the presentation of a central black fixation dot (diameter: 0.5 

degrees of visual angle) and four green frames (edge length: 2°) on a gray background (see 

Figure 2). The frames were positioned on the outline of an imaginary circle (radius: 7°) 

around the fixation dot at angular positions of 45°, 135°, 225° and 315°. Each square 

contained a flickering stream of vertically oriented Gabor patches (spatial frequency: 2.5 

cpd, 100% contrast, random phase) and noise masks (pixel gray values randomly drawn 

from a Gaussian distribution with M = 128 (RGB), SD = 128 and cut-offs at 0-black and 

255-white), alternating every 3 frames (30 ms).  

After a random fixation period of 700 to 1300 ms, the fixation dot was either 

replaced by an arrow (central cue) or one of the object frames changed from green to       

a more luminant blue (exogenous cue), indicating that a saccade was to be made to the 

cued square as quickly as possible. The probe, consisting of a 30-ms leftward or rightward 

tilt of the Gabor patch, was shown in one of the four objects (selected randomly with 

equal probability) following a variable SOA relative to saccade cue onset.  

A B 
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In Experiment 1, where we wanted to measure the time course of covert attention 

deployment without applying TMS, the SOA was randomly drawn from 36 time points 

between -100 and 250 ms. In Experiment 2, where the focus was mainly on TMS effects, 

the SOA only varied between 100 and 150 ms. The orientation of the tilted Gabor pattern 

(left or right) was also selected randomly and the tilt angle was chosen for each observer 

individually in a threshold procedure at the beginning of each experimental session (see 

Pretests). In Experiment 2, the probe was preceded (by 30 ms) by a TMS pulse to the left 

or right frontal eye field or to the vertex. Immediately after probe presentation, the probe- 

and distractor streams in all four squares were replaced by identical masking streams 

(noise masks alternating with blank sequences) and the display turned black 700 ms after 

the onset of the saccade cue. Participants responded to the perceived probe orientation by 

pressing the left arrow key for a leftward tilt or the right arrow key for a rightward tilt. 

They were instructed to focus on making fast and accurate saccades and to simply guess 

the orientation of the probe whenever they could not discriminate it well. A new trial 

started automatically 200 ms after the response. 

 

Figure 2. (A) Schematic representation of the stimulus sequence and the probe and distractor streams (to 
the right). (B) Sequence of events with the two possible probe and TMS timings.  
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Participants first completed Experiment 1 in a single session (400 trials divided into eight 

blocks of 50 trials) and then proceeded with Experiment 2 (comprising three sessions, 

each consisting of 400 trials, divided as in Experiment 1). In each of these three sessions, 

TMS was applied to a different scalp location (left FEF, right FEF, vertex), the order of 

TMS conditions being carefully counterbalanced over participants. In both experiments, 

the saccade cue type (endogenous or exogenous) was alternated blockwise in a rando-

mized order.  

Before the experiment, the motor threshold (MT) of the right hemisphere was 

determined for each participant as the minimal output intensity of the TMS device at 

which 5 of 10 TMS pulses over the cortical motor area for the thumb evoked a visible 

twitch in the contralateral thumb. The TMS output intensity during the experiment was 

then set to 110% of the right hemisphere motor threshold. 

Pretests 

The pretests consisted of 60 trials, divided into two blocks of 30 trials with identical visual 

stimuli as in the main experiment, except that the probe was always presented at the cued 

location 150 ms after cue onset. Endogenous and exogenous cues were presented in 

separate blocks. Participants were instructed to covertly attend to the cued square while 

maintaining central fixation and to discriminate the orientation of the probe at the end of 

the trial. A modified version of the QUEST procedure (King-Smith et al., 1994; Watson 

& Pelli, 1983) was used to determine the tilt angles at which observers reached 82% 

correct probe discrimination in the endogenous and exogenous cueing conditions. Tilt 

angles ranged between 5 and 20 degrees in the endogenous (M = 10.6, SD = 5.4) and 

between 3 and 18 degrees in the exogenous condition (M = 7.8, SD = 3.6). The pretests 

were also used to train participants on the behavioral task in a separate practice session   

(a threshold of 20° or less had to be reached before the experiment). 

Data analyses 

We analyzed all behavioral and eye movement data using Matlab software (MathWorks, 

USA) and the Psychophysics and Eyelink toolboxes (Brainard, 1997; Cornelissen et al., 

2002; Kleiner et al., 2007; Pelli, 1997; see http://psychtoolbox.org). Eye movements were 

evaluated offline using Eyelink’s in-built saccade detection algorithm. Trials with primary 

saccade latencies (time from cue onset to saccade onset) below 80 ms or above 500 ms 

and those where the saccade started more than 2° away from the fixation point or did not 
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land within a 3° window around the target center were removed from analysis. In total, 

we excluded 4% of all trials of Experiment 1 and  11% of all trials of Experiment 2 due to 

blinks, missing data or inadequate saccade responses.  

In order to optimally test for our hypothesized lateralized effects, we chose to 

exclude the uncued location ipsilateral to the saccade goal whenever we analyzed cueing 

effects (i.e., whenever we compared attention at or saccades towards the cued location 

and uncued locations). The “uncued” condition hence consisted of the average of the two 

locations contralateral to the saccade goal.   

Statistical analyses contained repeated-measures analyses of variance (ANOVA) 

and post-hoc comparisons by t-tests with a Bonferroni correction. The Greenhouse-

Geisser correction was employed whenever the assumption of sphericity was not met. 

RESULTS 

Experiment 1 

Saccade latency and amplitude 

Individual latency and amplitude means were subjected to repeated measures ANOVAs 

with the factors SACCADE DIRECTION (leftward, rightward), SOA (-100-0, 0-100, 

100-200), CUE TYPE (endogenous, exogenous), and PROBE LOCATION (cued, 

uncued). 

 The analysis of saccade latencies revealed a significant main effect of CUE TYPE 

[F(1,11) = 16.83, p = .002], as saccade latencies (Mean ± SE) were longer in the 

endogenous cueing condition (247 ± 9 ms) than in the exogenous cueing condition (235 

± 10 ms), and a main effect of SOA [F(2,22) = 3.76, p = .039]. Saccade latencies tended 

to be a little slower when the probe was shown between 100 and 200 ms after the saccade 

cue (244 ± 9 ms), than when it was shown before the saccade cue (242 ± 10 ms), or 

within 100 ms after the cue (241 ± 10 ms), but none of the differences reached 

significance.  

Finally, the analysis showed a significant interaction between CUE TYPE and 

PROBE LOCATION [F(1,11) = 12.47, p = .005], resulting from the fact that in the 

endogenous cueing condition saccades to the cued location (256 ± 9 ms) were slower 

than saccades to contralateral uncued locations (235 ± 10 ms), while in the exogenous 

condition saccades to the cued location (229 ± 12 ms) were faster compared to saccades 

to uncued locations (250 ± 8 ms). 
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The analysis of the amplitude did not reveal any significant main effects nor interactions. 

Saccades tended to slightly undershoot the distance to the target center, (mean gain = 

0.97) but their amplitude was not modulated by any experimental variables. 

Discrimination performance 

As the probe was presented at various SOAs relative to the onset of the saccade cue, we 

could determine the time courses of the covert attention shifts to the probed locations. 

For this purpose, we sorted all SOAs into bins of 100 ms and calculated the proportion of 

correct probe discriminations at the cued location (future saccade goal) and at 

contralateral uncued locations.  

An ANOVA of the data with the factors CUE TYPE (endogenous, exogenous), 

PROBE LOCATION (cued, uncued) and SOA (-100-0, 0-100, 100-200) revealed 

significant main effects of PROBE LOCATION [F(1,13) = 38.21, p < .001] and SOA 

[F(2,26) = 4.99, p = .015], as well as a significant interaction between the two factors 

[F(2,26) = 4.56, p < .002]. Probe discrimination (M ± SE) was better at cued locations (67 

± 2) than at uncued locations (54 ± 1), but it only grew over time at the cued location, 

where discrimination 100-200 ms after the cue was significantly better than in the earlier 

two time bins. Additionally, there was an interaction between CUE TYPE and PROBE 

LOCATION [F(1,13) = 6.61, p < .023], reflecting the larger cueing effect with exogenous 

compared to endogenous cues. 

While probe discrimination at uncued locations remained close to chance 

throughout the whole trial, performance at the saccade goal began to increase from the 

moment of cue appearance, peaking shortly before the onset of the saccade (see Figure 

3A): In the endogenous cueing condition, cueing effects only emerged between 100 and 

200 ms after cue onset, where there was a significant difference between cued and uncued 

locations [t(13) = 2.84, p = .014]. This was later than with exogenous cues, where cueing 

effects were present both between 0 and 100 ms [t(13) = 4.16, p = .001] and between 100 

and 200 ms after cue onset [t(13) = 6.46, p < .001]. This is consistent with previous 

reports of faster attention shifts following exogenous as compared to endogenous cues 

(Müller & Rabbit, 1989; Nakayama & Mackeben, 1989).  

The small cueing effects before the onset of the saccade cue most likely reflect 

retro-active attention (see Sergent et al., 2013; Thibault, Cavanagh, & Sergent, 2015), but 

they were not statistically significant. Figure 3B summarizes the influences of cueing 

condition and SOA on the cueing effect. 



89 
 

 
 

 

Figure 3. (A) Probe discrimination performance in Experiment 1 at various time intervals relative to 
saccade cue onset. Correct discrimination (in %) is plotted as a function of probe location (cued location 
or contralateral visual field) and cue type (endogenous or exogenous). Error bars represent standard errors 
of the mean. The dashed line denotes the chance performance level. (B) Cueing benefit as a function of 
SOA interval, saccade latency (fast, slow) and cue type (endogenous, exogenous). Error bars represent 
standard errors of the mean. 

Experiment 2 

Saccade latency and amplitude 

Individual latency and amplitude means were subjected to repeated measures ANOVAs 

with the factors SACCADE DIRECTION (leftward, rightward), TMS (FEF-L, FEF-R, 

vertex), SOA (100,150), CUE TYPE (endogenous, exogenous), and PROBE 

LOCATION (cued, uncued). 

Saccade latencies (M ± SE) in the endogenous cueing condition (249 ± 7 ms) were 

substantially longer than in the exogenous cueing condition (217 ± 7 ms), [CUE TYPE: 

F(1,9) = 28.64, p < .001]. This was an expected finding, consistent with the results of 

Experiment 1 and with previous studies (e.g., Forbes & Klein, 1996; Henik et al., 1994; 

Mort et al., 2003; Rafal et al., 1994; Walker et al., 2000).  
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Moreover, there was a significant effect of SOA [F(1,9) = 72.43, p < .001] and an 

interaction of SOA and CUE TYPE [F(1,9) = 12.56, p = .006], resulting from the fact 

that latencies in the exogenous condition were substantially shorter when the probe 

appeared 100 ms after saccade cue onset (208 ± 7 ms) than when it appeared 150 ms after 

cue onset (226 ± 8 ms), while there was no significant difference between the two SOAs 

in the endogenous condition (247 ± 7 ms vs. 251 ± 7 ms). It thus seems that reflexive but 

not voluntary saccade programming was to some degree contingent on probe appearance.  

 Importantly, saccade latency was not influenced by TMS [F(2,18) = 0.09, p = .91] 

and there were no meaningful interactions between TMS site and any of the other factors. 

Latencies for the different stimulation sites, cue types and SOAs are summarized in 

Table 1.   

The ANOVA of the amplitude data revealed no significant main effects nor 

interactions. As in Experiment 1, the mean amplitude of saccades (6.72 ± 0.8 deg) was 

slightly shorter than the target distance (mean gain = 0.96), but it was not influenced by 

any experimental factors. 

Table 1. Saccade latencies (means and standard deviations in milliseconds)  

 Left FEF Right FEF Vertex 

 Endogenous Exogenous Endogenous Exogenous Endogenous Exogenous

SOA 

100 249 (64) 211 (59) 243 (53) 210 (56) 246 (49) 208 (54) 

SOA 

150 254 (66) 228 (60) 249 (54) 228 (61) 249 (55) 226 (58) 

 

Discrimination performance 

We calculated the mean correct discrimination performance for each subject and 

experimental condition and subjected the data to a repeated measures ANOVA with the 

factors SACCADE DIRECTION (leftward, rightward), TMS (FEF-L, FEF-R, vertex), 

SOA (100, 150), CUE TYPE (endogenous, exogenous), and PROBE LOCATION (cued, 

uncued). To ensure that the discrimination probe could not have been viewed foveally, we 

excluded all trials where the eye moved away from fixation before the onset of the probe.  
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The analysis revealed that discrimination performance (M ± SE) was significantly better at 

the saccade goal (77 ± 4 % ) than at uncued locations (55 ± 3 %), [PROBE LOCATION: 

F(1,7) = 152.90, p < .001]. Moreover, performance at the saccade goal was better when 

the saccade was cued exogenously (82 ± 5 %) than with endogenous cues (75 ± 8 %), 

[CUE TYPE x PROBE LOCATION: F(1,7) = 12.84, p =.009]. TMS had no significant 

effects [F(2,14) = 0.14, p =.87].  

Since there also was a three-way interaction between SACCADE DIRECTION, 

SOA and CUE TYPE [F(1,7) = 8.53, p =.022], we decided to run a separate ANOVA 

with the factors TMS, CUE TYPE and PROBE LOCATION for each of the four 

combinations of SACCADE DIRECTION and SOA. All four analyses revealed 

significant effects of PROBE LOCATION and CUE TYPE (better performance at the 

saccade goal than at uncued locations and with exogenous cues compared to endogenous 

cues), but only the ANOVA that combined saccades to the left visual field and probes 

shown at the first SOA (100 ms) disclosed an effect of TMS (see Figure 4).  

More precisely, there was an interaction between PROBE LOCATION and TMS 

[F(2,14) = 4.05, p = .031], because probe discrimination at the saccade goal was reduced 

with TMS of the left (ipsilateral) FEF (71 ± 11 %) compared to TMS of the right FEF (78 

± 9 %) or vertex (78 ± 10 %). As can be seen in Figure 4A (left panel), this impairment 

was present both in the endogenous and exogenous cueing conditions, so there was no 

significant interaction between all three factors. Discrimination performance at the 

uncued contralateral locations did not vary depending on stimulation site (see  Figure 4B 

– left panel ).  

When we compared discrimination performance at uncued locations before 

saccades to the left and right visual hemifields (left vs. right panel of Figure 4A), it 

became evident that performance was markedly better before leftward saccades, 

particularly in the endogenous cueing condition. To confirm this statistically, we ran an 

ANOVA  (on discrimination performance at the SOA of 100 ms) with the factors 

SACCADE DIRECTION (leftward, rightward), TMS (FEF-L, FEF-R, vertex), CUE 

TYPE (endogenous, exogenous) and PROBE LOCATION (cued, uncued), which 

showed a significant interaction between SACCADE DIRECTION and PROBE 

LOCATION [F(1,10) = 6.32, p = .031], as there was a significant difference in the 

discrimination of uncued probes before leftward and rightward saccades. We also 

performed the same analysis for discrimination performance shortly before saccade onset 

(at the SOA of 150 ms) and found a completely different pattern of results.  
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This time, there were no differences for uncued probes, but a striking asymmetry in the 

opposite direction for cued probes: In the endogenous cueing condition, discrimination at 

the saccade goal was significantly better before rightward saccades than before leftward 

saccades [SACCADE DIRECTION x CUE TYPE x PROBE LOCATION: F(1,7) = 

7.73, p = .027]. In our view, these finding must reflect hemispheric asymmetries in the 

control of endogenous visuospatial attention and we will examine them in more detail in 

the Discussion. 

Figure 4C shows the results of two separate ANOVAs (for leftward saccades and 

for rightward saccades, only at the first SOA) of the cueing effect (the absolute 

discrimination benefit at the saccade goal compared to contralateral control locations) as a 

function of TMS (FEF-L, FEF-R, vertex) and SACCADE DIRECTION (leftward, 

rightward). The ANOVA for leftward saccades revealed a significant main effect of TMS 

[F(2,24) = 4.05, p = .031]. The cueing effect was significantly smaller for left FEF 

stimulation (12 ± 11 %) compared to vertex (22 ± 11 %), while right FEF stimulation (18 

± 13 %) did not differ from left FEF or vertex stimulation. For rightward saccades, the 

main effect of TMS was not significant [F(2,20) = 1.02, p = .378], as cueing effects for left 

FEF (29 ± 12 %), right FEF (26 ± 13%) and vertex (31 ± 13 %) did not differ 

substantially. Overall, the cueing effect (especially at the 100 ms SOA) was much higher 

with exogenous cues (29 ± 12 % for leftward saccades at SOA 100) than with 

endogenous cues (4 ± 10 % for leftward saccades at SOA 100), [CUE TYPE: F(1,12) = 

49.17, p < .001]. The differences between the endogenous and exogenous conditions are 

visible in Figure 4A.  
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Figure 4. Probe discrimination performance and cueing effect (100 ms after saccade cue onset) as            
a function of TMS site for saccades to the left and right visual field (left and right panels respectively). 
Error bars represent the standard error of the mean. (A) Discrimination performance as a function of cue 
type (endogenous, exogenous) and probe location (cued, uncued). (B) Discrimination performance (both 
cue types combined) as a function of probe location (cued, uncued). (C) Absolute cueing effect (difference 
between cued and uncued locations) for both cue types combined. 
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A possible reason for the reduction of the cueing effect in the left hemifield after 

ipsilateral stimulation is that TMS of the left FEF may have biased attention towards the 

right visual hemifield, independent of the saccade cues. Such a bias would lead to better 

discrimination of probes at both cued and uncued locations and less attention in the 

ipsilateral visual hemifield. To test this hypothesis, we ran another ANOVA with the 

factors SACCADE DIRECTION (leftward, rightward), TMS (left FEF, right FEF, 

vertex), SOA (100, 150), CUE TYPE (endogenous, exogenous), and PROBE SIDE (left, 

right), focusing on potential interactions between TMS and other factors (see Figure 5).  

The analysis revealed a significant interaction between TMS and PROBE SIDE 

[F(1.38,16.25) = 5.09, p = .029], reflecting the fact that TMS of the left FEF led to 

significantly better discrimination of contralateral probes (63 ± 6 %) compared to 

ipsilateral probes (57 ± 3 %), while there was no such difference with TMS of the right 

FEF or vertex (see Figure 5A). It thus seems that TMS of the left FEF indeed biased 

visual processing towards the right side of space, which facilitated discrimination of right-

sided probes and impaired discrimination of left-sided (ipsilateral) probes.     

 

Figure 5. (A) Probe discrimination performance in the left and right visual hemifields as a function of 
TMS site. (B) Probe discrimination performance in the endogenous and exogenous cueing conditions as a 
function of TMS site 

TMS also interacted with CUE TYPE [F(2,24) = 6.24, p = .007], as right FEF stimulation 

increased discrimination performance (bilaterally) in the endogenous cueing condition, 

while there was no such increase (or rather a decrease) in exogenously cued trials (see 

Figure 5B). This finding is difficult to interpret, as the effect is based on a mixture of 

cued and non-cued probes, which could not be distinguished.  
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We therefore checked the results of our first ANOVA (with all experimental factors), and 

found exactly the same pattern of results, both for cued and for uncued probes. However, 

since the differences between TMS of the right FEF and the other two sites did not reach 

significance in any of the analyses, we cannot rule out that the performance increase after 

right FEF stimulation was only due to random variation. 

DISCUSSION 

In the present study, TMS delivered to the left FEF between an endogenous or 

exogenous saccade cue and a visual target facilitated discrimination performance in the 

right visual field and reduced discrimination performance at saccade goals in the left 

visual field. TMS of the right FEF led to a tendency for better discrimination 

performance in both visual hemifields in the endogenous cueing condition that was 

independent of saccade programming, but the difference to the other two stimulation 

sites did not reach statistical significance.  

The main goal of this study was to investigate how TMS of the frontal eye fields 

influences the coupling between visual attention and saccade programming. We used       

a dual-task setting, in which participants prepared saccades to an endogenously or 

exogenously cued location and simultaneously discriminated a visual probe that could be 

presented at the saccade goal or at one of three other possible locations. We replicated the 

well-established finding that attention during saccade preparation is coupled to the 

saccade goal (Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995; Jonikaitis & 

Deubel, 2011; Klapetek et al., 2016; Kowler et al., 1995; Neggers et al., 2007; Rolfs et al., 

2011; Jonikaitis & Theeuwes, 2013; Van Ettinger-Veenstra et al., 2009), and found this 

coupling to emerge earlier and to be stronger for exogenously cued saccades. Additionally, 

we found that TMS of the left FEF biased attention towards the contralateral visual 

hemifield, enhancing visual perception in the right hemifield and reducing the coupling of 

attention to the saccade goal in the left hemifield.   

Two previous studies (Neggers et al., 2007; Van Ettinger-Veenstra et al., 2009) 

examined the same question using a behavioral task originally employed by Deubel and 

Schneider (1996). Both reported contralateral effects of FEF-TMS on attentional 

performance, but Neggers observed that FEF-TMS compromised saccade-related 

attention, while Van Ettinger-Veenstra found that it enhanced attention at the saccade 

goal.  
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The contradictory results are most likely a consequence of the different TMS protocols 

(the first study used trains of three pulses while the second used single pulses), and if we 

disregard them, the common conclusion of both studies is that both the left and the right 

FEF play a crucial role in the control of attention in the contralateral visual hemifield.  

The results of the present study are difficult to reconcile with these previous 

findings. Although we also found that TMS of the left FEF biased visual attention 

towards the right hemifield, this effect was not coupled to saccade programming, as in the 

above mentioned studies. In contrary, there was a reduction of the saccade-related benefit 

for leftwards saccades. For the interpretation of these differences it is crucial to realize 

that the paradigm used in the preceding studies (Deubel & Schneider, 1996) and our dual 

task differ in a very important aspect: In the former, discrimination probes always 

appeared in the same visual hemifield as the saccade target and this hemifield was cued 

with 100% validity, which means that participants could simply ignore the other side of 

the display. In the present study, the cue was not predictive of the laterality of the 

discrimination probe (25% validity), so the optimal strategy participants could adopt was 

to split endogenous attention over both sides of the visual display, prioritizing the cued 

location just enough to maintain good oculomotor performance. The finding that saccade 

execution was contingent on probe appearance supports this view, as it shows that 

participants tended to prioritize the discrimination task over the saccade task. As              

a consequence, there was always some endogenous attention directed to uncued locations, 

which could also be enhanced by TMS. The enhancement of contralateral probe 

discrimination after left FEF stimulation could thus have been mediated by top-down 

attentional control, even though it was not coupled to the saccade goal. Consequently, the 

bias towards the contralateral visual field may have caused the ipsilateral impairment of 

probe discrimination through some kind of interhemispheric inhibition. Our results may 

therefore indirectly support the same conclusion as Neggers et al. (2007) and Van 

Ettinger-Veenstra et al. (2009) that the left FEF exerts top-down control over contra- 

lateral visual space.  

In contrast to Van Ettinger-Veenstra et al. (2009), we did not find evidence for     

a contralateral attentional benefit following TMS of the right FEF, but we found               

a tendency towards a bilateral enhancement of attention that was also independent of 

saccade programming. This enhancement was specific for the endogenous cueing 

condition, most likely because attention in the exogenous cueing condition was so quickly 

and automatically summoned by the sudden onset cues that there was no room left for 

any modulation. (which also explains why the cueing effect was generally larger with 

exogenous cues). Alternatively, the FEF may be less active during the programming of 

exogenously cued saccades.  
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Although the tendency in our data cannot be taken as a reliable effect, it is consistent with 

previous reports that single pulse TMS of the right FEF leads to a bilateral enhancement 

of endogenous spatial attention (e.g., Chanes et al., 2012; Grosbras & Paus, 2002, 2003). 

We therefore believe that further studies on a larger data set could come to this same 

conclusion, reaching statistical significance.   

Besides this asymmetrical pattern of TMS effects, the present study revealed 

significant attentional asymmetries that were independent of TMS. At the earlier SOA, 

participants were better at discriminating uncued probes when they were planning            

a saccade to the left, while at the later SOA they were better at discriminating probes at 

the saccade goal when planning a saccade to the right. We think that these effects may be 

a consequence of the relative dominance of the right cerebral hemisphere in the control 

of spatial attention.  

It has been proposed that the right hemisphere mediates attention shifts to both 

visual hemifields, while the left hemisphere only mediates attention shifts to the right 

hemifield (Heilman & Abell, 1980;  Heilman & Valenstein, 1979, Mesulam, 1981). Based 

on a careful review of empirical evidence for and against this “hemispatial theory”, 

Duecker and Sack (2015) proposed that the right hemisphere dominance applies to 

frontal but not to the posterior parts of the brain’s attention network (also see 

Szczepanski, Konen, & Kastner, 2010). A substantial part of the evidence comes from 

TMS studies that found a right hemisphere dominance at the level of the FEF, with 

bilateral effects on covert or overt attention after TMS of the right FEF and only 

unilateral effects (affecting contralateral visual space) after TMS of the left FEF (Cazzoli 

et al., 2015; Chanes et al., 2012; Duecker, Formisano, & Sack, 2013; Hung, Driver, & 

Walsh, 2011; Grosbras & Paus, 2002, 2003; Ruff et al., 2009; Silvanto et al., 2006; Walker, 

Techawachirakul, & Haggard, 2009).  

The experimental design in the present study, where the saccade cue did not 

predict  the location of the discrimination probe, encouraged participants to distribute 

attention over both visual hemifields. However, during saccade planning attentional 

resources become increasingly engaged at the saccade goal (Castet, Jeanjean, Montagnini, 

Laugier, & Masson, 2006; Deubel, 2008; Doré-Mazars, Pouget, & Beauvillain, 2004; 

Jonikaitis & Deubel, 2011; Montagnini & Castet, 2007) and can only be allocated 

elsewhere at the very beginning of the saccade programming process (Doré-Mazars et al., 

2004; Montagnini & Castet, 2007). This may explain why the pattern of asymmetries was 

different at the early and later SOAs. It seems that 100 ms after the cue participants could 

still split attention over both hemifields and they were better at it before leftward than 

before rightward saccades.  



98 
 

 

The reason may have been that the programming of leftward saccades predominantly 

recruited the right FEF, which modulates visual performance in both visual hemifields, 

while rightward saccades predominantly recruited the left FEF, which only modulates 

visual performance in the right hemifield. At 150 ms, when nearly all attentional resources 

were engaged by saccade programming, the coupling of attention to the saccade goal was 

stronger before rightward saccades, which could be due to the previously weaker 

competition by contralateral attention. This difference was absent in the exogenous 

cueing condition, probably because exogenous cues quickly summoned most attentional 

resources, leaving less room for competition.         

The effects of TMS that we observed are also consistent with the suggested 

asymmetry in attention control by the FEFs and with many previous TMS studies 

(Cazzoli et al., 2015; Chanes et al., 2012; Duecker et al., 2013; Hung et al., 2011; Grosbras 

& Paus, 2002, 2003; Ruff et al., 2009; Silvanto et al., 2006; Walker et al., 2009), as TMS of 

the left FEF only facilitated contralateral probe discrimination, whereas probe 

discrimination after right FEF did not differ on both sides and was slightly better than 

with left or vertex stimulation.  

So why do some authors find bilateral effects after TMS of the right FEF, while 

others (e.g. Bosch et al., 2012; Neggers et al., 2007; Van Ettinger-Veenstra et al., 2009) 

only find contralateral effects? We believe that the controversy can be explained by 

differences in experimental designs. Even if the right FEF can orient attention bilaterally, 

it will only do so when there is a need for it. When the probed hemifield is fully predicted 

by the saccade cue, as in the task used by Neggers et al. (2007) and Van Ettinger-Veenstra 

et al. (2009), the right FEF only has to orient attention to the left, so it would not be 

logical to find any ipsilateral effects of TMS. The same is true for the oculomotor 

paradigm employed by Bosch et al. (2012), where good performance required the 

allocation of all attentional resources to a single target.  

In contrast to previous studies which found TMS to increase the latency of 

prosaccades (e.g., Ro et al., 1997; Thickbroom et al., 1996) we did not find any effect of 

TMS on the latency of saccades. This is most likely due to the timing of the pulses that 

were delivered 180 or 130 ms before average saccade onset in the endogenous cueing 

condition, which is later than in Ro et al.’s (1997) study and earlier than in the study of 

Thickbroom et al. (1996). A study by Nyffeler et al. (2004) revealed that, depending on 

the time of stimulation and the exact saccade paradigm, TMS of the FEF can either 

facilitate or inhibit saccade execution or not affect it at all. Moreover, neither Neggers et 

al. (2007) nor Van Ettinger-Veenstra et al. (2009), who used a similar paradigm as we did, 

observed any modulation of saccade latencies.  
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In conclusion, the present study revealed that TMS of the left FEF modulates 

endogenous visual attention independently of saccade programming, even in a paradigm 

where endogenous attention is strongly coupled to the saccade goal. Our results thus 

support the notion that attention and saccade programming are separate functions that 

are dissociable at the level of FEF neurons (Juan et al., 2008; Juan, Shorter-Jacobi, & 

Schall, 2004; Sato & Schall, 2003; Wardak et al., 2011). Since the attentional modulation 

was independent of cueing, we could not determine to what extent the FEF is involved in 

the programming of exogenously cued saccades or in the shifts of attention that precede 

them. Future studies will hopefully reveal more about the role of the FEF in exogenous 

attention and uncover the exact mechanisms and pathways by which TMS affects the 

activity of the FEF and of downstream visual areas. 
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3   General Discussion 

The present thesis investigated how visual attention is linked to saccade programming and 

saccadic decision making. I will briefly summarize the results of the three studies and 

discuss how they have helped to clarify the relationship between attention, saccade 

decisions and saccade programming. 

3.1   Summary of findings 

The first study (Chapter 2.1) examined the coupling between oculomotor selection and 

perceptual selection  in an antisaccade paradigm. Previous studies provided evidence that 

antisaccade programming involves a competition between exogenous and endogenous 

influences, but none of them assessed the allocation of spatial attention by measuring 

perceptual performance at the competing locations. Our results have filled this gap by 

showing that attention is allocated in parallel to both the visual cue and the antisaccade 

goal and that pre-saccadic attention at the antisaccade goal is predictive of initial saccade 

direction. Besides this, we replicated previous findings on parallel saccade programming 

of pro- and antisaccades and the relationship between the awareness of prosaccade errors 

and their correction. Our study found no relationship between attention allocation and 

awareness of saccade errors and thus disproves a previous hypothesis by Deubel & 

Mokler (2000) that erroneous, unperceived prosaccades may occur without attentional 

involvement.   

The second study (Chapter 2.2) investigated oculomotor and attentional measures 

in rule-based or free decisions between two memorized saccade goals. The main finding 

was that attentional selection evolved in parallel at the final saccade goal and the 

competing target, with a bias towards the saccade goal both before correct and before 

erroneous rule-based choices. Moreover, we found that decisions emerged from the 

competition of several types of biases and that they tended to form at a very early point in 

time, before task-relevant information was made available. While several 

neurophysiological studies provided evidence for such parallel competitive  processes in 

the monkey brain, our study was the first to show that the competition is also reflected in 

visual perception and that saccade decisions can be predicted from the spatial distribution 

of attention. 

The third study (Chapter 2.3) tested whether interfering with activity of the 

frontal eye fields (FEF), a brain region crucially involved in both visual and oculomotor 

selection, can modulate the coupling between saccades and visual selection.  
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Previous studies have demonstrated that transcranial magnetic stimulation (TMS) of the 

left or right FEF can either weaken (Neggers et al., 2007) or enhance (Van Ettinger-

Veenstra et al., 2009) the obligatory coupling of attention to a future saccade goal in the 

contralateral visual hemifield, depending on the stimulation protocol. These studies used 

the behavioral task introduced by Deubel and Schneider (1996), in which participants 

have to saccade to one of three horizontally aligned locations in the left or right visual 

hemifield and discriminate a target at one of these locations. Our study employed a novel 

dual-task paradigm, in which the saccade cue was not predictive of the probe location and 

saccade programming occurred in parallel to the attentional task. We therefore increased 

the degree of attentional competition between both tasks and introduced an additional 

component of interhemispheric rivalry. The results showed that TMS of the left FEF 

enhanced endogenous attention to the contralateral visual field, independent of saccade 

programming. Contrary to our expectations, the results could not help to discern the role 

of the FEF in the control of exogenous attention, but they still contributed to the 

understanding of the relationship between exogenous and endogenous attention by 

providing evidence that they compete through interhemispheric connections. 

3.2   Parallel saccade programming 

In most situations, average fixation durations between two subsequent saccades lie 

between 180 and 330 ms (Rayner & Castelhano, 2007). Sometimes, however, intervals 

between subsequent saccades are so short that their programming must have overlapped 

in time (e.g., Becker & Jürgens, 1979; Godijn & Theeuwes, 2002; Hodgson, Parris, 

Gregory, & Jarvis, 2009; Irwin et al., 2000; Massen, 2004; McPeek, Skavenski & 

Nakayama, 2000; Mokler & Fischer, 1999; Morrison, 1984; Theeuwes et al., 1998, 1999; 

Walker & McSorley, 2006).  

Amongst other examples, parallel saccade programming occurs when erroneous 

prosaccades in the antisaccade task are followed by corrective antisaccades (Massen, 2004; 

Mokler & Fischer, 1999). The first study of this dissertation (Chapter 2.1) replicated this 

finding and extended it by showing that the parallel saccade programming is associated 

with parallel attention allocation to both saccade goals. Moreover, we observed mutual 

inhibitory interactions between the two parallel saccade programs and thus provided 

behavioral evidence that reflexive and endogenous saccade programs in the antisaccade 

task compete within the same neural structures. 
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The second study (Chapter 2.2) revealed that saccadic decisions between two memorized 

visual targets leads to a parallel increase in attention at both alternative saccade goals, with 

a benefit at the chosen target. This is consistent with previous neurophysiological results 

that visuomotor brain areas simultaneously represent competing goals for saccades (Basso 

& Wurtz, 1998; Kim & Basso, 2008; McPeek & Keller, 2002; Platt & Glimcher, 1997; 

Sugrue et al., 2004) or reaching movements (Baldauf, Cui & Andersen, 2008; Cisek & 

Kalaska, 2005; Gallivan, Barton, Chapman, Wolpert, & Flanagan, 2015; Klaes et al., 2011; 

Scherberger & Andersen, 2007), even in the absence of visual input. Our results 

complement these findings by showing that competitions between motor alternatives 

have direct perceptual consequences and that these consequences can be used to track the 

process of decision making without the need to measure brain activity.  

Taken together, our results on parallel saccade programming suggest that the 

covert decisional processes that lead to the final selection of a saccade goal are inherently 

parallel. Compared to sequential action planning, the parallel preparation of several 

movement plans increases an organism’s capacity to flexibly react to changes in the 

environment and reduces idle time after responses. It therefore seems to be advantageous 

for the brain to have multiple response possibilities available until very late processing 

stages, even at the expense of a higher rate of erroneous actions. 

While the competition between oculomotor plans needs to be resolved by             

a winner-take-all mechanism, the results of the present thesis suggest that attention can 

remain allocated to both oculomotor goals. Consistent with this, a recent study showed 

that the spatial averaging that occurs when saccades are planned towards one of two close 

peripheral locations – known as the global effect (Coren & Hoenig, 1972; Findlay, 1982) – 

does not apply to attention, which rather remains allocated to both potential saccade goals 

(Van der Stigchel & de Vries, 2015). 

3.3   Attention, decision making and saccade programming 

While there is no doubt that spatial attention and saccade programming are intimately 

related, the exact nature of their link and its neural underpinnings still remain to be 

determined. A major problem is that attention is a vague theoretical concept that has 

substantially changed over the years, depending on the metaphors used to describe it and 

the growing amount of evidence on the functioning of the brain. While long-established 

metaphors of attention, such as the attentional spotlight or the limited resource pool view 

attention as a direct cause of some executive processing, an alternative view is that 

attention emerges from competitive processes in sensory or sensorimotor brain areas, 
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without the need for any particular agent (Fernandez-Duque & Johnson, 2002). This idea 

can be traced back to the work of Desimone and Duncan (1995), who first described 

attention as a biased competition between objects in the visual field. 

 The results of the present thesis support the latter view, as they indicate that 

spatial attention is not a consequence of oculomotor or perceptual decisions, but rather 

something that is indistinguishable from such decisional processes. In the first study 

(Chapter 2.1), spatial attention predicted the direction of saccades in the antisaccade task, 

which suggests that the distribution of attention reflects saccadic decision processes. The 

second study (Chapter 2.2) investigated the relationship between oculomotor decisions 

and covert attention in detail and revealed that attention predicted saccadic choices long 

before the saccades were executed, which means that participants tended to preselect one 

of the two locations. The preselection was mainly driven by the secondary discrimination 

task and led to many saccade errors, which renders an explanation in terms of a voluntary 

strategy unlikely. This shows that oculomotor decisions are biased at the same time and 

by the same influences as visual selection and that a distinction between covert attention 

and the saccadic decision process is futile in this context.  

I would like to emphasize that this does not mean that covert attention is always 

accompanied by saccade programming, as has been proposed by the premotor theory of 

attention (see Chapter 1.1.1). Contrary to this, I assume that the link between saccade 

programming and covert attention may vary substantially across different situations, as it 

depends on the relative importance of perception and of saccade programming at a given 

moment in time (i.e., the urgency of perception or saccade programming) as well as on 

various characteristics of the perceptual and oculomotor goals. In real life situations 

saccades tend to be directed to locations that are either perceptually salient or need to be 

further explored, so there is often little competition between covert and overt attention. 

Nevertheless, when goals for saccades and for perception are artificially separated by 

instructions, the conflicting attentional demands of the two processes (i.e., the sums of 

biases in favor of each spatial location) compete against each other, each weighed by the 

relative urgency of the process. 

The dual task experiments employed in this thesis were designed to pose such 

conflicting demands on visual attention, but to prevent that participants would delay 

saccade programming, we always asked them to prioritize the saccade task over the visual 

discrimination task. The saccade task therefore biased attention more than the 

discrimination task, which explains why no attention could be allocated to saccade-

irrelevant locations, except in the third study (Chapter 2.3), where participants managed 

to split off some endogenous attention at the expense of saccade latency. 
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Belopolsky and Theeuwes (2009, 2012) proposed an updated version of the premotor 

theory, suggesting that shifting covert attention to a location always involves a saccade 

program to that location, whereas maintaining attention can lead to both activation or 

suppression of saccades to the attended location. The first part of this claim is 

corroborated by the results of our first study, which showed that shifting attention to the 

antisaccade cue often led to involuntary prosaccades towards it. The second claim can be 

reconciled with the results of our second study, where we found some evidence for the 

suppression of saccade programming to the non-chosen target while it was selected by 

attention. The finding that discrimination performance at the non-chosen target was 

worse than at the chosen target, but still kept improving towards saccade onset could 

mean that attentional representations of the non-chosen target were simultaneously 

downweighed by top-down information about the task rule (Dhawan et al., 2013) and 

upweighed due to their relevance for the decision task. 

The third study (Chapter 2.3) demonstrated that the frontal eye fields (FEF), 

which are crucially involved in the control of eye movements, also participate in 

endogenous attention shifts that are independent of saccade programming. This indicates 

that the role of the FEF in attentional control is separable from its role in saccade 

planning, as has already been shown by other authors (Juan et al., 2008; Juan et al., 2004; 

Sato & Schall, 2003; Wardak et al., 2011). The finding that attention at saccade-irrelevant 

locations competed with attention at the saccade goal is compatible with the view that 

saccade preparation constitutes an independent attentional bias that competes with other 

types of biases (Desimone & Duncan, 1995). Consistent with this, a recent study in 

monkeys provided evidence that saccade preparation in the FEF modulates activity in 

area V4 at least as much as covert attention (Steinmetz & Moore, 2014).  

Taken together, the results of this thesis support the view that covert attention, 

saccadic decision making and saccade programming are consequences of a common 

competitive process that aims to prioritize certain spatial locations over others. Several 

theories of selective attention have suggested that visual selection and eye movements 

may be guided by the output of a “priority map”, which represents the behavioral 

relevance of locations in visual space based on a combination of their bottom-up visual 

saliency as well as top-down biases reflecting task demands (e.g., Fecteau & Munoz, 2006; 

Serences & Yantis, 2006). This concept is compatible with accumulator models of 

decision making (see Chapter 1.1.3) and it has been proposed that the activity on the map 

could also represent the evolution of parallel motor plans towards the represented 

locations (Cisek, 2007), which is congruent with the premotor theory of attention.  
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In search for the neural substrate of the priority map, researchers have proposed several 

candidate areas, including the FEF (Thompson & Bichot, 2005), SC (Bayguinov, Ghitani, 

Jackson, & Basso, 2015; Krauzlis, Bollimunta, Arcizet, & Wang, 2014) and LIP (Bisley & 

Goldberg, 2010; Bisley et al., 2009; Ipata et al., 2009; Goldberg et al., 2006). While these 

areas fulfill the criteria (i.e., they are topographically organized, integrate bottom-up and 

top-down signals and represent priority independent of task), it is likely that they 

represent intermediate maps and that the final priority map emerges from the interaction 

of several areas (Mirpour & Bisley, 2015).  

The results of this doctoral thesis do not allow to conclude where the signals that 

concurrently drive saccade preparation to selected locations and facilitate visual 

perception at these locations originate and whether it is more appropriate to view them as 

attentional or as premotor activity. They mainly show that the influence between attention 

and saccade programming is mutual: On one hand, attentional selection of a location 

increases the likelihood of saccades to that location, and on the other hand, saccade 

programming automatically biases attention towards locations in space.  

And what are the implications of the present results for the premotor theory of 

attention? The premotor theory of attention was undoubtedly useful, as it challenged the 

formerly prevalent view that attention constitutes an independent cognitive domain and 

opened up a whole new field of research. Since then, many studies, including the ones 

that comprise this thesis, have confirmed that visual and oculomotor selection tend to be 

linked, but can also be dissociated. Consistent with this, single cell recordings have shown 

that both processes tend to be carried out by the same neural structures, where they show 

crosstalk but also partial independence (see Chapter 1.1.4). In the light of these findings, 

the question whether attention and saccade programming are linked or independent has 

become a philosophical one, as the answer mainly depends on how the two terms are 

defined. 

3.4   Endogenous and exogenous attention 

One of the goals of this doctoral thesis was to examine the relationship between 

endogenous and exogenous attention, particularly in relation to saccade programming, as 

it has recently been suggested that endogenous attention is more independent from the 

oculomotor system than exogenous attention (Smith et al., 2012, 2014; Smith & Schenk, 

2012). Both the first and the third study (Chapters 2.1 and 2.3) employed experimental 

designs that promoted the competition between endogenous and exogenous orienting, 

and the third study contrasted the effects of endogenous and exogenous saccade cues.     
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Besides confirming the well-known finding that exogenous cues tend to summon 

attention faster and more automatically than endogenous cues (Müller & Rabbit, 1989), 

both studies provided evidence that exogenous and endogenous attentional components 

can be simultaneously allocated to spatially disparate targets. Moreover, the results on 

discrimination performance suggest that spatially opposed endogenous and exogenous 

components inhibit each other, which indicates that they compete within the same neural 

structures. This is consistent with previous reports that both types of orienting can act 

independently when attentional demands are low, while they are likely to compete when 

attentional resources become scarce (Berger et al., 2005; Müller & Humphreys, 1991).  

The first study of this thesis (Chapter 2.1) extended previous results by showing 

that the outcomes of this competitive process in the visual and oculomotor systems are 

correlated, which suggests that the outcome of the biased competition is used to guide 

both perception and saccades. The second study (Chapter 2.2) did not directly compare 

exogenous and endogenous biases, but the results also support the view that attention 

results from the competitive interactions of various types of biases. We observed an 

interaction between endogenous attention at the two memorized locations and exogenous 

attention attracted by the appearance of the visual probe that was additionally modulated 

by the progression of saccade preparation. This shows that the influence of exogenous 

biases on visual performance and on saccade programming depends on the currently 

active endogenous biases, which in turn depend on momentary task demands. Such 

interactions between endogenous and exogenous attention have been reported in 

previous studies (Anderson & Folk, 2010; Eimer & Kiss, 2008; Folk, Remington, & 

Johnston, 1992), but our results extend their findings by showing that these interactions 

may change depending on whether saccade programming or visual perception is 

prioritized, while their outcome (i.e., the resulting priority signal) affects performance on 

both tasks similarly. Another interesting finding was that visual and oculomotor 

performance were also influenced by selection history, which can neither be considered 

an exogenous nor a purely endogenous bias (Awh, Belopolsky, & Theeuwes, 2012). The 

results of our second study thus support the view that the traditional dichotomy between 

endogenous and exogenous attention needs to be revised (Awh et al., 2012; Macaluso & 

Doricci, 2013). Particularly the “endogenous” category is very fuzzy and may contain 

potentially conflicting biases. An endogenous cue, for instance, can compete with 

expectations regarding the target appearance and with a voluntary saccade plan and each 

of these biases can be weighted differently at different moments in time, depending on 

further “endogenous” factors, such as the reward associated with spatial locations or the 

relative urgency of responses.  
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A more elaborate taxonomy that would distinguish between implicit and voluntary biases 

as well as between cognitive, perceptual and motor demands would already make it much 

easier to evaluate the relationship between overt and covert attention.  

The results of this dissertation neither clearly support nor refute the view that 

exogenous but not endogenous attention depends on saccade programming (Smith et al., 

2012, 2014; Smith & Schenk, 2012), which is mainly based on evidence that exogenous 

attention cannot be allocated to locations outside the oculomotor range. We observed 

that exogenous cues elicited faster attentions shifts than endogenous cues (Chapter 2.3) 

and tended to be followed by involuntary saccades (Chapter 2.1). This is consistent with 

a bulk of neurophysiological evidence that salient visual information quickly activates 

saccade-related motor neurons, for example in the superior colliculus (see Chapter 1.1.4). 

However, there is also evidence that less salient visual information is represented within 

the same spatial maps (at least up to the intermediate layers of the superior colliculus), 

where it can either be outcompeted by the more salient information or override it and win 

the competition, depending on the modulatory influences of endogenous biases. In 

consequence,  perception and behavior are never based exclusively on endogenous or 

exogenous biases, but always on a weighted combination of both. I therefore disagree 

with the view that only exogenous attention depends on the oculomotor system. 

3.5   Conclusion and Future Perspectives 

The present doctoral thesis investigated the relationship between covert attention, saccade 

decisions and saccade programming. Our results are consistent with a model in which 

saccade programming and visual perception are guided by a common attentional priority 

map resulting from the weighted combination of multiple different biases. While saccade 

execution is guided by the most prominent peak of the map, saccade programming and 

visual processing occur at several locations in parallel, as they are biased by the map as a 

whole. This explains why visual processing is always superior at an upcoming saccade 

goal, but can still be allocated to other locations.  

Further evidence is needed, however, to prove that this model is correct. 

Hopefully, the experiments reported here will inspire further studies, which will address 

some of the questions that we could not answer. Methodological approaches that would 

combine a thorough assessment of the behavioral effects of attention with spatially and 

temporally sensitive measures of brain activity could be particularly fruitful, as they could 

reveal potential correlations between behavioral effects and brain activity in areas that 

purportedly contain priority maps.  
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The second study (Chapter 2.2), for instance, demonstrated that temporal dynamics of 

spatial attention reflect ongoing oculomotor decisions and that the perceptual 

consequences of this attentional selection can serve as a window into the otherwise 

hidden decision process. Future studies could strengthen our claims by showing that 

saccadic decision processes are associated with ERP components that have been 

repeatedly related to attention and saccade programmming (e.g., Eimer, Van Velzen, 

Gherri, & Press, 2007; Van der Lubbe, Neggers, Verleger, & Kenemans, 2006; Van der 

Stigchel, Heslenfeld, & Theeuwes, 2006).    

More research is also needed to uncover the functional differences between spatial 

maps in different parts of the brain. The current status of knowledge indicates that 

attentional selection is achieved through some sort of distributed consensus between 

multiple priority maps, but very little is known about the interactions that actually take 

place. The same is true for the neural mechanisms that transform sensory information 

into saccadic commands.  

The experiments reported in this thesis also demonstrated that distinctions 

between endogenous and exogenous attention are not always straightforward, for 

example because the influence of exogenous biases may be contingent on endogenous 

attention, or because different endogenous biases can compete within the same task. I am 

therefore convinced that the traditional distinction between endogenous and exogenous 

attention should be replaced by a new taxonomy that will include a distinction between 

different kinds of voluntary biases and additional categories for implicit biases. Future 

studies should continue to systematically test interactions between different types of 

attentional biases, trying to isolate them as much as possible in order to avoid confounds 

by related biases. 

Finally, it would be of interest to see whether some of our findings also apply to 

other types of movements, particularly to reaching, or if they are unique to the oculo- 

motor system. 

  



116 
 

 

  



117 
 

 
 

References 

Andersen, R. A., Brotchie, P. R., & Mazzoni, P. (1992). Evidence for the lateral 
intraparietal area as the parietal eye field. Current Opinion in Neurobiology, 2, 840–846. 

Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: 
Testing a two-process model. Attention, Perception, & Psychophysics, 72, 342–352. 

Arcizet, F., Mirpour, K., & Bisley, J. W. (2011). A pure salience response in posterior 
parietal cortex. Cerebral Cortex, 21, 2498-2506. 

Armstrong, K. M., Fitzgerald, J. K., & Moore, T. (2006). Changes in visual receptive fields 
with microstimulation of frontal cortex. Neuron, 50, 791–798. 

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up 
attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 
437−443. 

Balan, P. F., & Gottlieb, J. (2006). Integration of exogenous input into a dynamic salience 
map revealed by perturbing attention. The Journal of Neuroscience, 26, 9239–9249. 

Baldauf, D., Cui, H., & Andersen, R.A. (2008). The posterior parietal cortex encodes in 
parallel both goals for double-reach sequences. The Journal of Neuroscience, 28, 
10081–10089. 

Baldauf, D., & Deubel, H. (2008). Properties of attentional selection during the 
preparation of sequential saccades. Experimental Brain Research, 184(3), 411–425. 

Basso, M.A., & Wurtz, R.H. (1998). Modulation of neuronal activity in superior colliculus 
by changes in target probability. The Journal of Neuroscience, 18, 7519–7534. 

Bayer, H. M., Handel, A., & Glimcher, P. W. (2004). Eye position and memory saccade 
related responses in substantia nigra pars reticulata. Experimental Brain Research, 154, 
428–441. 

Bayguinov, P. O, Ghitani, N., Jackson, M. B., & Basso, M. A. (2015). A hard-wired 
priority map in the superior colliculus shaped by asymmetric inhibitory circuitry. 
Journal of Neurophysiology, 114(1),  662–676. 

Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double-
step stimuli. Vision Research, 19, 967–983. 

Belopolsky, A. V., & Theeuwes, J. (2009). When are attention and saccade preparation 
dissociated? Psychological Science, 20, 1340–1347. 



118 
 

 

Belopolsky, A. V., & Theeuwes, J. (2012). Updating the premotor theory: the allocation of 
attention is not always accompanied by saccade preparation. Journal of Experimental 
Psychology: Human Perception and Performance, 38, 902–914. 

Bendiksby, M. S., & Platt, M. L. (2006). Neural correlates of reward and attention in 
macaque area LIP. Neuropsychologia, 44(12), 2411–2420. 

Bennur, S., & Gold, J. I. (2011). Distinct representations of a perceptual decision and the 
associated oculomotor plan in monkey area LIP. The Journal of Neuroscience, 31, 913–
921. 

Berger, A., Henik, A., & Rafal, R. D. (2005). Competition between endogenous and 
exogenous orienting of visual attention. Journal of Experimental Psychology: General, 
134(2), 207–221. 

Bisley, J. W. & Goldberg, M. (2010). Attention, intention, and priority in the parietal lobe. 
Annual Reviews in Neuroscience, 33, 1–21. 

Bisley, J. W., Ipata, A. E., Krishna, B. S., Gee, A. L., & Goldberg, M. E. (2009). The 
lateral intraparietal area: a priority map in posterior parietal cortex. In M. Jenkin & 
L. Harris (Eds.), Cortical Mechanisms of Vision (pp. 9–34). Cambridge: Cambridge 
University Press. 

Brown, S. D., & Heathcote, A. (2007). The simplest complete model of choice response 
time: linear ballistic accumulation. Cognitive Psychology, 57, 153–178.  

Bruce, C. J., Goldberg, M. E., Bushnell, M. C., & Stanton, G. B. (1985). Primate frontal 
eye fields. II. Physiological and anatomical correlates of electrically evoked eye 
movements. Journal of Neurophysiology, 54, 714–734. 

Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor 
transformations for reaching. Nature, 416, 632–636. 

Buschman, T. J. & Miller, E. K. (2007). Top-down versus bottom-up control of attention 
in the prefrontal and posterior parietal cortices. Science, 315, 1860–1862.  

Carpenter, R. H., & Williams, M. L. (1995). Neural computation of log likelihood in 
control of saccadic eye movements. Nature, 377(6544), 59–62.  

Castet, E., Jeanjean, S., Montagnini, A., Laugier, D., & Masson, G. S. (2006). Dynamics of 
attentional deployment during saccadic programming. Journal of Vision, 6(3):2, 196–
212. 

Cavanaugh, J., & Wurtz, R. H. (2004). Subcortical modulation of attention counters 
change blindness. The Journal of Neuroscience, 24(50), 11236–11243. 



119 
 

 
 

Cisek, P. (2005). Neural representations of motor plans, desired trajectories, and 
controlled objects. Cognitive Processing, 6, 15–24. 

Cisek, P. (2007). Cortical mechanism of action selection: the affordance competition 
hypothesis. Philosophical Transactions of the Royal Society of London: B, 362(1485), 1585–
1599.   

Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal 
premotor cortex: Specification of multiple direction choices and final selection of 
action. Neuron, 45(5), 801–814. 

Coe, B., Tomihara, K, Matsuzawa, M, & Hikosaka, O. (2002). Visual and anticipatory bias 
in three cortical eye fields of the monkey during an adaptive decision-making task. 
The Journal of Neuroscience, 22(12), 5081–5090. 

Colby, C. L., Duhamel, J. R. & Goldberg, M. E. (1996) Visual, presaccadic, and cognitive 
activation of single neurons in monkey lateral intraparietal area. Journal of 
Neurophysiology, 76, 2841–2852. 

Constantinidis, C., & Steinmetz, M. A. (2005). Posterior parietal cortex automatically 
encodes the location of salient stimuli. The Journal of Neuroscience, 25(1), 233-238. 

Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., 
Linenweber, M. R., Petersen, S. E., Raichle, M. E., Van Essen, D. C. & Shulman, 
G. L. (1998). A common network of functional areas for attention and eye 
movements. Neuron, 21, 761–773. 

Coren, S., & Hoenig, P. (1972). Effect of non-target stimuli on the length of voluntary 
saccades. Perceptual and Motor Skills, 34, 499–508. 

Craighero, L., Carta, A., & Fadiga, L. (2001). Peripheral oculomotor palsy affects orienting 
of visuospatial attention. NeuroReport, 12(15), 3283–3286. 

Craighero, L., Nascimben, M., & Fadiga, L. (2004). Eye position affects orienting of 
visuospatial attention. Current Biology, 14(4), 331–333. 

Dassonville, P., Schlag, J., & Schlag-Rey, M. (1992). The frontal eye field provides the goal 
of saccadic movement. Experimental Brain Research, 89, 300–310. 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. 
Annual Reviews of Neuroscience, 18, 193–222. 

Deubel, H. (2008). The time course of presaccadic attention shifts. Psychological Research, 
72, 630–640. 



120 
 

 

Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: 
evidence for a common attentional mechanism. Vision Research, 36, 1827–1837. 

Dhawan, S., Deubel, H., & Jonikaitis, D. (2013). Inhibition of saccades elicits attentional 
suppression. Journal of Vision, 13(6):9, 1–12. 

Doré-Mazars, K., Pouget, P., & Beauvillain, C. (2004). Attentional selection during 
preparation of eye movements. Psychological Research, 69, 67–76.  

Dorris, M. C., & Glimcher, P. W. (2004). Activity in posterior parietal cortex is correlated 
with the relative subjective desirability of action. Neuron, 44, 365–378. 

Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: 
Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20, 
1423–1433. 

Eimer, M., Van Velzen, J., Gherri, E., & Press, C. (2007). ERP correlates of shared 
control mechanisms involved in saccade preparation and in covert attention. Brain 
Research, 1135, 154–166. 

Ekstrom, L. B., Roelfsema, P. R., Arsenault, J. T., Bonmassar, G., Vanduffel, W. (2008). 
Bottom-up dependent gating of frontal signals in early visual cortex. Science, 321, 
414–417. 

Ekstrom, L. B., Roelfsema, P. R., Arsenault, J. T., Kolster, H., Vanduffel, W. (2009). 
Modulation of the contrast response function by electrical microstimulation of the 
macaque frontal eye field. The Journal of Neuroscience, 29(34), 10683–10694. 

Fecteau,  J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for 
target selection. Trends in Cognitive Science, 10(8), 382–390. 

Fernandez-Duque, D., & Johnson, M. L. (2002). Cause and effect theories of attention: 
the role of conceptual metaphors. Review of General Psychology, 6, 153–165. 

Findlay, J. M. (1982). Global visual processing for saccadic eye movements. Vision 
Research, 22, 1033–1045. 

Foley, N. C., Jangraw, D. C., Peck, C., & Gottlieb, J. (2014). Novelty enhances visual 
salience independently of reward in the parietal lobe. The Journal of Neuroscience , 
34(23), 7947–7957. 

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is 
contingent on attentional control settings. Journal of Experimental Psychology: Human 
Perception and Performance, 18(4), 1030–1044. 



121 
 

 
 

Gabay, S., Henik, A., & Gradstein, L. (2010). Ocular motor ability and covert attention in 
patients with Duane Retraction Syndrome. Neuropsychologia, 48, 3102–3109. 

Gallivan, J. P., Barton, K. S., Chapman, C. S., Wolpert, D. M., & Flanagan, J. R. (2015). 
Action plan co-optimization reveals the parallel encoding of competing reach 
movements. Nature Communications, 6, 7428. 

Gaymard, B., Lynch, J., Ploner, C. J., Condy, C., Rivaud-Pechoux, S. (2003). The parieto-
collicular pathway: anatomical location and contribution to saccade generation. 
European Journal of Neuroscience, 17, 1518–1526. 

Godijn, R., & Theeuwes, J. (2002). Oculomotor capture and inhibition of return: 
Evidence for an oculomotor suppression account of IOR. Psychological Research, 
66(4), 234–246. 

Godijn, R., & Theeuwes, J. (2003). The relationship between exogenous and endogenous 
saccades and attention. In J. Hyönä, R. Radach & H. Deubel (Eds), The Mind's 
Eyes: Cognitive and Applied Aspects of Eye Movements (pp. 3-26). Amsterdam: 
Elsevier/North-Holland. 

Goldberg, M. E., Bisley, J. W., Powell, K. D. & Gottlieb, J. (2006). Saccades, salience and 
attention: the role of the lateral intraparietal area in visual behavior. Progress in Brain 
Research, 155, 157–175. 

Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving 
monkey. II. The effect of attention on neuronal responses. Journal of Neurophysiology, 
35, 560–574. 

Gottlieb, J. P., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual 
salience in monkey parietal cortex. Nature, 391, 481–484. 

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and 
action. Trends in Neurosciences, 15(1), 20–25.  

de Haan, B., Morgan, P. S. & Rorden, C. (2008). Covert orienting of attention and overt 
eye movements activate identical brain regions. Brain Research, 1204, 102–111. 

Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. 
Vision Research, 18, 1279–1296. 

Hanes, D. P., & Schall, J. D. (1996) Neural control of voluntary movement initiation. 
Science, 274, 427–430. 

Hanks, T. D., Ditterich, J., & Shadlen, M. N. (2006). Microstimulation of macaque area 
LIP affects decision-making in a motion discrimination task. Nature Neuroscience, 
9(5), 682–689. 



122 
 

 

Hikosaka, O., Nakamura, K., & Nakahara, H. (2006). Basal ganglia orient eyes to reward. 
Journal of  Neurophysiology, 95, 567–584. 

Hikosaka, O., Takikawa, Y., & Kawagoe, R (2000). Role of the basal ganglia in the control 
of purposive saccadic eye movements. Physiological Reviews, 80, 953–978. 

Hikosaka, O., & Wurtz, R. H (1983). Visual and oculomotor functions of monkey 
substantia nigra pars reticulata. III. Memory-contingent visual and saccade 
responses. Journal of Neurophysiology, 49, 1268–1284. 

Hodgson, T. L., Parris, B. A., Gregory, N. J., & Jarvis, T. (2009). The saccadic Stroop 
effect: Evidence for involuntary programming of eye movements by linguistic 
cues. Vision Research, 49(5), 569–574.  

Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye 
movements. Perception and Psychophysics, 57(6), 787–795. 

Ibos, G., Duhamel, J. R., & Ben Hamed (2013). A functional hierarchy within the 
parietofrontal network in stimulus selection and attention control. The Journal of 
Neuroscience, 33(19), 8359–8369. 

Ignashchenkova, A., Dicke, P. W., Haarmeier, T., & Thier, P. (2004). Neuron-specific 
contribution of the superior colliculus to overt and covert shifts of attention. 
Nature Neuroscience, 7, 56–64. 

Ipata, A. E., Gee, A. L., Bisley, J. W., & Goldberg, M. E. (2009). Neurons in the lateral 
intraparietal area create a priority map by the combination of disparate signals. 
Experimental Brain Research, 192, 479–488. 

Ipata, A. E., Gee, A. L., Gottlieb, J., Bisley, J. W., & Goldberg, M. E. (2006). LIP 
responses to a popout stimulus are reduced if it is overtly ignored. Nature 
Neuroscience, 9, 1071–1076. 

Irwin, D. E., Colcombe, A. M., Kramer, A. F., & Hahn, S. (2000). Attentional and 
oculomotor capture by onset, luminance, and color singletons. Vision Research, 40, 
1443–1458. 

Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In 
J. B. Long & A. D. Baddeley (Eds.), Attention and Performance, vol. IX (pp. 187–203). 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Jonikaitis, D., & Deubel, H. (2011). Independent allocation of attention to eye and hand 
targets in coordinated eye- hand movements. Psychological Science, 22(3), 339–347. 



123 
 

 
 

Juan, C. H., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., Cowey, A., & Walsh, A. 
(2008). Segregation of visual selection and saccades in human frontal eye fields. 
Cerebral Cortex, 18, 2410–2415. 

Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention 
and saccade preparation. PNAS, 101, 15541–15544. 

Katsuki, F., Saito, M., & Constantinidis, C. (2014). Influence of monkey dorsolateral 
prefrontal and posterior parietal activity on behavioral choice during attention 
tasks. European Journal of Neuroscience, 40(6), 2910–2921. 

Kim, B., & Basso, M. A. (2008). Saccade target selection in the superior colliculus: a signal 
detection theory approach. The Journal of Neuroscience, 28(12), 2991–3007. 

Kim, Y. H., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., & Mesulam, M. 
M. (1999). The largescale neural network for spatial attention displays 
multifunctional overlap but differential asymmetry. NeuroImage, 9(3), 269–277. 

Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An 
event-related functional magnetic resonance imaging study of voluntary and 
stimulus-driven orienting of attention. The Journal of Neuroscience, 25, 4593–4604. 

Klaes, C., Westendorff, S., Chakrabarti, S., & Gail, A. (2011). Choosing goals, not rules: 
deciding among rule-based action plans. Neuron, 70, 536–548. 

Klein, R. (1980). Does oculomotor readiness mediate cognitive control of visual 
attention? In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 259-276). 
Hillsdale, NJ: Erlbaum. 

Klein, R. M., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive 
control of visual attention? Revisited! In C. Umiltà & M. Moskovitch (Eds.), 
Attention and performance XV (pp. 333-350). Cambridge, MA: MIT Press. 

Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the 
programming of saccades. Vision Research, 35(13), 1897–1916. 

Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L., (2014) Attention as an effect not a 
cause. Trends in Cognitive Sciences, 18(9), 457–464. 

Kustov, A. A., & Robinson, D. L. (1996). Shared neural control of attention shifts and eye 
movements. Nature, 384(6604), 74–77. 

Kusunoki, M., Gottlieb, J., & Goldberg, M. E. (2000). The lateral intraparietal area as a 
salience map: the representation of abrupt onset, stimulus motion, and task 
relevance. Vision Research, 40, 1459–1468. 



124 
 

 

Lovejoy, L. P., Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs 
covert selection of signals for perceptual judgments. Nature Neuroscience, 13, 261–
266. 

Macaluso E., & Doricchi F. (2013). Attention and predictions: control of spatial attention 
beyond the endogenous-exogenous dichotomy. Frontiers in Human Neuroscience, 
7:685.  

Massen, C. (2004). Parallel programming of exogenous and endogenous components in 
the antisaccade task. The Quarterly Journal of Experimental Psychology, Section A: Human 
Experimental Psychology, 57(3), 475–498.  

Mayer, A. R., Dorflinger, J. M., Rao, S. M., & Seidenberg, M. (2004). Neural networks 
underlying endogenous and exogenous visual-spatial orienting. NeuroImage, 23(2), 
534–541. 

McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in 
the superior colliculus produces saccade curvature. Journal of Neurophysiology, 89, 
2577–2590. 

McPeek, R. M., & Keller, E. L. (2002). Superior colliculus activity related to concurrent 
processing of saccade goals in a visual search task. Journal of Neurophysiology, 87(4), 
1805–1815. 

McPeek, R. M., & Keller, E. L. (2004). Deficits in saccade target selection after 
inactivation of superior colliculus. Nature Neuroscience, 7(7), 757–763. 

McPeek, R. M., Skavenski, A. A., & Nakayama, K. (2000). Concurrent processing of 
saccades in visual search. Vision Research, 40, 2499–2516. 

McSorley, E., & McCloy, R. (2009) Saccadic eye movements as an index of perceptual 
decision-making. Experimental Brain Research, 198 (4), 513–520. 

Mirpour K., & Bisley J. W. (2015). Formation of the priority map by the reciprocal 
connections between LIP and FEF. Journal of Vision, 15 (12), 1257–1257. 

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: 
two cortical pathways. Trends in Neurosciences, 6, 414–417.  

Mokler, A., Deubel, H., & Fischer, B. (2000). Unintended saccades can be executed 
without presaccadic attention shifts. Perception, 29 (Suppl.), 54.  

Mokler, A., & Fischer, B. (1999). The recognition and correction of involuntary 
prosaccades in an antisaccade task. Experimental Brain Research, 125, 511–516. 



125 
 

 
 

Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during 
saccade preparation: Independence and coupling between attention and movement 
planning. Journal of Vision, 7(14):8. 

Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by 
microstimulation of frontal cortex. Nature, 421, 370–373. 

Moore, T. & Fallah, M. (2001). Control of eye movements and spatial attention. PNAS, 
98, 1273–1276. 

Moore, T. & Fallah, M. (2004). Microstimulation of the frontal eye field and its effects on 
covert spatial attention. Journal of Neurophysiology, 91, 152–162. 

Müller, J. R. Philiastides, M. G., & Newsome, W. T. (2005). Microstimulation of the 
superior colliculus focuses attention without moving the eyes. PNAS, 102(3), 524–
529. 

Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual 
attention: Time course of activation and resistance to interruption. Journal of 
Experimental Psychology: Human Perception and Performance, 15, 315–330. 

Munoz, D.P., & Wurtz, R. H. (1995). Saccade-related activity in monkey superior 
colliculus. I. Characteristics of burst and buildup cells. Journal of Neurophysiology, 
73(6), 2313–2333. 

Murthy, A., Thompson, K. G., Schall, J. D. (2001). Dynamic dissociation of visual 
selection from saccade programming in frontal eye field. Journal of Neurophysiology, 
86, 2634–2637. 

Neggers, S. W. F., Huijbers, W., Vrijlandt, C. M., Vlaskamp, B. N. S., Schutter, D. J. L. G., 
& Kenemans, J. L. (2007). TMS pulses on the frontal eye fields break coupling 
between visuospatial attention and eye movements. Journal of Neurophysiology, 98, 
2765–2778. 

Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a 
perceptual decision. Nature, 341 (6237), 52–54.  

Nobre, A. C., Gitelman, D. R., Dias, E. C. & Mesulam, M. M. (2000). Covert visual spatial 
orienting and saccades: overlapping neural systems. NeuroImage, 11, 210–216. 

Nummenmaa, L., & Hietanen, J. K. (2006). Gaze distractors influence saccadic curvature: 
Evidence for the role of the oculomotor system in gaze-cued orienting. Vision 
Research, 46(11), 3674–3680. 



126 
 

 

Paré, M., & Dorris, M. C. (2011). Role of posterior parietal cortex in the regulation of 
saccadic eye movements. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), 
Oxford Handbook of Eye Movements (pp. 257-278). Oxford: Oxford University Press. 

Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., Gottlieb, J. (2009). Reward modulates 
attention independently of action value in posterior parietal cortex. The Journal of 
Neuroscience, 29(36), 11182–11191.  

Peelen, M., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous 
attention shifts are mediated by the same large-scale neural network. NeuroImage, 
22, 822–830. 

Perry, R. J. & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial 
attention: an event-related fMRI study. Brain, 123, 2273–2278. 

Pierrot-Deseilligny, C., Ploner, C. J., Müri, R, M., Gaymard, B. & Rivaud-Pechoux, S. 
(2002). Effect of cortical lesions on saccadic eye movements in humans. Annals of the 
New York Academy of Science, 956, 216–229. 

Platt, M. L., & Glimcher, P. W. (1997). Responses of intraparietal neurons to saccadic 
targets and visual distractors. Journal of Neurophysiology, 78(3), 1574–1589. 

Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal 
cortex. Nature, 400 (6741), 233–238.  

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 
3–25. 

Premereur, E., Vanduffel, W. & Janssen, P. (2014). The effect of FEF microstimulation 
on the responses of neurons in the lateral intraparietal area. Journal of Cognitive 
Neuroscience, 26(8), 1672–1684.  

Rafal, R. D., Posner, M. I., Friedman, J. H., Inhoff, A. W., & Bernstein, E. (1988). 
Orienting of visual attention in progressive supranuclear palsy. Brain, 111(2), 267–
280. 

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for 
two-choice decision tasks. Neural Computation, 20, 873–922. 

Rayner, K., & Castelhano, M. (2007). Eye movements. Scholarpedia, 2(10): 3649. 

Remington, R. W. (1980). Attention and saccadic eye movements. Journal of Experimental 
Psychology: Human Perception & Performance, 6, 726–744. 



127 
 

 
 

Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the 
horizontal and vertical meridians: evidence in favor of a premotor theory of 
attention. Neuropsychologia, 25, 31–40. 

Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In C. 
Umiltà & M. Moscovitch (Eds.), Attention and Performance XV (pp. 231-265). 
Cambridge, MA: MIT Press. 

Robinson, D. A., & Fuchs, A. F. (1969). Eye movements evoked by stimulation of frontal 
eye fields. Journal of Neurophysiology, 32, 637–648. 

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal 
area during a combined visual discrimination reaction time task. The Journal of 
Neuroscience, 22(21), 9475–9489. 

Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of 
attention across eye movements. Nature Neuroscience, 14, 252–256. 

Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J., 
Hammeke, T. A., Cunningham, J. M., Prieto, T. E., & Binder, J. R. (1999). Neural 
basis of endogenous and exogenous spatial orienting. A functional MRI study. 
Journal of Cognitive Neuroscience, 11(2), 135–152. 

Sato, T., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural 
selection in frontal eye field. Neuron, 38(4), 637–648.  

Schall, J. D. (2003). Neural correlates of decision processes: Neural and mental 
chronometry. Current Opinion in Neurobiology, 13, 182–186. 

Schall, J. D., & Hanes, D. P (1993). Neural basis of saccade target selection in frontal eye 
field during visual search. Nature, 366, 467-469. 

Schall, J. D., Hanes, D. P., Thompson, K. G., & King, D. J. (1995). Saccade target 
selection in frontal eye field of macaque. I. visual and premovement activation. The 
Journal of Neuroscience, 15, 6905-6918. 

Scherberger, H., & Andersen, R. A. (2007). Target selection signals for arm reaching in 
the posterior parietal cortex. The Journal of Neuroscience, 27(8), 2001–2012. 

Schiller, P. H. & Koerner, R. (1971). Discharge characteristics of single units in the 
superior colliculus of the alert rhesus monkey. Journal of Neurophysiology, 34, 920–
936. 

Schiller, P. H. & Stryker, M. (1972). Single-unit recording and stimulation in superior 
colliculus of the alert rhesus monkey. Journal of Neurophysiology, 35, 915–924. 



128 
 

 

Schneider, W. X. (1995). VAM: A neuro-cognitive model for visual attention control of 
segmentation, object recognition, and space-based motor action, Visual Cognition, 
2, 331–375. 

Schneider, W. X., & Deubel, H. (2002). Selection-for-perception and selection-for-spatial-
motor-action are coupled by visual attention: A review of recent findings and new 
evidence from stimulus-driven saccade control. In W. Prinz & B. Hommel (Eds.), 
Attention and Performance XIX (pp. 609-627). Oxford: Oxford University Press. 

Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to 
oculomotor regions of the pons. Journal of Neurophysiology, 68(6), 1967–1985. 

Segraves, M. A., & Goldberg, M. E. (1987). Functional properties of corticotectal neurons 
in the monkey’s frontal eye field. Journal of Neurophysiology, 58(6), 1387–1419. 

Serences, J. T.,  & Yantis, S. (2006). Selective visual attention and perceptual coherence. 
Trends in Cognitive Sciences, 10, 38–45.  

Shadlen M. N., & Newsome, W. T. (1996). Motion perception: seeing and deciding. 
PNAS, 93, 628–633. 

Shadlen M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the 
parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 
1916–1936. 

Sheliga B. M., Riggio, L., Craighero, L. & Rizzolatti, G. (1995). Spatial attention-
determined modifications in saccade trajectories. Neuroreport, 6, 585–588. 

Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye 
movements. Experimental Brain Research, 98, 507–522. 

Shires, J., Joshi, S., & Basso, M. A. (2010). Shedding new light on the role of the basal 
ganglia-superior colliculus pathway in eye movements. Current Opinion in 
Neurobiology, 20, 717–725. 

Smith, D. T., Ball, K., & Ellison, A. (2014). Covert visual search within and beyond the 
effective oculomotor range. Vision Research, 95, 11–17. 

Smith, D. T., Ball, K., Ellison, A., & Schenk, T. (2010). Deficits of reflexive attention 
induced by abduction of the eye. Neuropsychologia, 48, 1269–1276. 

Smith, D. T., Rorden, C., & Jackson, S. R. (2004). Exogenous orienting of attention 
depends upon the ability to execute eye movements. Current Biology, 14, 792–795. 

Smith, D.T. & Schenk, T. (2007). Enhanced probe discrimination at the location of a 
colour singleton. Experimental Brain Research 181(2), 367–375. 



129 
 

 
 

Smith, D. T., & Schenk, T. (2012). The premotor theory of attention: Time to move on? 
Neuropsychologia, 50, 1104–1114. 

Smith, D. T., Schenk, T., & Rorden, C. (2012). Saccade preparation is required for 
exogenous attention but not endogenous attention or IOR. Journal of Experimental 
Psychology: Human Perception and Performance, 38, 1438–1447. 

Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of 
signals sent from the frontal eye field to the superior colliculus. Journal of 
Neurophysiology, 83(4), 1979–2001. 

Sommer, M. A., & Wurtz, R, H. (2001). Frontal eye field sends delay activity related to 
movement, memory, and vision to the superior colliculus. Journal of Neurophysiology, 
85(4), 1673–1685. 

Sparks, D. L. (1986). The neural translation of sensory signals into commands for the 
control of saccadic eye movements: The role of the primate superior colliculus. 
Physiological Reviews, 66, 118–171. 

Steinmetz, N. A., & Moore, T. (2014). Eye movement preparation modulates neuronal 
responses in area V4 when dissociated from attentional demands. Neuron, 83, 496–
506. 

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the 
representation of value in the parietal cortex. Science, 304(5678), 1782–1787. 

Tehovnik, E. J., Sommer, M. A., Chou, I. H., Slocum, W. M., & Schiller, P. H. (2000). Eye 
fields in the frontal lobes of primates. Brain Research Reviews, 32, 413–448. 

Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go 
where we want them to go: capture of the eyes by new objects. Psychological Science, 
9, 379–385.  

Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. (1999). Influence of 
attentional capture on oculomotor control. Journal of Experimental Psychology: Human 
Perception & Performance, 25, 1595–1608. 

Thompson, K. G., & Bichot (2005). A visual salience map in the primate frontal eye field. 
Progress in Brain Research, 147, 251–262. 

Thompson, K. G., Bichot, N. P., & Schall, J. D. (1997). Dissociation of visual 
discrimination from saccade programming in macaque frontal eye field. Journal of 
Neurophysiology, 77, 1046–1050. 



130 
 

 

Thompson, K. G., Hanes, D. P., Bichot, N. P., & Schall, J. D. (1997). Perceptual and 
motor processing stages identified in the activity of macaque frontal eye field 
neurons during visual search. Journal of Neurophysiology, 76, 4040–4055. 

Tommasi, G., Fiorio, M., Yelnik, J., Krack, P., Sala, F., Schmitt, E., Fraix, V., Bertolasi, L., 
Le Bas J. F., Ricciardi, G. K., Fiaschi, A., Theeuwes, J., Pollak, P., & Chelazzi, L. 
(2015). Disentangling the role of cortico-basal ganglia loops in top-down and 
bottom-up visual attention: An investigation of attention deficits in Parkinson’s 
disease. Journal of Cognitive Neuroscience, 27, 1215–1237. 

Toth, L. J. & Assad, J. A. (2002). Dynamic coding of behaviorally relevant stimuli in 
parietal cortex. Nature, 415 (6868), 165–168. 

Van der Lubbe, R. H. J., Neggers, S. W. F., Verleger, R., & Kenemans, J. L. (2006). 
Spatiotemporal overlap between brain activation related to saccade preparation 
and attentional orienting. Brain Research, 1072(1), 133–152.  

Van der Stigchel, S., Heslenfeld, D. J., & Theeues, J. (2006). An ERP study of preparatory 
and inhibitory  mechanisms in a cued saccade task. Brain Research, 1105, 32–45. 

Van der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt 
attention in endogenous cueing. Perception & Psychophysics, 69(5), 719–731. 

Van der Stigchel, S., & de Vries, J. P. (2015). There is no attentional global effect: 
Attentional shifts are independent of the saccade endpoint. Journal of Vision, 15(17), 
1-12.   

Van Ettinger-Veenstra, H. M., Huijbers, W. , Gutteling, T. P., Vink, M., Kenemans, J. L., 
& Neggers, S. F. W. (2009). fMRI-guided TMS on cortical eye fields: the frontal 
but not intraparietal eye fields regulate the coupling between visuospatial attention 
and eye movements. Journal of Neurophysiology, 102(6), 3469–3480. 

Van Schouwenburg, M. R., den Ouden, H. E. M., & Cools, R. (2010). The human basal 
ganglia modulate frontal-posterior connectivity during attention shifting. The 
Journal of Neuroscience, 30(29), 9910–9918. 

Van Schouwenburg, M. R., den Ouden, H. E., Cools, R. (2015). Selective attentional 
enhancement and inhibition of fronto-posterior connectivity by the basal ganglia 
during attention switching. Cerebral Cortex , 25, 1527–1534. 

Vokoun, C. R., Mahamed, S., & Basso, M. A. Saccadic eye movements and the basal 
ganglia. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford Handbook 
of Eye Movements (pp. 215-234). Oxford: Oxford University Press. 

Walker, R., & Mc Sorley, E. (2006). The parallel programming of voluntary and reflexive 
saccades. Vision Research, 46, 2082–2093. 



131 
 

 
 

Wardak, C., Ibos, G., Duhamel, J. R., & Olivier, E. (2006). Contribution of the monkey 
frontal eye field to covert visual attention. The Journal of Neuroscience, 26(16), 4228–
4235. 

Wardak, C., Olivier, E. , & Duhamel, J. R. (2011). The relationship between spatial 
attention and saccades in the frontoparietal network of the monkey. European 
Journal of Neuroscience, 33(11), 1973–1981. 

Wardak, C., Vanduffel, W. & Orban, G. A. (2010). Searching for a salient target involves 
frontal regions. Cerebral Cortex, 20(10), 2464–2477. 

Wurtz, R. H., & Goldberg, M. E. (1972). Activity of superior colliculus in behaving 
monkey. III. Cells discharging before eye movements. Journal of Neurophysiology, 35, 
575–586. 

Wurtz, R. H., & Mohler, C. W. (1976). Organization of monkey superior colliculus: 
Enhanced visual response of superficial layer cells. Journal of Neurophysiology, 39, 
745–765. 

Zhao, M., Gersch, T. M., Schnitzer, B. S., Dosher, B. A. & Kowler, E. (2012). Eye 
movements and attention: The role of pre-saccadic shifts of attention in 
perception, memory and the control of saccades. Vision Research, 74, 40–60. 

  



132 
 

 

 

  



133 
 

 
 

Curriculum Vitae 

Anna Klapetek-Dünnweber (née Klapetek) 

Born on 11.03.1981 in Köln, Germany  

Education  

 

2011 – 2016  Ph.D. in Systemic Neurosciences, 

Graduate School of Systemic Neurosciences,  

Ludwig-Maximilians-Universität München  

 

2009 – 2011 MSc. in Neuro-Cognitive-Psychology,

Ludwig-Maximilians-Universität München  

 

2004 – 2009 Mgr. in Psychology,

Charles University in Prague, Czech Republic 

 

1999-2002 BcA. in Sound Design/Engineering

Film and TV Faculty (FAMU), 

Academy of the Performing Arts in Prague, Czech Republic 

 

1999 Abitur, Freiherr-vom-Stein Gymnasium Rösrath 

 

Research Experience  

2010 – present Assistant/ researcher in eye movement lab (Prof. Deubel),

Ludwig-Maximilians-Universität München 

 

7/2010 – 9/2010 Visiting student in crossmodal research lab (Prof. Spence)

University of Oxford 

 

10/2012 – 12/2012 Visiting researcher in STAR lab (Dr. Neggers) 

University Medical Centre Utrecht 

 



134 
 

 

  



135 
 

 
 

List of Publications 

Journal articles 

Klapetek, A., Jonikaitis, D., & Deubel, H. (2016). Attention allocation before 

antisaccades. Journal of Vision, 16(1):11, doi: 10.1167/16.1.11. 

Klapetek, A., Ngo, M. K., & Spence, C. (2012). Does crossmodal correspondence 

modulate the facilitatory effect of auditory cues on visual search? Attention, Perception, & 

Psychophysics, 74(6), 1154–1167. 

Klapetek, A., & Viktorinová, M. (2009). Jak se pije a kouří v českém filmu (Alcohol and 

tobacco (ab)use in Czech movies). Psychologie Dnes, 15(1), 53–55. 

Conference abstracts 

Klapetek, A., & Deubel, H. (2015). Distribution of attention and parallel saccade 

programming in antisaccades (meeting abstract). Journal of Vision, 15(12):71. doi: 

10.1167/15.12.71. 

Klapetek, A., & Deubel, H. (2013). Parallel attentional allocation in antisaccades (meeting 

abstract). Journal of Vision, 13(9):1228, doi: 10.1167/13.9.1228. 

Chladová, H., Tesařová, T., Hodková, P., Weiss, P., Klapetek, A., & DeMartini, A., Fila, 

L., Zemkova, D., Smolikova, L., & Lekes, M. (2008). Sexuality in CF patients in Czech 

Republic. Journal of Cystic Fibrosis, 7(2), 109. 

  



136 
 

 

  



137 
 

 
 

Eidesstattliche Versicherung/Affidavit 

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation „The link 

between visual and oculomotor selection: Evidence from competitive tasks“ selbstständig 

angefertigt habe, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle 

Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche 

kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln 

nachgewiesen habe. 

I hereby confirm that the dissertation “The link between visual and oculomotor selection: 

Evidence from competitive tasks” is the result of my own work and that I have only used 

sources or materials listed and specified in the dissertation. 

 

München, den  

Munich, date                                              Unterschrift/Signature  

 
  



138 
 

 

  



139 
 

 
 

Author Contributions 

Chapter 2.1  

A version of this chapter has been published as Klapetek, A., Jonikaitis, D., & Deubel, H. (2016). 
Attention allocation before antisaccades. Journal of Vision, 16(1):11. 

The author of this dissertation participated in designing the experiments, programmed the 
experiments, collected and analyzed the data, created plots, interpreted the results and wrote the 
journal article.  

Donatas Jonikaitis participated in designing the experiments, in analyzing and interpreting the 
results, and he commented on and helped revising the manuscript.   

Heiner Deubel conceived and supervised the project, participated in designing the experiments 
and interpreting the results, and commented on the manuscript.  

Chapter 2.2 

The author of this dissertation participated in data collection and analysis, interpreted the results 
and wrote the manuscript.   

Donatas Jonikaitis designed and programmed the experiment, collected and analyzed data, 
created plots, interpreted the results and participated in writing the manuscript.   

Heiner Deubel supervised the project, interpreted results and commented on the manuscript.  

Chapter 2.3 

The author of this dissertation designed and programmed the experiment, collected and analyzed 
data, created plots, interpreted the results and wrote the manuscript.   

Donatas Jonikaitis helped designing and programming the experiment and interpreting results.  

Jasper Dezwaef participated in data collection, created a part of the plots and commented on the 
manuscript.  

Heiner Deubel supervised the project, participated in designing the experiment and in 
interpreting results and commented on the manuscript.  

Paul Taylor supervised the project, participated in designing the experiment and in interpreting 
results and commented on the manuscript. 

Bas Neggers supervised the project, helped with experimental setup and data collection, 
participated in designing the experiment and in interpreting results and commented on the 
manuscript. 

The above contributions to the doctoral thesis of Anna Klapetek-Dünnweber are all correct as 
stated above. 

Hjhjhjhjhjhhjhjhjjjjjjjjjjjjjjj     j                                            Hjhjhjhjhjhhjhjhjjjjjjjjjjjjjjj     j 

 Anna Klapetek-Dünnweber                                                   Prof. Dr. Heiner Deubel 


