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1 Summary 
1.1 Summary 
Prokaryotic as well as eukaryotic cells are always surrounded by a lipid bilayer, the plasma 

membrane. This membrane enables the cell to sustain a defined reaction volume and prevent the 

loss of metabolic products. Plasma membranes are special as they are areas of information 

exchange between the cell and its environment. They are complex multi-component systems 

composed of lipids and proteins. Non-random segregation of lipids as well as proteins into distinct 

areas, so-called membrane domains, was shown in various cell-biological model organisms. Up-to-

now, the basic principles of membrane domain formation and the physiological relevance of these 

areas in plants have been unanswered. Using modern microscopy techniques, the occurrence of 

different classes of membrane domains has been demonstrated. Mesoscale microdomains are the 

most commonly observed pattern of membrane domains. Sizes, close to the resolution limit of 

advanced light microscopy are specific for this type of membrane domain. In this work, Remorin 

proteins of the model organism Arabidopsis thaliana, are established as marker proteins for different 

plant plasma membrane microdomains. Quantitative image analysis revealed that microdomains 

labelled by Remorin proteins differed in size, fluorescence intensity, circularity, domain density as 

well as in lateral diffusion behaviour. Comprehensive co-localization analysis demonstrated that 

phylogenetically closely related Remorins also labelled more similar types of membrane domains 

compared to those targeted by distantly related ones. This set of marker proteins provides a useful 

tool for further characterization of plant microdomains.  

Furthermore, the membrane binding mechanism of Remorin proteins was investigated during this 

work. The covalent binding of lipid anchors was shown to be a key feature of membrane 

attachment for Remorin proteins. Contrasting to other proteins, this so-called S-acylation reaction 

happens at the carboxy-terminal end of Remorins. Even though S-acylation often correlates with 

protein localization to membrane domains, it was shown that this post-translational modification 

does not enhance localization of Remorin proteins to microdomains. Thereby this work 

contributed important information on the constitution of membrane domain resident proteins in 

plants.   

In summary, this work has provided the basis for future studies to investigate the influence of 

protein sub-organization during signal transduction of extracellular stimuli.  
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1.2 Zusammenfassung  
Pro- und eukaryotische Zellen sind grundsätzlich von einer Lipiddoppelschicht umgeben. Diese 

Biomembranen ermöglichen es einer Zelle, ein definiertes Reaktionsvolumen aufrecht zu erhalten 

und verhindern den Verlust von Syntheseprodukten zellulärer Stoffwechselreaktionen. Die eine 

Zelle umschließende Plasmamembran ist ferner ein Ort des regen Informationsaustausches 

zwischen der Zelle und ihrer Umgebung. Speziell diese Plasmamembran ist ein komplexes 

Mehrkomponentensystem aus Lipiden und Proteinen. Die Unterteilung von Plasmamembranen in 

voneinander abgegrenzte Bereiche, den sogenannten Membrandomänen, konnte in 

verschiedensten zellbiologischen Modellorganismen gezeigt werden. Jedoch sind bis zum heutigen 

Tag die grundlegenden Mechanismen, welche zur Bildung dieser Bereiche beitragen, sowie deren 

physiologische Relevanz nicht abschließend geklärt. Anhand mehrzelliger Organismen, wie 

beispielswiese Pflanzen, konnten in den letzten Jahren verschiedener Klassen von 

Membrandomänen identifiziert werden. Die am häufigsten beobachtete Membrandomänenklasse 

sind sogenannte Mikrodomänen, welche sich vor allem durch ihre Größe nahe der 

Auflösungsgrenze fortgeschrittener optischer Mikroskopieverfahren auszeichnen. Remorine sind 

pflanzenspezifische, plasmamembranständige Proteine und lokalisieren in eben jene 

Mikrodomänen. In dieser Arbeit konnten Remorine des zellbiologischen Modellorganismus 

Arabidopsis thaliana als Markerproteine für unterschiedliche Mikrodomänen der pflanzlichen 

Plasmamembran etabliert werden. Mikrodomänen, welche von unterschiedlichen Remorin 

Proteinen markiert werden, unterscheiden sich durch Größe, Signalintensität, Form, Dichte der 

Domänen, sowie die lateralen Diffusionsgeschwindigkeiten. Dieses Markerproteinset ist ein 

nützliches Werkzeug für zukünftige Charakterisierungen pflanzlicher Mikrodomänen.  

Im Weiteren wurde im Rahmen dieser Arbeit die Ursache der Membranlokalisation von Remorin 

Proteinen untersucht. Hierbei konnte gezeigt werden, dass die kovalente Bindung eines 

Fettsäurerestes ein essentieller Bestandteil des Membranbindemechanismus von Remorinen ist. In 

Remorinen findet dieser als S-Acylierung bekannte Mechanismus ausschließlich in der Carboxy-

terminalen Region der Proteine statt. Obwohl S-Acylierung ein bekanntes Motiv Mikrodomänen-

assoziierter Proteine ist humaner Zellen ist, konnte gezeigt werden, dass diese post-translationale 

Modifikation nicht primär zur Lokalisation von Remorinen in Mikrodomänen beiträgt. 

Durch diese Ergebnise bieldet diese Arbeit die Grundlage für zukünftige Studien, welche sich mit 

dem Einfluss von Membrandomänen auf Signal-Weiterleitungsprozesse aufgrund von 

extrazellulären Stimuli beschäftigen. 
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2 Introduction 
2.1 The plasma membrane is an interface for cell signalling 
The confinement of a defined environment was a vital achievement of cellular life. In all living 

organisms, this task is conferred by biological membranes. These membranes act as selective 

barriers that enable a cell to concentrate nutrients extracted from its environment and retain the 

products it synthesizes for its own use. Without membranes, a cell could not maintain its integrity 

as a coordinated chemical system.   

Eukaryotic cells have evolved a sophisticated intracellular membrane system that further subdivides 

the interior of a cell into several cell organelles. These organelles spatially separate various 

compartments, allowing diverse functions such as transport, post-translational modifications or 

metabolic reactions. The outermost membrane, the plasma membrane (PM) is the major 

interaction interface of a cell with its environment. Numerous proteins embedded or associated 

with the PM act as sensors, allowing the cell to alter its behaviour in response to external signals. 

  

Receptor-like kinases (RLKs) are one example of PM receptors that initiate the activation of multi-

staged signalling cascades that transduce extracellular signals into the intracellular space. The 

structure of RLKs commonly consists of an amino (N)-terminal extracellular domain and a carboxy 

(C)-terminal kinase domain, which are connected by a membrane spanning transmembrane domain 

(Walker, 1994). Plant RLKs and the homologous animal Pelle-kinases evolved from a common 

ancestor. Yet in plants, the collection of RLKs has enormously diversified. Only 4 RLK 

representatives are found in humans while, over 600 members of the RLK protein superfamily are 

annotated in the Arabidopsis thaliana genome (Shiu and Bleecker, 2001a; Shiu and Bleecker, 2001b; 

Gish and Clark, 2011). One of these A. thaliana RLKs is the Brassinosteroid receptor 

BRASSINOSTEROID INSENSITIVE 1 (BRI1) (Li and Chory, 1997; Wang et al., 2001). BRI1 is 

a PM localized RLK with a large extracellular Leucin-rich repeat (LRR) domain that is capable of 

binding 24-(epi)-brassinolide with high affinity (He et al., 2000; Kinoshita et al., 2005). BRI1 

mediated brassinolide signalling depends on the interaction of BRI1 with a second LRR-RLK, the 

BRI1-ASOCIATED KINASE 1 (BAK1) (Li et al., 2002; Nam and Li, 2002) and regulates plant 

development and physiology (Zhu et al., 2013). Besides its role in brassinolide signalling, BAK1 

has also been found to be an important component of signalling complexes that are essential for 

plant-pathogen resistance, were it acts as a co-receptor with several pattern recognition receptors, 

including FLAGELLIN INSENSITIVE 2 (FLS2) and EF-TU RECEPTOR-1 (EFR) (Chinchilla 

et al., 2007; Heese et al., 2007; Chinchilla et al., 2009; Postel et al., 2010).   

BAK1 is only one example of a PM kinase receptor that is involved in several very different 
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signalling processes. Yet, cellular responses to external stimuli can be measured within minutes 

after signal perception (Asai et al., 2002). This is astonishing, considering the entanglement of 

different signal transduction cascades and that availability of receptors and their interaction 

partners is limited (van Esse et al., 2011). It also highlights a major question that biology is facing: 

How is it possible that signalling events are efficiently orchestrated and rapidly transduced, when 

there’s an abundance of putative interaction partners available?   

Observations on several membrane components have led to the hypothesis that an organized sub-

compartmentalization of cellular membranes is present and may be responsible for efficient cellular 

signalling events (Simons and Ikonen, 1997). While PM sub-compartmentalization is nowadays 

widely accepted, its underlying mechanisms as well as functional implications are still a matter of 

debate (Kraft, 2013). In order to understand membrane sub-compartmentalization, fundamental 

properties of membranes and their components should be considered, which will be done in the 

first part of this work. The second part deals with examples that illustrate the variety of membrane 

sub-compartmentalization in plants known today. 

 

2.1.1 Physical interactions and behaviour of plasma membrane components 

2.1.1.1 Lipid-lipid interactions define major principles within a 2-dimensional liquid  

Despite their diverse functions, all biological membranes share a common structure, which is a 

~45 Å thick double layer containing lipids and proteins. Lipids are the major building blocks of 

membranes because their physical properties dictate the shape and characteristics of every 

membrane. Lipid molecules are amphiphilic, meaning that they consist of a hydrophilic, so called 

“head group” and a hydrophobic “tail”. The most abundant lipid molecules are phospholipids of 

which phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine 

(PtdSer) and Phosphatidylinositol (PtdIns) are the major representatives in eukaryotic membranes 

(van Meer et al., 2008).   

A three-carbon glycerol molecule acts as the backbone of phospholipids, which is connected to 

the hydrophilic head via a phosphate group. These head groups mostly consist of simple organic 

molecules such as choline or serine. Head groups are of structural and in some cases functional 

importance for the cell (van Meer et al., 2008). A subgroup of phospholipids, the phosphoinositides 

for example have a myo-inositol head group that can be phosphorylated on positions 3, 4 and 5 of 

its cyclohexane ring which serves as a binding site for proteins and can act as a messenger molecule 

(Mueller-Roeber and Pical, 2002; Meijer and Munnik, 2003; Shisheva, 2008).   

The hydrophobic tail of phospholipids consists of two hydrocarbon (or acyl-) chains, which are 

covalently linked to the phospholipid glycerol backbone via an ester bond. These acyl chains can 
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differ in length as well as in the amount of cis-double bonds. Acyl chains that contain no cis-double 

bond are called “saturated” whereas “unsaturated” hydrocarbon chains contain at least one cis-

double bond that introduces a small kink in the molecule (Jain, 1989). Differences in length and 

saturation status of the lipids hydrocarbon chains determine how phospholipids pack against one 

another, thereby affecting the fluidity of the membrane. Especially unsaturated hydrocarbon chains 

decrease the possible packing density of membrane phospholipids because they require more space 

than saturated hydrocarbon chains (Jain, 1989). Plants synthesize a huge variety of hydrocarbon 

chains including very long acyl chains with more than 18 carbon atoms. The most abundant acyl 

chains in Arabidopsis thaliana 5 week old leaves are the 18 carbon, 3 cis-double bond gamma linoleic 

acid (18:3), linolenic acid (18:2) and palmitic acid (16:0) (Yonghua et al., 2013).   

Long-chain hydrocarbon chains are often found in sphingomyelins (SM). SMs are special 

phospholipids, as their backbone structure does not consist of glycerol but of ceramide. This 

backbone, is built of a sphingoid base, such as sphingosine that is an amide linked to a saturated 

acyl chain typically 16-24 carbon atoms long. However, SMs are classified as phospholipids due to 

their head-groups being linked to the glycerol via a phosphate group. Often found head groups 

include phosphocholine or phosphoethanolamine (Fahy et al., 2005).   

Sterol lipids are the third major group of structurally important biomembrane lipids. They generally 

consist of a tetracyclic structure with a polar group at the equatorial position of its first ring and a 

short hydrophobic acyl chain that branches from the 4th (“D”) ring. Cholesterol is the main sterol 

present in mammals and ergosterol is the predominant sterol species in fungi. Plants usually possess 

more complex sterol compositions with cholesterol, stigmasterol and sitosterol being the most 

abundant membrane sterols (Yonghua et al., 2013).  

Within a membrane, lipids are able to move in various ways. Using artificial membranes lipids have 

been observed to rotate around a central axis, wobble from side to side, and last - but most 

importantly - laterally diffuse (Sergent et al., 2012). In general, lipid membranes can be regarded as 

a two dimensional liquid, however all movements of membrane components are restricted by the 

composition of membrane lipids and the packing density of membrane components. Since 

membranes are mixtures of a vast number of different components, they can be seen as “peculiar” 

liquids. In fact, membranes are able to adopt several states of fluidity, or so called “lipid phases” 

(Veatch et al., 2008; Honerkamp-Smith et al., 2009). These phases have specific characteristics that 

determine the orientation and mobility of membrane lipids as well as proteins within the 

membrane. Mixtures that are enriched with glycerophospholipids, which possess mostly 

unsaturated acyl chains, adopt a so-called “liquid disordered” phase were the packing density within 

the membrane core is low but individual lipids have a large freedom of movement and therefore 

are able to diffuse relatively fast (Bagatolli et al., 2010). In contrast, membrane mixtures enriched 
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in sphingolipids that harbour long chain saturated acyl chains, tend to adopt so-called solid-gel 

phases with high packing densities and low diffusion rates (Bagatolli et al., 2010). Astonishingly, 

when sterols are introduced into membrane mixtures of phospholipids, a liquid-ordered phase is 

formed. This phase has a high packing density like solid-gel phases but retains the high diffusion 

capacity of liquid-disordered phases (Ipsen et al., 1987).   

Since individual lipids undergo strong intermolecular interactions, large artificial bilayer assemblies 

display several regions of different lipid phases, thereby compartmentalizing the membrane into 

compositionally different areas. This phenomenon called “phase separation” is a product of lipid 

unmixing and frequently observed in artificial as well as cellular derived membrane preparations 

(Bagatolli et al., 2010). Importantly, lipid unmixing does not generate a fixed state. Phase transitions 

of lipids continuously form and fall apart. This effect can be best described as a condition close to 

a critical point. Observations on giant plasmamembrane vesicles (GPMVs), which are chemically 

induced blebs of plasma membranes, showed that plasma membranes exist close to a critical point 

of miscibility where density fluctuations are large, which might give an explanation for dynamic 

assembly of lateral membrane compartments (Veatch et al., 2008; Honerkamp-Smith et al., 2009) .

  

Importantly it has to be noted that experimental evidence for phase transition in living cells is still 

missing and even the exact properties of liquid-ordered phases are under debate (Fidorra et al., 

2006; Subczynski et al., 2007). While some neglect the existence of liquid-ordered phases in vivo, it 

might well be that they are too small to observe with currently available techniques (Subczynski et 

al., 2007; Feigenson and Buboltz, 2008; Lee et al., 2015).  

Besides the intrinsic complexity of every membrane it is apparent that even different membranes 

within a cell have very distinct lipid compositions. Late endosomes of mammalian cells for example 

have a considerable lower sterol content compared to overall phospholipid abundance, than the 

PM (van Meer et al., 2008). Moreover, biological membranes are highly asymmetric. The PM for 

example maintains a high PtdCho and SM content at the outer leaflet and high PtdEtn and PtdSer 

concentration at the inner membrane leaflet (Rothman and Lenard, 1977; Tejos et al., 2014). 

  

Phase separation of lipids and hydrophobic mismatch are believed to represent major forces that 

drive the subcompartmentalization of biological membranes. However, the complexity of 

distribution and intermolecular interactions of basic membrane components have so far been 

underestimated and proven to be a major obstacle when studying membrane organization. 

Moreover, biological membranes do not only consist of lipids. They are an almost equimolar 

mixture of proteins and lipids (Wallin and von Heijne, 1998; Komatsu, 2008; Almén et al., 2009). 

Therefore, besides being functional components, proteins as well have to be considered as 
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important building units of biological membranes. To understand the relationship between 

proteins and lipids, one has to look at the various mechanisms of how proteins can attach to a 

membrane. 

 

2.1.1.2 Membrane proteins are in close interaction with their solvent 

2.1.1.3 Membrane attachment mechanisms – integral membrane proteins 

Approximately 30% of all human gene products and 25% of A. thaliana proteins are integral parts 

of membrane systems (Schwacke et al., 2003). There are several ways how proteins can be attached 

to a membrane. Many important signalling and transport proteins pass between the lipid bilayer 

with a helical transmembrane domain (TMD) (Figure 1 A). Like the lipids that surround them, 

these TMDs are amphiphilic. The amino acids composing TMDs are in tight contact with the acyl 

chains of membranes lipids. In order to adapt to the steep hydrophobicity gradient at the 

lipid/water interface, amino acids containing large charged side chains such as Lysine or Arginine 

are commonly found in these particular regions. While the aliphatic part of these amino acids 

prefers the localization within the bilayer, the charged end has a preference to locate in a polar 

environment (Killian and von Heijne, 2000). Aromatic residues like Tryptophane and Tyrosine 

form an aromatic belt that is proposed to interact with lipid headgroups (Killian and von Heijne, 

2000). TMDs are usually 15-20 amino acids long and most commonly form α-helical structures, 

with 3.6 amino acids per turn (Alberts et al., 2007). In addition to α-helical structures other helical 

secondary structures such as the 310-helix or the energetically favourable π-helix can also be rarely 

found (Alberts et al., 2007).   

Sensory proteins such as RLKs are often single-pass transmembrane proteins that span the plasma 

membrane via one TMD (Shiu and Bleecker, 2001a; Shiu and Bleecker, 2001b). This enables 

proteins to connect extracellular sensory domains with cytosolic signal transducing kinase domains 

(Shiu and Bleecker, 2001a; Shiu and Bleecker, 2001b). Some proteins pass more than once through 

the PM and are referred to as polytopic transmembrane proteins. Very often, weak hydrogen bonds 

between different TMDs are observed, which helps to stabilize the tertiary structure of polytopic 

TMD proteins (Figure 1 B). Many mammalian receptor proteins contain polytopic TMDs 

(Fredriksson et al., 2003).  

In plants, proteins that are responsible for selective solute transport for molecules such as sugars, 

hormones, often introduce passages into the membrane via multiple amphipathic α-helices. The 

pore forming TMDs can be derived from one polytopic peptide, or may be composed of different 

subunits of one protein complex. Examples of membrane proteins with multiple TMDs are plant 

aquaporins, RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) and F (RBOHF) 
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as well as SWEET sugar transporters and DHHC-motif containing protein S-acyl transferases 

(Torres et al., 1998; Maurel et al., 2009; Chen et al., 2010; Batistič, 2012).   

Membrane attachment via α-helical structures does not necessarily result in membrane spanning. 

Some proteins contain so-called “membrane dipping” loops that penetrate only one layer of the 

membrane (Gonen et al., 2004; Van den Berg et al., 2004; Yernool et al., 2004). Others contain 

amphipathic helices, which also insert into only one membrane leaflet (Figure 1 C). Besides being 

α-helical, transmembrane segments may also be formed by several β-sheets, resulting in a cylindrical 

structure called the β-barrel (Figure 1 H). Even though the basic principles of amino acid 

compositions are the same for α-helices and β-barrel, the later always introduces a pore in the 

membrane and is therefore a common motif found in ion channels and transporter proteins.

  

 

 

Figure 1: Different modes of membrane attachment.  

Proteins can bind to membranes through various mechanisms. (A) Helical TMDs span the lipid bilayer. This motif is 

often found in surface receptors such as the RLK FLS2. (B) Polytopic transmembrane proteins surpass membranes 

using several helical TMDs. Hydrogen bond interactions often stabilize the tertiary structure of these proteins. (C) 

Amphipathic helices insert only into one membrane leaflet by concentrating amino-acids with hydrophobic side-chains 

at one side of the helix. (D) Polybasic stretches of amino-acids do not enable direct membrane attachment, but confer 

weak associations to negatively charged membranes via electrostatic interactions. (E) Depending on the type of lipid, 

post-translational lipidations can confer weak to very strong attachment to the membrane. (F) GPI-anchored proteins 

are soluble proteins, covalently linked to this lipid anchor. They are exclusively found at the outer membrane surface. 

(G) Amphipathic amino-acid stretches might also fold into a barrel-like structure that is often found in ion-channels 

or transporter proteins. 
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In addition polybasic stretches of amino acids can confer a weak but significant affinity of a peptide 

towards membranes (Jack et al., 2008). They are particularly interesting because post-translational 

modifications such as phosphorylation may alter the charge of polybasic amino acid stretches and 

thereby vary the membrane affinity of the protein (Figure 1 D ) (Goldenberg and Steinberg, 2010; 

Maures et al., 2011)  

Apart from intrinsic protein composition other modes of membrane attachment have been 

identified. Post-translational modifications are commonly known to be important regulators of 

protein function. Besides the direct impact on protein function, post-translational modifications 

can also alter protein localization and affinity to membrane environments. In particular, protein 

lipidations are post-translational modifications, where hydrophobic molecules are attached to a 

protein, resulting in its membrane attachment (Figure 1 E). Among the added moieties are the 

polyisoprene lipids farnesyl and geranylgeranyl as well as fatty acids such as myristate, stearate or 

palmitate. The chemical nature of protein lipid modifications is very similar to lipids that are 

associated to membrane domains. Therefore it may not be surprising that lipidated proteins are 

often found to be associated with membrane subcompartmentalization (Levental et al., 2010; 

Hemsley et al., 2013).  

Among all lipid modifications, glycosylphosphatidylinositol (GPI)-anchored proteins are special 

(Figure 1 F). This lipid modification of proteins consist of a phosphodiester linkage of a protein to 

the glycolipid glycosylphosphatidylinositol. It is conferred by a transamidase complex, located at 

the lumenal side of the endoplasmic reticulum (ER).Consequently GPI-anchored proteins are 

always localizing to the ER lumen or the apoplast. In plants, a special variant with a 

glycosylinositolphosphoryl ceramide glycoprotein has been identified, which serves the same 

function but has not been described in animal systems (Sperling et al., 2004). The term “anchor” 

is specifically adequate because the GPI-moiety introduces a substantial distance between the 

protein and the membrane it is attached to. Enzymatic cleavage by several phospholipases is known 

to release GPI-anchored proteins from their lipid binding motif in animals and similar mechanisms 

have been described in plants (Elortza et al., 2006).   

GPI-anchored proteins are widespread in eukaryotes. The most prominent example of GPI-

anchored proteins are the variable surface glycoproteins (VSG) of several Trypanosoma species. 

Trypanosomes are parasitic single celled organisms of which some species are the causative 

organism of human sleeping sickness. VSG-proteins are highly variable in their amino acid 

sequence as well as their glycosylation pattern, and constitute the major mechanism by which 

Trypanosomes evade the host immune system (Vanhamme et al., 2001). In Arabidopsis there are 

248 membrane proteins that are predicted to be GPI/GIPC-anchored (Borner et al., 2003). Among 

these are proteins related to cell-wall modification, receptor-like proteins and various proteases and 
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phytocyanins (Borner et al., 2003).   

The addition of 14 carbon myristoyl chains to an N-terminal glycine via an amide bond is known 

as myristoylation (Figure 2). The reaction is catalysed by N-myristoyl transferases (NMTs), which 

are represented by 2 isoforms in Arabidopsis (Boisson et al., 2003). N-myristoylation is usually a co-

translational modification but can also occur when internal glycines are exposed due to post-

translational proteolytic processing (Boisson et al., 2003). In Arabidopsis, 319 proteins are predicted 

to be N-myristoylated (Podell and Gribskov, 2004). With 1.7% of the complete proteome 

putatively being N-myristoylated, plants contain a larger myristoylome than expected from 

comparisons to metazoans and fungi (Marmagne et al., 2007). Surprisingly the Arabidopsis 

myristoylome contains many unusual protein families such as thioredoxins and transcription 

factors but also components involved in innate immunity, protein degradation and 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase (F2KP) a central regulatory 

component of glycolysis (Boisson et al., 2003).   

Regardless of its predicted abundance, myristoylation has been biochemically demonstrated for 

only few proteins (Running, 2014). Even though myristoylation is functionally important for some 

proteins such as the SnRK1 kinase (Pierre et al., 2007), this lipidation primarily increases membrane 

affinity of polypeptides. Moreover, recent work correlates the efficiency of N-myristoylation with 

membrane association of h-type thioredoxins (TRX). Since only a sub-fraction of the cellular TRX 

protein population resides at the PM it remains to be elucidated whether the membrane anchoring 

capability mediated by N-myristoylation is too weak, or if myristoylation correlates with the 

activation status of different TRX family members (Traverso et al., 2013).  

The covalent addition of the 15- or 20-carbon isoprenoids farnesyldiphospate or 

geranylgeranyldiphosphate via a thioether bond to one or more cysteine residues, close to the C-

terminus of target proteins is known as prenylation (Figure 2) (Zhang and Casey, 1996). Prenylation 

is an abundant post-translational modification with 950 putative target proteins in Arabidopsis 

(Running, 2014). Three enzymes, the protein farneslytransferase (FTase), protein 

geranylgeranyltransferase and Rab geranylgeranyltransferase (GGTases) catalyse prenylation 

reactions (Maurer-Stroh et al., 2003; McTaggart, 2006). Examples of prenylated proteins are the 

membrane anchored ubiquitin fold (MUB) family of proteins, which are likely to be farnesylated, 

as well as ROP6, a small GTPase that has been shown to be geranylgeranylated (Downes et al., 

2006; Sorek et al., 2007).   

During S-acylation acyl chains such as palmitoyl or stearyl are attached to cysteine residues, a 

reaction that can occur along the whole protein (Figure 2). The post translational addition of acyl 

chains is mediated by the action of protein acyl transferases (PATs) (Roth et al., 2002; Huang et al., 

2004; Hemsley et al., 2005). PATs are represented by 24 family members in Arabidopsis. Individual 
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gene products of this large gene family localize to almost every membrane of the cell and are 

ubiquitously found in all tissues and throughout development (Schiefelbein et al., 1993; Ryan et al., 

1998; Hemsley et al., 2005; Batistič, 2012; Zhou et al., 2013). The only two mutant alleles described 

for PAT enzymes show pleiotrophic phenotypes, indicating that both enzymes PAT24 and PAT10 

have a broad range of target proteins (Schiefelbein et al., 1993; Ryan et al., 1998; Hemsley et al., 

2005; Zhou et al., 2013). As with all lipidation reactions, a weak interaction of peripheral proteins 

with the membrane is necessary to enable the substrates to interact with their cognate PAT and 

subsequently their lipidation (Rocks et al., 2010).  

 

 

 

Figure 2: Common post translational protein lipidations.  

N-myristoylation is conferred by N-myristoyl transferases (NMTs) at N-terminal glycine residues in position 2 of the 

peptide. The amide-linked myristoyl group confers a weak affinity to lipid bilayers. S-acylation of proteins on the other 

side enables a strong attachment to membranes. Here, palmitoyl or stearyl groups are bound to cysteine residues via 

thioester linkages by the action of protein acyl-transferases (PAT). The enzymatic action of acyl-protein thioesterases 

(APTs) may cleave this bondage, making S-acylation the only reversible post-translational protein lipidation. Farnesyl- 

or Geranylgeranyltransferases catalyze the attachment of Farnesyl or Geranylgeranyl groups during prenylation. S-

acylation and prenylation can occur throughout the protein. (Adapted from Konrad and Ott (2015) 
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In contrast to other lipidations, S-acylation is reversible, a reaction which is catalysed by the action 

of acyl-protein thioesterases (APTs) and palmitoyl protein thioesterases (PPTs) that cleave the 

thioester bond between the S-acylated protein and the acyl chain (Camp and Hofmann, 1993). 

Thioesterase activity allows dynamic modulation of membrane affinities and chemical properties 

of S-acylated proteins (Camp and Hofmann, 1993). This permits protein shuttling between cellular 

compartments (Roy et al., 2005; Zeng et al., 2007). S-acylation has been shown to be required for 

processes such as subcellular sorting, protein-protein interactions, trafficking and protein activation 

(Hemsley et al., 2013). For example, it is crucial for the functionality of the immune receptor FLS2 

(Hemsley et al., 2013), for activation of the defence related proteins RAC-LIKE GTP-BINDING 

PROTEIN 1 (RAC1) (Kawano et al., 2014) and RPM1 INTERACTING PROTEIN 4 (RIN4) 

(Kim et al., 2005) and membrane localization of the bacterial effectors AvrRpm1 and AvrB 

(Nimchuk et al., 2000).  

N-myristoylation and prenylation are often observed to appear in combination with S-acylation. 

For example, proteins like ROP6 and the heterotrimeric G-protein γ-subunits AGG1 and AGG2 

which are type-I ROPs, the rho equivalent kinases in plants, are found to be prenylated as well as 

S-acylated (Sorek et al., 2007; Zeng et al., 2007). Examples of N-myristoylated and S-acylated 

proteins can be found in many well studied protein classes such as calcium-dependent protein 

kinases (CPKs), calcineurin-B like proteins (CBLs) and receptor-like cytoplasmic protein kinases 

(Martín and Busconi, 2000; Batistič et al., 2008; Hemsley et al., 2013). This may be due to the fact 

that the addition of a single palmitoyl moiety contributes to a membrane affinity that is 5 times 

stronger than a single geranylgeranyl group, 10 times stronger than a myristoyl moiety and 100 

times stronger than a farnesyl group and longer S-acyl chains even increase the strength of 

membrane interaction (Silvius and l'Heureux, 1994; Shahinian and Silvius, 1995). In fact, S-acylated 

proteins are often as insoluble during protein purifications as TMD containing proteins (Hemsley 

and Grierson, 2008).   

It can be speculated, whether these double lipid modifications are crucial auxiliary effects for 

membrane association or provide a functional component. Considering the fact that all types of 

post-translational lipid modifications can be dynamically modified through lipid and electrostatic 

switches, these membrane attachment mechanisms appear to be highly dynamic, arguing for a 

functional involvement (Resh, 2006). This functional aspect may not only be restricted to an on/off 

status of membrane localization. Recent advances in membrane research showed that membrane 

proteins are actively interacting with their lipid environment. These interactions highly influence 

the lipid composition in the protein’s vicinity (see 2.1.1.1 and 2.1.1.4). Therefore it has been 

speculated that protein-lipid modifications confer functionality by recruiting specific lipids into the 

proximity of the lipidated protein. This recruitment is thought to nucleate the formation of a 
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microenvironment that accommodates other proteins with related miscibility properties. The 

process of lipid environment shaping may be one mechanism to organize the membrane, allowing 

dynamic attraction and exclusion of  components into membrane compartments (Hurst and 

Hemsley, 2015). Protein-lipid interactions that are the basis of these considerations are discussed 

in the next chapters. 

 

2.1.1.4 Protein-lipid interactions  

Proteins embedded or attached to the lipid bilayer interact with their solvent. The nature of these 

interactions is diverse and may appear as an indirect response to circumvent thermodynamically 

unfavourable conditions or as attempts to actively shape the lipid bilayer composition. Moreover, 

protein-lipid interactions may involve direct binding, which is a common feature to facilitate 

signalling events. 

 

2.1.1.4.1 Indirect protein-lipid interactions 

Indirect protein-lipid interactions are a result of the disturbance that a membrane protein imposes 

on lipid bilayers and is primarily driven by hydrophobic effects. Amino acids within a TMD that 

are located inside the lipid bilayer are in tight contact with the fatty acid chains of membrane lipids. 

Even though these amino acids share the same hydrophobicity as the hydrocarbon chains of a 

membrane’s inner core region, they have considerable effects on the behaviour of surrounding 

lipids (Killian and von Heijne, 2000; Lee, 2003; Ernst et al., 2010).  

The relative residence time of a particular lipid at the protein-lipid interface is often used to describe 

different types of interactions. So-called ‘bulk lipids’ show a short relative residence time close to 

membrane proteins and therefore a low degree of interaction with them. However, if lipids interact 

with membrane proteins, they display a significantly higher relative residence time in the vicinity of 

the protein-lipid interface. Electron spin resonance experiments showed lipids to have up to 10 

times higher relative residence times within the proximity of a membrane protein compared to 

their diffusion in the rest of the bilayer (Marsh and Watts, 1982; Lee, 2003). This anomalous 

diffusion has also been observed in living cells using Fluorescence Correlation Spectroscopy (FCS) 

(Schwille et al., 1999). The composition of these lipids is protein specific and not necessarily 

homogeneous. For some proteins, the composition of these so-called ‘annular lipids’ even changes 

during different activation states (Soubias and Gawrisch, 2013).  

Membranes are under constant stress to minimize the interfacial surface between aliphatic acyl 

chains and hydrophobic regions exposed by proteins. This hydrophobic mismatch is known as an 

indirect interaction of transmembrane proteins and the lipid bilayer that is the driving force in 
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protein-sorting events and it is considered to have major implications on membrane lipid 

distribution. The concept of hydrophobic mismatch assumes that membrane spanning 

hydrophobic regions have to match the local membrane thickness (Mouritsen and Bloom, 1984) . 

Experiments on the Na,K-ATPase illustrate nicely the functional implications of hydrophobic 

mismatch. Transporter activity is most efficient in membranes composed of lipids with 22 carbon 

long acyl chains. If transport kinetics are measured in thinner membranes, transport is prohibited 

but can be restored by addition of cholesterol, which thickens the membrane (Cornelius, 2001). 

  

The thermodynamically unstable condition of hydrophobic mismatch can be solved by several 

mechanisms. The protein may diffuse to a membrane region with a fitting thickness or the lipid 

environment around the protein can change in a way that fits the proteins hydrophobic needs. 

Indeed it has been shown that the bilayer close to a protein differs from distant regions that 

proteins can induce local heterogeneities in lipid composition and drive phase separation in artificial 

membranes (Pink et al., 1984; Gawrisch et al., 1995; Vidal and McIntosh, 2005; McIntosh et al., 

2008; Kaiser et al., 2011).   

Apart from these local effects, proteins are also able to induce large-scale alterations to the 

membrane. If an amphipathic helix is introduced in only one leaflet of the lipid bilayer, the surface 

area from one side of the bilayer increases. This has to be counteracted by a bending of the bilayer 

to circumvent exposure of hydrophobic areas to an aqueous environment. This effect is playing a 

vital role in several membrane-bound processes. For example, during vesicle budding of COPI and 

COPII mediated retrograde and anterograde transport, membrane curvature is induced by the 

insertion of amphipathic helices of the small GTPases SAR1 and ARF1 (Antonny et al., 1997; 

Goldberg, 1998; Antonny et al., 2001). Many more examples of active membrane shaping can be 

found in vesicle budding mechanisms (Fromme et al., 2008; Spang, 2008).  

Hydrophobic mismatch has also been observed to be important during protein sorting processes. 

The TMDs length of human transmembrane protein LINKER FOR ACTIVATION OF T-

CELLS (LAT), greatly determines their targeting into sphingolipid and sterol enriched sites 

(Mouritsen, 2011; Diaz-Rohrer et al., 2014). Similar observations have been previously made for 

the directed targeting of TMD proteins to the PM or the ER membrane (Sharpe et al., 2010). 

Targeted trafficking and a mode by which the TMD composition orchestrates protein localization 

are well illustrated by the A. thaliana protein RESISTANCE TO POWDERY MILDEW 8.2 

(RPW8.2). RPW8.2 localizes to the so-called extrahaustorial membrane that surrounds invading 

structures of pathogenic fungi and oomycetes (Wang et al., 2009). Targeted trafficking to this 

membrane is not only VAMP-dependent (Kim et al., 2014) but also relies on few residues within 

the TMD of RPW8.2 as demonstrated by site-directed mutagenesis (Wang et al., 2009). The 
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observation that mutation variants of the RPW8.2 TMD accumulate in various cellular 

compartments is in accordance with other studies that suggest a TMD-dependent pre-sorting of 

proteins at the ER (Sharpe et al., 2010; Cosson et al., 2013).   

The general picture that emerges from these observations is that proteins induce locally restricted 

alterations in membrane lipid composition but membrane structure dictates localization of 

proteins.  

 

2.1.1.4.2 Direct protein-lipid interactions 

Apart from indirect interactions with membrane components TMDs have also been shown to 

directly interact with certain lipids that penetrate deep into the structure of the protein. In order to 

match the rough surface of a membrane protein, the lipid acyl chains of so-called ‘structural lipids’ 

bend and therefore prevent poor packing of the membrane. In some cases, structural lipids 

dramatically influence protein function. The binding affinities involved in these interactions can be 

so tight that structural lipids are able to be co-crystalized, as is possible with the potassium channel 

KIR2 or the TMD of the COPI machinery protein p24 (Hansen et al., 2011; Contreras et al., 2012). 

The binding of KIR2 to a phosphorylation species of PtdIns via a phospholipid binding domain 

within the protein’s TMD results in a large conformational shift of about 6 Å, which leads to an 

opening of the channel (Hansen et al., 2011).   

A more general mechanism of lipid binding has been identified by Contreras and colleagues. Here, 

the binding signature VXXTLXXIY within the TMD of p24, a part of the COPI vesicle biogenesis 

complex, confers binding to specific SM classes. This interaction depends on both, the acyl chain 

as well as the head group of SM. Based on this binding signature, several more proteins were 

identified to bind SM. One of them, the interferon gamma receptor INGR1 was demonstrated to 

bind SM in a ligand dependent manner (Contreras et al., 2012).   

Besides integral membrane proteins, peripheral proteins can also interact with membrane lipids via 

lipid-binding domains (LBDs). Direct lipid binding is especially important during phosphoinositide 

(PI) signalling, a common signalling pathway found in all eukaryotic cells that utilizes 

phosphorylation variants of PtdIns as second messenger molecules. PI signalling has been shown 

to be important during regulation of cytoskeletal dynamics, membrane trafficking and signalling 

processes (Janmey and Lindberg, 2004; Balla, 2006; Di Paolo and De Camilli, 2006; Krauß and 

Haucke, 2007). LBDs usually interact with negatively charged lipid headgroups but Ca2+ dependent 

interaction surfaces have also been reported (Yoshida et al., 1994; Ford et al., 2001; Jensen et al., 

2001). The importance of lipid binding is illustrated by the fact that the Saccharomyces cerevisiae 

genome currently accommodates 172 proteins annotated to contain LBDs which bind to all major 
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lipid classes (Oriol et al., 2010). Unfortunately, in vivo data for LBDs binding specificities are missing 

for most LBDs (Oriol et al., 2010). 

 

2.2 Membrane compartmentalization 
The “fluid mosaic” model, introduced by Singer and Nicolson in 1972 became the first generally 

accepted model of membrane organization and the primary assumptions of the model are still valid 

(Singer and Nicolson, 1972). With this, the framework of basic physical interactions that hold 

biological membranes together, was set: Membranes can be regarded as 2-dimensional liquids 

composed of lipids and proteins. In their model, a membrane was believed to form a bilayer 

mixture of homogeneously distributed lipids that acts as a solvent for embedded or associated 

proteins. Based on experiments by Frye and Edidin, who fused mammalian cells and observed that 

within 40 min, proteins originating from two different cells were equally distributed over the fused 

PM (Frye and Edidin, 1970), they concluded that proteins must be able to diffuse freely within the 

membrane plane. Even though the fluid mosaic model assumed general uniformity within the 

membrane, Singer and Nicolson acknowledged the possibility of non-random distribution due to 

certain “mechanisms” (Singer and Nicolson, 1972) and indeed in the following years showed that 

components of the membrane can be unevenly distributed (Lucas and Smith, 1973; Bretscher, 

1983; van Meer et al., 1987).  

With an increasing number of scientists getting involved in the investigation of lateral membrane 

organization, it became apparent that many, if not the majority of membrane-resident proteins and 

lipids are unevenly distributed. Membrane compartmentalization appears to be an underlying 

organization principle of PMs in eukaryotic and prokaryotic cells (Harder, 2003; Ghossoub et al., 

2011; Spira et al., 2012; Bach and Bramkamp, 2013; Reuter et al., 2013). These observations are the 

foundation of the current generally accepted opinion that membranes – especially the PM – are 

sub-organized into distinct compartments, most generally called ‘membrane domains’. However, 

these membrane domains exhibit a great plasticity with respect to parameters like size, shape and 

cell-type specificity (Brown and Rose, 1992; Homann et al., 2007; Haney et al., 2011; Roppolo et 

al., 2011; Spira et al., 2012; Hao et al., 2014; Pfister et al., 2014).  

 

2.2.1 Lipid raft hypothesis  
The lipid raft hypothesis postulated by Simons and Ikonen was the first model to provide a 

functional explanation of membrane inhomogeneities and gave a very elegant and relatively simple 

explanation of membrane organization which was based on the self-assembling forces of lipids 
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(Simons and Ikonen, 1997).   

According to the lipid raft hypothesis, the clustering of glycosphingolipids, nucleates the formation 

of lipid microdomains that are further stabilized by cholesterol to form a liquid ordered domain 

((Simons and Ikonen, 1997), see 2.1.1.1). These so-called lipid rafts are densely packed lipid 

assemblies and are functionally different from the rest of the membrane (Simons and Ikonen, 

1997). Lipid-rafts were defined as small, sphingolipid- and cholesterol-rich compartments of liquid 

ordered phase, supposedly found in all cellular membranes (Simons and Ikonen, 1997). The distinct 

lipid environment of lipid rafts was thought to act as sorting platform for proteins, due to their 

affinity to lipid-raft or non-raft environments. Experimental evidence for their hypothesis was 

primarily drawn from the observations of non-random lipid distributions within epithelial cells and 

during caveolae formation. Caveolae are small invaginations of the PM that are involved in 

endocytosis but are devoid of clathrin coats (Parton, 1996). Caveolae were found to contain clusters 

of glycosphingolipids and the occurrence of caveolae depends on the presence of cholesterol 

(Rothberg et al., 1990). It was suggested that lipid rafts confer the sorting of caveolae-associated 

proteins, thereby being an important functional component of endocytosis.   

Comparably, it was suggested that lateral sorting events in the ER due to lipid rafts were responsible 

for the direct delivery of newly synthesized glycosphingolipids and GPI-anchored proteins in 

epithelial cells to the apical PM (Simons and van Meer, 1988). Epithelial cells are a special cell type 

that grows as a polarized monolayer with distinct functional discrimination of apical and basal 

surfaces. According to this functional discrimination, glycosphingolipids as well as GPI-anchored 

proteins are exclusively found at the apical PM surface (van Meer et al., 1987).   

The small and dynamic nature of lipid-rafts made it challenging to provide direct evidence for the 

lipid raft hypothesis. Brown and Rose developed a biochemical method of isolating the apical 

surface membrane compartment of epithelial cells, the lipid composition of which resembled lipid-

rafts (Brown and Rose, 1992). The extraction of membrane fractions with Triton X-100 at 4°C and 

subsequent equilibrium gradient centrifugation yielded so-called “detergent insoluble membranes” 

(DIM) that contained proteins found in the apical membrane compartment and were therefore 

suggested to be the biochemical counterpart of what was later named lipid-rafts (Brown and Rose, 

1992). Generalization of this protocol to other cell types and implication on other model systems 

led to the identification of numerous “raft-proteins” in almost every organism studied. However, 

it turned out that DIM fractionations do not contain what could be the equivalent of membrane 

structures of living cells and that DIMs determine the solubility of a protein rather than its 

association to specific lipids (Zurzolo et al., 2003; Kierszniowska et al., 2009; Simons and Gerl, 

2010; Tanner et al., 2011).   

A substantial amount of research on the formation of lipid-rafts has been carried out in artificial 
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membranes. In this system, phase separation of lipids has been shown numerous times and can be 

predicted with computational models (Illya et al., 2006). These results cannot be easily applied to 

living systems. Up to date, lipid phase separation has not been undoubtedly shown in vivo (Lee et 

al., 2015). Just as well, evidence for co-clustering of transmembrane proteins with liquid ordered 

membrane domains in vivo is missing (Fidorra et al., 2006; Subczynski et al., 2007).   

Besides experimental approaches, the lipid-raft hypothesis also has several conceptual issues. The 

behaviour of glycosphingolipids and GPI-anchored proteins only takes PM components into 

account that localize to the extracellular side of a cell. This may represent a very special case of 

membrane organization especially considering the asymmetry of the PM (see 2.1.1.1). Phase-

transition of lipids, which is crucial for the formation of lipid-rafts, is a concentration-dependent 

mechanism. The model therefore assumes that membranes consist for the most part of lipids. 

Estimations on the PM of human erythrocytes or synaptic vesicles however suppose that the 

membrane can in some cases be less fluid than expected by Singer and Nicolson because it is tightly 

packed with proteins (Takamori et al., 2006; Dupuy and Engelman, 2008). Finally, the lipid-raft 

hypothesis does not consider the perturbations of the membrane due to the presence of proteins. 

It overemphasises the role of lipid-lipid interactions as the only force in membrane 

compartmentalization and does not consider the effects of membrane proteins on lipids, as well as 

other proteins.   

These issues led to several amendments to the original lipid-raft hypothesis. Up-to-date, lipid rafts 

are defined to be small, dynamic congregations that consist of cholesterol, sphingolipids and 

proteins and may associate into larger structures as a result of interactions between lipids, lipids 

and proteins as well as proteins (Lingwood and Simons, 2010). However, the term “lipid-raft” still 

implies a lipid centric view on membrane compartmentalization. Therefore the unbiased term 

“membrane domains” is more applicable to name non-random distributions of membrane 

components especially when investigating meso-scale assemblies.  

 

2.2.2 Extrinsic factors alter membrane compartmentalization 
Membrane domain formation is always connected to the diffusion of proteins and lipids within the 

membrane plane. However, as mentioned above, diffusion of lipids and proteins is intrinsically 

affected by interactions between these components and local protein crowding. Additionally, 

extrinsic factors such as the cytoskeleton and the cell wall are also considerable obstacles of free 

diffusion. Unexpected diffusion behaviours of membrane lipids prompted Akihiro Kusumi to 

propose a hierarchical model of membrane compartmentalization within the mesoscale of 2-300 

nm. The model not only considers the principles proposed by the lipid-raft hypothesis but also his 
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findings on protein dependent diffusion corrals.  

High-speed tracking in living human cells revealed that membrane proteins as well as lipids do not 

diffuse freely within the PM but follow a restricted diffusion mode (Fujiwara et al., 2002). Notably, 

this “hop-diffusion” was also observed for non-raft phospholipids (Fujiwara et al., 2002). Since 

depolymerisation of the actin cytoskeleton led to linear diffusion it appears that other components 

contribute to membrane compartmentalization beyond raft domains (Fujiwara et al., 2002). Based 

on these observations, Kusumi et al proposed the “anchored membrane protein picket model”. In 

this model, the membrane adjacent cytoskeleton forms a mesh like “fence” at which attached 

transmembrane proteins form “picket”-like barriers against the free diffusion of phospholipids 

(Nakada et al., 2003; Kusumi et al., 2005). The hydrodynamic friction imposed by these TMD 

proteins divides the PM into many 40-300nm wide sub-compartments in this “picket –fence” 

illustration of the PM (Kusumi et al., 2011). Notably, diffusion of components from one 

compartment to another is not prohibited per se, but relies on comparably rare occasions were the 

distance between two picket forming transmembrane proteins is large enough to allow passage of 

membrane components between compartments or the dynamic nature of the cytoskeleton creates 

diffusion windows (Kusumi et al., 2005). These mechanisms then give rise to the observed non-

linear hop-diffusion events (Kusumi et al., 2011).   

The cytoskeleton induced membrane compartments represent the first layer in the hierarchical 

model of the PM proposed by Kusumi et al. (Figure 3 B) (Kusumi et al., 2005). Within these large 

compartments, the raft-domains postulated by Simons and colleagues (see 2.2.1) are still predicted 

to form (Figure 3 C) (Kusumi et al., 2005). These represent the second tier of membrane 

compartments predicted to be within 2-20nm large, even though the size dimensions of lipid rafts 

may be greatly affected by raft composition and membrane compartment size (Kusumi et al., 2011). 

As a matter of completeness, Kusumi et al. included temporary complexes of proteins due to di- 

and oligomerization events as the third and last layer of membrane compartments formation into 

their model (Figure 3 A) (Kusumi et al., 2005).   

The importance of actin dependent membrane sub-compartmentalization has been shown for the 

CD36 receptor. This surface receptor is expressed in several cell types such as endothelial cells and 

macrophages, binds multivalent ligands including oxidized low –density lipoprotein or apoptotic 

cells (Febbraio et al., 2001). Clustering of CD36 upon ligand perception is a key event to trigger 

signal-transduction for this receptor and receptor-ligand internalization (Daviet et al., 1997; 

McGilvray et al., 2000). Single-molecule tracking experiments of CD36 revealed its actin dependent 

hop-diffusion (Jaqaman et al., 2010). Strikingly, the receptors efficiency of signal transduction 

initiation, as well as ligand uptake, was greatly impaired in the presence of during cytoskeleton 

destabilizing drugs even though general endocytosis was not inhibited (Jaqaman et al., 2010). 
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Therefore, it is generally accepted that the actin cytoskeleton controls at least one layer of 

membrane compartmentalization in animal cells.   

In contrast to animal systems, plasma membrane proteins in plants are rather immobile. Proteins 

such as KAT1, PIN2, KNOLLE, BOR1 or NIP5;1 have been found to display very low lateral 

mobility with only a small sub-fraction of these proteins displaying mobile behaviour (Sutter et al., 

2006; Men et al., 2008; Takano et al., 2010; Roppolo et al., 2011; Boutté and Moreau, 2014). 

However, restricted diffusion is not a default state as several proteins are able to change their 

diffusion behaviour. The aquaporin PIP2;1 for example can switch between Brownian diffusion to 

a restricted diffusion mode upon salt stress (Li et al., 2011). RBOHD, a NADPH-oxidase, changes 

its speed of diffusion in a Ca2+ and phosphorylation dependent manner. Both play important roles 

in regulating RBOHD function (Hao et al., 2014).   

 

 

Figure 3: The three-tiered picket-fence model of membrane sub-compartmentalization.  

This model adapted from Kusumi et al. differentiates three stages of membrane sub-compartmentalization that all 

contribute to the lateral organization of the PM. (A) Short-lived protein complexes that form upon di- or 

oligomerization events represent one layer of membrane organization. (B) Membrane adjacent cytoskeletal structures 

and proteins attached to it form barriers that proteins, trapped within these compartments cannot pass. Rare passage 

from one compartment into another is only possible, if the distance between two picket-forming transmembrane 

proteins is large enough or if diffusion windows are open by the dynamic nature of the cytoskeleton. (C) Within these 

compartments, “raft-domains” as postulated by Simons et al. may form as a consequence of interactions between lipids 

and proteins. 



 Introduction 

33 

Similar to mammalian cells, there are examples, were the cytoskeleton is involved in limiting 

diffusion of membrane proteins. For example, lateral mobility of MIDD1, a microtubule binding 

protein, is restricted to individual compartments that are surrounded by the microtubular 

cytoskeleton (Oda and Fukuda, 2012). Also, the cell wall synthesizing complex (CSC) (McFarlane 

et al., 2014) associates with the microtubule cytoskeleton via the cellulase KORRIGAN and a 

protein of unknown function called POM2 (Martin et al., 2012; Vain et al., 2014). The CSC is 

comprised of 12-36 CESA membrane-spanning glycosyltransferases. It can be visualized 

microscopically and appears as a punctate homodomain (Park et al., 2011). Like other punctate 

membrane domains alteration of lipid composition and disturbance of the microtubular 

cytoskeleton both impair CSC patterning on the plasma membrane (Lalanne et al., 2004; Schrick 

et al., 2004; Paredez et al., 2006).  

In plant cells, the high turgor pressure actively compresses the PM against the cell wall (Wang et 

al., 2006a), which is a major difference to animal cells that have a comparably weak association to 

the extracellular matrix. Therefore, the PM and the cell wall are in tight contact, creating biophysical 

constrains that might affect the behaviour of plant membrane proteins. In fact, a very elegant study 

showed that the plant cell wall extensively constrains diffusion of membrane proteins and that the 

effect is particularly pronounced for membrane proteins that extend into the apoplastic space 

(Martinière et al., 2012). Moreover, in experiments where seedlings were treated with isoxaben, a 

cellulose synthase inhibiting drug, the mobility of transmembrane proteins significantly decreased. 

This implies, that not only the presence but also the organization of the cell wall is actively 

influencing protein dynamics at the PM (Martinière et al., 2012). A predominant impact of the cell 

wall over the cytoskeleton has also been reported for the potassium channel KAT1. In the PM of 

Vicia faba stomatal guard cells, KAT1 localizes to radial structures that do not resemble actin or 

microtubular structures. Moreover, destabilization of the cytoskeleton did not affect KAT1 

localization. However, KAT1 localization follows the pattern of cellulose fibrils and radial 

distribution is lost in hypertonic conditions, were the PM is detached from the cell wall (Homann 

et al., 2007).  

By now a picture emerges where in plants the cell wall may have the same functional implications 

as the cytoskeleton with respect to plasma membrane compartmentalization (Martinière et al., 

2012). This can occur via direct protein-cell wall interactions as shown for proteins such as the 

Arabidopsis Formin1 or members of the wall-associated kinase (WAK) family (Steinwand and 

Kieber, 2010; Martinière et al., 2011). Alternatively the cell wall may indirectly influence lateral 

mobility when freely diffusing proteins interact with cell wall associated ones. The cell wall should 

therefore be considered as a less static structure as it was historically perceived but rather as a 

dynamic structure. This is illustrated by spatio-temporally regulated cell-wall alterations such as 
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callose depositions upon pathogen infection or loosening upon symbiont accommodation (Ridge 

and Rolfe, 1985; Luna et al., 2011). Even though it remains to be proven to what extent this can 

be compared to the dynamics of cytoskeleton components, various examples of proteins 

connecting the cell wall and the cytoskeleton show that cell wall, plasma membrane and 

cytoskeleton should not be regarded as single-acting components, but rather as a uniform 

continuum, exhibiting concerted actions (McKenna et al., 2014). 

 

2.2.3 Diversity of membrane domains 
Membrane domain localization is not restricted to certain functional protein classes. Non-uniform 

distribution of functional components has been reported during various processes such as 

hormone signalling, endocytosis or plant-microbe interactions (Bhat et al., 2005; Men et al., 2008; 

Raffaele et al., 2009; Lefebvre et al., 2010; Bozkurt et al., 2014; Moling et al., 2014). This diversity 

most likely reflects the co-existence of different membrane domain types in the same cell and 

suggests functional specification of these sites (Brown and Rose, 1992; Homann et al., 2007; Haney 

et al., 2011; Roppolo et al., 2011; Spira et al., 2012; Hao et al., 2014; Pfister et al., 2014). 

2.2.3.1 Polar domains 

The most well-known membrane structures are polar membrane domains that occur in polarized 

cells. Members of the PIN-FORMED (PIN) auxin efflux carriers are the most prominent marker 

proteins of these comparably large domains (reviewed in Kania et al. (2014)). Polar localization of 

PINs is required to maintain concentration gradients of the phytohormone auxin that regulates a 

wide spectrum of developmental processes within plant cells and tissues (Finet and Jaillais, 2012; 

Jeong et al., 2012; Lau et al., 2012; Barbez and Kleine-Vehn, 2013; Pierre-Jerome et al., 2013). 

Depending on the direction of auxin fluxes in a specific cell type or tissue, most of these domains 

can be relocated to any cell pole. Polarity of cells, and consequently the maintenance of polar 

membrane domains is normally achieved by the action of S-acylated and dimeric RAC/ROP 

GTPases that also serve as canonical marker proteins for these domains (Sorek et al., 2007; Yang 

and Lavagi, 2012). In most cases polar localized proteins reach their destination by directed, mostly 

clathrin-dependent vesicle trafficking from the endoplasmic reticulum (ER) and Golgi apparatus 

to the PM (Kleine-Vehn and Friml, 2008; Grunewald and Friml, 2010; Kleine-Vehn et al., 2011; 

McMahon and Boucrot, 2011; Luschnig and Vert, 2014). While this mechanism does not ultimately 

require specific lipid-binding characteristics of these proteins, lipid distribution is crucial to 

maintain polarity. This hypothesis is supported by findings that polar distribution of 

phosphoinositides coincides with PIN polarity (Tejos et al., 2014) and that localization of PIN2 is 

sterol-dependent (Men et al., 2008). Another example of proteins in polar domains is the iron 
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transporter IRT1 which conditionally localizes to the outer lateral PM domain in root epidermal 

cells (Barberon et al., 2014). The localization of IRT1 is controlled by the phosphinositol binding 

protein FYVE and sensitive to the availability to metal substrates of IRT1 such as zink, manganese 

or cobalt (Barberon et al., 2014)  

Besides environmental or developmental factors, the phosphorylation status and/or the polar 

localization of kinases such as the D6 protein kinase (Wisniewska et al., 2006; Michniewicz et al., 

2007; Pumplin et al., 2012; Barbosa et al., 2014) may represent control checkpoints during polar 

trafficking as polar localization of other proteins depend on them. Additionally polar recycling 

(transcytosis) plays important roles in establishing and maintaining of polar membrane domains. 

For example polar localized membrane domains are marked by the boric acid channel NIP5;1 or 

the boric acid/borate transporter BOR1 (Takano et al., 2010). Both proteins are involved in the 

homeostasis of boron, which is crucial for plant growth but is toxic when present in excess 

concentrations (Nable et al., 1997; Takano et al., 2010). NIP5;1 localizes to the distal PM of lateral 

root cap cells as well as epidermal cells of the meristem and elongation zones, which physiologically 

reflects its function in boron import (Takano et al., 2006; Takano et al., 2010).   

The boric acid/borate exporter BOR1 on the other hand can be found at proximal PMs in the 

columella, the lateral root cap, the epidermis and the endodermis in root tip regions as well as in 

the epidermis and endodermis of the elongation zone (Takano et al., 2002; Takano et al., 2010). 

Phosphorylation seems to be one selective driving force in the polar distribution maintenance 

machinery of BOR1, as polar distribution is abolished in a phosphorylation mutant version of 

BOR1 (Takano et al., 2010). Strikingly, this phosphorylation-dependent membrane domain 

localization is not dependent on endocytotic recycling of BOR1, because BOR1 phospho-mutants 

are still able to enter the same endocytotic pathway as native BOR1 (Takano et al., 2010).   

In addition to or as an alternative to post-translational modifications, polar trafficking of proteins 

can be mediated by spatio-temporal regulation of promoter activity. This is nicely illustrated by 

specific localization patterns of the phosphate transporter PT4 from Medicago truncatula (Pumplin 

et al., 2012). PT4 is specifically targeted to the periarbuscular membrane (PAM), the membrane 

that surrounds the fungal arbuscule, which serves as the symbiotic interface between the host plant 

and the fungus. Controlling expression of other transporter proteins that naturally localize to the 

peripheral PM using the PT4 promoter allows redirection of these proteins to the PAM, 

demonstrating the importance of spatial timing for polar secretion of proteins following the 

endocytotic pathway (Pumplin et al., 2012). Further examples of specific targeting of proteins to 

perimicrobial membranes have been reviewed recently (Dörmann et al., 2014). 
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Figure 4: Overview of different membrane domain types found in plants.   

(A) Polar membrane domains can be found in apical or basal membranes as in case of PIN auxin transporter 

proteins, but can also occur at lateral membranes. (B) Proteins essential for the establishment of the 

Casparian strip like DR1PA localize to equatorial membrane domains. (C) The most commonly observed 

membrane domain are punctate domains such as labelled by Remorins or Flotillins. Adapted from Konrad 

and Ott (2015). 

2.2.3.2 Equatorial domains 

Some polarized membrane domains exhibit an equatorial pattern and are capable of dividing a cell 

into separate functional sides.   

The most prominent example of equatorial domains has been described at the plant root 

endodermis. This specialized cell layer is characterized by the presence of the “Casparian strip” 

(CS), a modification of the primary cell wall (Enstone et al., 2003). It forms a belt-like structure 

that prevents free diffusion of solutes from the soil to the apoplastic space in the stele (Moon et 

al., 1986; Peterson, 1987; Enstone et al., 2003). The CS is accompanied by a highly specific and 

protein-rich “Casparian strip domain” (CSD). The CSD is in tight conjunction with the CS as it 

remains attached to the cell wall during plasmolysis (Bonnett, 1968). It also prevents free diffusion 

of PM proteins as well as the lipophilic dye FM4-64 and is therefore thought to be a major barrier 

for most endodermal PM components (Alassimone et al., 2010). CASPARIAN STRIP 

MEMBRANE DOMAIN PROTEINs (CASPs) are the most prominent marker proteins for the 

CSD. They are thought to act as major scaffold components of the CSD due to their ability to 

interact with themselves and the fact that they are laterally immobilized. However, the plasticity of 

CASP localization during the development of the CS points to an extrinsic component that is 

responsible for CSD formation (Roppolo et al., 2011). As the normal CSD localization pattern is 

altered to a patchy pattern in schengen3 (sgn3) mutant plants, the leucine-rich repeat receptor-like 

kinase encoded by SGN3 contributes to CSD organization (Pfister et al., 2014).  
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2.2.3.3 Punctate, meso-scale membrane domains 

Punctate membrane domains mostly show a distribution over the entire PM that appears to be 

isotropic in nature at first glance. Targeting to these domains may be universal for single- or multi-

pass transmembrane-domain (TMD) containing proteins as shown for the Medicago truncatula 

LYSIN MOTIF RECEPTOR-LIKE KINASE 3 (LYK3) (Haney et al., 2011; Moling et al., 2014), 

the Solanum tuberosum sugar transporter SUT1 (Krügel et al., 2008), the SLOW ANION 

CHANNEL 1 (SLAC1) HOMOLOG 3 (SLAH3) (Demir et al., 2013), the RESPIRATORY 

BURST OXIDASE HOMOLOG D (RBOHD) (Hao et al., 2014), the functional tetrameric 

aquaporin PIP2;1 (Törnroth-Horsefield et al., 2006; Wang et al., 2006b; Wan et al., 2011) from 

Arabidopsis thaliana or the Vicia faba potassium channel KAT1 (Homann et al., 2007). It remains to 

be shown whether these proteins are targeted to the same or to different types of membrane 

domains and if this specific targeting is dependent on distinct lipid species.   

Besides intrinsic membrane proteins a range of peripheral membrane proteins such as Flotillins 

(FLOTs) are also targeted to punctate membrane microdomains and are frequently used as marker 

proteins (Lang et al., 1998; Morrow et al., 2002; Blonder et al., 2004; Haney et al., 2011; Nixon et 

al., 2011; Li et al., 2012). FLOTs – also known as Reggie proteins – are widespread among 

metazoans as well as prokaryotes and encoded by three genes in A. thaliana (At5g25250, At5g25260 

and At5g64870) (Rivera-Milla et al., 2006; Bach and Bramkamp, 2013; Reuter et al., 2013). They 

have been shown to label mesoscale microdomains in A. thaliana and M. truncatula (Haney et al., 

2011; Li et al., 2012) and may be involved in clathrin-independent endocytosis in Arabiopsis (Li et 

al., 2012). For animal FLOTs, members of the SPFH/Band 7/PHB domain containing proteins, 

myristoylation is crucial for targeting to membrane domains (Morrow et al., 2002; Neumann-

Giesen et al., 2004; Traverso et al., 2013). In contrast, the FLOT homologs from A. thaliana and 

M. truncatula do not contain the required N-terminal glycine residue in position 2 and are unlikely 

to be myristoylated, even though other members of the SPFH/Band 7/PHB domain containing 

proteins in Arabidopsis were shown to be myristoylated (Boisson et al., 2003).  

Two FLOT homologues from M. truncatula play vital roles in the successful establishment of 

functional root nodule symbiosis (RNS) (Haney and Long, 2010). The symbiotic interaction of 

legumes and their rhizobial symbionst happens within a newly developed organ, the root-nodule. 

Development of root nodules starts soon after rhizobial cells are accommodated into the root via 

the passage through a so-called infection thread within root hair cells. Initiation of infection threads 

usually happens within curled root hairs that entrap bacteria, which form a microcolony at this 

stage (Oldroyd and Downie, 2004). However, if FLOT2 or FLOT4, transcripts are reduced by 

expression of small interfering RNAs, root systems develop fewer nodules and infection threads. 

In particular the silencing of FLOT4 leads to abortion of almost 90% of initiated infection threads 
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underlining its importance for this process. Fluorescence microscopy revealed that FLOT2 and 

FLOT4 both localize to punctate membrane domains within epidermal or root hair cells of M. 

truncatula were they are distributed randomly over the entire cell surface. At least for FLOT4, this 

changes dramatically in the presence of symbiotic bacteria. On a big scale, the majority of the 

fluorescence signal originating from FLOT4 moves to the root hair tip (Haney and Long, 2010). 

Only in the presence of the symbiont, does FLOT4 signal overlap with signal originating from 

fluorescently tagged LYK3, an essential RLK involved in RNS signal perception which also 

localizes to punctate membrane domains (Haney and Long, 2010). These data show that signal 

perception triggers the re-localization of signalling components into one membrane domain. It also 

provides first insights into distinct compositional plasticity of individual membrane microdomains 

that likely determine their functional specificity.  

  



 Introduction 

39 

2.3 Remorins as a model to label membrane domains 
In his discussion about size and composition of small, punctate membrane domains, Akihiro 

Kusumi hypothesized that a large diversity of domains is expected to form because of the 

numerous multimolecular interactions involved in membrane domain formation (Kusumi et al., 

2011). “Indeed, obtaining the full spatiotemporal spectrum of raft domains will be a Herculean 

task. Presently, the best we can do is to observe raft domains and report the data as quantitatively 

as possible (…)” (Kusumi et al., 2011).   

To approach this task of deciphering the diversity, dynamics, function and formation of membrane 

domains, a versatile set of marker proteins has to be chosen. However, insights gained from 

proteins reported as being membrane domain resident are very often not comparable. This is due 

to the fact that they differ greatly in their membrane attachment mechanism as well as molecular 

function and therefore the mechanisms of membrane domain localization may not be universal. 

  

Proteins of the Remorin family are excellent candidates to circumvent these problems. Remorins 

are PM associated proteins that are represented by a large, plant specific protein family with 16 

members in A. thaliana (Farmer and Pearce, 1989; Jacinto et al., 1993; Reymond et al., 1996; 

Marmagne et al., 2004; Mongrand et al., 2004; Sazuka et al., 2004; Valot et al., 2005; Nelson et al., 

2006; Valot et al., 2006; Raffaele et al., 2007). Based on their gene structure, Remorins have been 

divided into six subgroups (Raffaele et al., 2007). Remorins contain the canonical Remorin 

signature sequence in their highly conserved C-terminal region (Raffaele et al., 2007) that contains 

a high content of charged residues as well as a predicted coiled-coil domain (Reymond et al., 1996; 

Raffaele et al., 2007). As coiled-coil domains are principally found to confer protein oligomerization 

(Burkhard et al., 2001), the C-terminal region of remorins has unsurprisingly been identified to be 

important for protein-protein interactions (Marín et al., 2012; Tóth et al., 2012).  

The majority of Remorins also feature a highly diverse N-terminal region which is speculated to 

confer functional specificity (Raffaele et al., 2007). For many Remorin proteins, this N-terminal 

region has been predicted to be intrinsically disordered (ID) (Marín et al., 2012). ID regions can be 

commonly found in eukaryotic proteins and have recently been identified in bacterial effector 

proteins (Marín et al., 2013; Marín and Ott, 2014). These protein regions follow an induced folding 

mechanism upon protein-protein interaction and are thereby thought to confer a high binding 

flexibility. It may allow one intrinsically disordered protein to interact with several structurally 

different partners (Marín and Ott, 2014). ID regions not only provide remorins with a structural 

element but are also dominant sites for protein phosphorylation (Marín et al., 2012).   

Remorin proteins have frequently been reported to enrich in DIM fractions and were therefore 

thought to localize to membrane domains (Wang et al., 2001; Lefebvre et al., 2007; Kierszniowska 
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et al., 2009; Raffaele et al., 2009). However, DIM fractionations are able to determine the 

solubilisation properties of proteins but not of subcellular localization (see 2.2.1). Therefore the 

microscopically visible unequal distribution of remorins as seen for the Solanum tuberosum StRem1.3 

in Nicotiana benthamiana or the symbiotic remorin of Medicago truncatula SYMBIOTIC REMORIN 1 

(SYMREM1) demonstrate the membrane domain localization of Remorin proteins more 

convincingly (Raffaele et al., 2009; Lefebvre et al., 2010).  

Remorin proteins are especially interesting, because they play highly specific roles during processes 

such as the regulation of viral spreading (Raffaele et al., 2009), symbiotic and pathogenic infections 

(Lefebvre et al., 2010; Bozkurt et al., 2012; Tóth et al., 2012), responses to the phytohormone ABA 

and abiotic stress (Checker and Khurana, 2013; Demir et al., 2013; Yue et al., 2014). What makes 

Remorins so suitable tools for membrane domain research is their functional specification paired 

with a promiscuous interaction capability. The best example to illustrate the functional specification 

of Remorins are the SYMREM1 proteins from M. truncatula and Lotus japonicus. Phylogenetically, 

these two homologous proteins belong to the Remorin group 2 which is only present in legume 

plants and poplar (Raffaele et al., 2007). Legumes are able to establish a symbiotic relationship with 

soil living bacteria the so-called “root nodule symbiosis” (RNS) in order to fix atmospheric nitrogen 

(Sprent, 2007; Markmann and Parniske, 2009). Both SYMREM1 proteins have been demonstrated 

to play important roles during RNS (Lefebvre et al., 2010; Tóth et al., 2012). While interaction of 

SYMREM1 with key RLKs of initial RNS signalling has been demonstrated for both proteins in 

vivo, the direct interaction of L. japonicus SYMREM1 with NOD FACTOR RECEPTOR1 (NFR1), 

NOD FACTOR RECEPTOR 5 (NFR5) and SYMBIOSIS RECEPTOR-LIKE KINASE 

(SYMRK) has been confirmed in vitro. Both NFR1 and SYMRK are able to directly phosphorylate 

SYMREM1 (Tóth et al., 2012). Without prohibiting it, the loss or overexpression of SYMREM1 

both affect the formation of root nodules, the organ of symbiotic exchange (Lefebvre et al., 2010; 

Tóth et al., 2012). Therefore, SYMREM1 is speculated to be important for efficient receptor 

signalling, where they act as scaffold proteins to enable efficient receptor interaction and downward 

signalling (Lefebvre et al., 2007; Lefebvre et al., 2010; Tóth et al., 2012). The fact that group 2 

Remorins are only present in plants that undergo RNS and their active role during that process 

demonstrates the functional specificity of Remorins (Popp and Ott, 2011).  

Other members of the Remorin protein family have been demonstrated to be involved in various 

processes. Several group 1 Remorins have been identified to be differentially phosphorylated 

during perception of bacterial pathogen associated microbial patterns (PAMPs) or polygalacturonic 

acid (Farmer and Pearce, 1989; Benschop et al., 2007) and phosphorylated peptides of Remorin 

proteins are often found in large-scale proteomic studies (Nühse et al., 2007; Sugiyama et al., 2008; 

Reiland et al., 2009; Grimsrud et al., 2010; Nakagami et al., 2010). This implies that functional 
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specification takes place throughout the whole Remorin protein family. Similar to CASPs and 

flotillins, remorins have been hypothesized to function as molecular scaffold proteins (Jarsch and 

Ott, 2011) as they oligomerise to higher order structures (Marín et al., 2012; Tóth et al., 2012) .This 

functional specification paired with the promiscuous interaction capability and their localization to 

membrane domains makes Remorins extraordinary interesting proteins to study membrane 

domains. Not only does the diversification of Remorin proteins itself allow to investigate the 

subcompartmentalization of plant plasma membranes. It gives us also the opportunity to study 

their functional importance during biotic and abiotic stresses. The capability of Remorins to 

interact with important signalling molecules may also be a valuable tool to identify new components 

of signal transduction networks. 
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Eukaryotic plasma membranes are highly compartmentalized structures. So far, only a few individual proteins that function in
a wide range of cellular processes have been shown to segregate into microdomains. However, the biological roles of most
microdomain-associated proteins are unknown. Here, we investigated the heterogeneity of distinct microdomains and the
complexity of their coexistence. This diversity was determined in living cells of intact multicellular tissues using 20 different
marker proteins from Arabidopsis thaliana, mostly belonging to the Remorin protein family. These proteins associate with
microdomains at the cytosolic leaflet of the plasma membrane. We characterized these membrane domains and determined
their lateral dynamics by extensive quantitative image analysis. Systematic colocalization experiments with an extended
subset of marker proteins tested in 45 different combinations revealed the coexistence of highly distinct membrane domains
on individual cell surfaces. These data provide valuable tools to study the lateral segregation of membrane proteins and their
biological functions in living plant cells. They also demonstrate that widely used biochemical approaches such as detergent-
resistant membranes cannot resolve this biological complexity of membrane compartmentalization in vivo.

INTRODUCTION

Plasma membranes (PMs) are highly organized structures that
are partitioned in different types of membrane domains
(reviewed in Kusumi et al., 2012; Malinsky et al., 2013). Prom-
inent examples are the basolateral membrane of root epidermal
cells that is labeled by the polarly localized PIN-FORMED auxin
efflux carrier PIN2 (Müller et al., 1998), the Casparian strip that is
targeted by CASP proteins (Roppolo et al., 2011), and focal
accumulation of the MILDEW RESISTANCE LOCUS O protein at
perihaustorial membranes during plant–microbe interactions
(Bhat et al., 2005). However, most of these higher order mem-
brane regions are further subdivided. The largest unit, recently
defined as the “membrane compartment,” is between 40 and
300 nm in diameter and mainly determined by cortical cyto-
skeleton elements that restrict the lateral diffusion of membrane-
associated proteins (Kusumi et al., 2012). Similar structures
have also been described in other eukaryotic cells such as
Saccharomyces cerevisiae (yeast) (Malinsky et al., 2010; Spira
et al., 2012). “Membrane rafts” can be found within these

compartments. They are substantially smaller (2 to 20 nm) and
characterized by their enrichment in sterols and sphingolipids
(Boutté and Grebe, 2009). The molecular interactions between
these membrane components have been shown to lead to
a spatial phase transition toward a more liquid-ordered state in
model membranes. Targeting of proteins to membrane rafts is
often achieved by posttranslational modifications such as the
addition of glycosylphosphatidylinositol and S-acyl (palmitoyl)
moieties (Levental et al., 2010a, 2010b) or by electrostatic in-
teractions (van den Bogaart et al., 2011). Physical interaction
between raft-localized proteins and/or molecular scaffolds can
lead to the clustering of nanoscale domains into larger units,
recently defined as “raft platforms,” or membrane microdomains
(Lingwood and Simons, 2010). These domains can almost reach
micrometer ranges and are believed to harbor defined sets of
preassembled signaling protein complexes, including compo-
nents of the innate immune system. In plants, unfortunately and
misleadingly, for a long time membrane domains have been
equalized with detergent-resistant membranes (DRMs). DRMs
derive from a biochemical extraction with nonionic detergents
such as Triton X-100 in the cold. However, the specificity of
DRMs has been widely questioned over the years, as sterols
have the biophysical tendency to aggregate into large sheets
that do not reflect individual microdomains in vivo (Zurzolo et al.,
2003; Tanner et al., 2011; Malinsky et al., 2013).
A number of recent cell biological approaches revealed

membrane-associated proteins such as Flotillins and Remorins
to label distinct microdomains in living cells (Raffaele et al.,
2009; Haney and Long, 2010; Lefebvre et al., 2010; Haney et al.,

1 Address correspondence to thomas.ott@bio.lmu.de.
The author responsible for distribution of materials integral to the findings
presented in this article in accordance with the policy described in the
Instructions for Authors (www.plantcell.org) is: Thomas Ott (thomas.ott@
bio.lmu.de).
C Some figures in this article are displayed in color online but in black and
white in the print edition.
W Online version contains Web-only data.
www.plantcell.org/cgi/doi/10.1105/tpc.114.124446

The Plant Cell, Vol. 26: 1698–1711, April 2014, www.plantcell.org ã 2014 American Society of Plant Biologists. All rights reserved.



2011; Li et al., 2012; Demir et al., 2013). As in mammalian cells,
Flotillins form a small gene family with only three members
(At5g25250, At5g25260, and At5g64870) in Arabidopsis thali-
ana, while the plant-specific Remorin family comprises 16 genes
(Raffaele et al., 2007). All Remorin proteins contain a canonical
C-terminal region (Raffaele et al., 2007), and the majority of them
contain an intrinsically disordered N-terminal segment that varies
greatly in length and sequence but harbors almost all in vivo phos-
phorylation sites (Marín and Ott, 2012; Marín et al., 2012). Localiza-
tion of single Remorins to membrane domains has been shown for
ectopically expressed REM1.3 from potato (Solanum tuberosum),
for an endogenous Remorin from tomato (Solanum lycopersicum;
Raffaele et al., 2009), as well for the closely related protein from
Arabidopsis (REM1.3/At2g45820) (Demir et al., 2013). Furthermore,
immunolocalization of the legume-specific SYMBIOTIC REMORIN1
(SYMREM1) protein from Medicago truncatula revealed domain-
localized patterns along infection threads that encapsulate symbiotic
bacteria during root nodule symbiosis (Lefebvre et al., 2010). While
the potato REM1.3 regulates viral movement (Raffaele et al., 2009),

SYMREM1 is required for successful infection by rhizobia and in-
teracts via its predicted coiled-coil domain with receptor-like kinases
such as the LYSIN-MOTIF RECEPTOR KINASE3 (LYK3) and the
NOD FACTOR RECEPTOR1 (NFR1) (Lefebvre et al., 2010; Tóth
et al., 2012). Interestingly, LYK3 also localizes to membrane do-
mains. Upon perception of symbiotic rhizobia by the host plant,
LYK3 mobility is laterally arrested, resulting in a colocalization with
the domains labeled by the Flotillin protein FLOT4 (Haney et al.,
2011). It remains to be shown whether both proteins interact phys-
ically in these membrane domains. However, such compartmental-
ized interactions have been demonstrated by fluorescence lifetime
imaging microscopy between a number of proteins: the hyper-
variable region of a small maize (Zea mays) GTPase ROP7 and the
CALCIUM-DEPENDENT PROTEIN KINASE1 (CPK1) (Vermeer et al.,
2004), for homooligomeric complexes of the brassinosteroid re-
ceptor BRASSINOSTEROID INSENSITIVE1 (BRI1), for BRI1 in
a heteromeric complex with the SOMATIC EMBRYOGENESIS
RECEPTOR KINASE3 (SERK3) (Russinova et al., 2004), as well as for
a complex between the AAA ATPase CDC48A and SERK1 (Aker

Figure 1. Remorin Expression Patterns and Identification of Homozygous Knockout Mutants.

(A) Data were obtained from the publicly available Genevestigator database (https://www.genevestigator.com/gv/plant.jsp). Error bars represent SE of
three independent biological experiments. ATH chip, Arabidopsis Affymetrix chip.
(B) Schematic representation of the Remorin genes At3g61260, At2g45820, and At4g36970. Triangles indicate the T-DNA insertion sites, and gray
boxes indicate the exons of the genes.
(C) Protein gel blot analysis of different at3g61260 and at2g45820 mutants confirmed the absence of the respective proteins in three of these lines. An
a-REM antibody that was originally raised against the potato REM1.3 recognizes the two most closely related proteins in Arabidopsis.
(D) Quantitative real-time PCR analysis of three independent biological replicates confirmed the lack of transcript in the at4g36970-1 mutant line. Error
bars represent SE. Col-0, Columbia-0.
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et al., 2007). These data suggest that lateral segregation of proteins
into membrane microdomains, either constitutively or in a stimulus-
dependent manner, may be an integral determinant for their
functionality. These studies ultimately raise the question of how
heterogeneous PMs are. In plants, microdomains, especially when
being targeted by proteins belonging to the same family, have so
far been regarded as one uniform pattern. Here, we show that this
concept has to be substantially refined, as single cell membranes in
Arabidopsis and Nicotiana benthamiana are virtually covered with
different types of microdomains. These may serve as platforms for
interactions between different types of membrane-resident proteins
and contribute to their functions.

RESULTS

Identification of Membrane Domain Patterns in Different
Experimental Systems

As this study aims to characterize the diversity and dynamics of
membrane domains in living plant cells by imaging-based
approaches, we first validated our experimental systems
carefully. Three Remorin genes (At3g61260, At2g45820, and
At4g36970) were chosen based on available expression data.
At3g61260 and At2g45820 are more than 20-fold higher

expressed compared with any other member of this multigene
family (Figure 1A) and are the most studied ones. To select
a structurally different Remorin (Raffaele et al., 2007),
At4g36970, which is expressed at intermediate levels, was ad-
ditionally used for this initial analysis. For these genes, Arabi-
dopsis T-DNA insertion lines were obtained from the public
stock center and homozygous mutant lines were selected. The
respective insertion sites are illustrated in Figure 1B. To test if
these lines were knockouts, protein or transcript levels were
determined. Using the previously described a-REM antibody
(Raffaele et al., 2009), which also recognizes the two most
abundant Arabidopsis Remorins (At3g61260 and At2g45820),
we confirmed that both at3g61260 mutant lines were null alleles,
while the At2g45820 protein was no longer expressed in only
one line (at2g45820-2) (Figure 1C). Thus, this line was used for
further analysis. As no antibody was available for At4g36970,
transcript levels of this gene were determined using quantitative
real-time PCR. Indeed, no At4g36970 transcript was detectable
in the at4g36970-1 mutant (Figure 1D). Next, we transformed
at3g61260-2, at2g45820-2, and at4g36970-1 with constructs
expressing the respective genes as N-terminally tagged fusion
proteins under the control of their native promoters (e.g.,
ProAt3g61260-YFP:At3g61260). To obtain a detailed view of the
membrane domains, confocal laser scanning microscopy
(CLSM) was used to image the upper surface plane of rosette
leaf epidermal cells of 3- to 4-week-old plants. A diffuse but
structured labeling of the PM was observed for the two highly
expressed Remorins At3g61260 and At2g45820 (Figures 2A and
2B). By contrast, At4g36970 segregated into more distinct mi-
crodomains (Figure 2C). The same results were obtained upon
expression of these constructs under the control of their native
promoter (Figures 2D to 2F) or the constitutively active cauliflower
mosaic virus 35S promoter (Figures 2G to 2I) in N. benthamiana
leaf epidermal cells.
To further verify these results, the subcellular localization of

another weakly expressed Remorin protein (At5g61280) was
investigated. A ProAt5g61280-YFP:At5g61280 construct was
transiently transformed into leaf epidermal cells of a transgenic
Arabidopsis line that expresses the bacterial effector AvrPto
under the control of a dexamethasone-inducible promoter
(ProDex-AvrPto) (Hauck et al., 2003). Induction of AvrPto ex-
pression leads to the degradation of plant immune receptors
and thus allows efficient transient transfection of cells by
Agrobacterium tumefaciens (Tsuda et al., 2012). In Arabidopsis,
At5g61280 was only weakly expressed but localized to distinct
membrane domains (Supplemental Figure 1A).
As the observed patterns for At3g61260 and At2g45820

(Figure 2) did not resemble the results from a recent report
where strong overexpression of At2g45820 after ballistic trans-
formation resulted in an accumulation of the protein in large
clusters (Demir et al., 2013), we performed total internal re-
flection microscopy (TIRFM), which allows higher resolution in
the z axis on our transgenic lines. Indeed, expression of both
group 1 Remorins under the control of their endogenous pro-
moters showed the same weakly structured pattern
(Supplemental Figure 2) as observed by CLSM. To further verify
the robustness of our experimental systems, we studied the
localization of the previously reported potato Remorin REM1.3.

Figure 2. Labeling of Membrane Domains Can Be Consistently Ob-
served in Different Biological Systems.

(A) to (C) Homozygous Arabidopsis knockout mutants were transformed
with the respective fluorophore-tagged Remorins expressed under the
control of their endogenous promoters. Bars = 5 µm.
(D) to (F) Domain patterning was observed in N. benthamiana leaf epi-
dermal cells where the respective genes were expressed under the
control of the endogenous Arabidopsis promoter. Bars = 5 µm.
(G) to (I) Domain patterning was observed in N. benthamiana leaf
epidermal cells where the respective genes were ectopically ex-
pressed under the control of the cauliflower mosaic virus 35S pro-
moter. Bars = 5 µm.
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Indeed, GFP-REM1.3 also localized to distinct microdomains in
N. benthamiana leaf epidermal cells (Supplemental Figure 1B).

Similarly, the phylogenetically related SYMREM1 protein was
also frequently found to label distinct membrane domains in this
system (Supplemental Figure 1C).

Remorin and Flotillin Proteins Label a Large Variety
of Membrane Domains

To globally assess the diversity of microdomains, 12 additional
Remorins, the two Arabidopsis Flotillins FLOT1A (At5g25250)
and FLOT1B (At5g25260), and the POTASSIUM CHANNEL IN
ARABIDOPSIS THALIANA1 (KAT1) were cloned and ectopically
expressed as yellow fluorescent protein (YFP)-tagged fusion
proteins in N. benthamiana leaf epidermal cells (Figure 3).
Imaging of single secant planes revealed PM association of
all proteins (Supplemental Figure 3). However, At1g69325,
At1g53860, At1g13920, and At5g61280 exhibited partial nuclear
and minor cytosolic localization (Supplemental Figures 3D, 3K,

3N, and 3O, arrowheads). To further verify that the observed
patterns were not caused by heterologous expression of the
proteins, a representative subset (At4g00670, At3g57540, At1g45207,
At2g02170, At1g30320, and At1g53860) was expressed in the
above-mentioned ProDex-AvrPto Arabidopsis lines. All proteins
displayed patterns similar to those observed in N. benthamiana
(Supplemental Figures 1D to 1I).
To describe the patterns in more detail, 10 individual images

per construct were subjected to quantitative image analysis.
Parameters such as domain size, domain width, mean domain
intensity, and circularity (Supplemental Figure 4) as well as do-
main density (Figure 3P) were determined. It should be noted
that even if this analysis is restricted by the resolution limits
of CLSM, domains observed in this study were generally
larger (Supplemental Figure 4B). As expected, no domains were
identified for the rather homogenously distributed proteins
At3g61260, At2g45820 (Figure 2), and At1g69325 (Figure 3K).
However, At5g23750, which is phylogenetically close to
At3g61260 and At2g45820, showed a more structured pattern

Figure 3. Remorin Proteins, Flotillins, and KAT1 Label a Variety of Distinct Membrane Domains in N. benthamiana.

(A) to (L) Surface imaging of upper leaf epidermal cell planes expressing 12 different fluorophore-tagged Remorin proteins using CLSM. Bars = 5 µm.
(M) and (N) Leaf epidermal cell planes expressing the fluorophore-tagged Flotillin proteins FLOT1A (M) and FLOT1B (N). Bars = 5 µm.
(O) Leaf epidermal cell plane expressing the fluorophore-tagged potassium channel KAT1. Bar = 5 µm.
(P) Quantitative image analysis revealed that the average density of membrane domains varied significantly between the different marker proteins.
Letters indicate results of a one-way ANOVA followed by Tukey’s honestly significant difference test.
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(Figure 3A), with an average domain size of ;0.28 µm2 and an
intermediate domain density of 0.75 domains/µm2 (Figure 3P;
Supplemental Figure 4). All other proteins localized to distinct
microdomains (Figures 3B to 3J) of different size, shape, and
density. While most of the marker proteins labeled membrane
domains of ;0.25 µm2 on average, proteins like At3g57540,
At4g36970, At5g61280, and At5g25260 targeted domains that
were significantly smaller (Figure 3; Supplemental Figure 4). Two
marker proteins, At4g00670 (Figure 3L) and At1g13920 (Figure
3I), showed more distinct patterns. In general, the fluorescence
of domains observed for At4g00670 was more intense
(Supplemental Figure 4C) and domain density was significantly
reduced but varied greatly (Figure 3P) compared with all other
marker proteins. Furthermore, this protein labeled a larger ho-
mogenously distributed fraction at the PM in addition to distinct
membrane domains (Figure 3L; Supplemental Figure 1D, arrow-
heads). Interestingly, we repeatedly observed that At1g13920
labeled filamentous structures while it additionally localized to
more canonical membrane domains in the same cell (Figure 3I). In
agreement with published data, the Flotillin proteins At5g25250
(FLOT1A) and At5g25260 (FLOT1B) labeled distinct micro-
domains (Figures 3M and 3N). FLOT1A-targeted domains varied
significantly in size, while FLOT1B domains were relatively small
(below 0.2 µm2) (Figure 3P; Supplemental Figure 4). When using
another domain-localized protein, the potassium channel KAT1
(At5g46240), domains appeared stretched and network-like (Fig-
ure 3O). These observations are in full agreement with local-
izations reported for KAT1 earlier (Sutter et al., 2006).

Membrane Microdomains Are Temporally Stable Structures

Next, we asked whether the observed domains represent lat-
erally stable structures. To assess this feature in more detail, we
performed time-lapse experiments on all 18 marker proteins. PM

surfaces were imaged in 120-s intervals for 20 min, and kymo-
graphs were generated. Data obtained from these experiments
clearly demonstrated high degrees of lateral stability for most of
the observed membrane domains (Figure 4). Since At3g61260,
At2g45820, and At1g69325 labeled the membrane more ho-
mogenously (Figure 3), the temporal stability of these proteins
could not be resolved by this method. Furthermore, a certain
degree of lateral movement was observed for At4g36970,
At1g13920, and At5g61280. For the latter two proteins, this may
reflect the partial cytosolic protein fraction. However, micro-
domains for these proteins were also temporally stable, as in-
dicated by the vertical lines (Figure 4). In addition, we observed
some mobility in At5g25250 (FLOT1A)–expressing cells, which
may represent endocytotic vesicles that were described for this
protein earlier (Li et al., 2012).

Assessing Lateral Mobility by Fluorescence Recovery
after Photobleaching

To characterize the lateral mobility of microdomain marker
proteins in more detail, we performed extensive fluorescence
recovery after photobleaching (FRAP) analysis on a subset of
seven Remorin proteins (Figure 5A). For this, a circular region of
interest (ROI) was bleached by high-intensity laser emission for
10 frames (;15 s). Fluorescence recovery on membrane surface
areas was assessed over 5 min in 30-s intervals, and data were
normalized to a reference ROI of equal size that was placed in
close proximity to the bleached one. To compare these data
with a cytosolic protein, we expressed soluble YFP in addition.
In all samples, fluorescence recovered monoexponentially with
coefficient of determination (R2) > 0.97 (Figure 5A). In general,
membrane surfaces labeled by domain marker proteins re-
covered significantly slower compared with the cytosolic YFP
control, with half-times of 24.3 6 1.4 s (At1g13920 filaments) to

Figure 4. Kymographs Indicate the Lateral Stability of Membrane Domains.

The temporal and lateral mobility of membrane domains was investigated over 20 min in 2-min intervals. Vertical lines in kymographs indicate the lateral
stability of most membrane domains. Movement was observed in the case of At1g13290 and partially in the case of At5g61280. The punctate structures
appearing at single time points when imaging the Flotillin At5g25250 may represent endosomes. Bars = 20 µm (horizontal) and 20 min (vertical).
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Figure 5. Assessing Protein Mobility by FRAP Analysis.

FRAP was used to investigate the mobility of different marker proteins.
(A) Fluorescence recovery was measured in a minimum of 12 independently bleached ROIs and normalized to nonbleached ROIs in their direct vicinity.
Error bars show SE.
(B) and (C) Half-times (t1/2) (B) and mobile fractions (C) were calculated for all proteins as described in Methods. Letters indicate results of a one-way
ANOVA followed by Tukey’s honestly significant difference test. dom., domain-localized protein fraction; hom., homogenously distributed protein
fraction; filam., filamentous protein fraction.
(D) Bleaching of individual membrane domains of At4g00670 resulted in recovery at the same position. Panels at top show the images that were used
for plotting the corresponding pixel intensities (bottom). Numbers indicate seconds after bleaching. Bar = 2 µm.
(E) Bleaching of the homogenous protein fraction of At4g00670. Fluorescence was centripetally recovered over time. Panels at top show the images
that were used for plotting the corresponding pixel intensities (bottom). Numbers indicate seconds after bleaching. Bar = 2 µm.

Membrane Domain Diversity in Plant Cells 1703



47.7 6 1.9 s (At1g30320) and 12.4 6 2.6 s, respectively (Figure
5B). However, significant differences were observed between
the proteins, with At1g30320 being the most slowly diffusing
protein. In the case of At4g00670, no difference in fluorescence
recovery between the domain-associated fraction and the ho-
mogenously PM-labeling fraction was observed (Figure 5B).
Moreover, when bleaching single membrane domains labeled by
At4g00670, proteins accumulated in the same position (Figure
5D) while non-domain-labeled PM segments recovered homo-
genously (Figure 5E). This indicates a physical structure un-
derlying protein accumulation in these distinct positions.
Interestingly, At1g13920 again showed a significantly different
pattern. While the domain-localized protein fraction overall re-
covered slowly, the half-time of filament-associated At1g13920
was significantly smaller (Figure 5B). This was also reflected in
the mobile fraction, which was significantly increased for filament-
associated At1g13920, while no differences were observed be-
tween the other Remorin proteins (Figure 5C).

As filament-like structures targeted by At1g13920 were stable
over time (Supplemental Figure 5A), we assumed that they do
not represent cytosolic strands. To test whether they are de-
pendent on cortical cytoskeleton elements such as microtubules
(labeled by MAP4; Supplemental Figure 5B) or actin (labeled by
LifeAct; Supplemental Figure 5C), we depolymerized actin and
microtubules by the drugs latrunculin B and oryzalin, re-
spectively. While these structures entirely disappeared upon
oryzalin treatment and resulted in a predominantly cytosolic

localization of At1g13920 (Supplemental Figure 5D), latrunculin
B treatment did not alter the At1g13920-labeled filaments
(Supplemental Figure 5E). These data indicate that microtubules
affect the localization of At1g13920.

Tissue-Specific Labeling of Membrane Microdomains

As described above, At3g61260 and At2g45820 were not tar-
geted to distinct membrane domains in mature rosette leaves in
stable transgenic lines where both genes were expressed under
the control of their endogenous promoters (Figures 2A and 2B).
Thus, we tested whether membrane domains may be labeled in
a tissue-specific manner. For this, we imaged different tissues in
3- and 5-d-old seedlings that were grown under sterile conditions.
In both cases, we did not observe distinct membrane domains in
leaf and root epidermal cells (Figure 6). By contrast, both proteins
were occasionally targeted to distinct membrane domains in
elongating hypocotyl cells (Figure 6, middle panels). There, they
labeled foci in the PM that were similar to those observed for
other Remorin proteins. These data indicate that membrane do-
mains are dynamically formed or disintegrated under different
environmental conditions or developmental stages.

Coexisting Microdomains Shape Multifaceted PMs

Using a subset of different domain marker proteins, we
assessed the coexistence of microdomains on the same cell

Figure 6. Tissue-Specific Formation of Membrane Domains.

(A) Upper planes of leaf epidermal cells (top panels), elongating hypocotyl cells (middle panels), and root epidermal cells (bottom panels) were imaged in
5-d-old seedlings of transgenic Arabidopsis at3g61260-1 mutant plants expressing the Remorin protein At3g61260 as an N-terminally tagged YFP
fusion protein under the control of its native promoter. Bars = 10 µm (left column) and 5 µm (right column).
(B) Localization studies as in (A) but of YFP-At2g45820 expressed in an at2g45280-2 mutant background under the control of its native promoter.
Bars = 10 µm (left column) and 5 µm (right column).
[See online article for color version of this figure.]
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membrane. An extensive cross-comparison with a total number
of 45 colocalization experiments was performed using different
domain marker proteins tagged with either cyan fluorescent
protein (CFP) or YFP. In all cases, the weakest expressing cells
were chosen for image acquisition to minimize possible impacts
by overexpression and to resemble the native situation as
closely as possible. For each colocalization experiment, an av-
erage of 12 single images were subjected to quantitative image
analysis. The R2 (Manders et al., 1993) (Figure 7; Supplemental
Table 1) and the standard Pearson correlation coefficient
(Manders et al., 1992) (Supplemental Table 1) were calculated
for each individual image. To determine the random overlap
coefficient, each corresponding channel 2 image (YFP fluores-
cence) was flipped by 180° and merged with the original image
from the CFP channel (Supplemental Figure 6). A Student’s t test
was then applied to determine whether the difference between

the two values was significant. Pairs with R2 > R2 random
(positive correlations) were regarded as colocalizing and pairs
with R2 < R2 random (negative correlations) were scored as
excluding proteins. Combinations that did not pass the signifi-
cance level (P < 0.05) were designated as randomly colocalized
with each other and thus could not be assigned to either of the
two categories.
To verify our approach, we first tested nine different pairs,

where the same proteins were fused to YFP and CFP. On
average, R2 values of 0.645 were obtained, with the highest
value at R2 = 0.752 for At1g45207 (Figure 7C; Supplemental
Table 1). These coefficients are fully consistent with the co-
localization of microdomain-localized protein pairs previously
described for living cells (Spira et al., 2012; Demir et al., 2013).
Due to its homogenous distribution, At3g61260 showed the
lowest value.

Figure 7. PMs Comprise a Wide Spectrum of Coexisting Microdomains.

(A) to (F) Representative images from control experiments where domains were labeled by the same proteins that were tagged with two different
fluorophores, CFP (red) and YFP (cyan). R2 values, which were significantly higher compared with those of the corresponding randomized images,
indicate full colocalization of the proteins.
(G) to (L) Representative images of protein pairs that showed positive correlation. R2 values were significantly higher compared with those of the
corresponding randomized images. These proteins mutually excluded each other.
(M) to (R) Representative images of protein pairs randomly colocalized with each other. R2 values were not significantly different from those of the
corresponding randomized images.
(S) to (X) Representative images of protein pairs that showed negative correlation. R2 values were significantly lower compared with those of the
corresponding randomized images. These proteins mutually excluded each other.
Bar in (X) = 2 µm for (A) to (X).
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Testing another 36 different combinations, we identified 14
colocalizing pairs and 12 combinations that strictly excluded each
other (Supplemental Table 1). In all remaining cases, random coloc-
alizations were observed. Most of the tested proteins showed a large
dynamic range where the number of positive colocalizations ex-
ceeded the other categories (Figure 8A). Interestingly, we found
a minimum of one colocalization for all tested proteins except
At4g00670 (Figures 8A and 8B; Supplemental Table 1). This Remorin
protein labeled a uniquemicrodomain population that is highly distinct

from all other tested ones and showed colocalization only with itself.
Similarly, the more evenly distributed At3g61260 did not colocalize
with the majority of other domains (Figures 8A and 8B). In general, the
number of significant R2 values of colocalizing pairs greatly varied
between the different proteins (Figure 8A). Proteins that are phylo-
genetically closely related (Raffaele et al., 2007) showed a tendency to
increased colocalization (e.g., At2g41870/At3g57540 and At2g02170/
At1g30320/At1g53860/At4g36970/At1g67590) (Figure 8B), implying
that these microdomains may serve similar functions.

Figure 8. Quantifications and Network Analysis of Membrane Domain Colocalizations.

(A) R2 values of all tested combinations were plotted in relation to individual proteins. The columns show R2 values for identical protein pairs (blue
circles) that all showed positive correlations. For all other combinations, positive correlations are depicted as black circles, randomly colocalizing
combinations as white circles, and pairs with negative correlation as gray triangles. Error bars represent SE.
(B) Network analysis of domain colocalizations revealed that Remorins of subgroup 6 often colocalized, while proteins such as At3g61260 and
At4g00670 represent particular membrane domains or compartments.
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Perspectives: Protein–Protein Interactions Can Be Confined
to Membrane Domains

Finally, we assessed whether receptor complex formation may
be restricted to membrane domains. For this, we made use of an
already described interaction between the Nod factor receptor
NFR1 and the Remorin SYMREM1 from Lotus japonicus

(Lefebvre et al., 2010; Tóth et al., 2012). Expression of fluo-
rophore-tagged SYMREM1 (Figure 9A) and NFR1 (Figure 9B) in
N. benthamiana leaf epidermal cells frequently resulted in clear
labeling of distinct microdomains (arrowheads) as well as a more
uniformly distributed protein fraction across the entire PM (Fig-
ures 9A and 9B), as described for other Remorin proteins (Figure
3). Using fluorescence lifetime imaging microscopy and Förster
resonance energy transfer, we already demonstrated physical
interactions between NFR1 and SYMREM1 (Tóth et al., 2012).
To analyze the spatial patterning of protein interactions on the
PM, the obtained photon counts were mapped onto cell images
to investigate lateral variation in donor lifetimes across the PM.
Interestingly, distinct sites of reduced fluorescence lifetime of
the donor fluorophore (NFR1:Cerulean) were identified (blue),
indicating interaction hotspots in membrane domains (Figure
9C). Similar patterns were observed for the interaction between
the ATPase CDC48A and the receptor-like kinase SERK1 (Aker
et al., 2007). No such foci were found in control experiments
where we coexpressed NFR1 with the soluble acceptor fluo-
rophore mOrange (Figure 9D). Similar results were obtained
when performing bimolecular fluorescence complementation
assays. Here, the NFR1 receptor and SYMREM1 were fused to
the N-terminal and the C-terminal halves of the YFP fluorophore,
respectively. Fluorescence was exclusively observed in distinct
and immobile membrane domains that were distributed over the
entire inner PM leaflet of transformed cells (Figure 9E). To ex-
clude the possibility that the fluorescence was only due to
protein accumulation in membrane domains, we studied SYMREM1
oligomerization. Here, no domain-restricted fluorescence was ob-
served (Figure 9F), suggesting that Remorin–receptor interaction
may indeed be delimited to membrane domains. Overall, these
data indicate that laterally defined membrane domains may provide
physical rafts for receptor–scaffold and other protein–protein
interactions.

DISCUSSION

A number of cell biological studies revealed domain localization
of PM-associated proteins such as Remorins (Raffaele et al.,
2009; Lefebvre et al., 2010), Flotillins (Haney and Long, 2010; Li
et al., 2012), the potassium channel KAT1 (Sutter et al., 2006;
Reuff et al., 2010), the anion channel SLAC1 HOMOLOG3
(SLAH3) (Demir et al., 2013), the LysM receptor LYK3 (Haney
et al., 2011), the NADPH oxidase RBOHD (Lherminier et al.,
2009), and the exocyst protein SECA3 (Zhang et al., 2013). So
far, all studies in plants were restricted to the analysis of in-
dividual proteins or a single protein pair. First insights into the
coexistence of different membrane domains in plants were
provided by the stimulus-dependent colocalization of FLOT4
and LYK3 (Haney et al., 2011). This observation is in agreement
with the proposed function of Flotillins, which act as molecular
scaffold proteins that mediate the assembly of domain platforms
and can confer anchoring of membrane domains to the cyto-
skeleton (Langhorst et al., 2007). Similar functions have been
proposed for Remorin proteins (Lefebvre et al., 2010; Tóth et al.,
2012). Here, we took advantage of the genetic expansion of the
Remorin gene family with 16 members in Arabidopsis to assess
the diversity of microdomains that are targeted by members of

Figure 9. Membrane Domains May Provide Scaffolds for Protein–
Protein Interactions.

(A) and (B) Heterologous expression of L. japonicus Remorin protein
SYMREM1 (A) and NFR1 (B) in N. benthamiana leaf epidermal cells re-
sulted in membrane domain labeling (arrowheads) at the cell surface.
Bars = 5 mm.
(C) and (D) Donor fluorophore lifetime data obtained by fluorescence
lifetime imaging microscopy (FLIM) and spectral photocounting on mi-
croscopic images. Cells expressing NFR1-Cerulean and SYMREM1-
mOrange (C) and NFR1-Cerulean/free mOrange (D) showed interaction
hotspots depicted in blue (decreased lifetime) (C) and homogenously
distributed background signal (D) along the PM of N. benthamiana leaf
epidermal cells. Bars = 10 mm.
(E) and (F) Compartmentalized interaction between SYMREM1 and NFR1
was also observed using bimolecular fluorescence complementation (BiFC)
in N. benthamiana leaf epidermal cells. Less intense domains were found in
BiFC assays testing homooligomerization of SMYREM1 (F). Bars = 10 mm.
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one specific family. Indeed, cloning and expression of almost all
Remorin proteins revealed that the great majority of them pre-
dominantly localized to immobile microdomain platforms (Fig-
ures 2 and 3; Supplemental Figure 3). The existence of these
domains was confirmed in different biological systems (Figures
2 and 3; Supplemental Figure 1). We found that members of the
Remorin subgroup 1 (At3g61260, At2g45280, and At5g23750)
(Raffaele et al., 2007) exhibited a more homogenous labeling of
the PM surface. Interestingly, proteomic approaches identified
only members of this subgroup in Arabidopsis DRMs (Shahollari
et al., 2004; Kierszniowska et al., 2009; Minami et al., 2009;
Keinath et al., 2010). In addition, closely related proteins showed
either a similar pattern (At1g69325; group 3) or, in the cases of
SYMREM1 (group 2) and At4g00670 (group 3), frequently la-
beled membrane domains, the latter at low density (Figure 3P).
Together with the finding that group 1 Remorins may be
targeted to distinct membrane domains in a stimulus- or tissue-
dependent manner (Figure 6), these data indicate that evolu-
tionarily related proteins target similar types of membrane
domains. This hypothesis is supported by the fact that closely
related proteins such as At3g57540 and At2g41870 (Figures 7I
and 8B) or Remorins with extended N-terminal domains of group
6 (At2g02170, At1g30320, At1g53860, At4g36970, At1g67590,
At1g13920, and At5g61280) generally displayed higher degrees
of colocalization compared with phylogenetically distinct pro-
teins (Figure 8). These data are also in line with a recent report
regarding yeast, where extensive colocalization studies revealed
that proteins with similar functions (e.g., hexose transporters)
showed increased tendencies to colocalize in the same mem-
brane compartment (Spira et al., 2012). Such functional speci-
fication of membrane domains would be biologically preferred
not only to support protein complex formation but also to
physically separate enzymatic activities of physiologically un-
related processes. This hypothesis is supported by a recent
study that demonstrated a colocalization of the Arabidopsis
anion channel SLAH3 with the calcium-dependent protein ki-
nase CPK21 in membrane microdomains. Interestingly, coex-
pression of the SLAH3/CPK21 complex with the PROTEIN
PHOSPHATASE 2C (PP2C) phosphatase ABI1 led to a displace-
ment from microdomains. This correlated with a loss of SLAH3
functionality (Demir et al., 2013). Similarly, mistargeting of the
FERRO-O2-OXIDOREDUCTASE Fet3 to the membrane domain
labeled by PLASMA MEMBRANE PROTEIN1 (Pmp1) by trans-
membrane domain replacement resulted in impaired iron uptake in
yeast even though full enzymatic activity of the Fet3-Pmp1 chi-
mera needs to be demonstrated (Spira et al., 2012). For Remorin
proteins that were analyzed in this study, these data imply that
even though they may serve similar molecular functions, different
members could be involved in distinct biological processes.

Almost all membrane domains investigated in this study formed
structures that were immobile (Figures 4 and 5D). These domains
are predominantly maintained by lateral protein diffusion, in-
dicated by rather slow and centripetal fluorescence recovery
(Figure 5), which has been reported for other PM-associated
proteins before (Bhat et al., 2005; Martinière et al., 2012; Spira
et al., 2012). Interestingly, no differences in recovery half-times
and mobile fractions were observed between a membrane do-
main–associated fraction and a freely membrane-bound fraction

(Figures 5B and 5C). Two physical scaffolds may mediate such
stability: the cell wall and the cortical cytoskeleton. Using proto-
plasts that continuously rebuild a cell wall after its enzymatic re-
moval, a recent study showed that the lateral mobility of proteins
was significantly altered during cell wall regeneration (Martinière
et al., 2012). In addition, cortical actin and microtubule arrays can
serve as fences or anchoring scaffolds for membrane domains
(reviewed in Kusumi et al., 2005, 2012). In line with data from
yeast, where microtubules stabilized membrane domains (Spira
et al., 2012), at least a fraction of At1g13920 that targets a fila-
ment-like structure in the PM was also found to be sensitive to
oryzalin treatment (Supplemental Figure 5D). However, while the
role of actin in membrane domain stabilization remains to be
demonstrated in plants, recent data from human cells suggest
active roles of this cytoskeleton component in the lateral immobi-
lization of membrane compartments (Dinic et al., 2013). Such de-
pendence on the cytoskeleton may also explain why processes like
the invasion of host cells by pathogenic fungi that are accompanied
by cortical rearrangement (Henty-Ridilla et al., 2013) trigger the
accumulation of sterol-rich membrane domains and resistance
proteins at the site of cell penetration (Bhat et al., 2005; Underwood
and Somerville, 2013). Therefore, it will be a future challenge to
dissect the functional specification and diversity of membrane
domains during plant–microbe interactions. Remorin- and Flotillin-
labeled microdomains are likely to harbor unique sets of sig-
naling proteins or to serve as signaling platforms (Figure 9)
required for plant cell responses toward pathogenic and sym-
biotic microbes (Jarsch and Ott, 2011; Urbanus and Ott, 2012).
Thus, the identification of the microdomain proteome will allow
detailed understanding of supercomplexes and potential modes
of regulation.

METHODS

Cloning and Constructs

For ectopic expression, 10 of the 16 Arabidopsis thaliana Remorins were
obtained as cDNA clones from RIKEN (http://www.brc.riken.jp/lab/epd/
catalog/cdnaclone.html). At5g23750, At1g69325, At1g67590, and
At5g61280 were amplified from Arabidopsis cDNA generated by reverse
transcription of RNA from Nicotiana benthamiana plants overexpressing
the respective genomic constructs. At1g13920 was amplified from Ara-
bidopsis genomic DNA. We created Gateway (GW)-compatible entry
vectors for N-terminal fluorophore fusions. As destination vectors for
ectopic overexpression, we used pAM-PAT-35SS:YFP:GW, pAM-PAT-
35SS:CFP:GW, and pUBI-YFP:GW, respectively (Maekawa et al., 2008;
Tóth et al., 2012). For the expression of N-terminally tagged fluorophore
fusions under the control of the endogenous promoter, we created
subclones of the putative 2-kb promoter region, the fluorophore, and the
genomic coding sequence. Those fragments joined with BsaI recog-
nition sites and individual overhangs were blunt-end ligated into
a modified puc57 and subsequently assembled via cut ligation into
a modified pENTR-D. Expression vectors were created with pGWB1
(Binder et al., 2014). All primers used in this study are listed in
Supplemental Table 2.

Plant Material and Quantitative Real-Time PCR

For stable transformations of N-terminally tagged Remorin constructs
under the control of their respective endogenous promoters, the
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following Arabidopsis T-DNA insertion lines were obtained: At3g61260
(SALK_117637.50.50.x), At2g45820 (SALK_17448.53.95.x), andAt4g36970
(SALK_037050.55.00.x). For transient transformations of Arabidopsis,
transgenic lines expressing a ProDEX:AvrPto construct (Hauck et al., 2003;
Tsuda et al., 2012) were used. Transcript levels in the at4g36970-1 mutant
were determined by quantitative real-time PCR on cDNA of three in-
dependent biological replicates obtained from young rosette leaves of
plants grown in a greenhouse using a SYBR Green assay. Data were
normalized to the expression of PP2A as described elsewhere (Czechowski
et al., 2005). Protein gel blot analysiswas performedonplantmaterial grown
under the same conditions using the a-REMantibody at a 1:3000 dilution as
described earlier (Raffaele et al., 2009).

Protein Expression for Fluorescence Microscopy

Agrobacterium tumefaciens–mediated transient transformation of
N. benthamianawas performed as described earlier (Tóth et al., 2012). For
single infiltrations, pAM-PAT 35S constructs were used. To avoid pro-
moter silencing during coexpression, we used one construct driven by the
35S promoter and one driven by the pUbiquitin (pUbi) promoter. For
infiltration of pUbi-driven constructs, we used final OD600 values of 0.01
and 0.005; for pAM-PAT-35S, we used final OD600 values of 0.2 to 0.4 for
colocalization experiments and 0.01 for the expression of single proteins.
Agrobacterium-mediated transient transformation of Arabidopsis was
performed in stable lines carrying a ProDEX:AvrPto construct (Tsuda
et al. 2012). For dexamethasone pretreatment, plants were sprayed with
a 2 µM dexamethasone solution containing 0.04% Silwett-77 24 h prior
to transformation. Microscopical analysis was performed 2 d after in-
filtration as described below.

Plant Growth and Stable Transformation

N. benthamiana plants were grown 4 to 5 weeks under greenhouse
conditions. ProDEX:AvrPto Arabidopsis plants were grown 5 to 6 weeks
under short-day conditions (16 h of dark, 18°C/8 h of light, 20°C).
Arabidopsis lines for stable transformation were grown 4 weeks under
long-day conditions (8 h of dark/16 h of light) in the greenhouse.
Shoots were cut back and plants regrown for 1 more week prior to
floral dipping (Clough and Bent, 1998). Selection of stable transformants
on hygromycin-containing plates was performed according to Harrison
et al. (2006).

Confocal Microscopy and Quantitative Image Analysis

Standard confocal microscopy was performed with a Leica TCS SP5
confocal laser scanning microscope using an argon laser. YFP and
CFP fluorophores were excited with the 514- and 456-nm laser lines,
and emission was recorded in the range of 525 to 600 nm and 475 to
520 nm, respectively. Images were taken with a Leica DFC350FX digital
camera.

For quantitative image analysis of individually expressed proteins, 10
images were segmented to differentiate between background and
domains using a threshold of 0, 15 to 0, 22 and a background subtraction
with a rolling ball radius of 20 pixels. The Fiji pluginWatershed was applied
to separate overlapping intensities. The resulting image was used as
amask for an overlay on the original image. All quantitative measurements
were then performed on the unprocessed image. Average values for
domain size, mean domain intensity, circularity, and density were
depicted as box plots using R. Statistical analysis was performed in R
using ANOVA and Tukey’s honestly significant difference.

For colocalization analysis, single images were subjected to a mean
blur of 2 pixels and a background subtraction with a rolling ball radius of
20 pixels. Intensity correlation analysis using the respective plugin for

ImageJ provided by the Wright Cell Imaging Facility (Li et al., 2004) was
performed to calculate both the Pearson correlation coefficient (Manders
et al., 1992) and the R2 (Manders et al., 1993). Mean values of an average
of 12 repetitions were calculated. Simulations for random distribution
patterns of each investigated protein pair were performed on reflected or
rotated images, selecting ROIs containing relevant signal information in
both channels. Between 8 and 17 values of colocalizing and randomized
samples of one protein pair were used for a Student’s t test to determine
the significance of positive or negative correlations.

FRAP analysis was performed using FRAP Wizard implemented in the
Leica LAS AF software. One frame was scanned prior to bleaching.
Bleaching was performed on a circular ROI of 5 µm in diameter in 10 frames
with 100% laser intensity (;15 s). For single-domain bleaching (Figures 5D
and 5E), this ROI was decreased to 2 µm. Fluorescence recovery was
imaged in 30-s intervals over 10 frames. FRAP values were fitted as de-
scribed previously (Spira et al., 2012) using a simple exponential fit of y = a3
(1.0 2 exp(bx)). Half times [t1/2 = ln (0.5)/b] and mobile fractions [Mf = (a 3
100)/Iinorm] were calculated for all FRAP experiments with a fit higher than
0.97. Surface plots were calculated from single ROIs in ImageJ.

For kymographs, films were acquired over a time frame of at least
20min. Z-stacks with 15 to 18 slices of 1 µm thickness were recorded every
2 min. Single images from Z-stacks of each time point were combined into
stacks and transformed into Z-projects with maximal intensities in Fiji. All 10
Z-project images were again combined into a stack and corrected for
eventual lateral shift of the sample via the Fiji plugin StackReg (Rigid Body).
A line of 20 µmwas drawn, and the kymograph was created via the Reslice
[/] tool of Fiji.

The colocalization network was visualized using Cytoscape software
(Shannon et al., 2003). Layout of the network was done manually. As
indicated in the figure legends, the line width indicates the probability of
the observed correlation occurring by random (gray) and the color in-
dicates whether the two proteins colocalized (blue) or were found in
mutually exclusive localizations (red).

TIRFM

TIRFMwas performed on leaves of 2-week-old seedlings grown sterile on
plates. Images were acquired on an iMIC stand (Till Photonics) with an
Olympus 1003 1.45 numerical aperture objective. A diode-pumped solid
state laser (75 mW) at 488 nm (Coherent Sapphire) was selected through
an accusto-optical tunable filter. A two-axis scan head was used to adjust
incidence angles. Images were collected with an Andor iXON DU-897
EMCCD camera controlled by Live Acquisition (Till Photonics) software.

Drug Treatments

A 1 mM stock solution of oryzalin was prepared using DMSO as solvent
and diluted to a final concentration of 5 µM. Leaf discs were incubated for
4 h before imaging. For latrunculin B, a 2.4 µM stock solution in ethanol
was diluted in water to a final concentration of 50 nM. Leaf discs were
incubated in the latrunculin B solution for 3 h before imaging. All controls
were incubated in the respective solvent that was diluted accordingly.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under the following accession numbers: FLOT1A (At5g25250),
FLOT1B (At5g25260), KAT1 (At5g46240), potato REM1.3 (NM_001288060),
and SYMREM1 (JQ061257). Gene expression data (Figure 1A) are available
in the Genevestigator database (repository identifiers GSM768250,
GSM768251, and GSM768252) with the following accession numbers:
at3g61260-1 (SALK_117639), at3g61260-2 (SALK_117637), at2g45820-1
(SALK_011986), at2g45820-2 (SALK_17448), and at4g36970-1
(SALK_037050).
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The following materials are available in the online version of this article.

Supplemental Figure 1. Membrane Domain Localization of Different
Remorin Proteins in Arabidopsis and N. benthamiana.

Supplemental Figure 2. Total Internal Reflection Microscopy (TIRFM)
of Upper Plasma Membrane Planes.

Supplemental Figure 3. Confocal Images of Secant Planes Illustrate
the Plasma Membrane Localization of All 18 Marker Proteins.

Supplemental Figure 4. Quantification of Membrane Domain Param-
eters of All Marker Proteins.

Supplemental Figure 5. Filament-Like Localization of At1g13290 Is
Dependent on Microtubules.

Supplemental Figure 6. Image Processing and Randomization for
Quantitative Analysis of Colocalizations.

Supplemental Table 1. Data from Quantitative Image Analysis of
Colocalization Experiments.

Supplemental Table 2. List of Primers Used in This Study.
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Supplemental Figure 1 online. 

Membrane domain localization of different Remorin proteins in A. thaliana and N. 
benthamiana.  

(A) Expression of At5g61280 under the control of its endogenous promoter in AvrPto DEX 

inducible A. thaliana resulted in labeling of distinct membrane domains. Scale bars indicate 5 µm. 

(B-C) Heterologous and ectopic expression of the potato REM1.3 (B) and M. truncatula 

SYMREM1 (C) in N. benthamiana leaf epidermal cells. Scale bars indicate 5 µm. 

(D-I) Ectopic expression of different Remorins in leaf epidermal cells of transgenic A. thaliana 

plants transformed with a dexamethasone inducible AvrPto construct. Scale bars indicate 5 µm. 
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Supplemental Figure 2 online. 

Total Internal Reflection Microscopy (TIRFM) of upper plasma membrane planes. 

Null mutants expressing At3g61260 and At2g45820 as YFP fusion proteins were assessed by 

TIRFM. Both proteins localized to small yet highly mobile domains. Scale bars indicate 2 µm. 
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Supplemental Figure 3 online.  

Confocal images of secant planes illustrate plasma membrane localization of all marker 

proteins. 

Eighteen different marker proteins were expressed in N. benthamiana leaf epidermal cells. 

Secant plant images are shown to demonstrate localization of the proteins to the plasma 

membrane. Arrowheads point towards partial nuclear and minor cytosolic localization of 

At1g69325, At1g53860, At1g13920 and At5g61280. Scale bar indicates 10 μm. 
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Supplemental Figure 4 online.  

Quantification of membrane domain parameters of all marker proteins. 

Boxplots representing ten independent images of single protein expressing N. benthamiana leaf 

epidermal cells were used to quantify domain parameters as described in the Methods section. 

Letters indicate results of a one-way analysis of variance (ANOVA) followed by a Tukey HSD test. 
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Supplemental Figure 5 online.  

Filament-like localization of At1g13920 is dependent on microtubules. 
(A) Time lapse experiments show that filament-like structures that are frequently labeled by 

At1g13920 are stable over an observation period of at least 20 minutes. 

(B-C) Cells co-expressing the microtubule marker protein MAP4 (B) and the actin labeling peptide 

LifeAct (C) before treatment with oryzalin. Scale bars indicate 20 µm. 

(D) Oryzalin treatment depolymerized microtubules and led to a loss of the At1g13920-labeled 

filaments and its predominant cytosolic localization. Scale bar indicates 20 µm. 

(E) Depolymerization of the actin cytoskeleton by incubation in latrunculin B did not alter 

localization of At1g13920 but disrupted the majority of actin filaments. Scale bar indicates 20 µm. 
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Supplemental Figure 6 online.  

Image processing and randomization for quantitative analysis of co-localizations. 

To make any quantitative and robust statements on co-localization between two proteins, 

squared overlap coefficients (R2) were calculated (C, I, O, U). For this, the channel 2 image was 

flipped or rotated (E, K, Q, W) to randomize the image. R2 values were calculated for a new 

region of interest that contained image information of both channels (F, L, R, X). When mean R2 

values were significantly higher than the corresponding randomized values, pairs were ranked as 

positive correlations (co-localization). Pairs without any significant difference between these two 

values are randomly distributed and those where the randomized R2 was significantly higher than 

the corresponding original R2 value were ranked as negative correlation (mutual exclusion). Scale 

bars indicate 5 µm. 
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Supplemental Table 1 online.  

Data from quantitative image analysis of co-localization experiments. 

Protein pairs were grouped as ‚positive co-localization’ when R2 was significantly higher (p<0.05) 

compared to R2
random, as ‚random co-localization’ when R2 was not significantly different 

compared to R2
random and ‚as ‚exclusion’ when R2 was significantly lower (p<0.05) compared to 

R2
random. Significant levels were calculated by Student ttest. rd= random; std.err= standard error; 

n= number of independent images that were analyzed.  

 

Protein pair 

sq. Manders Pearson  sq. Manders Pearson  sq. Manders Pearson 
 

R2 std. err. Rr std. err. n rd R2 rd std. err rd Rr rd std. err. n ttest R2 ttest Rr 

At1g45207xAt1g45207 0,752 0,020 0,661 0,026 11 0,364 0,021 0,016 0,012 10 3,47E-11 6,20E-15 

identical proteins 

At4g00670xAt4g00670 0,718 0,022 0,617 0,038 15 0,360 0,016 0,017 0,010 19 8,04E-14 1,30E-16 

At4g36970xAt4g36970 0,711 0,022 0,582 0,021 9 0,432 0,011 -0,003 0,006 11 6,46E-10 8,82E-17 

At1g30320xAt1g30320 0,687 0,018 0,607 0,021 17 0,365 0,013 0,054 0,015 11 9,02E-13 5,67E-17 

At2g02170xAt2g02170 0,653 0,007 0,524 0,015 13 0,352 0,008 0,002 0,008 15 1,67E-20 2,08E-22 

At2g41870xAt2g41870 0,635 0,009 0,332 0,012 8 0,476 0,005 -0,005 0,008 10 1,94E-11 2,93E-12 

At1g67590xAt1g67590 0,618 0,010 0,397 0,022 9 0,418 0,011 -0,015 0,010 11 1,28E-10 4,98E-13 

At3g57540xAt3g57540 0,609 0,006 0,303 0,012 8 0,459 0,005 -0,003 0,006 10 7,65E-13 5,32E-14 

At3g61260xAt3g61260 0,498 0,007 0,027 0,007 10 0,477 0,007 -0,017 0,004 11 3,66E-02 3,15E-05 

 

At4g36970xAt1g53860 0,737 0,024 0,698 0,032 12 0,282 0,016 0,012 0,007 12 1,52E-13 4,70E-16 
 

At1g67590xAt2g02170 0,717 0,013 0,605 0,024 11 0,382 0,010 0,027 0,009 10 3,42E-14 5,11E-15 

positive co-localization 

At4g36970xAt1g45207 0,633 0,029 0,435 0,054 11 0,412 0,015 0,030 0,008 11 1,33E-06 3,51E-07 

At1g30320xAt2g02170 0,628 0,017 0,382 0,029 8 0,411 0,021 0,017 0,009 11 6,54E-07 1,37E-10 

At1g67590xAt1g30320 0,572 0,025 0,487 0,036 13 0,238 0,014 -0,010 0,009 12 4,69E-11 6,11E-12 

At2g41870xAt3g57540 0,569 0,007 0,217 0,014 10 0,465 0,005 -0,005 0,003 10 1,65E-10 1,21E-11 

At1g53860xAt1g45207 0,513 0,012 0,222 0,014 15 0,408 0,012 -0,004 0,006 15 7,80E-07 7,68E-15 

At1g67590xAt1g53860 0,492 0,013 0,217 0,016 10 0,385 0,011 -0,002 0,004 10 6,83E-06 8,75E-11 

At1g53860xAt2g02170 0,446 0,008 0,251 0,010 12 0,302 0,009 -0,002 0,010 13 3,40E-11 9,97E-15 

At2g02170xAt1g45207 0,434 0,009 0,286 0,009 11 0,275 0,009 0,001 0,005 11 5,84E-11 8,13E-18 

At4g36970xAt3g57540 0,423 0,017 0,070 0,016 9 0,384 0,009 -0,007 0,004 21 3,70E-02 7,92E-07 

At1g67590xAt3g57540 0,401 0,009 0,104 0,012 13 0,330 0,009 -0,004 0,008 9 3,44E-05 1,71E-06 

At4g36970xAt1g30320 0,366 0,028 0,188 0,031 12 0,274 0,021 0,015 0,011 12 1,94E-02 5,43E-05 

At1g53860xAt1g30320 0,298 0,010 0,139 0,016 10 0,238 0,014 -0,010 0,009 12 3,66E-03 3,36E-08 
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Protein pair sq. Manders Pearson  sq. Manders Pearson  sq. Manders Pearson 
 

R2 std. err. Rr std. err. n rd R2 rd std. err rd Rr rd std. err. n ttest R2 ttest Rr 

At2g02170xAt3g57540 0,424 0,009 -0,002 0,005 9 0,409 0,014 -0,007 0,007 9 4,00E-01 5,60E-01 

random
 co-localization 

At1g45207xAt3g57540 0,417 0,009 0,039 0,006 19 0,396 0,008 -0,006 0,003 19 8,24E-02 3,84E-08 

At4g36970xAt2g02170 0,381 0,013 -0,002 0,010 10 0,366 0,011 -0,005 0,004 13 3,84E-01 7,88E-01 

At1g53860xAt2g41870 0,374 0,009 0,003 0,007 10 0,366 0,012 -0,005 0,006 12 5,87E-01 4,01E-01 

At1g67590xAt2g41870 0,361 0,019 0,087 0,010 13 0,312 0,022 -0,005 0,006 10 1,10E-01 4,88E-08 

At1g67590xAt1g45207 0,354 0,029 0,058 0,011 10 0,322 0,024 -0,011 0,003 10 3,90E-01 1,60E-05 

At2g41870xAt3g61260 0,353 0,007 -0,027 0,005 12 0,356 0,009 -0,018 0,007 12 8,37E-01 2,39E-01 

At1g45207xAt2g41870 0,353 0,010 0,045 0,021 12 0,333 0,010 0,012 0,008 12 3,33E-01 1,60E-01 

At1g45207xAt3g61260 0,318 0,011 -0,019 0,003 11 0,319 0,012 -0,020 0,004 11 9,54E-01 8,85E-01 

At2g41870xAt4g00670 0,239 0,021 -0,031 0,013 11 0,246 0,017 -0,007 0,005 11 7,88E-01 1,10E-01 

At1g30320xAt1g45207 0,133 0,008 0,050 0,007 18 0,116 0,009 0,002 0,005 17 1,53E-01 1,28E-06 

At1g30320xAt3g57540 0,132 0,005 0,014 0,007 12 0,122 0,005 -0,011 0,004 12 1,03E-01 5,25E-03 

 

At2g02170xAt2g41870 0,410 0,005 -0,042 0,009 10 0,436 0,006 -0,003 0,006 10 2,89E-03 2,79E-03 

exclusion 

At1g53860xAt3g61260 0,373 0,011 -0,117 0,011 15 0,434 0,004 -0,005 0,006 14 2,52E-05 2,52E-09 

At4g36970xAt3g61260 0,296 0,014 -0,128 0,026 11 0,353 0,006 0,010 0,008 12 9,82E-04 2,84E-05 

At1g67590xAt4g36970 0,286 0,012 -0,009 0,012 13 0,385 0,011 -0,002 0,004 10 6,41E-06 6,29E-01 

At1g67590xAt3g61260 0,208 0,013 -0,368 0,027 10 0,357 0,008 -0,019 0,009 11 5,12E-09 8,21E-11 

At2g02170xAt3g61260 0,207 0,016 -0,432 0,047 15 0,383 0,012 -0,012 0,010 14 2,29E-09 4,98E-09 

At4g00670xAt3g61260 0,193 0,014 -0,136 0,017 11 0,247 0,016 0,004 0,009 11 2,00E-02 4,04E-07 

At1g30320xAt4g00670 0,191 0,023 -0,153 0,021 12 0,265 0,018 0,003 0,009 12 1,70E-02 6,06E-07 

At1g30320xAt3g61260 0,153 0,006 -0,106 0,032 10 0,192 0,011 -0,017 0,010 10 5,61E-03 1,64E-02 

At1g67590xAt4g00670 0,102 0,011 -0,291 0,019 13 0,217 0,015 0,004 0,008 13 1,60E-06 2,46E-13 
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cloning of overexpression 
constructs
gene ID forward primer reverse primer vector
At3g61260 CACCATGGCGGAGGAACAGAAGA TTAGAAACATCCACAAGTTGCCTT 2
At2g45820 CACCATGGCGGAGGAGCAAAAGAC TTAGAAACATCCACACGTTGCCTT 2
At5g23750 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCTGAAGAGGAACCG GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACATGCATCCGAAAAGC 3
At1g69325 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACGAATCCACAGTGC GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGAGGCATGTAGAGGGTTTCC 3
At4g00670 GGCGCGCCTACCATGGAGCCAAATATTCCGATCC CGTTTAAACCTTAGAAGCAGCTCAAAGATGA 1
At3g57540 GGCGCGCCTACCATGTTGACTTTGTACGGTCA CGTTTAAACCTTAGGAAAGAGAGAAGAATGATC 1
At2g41870 GGCGCGCCTACCATGCTGACTCTTTACCATCAAG CGTTTAAACCTTAGGAGAAAGAGAAGAAGGAGC 1
At1g45207 GGCGCGCCTACCATGCCGTCGGAGTCATCGTAC CGTTTAAACCTTAGAATACATGGCAGGTGAAGC 1
At2g02170 GGCGCGCCTACCATGGATTACGAACGAATCGG GGCGCGCCTTAAGAACAAAAGCTAAAGC 1
At1g30320 GGCGCGCCTACCATGGATTACGAGAGGATACAG CGTTTAAACCTTATGAGAACCAACCACAACA 1
At1g53860 GGCGCGCCTACCATGGACTTCACAAGAAACAG CGTTTAAACCTTAATGACAAGTATTATTGC 1
At4g36970 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAGAAAGACTTCTGTTTC GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGAGAGCAGAAGAAGATTTTC 3
At1g67590 CACCATGAGATCTAGTGTAGAAG TTATTGACACCAACAACGAG 2
At1g13920 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGATACCTTAATCAAGC GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGAAACAGCATGCATTTC 3
At5g61280 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGATAATTTGGTTAAGC GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGTAACACCGAAAGCAGAAA 3
KAT1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCGATCTCTTGGACTCG GGGGACCACTTTGTACAAGAAAGCTGGGTTATTTGATGAAAAATACAAATGATCACC 3
FLOT1A TTTGGTCTCTCACCATGTTCAAAGTTGCAAGAGC AAAGGTCTCACCTTGCTGCGAGTCACTTGC 4
FLOT1B TTTGGTCTCTCACCATGTTCAAGGTTGCAAGAGC AAAGGTCTCACCTTCTTGCTTAGAGTACCGATCC 4
SYMREM1 AGGCGCGCCTACCATGGAAGAATCGAAAAACAAAC AGGCGCGCCCTAACTGAAAAACCTTAAACC 1

cloning of Pro:YFP:ORF 
constructs
ProAt3g61260 TTTGGTCTCTCACCGTTGGCCGTCGTTG AAAGGTCTCTTGTCAGTCGCCGCCTCTCAGCC 4
At3g61260 TTTGGTCTCGAATATGGCGGAGGAACAG AAAGGTCTCACCTTTTAGAAACATCCACAAGTTGC 4
ProAt2g45820 TTTGGTCTCTCACCGGTATTCCTATGCTCAAATC AAAGGTCTCTTGTCTGTCTCTCAGCCGAAGAAGAAG 4
At2g45820 TTTGGTCTCAGAATATGGCGGAGGAGCAAAAG AAAGGTCTCACCTTTTAGAAACATCCACACGTTGC 4
ProAt4g36970 TTTGGTCTCTCACCTGCGTTGCATCGTTCGTGA AAAGGTCTCTTGTCTGTTGGTTTCTCAAAGAACAAAATC 4
At4g36970 TTTGGTCTCAGAATATGAGAAAGACTTCTGTTTC AAAGGTCTCACCTTACTGAGAGCAGAAGAAGATTTTC 4
free YFP TTTGGTCTCTGACAATGGTGAGCAAGGGCGAGG AAAGGTCTCTATTCCTTGTACAGCTCGTCCATGC 4

qPCR primers
At4g36970 GAACATGAACAACAACAAGGG CGAGGAGCAAAGCAAGTCATG

legend
1= for cloning into pksi
2= for cloning into pENTR-D
3= for cloning into pDONR207
4= for cloning into pENTR-D BsaI
START and STOP codons are depicted in red; Pro=promoter

Supplemental Table 2 online. 

List of primers used in this study. 
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Author contributions (Sebastian S.A. Konrad): 

I predominantly contributed to the design of the study, as well as the analysis of data. Furthermore 

I was involved writing the manuscript. The following experiments were conducted by me: 

• Cloning and mutagenesis of all Arabidopsis thaliana RemCA constructs and mutation 

variants thereof (Figure 4; Figure 5; Supplementary Figure S2; Supplementary Figure S4). 

• Cloning of the C197A mutation of SYMREM1 and SYMREM1 RemCA (Figure 4). 

• In silico S-acylation site prediction of A. thaliana Remorins (Table 1). 

• Microscopical and biochemical RemCA-mediated PM binding analysis in N. benthamiana 

(Figure 4; Supplementary Figure S2). 

• Co-localization studies for At4g36970, At4g36970 RemCA and At3g61260 

(Supplementary Figure S4). 

• Localization studies of SYMREM1, At4g36970, At4g36970 RemCA, At3g12360 and 

mutation variants of these in N. benthamiana (Figure 4). 

• Establishment of the biotin switch protocol and experimental application of it on all 

Remorin and RemCA constructs presented in the study (Figure 5; Supplementary Figure 

S5). 

• Cloning and expression of SYMREM1, SYMREM1 74-205,SYMREM1 C197A and SYMREM1 

RemCA in Saccharomyces cerevisiae (Figure 6). 

• Localization studies as well as microsomal fractionations of SYMREM1, SYMREM1 74-205, 

SYMREM1 C197A and SYMREM1 RemCA in S. cerevisiae   

(Figure 6; Supplementary Figure S6). 
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Author contributions (Claudia Popp): 

I initiated this project and contributed to conception of the study, as well as the analysis of data. 

Furthermore I was involved writing the manuscript. The following experiments were conducted 

by me: 

• Cloning of SYMREM1 and SYMREM1 RemCA constructs as well as deletion constructs 

of SYMREM1 (Figure 1;Figure 2; Figure 6). 

• Expression and localization studies of SYMREM1, SYMREM1 RemCA, SYMREM11-73, 

SYMREM1174-205, SYMREM11-170, SYMREM11-190 and SYMREM1171-205 in Medicago 

truncatula (Figure 2; Figure6). 

• Western Blots and microsomal fractionations of SYMREM1 and SYMREM1C197A 

indicating band shift (Supplementary Figure S3). 

• Cell viability experiments (Figure 1 d and e) 
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Summary

! Remorins are well-established marker proteins for plasma membrane microdomains. They
specifically localize to the inner membrane leaflet despite an overall hydrophilic amino acid
composition. Here, we determined amino acids and post-translational lipidations that are
required for membrane association of remorin proteins.
! We used a combination of cell biological and biochemical approaches to localize remorin
proteins and truncated variants of those in living cells and determined S-acylation on defined
residues in these proteins.
! S-acylation of cysteine residues in a C-terminal hydrophobic core contributes to membrane
association of most remorin proteins. While S-acylation patterns differ between members of
this multi-gene family, initial membrane association is mediated by protein–protein or pro-
tein–lipid interactions. However, S-acylation is not a key determinant for the localization of
remorins in membrane microdomains.
! Although remorins bind via a conserved mechanism to the plasma membrane, other mem-
brane-resident proteins may be involved in the recruitment of remorins into membrane
domains. S-acylation probably occurs after an initial targeting of the proteins to the plasma
membrane and locks remorins in this compartment. As S-acylation is a reversible post-transla-
tional modification, stimulus-dependent intracellular trafficking of these proteins can be
envisioned.

Introduction

It has now been widely accepted that plasma membranes (PM)
are functionally compartmentalized. These structures, called
membrane micro-domains, are defined by a dynamic crosstalk
between different lipids, membrane-resident proteins and proba-
bly the cortical cytoskeleton that results in the assembly of mem-
brane subcompartments in the micrometer range (reviewed in
Lingwood & Simons, 2010; Li et al., 2013; Malinsky et al.,
2013). While life cell imaging of lipids revealed a heterogeneous
distribution in cells and tissues (Vermeer et al., 2009; Horn et al.,
2012), most work done in plants so far has focused on the roles
of sterols. Such sterol-enriched sites can harbour a large number
of signalling proteins and are important during plant-microbe
interactions (reviewed in Zappel & Panstruga, 2008; Jarsch &
Ott, 2011; Urbanus & Ott, 2012). Focal accumulation of mem-
brane domain proteins during host cell infection indicates the
existence of active cellular processes that specifically direct

signalling complexes to infection sites (Bhat et al., 2005; Haney
& Long, 2010; Lefebvre et al., 2010; Underwood & Somerville,
2013). Increasing evidence suggests that a large number of PM-
resident proteins do not freely diffuse inside the PM bilayer as
single molecules but are preassembled into distinct subdomains
(Kusumi et al., 2012). However, not much is known about the
mechanisms that target individual proteins to membrane
domains in plant cells. Transmembrane proteins might not only
assemble specific lipids in their vicinity and thereby directly
contribute to the assembly of specific lipid shells, but also
interact with other membrane-resident proteins and the actin
cytoskeleton. Such interactions, among others, support the for-
mation of larger domain clusters (Lingwood & Simons, 2010;
van den Bogaart et al., 2011). For extracellular proteins, the addi-
tion of glycosylphosphatidylinositol (GPI) moieties has been
shown to contribute to their specific association with the apoplas-
tic face of sterol-enriched membrane domains (Varma & Mayor,
1998). Accordingly, proteins carrying GPI-anchors are overrepre-
sented in sterol-enriched detergent-resistant membranes
(DRMs), indicating that addition of this lipid moiety directs*These authors contributed equally to the work.
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extracellular proteins into these fractions (Kierszniowska et al.,
2009). In plants, only few proteins have been identified that asso-
ciate with membrane domains at the cytosolic face of the PM,
among them flotillins and remorins (Raffaele et al., 2009; Haney
& Long, 2010; Li et al., 2012; Jarsch et al., 2014). Flotillins
evolved in multicellular eukaryotes and form a small gene family
with three members in Arabidopsis thaliana. They bind the
inner leaflet via lipid modifications, called myristoylation and
S-acylation (Neumann-Giesen et al., 2004). Myristoylation is an
irreversible modification of an N-terminal glycine residue while
S-acylation (formerly called palmitoylation) of cysteine residues
can occur throughout the entire protein (Blaskovic et al., 2013).
Importantly, S-acylation contributes not only to membrane asso-
ciation of proteins but also to the regulation of protein–protein
interactions (Blaskovic et al., 2013). The acylation reaction itself
is either catalysed by membrane-resident protein acyl-transferases
(PATs) or, rarely, occurs spontaneously (Bharadwaj & Bizzozero,
1995). In contrast to other lipid modifications that mediate PM
association, S-acylation is reversible. This feature allows dynamic
regulation of protein complexes. As such regulatory modes are
required during signal transduction, it appears a natural conse-
quence that a number of plant signalling proteins, such as small
GTPases (Sorek et al., 2007), calcium-dependent kinases (Martin
& Busconi, 2000) and heteromeric G-proteins (Adjobo-Hermans
et al., 2006; Hemsley et al., 2008), have been shown to be S-acyl-
ated. More globally, a recent proteomic study in A. thaliana
reported the presence of 581 S-acylated proteins, among them
two plant-specific remorins (Hemsley et al., 2013). Remorins
form a multigene family with 16 members in A. thaliana (Raffa-
ele et al., 2007). Plants that undergo root nodule symbiosis have
evolved an additional subgroup that also comprises the SYMBI-
OTIC REMORIN 1 (SYMREM1) (Lefebvre et al., 2010; T!oth
et al., 2012). The SYMREM1 protein interacts with symbiosis
related receptor-like kinases and localizes in membrane microdo-
mains along nodular infection threads (Lefebvre et al., 2010;
T!oth et al., 2012). Knockout mutants in Medicago truncatula
revealed that the protein controls rhizobial infections as these
mutants developed more prematurely aborted nodules compared
with wildtype plants (Lefebvre et al., 2010; T!oth et al., 2012).
Remorins consist of a conserved C-terminal region that contains
a canonical remorin signature. By contrast, their phosphorylated
and intrinsically disordered N-terminal regions are highly variable
in sequence composition and length and may serve regulatory
functions during protein–protein interactions (Mar!ın & Ott,
2012; Marin et al., 2012; T!oth et al., 2012). Remorins localize to
distinct membrane domains at the cytosolic leaflet of the PM
(Raffaele et al., 2009; Lefebvre et al., 2010; Perraki et al., 2012;
Demir et al., 2013; Jarsch et al., 2014) and serve as established
marker proteins for PMs and membrane microdomains. Structur-
ally these proteins lack a transmembrane domain and exhibit an
overall hydrophilic amino acid profile (Reymond et al., 1996;
Raffaele et al., 2009). Although they have been numerously found
at the PM, their mode of association has not been fully under-
stood. A recent study proposed that the potato remorin
StREM1.3 physically inserts into the PM through a tight hairpin
structure comprising amphipathic a-helices and that a

corresponding ‘remorin C-terminal anchor’ (RemCA) is required
and sufficient for membrane binding of this remorin (Perraki
et al., 2012). Considering the fact that the homologous protein
from A. thaliana is S-acylated (Hemsley et al., 2013), the mode
of membrane binding and localization to membrane microdo-
mains remains to be fully elucidated.

In this study, we have finally unravelled the molecular mecha-
nism that targets these membrane domain marker proteins to the
PM and analysed the structural requirements for their specific
localization.

Materials and Methods

Molecular cloning and sequence analyses

Remorin constructs were cloned from cDNA templates by
Golden Gate cloning or standard Gateway (GW) technology
using self-assembled level I and II plasmids or the pDONR207
entry vector, respectively (Binder et al., 2014). In Nicotiana
benthamiana Domin, all remorins were expressed using the
pAM-PAT-YFP-GW vector. For expression in Medicago
truncatula Gaertn. roots, the modified destination vector pUBi-
YFP-GW-HYG was used, where the standard recombination site
was replaced with an YFP-GW cassette via the sites KpnI and
XbaI. Point mutations were introduced into the respective entry
clones via inverted PCR.

Plant transformation and fluorescence microscopy

For analysis of SYMREM1, M. truncatula (ecotype A17) roots
were transiently transformed as described previously (Boisson-
Dernier et al., 2001) with slight modifications. Plants were then
grown on Fahraeus medium for 3 wk before imaging of the sam-
ples. For methyl-b-cyclodextrin (mbCD) treatments, roots
expressing a genomic SYMREM1 construct with N-terminally
fused yellow fluorescent protein (YFP) were incubated in 30 mM
mbCD on the microscope slide and images were taken consecu-
tively directly during immersion in the drug. Control experi-
ments were performed in water. Images were taken 3 wk after
transformation.

For heterologous expression, constructs were transformed into
Agrobacterium tumefaciens strains GV3101 and AGL1. Transfor-
mation of N. benthamiana leaves was performed as previously
described (T!oth et al., 2012). All transformations were repeated
at least three times independently. It should be noted that, in the
case of N. benthamiana transformations, all cells represent inde-
pendent transformation events.

Confocal laser scanning microscopy was performed using a
Leica TCS SP5 confocal microscope equipped with 963 and
920 HCX PL APO water immersion lenses (Leica Microsystems,
Mannheim, Germany). The YFP fluorophores were excited with
the 514 nm argon laser line and emission was detected at
525–600 nm. FM4-64 fluorescence was excited using the argon
laser line at 476 nm and emission was detected between 690
and 750 nm. In all cases, maximum projections of z-stacks are
shown.
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In silico analysis of SYMREM1

Ab initio modelling of SYMREM1 was performed using the
I-TASSER server (Zhang, 2008; Roy et al., 2010). Models for
the N- and C-terminal regions were constructed independently
and subsequently fused. Predictions of putative regions involved
in protein interactions were performed using the PPI-Pred
server (http://bioinformatics.leeds.ac.uk/ppi_pred/index.html)
(Bradford & Westhead, 2005). Molecular graphics were pro-
duced using the UCSF Chimera package (http://www.cgl.ucsf.
edu/chimera) (Pettersen et al., 2004).

The hydrophobicity plot was generated on the basis of the
SYMREM1 amino acid sequence (GenBank accession AEX20500)
using the Expasy Webserver (http://web.expasy.org/cgi-bin/prot-
scale/protscale.pl).

Microsomal fractionation

Microsomal fractions were prepared by the addition of extraction
buffer (230 mM sorbitol, 50 mM Tris/HCl (pH 7.5), 10 mM
KCl, 3 mM ethylene glycol tetraacetic acid and protease inhibi-
tors) to ground tissue of the microscopically examined material.
Samples were spun at 20 000 g for 40 min before the extract was
passed through two layers of Miracloth. The obtained superna-
tant was then spun down at 100 000 g for 1 h. The resulting pel-
lets containing the microsomal fractions were resuspended in
Tris-buffered saline (TBS) and used for western blot analysis.
The supernatant contained all cytosolic proteins.

Biotin switch assays

Two N. benthamiana plants were independently infiltrated per
construct, with A. tumefasciens carrying the respective plasmids.
Before protein extraction, expression of the constructs was micro-
scopically confirmed, using a Leica DMI 6000 epifluorescence
microscope. Three fluorescent leaves per plant were harvested
and samples were pooled for further processing. The biotin
switch assay itself was conducted as described previously (Hems-
ley et al., 2008). In brief, all free sulfhydryls were blocked by
incubation in N-ethylmaleimide. Hydroxylamine-induced cleav-
age of the acylthioester bond resulted in removal of the fatty acid
moiety and the generation of free sulfhydryls that were labelled
using a sulfhydryl-reactive biotin, forming a biotinylated cysteine.
S-acylated proteins were then purified using neutravidin-coupled
agarose beads. Methanol/chloroform precipitations were carried
out as described earlier (Wessel & Flugge, 1984). This experi-
ment was repeated two to three times independently and always
yielded the same result.

Quantification of bands on the Western blot was performed
using ImageJ. Mean intensity values were obtained after substrac-
tion of the background.

Western blot analysis

After sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE), proteins were transferred overnight at 4°C to

polyvinylidene fluoride membranes. Membranes were blocked in
TBS containing 0.1% Tween 20 (TBS-T) and 5% milk for 10 h
at 4°C. All constructs were detected using a polyclonal a-GFP
antibody (Rockland Immunochemicals, Gilbertsville, PA, USA) at
a 1 : 5000 dilution in TBS-T 5% milk overnight at 4°C. The
membrane was washed three times with TBS-T before incubation
with a horseradish peroxidase-conjugated a-rabbit antibody
(GE Healthcare, Munich, Germany) at a 1 : 20 000 dilution in
TBS-T 5% milk for 1 h at room temperature. Detection of chemi-
luminescence was carried out according to the ECL reagent manu-
facturer’s instructions (Pierce; Thermo Fischer, Bonn, Germany).

Expression of SYMREM1 constructs in yeast

SYMREM1, SYMREM1C197A, RemCA and truncated variants
were cloned into the yeast expression vector pAG424GAL-EYFP-
ccdB (Addgene, Cambridge, MA, USA) via Gateway technology.
Yeast transformation in the NMY32 strain was performed as
described earlier (T!oth et al., 2012). Transformants were selected
on synthetic dropout (SD) medium supplemented with 2%
galactose to induce transgene expression. For microscopy, yeast
cells were immobilized on glass slides with a 5% low melt agarose
film.

For protein extractions, pellets from 12 ml cultures were
washed with 1 mM ethylenediaminetetraacetic acid before dis-
ruption by glass beads in 50 mM Tris-HCl supplemented with
protease inhibitors. Microsomal and cytosolic fractions were
obtained by differential centrifugation as described earlier and
subjected to western blot analysis.

Results

Sterol-dependent localization of SYMREM1 in membrane
microdomains

In a first experiment, we assessed PM localization of SYMREM1
in detail. When ectopically expressing a SYMREM1 fusion pro-
tein in transgenic M. truncatula roots, we observed the expected
labelling of PM microdomains (Fig. 1a). Interestingly, most
observed membrane domains were immobile over the 30 min
observation period (Fig. 1b, arrowheads). This is in agreement
with previous localization studies of native SYMREM1 in root
nodules (Lefebvre et al., 2010) and other remorins (Raffaele
et al., 2009; Demir et al., 2013; Jarsch et al., 2014). Because for-
mation of membrane domains has often been associated with the
enrichment of sterols, we tested sterol-dependency of SYM-
REM1-labelled microdomains in living cells. For this, transgenic
roots were incubated in the presence of 30 mM mbCD, a cyclic
oligosaccharide that interacts with hydrophobic molecules,
including sterols, and depletes them from membranes (Roche
et al., 2008). Indeed, most microdomains dissolved within the
first 10 min upon mbCD application, indicating sterol-depen-
dency of these membrane domains (Fig. 1c). Cell viability during
mbCD treatment was confirmed by the persistent presence of
cytoplasmatic streaming in living root hair cells incubated in
water (Fig. 1d) and 30 min after mbCD application (Fig. 1e).
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Furthermore, we could exclude the possibility that the mbCD
treatment affected the fluorophore itself, as application of the
drug did not result in any difference from water-treated controls
when we expressed free YFP protein in transgenic roots (Fig. 1f,
g). These experiments demonstrate that SYMREM1 localizes to
membrane domains in a sterol-dependent manner in vivo.

Identification of the membrane-binding site

As other remorins, the SYMREM1 protein shows an overall
hydrophilic pattern (Fig. 2a). However, the C-terminal 35 resi-
dues may form a hydrophobic core out of which 19 residues are
predicted to be intrinsically disordered and thus do not contain
any secondary structure in solution. Using the PPI-Pred server,
we found that 25 of these terminal residues are predicted to be
involved in protein–protein interactions (indicated in red; Sup-
porting Information, Fig. S1a). As hydrophobic sites are required
for both direct membrane binding and protein–protein interac-
tions, we generated a series of truncation variants of SYMREM1
N-terminally fused to a YFP fluorophore (YFP-SYMREM1), to
investigate the role of its different protein regions in membrane
binding. These constructs were expressed in transgenic
M. truncatula roots, and secant (median) planes of root epidermal
cells were analysed by confocal laser scanning microscopy. The
results are shown in Fig. 2 as maximum intensity projections of
z-stack images. As expected, the full-length protein entirely
resided in the PM (Fig. 2b). The N-terminal region of SYM-
REM1 (residues 1–73; Fig. 2c) showed the same cytoplasmic
localization pattern as the sole YFP fluorophore (Fig. S1b). By

contrast, the C-terminal region (residues 74–205) remained fully
associated with the PM (Fig. 2d). Expression of C-termi-
nally truncated proteins, where deletions were introduced in
front of the predicted helical structure at position Cys171 (resi-
dues 1–170) or between the predicted intrinsically disordered
C-terminal residues (residues 1–190), resulted in a predomi-
nantly cytosolic SYMREM1 protein (Fig. 2e,f). These results
indicate that residues within the C-terminal region mediate PM
localization. This was confirmed in a reciprocal experiment where
a YFP fluorophore was found to be entirely associated with the
PM when being fused to these 35 residues (SYMREM1171–205)
(Fig. 2g). In all cases, localization and integrity of the fusion pro-
teins were biochemically confirmed by Western blot analyses after
microsomal fractionation (Fig. 2, panels below images). Faint sig-
nals were still observed in the microsomal fractions of the trun-
cated variants SYMREM11–170 and SYMREM11–190 (Fig. 2e,f),
indicating that a proportion of the protein resided in the PM
independently of the C-terminal 35 amino acid residues. In gen-
eral, these data are in agreement with a recently published report,
where the corresponding region in the remorin StREM1.3 from
potato (RemCA) was shown to be required for membrane bind-
ing of this protein (Perraki et al., 2012). For consistency we
therefore used the term ‘RemCA’ throughout our study.

The presence of few C-terminal residues is indispensable
for membrane localization of remorin proteins

Next we asked whether the C-terminal hydrophobic core is gen-
erally required for PM association of remorin proteins. To

(a)

(f) (g)

(b) (d)

(e)

(c)

Fig. 1 SYMREM1 labels sterol-dependent membrane domains in vivo. (a) Image of a mature transgenic root hair fromMedicago truncatula ectopically
expressing a YFP-SYMREM1 fusion protein. (b) Membrane domain patterns did not change during imaging. Images were taken in 10min intervals.
Arrowheads mark laterally immobile membrane domains. (c) Application of 30mMmethyl-b-cyclodextrin (mbCD)-depleted membrane domains. Images
were taken at 10min intervals. (d, e) Cytoplasmic streaming was observed in 5 s intervals before (d) and after (e) incubation of roots in 30 mMmbCD for
30min. Arrowheads point towards mobile cytosolic particles that allowed detection of cytoplasmic streaming. (f, g) Transgenic root hairs expressing free
yellow fluorescent protein (YFP). No changes in fluorescence were observed when roots were treated with 30 mMmbCD for 30min (f) or water as a
control (g), indicating that the treatment did not affect the fluorophore alone. All images are z-projections. Bars: (a–c, f, g) 10 lm; (d, e) 5 lm.
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investigate this, we cloned and expressed the coding regions of
the closely related remorin At2g45820 (190 residues) and the
three distantly related remorins, At2g41870 (274 residues),
At4g36970 (427 residues) and At2g02170 (486 residues), from
A. thaliana. As expected, all full-length proteins localized to the
PM when being expressed in N. benthamiana leaf epidermal cells
(Fig. 3a–d). Next, we truncated these proteins in front of the
predicted terminal helix, as was done for SYMREM1. In analogy,
expression of these truncated variants (At2g458201–161,
At2g418701–243, At4g369701–384, At2g021701–453) resulted in
an entire loss of PM binding of all proteins in planta (Fig. 3e–h).
These data were verified for the shortest and the longest remorins
by labelling PMs with the dye FM4-64. While full-length

At2g45820 and At2g02170 colocalized perfectly with FM4-64
(Fig. 3i,j), the truncated versions showed clear cytoplasmic local-
izations (Fig. 3k,l).

To reciprocally test if these regions were always sufficient to
anchor YFP to the PM as shown for SYMREM1 (Fig. 2g), the
C-terminal 35 amino acids (RemCAs) of all 16 A. thaliana remo-
rins were fused to this fluorophore and expressed in
N. benthamiana leaf epidermal cells. Surprisingly, only four of
these RemCA peptides (At4g36970, At2g02170, At1g30320,
At5g61280) were sufficient to fully anchor the YFP protein to
the PM (Fig. S2a–d, Table 1). In all other cases, strong cytosolic
localizations of the fusion proteins were observed (Fig. S2e–p).
To test whether this cytosolic localization may (partially) derive

(a)

(b) (c) (d)

(e) (f) (g)
Fig. 2 The C-terminal residues mediate
membrane anchoring of SYMREM1. (a)
Hydrophobicity plot of SYMREM1. (b–g)
Confocal images of transgenicMedicago
truncatula roots expressing different full-
length SYMREM1 (b) or truncated protein
variants (c–g). The yellow fluorescent protein
(YFP) fluorophore was always fused to the
N-terminus of SYMREM1 protein variants.
All images are z-projections of secant planes
without the plasma membrane (PM) surface.
Bars, 20 lm. Western blot analysis shows the
presence of intact fusion proteins (panels
below images). sol., soluble protein fraction;
l, microsomal protein fraction.
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from fluorophore cleavage, proteins were extracted and compared
with free YFP by Western blot analysis (Fig. S2q). Indeed, partial
cleavage was detected for At1g69325, At4g00670, At3g57540,
At2g41870, At1g45207, At4g36970 and At1g13290. Those pro-
teins were therefore further subjected to microsomal fractiona-
tions to determine the degree of cytosolic and membrane
localization. In all cases, the intact fusion protein localized pre-
dominantly to the cytosolic fraction (Fig. S2r). This implies that
these RemCA peptides were not sufficient for strong immobiliza-
tion of the fluorophore at the PM.

As all remorins contain a hydrophobic stretch at the C-termi-
nus (Table 1), we excluded the possibility that the chemical prop-
erties of these residues alone are the sole determinants for PM
localization of the proteins.

C-terminal cysteine residues contribute to PM localization
of remorins

As stated earlier, post-translational lipid modifications often con-
fer PM binding of proteins. Following a recent global approach
in A. thaliana, where two remorins were found to be S-acylated
(Hemsley et al., 2013), we used the CSS-PALM 3.0 algorithm
(http://csspalm.biocuckoo.org/) to predict putative S-acylation
sites in all A. thaliana remorin proteins and SYMREM1. Except
for At3G48940, At3G57540 and At2G41870, all remorins were
found to harbour at least one C-terminal cysteine residue that
may serve as putative sites of S-acylation (Table 1).

To test whether S-acylation is a key determinant for membrane
association of RemCA peptides, we chose SYMREM1 and
At4g36970, which have one and two predicted S-acylated

cysteines in their RemCA sequences, respectively. High-resolu-
tion imaging (c. 910 higher magnification than used here)
recently revealed labelling of membrane microdomains by the
full-length variants of these proteins (Jarsch et al., 2014). The
RemCA peptides of both remorins were sufficient to fully associ-
ate a fluorophore to the PM when expressed in N. benthamiana
(Figs 4c, S2a). At3g61260 was used as a control. This A. thaliana
remorin is the homolog of the well-studied StREM1.3 protein
(Perraki et al., 2012) and was found to be S-acylated (Hemsley
et al., 2013). It should be noted that the RemCA peptides of nei-
ther At3g61260 nor its closely related proteins At3g48940,
At2g45820 and At5g23750 were sufficient to anchor soluble
YFP to the PM (Table 1; Fig. S2).

To test the impact of point mutations at the predicted cysteine
residues, we expressed a number of mutant variants in
N. benthamiana. Introduction of a cysteine to alanine mutation
at the predicted S-acylation site Cys197 in SYMREM1 did not
lead to a significant decrease of PM localization of the full-length
protein (Fig. 4b). Western blot analysis on microsomal fractions
of protein extracts from N. benthamiana plants expressing
wildtype SYMREM1 and mutated SYMREM1C197A confirmed
predominant PM association of both proteins (Fig. S3a). Inter-
estingly, a small but reproducible band shift was observed in the
SYMREM1C197A mutant, indicating a possible modification on
this residue (Fig. S3b). In contrast to the full-length protein, intro-
duction of the same point mutation into the isolated membrane-
binding domain of SYMREM1 (RemCA, SYMREM1171–205)
resulted in an entire loss of PM association of the fusion protein
and labelling of mobile structures in the cytoplasm (Fig. 4d),
while the wildtype peptide resided at the PM (Fig. 4c). These

(a) (b) (c) (d)

(e)

(i)

(k)

(j)

(l)

(f) (g) (h)
Fig. 3 The C-terminal residues determine
membrane association throughout the
remorin family.(a–h) All tested full-length
proteins localized to the plasma membrane
(PM) (a–d), while all mutant variants that
were truncated by the respective remorin
C-terminal anchor (RemCA) peptide were
predominantly found in the cytosol when
being expressed in Nicotiana benthamiana
leaf epidermal cells (e–h). (i, j) PM
counterstaining with the styryl dye FM4-64
showed colocalization with full-length
At2g45820 and At2g02170. (k, l) No
colocalization was observed between
FM4-64 and the truncated variants
At2g458201–161 (k) and At2g021701–453 (l).
Yellow fluorescent protein (YFP) fluorescence
is shown in yellow, and the FM4-64 stain is
represented in blue. Bars, 20 lm.
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data show that Cys197 stabilizes PM attachment of SYMREM1,
whereas it is indispensable for PM binding of the membrane-
binding domain alone.

A different pattern was observed for At4g36970. Here, PM
association of the full-length protein was affected by single point
mutations in the predicted S-acylation sites Cys413 (Fig. 4f) and
Cys420 (Fig. 4g). Both mutations resulted in a strong accumula-
tion of the proteins in immobile membrane domains. Further-
more, the mutation in Cys413 led to an additional nuclear and
cytosolic localization (Fig. 4f). A C413A/C420A double mutant

was also targeted to these immobile foci and showed nuclear
localization, resembling the pattern of the C413A mutant
(Fig. 4h).

To test whether these putative cysteine lipidations are key
determinants for membrane localization of the At4g36970-
derived RemCA, the same mutations were introduced into the
respective constructs. Expression of a fluorophore-tagged RemCA
construct of At4g36970 (residues 384–427) revealed labelling of
the PM and mobile vesicles in the cytosol (Fig. 4i). While the
replacement of Cys420 with alanine did not affect PM targeting

Table 1 Subcellular localization of remorin C-terminal anchor (RemCA) peptides of all Arabidopsis thaliana remorins plus SYMREM1 and predications of
S-acylation sites

RemCA peptides of all 16 A. thaliana remorins and theMedicago truncatula SYMREM1 protein were expressed as yellow fluorescent protein (YFP) fusion
proteins in Nicotiana benthamiana leaf epidermal cells and subcellular localizations were scored microscopically (Fig. S2). Putative S-acylation sites were
predicted for all using the CCS-PALM server (http://csspalm.biocuckoo.org/). Scores and cutoff values for the predictions are provided. S-acylation was
biochemically determined for those remorins marked in green. The C-terminal 20 amino acid (aa) residues are provided, and predicted S-acylated residues
are indicated by the zig-zag line. Colour coding indicates Kyte–Doolittle hydrophobicity score of individual amino acids (red, hydrophobic; blue, hydro-
philic). n.d., not detected; Cys, cysteine; *, stop codon.
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(Fig. 4k), a mutation in Cys413 led to cytosolic and nuclear
localization of the YFP fusion protein. In line with this, the
C413A/C420A double mutant followed the same localization
pattern as observed for the C413A single mutant (Fig. 4l). All
results were confirmed in colocalization experiments with the
lipophilic dye FM4-64 (Fig. S4a,b). These data are consistent
with our results from in planta localization studies of mutated
SYMREM1 and show that C-terminal cysteine residues are cru-
cial for membrane attachment of the remorin membrane-anchor-
ing motif.

Finally, we introduced mutations into the predicted S-acyla-
tion sites of At3g61260, a protein that has been shown to be
S-acylated (Hemsley et al., 2013). While the full-length protein
was exclusively found at the PM (Fig. 4m), mutations of the
C-terminal residues Cys209 and Cys211 resulted in both cyto-
plasmic and, for Cys209, additional nuclear localization (Fig. 4n,
o). Interestingly, the double mutant (C209A/C211A) strongly
aggregated in large, mobile clusters in the cytosol (Fig. 4p).
Again, these data were confirmed by colocalization experiments
with FM4-64 (Fig. S4c).

In all three cases, the mutation of in silico predicted S-acylation
sites resulted in an altered localization pattern. The entire loss of
PM attachment in mutant variants of the remorin membrane-
binding domain from two different remorins and the alteration
of localization of the full-length At3g61260 protein highlight the
importance of these residues in PM targeting.

Interestingly, three A. thaliana remorins (At3g48940,
At3g57540 and At2g41870) are entirely devoid of cysteine
residues. Thus no putative S-acylation sites could be detected
in these proteins when using the CSS PALM algorithm
(Table 1). However, as shown for At2g41870, these proteins
also require the C-terminal 35 residues to associate with the
PM (Fig. 3c,g), indicating a possible alternative mode of
membrane binding.

Remorins are S-acylated proteins

Next, we asked, whether the identified and mutated cysteine resi-
dues are indeed post-translationally modified. To verify the pres-
ence of S-acyl moieties, we performed a biotin switch assay, a

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4 Mutations in C-terminal cysteine residues alter localization patterns of remorin proteins when being expressed in Nicotiana benthamiana leaf
epidermal cells. (a, b) Full-length SYMREM1 and the mutant variant SYMREM1C197A remained plasma membrane (PM)-localized. (c, d) PM association of
the remorin C-terminal anchor (RemCA) peptide of SYMREM1 is dependent on Cys197. Introduction of a C197A mutation in this residue resulted in an
entire loss of membrane binding (d). (e–h) Mutations in the two predicted C-terminal S-acylation sites, Cys413 (f) and Cys420, of At4g36970 resulted in
altered membrane domain pattering and partial cytosolic/nuclear localization of the C413A mutant (f). (h) The At4g36970 double cysteine mutant
resembled both single mutations. (i) The yellow fluorescent protein (YFP)-RemCA peptide of At4g36970 is targeted to the PM and some mobile vesicles.
PM localization is altered in the C413A (j) but not in the C420A (k) mutant of the At4g36970 RemCA peptide. (l) The At4g36970 RemCA double cysteine
mutant resembled the C413A mutation. (m–p) Both C-terminal cysteines of At3g61260 are required for PM association of the protein. (p) The respective
double mutant strongly aggregated in the cytoplasm. All images are z-projections. Bars, 50 lm.
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method that was successfully used to determine S-acylation of
plant proteins (Hemsley et al., 2008). We confirmed functional-
ity of the assay on full-length At3g61260, where the presence of a
band in the elution fraction of hydroxylamine-treated samples
indicates S-acylation of the protein (Fig. S5a,b). Strong S-acyla-
tion signals were also observed for SYMREM1, and its RemCA
peptide (Fig. 5a). By contrast, no S-acylation was detected in the
C197A mutant of the full-length SYMREM1 protein and the
isolated membrane-binding domain. This demonstrates that
Cys197 is the only S-acylated residue in the SYMREM1 protein
(Fig. 5a).

Accordingly, the At4g36970 RemCA peptide was also found
to be S-acylated (Fig. 5b). A mutation in Cys413 of the
At4g36970 RemCA was sufficient to abolish S-acylation of the
peptide (Fig. 5b), demonstrating that this residue is an essential
S-acylation site in the membrane-binding domain. These data
are supported by the fact that no change in S-acylation was
observed for the C420A mutation. Thus, this residue is not
S-acylated (Fig. 5b). It should be noted that we were unfortu-
nately unable to perform these experiments reliably on full-length
At4g36970, because of the insolubility of the protein.

S-acylation is dispensable for SYMREM1 targeting to
membrane microdomains

S-acylation has been suggested to contribute to microdomain
localization of membrane-resident proteins (Blaskovic et al.,
2013). Therefore, we asked whether S-acylation is required for
membrane domain localization of the SYMREM1 protein in

transgenic M. truncatula roots. Expression of full-length SYM-
REM1 or the C-terminal region (SYMREM174–205) resulted in
clear labelling of membrane microdomains in root epidermal
cells (Fig. 6a,b). Interestingly, this pattern was also observed
when expressing the S-acylation mutant variant SYM-
REM1C197A, albeit to weaker extent (Fig. 6c). By contrast, the
YFP protein fused to the SYMREM1 membrane-binding domain
(RemCA, SYMREM1171–205) did not label such distinct sites in
the majority of cells (Fig. 6d). These data imply that S-acylation
and the presence of the hydrophobic core alone are not sufficient
to target SYMREM1 into membrane domains. As remorins are
able to form oligomers (Bariola et al., 2004; Marin et al., 2012;
T!oth et al., 2012), membrane localization of SYMREM1 could
be mediated by interactions with other members of the remorin
family. Therefore we expressed wildtype SYMREM1,
SYMREM174–205, SYMREM1C197A and SYMREM1170–205 in
Saccharomyces cerevisiae (yeast), a biological system devoid of
remorin proteins. Indeed, all fusion proteins that contained the
full-length C-terminal region localized to the PM and clearly
labelled distinct membrane domains in the PM independently of
S-acylation at Cys197 (Fig. 6e–g). Reciprocally, expression of the
PM binding domain alone was not sufficient to label membrane
domains in yeast cells (Fig. 6h), although western blot analysis
revealed the predominant presence of the fusion protein in the
microsomal fraction (Fig. S6). These data clearly indicate that
interaction with other remorins is not the basis for PM associa-
tion of SYMREM1 and that other factors than S-acylation alone
contribute to membrane domain targeting.

Discussion

Association of soluble proteins with the cytoplasmatic leaflet of
the PM can be mediated by interactions with other membrane-
resident (e.g. transmembrane) proteins or post-translational lipi-
dations. These lipid modifications, for example, S-acylation, can
serve as key determinants for polar signalling, which enables cells
to rapidly respond to extracellular stimuli and to efficiently orga-
nize proteins in a polar manner (Grunewald & Friml, 2010;
Kleine-Vehn et al., 2011). Prominent examples are small GTPas-
es of the Rho of plants (ROP) family that laterally segregate in
plant cells. ROP6, a type-I ROP that is involved in ABA signal-
ling, is S-acylated upon activation and subsequently copurifies
with DRM fractions (Sorek et al., 2007). Furthermore, expres-
sion of deacylated ROP variants in transgenic plants resulted in
nonpolar accumulation of reactive oxygen species (ROS), indicat-
ing that polar segregation of ROPs depends on S-acylation (Sorek
et al., 2010).

Plant-specific remorin proteins, for which putative roles during
hormone responses, plant–microbe and plant–virus interactions
have been suggested (Alliotte et al., 1989; Raffaele et al., 2009;
Lefebvre et al., 2010; T!oth et al., 2012; Demir et al., 2013), are
canonical marker proteins for sterol-rich DRM fractions. More
importantly, these proteins label membrane microdomains
in vivo (Fig. 1) (Raffaele et al., 2009; Lefebvre et al., 2010; Per-
raki et al., 2012; Demir et al., 2013; Jarsch et al., 2014). The
mechanism that is used by remorin proteins to specifically target

(a)

(b)

Fig. 5 Remorins are S-acylated proteins. S-acylated cysteine residues of
remorin proteins purified from Nicotiana benthamiana were labelled by a
biotin switch assay. (a) S-acylation of SYMREM1 and its corresponding
membrane binding domain is indicated by the presence of a band in the
elution fraction of the hydroxylamine (Hyd)-treated samples (+). Absence
of this band in the C197A mutant variant revealed that Cys197 is the only
S-acylated residue in this protein. wt, wildtype. (b) The remorin C-terminal
anchor (RemCA) peptide of the remorin protein At4g36970 is S-acylated.
Absence of a signal in the C413A mutant indicates S-acylation of this
residue, while Cys420 is not S-acylated.
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the inner leaflet of membrane domains remained controversial,
especially asi two different modes were proposed recently (Perraki
et al., 2012; Hemsley et al., 2013). In this study, we have finally
unravelled the binding mechanism of plant-specific remorin pro-
teins on a molecular level. Our data clearly demonstrate that
membrane binding of most remorins is mediated by S-acylation
of cysteine residues in a C-terminal hydrophobic core, and is thus
a combination of both models (Figs S1a, S7).

S-acylation is catalysed by transmembrane PATs (Roth et al.,
2002; Hemsley et al., 2005). Therefore, remorins need to be
initially directed to the PM to serve as S-acylation substrates.
We propose that the C-terminal region with its terminal hydro-
phobic core mediates this initial affinity to the PM. This can
occur via two routes: by direct protein–lipid interactions or by
protein–protein interactions (Fig. S7). Indeed, recombinant
StREM1.3 bound artificial, protein-free liposomes directly and
showed a preferred interaction with phosphatidylinositol 3,4-
bisphosphate (PI(3,4)P2) in vitro (Perraki et al., 2012). How-
ever, it remains to be tested whether the recombinant protein
was post-translationally modified in bacteria before purification
and whether this modification mediated membrane binding of
StREM1.3. Our data support such a concern, as single point
mutations in two C-terminal cysteine residues of the homolo-
gous remorin (At3g61260) from A. thaliana abolished mem-
brane binding of the protein (Fig. 4n–p). Furthermore, none of
the deacylated RemCA peptides remained associated with the
PM (Figs 4, 5).

We demonstrated that despite only a few of the 35 C-ter-
minal residues (RemCA) of different remorins are sufficient
to confer membrane association of soluble fluorophores
(Table 1), they are always indispensable for membrane bind-
ing of the full-length proteins (Fig. 3). It should be noted
that ab initio modelling of SYMREM1 indicated that its
RemCA peptide probably contributes to protein–protein

interactions (Fig. S1a). This predication is experimentally sup-
ported as the C-terminal region of remorins was shown to be
essential for oligomerization (Marin et al., 2012; T!oth et al.,
2012) and interaction with other proteins (Marin et al., 2012;
T!oth et al., 2012). In the case of SYMREM1, such interac-
tion and membrane binding of its RemCA peptide are inde-
pendent of other members of the remorin family, as PM
association was also observed in yeast (Fig. 6e–h). As S-acyla-
tion may also control protein–protein interactions (Blaskovic
et al., 2013), the extent to which this feature also contributes
to membrane association of remorin proteins remains to be
studied.

Membrane domain localization of proteins in living cells can
also be achieved by combinatorial lipidation, mainly myristoyla-
tion and S-acylation. In plants, double lipidation of h-type thior-
edoxins (TRX) was shown to target these proteins to membrane
microdomains in planta (Traverso et al., 2013). By contrast,
domain markers from A. thaliana and M. truncatula like flotillin
and remorin proteins lack N-terminal glycine residues and are
therefore not myristoylated. Thus, the possibility that membrane
association of remorins in vivo is supported by protein–protein
interactions independently of S-acylation could be especially
essential for those remorins that are devoid of cysteine residues
(At3g48940, At3g57540 and At2g41870) and that are therefore
unlikely to be acylated. This hypothesis is further substantiated
by the finding that an unacylated SYMREM1 protein remains in
the PM (Fig. 4b).

We showed that S-acylation is not required for localization of
remorins in immobile membrane domains per se, as the mutated
SYMREM1C197A protein still labelled these membrane compart-
ments in plants and in yeast (Fig. 6), albeit to a lower extent.
Interestingly, deacylation of At4g36970 even resulted in
increased association of the protein with immobile membrane
domains (Fig. 4f–h), indicating that S-acylation may eventually

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Localization of remorins in membrane domains is not primarily determined by S-acylation. (a–d) Expression of different SYMREM1 constructs in
transgenicMedicago truncatula roots revealed strong labelling of microdomains at the plasma membrane (PM) by the wildtype full-length construct (a)
and the C-terminal region of SYMREM1 (b). Weaker labelling of membrane domains was also observed when expressing the deacylated mutant variant
SYMREM1C197A (c), while the membrane binding domain (remorin C-terminal anchor, RemCA) mostly showed uniform distribution on the PM (d). (e–h)
Expression of different SYMREM1 constructs in yeast (Saccharomyces cerevisiae). Membrane domains were labelled by the wildtype full-length construct
(e), the C-terminal region (f) and the deacylated mutant variant SYMREM1C197A (g), while the membrane binding domain showed uniform distribution on
the PM (h). All images are z-projections. Bars: (a–d) 10 lm; (e–h) 5 lm.
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restrict certain domain labelling patterns of some remorins.
Therefore it is likely that another, as yet unknown factor contrib-
utes to their highly specific targeting of membrane domains.
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Supporting Information Fig. S1 Protein interaction scores within the SYMREM1 

protein and free YFP in root epidermal cells. (a) Ab initio modelling of the 

SYMREM1 protein and colour-coded representation of putative regions that may 

contribute to protein interactions. Models for the N- and C-terminal regions were 

constructed independently and fused subsequently. Details can be found in the 

Materials and Methods section. ID, intrinsically disordered (b) M. truncatula root 

epidermal cell expressing a free YFP protein. The image shows a maximum intensity 

projection of a z-stack. n, nucleus; cyt, cytoplasmic strands. Bar, 5 μm. 
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Supporting Information Fig. S2 Analysis of RemCA-mediated PM-binding throughout the Remorin protein 

family. (a–d) Four out of 16 RemCA peptides were sufficient to target the fluorophore almost exclusively to the 

plasma membrane of N. benthamiana root epidermal cells. (e–p) Representative images of the remaining twelve 

RemCA peptides show at least partial cytoplasmatic and nuclear labelling. Bars, 20 μm. (q) Western Blot on total 

protein extracts from N. benthamiana leaves expressing different RemCA peptides. Double bands indicate partial 

cleavage of the fusion protein. Samples were compared to free YFP. (r) Microsomal fractionations of total protein 

extracts were performed to assess partial cleavage of the respective constructs. sol.,  soluble protein fraction; μ, 

microsomal fraction. 
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Supporting Information Fig. S3 Western Blots and microsomal fractionations of 

wild-type and mutated SYMREM1 fusion proteins. (a) Microsomal fractions were 

obtained from N. benthamiana leaves expressing YFP-SYMREM1 and YFP-

SYMREM1C197A fusion proteins. Both wild-type and the mutant variant were found in 

the microsomal fraction, indicating that they remained at the plasma membrane. (b) 

Microsomal fractions of wild-type and mutated SYMREM1 showed a band shift 

pattern. Western blots were probed with α-GFP antibodies. 
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Supporting 

Information Fig. S4 

Co-localization 

studies for different 

mutant variants. 

YFP-tagged proteins 

were expressed in N. 

benthamiana leaf 

epidermal cells and 

counterstained with 

FM4-64. All images 

show maximum 

projections of z-

stacks taken of secant 

planes. Bars, 5 μm.  
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Supporting Information Fig. S5 Biotin switch assay and quantification. (a) Control 

experiment to prove functionality of the assay. Full-length At3g61260 is S-acylated as 

previously demonstrated in Hemsely et al. (2013). S-acylation of proteins is indicated 

by the presence of a band in the elution fraction of the hydroxylamine treated samples 

(+). (b) Quantification of the Western Blot in (a) using ImageJ. (c, d) Quantification 

of Western Blots shown in Fig. 5. Values were normalized to background levels. 

double, double mutant. 
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Supporting Information Fig. S6 Western blot analysis of YFP-SYMREM1 

constructs expressed in yeast. Free YFP was expressed as a control for the 

fractionation procedure. Microsomal fractions were obtained and the corresponding 

SYMREM1 proteins were detected using a α-GFP antibody. μ, microsomal fraction; 

sol., soluble proteins. 
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Supporting Information Fig. S7 Proposed model for membrane-binding of Remorin 

proteins. Remorins are soluble proteins (a) that are initially immobilized at the PM via 

interactions with a membrane resident protein (b) or by direct protein-lipid 

interactions via their C-terminal hydrophobic core (e). (c) Interaction with a protein 

partner leads to partial disorder-to-order transition of the intrinsically disordered N-

terminal region. This may involve protein phosphorylation (red). (d, e) A membrane-

localized protein acyl transferase (PAT) S-acylates (green line) C-terminal cysteine 

residues of Remorins and possibly others throughout the protein. This lipidation 

tightly binds the protein to the PM and may confer some degree of specificity to 

sterol-rich sites (blue) in the PM. Oligomerization of Remorins contributes to the 

formation of larger domain platforms (hypothetical). 
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Knockin’ on pollen’s door: live cell
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Pollen tubes are an excellent system for studying the cellular dynamics and complex

signaling pathways that coordinate polarized tip growth. Although several signaling

mechanisms acting in the tip-growing pollen tube have been described, our knowledge

on the subcellular and molecular events during pollen germination and growth site

selection at the pollen plasma membrane is rather scarce. To simultaneously track

germinating pollen from up to 12 genetically different plants we developed an inexpensive

and easy mounting technique, suitable for every standard microscope setup. We

performed high magnification live-cell imaging during Arabidopsis pollen activation,

germination, and the establishment of pollen tube tip growth by using fluorescent marker

lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell

nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization

during pollen activation and characteristic growth kinetics during pollen germination and

pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and

forms a uniform roundish bulge, followed by a transition phase with vesicles heavily

accumulating at the growth site before switching to rapid tip growth. Furthermore, we

found the two sperm cells to be transported into the pollen tube after the phase of rapid

tip growth has been initiated. The method presented here is suitable to quantitatively

study subcellular events during Arabidopsis pollen germination and growth, and for the

detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth

site selection at the pollen plasma membrane.

Keywords: pollen activation, cell polarization, bulging, vesicular trafficking, ARO1, actin cytoskeleton, sperm cells

Introduction

The pollen tube (PT) of flowering plants is formed by the pollen grain vegetative cell and
represents a cell of enormous specialization, responsible for the transport of the two male
gametes through the female tissues of the pistil to the ovule. It is the fastest elongating plant
cell (Sanati Nezhad et al., 2014) and can reach lengths of 30 cm, with growth rates up to
1 cm/h (Mascarenhas, 1993). PT growth is monotropic by expansion at an annular region

Abbreviations: ARO, Armadillo Repeat Only; epiBL, 24-epibrassinolide; F-actin, filamentous actin; GFP, green fluorescent
protein; PGM, pollen germination medium; PT, pollen tube; RFP, red fluorescent protein; TIRF, total internal reflection
fluorescence.
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located at the tip in a process called polar tip growth (Taylor and
Hepler, 1997; Geitmann, 2010).

Deeply embedded in the tissues of the pistil, in vivo PT growth
is difficult to investigate with high temporal and spatial reso-
lution and has been achieved so far only by using two-photon
microscopy (Feijó and Moreno, 2004; Cheung et al., 2010). As
an advantageous alternative, pollen can be germinated in vitro
to study the cellular dynamics and complex signaling pathways
that coordinate polar tip growth (Qin and Yang, 2011). From
these studies we know that intensive exo- and endocytosis at the
tip supported by regulated vesicle trafficking and cytoskeleton
dynamics, as well as coordinated changes in cell wall properties
are essential cellular activities of the growing PT (for review see
Geitmann, 2010; Guan et al., 2013). Great advances have been
made during the past years in identifying key signaling molecules
for the proper elongation of the PT tip, such as Rho GTPases,
calcium ions, and phosphoinositides (for review see Cheung and
Wu, 2008; Qin and Yang, 2011; Steinhorst and Kudla, 2013).
These key regulators are components of distinct signaling path-
ways forming a complex network that controls the cellular activi-
ties of tip-growing PTs (Guan et al., 2013). However, there are still
significant gaps in our knowledge of PT growth regulation, espe-
cially with regard to the question when and how symmetry break-
ing in the apparently unpolar pollen vegetative cell occurs, and
what the molecular mechanism for selecting the growth site is.

Polar tip growth of PTs is very similar to the polar elongation
of root hairs on genetic andmechanistic levels (reviewed in Šamaj
et al., 2006; Campanoni and Blatt, 2007; Kost, 2008; Lee and Yang,
2008). Root hair growth is known as a multi-phasic process, con-
sisting of cell fate determination, the formation of a root hair
bulge, and the initiation of tip growth in the root hair bulge, each
of which is characterized by distinct physiological and mutant
phenotypes in the model plant Arabidopsis (Schiefelbein and
Somerville, 1990; Parker et al., 2000; Schiefelbein, 2000; Bibikova
and Gilroy, 2003; Müller and Schmidt, 2004). Since pollen ger-
mination and the initiation of PT tip growth is rapid and much
faster than root hair growth, it is technically more demanding to
perform live cell imaging in order to study the cellular dynam-
ics and the growth kinetics during pollen hydration, activation,
germination and PT formation. Moreover, in vitro germination
rates and growth dynamics of Arabidopsis pollen are known to
be highly variable (Johnson-Brousseau and McCormick, 2004;
Boavida and McCormick, 2007), complicating its use for cellular
and molecular genetic studies of pollen germination and growth.
However, methodological advances in germination techniques
meanwhile facilitated the experimental use of Arabidopsis pollen
(Bou Daher et al., 2009; Rodriguez-Enriquez et al., 2013; Vogler
et al., 2014), offering possibilities to establish methods for larger-
scale screening and quantitative phenotyping of wild type and
mutant pollen.

To optimize high throughput time-lapse live imaging of ger-
minating Arabidopsis pollen, we established an inexpensive and
easy mounting technique suitable for every standard microscope,
based on an improved pollen germination medium (Vogler et al.,
2014). Using this setup for Spinning Disc confocal microscopy we
investigated the growth kinetics andmorphology changes of Ara-
bidopsis PTs expressing GFP in the cytoplasm of the vegetative

pollen cell. We focused on early cell polarization events during
pollen activation and germination by studying the spatiotempo-
ral localization of GFP-labeled Armadillo Repeat Only 1 (ARO1),
which is known to be essential for polar PT growth (Gebert
et al., 2008). ARO1-GFP accumulates in the inverted cone-shaped
region of growing PT tips in a brefeldin A and latrunculin B
sensitive manner and TIRF microscopy, applied in this study,
confirmed that ARO1-GFP localizes vesicle-associated at the
PT tip.

We used Arabidopsis marker lines expressing ARO1-GFP and
tagRFP-T-Lifeact in the pollen to study vesicle and filamentous
actin (F-actin) dynamics before and during pollen germination.
Furthermore, we used a pollen marker line with fluorescently
labeled sperm cell nuclei and plasma membranes (Sprunck et al.,
2012) to address the question when the two sperm cells, physi-
cally linked to the nucleus of the vegetative cell forming a male
germ unit (MGU) (McCue et al., 2011; Zhou and Meier, 2014),
are transported from the pollen grain into the germinated PT.

Our time-lapse live imaging of germinating Arabidopsis PTs
revealed similarities between root hair formation and pollen
germination as we observed successive phases of cell polariza-
tion, bulge formation, growth site selection, and the initiation
of rapid tip growth. Prior to pollen germination, we observed
a characteristic polarization of vesicle-associated ARO1-GFP
and tagRFP-T-Lifeact labeled F-actin in the pollen grain. After
bulging, a transition phase is observed where vesicle-associated
ARO1-GFP heavily accumulates at the distal end of the bulge
and adopts an inverted cone-like shape before the PT switches
to rapid tip growth. At the same time, long F-actin cables appear,
extending in parallel orientation from within the pollen grain
into the PT, while the volume of the vacuole, arising opposite the
germination site, increases. During the phase of rapid tip growth,
F-actin bundles massively accumulate at the germination site and
increasing vacuolization occurs, followed by sperm cell transport
into the PT.

Materials and Methods

Plant Material
Arabidopsis thaliana (accession Col-0) plants were grown under
long-day conditions (16 h light, 20◦C, 70% humidity) in growth
chambers after seeds were subjected to stratification 2 days at 4◦C
in the dark. Homozygous lines carrying the PLat52:GFP transgene
were used to express cytoplasmic GFP in the vegetative PT cell
(Twell et al., 1990). A C-terminal GFP fusion of the ARO1 protein
under control of its endogenous promoter (Gebert et al., 2008)
was used to investigate its subcellular localization in pollen and
PTs. A double homozygous marker for PHTR10:HTR10-RFP and
PHTR10:TET9-GFP line (Sprunck et al., 2012) was used to visualize
sperm cell nuclei and sperm cell plasma membranes.

Molecular Cloning and Generation of Transgenic
Lines
A double stranded DNA fragment encoding for a 17 aa actin
binding domain termed Lifeact (Riedl et al., 2008) with addi-
tional 5′ and 3′ HindIII restriction sites was synthesized by
proof-reading PCR on the partially overlapping template
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oligonucleotides 5′-GGGGCCATGGAAGCTTTGGGACCAGC
CGTAGGAATGGGTGTTGCTGATCTTATTAAGAAGTTCGA
GTCTATTTCTAAGGAGG-3′ and 5′-GGGGAAGCTTATGCC
ATGGCTCCAGCTACAGGTGCTCCCGCCCCTCCTTCCTCC
TTAGAAATAGACTCGAACTTCTTAA-3′ with the PCR
primers Lifeact-fwd (5′-GGGGCCATGGAAGCTTTGG-3′)
and Lifeact-rev (5′-GGGGAAGCTTATGCCATGGC-3′). After
HindIII digestion, the PCR product was ligated behind the fluo-
rophore coding sequence into the modified Gateway destination
vector pENTR-tagRFP-T (Denninger et al., 2014) to obtain
pENTR-tagRFP-T-Lifeact. To achieve expression in pollen,
712 bp of the ARO1 promoter with additional 5′ SacI and 3′

SpeI sites were amplified from the 95P-Nos-ARO1p:ARO1-GFP
plasmid (Gebert et al., 2008) with the primers pARO1-II-
for (5′-TCGGGTACCGAGCTCAGATCTAAGCTG-3′) and
pARO1-II-rev (5′-TGTCGACGCGGCCGCACTAGtCAGATC-
3′). The 35S promoter of the binary gateway expression vector
pB2GW7 (Karimi et al., 2002) was replaced by the ARO1
promoter via SacI/SpeI to obtain pB2GW7-ARO1p. Gateway LR
reaction with pENTR-tagRFP-T-Lifeact and pB2GW7-ARO1p
was performed according to the manufacturer’s recommen-
dations (Life Technologies) to obtain the expression vector
pARO1:tagRFP-T-Lifeact that was used for Agrobacterium-
mediated plant transformation by floral dip method (Clough and
Bent, 1998).

Pollen Mounting and Live Cell Imaging
Micro-germination slides were prepared in either a single-well
or a multi-well setup (Figures S1,S2). To prepare a single-well
micro-germination slide, a 1–2mm high planar plasticine layer
was added on the margin of the ring of a slide with an attached
glass ring (L4246, PLANO, Wetzlar, Germany). The well was
filled with molten pollen germination medium (PGM) accord-
ing to Vogler et al. (2014), containing 10µM 24-epibrassinolide
(epiBL, Sigma-Aldrich E-1641) and solidifiedwith 0.5% lowmelt-
ing point agarose. After solidification the center of the well
was hand pollinated using single dehiscent anthers, manually
removed from flowers at flower stage 13–14 (according to Smyth
et al., 1990). The well was then sealed by gently pressing evenly a
24× 24mm No. 1.5 cover slip onto the plasticine until it slightly
touched the PGM. The illustrated instruction on how to pre-
pare a single-well micro-germination slide is shown in Figure S1.
Multi-well micro-germination slides were prepared by attaching
a 12 well silicon profile (flexiPERM R⃝ micro12, SARSTEDT, Ger-
many) to a standard microscope slide (26 × 76mm) and filling
each well with 50–75µL molten PGM. After solidification, the
silicon profile was removed and another 25µL of molten PGM
were added on top of each agar pad to obtain convex shapes.
After a frame of plasticine was modeled around the agar pads,
they were hand pollinated and then sealed by gently pressing
evenly a 24 × 60mm No. 1.5 cover slip on the plasticine frame.
The scheme on how to prepare a multi-well micro-germination
slide is shown in Figure S2. Immediately after pollen application,
micro-germination slides were used for live-cell imaging. No
obvious differences in germination or PT growth were observed
between single-well or multi-well micro-germination setups. By
contrast, much lower and highly variable germination rates as

well as slower PT growth rates were observed when PGMwithout
10µM epiBL was used to prepare the micro-germination slides,
while the different phases of pollen germination and tube growth
described in this work were unaffected.

Microscopy was performed on a ZEISS Cell Observer Spin-
ning Disc confocal microscope (Yokogawa CSU-X1) equipped
with a motorized stage using 20×/0.8 NA dry, 40×/1.30 NA DIC
oil immersion or 63×/1.40 NA DIC oil immersion objectives.
GFP fluorescence was excited with a 488 nm laser line and emis-
sion was detected from 505 to 545 nm. A 561 nm laser line was
used to excite tagRFP-T and emission was detected from 570
to 640 nm. Free GFP in the pollen cytoplasm and ARO1-GFP
fusion protein were imaged every 3min, tagRFP-T-Lifeact every
10–15min over 4–6 h in z-stacks of 11 optical slices at each of
10–20 positions representing individual pollen spots.

Morphological Modeling of Pollen Germination
We assumed two extreme morphological models describing cel-
lular geometries of germinating PTs and simulated these mod-
els graphically with Illustrator CS4 software (Adobe). In the
“protrusion model” we proposed linear growth at the tip of a
protuberance, generating a constantly elongating cylinder with
a dome-shaped tip that emerges from the germination site. In
the “bulging model” a first phase of isodiametric inflation was
assumed for the germinating PT, followed by a second phase in
which isodiametric growth switches to polar growth at a dome-
shaped tip. Thus, in the “protrusion model,” a tubular object con-
stantly emerges out of an ellipse, representing the pollen grain.
To generate the “bulging model” a circle, representing the PT,
was placed below the upper margin of an ellipse, representing
the pollen grain. The diameter of the circle was frame-wise and
constantly increased, while keeping its position constant at the
lowermost point. After 20 frames, we changed the distal region
of the circle into a dome-shaped tip, which then constantly elon-
gates in form of a cylinder like in the “protrusion model.” In both
morphological models, the width of the dome-shaped tip was set
identical and did not change during elongation. Furthermore, the
net increase in PT area was set identical for both models. Mod-
eled PTs were measured in ImageJ like described for microscopic
images (Image Processing and Quantitative Analysis).

Pollen Staining and Microscopy
For membrane staining with FM4-64, pollen of ARO1-GFP
expressing plants were germinated in 35mm petri dishes on
solidified PGM as described above. Three hours after pollina-
tion a small agar piece was excised and mounted upside down
on a cover slip in a droplet of 8µM FM4-64 (Life Technologies)
dissolved in liquid PGM. Images were taken with an inverted
SP8 Confocal Laser Scanning Microscope (Leica Microsystems)
with a 40×/1.3NA oil immersion objective and 1 airy unit pin-
hole opening. GFP and FM4-64 were excited simultaneously
with a 488 nm laser line. GFP emission was detected from 495
to 550 nm and FM4-64 emission from 650 to 725 nm using
HyD detectors. For DAPI staining, pollen of plants expressing
PARO1:tagRFP-T-Lifeact were put in a droplet of DAPI stain-
ing solution (2.5µg/ml 4′,6-diamidino-2-phenylindole (DAPI),
0.01% Tween-20, 5% DMSO, 50mM PBS, pH 7.2). Confocal

Frontiers in Plant Science | www.frontiersin.org 3 April 2015 | Volume 6 | Article 246



Vogler et al. Imaging of early pollen polarization

z-stacks were acquired at the Spinning Disc system described
above using a 100×/1.40 NA oil immersion objective. DAPI flu-
orescence was excited with a 365 nm LED illumination (COL-
IBRI, ZEISS) and emission light was filtered by the microscope
stand built-in filter cube (emission filter: 447–507 nm) and chan-
neled through an empty Spinning Disc position to display DAPI
fluorescence on the same camera as for tagRFP-T and DIC
channels.

TIRF Microscopy
For TIRF microscopy of PTs, a very planar gel pad was gener-
ated by laying two microscope slides orthogonal on the edges
of three adjacent slides (Figure S3). 500µl of molten PGM con-
taining 2% agarose was pipetted to the middle of the lower slides
and immediately covered with another slide. After solidification,
the uppermost slide and all flanking slides were removed and the
PGMpadwas hand pollinated as described above (PollenMount-
ing and Live Cell Imaging). Pollinated slides were kept in a damp
box for 3–5 h. Prior to microscopy, a droplet of double distilled
water was pipetted onto the pad and a No. 1.5H cover slip was
added. TIRF illumination was generated in a Delta Vision Elite
(GE, Healthcare, Applied Precision) system with an Olympus
IX-71 microscope, equipped with an Insight SSI(TM) solid state
illumination system and an X4 laser module. Images were taken
with an Olympus UAPON 100XOTIRF 1.49 NA oil immersion
objective and recorded with a CoolSnap HQ2 CCD camera (Pho-
tometrics, Tucson, USA). GFP was excited with the 488 nm laser
line and emission was detected between 501 and 549 nm. Image
exposure time and TIRF angle were adjusted according to sample
fluorescence intensity and specimen location.

Image Processing and Quantitative Analysis
All images were processed in ImageJ (http://rsbweb.nih.gov/ij,
version 1.45). In time-lapse experiments, the frame before a PT
emerged from the germination site was set to zero. Z-stacks of
time lapse images of pollen expressing PLat52:GFP were subjected
to projection algorithms. Bright field images were sum slice, GFP
images maximum intensity projected. Afterwards, for the GFP
channel a threshold was applied to obtain binary images. The
implementedWAND tool was used to determine the pollen area,
which was then subtracted from all images for a given PT and
subsequently the PT area was measured for each frame. The anal-
ysis of PTs was only carried out with those PTs where growth was
not disturbed by any other object and which could be observed
for at least 1 h. Of all PTs the shape descriptor “roundness” was
measured, given by 4∗area/(pi∗(major axis)2) of a respective PT.
To compare the frame wise PT area increase shortly after ger-
mination and in later PT growth phases, the mean frame wise
increase of the first 10 and the last 10 frames was calculated and
compared in a Friedman’s 2-way variance analysis. Z-stacks of
time lapse images of pollen expressing PARO1:ARO1-GFP were
also subjected to maximum intensity projections first. For those
pollen that were monitored at least half an hour before and after
the time point of germination, images were cropped in a rectan-
gular selection containing only the pollen and emerging PT. All
frames of a PT were included in a stack histogram that was used
for subsequently computing gray values for setting a 70% signal

threshold to determine the PT shape (false colored in red) and a
0.5% signal threshold (false colored in yellow) to determine the
maximum intensity peaks for ARO1-GFP. Frame-wise PT area
increase was measured by overlaying unbiased PT shape outlines
that were obtained using the WAND tool, which was also used
to determine the size of individual PT areas. ARO1-GFP maxi-
mum intensity peaks were quantified using a variable ROI selec-
tion and measuring its mean gray value that was subsequently
multiplied by the ROI size. To compare multiple PTs in a mean
value computation, ARO1-GFP maximum intensity was normal-
ized for each PT to its maximum signal value. Z-stacks of images
of pollen expressing tagRFP-T-Lifeact were maximum intensity
projected and to better visualize the maximum signal intensities
false colored using the “spectrum” LUT. Calculations were per-
formed with Excel2010 (Microsoft) and statistical analyses were
computed with SPSS22 (IBM).

Results

Live Cell Imaging of Pollen Germination and PT
Growth
To facilitate time lapse live cell imaging of Arabidopsis pollen ger-
mination and PT growth using high NA immersion objectives,
we designed a single-well and a multi-well micro-germination
setup as shown in Figures 1A,B. Both setups are fast and easy
to prepare (see Figures S1,S2), based on inexpensive compo-
nents. Pollen germination and PT growth of up to 12 geneti-
cally different plants can be simultaneously observed over many
hours when using the 12-well micro-germination setup. Pollen
germinates in the direct proximity to the cover slip in a film
of PGM that is formed when the cover slip is gently pressed
on the medium to seal the well (Figure 1C). Pollen germina-
tion rates within this film are very high (>80%) and homoge-
nous (Figures 1D,F), with normal PT morphology (Figure 1E).
In an exemplary 10 well-setup, no temporal or morphological
deviations in pollen germination or PT growth were observed
(Supplemental Movie 1). This technique can be broadly used in
every lab, adapted to many microscopic techniques and may be
even up-scaled for the simultaneous imaging of pollen frommore
than 12 individuals.

Pollen Tube Growth Kinetics
We evaluated a total of 66 PTs expressing cytoplasmic GFP in the
PT vegetative cell that fulfilled our quality criteria for quantitative
PT analyses, that is the absence of any obstacle during germina-
tion and growth and the complete recording of at least 1 h after
germination. As PTs represent 3-dimensional cylindrical objects,
we did not determine PT length inµm but measured the PT as
area inµm2. Automatic size measurements using the WAND
tool (ImageJ) were performed with thresholded binary images of
maximum intensity projections (Figure 2A). The growth kinet-
ics of this PT is depicted as frame-wise increase in PT area
and as cumulative increase in PT area over time, respectively
(Figure 2B). After germination, no marked increase in PT area
can be observed during the first 21min of PT growth. Twenty
fourminutes after germination, PT growth strongly increases and
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FIGURE 1 | Arabidopsis pollen imaging in the micro-germination setup.

Mounting pollen in a single (A), or multi well (B), micro-germination setup for

live cell imaging. In the center of one well (C) PTs grow in close proximity to the

cover slip (D), allowing the use of high NA immersion objectives with low

working-distances. Pollen germination is not affected by the mounting

technique and PTs showed normal morphology (E). A time series of

germinating PLat52:GFP pollen is shown in (F). Brightfield images are shown

as sum slice projections and confocal fluorescence images of cytoplasmic

GFP as maximum intensity projections. Binary images of GFP channel enable

unbiased quantitative measurement of PT area size and morphology (F). Scale

bars: (C,D) 200µm, (E) 20µm, (F) 50µm.

rises even more after 42min. Comparing the growth rate deter-
mined by PT area measurements with PT length as a measure
of growth revealed similar growth kinetics (Figure S4). When

we estimated the ratio of PT length to PT area over time, we
calculated an approximated conversion factor of 0.18µm−1 for
transferring PT area (µm2) in PT length (µm).

When all 66 PTs were included into the quantification of
growth kinetics, a high overall PT growth rate of 400.2µm2/h
(mean cumulative PT area) was observed (Figure 2C). We
observed no or only very low increase in the PT area during the
first 12min of PT formation, resembling a lag phase. To statisti-
cally test this, we compared the mean PT area increase rate for
the first and the last 10 frames of PT growth (inset in Figure 2C).
In almost all cases (59 of 66), the mean PT area increase during
the first 30min was lower than for the last 30min. Friedman’s
2-way variance analysis revealed that PT growth during the first
30min is highly significantly slower (p < 0.001) than during the
last 30min.

From these results we conclude that PT growth in Arabidopsis
starts with a first distinct phase of slow growth shortly after ger-
mination that is followed by a second phase of rapid PT growth.
This is furthermore corroborated by the finding that in case of
PT burst, also a short protuberance is first initiated but obvi-
ously does not pass over to the next phase of rapid elongation
(Figure 2D). A later short phase of decelerated growth could be
observed in about one third (21 of 66) of all PTs investigated
(Figure 2B). This lag phase occurred when PTs reached a mean
size of approximately 200µm2 and it was more variable and less
pronounced (Figure 2B; Figure S5).

Changes in PT Shape after Pollen Germination
We investigated the PT morphologies during germination and
the transition to rapid tip growth in more detail and compared
them with two extreme morphological models describing possi-
ble PT geometries. The “protrusion model” assumes that a PT
would emerge from the pollen grain as an elongating cylinder
with a dome-shaped tip that is maintained during germination
and rapid tip growth (Figure 2E). As a result the diameter of
the junction between the pollen grain and the PT, which is the
site of germination, would remain rather constant in this model.
By contrast the “bulging model” assumes that the PT initially
exhibits isodiametric growth, leading to a round bulge emerg-
ing at the germination site (Figure 2F, red arrowhead). In a sec-
ond phase, isodiametric growth would have to switch to polar
tip growth by selecting a growth site and forming an elongating
cylinder. A unique feature of the “bulging model” is that the iso-
diametric inflation of the bulge will increase the diameter of the
germination site over time.

The differences between the two morphological models are
highlighted in Figure 2G. For both models we determined a sim-
ilar net increase in PT area and the same width of the dome-
shaped tip. When we compared the increase in PT area over
time it was indeed almost identical for both models (Figure 2H).
We computed the course of “roundness” for both morpho-
logical models during germination and found the “round-
ness” to increase linearly to a sharp peak in the “protrusion
model,” followed by a rapid decrease when the PT continues
to elongate (Figure 2I). In the “bulging model,” by contrast,
the course of roundness of a germinating PT forms a rather
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FIGURE 2 | Continued
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FIGURE 2 | Pollen tube growth kinetics and morphology changes.

Pollen expressing GFP in the cytoplasm of the vegetative cell

(PLat52:GFP) was used to quantitatively assess the kinetics of PT

growth and PT morphology during germination. Brightfield and

fluorescence channel, together with the binary image generated from

the fluorescence channel, are shown in (A). Time point 0’ indicates

the last frame before germination. The quantification of the cumulative

PT area and frame-wise increase in PT areas over time is given in

(B). Mean values ± 1 SE of cumulative PT areas and the frame-wise

increase in PT areas of 66 evaluated PT’s are shown in (C). Numbers

in (C) represent the frequency of an observed pattern. The mean

frame-wise increase in PT areas for the first 10 frames of each pollen

tube is significantly lower compared to the last 10 frames of each PT

[inset of (C); asterisks indicate statistically highly significant differences,

p < 0.001]. A pollen that germinates but fails to bursts after

germination is shown in (D). “Protrusion” and “bulging” model for PT

morphology changes during pollen germination and PT elongation are

shown in (E,F). The overlay of both morphological models is shown in

(G), their PT area increase over time is shown in (H). The course of

“roundness” for both morphological models is shown in (I). Red solid

arrowhead in (F) and red square in (I) highlights the transition from

unpolar bulging to polar elongation in the “bulging model.” A

representative germinating PT is shown in (J) and its course of PT

area increase and “roundness” is shown in (K). Mean values ± 1 SE

of the “roundness” of 66 PTs are given in (L). Scale bars: (A,B)

25µm, (J) 12.5µm.

hyperbolic increasing curve with a broader maximum leading to
an accentuated peak (Figure 2I).

Notably, live imaging of germinating pollen revealed consid-
erable similarities to the “bulging model” (Figures 2J,K). Dur-
ing the first 12min of germination the pollen vegetative cell
forms a round bulge at the germination site that exhibits iso-
diametric growth. Afterwards, the uniformly expanding bulge
undergoes the transition into a polar growing PT (Figure 2J;
15′ to 18′). The changes in its shape are reflected by the
course of “roundness” plotted for this PT (Figure 2K). A hyper-
bolic increase with a broad maximum (red box in Figure 2K)
is characteristic for the phase of bulging. The following peak
defines the transition phase, when the bulge starts to form
a dome-shaped tip, followed by a switch to rapid tip growth
(Figure 2K).

We found the same tendency when we plotted the mean
course of “roundness” for all 66 PTs (Figure 2L). Furthermore, in
37 of 66 examined pollen the increasing diameter of the germi-
nation site during bulging was clearly visible (Figure 2J, yellow
dotted line), which is in line with the unique feature predicted by
the “bulging model” (Figure 2F, yellow dotted line).

ARO1-GFP is Associated to Vesicles
In the growing PT the GFP fusion of Armadillo Repeat Only 1
(ARO1) accumulates in the vesicle-rich “clear zone” (Figure 3A;
Supplemental Movie 2). We observed partial co-localization of
ARO1-GFP fluorescence with FM4-64 in the “clear zone,” but
almost no co-localization in the subapical part of the PT
(Figure 3A). Spinning Disc confocal time-lapse imaging of grow-
ing PTs furthermore revealed that ARO1-GFP streams in a
reverse fountain pattern (Supplemental Movie 2). The fact that
ARO1-GFP accumulates in the PT tip in a brefeldin A-sensitive
manner (Gebert et al., 2008) suggested that ARO1-GFP is associ-
ated to vesicles in the PT tip.

We performed TIRF microscopy to confirm the proposed
vesicle-association of ARO1-GFP. By illuminating only a thin
region of the PT tip, including the cytoplasmic zone immedi-
ately beneath the PT plasma membrane, we compared the flu-
orescent signals of ARO1-GFP with that of free GFP. As shown
in Figure 3B, ARO1-GFP signals appeared as numerous dot-like
structures with a size of approximately 200 nm in the PT tip. In
contrast PTs expressing cytoplasmic GFP showed a homogenous
fluorescence (Figure 3C).

FIGURE 3 | ARO1-GFP localizes to vesicles at the pollen tube tip,

accumulating in the inverted cone-shaped region. (A) At the PT tip,

ARO1-GFP predominantly accumulates in the vesicle-rich inverted

cone-shaped region and partially co-localizes with FM4-64. No co-localization

of ARO1-GFP and FM4-64-stained membrane compartments is detected in

the subapical region of the PT. (B) TIRF microscopy reveals that ARO1-GFP

signals appear as discrete punctate structures of approximately 0.2µm in the

PT tip. These punctate structures are not observed in PTs that express

cytoplasmic GFP (C). Scale bars: 5µm.

ARO1-GFP Decorated Vesicles Peak at the
Future Germination Site During Pollen Activation
We then investigated the subcellular localization and signal
intensity changes of vesicle-associated ARO1-GFP before and
during pollen germination using Spinning Disc microscopy
(Figure 4A; Supplemental Movie 3). The respective outlines of
the frame wise increase in PT area are shown in Figure 4B. The
quantification of ARO1-GFP signal intensity in relation to the
increase in PT area is given in Figure 4C.
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FIGURE 4 | Polarization of vesicle trafficking in activated pollen

predetermines the site of pollen tube emergence. Time series of

fluorescence signal in germinating pollen expressing PARO1:ARO1-GFP.

Maximum intensity projected fluorescence raw signal and thresholded

signals of a representative PT are shown in (A). GFP fluorescence is

shown in yellow (0.5% of highest intensities), and in red (70% of highest

intensities) representing the ARO1-GFP maxima and the pollen cytoplasm.

Outlines of PT shape for successive frames are drawn in (B). The

frame-wise increases in PT area over time and relative ARO1-GFP

intensities for the PT in (A) are plotted in (C). Gray shaded areas indicate

phases of PT growth reorientation. Mean value ± 1 SE of frame-wise PT

area increase and normalized ARO1-GFP signal maxima for 30 PTs are

given in (D). Numbers in (D) represent the frequency of an observed

pattern. Time point 0’ indicates the last frame before germination. Arrows

point to ARO1-GFP intensity maxima before germination. Scale bars: (A)

25µm, (B) 10µm.

Notably, we observed 18 and 12min before pollen germina-
tion high intensity peaks of ARO1-GFP subjacent to the future
site of PT outgrowth (arrows in Figure 4A; peaks in Figure 4C),
resembling two knocks on the door. During the following bulging
phase (0–12min), ARO1-GFP steadily accumulated at the distal
pole of the bulge (Figures 4A,C). High fluorescence intensities at
the PT tip, shaped as inverted cone, were observed when the PT

switched to rapid tip growth (24–60min), with moderate down-
turns during short phases of tube growth re-orientation (30–
36min; 45–48min), which also took place during the transition
to rapid tip growth (18–24min).

The quantitative analysis of 30 PTs is shown in Figure 4D.
Sixty to thirty six minutes before germination, intensity
peaks of ARO1-GFP appeared in 17 out of 30 pollen grains
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FIGURE 5 | Exceptional pollen germination events confirm the

correlation between local vesicle accumulation and pollen tube

emergence. The breakdown of vesicle accumulation in the pollen tube

bulge is accompanied with the failure to switch to rapid PT tip growth (A,B).

After unsuccessful transition to rapid PT tip growth, the pollen cell may also

(Continued)
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FIGURE 5 | Continued

change the direction of polar vesicle trafficking, resulting in the establishment

of a second germination site, as shown in (C,D). A branching pollen tube is

shown in (E,F). After successful bulging the transition to rapid PT tip growth

fails and a second growth site is selected, indicated by the accumulation of

ARO1-GFP decorated vesicles in the tip of the PT branch. Maximum

intensity projected fluorescence raw images and composite thresholded

images are shown in (A,C,E). GFP fluorescence is shown in yellow (0.5% of

highest intensities) and in red (70% of highest intensities), representing the

ARO1-GFP maxima and the pollen cytoplasm. Frame-wise PT area increase

and relative ARO1-GFP intensity are shown in (B,D,F), where insets show

frame-wise overlaid PT shape outlines. Time point 0’ indicates the last frame

before germination. Arrows point to ARO1-GFP intensity maxima before

germination. Scale bars: (A,C,E) 25µm, insets in (B,D,F) 10µm.

(Supplemental Movie 3). These intensity peaks, indicating rapid
and local vesicle accumulation, were often but not always located
near the future site of PT outgrowth. However, shortly before
germination in 25 out of 30 pollen at least one high-intensity
peak was detected subjacent to the future site of PT outgrowth
(Figure 4D). 22 of 30 pollen grains showed one peak 12 to 9min
before germination at the future germination site, and in two
thirds of observed pollen the ARO1-GFP high-intensity peak was
recorded 6 to 3min before germination. In 50% of the pollen
two high-intensity peaks were visible (Supplemental Movie 3),
while one third of pollen showed a single peak before germina-
tion. Frequencies and statistics of ARO1-GFP intensity peaks in
pollen subjacent to the future site of PT outgrowth are shown in
Figure S6.

Taken together, the temporary polar accumulation of ARO1-
GFP decorated vesicles in activated pollen precedes pollen germi-
nation and marks the future site of PT outgrowth. Furthermore,
we observed a strong increase of ARO1-GFP signal intensity
after bulging, indicating the transition to rapid PT elongation
(Figure 4D). Like observed for PTs expressing cytoplasmic GFP,
almost all (27 of 30) ARO1-GFP expressing PTs showed an ini-
tial lag phase of growth after germination. During this lag phase,
including bulging and transition phase, ARO1-GFP signal inten-
sity strongly increased at the distal end of the bulge/dome-shaped
tip in 21 of 27 PTs. Nine minutes after ARO1-GFP reached its
maximum signal intensity at the tip of the tube, PT elongation
rates reached their maxima, recognized by the rapid increase in
PT area over time (Figure 4D). By contrast, during the first 9min
of the bulging phase 22 of 30 bulges substantially expanded while
the accumulation of ARO1-GFP decorated vesicles at the distal
end of the bulge was delayed, suggesting that bulging does not
depend on pronounced vesicle trafficking to the very tip of the
bulge.

Patterns of Abnormal PT Growth Correlate with
Deviating ARO1-GFP Signals
Using our multi-well micro-germination setup a high number of
pollen germinated and thus we were able to observe very rare
events (less than 3.3%) of abnormal PT growth, such as bulging
without subsequent elongation (Figures 5A,B), the initiation of a
second PT from one grain (Figures 5C,D) or the branching of a
PT (Figures 5E,F).

In the first case of a PT that did not switch to the phase of
rapid PT elongation, a high intensity peak of ARO1-GFP sig-
nals appeared 24min before germination at the future site of
PT outgrowth (Figures 5A,B). During germination a roundish
PT bulge was formed showing isodiametric expansion and
constant increase in ARO1-GFP fluorescence intensity with
a maximum 18min after germination. However, during the

following 12min ARO1-GFP fluorescence rapidly decreased to
only 10%, detected 30min after germination. The decrease in
ARO1-GFP signal intensity was accompanied with arrested PT
growth (Figures 5A,B).

In one pollen grain a second tube was established during ger-
mination (Figures 5C,D). A sharp ARO1-GFP intensity maxi-
mum appeared subjacent to the future site of PT outgrowth,
12min before pollen germination, the area of the bulge increased
after pollen germination and ARO1-GFP accumulated in the
bulge. However, 21min after germination, ARO1-GFP fluores-
cence rapidly decreased and during the following 45min neither
the PT area increased, nor was any ARO1-GFP intensity max-
imum observed. Sixty nine minutes after first bulging, a new
ARO1-GFP intensity maximum arose within the pollen grain,
followed by another peak at the same site 45min later. Nine
minutes after the second ARO1-GFP fluorescence maximum
the pollen grain started to germinate at this site. After bulging,
ARO1-GFP steadily accumulated at the distal end of the sec-
ond bulge and rapid PT elongation was successfully initiated
(Figures 5C,D).

In the case of a branching PT (Figures 5E,F), two maxima
of ARO1-GFP intensity occurred 24 and 15min before pollen
germination. During the following phase of bulging, ARO1-GFP
signal intensity at the distal end of the bulge steadily increased
and reached a maximum in the remarkable long transition
phase, 36min after germination. However, the switch to rapid PT
growth did not occur at this site but a second growth site was
selected, marked by ARO1-GFP signals appearing at the tip of the
branching PT (Figure 5E; 42min). During the following 6min
ARO1-GFP signal intensity at the first tube tip rapidly decreased
while the PT branch expanded. Nine minutes after the PT ini-
tiated branching, another ARO1-GFP intensity maximum was
detected in the new tip of the PT, while the signal in the old tip
diminished (Figures 5E,F; 51min).

The Actin Cytoskeleton Polarizes Prior to
Germination and Undergoes Characteristic
Changes during PT Growth
We used the ARO1 promoter to drive moderate expression of the
tagRFP-T-Lifeact fusion protein in pollen. DAPI staining was per-
formed to visualize the nuclei of the vegetative cell and the sperm
cells in pollen grains. Immediately after pollen mounting, the
pollen actin cytoskeleton was not distributed with any polarity
and showed homogenous accumulation in the cell periphery and
pronounced fluorescent signals around the vegetative nucleus
(Figures 6A,B), which has also been reported for mature Brassica
napus pollen (Hause et al., 1992; Gervais et al., 1994).

We germinated tagRFP-T-Lifeact expressing pollen in our
micro-germination setup and observed that within half an hour
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FIGURE 6 | The actin cytoskeleton undergoes characteristic

changes during pollen germination. Pollen expressing tagRFP-T-Lifeact

was used for live-cell imaging of F-actin architecture and dynamics during

pollen germination and growth. A single optical slice through a

representative DAPI stained pollen grain is shown in (A). Solid arrows

mark the sperm cells and dashed arrows the vegetative nucleus. A

composite maximum intensity projection of 19 optical slices is shown in

(B), the typical pattern of actin dynamics during pollen germinating is

presented in (C). A pronounced F-actin network accumulates at the

periphery of the pollen vegetative cell, opposite to the future site of PT

outgrowth (open arrowhead). Rapid PT tip growth is associated with

vacuole formation (asterisk) and the massive appearance of parallel F-actin

bundles extending from within the pollen grain, into the pollen tube (solid

arrowheads). In (D) a PT that failed to switch to rapid PT tip growth after

bulging is shown. The germination of a second PT after first unsuccessful

bulging is shown in (E). Maximum intensity projections of raw images and

intensity based false-colored images are shown in (C–E) with respective

calibration bars. Open red arrowheads indicate polar F-actin accumulation

at the periphery of the pollen vegetative cell. Solid red arrowheads point

at massively accumulating F-actin bundles that extend into the PT.

Asterisks mark vacuoles. Time point 0’ indicates the last frame before

germination. Scale bars: (A) 10µm, (B) 5µm (C–E) 25µm.

before germination F-actin accumulated at the periphery of the
pollen vegetative cell, opposite to the future site of PT outgrowth
(Figures 6C–E). Almost all (35 of 38) pollen grains showed this
pattern of F-actin polarization before germination.

Within 15min after pollen germination, we observed an
increase in longitudinal actin cable formation pointing toward
the PT axis and partially reaching into the tube (Figure 6C).

Very articulate actin reorganization appeared in all investigated
PTs around 30min after germination, when the PTs reached a
mean size of 300 ± 17µm2. The actin cytoskeleton assembled at
the site of PT outgrowth forming prominent longitudinal F-actin
bundles that reached from the pollen grain into the PT. The for-
mation of a large vacuole opposite to the germination site was
observed simultaneously with the prominent F-actin assembly
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near the site of PT outgrowth (Figure 6C). In later stages of PT
growth, this dense assembly of F-actin cables was shifted into the
PT (Supplemental Movie 4).

Again, we looked for exceptional germination scenarios and
identified a PT that stopped growth after bulging (Figure 6D)
and a PT that initiated a second tube from one pollen grain
(Figure 6E). In the case of PT growth arrest after bulging, the F-
actin polarized prior to germination at the pole opposite to the
germination site and longitudinal actin cables reaching from the
pollen grain into the PT bulge were present 15min after germi-
nation. However after 30min, the actin cytoskeleton started to
depolarize and transition to rapid tip growth was not initiated
(Figure 6D).

In the case of additional tube formation from one pollen grain,
15min before germination the actin cytoskeleton accumulated
at the periphery, opposite to the future site of PT outgrowth
but after bulge formation, the F-actin almost completely depolar-
ized until 60min after the first germination (Figure 6E). F-actin
repolarization was observed 75min after the first germination
event, opposing to the site where the second tube bulged later
on. Fifteen to thirty minutes after the second F-actin polariza-
tion was observed at the periphery of the pollen vegetative cell, a
second bulge was formed and underwent transition to rapid tip
growth, showing all F-actin features of a normal growing PT.

Sperm Cell Transport Starts When the Switch to
Rapid Tip Growth Has Taken Place
We used a marker line showing RFP fluorescence in the sperm
cell nuclei and GFP fluorescence in the sperm cell plasma mem-
branes to investigate whether the two sperm cells are relocated
into the PT at a distinct growth phase (Supplemental Movie 5).
The GFP-labeled sperm cell membranes show that the two sperm
cells are closely interlinked and that one long membrane exten-
sion connects one of the sperm cells to the nucleus of the vege-
tative cell (Figure 7), thereby forming a transport unit known as
the male germ unit (MGU). In Arabidopsis, the entrance of the
three MGU components into the PT follows a regular order, both
in planta (Lalanne and Twell, 2002) and in in vitro germinated

pollen (Zhou andMeier, 2014): the vegetative nucleus always pre-
cedes the sperm cells during entrance into the PT (Lalanne and
Twell, 2002; own observations).

The tip of the GFP labeled long membrane extension of the
leading sperm was used as a tracer for the position of the veg-
etative nucleus as it is hooked up to the vegetative nucleus. We
defined the time point of MGU relocation into the PT when the
tip of the sperm membrane extension became permanently visi-
ble outside the pollen grain (Figure 7A, green arrowhead). From
34 PTs we calculated a mean PT size of 350± 13µm2 at the time
point of MGU translocation into the PT (Figure 7B), indicating
that the sperm cell transport into the PT does not occur at ran-
dom but when the PT has reached a certain length and growth
phase. Two processes associated with rapid PT tip growth, the
formation of a large vacuole within the pollen grain and the accu-
mulation of prominent F-actin cables at the base of the growing
PT (Figure 7B), have already taken place when we detected the
sperm membrane extension in the PT.

Discussion

The PT is an attractive model for the analysis of tip growth
mechanisms on the molecular and cellular level, especially in
plant species amenable to forward genetic screens and with
excellent genomic and bioinformatic resources such as Arabidop-
sis thaliana. Nevertheless, quantitative imaging of growing Ara-
bidopsis PTs remained challenging, due to highly variable pollen
germination rates in different experiments.

Here, we describe an inexpensive and easy mounting tech-
nique to simultaneously track germinating pollen from up to
12 genetically different plants. Our multi-well germination-slide
with modified pollen germination medium yields high germi-
nation percentages and allows live cell imaging and subsequent
quantitative image analysis of the whole process of Arabidopsis
pollen activation, germination, and the establishment of polar tip
growth.

By using our setup and pollen from different fluorescent
marker lines we were able to precisely describe the kinetics of

FIGURE 7 | The male germ unit is transported into the PT after the

transition to rapid tip growth. A marker line labeling both sperm nuclei

(red fluorescence) and the sperm plasma membrane (green fluorescence)

was used for time lapse imaging of pollen germination. (A) Green arrowhead

points to the tip of the long sperm cell membrane extension physically

associated to the vegetative cell nucleus, which has been transported into

the pollen tube. Bar plots in (B) show average PT areas when F-actin

bundles massively accumulate at the germination site (indication for rapid tip

growth), compared to the mean PT area when the male germ unit is

relocated into the PT. Scale bar in (A): 25µm.
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Arabidopsis pollen germination in vitro. We expressed tagRFP-
T-Lifeact in pollen to investigate F-actin dynamics during pollen
activation, germination and tube growth, as Lifeact has become
the actin marker of choice in the PT (Qu et al., 2015). Vesi-
cles within the pollen grain and the germinating PT were visu-
alized by ARO1-GFP (Gebert et al., 2008). The accumulation of
ARO1-GFP in the apical region of growing PTs and the rapid dis-
sipation of this tip localization by brefeldin A treatment is remi-
niscent of YFP-RabA4d, an exocytotic vesicle marker of PTs (Lee
et al., 2008; Szumlanski and Nielsen, 2009), and of GFP-Rab11b-
tagged vesicles in tobacco PTs (de Graaf et al., 2005; Cheung and
Wu, 2008). Transport vesicles in the tip of angiosperm PTs are
known to follow a reverse fountain-streaming pattern (for review
see Bove et al., 2008; Cheung and Wu, 2008; Chebli et al., 2013),
as is the case for ARO1-GFP (Supplemental Movie 2). By TIRF
microscopy, a method that has been successfully used to image
secretory vesicles in Picea meyeri PTs (Wang et al., 2006), we
were able to show that ARO1-GFP is associated to vesicles in the
PT tip. The size of the punctate ARO1-GFP signals was approx-
imately 200 nm in diameter, which is very close to the calculated
size of 182 nm described for vesicles in Arabidopsis PTs (Ketelaar
et al., 2008). Based on the vesicle-like appearance of ARO1-GFP
in TIRF microscopy, its reverse fountain-streaming pattern and
the BFA sensitive tip localization we conclude that ARO1-GFP
shows a bona-fide vesicle association in the tip of growing PTs.

Germinating Arabidopsis Pollen Reveal
Characteristic Tube Morphologies and Growth
Kinetics, Accompanied with F-actin and Vesicle
Polarization
Tip growing cells confine cellular expansion to a small area. The
occurrence of a single growth site includes at least two distinct
phases: the initiation of growth and the elongation phase (Geit-
mann, 2010). Our quantitative imaging of tubemorphologies and
growth kinetics enabled us to dissect the early events of germina-
tion and to define characteristic features associated with distinct
phases (Figure 8). We observed successive phases of cell polar-
ization before germination, bulge formation at the beginning of
PT germination, the transition to polar growth and subsequent
initiation of rapid tip growth.

The germination phase is characterized by an emerging PT
that shows isodiametric expansion at the germination site. Some
longer F-actin bundles become visible during that phase, extend-
ing from within the pollen grain into the bulge (Figure 8B).
The growth rate of the expanding bulge, measured as increase
in area over time, is rather slow during the first 15min (16.7 ±

1.1µm2), compared with later tube growth of 57.0 ± 4.0µm2

at 45–60min after germination. In our experimental setup this
slower growth phase persists on average 30min and includes the
transition phase (Figure 8C) in which the bulge slightly elon-
gates and adopts a dome-shaped form before switching to the
phase of rapid tip growth. Notably, we observed that the bulge
expands while the accumulation of ARO1-GFP associated vesi-
cles at the distal end of the bulge is slightly delayed. The fact that
the Arabidopsis PT starts forming a uniformly expanding bulge
before vesicles massively accumulate at the future site of polar

FIGURE 8 | Scheme summarizing subcellular changes observed during

different phases of pollen germination and tube growth. At least five

distinct phases were recognized in our live cell imaging studies on in vitro

germinating Arabidopsis pollen. (A) In early rehydrating pollen F-actin is

uniformly distributed at the pollen cell cortex and forms prominent bundles

around the vegetative nucleus. Polarization of the pollen grain is indicated by

ARO1-GFP decorated vesicles, transiently accumulating subjacent to the

future germination site approximately 3–20min prior germination, and by

F-actin accumulating at the cell periphery, in the half of the pollen vegetative

cell opposite to the later germination site. (B) During the following bulging

phase a local protuberance becomes visible, showing isodiametric expansion.

ARO1-GFP decorated vesicles start to accumulate in the bulge and first

longitudinal F-actin bundles extend from the grain into the bulge. (C) The

transition phase is indicated when the bulge becomes slightly tubular-shaped.

Transition to tip growth is accompanied by a strong accumulation of

ARO1-GFP decorated vesicles in the shape of an inverted cone and by the

reorganization of the actin cytoskeleton. The polar dense F-actin at the cell

periphery of the pollen grain dissipates and long actin bundles, often oriented

toward the emerging PT, arise. (D) During the subsequent phase of rapid tip

growth the PT area increases significantly. A vacuole is formed in the pollen

grain, across from the germination site and F-actin bundles start to extend

from within the pollen grain into the pollen tube. The accumulation of

ARO1-GFP-decorated vesicles in the very tip of the growing pollen tube is most

pronounced. (E) The translocation phase is initiated when the MGU becomes

transported into the growing pollen tube. Sperm cell translocation is preceded

by the formation of massive parallel F-actin bundles at the germination site.

The vacuole in the pollen grain rapidly enlarges. Objects are not to scale. Color

code: purple lines, F-actin; green areas, ARO1-GFP; red areas, sperm cell

nuclei; black areas surrounding sperm cell nuclei, sperm cell membranes and

cytoplasm; blue area, vegetative cell nucleus. Numbers indicate approximate

time points for each phase before or after germination in minutes.
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growth suggest that the bulging phase represents a rather turgor-
driven deformation process, like assumed by Geitmann (2010).
It furthermore indicates that the transition phase was preceded
by the selection of a defined plasma membrane region for local
exocytosis within the bulge. Thus, the burst of PTs soon after ger-
mination, especially observed in a number of pollenmutants such
as aro1-3 and seth4 (Lalanne et al., 2004; Gebert et al., 2008), may
be a turgor-driven event when the establishment of a local growth
site was unsuccessful.

ARO1-GFP labeled vesicles heavily accumulate at the distal
end of the bulge and finally adopt an inverted cone-like shape
(Supplemental Movie 3). In elongating PTs the inverted cone-
shaped zone at their apex is referred to as the “clear zone,”
because this region is almost exclusively occupied by vesicles but
lacks refracting starch containing amyloplasts (Hepler and Win-
ship, 2015). The establishment of the vesicle-rich “clear zone”
depends on acto-myosin-dependent long distance transport of
vesicles toward the tip of the PT. This transport is mediated
by F-actin cables, which are oriented parallel to the longitu-
dinal axis of the PT and a cortical network of fine filaments
located in the subapical region of the cell (Cai and Cresti, 2009;
Chebli et al., 2013). Cortical actin filaments in the shank of
angiosperm PTs are believed to be oriented with their barbed
ends toward the apex, while the central actin bundles are thought
to comprise filaments with the barbed ends pointing backwards
(Chebli et al., 2013). The resulting reverse fountain-like cyto-
plasmic streaming observed in angiosperm PTs is likely to be
involved in maintaining the “clear zone” by producing a constant
shear between the anterograde and retrograde transport lanes,
by which many of the vesicles, especially those near the surface
of the inverted cone, will re-enter the tipward lanes and flow
back to the apex (Hepler and Winship, 2015). Thus, the local
accumulation and inverted cone-shaped appearance of ARO1-
GFP labeled vesicles at the end of the bulging phase indicate
that a distinct growth site has been selected, which also becomes
apparent by the change in PT morphology and the increase
in the median growth rate in the following transition phase
(Figure 8C).

When rapid tip growth is initiated (Figure 8D), longitudinal
actin cables extend from the pollen grain toward the apex of
the PT and the volume of the vacuole opposite the germination
site continuously increases. We observed the appearance of
massive F-actin bundles near the germination site, extending
from the pollen grain into the PT, when the PT area reached
the average size of 300µm2. Likewise, Rhodamine-phalloidin
staining of Pyrus communis PTs showed articulate staining of
actin at the PT base and of cables ranging into the tube (Tiwari
and Polito, 1988). Notably, the male germ unit, comprising
the two sperm cells associated to the vegetative cell nucleus, is
transported from the pollen grain into the PT only when the PT
completed its transition to rapid tip growth. In our experimental
setup we detected the long membrane extension connecting
the leading sperm cell to the vegetative nucleus in the PT when
its area is 350 ± 13µm2 (Figure 8E), which equals to a PT
length of 63 ± 2.3µm. Zhou and Meier (2014) determined a
PT length of approximately 35 ± 10µm when the vegetative
cell nucleus permanently enters the PT. This difference may

be attributed to a different experimental setup but also to the
fact that Zhou and Meier (2014) used a marker line with a
mCherry-labeled vegetative nucleus rather than labeled sperm
nuclei and membranes as we did. While sperm cell nuclei are
spheres, the vegetative nucleus is elongated and irregularly
shaped and can reach a remarkable length (>20µm) in the
growing PT.

New Insights into Arabidopsis Pollen Activation,
Provided by Live Imaging of Vesicle Dynamics
and F-actin
Most pollen grains are metabolically quiescent and highly desic-
cated (Edlund et al., 2004). They need to attain a certain degree
of hydration before they germinate, which will increase the turgor
and transform the unpolar pollen grain to a highly polarized cell,
a process termed pollen activation. In the past many studies were
performed on morphological and ultrastructural changes in acti-
vated pollen revealing that, inter alia, the grain starts to organize
its cytoskeleton and endoplasmic reticulum, and forms secretory
vesicles (Raghavan, 1997 and references cited therein). Depend-
ing on the species examined, PTs either grow out of preformed
germinal pores (apertures) or break directly through the exine
wall, as is the case with Arabidopsis pollen grains. The presence
of cytoplasmic vesicles subjacent to the aperture was detected by
ultrastructural studies on pollen from Lycopersicum peruvianum,
Nicotiana alata and Narcissus pseudonarcissus L. (Cresti et al.,
1977, 1985; Heslop-Harrison and Heslop-Harrison, 1992). How-
ever, it is not yet clear how the pollen perceives external polariza-
tion signals and how they are transduced to select the site for tube
emergence.

It was reported that the cytoplasmic Ca2+ concentration in
Arabidopsis pollen increases at the potential germination site
soon after hydration (Iwano et al., 2004) and that in vitro ger-
mination involves the formation of a “germination plaque” at
the future site of tube emergence, containing cellulose, callose,
pectin, and at least partly de-esterified pectin (Hoedemaekers
et al., 2015). When we performed our live cell imaging on the
dynamics of ARO-GFP1 labeled vesicles in hydrating pollen
grains we observed the initial appearance of weak transient
ARO1-GFP signals, arising at various areas of the pollen cell
periphery. However, approximately 3–20min before germination
either one or two very strong fluorescent peaks of ARO1-GFP
labeled vesicles appeared in the region where the PT protoplast
will break through the exine, suggesting targeted vesicle secre-
tion and probably local softening of the cell wall at this site.
This would be in line with previous assumptions that vesicles
filled with cell wall material and cell wall-modifying enzymes
are directed toward the future emergence site to produce a local
weak point at which the turgor-driven bulge formation is initi-
ated afterwards (Krichevsky et al., 2007; Geitmann and Ortega,
2009; Cai et al., 2011).

The polarization of the actin cytoskeleton toward the site of
tube emergence has been reported in activated Pyrus communis
pollen (Tiwari and Polito, 1988) by using rhodamine-phalloidin
labeling. Similar observations were made by TRITC-phalloidin
staining for actin in hydrated Narcissus pseudonarcissus pollen
(Heslop-Harrison and Heslop-Harrison, 1992). Notably, we
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did not observe a similar pattern of polarization in our
live imaging setup with hydrating Arabidopsis pollen grains
expressing tagRFP-T-Lifeact: F-actin mainly accumulated at the
cell periphery opposite to the future germination site and
no conspicuous polarization toward the site of tube emer-
gence was observed before PT bulging. We assume that
the spatial configuration of actin arrays at the periphery
of the other half of the activated Arabidopsis pollen grain
may form a mechanical counter-bearing for the turgor-driven
PT bulging.

Species-dependent variations in F-actin polarization during
pollen grain activation would be conceivable, on the other hand
previous reports using actin-binding proteins or their actin-
binding domains have shown that each F-actin marker produces
a different labeling pattern (Thomas et al., 2006; Wilsen et al.,
2006; Cheung et al., 2008). However, the distribution of the actin
cytoskeleton in hydrating Arabidopsis pollen grains by fluores-
cent phalloidin has, to our knowledge, not been investigated in
detail and will be difficult to interpret without having any infor-
mation about the cellular dynamics before and after the moment
of fixation.

Conclusions

Our live imaging studies on germinating Arabidopsis PTs
using the described mounting technique revealed characteristic
growth phases and kinetics, together with specific spatiotemporal
changes in vesicle transport and actin cytoskeletal organization.
The method presented here allows the phenotypic assessment
of larger numbers of in vitro germinating Arabidopsis pollen
from wild type and mutant plants by live imaging. It facilitates
the analyses of morphological alterations and growth kinetics,
and the identification and subcellular localization of players con-
tributing to cell polarity formation and growth site selection in
germinating pollen.
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Supplemental Movie 1 | Time lapse imaging of pollen germinating in the

multi-well micro-germination slide. Imaging of ARO1-GFP expressing pollen in

an exemplary 10 well micro-germination setup was performed over 6 h. Note that

position B1 was readjusted after 1 h PT growth. Time stamper shows hours and

minutes. Scale bar: 50µm.

Supplemental Movie 2 | Vesicle-associated ARO1-GFP is enriched in the

inverted cone-shaped “clear zone” of the pollen tube tip and shows

reverse fountain streaming pattern. Time lapse Spinning Disc confocal

imaging of ARO1-GFP at the PT tip. Royal LUT was used to highlight increasing

signal intensities (low to high: blue to yellow to red to white). Time stamper shows

minutes and seconds. Scale bar: 5µm.

Supplemental Movie 3 | Polar vesicle accumulation during pollen

germination and PT tip growth, indicated by ARO1-GFP intensity changes.

Time lapse imaging of a representative pollen expressing ARO1-GFP before

germination, during bulging and PT growth. PT outlines are drawn in cyan,

ARO1-GFP low-intensity threshold in red (70% highest intensities) and signal

maxima in yellow (0.5% highest intensities). White arrowheads point to ARO1-GFP

maxima in the ungerminated pollen grain, green arrows indicate ARO1-GFP

maxima after germination. Time stamper shows minutes pre/post germination.

Scale bar: 10µm.

Supplemental Movie 4 | F-actin dynamics during pollen germination and

PT tip growth. Time lapse imaging of tagRFP-T-Lifeact expressing pollen before

germination and during PT growth. Solid arrowheads highlight F-actin assembly at

the periphery of the pollen cell, opposite to the later germination site. Empty

arrowheads point at the massive accumulation of F-actin bundles at the PT base,

during rapid PT growth. Time stamper shows minutes pre/post germination. Scale

bar: 15µm.

Supplemental Movie 5 | Sperm cell translocation into the growing PT. Time

lapse imaging of germinating pollen with fluorescently labeled sperm cell nuclei

and plasma membranes. Solid arrowheads highlight the sperm plasma membrane

protrusion that connects one sperm cell to the vegetative cell nucleus. Time

stamper shows minutes pre/post germination. Scale bar: 15µm.

References

Bibikova, T., and Gilroy, S. (2003). Root hair development. J. Plant Growth Regul.
21, 383–415. doi: 10.1007/s00344-003-0007-x

Boavida, L. C., and McCormick, S. (2007). Temperature as a determinant fac-
tor for increased and reproducible in vitro pollen germination in Ara-
bidopsis thaliana. Plant J. 52, 570–582. doi: 10.1111/j.1365-313X.2007.
03248.x

Bou Daher, F., Chebli, Y., and Geitmann, A. (2009). Optimization of conditions
for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Rep. 28,
347–357. doi: 10.1007/s00299-008-0647-1

Bove, J., Vaillancourt, B., Kroeger, J., Hepler, P. K., Wiseman, P. W., and Geit-
mann, A. (2008). Magnitude and direction of vesicle dynamics in growing
pollen tubes using spatiotemporal image correlation spectroscopy and fluo-
rescence recovery after photobleaching. Plant Physiol. 147, 1646–1658. doi:
10.1104/pp.108.120212

Frontiers in Plant Science | www.frontiersin.org 15 April 2015 | Volume 6 | Article 246



Vogler et al. Imaging of early pollen polarization

Cai, G., and Cresti, M. (2009). Organelle motility in the pollen tube: a tale of 20
years. J. Exp. Bot. 60, 495–508. doi: 10.1093/jxb/ern321

Cai, G., Faleri, C., Del Casino, C., Emons, A.M., and Cresti, M. (2011). Distribution
of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen
tube is controlled in dissimilar ways by actin filaments and microtubules. Plant
Physiol. 155, 1169–1190. doi: 10.1104/pp.110.171371

Campanoni, P., and Blatt, M. R. (2007). Membrane trafficking and polar growth in
root hairs and pollen tubes. J. Exp. Bot. 58, 65–74. doi: 10.1093/jxb/erl059

Chebli, Y., Kroeger, J., andGeitmann, A. (2013). Transport logistics in pollen tubes.
Mol. Plant 6, 1037–1052. doi: 10.1093/mp/sst073

Cheung, A. Y., Boavida, L. C., Aggarwal, M.,Wu, H.M., and Feijo, J. A. (2010). The
pollen tube journey in the pistil and imaging the in vivo process by two-photon
microscopy. J. Exp. Bot. 61, 1907–1915. doi: 10.1093/jxb/erq062

Cheung, A. Y., Duan, Q. H., Costa, S. S., de Graaf, B. H., Di Stilio, V. S., Feijo, J.,
et al. (2008). The dynamic pollen tube cytoskeleton: live cell studies using actin-
binding andmicrotubule-binding reporter proteins.Mol. Plant 1, 686–702. doi:
10.1093/mp/ssn026

Cheung, A. Y., and Wu, H. M. (2008). Structural and signaling networks for the
polar cell growthmachinery in pollen tubes.Annu. Rev. Plant Biol. 59, 547–572.
doi: 10.1146/annurev.arplant.59.032607.092921

Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,
735–743. doi: 10.1046/j.1365-313x.1998.00343.x

Cresti, M., Ciamolini, F., Mulcahy, D. L. M., and Mulcahy, G. (1985). Ultrastruc-
ture of Nicotiana alata pollen, its germination and early tube formation. Am. J.
Bot. 72, 719–727. doi: 10.2307/2443685

Cresti, M., Pacini, E., Ciampolini, F., and Sarfatti, G. (1977). Germina-
tion and early tube development in vitro of Lycopersicum peruvianum
pollen: ultrastructural features. Planta 136, 239–247. doi: 10.1007/BF003
85991

de Graaf, B. H., Cheung, A. Y., Andreyeva, T., Levasseur, K., Kieliszewski, M., and
Wu, H. M. (2005). Rab11 GTPase-regulated membrane trafficking is crucial
for tip-focused pollen tube growth in tobacco. Plant Cell 17, 2564–2579. doi:
10.1105/tpc.105.033183

Denninger, P., Bleckmann, A., Lausser, A., Vogler, F., Ott, T., Ehrhardt, D. W.,
et al. (2014). Male-female communication triggers calcium signatures during
fertilization in Arabidopsis. Nat. Commun. 5, 4645. doi: 10.1038/ncomms5645

Edlund, A. F., Swanson, R., and Preuss, D. (2004). Pollen and stigma structure
and function: the role of diversity in pollination. Plant Cell 16, S84–S97. doi:
10.1105/tpc.015800

Feijó, J. A., and Moreno, N. (2004). Imaging plant cells by two-photon excitation.
Protoplasma 223, 1–32. doi: 10.1007/s00709-003-0026-2

Gebert, M., Dresselhaus, T., and Sprunck, S. (2008). F-actin organization and
pollen tube tip growth in Arabidopsis are dependent on the gametophyte-
specific Armadillo repeat protein ARO1. Plant Cell 20, 2798–2814. doi:
10.1105/tpc.108.061028

Geitmann, A. (2010). How to shape a cylinder: pollen tube as a model system for
the generation of complex cellular geometry. Sex. Plant Reprod. 23, 63–71. doi:
10.1007/s00497-009-0121-4

Geitmann, A., and Ortega, J. K. (2009). Mechanics and modeling of plant cell
growth. Trends Plant Sci. 14, 467–478. doi: 10.1016/j.tplants.2009.07.006

Gervais, C., Simmonds, D. H., and Newcomb, W. (1994). Actin microfilament
organization during pollen development of Brassica napus cv. Topas. Proto-
plasma 183, 67–76. doi: 10.1007/BF01276814

Guan, Y., Guo, J., Li, H., and Yang, Z. (2013). Signaling in pollen tube
growth: crosstalk, feedback, and missing links. Mol. Plant 6, 1053–1064. doi:
10.1093/mp/sst070

Hause, G., Hause, B., and Van Lammeren, A. A.M. (1992). Microtubular and actin-
filament configurations during microspore and pollen development in Brassica
napus L. cv. Topas. Can. J. Bot. 70, 1369–1376. doi: 10.1139/b92-172

Hepler, P. K., and Winship, L. J. (2015). The pollen tube clear zone: clues to
the mechanism of polarized growth. J. Integr. Plant Biol. 57, 79–92. doi:
10.1111/jipb.12315

Heslop-Harrison, Y., and Heslop-Harrison, J. (1992). Germination of monocol-
pate angiosperm pollen: evolution of the actin cytoskeleton and wall during
hydration, activation and tube emergence. Annals Bot. 69, 385–394.

Hoedemaekers, K., Derksen, J., Hoogstrate, S. W., Wolters-Arts, M., Oh, S.-A.,
Twell, D., et al. (2015). BURSTING POLLEN is required to organize the pollen

germination plaque and pollen tube tip in Arabidopsis thaliana. New Phytol.
206, 255–267. doi: 10.1111/nph.13200

Iwano, M., Shiba, H., Miwa, T., Che, F.-S., Takayama, S., Nagai, T., et al.
(2004). Ca2+ dynamics in a pollen grain and papilla cell during polli-
nation of Arabidopsis. Plant Physiol. 136, 3562–3571. doi: 10.1104/pp.104.
046961

Johnson-Brousseau, S. A., and McCormick, S. (2004). A compendium of methods
useful for characterizing Arabidopsis pollen mutants and gametophytically-
expressed genes. Plant J. 39, 761–775. doi: 10.1111/j.1365-313X.2004.
02147.x

Karimi, M., Inzé, D., and Depicker, A. (2002). GATEWAY™ vectors for
Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.
doi: 10.1016/S1360-1385(02)02251-3

Ketelaar, T., Galway, M. E., Mulder, B. M., and Emons, A. M. (2008). Rates of exo-
cytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J. Microsc.
231, 265–273. doi: 10.1111/j.1365-2818.2008.02031.x

Kost, B. (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant
cells. Trends Cell Biol. 18, 119–127. doi: 10.1016/j.tcb.2008.01.003

Krichevsky, A., Kozlovsky, S. V., Tian, G. W., Chen, M. H., Zaltsman, A., and
Citovsky, V. (2007). How pollen tubes grow. Dev. Biol. 303, 405–420. doi:
10.1016/j.ydbio.2006.12.003

Lalanne, E., Michaelidis, C., Moore, J. M., Gagliano,W., Johnson, A., Patel, R., et al.
(2004). Analysis of transposon insertion mutants highlights the diversity of
mechanisms underlying male progamic development in Arabidopsis. Genetics
167, 1975–1986. doi: 10.1534/genetics.104.030270

Lalanne, E., and Twell, D. (2002). Genetic control of male germ unit orga-
nization in Arabidopsis. Plant Physiol. 129, 865–875. doi: 10.1104/pp.
003301

Lee, Y. J., Szumlanski, A., Nielsen, E., and Yang, Z. (2008). Rho-GTPase–
dependent filamentous actin dynamics coordinate vesicle targeting and
exocytosis during tip growth. J. Cell Biol. 181, 1155–1168. doi: 10.1083/jcb.200
801086

Lee, Y. J., and Yang, Z. (2008). Tip growth: signaling in the apical dome.Curr. Opin.
Plant Biol. 11, 662–671. doi: 10.1016/j.pbi.2008.10.002

Mascarenhas, J. P. (1993). Molecular mechanisms of pollen tube growth
and differentiation. Plant Cell 5, 1303–1314. doi: 10.1105/tpc.5.
10.1303

McCue, A. D., Cresti, M., Feijó, J. A., and Slotkin, R. K. (2011). Cytoplasmic con-
nection of sperm cells to the pollen vegetative cell nucleus: potential roles of
the male germ unit revisited. J. Exp. Bot. 62, 1621–1631. doi: 10.1093/jxb/
err032

Müller, M., and Schmidt, W. (2004). Environmentally induced plasticity of
root hair development in Arabidopsis. Plant Physiol. 134, 409–419. doi:
10.1104/pp.103.029066

Parker, J. S., Cavell, A. C., Dolan, L., Roberts, K., and Grierson, C. S. (2000).
Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell
12, 1961–1974. doi: 10.1105/tpc.12.10.1961

Qin, Y., and Yang, Z. (2011). Rapid tip growth: insights from pollen tubes. Semin.
Cell Dev. Biol. 22, 816–824. doi: 10.1016/j.semcdb.2011.06.004

Qu, X., Jiang, Y., Chang, M., Liu, X., Zhang, R., and Huang, S. (2015). Organiza-
tion and regulation of the actin cytoskeleton in the pollen tube. Front. Plant Sci.
5:786. doi: 10.3389/fpls.2014.00786

Raghavan, V. (1997). Molecular Embryology of Flowering Plants. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511574528

Riedl, J., Crevenna, A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M.,
et al. (2008). Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5,
605–607. doi: 10.1038/nmeth.1220

Rodriguez-Enriquez, M. J., Mehdi, S., Dickinson, H. G., and Grant-Downton, R.
T. (2013). A novel method for efficient in vitro germination and tube growth
of Arabidopsis thaliana pollen. New Phytol. 197, 668–679. doi: 10.1111/nph.
12037

Šamaj, J., Muller, J., Beck, M., Bohm, N., and Menzel, D. (2006). Vesicular traffick-
ing, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci.
11, 594–600. doi: 10.1016/j.tplants.2006.10.002

Sanati Nezhad, A., Packirisamy, M., and Geitmann, A. (2014). Dynamic,
high precision targeting of growth modulating agents is able to trigger
pollen tube growth reorientation. Plant J. 80, 185–195. doi: 10.1111/tpj.
12613

Frontiers in Plant Science | www.frontiersin.org 16 April 2015 | Volume 6 | Article 246



Vogler et al. Imaging of early pollen polarization

Schiefelbein, J. W. (2000). Constructing a plant cell. The genetic control of
root hair development. Plant Physiol. 124, 1525–1531. doi: 10.1104/pp.124.
4.1525

Schiefelbein, J. W., and Somerville, C. (1990). Genetic control of root hair
development in Arabidopsis thaliana. Plant Cell 2, 235–243. doi: 10.1105/tpc.
2.3.235

Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990). Early flower develop-
ment in Arabidopsis. Plant Cell 2, 755–767. doi: 10.1105/tpc.2.8.755

Sprunck, S., Rademacher, S., Vogler, F., Gheyselinck, J., Grossniklaus, U., and
Dresselhaus, T. (2012). Egg cell–secreted EC1 triggers sperm cell activa-
tion during double fertilization. Science 338, 1093–1097. doi: 10.1126/science.
1223944

Steinhorst, L., and Kudla, J. (2013). Calcium - a central regulator of pollen
germination and tube growth. Biochim. Biophys. Acta 1833, 1573–1581. doi:
10.1016/j.bbamcr.2012.10.009

Szumlanski, A. L., and Nielsen, E. (2009). The Rab GTPase RabA4d regulates
pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21, 526–544. doi:
10.1105/tpc.108.060277

Taylor, L. P., and Hepler, P. K. (1997). Pollen germination and tube growth. Annu.
Rev. Plant Phys. 48, 461–491. doi: 10.1146/annurev.arplant.48.1.461

Thomas, C., Hoffmann, C., Dieterle, M., Van Troys, M., Ampe, C., and
Steinmetz, A. (2006). Tobacco WLIM1 is a novel F-actin binding protein
involved in actin cytoskeleton remodeling. Plant Cell 18, 2194–2206. doi:
10.1105/tpc.106.040956

Tiwari, S., and Polito, V. (1988). Organization of the cytoskeleton in pollen tubes
of Pyrus communis: a study employing conventional and freeze-substitution
electron microscopy, immunofluorescence, and rhodamine-phalloidin. Proto-
plasma 147, 100–112. doi: 10.1007/BF01403337

Twell, D., Yamaguchi, J., and McCormick, S. (1990). Pollen-specific gene expres-
sion in transgenic plants: coordinate regulation of two different tomato gene
promoters during microsporogenesis. Development 109, 705–713.

Vogler, F., Schmalzl, C., Englhart, M., Bircheneder, M., and Sprunck, S. (2014).
Brassinosteroids promote Arabidopsis pollen germination and growth. Plant
Reprod. 27, 153–167. doi: 10.1007/s00497-014-0247-x

Wang, X., Teng, Y., Wang, Q., Li, X., Sheng, X., Zheng, M., et al. (2006).
Imaging of dynamic secretory vesicles in living pollen tubes of Picea mey-
eri using evanescent wave microscopy. Plant Physiol. 141, 1591–1603. doi:
10.1104/pp.106.080168

Wilsen, K., Lovy-Wheeler, A., Voigt, B., Menzel, D., Kunkel, J., and Hepler, P.
(2006). Imaging the actin cytoskeleton in growing pollen tubes. Sex. Plant
Reprod. 19, 51–62. doi: 10.1007/s00497-006-0021-9

Zhou, X., and Meier, I. (2014). Efficient plant male fertility depends on veg-
etative nuclear movement mediated by two families of plant outer nuclear
membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 111, 11900–11905. doi:
10.1073/pnas.1323104111

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Vogler, Konrad and Sprunck. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 17 April 2015 | Volume 6 | Article 246



1 

2 

3 

4 

model a 1-2 mm plasticine layer to 
the top and sides of the glass ring 

fill in molten PGM medium just until 
beneath the plasticine ring and let 
cool down 

hand pollinate the surface of the 
center of the PGM cone 

seal with a cover slip by gently pres-
sing evenly on the plasticine ring   

    

    

Figure S1: Preparing a single-well micro-germination slide  
Mounting scheme as described in Material & Methods section. In the pictures on the right 
hand side Bromphenol blue was added to the PGM for a better visualization. 



              
                        

              
                        

1 apply silicon form to a 

standard microscope slide 

2 pipet 50-75 µL molten PGM into 

each well and let solidify  

3 
remove silicon form and use a 

stump object to remove PGM 

pads if necessary 

4 
pipet another 25 µL molten PGM 

on top of every pad to create a 

convex surface  

5 
model a plasticine frame around the 

PGM pads that is slightly lower than 

the pads 

6 
hand pollinate PGM pads by gently 

brushing single anthers on the 

convex pad surface  

7 
seal with a 24 x 60 mm No.1.5 cover 

slip by gently pressing evenly on the 

plasticine frame  

Figure S2: Preparing a multi-well germination slide 
Mounting scheme as described in Material & Methods section. In the pictures on the right 
hand side Bromphenol blue was added to the PGM for a better visualization. 



2 

3 

4 

5 

Add 2 orthogonal slides at both 
ends. 

String together 3 slides. 1 

Pipet 500 µL molten PGM to the 
middle of the lower slides. 

Add another orthogonal slide  
on the PGM. 

After the PGM has solidified, carefully 
remove the uppermost slide to obtain a 
very planar PGM gel pad. 

          

          

6 Remove excess slides and hand-
pollinate the PGM gel pad. 

Cover with a high precision No. 
1.5 cover slip. 

7 

Figure S3: Preparing a germination slide for TIRF microscopy 
Mounting scheme as described in Material & Methods section. In the pictures on the right 
hand side Bromphenol blue was added to the PGM for a better visualization. 
  



Figure S4: Pollen tube growth kinetics, measured as frame-wise increase in pollen tube 
area and in pollen tube length
The pollen tube shown in Figure 2A was used to compare its increase in area (μm2) over time 
with increasing tube length (μm), measured along a segmented line from the germination 
site to the PT tip (A). The ratio of length and area over time for this PT is shown in (B). Note 
that especially during the first 30 minutes after pollen germination (bulging and transition 
phase), subtle differences are visible between the two methods, with a slightly better reso-
lution in PT growth dynamics when measuring PT areas. The ratio length/area furthermore 
reveals that the PT area can be divided by 0.18 µm-1 which is the mean of all values shown 
in (B), to yield the approximate length of a PT in µm. 
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Figure S5: Deviating lag phases observed during in vitro pollen tube growth
PTs exhibiting varying lag phases. (A) PT with extended bulging phase. (B) and (C) show a 
second lag phase that can eventually be observed during rapid PT growth. Note that in (C) 
this second lag phase is very pronounced. Red arrowheads mark the first, blue arrowheads 
the second lag phase. 



0

1

2

3

4

5

6

7

8

9

-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0

  1st ARO1GFP peak
  2nd ARO1GFP peak

Fr
eq

ue
nc

y

Minutes before pollen germination

Figure S6: Frequencies and time points of ARO1-GFP intensity peaks in pollen grains 
before germination
In 25 of 30 pollen investigated, ARO1-GFP showed one to two signal intensity peaks within 
30 minutes before germination, indicating rapid and local accumulation of ARO1-GFP de-
corated vesicles at the periphery of the pollen grain protoplast. The frequencies of observed 
intensity maxima are shown in (A) and corresponding boxplots in (B). 
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ABSTRACT 

Intracellular colonization of plant cells by symbiotic bacteria is a critical step for the host 

that requires stringent surveillance circuits at the plasma membrane to keep exclusive 

control over the infection process. Accumulating evidence suggests that such perception 

and signal transduction complexes are pre-formed in membrane compartments called 

microdomains (MDs). However, neither the existence of pathway-specific MDs nor their 

controlled assembly has been demonstrated. Here, we unravelled the sequential 

organization of membrane-resident signalling proteins that are indispensible for the 

intracellular infection of Medicago truncatula roots by symbiotic bacteria. We identified 

actin, the flotillin FLOT4, the remorin SYMREM1 and the entry receptor LYK3 as 

essential molecular building blocks that are required and sufficient for the assembly of an 

infection-related meso-scale membrane domain in vivo. Reciprocally, the combinatorial 

expression of these proteins in a heterologous cell system was sufficient to artificially 

reconstitute this specialized membrane domain in vivo. 



 2 

INTRODUCTION 1 
 2 
As is the case in other organisms plant plasma membranes (PMs) are highly 3 

compartmentalized organelles where proteins and lipids segregate into distinct meso-4 

scale membrane domains (MDs) (for review see Konrad and Ott 2015, Malinsky et al., 5 

2013). Considering that cellular PMs are highly crowded spaces with a limited capacity 6 

for free diffusion of proteins (Martiniere et al., 2012, Ramadurai et al., 2009), pre-7 

assembly of protein complexes would not only facilitate rapid signal transduction but also 8 

maintain spatial separation of competing pathways. This hypothesis is strengthened by 9 

recent evidence, which demonstrates the co-existence of a variety of different membrane 10 

MDs in plants and yeast (Jarsch et al., 2014, Spira et al., 2012). Even though direct 11 

evidence is still missing, it is tempting to speculate that a high degree of functional 12 

specificity is maintained within these structures.  13 

While plant proteins that have been identified to label MDs in vivo are functionally 14 

scattered over a wide range of biological processes (reviewed in Konrad and Ott 2015), 15 

several proteins that are involved in controlling the cellular infection of legume roots by 16 

soil-born rhizobia during root-nodule symbiosis (RNS) have been shown to localize to 17 

MDs (Haney and Long 2010, Haney et al., 2011, Lefebvre et al., 2010, Moling et al., 18 

2014). In model legumes such as Medicago truncatula RNS is characterized by the 19 

colonization of roots via infection threads (ITs). They are initiated in a physical pocket 20 

that is formed within tightly curled root hairs that entrap rhizobia in a micro-colony. ITs 21 

are tip growing tunnel-like structures surrounded by a plasma membrane that encapsulate 22 

these bacteria during the infection process and guide them in a tightly regulated manner 23 

towards the inner root cortex, the site of intracellular release (reviewed in Popp and Ott 24 



 3 

2011). Any of these morphological responses however is preceded and dependent on a 25 

molecular dialog between the two partners. In M. truncatula, initial recognition of strain-26 

specific rhizobial signalling molecules, called Nod Factors (NFs), is mediated by the two 27 

plasma membrane-resident LysM-type receptor-like kinases (RLKs) NOD FACTOR 28 

PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR KINASE 3 (LYK3) (Endre et al., 29 

2002, Limpens et al., 2003, Smit et al., 2007). These proteins form a heteromeric 30 

complex in vivo that controls intracellular infection (Moling et al., 2014, Pietraszewska-31 

Bogiel et al., 2013). Interestingly, LYK3 was shown to label discrete MDs in root hairs 32 

(Haney et al., 2011) and in the L1 and L2 layers at the apex of root nodules (Moling et al., 33 

2014). The overall low protein levels of NFP do currently not allow the observation of 34 

such patterns at high resolution (Moling et al., 2014). While LYK3-labelled MDs are 35 

laterally mobile in the absence of any symbiotic stimulus, the protein is laterally arrested 36 

upon inoculation of root hairs with Sinorhizobium meliloti (Haney et al., 2011). At this 37 

stage, LYK3 co-localized with FLOTILLIN 4 (FLOT4), a legume-specific member of the 38 

flotillin/reggie protein family. The fact that LYK3 gets dynamically recruited into these 39 

static domains in a stimulus-dependent manner implies that this domain type provides a 40 

central hub for symbiosis-related signal transduction and host cell infection. FLOT4 itself 41 

is required for symbiotic infections since knock-down of the corresponding gene resulted 42 

in an infection phenotype, where a large number of ITs were aborted in root hairs and 43 

only a minority of them released bacteria into the host cell at the inner root cortex (Haney 44 

and Long 2010). Data from other organisms suggest that flotillins might serve as 45 

molecular scaffolds that are involved in the assembly of higher order complexes 46 

(Amaddii et al., 2012, Langhorst et al., 2005). A similar function has been attributed to 47 



 4 

plant-specific remorin proteins such as the SYMBIOTIC REMORIN 1 (SYMREM1), a 48 

legume-specific member of this multi-gene family. This protein also controls rhizobial 49 

infection and is able to physically interact with a number of RLKs including NFP and 50 

LYK3 (Lefebvre et al., 2010, Tóth et al., 2012). Both, SYMREM1 and FLOT4 are 51 

soluble proteins that anchor to laterally immobile MDs at the inner leaflet of the plasma 52 

membrane (Konrad et al., 2014). However, while FLOT4 is constitutively expressed and 53 

further induced upon rhizobial infection (Haney and Long 2010), expression of the 54 

SYMREM1 gene strictly depends on NF perception and rhizobial infection (Lefebvre et 55 

al., 2010, Tóth et al., 2012). 56 

Thus this PM-resident pathway may serve as a promising basis to unravel the spatio-57 

temporal assembly of a pathway specific membrane micro-domain. 58 

 59 

RESULTS 60 

SYMREM1-labelled microdomains are actin-dependent 61 

We first aimed to identify the molecular building blocks that are genetically required for 62 

the active recruitment of proteins into this MD, its maintenance and its lateral stability. 63 

Due to the association of SYMREM1 with the cytosolic face of the PM we hypothesised 64 

that cytoskeleton components contribute to this stability. To test this, we created a YFP-65 

SYMREM1 fusion protein and ectopically expressed this construct in transgenic M. 66 

truncatula roots. As demonstrated earlier, SYMREM1 labelled distinct and immobile 67 

MDs in root epidermal cells (as shown in Figure 1A). To monitor any alterations 68 

precisely we first performed extensive quantitative image analysis. On average, 69 

SYMREM1-labelled MDs occurred with a density of 0.057 domains/μm2 (standard error 70 
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(SE)=0.0051; n=47) (Figure 1A). Next, we verified our experimental conditions to 71 

destabilize the microtubule (MT) and actin cytoskeleton. Therefore, we cloned and 72 

expressed the MICROTUBULE ASSOCIATED PROTEIN 4 (MAP4) fused to the 73 

mCherry fluorophore (mCherry-MAP4) in transgenic M. truncatula roots. MAP4 clearly 74 

labelled MT tracks (Figure 1 - figure supplement 1A) that were efficiently distorted upon 75 

application of the MT-depolymerising drug oryzalin (Figure 1 - figure supplement 1B). 76 

Accordingly, we expressed the fluorescently-tagged 17 amino acid long peptide LifeAct 77 

(Riedl et al., 2008) to label F-actin strands (Figure 1 - figure supplement 1C). The 78 

majority of actin strands could be depolymerized using cytochalasin D (Figure 1 - figure 79 

supplement 1D). To test a possible dependency of SYMREM1-labelled MDs on intact 80 

microtubules we first treated M. truncatula roots expressing YFP-SYMREM1 with 81 

oryzalin. While this treatment did not significantly affect SYMREM1 domain patterning 82 

(MD density= 0.062 domains/μm2; SE= 0.0058; p= 0.54) (Figure 1B), the application of 83 

cytochalasin D resulted in an almost entire loss of SYMREM1-labelled MDs (MD 84 

density=0.018 domains/μm2; SE=0.0012; p= 4.74E-10) (Figure 1C). These data indicate 85 

that MDs labelled by SYMREM1 are strictly actin-dependent. To further verify this, we 86 

performed extensive co-localization analysis of actin strands and SYMREM1-labelled 87 

MDs (Figure 2). As illustrated, in root hairs that co-expressed Cerulean-LifeAct (Figure 88 

2A) and mCherry-SYMREM1 (Figure 2B), the labelled MDs were always positioned 89 

(Figure 2C) and stretched (arrowheads; Figure 2D-F) along actin filaments. Quantitative 90 

pixel-based co-localization revealed an average Pearson Correlation Coefficient of Rr= 91 

0.287 (SE= 0.022; n=10) indicating co-localization of actin and SYMREM1-labelled 92 

MDs (Figure 2F). To verify this statistically and to test whether these co-localizations 93 



 6 

appeared randomly, we applied a Costes Randomization procedure to all individual 94 

images. For this, we randomized blocks of 10x10 pixels within one channel of an image 95 

(mCherry-SYMREM1) and calculated the random Pearson Correlation Coefficient ‘rd Rr’ 96 

between these artificially generated and the original images of the corresponding second 97 

channel (Cerulean-LifeAct). In all cases we obtained significantly lower values (average 98 

rd Rr=0.001; SE=0.0009; p=3.76E-07) demonstrating a true co-localization and therefore 99 

confirming that SYMREM1-labelled MDs are tightly linked to the actin cytoskeleton. 100 

 101 

The LYK3 mutant allele hcl1 shows strong actin defects in transgenic roots 102 

As SYMREM1 interacts with the symbiotic RLKs NFP, LYK3 and DOES NOT MAKE 103 

INFECTIONS 2 (DMI2) (Lefebvre et al., 2010), we tested whether the localization of 104 

SYMREM1 is qualitatively altered in any of the respective mutants. Expression of the 105 

fluorescently tagged protein in transgenic M. truncatula roots (wild-type A17 106 

background) resulted in the expected MD-labelling pattern in epidermal and outer cortical 107 

cells (Figure 3A). Additionally, no differences to wild-type plants were observed upon 108 

expression of the construct in the RLK mutants nfp2 and dmi2 (Figure 3B,C). Similarly, 109 

expression of the SYMREM1 fusion protein in the LYK3 mutant allele hcl4 (Smit et al., 110 

2007) yielded wild-type like patterns even though domain density appeared to be reduced 111 

in this mutant (Figure 3D). In contrast, the hcl1 allele showed strongly altered 112 

SYMREM1 localization (Figure 3E). This mutant carries a glycine to glutamate mutation 113 

in the conserved GxGxxG motif of the kinase domain (Smit et al., 2007) that results in a 114 

kinase-dead variant of the LYK3 receptor (Klaus-Heisen et al., 2011). In this mutant 115 

allele, root epidermal and outer cortical cells exhibited short parallel arrays of 116 
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SYMREM1 labelled MDs leading to a spike-like pattern (arrowheads; Figure 3E). Wild-117 

type like MD labelling patterns of SYMREM1 were restored in a complemented hcl1 118 

mutant (hcl1 comp.; Haney et al., 2011) confirming hcl1 to be the causative mutation for 119 

altered MD localization (Figure 3F).  120 

As demonstrated above, lateral positioning of SYMREM1-labelled MDs is actin 121 

dependent. Therefore, we asked whether the hcl1 mutant exhibits an altered actin 122 

cytoskeleton. To test this, a YFP-LifeAct marker construct was expressed in the wild-123 

type A17, the hcl1 mutant and the complemented hcl1 background (Figure 4). First, we 124 

analysed actin orientation in the wild-type A17 and the hcl1 mutant and categorized it 125 

into three classes: longitudinal (0°-30° relative to the growth axis), oblique (30°-60° 126 

relative to the growth axis) and transversal (60°-90° relative to the growth axis). In wild-127 

type roots the major proportion of actin in root epidermal and outer cortical cells was 128 

orientated longitudinally (95%; Figure 4A). In contrast, actin orientation was 129 

significantly altered with 47% being longitudinally, 21% oblique and 32% transversally 130 

orientated in the hcl1 mutant (Figure 4B). Such changes were also observed in hcl1 root 131 

hairs that were mostly round and less elongated (Figure 4C) compared to the wild-type 132 

(Figure 2A) or the corresponding complemented mutant background (hcl1 comp.; Figure 133 

4D). 134 

To quantify actin patterns more globally, transects along the initial 1 cm from the root tip 135 

were scored for the relative orientation of actin. Indeed, the same patterns as described 136 

above were found along young parts of growing roots in both genotypes (Figure 4 - figure 137 

supplement 1A, B). These data clearly demonstrate that transgenic roots of hcl1 show a 138 

severe actin defect. Therefore, we hypothesised that altered MD patterning in hcl1 is 139 
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caused by its cytoskeleton phenotype. To test this, we co-expressed LifeAct (Figure 4E) 140 

and SYMREM1 (Figure 4F) in the hcl1 mutant. Indeed, actin and SYMREM1 141 

significantly co-localized with each other (Figure 4G), demonstrating that the transversal 142 

orientation of SYMREM1-labelled MDs in transgenic hcl1 roots is caused by the altered 143 

actin cytoskeleton. Interestingly, we found that the reported changes in actin orientation 144 

were significantly more pronounced in transgenic hairy roots since staining of non-145 

transformed wild-type, hcl4, hcl1 and complemented hcl1 roots with Phalloidin 568 146 

revealed only moderate alterations in actin orientation in root epidermal cells (Figure 4 - 147 

figure supplement 2) although hcl1 root hairs also exhibit the same bulky phenotype as 148 

found on transgenic roots. These data indicate that the use of transgenic hairy roots as 149 

obtained upon transformation with Agrobacterium rhizogenes may further pronounce 150 

LYK3-related phenotypes and implies a functional connection between actin orientation 151 

and LYK3 activity. 152 

 153 

SYMREM1 is targeted to a specific MD in a FLOT4-dependent manner 154 

Similar to the results described above, FLOT4 also showed an altered localization pattern 155 

in hcl1 root hairs (Haney and Long 2010). To verify this for epidermal and cortical cells 156 

we co-expressed SYMREM1 and FLOT4 in transgenic hcl1 roots. Indeed, both FLOT4 157 

(Figure 4 - figure supplement 1C) and SYMREM1 (Figure 4 - figure supplement 1D) 158 

followed the same transversal patterns (Figure 4 - figure supplement 1E), indicating that 159 

both proteins may label the same membrane microdomain. To verify this more precisely, 160 

we co-expressed both proteins in roots using the complemented hcl1 mutant line (Haney 161 

et al., 2011). As expected, SYMREM1 (Fig 5A,D) and FLOT4 (Figure 5B,E) labelled 162 
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distinct MDs that greatly co-localized with a Pearson correlation coefficient of Rr =0.344 163 

(SE= 0.027; p=5.78E-09), which is significantly different to the values obtained by image 164 

randomization (Figure 5C,F,G). These data clearly demonstrate that SYMREM1 and 165 

FLOT4 are indeed targeted to the same MD. When quantifying domain density we 166 

additionally observed an almost 7-fold increase in the number of SYMREM1 labelled 167 

MDs during co-expression with FLOT4 (density=0.395 domains/μm2; SE=0.0581) 168 

compared to individual expression of SYMREM1 (density=0.058 domains/μm2; 169 

SE=0.0058) indicating that FLOT4 could be required for SYMREM1 recruitment. To test 170 

this genetically, we created two RNA interference (RNAi) constructs. One was 171 

previously shown to efficiently silence FLOT4 (Haney et al., 2010). The second RNAi 172 

construct expanded from the 3’UTR to 114 bp into 5’ direction of the FLOT4 gene in 173 

order to facilitate silencing in Nicotiana benthamiana, since the FLOT4-mCherry 174 

constructs lack the 3’UTR. The co-expression of this construct together with a 175 

fluorescently tagged FLOT4 variant in N. benthamiana leaf epidermal cells resulted in a 176 

complete loss of fluorescence, indicating efficient silencing of the flotillin protein (Figure 177 

5 - figure supplement 1). As FLOT4 is constitutively expressed in legume roots, we co-178 

expressed SYMREM1 alone or together with the FLOT4-RNAi construct in transgenic M. 179 

truncatula (complemented hcl1) roots. While SYMREM1 labelled MDs with a density of 180 

0.077 MDs/μm2 (Figure 5H) significantly less domains (0.02 MDs/μm2) were found in 181 

FLOT4-silenced roots (Figure 5I). However, the presence of YFP-fluorescence and its 182 

peripheral localization within these cells (Figure 5I) indicate successful expression and 183 

membrane association of SYMREM1 under these conditions. These data demonstrate that 184 
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FLOT4 is essential for SYMREM1 accumulation in distinct membrane MDs but not for 185 

PM localization of SYMREM1 per se.  186 

 187 

Artificial assembly of a root- and symbiosis-specific microdomain 188 

All three proteins (SYMREM1, FLOT4 and LYK3) are exclusively expressed in legume 189 

roots and/or nodules, since rhizobial infection is limited to these organs. Results 190 

presented above and in previous studies clearly indicate that all proteins are recruited into 191 

MDs. If MDs indeed serve as hubs for specific signalling pathways, one would 192 

hypothesize that all three components should be targeted to the same and symbiosis-193 

related microdomain (symMD). Therefore we tested, whether consecutive addition of 194 

these constituents is sufficient to artificially reconstitute a symMD in a heterologous 195 

system. We chose leaf epidermal cells of Nicotiana benthamiana as this cell type is 196 

devoid of all three proteins but not actin. Interestingly, heterologous expression of 197 

SYMREM1 alone in this system only resulted in low frequency labelling of MDs. Instead, 198 

SYMREM1 was mostly homogenously distributed except for its exclusion from defined 199 

tracks (Figure 6A). For other remorin proteins such structures have been previously 200 

described to represent cortical MTs (Jarsch et al., 2014). This indicates a lack of essential 201 

components required for an efficient accumulation of SYMREM1 in MDs in these cells. 202 

In contrast, FLOT4 (Figure 6B) and LYK3 (Figure 6C) labelled more distinct structures 203 

when being expressed individually, even though these putative MDs did not resemble 204 

those observed in the homologous system. Strikingly, co-expression of SYMREM1 and 205 

FLOT4 in the same cell strongly induced compartmentalization of SYMREM1 (Figure 206 

6D) while FLOT4 patterns only changed moderately (Figure 6E). Interestingly and in 207 
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striking contrast to SYMREM1/FLOT4 co-localizations observed in M. truncatula roots 208 

(Figure 5A-G), these two proteins did not co-localize in N. benthamiana leaf epidermal 209 

cells but mutually excluded each other (Figure 6F,G). Quantitative image analysis and 210 

segmentation confirmed that both proteins remained in direct vicinity and tightly linked 211 

but indeed failed to co-localize (Rr =-0.395, SE= 0.030; rd Rr= -0.008; rd SE= 0.005; 212 

p=6.67E-13) (Figure 6G). This compartmentalized SYMREM1 localization was entirely 213 

revertible upon additional expression of the FLOT4-RNAi construct (Figure 6 - figure 214 

supplement 1). Since LYK3 is actively recruited into FLOT4-labelled domains and this 215 

process coincides with induced expression of SYMREM1 upon rhizobial infection (Haney 216 

et al., 2011; Lefebvre et al., 2010), we tested whether additional expression of LYK3 217 

altered SYMREM1 localization. To avoid spectral interference of three fluorophores we 218 

created a T-DNA that allowed expression of FLOT4-mCherry, YFP-SYMREM1 and 219 

LYK3-HA simultaneously. Indeed, transformation of this triple tandem construct into 220 

leaf epidermal cells resulted in labelling of distinct and specific MDs by SYMREM1 221 

(Figure 6H) and FLOT4 (Figure 6I). Quantitative image analysis now showed significant 222 

co-localizations within the MDs labelled by both proteins (Rr=0.40, SE=0.051; rd 223 

Rr=0.017; rd SE=0.017; p=3.03E-06) (Figure 6J,K). Additional Western Blot analysis 224 

confirmed successful expression of the LYK3-HA construct (Figure 6 - figure 225 

supplement 2A). We then verified whether these artificial MDs remain associated with 226 

the actin cytoskeleton. For this we expressed fluorescently-labelled SYMREM1 and 227 

LifeAct together with non-fluorescently tagged FLOT4. Indeed and as shown for the 228 

homologous system (Figure 2), MDs were found in direct proximity of actin strands 229 

(Figure 6 - figure supplement 2B-F), indicating that this feature was maintained in this 230 
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heterologous cell system. All together, these data demonstrate that LYK3 is essential for 231 

the targeting of SYMREM1 into FLOT4-labelled MDs and that all three components in 232 

addition to actin are required and sufficient to artificially reconstitute an essential 233 

scaffolding core of this symMD in a heterologous system. 234 

These data raised the reciprocal question: Is the lateral recruitment of LYK3 into the 235 

FLOT4-labelled symMD SYMREM1-dependent? To test this we again used our 236 

heterologous reconstitution assay and co-expressed FLOT4 and LYK3 (Figure 7). Under 237 

these conditions, LYK3 failed to significantly co-localize with FLOT4, indicating that 238 

FLOT4 alone is not sufficient to mediate LYK3 recruitment (Figure 7A-D). It should be 239 

noted that image segmentation was not properly applicable to these images due to the 240 

comparably low degree of compartmentalization. Therefore, values are only provided for 241 

the shown dataset. In contrast, additional expression of a HA-SYMREM1 construct 242 

resulted in significant compartmentalization and co-localization of the fluorophore-243 

tagged FLOT4 and LYK3 proteins (Rr=0.60, SE=0.046; rd Rr=0.021; rd SE=0.019; 244 

p=4.79E-08) (Figure 7E-H). In line with this, clear compartmentalization of LYK3 was 245 

also observed in the presence of mCherry-SYMREM1 and FLOT4-HA (Figure 7I-L) 246 

(Rr=0.39, SE=0.049; rd Rr=0.046; rd SE=0.030; p=8.46E-04). These data clearly 247 

demonstrate that the recruitment of LYK3 into FLOT4 labelled symMDs is SYMREM1-248 

dependent.  249 
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DISCUSSION 250 

It has been a long-standing question how plant plasma membranes maintain 251 

organizational platforms such as membrane microdomains (MDs). In plants, three main 252 

structural elements may provide nucleation sites for MDs and immobilize these domains 253 

at distinct positions at the PM. While lateral diffusion of a number proteins was 254 

unaffected by cytoskeleton depolymerisation, degradation of the cell wall greatly 255 

increased their diffusion rates (Martiniere et al., 2012). Although this study did not aim to 256 

resolve subcellular structures such as MDs, it can be assumed that the cell wall is an 257 

essential factor for MD organization. Proteins like the plant-specific type-I formin AtFH1 258 

from Arabidopsis which contains a transmembrane domain and interacts with both the 259 

cell wall and the cytoskeleton (Martiniere et al., 2011) are promising candidates to 260 

function as anchor sites for MD assembly and thus represent a second group of core 261 

elements. The third factor is the cell cytoskeleton, which has mostly been suggested in 262 

non-plant species to be essential for MD formation (e.g. Dinic et al., 2013, Gomez-263 

Llobregat et al., 2013) although first evidence has also recently been provided in plants 264 

(Hosy et al., 2015). While previous work demonstrated that the presence of MDs labelled 265 

by the Arabidopsis remorin At1g13920 is dependent on an intact microtubule 266 

arrangement (Jarsch et al., 2014), the symbiotic MD that is labelled by SYMREM1 and 267 

FLOT4 (Figure 5) mainly depends on actin but not on microtubules (Figure 1). This 268 

resembles patterns shown for the group 6 remorin GSD1 from rice that was identified in a 269 

forward genetic screen for altered grain filling (Gui et al., 2014). Thus, all three factors 270 

should not be considered independently as emerging evidence suggests the existence of a 271 
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cell wall- plasma membrane- cytoskeleton continuum (Fujita et al., 2012, Liu et al., 2015, 272 

McKenna et al., 2014, Oda and Fukuda 2013).  273 

In addition to structural components that allow a certain degree of protein immobilization, 274 

molecular scaffolds are likely to recruit defined proteins into these structural sites to 275 

facilitate larger and functional complex formation. Flotillins may represent primary 276 

scaffolds that bind to core and more generic structural MD components such as actin 277 

(Figure 8A,B). By this, they may pave the way for other process-specific MD 278 

constituents. This could be either achieved by direct interaction with these proteins or by 279 

creating specific lipid environments within the PM as a consequence of local protein 280 

enrichment (Konrad and Ott 2015; Figure 8B). Such a model is supported by findings in 281 

Bacillus subtilis where the loss of the bacterial flotillin YuaG resulted in increased areas 282 

of lipid-ordered domains resulting in significantly less compartmentalized membrane 283 

patches (Bach and Bramkamp 2013). Having established a specific local environment, 284 

post-translationally modified FLOTs are required for subsequent recruitment of 285 

additional proteins as demonstrated for the human dopamine transporter DAT (Cremona 286 

et al., 2011) and the epidermal growth factor receptor EGFR (Neumann-Giesen et al., 287 

2007). Interestingly, activation of EGFR directly signals to the actin cytoskeleton, a 288 

process mediated by human FLOT2 (Neumann-Giesen et al., 2007). These and other data 289 

from human cell lines, where FLOTs were shown to be indirectly involved in regulating 290 

cortical actin (Ludwig et al., 2010), clearly indicate their involvement in cytoskeleton-291 

related processes. In plants the role of FLOTs has been less intensively studied but recent 292 

data point towards their involvement in endocytotic events (Li et al., 2012) and protein 293 

compartmentalization at the plasma membrane (Wang et al., 2015). 294 
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During root nodule symbiosis, FLOT4 enriched MDs are essential for the domain specific 295 

accumulation of SYMREM1 (Figure 5) and the immobilization of the receptor-like 296 

kinase LYK3 (Haney et al., 2011). This probably represents a second and process-297 

specific wave of protein recruitment into this symbiosis specific MD. Considering the 298 

actin phenotype observed in the hcl1 mutant (Figure 4), we hypothesize that LYK3, 299 

similar to the human EGFR, controls actin re-orientation during root hair curling and 300 

infection thread progression. These data add to a reported microtubule defect of the hcl1 301 

mutant (Catoira et al., 2001). 302 

It should however be noted that although FLOT4 is required for the specific targeting of 303 

SYMREM1 into the symMD, it may not represent a primary structural component. Such 304 

assumption is supported by Foerster Resonance Energy Transfer / Fluorescence Lifetime 305 

Imaging Microscopy (FRET-FLIM) and Bi-molecular Fluorescence Complementation 306 

(BiFC) experiments in N. benthamiana leaf epidermal cells that revealed spatially 307 

confined physical interaction between Lotus japonicus SYMREM1 and NFR1 in distinct 308 

MDs even in the absence of FLOT4 (Jarsch et al., 2014). This indicates that SYMREM1 309 

and LYK3 can interact but not specifically accumulate in MDs under these conditions. As 310 

physical interaction between both proteins is confined to these domains even in the 311 

absence of FLOT4, FLOT4 may mediate the spatial and efficient accumulation of 312 

symbiosis-specific signalling proteins and thus controls the physical confinement of this 313 

pathway.  314 

Based on our and previously published data we propose the following model: FLOT4 and 315 

LYK3 are constitutively expressed in M. truncatula root hairs (Figure 8B; Haney et al., 316 

2011). Under non-stimulated (non-symbiotic) conditions FLOT4 labels laterally 317 
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immobile MDs that are associated with the actin cytoskeleton while LYK3 is targeted to 318 

mobile MDs (Figure 8B Haney, 2010; Haney et al., 2011). In this situation, both proteins 319 

label different types of domains. However, the fact that the NF receptors of Lotus 320 

japonicus immuno-precipitate together in the absence of NFs (Ried et al., 2014) indicates 321 

the presence of a pre-formed receptor complex and consequently their co-localization in 322 

the same MD. Upon rhizobial inoculation and perception of the secreted NFs by the 323 

NFP/LYK complex, signal transduction is initiated (Figure 8C) leading to the induction 324 

of gene expression (e.g. of SYMREM1; Lefebvre et al., 2010). In legumes, root hairs 325 

respond to NF perception by a typical deformation and re-orientation of the tip (Esseling 326 

et al., 2003), which is accompanied by local alterations of the actin and microtubule 327 

cytoskeleton (de Ruijter et al., 1999, Miller et al., 1999, Sieberer et al., 2005). Either 328 

upon reaching a critical, local NF concentration or dependent on a second signal, LYK3 329 

is actively recruited into FLOT4 labelled MDs (Figure 8D; Haney et al., 2011). As LYK3 330 

is already, even though moderately, compartmentalized when being heterologously 331 

expressed in N. benthamiana leaf epidermal cells but fails to co-localize with FLOT4 332 

(Figure 6) it is unlikely that this recruitment is directly mediated by this flotillin protein. 333 

Since studies on FLOT4 targeting to MDs were performed on non-inoculated roots and in 334 

lyk3 mutant alleles, this process itself is independent of NFs or an activated LYK3 protein 335 

(Haney and Long 2010), respectively. By contrast, it depends on the actin cytoskeleton 336 

(Figure 4, figure supplement 1). As SYMREM1 expression is induced upon NF 337 

perception and rhizobial inoculation (Lefebvre et al., 2010, Tóth et al., 2012), we 338 

hypothesize that the SYMREM1 protein is subsequently recruited into the symMD in a 339 

FLOT4- dependent manner (Figure 5H,I; Figure 6; Figure 8C). As SYMREM1 can 340 
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physically interact with LYK3, we propose and demonstrate that SYMREM1 is essential 341 

for the immobilization of LYK3 in FLOT4-labelled symMDs (Figure 7; Figure 8C-D). 342 

However, although SYMREM1 can be phosphorylated by the NOD FACTOR 343 

RECEPTOR 1 (NFR1; Tóth et al., 2012), the putative ortholog of LYK3 from L. 344 

japonicus, co-localization of SYMREM1 and FLOT4 is independent of an active LYK3 345 

kinase as FLOT4 and SYMREM1 still co-localized in the hcl1 mutant background 346 

(Figure 4, supplement 1C-E). Continuous signalling would further trigger SYMREM1 347 

oligomerization allowing the recruitment of additional and infection-related proteins into 348 

the symMD (Figure 8E).  349 

In summary we hypothesize that FLOT4 serves as a ‘forefront’ scaffold for SYMREM1 350 

and presumably other early infection marker proteins. Later SYMREM1 may be required 351 

for the second wave of recruitments into this MD. This could include proteins being 352 

involved in local cell wall modifications that are required for the initial infection and 353 

components that allow formation and maintenance of the infection thread membrane.  354 

 355 

 356 

MATERIALS AND METHODS 357 

Hairy Root Transformation 358 

Medicago truncatula hairy root transformation was performed as previously described 359 

using the Agrobacterium rhizogenes strain ARQUA1 (Boisson-Dernier et al., 2001, 360 

Konrad et al., 2014) and transferred weekly to fresh plates containing Fahraeus medium 361 

with a pH of 6.0.  362 

 363 
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Nicotiana benthamiana infiltration 364 

Nicotinana benthamiana leaf infiltration was performed as previously described (Jarsch 365 

et al., 2014, Jarsch and Ott 2015, Tóth et al., 2012). Agrobacteria were infiltrated at a 366 

final OD 600nm of 0.4 for p35S::LYK3-GFP to 0.005 pUbi::HA-SYMREM1. Level 2 367 

single expression vectors and Level 3 co-expression vectors obtained by Golden Gate 368 

cloning (Binder et al., 2014) were infiltrated with a final OD 600nm of 0.1 in presence of 369 

the silencing suppressor P19. The infiltration with the FLOT4-RNAi silencing construct, 370 

as well as the respective control was performed without P19. Microscopy was performed 371 

2 and 3 days post infiltration. To obtain full PM localization of LYK3 and minimize 372 

possible interference with the trafficking protein fraction, microscopy involving LYK3-373 

GFP or LYK3-HA constructs was conducted three days after leave infiltration.  374 

 375 

Western blot analysis 376 

Nicotiana benthamiana leaf disks were harvested 3 dpi and shock frozen with liquid 377 

nitrogen. Proteins were extracted by grinding leaf disks in lysis buffer (150 mM NaCl, 10 378 

mM TrisHCl pH 7.5, 1% Triton-X-100, 1 mM EDTA, 2 mM DTT, Pefabloc, protease 379 

inhibitor cocktail (SIGMA p9599)). Samples were the spun down at 14000 rpm at 4°C 380 

and the pellet was discarded. The samples were diluted with 5x SDS-sample buffer and 381 

denatured at 70°C for 5 min. The protein samples were loaded onto 10% polyacrylamide 382 

SDS-polyacrylamide gels and run at 150 Volts for 60 min. Afterwards proteins were 383 

transferred onto a nitrocellulose membrane using a BIO-RAD Trans-Blot Turbo Transfer 384 

System for 30 min at 25 V constant. For blocking and antibody incubation the SNAP 385 

i.d.® 2.0 protein detection system (Merck Millipore) was used. The membrane was 386 
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blocked with 3% milk in 1xTBS-Tween (0.1%) and incubated with the �-HA-antibody 387 

that was directly conjugated with horseradish peroxidase (1:3000, Roche). Detection of 388 

proteins was performed with the SuperSignal™ West Pico Chemiluminescent Substrate 389 

(Pierce). 390 

 391 

Golden Gate and Gateway cloning/constructs 392 

The coding sequence of Medicago truncatula SYMREM1 (Genbank accession 393 

JQ061257) was recombined into the Gateway compatible pUBi::YFP-GW-HYG vector 394 

(Konrad et al. 2014) via LR-reaction. All other constructs were cloned as Golden Gate 395 

compatible constructs. Bpi and Bsa1 restriction sites were removed from SYMREM1, 396 

LYK3 (Genbank accession AY372406), MAP4 (Genbank accession: M72414) cDNA 397 

templates as well as the genomic FLOT4 (Genbank accession GU224281) sequence. A 398 

double stranded Lifeact template with flanking Bsa1 restriction sites was directly inserted 399 

into pUC-Bpi via blunt end StuI (NEB) cut-ligation for subsequent Golden Gate cloning. 400 

Double stranded sequences for the FLOT4-RNAi constructs with flanking Bsa1 sites 401 

were also cloned via blunt end StuI cut-ligation into pUC-Bpi. RNAi silencing vectors 402 

were assembled as previously described (Binder et al., 2014). 403 

Level 2 single expression and Level 3 co-expression vectors for microscopy were 404 

assembled in a Golden Gate compatible fashion (Binder et al., 2014). 405 

 406 

Confocal Laser-Scanning Microscopy 407 

Confocal laser scanning microscopy was performed on a Leica TCS SP5 confocal 408 

microscope equipped with 63x and 20x HCX PL APO water immersion lenses (Leica 409 
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Microsystems, Mannheim, Germany). GFP and Phalloidin 488 were excited with the 410 

Argon laser (AR) line at 488 nm and the emission detected at 500-550 nm. YFP was 411 

excited with the 514 nm AR laser line and detected at 520–555nm. mCherry fluorescence  412 

and Phalloidin 568 were excited using the Diode Pumped Solid State (DPSS) laser at 413 

561nm and emission was detected between 575-630 nm. Excitation of Cerulean was 414 

performed at 860 nm with a picosecond rate pulsing Sapphire-Multi Photon Laser, and 415 

emission was detected at 470-530 nm. Samples, co-expressing two fluorophores were 416 

imaged in sequential mode between frames. Images were taken with a Leica DFC350FX 417 

digital camera. 418 

 419 

Quantitative Image Analysis 420 

Image analysis was performed with the open source ImageJ/(Fiji) software (Schindelin et 421 

al., 2012). For illustration, images were background subtracted according to the rolling 422 

ball algorithm, filtered with a Mean filter pixel radius of 1 and then maximum z-projected 423 

(‘create stack). Contrast was enhanced for visualization in figures but not for 424 

quantification.  425 

Pixel based co-localizations to determine Pearson Correlation Coefficient values were 426 

performed using the Fiji Plugins ‘Squassh’ (Rizk et al., 2014) and ‘JACoP’ (Bolte and 427 

Cordelieres 2006). Image segmentation was performed with ‘Squassh’. 428 

Randomization was performed with the automatic Costes’ Randomization method in 429 

‘JACoP’ in which clusters of 10x10 pixels were randomly distributed in one channel and 430 

correlated to the original values. Additionally, randomization was also performed on 431 
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maximum z-projections via horizontal flip of the mCherry channel as described 432 

previously (Jarsch et al., 2014, Jarsch and Ott 2015). 433 

 434 

Fibril tool 435 

The orientation of the actin cytoskeleton was analyzed in Fiji using the open source 436 

plugin ‘Fibril Tool’ (Boudaoud et al., 2014). For this, ROIs were drawn manually around 437 

single cells from a z-stack, maximum z-projected of about 3-5 slices of 0.5 µm depth, and 438 

analysed individually. 439 

 440 

Membrane domain quantification 441 

YFP-SYMREM1, LYK3-GFP or FLOT4-mCherry domain images were segmented to 442 

differentiate background from domains. For this, the background was subtracted with the 443 

rolling ball algorithm with a radius corresponding to the smallest structure of interest. I.e., 444 

the largest domain was encircled, and its dimension was used. A mean blur with radius 1 445 

was then applied, and the slices (n=5-12 slices, with distances of 0.25 to 0.7 µm) 446 

maximum projected along the z-axis. One additional background subtraction step was 447 

performed. A threshold was applied to the images and the result saved as a binary mask. 448 

The ‘create selection’ tool was used to mark the outlines and was overlaid onto the 449 

original image to verify proper image segmentation. Domains were counted with the 450 

‘particle analyzer’ tool in Fiji.  451 

  452 
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Cytoskeleton depolymerisation 453 

A 1mM Oryzalin (SIGMA-ALDRICH) stock solution in DMSO and a 10mM 454 

Cytochalasin D (SIGMA ALDRICH) stock solution on EtOH were prepared. Medicago 455 

truncatula root samples of 1 cm length were incubated in final concentrations of 10 µM 456 

Oryzalin or 10 µM Cytochalasin D for 12 hours in water. The control samples were 457 

incubated in water with the equal amount of solvent for the same amount of time. Actin 458 

strands were stained with Phalloidin-ATTO 488 and Phalloidin ALEXA-FLUOR 568 459 

(Life Technologies) as described previously (Yokota et al., 2009). 460 

 461 
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FIGURES AND LEGENDS 

 

 

 

Figure 1. SYMREM1-labelled microdomains are actin-dependent. A YFP-

SYMREM1 fusion protein was ectopically expressed in transgenic M. truncatula roots 

and imaged using confocal-laser scanning microscopy. (A) YFP-SYMREM1 labelled 

distinct membrane microdomains (MDs) in control roots. While treatment with the 

microtubule depolymerising drug oryzalin did not change YFP-SYMREM1 localization 

(B) disruption of the actin cytoskeleton by application of cytochalasin D abolish MD 

targeting of the protein (C). Quantitative image analysis was performed on all samples as 

indicated below the individual panels. SE= standard error; p-value= confidence interval 

obtained from a Student ttest. Scale bars indicate 10 μm. 
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FIGURE 1- FIGURE SUPPLEMENT 1. Depolymerisation of microtubules and 
actin in M. truncatula roots. Expression of the microtubule (MT) associated protein 
MAP4-YFP clearly labelled the MT network (A) that was successfully depolymerised 
upon incubation with oryzalin (B). Similarily, actin strands were labelled by YFP-Lifeact 
(C) and their disruption monitored upon application of cytochalasin D (D). Scale bars 
indicate 10 μm. 
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Figure 2. SYMREM1-labelled microdomains co-localize with actin filaments. 

Cerulean-Lifeact and mCherry-SYMREM1 were cloned in tandem and co-expressed 

from the same T-DNA in transgenic M. truncatula roots. Actin (A) and SYMREM1-

labelled microdomains (B) were visualized in the same root hair and co-localized in this 

system (C). An optical cross-section of the same root hair revealed that SYMREM1-MDs 

were stretched along the x-axis (arrowheads; D) and actin filaments (E) leading to a 

significant co-localization (F). Quantitative image analysis was performed on all samples 

as indicated by the numbers given below panel F. Rr= Pearson correlation coefficient; rd 

Rr= Pearson correlation coefficient obtained after Costes randomization was applied to 

the Cerulean-Lifeact image. The respective standard errors (SE) are provided below the 

Pearson values. p-value= confidence interval obtained from a Student ttest comparing Rr 

and rd Rr. Scale bars indicate 5 μm. 
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Figure 3. Patterns of SYMREM1-labelled microdomains are altered in the hcl1 

mutant allele. A YFP-SYMREM1 fusion protein was expressed in wild-type A17 roots 

(A). No qualitative differences were observed upon expression of this construct in the 

receptor mutant backgrounds nfp2 (B), dmi2 (C) and hcl4 (D). In contrast SYMREM1 

MD patterns were strongly altered in the hcl1 mutant (E; arrowheads). Wild-type like 

patterns were restored in a complemented hcl1 mutant line (Haney et al., 2011) (F). Scale 

bars indicate 10 μm. 
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Figure 4. Transgenic roots of hcl1 show a strongly altered actin pattern. YFP-Lifeact 

was expressed in wildtype A17 (A) and hcl1 mutant roots (B) to visualize actin filaments. 

The orientation of actin strands relative to the root growth axis was scored in root 

epidermal cells and grouped into longitudinal (0-30°), oblique (30-60°) and transversal 

(60-90°). Actin filaments in oblique orientation were also found in hcl1 root hairs (C) 

while they showed wild-type-like arrangements in the complemented hcl1 mutant (D). 

Co-expression of Cerulean-Lifeact (E) and mCherry-SYMREM1 (F) in the hcl1 mutant 

background resulted in a significant co-localization (G). Quantitative image analysis was 

performed on all samples as indicated by the numbers given beside panel G. Rr= Pearson 

correlation coefficient; rd Rr= Pearson correlation coefficient obtained after Costes 

randomization was applied to the Cerulean-Lifeact image. The respective standard errors 

(SE) are provided below the Pearson values. p-value= confidence interval obtained from 

a Student ttest comparing Rr and rd Rr. Scale bars indicate 10 μm (A,B) and 5 μm (C-G). 
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FIGURE 4- FIGURE SUPPLEMENT 1. Actin patterns are altered throughout hcl1 
roots and FLOT4 and SYMREM1 follow these patterns. Expressing the fluorescently-
tagged Lifeact peptide in wild-type (A) and hcl1 mutant roots (B) revealed and altered 
actin pattern in the mutant along the lower 1 cm of the root. As in Figure 4, actin 
orientation was categorized relative to the root growth axis and average values of each 
category are displayed as pie charts. Longitudinal, oblique and transversal patterns are 
represented by black, grey and white colouration, respectively. Co-expression of FLOT4-
mCherry (C) and YFP-SYMREM1 (D) in hcl1 roots revealed that both proteins followed 
the altered actin pattern described in Figure 4. Scale bars indicate 10 μm. 
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FIGURE 4- FIGURE SUPPLEMENT 2. Actin patterns are more similar in non-
transformed roots. Instead of using hairy roots to express a transgene, actin was stained 
by Phalloidin 568 in wild-type A17 (A), the hcl4 mutant (B), the hcl1 mutant (C) and the 
complemented hcl1 mutant allele (D). Under these conditions no obvious differences 
were found between the different genotypes. Scale bars indicate 20 μm. 
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Figure 5. FLOT4 is an essential building block of SYMREM1-labelled 
microdomains. YFP-SYMREM1 (A) and FLOT4-mCherry (B) co-localized (C) in 
epidermal cells when being expressed in transgenic M. truncatula roots (complemented 
hcl1 mutant background). Quantitative data are provided in panel C. Rr= Pearson 
correlation coefficient; rd Rr= Pearson correlation coefficient obtained after image 
randomization of the Cerulean-Lifeact image. The respective standard errors (SE) are 
provided below the Pearson values. p= confidence interval obtained from a Student ttest 
comparing Rr and rd Rr. Close-up of YFP-SYMREM1 (D) and FLOT4-Cherry (E) 
microdomains at the plasma membrane surface. Overlaying both channels (F) and image 
segmentation (G) better illustrate co-localization between the two proteins. While YFP-
SYMREM1 labelled MDs in root epidermal cells (H), their density was greatly reduced 
upon co-expression with a FLOT4-RNAi construct (I). p-value= confidence interval 
obtained from a Student ttest comparing roots expressing endogenous FLOT4 (as in H) 
and those where FLOT4 was silenced (as in I). Scale bars indicate 5 μm (A-F) and 10 μm 
(H, I). 
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FIGURE 5- FIGURE SUPPLEMENT 1. A FLOT4-RNAi construct efficiently 
silences FLOT4. Based on published data (Haney 2010) we tested whether 
overexpressed FLOT4 can be efficiently silenced in N. benthamiana leaf epidermal cells. 
(A) Expression of FLOT4-mCherry resulted in clear localization of the fusion protein at 
the cell periphery. (B) In contrast, co-expression with a FLOT4-RNAi construct 
successfully abolished FLOT4-mCherry accumulation, indicating efficient silencing of 
the transgene. In both cases we resigned the use of the viral silencing suppressor P19 to 
not interfere with the cellular silencing machinery. Scale bars indicate 20 μm. 
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Figure 6. Artificial reconstitution of a symbiosis-related MD (symMD) in a 
heterologous system. N. benthamiana leaf epidermal cells individually expressing the 
legume-specific proteins YFP-SYMREM1, FLOT4-mCherry and LYK3-GFP revealed 
almost no MDs being labelled by SYMREM1 (A) while FLOT4 (B) and LYK3 (C) 
showed a low degree of protein compartmentalization. Co-expression of YFP-
SYMREM1 and FLOT4-mCherry induced stronger compartmentalization of SYMREM1 
(D) but not of FLOT4 (E). Overlaying the signals from both channels (F) and image 
segmentation (G) revealed a lack of co-localization and mutual exclusion of both proteins. 
In contrast triple expression of fluorophore-tagged YFP-SYMREM1 and FLOT4-
mCherry together with hemaglutinin (HA) tagged LYK3 resulted in specific 
accumulations of SYMREM1 (H) and FLOT4 (I) in MDs that showed significant co-
localization (J, K). Quantitative data are provided in panels G and K. Rr= Pearson 
correlation coefficient; rd Rr= Pearson correlation coefficient obtained after image 
randomization. The respective standard errors (SE) are provided below the Pearson 
values. p= confidence interval obtained from a Student ttest comparing Rr and rd Rr. 
Scale bars indicate 5 μm. 
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FIGURE 6- FIGURE SUPPLEMENT 1. Compartmentalization of SYMREM1 in 
leaf epidermal cells is FLOT4 dependent. Co expression of YFP-SYMREM1 (A) and 
FLOT4-mCherry (B) in N. benthamiana leaf epidermal cells resulted in 
compartmentalization of both proteins, although both proteins did not co-localize (C). 
Additional expression of a FLOT4-RNAi construct resulted in a loss of FLOT4-mCherry 
(E) and reverted the localization of SYMREM1 towards less compartmentalized patterns 
(D). Scale bars indicate 5 μm. 
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FIGURE 6- FIGURE SUPPLEMENT 2. The reconstituted MD co-localizes with 
actin. Western Blot analysis revealed the presence of all non-fluorescently tagged 
proteins shown in Figure 6 (A). Membrane domains labelled by YFP-SYMREM1 in N. 
benthamiana leaf epidermal cells (B) when being co-expressed with FLOT4-mCherry 
and Cerulean-Lifeact (C) clearly co-localized with actin strands (D-F) as also shown in 
the homologous system (Figure 2). Scale bars indicate 5 μm. 
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Figure 7. LYK3 is recruited into symMD in a SYMREM1-dependent manner. 

Combinatorial expression of LYK3, FLOT4 and SYMREM1 in N. benthamiana leaf 

epidermal cells. Co-expression of LYK3 (A) and FLOT4 (B) in the absence of 

SYMREM1 resulted in moderate compartmentalization of both proteins and the lack of 

significant co-localization (C, D). In contrast, additional expression of HA-SYMREM1 

resulted in labelling of distinct MDs by LYK3 (E) and FLOT4 (F) that co-localized under 

these conditions (G, H). Similar patterns were observed during co-expression of LYK3-

GFP (I) and mCherry-SYMREM1 (J) in the presence of FLOT4-HA where the 

fluorophore-tagged proteins co-localized (K, L). Proteins fused to GFP are indicated in 

green, those fused to mCherry in red. Rr= Pearson correlation coefficient; rd Rr= Pearson 

correlation coefficient obtained after Costes randomization was applied to the Cerulean-

Lifeact image. The respective standard errors (SE) are provided below the Pearson values. 

p = confidence interval obtained from a Student ttest comparing Rr and rd Rr. Scale bars 

indicate 5 μm. 
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FIGURE 8. A model for the spatio-temporal assembly of a symbiosis-related MD. 

Lateral stability of a MD core is hypothetically mediated by the cell wall and the actin (or 

microtubule) cytoskeleton. Anchor proteins that physically connect the cell wall with the 

cytoskeleton serve as first nucleation points and confer lateral positioning of the MD 

(blue) (A). In legume roots FLOT4 and LYK3 are constitutively expressed. While LYK3 

(orange) (and potentially NFP; grey) is mobile (indicated by arrows) and localizes to a 

distinct MD (light blue), FLOT4 (turquoise) associates with the MD core and generates 

initial specificity (B). Oligomerization or accumulation of FLOT4 monomers at the core 

MD potentially alters the local lipid environment and increases the MD size towards 

meso-scale dimensions (indicated in blue). Upon Perception of rhizobial Nod Factors 

(NF) LYK3 associates with NFP (in grey) and initiates downstream signalling that leads 

to transcriptional activation of SYMREM1 (C). Furthermore LYK3 signals directly 

towards actin (indicated by multiple arrows) allowing morphological responses such as 

root hair deformation. SYMREM1 (red) functions as a secondary scaffold protein that 

allows recruitment of LYK3 into the FLOT4 labelled MD (D). Here, temporal induction 

might coincide with increased NF concentrations within a root hair curl. Finally 

SYMREM1 gets post-translationally modified (e.g. phosphorylated), oligomerises and 

subsequently recruits additional proteins into the newly formed symbiosis-related MD 

(E). 
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3.6 Current projects 

3.6.1 Results 

3.6.1.1 The receptor-like kinase FLS2 localizes to punctate membrane domains.  

The introduction of hydrodynamic friction by transmembrane proteins is one hallmark of 

membrane sub-compartmentalization (Kusumi et al., 2012b). Hydrophobic mismatch effects and 

the specific miscibility characteristics of TMDs generate small areas of non-random membrane 

component distribution (see 2.1.1.4.1) (Marsh and Watts, 1982; Schwille et al., 1999; Lee, 2003; 

Soubias and Gawrisch, 2013). Sub-compartmentalization of transmembrane proteins has been 

demonstrated for LINKER FOR ACTIVATION OF T-CELLs (LAT), a scaffold protein 

important during T-CELL RECEPTOR (TCR) mediated T-cell immune responses (Zhang et al., 

1999; Sommers; Connie et al., 2004). Their composition as well as their important role during 

surface signal perception makes plant RLKs important candidates to study membrane sub-

organization.   

RLKs often interact with multiple proteins upon signal perception thereby inducing another level 

of membrane sub-organization. The perception of the bacterial flagellum and its elicitor epitope 

flg22, is one of the best characterized perception systems of pathogen-associated molecular 

patterns (PAMPs) (Boller and Felix, 2009). The responsible RLK recognizing the flg22 epitope, 

FLAGELLIN SENSITIVE 2 (FLS2), undergoes a ligand-induced complex formation with its co-

receptor BAK1, which is accompanied by trans-and autophosphorylation events and ultimately the 

endocytosis of FLS2 (Robatzek et al., 2006; Boller and Felix, 2009). Conditional localization to raft 

domains was suggested for FLS2, since it co-purified with DIM fractions in a comparative 

proteomic study between flg22 treated and untreated A. thaliana suspension cells (Keinath et al., 

2010). As discussed above, DIM fractions are not a biochemical counterpart of any membrane 

structure present in living cells and claims of membrane raft localization based on DIM 

fractionations are insufficient (see 2.2.1). Nevertheless, FRAP experiments on A. thaliana 

protoplasts demonstrate that lateral mobility of FLS2 decreases in the presence of its ligand 

indicating that the lateral organization of the protein switches upon signal perception (Ali et al., 

2007). Through a collaboration with the laboratory of Dr. Cyril Zipfel, the localization of FLS2 to 

membrane microdomains was demonstrated in A. thaliana using TIRF microscopy. To investigate, 

whether the same observations can be made with our experimental setup, the subcellular 

localization of this key immune receptor was investigated.  
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In order to investigate the putative compartmentalization of FLS2, we transiently expressed FLS2-

GFP fusion constructs under expression control of the native FLS2 promoter sequence in Nicotiana 

benthamiana leaf epidermal cells and analysed the subcellular localization microscopically. Three days 

after infiltration, strong GFP fluorescence could be observed at the cell periphery confirming the 

PM localization of FLS2 as seen in other studies (Robatzek et al., 2006; Beck et al., 2012). Higher 

magnification of the upper cell plane revealed sparse but distinct domains of high fluorescence 

signal, surrounded by equally distributed weaker fluorescence (Figure 5). Since FLS2 undergoes 

endocytosis, it may be possible that the observed FLS2 membrane domains represent initiation 

sites of endocytosis (Robatzek et al., 2006; Beck et al., 2012). However, these structures are known 

to be laterally stable, whereas the observed structures in this experiments displayed a notable lateral 

mobility. To further describe the FLS2 labelled membrane domains, a quantitative analysis of 21 

different cell surface views was conducted. FLS2 labelled membrane domains covered a mean area 

of 0.177 µm2 (± 0.017 µm2), displayed a mean intensity value of 100 (± 7) and a circularity value of 

0.8 (±0.04) in which 1 equals a perfect circle (Figure 5). FLS2 membrane domains exhibited a 

domain density of 0.06 domains/µm2 (± 0.001 domains/µm2) making them significantly less 

abundant than any Remorin labelled membrane domain, or the membrane domains of FLOT1A 

and FLOT1B (Jarsch et al., 2014).   

  

Figure 5: Membrane domain localization of FLS2-GFP in N. benthamiana leaf epidermal cells. 

(A) Confocal image of the upper PM plane of N. benthamiana leaf epidermal cell expressing FLS2:GFP under 

endogenous promoter control. Sparse but distinct bright accumulations of fluorescence signal indicate the proteins 

localize to membrane domains (arows). (B) Segmentation of ‘A’ to quantify membrane domains labeled by FLS2:GFP. 

(C) A quantitative analysis of 21 different cells enabled us to describe the domains with the parameters given below. 

Scale bar indicates 5 µm 
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3.6.1.2 Relocalization of membrane proteins to non-native membrane domains 

One way to show the biological role of punctate membrane domains would be by altering a 

protein’s membrane domain localization, without the removal of the protein from the PM. 

Mislocalization could be achieved via mutation of known membrane localization motifs or by 

forced interactions with proteins that localize to different membrane domains. Forced interaction 

can be conferred by antibodies derived from members of the Camelidae family. They differ from 

conventional mammalian antibodies because they lack light chain subunits. Therefore, these 

“nanobodies” are structurally less complex than conventional antibodies, facilitating their 

heterologous expression in diverse cell types. A special GFP-binding nanobody (GBP), suitable for 

expression and localization experiments in vivo has been developed (Rothbauer et al., 2006) that 

enables these antibodies to be used in a variety of biotechnological approaches (Muyldermans, 

2001; Conrad and Sonnewald, 2003).  

To investigate the effects of membrane domain mislocalization, FLS2 was chosen as a target 

protein.   

We generated GBP:RFP fusions of Remorin proteins At3g57540 and At4g36970 and transiently 

expressed these constructs in N. benthamiana leaf epidermal cells. Overall cells varied in expression 

strength. In highly expressing cells domain localization was not clear. This observation is due to 

the reported accumulation of protein that is not bound to a domain within the inter-domain space 

(Otto and Nichols, 2011; Jarsch et al., 2014). For this reason, only weak expressing cells were 

considered. In those cells, fluorescence signals derived from the two GBP:RFP:Remorin constructs 

Figure 6: Localization of GBP:RFP labelled Remorins At3g57540 and At4g36970.  

Confocal microscopy of GBP:RFP labelled Remorins At3g57540 and At4g36970 expressed under constitutive 

expression in N. benthamiana. At3g57540 (A) as well as At4g36970 (B) labelled distinct membrane domains in the upper 

PM plane of leaf epidermal cells. Images of at least 17 individual cells were used to quantitatively describe these domains 

(C). Scale bars indicate 5 µm 
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were observed in distinct membrane domains (Figure 6 A & B). The domains displayed no notable 

lateral mobility, but were stable over 1 h.   

Even though the added GBP tag is small compared to conventional antibodies, it adds a 

considerable size to the fusion protein. Moreover, the binding capacity of GBP might interfere 

with native localization to membrane domains of Remorin proteins. Therefore, 17 cells expressing 

GBP:RFP:At3g57540 and 19 cells expressing GBP:RFP:At4g36970 were used for quantification 

of the domain parameters size, intensity, circularity and density. As Figure 6 C shows, for both 

constructs, all values except for the mean intensity value differed significantly from the published 

domain parameters. The increase of domain size to 0.265 µm2 (±0.023 µm2) for At3g57540 and 

0.307 µm2 (±0.026 µm2) for AtRem 6.4 as well as the increase of domain density to 4.10 

domains/µm2 (±0.66 domains/µm2) for At3g57540 and 1.96 domains/µm2 (±0.29 domains/µm2)  

 

 

Figure 7: Relocalization of FLS2:GFP due to co-expression with GBP:RFP labelled Remorins.  
Co-localization analysis of cells co-expressing FLS2:GFP and either GBP:RFP:At3g57540 (A) or GBP:RFP:At4g36970 

(D). Of every image, only areas showing signal (indicated by white masks) were considered for the calculation of 

Pearson’s correlation coefficient (Rr) and the squared overlap coefficient (R2). Likewise, the correlation coefficients 

were calculated on a simulated randomized image samples that were generated by flipping the image of RFP 

fluorescence horizontally (B & D). The correlation coefficients are indicated in C and F. Scale bars indicate 5 µm. ***= 

students t-test p-value> 0.001. 
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for At4g36970 suggest that the protein abundance is higher and domain localization might be 

altered due to overexpression of the protein.   

To test whether the GBP:RFP:Remorin constructs are able to successfully bind and mislocalize 

FLS2:GFP, we co-expressed FLS2:GFP either with GBPRFP:At3g57540 or GBP:RFP:At4g36970 

in N. benthamiana leaf epidermal cells. The localization pattern was investigated microscopically 

(Figure 7A and D). To quantify the co-localization coefficients, at least 8 images were acquired. 

Similar to Jarsch et al. 2014, the Pearson correlation coefficient Rr (Manders et al., 1993) and the 

squared overlap coefficient R2 (Manders et al., 1993) were calculated (Figure 7 C and F). The 

strength of calculating correlations using the Pearson correlation coefficient is its insensitivity to 

background noise (Adler and Parmryd, 2014). Its values theoretically range from -1 to 1 where 1 

describes perfect co-localization and -1 exclusion of signal (Manders et al., 1993). However, 

negative and low Rr values are difficult to interpret and often vary significantly because of intensity 

differences in the two observed channels (Zinchuk et al., 2007). The squared overlap coefficient R2 

varies between 0 and 1, where 1 is defined as a perfect co-localization event. It is less prone to 

calculation artifacts due to intensity variations, but therefore also considerably error prone to image 

noise (Adler and Parmryd, 2014). Since R2 is also strongly influenced by the amount of pixels 

considered in both channels, the pixel ratio from both channels was calculated (N channel 1/N channel 2). 

Only images with a ratio, close to 1 were considered. To simulate a random distribution of proteins, 

one channel of each image pair was flipped horizontally and the co-localization of signal containing 

regions of interest in this new “simulated randomized” image pair was calculated (Figure 7 B and 

E). In case of the co-expression of FLS2-GFP and GBP:RFP:At3g57540, fluorescence signal of 

both fluorophores showed a dense, irregular distribution over the whole membrane that was 

interrupted by filamentous structures (Figure 7 A ). The high Pearson correlation coefficient of 

0.757 and equally high Manders correlation coefficient of 0.943 (Figure 7 C) demonstrate the 

almost perfect co-localization of the two fluorescence signals. The fluorescence pattern of the co-

localization of FLS2:GFP and GBP:RFP:At4g36970 exhibited a more scattered, network-like 

structure, that was disrupted by filamentous structures (Figure 7 D). Again, the Pearson and 

Manders correlation coefficients yield high values of 0.796 and 0.936 respectively, demonstrating 

that the GBP binding tag is able to actively alter the localization of FLS2-GFP in N. benthamiana. 

  

To summarize, these experiments show that co-expression of GBP:RFP tagged Remorins and 

FLS2:GFP induces significant alterations of both proteins lateral distribution within the PM. With 

further improvement of experimental conditions, the introduced system is a promising tool to 

investigate the role of FLS2 localization to membrane domains. 
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3.6.2 Material and Methods 

3.6.2.1 Methods 

3.6.2.1.1 Recombinant DNA methods 

3.6.2.1.1.1 DNA Amplification using polymerase chain reaction (PCR) 

3.6.2.1.1.1.1 Analytical PCR 

Analytical polymerase chain reactions (PCR) were carried out to verify the insertion of fragments 

after cloning steps or the successful transformation of A. tumefaciens. For these purposes, the NEB 

Taq-polymerase was used. PCR reaction mixtures were prepared according to the polymerase 

manufacturers recommendations. 20 µl of the PCR mix (see 3.6.2.4.4) were incubated in a 

thermocycler set to the following cycling conditions. 

Table 1 Cycle conditions for analytical PCR reactions 

Cycle step Temperature  Time Cycles 

Initial Denaturation 94 °C 2 min 1 

Denaturation 94 °C 30 sec ┐ 

Annealing 48-60 °C * 30 sec 36 

Elongation 72 °C 30 sec/kb ┘ 

Final Extension 72 °C 8 min 1 

Hold 4 °C ∞  
*temperature varies according to the melting temperature of used primers 

Difficult PCR reactions were carried out with a touch-down PCR protocol that differs in a 

decreasing annealing temperature of – 0,5 °C per cycle. 

 

3.6.2.1.1.1.2 Preparative PCR 

Preparative polymerase chain reactions were used to amplify DNA fragments for cloning purposes. 

Therefore, the Phusion© High-Fidelity Polymerase was used as its proofreading ability and high 

processivity ensure error free, long amplicons. PCR reaction mixtures were prepared according to 

the polymerase manufacturers recommendations. 20 µl of the PCR mix (see 3.6.2.4.4) were 

incubated in a thermocycler set to the following cycling conditions 
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Table 2 Cycle conditions for preparative PCR reactions 

Cycle step Temperature  Time Cycles 

Initial Denaturation 98 °C 2 min 1 

Denaturation 98 °C 20 sec ┐ 

Annealing 55-60 °C * 20 sec 36 

Elongation 72 °C 15 sec/kb ┘ 

Final Extension 72 °C 5 min 1 

Hold 4 °C ∞  
*temperature varies according to the melting temperature of used primers 

Difficult PCR reactions were carried out with a touch-down PCR protocol that differs in a 

decreasing annealing temperature of – 0,5 °C per cycle. 

 

3.6.2.1.1.2 Restriction digest of plasmid DNA 

To verify the insertion of DNA fragments into plasmid backbones, analytical restriction digestions 

were performed using appropriate restriction enzymes. Digestion reactions were assembled on ice 

and incubation temperature as well as time were chosen according to manufacturers 

recommendation.  

 

3.6.2.1.1.3 Multi-fragment cloning with the Golden Gate Cloning Toolbox 

Constructs were cloned using the Golden Gate cloning toolkit described in (Binder et al., 2014). 

Mutagenesis of BsaI and BpiI free inserts was conducted by insertion of silent point mutations (see 

3.6.2.1.1.4) 

 

3.6.2.1.1.4 Site directed mutagenesis during amplification 

In order to mutate single nucleotide residues within a DNA sequence, oligonucleotides were 

generated that included a BpiI restriction site that generated an overlap including the site of 

mutagenesis. After DNA amplification, individual fragments were combined into a LI vector by 

cut-ligation (see 3.6.2.1.1.3), thereby reconstituting the DNA sequence of interest. 
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3.6.2.1.1.5 Sequencing of DNA 

Sequencing of DNA was conducted by the Genetics Sequencing service at the LMU. Reactions 

were prepared as stated by the protocols provided by the service. 

 

3.6.2.2 Methods for plant work 

3.6.2.2.1 Plant growth conditions  

Prior to transformation, N. benthamiana plants were grown 4-6 weeks at 22 °C/ 60 % humidity 

long-day (16 h light/ 8h dark) conditions in a walk-in growth cabinet.  

 

3.6.2.2.2 Transient protein expression in N. benthamiana leaf epidermal cells 

Agrobacterium tumefaciens mediated transient transformation of N. benthamiana was performed as 

described in (Tóth et al., 2012) using OD=0.01 for infiltration. After infiltration, plants were 

incubated for 2-3 days at growth conditions before expression was checked microscopically 

 

3.6.2.3 Microscopy methods 

3.6.2.3.1 Confocal microscopy 

Using a biopsy puncher (4mm diameter), leaf discs from transformed N. benthamiana plants were 

prepared and mounted on a glass side, using a No. 1.5 cover slip glass.  

Confocal microscopy was performed on a Leica TCS SP5 CLSM using a 20x/0.7 water immersion 

lens. GFP was excited using the 488 nm laser line of a 100 mW Lasos LGK 7872 ML05 SP5 argon 

laser and fluorescence was recorded from 495 nm to 550 nm. Excitation of RFP was accomplished 

with a 10 mW Lasos YLK6110T Diode Pumped Solid State-Laser with a 561 nm output. 

Fluorescence was recorded between 570 nm and 650 nm. To reduce background noise, 2 line and 

2 frame averages were performed per image. For co-localization analysis, images were captured 

using sequential scans between frames. 

 

3.6.2.3.2 Particle analysis 

All image analysis was performed using Fiji (Schindelin et al., 2012). Segmentation of up to 17 to 

21 images was done using manual thresholds on background-subtracted images with a rolling ball 

radius of 80 pixels. Using the particle analysis tool, shape descriptors were determined. Average 

values for domain area, intensity, circularity and were calculated and evaluated using Microsoft 

Excel.  
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3.6.2.3.3 Co-localization analysis 

All image analysis was performed using Fiji (Schindelin et al., 2012). Calculation of Pearson 

correlation coefficients and R2, was done with the Wright Cell Imaging Faclity Colocalisation 

Analysis Tool (Li et al., 2004). Prior to calculation, the images were subjected to a background 

subtraction of 80 pixels in order to avoid influence of image noise. The calculation was restricted 

to regions of interest that excluded signal-free areas of the image, auto-fluorescence or cell-wall 

reflections. 

 

3.6.2.4 Buffers and solutions 

3.6.2.4.1 Antibiotic stock solutions 

 

Antibiotic Stock concentration 

Ampicillin 100 mg/ml 

Carbenicilin 50 mg/ml 

Chloramphenicol 34 mg/ml 

Gentamicin 25 mg/ml 

Kanamycin 50 mg/ml 

Rifampicin 50 mg/ml 

Spectinomycin 100 mg/ml 

Streptomycin 200 mg/ml 

 

3.6.2.4.2 Infiltration medium for Agrobacterium tumefaciens mediated transformation of 

N. benthmiana. 

 

Component [Final] 

MgCl2 10 mM 

MES KOH pH 5.6 10 mM 

Acetosyringone 150 µM 

Agrobacteria Appropriate OD 
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3.6.2.4.3 Buffers and solutions for recombinant DNA techniques 

3.6.2.4.4 Reaction mix for analytical PCR 

 

Component Amount 

dNTPs (10 mM each) 0,2 µl 

MgCl2 (50 mM) 0.2 µl 

10X Standard Taq-polymerase buffer 2 µl 

Fwd Primer (10 pmol/µl) 0.2 µl 

Rev Primer (10 pmol/µl) 0.2 µl 

Taq-Polymerase 0.05 µl 

Template (colony dipped in H2O) 1,5 µl 

H2O 16,65 µl 

  

3.6.2.4.5 Reaction mix for preparative PCR  

 

Component Amount 

dNTPs (10 mM each) 0,2 µl 

5X Phusion HF-Buffer 4 µl 

Fwd Primer (10 pmol/µl) 0.2 µl 

Rev Primer (10 pmol/µl) 0.2 µl 

Phu-Polymerase 0.2 µl 

Template  5-50 ng 

H2O ad 20 µl 

 

3.6.2.4.6 Cut-ligation reaction mix to generate LI constructs 

Component Amount 

LI vector  100 ng 

PCR fragment 200 ng 

BpiI 1 µl 

T4 DNA Ligase 2 µl 

10X T4 DNA Ligase Buffer 1,5 µl 

H2O ad 15 µl 
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3.6.2.4.7 Cut-ligation reaction mix to generate LII constructs 

 

Component Amount 

LII vector  100 ng 

Fragment A-B 100 ng 

Fragment B-C 100 ng 

Fragment C-D 100 ng 

Fragment D-E 100 ng 

Fragment E-F 100 ng 

Fragment F-G 100 ng 

BsaI 1 µl 

T4 DNA Ligase 2 µl 

10X T4 DNA Ligase Buffer 1,5 µl 

H2O ad 15 µl 

 

3.6.2.4.8 Reaction mix for analytical restriction digestions 

 

Component Amount 

Vector 200 ng 

Restriction enzyme 0,3 µl 

10X NEB buffer 1,5 µl 

H2O ad 15 µl 
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4 Discussion 
4.1 Membrane domains represent a new layer of 

compartmentalization 

4.1.1 The role of Remorin lipidation 
Although Remorin proteins were initially identified as PM resident proteins over 20 years ago, the 

mechanism of how Remorins actually bind to the PM remained unclear. Since sequence predictions 

were unable to identify any known membrane attachment mechanism with high accuracy, the mode 

used by these proteins to associate with the PM was unclear (Raffaele et al., 2009). Recent work 

demonstrated that the C-terminal 35 amino-acids of StRem1.3, termed the RemCA, are 

indispensable for the PM localization of this protein (Perraki et al., 2012). Moreover it has been 

illustrated that the RemCA peptide confers a tight PM association that is comparable to 

transmembrane proteins. Circular dichroism experiments suggest the peptides folding into two α-

helical structures in nonpolar environments. In silico predictions of RemCA fold into a α-helix 

suggested that the peptide forms two amphipatic helices, one large comprised of amino acids 172-

186 and a shorter one from amino-acids 190-195 (Perraki et al., 2012).  

Based upon these data it was hypothesized that StRem1.3 binds the PM via two stages of RemCA 

folding. The whole process is initiated by the folding of the large 172-186 helix in the proximity of 

the membrane. Through this mechanism, positively charged residues become concentrated at one 

plane of the helix, attracting the protein to the negatively charged surface of the PM via electrostatic 

interactions. Here, it should destabilize the lipid packing to open a gap where the hydrophobic 

section of the large amphipathic helix can insert into the PM. The hydrophobicity within the 

membrane core is supposed to induce folding of the second helix, including the formation of a 

hairpin that creates a hydrophobic pocket. Functional implication of this hydrophobic pocket 

would be a deepening and strengthening of the Remorin insertion into the membrane. Based on 

the peptides binding to PtdSer, phospatidic acid (PA), PtdIns P3,5, PtdIns P3,4 and sphingosine 

1-phospahte on lipid strips, it was further hypothesized that RemCA confers direct lipid binding 

specificity and thereby controls the proteins localization to membrane domains (Perraki et al., 

2012).   

As appealing as this model is, it is questionable if this is really the universal mode of Remorin 

proteins PM attachment. Even though these peptides are important for binding, they are obviously 

not sufficient for it, as the RemCA peptides of all Arabidopsis Remorins except for At2g02170, 

At1g30320,At4g36970 and At5g61280 were unable to localize to the PM (Konrad et al., 2014). 

Moreover, other mechanisms have been proposed (Hemsley et al., 2013).My work ultimately 
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showed that S-acylation, known to confer strong attachment to membranes, is a predominant post-

translational modification of Arabidopsis Remorins, including the StRem1.3 homologue AtRem1.2 

(shown in Hemsley et al. (2013)), and the symbiotic Remorin SYMREM1 from Medicago truncatula. 

In contrast to other S-acylated proteins, for example Flotillins (Li et al., 2012; Trusov et al., 2012) 

which are S-acylated at N-terminal protein regions, lipidation of Remorin proteins is restricted to 

the C-terminal RemCA region (Konrad et al., 2014). Point mutations of cysteine residues 

prohibited S-acylation and led to a loss of PM localization in several RemCA peptides as well as 

strongly interfered with full-length protein localizations. The same principle has been demonstrated 

using the calcium sensor CBL2. This A. thaliana protein localizes to the vacuolar membrane and is 

S-acylated. However, mutations of S-acylated cysteine residues abolished the protein’s membrane 

localization (Batistič et al., 2012). This illustrates the functional relevance of S-acylation as a 

membrane attachment mechanism and elevates this post-translational modification as the major 

membrane binding mechanism of Remorin proteins (Konrad et al., 2014).  

In mammalian systems, S-acylation is commonly perceived to be associated with protein 

localization to membrane domains (Levental et al., 2010). At least for Remorin proteins, membrane 

domain localization seems to be more diverse, since the S-acylation mutant SYMREM1C197A still 

localizes to distinct membrane domains within the PM of yeast cells and M. truncatula root 

epidermal cells. Deacylation of At4g36970 resulted in an increased association with immobile 

membrane domains (Konrad et al., 2014). This argues that S-acylation may in some cases restrict 

membrane domain localization and that Remorins are targeted to these sites by another, so far 

undescribed mechanism.   

Whereas deacylation of PM localized RemCA peptides of At4g36970 and SYMREM1 resulted in 

a loss of PM localization, the corresponding deacylated full-length proteins remained at the PM. 

This observation indicates that other mechanisms influence the PM localization of Remorin 

proteins. The presence of the coiled-coil domain, correlated with this localization pattern, 

suggesting that in addition to S-acylation, protein-protein interactions are also important for PM 

localization of Remorins (Konrad et al., 2014).  

Weak membrane association is a feature, often observed to be required prior to S-acylation (Lavy 

and Yalovsky, 2006; Sorek et al., 2007; Batistič et al., 2008). The reason for this is the inherent 

property of PAT enzymes (S-acylation conferring enzymes, see 2.1.1.3) acting as transmembrane 

proteins (Roth et al., 2002; Hemsley et al., 2005; Batistič, 2012). In order to interact with PAT 

enzymes, proteins that are subsequently S-acylated must exhibit at least a weak intrinsic affinity to 

the membrane hosting target specific PATs (Batistič, 2012). Whether or not this is mediated by the 

predicted long α-helical stretch, hypothesized by Perraki et al., 2012 to form in the vicinity of 

membranes, remains to be shown.   
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Prediction of S-acylated residues within Remorins At3g48940, At3g57540 and At2g41870 of 

Arabidopsis yielded no putative S-acylation sites (Konrad et al., 2014). It may be that these proteins 

undergo rare acylation reactions such as O- or N-acylation, but the experimental procedure used 

in this study does not allow identification of these modifications. Since Remorins are devoid of 

other lipidation motifs, protein-protein interactions might also be crucial for membrane attachment 

of Remorins lacking S-acylated Cysteines in their C-terminal region (Konrad et al., 2014).  

Since Remorin proteins have been established as universal markers for Arabidopsis microdomains, 

it is important to understand the mechanism of how these proteins actually bind to the PM. Even 

though S-acylation of Remorin proteins strongly increases their affinity to the PM, it is not the 

primary determinant of their sub-compartmentalization within the lipid environment. This is 

astonishing, since our knowledge about lipid-lipid interactions and the resulting phase behaviours 

of membrane lipids (see 2.1.1.1) would suggest, that S-acylated proteins associate with densely 

packed areas within the membrane due to the saturation status of their lipid anchor. However, 

neither S-acylation nor any other lipidation has so far been shown to be sufficient for targeting to 

plant membrane domains in vivo (Hemsley, 2014). Moreover, the loss of S-acylation does not impair 

protein localization to PM compartments of caveolins (Dietzen et al., 1995). For this reason, it may 

be appropriate to change the point of view on membrane sub-organization away from being lipid-

centric and to include additional factors beyond lipid-lipid interactions to predominantly drive 

membrane organization.   

The most prominent factor would be membrane-associated proteins (see 2.1.1.2). It has been 

suggested that local protein crowding promotes the segregation of proteins into membrane 

domains and that membrane domain formation is driven by proteins (Levental et al., 2010; Drücker 

et al., 2013). This is supported by the finding that the sequence of TMDs influence their localization 

pattern in yeast cells and that proteins, whose TMDs share a higher sequence similarity are more 

likely to co-localize (Spira et al., 2012). However, membrane domains labelled by different proteins 

never show perfect co-localizations (Spira et al., 2012; Jarsch et al., 2014). It should therefore be 

considered that membrane domains are gradual transitions of differentially organized structures. 

As a consequence the lipid environment may be dictated by the protein composition via their 

specific lipid interaction properties. Considering Remorin proteins, the essential interactions would 

mainly involve lipid headgroups and amino-acid residues in the vicinity of the S-acylation site. 

Based on these physiochemical properties, other proteins could be recruited into these domains. 

Changing lipidation states of proteins within these domains would then allow dynamic changes in 

the proteolipid environment in order to remove old or recruit new components to the membrane 

domain (Hemsley, 2014). 
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4.1.2 The diversity of Remorin labelled membrane domains opens new 

possibilities to investigate PM sub-compartmentalization 
The preparation of DIMs was considered the biochemical method of choice to study membrane 

domains throughout different biological systems including plants (Brown and Rose, 1992; Simons 

and Ikonen, 1997; Ayllón et al., 2002; Fittipaldi et al., 2003; Mongrand et al., 2004). Co-purification 

of sphingolipids, cholesterol and GPI-anchored proteins in DIM fractions led to the assumption 

that DIMs represent a bona fide membrane domain. It should however be kept in mind that DIMs 

are artificial structures that are not present in living cells and thus cannot represent the real 

heterogeneity of co-existing membrane domains in vivo (Zurzolo et al., 2003; Kierszniowska et al., 

2009; Simons and Gerl, 2010; Tanner et al., 2011). Even though DIMs may be used as a 

biochemical method to enrich certain proteins and lipids, accumulation of two proteins in these 

fractions does not provide any evidence, whether these proteins co-localize within an intact plasma 

membrane. Conversely, the absence of a protein from DIMs cannot be equalized with a lack of its 

sub-compartmentation in cells (Malinsky et al., 2013). Therefore, live cell imaging currently 

represents the most direct way to describe membrane domains in vivo.  

Membrane domains have been visualized in the prokaryotic organisms Bacillus subtilis and 

Paramecium tetraurelia (Bach and Bramkamp, 2013; Reuter et al., 2013) and various eukaryotic 

biological systems (Harder, 2003; Ghossoub et al., 2011; Spira et al., 2012; Tóth et al., 2012; Jarsch 

et al., 2014). This widespread appearance suggests that membrane sub-compartmentalization is an 

ancient organizational principle, whose biological reasoning is far from understood. Most 

investigations on non-random protein distribution were restricted to individual or a very small 

subset of proteins. Only recently an astonishingly high degree of PM sub-organization in yeast was 

shown. Using TIRF microscopy on a representative subset of 46 proteins covering main functional 

categories, Spira et al. 2012 revealed the PM sub-organization of S. cerevisiae. Even though the vast 

majority of proteins bound the PM via one or more TMDs, all proteins investigated displayed non-

homogeneous lateral distributions ranging from distinct patches to network-like structures (Spira 

et al., 2012).   

Plant PMs are also sub-compartmentalized into distinct microdomains (Sutter et al., 2006; 

Törnroth-Horsefield et al., 2006; Homann et al., 2007; Krügel et al., 2008; Raffaele et al., 2009; 

Gutierrez et al., 2010; Li et al., 2011; Tóth et al., 2012; Demir et al., 2013; Hao et al., 2014; 

Klymchenko and Kreder, 2014). The conditional co-localization of M. truncatula FLOT4 together 

with LYK3 elegantly showed the co-existence of different domains within plant PMs (Haney et al., 

2011). The detailed investigation of microdomains, in A. thaliana and N. benthamiana labelled by 20 

different proteins, including Remorins and Flotillins proteins provides the first insight into the 

variety of different membrane microdomains in plants. Extensive co-localization analysis revealed 
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the disparity in localization among these proteins and revealed that phylogenetically close proteins 

were more likely to co-localize than phylogenetically distinct protein pairs. Using quantitative 

imaging, these distinct membrane domains could be characterized using several parameters such 

as size, shape or density (Jarsch et al., 2014).   

The physical limitation of light microscopy defined by to the diffraction limits of light (Abbe, 1873; 

Rayleigh, 1903) is a major obstacle for microscopy approaches. Membrane domains labelled by 

StRem1.3 in A. thaliana have been observed to have a size of 97 nm large membrane domains 

labelled by StRem1.3 in Arabidopsis, using stimulated emission depletion (STED) microscopy 

(Demir et al., 2013). The same domains, visualized with CLSM could only be resolved to a mean 

domain size of 250 nm. Moreover, electron microscopy of immunolabelled N. benthamiana PM 

vesicles predicted StRem1.3 marked membrane domains to be ~75 nm wide (Raffaele et al., 2009). 

Therefore, the actual size of Remorin labelled membrane domains determined by this study may 

be an overestimation.   

With a mean domain size of 0.25 µm2, Remorin labelled membrane domains so far seem to be 

significantly larger than postulated “raft domains” of mammalian cells (Anderson and Jacobson, 

2002; Edidin, 2003; Simons and Gerl, 2010). The large size of plant membrane domains suggests 

that they are clusters of single rafts that are interconnected via protein and lipid interactions 

(Lingwood and Simons, 2010; Tanner et al., 2011). These clusters are hypothesized to host specific 

subsets of proteins that are required for certain cellular processes (Demir et al., 2013; Hemsley, 

2014). Characterization of these mini-proteomes will be challenging but could provide valuable 

information about the mechanisms and regulation of cellular functions. This work establishes a 

protein marker set for a large number of membrane domains in plants, providing a first step to 

help tackle these questions (Jarsch et al., 2014). 

 

4.1.3 The influence of the cytoskeleton and cell-wall on membrane dynamics 
While membrane domains in mammalian systems and artificial membranes are highly dynamic, this 

does not seem to be different in plants. Observation of membrane domains over 20 minutes 

showed that large structures labelled by Remorin proteins can be rather immobile. FRAP half-life 

recovery times ranging from 20 to 50 seconds further support this view (Jarsch et al., 2014). Slow 

diffusion rates of PM proteins are a frequently observed phenomenon in plants. Proteins such as 

KAT1, PIN2, KNOLLE, BOR1 and NIP5;1 also exhibit very low lateral mobility, with only a 

subfraction of these proteins displaying mobile behaviour (Sutter et al., 2006; Men et al., 2008; 

Takano et al., 2010; Roppolo et al., 2011; Martinière et al., 2012; Boutté and Moreau, 2014). In 

animal systems, diffusion of proteins is also restricted – a phenomenon that is most likely caused 
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by membrane adjacent cytoskeletal structures that form diffusion barriers for membrane 

components (Kusumi et al., 2005; Goswami et al., 2008; Gowrishankar et al., 2012; Kusumi et al., 

2012a; Gomez-Llobregat et al., 2013; Umemura and Nakano, 2013). Even though there are 

examples of plant membrane proteins that are involved in or dependent on cytoskeleton dynamics 

like actin nucleation inducing FORMIN1 or the microtubule binding protein MIDD1, the majority 

of membrane proteins diffuses independently from cytoskeletal structures (Martinière et al., 2011; 

Oda and Fukuda, 2012). One Remorin protein, At1g13920, localized to filamentous structures at 

the PM that were dissolved with the microtubule depolymerizing drug oryzalin, leading to the 

assumption that microtubules may be involved in the localization of At1g13920 (Jarsch et al., 2014). 

Accumulating evidence suggests that the major component restricting diffusion of proteins in 

plants is the cell-wall (Martinière et al., 2012).  

Similar to the PM, cell-wall composition is heterogeneous and depends on the developmental 

program of the cell as well as environmental conditions (Burton et al., 2010). Composed primarily 

of cellulose, the cell wall is synthesized by the cellulose synthase complex. This multimeric protein 

complex moves through the PM along microtubules, depositing cellulose into the apoplastic space 

(Paredez et al., 2006; McFarlane et al., 2014). Besides cellulose, hemicelluloses, pectins, proteins 

and lignins also contribute to cell-wall composition (Scheller and Ulvskov, 2010; Vanholme et al., 

2010; Albenne et al., 2013; Atmodjo et al., 2013).   

Since the cell-wall represents the skeleton of plants, it is often perceived as being a stiff structure. 

Surprisingly, it has been found to be a dynamic network that undergoes constant reconstruction 

(Wolf et al., 2012). Deformations of cell wall components, for example the Ca2+-mediated 

formation of so-called egg-box pectin, influence cell growth and play an important role during the 

perception of abiotic as well as biotic stresses (Cabrera et al., 2008; Cabrera et al., 2010). Therefore 

plants maintain a sophisticated signalling system to monitor cell wall integrity, including a multitude 

of PM RLKs, mechanosensitive ion-channels and downstream signalling molecules (Hématy et al., 

2007; Nakagawa et al., 2007; Xu et al., 2008). WAK1 is one of these cell surface RLKs that has 

been found to bind oligalacturonides (OGAs), cell wall derived signalling molecules (Brutus et al., 

2010). OGAs are pectin-derived molecules that can cause extensive effects on cells, including 

changes in gene expression, stomatal closure, ethylene production, cell wall reinforcement and ROS 

production (Hahn et al., 1981; Nothnagel et al., 1983; Simpson et al., 1998; Ridley et al., 2001; 

Moscatiello et al., 2006). Since pectin is a prominent target of pathogenic cell wall-degrading 

enzymes, OGAs are also thought to play an important role during plant immunity (Osorio et al., 

2008).   

Other WAK proteins and WAK-like proteins have been associated with cell elongation processes, 

coordination of solute concentration during growth and salt stress (He et al., 1996; Lally et al., 
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2001; Wagner and Kohorn, 2001; Kohorn et al., 2006; Kohorn et al., 2009). Several Remorins 

including the group 1 Remorin At3g61260 have been found to interact with WAKs (Jones et al., 

2014). This connection is especially interesting since several Remorins are implicated to play 

important roles during salt or abiotic stresses – conditions that are accompanied by extensive cell 

wall reconstructions (Nohzadeh Malakshah et al., 2007; Wolf et al., 2012; Checker and Khurana, 

2013; Yue et al., 2014).   

Tissue-specific labelling of membrane domains by the group 1 Remorins At1g61260 and 

At2g45820 emphasizes that Remorins might play a role in cell wall derived PM organization. In 

contrast to their rather uniform localization pattern in leaf and root epidermal cells, both proteins 

label distinct membrane domains in the hypocotyl of 5 day old seedlings and may also do so in 

different environmental conditions (Jarsch et al., 2014). Cells within the hypocotyl are known to 

undergo rapid cell expansion and growth that is largely dependent on cell wall reconstruction (Wolf 

et al., 2012). Even though it is unclear what role Remorins play in this environment, the signs for 

cell wall dependent localization of some Remorin proteins are obvious. Therefore, besides their 

use as a biotechnological tool to breed salt tolerant plants, Remorins could also be useful tools to 

investigate abiotic stress and cell wall related signalling pathways (Yue et al., 2014). 

 

4.1.4 Investigating the biological function of punctate membrane domains 

by active mislocalization of the immune receptor FLS2 within the PM 
In contrast to polar and equatorial membrane domains, where localizations can be directly linked 

to tasks such as directional solute transport or hindrance of diffusion, the functional implication 

of punctate membrane domain localization has remained elusive. One exception is the A. thaliana 

Flotillin FLOT1A. Using confocal and transmission electron microscopy, it was shown that this 

Flotillin localizes to distinct patches along the PM of A. thaliana root epidermis cells as well as at 

PM invaginations and endosomal structures (Li et al., 2012; Jarsch et al., 2014). Since FLOT1A has 

been observed to label vesicles budding from the PM it was assumed, that it plays a role in 

endocytotic processes (Li et al., 2012). Therefore, membrane domains labelled by FLOT1A are 

most possibly formation sites of endocytic vesicles (Li et al., 2012). Another example are the 

proteins LYK3 and FLOT4 that conditionally localize to a symbiotic membrane domain ((Haney 

et al., 2011); see 2.2.3.3) and indirectly hint at the involvement of membrane domains in signalling 

processes.   

Investigating the functional role of membrane domains is very difficult due to their inherent nature 

as diverse, multi-component systems. Attempts to delete single components from these systems, 

for example depletion of sterols with methyl-β cyclodextrin, often has pleiotropic effects on the 
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whole cell, including the distribution of PtdIns and organization of the actin cytoskeleton (Kwik et 

al., 2003; Valitova et al., 2014). Therefore, assumptions made based on these methods need further 

experimental backup. The approach of forced relocalization of FLS2 into a different membrane 

sub-compartment has been introduced here to circumvent these issues (see 3.6.1.2). Camelidae 

nanobodies have been used in a variety of biotechnological applications as conductors of forced 

interactions. In plants, these nanobodies have been successfully used to inhibit the function of 

starch-branching enzymes, resulting in a significantly increased starch content of potato tubers 

(Jobling et al., 2003). Promising experiments also showed that nanobodies can be used to confer 

resistance against viruses in crop plants (Ghannam et al., 2015). GFP-binding nanobodies were 

shown to be able to redirect proteins and whole organelles in living bacteria, thereby altering vital 

processes such as locomotion along oxygen gradients (Borg et al., 2015). In N. benthamiana, 

transiently expressed GFP binding nanobodies have been used to mislocalize proteins. To do this 

a GFP-binding nanobody was translationally fused to RFP to create a traceable GFP binding 

reporter, which was also used in this work. Co-expression of this reporter protein with plastid or 

mitochondrial localized GFP-fusion proteins gave rise to additional GFP fluorescence in the cell 

cytosol. The nuclear localized bZIP transcription factor TGA5 and the SNARE protein VAMP722 

that are usually found at the endomembrane, were forced to the cytoplasm by co-expression with 

GBP:RFP (Schornack et al., 2009).   

GFP-binding nanobodies are an especially versatile tool because of the widespread use of GFP as 

a fluorescent protein tag. This is particularly important in plant systems where the creation of stable 

plant lines consumes a considerable amount of time. Moreover, it enables us to utilize published 

plant lines with documented phenotypes. We chose the LRR-RLK FLS2 as model to study the role 

of PM sub-compartmentalization for several reasons. Most importantly, the molecular function of 

FLS2 is well documented and the molecular output of FLS2 activation can be measured on several 

layers (Boller and Felix, 2009). These include outputs such as stomatal closure, impaired seedling 

growth, callose depositions within the cell-wall, production of ROS, early phosphorylation of the 

RLK, activation of the MITOGEN ACTIVATED PROTEIN KINASE (MAPK) cascade, and 

transcriptional upregulation of early defence genes (Gomez-Gomez et al., 1999; Gómez-Gómez 

and Boller, 2000; Asai et al., 2002; Melotto et al., 2006; Miller et al., 2009; Schulze et al., 2010). All 

of these reactions are phenotypically accessible and allow us to quantify the efficiency of FLS2 

signalling. Some of these responses are temporally and/or qualitatively confined. Activation of 

MAPK via phosphorylation for example, happens within 10 min after signal perception and 

decreases after 26 min (Asai et al., 2002). Accordingly, the production of ROS leading to an 

acidification of the extracellular space, starts within 5 min and reaches its peak 10 min after signal 

perception (Felix et al., 1999). This allows the detection of even subtle changes in FLS2 signalling 
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efficiency, such as delayed activation of signal transduction or a decrease in ROS production. 

  

However, before data can be acquired, several technical obstacles have to be overcome. Though 

the initial experiments shown here were done in the transient N. benthamiana expression system, 

this is not an option to perform FLS2 activation assays, since endogenous FLS2 protein would 

mask the results (Chakravarthy et al., 2010). Transient expression directly in A. thaliana is not 

possible, since the innate immune system prevents Agrobacterium mediated gene transfer in wildtype 

plants and the inducible AvrPto expression plant line, engineered to overcome these issues 

degrades key plant immune receptors, including FLS2 (Hauck et al., 2003; Xiang et al., 2008). 

Therefore, GBP:RFP tagged Remorin expression in the stable transformed proFLS2-FLS2:GFP 

plant line is necessary.   

The transformation of Arabidopsis with constitutive expressing Remorin constructs has an embryo-

lethal phenotype (Jarsch et al., 2014). Therefore, GBP:RFP tagged Remorin constructs have to be 

introduced into the Ws-0 proFLS2-FLS2:GFP line using an inducible promoter system. The 

dexamethasone (DEX) inducible promoter system is based on the constitutive expression of a 

chimeric transcription factor, that consists of the hormone-binding domain of the glucocorticoid 

receptor that is translationally fused to the DNA-binding and trans-activating domains from the 

yeast transcription factor GAL4 and the viral VP16 protein (Aoyama and Chua, 1997).  

The observation that the GBP:RFP tagged Remorins At3g57540 and At4g36970 almost perfectly 

co-localized with GFP:FLS2 in transient N. benthamiana expression suggests that this system indeed 

works perfectly to reorganize the FLS2 distribution within the PM (Figure 7 C & F). However, the 

distribution pattern of proteins did not resemble the normal dotted Remorin localization, nor the 

localization pattern of FLS2 (Figure 7A & D). It is therefore unclear, whether forced interaction 

between these proteins happens in artificial membrane domains or the interaction interferes with 

the structure of one of the proteins native domain. The observation that the GBP:RFP tagged 

proteins already label larger domains than previously described (Jarsch et al., 2014) (Figure 6), also 

suggests that expression levels in these experiments were too high and may therefore alter protein 

localization (Jarsch et al., 2014). Furthermore, it has to be verified that both components are indeed 

PM resident and forced interaction does not inhibit transport of FLS2 to the PM.  

Experimental data on the functional relevance of membrane domains are is still incomplete. In 

yeast, localization of TMD containing proteins is primarily determined by sequence composition 

of the TMD segment. This is illustrated by the co-localization of the isolated TMD segment of 

Pmp1 with the full-length protein. Further proof was given through experiments with Pmp1 and 

the ferro-O2-oxidoreductase Fer3. The low sequence similarity between the TMDs of Pmp1 and 

Fer3 predicted that, both proteins should only randomly overlap in co-localization experiments. 
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Astonishingly, a chimeric protein in which the TMD segment of Fer3 was swapped with that of 

Pmp1, resulted in co-localization of this Fer3Pmp1 named protein with Pmp1. This chimeric 

protein was also used to assess the functionality of Fer3 in its non-native domain as it usually 

complements the growth deficiency of a Δfer3 mutant in low-iron growth media. Most surprisingly, 

Fer3Pmp1 was not able to rescue this phenotype, arguing that localization of Fer3 to the PM is not 

sufficient for Fer3 function (Spira et al., 2012). Since it cannot be ruled out that the TMD segment 

of Fer3 contained important regulatory or functional components, this study took a second 

approach also using the GBP nanobody: The arginine permease Can1, one of the first membrane 

domain localized proteins identified, is enriched in the “membrane complex marked by Can1” 

(MCC) that also harbours a protein of unknown function, Sur7. Wild-type yeast cells are sensitive 

to the toxic arginine analogue canavanine. This toxicity is conferred by the function of Can1 

(Opekarova et al., 1993). Redirecting Can1-GFP fusion proteins localization to Pmp1 domains, 

enabled cells to grow in the presence of canavanine comparably as well as Δcan1, indicating that 

the function of Can1 is lost when it is not present in the MCC (Spira et al., 2012). In contrast, 

immobilization of Can1-GFP within the MCC by co-expression of Sur7-GBP fusions retained 

canavanine sensitivity (Spira et al., 2012). Likewise, disruption of the MCC by deletion of important 

components such as Pil1 or NCE102, that both impaired, but did not completely prevent MCC 

formation resulted in reduced but significant growth in presence of canavanine (Spira et al., 2012). 

  

These results demonstrate that correct sub-compartmentalization is indeed important for protein 

function of different transporter proteins in yeast. The establishment of a comparable system using 

Remorin proteins and the immune receptor FLS2 is therefore a promising approach to 

demonstrate the importance of membrane sub-organization for efficient signal transduction and 

the impact of perturbations of this system in multicellular organisms. 
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5 Abbreviations 
APT Acyl-protein thioesterase 
BAK1 BRI1-ASSOCIATED KINASE 1 
BRI1 BRASSINOSTEROID INSENSITIVE 1 
C- Carboxy- 
CASP CASPARIAN STRIP MEMBRANE PROTEIN 
CBL Calcineurin B-like 
CPK Calcium dependent protein kinase 
CSC Cell wall synthesising complex 
CSD Casparian strip domain 
DEX Dexamethasone 
DIM Detergent insoluble membranes 
DANN  Desoxyribonucleic acid 
EFR EF-TU Receptor 
ER Endoplasmic reticulum 
F2PK 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase  
FLOT Flotillin 
FLS2 FLAGELLIN SENSING 2 
Ftase Farnesyltransferase 
GBP GFP-binding protein 
GFP Green fluorescent protein 
GGTase Geranylgeranyltransferase 
GPI Glycosylphosphatidylinositol 
GPMV giant plasmamembrane vesicles  
ID Intrinsicaly disordered 
LAT LINKER FOR ACTIVATION OF T-CELLS 
LPD Lipid-binding domain 
LRR Leucin rich repeat 
MAPK MITOGEN ACTIVATED PROTEIN KINASE 
MIDD1 MICROTUBULE DEPLETION DOMAIN 1 
N- Amino- 
NADPH Nicotinamide adenine dinucleotide phosphate 
NFR NOD FACTOR RECEPTOR 
NMT N-myristoyl transferase 
MCC Membrane complex marked by Can1 
OGA Oligalacuronic acid 
PAMP Pathogen associated molecular pattern 
PAT Protein-acyl transferase 
PI Phosphoinositide 
PIN PIN-FORMED 
PM Plasma membrane 
PPT Palmitoyl protein thioesterase 
PtdCho Phosphatidylcholine 
PtdEtn Phosphatidylethanolamine 
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PtdIns Phosphatidylinositol 
PtdSer Phosphatidylserine 
RBOHD RESPIRATORY BURST OXIDASE HOMOLOGUE  
RFP Red fluorescent protein 
RIN4 RPM1 INTERACTING PROTEIN 4 
RLK Receptor like kinase 
RNA Ribonucleicacid 
RNS Root nodule symbiosis 
ROP Rho of plant 
ROS Reactive oxygen species 
SLAC1 SLOW ANION CHANNEL 1 
SLAH3 SLOW ANION CHANNEL 1 HOMOLOGUE 3 
SM Sphingomyelin 
STED Stimulated emission depletion 
SWEET SUGARS WILL EVENTUALLY BE EXPORTED 
SYMREM1 SYMBIOTIC REMORIN 1 
SYMRK SYMBIOTIC RECEPTOR KINASE 
TMD Transmembrane domain 
TRX Thioredoxin 
VSG Variable surface glycoproteins  
WAK WALL ASSOCIATED KINASE 
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