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Abstract 

Dictyostelium discoideum and neutrophils are very similar in their modes of directed cell 

movement. D. discoideum migration is necessary for uptake of the bacterial food source, for the 

development and for fruiting body formation in the unique life cycle. Neutrophils are very 

important for cell-mediated immune responses and antagonize invading pathogens. To this end, 

they execute a variety of different cellular functions including adhesion, spreading, directed 

migration and phagocytosis. All these processes require an accurately regulated actin network as 

well as the activation and adjustment of different signaling pathways. Filamin (FLN) proteins are 

highly conserved large F-actin binding proteins that crosslink actin into orthogonal networks and 

are sensible candidates to be involved in these processes.  

D. discoideum contains one FLN isoform (ddFLN). Deficiency of ddFLN resulted in a surprisingly 

subtle phenotype and had no effect on cell motility. A similar phenomenon was observed for 

other actin-binding proteins as well, which triggered the hypothesis of redundancy, i.e. actin-

binding proteins can compensate for each other in order to guarantee different cellular 

processes. In the first part of the study, the function of ddFLN during cell migration was analyzed 

in more detail. A ddFLN overexpressing strain was generated by transforming wild-type cells with 

a full-length ddFLN-GFP construct. Additionally, a strain expressing a truncated ddFLN protein 

lacking the actin-binding domain (GFP-ddFLN(rod1-6)) was created in the wild-type background. 

Migration of these ddFLN mutant strains was analyzed in comparison to the primary ddFLN null 

mutant strain HG1264 and wild-type cells. Cell migration was investigated in the well-established 

micropipette assay where cells crawl on a flat surface in buffer along a gradient of 

chemoattractant. In addition, an under-agarose assay was executed to assess cell migration 

under restrictive conditions, and a new 3D migration assay was developed to study cell motility 

during 3D movement within a collagen matrix. The use of the evaluation software Imaris allowed 

the in-depth examination of the ddFLN mutant strains in different modes of migration. The 

subtle phenotype of the ddFLN null strain HG1264 that displayed only minor effects on 3D 

migration was confirmed. However, the analysis indicated an important role of ddFLN in cell 

motility. Overexpression of ddFLN revealed a function of ddFLN in maintaining the stability of the 

cell cortex and the leading edge. The results of the GFP-ddFLN(rod1-6) expressing strain hinted 

toward different kinds of migration modes used by D. discoideum cells under restrictive 

conditions (under-agarose assay) and in 3D (collagen assay) as compared to movement on a 2D 
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surface in buffer (micropipette assay). The data clearly suggested that ddFLN plays different 

roles for various migration types. 

In the main part of the project, the function of human FLN proteins in neutrophils was assessed. 

The human promyelocytic leukemia cell line HL60 was used as a neutrophil model. Treatment 

with DMSO induced the differentiation of the cells into the neutrophil-like state. The mammalian 

FLN family consists of three different isoforms: FLNa, FLNb and FLNc. In a first part of the study, 

FLNa was identified as the major isoform in the neutrophil-like HL60 cells. Additionally, a peculiar 

localization of FLNa was found at the uropod of migrating cells. FLNa deficient HL60 cell lines 

were generated by shRNA mediated knockdown to investigate the functional relevance of FLNa 

in detail. Knockdown of FLNa resulted in a decreased speed of migration on a flat surface (2D), 

that could be the consequence of a diminished activation of myosin ΙΙ. FLNa deficient cells also 

displayed a reduced motility in 3D migration, presumably caused by the same defect in myosin ΙΙ 

activation. There were no or only minor effects of FLNa on adhesion and cell spreading but a so 

far undescribed role of FLNa in neutrophil phagocytosis, probably in the pattern recognition 

receptor (PRR) mediated recognition of pathogens, was detected. Subsequently, a hitherto 

unknown FLNa interaction with coronin 1A, mediated by FLNa repeats 9 to 18 was identified. In 

summary, FLNa deficiency resulted in a surprisingly subtle phenotype. There were no indications 

of an involvement of FLNa in the modulation of F-actin network dynamics. Instead, in 

neutrophils FLNa seems to play a more regulatory role with respect to functions relevant for 

motility. 
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Zusammenfassung 

Dictyostelium discoideum und Neutrophile sind sich im Hinblick auf die Art und Weise ihrer 

gerichteten Zellmigration sehr ähnlich. Migration von D. discoideum ist notwendig für die 

Aufnahme der bakteriellen Nahrungsquellen, für die Entwicklung und die Bildung des 

Fruchtkörpers innerhalb des einzigartigen Lebenszyklus. Neutrophile sind sehr wichtig für die 

Zell-basierte Immunantwort und bekämpfen eingedrungene Pathogene. Zu diesem Zweck üben 

sie eine Anzahl verschiedener zellulärer Funktionen aus, wie z.B. Adhäsion, Spreiten, gerichtete 

Migration und Phagozytose. Für die Ausführung all dieser verschiedenen Prozesse ist ein präzise 

reguliertes Aktin-Netzwerk und gleichzeitig die Aktivierung sowie Regulierung verschiedener 

Signalwege nötig. Filamin (FLN) Proteine sind stark konservierte, große Aktin-Bindeproteine, die 

F-Aktin in rechtwinklige Netzwerke quervernetzen, und stellen geeignete Kandidaten dar, um an 

der Regulation dieser Prozesse beteiligt zu sein. 

In D. discoideum gibt es nur eine FLN Isoform (ddFLN). Verringerung der ddFLN Expression 

verursachte einen überraschend schwachen Phänotyp und hatte keinen Effekt auf die 

Beweglichkeit der Zellen. Ein ähnliches Phänomen wurde für andere Aktin-Bindeproteine 

beobachtet, woraus die Hypothese der Redundanz abgeleitet wurde: Aktin-Bindeproteine 

können einander ersetzen, um die Ausübung bestimmter zellulärer Prozesse zu garantieren.  

Im ersten Teil der Arbeit wurde die Funktion von ddFLN während der Zellmigration im Detail 

untersucht. Ein ddFLN überexprimierender Stamm wurde erzeugt, indem ein Vollelänge-ddFLN 

Konstrukt in Wildtyp-Zellen transformiert wurde. Zudem wurde ein Stamm hergestellt, der im 

Wildtyp-Hintergrund ein verkürztes ddFLN Protein exprimierte, welchem die Aktin-Bindedomäne 

fehlte (GFP-ddFLN(rod1-6)). Migration dieser verschiedenen ddFLN Mutanten-Stämme wurde im 

Vergleich zur ersten ddFLN-Null-Mutante (HG1264) und zu Wildtyp-Zellen analysiert. 

Zellmigration wurde mithilfe des etablierten Mikropipetten-Versuches untersucht, bei dem sich 

die Zellen auf einer flachen Oberfläche in Puffer entlang eines Lockstoff-Gradienten bewegen. 

Zusätzlich wurde ein Unter-Agarose-Versuch verwendet, mit dem Zellmigration unter 

einschränkenden Bedingungen charakterisiert wird. Ein neuer 3D-Migration-Versuch wurde 

entwickelt, der die Analyse der Zellen während ihrer 3D-Bewegung durch eine Kollagen-Matrix 

erlaubt. Die Verwendung der Analyse-Software Imaris ermöglichte die detaillierte Untersuchung 

der unterschiedlichen ddFLN-Mutanten Stämme in verschiedenen Arten der Migration. Der 

schwache Phänotyp der ddFLN-Null-Mutante, die ausschließlich geringe Effekte in der 3D 

Migration zeigte, wurde bestätigt. Dennoch gab es starke Hinweise auf eine wichtige Rolle von 
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ddFLN in der Beweglichkeit der Zellen. Die Überexpression des ddFLN Proteins offenbarte eine 

Funktion von ddFLN in der Aufrechterhaltung der Stabilität des Zellkortex und der Vorderfront 

der migrierenden Zelle. Die Ergebnisse des GFP-ddFLN(rod1-6) exprimierenden Stammes 

deuteten darauf hin, dass D. discoideum Zellen unter einschränkenden Bedingungen (im Unter-

Agarose-Versuch) und während der Migration in 3D (im Kollagen-Versuch) andere Arten der 

Migration aufwiesen als während der Bewegung auf einer flachen 2D Oberfläche in Puffer (im 

Mikropipetten-Versuch). Die Daten legten eindeutig nahe, dass ddFLN in den unterschiedlichen 

Arten der Migration verschiedene Funktionen ausübte. 

Im Hauptteil des Projektes wurde die Funktion von humanen FLN in Neutrophilen untersucht. 

Die humane promyelozytische Leukämie-Zelllinie HL60 wurde als Neutrophilen-Model 

verwendet. Behandlung mit DMSO induzierte die Differenzierung der Zellen in den 

Neutrophilen-ähnlichen Zustand. Die Familie der Säuger FLN Proteine besteht aus drei 

verschiedenen Isoformen: FLNa, FLNb und FLNc. Im ersten Teil der Arbeit wurde FLNa als Haupt-

Isoform in den Neutrophilen-ähnlichen HL60 Zellen identifiziert. Zusätzlich wurde eine auffällige 

Lokalisation des FLNa Proteins am Hinterende der migrierenden Zellen gefunden. Um die 

funktionelle Relevanz des FLNa Proteins im Detail zu analysieren wurden HL60 Zelllinien mit 

vermindertem FLNa Proteingehalt mithilfe von shRNS vermittelter Herunterregulation der 

Expression hergestellt. Die Verminderung des FLNa Expressionlevels führte zu einer verringerten 

Migrationsgeschwindigkeit der Zellen auf einer flachen Oberfläche (2D), was die Konsequenz 

einer reduzierten Aktivierung von Myosin ΙΙ sein könnte. Die Zellen mit mangelhafter FLNa 

Expression zeigten ebenso eine verminderte Geschwindigkeit in der 3D Migration, was 

vermutlich durch den gleichen Defekt in der Myosin ΙΙ Aktivierung hervorgerufen wurde. FLNa 

hatte keine oder nur sehr geringe Effekte von FLNa auf Adhäsion und Zell-Spreiten. Allerdings 

zeigte sich eine bisher noch nicht beschriebene Rolle von FLNa in der Neutrophilen-Phagozytose, 

wahrscheinlich in der Mustererkennungsrezeptoren (pattern recognition receptor, PRR) 

vermittelten Erkennung der eingedrungenen Pathogene. Zudem wurde eine bis dato 

unbekannte Interaktion von FLNa mit Coronin 1A, welche von den FLNa Wiederholungs-

Sequenzen 9 bis 18 vermittelt wird, identifiziert. Zusammenfassend verursachte der Mangel an 

FLNa einen überraschend schwachen Phänotyp. Es gab keine Hinweise darauf, dass FLNa an der 

Modulation der Dynamik von F-Aktin Netzwerken beteiligt ist. Stattdessen scheint FLNa eine 

eher regulatorische Rolle im Hinblick auf Funktionen zu haben, die die Beweglichkeit der Zellen 

betreffen. 
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1 Introduction 

1.1 The model organism Dictyostelium discoideum 

The amoeboid soil organism Dictyostelium discoideum (D. discoideum) is a haploid eukaryote 

that was first isolated and characterized by Kenneth B. Raper (Raper, 1935). Phylogenetically,  

D. discoideum belongs to the phylum Mycetozoa and developed form the animal-fungal lineage 

after the divergence of plants (Eichinger et al., 2005). As a social amoeba, D. discoideum exhibits 

a unique life cycle comprising unicellular and multicellular stages (Figure 1). In the vegetative 

state, the cells live as individual amoebae in the soil, feed on bacteria via phagocytosis and 

multiply by mitotic division. Under adverse conditions like for example starvation, the cells 

become responsive to cAMP released by other amoebae and begin to form streams, aggregates 

and often a multicellular, well-organized ‘slug’ with distinguishable cell types. The slug is motile 

and migrates in a phototactic and thermotactic manner to an optimal location, where the 

formation of a fruiting body and finally the release of spores are initiated (Kessin, 2001). 

 

D. discoideum is a widely used model organism to study cell motility, chemotaxis, phagocytosis, 

cell division, mitosis, morphogenesis or cell type differentiation. The cells can be easily cultured 

either on bacterial lawns, cell culture plates or in shaking cultures. They exhibit a relatively short 

generation time of about 8 hours so that large quantities of cells can be quickly obtained. 

Furthermore, the genome of D. discoideum is completely sequenced and the haploid nature of 

the cells enables the fast and relatively easy generation of mutants (Eichinger et al., 2005). 

Figure 1: The life cycle of D. discoideum  

In the growth phase, the D. discoideum

cells live as amoebae. Upon starvation, the 

cells enter the aggregation phase and begin 

to stream together mediated by 

chemotaxis toward cAMP. As a result, a 

multicellular mound is formed which then 

can form a slug or start culmination 
without entering the slug stage. Finally, the 

fruiting body consists of a disc, the stalk 

and the spore mass at the top. New 

vegetative amoebae can hatch from the 

released spores and the life cycle begins 

anew. Under laboratory conditions a full 

cycle requires about 24 hours. Picture 

taken from Chisholm and Firtel (2004).    
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Minus mutants and mutant strains expressing selected fusion proteins can be precisely analyzed 

with cell biological techniques and can be used for fixed cell microscopy, live-cell imaging and 

protein interaction studies (Faix et al., 2004; Kuspa et al., 1995; Parent, 2001). D. discoideum is a 

prime model organism to study cell motility and cytoskeletal dynamics, especially as its actin 

cytoskeleton and many of its actin-binding proteins share high similarities with cytoskeletal 

components of motile cells of higher organisms (Eichinger et al., 1999; Noegel and Luna, 1995; 

Zigmond et al., 1997).    

1.2 Neutrophils 

1.2.1 Neutrophils in the innate immune system 

Neutrophils are white blood cells or leukocytes that mature in and are released from the bone 

marrow. Together with the eosinophils and basophils they form the class of polymorphonuclear 

cells (PMNs) or granulocytes. With 50 – 70% they are the most abundant circulating leukocytes 

in human blood (Mestas and Hughes, 2004). Neutrophils are characterized by a segmented 

nucleus, specific granules, including primary, secondary and tertiary granules, and secretory 

vesicles within the cytoplasm that are sequentially generated during maturation (Borregaard and 

Cowland, 1997). 

In general, neutrophils are considered as very short-lived cells with a lifespan of approximately 

10 hours in the peripheral blood. However, a previous study reported a substantially longer 

lifespan of 5.4 days, but this remains to be confirmed (Li et al., 2011; Pillay et al., 2010; Tofts et 

al., 2011). Nevertheless, neutrophils are the first immune cells recruited in an inflammatory 

process to oppose invading pathogens. Therefore, the cells have to leave the circulation and 

transverse into the tissue to arrive at the site of infection or inflammation in a multistep process 

called transendothelial migration (TEM) (Figure 2). This recruitment process is initiated by tissue 

resident leukocytes that secret cytokines e.g. tumor necrosis factor (TNF) or interleukin-1β  

(IL-1β) in response to invading pathogens (Nauseef and Borregaard, 2014). Activated endothelial 

cells express high levels of E- and P-selectins, membrane glycoproteins that interact with surface 

receptors as P-selectin glycoprotein ligand (PSGL)-1 and other glycosylated ligands on 

neutrophils. Selectin-ligand interactions are necessary to capture neutrophils from the blood 

stream (Zarbock and Ley, 2009). Chemokines either secreted directly by inflamed endothelial 

cells or by activated mast cells and platelets are immobilized on the luminal site of the 

endothelium and activate another group of important surface receptors on neutrophils, the 
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integrins (Massena et al., 2010). Integrins are heterodimeric glycoproteins consisting of an  

α-chain non-covalently bound to a β-chain. Activation of integrins is accompanied by 

conformational changes from a low affinity state over an intermediate affinity to a high affinity 

conformation (Zhang and Chen, 2012). At least 24 different integrin molecules are known in 

human. They are composed of the 18 different α- and 8 different β-subunits. Mainly β2 integrins 

are expressed on neutrophils with αMβ2 (macrophage-antigen, Mac-1) and αLβ2 (lymphocyte 

function-associated antigen, LFA-1) as the most important integrins (Zarbock and Ley, 2009). The 

activation of integrins (inside-out signaling) in neutrophils occurs either via signaling pathways 

activated after binding of chemoattractant receptors to chemokines or directly through selectin 

mediated signaling. Subsequent integrin-ligand interaction (outside-in signaling), in particular 

the binding of LFA-1 to the intracellular adhesion molecule-1 (ICAM-1) on endothelial cells, 

activates signaling pathways in neutrophils involving protein lipase C (PLC), small GTPases and 

actin-binding proteins as talin. Effectively these signaling pathways result in slowing of 

neutrophil rolling, arrest and spreading on the vessel wall (Ley et al., 2007; Nauseef and 

Borregaard, 2014). Subsequently, the cells crawl Mac-1-ICAM-1 dependent on the vessel wall to 

a site where they can leave the vasculature either by using the paracellular route through 

endothelial junctions or the transcellular route, directly through an endothelial cell (Muller, 

2011; Phillipson et al., 2006). After traversing the basement membrane, neutrophils perform 

chemotaxis toward the complement factor C5a or bacteria derived chemoattractants as  

N-formylmethionyl-leucyl-phenylalanine (fMLP) and migrate through the tissue to the sites of 

inflammation or infection (Kolaczkowska and Kubes, 2013).   

 

Figure 2: Leukocyte adhesion cascade 

Leukocytes are captured from the blood by activated endothelial cells by selectin-ligand interactions. 

They roll along the endothelium and become activated. Further selectin-ligand interactions, LFA-1 

and Mac-1 binding to ICAM-1 on the endothelium mediate slow rolling, arrest and subsequent firm 

adhesion and spreading of the leukocytes. After Mac-1-ICAM-1 dependent intravascular crawling, the 

leukocyte traverse the endothelium either by paracellular or transcellular transmigration and arrive 

in the tissue. Picture taken and modified form Ley et al. (2007).  
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Once the neutrophil encounters the invading pathogen, it can execute different killing 

mechanisms, among them phagocytosis. Invading pathogens become usually opsonized, that 

means their surface is coated with complement factors and IgGs. This ‘coat’ facilitates their 

recognition and elimination through phagocytes. Therefore, phagocytes are equipped with 

different Fcγ receptors that can interact with IgGs or complement receptors, like Mac-1, a 

receptor for the complement factor iC3b (Langereis, 2013; Vidarsson and van de Winkel, 1998). 

Additionally, pattern recognition receptors (PRRs) are also present that can interact with 

invariant structural motifs on pathogens, the pathogens-associated molecular patterns (PAMPs) 

(Thomas and Schroder, 2013). After the pathogen is recognized and engulfed by the neutrophil, 

it is trapped within the cell in a phagosome. Primary and secondary vesicles fuse with the 

phagosome and the pathogen is killed by their antimicrobial contents and the production of 

reactive oxygen species (ROS) (Kruger et al., 2015). Neutrophils also execute extracellular killing 

mechanisms by generating a powerful oxidative burst, by releasing antimicrobial and proteolytic 

proteins stored in the granules or by the formation of NETs, extracellular DNA traps (Brinkmann 

et al., 2004; Kruger et al., 2015; Nauseef and Borregaard, 2014). While neutrophils play an 

essential role during the first immune response to acute inflammations, they also display anti-

inflammatory characteristics, are involved in wound healing by for example removal of dead cells 

and debris and are able to modulate the adaptive immune response through interactions with 

dendritic cells, B- and T-cells (Kolaczkowska and Kubes, 2013).          

1.2.2 The HL60 cell line – a neutrophil model 

Studying neutrophil functions is always a problematic endeavor due to the limited life span of 

these cells. While the development of knockout and mutant mice models made the analysis of 

the functions of mouse neutrophils possible, the examination of human neutrophil mechanisms 

remains difficult. Although it is possible to isolate granulocytes from the peripheral blood, the 

small amounts of isolated cells, the variability between different donors, the short life span and 

the difficulties in genetic manipulation of these cells prevent extensive analysis of human 

neutrophil functions. Different leukemia cell lines offer an alternative option. The human 

promyelocytic leukemia cell line HL60 was established in 1977 from the peripheral blood of a 

female patient suffering from acute promyelocytic leukemia (Collins et al., 1977). The immortal 

cell line can proliferate growth-factor-independently in suspension with a doubling time of 20 to 

48 hours (Birnie, 1988). The HL60 cells exhibit mutations in some typical oncogenes, including a 

point mutation in N-ras, an amplified c-myc gene, and they are deficient for p53 (Collins, 1987). 
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Leukemia cells are typically characterized by a disrupted hematopoiesis (Tsiftsoglou et al., 2003). 

Under physiological conditions, neutrophils are generated in the bone marrow where 

hematopoietic stem cells give rise, over a continuum of different progenitors, to terminal 

differentiated blood cells. The first step in the hematopoietic process is the division into a 

lymphoid branch that results in natural killer cells, B- and T-lymphocytes and a myeloid branch 

(Larsson and Karlsson, 2005). The myeloid branch is further subdivided into to the 

megakaryocyte/erythrocyte lineage and the granulocyte/macrophage lineage (Akashi et al., 

2000). The first progenitor cell type within the latter branch is the myeloblast that develops via 

further progenitors as for example promyelocytes and myelocytes into mature granulocytes 

(neutrophils, basophils and eosinophils) or alternatively, via monoblasts and monocytes, into 

mature macrophages (Rozenberg, 1996). The vast majority of the HL60 cells display a 

myeloblast /promyelocytic morphology with large round nuclei, basophilic cytoplasm, azurophilic 

granules and surface antigens characteristic for immature myeloid cells. The untreated cell 

culture usually contains 5 – 10% cells which underwent spontaneous differentiation into more 

mature cells as myelocytes, monocytes or granulocytes (Birnie, 1988). However, the pluripotent 

cells can be also directly induced to differentiate either into monocyte-, macrophage-, 

eosinophil-like or granulocyte-like stages by the addition of certain substrates. A few examples 

for the different inducing agents are summarized in table 1. 

Table 1: Inducers of HL60 differentiation (Collins, 1987; Collins et al., 1978; McCachren et al., 1986) 

Differentiation along the granulocyte- or neutrophil-like pathway is accompanied by a decrease 

in cell size, in the nuclear-to-cytoplasm ratio, in myeloperoxidase (MPO) activity, in the 

cytoplasmic basophilic properties and by an increase in nuclear segmentation in 90 – 95% of the 

cells. Alterations in gene and protein expression lead to a changed surface marker expression 

characteristic for mature granulocytes. This renders the HL60 cell line a useful model to study 

neutrophil functions (Birnie, 1988; Fleck et al., 2005). While the mechanism by which retinoic 

acid induces differentiation is well understood, the mode of action of DMSO is not precisely 

Induced cell type 

Monocytes Macrophages Granulocytes Eosinophils 

Vitamin D3 

Sodium butyrate 

Differentiating-inducing factor 

(DIF) 

Interferon-γ (IFN-γ) 

Tumor necrosis factor 

Phorbol esters (TPA) 

Teleocidin 

Dimethyl sulfoxide (DMSO) 

Retinoic acid 

Actinomycin D 

Dimethylformamide (DMF) 

Dibutyryl-cAMP 

Alkaline media 

Butyric acid 

GM-CSF 
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known, but seems to involve changes in c-myc and p53 expression, impairment of PKC signaling 

and increased calcium uptake (Tsiftsoglou et al., 2003). It is an important finding that different 

inducers mediate differentiation via variable signaling pathways and result into differentiated 

cells with slightly diverse properties (Carrigan et al., 2005; Sjögren et al., 2000). Additionally, 

numerous HL60 wild-type strains of different origin exhibit also variable characteristics and 

display in part varying susceptibilities toward the inducers (Fleck et al., 2005). All this makes a 

highly standardized protocol for the induction of differentiation of HL60 cells necessary. In the 

present study, 1.3% DMSO were used for induction of differentiation as previously described 

(Millius and Weiner, 2010). DMSO differentiated HL60 cells are well suited to study neutrophil 

chemotaxis and motility. After differentiation by DMSO the cells display high surface expression 

levels of different chemoattractant receptors for fMLP, LTB4 and C5a, other complement 

receptors and different Fc receptors (Fleck et al., 2005; Jacob et al., 2002; Klinker et al., 1996). 

The cells also express the typical neutrophil cell surface receptors Mac-1, LFA-1 and L-selectin. In 

contrast, retinoic acid and dibutyryl-cAMP differentiated HL60 cells exhibit an only low Mac-1 

surface expression and L-selectin expression is also diminished after differentiation with retinoic 

acid (Carrigan et al., 2005; Sjögren et al., 2000). Additionally, treatment with DMSO increases the 

percentage of cells, capable of phagocytosis from 5 – 10% to 85 – 90% (Collins et al., 1978). A 

previous study comparing DMSO differentiated HL60 cells with primary human neutrophils 

revealed high similarities between both cell types with regard to migration speed in chemotaxis 

and chemokinesis, G-protein coupled receptor, phosphatidylinositol (4,5)-bisphosphate 3-kinase 

(PI3K), Rho kinase and phosphatase 1/2A signaling pathways (Hauert et al., 2002). However, it is 

important to note that neutrophil-like HL60 cells are not identical with primary neutrophils. 

DMSO differentiated HL60 cells display differences in protein kinase C signaling pathways that 

are associated with a decreased phosphorylation of the mitogen-activated protein kinase 

(MAPK) and express only low levels of interleukin-8 (IL-8) receptors in comparison with primary 

neutrophils (Hauert et al., 2002). Furthermore, while differentiated HL60 cells contain primary 

azurophilic granules, secondary granules and secretory vesicles are completely absent and many 

proteins, localized normally inside those granules are not expressed (Johnston et al., 1992; 

Nordenfelt et al., 2009).       

1.3 Cell migration 

The ability of cells to perform migration is essential for a vast number of cellular processes 

including embryogenesis, wound healing, angiogenesis, nerve growth, hunting and killing of 
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bacteria for example by immune cells or D. discoideum. In contrast, improper cell migration can 

cause pathological conditions for example in cancer metastasis or inflammatory diseases as 

asthma or arthritis. In general, cell migration can be divided in either collective or single-cell 

movement in either 2D or 3D environments. Single cells can migrate using a mesenchymal 

migration mode that is defined by a strong adhesiveness mediated by focal adhesion and is 

characterized by proteolytic degradation of the surrounding matrix in 3D. This type of migration is 

typically detectable in fibroblasts, myoblasts, neural crest cells and different cancer cells from 

solid tumors. These cells exhibit a rather low migration speed (0.1 – 1 µm/min). In contrast, cells 

like D. discoideum and leukocytes, including neutrophils and dendritic cells display the amoeboid 

migration mode that is characterized by the lack of focal adhesions and stress fibers. These cells 

are rather poorly adhesive, migrate with considerably higher speed of approximately 10 µm/min 

and do not perform proteolytic remodeling of the surrounding matrix when migrating in 3D. 

However, it is important to note that this classification is rather arbitrary and still incomplete, and 

that single cells can definitely switch between the different modes of migration depending on 

different environmental conditions or cell properties (Friedl et al., 2001; Friedl and Wolf, 2010). 

Both neutrophils and D. discoideum cells can migrate via pseudopodial amoeboid crawling. This 

cyclic process is characterized by the periodic protrusion of the cell front (pseudopodium) 

mediated by actin polymerization, contraction of the cell body and retraction of the cell’s rear 

via an actomyosin driven motor (Bastounis et al., 2014; Cai and Devreotes, 2011). The cells can 

migrate either randomly or they can sense chemical cues in the environment and perform 

directed movement in a process called chemotaxis. During chemotactic migration, the gradient 

of an extracellular chemoattractant is detected by the cells and converted into an 

inhomogeneous intracellular signaling cascade that allows the establishment of cell polarity. 

Thereby, different cytoskeletal components and signaling molecules are recruited to either the 

anterior or the posterior of the cells, which allows migration in direction of the highest 

concentration of the chemoattractant (Cai and Devreotes, 2011). Either folic acid or cAMP can 

act as chemoattractant for D. discoideum cells depending on the life cycle phase, whereas a 

variety of different factors like fMLP secreted by bacteria, complement factor C5a, chemokines 

or growth factors can function as stimuli for neutrophil chemotaxis (Bagorda et al., 2006; 

Lämmermann and Germain, 2014). However, the underlying signaling pathways are surprisingly 

similar in D. discoideum and neutrophils (Devreotes and Zigmond, 1988; Jin et al., 2009). In both 

cases, chemotaxis is initiated by the binding of the respective chemoattractant to G-protein 

coupled receptors (GPCRs). GPCRs are a large seven-transmembrane receptors coupled to  
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G-proteins that consist of α-, β- and γ-subunits. Upon stimulation, the βγ-dimer dissociates from 

the α-subunit and both subunits can subsequently recruit and activate various downstream 

effectors (Bagorda et al., 2006). The GPCRs are thereby uniformly distributed in the plasma 

membrane indicating that the spatial distribution of the signaling pathways occurs downstream 

of the receptors (Servant et al., 1999; Xiao et al., 1997). These signaling pathways lead to the 

recruitment and activation of a variety of different downstream effectors, among them 

phosphatidylinositol (4,5)-bisphosphate 3-kinases (PI3Ks) and small GTPases. PI3Ks, that can be 

directly activated by the Gβγ complex, are translocated to the cell front and are responsible for 

the accumulation of phosphatidylinositol (3,4,5)-triphosphate (PIP3). Simultaneous recruitment 

of the PIP3 5-phosphatase PTEN, a PI3K antagonist, to the rear of the cell results in a locally 

restricted production of PIP3 that reflects the external chemical gradient in neutrophils and  

D. discoideum (Bagorda et al., 2006; Parent, 2004). PIP3, accumulated at the leading edge, can 

bind various downstream effector proteins for example via a pleckstrin homology (PH) domain. 

In D. discoideum, the PH-domain containing proteins CRAC (cytosolic regulator of adenylyl 

cyclase), PhdA (PH domain-containing protein A), Akt/PKB (protein kinase B) or Scar1, an adaptor 

protein related to the Wiskott-Aldrich syndrome protein (WASP) family in mammals are 

recruited to the leading edge (Cai and Devreotes, 2011; Friedl et al., 2001). These effector 

proteins are responsible for the induction of polarity and trigger actin polymerization (Cai and 

Devreotes, 2011). For example Scar1 can directly control the activity of the Arp2/3 complex that 

contributes to the nucleation of actin polymerization (Higgs and Pollard, 1999; Ura et al., 2012). 

Among the PIP3 binding proteins identified, Akt/PKB was also found in neutrophils (Servant et al., 

2000). Additionally, regulators of the small GTPases, for example the Rac-GEFs P-Rex (PIP3-

dependent Rac exchanger) or Vav-1, are recruited via PIP3 (Kim et al., 2003; Welch et al., 2002). 

GEFs (guanine nucleotide-exchange factors) activate GTPases by mediating the release of GDP 

and thereby enabling the binding of GTP. The small GTPases Rac and Cdc42 are crucial for actin 

polymerization, formation and stabilization of a leading edge in neutrophils (Srinivasan et al., 

2003). For example, Cdc42 interacts with WASP that in turn activates the Arp2/3 complex 

(Rohatgi et al., 1999). While no homologues for Cdc42 and Rho could be found in D. discoideum, 

15 Rac homologues have been identified. The exact functions for all these Rac proteins are not 

entirely understood so far. However, RacB, RacC and Rac1 were already identified to play a role 

during directed cell movement (Chung et al., 2000; Han et al., 2006; Park et al., 2004). In both 

neutrophils and D. discoideum, alternative PI3K independent pathways, involving for example Ras 

proteins, target of rapamycin complex 2 (TORC2) or phospholipase A2 (PLA2) are present that are 
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also capable of signal transduction from the chemoattractant receptor to cytoskeletal 

components, again underlining the similarities between D. discoideum and neutrophil chemotaxis 

(Artemenko et al., 2014). In both cell types, the signaling pathways ultimately result in the 

regulation of actin polymerization and expansion at the leading edge. Besides the Arp2/3 

complex, other homologous actin-binding proteins (ABPs) are predicted to be involved in the 

modulation of the actin network, as for example spectrin or filamin (Friedl et al., 2001).  

Following the protrusion of the leading edge, the pseudopod then establishes a low adhesive 

interaction with the substrate. While adhesion in neutrophils is mostly mediated by ECM-binding 

integrins via outside-in signaling, no integrin homologs have been identified so far in  

D. discoideum. The exact mechanism of adhesion and the involved receptors in D. discoideum 

remain to be determined (Friedl et al., 2001).      

The last step in chemotaxis, the contraction and retraction of the cell’s rear, the so-called uropod, 

is mediated by myosin ΙΙ filaments. While myosin ΙΙ is located at the rear in  

D. discoideum and neutrophils, the signaling pathways that lead to myosin ΙΙ assembly and 

contraction are distinct (Parent, 2004). In D. discoideum cells, either Akt/PKB or cGMP mediated 

signaling is responsible for myosin ΙΙ contraction (Chung et al., 2001; Veltman et al., 2005). In 

contrast, uropod retraction in neutrophils is controlled by RhoA and its downstream effector 

ROCK (Rho-associated protein kinase) that leads to the phosphorylation and thereby activation of 

myosin ΙΙ (Niggli, 1999; Xu et al., 2003). 

Neutrophils and D. discoideum can also migrate in 3D environments. In their natural habitat,  

D. discoideum crawls in the soil and single cells also migrate within the multicellular organisms 

formed in the developmental phase. Neutrophils and of course other leukocytes have to 

transverse the interstitial tissue in order to arrive at the sites of injury or inflammation. Different 

leukocytes, like dendritic cells or T cells were shown to migrate in an integrin-independent 

manner in 3D. While the movement within a matrix is primarily driven by actin protrusion, myosin 

ΙΙ contractility is here again important and functions in mediating squeezing of the cell through 

narrow gaps in the meshwork (Lämmermann et al., 2008; Woolf et al., 2007). In contrast, not 

many details are known about the mode of migration of D. discoideum cells in 3D. However, the 

cells can adopt a second type of amoeboid movement that involves membrane blebbing and 

seems to be prominent in 3D environments (Fackler and Grosse, 2008; Yoshida and Soldati, 2006). 

In general, blebs are rounded bulky protrusions of the plasma membrane that are used to extend 

the leading edge. The initial step in blebbing involves the local disruption of plasma membrane-

cytoskeleton interactions and the subsequent protrusion of the membrane is either mediated by 
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the cells internal hydrostatic pressure or by actomyosin driven contractility. Notably, actin 

polymerization does not occur in this initial step, but it is necessary in the following steps to retain 

bleb expansion. Actomyosin contractility is responsible for bleb retraction (Charras and Paluch, 

2008; Fackler and Grosse, 2008). Rac GTPases as RacB and RacE have been identified in  

D. discoideum to be involved in bleb formation (Lee et al., 2003; Zatulovskiy et al., 2014). The bleb 

driven migration mode in D. discoideum is also preferentially initiated under conditions of 

increased mechanical resistance and can occur in cooperation with pseudopods leading to the 

formation of hybrid structures called blebbopods (Tyson et al., 2014; Zatulovskiy et al., 2014). In 

some mammalian cells, blebbing can also occur and it is regulated by RhoA-ROCK-myosin and Rac 

GTPase signaling pathways (Fackler and Grosse, 2008). In mammalian systems, blebbing is of 

particular interest in the context of cancer cells as this mode of migration seems to support the 

invasive properties of a tumor cell (Sahai and Marshall, 2003; Wyckoff et al., 2006). While bleb 

driven migration was indeed also observed in neutrophils during migration in confined spaces, 

not much is known about the regulation and occurrence of blebs in leukocytes (Wilson et al., 

2013).                        

1.4 Filamin proteins 

Filamin (FLN) protein was first purified accidentally from rabbit macrophages in 1975 and 

displayed characteristic actin-binding properties (Hartwig and Stossel, 1975). Subsequently, FLN 

homologues were found in different cells of other vertebrates, as in chicken or guinea pig, in 

fibroblasts and platelets but also in muscle cells (Bechtel, 1979; Shizuta et al., 1976; Wallach et al., 

1978; Wang et al., 1975). Additionally, various non-vertebrates as Drosophila melanogaster, 

Entamoeba histolytica, Caenorhabditis elegans or D. discoideum were also shown to contain FLN-

like-proteins (John Condeelis, 1982; Kovacevic and Cram, 2010; Li et al., 1999; Sokol and Cooley, 

1999; Vargas et al., 1996). In general, all FLNs display a similar structure (Figure 3). With exception 

of a Drosophila FLN isoform, they all contain an N-terminal actin-binding domain (ABD) that is 

highly similar to those of other actin-binding proteins (ABPs) including spectrin,  

α-actinin or dystrophin (Noegel et al., 1989). The ABD consists of two tandem calponin homology 

domains and encompasses ~250 amino acids (Stossel et al., 2001; van der Flier and Sonnenberg, 

2001). The ABD is always followed by a flexible rod segment consisting of a varying number of 

repetitive repeats. Each repeat comprises approximately 96 amino acids that are arranged in 

seven β-strands that adopts an immunoglobulin-like (Ig-like) fold (Fucini et al., 1997b). The last of 

these so called Ig-like repeats always mediates dimerization, making FLN proteins to large 
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homodimers (Fucini et al., 1999; Fucini et al., 1997a). Human FLNs exhibit two additional hinge 

domains, located between repeats 15 and 16 (hinge 1, H1) and repeats 23 and 24 (hinge 2, H2) 

that are highly flexible and contain cleavage sites for the protease calpain (Nakamura et al., 2011; 

Popowicz et al., 2006).  

 

In human FLNs (huFLNs), the dimerization domain is similar to the other Ig-like repeats, whereas 

the Dictyostelium FLN (ddFLN) dimerization domain displays some differences in contrast to the 

other repeats. This results in differences in the dimerization interface which is strong and rigid in 

ddFLN, but considerable weaker and more flexible in huFLN (McCoy et al., 1999; Popowicz et al., 

2006; Pudas et al., 2005). However, both huFLN and ddFLN are described as potent actin 

crosslinking proteins that promote high-angle branching of the actin filaments. The resulting 

orthogonal actin networks are characterized by a high elasticity and viscosity (Janssen et al., 1996; 

Niederman et al., 1983; Wolosewick and Condeelis, 1986). Furthermore, huFLNs either crosslink 

actin filaments in 3D networks or mediate the formation of actin bundles depending on their 

concentration (Tseng et al., 2004). Single Ig-like repeats from ddFLN and huFLN can reversibly 

unfold under force. It was proposed that the unfolding of the FLN protein may play a role in 

Figure 3: Schematic representation of the human and Dictyostelium FLN 

Both FLN proteins have an N-terminal actin-binding domain (ABD) that is followed by a rod segment 

consisting of Ig-like repeats. The last Ig-like repeat mediates the homodimerization. A) Human FLN 

exhibit 24 Ig-like repeats. Two additional hinge domains subdivide the rod segment into rod 1 

(repeats 1 to 15), rod 2 (repeats 16 to 23) and the dimerization domain repeat 24. B) Dictyostelium

FLN contains six Ig-like repeats.  
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mechanoprotection and may lead to dissociation or association of diverse binding partners from 

the protein (Furuike et al., 2001; Kolahi and Mofrad, 2008; Schwaiger et al., 2004; Schwaiger et 

al., 2005; Yamazaki et al., 2002).      

1.4.1 Filamin in D. discoideum 

DdFLN, the single FLN isoform in D. discoideum, was shown to localize to newly formed 

pseudopods during migration (Condeelis et al., 1988; Lemieux et al., 2014). A first ddFLN null 

mutant (HG1264) was generated by nitrosoguanidine-mutagenesis in 1990. Surprisingly, this 

mutant showed normal motile behavior, normal growth, normal actin filament assembly and in 

general a very subtle phenotype (Brink et al., 1990). The only prominent effect of the ddFLN 

deficiency was detected during the development, where ddFLN is required at the tip of the 

migrating slug to mediate properly oriented phototaxis (Fisher et al., 1997; Khaire et al., 2007). 

Although the exact mechanism by which ddFLN regulates phototaxis remains to be completely 

solved, the Ig-like repeats 2 to 6 were already identified as the crucial FLN domains involved in 

this process (Annesley et al., 2007). Furthermore, it was suggested that ddFLN acts as scaffold for 

a multi-protein signaling complex during phototaxis involving the proteins RasD, protein kinase 

B, the gelsolin-related protein 125 (GRP125) and the extracellular signal-regulated kinase 2 

(ErkB) (Bandala-Sanchez et al., 2006). However, mutants deficient in other actin-binding proteins 

like α-actinin, severin, 34 kDa actin-bundling protein and cortexilin Ι and ΙΙ displayed also no or 

only moderate phenotypes (Andre et al., 1989; Faix et al., 1996; Rivero et al., 1996a; Schleicher 

et al., 1988; Wallraff et al., 1986). In order to explain this apparent lack of functions of the 

different actin-binding proteins, a model of functional redundancy and thus the existence of a 

stabilizing network of different actin-binding proteins that guarantees major cellular functions 

were suggested. In line with this hypothesis, double mutants lacking α-actinin and ddFLN and 

triple mutants deficient in α-actinin, ddFLN and either 34 kDa actin-bundling protein or severin 

exhibited clearly more severe phenotypes that could be rescued by re-expression of only one of 

the proteins (Eichinger et al., 1996; Rivero et al., 1999; Rivero et al., 1996b; Schindl et al., 1995; 

Witke et al., 1992). A double knockout of ddFLN and α-actinin resulted in a decreased 

phagocytosis and disrupted motility. Re-expression of ddFLN was sufficient to rescue these 

defects (Rivero et al., 1996b). A previous study suggested a role for ddFLN in cytokinesis and an 

involvement of ddFLN in complex with Rac and the IQGAP-related protein GAPA in the regulation 

of actin remodeling (Mondal et al., 2010). Despite these findings, the exact role and function of 

ddFLN in particular during the vegetative state is not completely understood yet.   
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It is important to mention that simultaneously to the HG1264 cell line, another ddFLN null 

mutant (ABP-120ˉ) was generated by homologous recombination. This ddFLN null mutant 

displayed a more prominent phenotype with a severe locomotion defect (Cox et al., 1992; Cox et 

al., 1996). It was first suggested that these differences might be due to multiple, potential 

compensatory, genetic alterations in the HG1264 strain caused by the nitrosoguanidine 

treatment. However, it is more likely that the different D. discoideum parent strains, used for 

both ddFLN null mutants (AX2 for HG1264, AX4 for ABP-120ˉ) are the reason for the varying 

results. A ddFLN null strain in an AX2 background was subsequently generated by homologous 

recombination and verified the subtle phenotype of the primary HG1264 strain (Eichinger et al., 

1996; Rivero et al., 1999; Rivero et al., 1996b).                  

1.4.2 Human filamins 

The human FLN family consists of three isoforms: FLNa, FLNb and FLNc. FLNa and FLNb are both 

ubiquitously expressed with FLNa as the most abundant and also, so far, best studied isoform 

(Stossel et al., 2001). Expression of FLNc is restricted largely to skeletal and cardiac muscle. 

However, evidences of low FLNc expressions in some non-muscle cells arose (Baldassarre et al., 

2009; Feng and Walsh, 2004). The three FLN isoforms share a high sequence similarity (amino 

acid identity of 70%) with only slightly higher divergence at the hinge domains (amino acid 

identity of 45%). Additionally, FLNc exhibits an unique 82-amino-acid insertion within the Ig-like 

repeat 20. As the FLN isoforms show overlapping expression patterns, it might be possible that 

they execute similar functions or are able to compensate for each other (Kesner et al., 2010; 

Zhou et al., 2010).      

1.4.2.1 Filamin interaction partners 

The first identified and most important interaction partner for FLNs was actin and FLNs are in 

general described as F-actin crosslinker. The crosslinking properties of FLNs are the result of their 

homodimeric structure. In addition to the N-terminal ABD, a second actin-binding domain lies 

within the repeats 9 to 15 of the FLN protein and is necessary for high avidity binding. The 

flexibility of the repeats 1 to 8 provides the repeats 9 to 15 with the required mobility to find the 

proper alignment on the actin filament (Figure 4). The repeats 16 to 24 are not involved in 

F-actin binding (Nakamura et al., 2007). Calmodulin binds Ca2+-dependent to the N-terminal ABD 

and thereby dissociates FLN from the actin filament (Nakamura et al., 2005). 
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Besides F-actin binding, FLNs are described to interact with about 90 different proteins including 

transmembrane receptors, signal molecules and transcription factors. Most of the interactions 

are mediated by the repeats 16 to 24, the domain of the FLN protein not involved in F-actin 

binding (Zhou et al., 2010). A few examples for FLN interaction partners and the FLN repeats 

they bind to are assembled in table 2. 

Table 2: FLN interaction partners 

Figure 4: FLN binding to F-actin 

The N-terminal ABD and the second ABD within the 

repeats 9 to 15 interact with filamentous actin. The 

repeats 1 to 8 allow the proper alignment of the 
second ABD on the filament, whereas the repeats 

16 to 24 are not involved. The dimeric structure 

enables the orthogonal branching. Picture taken 

from Zhou et al. (2010).          

Binding partner Binding site on FLN Reference 

Transmembrane proteins 

CaR extracellular Ca
2+

 receptor Repeats 14 – 16  Awata et al. (2001) 

Dopamine D2 receptor Repeats 16 – 19 Li et al. (2000) 

FcγRΙ Not known Ohta et al. (1991) 

ICAM-1 Repeats 19 – 24 Kanters et al. (2008) 

β1A, β1D, β2, β3, β7 integrins Repeat 21 Kiema et al. (2006), Calderwood et al. (2000) 

Signaling proteins 

FilGAP Repeat 23 Ohta et al. (2006) 

Protein kinase Cα Repeats 1 – 4, hinge2 
to repeat 24 

Tigges et al. (2003) 

SEK1 (MEKK, JNKK) Repeats 22 – 23 Marti et al. (1997) 

RalA, RhoA, Rac1, Cdc42 Repeat 23 – 24 Ohta et al. (1999) 

ROCK Repeat 24 Ueda et al. (2003) 

Trio Repeat 23 Bellanger et al. (2000) 

Vav Not known Del Valle-Perez et al. (2010) 

Cytoskeletal and cytoskeleton-associated proteins 

Migfilin Repeat 21 Ithychanda et al. (2009) 

Myotilin Repeats 19 – 21 van der Ven et al. (2000) 

Supervillin Repeats 8 – 10, 20 – 22 Smith et al. (2010) 

Vimentin Repeats 1 – 8 Kim et al. (2010) 

Transcription factors and nuclear proteins 

BRCA-2 Repeats 21 – 24 Yuan and Shen (2001) 

PEBP2β/CBFβ Hinge 2 and repeat 24 Yoshida et al. (2005) 

SMAD2, SMAD5 Not known Sasaki et al. (2001) 
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One of the best studied interactions is the binding of FLN to the cytoplasmic tail of the integrin  

β chain. FLN repeat 21 was identified to be responsible for this interaction. The FLN interaction 

site at the cytoplasmic tail of the integrin β chain overlaps with the binding site of another 

integrin regulating actin-binding protein, talin. FLN and talin compete with each other for 

integrin binding. While talin acts as activator and facilitates integrin-ICAM-1 binding, FLN inhibits 

integrin functions. It was shown that an increased binding of FLN to integrin results in a 

diminished cell migration (Calderwood et al., 2001; Kiema et al., 2006). However, the FLN 

mediated inhibition of integrins depends on a complex network of different regulation modes. 

Application of mechanical force and/or phosphorylation of the FLN protein on Ser2152 results in 

unfolding of FLN repeats and subsequent exposure of the integrin-binding site (Chen et al., 

2009). In contrast, phosphorylation of the integrin β2 cytoplasmic tail on Thr758 prevents FLN 

binding (Takala et al., 2008). Furthermore, migfilin, another cytoplasmic protein, binds FLN at the 

same site as the cytoplasmic β integrin tail, dissociates FLN from the integrin and acts thereby as 

integrin activator (Das et al., 2011; Ithychanda et al., 2009; Lad et al., 2008). 

As a consequence of this large number of different interactions, FLNs act as scaffold for a 

number of signaling pathways and are involved in a variety of cellular processes, including cell 

differentiation, morphogenesis, transcription regulation, cell adhesion and motility (Razinia et 

al., 2012; Zhou et al., 2010). Null or specific missense mutations in the different FLN isoforms 

cause a wide range of human disorders, thereby reflecting the versatile functions of these 

proteins. For example, loss-of-function mutations in FLNa are associated with periventricular 

nodular heterotopia (PVHD), a brain malformation characterized by disrupted neuronal 

migration. In contrast, a second set of human disorders, mediated by FLNa mutations, the 

otopalatodigital (OPD) spectrum disorders are caused by clustered missense mutations that 

seem to mediate a change in FLNa functions. OPD disorders are characterized by congenital 

malformations including skeletal dysplasia, central nervous defects and anomalies regarding the 

craniofacial, cardiac, genitourinary and intestinal system (Robertson, 2005). In general, 

mutations in FLNb are responsible for disruptions in bone morphogenesis. However, as in the 

case of FLNa, different FLNb mutations result in diverse phenotypes and a variety of different 

disorders including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LS) or 

atelosteogenesis I and III (AOΙ and AOΙΙΙ) (Feng and Walsh, 2004).  
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1.4.2.2 Filamins in cell motility 

Previous studies describe an important role for FLNs in adhesion, spreading and cell migration. 

However, their exact functions in these processes remain unclear and seem to be highly cell-type 

dependent. Fittingly, FLNs were shown to co-localize with F-actin networks at the plasma 

membrane and were found at the leading edge of migrating cells (Stossel et al., 2001). FLNa was 

recruited to cell extensions during early spreading and application of mechanical force led to 

accumulation of FLNa at adhesion sites in human gingival fibroblasts (Glogauer et al., 1998; Kim 

et al., 2008). A first indication of a role for FLNa in migration arose from the analysis of the FLNa 

deficient human melanoma cell line M2, revealing a markedly impaired locomotion and reduced 

stiffness and contractility of the cells that resulted in extensive membrane blebbing 

(Cunningham et al., 1992; Kasza et al., 2009). Loss of FLNa function in human brain resulted in 

diminished long-range directed neuronal migration within the cerebral cortex associated with 

PVHD (Fox et al., 1998). Additionally, depletion of FLN expression also led to an impaired 

spreading and initiation of migration in human fibrosarcoma cells (Baldassarre et al., 2009). Lack 

of FLNb in endothelial cells resulted in a decreased cell migration capacity (Del Valle-Perez et al., 

2010). FLNa and FLNb deficiencies in mouse embryonic fibroblasts as well as FLNa knockdown in 

human kidney cells caused disrupted cell spreading (Kim et al., 2008; Lynch et al., 2011). While 

FLN deficiencies clearly interfere with motility in different cell types, also excess of FLN protein 

can affect motility. For example overexpression of FLNa in mouse cortical neurons led to a 

diminished migration (Sarkisian et al., 2006). Moreover, increased binding of FLNa to the 

cytoplasmic chains of β integrins in Chinese hamster ovary and Jurkat cells was associated with a 

migration defect due to its above-mentioned inhibitory function in integrin regulation 

(Calderwood et al., 2001). 

Despite these findings, not much is known about the role of FLN proteins during neutrophil 

migration. One previous study with primary neutrophils of transgenic conditional FLNa knock-out 

mice indicated a role of FLNa in RhoA dependent regulation of myosin ΙΙ activation. FLNa 

deficient neutrophils exhibited lower levels of activated myosin ΙΙ that was associated with a tail 

retraction effect. Consequently, these cells were characterized by a decrease in speed in 2D 

migration and an increase in adhesion (Sun et al., 2013).        
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1.5 Goals of this project 

D. discoideum and neutrophils are both highly motile cell types that share a number of 

similarities with regard to signaling mechanisms during cell motility. However, the role of FLN 

proteins in D. discoideum migration and in neutrophil motility, in particular in the human system 

remains rather unclear. The main goal of this thesis was to gain insight into the role of FLN 

proteins in D. discoideum and neutrophils. 

Analysis of the function of ddFLN was hindered by the fact that the ddFLN null mutant displayed 

a very subtle phenotype. It was hypothesized that this was not due to a lack of ddFLN functions, 

but due to the presence of a network of actin-binding proteins that execute redundant functions 

and can compensate for each other. To overcome this problem, a ddFLN overexpressing strain 

and a strain expressing a truncated ddFLN protein should be examined in addition to the ddFLN 

null mutant. Additionally, in previous studies migration was often studied in simple, rather 

artificial assays where the cells crawl on a flat surface in buffer. Therefore, the different D. 

discoideum strains should be analyzed using varying migration assays. In order to be able to 

study ddFLN functions also in 3D migration, the aim was to establish a new 3D migration assay 

for D. discoideum.  

The second and main project revolved about the role of FLNs in human neutrophils. Hence, the 

human promyelocytic leukemia cell line HL60 that can be induced into a neutrophil-like state 

was employed. The first goal was to characterize the expression and localization of the different 

human FLN isoforms including putative binding partners in these cells. The second aim was to 

assess the role of human FLNa in the neutrophil-like HL60 cells in detail with the help of a shRNA 

mediated knockdown. Therefore, the FLNa deficient cells should be analyzed using various 

migration, adhesion, spreading and phagocytosis assays.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Instruments 

AEKTA purifier 100 Amershan Biosciences 

Balances Sartorius 

BioDocAnalyzes Biometra 

Certomat BS-T shaker Satorius 

CO2 Incubator BBD 6220 Heraeus 

Fluorescence Spectrometer LS55 Perkin Elmer 

Gene pulse electroporator Xcell BioRad 

Gelsystem MiniPROTEAN BioRad 

HeraCell Incubator Thermo Scientific 

NEPA21 electroporator Nepa Gene  

PCR-Thermocycler Tpersonal Biometra 

PCR UNO Thermocycler Biometra 

pH-meter pH720 Inolab WTW series 

Power supplies BioRad, Biometra, Consort 

Protein Transfer TF 77XP Serva 

Shaker Orbital Incubator SI500 Stuart 

Shaking incubator with temperature control Memmert 

Shakers for Dictyostelium cultures Kühner 

Sonificator Sonifier250 Banson 

Thermomixer Eppendorf 

Tabletop Film Processor Curix 60 Agfa 

Vortex Genie 2 Bender & Hobein 

 

Microscopes 

Axiovert 25 Carl Zeiss 

Axiovert 200M Carl Zeiss 

LSM 510 Meta confocal microscope Carl Zeiss 
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Objectives 

5x A-plan 0.12 Ph1 Carl Zeiss 

10x A-plan 0.25 Ph1 Carl Zeiss 

40x Neofluar 0.75 Ph2 Carl Zeiss 

100x Neofluar 1.3 oil immersion Ph3 Carl Zeiss 

63x Neofluar 1.4 oil immersion objective Carl Zeiss 

100x Neofluar 1.3 oil immersion objective Carl Zeiss 

 

Centrifuges 

J6-HC Beckman 

Microcentrifuge 5415 D, 5417 R Eppendorf 

Microcentrifuge Mikro 200 Hettich 

Optima TL ultracentrifuge Beckman 

Optima MAX-XP ultracentrifuge Beckman 

 

Rotors 

JA-10 Beckman 

TLA 100.3 Beckman 

2.1.2 Computer programs 

Adobe Acrobat Pro Extended Adobe Systems 

Adobe Illustrator CS2 Adobe Systems 

ApE plasmid editor v1.10.4 M. Wayne Davis 

AxioVision Carl Zeiss 

BioDoc Analyze Biometra 

ClustalX2 Des Higgins 

CorelDraw 12 Corel Corporation 

EndNote X7 Thomas Reuter 

ImageJ 1.44p Wayne Rasband 

Imaris 7.6.5. Bitplane 

Microsoft Office Microsoft Corporation 

SigmaBlot 2000 SPSS Inc. 

Zen Carl Zeiss 
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2.1.3 Laboratory consumables 

1.5 ml centrifuge tubes Sarstedt 

Amershan Hyperfilm ECL GE Healthcare 

Cell culture flasks with filter cap Nunc 

Cell culture plates, 24 wells Starlab Int. 

Cell culture plates, 96 wells Nunc 

Cell culture dishes, Ø 100 mm x 20 mm Greiner bio-one 

Dialysis tubings Type 8 Biomol 

DNA Isolation Kit for Tissue and Cells Roche 

Gel-blotting paper 3MM Chr Whatman 

GFP-Nano-Trap Chromotek 

High Pure Plasmid Isolation Kit Roche 

High Pure PCR Product Purification Kit Roche 

High precision cuvettes 10 mm Helma 

Electroporation cuvette 2 mm, 4 mm Eurogentec 

µ-Slide Chemotaxis3D IBIDI 

Nitrocellulose transfer membrane Protran Whatman 

NucleoSpin Gel and PCR Clean-up Kit Macherey Nagel 

PCR tubes Thermo Tube 0.2 ml Peqlab 

Phusion High-Fidelity DNA Polymerase New England Biolabs 

Petri dishes Ø 92 mm x 16 mm Sarstedt 

Pipettes 10 ml, 20 ml Sartstedt 

Pipet tips Biozym, Gilson, Starlab 

Plasmid DNA Purification Maxi Kit Macherey Nagel 

PureLink RNA Mini Kit Life Technologies 

Restriction Enzymes New England Biolabs 

Sterile filter, Filtropur S 0.2, S 0.45 Sartstedt 

T4 DNA Ligation Kit New England Biolabs 

Transcriptor High Fidelity cDNA Synthesis Kit Roche 

Tubes 15 ml, 20 ml Sarstedt 

Ultracentrifuge tubes 1.5 ml Beckman 

YG-latex beads Ø 1 µm, 4.5 µm Polysciences  
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2.1.4 Reagents 

Standard laboratory chemicals were mainly purchased from Biomol, Biorad, Fluka, Invitrogen, 

Merck, Peqlab, Roche, Roth, Serva or Sigma-Aldrich and had the degree of purity ‘p.a.’ unless 

otherwise mentioned. Media and buffers used in this study were prepared with de-ionized water 

(Millipore), sterilized either by autoclaving or passing through a micro-filter (pore size 0.2 µm).   

2.1.5 Antibodies 

Primary antibodies 

Actin, human Polyclonal Santa Cruz Biotechnologies 

Calreticulin, D. discoideum (252-234-2) Monoclonal Müller-Taubenberger et al. 

(2001) 

Coronin 1A, human Monoclonal Santa Cruz Biotechnologies 

Filamin A, human (9-42) Polyclonal Present study 

Filamin B, human (18-2) Polyclonal Present study 

Filamin rod domain, D. discoideum (82-471-14) Monoclonal Brink et al. (1990) 

Filamin ABD, D. discoideum (82-421-5) Monoclonal Brink et al. (1990) 

GFP (K3-184-2) Monoclonal Noegel et al. (2004) 

GST (268-44-6) Monoclonal Faix et al. (1998) 

Phospho-myosin light chain (Ser19) Polyclonal Cell Signaling 

Tubulin (YL ½) Monoclonal Wehland and Willingham 

(1983) 

 

Secondary antibodies 

Goat-anti-rabbit IgG Alexa488-, Cy3-, Alexa633-conjugated Invitrogen 

Goat-anti-mouse IgG Cy3-conjugated Invitrogen 

Anti-mouse, -rabbit, -rat IgG horseradish peroxidase-linked (ECL) GE Healthcare 

2.1.6 Vectors 

Constructs used in this study 

p1ABsr8 ddFLN-GFP  Khaire et al. (2007) 

pDEX-GFP-ddFLN(rod1-6) Khaire et al. (2007) 

pREP4-FLNa Fumihiko Nakamura 

pBluescript-FLNb Fumihiko Nakamura 
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pFastBac1 Invitrogen 

pEGFP-C1 Clontech 

pGEX-6P-1 GE Healthcare 

pKLO.1 FLNa shRNA (number 28, 29, 30, 31, 32) Sigma 

 

Constructs generated in this study 

pFastBac1 FLAG-FLNa full length NotI/XbaI 

pFastBac1 FLAG-FLNa(ABD-8) EcoRI/KpnI 

pFastBac1 FLAG-FLNa(9-18) EcoRI/SalI 

pFastBac1 FLAG-FLNa(19-24) BamHI/HindIII 

pEGFP-C1 FLNa (aa 21 to 2160)  SalI/SacII 

pGEX-6P-1 FLNa(H2+24) BamHI 

pGEX-6P-1 FLNb(H2+24) BamHI/SalI 

pGEX-6P-1 FLNb(H1) BamHI/SalI 

pGEX-6P-1 FLNb(H1+) BamHI/SalI 

pGEX-6P-1 FLNa(H1+) BamHI/SalI 

pGEX-6P-1 coronin 1A full length BamHI/SalI 

2.1.7 Bacterial strains 

E. coli DH5α Invitrogen 

E. coli DH10Bac Invitrogen 

E. coli BL21 RIL Stratagene 

E. coli ArcticExpress RIL Stratagene 

E. coli B/r GFP Günther Gerisch 

E. coli DH10Bac FLAG-FLNa full-length Present study 

E. coli DH10Bac FLAG-FLNa(ABD-8) Present study 

E. coli DH10Bac FLAG-FLNa(9-18) Present study 

E. coli DH10Bac FLAG-FLNa(19-24) Present study 

Klebsiella aerogenes  
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2.1.8 D. discoideum strains 

Strain Resistance Source 

AX2 (laboratory wild-type) -  

AX2 ddFLN null mutant (HG1264) - Brink et al. (1990) 

AX2 ddFLN-GFP B 10 Present study 

AX2 GFP-ddFLN(rod1-6) G 10 Present study 

2.1.9 HL60 strains 

Strain Resistance Source 

HL60 wild-type - ATCC 

HL60 FLNa shRNA 28 – 32 puromycin (1µg/ml) Present study 

HL60 FLNa KD shRNA 28 subclone C4 puromycin (1µg/ml) Present study 

HL60 FLNa KD shRNA 28 subclone G4 puromycin (1µg/ml) Present study 

 

2.2 Methods 

2.2.1 Molecular methods 

Standard molecular biology protocols were performed to generate various GFP-, GST- and FLAG-

tagged protein constructs. Total RNA of undifferentiated and differentiated HL60 cells was 

isolated with the help of PureLink RNA Mini Kit (Life Technologies) and subsequently converted 

to cDNA using Transcriptor High-Fidelity cDNA Synthesis Kit (Roche). Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) was used for polymerase chain reactions (PCRs) according to 

manufacturer’s instructions. PCR products were purified with NucleoSpin Gel and PCR Clean-up 

Kit (Macherey Nagel), and were cloned into expression vectors using standard restriction enzyme 

mediated cloning. Plasmid DNA was obtained from E. coli shaking cultures using either standard 

alkaline lysis miniprep or silica-based mini- and maxiprep kits (Roche, Macherey Nagel). 

Chemically competent E. coli cells were prepared according to the CaCl2 method (Dagert and 

Ehrlich, 1979). The accuracy of the DNA sequences inserted in the respective expression vectors 

was verified by sequencing using specific primers (Eurofins MWG Operon, Ebersberg).  
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2.2.2 Biochemical methods 

2.2.2.1 Generation of cell lysates 

Due to the high susceptibility of ddFLN to partial degradation, D. discoideum cells were directly 

lysed in a urea sample buffer (10% SDS, 9 M urea, 5% 2-mercaptoethanol) (20 µl per 1 x 106 cells) 

and heated at 70°C for 2 minutes.  

HL60 cells were lysed in 3x SDS sample buffer (20 µl per 1 x 106 cells) and heated at 95°C for  

5 minutes. For analysis of levels of phospho-myosin light chain (pMLC), differentiated HL60 cells 

were first suspended in adhesion buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 5.5 mM glucose, 

1.2 mM CaCl2, 1 mM MgCl2, 0.25% BSA) (Hepper et al., 2012) and then stimulated with 100 nM 

fMLP for 10 minutes at 37°C. Immediately before and after stimulation with fMLP, cells were 

lysed in 3x SDS sample buffer (50 µl per 4 x 106 cells) and heated at 95°C for 5 minutes.   

2.2.2.2 SDS polyacrylamide gel electrophoresis, protein staining and Western blotting 

Protein mixtures were separated by standard discontinuous SDS-PAGE (Laemmli, 1970). Proteins 

were either stained directly in the gel using Coomassie Brilliant Blue R 250 or, for mass 

spectrometry analysis, with Roti®-Blue quick staining solution. For the detection of proteins in 

the low nanogram range, high sensitive silver staining was performed. Therefore, the gels were 

first incubated in fixing solution (40% ethanol, 10% acetate) for a minimum of 30 minutes and 

subsequently transferred to sensitizing solution (30% ethanol, 0.2% Na2S2O3, 0.83 M C2H3NaO2, 

0.125% freshly added glutaraldehyde) for 30 minutes. Gels were washed three times in ddH2O  

(5 minutes each) and stained in silver solution (0.25% AgNO3, 0.015% freshly added 

formaldehyde) for another 30 minutes. After three additional washing steps in ddH2O (1 minute 

each) the gels were exposed to developing solution (23.5 mM Na2CO3, 0.015% freshly added 

formaldehyde) until the desired grade of staining intensity was reached. The reaction was 

stopped by addition of aqueous EDTA solution. 

Alternatively, proteins were transferred onto a nitrocellulose membrane using semi-dry Western 

blotting in a transfer buffer (25 mM Tris, pH 8.5, 190 mM glycine, 20% methanol, 0.02% SDS). 

Membranes were blocked in nonfat milk powder in NCP buffer (10 mM Tris, pH 7.3, 150 mM 

NaCl, 0.05% Tween20) followed by incubation with the appropriate primary and secondary 

antibodies and subsequent development using Enhanced Chemiluminescence System (ECL). 

Bands were quantified with the help of ImageJ software (U.S. National Institutes of Health).    
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2.2.2.3 GST-tagged protein expression in bacteria and purification 

For the expression of proteins with an N-terminal GST-tag, respective DNA sequences were 

cloned into pGEX vector and transformed in BL21 RIL or ArcticExpress RIL E. coli strains. Bacteria 

were grown as shaking cultures in LB medium containing the particular antibiotics overnight at 

37°C. Cultures were then diluted 1:20 and grown at 37°C to an OD600 of 0.4 – 0.8. Protein 

expression was induced by addition of 1 mM IPTG and cells were grown at 37°C for 3 hours or at 

16°C overnight. The bacteria were pelleted and resuspended in PBS (137 mM NaCl, 2.7 mM KCl, 

8.1 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4) containing 1 mM DTT and Complete Protease 

Inhibitor cocktail (Roche). The cells were opened using sonification and the lysates were 

centrifuged at 50,000 g for 10 minutes at 6°C. The supernatant was then incubated with 

Glutathione Sepharose resin B4 (Sigma-Aldrich) for 2 – 3 hours at 4°C by gentle head over head 

rotation. The matrix was washed with 10 – 20 column volumes of PBS containing protease 

inhibitor and either kept on ice for subsequent protein interaction pull-down experiments or 

eluted in PBS containing 1 mM DTT and 25 mM reduced glutathione. The purity and functionality 

of the proteins were analyzed by SDS-PAGE and Coomassie Blue staining.  

2.2.2.4 FLAG-tagged protein expression using the baculovirus system 

As human FLN protein exhibits a relative high molecular weight (280 kDa), expression of this 

protein would be difficult in prokaryotic systems. Therefore, full-length FLNa and truncated 

FLNa proteins were expressed using the eukaryotic Bac-To-Bac baculovirus expression system. 

Initially, the sequence of interest was cloned with an N-terminal FLAG-tag in the pFastBac1 

vector and then transformed in DH10Bac cells. The DH10Bac cells contain a virus shuttle vector 

(bacimd) and a helper plasmid encoding certain transposition proteins that support the transfer 

of the sequence of interest into the bacmid via site specific transposition. Successful 

recombination was verified via blue/white screening. Bacmid DNA was isolated using standard 

miniprep and was transfected in immortalized insect Sf9 cells. For the transfection, 30 – 50 µg 

bacmid DNA was mixed with 200 µl Sf-900 II SFM medium (Invitrogen) and 10 µl Cellfectin 

(Invitrogen). After incubation for 30 minutes at room temperature, the mix was added to 2 ml 

cells that were plated at a density of 0.5 x 106 cells/ml in a 6-well plate. The transfection mix 

was removed after an incubation of 5 hours at 28°C and the cells were subsequent cultured in 

Sf-900 II SFM medium supplemented with 5% fetal bovine serum and gentamycin (0.1 mg/ml) 

at 28°C for 72 hours. The P0 virus-containing supernatant was then harvested, sterile-filtered 

and either stored at 4°C or used for amplification by generating P1 and P2 generations. For 
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protein expression, > 97% viable Sf9 cells were infected at a density of 2 x 106 cells/ml with the 

respective P2 virus at a ratio of about 1/25 (2 ml P2 virus and 48 ml cells). Cells were incubated as 

a shaking culture at 100 rpm and 28°C for 48 hours and harvested by centrifugation (2,000 g,  

15 minutes, 4°C). After lysis of the cells in lysis buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.4,  

1 mM EDTA, 1% Triton-X-100 and one Complete Protease Inhibitor cocktail tablet (Roche) per  

50 ml buffer), lysates were centrifuged at 30,000 g at 4°C for 10 min. Supernatants were then 

incubated with anti-FLAG M2 affinity gel (Sigma-Aldrich) (100 µl resin for lysates of a 50 ml 

culture) for 90 min by gentle head over head rotation at 4°C. The matrix was washed three times 

in washing buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.4 and one Complete Protease Inhibitor 

cocktail tablet (Roche) per 50 ml buffer) and either stored at 4°C for subsequent protein 

interaction pull-down experiments or eluted by incubation of the matrix with elution buffer  

(0.5 mg/ml FLAG peptides in washing buffer) for 1 hour at 4°C under slight agitation. The eluate 

was collected by centrifugation and the concentration of the protein was determined with the 

help of SDS-PAGE. The protein was then either used in subsequent experiments or frozen in 

liquid nitrogen and stored at – 80°C.  

2.2.2.5 Pull-down assays and immunoprecipitation 

For the identification of interaction partners in HL60 cells, GST-coronin 1A, FLAG-tagged full-

length FLNa protein or truncated FLAG-tagged FLNa proteins bound to the respective matrix was 

employed. 3 x 108 differentiated HL60 cells were allowed to adhere on fibrinogen (100 µg/ml) 

coated Petri dishes in adhesion buffer (1 x 107 cells per one dish) and were stimulated with  

100 nM fMLP and 1 mM MnCl2 for 10 minutes at 37°C. Adherent cells were directly lysed by 

addition of 300 µl lysis buffer (150 mM NaCl, 50 mM Tric-HCl, pH 7.4, 1 mM EDTA, 1% Triton-X-

100 and one Complete Protease Inhibitor cocktail tablet (Roche) per 50 ml buffer) to each Petri 

dish and centrifuged at 16,000 g for 20 minutes at 4°C in a benchtop centrifuge. The supernatant 

was used for incubation with the various recombinant proteins bound to the respective matrix 

for 3 hours at 4°C by gentle head over head rotation. The matrix was washed four times with 

washing buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.4 and one Complete Protease Inhibitor 

cocktail tablet (Roche) per 50 ml buffer) in order to reduce unspecific protein binding. By 

incubation of the matrix for 1 hour at 4°C in the respective elution buffer recombinant proteins 

and potential bound interaction partners were gently eluted from the matrix. The eluate was 

precipitated using 50% ice cold trichloroacetic acid for 30 minutes on ice, separated by SDS-

PAGE and stained with either Roti®-Blue quick staining solution (Roth), Coomassie Blue or was 
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analyzed by Western blotting. Bands of interest were cut out from the gel and analyzed by 

MALDI-TOF mass spectrometry (ZfP, LMU Munich). 

Alternatively, co-immunoprecipitations were performed with anti-FLNa antibodies. Therefore, 

lysates of differentiated adherent HL60 cells were generated as described above using following 

lysis buffer: 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 1 mM DTT, 1% Triton-X-100, 

1% Na-deoxycholate, 10 mM NaF, 250 µM Na-orthovanadate and one Complete Protease 

Inhibitor cocktail tablet (Roche) per 50 ml buffer. Supernatant was then incubated with 60 µl 

anti-FLNa antibody or 10 µg of a random antibody (e.g. anti-EB1 antibody) as a control for 1 hour 

at 4°C by gentle head over head rotation. Afterwards, 100 µl of protein A Sepharose CL-4B  

(GE Healthcare), which had been previously blocked in 0.1% BSA for 2 hours, were added to the 

solution and the suspension was rotated for another hour at 4°C. The matrix was washed four 

times in lysis buffer before the proteins were eluted with the help of a pH shift using 1 M Glycin, 

pH 2.7. A solution of 1 M Tris-HCl pH 8.0 was used for neutralization. The eluates were collected; 

precipitated using 50% ice cold trichloroacetic acid for 30 minutes on ice and subsequently 

analyzed as described above. 

For the identification of proteins interacting with ddFLN in D. discoideum cells, GFP-Nano-Trap 

technique (Chromotek) was used. 5 x 107 – 1 x 108 cells expressing a recombinant GFP-tagged 

ddFLN protein were harvested and suspended in homogenization buffer (30 mM Tris-HCl, pH 7.4, 

2 mM DTT, 2 mM EDTA, 4 mM EGTA, 5 mM benzamidin, 0.5 mM PMSF, 30% sucrose and one 

Complete Protease Inhibitor cocktail tablet (Roche) per 10 ml buffer). The cells were pushed 

through a 0.8 µm nucleopore filter (Whatman) and were centrifuged for 20 minutes at 10,000 g 

at 4°C. 20 µl GFP-Trap agarose beads were equilibrated in homogenization buffer and incubated 

with the supernatant for one hour at 4°C by rotation. The beads were subsequently washed 

according to the manufacturer’s instructions and the recombinant GFP-tagged proteins with 

potential bound interaction partners were eluted by boiling in 3x SDS sample buffer. Proteins 

were separated by SDS-PAGE and analyzed by Western blotting.  

2.2.2.6 Gel filtration using the AEKTA 100 system 

For protein size analysis and interaction studies, the gel filtration column superose 6 10/300 GL 

(GE Healthcare) was used. The column was equilibrated with IEDANBP buffer (10 mM imidazole, 

1 mM EGTA, 1 mM DTT, 0.02% NaN3, 50 mM NaCl, 1 mM benzamidine, 1 mM PMSF; pH 7.3) and 

the flow rate was set between 0.1 – 0.5 ml/min. The column was calibrated with the help of 

protein molecular weight standards range 12.4 – 450 kDa (Serva). Usually 200 µg purified protein 
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was injected, 0.5 ml-fractions were collected and analyzed using SDS-PAGE followed by silver 

staining or Western blotting.    

2.2.2.7 Generation of FLNa and FLNb specific antibodies 

For antibody generation, suitable domains of FLNa (hinge 2 domain and repeat 24, amino acids 

2517 to 2648) and of FLNb (hinge 1 domain and adjacent regions, amino acids 1691 to 1749) 

were expressed and purified as GST-tagged proteins in bacteria (GST-FLNa(H2+24) and GST-

FLNb(H1)). 200 µg of purified GST-tagged protein was mixed with Freud´s adjuvant 100 (Gerbu 

Biotechnik) and injected subcutaneously in New Zealand white rabbits. Four immunizations were 

performed at an interval of four weeks. Blood samples were received ten days after the 

immunization, respectively. Sera were generated by centrifugation of the blood (4,200 g,  

10 minutes) and were subsequently tested in Western blot analysis. 

The specificity of the antibodies was examined using the respective regions of FLNa and FLNb 

that were expressed as GST-tagged proteins. The antibodies were originally raised against GST-

tagged proteins implying that also antibodies recognizing GST were present in the sera. 

Therefore, GST-tags were cut off by digestion of the proteins with PreScission Protease (PSP) for 

6 hours at 4°C. Resulting fragments were subsequently analyzed by SDS-PAGE, Coomassie Blue 

staining and Western blotting. 

2.2.2.8 Confocal microscopy 

Confocal microscopy data were acquired on an inverted Axiovert LSM 510 Meta confocal 

microscope (Zeiss) with 63x or 100x oil immersion objectives with a numerical aperture of 1.4 and 

1.3, respectively. Excitation of fluorophores was achieved with the 488 nm argon ion laser line, 

the 543 nm and 633 nm helium neon laser lines, and emission was collected using 505 – 530 nm 

band-pass, 475 nm long-pass, 585 – 615 nm band-pass or 650 nm long-pass filters.   

2.2.3 Cell biological methods 

2.2.3.1 D. discoideum 

2.2.3.1.1 Cell culture and transformations 

D. discoideum AX2 (laboratory wild-type strain) and mutant strains derived from AX2 were 

cultured axenically in HL5 medium (Formedium) either in cell culture dishes, in shaking cultures 

at 150 rpm or on lawns of K. aerogenes. For long-term storage, spores were obtained from 

phosphate agar plates, frozen in Soerensen buffer pH 6.0 (14.6 mM KH2PO4, 2 mM Na2HPO4) 
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and stored at – 80°C. In order to induce starvation, cells were washed trice in Soerensen buffer 

and were incubated in Soerensen buffer on Petri dishes for 6 hours, until they exhibited the 

typical elongated cell form (‘t6 cells’). 

To generate overexpression mutants, GFP-tagged FLN constructs were transformed into AX2 

cells using electroporation and were expressed under the control of actin-15 promotor. For the 

transformation, 3 – 5 x 107 cells were washed twice in ice cold Soerensen buffer. After an 

additional washing step in ice cold electroporation buffer (50 mM sucrose, 10 mM KH2PO4,  

pH 6.1), the cells were resuspended in 800 µl ice cold electroporation buffer. The suspension 

was transferred in a 4 mm electroporation cuvette, mixed with 25 µg DNA and electroporated 

using a Gene Pulser XCell (Biorad) and the standard settings (square wave, V = 1.0 kV, 1 ms pulse 

length, two pulses, 5 seconds pulse interval). After incubation for 10 minutes at room 

temperature, 2 μM CaCl2 and 2 μM MgCl2 were added and the suspension was incubated for 

another 15 minutes in a culture dish under gentle shaking (50 rpm). Subsequently, HL5 medium 

was added and the cells were allowed to recover for about 24 hours before the respective 

antibiotic (either 10 µg/ml blasticidin or G418) was added to select the transformants. Single 

clones were obtained by spreader dilution on lawns of non-pathogenic K. aerogenes and were 

screened via live-cell microscopy for the presence of the overexpressed GFP-tagged proteins.    

2.2.3.1.2 Migration assays in 2D and 3D 

Micropipette assay 

Approximately 1 x 106 t6 cells in one ml Soerensen buffer were plated in low 35 mm standard-

bottom µ-dishes (IBIDI) and migration toward a micropipette (Eppendorf), filled with 10 µM 

cAMP, was visualized using a Axiovert 200M microscope with a 40x/0.75 plan objective. Images 

were taken at an interval of 10 seconds over a period of ~30 minutes at room temperature.  

Under-agarose assay 

For the analysis of 2D migration of vegetative cells, under-agarose assays were performed in low 

35 mm standard-bottom µ-dishes (IBIDI). 0.7% (w/v) Biozym LE agarose in SM-Medium (10 g/l 

Bacto Peptone, 1 g/l yeast extract, 1.9 g KH2PO4, 0.6 g/l K2HPO4, 0.43 g MgSO4, 10 g/l glucose,  

pH 6.5) was melted, and 2.5 ml of the solution were immediately poured into µ-dishes. After 

hardening of the agarose, three troughs of 10 mm x 2 mm located 5 mm apart from each other 

were cut in the center of the dish. Cells were harvested, washed with Soerensen buffer once and 

resuspended in MB medium (14 g/l Bacto Peptone, 7 g/l yeast extract, 4.26 g MES buffer,  

pH 6.9). 5 x 104 cells in equal volumes were loaded into the two outer troughs and 1 mM folic 
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acid in MB medium was loaded into the central trough. After 3 to 4 hours of incubation at 22°C 

inside a moist chamber, directed cell migration was imaged using Axiovert 200M microscope 

with A-Plan 10x/0.25 Ph1 lenses at an interval of 10 seconds for 1 hour and 40 minutes. 

3D collagen assay (D. discoideum) 

Migration in 3D was assessed using a collagen assay that was adapted from 3D experiments for 

neutrophils. 1 x 106 t6 cells were harvested and suspended in 50 µl Soerensen buffer. 

Subsequently, 12.5 µl cell suspension were mixed with 1.5 mg/ml rat tail collagen type Ι (IBIDI), 

0.2% NaHCO3 , 6.7 mM NaOH and 1.2 mM CaCl2 in Sorensen buffer in a final volume of 75 µl. 6 µl 

of the cell-collagen mix was then filled into a µ-Slide Chemotaxis3D (IBIDI). After polymerization 

of the collagen for 30 minutes at room temperature, a cAMP gradient was establish across the 

observation channel by filling one reservoir with 65 µl of a solution of 100 nM cAMP and the 

opposing reservoir with 65 µl Soerensen buffer. Migration was recorded for 1 hour and  

40 minutes at an interval of 20 seconds using an Axiovert 200M microscope with A-Plan 10x/0.25 

Ph1 lenses. 

Data processing 

Evaluation of migration assays was performed with the help of Imaris software. Speed and 

directionality of migrating cells were analyzed using the automatic ImarisTrack tool followed by 

manual cell tracking. Directionality was measured as the displacement in direction of the 

chemoattractant divided by total track length of the cell. Cells were included into statistical 

analysis if they displayed a maximum displacement from the origin > 20 µm and a maximum 

track length of > 50 µm. Statistical analysis was performed by use of the Student´s t-test and 

data shown represent means plus or minus SDs. *P < 0,05; **P < 0,01; ***P < 0,001. 

2.2.3.1.3 Immunofluorescence 

Subcellular localization of GFP-tagged FLN proteins was analyzed in immunofluorescence studies 

with the overexpressing mutant strains. 1 x 106 t0 or t6 cells were allowed to settle on a 

coverslip in HL5 medium or Soerensen buffer for 15 minutes at room temperature. The medium 

or buffer was removed and the cells were fixed in ice cold methanol at –20°C for 2 minutes. After 

two washing steps in PBS, filamentous actin was stained with TRITC-phalloidin (Invitrogen). The 

stained samples were quickly rinsed with ddH2O, embedded in gelvatol mounting medium  

(0.14 M NaCl, 0.01 M KH2PO4/Na2HPO4, pH 7.2, 5.7 M polyvinyl alcohol, 0.5 mM glycerol,  

0.9 mM DABCO) and stored in the dark at 4°C.  
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Alternatively, ddFLN-GFP expressing cells were directly fixed within a 3D collagen matrix. 

Therefore, cells were allowed to migrate within the matrix in a gradient of cAMP for 

approximately 30 minutes using a 3D µ-slide Chemotaxis3D (IBIDI). Afterwards, Soerensen buffer 

and cAMP solution were carefully removed from the reservoirs, enclosing the observation 

channel and gently replaced by a 2% glutaraldehyde-solution containing 0.5% Triton-X-100. The 

fixation solution was allowed to diffuse through the observation channel for 5 minutes and the 

matrix was subsequently washed with PBS and stained with TRITC-phalloidin using the same 

technique.   

2.2.3.2 HL60 cells 

2.2.3.2.1 Cell culture and induction of differentiation 

The promyelocytic HL60 cell line was purchased at American Type Culture Collection (CCL-240) 

and cultured in RPMI-1640 medium (Sigma-Aldrich), supplemented with 10% heat-inactivated 

FCS (Sigma-Aldrich) and 2 mM L-glutamine (Sigma-Aldrich) in untreated cell culture flasks at 37°C 

and 5% CO2. Cells were centrifuged at 200 g for 5 minutes at room temperature unless noted 

otherwise. Differentiation into the neutrophil-like state was induced by addition of 1.3% DMSO 

to the culture medium at a concentration of either 0.2 x 106 cells/ml or 1 x 107 cells/ml for  

pull-down assays. Cells were used for the execution of the different experiment on day five or six 

after addition of DMSO (Collins et al., 1978).  

2.2.3.2.2 Stable transduction using lentivral system 

In order to generate a stable down-regulation of FLNa expression in HL60 cells, RNA interference 

and lentiviral transduction was employed. Therefore, five different shRNAs specific for FLNa  

(no. 28, 29, 30, 31, 32), cloned into pKLO.1 vector, were purchased form Sigma-Aldrich. As a 

control, a pKLO.1 vector containing scrambled, non-targeting shRNA was applied. HEK293T cells 

(CRL-11268) were used for the generation of virus-containing supernatant. First, 0.5 x 106 cells 

were plated on 6-well tissue culture plates in 2 ml RPMI-1640 complete medium. For 

transfection mix 1, 250 µl serum-free Opti-MEM medium (Life Technologies) was mixed with  

12 µl Lipofectamine 2000 (Invitrogen) and incubated at room temperature for 5 minutes. 

Additionally, a second transfection mix, comprising 250 µl serum-free Opti-MEM medium,  

1 µg shRNA containing pKLO.1 vector, 2 µg of the envelope vector pVSV-G and 3 µg of the 

packing vector pCMVΔR8.9, was also incubated for 5 minutes at room temperature. Both 

transfection solutions were mixed and after incubation for 20 minutes, the mix was slowly added 



Materials and Methods 

32 

to the HEK293T cells and the cells were cultured at 37°C. After 24 hours the supernatant was 

removed from the cells, replaced with fresh PRMI-1640 complete medium and the cells were 

incubated for another 24 hours. The now virus-containing supernatant was harvested, sterile-

filtered (filter pore-size 0.45 µm) and new medium was added to the HEK293T cells. 

Subsequently, HL60 cells were suspended in RPMI-1640 medium supplemented with 50%, 10% 

or 1% virus-containing supernatant at a density of 0.2 x 106 cells/ml and were seeded in a  

24-well plate. After 24 hours, the virus-containing supernatant was again harvested form the 

HEK293T cells and used to infect the same HL60 cells. After one week all wells containing the 

same virus were pooled and the HL60 cells were selected using 1 µg/ml puromycin (Sigma-

Aldrich). The different cell lines were then tested for down-regulation of FLNa by Western 

blotting and the cell line displaying the most efficient knockdown (KD) (shRNA 28) was subcloned 

by limited dilution cloning. Different single clone lines were again tested by Western blotting and 

two different clones were chosen for further analysis.  

2.2.3.2.3  Transient transfection and live-cell imaging 

For transient transfection of FLNa, FLNa cDNA (comprising amino acid 21 to 2640) was cloned in 

the pEGFP-C1 vector. 1 x 106 differentiated HL60 cells were harvested and washed in serum-free 

Opti-MEM medium (Life Technologies). The cells were then suspended in 100 µl serum-free 

Opti-MEM medium, mixed with 10 µg DNA in a 2 mm electroporation cuvette and transfected 

using the NEPA21 electroporator (Nepa Gene) under following conditions: pulse voltage 150V, 

pulse length 5 ms, pulse interval 50 ms, pulse number 2. Immediately after the electroporation, 

the cells were transferred in RPMI-1640 complete medium, cultured 12 hours at 37°C and were 

then used for live-cell imagining. Therefore, a Zigmond chamber assay (s. 2.2.3.2.6) was 

performed and transfected cells were imaged during migration in an fMLP gradient at a 5-

seconds interval using confocal microscopy.  

2.2.3.2.4 Immunofluorescence 

Subcellular localization of proteins was studied by immunofluorescence analysis. Therefore, 

coverslips were coated with fibrinogen (100 µg/ml) for either 2 hours at room temperature or 

overnight at 4°C and washed subsequently twice with PBS. 1 x 106 differentiated HL60 cells in 

RPMI-1640 complete medium were allowed to adhere onto the coated coverslips for 15 minutes 

at 37°C and were stimulated with 100 nM fMLP for 10 minutes at 37°C. After removal of the 

medium, cells were fixed with ice cold methanol at –20°C for 2 minutes. After two washing steps 
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in PBS, the fixed samples were then stained with the appropriate primary and secondary 

antibodies for 1 hour, respectively. After rinsing the coverslips quickly in ddH20, they were 

embedded in gelvatol mounting medium and stored in the dark at 4°C.     

2.2.3.2.5 Measurement of cell adhesion and spreading 

Cell spreading and adhesion experiments were carried out simultaneously in two different buffer 

systems: in mHBSS buffer (20 mM HEPES, pH 7.2, 150 mM NaCl, 55 mM glucose, 4 mM KCl,  

1.2 mM MgCl2 supplemented with 0.25% BSA) (Servant et al., 1999) and in adhesion buffer  

(s. 2.2.2.1). 

For analysis of cell spreading, differentiated HL60 cells were harvested and resuspended in the 

respective buffer at a density of 1 x 106 cells/ml and one ml of the cell suspension were plated on 

fibrinogen (100 µg/ml) coated coverslips. Cells were allowed to adhere for 15 minutes at 37°C and 

were then stimulated with 100 nM fMLP. 2 or accordingly 3 minutes after addition of fMLP, cells 

were fixed with methanol for 2 minutes at –20°C. For each coverslip, six bright field images at 

random positions were acquired using an Axiovert 200M microscope (Zeiss) with a 100x/1.4 oil 

objective. Spreading was analyzed by measurement of the area of the spreaded cells with the 

help of ImageJ software. 

In order to analyze adhesion, 5 x 104 differentiated HL60 cells were harvested, resuspended in 

the respective buffer and were plated on fibrinogen (100 µg/ml) or fibronectin (50 µg/ml) coated 

wells of 96-well plates. For the generation of standard curves for each cell line, a 100%, 75%, 

50% and 25% dilution of the cell suspension was seeded in wells, coated with poly-L-lyisn. After 

an incubation of 30 minutes at 37°C, the cells were stimulated by addition of 100 nM fMLP for  

30 minutes at 37°C. Subsequently, non-attached cells in the fibrinogen and fibronectin coated 

wells were rinsed away by a gentle wash step in the respective buffer. After fixation with  

1% glutaraldehyde for 20 minutes, cells were washed twice in ddH2O. Subsequently, the wells 

were allowed to either air dry for approximately 45 minutes or were dried overnight at 4°C. The 

dried cells were then stained with 0.1% crystal violet (Sigma-Aldrich) and finally lysed with  

10% acetic acid for 15 minutes. Extinction of the suspension was measured in triplicates at a 

wavelength of 590 nm using Ultrospec 2100 Pro spectrophotometer. Values of the poly-L-lysin 

samples were used for the generation of standard curves for each cell line and adhesion on 

fibrinogen or fibronectin was then calculated as percentage of cells adherent to poly-L-lysin. 
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2.2.3.2.6 Migration assays in 2D and 3D 

Zigmond chamber assay (2D migration) 

Chemotactic migration of HL60 cells in 2D was analyzed in Zigmond chambers as previously 

described (Zigmond and Hirsch, 1973). Briefly, 3 x 104 differentiated HL60 cells were harvested, 

washed once in mHBSS buffer and were allowed to adhere on a fibrinogen (100 µg/ml) coated 

streak in the middle of a 33 mm x 24 mm coverslip at 37°C for 20 minutes. The coverslip was 

then put face down in the chamber so that the adherent cells are positioned directly above the 

observation bridge in the middle of the two channels. One channel was filled with mHBSS buffer 

while the other was filled with 10 nM fMLP solution, thereby creating an fMLP gradient across 

the observation bridge. 

Collagen assay (3D Migration) 

For analysis of 3D migration, 3 x 106 differentiated HL60 cells were harvested, washed once in 

mHBSS buffer and were resuspended in 90 µl mHBSS. 12.5 µl of the cell suspension were mixed 

with 1 mg/ml rat tail collagen type Ι (IBIDI) and 0.2% NaHCO3 in mHBSS buffer in a final volume 

of 75 µl. 6 µl of the cell-collagen mix was then filled into a µ-Slide Chemotaxis3D (IBIDI) and the 

mix was allowed to polymerize for 30 minutes at 37°C in a moist chamber. Subsequently, an 

fMLP gradient was establish across the observation channel by filling one reservoir with 65 µl of 

a solution of 10 nM fMLP and the opposing reservoir with 65 µl mHBSS buffer. 

Data processing  

In both cases, images were taken in a heated chamber every 20 seconds using Axiovert 200M 

microscope (Zeiss) with a 5x/0.12 plan objective over a time period of 3 hours. Speed and 

directionality of migrating cells were analyzed with the automatic ImarisTrack tool of the Imaris 

software (Bitplane) followed by manual cell tracking. Directionality was measured as the 

displacement in direction of fMLP divided by total track length of the cell. Cells were included 

into statistical analysis if they displayed a maximum displacement from the origin > 20 µm and a 

maximum track length of > 50 µm. 

2.2.3.2.7 Phagocytosis assay 

E. coli B/r GFP bacteria were grown in shaking cultures in LB medium containing 100 µg/ml 

ampicillin at 37°C. The expression of the GFP protein was induced by addition of 1 mM IPTG and 

the cells were grown overnight at 37°C. The bacteria were harvested and heat-inactivated at 

95°C for 20 minutes in a water bath. The OD600 was measured and the density of the bacteria 
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solution was estimated using a standard growth curve. For the analysis of phagocytosis the 

bacteria were opsonized in human serum for 30 min at 37°C and subsequently washed trice in 

mHBSS buffer.  

Differentiated HL60 cells were resuspended in mHBSS buffer (density 1.5 x 106 cells/ml) and 

were incubated with the serum-opsonized GFP-expressing E. coli at a cell-to-bacteria ratio of 

1:100 at 37°C. Phagocytosis was stopped after 10 minutes by addition of 4% paraformaldehyde 

and fixed cells were centrifuged on coverslips (500 g, 5 minutes). Per coverslip, 6 pictures at 

random positions were captured using an Axiovert 200M microscope with a 40x/0.75 plan 

objective (Zeiss). Phagocytosis positive cells were counted, a cell containing at least one 

bacterium was considered positive.  

Alternatively, phagocytosis was analyzed using fluorescence spectroscopy. Therefore, green 

fluorescent YG latex beads (Ø 1 µm) were serum-opsonized as described above for the bacteria. 

Differentiated HL60 cells were harvested, resuspended in mHBSS buffer and adjusted to a 

density of 2 x 106 cells/ml. After transfer in a 25 ml Erlenmeyer flask, the cell solutions were 

gently shaken at 75 rpm at 37°C. Serum-opsonized latex beads were added at a cell-to-bead ratio 

of 1:50. One ml of the cell-bead solution was extracted immediately after addition of the latex 

beads (‘0 minutes’) and after 5, 10, 20, 30 and 45 minutes, respectively. The non-internalized 

beads were removed by two gentle centrifugation steps (100 g, 3 min). After resuspension in 

buffer, the fluorescence of the internalized beads was measured in a fluorimeter using 441 nm 

light for excitation. 
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3 Results 

3.1 The role of ddFLN in D. discoideum migration 

For D. discoideum it is suggested that different actin-binding proteins, among them ddFLN, 

execute redundant and overlapping functions and can therefore compensate for each other. This 

makes the analysis of the function of ddFLN difficult. To circumvent this problem, ddFLN mutant 

strains expressing GFP-tagged ddFLN proteins were assessed in addition to the ddFLN null 

mutant, HG1264. 

3.1.1 Expression of GFP-tagged ddFLN fusion proteins in AX2 wild-type cells 

A ddFLN overexpressing strain was generated by transforming AX2 wild-type cells with a ddFLN-

GFP construct. Additionally, a truncated construct, where the ABD was completely replaced by 

a GFP (GFP-ddFLN(rod1-6)), was also expressed in AX2 wild-type cells (Figure 5A). The 

transformation efficiency was assessed using fluorescence microscopy. By staining of the cells 

with phalloidin that was used as a general cell marker, we could establish that in both strains 

clearly more than 95% of the cells were expressing the GFP-tagged fusion protein (Figure 5B,C). 
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The localization of the ddFLN GFP-tagged fusion protein was analyzed in immunofluorescences 

using the LSM 510 confocal microscope in vegetative (t0) and starved cells (t6). The full-length 

ddFLN-GFP displayed a strong co-localization with actin at the cortex of t0 cells and at the 

leading edge in migrating t6 cells (Figure 6).  

Figure 5: Expression of ddFLN-GFP and ddFLN-GFP(rod1-6) in AX2 wild-type cells 

A) Schematic representation of the ddFLN GFP-fusion proteins: ddFLN-GFP and GFP-ddFLN(rod1-6). 

B,C) The cells were fixed with methanol and stained with phalloidin (red). Comparison of the 

expression of the GFP-tagged fusion proteins with the phalloidin staining revealed a transformation 

efficiency of about 95% for both the ddFLN-GFP (B) and the GFP-ddFLN(rod1-6) (C) expressing strain. 

Scale bars = 20 µm. 

Figure 6: Localization of ddFLN-GFP 

in AX2 wild-type cells 

DdFLN-GFP expressing cells were 

fixed with methanol and stained with 

phalloidin (red). A) In t0 cells, ddFLN-

GFP co-localize with F-actin at the 

cortex. B) During migration in t6 

cells, ddFLN-GFP is recruited to the 

leading edge. Scale bars = 2.5 µm. 
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The C-terminal GFP-tag does not interfere with the ability of the ddFLN-GFP protein to dimerize 

as it was already shown elsewhere (Khaire et al., 2007).  

Despite the absence of the ABD in the GFP-ddFLN(rod1-6) construct, the truncated ddFLN 

protein also located to the F-actin rich structures in the cell, to the cortex in t0 cells and to the 

leading edge in t6 cells. Most likely by overexpression the amount of the fusion protein enriched 

in the cytosol was much higher as for the full-length ddFLN-GFP construct (Figure 7). 

 

The presence of the GFP-ddFLN(rod1-6) construct at F-actin rich sites was due to the ability of 

this truncated protein to dimerize with endogenous ddFLN protein, located at the cortex and the 

leading edge, respectively. The existence of such heterodimers was already verified by  

co-immunoprecipitation experiments in a previous study (Khaire et al., 2007). However, we 

confirmed the presence of heterodimers in the GFP-ddFLN(rod1-6) expressing strain generated 

in this study and additionally tested if the heterodimers were still present after induction of 

starvation. Therefore, a GFP-trap was performed using t0 and t6 GFP-ddFLN(rod1-6) expressing 

cells. By using an antibody specific for the ABD of ddFLN (82-421-5), which is only present in the 

endogenous protein, we verified that the GFP-ddFLN(rod1-6) protein dimerizes with the 

endogenous ddFLN protein in vegetative (t0) and in starved (t6) cells (Figure 8).  

Figure 7: Localization of GFP-

ddFLN(rod1-6) in AX2 wild-type cells 

GFP-ddFLN(rod1-6) expressing cells 

were fixed with methanol and 

stained with phalloidin (red). A) In t0 

cells, GFP-ddFLN(rod1-6) co-localizes

with F-actin at the cortex. B) In t6 

cells, GFP-ddFLN(rod1-6) is recruited 

to the leading edge. A much higher 

amount of the GFP fusion protein 

was found in the cytosol in 

comparison with the full-length 
construct. Scale bars = 2.5 µm.  
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We suggest that due to this formation of heterodimers the GFP-ddFLN(rod1-6) fusion protein 

acts as a kind of competitive inhibitor and might be therefore a helpful tool to study the function 

of ddFLN.        

3.1.2 Different ddFLN mutant strains 

In order to analyze the function of ddFLN during locomotion, the ddFLN overexpressing strain 

(ddFLN-GFP) and the GFP-ddFLN(rod1-6) expressing strain were compared with AX2 wild-type 

cells as a control and additionally with the primary ddFLN null mutant HG1264 in different 

migration assays. Therefore, the expression levels of ddFLN and the different fusion proteins 

were assessed by Western blotting using an anti-ddFLN antibody, specific for the rod domain of 

the protein (82-471-14) (Figure 9). This antibody reacts both with the endogenous ddFLN protein 

and with the GFP-tagged fusion proteins. 

 

Figure 8: GFP-ddFLN(rod1-6) forms heterodimers with endogenous ddFLN protein. 

Lysates of GFP-ddFLN(rod1-6) expressing t0 and t6 cells were incubated with GFP-trap beads and

eluates were separated by SDS-PAGE. A) Western blot analysis with an anti-GFP antibody (K3-184-2) 

displayed the GFP-ddFLN(rod1-6) protein used as bait. B) In Western blot analysis with an antibody 

specific for the ABD of ddFLN (82-421-5), the endogenous ddFLN protein was identified to interact 

with the GFP-ddFLN(rod1-6) protein.   

Figure 9: Expression level of ddFLN and ddFLN fusion proteins 

Lysates of AX2 wild-type cells, ddFLN-GFP cells, GFP-ddFLN(rod1-6) cells and HG1264 cells were 

analyzed by SDS-PAGE and Western blotting using an antibody specific for the ddFLN rod domain 
(82-471-14). Endogenous ddFLN and GFP-ddFLN(rod1-6) exhibit roughly the same size (about 120 

kDa). DdFLN-GFP migrates at approximately 140 – 150 kDa. Calreticulin was used as loading control. 
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DdFLN is highly susceptible to partial fragmentation in lysates. This made it impossible to 

determine the exact expression levels of endogenous ddFLN in comparison to the ddFLN GFP-

tagged fusion proteins. Therefore, the whole amount of ddFLN protein (endogenous protein 

with the fusion proteins) was determined. We detected that the ddFLN-GFP protein was 

expressed at levels about 2.5 to 3 times (Figure 9, second lane) and the GFP-ddFLN(rod1-6) 

protein at levels about 3 to 3.5 times (Figure 9, third lane) of the expression level of the 

endogenous ddFLN protein (data not shown). In the ddFLN null mutant HG1264, no ddFLN 

expression was detectable (Figure 9, fourth lane).  

3.1.3 Migration toward cAMP in a micropipette assay 

First, the role of ddFLN was reviewed in 2D migration under buffer using a micropipette assay.  

T6 cells were allowed to migrate toward a micropipette filled with cAMP and speed of the 

migrating cells was analyzed using Imaris software (Figure 10). The ddFLN deficient mutant strain 

HG1264 exhibited no significant changes in the migration in comparison with AX2 wild-type cells. 

However, speed of ddFLN-GFP cells was significantly reduced whereas speed in GFP-ddFLN(rod1-6) 

cells was significantly increased in comparison to AX2 wild-type cells. 

 

Figure 10: Analysis of ddFLN mutants in a micropipette assay 

Migration speed of the different ddFLN mutant strains was compared with AX2 wild-type cells in 

cAMP-induced chemotaxis using a micropipette assay. A) Dot plots show the overall distribution, 

dotted line indicates the mean value of AX2 wild-type cells. Data are from four to seven independent 

experiments, respectively (sample size AX2 = 47, ddFLN-GFP = 23, GFP-ddFLN(rod1-6) = 34, HG1264 = 

33). Speed was significantly reduced in the ddFLN-GFP expressing cells and was significantly enhanced 

in GFP-ddFLN(rod1-6) expressing cells and not changed in HG1264 cells. **P < 0.01; ***P < 0.001. B) 

Representative example for an evaluated micropipette migration assay with AX2 wild-type cells using 

Imaris software. The cells (in green) migrate toward the micropipette (left, green). Scale bar = 40 µm.   
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3.1.4 DdFLN in folic acid-induced chemotaxis in an under-agarose assay 

Migration on a flat surface under buffer is rather unphysiological for D. discoideum cells. They 

normally live within and crawl through the soil. An under-agarose assay was used to test the 

migration of the different ddFLN strains under more restrictive conditions as the cells have here 

to move under the agarose overlay (Laevsky and Knecht, 2001). Vegetative cells were allowed 

to migrate toward folic acid for about 100 minutes and were analyzed using Imaris software 

(Figure 11). DdFLN deficiency had again no effect on migration. However, speed of migration 

was reduced in the ddFLN-GFP and in the GFP-ddFLN(rod1-6) expressing strain. Directionality 

was only enhanced in the ddFLN-GFP overexpressing strain. 

 

3.1.5 Role of ddFLN in 3D migration 

Migration in 3D, where the cell can interact with the substrate on all sides, increasingly become 

the focal point of migration studies as it is in many cases more suitable to mimic the natural 

environment of the cells. D. discoideum not only has to move through 3D structures within the 

soil but also migrates as single-cells within the multicellular slug. A number of 3D assays for 

these cells had been already developed using different substrates including ficoll or agarose 

(Barry and Bretscher, 2010; Zhao et al., 2013). In this study we tested for the first time if collagen 

Figure 11: The different ddFLN mutant strains in the under-agarose assay 

Under-agarose assays were performed to analyze folic acid-induced chemotaxis under restrictive 

conditions. Dot plots show the overall distribution, dotted lines indicate the mean values of AX2 wild-

type cells. Data are from three independent experiments, respectively (sample size AX2 = 114, 
ddFLN-GFP = 151, GFP-ddFLN(rod1-6) = 133, HG1264 = 129). A) Speed was significantly reduced in 

ddFLN-GFP expressing as well as in GFP-ddFLN(rod1-6) expressing cells. B) Directionality was 

measured as the displacement of the migrating cell in direction of the folic acid (‘displacement X’)

divided by total track length. The ddFLN-GFP expressing cells displayed a significantly increased 

directionality. ***P < 0.001. 
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matrices are a suitable tool to study cAMP-induced migration of starved D. discoideum cells in 

3D. A collagen 3D migration assay for neutrophils is routinely used in our lab. The assay was 

adapted to the Soerensen buffer system so that it could be employed for D. dicsoideum. It was 

necessary to increase the collagen concentration of 1 mg/ml (used for neutrophils) to 1.5 mg/ml 

as the D. discoideum cells were less adherent and seemed to ‘drop through’ the lesser dense 

matrix. Subsequently, we determined by bright field microscopy that starved D. discoideum cells 

were really arranged in 3D within a matrix of 1.5 mg/ml collagen type Ι and that they can move 

through the matrix in response to a cAMP stimulus. Meanwhile, we observed that the cells 

seemed to move through the matrix using blebs in many cases (Figure 12A).  

In order to assess the localization of ddFLN in cells migrating in 3D, ddFLN-GFP cells were fixed 

within a collagen matrix and stained with phalloidin for F-actin. DdFLN-GFP localized to actin rich 

protrusion at the leading edge as well as at the rear of the migrating cell (Figure 12B).  

 

Subsequently, migration of t6 cells of the different ddFLN mutant strains was analyzed within a 

collagen matrix in a gradient of cAMP (Figure 13). All of the ddFLN mutant strains (HG1264, 

ddFLN-GFP, GFP-ddFLN(rod1-6)) migrated with a significantly lower speed in comparison with 

AX2 wild-type cells. Whereas the directionality of the ddFLN-GFP and the GFP-ddFLN(rod1-6) 

cells was significantly decreased, HG1264 cells displayed a significantly enhanced directionality. 

However, it is noticeable that the observed effects in the HG1264 strain were rather minor in 

comparison of those in the other ddFLN mutant strains. 

Figure 12: D. discoideum cells move through a 3D collagen matrix. 

A) Live-cell imaging was performed with AX2 cells migrating within a collagen matrix in a gradient of 
cAMP. The black line width indicates the concentration gradient of the chemoattractant. Consecutive 

images at indicated time points were extracted from the original recording that was performed with 

a frame rate of 5 seconds. White arrow heads indicate bleb formation at the front of the migrating 

cell. Scale bar = 10 µm. B) DdFLN-GFP expressing cells were allowed to migrate within a 3D collagen 

matrix, fixed with glutaraldehyde and stained with phalloidin (red). The line at the right indicates the 

direction of the gradient with the highest concentration at the bottom. Z-stakes were taken using 

confocal microscopy, the image is a summation projection. DdFLN-GFP localizes to actin rich 

protrusions at the front and also to the rear of the cell. Scale bar = 5 µm.  
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3.1.6 DdFLN mutant strains in cell migration 

DdFLN mutant strains were analyzed in various migration assays. Chemotaxis of starved cells 

toward cAMP was studied in a micropipette assay and also within a 3D collagen matrix. 

Additionally, migration of vegetative cells was investigated in under-agarose assays with folic 

acid as chemoattractant. While overexpression of full-length ddFLN (ddFLN-GFP) and expression 

of a truncated ddFLN lacking the ABD (GFP-ddFLN(rod1-6)) in AX2 wild-type cells resulted in 

severe migration defects under all tested conditions, the ddFLN null mutant HG1264 exhibited, 

in line with previous studies, a very subtle phenotype with only minor effects in the 3D collagen 

assay. The results of the different ddFLN mutant strains in the three migration assays in 

comparison to AX2 wild-type cells are summarized in table 3. Arrows display the altered 

phenotypes found in the ddFLN mutant strains, hyphens indicate no change in comparison to 

AX2 wild-type cells.  

Figure 13: DdFLN mutant strains display a disrupted migration in 3D. 

Migration of t6 cells in 3D was analyzed within a collagen matrix in a gradient of cAMP. Dot plots 

show the overall distribution, dotted lines indicate the mean values of AX2 wild-type cells. Data are 
from three to four independent experiments, respectively (sample size AX2 = 502, ddFLN-GFP = 398, 

GFP-ddFLN(rod1-6) = 424, HG1264 = 411). A) Migration speed was reduced in all three ddFLN mutant

strains in comparison to AX2 wild-type cells with HG1264 displaying the least affected migration. 

B) Directionality was slightly enhanced in HG1264 cells, but decreased in ddFLN-GFP and GFP-

ddFLN(rod1-6) expressing cells. *P < 0.05; ***P < 0.001.      
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Table 3: Different ddFLN mutant strains in cell migration 

 ddFLN-GFP GFP-ddFLN(rod 1-) HG1264 

Micropipette assay (t6 cells, cAMP) 

Speed ↓ ↑ - 

Under-agarose assay (t0, folic acid) 

Speed ↓ ↓ - 

Directionality ↑ - - 

3D collagen assay (t6 cells, cAMP) 

Speed ↓ ↓ ↓ (minor) 

Directionality ↓ ↓ ↑ (minor) 

3.2 Human FLNs in neutrophil-like HL60 cells 

3.2.1 FLN isoforms in HL60 cells and generation of FLN isoform specific 

antibodies 

The main part of the thesis focused on the function of human FLNs in neutrophil-like HL60 cells. 

The first question that arose was which of the three FLN isoforms are expressed in these cells. 

Therefore, PCRs on cDNA, isolated of undifferentiated and differentiated HL60 cells were 

performed with three distinct primer pairs, specific for the different isoforms (Table 4). 

Table 4: Primer sequences used for analysis of expression of FLN isoforms 

These PCRs revealed that FLNa and FLNb are expressed in undifferentiated and differentiated 

HL60 cells. An expression of FLNc could not be detected (Figure 14). 

 Forward primer (5´ – 3´) Reverse primer (5´ – 3´) 

FLNa Ggcttctccgtctggc cccacctgtgcccc 

FLNb gagtgacatgaacggcctg cccatggggaagaactcac 

FLNc Gcagctgaacggtgccc ctcctcaagccggggct 
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The next step was the examination of the expression of FLNa and FLNb at the protein level. 

Therefore, specific antibodies against the different FLN isoforms were needed. However, the 

specificity of available antibodies was questionable due to the high similarity of the isoforms. 

Accordingly, we raised our own FLNa and FLNb specific antibodies in rabbits. For the generation 

of the antibodies, both hinge domains seemed suitable as these domains display the greatest 

divergence along the entire FLN protein. For the creation of the FLNa specific antibodies, the 

FLNa hinge 2 domain together with the repeat 24 were selected. For the FLNb specific 

antibodies, the FLNb hinge 1 domain with adjacent regions was employed (Figure 15). Both 

protein domains were expressed in bacteria as GST-tagged fusion proteins. 

Figure 14: FLNa and FLNb expression is detectable in 

HL60 cells. 

PCRs were performed with cDNA, isolated from

undifferentiated (HL60) and differentiated HL60 

(dHL60) cells and primer pairs, specific for FLNa (first 

panel), FLNb (second panel) and FLNc (third panel). 

As a control, plasmids, containing FLNa and FLNb 

cDNA and, for the PCR with the FLNc specific primer 

pairs, genomic DNA were used. FLNa (amplificate of 

660 bp) and FLNb (amplificate of 1250 bp) expression 
could be detected in undifferentiated and 

differentiated HL60 cells. No indication of a FLNc 

expression (expected amplificate of 575 bp) was 

found. Control PCR with genomic DNA and FLNc 

specific primer pair resulted in an amplificate of the 

expected size of 1536 bp. 
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In order to test the specificity of the resulting antibodies, the corresponding protein domains of 

both FLN isoforms were expressed also as GST-tagged proteins (GST-FLNb(H2+24) and GST-

FLNa(H1)). However, the antibodies were originally raised against GST-tagged proteins and 

therefore also antibodies recognizing GST were present in the serum. Consequently, the GST-tag 

of the FLN proteins had to be removed by digestion with PreScission protease (PSP). The 

resulting fragments, in particular the cropped FLN domains, were analyzed by Western blotting 

with both FLN isoform specific antibodies. This analysis demonstrated that both the FLNa and 

the FLNb antibodies are highly specific for their respective isoform (Figure 16). 

Figure 15: FLNa and FLNb protein domains selected for antibody generation 

A) Schematic representation of the FLN proteins. The regions used for antibody production are 

labeled. B,C) Sequence alignments of the FLN protein domains used for antibody generation. 

Identical residues are displayed on a grey background. B) Hinge 1 domain is highlighted in red. The 
adjacent regions (termination of repeat 15 and beginning of repeat 16) are shown in black. FLNa and 

FLNb display an amino acid sequence identity of 39% in this domain. C) Hinge 2 domain is shown in 

red and repeat 24 is indicated in black. The amino acid sequences of FLNa and FLNb exhibit an 

identity of 61% in this region. 
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Equipped with FLN isoform specific antibodies, we assessed the protein levels of FLNa and FLNb 

in neutrophil-like HL60 cells (Figure 17). Analysis of total cell lysates of undifferentiated and 

differentiated HL60 cells revealed a very low, hardly detectable expression of FLNb. Western blot 

analysis of lysates of mouse macrophages demonstrated the functionality of FLNb specific 

antibodies (Figure 17A, right panel). In contrast, a strong FLNa expression was detected in 

undifferentiated and differentiated HL60 cells (Figure 17A, left panel). Furthermore, the FLNa 

expression level increased during differentiation by approximately one third of the expression in 

the undifferentiated cells (Figure 17B), indicating that FLNa is clearly the major isoform in 

neutrophil-like HL60 cells.  

Figure 16: Anti-FLNa and anti-FLNb antibodies are specific for their respective isoform. 

GST-tagged FLN hinge 2 domains with repeat 24 (GST-FLNa(H2+24),GST-FLNb(H2+24)) and GST-

tagged hinge 1 domains with adjacent region (GST-FLNa(H1), GST-FLNb(H1)) were digested with 

PreScission protease (PSP). Digestion was verified by SDS-PAGE and Coomassie Blue staining (left

panels, respectively). Fragments were tested in Western blot analysis (right panels). A) The cropped 

FLN(H2+24) fragment migrates at approximately 15 – 17 kDa. The FLNa specific antibodies recognize 

only the FLNa(H2+24) domain. B) The FLNb specific antiserum only reacts with the cropped FLNb(H1) 

protein, not with the FLNa(H1) domain (migrating at approximately 20 – 22 kDa). 
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3.2.2 Localization of FLNa in neutrophil-like HL60 cells 

As FLNa was identified as the major isoform in the HL60 cells, the study focused on this isoform. 

Localization of FLNa in the differentiated cells was analyzed by immunofluorescence studies 

using the FLNa specific antibodies. We found that in unpolarized cells that exhibited no clear 

leading edge FLNa co-localized with F-actin at the cortex. However in polarized cells, FLNa was 

recruited more to the rear of the cell. Figure 18 displays two representative cells.  

 

 

Figure 17: FLNa and FLNb protein expression levels in HL60 cells 

A) Representative Western blot analysis with lysates of undifferentiated (HL60) and differentiated 

HL60 cells (dHL60) and antibodies specific for FLNa and FLNb are shown. Tubulin expression was used

as loading control. A prominent FLNa expression was detected and its expression increased during 

differentiation (left panel). FLNb expression was hardly detectable (indicated by arrow head). Lysate 

of mouse macrophages was used as a positive control for the FLNb specific antibodies (right panel). 

B) Results of densitometry analysis of FLNa expression in undifferentiated (HL60) and differentiated 

HL60 cells (dHL60). Values of undifferentiated HL60 cells were normalized to one. Data are shown as 
mean of five independent experiments (± SD). Expression of FLNa increases during differentiation by 

approximately 40%.  

Figure 18: Localization of FLNa in 

neutrophil-like HL60 cells 

Differentiated HL60 cells were 

allowed to adhere to fibrinogen, 

stimulated with fMLP and fixed with 
methanol. The cells were incubated 

with FLNa specific antibodies (red) 

and F-actin was stained with 

phalloidin (green). A) In unpolarized 

cells, FLNa was located at the cortex. 

B) In polarized cells with a clear 

F-actin rich leading edge FLNa was 

recruited more to the uropod. Scale 

bars = 5 µm.  
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This finding was further investigated using live-cell microscopy. Therefore, differentiated HL60 

cells were transiently transfected with a FLNa-GFP construct (comprising FLNa amino acids 21 to 

2640) by electroporation. Subsequently, the cells were allowed to migrate in a Zigmond chamber 

within a gradient of fMLP. Cells that displayed a strong FLNa-GFP expression were imaged during 

migration using a LSM 510 confocal microscope (Figure 19). In line with the results of the 

immunofluorescence studies, FLNa located more to the rear and sides of the migrating cell. 

 

3.2.3 Generation and characterization of FLNa knockdown cell lines 

In order to investigate the function of FLNa, HL60 cell lines lacking FLNa expression were 

established (FLNa KD). Five different shRNAs specific for FLNa were used to generate pools of 

stably transduced cell lines by lentiviral transduction followed by selection with puromycin. The 

shRNA producing the most efficient knockdown was selected by assessing the FLNa expression 

levels with Western blotting (data not shown). Subsequently, the cells were subcloned by limited 

dilution cloning. Cloned knockdown cell lines were again screened for FLNa deficiency. Two 

independent cell lines (subclone C4 and G4), showing the most distinct decrease in FLNa 

expression, were chosen for further analysis. Simultaneously, a control cell line was generated 

by transduction of a scrambled, non-coding shRNA. Western blot analysis with lysates of 

undifferentiated cells revealed that in both knockdown cell lines the remaining FLNa expression 

levels amount to less than ~5% in comparison to the control cell line. Similar results were 

Figure 19: Live-cell microscopy with FLNa-GFP expressing neutrophil-like HL60 cells 

Differentiated HL60 cells were transiently transfected with FLNa-GFP and allowed to migrate in an 

fMLP gradient in a Zigmond chamber. Live-cell microscopy was performed and a representative cell is 

shown, the highest fMLP concentration is at the right. Consecutive images at indicated time points 

were extracted from the original recording that was performed with a frame rate of 5 seconds. FLNa 

is located to the rear of the cell during migration. Scale bar = 10 µm.    
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obtained using lysates of differentiated cells, indicating that the knockdown is stable during 

differentiation (Figure 20). 

 

3.2.3.1 Influence of FLNa KD on FLNb expression levels and phalloidin staining 

Western blot analysis with lysates of differentiated and undifferentiated cells and the FLNb 

specific antibodies was performed. No influence of the FLNa KD on the FLNb expression level 

was detectable, either in the undifferentiated or in the differentiated HL60 cells (Figure 21). This 

finding indicates that FLNb did not simply compensate for the loss of FLNa. 

 

In order to directly compare the FLNa expression levels in knockdown and control cells in the 

immunofluorescence, FLNa KD cells were stained with the live dye TAMRA (red), mixed with 

control cells and after fixation stained for FLNa (green). Comparison of the (unlabeled) control 

cells to the (red) knockdown cells revealed that these two cell lines were clearly distinguishable 

by the markedly reduced expression level of FLNa (green) (Figure 22A).  

FLNa was shown to contribute to the stabilization of the cortical actin filaments (Cunningham et 

al., 1992; Esue et al., 2009). Therefore, the influence of the FLNa deficiency on the F-actin 

Figure 20: FLNa KD in undifferentiated and 

differentiated HL60 cells 

FLNa expression levels of two different subclones 

(C4 and G4) in undifferentiated (left panel) and in 
differentiated (right panel) cells were compared to 

the levels of control cells by Western blotting with 

total cell lysates, using anti-FLNa antibodies. Tubulin 

expression was used as loading control. FLNa 

expression was reduced below ~5% in both 

subclones C4 and G4 in comparison to control cells. 

Figure 21: FLNa KD has no influence on the FLNb 

expression level. 

Western blots with total cell lysates of 

undifferentiated (left panel) and differentiated 
(right panel) cells were performed with FLNb 

specific antibodies. Tubulin expression was used as 

loading control. FLNa KD cells exhibited no different 

FLNb expression in comparison to control cells.

Arrow heads indicate the FLNb protein. 
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network was analyzed. Control cells were mixed with knockdown cells. F-actin was stained with 

phalloidin (green). Cells were additionally stained for FLNa (red) in order to distinguish between 

control and knockdown cells. Careful comparison of the phalloidin staining (green) of the FLNa 

positive control cells (red) with the FLNa deficient cells (unlabeled) revealed no noticeable effect 

of the knockdown on the F-actin network (Figure 22B). 

 

3.2.3.2 FLNa modulates myosin ΙΙ activation during 2D migration. 

The role of FLNa in 2D migration was investigated with Zigmond chamber assays. The cells were 

allowed to migrate within a gradient of fMLP for 3 hours. Speed and directionality were analyzed 

with the help of Imaris software. Both FLNa KD cell lines displayed a significantly reduced speed 

of migration compared to control cells. The effect was more prominent in the subclone G4 

(Figure 23A). In contrast, the directionality of the migrating cells was not affected in the FLNa 

deficient cells (Figure 23B). 

Figure 22: FLNa deficiency does not lead to obvious changes in the F-actin network. 

A) FLNa KD cells were stained with the live dye TAMRA (red), mixed with control cells (unstained) and 

stained for FLNa (green). Comparison of (unlabeled) control cells to (red) FLNa KD cells revealed a 

strong deficiency in FLNa expression (green) in the knockdown cells. Scale bar = 10 µm. B) FLNa KD

cells were mixed with control cells and stained for FLNa (red) and F-actin with phalloidin (green). 

FLNa staining was used to distinguish between knockdown cells (no FLNa) and control cells (red FLNa 

staining). Comparison of phalloidin staining revealed no apparent difference in F-actin networks. 

Scale bar = 5 µm. 
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The localization of FLNa at the rear of migrating cells described above, hinted toward an 

influence of FLNa more at the modulation of the uropod by regulation of myosin ΙΙ. To test if the 

decrease in speed in the 2D migration studies was myosin ΙΙ dependent, levels of activated 

myosin ΙΙ were investigated in the FLNa KD and control cell lines. Activation of myosin ΙΙ is 

accompanied by the phosphorylation of the myosin light chain at Ser19 (pMLC). Western blot 

analysis with an antibody specific for pMLC was performed before and after stimulation of the 

cells with fMLP (Figure 24). In unstimulated cells (0 sec), levels of pMLC were unaffected in FLNa 

KD cells. However, after stimulation of the cells with fMLP for 10 minutes (600 sec) an increased 

activation of myosin ΙΙ, accompanied by an elevation of phosphorylation at myosin light chain 

Ser19 (pMLC), was detected in the control cells but not in the FLNa deficient cells. 

Figure 23: Knockdown of FLNa causes a decrease in speed in 2D migration. 

2D migration was assessed using Zigmond chamber assays. Dot plots show the overall distribution, 

dotted lines indicate the mean values of the control. Data are from three independent experiments

for the control cell line and from four independent experiments for FLNa KD subclones C4 and G4, 
respectively (sample size control = 360, C4 = 243, G4 = 354). A) Comparison of speed revealed a 

significant decrease in both FLNa KD cell lines (C4 and G4) compared to control cells. **P < 0.01; 

***P < 0.001. B) Directionality was measured as the displacement of the migrating cell in direction of 

fMLP (‘displacement X’) divided by total track length. Directionality was not affected by knockdown 

of FLNa expression.  
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3.2.3.3 FLNa in 3D migration 

In addition to migration in 2D, movement of the cells within a 3D environment was analyzed. 

Cells were embedded in a collagen matrix and migrated in a gradient of fMLP for 3 hours. Imaris 

software was used for evaluation. Speed was significantly reduced in both FLNa KD subclones in 

comparison to control cells (Figure 25A). However, FLNa deficient cells exhibited no differences 

in directionality (Figure 25B).  

 

Figure 24: Levels of activated myosin ΙΙ are reduced in FLNa KD cells. 

Levels of myosin light chain 2, phosphorylated at Ser19 (pMLC) in unstimulated cells (0 sec) and 
10 minutes (600 sec) after stimulation with fMLP were analyzed by Western blotting in control cells 

and in both FLNa KD cell lines. A) A representative Western blot with lysates of control and FLNa KD 

G4 cells is shown. Tubulin expression was used as a loading control. B) Results of densitometry 

analysis of pMLC expression. Data are from four independent experiments and are shown as means

± SDs, the value of unstimulated control cells (0 sec) was normalized to 1. No significant difference in 

pMLC levels in unstimulated cells (0 sec) was detected. 10 minutes after addition of fMLP (600 sec), 

pMLC levels were significantly reduced in both FLNa knockdown cell lines (C4 and G4) in comparison 

to control cells. *P < 0.05; **P < 0.01. 

Figure 25: FLNa deficient cells moved significantly slower under 3D conditions. 

Migration in 3D of FLNa KD cells in comparison to control cells was analyzed with the help of collagen 

assays. Dot plots show the overall distribution, dotted lines indicate the mean values of the control 

cell line. Data are from four independent experiments (sample size control = 457, C4 = 425, 

G4 = 238). A) Speed of the migrating cells was significantly reduced in FLNa KD cells (subclone C4 and 

G4). ***P < 0.001. B) No significant difference was detected in the directionality between the control 

cells and the FLNa KD cell lines. 
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3.2.3.4 FLNa is dispensable for cell adhesion. 

The role of FLNa in cell adhesion on fibrinogen and fibronectin was investigated. The amount of 

adherent cells on both coatings was determined using Crystal Violet staining followed by 

measurement of the extinction at 590 nm. Two different buffer systems were described for 

neutrophils and neutrophil-like cells (mHBSS buffer and adhesion buffer) (Hepper et al., 2012; 

Servant et al., 1999). The assay was performed simultaneously under both conditions to test if 

the buffer had any influence on the adhesion properties of the cells. Both FLNa KD cell lines 

exhibited no significant differences in adhesion on fibrinogen and fibronectin in comparison to 

the control cell line neither in mHBSS buffer nor in adhesion buffer (Figure 26). 

 

3.2.3.5 The role of FLNa in cell spreading 

Cell spreading was analyzed on fibrinogen. The cells were stimulated with fMLP for 2 or  

3 minutes and subsequently the cell area was measured of both FLNa KD cell lines in comparison 

to the control cells. The assay was again performed simultaneously in mHBBS buffer and in 

adhesion buffer. In mHBSS buffer, knockdown of FLNa had no influence on the cell area during 

spreading neither 2 minutes (Figure 27A) nor 3 minutes (data not shown) after stimulation with 

fMLP. However, experiments performed in adhesion buffer revealed a significant increase of the 

cell area of both FLNa KD cell lines 2 minutes after stimulation with fMLP (Figure 27B). Notably, 

this effect vanished already 3 minutes after stimulation with fMLP, as a significant influence of 

the FLNa KD on the cell area was no longer detectable at this time point (data not shown). This 

finding is shown in figure 27C with two representative microscope pictures of spreading cells in 

adhesion buffer at 2 and 3 minutes after addition of fMLP.     

Figure 26: FLNa is dispensable for adhesion. 

Adhesion of FLNa KD cells (subclones C4 and G4) were compared to control cells on fibrinogen as 

well as on fibronectin. Data represent adhesion in percentage of cells adherent to poly-L-lysin. Data 

are shown as means ± SDs and are from four independent experiments, respectively. Assays were 

performed in mHBSS buffer (A) and in adhesion buffer (B). No significant difference in adhesion of 

FLNa KD cells in comparison to control cells was detected.  
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3.2.3.6 FLNa is involved in the regulation of phagocytosis. 

Phagocytosis is another crucial function of neutrophils. A participation of FLN proteins in this 

process was not described so far for mammalian phagocytes. In order to test if FLNa is involved 

in phagocytosis, localization of FLNa during this process was assessed. Immunofluorescences 

were performed with differentiated HL60 cells, mixed with serum-opsonized green fluorescent 

YG latex beads (Ø 4.5 µm). Subsequently, cells were incubated with anti-FLNa antibodies.  

A strong recruitment of FLNa to the phagocytic cup in cells engulfing a latex bead was observed 

(a representative cell is shown in Figure 28), indicating that FLNa plays indeed a role in 

phagocytosis. 

Figure 27: FLNa in cell spreading 

A,B) Cell spreading on fibrinogen was analyzed by measurement of cell area 2 minutes after 

stimulation with fMLP. Dot plots show the overall distribution, dotted lines indicate the mean values

of the control cell line. Data are from six independent experiments, respectively. A) Cell spreading 

experiments in mHBSS buffer revealed no significant difference between knockdown and control 

cells (sample size control = 166, C4 = 135, G4 = 98). B) In adhesion buffer a significant increase in cell 

area in both FLNa KD cell lines was detectable (sample size control = 130, C4 = 137, G4 = 96). 

**P < 0.01; ***P < 0.001. C) Representative microscope images of cell spreading in adhesion buffer 

are shown. Control cells were mixed with FLNa KD cells, stimulated with fMLP for 2 minutes (upper 

panel) or 3 minutes (lower panel), fixed with methanol and stained for FLNa (green). FLNa staining 

was used to distinguish between control cells (unstained, marked with a red star) and FLNa KD cells 
(green). Scale bar = 5 µm.        
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To investigate the function of FLNa during phagocytosis further, FLNa KD cells or control cells 

were mixed with serum-opsonized GFP-expressing E. coli at a bacteria-to-cell ratio of 100:1. 

Phagocytosis was stopped after 10 minutes and the phagocytosis positive cells (cells that had 

engulfed at least one bacterium) were counted. Both FLNa KD cell lines revealed a significant 

decrease in phagocytosis in comparison to control cells (Figure 29).   

 

 

Figure 28: FLNa is recruited to the phagocytic cup. 

Confocal microscopy was performed with differentiated HL60 cells phagocytosing serum-opsonized 

YG-latex beads (Ø 4.5 µm, green). Cells were stained for FLNa (red). FLNa was recruited to the 
phagocytic cup. Scale bar = 5 µm. 

Figure 29: FLNa deficient cells display a reduced phagocytosis of serum-opsonized E. coli. 

Phagocytosis was analyzed with serum-opsonized GFP-expressing E.coli, incubated with 

differentiated HL60 cells at a bacteria-to-cell ratio of 100:1 for 10 minutes. Phagocytosis was stopped 
by addition of 4% paraformaldehyde. For quantitative analysis the number of positive cells, 

containing at least one bacterium, was determined. A) Bar chart represents means ± SDs of four 

independent experiments, whereas values of control cells were normalized to one (sample size 

control = 4372, C4 = 4347, G4 = 4469). Phagocytosis was significantly reduced in FLNa KD strains. **P 

< 0.01. B) Representative results of the phagocytosis assay of control cells (upper panel) in 

comparison to FLNa KD cells (lower panel) are shown. Phagocytosis negative cells were marked with 

a red star. Scale bar = 50 µm. 
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However in this experiment, phagocytosis was measured only at one time point and the precise 

amount of engulfed bacteria was not taken into consideration. Therefore, a more sophisticated 

phagocytosis assay was subsequently executed. Differentiated HL60 cells were incubated with 

serum-opsonized green fluorescent YG latex beads (Ø 1 µm) in shaking culture. At different time 

points (0, 5, 10, 20, 30 and 45 minutes) samples of the cell-bead suspension were extracted and 

the free beads were removed by two centrifugation steps. Phagocytosis was measured as the 

fluorescence of the internalized beads using the fluorescence spectrometer LS55. However, 

uptake of the serum-opsonized latex beads in was not altered in the FLNa deficient cells in 

comparison to control cells (data not shown).  

3.2.4 FLNa interaction partners in neutrophil-like HL60 cells 

To further illuminate the role of FLNa in the neutrophil-like HL60 cells, we set out to identify new 

FLNa interaction partners in these cells. Therefore, pull-down assays with a recombinant FLAG-

FLNa protein, bound to anti-FLAG M2 affinity beads, were performed. Additionally, co-

immunoprecipitation assays were executed with FLNa specific antibodies bound to Sepharose A 

resin. The antibody recognized and bound endogenous FLNa protein. In both cases, the FLNa 

protein interacted with potential binding partners in lysates of differentiated, adherent HL60 

cells. Subsequently, FLNa protein were pulled down together with interaction partners, 

separated using SDS-PAGE, and proteins were stained with Roti®-Blue quick staining solution. 

Selected bands of interest were cut out from the gel, analyzed by mass spectrometry and several 

potential FLNa interaction partners were identified.     

3.2.4.1 FLNa interaction with coronin 1A 

The actin-binding protein coronin 1A was detected to interact with FLNa in a pull-down with 

FLAG-FLNa by mass spectrometry. To verify this interaction, the pull-down assay was repeated 

and coronin 1A was identified as binding partner by Western blot analysis (Figure 30A). 

Furthermore, a GST-coronin 1A protein was expressed and used as bait in a reversed pull-down 

assay. FLNa was clearly identified among the proteins precipitated with GST-coronin 1A by 

Western blotting (Figure 30B). 
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In a next step the FLNa domain, responsible for the interaction with coronin 1A was determined.  

Three different sections of the FLNa protein were expressed as FLAG-tagged proteins: FLAG-

tagged FLNa actin-binding domain with the repeats 1 to 8 (FLAG-FLNa(ABD-8)), FLAG-tagged FLNa 

repeats 9 to 18 (FLAG-FLNa(9-18)) and FLAG-tagged FLNa repeats 19 to 24 (FLAG-FLNa(19-24)). In 

pull-down assays with these three proteins coronin 1A was found to precipitate only with the 

FLAG-FLNa(9-18) protein (Figure 31). To exclude the possibility that the observed FLNa-coronin 1A 

interaction occurred only due to the actin-binding properties of both proteins, pull-down assays 

with the different FLAG-tagged FLNa proteins were screened for actin. By Western blotting, actin 

was only found in the pull-down with the FLAG-FLNa(ABD-8) protein. No actin was found in the 

approach with the FLAG-FLNa(9-18) protein indicating that the interaction of FLNa with coronin 

1A was not mediated by actin (Figure 31A, undermost panel). 

Figure 30: FLNa interacts with coronin 1A. 

A) Pull-down experiments were performed with lysates of differentiated adherent HL60 cells and 

beads, coated with FLAG-FLNa or with empty beads (control). Pull-down was analyzed by SDS-PAGE. 

Upper panel shows the bait protein FLAG-FLNa in the Coomassie Blue staining. Western blotting with 

anti-coronin 1A antibody (lower panel) displayed a strong coronin 1A band (migrating at ~55 kDa) in 

the pull-down with FLAG-FLNa and only a weak signal in the control (empty beads). B) GST-coronin 
1A or GST coated beads were used as bait in a pull-down assay with lysates of differentiated 

adherent HL60 cells. The pellets were analyzed with SDS-PAGE and Western blotting with anti-GST 

antibody (upper panel): bait proteins (GST-coronin 1A and GST) are shown. Analysis of the pull-down 

using Western blotting and anti-FLNa antibodies (lower panel) revealed FLNa protein only in the pull-

down with GST-coronin 1A. 
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Although we were able to confirm a FLNa-coronin 1A interaction, it was still questionable if this 

was a direct protein-protein interaction or if it was mediated by other proteins, probably in the 

context of a multi-protein complex. Direct protein-protein interaction studies using an AEKTA 

superose 6 gel filtration column should be performed to answer this question. Therefore, FLAG-

FLNa and GST-coronin 1A were purified. In a first step both proteins were applied individually on 

the gel filtration column. The collected 0.5 ml fractions were analyzed by Western blotting in 

order to determine their individual elution range. Individual FLAG-FLNa eluted in rather early 

fractions (8.5 ml to 12 ml) as it was expected due to its high molecular mass and homodimeric 

structure (Figure 32A). However, the main part of the GST-coronin 1A protein was found to elute 

at an even higher molecular weight (fractions 7.5 to 8 ml). As recombinant coronin 1A was well 

known to be highly insoluble, we concluded that the main part of the GST-coronin 1A was 

denatured (Yan et al., 2007). Only a small amount of GST-coronin 1A protein was detected in the 

later fractions 11.5 to 12.5 ml. These fractions represent most likely soluble GST-coronin 1A in its 

trimeric structure (Figure 32B). Unfortunately, the amount of soluble GST-coronin 1A protein was 

not high enough to perform protein-protein interaction studies in more detail. 

Figure 31: Coronin 1A interacts with the FLNa repeats 9 to 18. 

A) To map the FLNa domain responsible for interaction with coronin 1A, pull-down assays with lysates 

of differentiated adherent HL60 cells and beads coated with FLAG-FLNa(ABD-8), FLAG-FLNa(9-18) or 

FLAG-FLNa(19-24) were performed and analyzed by SDS-PAGE. First (upper) panel shows the three

different FLAG-FLNa bait proteins by Coomassie Blue staining. Western blotting with anti-coronin 1A 

antibody (second panel) reveals a band for coronin 1A only in the pull-down with FLAG-FLNa(9-18). 
Western blot analysis with anti-actin antibodies (third panel) indicates that actin only binds to FLAG-

FLNa(ABD-8) protein. B) Schematic representation of the FLNa protein. The region responsible for the 

interaction with coronin 1A (repeats 9 to 18) is highlighted in red. 
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In order to gain nevertheless some insight into the functional relevance of the FLNa-coronin 1A 

interaction, the potential occurrence of this interaction during migration, spreading and 

phagocytosis was investigated. Co-immunofluorescences with differentiated HL60 cells were 

performed under varying conditions (representative cells are shown in Figure 33). The cells were 

stained with anti-FLNa and anti-coronin 1A antibodies, respectively. In polarized cells, stimulated 

with fMLP, coronin 1A was recruited to the leading edge whereas FLNa located, as previously 

described, more to the rear of the cell (Figure 33A). During cell spreading we found both, FLNa 

and coronin 1A, enriched at the cortex of the spreading cell (Figure 33B). For the examination of 

phagocytosis, cells were mixed with serum-opsonized latex beads. Immunofluorescence analysis 

of these cells revealed that FLNa and coronin 1A co-localized at the phagocytic cup (Figure 33C).  

Figure 32: Gel filtration studies with FLAG-FLNa and GST-coronin 1A 

200 µg purified FLAG-FLNa and GST-coronin 1A protein were applied onto the AEKTA superose 6 gel 

filtration column. The collected fractions (0.5 ml) were analyzed by Western blotting with anti-FLNa 

and anti-coronin 1A specific antibodies, respectively. A) FLAG-FLNa was found in the fractions ~8.5 to 
12 ml. B) The main part of the GST-coronin 1A protein eluted in the fractions 7.5 to 8 ml and 

represent most likely denatured protein aggregates. A weak signal in the fractions 11.5 to 12.5 

indicates the presence of a small amount of soluble GST-coronin 1A, probably displaying a trimeric 

structure. 
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3.2.4.2 FLNa binds potentially to DOCK11 and CLIP-170.  

Besides coronin 1A, further potential FLNa interaction partners were identified by mass 

spectrometry (Figure 34). Two of the most interesting are DOCK11, a Cdc42 GEF and the 

microtubule plus-end binding protein CLIP-170. 

 

Figure 33: Localization of FLNa and coronin 1A during migration, spreading and phagocytosis 

Co-immunofluorescences with differentiated HL60 cells under different conditions were performed. 

The cells were fixed with methanol and stained for FLNa and coronin 1A, respectively. A) Cells were 
stimulated with fMLP for 10 minutes. In a polarized cell, FLNa (green) localized at the uropod, 

whereas coronin 1A (red) was recruited to the leading edge. B) Localization of both proteins was 

assessed during cell spreading. Cells were fixed 2 minutes after addition of fMLP. A strong 

co-localization of FLNa (green) and coronin 1A (red) was detected at the cortex. C) Cells were mixed 

with serum-opsonized green fluorescent YG latex beads (Ø 4.5 µm) and incubated for 10 minutes. 

Fixed cells were stained for coronin 1A (red) and FLNa (blue). Both proteins were recruited to the 

phagocytic cup. Scale bars = 5 µm. 

Figure 34: Potential FLNa interaction partner identified by mass 

spectrometry 

Co-immunoprecipitation assay was performed with anti-FLNa 

antibodies (‘CoIP FLNa’). Anti-EB1 antibodies were used as control 

(‘CoIP EB1’). Antibodies were incubated with lysates of differentiated 
adherent HL60 cells. FLNa together with potential interaction partner 

was coupled to protein A Sepharose and proteins were eluted from 

the resin. Proteins were separated by SDS-PAGE, stained with Roti®-

Blue quick staining solution and analyzed by mass spectrometry. The 

identified proteins are indicated with black arrows: 1 = β-spectrin, 

2 = DOCK11, 3 = CLIP-170, 4 = formin-like protein 1. 
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However, FLNa interaction neither with DOCK11 nor with CLIP-170 could be confirmed by pull-

down assays and Western blotting. Also subsequent co-localization studies of FLNa and DOCK11 

using immunofluorescence approaches were not sufficient to verify the interaction (Figure 35).    

 

   

Figure 35: Localization of FLNa and DOCK11 in neutrophil-like HL60 cells 

Differentiated HL60 cells were fixed with methanol and stained for FLNa (green) and DOCK11 (red). 

DOCK11 is distributed in dotted structures throughout the cytoplasm. While a co-localization of 

DOCK11 with FLNa at the cortex was detectable at some regions, an unequivocal interaction 

between these both proteins could not be verified. Scale bar = 5 µm. 
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4 Discussion 

The main goal of this study was to characterize the function of FLN proteins in D. discoideum and 

neutrophils. FLNs are highly conserved actin-crosslinking proteins. In a first part of the study 

different filamin D. discoideum (ddFLN) mutant strains were analyzed in varying cell migration 

assays. Our results revealed that ddFLN plays a role during D. discoideum cell migration and is 

presumably involved in the maintenance of cortical stabilization. The second part addressed the 

function of human FLNs in neutrophil-like HL60 cells. We identified FLNa as major isoform in the 

HL60 cells and found a rather unusual localization of FLNa at the rear of migrating neutrophil-like 

HL60 cells. Furthermore, FLNa deficiency resulted in a surprisingly subtle phenotype. Knockdown 

of FLNa had no or only minor effects on cell adhesion and spreading. We detected a FLNa 

dependent defect in myosin ΙΙ activation that is responsible for decreased migration speed in 2D 

and presumably also in 3D. Additionally, FLNa was involved in the regulation of phagocytosis of 

serum-opsonized bacteria, but had no effect on phagocytosis of serum-opsonized latex beads. 

Furthermore, coronin 1A was identified as a new FLNa interaction partner.       

4.1 DdFLN is important for amoeboid migration. 

D. discoideum mutant strains, deficient in different actin-binding domains, including ddFLN, 

displayed surprisingly subtle phenotypes with no or only minor effects on cell migration (Andre 

et al., 1989; Brink et al., 1990; Schleicher et al., 1988). A model of redundancy was suggested, in 

which certain cellular processes are multiply guaranteed (Rivero et al., 1999; Rivero et al., 1996b; 

Witke et al., 1992). This makes it rather difficult to gain some functional insight into the role of 

ddFLN during cell motility. Therefore, we created a ddFLN overexpressing strain by expressing a 

ddFLN-GFP construct in AX2 wild-type cells. Additionally, a strain expressing a truncated ddFLN 

lacking the ABD (GFP-ddFLN(rod1-6)) was generated. By immunofluorescence and Western blot 

analysis we determined that in both strains the transformation efficiency was about 95% and the 

GFP-tagged fusion proteins were expressed at levels two or three times of the levels of 

endogenous ddFLN protein. Full-length ddFLN-GFP localized at the cortex and at the leading 

edge of migrating cells in line with previous findings (Condeelis et al., 1988; Lemieux et al., 

2014). The truncated GFP-ddFLN(rod1-6) protein exhibited a higher amount of protein within the 

cytoplasm as the full-length construct, but was also recruited to the cortex and leading edge due 

to the formation of heterodimers with the endogenous ddFLN protein (Khaire et al., 2007). We 

verified the presence of heterodimers in t0 and t6 cells using a GFP-trap pull-down and suggest 
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that the GFP-ddFLN(rod1-6) protein might influence the ddFLN function by acting as a 

competitive inhibitor. 

The first ddFLN null mutant HG1264, generated by nitrosoguanidine treatment in 1990, 

displayed no effects in cell migration. However, migration was tested only for starved cells in the 

cAMP-induced chemotaxis with cells crawling on a flat surface under buffer. We revised the role 

of ddFLN in cell migration and assessed additionally its function in the folic acid-induced 

chemotaxis under restrictive conditions and in 3D migration. Using the modern evaluation 

software Imaris allowed a more sophisticated in depth analysis of the migrating cells. 

When the function of ddFLN during cAMP-induced chemotaxis was revised using a micropipette 

assay, we found that in the ddFLN deficient mutant HG1264, migration speed was not 

significantly changed compared to the AX2 wild-type cells. This finding is highly consistent with 

previous studies using ddFLN null mutants (Brink et al., 1990; Rivero et al., 1999; Rivero et al., 

1996b). Contrary, the ddFLN-GFP as well the GFP-ddFLN(rod1-6) expressing strain revealed 

significant effects on migration speed. These results suggest strongly that ddFLN plays indeed a 

role in cAMP-induced chemotaxis und support the model of redundancy. It seems feasible that 

the compensatory functions of other actin-binding proteins are ineffective after overexpression 

of full-length or truncated ddFLN proteins. Interestingly, overexpression of the full-length ddFLN 

resulted in a decrease of speed, whereas expression of the truncated GFP-ddFLN(rod1-6) protein 

led to an enhancement of speed. Based on these results we propose a role of ddFLN in the 

stabilization of the cortical actin cytoskeleton. This suggests that overexpression of the full-

length protein leads to an increased stiffness of the actin cortex. Mobility of the cells would be 

restricted due to this more rigid cortex. Conversely, the formation of heterodimers in the GFP-

ddFLN(rod1-6) expressing cells might lead to an attenuation of the actin cytoskeleton as the 

presence of ddFLN dimers with only one ABD would clearly interfere with the ddFLN crosslinking 

ability. A weakened cell cortex might be able to enhance the mobility of the cells. 

In the folic acid chemotaxis under agarose, ddFLN deficiency (HG1264) did not have any 

influence on speed or directionality of the migrating cells. Overexpression of the full-length 

ddFLN (ddFLN-GFP) caused under these conditions again a decrease in speed and additionally a 

significant increase in the directionality was observed. These findings are in agreement with the 

above discussed hypothesis of an enhanced stiffness of the cell cortex due to the overexpressed 

ddFLN protein: The more rigid cells were handicapped in their movement under the agarose. At 

the same time, the overexpressed ddFLN-GFP protein could lead to a stabilization of the leading 

edge and suppression of lateral pseudopods, thereby mediating a better oriented cell migration. 
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Interestingly, expression of the truncated GFP-ddFLN(rod1-6) protein resulted also in a reduced 

speed, but did not have any influence on the directionality. These contradictory effects of the 

GFP-ddFLN(rod1-6) domain on speed in the cAMP- and folic acid-induced chemotaxis might be 

due to the fact that both migration modes are regulated by different receptors and signaling 

pathways. 

Additionally, previous studies demonstrated that D. discoideum cells, migrating under an agarose 

overlay, switch to another alternative bleb-driven migration mode or sometimes to a mixture of 

bleb- and pseudopod-driven motility (Tyson et al., 2014; Zatulovskiy et al., 2014). Blebs are 

typically rounded smooth protrusions of the plasma membrane and provide a pseudopod-

independent mechanism with which certain cells, as tumor cells or D. discoideum cells, can 

mediate the extension of the leading edge (Charras and Paluch, 2008). Blebbing was found to be 

mediated by Rho-ROCK-myosin and Rac GTPases dependent signaling (Fackler and Grosse, 

2008). Interestingly, FLNa deficiency in human melanoma cells M2 resulted in extensive 

membrane blebbing (Cunningham et al., 1992). Our own results together with a previous study 

already hinted towards a regulatory role of FLNa in RhoA-mediated myosin activation (Sun et al., 

2013). However, analysis of ddFLN null mutant cells revealed no abnormal blebbing behavior but 

it cannot be excluded that here again compensation by other actin-binding proteins might occur 

(Langridge and Kay, 2006). In the light of these considerations, it is possible that the decrease in 

stability of the actin cytoskeleton, mediated by the truncated ddFLN fusion protein interfered 

with the bleb retraction and thereby detained the migrating cells. The defect in migration in the 

GFP-ddFLN(rod1-6) expressing cells might be also attributed to a failure in signaling pathways, 

either specific for folic acid-induced chemotaxis and/or specific for the blebbing-mediated 

migration mode. As the expression of GFP-ddFLN(rod1-6) resulted in the formation of 

heterodimers with only one ABD, it is likely that the ABD of ddFLN might mediate interactions, 

involved in signaling processes in the regulation of migration under these conditions. A very 

interesting candidate, implicated in such signaling processes, would be the IQGAP related 

protein GAPA that was shown to interact with the ABD of ddFLN. Moreover, ddFLN was 

described as a scaffold for an interaction with GAPA and Rac1a that is associated with actin 

remodeling. DdFLN was also shown to bind to RacB, a protein known to be involved in the 

regulation of blebbing (Lee et al., 2003; Mondal et al., 2010). Further interaction studies 

regarding a potential ddFLN-RacB-GAPA association and more in detail analyses of the regulation 

of bleb-driven migration mode are required to really solve the function of ddFLN in this type of 

migration. 
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Apart from the analysis of 2D migration, studies of cell migration within in a 3D environment 

gain more and more importance, as in many cases 3D matrices are more suitable to mimic the in 

vivo situations. In addition, it was already shown for a number of cell types (tumor cells or 

immune cells) that migration in 2D often strongly differs from that in 3D (Hazgui et al., 2005; 

Lämmermann et al., 2008). In this study, a 3D migration assays was established for D. discoideum 

where t6 cells are analyzed in their movement through a collagen matrix in a gradient of cAMP. 

We verified that the cells migrated indeed in 3D within the matrix and we observed a large 

portion of the cells moving forward by a bleb-driven migration mode. This finding is consistent 

with the assumption that bleb-driven migration mode is favored in 3D environments (Fackler 

and Grosse, 2008). In immunofluorescence analysis within the 3D collagen matrix, ddFLN-GFP 

was detected in actin rich protrusion at the leading edge as well as at the rear of the migrating 

cell. Based on this finding, we conclude that the D. discoideum cells moved through the collagen 

matrix using blebs that we could detect in the bright field images and actin rich pseudopods, 

detected in the fluorescent images. This assumption is in line with the finding that formation of 

blebs and pseudopods might occur simultaneously and can cooperate during cell migration 

(Tyson et al., 2014).  

Interestingly, ddFLN deficiency resulted indeed in a migration defect under these conditions. The 

HG1264 strain migrated with a lower speed compared to the wild-type cells whereas the 

directionality was increased. However, it is noticeable that the observed effects in the HG1264 

strain were rather minor. It seems that compensation of other actin-binding proteins did occur 

but was not sufficient to completely rescue cell motility after loss of ddFLN in the 3D collagen 

environment. Similar to the results of the under-agarose assays, overexpression of ddFLN 

(ddFLN-GFP) as well as the expression of the truncated GFP-ddFLN(rod1-6) caused a prominent 

decrease of speed. As both, 3D migration and migration under an agarose overlay are supposed 

to induce bleb-driven migration, it seems likely that a similar mechanism might be responsible 

for the reduced migration speed (Fackler and Grosse, 2008; Zatulovskiy et al., 2014). In the case 

of the GFP-ddFLN(rod1-6) expressing strain this might be either a defect in blebbing and/or in a 

signaling pathway. We also think it is conceivable that an increased rigidity of the cell cortex, 

mediated by the overexpressed ddFLN-GFP, would cause, here too, a diminished motility of the 

cell. However, in contrast to the increase in directionality for the ddFLN overexpressing cells in 

the under-agarose assay, both ddFLN-GFP and GFP-ddFLN(rod1-6) cells displayed a strongly 

disoriented migration in the 3D collagen assay. This decrease in directionality might be caused by 

defects in chemoattractant sensing induced by expression of the GFP-tagged ddFLN fusion 
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proteins. It is also possible that the effect on the directionality is attributed to purely mechanical 

issues as it is possible that cells with a more rigid cortex are no longer able to squeeze 

themselves through the small mesh sized collagen matrix. Consequently, these cells would 

migrate preferably through larger gaps, losing thereby their oriented forward movement. This 

hypothesis might also provide an explanation for the slight increase of directionality in the 

HG1264 strain: ddFLN deficiency might result in an enhanced elasticity of the cell that could 

probably account for the reduced migration speed. However, at the same time, these more 

elastic cells might be able to squeeze themselves through more narrow gaps, which would result 

in straighter, more oriented motility. 

In conclusion, we determined with the help of various migration assays and different ddFLN 

mutant strains that ddFLN plays indeed a role in cell motility, although the ddFLN null strain 

(HG1264) exhibited no or only minor motility phenotypes. We found a strong indication for a 

role of ddFLN in maintenance of a stable cell cortex and the leading edge. Additionally, the 

results suggest that D. discoideum cells use under restrictive conditions (under-agarose assay) 

and in 3D (collagen assay) an alternative mode of migration than during movement on a 2D 

surface in buffer (micropipette assay). We detected hints pointing towards a ddFLN function in 

membrane blebbing and/or signaling during this kind of migration.   

4.2 The role of human FLNs in neutrophil-like HL60 cells 

The role of FLN proteins was studied in neutrophil-like HL60 cells. Neutrophils are highly motile 

cells that patrol the blood and interstitium and antagonize invading pathogens. To fulfill this 

function they need to execute fast-paced processes as adhesion, spreading, migration and 

phagocytosis. Crucial for this essential task is their ability to undergo rapid and expansive 

changes in morphology and cell shape which requires the dynamic modulation of F-actin 

networks by various F-actin binding and signaling proteins. Sensible candidates to be involved in 

the regulation of neutrophil motility are the FLNs, as numerous studies already identified these 

proteins as important modulators of spreading, adhesion and locomotion in various cell types 

(Nakamura et al., 2011; Razinia et al., 2012). Furthermore, it was already shown that FLNa is 

important in uropod retraction via activation of RhoA and myosin ΙΙ in primary mouse 

neutrophils (Sun et al., 2013). 
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4.2.1 FLNa is the major isoform in HL60 cells. 

In a first step, the expression of the three different FLN isoforms was assessed in the HL60 cells. 

On the transcriptional level, there were indications of a FLNa and FLNb expression, but no hints 

of a FLNc expression. With our own generated highly specific FLNa and FLNb specific antibodies, 

FLNa was identified as major isoform in the HL60 cells, while FLNb was only weakly expressed. 

This finding is highly consistent with the results form primary mouse neutrophils and with a 

study using the myeloblastic PBL985 cell line, a derivate of the HL60 cell line, indicating that FLNa 

is the main isoform expressed in neutrophils and neutrophil-like cells (Burande et al., 2009; Sun 

et al., 2013). Furthermore, FLNa expression was strongly up-regulated during DMSO-induced 

differentiation. This finding seems rather contrary to a previous study indicating that FLN 

degradation mediated by ASB2 (specificity subunit of an E3 ubiquitin ligase complex) was crucial 

for myeloid differentiation in the myeloblastic PBL985 cell line and promyelocytic NB4 cell line 

(Heuzé et al., 2008). However, FLNa protein was clearly expressed in leukocytes (Boxer et al., 

1976; Sun et al., 2013). Therefore, it is convincing that FLNa expression must be restored after 

termination of the differentiation which might explain the high FLNa expression levels in the 

differentiated HL60 cells in this study. It is also noticeable that in the study with the myeloblastic 

PBL985 and promyelocytic NB4 cells, retinoic acid was used to induce the differentiation of the 

cells into the neutrophil-like state. Furthermore, expression of ASB2, the protein responsible for 

the degradation of FLNa, was specifically induced by retinoic acid (Heuzé et al., 2008; Kohroki et 

al., 2001). Therefore, one can conclude that by using DMSO, differentiation of the cells into the 

neutrophil-like state was induced along other, ASB2 and FLN degradation independent 

pathways. 

Consistent with previous reports, FLNa strongly co-localized with F-actin at the cortex (Stossel et 

al., 2001). Analysis of FLNa localization during migration by immunofluorescence or by live-cell 

imaging with cells transiently transfected with a FLNa-GFP construct, revealed a markedly 

enrichment of FLNa at the rear of the migrating cell. In contrast, various studies reported a 

localization of FLNa at the leading edge in different cell types for example in the human 

melanoma cell line A7 (Klaile et al., 2005; Stossel et al., 2001). However, the previous analysis of 

primary mouse neutrophils pointed also towards a primary function of FLNa at the uropod (Sun 

et al., 2013). This suggests that FLNa had no influence on the formation and regulation of the 

leading edge of migrating neutrophils but seemed to be rather involved in uropod related 

functions. 
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4.2.2 Influence of FLNa deficiency in HL60 cells on neutrophil functions 

In order to investigate the role of FLNa more in detail, FLNa deficient cell lines (subclones C4 and 

G4) with less than ~5% residual FLNa expression levels were created by shRNA mediated 

knockdowns. Western blot analysis revealed that the knockdown was stable during 

differentiation of the cells into the neutrophil-like state. 

FLNa deficiency did not affect the FLNb expression level. Intriguingly, loss of FLNa in primary 

mouse neutrophils led to an up-regulation of FLNb expression. But the general FLNb protein 

amount in the FLNa knockout mouse neutrophils was still very low, equivalent to only 1.5% of 

the total FLNa protein amount in the wild-type cells. It is questionable if these very low levels of 

FLNb protein were able to compensate for the loss of FLNa (Sun et al., 2013). Other studies 

reported compensation after loss of FLNa expression by other FLN isoforms. However, in these 

cases, expression of the compensating FLN isoform was either rather high in the first place or 

was markedly up-regulated (Baldassarre et al., 2009; Sheen et al., 2002). As this was not the case 

in our analysis, it is most likely that FLNb was not able to simply compensate for the lack of FLNa 

expression. 

FLNa immunofluorescence was an efficient tool to distinguish between knockdown and control 

cells. Careful comparison of phalloidin staining of FLNa positive control cells with the FLNa 

negative knockdown cells did not reveal any obvious influence of the FLNa deficiency on the 

overall organization of the filamentous actin. Although, FLN proteins were shown to be potent  

F-actin crosslinker that are important for the maintenance of the cortical stability for example in 

human melanoma cells, other studies already described FLN proteins as dispensable for 

organization of the filamentous actin networks in other cell types (Cunningham et al., 1992; Feng 

et al., 2006; Flanagan et al., 2001; Nakamura et al., 2007). We conclude that in the neutrophil-

like HL60 cells, FLNa was no longer necessary for F-actin crosslinking, but seemed to adopt 

several new tasks, perhaps in the regulation of signaling pathways. 

When analyzing neutrophil migration, it is important to note that neutrophils not only migrate 

on a surface (2D migration) but that they also crawl through tissue (3D migration). The mode of 

migration is considerably different in a 2D or 3D context (Lämmermann et al., 2008). FLNa 

deficient cells, tested in 2D migration (Zigmond chamber assays) and in 3D migration (collagen 

assays) displayed in both cases similar effects: Directionality was not affected by the knockdown 

of FLNa suggesting that the cells were still able to sense the gradient and cell polarization was 

independent of FLNa. However, speed was significantly reduced in 2D and in 3D migration for 

both FLNa deficient subclones, especially for the subclone G4. This might be due to the fact that 
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both subclone cell lines contained slightly different levels of residual FLNa expression suggesting 

that the exact level of FLNa protein is essential for the regulation of migration. Unfortunately, 

we failed to quantify the exact amount of residual FLNa expression in the knockdown cell lines. 

The FLNa expression level in the deficient cells was almost below the detection limit and we 

were not able to obtain trustworthy measurements with our methods.  

In a previous study, knockout of FLNa in mouse neutrophils resulted also in a decrease in speed 

in Zigmond chamber assays. This migration defect was caused by a reduced RhoA mediated 

activation of myosin ΙΙ (Sun et al., 2013). As FLNa was mainly concentrated at the uropod in 

migrating cells, it seemed likely that a similar mechanism accounted for the observed decreased 

migration in 2D in the neutrophil-like HL60 cells. Levels of activated myosin ΙΙ in unstimulated 

cells were not affected. However, the control cells displayed an increase in myosin ΙΙ activation 

after stimulation with fMLP that is accompanied by the phosphorylation of myosin ΙΙ light chain 

on Ser19. This enhanced myosin ΙΙ activation was absent in both FLNa KD cell lines. It is possible 

that this defect in myosin ΙΙ activation is also responsible for the decrease in speed in the FLNa 

deficient cells in the 3D migration. A previous study with dendritic cells already indicated that 

myosin ΙΙ was also crucial for migration in 3D. Here it was necessary to mediate the contraction 

of the cell body that is required by the cell to squeeze itself through narrow gaps within the 

matrix (Lämmermann et al., 2008). 

It is important to note that the effects of the FLNa deficiency were surprisingly subtle in both 

2D and 3D migration, in particular in contrast with the previous study using FLNa deficient 

primary mouse neutrophils (Sun et al., 2013). One cannot exclude that this remote phenotype 

in the neutrophil-like HL60 cells is due to slight differences in the regulation and functions of 

human and mouse FLNa although they are both highly homologous. However, it is more likely 

that the residual FLNa levels in our knockdown cells are able to partly rescue the migration 

defect, indicating that already low levels of FLNa are sufficient to influence neutrophil 

migration.  

Surprisingly, examination of cell adhesion on fibrinogen and on fibronectin did not reveal a 

significant influence of FLNa. This finding stands in sharp contrast with previous results, 

describing a significant increase of adhesion after loss of FLNa in mouse neutrophils and in 

human myeloblastic PBL985 cells (Lamsoul et al., 2011; Sun et al., 2013). The contradictory 

results with the HL60 cells might be due to the residual FLNa levels in the knockdown cell lines 

that might be enough to mediate normal adhesion. It was also shown that FLNa plays an 

inhibitory role in integrin activation (Calderwood et al., 2001). This would also lead to the 
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assumption that cells deficient in FLNa might show an increased adhesion due to an enhanced 

activation of integrins. However, the FLNa KD cells showed a slight reduction of adhesion.  

In addition, FLNa deficiency did not have any influence on cell spreading on fibrinogen in 

mHBSS buffer. However, under conditions with elevated levels of extracellular Ca2+ (in adhesion 

buffer), the cell area of spreading cells was significantly increased in both FLNa KD cell lines 

compared to control cells. Comparison of measurements of cell area of the control cells under 

conditions without (mHBSS buffer) and with additional extracellular Ca2+ (adhesion buffer) 

revealed no difference. Based on these findings, FLNa seemed not to be required for the 

process of cell spreading itself but might be more involved in regulation of signaling. Indeed 

there are already evidences that FLNa plays a role in modulation of the activity of Ca2+ sensing 

and Ca2+ permeable receptors. Additionally, it was shown to be required for dampening 

potentially lethal Ca2+ influx through stretch-activated Ca2+ permeable channels (Glogauer et al., 

1998; Zhang and Breitwieser, 2005). Nevertheless, it is crucial to note that here again the effect 

of FLNa KD was rather low and turned out to be very short-termed. It is also important to point 

out that other studies describe a crucial function of FLNa in regulation of cell spreading by a 

clearly integrin-dependent manner, for example in HEK293 cells (Kim et al., 2008). This study 

however, failed to identify a comparable function in the neutrophil-like HL60 cells and suggests 

that FLNa operates in an integrin-independent manner in neutrophil adhesion and spreading. 

Another important function of neutrophils is the phagocytosis. A participation of FLN proteins 

in this process was not described so far for mammalian phagocytes. In immunofluorescence 

studies of differentiated HL60 cells phagocytosing serum-opsonized latex beads, a strong 

recruitment of FLNa to the phagocytic cup was detected, indicating that FLNa indeed is 

associated with the process of phagocytosis. In experiments with serum-opsonized GFP-

expressing bacteria, phagocytosis was significantly reduced in both FLNa deficient strains. 

However, in subsequent experiments with serum-opsonized latex beads, we failed to detect a 

diminished phagocytosis in the FLNa KD cells. This might hint towards a role of FLNa, not in 

complement-mediated recognition of pathogens via Fc-receptors and complement receptors 

but rather in the pattern recognition receptor (PRR) mediated phagocytosis (Thomas and 

Schroder, 2013; Vidarsson and van de Winkel, 1998). Both the bacteria and the latex beads 

were serum-opsonized but only in case of the bacteria, where additional invariant structural 

motifs (pathogen-associated molecular patterns, PAMPs) are available for recognition through 

phagocytes, phagocytosis was affected by FLNa deficiency. This might also explain the rather 

subtle effect of the FLNa KD on phagocytosis of serum-opsonized bacteria (decrease was not 
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above 20%): Although the PRR mediated phagocytosis was disrupted, the complement 

mediated pathway was still intact. 

In conclusion, this study showed, in line with previous findings, a FLNa dependent defect in 

myosin ΙΙ activation that is responsible for decreased migration speed in 2D and presumably also 

in 3D (Sun et al., 2013). FLNa seemed to be rather dispensable for the process of adhesion and 

cell spreading. However, there were hints pointing towards a role of FLNa in Ca2+ signaling during 

cell spreading. Additionally, we determined a novel role of FLNa in phagocytosis, perhaps in the 

PRR-mediated recognition of pathogens. Of course, one has to consider the possibility that the 

residual levels of FLNa expressed in the knockdown cells or even the very remotely expressed 

FLNb might be able to partly rescue the effects of the FLNa deficiency. One should draw 

attention to the fact that the inhibitory interaction of FLN with the cytoplasmic tails of various  

β integrins was already shown to be important for adhesion, spreading and migration processes 

in diverse cell types (Calderwood et al., 2001; Das et al., 2011; Takala et al., 2008). In contrast, 

we could not detect any indications of an influence of the FLNa protein on integrin dependent 

functions in the FLNa deficient neutrophil-like HL60 cells. Interestingly, several studies clearly 

identified FLNs as mechanoprotective proteins that were recruited to the cytoplasmic tails of  

β2 integrins after the application of mechanical force (Chen et al., 2009; D'Addario et al., 2001; 

Razinia et al., 2012). We therefore want to raise the possibility that FLNa-integrin interaction 

might be initiated only under shear stress conditions in neutrophil-like HL60 cells, which might 

explain why FLNa seemed to execute rather minor functions in static environments. Intriguingly, 

a similar situation was already described for another neutrophil actin-binding protein, the 

mammalian actin-binding protein 1 (mAbp1) (Hepper et al., 2012).     

4.2.3 FLNa interacts with coronin 1A. 

The present study clearly argued for a role of FLNa not in F-actin crosslinking, but rather as a 

signaling and scaffolding protein. Therefore, we set out to identify new FLNa interaction partners 

in the neutrophil-like HL60 cells. With the help of pull-down assays coronin 1A was identified as 

FLNa interacting protein by mass spectrometry and Western blotting. Mammalian coronins are 

another family of highly conserved actin-binding proteins which consists of 7 members. Coronin 

1A (also known as coronin 1, p57 or TACO for tryptophan aspartate-containing coat protein) is 

leukocyte specific and very abundant in neutrophils (Moriceau et al., 2009; Pieters, 2008). 

Despite this high coronin 1A expression level, the exact role and function of coronins in 

neutrophils appear rather unclear. Analysis of human neutrophils, transduced with a dominant 
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negative coronin 1A fragment revealed a role of coronin 1A in chemotaxis, adhesion, spreading 

and phagocytosis (Yan et al., 2007). However, in a subsequent study using primary neutrophils of 

coronin 1A-/- mice, adhesion, spreading, chemotaxis and phagocytosis was not affected, 

indicating that coronin 1A was dispensable for F-actin mediated processes in neutrophils 

(Combaluzier and Pieters, 2009). Additionally, coronin 1A was described to have antiapoptotic 

activity in neutrophil-like PLB985 cells and was found to associate with NADPH oxidase in 

primary neutrophils (Grogan et al., 1997; Moriceau et al., 2009).  

We were able to determine the repeats 9 to 18 as the FLNa domain responsible for the 

interaction with coronin 1A. Intriguingly, a second actin-binding domain was identified within 

this FLNa region (Nakamura et al., 2007). However, we verified that the FLNa-coronin 1A 

interaction was not mediated by binding of both proteins to F-actin as only the most N-terminal 

FLNa fragment (FLNa(ABD-8)) was able to precipitate with actin. The fact that only FLNa repeats 

9 to 18 are involved in coronin 1A binding was rather surprising, as most of the FLNa interactions 

described so far, for example with integrins, small GTPases and certain GEFs and GAPs, occur 

with the more C-terminal part within the repeats 19 to 24, the region not involved in F-actin 

binding (Zhou et al., 2010). Only a small number of proteins were identified to interact with the 

FLNa repeats 9 to 18, among them furin, CD28 and the tumor necrosis factor receptor-

associated factor ½ (Arron et al., 2002; Liu et al., 1997; Tavano et al., 2006). Another interesting 

binding partner in this region is the Ca2+ sensing receptor (CaR) that interacts with the FLNa 

repeats 14 to 16 (Awata et al., 2001). We already speculated about a role of FLNa in the 

regulation of Ca2+ signaling in the context of cell spreading. Additionally coronin 1A was also 

shown to be involved in Ca2+ dependent regulation of T cell survival (Mueller et al., 2008). 

Therefore, it is tempting to propose a joint role of FLNa and coronin 1A in regulating Ca2+ 

signaling pathways in neutrophils, but verifying this hypothesis needs further examination. 

Unfortunately, we failed to perform direct protein-protein interaction studies with recombinant 

FLAG-FLNa and GST-coronin 1A due to the high insolubility of coronin 1A (Yan et al., 2007). 

Therefore, it is important to note that we were not able to determine if FLNa interacts either 

directly with coronin 1A or if this interaction is indirect, probably in the context of a multi-

protein signaling complex. 

Nevertheless we tried to gain first insights into the functional relevance of the FLNa-coronin 1A 

interaction. Therefore, the localization of both proteins during different cellular processes was 

analyzed. In migrating cells, stimulated with fMLP, FLNa was recruited more to the uropod, but 

coronin 1A to the leading edge as previously described (Yan et al., 2007). Hence, it seems 
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unlikely that a FLNa-coronin 1A interaction is of great significance for this process. In contrast, 

examination of spreading cells revealed a strong co-localization of FLNa and coronin 1A at the 

cell cortex. Additionally, we detected a co-localization of FLNa with coronin 1A at the phagocytic 

cup of a cell engulfing serum-opsonized latex beads. These findings might point towards a 

collective function of both proteins during cell spreading and phagocytosis.   

By mass spectrometry analysis, additional potential FLNa interaction partners were identified in 

the neutrophil-like HL60 cells, among them CLIP-170 and DOCK11. CLIP-170 (cytoplasmic linker 

protein of 170 kDa) is a microtubule plus end binding protein that regulates microtubule 

dynamics, and is involved in the regulation of spreading and phagocytosis in macrophages 

(Binker et al., 2007; Maekawa and Schiebel, 2004). Furthermore, an interaction of FLNa and  

CLIP-170 was already described in fibroblasts. Both proteins were recruited to focal adhesion 

and CLIP-170 was suggested to mediate interaction of the microtubule and actin systems via 

FLNa after the application of tensile forces (D'Addario et al., 2003). In contrast, not much is 

known about DOCK11 (dedicator of cytokinesis or zizimin2). DOCK11 is a Cdc42 specific GEF that 

is expressed in lymphoid organs. In dendritic cells, DOCK11 was shown to be involved in the 

regulation of filopodia (Lin et al., 2006; Sakabe et al., 2012). Further interaction studies are 

required to investigate the presence and functional relevance of a FLNa interaction with either 

DOCK11 or CLIP-170.       
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