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Summary 

	  

Dynamic synapses are the structural basis of brain to respond to pathological or physiological 

changes in internal or external environment. Synapse formation, elimination and 

morphological alterations rewire neural circuits by establishing new connections, abolishing 

and strengthening or weakening preexisting ones. Excitatory glutamatergic synapses in 

mammalian brain normally reside at dendritic spines. The structural parameters of dendritic 

spines are tightly regulated in normal brain and changed in an array of neurodegenerative 

diseases.  

 

Being the most common neurodegenerative disease, Alzheimer’s disease (AD) exhibits 

progressive neuropathology that lasts more than decades. The pathogenesis of AD is widely 

believed to be initiated by amyloid deposition, which is composed of amyloid β (Aβ) peptides. 

Aβ is the proteolytic fragment of amyloid precursor protein (APP) that contains a large 

extracellular ectodomain and a short cytoplasmic tail. After the discovery of APP mutations in 

early-onset familial AD that increase Aβ levels in brain, transgenic mouse models 

overexpressing mutated APP have been created to recapitulate AD pathogenesis. Besides 

the neurotoxicity of Aβ, physiological functions of APP may also participate in the 

pathogenesis of AD as the regulation of APP proteolysis into Aβ modulates the expression of 

APP and other APP fragments. To investigate its physiological functions, APP knockout 

(APP-KO) mice have been generated. In this dissertation, spine density, morphology and 

plasticity of APP transgenic and knockout mouse models were extensively examined by 

chronic in vivo two photon microscopy. 

 

In Paper One, decreased spine density of apical tufts originated from layer 5 pyramidal 

neurons was observed in 4-5-month-old APP23 mice, which overexpress APP with Swedish 

mutation, before amyloid deposition. In age-matched APPswe/PS1deltaE9 (deltaE9) mice 

with mutant APP and presenilin-1, spine loss was found only on the dendrites that were 

localized close to amyloid plaques. The reduced spine density was due to decrease spine 

formation, while spine elimination remained unchanged. Also, these two AD mouse models 

displayed distinct patterns of morphological alterations in dendritic spines. In APP23 mice, the 

content of intraneuronal APP was inversely correlated with spine density and the fraction of 

mushroom spines. In deltaE9 mice, no intraneuronal APP was detected, while spine loss and 
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alterations of spine morphology were accompanied with the growth of amyloid plaques. These 

results suggest intracellular APP accumulation and extracellular Aβ deposits contribute to 

spine pathology in young adult APP23 and deltaE9 mice, respectively. 

 

In Manuscript One, the impaired adaptive plasticity of young adult deltaE9 mice was 

demonstrated by their failures to gain more dendritic spines and form novel neural circuits 

when housed under enriched environment (EE). Interestingly, elimination of Aβ deposits by 

reducing β-secretase activity restored the increase of spine density in detaE9 mice upon EE, 

but did not recover neural network remodeling. However, anti-inflammatory treatment by the 

administration of pioglitazone or interleukin 1 receptor antagonist successfully rescued the 

deficiencies of increasing spine density and remodeling neural networks in deltaE9 mice upon 

EE. These data imply that neuroinflammation thwarts experience-dependent structural 

plasticity of dendritic spines in young adult deltaE9 mice, which recapitulate the preclinical 

stages of AD with amyloid deposition in brain before the onset of dementia. 

 

In Manuscript Two, spine dynamics was found to be reduced in 4-5-month-old APP-KO mice 

illustrated by decreased spine formation and elimination. Additionally, APP-KO mice failed to 

increase spine density when housed under EE. These observations also prevailed in APPsα 

knockin (APPsα-KI) mice, which express APPsα but lack full length APP. Meanwhile, the 

distributions of dendritic spine subtypes classified by their morphologies were also changed in 

APP-KO mice accompanied with reduced N-methyl-D-aspartate (NMDA) receptor-mediated 

miniature excitatory post-synaptic currents (mEPSCs) and decreased postsynaptic NMDA 

receptor expression. Strikingly, potentiation of NMDA receptor responses by administering D-

serine restored the morphology, dynamics and adaptive plasticity of dendritic spines in APP-

KO mice. These results indicate constitutive and adaptive spine plasticity is maintained by the 

functional cooperation between APP and NMDA receptor. 

 

Collectively, this dissertation confirms that different spine abnormalities occur in APP 

transgenic and knockout mouse models. These distinct pathological alterations of dendritic 

spines suggest APP and its proteolytic fragment Aβ may both participate in the pathogenesis 

of AD in their own ways.	   	  
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1 Introduction 

 

Structural plasticity of dendritic spines 

The basis of cognition 

“Men ought to know that from nothing else but the brain come joys, delights, laughter and 

sports, and sorrows, griefs, despondency, and lamentations [86].” Associated with mind, brain 

is the most special and complex organ. In the long history of neural science, brain and mind 

were thought to be separated. The disclosure of aphasia since the 19th century leads to the 

development of cognitive neurosciences [48]. It firstly addressed how cognitive functions are 

produced by the brain. One of the ultimate challenges of science nowadays is to understand 

how the brain processes what we feel, act, learn and remember. 

 

The brain is primarily composed of glial cells and neurons. Glial cells, which outnumber 

neurons by tenfold, perform a number of critical functions for supporting neurons, including 

insulation, nourishment, structural and metabolic support [108]. The various supporting 

functions are reflected in the different subtypes of glial cells, including astrocytes (ion and 

metabolic homeostasis), microglia (active immune defense) and oligodendrocytes (axon 

insulation) [43]. Also, these glial subtypes have characteristic morphologies: astrocytes have 

a star-shaped appearance while microglial cells are highly branched.    

 

Differed from glial cells morphologically and functionally, neurons are the signaling 

components and execute the bulk of information processing in the brain[8, 104]. Neurons 

typically consist of four regions, including the soma, the axon, axon terminals and dendrites. 

Different regions have distinct functions in generating neural signals and communicating in 

the neural network. The soma or the cell body separated by the plasma membrane from the 

outside contains organelles that are similar with other animal cells and works as the metabolic 

center of the neuron. Arising from the site of cell body called axon hillock, an axon surrounded 

by myelin sheath extend and often branch to convey electrical impulses. The end of an axon 

is called axon terminal or the presynaptic terminal. They are the sites where the axon 

contacts with and sends information to other neurons. The contact point is named the 

synapse. The synapse consists of two sides: presynaptic, which is generally an axon terminal, 

and postsynaptic. The postsynaptic side is usually the cell body of other neuron or the 
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dendrite. Dendrites also arise from the soma and resemble the branches of the tree. In most 

cases, neural signals transit from the axon to a dendrite of other neuron.  

 

Cognitive information that transits within neurons in brain is carried by electrical and chemical 

signals. Ion channels embedded in the cell membrane are responsible for the maintaining of 

resting membrane potential. Changes that make the membrane electrical potential differ from 

the resting value produce transient electrical signals, including receptor potential, action 

potential and synaptic potential. Among them, the action potential enables the electrical 

signals to be carried over long distances in neurons. After the electrical signals are triggered 

and propagated, they are conducted to the presynaptic axon terminals and transmitted to the 

other neurons electrically or chemically. At electrical synapses, the currents originated in the 

presynaptic neurons go through gap junction channels and then enter into postsynaptic 

neurons. At chemical synapses, the presynaptic neurons release chemical transmitters at 

axonal terminals induced by action potentials. The transmitters travel through the synaptic 

cleft and bind to the postsynaptic receptors. The activated receptors regulate associated ion 

channels and change membrane potentials on postsynaptic neurons. Based on the signaling 

transductions among interconnected neurons, the organized neural circuits in functionally 

specific regions of cerebral cortex give rise to the cognitive functions.   

 

The synaptic plasticity 

At chemical synapses, the effectiveness of signaling transduction can be strengthened or 

weakened during short and long periods. This synaptic property is called synaptic plasticity 

[225].  Synaptic strength can be altered by the changes in the presynaptic release of 

neurotransmitters and/or modulating postsynaptic response to transmitters [61]. Activity-

dependent control of synaptic plasticity is thought to contribute to many diverse cognitive 

processes, including memory and learning, developmental synaptic pruning and formation, 

and the symptom of pathological conditions [130].  

 

To study activity-dependent synaptic plasticity, long-term potentiation (LTP) and long-term 

depression (LTD) are two classical models. LTP was firstly reported in 1973 [18] and 

represents the increase of synaptic strength that follows a brief and high frequent electrical 

stimulation. In several mammalian brain regions, such as neocortex [9], hippocampus [18] 

and amygdala [133], LTP has been detected. It is even suggested that LTP may occur at all 

excitatory synapses [130]. Contrary to LTP, LTD is the reduction in the effectiveness of 
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synaptic signaling transduction. Due to the absolute significance of synaptic plasticity, 

extensive efforts have been made to demonstrate the underlying mechanisms.  

 

N-methyl-D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs) are two ionotropic glutamate receptors that 

directly participate in the synaptic plasticity of excitatory synapses. Activation of these 

receptors leads to the depolarization of plasma membrane by strong influx of sodium ions and 

a small efflux of potassium ions. Basal glutamatergic transmission relies on AMPARs while 

NMDARs mainly serve as the regulator of synaptic transmission. In LTP, glutamate released 

from the presynaptic terminals relieves the magnesium block of NMADRs when the 

postsynaptic neuron is depolarized. Glutamate binding and depolarization lead to the maximal 

calcium influx of NMADRs, which triggers multiple intracellular signaling cascades to alter 

synaptic efficiency. On the contrary, repeated occurrence of smaller calcium influx through 

NMDARs triggers LTD following low-frequency synaptic stimulation. Although LTP and LTD 

are both induced by NMDARs-mediated calcium influx, it is accepted that strong increases in 

postsynaptic calcium lead by strong activations of NMDARs trigger LTP, while mild increases 

in postsynaptic calcium lead to LTD [126, 129]. Quantitative characteristics of calcium signals 

cause the insertion or removal of AMPARs in the synapses leading to LTP or LTD. The 

maintenance of LTP or LTD requires protein synthesis and synaptic structural changes. 

 

Dendritic spines 

After being detected by Ramon y Cajal [26], dendritic spines have been expected to be the 

locus for neuronal plasticity. Dendritic spines are the membranous protrusions that arise from 

dendrites to receive informational input from axonal terminals [152, 235]. Dendritic spines 

provide isolations for chemical and electrical signaling transduction in postsynaptic 

compartments (Fig. 1). 

 

As functioned as synaptic transmission, dendritic spines are morphologically specialized. 

They classically contain a bulbous head (0.001-1 µm3) linked to the dendritic shaft by a thin 

spine neck (<0.1 µm) [83]. The spine head, where molecular signals are compartmentalized 

after synaptic activation, consists of the post-synaptic density (PSD), a membrane-attached 

plate of electron dense thickening that is close and directly opposite to the presynaptic 

terminals [20]. The PSDs contain hundreds of proteins to serve as the devices of collecting 

synaptic signals, including neurotransmitter receptors, coupled signaling molecules and 
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scaffolding proteins [92, 155, 214]. Smooth endoplasmic reticulum (SER) has also been found 

within many dendritic spines, which is known to play a role in regulating calcium [5]. The 

released calcium from SER promotes the remodeling of actin cytoskeleton [154]. Actin 

filaments, instead of microtubules, are concentrated in spines to form organized bundles [28, 

135]. In addition, local protein synthesis and degradation occur in dendritic spines. 

Polyribosomes, the devices that are essential for translating proteins, are distributed in 

dendritic spines along with lysosomes and multi-vesicular bodies [189, 194]. Recycling 

endosomes in dendritic spines facilitate the processes of exo- and endocytosis [116, 161]. 

The quantities of compositions in dendritic spines vary greatly as their size and shape. 

 

Figure 1 Diagram of a synapse that is composed of a presynaptic bouton and a postsynaptic 
spine. The presynaptic bouton contains transmitter vesicles with glutamate, which is released 
into synaptic cleft and binds to neurotransmitter receptors located in dendritic spine head.   
 

Dendritic spines are characterized with their morphological diversity. During the development 

of brain, dendritic spines are relatively elongated and thin, while they gradually exhibit a 

prominent spine head and thus obtain a mushroom-like structure when the brain matures [157, 

237]. In adult brain, most dendritic spines contain thin necks and either big heads (>0.6 µm in 

diameter) or smaller heads [82]. Based on the relative sizes of spine heads and necks, 

dendritic spines have been divided into three main subtypes [164]. Spines with large heads 

and narrow necks are categorized as mushroom spines. Thin spines contain smaller spine 

heads and thin necks, while stubby spines are short and have no obvious spine necks. These 

categories provide measurably distinct spine shapes that might indicate different synaptic 

functions. Mushroom spines are found to be enriched in actin filaments [28] and most likely to 

have larger PSD with more neurotransmitter receptors, polyribosomes, SER and endosomes 
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[82, 159, 162, 189]. In contrast, thin spines contain less spine apparatuses, while they are 

more flexible to change the morphology when responding to increases or decreases in 

synaptic activity [19]. While the intrinsic mechanisms underlying the relationship between 

morphology and functions of dendritic spines are not fully understood, it is important to unveil 

how structural plasticity of dendritic spines is regulated and how its alterations modify synaptic 

transmissions in pathophysiological processes. 

 

Dendrites of neonatal mammalian pyramidal neurons barely have spines [166]. During the 

first few weeks after birth, the density of dendritic protrusions greatly increases and 

synaptogenesis boost up [138, 223]. The subsequent pruning of over-produced dendritic 

spines occurs during juvenile stages and thus facilitates the refinement of neural circuits [168, 

239]. In adult brain, the rate of spine pruning is dramatically declined and dendritic spines are 

more stable [89]. Apart from the absolute spine numbers, spine morphology also changes 

during development. Although stubby spines are the most abundant subtypes of dendritic 

spines in the early stages of development, filopodia, the elongated dendritic protrusions 

without distinctive spine heads, are prominent in the developing brain which are infrequently 

observed in adulthood [139]. Filopodia are regarded as the precursors of mature dendritic 

spines as their high motilities promote the hunting of presynaptic partners in the developing 

brain [237].   

 

In adult brain, dendritic spines are also maintained in a dynamic state. Individual spines form 

and eliminate over time, as well as morphological changes occur [45, 46, 81, 188]. Synaptic 

input from the external environment modulates formation, elimination and morphology of 

dendritic spines, which provides the structural basis of learning and memory. Many studies 

have addressed that LTP, representing the enhanced excitatory synaptic strength, can 

change spine number and morphology. Electron microscopy (EM) analysis followed by 

induction of LTP has revealed increased size and number of dendritic spines [95]. The new 

spines after LTP stimulation sprout from the dendrites rather than through splitting existing 

spines [54]. These results based on experimental protocols of enhancing synaptic strength 

suggest that morphological changes in dendritic spines may occur with enhancement of 

neural activities through learning and sensory experience. 

 

Numerous learning paradigms have been reported to induce changes in the density and 

morphology of dendritic spines. In adult motor cortex, training on motor skills increases the 
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number of synapses [113]. Also, increase of spine density after spatial learning tasks or 

induced by associative memory formation has been reported in hippocampus [50, 124, 144]. 

In addition, the size of dendritic spines changes with learning [64]. Besides learning, novel 

sensory experience has been applied to influence the spine number and morphology. 

Housing animals in enriched environment (EE) provides increased sensory experience and 

thus causes an increase in spine density on dendrites [42, 101]. Whisker stimulation in freely 

moving animals also gives rise to increased spine number [115]. On the contrary, deprivation 

of sensory experience by dark rearing leads to a decrease in spine density and creates 

spines with shorter length but larger heads in visual cortex, which are partially reversible with 

exposure to light [215]. These changes in spine number and morphology, induced by the 

stimulation of external environment, possibly provoke the remodeling of established neural 

circuits and then strengthen or weaken the synaptic connectivity in order to alter the efficiency 

of synaptic communication. 

 

In vivo two photon microscopy 

The evidence demonstrating the fact that synaptic activity modifies the structure of dendritic 

spines firstly arose from EM studies in 1970 to 1980 [18, 56, 57, 206]. In these pioneering 

studies, the enlargement of dendritic spines was observed after the induction of LTP.  

However, the results obtained from EM could not reveal that if the enlarged spines existed 

before or were just newly formed during LTP induction, as EM is not time-lapse imaging. Thus, 

it was difficult to tell whether the enlargement of dendritic spines is directly caused by LTP or 

if this phenomenon just occurs in parallel with LTP.  

 

To solve this problem, the first attempt to realize time-lapse imaging of dendritic spines during 

LTP induction was done in 1995 with confocal microscopy [90]. This study imaged individual 

dendritic spines of hippocampus neurons in acute brain slices before and after the induction 

of LTP and found increased spine length in a subpopulation of small spines. Furthermore, 

filopodia-like dendritic protrusions were found newly formed and existing spines went lost 

after LTP induction [131]. Although these observations provided direct evidence on the 

relationship between the enhancement of synaptic strength and the morphological changes of 

dendritic spines, ex vivo studies have limitations in illustrating if the observed phenomena in 

slices are consistent in intact brain or physiological stimulation on synaptic inputs, instead of 

artificial electronic stimulation, also facilitates the structural plasticity of dendritic spines. 
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A major technical advancement of imaging spine morphology is the application of two photon 

laser scanning microscopy, which has been adopted for the in vivo imaging of dendritic spines 

nowadays [41, 84]. In this microscopy, two photons of low energy are released from the laser 

and then collaborate to induce the electronic transition of higher energy in a fluorescent 

molecule [196]. The excitation of two photons is a nonlinear process and the long-wavelength 

excitation light is less scattering in tissues as to allow deeper penetration. Moreover, the 

intensity of focused excitation light is highest in the focal point and diminishes quadratically in 

the surrounding volume (Fig. 2). Consequently, fluorophores are mostly excited in a limited 

volume and thus the three dimensional contrasts and resolution are comparable to confocal 

microscopy even without spatial filters in the path of detection [41]. Compared to standard 

one photon microscopy, photo-toxicity is also greatly reduced in two photon microscopy as 

the energy of excitation is strongly decreased outside the focal point. Collectively, the advent 

of two photon microscopy provides a great opportunity to study the structure and structural 

plasticity of dendritic spines in vivo. 

 

Figure 2 Diagrams of one-photon and two photon excitation. Two simultaneous photons with 
lower energy are absorbed to excite a fluorescent molecular, which emits a photon in the 
visible wavelength.   
	  

In vivo remodeling of dendritic spines 

Combined with chronic in vivo two photon microscopy, transgenic mouse models expressing 

green fluorescent protein (GFP) or yellow fluorescent protein (YFP) in neurons of interest 

have been utilized to explore the morphological changes of dendritic spines in vivo [52] (Fig. 

3). Dendritic spines are found to be highly dynamic at early postnatal stages and the rate of 

spine turnover rate decreases during postnatal development [123, 238]. In mature brain, the 

total number of dendritic spines becomes relatively stable with matched spine elimination and 

formation [88, 229]. However, the comparative stability of neural circuits in adults is able to be 

remodeled by novel experience. 

 

The structural changes of dendritic spines have been examined in several sensory cortical 

regions in adult brain. In the somatosensory cortex, environmental enrichment upsets the 
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balance between spine formation and elimination and thus increases spine density in layer 3 

and 5 pyramidal neurons [101]. Also, whisker potentiation stabilizes new-formed spines in 

neurons at the border between spared and deprived barrel columns, which may be mediated 

by alphaCaMKII auto-phosphorylation [224]. In the visual cortex, monocular deprivation 

increases spine density of layer 5 pyramidal neurons and decreases the number of inhibitory 

synapses that present on dendritic spines [88, 207]. In the motor cortex, motor skill learning 

enhances spine formation, while increased spine elimination follows up [229, 233]. 

Interestingly, the new formed dendritic spines after learning come up in clusters that are 

enriched in neighboring spine pairs [60].  In the frontal association cortex, fear conditioning 

increases spine elimination, while fear extinction increases spine formation, which occurs 

close to the positions of spine elimination when mice exposed to fear conditioning [120].  

 

Figure 3 In vivo imaging of GFP-labeled dendrites. (a) a cranial window above somatosensory 
cortex. (b) transgenic mouse is anesthetized and placed under the two-photon microscope. (c) 
GFP-labeled dendrites in the cortex of transgenic mouse.    
 

Besides the morphological changes of dendritic spines in physiological conditions, chronic in 

vivo two photon imaging has also been applied to investigate structural spine plasticity in 

pathological conditions. After stroke, peri-infarct dendrites demonstrate increased spine 

formation over weeks [23]. After spinal cord injury, spine density decreases with spine 

morphology changed in the motor cortex [110]. After a retinal lesion, spine formation and 

elimination both increase massively in adult mouse visual cortex [107]. In a transgenic mouse 

model of fragile X syndrome, the down-regulation of spine turnover rate and the transition of 

spine subtypes during postnatal development are delayed and transient spines are 

overproduced [34, 160]. Importantly, in transgenic mouse models of Alzheimer’s disease, loss 

of dendritic spines has been shown [16, 192, 205].  
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The studies into the structural plasticity of dendritic spines in the intact brain with the 

development of imaging technologies have definitely broadened our knowledge of 

organization and remodeling of neural networks in physiological and pathological conditions. 

The mechanisms underlying experience-dependent spine plasticity in behaviorally relevant 

learning conditions and the changes developing in pathological conditions need to be further 

investigated in details.   

 

Dendritic spine alterations in pathological conditions 

Dendritic spines undergo pathological alterations resulted from a number of insults and 

diseases. Pathological alterations of dendritic spines mainly refer to the changes in spine 

distribution and morphology [55]. Pathology of spine distribution is mediated by a dramatic 

decrease or increase in spine density. Spine loss is seen in neurodegenerative disorders, 

malnutrition and toxin exposure, which may be caused by the degeneration of axon after 

neuronal loss [24, 76]. On the other hand, an increase in spine density is reported in patients 

with fragile X syndrome or some neuropsychiatric diseases [94, 163]. Besides the structural 

integrity of afferent axons that affect spine density, their functional integrity is ascribed to the 

alteration in spine morphology. Reduced dendritic spine size is found in the striatum of 

schizophrenics [176] or in visual cortex after visual deprivation from birth [59, 204]. Mutations 

that lead to mental retardation usually disturb spine shapes. Long and tortuous spines have 

been observed in fragile-X syndrome, Down’ syndrome, fetal alcohol syndrome and maple 

syrup urine disease [53, 103, 200, 226].  

Spine or associated synaptic pathology may contribute to cognitive deficits, especially in 

neurodegenerative disorders. Being the most common neurodegenerative disorder, 

Alzheimer’s disease (AD) is associated with synaptic loss. Patients with AD exhibit a 

significant loss in synapses and synaptic density correlates with cognitive capacities [40]. Also, 

a progressive alteration of dendritic spines is observed in brains of AD patients [137]. 

Decreased neurotransmitter receptors further confirm the loss of synaptic function. The 

expression of nicotinic acetylcholine receptor α4β2 is  reduced in the medial frontal cortex and 

nucleus basalis magnocellularis, which implies an impairment in cholinergic synapses [137]. 

In addtion, 5-hydroxytryptamine (5-HT)4 receptor  is upregulted in early AD, while 5-HT1 

receptor is decreased in advanced stages of AD [128, 140]. The cause of spine pathology in 

AD needs to be studies in details for successfully tackling this disease. 



12	  
	  

 

Alzheimer’s disease 

The discovery of the disease 

In 1906 at the 37th meeting of the Society of Southwest German Psychiatrists, a Bavarian 

psychiatrist, Alois Alzheimer, presented a pathological syndrome that was subsequently 

named after him [29, 69, 182]. In Alzheimer’s report, his patient, a woman referred as 

Auguste D., exhibited progressive cognitive decline, gradual loss of language function, and 

altered social behaviors such as delusions and paranoia. The patient maintained normal 

motor skills and sensory functions in the beginning, while she continued to lose cognitions 

and showed motor disorders as the disease progressed [4]. After the death of the patient who 

survived no more than five years after the onset of the disease, Alzheimer carried out an 

autopsy and found out specific alterations in her brain. First of all, the brain weight was 

reduced with enlarged ventricles. Secondly, extracellular plaques of dense material were 

detected in the brain sections. Thirdly, stained by silver solution, neurofibrillary tangles were 

found in normal-looking cells. These features are still observed in most patients of 

Alzheimer’s disease (AD) nowadays. In 2010, 21 to 35 million people worldwide suffered from 

AD and there is no effective pharmacological treatments until now [167]. Thus, it is still crucial 

to investigate the pathological processes of AD, even though it has been discovered more 

than one hundred years. 

 

Clinical symptoms of AD 

Being the most common cause of dementia, AD usually undergoes a typical clinical course 

that exhibits progressive neuropathology. The progression of AD from preclinical stage to the 

stage of dementia lasts more than decades [171, 191]. The long preclinical stage of AD refers 

to the period when Alzheimer’s pathology can be determined in normal cognitive conditions 

[190]. With positron emission tomography (PET) imaging, amyloid deposits (one of the 

neuropathological markers in AD) have been detected in a considerable fraction of people 

with intact cognitive functions [1, 165]. In agreement with these observations, reduced 

expression of amyloid β (Aβ)42 in cerebrospinal fluid (CSF), which is inversely related with 

amyloid imaging load, is also found in preclinical AD [51, 210]. The subjects that have been 

diagnosed in preclinical stage of AD are at risk for future cognitive decline [213].    

 

Between the pathological alterations in cognitively intact elderly and those observed in typical 

AD, there exists an intermediate stage of cognitive impairment named mild cognitive 
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impairment (MCI). Patients with MCI comprise a population at high risk for developing AD 

[209]. The clinical criteria for diagnosing MCI include the concern to the decline in cognition, 

impairment in one or more cognitive functions, independence in performing complex 

functional tasks and no dementia [3]. Typically, MCI patients who display the impairment in 

episodic memory are most likely to progress into AD. 

 

With the progression of cognitive decline, AD patients suffer from severe impairment in recent 

memory [10]. The abilities of reasoning, planning and organizing are also impaired. Reading 

and writing skills start to deteriorate [35, 150]. The understanding of texts and completeness 

of spelling become difficult. A substantial fraction of patients develop delusional symptoms 

induced by cognitive deficits [169]. Also, patients become easy to lose emotional control with 

aggressive physical or verbal activities [58].  

 

At the late age of AD, the severe impairments are observed in almost all cognitive functions 

[44]. Patients are only able to speak simple phrases or single words. After the loss of 

language abilities, many patients can still respond to emotional signals. The life expectancy of 

AD patients is no more than a decade [119].    

    

Neuropathological markers 

By silver staining, Alzheimer identified neuritic plaques and neurofibrillary tangles in the brain 

sections of Auguste D. [4] (Fig. 4). These two neuropathological characteristics bring a 

starting point for understanding the molecular mechanisms underlying the pathogenesis of AD. 

Although it remains controversial that the AD related pathological events and their temporal 

sequences due to the biochemical complexity of the disease, there is no doubt that 

substantial progress in elucidating AD biology has been achieved from deciphering the 

compositions of the histological hallmarks [181]. 

 

Neurite plaques are microscopic foci of extracellular amyloid deposits [66, 134]. Such plaques 

usually contain fibrillar cores which are composed of fibrillar Aβ. The fibrillar core can be 

stained by Congo red or thioflavin S in brain sections. In vivo imaging of fibrillar Aβ is 

achieved by either radiolabelled derivatives of the dyes in PET imaging or fluorescent 

derivatives such as Methoxy-X04 [15, 17, 208]. Within and surrounding the amyloid deposits, 

dystrophic neurites have been observed [62, 145, 186]. These aberrant neurites are dilated 

with ultrastructural abnormalities, such as enlarged lysosomes, abundant mitochondria and 
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helical filaments [182]. The pathological relation between dystrophic neurites and cognitive 

impairments has been suggested in AD transgenic mice that exhibit neuronal dystrophy and 

deficient cognitive tasks without neuronal loss [73, 93]. Also, neurite plaques are correlated 

with activated glial cells. The activated astrocytes often encircle the outside of plaques with 

their processes protruding inside the cores of amyloid plaques, while the activated microglial 

cells are located near the amyloid cores [136, 211]. The activation of microglia follows the 

formation of fibrillar amyloid plaques [102]. The most fibrillar Aβ in neurite plaques are the 

combination of Aβ species cleaved at amino acid 42 and 40 (Aβ42 and Aβ40). Aβ42 is more 

hydrophobic and principally inclined to aggregation, while Aβ40 is produced more abundantly 

and normally co-localized with Aβ42 in the deposits [97, 98].  

                        

Fig. 4 Microscopic brain preparation of the first AD case. The amyloid plaques and 
neurofibrillary tangles in brain autopsies of Auguste D., the first AD case described by Alois 
Alzheimer (Source: archives of Center of Neuropathology and Prion Research, LMU, Munich) 
 

When the protein subunits of amyloid deposits have been identified as Aβ peptides [66, 134], 

antibodies against endogenous or synthetic Aβ were developed. With these antibodies, 

immunochemical staining reveals extensive number of Aβ deposits, which cannot be 

examined by the dyes that are specific for fibrillar aggregates. Also, these plaque-like 

deposits seem to be not surrounded by dystrophic neurites and activated glial cells. Such Aβ 

deposits are referred as diffuse or pre-amyloid plaques [99, 198, 231].  Unlike the mixed 

deposits of Aβ42 and Aβ40 in fibrillar plaques, the diffuse plaques are largely composed of Aβ42 

with little Aβ40 [96, 181]. It has been speculated that the diffuse plaques may be the 

precursors of fibrillar plaques [143, 156, 220]. In brain regions that are not clearly involved in 

clinical symptoms of AD, such as cerebellum and striatum, and do not strongly exhibit 

neuronal dystrophy and activation of glial cells, diffuse Aβ deposits are mostly found. Also, 

diffuse plaques are often detected in normal elderly people in brain regions that fibrillar 

plaques are shown in AD patients. Transgenic mouse models of AD also develop diffuse 

deposits before fibrillar ones [32, 193]. In addition, patients with Down’s syndrome display 

diffuse plaques when they are teenagers and fibrillar despoits decades later [122]. These 
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results collectively support the hypothesis that diffuse plaques are the immature plaques that 

precedes the formation of fibrillar plaques with surrounding neuritic and glial cytopathology. 

 

Neurofibrillary tangles are intraneuronal cytoplasmic bundles of abnormal fibers that usually 

occur in brain regions typically disturbed in AD progressions, such as entorhinal cortex, 

hippocampus, amygdala and parietal lobes [21, 22]. These fibers contain pairs of filaments 

that are curved into helices (PHFs) as revealed by electron microscopy. PHFs are also 

sometimes interspersed with straight filaments [181, 182]. Biochemical analyses show that 

the subunit protein of the fibers is the microtubule-associated protein tau [75, 118, 153]. The 

tau is mainly located in axons in physiological conditions and its phosphorylation pattern 

regulates the subcellular localization. In PHFs, this soluble cytosolic protein is hyper-

phosphorylated and becomes relatively insoluble. The aggregates of hyper-phosphorylated 

tau are usually mixed with ubiquitin, which may represent an attempt to degrade this 

intraneuronal protein inclusion in neurons. The formation of mature neurofibrillary tangles can 

be defined in four stages [7]. At stage 0, diffuse or granular tau staining is observed in 

pyramidal neurons with normal morphology. It represents the beginning of tau aggregation. At 

stage 1, with antibodies against tau, elongate inclusions are stained as early tangles. At stage 

2, classical neurofibrillary tangles are detected in the somas with tau antibodies. At stage 3, 

the host neurons die and ghost tangles appear which are identified by anti-ubiquitin staining. 

The aggregates of hyper-phosphorylated tau may be a secondary effect of Aβ in AD. 

Knockout of tau in transgenic mice prevents the neurons from the damages caused by Aβ 

[174, 175]. Also, tau tangles are observed in other brain insults, such as epilepsy, focal 

cortical dysplasia and Niemann-Pick disease type C [149, 184, 195, 236]. Interestingly, tau 

pathology correlates better with cognitive decline than amyloid pathology [2, 14, 65]. 

 

These two neuropathological markers of AD, neurite plaques and neurofibrillary tangles, can 

independently develop in human cases. The biochemical characteristics of tau aggregates 

are similar in AD and other brain disorders that do not exhibit neurite plaques. On the other 

hand, in brains of cognitive normal elderly adults, neurite plaques can be detected without the 

appearance of neurofibrillary tangles. In some cases of AD, only a few neurofibrillary tangles 

can be detected in the neocortex although neurite plaques are abundant [203].  
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The amyloid hypothesis 

More than twenty years, the amyloid hypothesis has dominated studies on the pathogenesis 

of AD [79, 80, 183]. This hypothesis proposes that amyloid deposition plays a central role in 

AD and implies elimination of Aβ will cure AD. The advent of the hypothesis has extensively 

promoted AD research. Also, the amyloid hypothesis itself has undergone revolutions during 

these years. Initially, the local toxic effects of amyloid plaques on neighboring cells were 

assumed as the cause of AD. However, soluble oligomers of Aβ are now supposed to 

contribute to the onset of the disease [78]. The most solid proof for the amyloid hypothesis is 

the discovery of AD causative genes 

 

As early as in 1906, amyloid plaques were reported in the neocortex and hippocampus of AD 

patients and thus they are inevitably related with this disease [4]. In 1980s, biochemical 

analysis isolated the amyloid proteins and identified Aβ as the subunit protein of amyloid 

deposits [67, 72, 134]. Also, similar neuropathological markers are observed in patients with 

Down syndrome and the amino acid sequence of amyloid deposit in this disease is identical 

to the ones in AD patients [66, 132]. These results suggest AD and Down syndrome may 

share common pathological processes. As Down syndrome is due to the trisomy of the 21st 

chromosome, it means that increased expression of genes on the 21st chromosome may 

cause AD.  In the process of isolating the gene encoding Aβ, amyloid precursor protein (APP) 

has been identified as the precursor to Aβ [70, 173, 201]. It is appealing that the gene of APP 

is on the 21st chromosome, implying the overexpression of this gene in Down syndrome may 

lead to the cognitive decline [105]. Based on these findings, the gene of APP became a target 

for researchers to investigate if its mutilations cause AD. In a Dutch family with hereditary 

cerebral hemorrhage with amyloidosis, the first APP mutation related with the pathogenesis of 

AD has been discovered [125]. Later, several different APP mutations were reported in 

families with early-onset AD [30, 68, 146]. All these AD causing mutations increase the 

production of Aβ. Recently, a mutation in APP decreasing Aβ production was found to be 

protective against AD and age-related cognitive decline [100].  

 

Interestingly, some mutations that also result in early-onset AD are not localized in APP gene, 

or even on 21st chromosome. However, these mutations, presenilin 1 or 2 mutations (PS1 or 

PS2), were reported to elevate Aβ expression, implying they are likely to influence APP 

metabolism [180].  In 1997, presenilins were firstly found to interact with APP directly by co-
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immunoprecipitation [228]. The following studies demonstrated that presenilins are the 

catalytic component of a protein complex that contributes to APP proteolysis [37, 227]. In 

addition, carriers of apolipoprotein E ε4 (ApoE4) are inclined to accumulate Aβ and have a 

strong risk for developing AD [142]. Taken together, all the AD causing or risk mutations 

identified in human cases induce the increases in Aβ levels or changes in Aβ ratio. 

 

As the imbalance between Aβ production and clearance is believed to be causative for AD 

pathogenesis, this peptide should directly or indirectly contributes to the decline of cognition in 

AD patients, which means abnormal Aβ species need to be neurotoxic. Amyloid plaques, 

which are composed of fibrillar Aβ, are typically surrounded by dystrophic neurites, implying 

Aβ aggregates might cause local synaptic abnormalities [205]. Recent studies also indicate 

soluble Aβ oligomers may contribute to neuronal dysfunctions in AD [78]. Soluble Aβ 

oligomers range from dimers to dodecamers [216]. These oligomers are detected in human 

brain and CSF and exist in AD brain at a higher level [71]. The facts that the oligomers bind 

particularly to synapses and inhibit LTP provide evidence for their roles in cognitive 

impairment [114, 216, 219]. As Aβ oligomers exist in the surrounding area of amyloid plaques, 

it is difficult to ascertain if the pathology observed in the vicinity of plaques is caused by 

insoluble deposits, soluble oligomers or a combination of them.   

 

The proteolysis of APP 

Being the precursor protein of Aβ, APP contains a group of polypeptides which include 

alternative slicing isoforms of 695, 751 and 770 residues with a variety of posttranslational 

modifications [91, 217, 222]. The 751 and 770 residue isoforms usually present in both non-

neuronal and neuronal cells, while 695 isoform is highly overexpressed in neurons other than 

non-neuronal cells [77]. Compared to 751 or 770 amino acids, 695 isoform lacks a 56-amino 

acid motif, which is similar to the sequence of Kunitz-type of serine protease inhibitors (KPI) 

[179]. Actually, APP belongs to a large gene family, which is called the amyloid precursor 

proteins (APLPs). APLPs share considerable homology with ectodomain and cytoplasmic tail, 

but they are quite different in the Aβ domain [47, 117]. 

 

APP is a single transmembrane protein that contains a large extracellular ectodomain and a 

short cytoplasmic tail. Proteolytic cleavages of APP release secreted derivatives into 

extracellular space and vesicle lumens. These processes are initiated either by an activity of 

α-secretase, which occurs at 12 residues NH2-terminal to the transmembrane domain and 
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releases soluble ectodomain termed APPsα, or by an activity of β-secretase that mainly cuts 

28 amino acids NH2-terminal to the APP transmembrane domain and releases APPsβ  [49, 

185]. In these ways, 83-residue and 99-residue COOH-terminal fragments (CTF) are 

generated in the membrane, irrespectively. CTF99 other than CTF83 contains the domain of 

Aβ. Following the subsequent cleavage by γ-secretase, p3, Aβ and APP intracellular domain 

(AICD) are produced [147] (Fig. 5).   

Figure 5 The proteolysis of APP. APP is degraded initiated by α or β-secretase. In amyloid 
pathway, Aβ is produced following the subsequent cleavage of γ-secretase.  
 

The ratio of Aβ peptides is dependent on the activity of γ-secretase or APP sequence [106]. 

The γ-secretase is a complex that contains four proteins, including PS1 or PS2, nicastrin, 

anterior pharynx defective 1 (APH1) and PS enhancer 2 [38]. PS1 and PS2 provide the 

catalytic site for the proteolysis of CTF [39, 227]. As PS2 γ-secretase dose not mainly 

participate in Aβ production, only a few PS2 mutations are found to be contribute to the early-

onset AD [85]. In wild-type PS1, Aβ40 peptide is the major product of CTF cleavage mediated 

by γ-secretase. Aβ50/ Aβ49 is firstly cleaved by γ-secretase and then degraded into a shorter 

form [199, 230]. In most PS1 mutations that lead to early-onset AD, total amount of Aβ is 

reduced, while the ratio of Aβ42/ Aβ40 is enhanced [13]. The familial AD mutations in APP gene 

that locate at β-secretase cleavage site increase the production of all Aβ species, while the 

ones in γ-secretase cleavage site are in favor of Aβ42 formation [180]. These results imply that 

the ratio of Aβ may be more crucial than the absolute amount of Aβ, at least in the 

pathogenesis caused by familial AD PS mutations. 
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Physiological functions of APP 

Although it is widely believed that the proteolytic peptide of APP, Aβ, plays a central role in 

AD pathogenesis, the question of whether loss of APP due to the enhanced proteolytic 

process into Aβ also participates in the pathogenesis of AD remains unclear. Thus, the 

physiological functions of APP need to be unraveled. 

 

APP is found to be highly expressed in neurons and localize in soma, dendrites and axons 

[87, 232]. The expression of APP is upregulated along with increased neuronal activity [197]. 

It undergoes anterograde transport with vesicles after being synthesized in the endoplasmic 

reticulum of cell soma [148]. Post-translationally modified by glycosylation and 

phosphorylation, APP associates with cytoplasmic proteins that facilitate APP transport into 

pre- and postsynaptic compartments [218]. The synaptic interaction of APP may form 

membrane tethers to modulate synaptic function [221]. Indeed, the extracellular domain of 

APP induces its trans-synaptic dimerization, which may be mediated by heparin [36, 74].  

While cis-dimerization of APP modulates the proteolytic cleavage by γ-secretase, trans-

dimerization promotes the adhesion between cells [170, 187]. The APP extracellular domain 

also interacts with extracellular matrix proteins and thus contributes to cell-matrix adhesion 

[11, 109, 141]. In addition, APP may be a modulatory protein for other adhesion molecules, as 

it is found to co-localize with them at the sites of adhesion [6, 127, 158, 234]. The role of APP 

in adhesion induces synaptogenesis [221] and it raises the question that whether APP-

meditated synaptic adhesion is involved in AD, which is characterized by impaired synaptic 

functions.      

 

Besides the neurotrophic effects of full-length APP due to its adhesion properties, growing 

evidence points out that α-secretase released APP soluble fragment, APPsα, is also involved 

in physiological functions of APP. Enhanced APPsα levels induce an increase in synaptic 

density [12, 177], while antibodies against APPsα inhibits LTP and spatial memory 

[202].Physiological deficits in APP knockout mice are fully restored by APPsα [172]. APPsα 

may enhance the phosphorylation of extracellular regulated protein kinases to promote 

neurite growth and adult neurogenesis [33, 178]. Also, there is evidence that APPsα 

stimulates the proliferation of neural stem cells in adult rodent brain through co-working with 

epidermal growth factor [25]. On the other hand, APPsβ undergoes further cleavage that 

binds to death receptor 6 mediating axonal pruning and degeneration [151]. AICD, the APP 

intracellular domain after γ-secretase cleavage, translocate into the nucleus to initiate 
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intracellular signaling cascades [63, 112]. Combined with Fe65 and Tip60, AICD form a 

transcriptionally active complex [27], of which the downstream targets have been identified 

[31, 111, 121, 212].      
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Abstract 

Alzheimer’s disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), 

which is a cleavage product of amyloid precursor protein (APP). Transgenic mice 

overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, 

APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice 

express APP with Swedish mutation and develop amyloid plaques late in their life, while 

cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and 

mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old 

age. To unveil the reasons for different progressions of cognitive decline in these commonly 

used mouse models, we analyzed the number and turnover of dendritic spines, as an 

important structural correlate for learning and memory. Chronic in vivo two photon imaging in 

apical layer V pyramidal neuron dendrites revealed a decreased spine density in 4-5-month-

old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on 

cortical dendrites that were in close proximity to amyloid plaques. In both cases the reduced 

spine density was caused by decreased spine formation. Interestingly, the patterns of 

alterations in spine morphology differed between these two transgenic mouse models. 

Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was 

inversely correlated with the absolute spine density and the relative number of mushroom 

spines. Collectively, our results suggest different pathological mechanisms, namely an 

intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine 

abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, 

which may represent very different mechanisms of synaptic failure in AD, have to be taken 

into consideration when translating results from animal studies to the human disease. 

 

Keywords: Alzheimer’s disease, Intraneuronal APP, Extracellular Aβ, Dendritic spines, Two 

photon in vivo imaging 
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Introduction 

Alzheimer’s disease (AD) is the most prevalent cause of dementia and currently no effective 

treatment exists. Multiple strands of evidence suggest that amyloid precursor protein (APP) 

and its proteolytic fragment, amyloid β-protein (Aβ), play a crucial role in the pathogenesis of 

AD [62]. APP is a single-pass transmembrane protein enriched at synapses [19]. The highly 

conserved APP gene is located on chromosome 21 and overexpression of APP in Down’s 

syndrome (Trisomy 21) causes accumulation of amyloid plaques early in life [21]. Through 

sequential enzymatic cleavage by β and γ-secretases, full-length APP is processed to yield 

amyloid beta (Aβ) as well as other fragments. Accumulation of fibrillar Aβ leads to formation 

of senile plaques, the typical neuropathological hallmark of AD. Soluble oligomeric Aβ, in 

contrast, is thought to mediate synapse dysfunction and loss, which strongly correlate with 

cognitive decline in AD [20, 32]. The amyloid hypothesis takes the imbalance between Aβ 

production and clearance as the primary cause of AD [20]. Based on this hypothesis and the 

discovery of familial AD mutations that facilitate Aβ production, transgenic mouse models 

overexpressing mutant APP and/or presenilins (PS), which form part of the γ-secretase 

complex, have been created to recapitulate AD pathology.  

  

Among the APP transgenic mouse models, APP23 and APPswe/PS1deltaE9 (deltaE9) mice 

have been extensively used for exploring AD related pathology and drug development [63]. 

To recapitulate the pathogenesis of human AD, APP23 mouse model overexpresses human 

APP with the Swedish mutation under the murine Thy1 promoter [57], while deltaE9 mice 

express APP with the Swedish mutation controlled by mouse prion protein promoter elements 

together with mutant human PS1 lacking exon 9, which is associated with familial AD [29, 52]. 

Although these two transgenic mouse models display neuronal loss, cholinergic deficit, 

cognitive impairments, amyloid plaques and neuroinflammation in old age, the onsets of 

amyloid plaque formation and cognitive decline between them are very different in early 

adulthood [5, 8, 9, 30, 38, 56]. Aβ deposits are not observed in APP23 mice younger than 6 

months, but age-matched deltaE9 mice have already developed plaques [28]. Despite of the 

slower progress of amyloid plaque formation, APP23 mice show faster cognitive decline than 

deltaE9 mice. APP23 mice begin to develop cognitive deficits at three months, while deltaE9 

mice do not have typical impaired memory until one year of age [60, 61]. Uncovering and 

understanding the discrepancies between them are important for the utility of particular animal 

models to deepen our knowledge of synaptic failure in AD. 
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Using in vivo two-photon imaging of cortical layer V pyramidal neurons, we found reduced 

dendritic spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, loss of 

dendritic spines was only observed in close proximity to plaques. Furthermore, chronic in vivo 

imaging revealed that spine loss in AD transgenic mouse models was the consequence of 

decreased spine formation. Also, morphologies of dendritic spines in APP23 and deltaE9 

mice were altered differently. Immunostaining showed accumulated intracellular APP in 

APP23 mice. The amount of intracellular APP was negatively correlated with spine density 

and morphology. These results suggest that spine abnormalities in young adult APP23 and 

deltaE9 mice might be caused by intracellular APP and extracellular Aβ deposits, respectively.   

 

Materials and Methods 

Animals  

APP23 (Novartis) and APPswe/PS1deltaE9 mice (Jackson Laboratory) [29, 52, 57] were 

crossed with GPF-M mice (Jackson Laboratory) [13] to obtain double transgenic offspring 

heterozygous for the corresponding genes. All transgenic lines were kept on C57BL/6 

background. eGFP positive littermates without mutant APP and PS1 transgenes were used 

as controls. Only female mice at the age of 4-5 months were used in this study. All protocols 

and procedures were conducted according to the animal protocol approved by the Ludwig-

Maximilian University Munich and the government of Upper Bavaria. 

 

Cranial window implantation and in vivo two-photon imaging 

As previously described [24], mice were anesthetized by intraperitoneal injection of 

ketamine/xylazine (130/10 µg/g body weight). Subsequently, dexamethasone (6 µg/g body 

weight) was injected intraperitoneally to prevent development of cerebral edema. A piece of 

skull above the somatosensory cortex was removed and replaced with a 4 mm diameter 

coverslip. After a 4-week recovery period, apical dendrites originating from layer V pyramidal 

neurons were imaged using a LSM 7MP microscope (Zeiss) equipped with a 20x water-

immersion objective (1.0 NA, Zeiss). Mice were anesthetized with isoflurane and placed on a 

heating pad to maintain the body temperature. Any single imaging session lasted no longer 

than one hour. In subsequent imaging sessions, imaged regions were re-localized based on 

the unique pattern of blood vessels. To stain amyloid plaques in vivo, methoxy-X04 (1 mg/kg) 

was intraperitoneally injected 24 h before imaging. For overview images, 424 x 424 x 350 µm3 
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z-stacks (0.83 µm/pixel) were taken. Higher resolution images (0.138 µm/pixel) were used for 

counting dendritic spines.      

 

Spine analysis 

Spines were counted manually in ZEN 2011 (Zeiss). Due to limitations in resolution in the Z-

direction, only laterally protruding spines were taken into account, as only those could be 

identified with certainty and classified morphologically. Spines that had emerged or 

disappeared since the previous imaging session were classified as formed or eliminated, 

respectively. Spine turnover rate (TOR) was calculated as follows: (Nf + Ne)/(2 × Nt × D), Nf = 

formed spines, Ne = eliminated spines, Nt = total spines, D= interval days between imaging 

sessions. For morphological analysis, maximum intensity projections from in vivo two-photon 

stacks were used. The length of each spine was measured from the tip of the spine head to 

the bottom of the spine neck. Spine head width was defined as the length between the left 

edge of spine head to the right edge. Spines were classified into mushroom, stubby and thin 

spines based on their appearances as described before [22, 24].  

 

Immunohisochemistry 

Following transcardial perfusion with phosphate buffered saline (PBS) and 4% 

paraformaldehyde (PFA), mouse brains were fixed in 4% PFA overnight at 4 °C and then cut 

into 65 µm thick free-floating frontal sections at the level of the somatosensory cortex. β 

amyloid (4G8, Covance, 1:200), beta-amyloid 40 (139-5, Covance, 1:100), and beta-amyloid 

42 (11-1-3, Covance, 1:100) and anti-APP 22C11 (Millipore, 1:20) antibodies were used for 

APP and Aβ staining. Anti-mouse or rabbit Alexa 647 antibody (Life technologies, 1:1000) 

was used as the secondary antibody. For spine imaging, sections were incubated with anti-

GFP coupled with Alexa 488 (Life technologies, 1:300) and then mounted on glass coverslips 

using fluorescence mounting medium (Dako). For the microscopy of cortical areas, LSM 780 

confocal microscope (Zeiss) was equipped with a 10x/0.3 objective. To image pyramidal 

neurons and dendrites, a 40x/1.4 objective was used and 212 x 212 x 80 µm3 z-stacks (0.415 

µm/pixel) were taken for overview images and APP quantification. To quantify the relative 

APP amount, custom-written Matlab software was applied to correct for the depth-dependent 

changes inherent to data obtained from brain slices immunostained with fluorophor-coupled 

antibodies. Exponential fitting was applied to correct for the reduction in fluorescence intensity 

toward the center of the brain slice due to decreasing antibody penetration as well as the 
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additional reduction imposed by light scattering and light absorption over the complete depth 

of the slice. Higher resolution images (0.069 µm/pixel) were used for counting dendritic spines. 

 

Statistics 

Analyses were performed blinded with respect to mouse genotype. The numbers of mice for 

in vivo two photon imaging were 5-6 per group. 7-12 dendrites were imaged in each mouse; 

the length of each dendrite was 25-35 µm. The data are presented as the means for every 

mouse (round symbols) and the means of the means (horizontal line with error bars), except 

for the data shown in figure 3, where the data from 13 dendrites out of 5 mice, which were 

located in proximity to nascent plaques (50-80 µm), are shown. More than 30 neurons from 5 

mice were imaged in ex vivo imaging. Results are presented as mean ± S.E.M and compared 

with controls by one-way ANOVA with Dunnett’s test. Kolmogorov-Smirnov test was used for 

comparing cumulative frequency distributions. Extra sum-of squares F test was used when 

data were fitted a straight line with nonlinear regression. p<0.05 was defined as statistically 

significant with * p<0.05, ** p<0.01, N.S.: not significant.  

  	  

Results 

Dendritic spine density of layer V pyramidal neurons is reduced differently in young 

adult APP23 and deltaE9 mice  

In this study, we used APP23 and deltaE9 mouse models, which both express human APP 

with the Swedish mutation. In deltaE9 mice, mutant human PS1 lacking exon 9 is co-

expressed [29, 52, 57]. These two mouse models develop neuropathological hallmarks of AD 

differently in young adulthood. APP23 mice show cognitive deficits before amyloid plaque 

formation while deltaE9 mice develop memory loss after Aβ deposition [28, 60, 61].  

 

To examine whether and how AD transgenic mouse models develop synaptic pathology in 

young adulthood, we crossed APP23 and deltaE9 mice with GFP-M transgenic mice to 

visualize apical dendrites of layer V pyramidal neurons by in vivo two-photon microscopy (Fig. 

1a). We found a significant decrease of spine density in APP23 mice at the age of 4-5 months 

(0.28±0.01 spines/µm, vs. WT 0.38±0.03 spines/µm, Fig. 1b). Because Aβ deposits emerge in 

deltaE9 mice as early as 4 months of age and amyloid plaques disturb dendritic spine stability 

[3, 16], we analyzed dendrites in deltaE9 mice that were close and far from plaques. 

Dendrites that were chosen from plaque-free overview images (>100 µm from plaques, 
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supplementary Figure 1a) did not show spine loss (0.36±0.01 spines/µm, Fig. 1b), but the 

ones that were in close proximity to plaques (<30 µm from plaques, supplementary Figure 1b) 

displayed a strong decrease in spine density (0.27±0.02 spines/µm, Fig. 1b).         

 

Imbalance between spine formation and elimination causes spine loss	  

To determine whether spine dynamics are altered in APP23 and deltaE9 mice, we repeatedly 

imaged apical dendrites one week apart in the somatosensory cortex. While the spine 

turnover rate in both AD models did not differ from WT animals (0.038±0.003 vs. 0.042±0.003 

vs. 0.039±0.004 vs. 0.045±0.003, Fig. 1c), we found that significantly fewer new spines 

emerged in APP23 mice (0.05±0.004 spines/µm, vs. WT 0.11±0.01 spines/µm, Fig. 1e). In 

deltaE9 mice, spine formation was also decreased on dendrites that were in proximity to 

plaques (<30 µm, 0.065±0.003 spines/µm, Fig. 1e), but not on dendrites far away from 

plaques (>100 µm, 0.099±0.01 spines/µm, Fig. 1e). The spine eliminations among WT, 

APP23 and deltaE9 mice (>100 µm and <30 µm) were comparable (0.098±0.004 spines/µm 

vs. 0.087±0.008 spines/µm vs. 0.097±0.005 spines/µm vs. 0.087±0.008 spines/µm, Figure 

1d). These results suggest that the decrease in the spine density of young adult AD mice is 

as a consequence of an imbalance between spine formation and elimination.  

	  

Alterations in spine morphology differ between APP23 and deltaE9 mice 

Besides absolute spine density, spine morphology also correlates with dendritic spine function 

and thus impacts cognitive performance [51]. To examine whether the spine morphology of 

these AD transgenic mouse models is altered, we measured spine length and spine head 

width of the in vivo imaged dendritic spines. Spine lengths of dendritic spines from APP23 

and deltaE9 mice (<30 µm) were significantly decreased, while spines from deltaE9 mice 

(>100 µm) showed decreased spine head width (Fig. 2a, b). Moreover, we classified the 

spines according to their morphological appearance into mushroom, stubby and thin spines 

[24]. APP23 and deltaE9 mice (>100 µm and <30 µm) showed a reduced fraction of 

mushroom spines (35.0±6.9%, 38.2±5.7% and 44.3±2.7% vs. WT 59.6±3.5%, Fig. 2c). 

Furthermore, in APP23 mice and deltaE9 mice (<30 µm), the decreases of mushroom spines 

were accompanied with strong increases in the stubby spines (48.6±6.0% and 42.5±3.7% vs. 

WT 19.4±5.2%, Fig. 2d). However, thin spines, but not stubby spines, were increased in 

deltaE9 mice (>100 µm, 36.7±5.7% vs. WT 20.9±2.3%, Fig. 2e). Collectively, these results 

show that morphological alterations of dendritic spines in APP23 and deltaE9 mice, of deltaE9 
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mice, are distinct. In addition, these alterations even differ between different distances to 

fibrillar plaques within deltaE9 mice.  

 

Spine loss and alterations in spine morphology are associated with amyloid plaque 

growth in deltaE9 mice 

In young adult deltaE9 mice, dendrites that were located near (<30 µm) and far (>100 µm) 

away from plaques displayed two different patterns of spine abnormalities. Close to plaques 

(<30 µm) a decrease in spine density and increase in the fraction of stubby spines were 

observed. Dendrites far away from plaques (>100 µm) did not develop spine loss but showed 

increased fraction of thin spines. To investigate whether the alterations of dendritic spine 

abnormalities are correlated with the distance between dendrites and plaques, we imaged 

dendrites that resided 50-80 µm away from plaques. With amyloid plaque growth over one 

month, the distance between dendrites and plaques became smaller (from 59.9±2.7 µm to 

52.6±2.6 µm, Fig. 3a). Meanwhile, dendrites started to develop spine loss (Fig. 3b, c). The 

decrease of spine density was caused by reduced spine formation (Fig. 3d). Moreover, the 

fraction of mushroom spines remained unchanged (Fig. 3e), while the fraction of stubby 

spines increased along with the decrease of thin spine fraction (Fig. 3f, g). Taken together, 

these results indicate amyloid plaques cause manifold dendritic spine alterations in deltaE9 

mice.  	  

 

APP accumulates intracellularly in APP23 mice	  

To exclude the possibility that the decreased spine density which we observed in APP23 mice 

was not caused by the close vicinity to amyloid plaques [4], we used methoxy-X04 to label 

fibrillar amyloid deposits in vivo [7] and no plaque was found in the imaged volumes in APP23 

mice at the age of 4-5 months(data not shown). Ex vivo immunohistochemical staining further 

confirmed that APP23 mice had not yet developed amyloid plaques (data not shown). 

Furthermore, we stained brain sections using an antibody that recognizes both APP and Aβ 

(4G8). Surprisingly, a strong APP/Aβ somatic staining was observed in the cortex of 4-5-

month-old APP23 mice (Fig. 4a). To further clarify the identity of the intracellular 

immunoreactivity, we used antibodies specific to detect Aβ40, Aβ42 and APP. No intracellular 

immunoreactivity was detected by Aβ specific antibodies in APP23 mice (Fig. 4c, d). The 

ability of these antibodies to bind Aβ peptides was verified by the detection of extracellular Aβ 

deposits in deltaE9 mice (Fig 4c, d). In contrast, intracellular APP immunoreactivity was also 

observed with the APP specific antibody 22C11 in APP23 mice (Fig. 4b). Western blot 
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analysis further confirmed APP23 mice mainly overexpressed full-length APP, but not Aβ, in 

young adulthood (Supplementary Figure 2). Notably, the expression of APP in APP23 mice 

was higher than in deltaE9 mice (Supplementary Figure 2), which is in line with previous 

reports [28, 57]. These results suggest that the intracellular accumulations in APP23 mice 

consist of APP, rather than Aβ.   

 

The amount of intracellular APP correlates with dendritic spine alterations 

In young adult APP23 mice, spine density of cortical pyramidal neurons was reduced and 

spine morphology was also changed. To assess if these structural alterations were caused by 

the observed intracellular APP accumulation, the amount of APP in the soma of eGFP labeled 

cortical layer V pyramidal neurons was quantified from brain sections (Fig. 5a). Along with the 

increase of intracellular APP, spine densities on apical and basal dendrites of pyramidal 

neurons declined (Fig. 5b, c, f). In addition, the fractions of mushroom spines were decreased 

(Fig. 5d, g), while stubby spine fractions were increased (Fig. 5e, h). Besides, the 

accumulation of intracellular APP in CA1 pyramidal neurons also coincided with the decrease 

of spine density and alterations of spine morphology (Supplementary Figure3). Altogether, 

these results suggest that intracellular accumulation of APP may be responsible for the spine 

alterations in 4-5-month-old APP23 mice.  

 

Discussion  

Extracellular Aβ is accepted to be in the center of AD pathogenesis due to its neurotoxicity 

that disrupts multiple physiological processes [53]. Guided by the amyloid hypothesis, AD 

mouse models have been created to recapitulate the cognitive impairments seen in AD 

patients. These mouse models typically express human APP with our without PS1 with 

familial AD mutations, which both cause familial forms of AD. Although most of the mouse 

models develop typical amyloid plaques and cognitive deficits with age, the pathophysiology 

in young transgenic mice, reflecting preclinical forms of AD, is less well understood [63]. 

APP23 mice display cognitive impairments before plaque formation, while deltaE9 mice 

develop abundant plaques before the decline of cognitive performance. The underlying 

mechanisms of these discrepancies are still not clear.  

 

The major correlate of cognitive impairment is synapse loss, which is closely associated with 

spine loss as excitatory glutamatergic synapses normally reside at dendritic spines in the 

mammalian brain [43]. In addition to absolute spine density, the dynamic turnover of spines, 
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termed structural plasticity, is also involved with learning and memory: the formation and 

elimination of dendritic spines rewire neural circuits by establishing or abolishing connections 

in the brain during learning experiences [15]. Thus, it is plausible to examine alterations of 

dendritic spines as readout for structural correlate of cognitive decline in AD transgenic 

mouse models. 

 

In this study, we found that 4-5-month-old APP23 mice displayed reduced spine density of 

cortical layer V pyramidal neurons. In deltaE9 mice, spine loss was only evident on dendrites 

that were located close to plaques. We found similar results in the APPswe/PS1L166P mouse 

model [48], which accumulates plaques faster than the deltaE9 model: here, spines were lost 

only in the vicinity (<50 µm) of plaques, while spines were not altered distant (>50 µm) to 

plaques or before plaques had appeared [3]. These results suggest that spine loss mediated 

by fibrillar amyloid plaques occurs only in the immediate vicinity of extracellular Aβ deposits in 

deltaE9 and APPswe/PS1L166P mice.  

 

The decreased spine densities observed in APP23 and deltaE9 mice were caused by 

reduced spine formation as revealed by chronic repetitive in vivo two-photon imaging. 

Interestingly, we found two different patterns of spine morphological alterations in these two 

transgenic mouse models. In APP23 mice, the spine length was reduced and the relative 

proportion of stubby spines was increased. In deltaE9 mice, in dendrites close to plaques, the 

findings were identical. In contrast, the dendrites that were far away from plaques in deltaE9 

mice showed decreased spine head width and elevated thin spine fraction. With amyloid 

plaque growth in deltaE9 mice, dendrites, that were originally located 50-80 µm away from 

plaques, became closer to plaques and started to lose spines. This effect was accompanied 

with an increase in the fraction of stubby spines. In APP23 mice, APP accumulated 

intracellularly. A higher content of APP was inversely correlated with spine density. 

Furthermore, an increased fraction of mushroom spines and decreased fraction of stubby 

spines were observed in neurons, which contained higher levels of intracellular APP. In 

summary, our data suggested different pathological mechanisms, intracellular APP and 

extracellular amyloid plaques, might lead to spine abnormalities in young adult APP23 and 

deltaE9 mice, respectively.  

 

Dendritic spines are the small bulbous postsynaptic elements of the majority of excitatory 

synapses and serve as the basic units for learning and memory [22]. Loss of dendritic spines 
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is the major correlate of cognitive impairment in human AD [59]. In agreement with the spine 

loss described before, APP23 mice younger than 6 months show memory impairments in 

multiple cognitive tests, including Morris-type water maze test, Y-maze test, Barnes-maze test 

and novel-object recognition test [12, 25, 31, 60]. On the other hand, the performance of 

deltaE9 mice at the same age is normal in most cognitive tests (T-maze test, Y-maze test, 

Morris-type water maze test, novel taste neophobia test, response acquisition test, Barnes-

maze spatial memory task with hidden-target strategies), with the exception of impairments 

observed in Barnes-maze spatial memory task with cued-target strategies and modified 

radial-arm water maze test [18, 34, 45, 49, 61]. The specific spatial learning deficit described 

in young deltaE9 mice may depend on dendritic spine shape, rather than a reduced spine 

number, considering spine loss is only observed on dendrites that are localized very close to 

amyloid plaques, which just start to emerge in 4-5-month-old deltaE9 mice [6, 16, 28]. With 

aging, Aβ deposits grow in size. Amyloid plaques mice are abundant in hippocampus and 

cortex of one-year-old deltaE9 mice. At this age general axon degeneration and synapse loss 

are observed, along with impaired cognitive performance [18, 46]. Thus, loss of synapses 

coincides with decline in cognitive performance in these models. 

 

Indeed, there is convincing evidence that not only the absolute spine number contributes to 

cognitive performance. In fact, dendritic spine size and shape are known to affect various 

functional parameters relevant for cognition, including spine motility, neurotransmitter receptor 

numbers and organelle abundance [33, 51]. Growing evidence shows that morphological 

changes of dendritic spines are associated with long-term synaptic plasticity (LTP) [68]. LTP 

increases spine head volume while shortening and widening spine neck [67]. This 

morphological plasticity allows generating changes in electrical properties of dendritic spines, 

which serve as isolated electrical compartments. For instance, it has been shown that shorter 

spine necks lead to larger depolarization while longer necks generate smaller somatic 

potentials [1]. It is believed that different types of memories need to obey different 

electrophysiological rules, and thus require morphological diversities of spines [51]. Along 

with changes in spine density, distinct alterations of spine morphology in APP23 mice and 

deltaE9 mice might also result in the different cognitive impairments described before [12, 18, 

25, 31, 34, 45, 49, 60, 61]. Layer V pyramidal neurons in the somatosensory cortex are 

involved in motor learning [14, 64-66] and the formation of new dendritic spines correlates 

with the performance after learning [66]. While most behavioral tests focus on hippocampus 

dependent memory tasks, the resulting behavior results from a complex interplay of various 



57	  
	  

brain regions, in which somatosensory cortex neurons may play crucial roles. Thus, the 

alterations of dendritic spines which we found may well reflect part of the behavioral 

phenotype observed in these mice. Yet the susceptibility of spines to the various toxic insults 

due to the overexpression of APP and its cleavage products may differ between brain regions, 

between different functional locations within a neuron (e.g. between apical and basal 

dendrites) or with the age of the experimental animals. Therefore, the relation of dendritic 

spine loss in layer V pyramidal neurons to cognitive dysfunction is not certain. 

 

Compared to APP23 mice, deltaE9 mice harbor an additional transgene of a familial AD 

mutation in PS1 with a deletion of exon 9, accelerating the cleavage of APP and thereby Aβ 

formation. In consistence with previous studies [10, 16], extracellular amyloid plaques have 

developed in 4-5-month-old deltaE9 mice but not APP23 mice. Being the abnormal protein 

aggregates that characterize human AD, Aβ deposits are one of the biomarkers for AD 

neuropathologic assessment [26]. Aβ production and aggregation might initiate serial 

molecular cascades, thus lead to clinical AD [20]. This amyloid cascade hypothesis seems to 

be feasible in early onset AD, which is known to be caused by mutations of genes that 

increase Aβ accumulation [27]. However, as early onset AD only accounts for a few percent 

of AD cases and the correlation between cognitive decline and Aβ deposits is weak [2, 17], 

alternative explanations for the pathogenesis of AD have emerged[36, 40]. 

 

In contrast to age-matched deltaE9 mice only a minor soluble Aβ burden was found in the 

brains of young APP23 mice [10, 37, 61]. Overexpressed APP in APP23 mice is 

predominantly localized intracellularly and the mechanisms of this aberrant accumulation and 

its relevance in sporadic AD need to be further investigated. Interestingly, a number of studies 

have reported increased amount of APP mRNA in AD patients [39, 41, 47], indicating that up-

regulated transcriptional activity of APP may also contribute to AD pathophysiology. Moreover, 

accumulated APP has been found in dystrophic neuritis of AD [11, 54]. It is therefore tempting 

to speculate that intraneuronal accumulation of APP and/or its cleavage products including 

Aβ in AD may also contribute to synaptic damage [44, 58]. Indeed, an extra copy of the APP 

gene can cause neuronal dysfunction and symptoms similar to those seen in AD [42]. APP 

gene triplication in Down’s syndrome and APP locus duplication in rare families lead into 

clinical AD-like pathology in adults and result in early-onset dementia [21, 50]. The 

neurotoxicity of APP is largely thought to be caused by its proteolytic fragments. Besides Aβ, 

other proteolytic APP fragments, such as C83, C99 and APP intracellular domain, could also 
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be involved in AD pathogenesis [55]. By regulating gene expression, these derivatives may 

give rise to neuronal degeneration [35, 55]. Additionally, through the direct interaction 

between APP and N-methyl-d-aspartate receptors (NMDARs), overexpressed APP up-

regulates the expression of NMDARs and thus may contribute to neuronal toxicity by 

disrupting synaptic homeostasis [23].  

 

To conclude, despite the fact that APP23 and deltaE9 mice show similar cognitive 

impairments and neuropathology in advanced age, our data clearly show different dendritic 

spine abnormalities in these two transgenic mouse models in young adulthood. Our findings 

imply that synaptic failure in these mouse models may be caused by different mechanisms in 

an age dependent manner. Since the mechanisms underlying the development of sporadic 

AD are still uncertain, this study has significant implications for the analysis of distinct AD 

transgenic mouse models during preclinical drug evaluation for treatment of early-stage AD.   
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Figure legends 

Figure 1. Decreased spine density in dendrites of APP23 mice and deltaE9 mice. 

(a) By in vivo two-photon imaging, the same apical dendrites from layer V pyramidal neurons 

in the somatosensory cortex were repeatedly imaged one week apart. Each image is a 

maximum intensity projection of serial sections. White arrowheads point at spines formed 

over one week and empty arrowheads point at eliminated spines. Scale bar represents 10 µm. 

(b) Spine densities of layer V pyramidal neuron apical dendrites in WT, APP23 and deltaE9 

mice. In deltaE9 mice, dendrites that were localized at plaque-free overview images are 

classified as deltaE9 (>100 µm) and the ones in close proximity to plaques are named as 

deltaE9 (<30 µm). 

(c)Turnover rates of apical dendrites in WT, APP23 and deltaE9 (>100 µm and <30 µm) mice. 

(d, e) Spines that were eliminated (d) and newly formed (e) over one week in WT, APP23 and 

deltE9 (>100 µm and <30 µm) mice.  

In WT group, n=6. In APP23 group, n=6. In deltaE9 (>100 µm) group, n=5. In deltaE9 (<30 

µm) group, n=5. **, p<0.01 (ANOVA with Dunnett’s post-hoc test). 

 

Figure 2. Dendritic spine morphology changes differently in APP23 and deltaE9 mice. 

(a, b) Cumulative distributions of spine length (a) and spine head width (b) in WT, APP23 and 

deltaE9 (>100 µm and <30 µm) mice. (a-b) **, p<0.01 (Komogornov-Smirnov test). 

(c-e) Fractions of mushroom (c), stubby (d) and thin spines (e). Representative classified 

spines are on the top-left corner.  

In WT group, n=6. In APP23 group, n=6. In deltE9 (>100 µm) group, n=5. In deltE9 (<30 µm) 

group, n=5. (c-e) *, p<0.05; **, p<0.01 (ANOVA with Dunnett’s post-hoc test). 

 

Figure 3. Spine loss and morphological alterations are accompanied by amyloid plaque 

growth in deltaE9 mice 

(a) Maximum intensity projections of two-photon in vivo images of GFP-labeled dendrites 

(white) and methoxy-X04 labeled plaques (blue) are shown. The distance from dendrite to 

plaque (red arrow line) is reduced after one month due to plaque growth. Scale bar 

represents 40 µm 

(b) Maximum intensity projected dendrites from a (arrowhead pointed, near plaque) and from 

plaque-free overview images (Without plaque) in deltaE9 mice. Scale bar represents 10 µm. 

(c) Spine densities of the dendrites that were near plaque or in plaque-free area over one 

month. Each dashed line represents one dendrite. 
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(d) Newly formed and eliminated spine densities of the dendrites that were near plaque or in 

plaque-free area over one month. 

(e-g) Fractions of mushroom (e), stubby (f) and thin spines (g) in these two different dendrites 

over one month. Each dashed line represents one dendrite.  

Paired t test was used for plaque growth mediated spine alterations and unpaired t test was 

used to compare spine formation and elimination between groups. n=13 in each group. *, 

p<0.05; **, p<0.01. 

 

Figure 4. Intracellular accumulation of APP in APP23 mice 

(a-d) Immunohistochemical labeling of intracellular APP/Aβ (4G8, a), intracellular APP (22c11, 

b), Aβ42 deposits (11-1-3, c) and Aβ40 deposits (139-5, d) in WT, APP23 and deltaE9 mice. 

Scale bar represents 100 µm. 

 

Figure 5. Increased intracellular APP accumulation is accompanied with decreased spine 

density and altered spine morphologies in the somatosensory cortex of APP23 mice 

(a) Maximum intensity projections of ex vivo images of GFP-labeled neurons (white, A and B) 

and intracellular APP accumulation in layer V pyramidal neurons (black). Green dashed circle 

indicates the area of soma from GFP-labeled neurons. Arrows and arrow heads point to basal 

and apical dendrites, respectively. Scale bar represents 20 µm. 

(b) Maximum intensity projected basal and apical dendrites from A and B. Scale bar 

represents 10 µm. 

(c-e) The dot plots are the intensity of intracellular APP in basal dendrites from layer V 

pyramidal neurons versus spine density, mushroom and stubby fractions separately. Straight 

lines are fitted by nonlinear regression. Each dot represents one neuron. 

(f-h) The dot plots are the intensity of intracellular APP in apical dendrites from layer V 

pyramidal neurons versus spine density, mushroom and stubby fractions separately. Straight 

lines are fitted by nonlinear regression. Each dot represents one neuron. 

In basal dendrite group, n=38. In apical dendrite group, n=33 (c-h) *, p<0.05; **, p<0.01 (F 

test). 

  



69	  
	  

Figures 

Figure 1    

 

 

Figure 2

 
 

 

 

 

 

 

 

 



70	  
	  

Figure 3 

 
 

Figure 4 

 
 

 

 



71	  
	  

Figure 5 

 
  



72	  
	  

Supplementary materials 

Supplementary methods 

Western blot: Tricine-SDS-PAGE was used in western blot as described before [1]. Briefly, 

10% cortical tissues (w/v) were homogenized in lysis buffer supplemented with protease 

inhibitors (Roche), followed by centrifugation at 500 rpm for 1 min. The supernatant was 

collected and protein concentrations were adjusted by Bradford assay (Sigma-Aldrich) to 

ensure the same amount of protein being loaded for each sample (100 µg). Samples were 

mixed with SDS-containing sample buffers and incubated at 37 °C for 20 min. After 

electrophoresis in 15% sample gel, proteins were transferred to a polyvinylidene difluoride 

membrane (Millipore). The APP/Aβ primary antibody, 6E10 (Convance), was used at 1:500 

concentration for immunoblotting. Full-length APP and Aβ oligomers were determined based 

on the molecular weights [2]. Protein bands were quantified in ImageJ.  Results were 

normalized to control and repeated measures one-way ANOVA was used followed by 

Newman-Keuls’s test. 

 

References 

1 Schagger H (2006) Tricine-SDS-PAGE. Nature protocols 1: 16-22 Doi 

10.1038/nprot.2006.4 

2 Teich AF, Patel M, Arancio O (2013) A reliable way to detect endogenous murine 

beta-amyloid. PloS one 8: e55647 Doi 10.1371/journal.pone.0055647 

 

Supplementary figure legends 

Supplementary Figure 1. Dendrites at different distances from plaques in deltaE9 mice. 

(a, b) In vivo overview images showing GFP-labeled dendrites (white) and methoxy-X04 

labeled plaques (blue). Dendrites that were localized at plaque-free overview images are 

classified as deltaE9 (>100 µm, a) and the ones in close proximity to plaques are named as 

deltaE9 (<30 µm, b). Arrowheads point to the chosen dendrites for spine analysis. 

 

Supplementary Figure 2. Young adult APP23 mice overexpress AP 

(a, b) Western blot examples (a) and quantification of protein band (≈85 kDa, b) reveal an 

overexpression of APP in the cortex of APP23 mice. 

(c-e) Quantifications of protein bands (≈23 kDa, ≈56 kDa and ≈115 kDa) reveal 

overexpressed Aβ in the cortex of deltaE9 mice, but not in APP23 mice. n=5 in each group. 

(b-e) *, p<0.05; **, p<0.01 (ANOVA with Dunnett’s post-hoc test). 
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Supplementary Figure 3. Increased intracellular APP accumulation is accompanied with 

decreased spine density and altered spine morphologies in the CA1 region of APP23 mice 

(a) Maximum intensity projections of ex vivo images of GFP-labeled neurons (white, A and B) 

and intracellular APP accumulation in CA1 pyramidal neurons (black). Green dashed circle 

indicates the area of soma from GFP-labeled neurons. Arrow points at the chosen dendrites 

for spine analysis. Scale bar represents 20 µm. 

(b) Maximum intensity projected basal and apical dendrites from A and B. Scale bar 

represents 5 µm. 

(c-e) The dot plots are the intensity of intracellular APP in dendrites from CA1 pyramidal 

neurons versus spine density, mushroom and stubby fractions separately. Straight lines are 

fitted by nonlinear regression. Each dot represents one neuron. n=38. (c-e) **, p<0.01 (F test). 
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Abstract 

To successfully tackle Alzheimer’s disease (AD), pathophysiological events in preclinical 

stages need to be identified. Preclinical AD refers to the stages that exhibit normal cognitive 

function and amyloid deposition in the brain, which are replicated in young adult 

APPswe/PS1deltaE9 (deltaE9) mice. By long-term in vivo two-photon microscopy, we 

demonstrated the impaired adaptive spine plasticity in these transgenic mice illustrated by 

their failures to increase dendritic spine density and form novel neural connections when 

housed in enriched environment (EE). Elimination of amyloid plaques by reducing BACE1 

activity restored the gain of spine density upon EE in deltaE9 mice but not the remodel of 

neural networks. On the other hand, the anti-inflammatory treatment with pioglitazone or 

interleukin 1 receptor antagonist in deltaE9 mice successfully rescued the impairments in 

increasing spine density and remodeling neural networks during EE. Our data suggest that 

neuroinflammation disrupts experience-dependent spine structural plasticity in preclinical 

stages of AD.     

Keywords: Preclinical AD, APPswe/PS1deltaE9 mice, dendritic spines, structural plasticity, 

neuroinflammation 
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Introduction 

Being the most prevalent cause of dementia, Alzheimer’s disease (AD), characterized by 

progressive cognitive deficits, amyloid plaques, neurofibrillary tangles (NFTs) and neuronal 

loss, still lacks effective cure at the present time [19, 37]. The failure to develop successful 

pharmacotherapy may, at least partially, be ascribed to the long pathophysiological process, 

which starts many years before the stage of symptomatic AD [40]. Therefore, much earlier 

intervention in the asymptomatic or preclinical stages may be required to successfully treat 

AD [32, 42].  

 

Preclinical AD has been recently defined as the stages prior to mild cognitive impairment and 

featured with amyloid deposition in the brain [41]. Subjects in the preclinical stages are at risk 

for future cognitive decline [47]. Indeed, the lag between the appearance of amyloid plaques 

and detectable impairment in cognition is more than a decade [34, 41]. Growing evidence 

supports the notion that amyloid deposition disrupts functional networks in the brain of 

cognitively normal elderly [15, 30, 39, 43]. To have a better chance of curing AD, it is 

therefore crucial to identify pathophysiological events occurring in preclinical stages, 

preceding dementia but with the formation of amyloid deposits.   

 

Transgenic mouse models are essential research tools for uncovering AD pathogenesis as 

well as validating new therapeutic approaches. To recapitulate AD pathology, transgenic 

mouse models carry familial AD gene mutations in amyloid precursor protein (APP) and/or 

presenilins (PS) based on the amyloid hypothesis, which holds the abnormal production of 

APP proteolytic fragment, amyloid β-protein (Aβ), as the primary cause of AD [14]. The 

transgenes with APP/PS mutations in mouse models lead into the formation of amyloid 

plaques and subsequent memory loss, but without the development of NFTs and massive 

neuronal loss [2]. Although these mice fail to replicate all aspects of the disease, they seem to 

faithfully imitate pre-dementia stages of AD [1].  

 

Among the APP transgenic mouse models, APPswe/PS1deltaE9 (deltaE9) mice has been 

widely used and they express APP with the Swedish mutation together with mutant human 

PS1 with a deletion of exon 9 [21, 36]. Interestingly, in deltaE9 mice, amyloid deposition 

precedes typical cognitive impairments [20, 46]. Amyloid plaques start to emerge at the age of 

4-5 months [4, 12], while the performance of 7-month-old deltaE9 mice is normal in most 

cognitive tests [25, 31, 46]. The temporal lag between the emergence of amyloid plaques and 
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the onset of dementia consequently provides a critical period for the study of 

pathophysiological events related to preclinical AD. 

 

In this study, we used long-term in vivo two-photon microscopy to elucidate the adaptive 

spine plasticity of 4-5-month-old deltaE9 mice. Our data demonstrated that deltaE9 mice 

failed to increase spine density and establish novel neural connections when exposed to 

enriched environment (EE), which we showed to be attributed to amyloid deposition induced 

neuroinflammation.  

 

Materials and Methods 

Animals 

APPswe/PS1deltaE9 (deltaE9) mice [20]  (Jackson Laboratory) were crossed with GPF-M 

mice [8] (Jackson Laboratory) to obtain double transgenic offspring which were heterozygous 

for the corresponding genes (deltaE9 +/- x GFP +/-). GFP positive littermates without 

APP/PS1 transgenes were used as controls (deltaE9 -/- x GFP +/-). BACE1 knockout mice [5] 

were also purchased from Jackson Laboratory and deltaE9 +/- x Bace1 +/- x GFP +/- 

(deltaE9/Bace +/-) were generated by interbreeding. All transgenic mice were maintained on 

C57BL/6 background. Female mice at the age of 4-5 months were used. Mice were housed 

and bred in pathogen-free environment in the animal facility at the Centre for Neuropathology 

and Prion Research of the Ludwig Maximilian University Munich (LMU), with food and water 

provided ad libidum (21 ±1 °C, at 12/12 h light/dark cycle). All mice were either housed singly 

in standard cages (30×15×20 cm) or in groups in an environmentally enriched (EE) cages 

(80×50×40 cm) equipped with platforms and variety of toys, which were relocated 3 times per 

week. Pioglitazone (350 ppm, ActosTM) was supplemented into rodent chow. All protocols and 

procedures involving animals were approved and conducted in accordance with the 

regulations of LMU and the government of Upper Bavaria (Az. 55.2-1-54-2532-62-12). 

 

Cranial window implantation and in vivo two-photon imaging 

The detailed surgical procedure of cranial window implantation has been described previously 

[11, 18]. In brief, mice were anesthetized by intraperitoneal injection of ketamine/xylazine (120 

and 10 mg/kg, respectively). Subsequently, dexamethasone (6 mg/kg) was injected to prevent 

development of cerebral edema. A piece of skull above the somatosensory cortex was then 

removed and replaced with a cranial window (4 mm). Of note, lentivirus (LV) encoding IL-1 

RA (LV vector was a gift from Dr. A.M.W. van Dam [45]) was intraparenchymally injected into 
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the cortex before implanting the coverslip when specified. After 4 weeks of recovery period, 

mice were imaged by using a LSM 7MP microscope (Zeiss) equipped with a 20x objective 

(NA 1.0; Zeiss). Mice were anesthetized with isoflurance (1% in 95% O2 and 5% CO2) and 

placed on a heating pad to keep the body temperature at 37°C. Apical dendrites originating 

from GFP labeled layer V pyramidal neurons were imaged in consecutive sessions (once per 

week). The imaging session did not last more than 60 min. The unique pattern of blood 

vessels was used to re-localize the imaged regions in subsequent imaging sessions. GFP 

was excited by a femtosecond laser (Spectra Physics) at the wavelength of 880 nm. The 

intensity of laser and settings of data acquisition were kept consistent during the experiments. 

To ensure the dendrites were chosen in amyloid plaque-free regions, methoxy-X04 (1 mg/kg) 

was intraperitoneally injected 24 h before imaging in the first and last time points. Overview 

images were taken as 424 x 424 x 350 µm3 (0.83 µm/pixel). Higher resolution images (0.138 

µm/pixel) were used for counting dendritic spines. For illustration purpose, maximal projection 

images were deconvolved (AutoQuantX3), with contrast and brightness adjusted. 

 

Spine analysis    

Dendritic spines were analyzed manually in ZEN 2011 (Zeiss) by scrolling through the images 

in z-stacks. As the limitations of resolution in Z-direction, only laterally protruding spines were 

counted, as only those could be identified with certainty. In consecutive sessions, a dendritic 

spine was determined as the same if its location did not change within a range of 0.5 µm 

along the dendrite. Otherwise, spines that disappeared or emerged compared to the previous 

imaging session were defined as formed or eliminated, respectively. The fate of preexisting 

spines was calculated as the fraction of dendritic spines in the first imaging session that 

remained stable during the imaging period. Similarly, the fate of new-gained spines was the 

fraction of formed spines in the first week of EE or matching week of SC that remained stable 

during the rest of imaging period. Transient spines were determined as spines that did not 

survive over one week.  

 

Immunochemistry 

Following transcardial perfusion with phosphate buffered saline and 4% paraformaldehyde 

(PFA), mouse brains were cut into 65 µm thick sections from somatosensory cortex after 

being fixed in 4% PFA overnight. GFAP (Abcam 1:500) and Iba1 (Wako 1:500) antibodies 

were used for activated astrocytes and microglial staining. Anit-rabbit Alexa 647 antibody 

(Invitrogen 1:1000) was used as the secondary antibody. To stain amyloid plaques, sections 
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were incubated with 145 µM methoxy-X04 in PBS for 30 min and then washed with PBS. 

After mounting on glass coverslips by fluorescence mounting medium (Dako), sections were 

imaged using LSM 780 confocal microscope (Zeiss) 

 

Statistics 

For statistical analysis and comparison, GraphPad Prism 5 was used. In the longitudinal 

measurements of spine analysis, extra sum-of-squares F test was used when data were fitted 

with a line using the nonlinear regression. Comparison among groups was performed using 

one-way ANOVA followed by Newman-Keuls post-test. Two-tailed Student t-test was used in 

comparison between two different groups. The numbers of mice were 4-6 per group for in vivo 

imaging. 8-12 dendrites were imaged in each mouse. The length of each dendrite was 25-35 

µm. The data were presented as the means for every mouse. All results were presented as 

means ± S.E.M. p<0.05 was defined as statistically significance. * p<0.05, ** p<0.01.  

 

Results 

Adaptive structural plasticity of dendritic spines is impaired in deltaE9 mice at the age 

of 4-5 months 

As replicating the preclinical stages of AD [1, 41], 4-5-month-old deltaE9 mice develop 

amyloid deposits without cognitive decline [4, 12, 25, 31, 46]. In agreement with the cognitive 

normality, our previous study observed normal spine density and dynamics on dendrites that 

were far away from amyloid plaques in deltaE9 mice at this age[53]. To further examine if 

activity-induced structural spine plasticity on these dendrites is disturbed in preclinical AD, we 

housed deltaE9 mice at the age of 4-5 months under enriched environment (EE) over 5 

weeks and monitored the apical tufts of layer V pyramidal neurons in the somatosensory 

cortex (Supplementary Figure 1). EE, which provides a spectrum of synaptic inputs and thus 

leads to adaptive synaptic alterations within the adult brain [28, 29, 35], induced a steady 

increase of spine density in control group (Fig. 1a, c). In contrast, EE failed to increase spine 

density in deltaE9 mice (Fig. 1a, c). Of note, unlike control mice demonstrating gradual 

decline in dendritic spine elimination upon EE, the rate of spine elimination in deltaE9 mice 

remained unaltered (Fig. 1d). EE did not change the rate of spine formation in both groups 

(Fig. 1e). Moreover, during the imaging period, the density and dynamics of dendritic spines 

remained unchanged when mice were housed under standard conditions (SC, Fig. 1b, c-e). 

Thus, EE-induced decrease in spine elimination and subsequent increase in spine density 

were absent in deltaE9 mice. 
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To find out how preexisting neural networks reacts on the stimulation of EE in preclinical 

stages of AD, we tracked the fate of dendritic spines that existed in the first imaging session 

over the whole period of enrichment. Interestingly, in control and deltaE9 genotypes, less 

preexisting spines survived when mice housed under EE (Fig. 1f, g). This indicated a 

breakdown of the established neural networks in both groups during EE. Furthermore, the 

fate of spines that were newly formed in EE or SC was also monitored. A higher number of 

gained spines remained stable during EE in control mice, but not in deltaE9 mice (Fig. 1 h-j). 

This result suggested the failure of building up novel neural networks induced by EE in 

deltaE9 group. Collectively, our data imply the reorganization of neural networks upon EE is 

impaired in preclinical stages of AD. 

 

Reduction of BACE1 in deltaE9 mice restores the respond with an increase in spine 

density upon EE 

Full-length APP is processed to yield amyloid beta, the principal component of amyloid 

plaques, through sequential enzymatic cleavage by β and γ-secretases. To confirm if amyloid 

plaques contribute to the impaired adaptive spine plasticity in deltaE9 mice, we crossed 

deltaE9 mice with BACE1, the primary β-secretase, knockout mice to obtain deltaE9 

genotype containing a heterozygous BACE1 gene knockout (deltaE9/BACE +/-). Partial 

reduction of BACE1 activity almost abolished amyloid plaques and associated glial cell 

activation (Figure 2). Of note, the density and dynamics of dendritic spines in deltaE9/BACE 

+/- genotype remained unchanged (Supplementary Figure 2a-c). Unlike deltaE9 group, 

deltaE9/BACE +/- mice gained the adaptive increase in spine density housed under EE (Fig. 

3a, b). To our surprise, the increase in spine density was caused by boosting spine formation 

(Fig. 3e) instead of decreasing spine elimination (Fig. 2d), which was opposite to the 

observations in control group (Fig. 1d, e). In addition, the fate of spines that existed before or 

newly formed after EE was indistinguishable between different housing conditions (Fig. 3f, g). 

An increased fraction of transient spines (Fig. 3c) further corroborated the notion that newly 

gained spines in EE did not incorporate into neural circuits. These deficits in neural network 

remodeling appear to be caused by the reduction of β-secretase, as no change in transient 

spine fraction was observed in deltaE9 or control mice housed in EE (data not shown). The 

restoration of adaptive spine density increase suggests removal of amyloid plaques might 

ameliorate the impaired adaptive plasticity of dendritic spines in preclinical AD.  
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Pioglitazone rescues the deficits of adaptive dendritic spine plasticity in deltaE9 mice 

As the imaged dendrites were located in amyloid plaque-free brain regions [53], it was 

plausible to hypothesize that diffusible factors originating from amyloid deposits might 

contribute to the unaltered spine density upon EE, which was restored by the removal of 

plaques (Fig. 3b). Of note, amyloid plaques were surrounded by activated glial cells that are 

known to release pro-inflammatory cytokines [49]. To investigate if these cytokines caused 

the impaired adaptive plasticity, we treated deltaE9 mice with pioglitazone, a PPAR-gamma 

agonist, which inhibits the production of pro-inflammatory cytokines [23]. Pioglitazone 

treatment successfully rehabilitated the steady increase of spine density in deltaE9 mice 

during exposure to EE (Fig. 4a, b). Like in control mice, the EE-induced spine density 

increase was resulted from the gradual decline in spine elimination, while the rate of spine 

formation was unchanged (Fig. 4d, e). Moreover, less preexisting spines and more gained 

spines were observed during EE when deltaE9 mice were fed with pioglitazone (Fig. 4 f, g). 

The fraction of transient spines also remained stable (Fig. 4c). These results indicate that the 

failure of remodeling neural networks upon EE in deltaE9 mice can be attributed to the up-

regulation of pro-inflammatory cytokines.  

 

IL-1 RA rehabilitates the impaired adaptive plasticity of dendritic spines in deltaE9 

mice 

The known deleterious effects of interleukin-1β (IL-1β), a key mediator of the inflammatory 

response in AD, on synaptic plasticity [44] prompted us to examine whether up-regulated 

levels of IL-1β undermined the adaptive spine plasticity. The expression of IL-1β was indeed 

significantly enhanced in deltaE9 mice (Supplementary Figure 3 a). To diminish IL-1β activity, 

we injected lentivirus (LV) expressing interleukin-1 receptor antagonist (IL-1 RA) [45] into the 

somatosensory cortex (Supplementary Figure 3 b). IL-1 RA rectified the adaptive gain of 

spine upon EE accompanied with the gradual decline in spine elimination instead of rising 

spine formation (Fig. 5a, b and d, e). Also, the fate of spines that existed before or newly 

formed during EE was normalized in deltaE9 mice administered with IL-1 RA (Fig. 5f, g), while 

the fraction of transient spines was unchanged (Fig. 5c). Taken together, these data suggest 

up-regulated IL-1β perturbs EE-induced reorganization of neural networks 

 

Discussion 

Being excitatory postsynaptic compartments, dendritic spines are the membranous 

protrusions that receive and integrate informational input from presynaptic terminals[52]. This 
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function is supposed to be disturbed at the very early stages of AD pathogenesis, which may 

explain why synaptic loss is a much better indicator for cognitive impairment in AD than Aβ 

burden or neuronal loss [38]. With the advent of cognitive decline, irreversible damage may 

have already occurred. Prevention strategies in the asymptomatic stages of AD are therefore 

warranted.  

 

Preclinical AD is replicated in young deltaE9 mice that develop amyloid deposits before the 

onset of cognitive decline [4, 12, 25, 31, 46]. In this study, we found that 4-5-month-old 

deltaE9 mice did not increase dendritic spine density when housed under EE in contrast to 

control mice. The novel external environment also failed to remodel neural networks in these 

transgenic mice. Reduction of BACE1 activity in deltaE9 mice reduced the deposition of Aβ 

and restored the increase of spine density during EE, but not the impaired reorganization of 

neural networks. However, anti-inflammatory treatments, pioglitazone and IL-1 RA, 

successfully rescued the spine density increase and neural network remodeling upon EE in 

deltaE9 mice. These results suggest that neuroinflammation contributes to impaired adaptive 

plasticity of dendritic spine in preclinical stages of AD. 

 

Structural plasticity of dendritic spines refers to the change of their distribution in response to 

experience[10]. Learning and sensory experience have been reported to remodel neural 

connections through de novo growth and loss of dendritic spines, which provides a structural 

substrate for adaptive behaviors. Spine density increases after spatial learning tasks or 

manipulations that intensify sensory inputs [24, 26], while deprivation of sensory experience 

leads to a decrease in spine density [48]. This structural synaptic plasticity may substantially 

boost information storage capacity in brain [6]. The failure to increase spine density in young 

adult deltaE9 mice upon EE suggests an impairment of experience-dependent spine 

structural plasticity before spine loss in asymptomatic AD stages. In addition, stabilized new 

spines and destabilized preceding spines in novel experience reflect a rewiring of neural 

networks, which facilitates a quicker adaption of brain to the same situation in the future [17, 

50, 51]. Interestingly, the ability to dismantle the preexisting neural networks in novel external 

environment remains intact in the preclinical stage.  However, deltaE9 mice fall short of the 

establishment of novel neural networks. These results imply experience-dependent demolition 

and construction of neural networks are two processes that are independent from each other.    
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BACE1 initiates the proteolytic process of APP into Aβ, which accumulates to form amyloid 

plaques. As Aβ is believed to play a central role in AD, BACE1 becomes an attractive drug 

target. Indeed, partial reduction of BACE1 activity leads to dramatic reductions on amyloid 

plaque burden and synaptic deficits with a small decrease of Aβ levels in young AD 

transgenic mice [27]. However, pharmacological inhibition of BACE1 impairs structural and 

functional synaptic plasticity implying its physiological role in dendritic spines[9]. The boosted 

transient spines, which contribute to increased spine formation, in deltaE9/BACE +/- mice 

during EE indicate the maintenance of experience-dependent synaptic rearrangement 

requires physiological level of BACE1 activity. It still remains unclear that whether BACE1 

itself or its substrates are involved in synaptic physiology.   

 

Amyloid deposition is one of neuroinflammation drivers associated with activated glial cells 

and the release of pro-inflammatory cytokines. These soluble mediators, IL-1β in particular, 

directly and extensively disturb synaptic transmission and plasticity. IL-1β regulates the 

expression and phosphorylation of glutamate receptors on dendritic spines[33]. The altered 

sensitivity of receptors to synaptic glutamate modulates synaptic plasticity. In addition, IL-1β 

disrupts BDNF signaling cascades and thereby prevents activity driven formation of 

filamentous actin in spines which is required for spine structural plasticity[44]. The restorative 

effects of pioglitazone and IL-1 RA demonstrated herein implicate a deleterious role of IL-1β 

in experience-dependent spine structural plasticity preceding cognitive impairment in AD.  

 

Of note, numerous clinical studies have demonstrated that anti-inflammatory treatment 

reduces dementia risk or delay the onset of AD [3, 7, 16], although anti-inflammatory drugs in 

typical AD fail to be proven effective [13, 22]. These trials suggest prevention of inflammatory 

processes is clinically beneficial at the preclinical stages of AD. Our data confirm that 

neuroinflammation caused impairments of spine structural plasticity is curable by anti-

inflammatory treatment in a preclinical mouse model of AD. This finding implies the 

normalization of adaptive structural plasticity of dendritic spines may correlate with the 

beneficial effects of anti-inflammatory treatment in preclinical AD patients. 

 

We conclude that our in vivo dendritic spine analysis reveals that neuroinflammation, caused 

by amyloid deposition, undermines the adaptive changes of neural networks upon novel 

external environment before the occurrence of dementia, providing new insights for a possible 

benefit of anti-inflammatory treatments in preclinical AD.  
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Figure legends 

Figure 1. Adaptive plasticity of dendritic spines is impaired in deltaE9 mice 

(a, b) Two-photon micrographs of GFP-labeled apical dendrites of layer V pyramidal neurons. 

Mice were housed in standard conditions (SC) and imaged twice in a week apart before put 

into enriched environment (EE) (A). In (b), mice were housed in SC all along. Empty or dark 

arrows point to eliminated or formed spines compared to previous imaging session. Blue 

arrowheads mark spines that existed in the first imaging session and were stable over the 

entire imaging period while red arrowheads represent gained spines in the first week of EE or 

matching period of SC that survived over the rest of imaging period.  

(c-e) Quantifications of relative spine density, fraction of eliminated or formed spines in mice 

housed under EE (above) or SC (below).  

(f, g) Fractions of spines from the first imaging session that remained stable during the whole 

imaging period.  

(h, i) Fractions of gained spines in the first week of EE or matching period of SC that 

remained stable during the whole imaging period.  

(j) The data at day43 from h and j were compared by one-way ANOVA. Scale bar=2 µm.  

 

Figure 2. Partial reduction of BACE1 in deltaE9 mice greatly decreases amyloid plaque load 

and subsquent glial cell activation 

Immunohistochemical labeling of amyloid plaques (blue), activated astrocytes (GFAP, red) 

and microglias (Iba-1, red) in the cortex. Scale bar=300 µm. 

 

Figure 3. Reduction of BACE1 restores the spine density increase, but not neural circuit 

remodeling, upon EE in deltaE9 mice 

(a) Two-photon micrographs of GFP-labeled apical dendrites. DeltaE9/Bace +/- mice were 

housed under SC (above) or EE (below).  

(b-e) Quantifications of relative spine density, fraction of transient, eliminated or formed 

spines.  

(f, g) Fraction of spines in the first imaging session or gained spines in the first week of EE 

and matching week of SC that survived over the imaging period. Scale bar=2 µm.  

 

Figure 4. Pioglitazone recovers the observed impairments of spine structural plasticity in 

deltaE9 mice 
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(a) Two-photon micrographs of GFP-labeled apical dendrites. DeltaE9 mice were fed with 

pioglitazone during EE or matching period of SC  

(b-e) Quantifications of relative spine density, fraction of transient, eliminated or formed 

spines.  

(f, g) Fraction of spines in the first imaging session or gained spines in the first week of EE 

and matching week of SC that survived over the imaging period. Scale bar=2 µm.  

  

Figure 5. IL-1 RA rescues the impaired adaptive plasticity of dendritiic spines in deltaE9 mice 

(a) Two-photon micrographs of GFP-labeled apical dendrites of layer V pyramidal neurons. 

Mice were housed in SC (above) or EE (below). Empty or dark arrows point to eliminated or 

formed spines compared to previous imaging session. Blue arrowheads mark spines that 

existed in the first imaging session and were stable over the entire imaging period while red 

arrowheads represent gained spines in the first week of EE or matching period of SC that 

survived over the rest of imaging period.  

(b-e) Quantifications of relative spine density, fraction of transient, eliminated or formed 

spines.  

(f, g) Fraction of spines in the first imaging session or gained spines in the first week of EE 

and matching week of SC that survived over the imaging period. Scale bar=2 µm. In SC and 

EE group, mice number was 4 and 6, irrespectively. 8-12 dendrites were imaged in each 

mouse. The data were presented as the means for every mouse. All results were presented 

as means ± S.E.M. 
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Figure 5 
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Supplementary materials 

Supplementary methods 

Western blot	  

10% cortical tissues (w/v) were homogenized on ice in lysis buffer with protease inhibitors 

(Roche), followed by centrifugation at 500 rpm for 1 min. The supernatant was collected and 

protein concentrations were adjusted by the bicinchoninic acid assay to ensure the same 

amount of protein being loaded for each sample. Samples were mixed with SDS-containing 

sample buffers and incubated at 100 °C for 20 min. After electrophoresed on 12% sample gel, 

proteins were transferred into polyvinylidene difluoride membrane (Millipore). The primary 

antibodies against IL-1β (Cell signaling), IL-1 RA (Thermo Scientific) and tubulin (Santa Cruz) 

were used at 1: 1000 concentrations for immunoblotting. Protein bands were quantified by 

ImageJ. 

 

Supplementary figure legends	  

Supplementary Figure 1. Transcranial in vivo two-photon imaging and housing conditions 

(a) Transcranial in vivo two-photon imaging was taken in somatosensory cortex (left, black 

circle). Lateral view of GFP-labeled layer V pyramidal cortical neurons is in the middle. Apical 

tuft dendrites of layer V neurons were imaged at 20-70 µm depths (right). Scale bar 

represents 100 µm. (b) Schematic drawing of an EE cage (left) and a cage of SC (right). 

 

Supplementary Figure 2. Partial reduction of BACE1 in deltaE9 mice does not change spine 

density and dynamics 

(a-c) Quaitfiations of spine denstiy, fraction of eliminated or formed spines in mice at the age 

of 4-5 months housed under SC.  

 

Supplementary Figure 3. Western blots of interleukin-1β and interleukin-1 receptor antagonist 

(a) Western blot images and quantification show the expression of interleukin-1β (IL-1β) was 

increased in deltaE9 mice. (b) Interleukin-1 receptor antagonist (IL-1 RA) was overexpressed 

by the injecion of lentivirus (LV), as illustrated by western blot images and quantification. 

 

Supplementary figures 
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Abstract 

Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby 

providing the structural substrate for adaptive behavior. However, the mechanisms governing 

dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the 

cortex of adult APP knockout (APP-KO) mice, formation of new and elimination of existing 

dendritic spines is reduced, with overall spine density remaining unchanged. APP-KO mice 

also failed to respond with an increase in spine density upon environmental enrichment. 

These impairments prevailed in APPsα-KI genotype. Comparison of mEPSCs between APP-

KO and wild type mice revealed selective reduction in the NMDA receptor mediated synaptic 

currents. Strikingly, potentiation of NMDA receptor responses by the co-agonist D-serine 

rescued spine dynamics, adaptive plasticity and morphology in APP-KO mice. These data 

suggest functional cooperation between APP and NMDA receptors in maintenance of 

synapses with predominantly NMDA-receptor mediated transmission, prerequisite for 

constitutive and adaptive synaptic plasticity in the adult brain.  

 

Key words: Amyloid precursor protein, NMDA receptor, Dendritic spine, Two photon in vivo 

imaging, Miniature EPSC 
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Introduction     

Small protrusions of dendrites, known as spines, provide primary sites for excitatory inputs in 

principal neurons of most brain regions. Harboring the receptive elements of glutamatergic 

connections, dendritic spines are of major importance for synaptic integration and plasticity, 

hence a prerequisite for encoding cortical representations and adaptive remodeling of neural 

circuits [47, 53, 65]. To ensure these functions, the morphology and distribution of dendritic 

spines are maintained in a highly dynamic state and are tightly regulated [33, 42, 66]. Thus, it 

is not surprising that the structural parameters of dendritic spines including spine density, 

morphology and plasticity are affected in an array of neurodegenerative diseases [7, 17, 18, 

38]. As such, research into mechanisms governing functions and structural plasticity of 

dendritic spines, which remain largely unexplored in adult brain, holds important clues not 

only towards understanding the basic biology of synapses with neural mechanisms of 

adaptive behavior but may also reveal key areas for therapeutic interventions. 

 

Most of the data concerning the physiology and plasticity of dendritic spines emerged from 

developing neurons and typically have been acquired ex vivo and in vitro [6, 13, 40, 49, 50]. 

While there is no doubt that these studies made major contributions towards elucidating 

events involved in acute response of synapses to electrical stimulations or pharmacological 

treatments, rigorous research of spine plasticity in vivo has become feasible only recently with 

the advancement of two photon microscopy [22, 29, 67]. Indeed, the high resolution structural 

data provides superb opportunity not only for exploring the dynamics of spines but also to 

identify structural correlates of adaptive related rewiring of neural circuits within the intact 

brain.     

 

Enduring interest towards amyloid precursor protein (APP), due to its key role for the 

pathogenesis of Alzheimer’s disease, has been refueled by recent evidence indicating its 

multifaceted role in synaptic physiology and development [24, 27, 44, 46]. While the 

mechanistic details remain to be elucidated, increasing evidence indicates important trans-

synaptic adhesive functions for trans-membrane APP and major neurotrophic roles of 

secreted ectodomain  APPsa in neurons [2, 3, 10, 31, 57]. The high level of APP expression 

in the developing nervous system with its enrichment at nascent synapses and potent 

synaptogenic effects of the secreted APPsα have also been implied for the involvement of 

APP in the formation and stability of synapses during neurodevelopment [9, 11, 25, 27, 61-63]. 

Moreover, APP and amyloid β-peptide (Aβ) have been implicated in regulation of trafficking 
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and surface expression or internalization of ion channels and synaptic receptors [26, 56, 58, 

64]. Despite of the key relevance of these processes for integrative mechanisms of neurons 

and synaptic plasticity, the role of APP in governing dendritic spine dynamics and adaptive 

remodeling of neural circuits in adult brain remains poorly defined.     

 

In this study, we combined long-term in vivo two photon imaging and electrophysiology of 

cortical neurons to elucidate the role of APP in adaptive spine plasticity and synaptic 

transmission in the adult mouse brain. Our data show that the lack of APP impairs the 

structural plasticity of dendritic spines and suggest its key role in maintenance of thin spines 

with predominantly NMDA-receptor mediated transmission, which is a prerequisite for 

synaptic plasticity in the adult brain. 

 

Materials and methods 

Experimental animals  

All protocols and procedures involving animals were approved and conducted in accordance 

with the regulations of LMU and the government of Upper Bavaria (Az. 55.2-1-54-2532-62-12). 

GFP-M mice [16] were purchased from Jackson Laboratory, USA. APP-KO and APPsα-KI 

mice were described previously [39, 52]. APP-KO (APP -/-) × GFP-M+/- and APPsα-KI 

(APPsα +/+) × GFP-M+/- lines were generated by interbreeding. All transgenic mice were 

maintained on C57BL/6 background. Female transgenic mice at the age of 4 months were 

used for imaging and electrophysiological recordings, and female age matched wild-type (WT) 

littermates were used as controls. Mice were housed and bred in pathogen-free environment 

in the animal facility at the Centre for Neuropathology and Prion Research of the Ludwig 

Maximilian University Munich (LMU), with food and water provided ad libidum (21 ±1 °C, at 

12/12 h light/dark cycle). All mice were either housed singly in standard cages (30×15×20 cm) 

or in groups in an environmentally enriched (EE) cages (80×50×40 cm) equipped with 

platforms and variety of toys, which were relocated every 2-3 days. In experiments with D-

serine treatment, every other day D-serine (Sigma-Aldrich) was prepared freshly and 

supplemented into drinking water (0.55 mg/mL).  

    

Longitudinal in vivo two-photon imaging experiments 

The surgical procedure of chronic cranial window implantation and the details of experiments 

have been described previously [18, 28]. In brief, under anesthesia with kethamine/xylazine 
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(120 and 10 mg/kg, respectively) (WDT/Bayer Health Care), cranial window (4.0 mm) was 

implanted above the somato-sensory cortex of mice after open-skull craniotomy. After 4 

weeks of recovery period, in vivo two photon microscopy was carried out using LSM 7 MP 

microscope (Carl Zeiss) equipped with 20 × objective (NA 1.0; Carl Zeiss). Mice were 

anesthetized with isoflurane (1% in 95% O2 and 5% CO2), and body temperature was kept at 

37 °C with the heating pad (Fine Science Tools GmbH). Apical dendrites originating from GFP 

positive layer V pyramidal neurons were imaged in consecutive sessions at specified time 

points. GFP was excited with a femtosecond laser (Mai Tai DeepSee, Spectra Physics) at a 

wavelength of 880 nm. The imaging session did not exceed 60 min. Special efforts were 

made to keep the intensity of laser and data acquisition settings consistent throughout the 

experiments. Due to limitation in axial resolution, only laterally protruding spines were 

included into analysis. Emerging or disappearing spines over two consecutive imaging 

sessions over one week were defined as forming or eliminating spines, with their fractions 

normalized to the total spine number. Spine turnover rate (TOR) was defined with the 

following formula: (TOR) = (Nf + Ne)/ (2 × Nt × D), where Nf = formed spines, Ne = eliminated 

spines, Nt = total spines, D = interval days between imaging sessions. For illustration purpose, 

high resolution (0.138 µm/pixel per frame with 1 µm/pixel z-direction) maximal projection 

images were deconvolved (AutoQuantX3, Media Cybernetics), with contrast and brightness 

adjusted. 

	  

Electrophysiological recordings    

The details of preparation of acute cortical slices and electrophysiological recordings have 

been described elsewhere (Filser et al., 2014). Chemical and drugs for electrophysiological 

experiments were purchased from Sigma-Aldrich unless specified otherwise. Mice of both WT 

and APP-KO (four groups with 3-4 mice in each group) were anaesthetized with isoflurane (1% 

in 95% O2 and 5% CO2) and decapitated after cervical dislocation. Brains were rapidly taken 

out and placed for 5-6 min in ice-cold bubbled (95% O2, 5% CO2) slicing solution (mM): 

sucrose, 75; NaCl, 85; KCl, 2.5; NaH2PO4, 1.25; NaHCO3, 25; CaCl2, 0.5; MgCl2, 4; glucose, 

25, pH 7.4. Coronal slices (300 µm) containing the somato-sensory cortex were cut (VT1200S; 

Leica) in the same solution and transferred into a warming chamber (35 °C) filled with the 

same media except sucrose was omitted and NaCl increased to 125 mM (30 min). 

Subsequently, the tissue was transferred into recording artificial cerebrospinal fluid (aCSF, 

mM): NaCl, 125; KCl, 2.5; NaH2PO4, 1.25; NaHCO3, 25; CaCl2, 2; MgCl2, 2; glucose, 25. 
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Recordings from layer V pyramidal cells were made under continuous perfusion of slices with 

aCSF (bubbled with 95% O2, 5% CO2) at RT in a recording bath fixed to the stage of a BX51 

upright microscope (Olympus). Neurons were visualized with differential interference contrast 

(DIC). Patch pipettes were pulled from borosilicate glass (HEKA Electronics) with P87 puller 

(Sutter instruments) and filled with internal solution (mM): CsCl, 140; KCl, 10; NaCl, 5; 

MgATP, 2; EGTA, 0.01; HEPES, 10; 280-290 mOsm, pH 7.3, with in bath resistance of 4-6 

MΩ. Analog signals were digitally sampled at 10 kHz and stored for off-line analysis. 

Recordings were made from holding potential of -65 mV or -45 mV as specified, after 

correction for the liquid junction potential. Only neurons firing overshooting action potentials 

immediately after the breaking of the seal were included in current analysis. Selective blocker 

of GABAA/glycine receptor-channel picrotoxin (100 µM, DMSO) was supplemented routinely 

to the recording media to isolate the spontaneous excitatory postsynaptic currents , with 

miniature EPSC (mEPSC) isolated further the blockade of action potential-driven synaptic 

activity with tetrodotoxin (TTX, 0.5-1.0 µM). Mixed NMDA/AMPA receptor mediated mEPSCs 

were recorded at -45 mV holding potential under the low extracellular Mg2+ (0.5 mM) 

(Espinosa and Kavalali 2009). The frequency, amplitude and decay time constant of synaptic 

currents were analyzed using Synaptosoft software (Synaptosoft, Co.), with event detection 

threshold qualifying set up at 2.5-3.0 times the S.D. of the noise, with graphs generated using 

IgorPro 6.22 software (Wavemetrics, USA).	  

 

Confocal microscopy and spine morphometry  

To achieve a better resolution of spine morphologies, ex vivo confocal microscopy of GFP 

positive somatosensory neurons was used. Mice were injected with a lethal dose of 

ketamine/xylazine (200/14 mg/kg, i.p.), perfused transcardially with phosphate-buffered saline 

(0.1 M PBS, 50 ml) followed by paraformaldehyde (150 ml, 4% in PBS). Brains were 

extracted and post-fixed in PFA at 4 °C overnight and cut in coronal plane (60 µm) with the 

vibratome (VT 1000S, Leica). Sections containing somato-sensory cortex were incubated in 

0.1% Triton X-100, 5% normal goat serum (NGS) for 2 h at room temperature and exposed to 

rabbit anti-GFP antibody tagged with Alexa488 (1:200, Invitrogen) in PBS with 5% NGS for 2 

h at room temperature. After three washes with PBS, slices were mounted with fluorescent 

media and covered for microscopic analysis. Apical dendrites of layer V pyramidal cells were 

imaged in slices through 40× oil immersion objective (NA 1.3; Carl Zeiss), using LSM780 

confocal microscope (Carl Zeiss). Images were deconvoluted (AutoQuantX3, Media 
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Cybernetics) with dendrites and spines reconstructed using Imaris (Bitplane) at high 

resolution (0.069 µm/pixel per frame with 0.395 µm/pixel z-direction). Morphological subtypes 

of dendritic spines were identified as follows: mushroom spine: max_width(head) / 

min_width(neck) > 1.4 and max_width(head) > 0.2 µm and min_width(neck) > 0 µm; stubby 

spine: length(spine) / mean_width(neck) <= 3 or min_width(neck) = 0 µm or min_width(neck) > 

0.5 µm; thin spine: length(spine) / mean_width(neck) > 3. Fractions of spine sub-types (of 

total spine number) were assessed and compared. 

 

Western Blots 

For NMDA receptors quantification, postsynaptic density (PSD) fraction was prepared as 

described [30]. Briefly, cortical tissue was homogenized in ice-cold Buffer A (0.32 M sucrose, 

1 mM MgCl2, 0.5 mM CaCl2 and 6 mM Tris at pH 8.0) with protease inhibitors (Roche). Brain 

extract was centrifuged at 1,400 × g for 10 min with supernatant (S1) collected. The pellet 

was re-homogenized with Buffer A and centrifuged at 710 × g for 10 min. This supernatant 

was then mixed with S1 and centrifuged at 710 × g for 10 min. The supernatant was then 

collected and centrifuged at 13,800 × g for 12 min to obtain the pellet (P1). P1 was re-

suspended in Buffer B (0.32 M sucrose and 6 mM Tris at pH 8.0) with protease inhibitors 

(Roche). This solution was then gently loaded onto a discontinuous sucrose gradient 

(0.85/1/1.15/ in 6 mM Tris at pH 8.0) and centrifuged at 82,500 × g for 2 h. The synaptosome 

fraction, which condensed between 1 M and 1.15 M sucrose, was collected. The volume of 

synaptosome fraction was adjusted with Buffer B to 1 mL. Equal volume of Buffer C (1% 

Triton X-100 and 12 mM Tris at pH 8.0) was added into the synaptosome fraction; the mixture 

was centrifuged at 50,000 × g for 20 min before collecting the pellet, which was re-suspended 

into 40 mM Tris (pH 8.0) to obtain PSD fraction. Total protein corrected samples (Bradford 

assay) were eletrophoretically separated by 10% SDS-PAGE and transferred onto 0.45 mm 

PVDF membrane (Millipore) and developed with primary antibodies at dilutions: NMDAR1 

(1:1000), NR2A (1:1000), NR2B (1:1000) (Cell Signaling) and PSD95 (1:1000, Synaptic 

Systems). Western blots were quantified with ImageJ (NIH Image).  

 

Statistics 

For statistical analysis and comparison, GraphPad Prism 5 was used. Comparison between 

two different groups was performed using two-tailed Student t-test. In the longitudinal 

measurements of spine analysis, repeated one-way ANOVA was performed followed by 

Dunnett test. Extra sum-of squares F test was used when data were fitted with a line using 
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the nonlinear regression.  The numbers of mice were 5–6 per group for in vivo imaging. 8–12 

dendrites were imaged in each mouse; the length of each dendrite was 25–35 µm. The data 

are presented as the means for every mouse. All results were presented as mean ±S.E.M. 

with p values less than 0.05 defined as statistically significant. Analysis was performed blind 

with respect to mouse genotype.  

 

Results 

Dendritic spine dynamics and adaptive plasticity are impaired in the absence of APP  

APP proved critical in the formation and stabilization of synaptic connections in the 

developing nervous system [27, 46, 51, 62, 63]. To find out if the dynamics of dendritic spines 

and activity-dependent synaptic plasticity in adult brain also depend on APP, we monitored 

and compared the density and turnover rate (TOR) of spines in cortical pyramidal neurons of 

4-5 month-old WT and APP-KO mice in vivo. Apical tufts of layer V pyramidal neurons were 

imaged in the somatosensory cortex prior to and during their exposure to environmental 

enrichment (Fig. 1). While no difference was found between the spine densities of WT and 

APP-KO mice housed under standard environment (Fig. 1b), both the elimination and 

formation of new spines were significantly lower in neurons of APP-KO mice compared to 

controls, resulting in reduced spine TOR (Fig. 1c-e). Thus, the decrease in spine TOR without 

change in spine density indicates the key role of APP in dendritic spine dynamics. 

 

Environmental enrichment is known to provide a spectrum of synaptic inputs, which activate 

and lead to adaptive synaptic alterations within the adult brain [43, 48, 54]. To investigate if 

APP is involved in neural circuit remodeling in adulthood, both WT and APP-KO mice were 

exposed to environmental enrichment over 5 weeks, with spine density and dynamics 

monitored (Fig. 1a, f-h). In agreement with earlier reports [5, 32, 37], in WT mice 

environmental enrichment induced a steady increase of spine density. In sharp contrast, 

environmental enrichment failed to increase spine density in APP-KO mice (Fig. 1f). Moreover, 

the TOR of dendritic spines in APP-KO mice was consistently lower compared to WT (Fig. 1g). 

Of note, unlike WT mice demonstrating gradual decline in dendritic spine elimination upon 

environmental enrichment, the rate of spine elimination in APP-KO genotype remained 

unaltered (Fig. 1h). Collectively, these data demonstrate an essential role of APP in 

constitutive turnover of dendritic spines and their adaptive remodeling in the adult brain. 

 

Structural plasticity of spines in APPsα-KI and APP-KO mice are comparable  
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As neurotrophic effects of the APP ectodomain APPsα are well documented [9, 11, 35, 46], 

we examined if the lack of this fragment in APP-KO mice could account for their impaired 

structural plasticity. We monitored and analyzed dendritic spine dynamics in APPsα knock-in 

(KI) mice, which express APPα but lack full length APP[52]. As illustrated in Fig. 2 (a-d), both 

the spine TOR and reactive increase in spine density associated with environmental 

enrichment in APPsα-KI mice were comparable to those in APP-KO genotype (Fig. 1). These 

results indicate that constitutive secretion of APPsa is not sufficient for normal spine turnover 

and suggest that cell surface full length APP maintains spine dynamics and adaptive spine 

plasticity.	  	  

	  

Impaired spine plasticity in APP-KO mice coincides with altered spine morphology   

Spine morphology presents a reliable indicator of the developmental state and strength of 

excitatory synaptic inputs of cortical neurons [8, 21]. Classified in three major groups - stubby, 

mushroom and thin spines, the relative fraction of various spine types in the brain is regulated 

by synaptic activity and developmental mechanisms [4, 36]. To find out if impaired plasticity of 

dendritic spines in APP-KO mice correlates with aberrations in spine morphology, we 

assessed spine type distribution in adult WT and APP-KO mice housed under standard or 

enriched conditions (Fig. 3). In APP-KO mice, the fraction of thin spines was reduced while 

the relative number of mushroom spines was enhanced irrespective of housing conditions 

(Fig. 3a-c). Counting of stubby spines revealed no differences between two genotypes (not 

shown). Overall, the reduction in thin spines paralleled by an increased fraction of mushroom 

spines support impaired dendritic spine plasticity of in APP-KO genotype, and suggest 

changes in their excitatory synaptic inputs.       	  

	  

NMDA receptor-mediated mEPSCs frequency and time constant are reduced in APP-

KO mice   

Because miniature excitatory post-synaptic currents (mEPSCs) provide a direct measure of 

the synaptic weight [19], we compared mEPSCs in cortical pyramidal cells of two genotypes 

recorded in the presence of picrotoxin (200 µM) and tetrodotoxin (0.5 µM) at -65 mV holding 

potential. No differences were found between amplitudes (not shown), frequencies or decay 

time constants of mEPSCs of two groups housed under standard conditions (Fig. 4). Given 

that the fraction of thin spines, which are known to receive synaptic inputs mediated 

predominantly via NMDA receptors [34, 41], are notably reduced in APP-KO mice, we 
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compared the contribution of NMDA receptors to mEPSCs of both genotypes recorded at -45 

mV under low extracellular Mg2+ (0.5 mM) (Fig. 4a-f). In WT mice housed under standard 

conditions, mEPSC recorded at -45 mV revealed higher frequency with slower decay time 

constant, consistent with activation of pure NMDA receptor mediated transmission, compared 

to those recorded at -65 mV (Fig. 4a-c). In contrary, no significant differences in 

depolarization-dependent increase in mEPSC frequency or decay time constant were 

detectable in APP-KO neurons (Fig. 4d-f). Taken together, these data indicate a lower 

contribution of NMDA receptor mediated currents to the generation of mEPSCs in APP-KO 

mice, which are known for their slower decay kinetics and voltage-dependence of their 

activation.  

 

To verify if the differences between the electrophysiological readouts are associated with 

changes in NMDA receptor expression, we compared postsynaptic NMDA receptor1 (NR1), 

NMDA receptor2A (NR2A) and NMDA receptor2B (NR2B) subunits between the two 

genotypes. As illustrated in Fig. 5a-d, NR1 and NR2A expressions in APP-KO mice were 

significantly lower compared to WT controls. These biochemical data accord with results of 

electrophysiological experiments and indicate deficiency of NMDA receptor-mediated 

functions in APP-KO mice.    

 

Activation of NMDA receptor restores the structural plasticity of dendritic spines in 

APP-KO mice 

As NMDA receptors regulate the stability and morphology of dendritic spines [59, 60], we 

tested if pharmacological activation of NMDA receptors with D-serine could rescue the 

impaired structural plasticity in APP-KO mice. D-serine was supplemented to the drinking 

water of APP-KO mice housed under standard or enriched conditions and dendritic spines 

were monitored over several weeks. Interestingly, as illustrated in Fig. 6a-e, D-serine 

treatment of APP-KO increased constitutive spine dynamics under standard housing 

conditions (Fig 6b and c) and  also rescued the adaptive gain of spines upon environmental 

enrichment (Fig 6e). Likewise, treatment of APP-KO mice with D-serine also enhanced the 

fraction of thin spines and lowered the relative number of spines with mushroom morphology 

(Fig. 6f and g). These data suggest that constitutive and adaptive structural plasticity of 

dendritic spines depend on physiological activation of NMDA receptors, which are impaired in 

the absence of APP.    
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Discussion 

We have shown here that in adult APP-KO mice, dendritic spine dynamics and remodeling 

are impaired. This finding assigns an important role to APP in governing structural plasticity of 

dendritic spines, which appears to be independent of APPsα-mediated functions. The 

compromised structural spine plasticity is associated with reduced NMDA receptor-mediated 

mEPSCs and postsynaptic NMDA receptor expression. Remarkably, the spine plasticity 

deficit could be rescued by D-serine, a co-agonist of NMDA receptors. These converging 

results pinpoint the close functional cooperation between APP and NMDA receptors in 

maintenance of constitutive and adaptive plasticity of dendritic spines in the adult brain.  

 

As a ubiquitous type I trans-membrane glycoprotein expressed in the brain, APP with its 

cleavage product Aβ has long been implicated in AD [20, 55]. Produced by β/γ proteolysis of 

APP, Aβ40/42 represent the main constituents of amyloid plaques in AD brain and are 

considered as a major cause of neurotoxicity and synapse loss, leading to cognitive decline 

and memory deficits. At the same time, the role of APP and its fragments in synaptic 

physiology has been widely recognized with several studies demonstrating the essential role 

of APP and related APLPs for synaptogenesis [27, 45, 46, 51]. In fact, recent evidence 

emphasizes the prevalence of protective effects of full-length APP and APPsα on synapses 

and neurons [25, 52, 64]. Hence, deciphering molecular mechanisms mediating APP 

functions is essential not only for basic research of synaptic physiology but also for 

translational neuroscience. Because the morphology and dynamics of dendritic spines 

correlate with the strength and stability of excitatory synapses, decrease in the fraction of thin 

spines with reduction in spine turnover in APP-KO mice are consistent with impaired 

structural plasticity. The lower fraction of dynamic thin spines with an increase in more stable 

mushroom spines suggest that the excitatory inputs of layer V pyramidal neurons of APP-KO 

mice are hardwired more rigidly and are less prone to contextual and behavioral remodeling. 

As lower spine TOR persisted in APPsα-KI mice, which failed to respond with an increase in 

spine density upon environmental enrichment, it is suggested that APP holoprotein (rather 

than APPsα) is of critical importance for the maintenance of structural spine plasticity.  As a 

note of caution we should also bear in mind that while full length APP undergoes regulated 

cleavage with APPsα secretion that correlates with synaptic activity, constitutive production of 

APPsα in APPsα-KI mice might fall short in both location and timing of APPsα release.   
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While it remains unclear how precisely APP exerts its physiological effects on excitatory 

synapses, there is a considerable body of evidence implying APP in regulating the trafficking 

and surface expression of ion channels and receptors [12, 26, 58, 64]. In the context of our 

findings, it is important to note that biochemical studies indicate a close interaction of APP 

with NR1 and NR2A subunits of NMDA receptors, which are of major importance in governing 

the spine dynamics and plasticity [14, 23, 38, 40]. In agreement with previous in vitro reports 

[12, 26], our measurements in acute brain tissue of APP-KO mice reveal reduced expression 

(as quantified in PSD fractions) of NR1 and NR2A subunits of NMDA receptor. Lower 

expression of NR1 and NR2A in APP-KO mice housed under standard or enriched conditions 

correlated with reduced frequency and decay time constant of mEPSC recorded under low 

extracellular Mg2+ and depolarized potentials, and accord with attenuation of NMDA receptor-

mediated inputs [15]. Noteworthy, comparable mEPSC frequency and amplitude in WT and 

APP-KO mice at close to resting potentials (-65 mV) implies that the AMPA receptor-

dependent component of excitatory transmission in APP-KO mice remains largely intact. 

These electrophysiological measurements are in accordance with our morphological data, 

which show a lower fraction of thin spines in APP-KO mice. As both, the morphology and 

stability of dendritic spines are subject to regulation by NMDA receptors, lowered expression 

of NR1/NR2A subunits in APP-KO would lead to spine plasticity impairments. Of note and in 

agreement with our observations, data from transgenic mice with deletion of NR1 subunit of 

NMDA receptor revealed enlarged spine heads in cortical neurons with reduced structural 

plasticity [59]. Similarly, acute loss of NMDA receptors [1] and their pharmacological inhibition 

[60, 67] have been reported to impair synaptic plasticity. Although our data cannot rule out the 

contribution of impaired synaptic and neurotrophic functions of APP in APP-KO mice, the 

restorative effects of NMDA receptor co-agonist D-serine demonstrated herein implicate close 

cooperation between NMDA receptors and full-length APP in maintenance of the dynamics 

and plasticity of dendritic spines.  

 

To conclude, our data imply a major importance of APP in structural plasticity and adaptive 

remodeling of cortical synapses in the adult brain. They also suggest that deficit of APP 

holoprotein could lead to synaptic impairments in AD brain independently of its metabolites. 

Further research of APP mediated functions is likely to provide valuable insights into the 

biology of dendritic spines and open avenues for discovery of novel therapeutic targets for AD, 

a scientific investment with immense beneficial potential.   
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Figure legends 

Figure 1. Structural plasticity of dendritic spines is impaired in the cortex of adult APP-KO 

mice. 

(a) Consecutive in vivo imaging of the same apical dendrites from layer V pyramidal neurons 

in the somatosensory cortex over 46 days reveals formation and elimination of dendritic 

spines (white and empty arrowheads, respectively) in WT and APP-KO mice. Prior to the 

exposure to environmental enrichment (EE), all mice were housed in standard conditions. 

Scale bar - 10 µm.  

(b-e) Summary graphs of spine density, turnover rate (TOR), elimination and formation. Note 

that the spine density has been assessed at the first imaging time point (Day 1), while for the 

measurements of spine dynamics images from the Day 1 and 8 were analyzed.  

(f-h) Graphical representations of the relative spine density, TOR and elimination over the 

period of the exposure of mice to EE. Non-linear regression (F test) has been used for fitting 

the data points. Two-tailed Student t-test was used in (a-e) and repeated one-way ANOVA 

was performed followed by Dunnett test in (f-h). WT n=5 mice and APP-KO n=6 mice; * 

p<0.05, ** p<0.01, NS - no significant difference.  

 

Figure 2. APPsα fails to rescue the impaired structural spine plasticity of APP-KO mice  

(a) Longitudinal in vivo imaging of the same apical dendrites from layer V pyramidal neurons 

in the somatosensory cortex of APPsα-KI mice housed under standard or enriched 

environments: white and empty arrowheads point to newly formed and eliminated spines, 

respectively. All mice were initially housed under standard conditions. Scale bar - 10 µm.  

(b, c) Summary plots of spine density and TOR. Note that the spine density was assessed at 

the first imaging time point (1 d), while for the spine dynamics measurements, the data from 

the day 1 and 8 were analyzed.  

(d) Representation of the relative spine density in WT and APPsα-KI mice under the 

environmental enrichment. Non-linear regression (F test) has been used for fitting the data 

points. Two-tailed Student t-test was used in (b-c) and repeated one-way ANOVA was 

performed followed by Dunnett test in (e). WT n=5 mice and APPsα-KI n=5 mice; ** p<0.01, 

NS - no significant difference.  

 

Figure 3. Dendritic spine morphology is altered in APP-KO mice. 

(a) Typical confocal images of apical dendrites with spines (z-projections) from layer V 

pyramidal neurons in the somatosensory cortex of WT and APP-KO mice (top and bottom) 
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housed in standard and enriched environments (left and right). For classification of spine 

types, 3D reconstructions by Imaris have been applied. Thin, mushroom and stubby spines 

are encoded in blue, green and red, respectively. Scale bar represents 2 µm.  

(b, c) Summary plots of thin and mushroom spine fractions in WT and APP-KO mice exposed 

to standard (SE) and enriched environments (EE). . Two-tailed Student t-test was used and 

n=6 mice in all experimental groups; * p<0.05, ** p<0.01, NS - no significant difference.   

 

Figure 4. Environmental enrichment fails to enhance the miniature excitatory synaptic 

currents and reveals reduced contribution of NMDA receptor to mEPCSs in APP-KO mice.  

(a, d) Representative mEPSCs recorded in pyramidal neurons in slices from WT and APP-KO 

mice housed under standard and enriched environmental conditions. Note that recordings 

were made at -65mV and -45 mV holding potentials. 

(b, c and e, f) Summary plots comparing the mEPSC frequency and decay time constants 

(tau) of mEPSC between mice of WT (b, c) and APP-KO (e, f) mice exposed to two different 

housing conditions (n=8 and n=9 slices from standard and enriched conditions); Two-tailed 

Student t-test was used; * p<0.05.  

 

Figure 5. Quantification of NMDA receptor proteins of WT and APP-KO mice. 

(a-d) Western blots and quantifications of NR1, NR2A and NR2B proteins from WT and APP-

KO mice housed under standard and enriched environments: (a) representative blots with (b-

d) summary plots. Note, that all NMDA receptor proteins have been detected from PSD 

fraction. Two-tailed Student t-test was used; n=6 mice in each group; * p<0.05, ** p<0.01.   

. 

Figure 6. Treatment of APP-KO mice with NMDA receptor co-agonist D-serine restores the 

structural plasticity and morphology of dendrite spines. 

(a) Consecutive in vivo imaging of the same apical dendrites from layer V pyramidal neurons 

in the somatosensory cortex of APP-KO mice housed under standard or enriched 

environment. Note that both groups of mice received D-serine after the second imaging time 

point (8 d); white and empty arrowheads point to newly formed and eliminated spines, 

respectively. Scale bar - 10 µm.  

(b) Spine TOR prior and during continuous D-serine treatment.  

(c, d) Summary plots of the fraction of spine elimination and formation in APP-KO mice before 

and after D-serine treatment (8 d and 46 d, respectively).  
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(e) Relative spine densities in D-serine treated APP-KO mice housed under standard and 

enriched environments. Non-linear regression has been used for fitting the data points.  

(f, g) Summary plots of the fraction of thin and mushroom spines in control and D-serine 

treated APP-KO mice. For illustration purpose, the control data from Figure 2b, c are 

presented also here. Non-linear regression (F test) has been used for fitting the data points. 

Two-tailed Student t-test was used in (c, d and f, g) and repeated one-way ANOVA was 

performed followed by Dunnett test in (b, e). N=5 mice in each group; * p<0.05, ** p<0.01, NS 

- no significant difference.   
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Figure	  6	  
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5 General Discussion 

 

As a degenerative brain disorder, AD accounts for 60 to 80 percent of dementia with an 

estimated number of more than 35 million cases worldwide [39]. Although there still does not 

exist effective pharmacological treatment of AD, the accumulation of APP proteolytic fragment, 

Aβ, is believed to play a central role in AD development [18, 38]. The amyloid hypothesis is 

strongly supported by the discovery of familial AD gene mutations in APP and presenilins, 

both of which facilitate Aβ production. On the basis of these findings, transgenic AD mouse 

models have been created by expressing mutant APP and/or presenilins. These transgenic 

mice offer an opportunity to study the pathogenic events in the process of AD. Besides the 

intensive studies on Aβ neurotoxicity, physiological functions of APP also draw attention to 

AD research [32]. The regulation of producing Aβ from APP proteolysis modulates the 

expression of APP and other APP fragments that may be physiologically pivotal. To identify 

the physiological role of APP, APP knockout mice and APP fragment knockin mice in APP 

null background have been generated [30, 35, 52]. In this dissertation, we used APP23 

(overexpress human APP with the Swedish mutation, APPswePS1deltaE9 (deltaE9, 

overexpress APP with the Swedish mutation together with mutant PS1 lacking exon 9), APP 

knockout (APP-KO) and APPsα knockin (APPsα-KI, express APPsα but lack full length APP) 

to study the structural plasticity of dendritic spines during AD related pathophysiological 

processes. 

 

The structural plasticity of dendritic spines refers to the alterations of spine distribution and 

morphology in physiological or pathological conditions, which is the structural basis of 

refinement or impairment of neuronal circuits [28, 48, 51]. In neurodegenerative disorders, the 

most prominent pathology of dendritic spines is usually seen as decreased spine density that 

may be contributed by deafferentation resulted from neuronal loss [4, 17]. In particular, AD 

patients display a remarkable synaptic loss that is correlated with their cognitive capabilities 

[12, 43]. Besides pathological events, novel sensory experience also affects dendritic spine 

plasticity in adult brain. Increased spine density has been reported in mice housed under EE, 

which provides multiple external sensory experiences [13, 24]. These studies investigated the 

number and morphology of dendritic spines in young adult transgenic mouse models 

mentioned above. Also, EE was adopted as a behavioral paradigm to further examine the 

adaptive spine plasticity. Our results disclosed that in different AD transgenic mouse models 
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(APP23 and deltaE9), different pathological mechanisms resulted in spine abnormalities. 

Furthermore, neuroinflammation associated with amyloid plaques impaired EE-induced spine 

plasticity. Last but not least, reduced dendritic spine dynamics and deficient increase in spine 

density during EE were found in APP-KO and APPsα-KI mice, which might be ascribed to the 

reduction of NMDARs. Collectively, these results suggest that the structural plasticity of 

dendritic spines is impaired during AD related pathophysiological processes. 

 

APP23 and deltaE9 mice are two well-studied transgenic mouse models of AD [47]. To 

increase Aβ levels in brain, APP23 mice overexpress human APP with the Swedish mutation, 

while deltaE9 mice contain APP with the Swedish mutation together with mutant PS1 lacking 

exon9 [23, 37, 42]. These two mouse models both successfully recapitulate the AD 

pathogenesis in old age, such as neuronal loss, cholinergic deficit, cognitive decline and 

amyloid deposition. However, they display different temporal progress of amyloid plaque 

formation and cognitive impairment in young adulthood [2, 6, 8, 25, 29, 41]. In APP23 mice, 

cognitive decline precedes the formation of amyloid deposits. On the contrary, deltaE9 mice 

develop amyloid plaques before the onset of cognitive decline. In agreement with the previous 

findings of cognitive performance and amyloid deposition, our results confirmed that the loss 

of spines in young adult APP23 mice was observable in apical dendrites of layer 5 pyramidal 

neurons before amyloid deposition. However, dendritic spines of deltaE9 mice were lost only 

in the vicinity of amyloid plaques, which indicated the total number of spines remained 

unchanged, as cortical β-amyloid area is quite small in young deltaE9 mice. Moreover, distinct 

alterations in spine morphology were also found in APP23 and deltaE9 mice. Although it is 

well known that dendritic spine morphology affects various functional properties of dendritic 

spines that are associated with cognitive functions [26, 36], it still remains unclear if and how 

the altered spine morphology correlates with cognitive impairment in AD. More importantly, it 

is also unknown that whether pathological spine distribution and morphology contribute to 

specific cognitive impairments and if they function individually or collaboratively in cognitive 

decline. The different pathological mechanisms, namely intracellular APP accumulation and 

extracellular amyloid deposits that underlie the spine pathology of APP23 and deltaE9 mice 

irrespectively, suggest synaptic failure or other AD symptomatic features in mouse models 

may be ascribed to distinct causes. Thus, it needs to be very careful to compare the results 

obtained from different AD mouse models and translate them into the human disease.           
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Being the structural correlate of cognitive capabilities, the spine density on vast majority of 

dendrites in young deltaE9 mice was comparable to control mice. This finding agrees with the 

normal performance in most cognitive tests of age-matched deltaE9 mice [27, 34, 45], which 

starts to develop amyloid plaques [5, 16]. The temporal lag between amyloid deposition and 

cognitive impairment in AD mice faithfully imitates the preclinical stages of AD that have been 

recently defined as the asymptomatic period with the emergence of amyloid plaques in brain 

[40]. As pathological events progress many years before clinical manifestations, irreversible 

damages may occur in preclinical AD. Therefore, it is crucial to investigate these events and 

identify effective pharmacological interventions in preclinical stages of AD to prevent or delay 

the onset of dementia. Our results disclosed that impaired adaptive structural plasticity of 

dendritic spines occurred in young adult deltaE9 mice, which displayed amyloid deposits but 

not cognitive decline. The experience-dependent spine plasticity remodels established neural 

networks that facilitate the brain in adapting to novel external environment [22, 49, 50]. The 

failure to gain spine density and stabilize new spines in preclinical AD mice suggests the 

deficiency in dendritic spines already occurs before spine loss and cognitive decline. 

Accompanied with the appearance of amyloid plaques and subsequent activated glial cells, 

diffusible pro-inflammatory cytokines are released [46]. These cytokines have been reported 

to affect synaptic transmission and plasticity [14, 15]. The restoration of adaptive structural 

spine plasticity in young deltaE9 mice by anti-inflammatory treatments further reveals that 

pro-inflammatory cytokines may contribute to the deficiency of dendritic spines in preclinical 

AD. Interestingly, the early administration of anti-inflammatory drugs has been confirmed to 

be able to decrease dementia risk and delay the onset of AD [3, 9, 19]. It is therefore 

suggested that impaired adaptive spine plasticity induced by neuroinflammation may precede 

and play an important role in symptomatic cognitive decline.       

 

Besides increased Aβ levels, loss of APP, which might be caused by its enhanced proteolytic 

process, may also contribute to the pathogenesis of AD. The synaptic adhesion and 

synaptogenesis mediated by APP manifest its protective roles in synapses and neurons [21, 

31-33]. In these studies, we identified APP is involved in spine plasticity of adult brain. APP-

KO mice in adulthood showed decreased spine dynamics, impaired adaptive spine plasticity 

and altered spine morphology together with reduced NMAD receptor-mediated mEPSCs and 

NMDA receptor expression in postsynaptic sites. Interestingly, activation of NMDA receptors 

by D-serine rescued spine pathology in APP-KO mice.  APP has been reported to act as a 

NMDA receptor auxiliary subunit [10, 20].  The interaction between APP and NMDA receptor 
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facilitates the delivery of NMDA receptor from endoplasmic reticulum to synaptic membranes. 

APP-NMDA receptor trafficking complexes probably bear on other transmembrane proteins, 

such as Neuropilin tolloid like 1 [11]. How APP associates with assembled NMDA receptor 

and whether an intermediary protein is involved need to be further investigated. To date, the 

role of NMDA receptor in dendritic spine dynamics is still unclear. Physical and ionotropic 

properties of NMDA receptor may be differently involved in spine elimination and formation. 

Physical loss of NMDA receptor might disrupt NMDA receptor related protein-protein 

associations and lead to a great spine loss [1]. However, pharmacological blockade of NMDA 

receptor decreases the rate of spine elimination during adolescence and increases spine 

stability after entorhinal denervation [44, 53]. Brain-derived neurotrophic factor (BDNF), the 

regulator in EE-mediated brain plasticity, shares common cellular signaling molecules with 

NMDA receptor to modulate synaptic plasticity [26]. As the interactions between BNDF and 

NMDA receptor signaling cascades are mutual and complicated, it is not clear whether 

activation of BNDF receptor or NMDA receptor alone is sufficient to induce activity-dependent 

structural spine plasticity and whether deficiency on one of the receptors hinders the 

physiological function of the other.  Recent studies have shown that activation of NMDA 

receptor alone is not enough to induce the rapid spine remodeling in LTP and NMDA receptor 

dysfunction impairs BDNF mediated facilitation hippocampal synaptic transmission [7, 26].  

 

To conclude, this dissertation provides evidence for abnormal structural spine plasticity in 

APP transgenic and knockout mouse models. Altered spine distribution and morphology are 

found to be caused by different mechanisms in different AD mouse models overexpressing 

human APP with the Swedish mutation alone or together with PS1 mutation. Also, adaptive 

structural plasticity of dendritic spines that precedes cognitive decline is impaired in a 

preclinical model of AD, which is recovered by anti-inflammatory treatments. Last but not least, 

decreased spine dynamics and deficient experience-dependent gain of spine density are 

observed in APP-KO and APPsα-KI mice. All the results of the dissertation facilitate to reveal 

spine abnormalities in AD related pathophysiological processes.  
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