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Summary 

Sedimentary rocks are commonly found on the Earth’s surface. Their relatively continuous 

coverage in time and space provides a detailed record of the evolution of the Earth system, and 

the magnetic signals preserved within them serve as useful tools for Earth scientists, not only to 

understand the evolution of the geomagnetic field, but also for geochronology, tectonic 

reconstructions, paleoclimate studies, etc. Despite intense research, several details remain unclear 

just how sediments acquire their magnetic remanences. One major obstacle concerns reproducing 

in laboratory the essential process of acquisition in nature. Most redeposition experiments use 

crushed or disaggregated sediments, where living organisms are completely eliminated. This 

becomes a critical issue when studying sediments naturally subjected to bioturbation, which as it 

will be shown in this thesis, can be driven by microorganisms to an extent that affects the 

acquisition of a natural magnetization. Among such microorganisms, an important role is played 

by magnetotactic bacteria with chains of nanometer-sized iron oxide and iron sulfide crystals 

(magnetosomes). These crystals have been recently considered as an important contributor to the 

magnetic remanence in a wide range of sediments, yet the knowledge of the underlying 

mechanism remains incomplete. Three key missing elements are (1) the structure of the 

remanence carriers; (2) the acquisition efficiency of magnetosomes with respect to detrital (or 

primary) magnetic minerals; (3) the influence of living organisms that stir up (randomize) the 

sediment through bioturbation. This thesis addresses these problems. 

We conducted a research program concentrating on natural sediments rich in microfauna 

including magnetotactic bacteria. First, the rock magnetic experiments show that ~87% of the 

magnetization in these sediments is carried by single domain magnetite that likely comes from 

magnetosomes derived from bacteria. However, the relative contribution of live magnetotactic 

bacteria to the total magnetic signal is negligible, on the order of 1‰, as estimated from cell 

counts. This suggests that the fossil magnetosomes (magnetofossils) dominate the remanence in 

the sediment. Next, two main types of redeposition experiments were performed with such 

sediments in their original form thereby preserving the living microorganisms (mainly non-

magnetic bacteria). The first concerns in-field deposition as the sediment settles, which is called 

a depositional remanent magnetization (DRM). In the second type, the sediments are fully settled 

in a zero magnetic field and then the field is turned on. This is known as a post-depositional 

remanent magnetization (PDRM). We also measured the decay of the acquired remanence after 

the field was turned off. All experiments were carried out in triplicate and were repeated using 

sediments with different concentrations of biomass and in different field strengths. 

We demonstrate that both DRM and PDRM carriers are mainly single domain magnetic 

minerals, attached to larger sediment particles, as a consequence of a flocculation process 

occurring directly inside the sediment. We can further demonstrate that the magnetic structure of 

PDRM carriers experience negligible magnetic interactions, as seen by the insensitivity of PDRM 
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to magnetic pre-treatments that would change the magnetic moment of non-single domain or 

interacting single-domain particles. Given the magnetofossil-bearing nature of the sediment used 

for the experiments, flocs involved in PDRM acquisition likely consist of single intact 

magnetosome chains adhering to one or more sediment particles. The efficiency of DRM 

acquisition in our sediments is comparable with previous redeposition experiments, however, 

PDRM can easily reach ~50% of DRM, significantly exceeding the previously assumed limit of 

10%. We also observed a drastic loss of remanence after leaving the sediments in a zero field. 

Through control experiments, we discovered that these characteristics in fact result from 

bioturbation. The acquisition/decay rate of the remanences is sensitive to the biomass which in 

turn modulates the intensity of bioturbation. Finally, we found the acquisition of (P)DRM depends 

nonlinearly on the field intensity in most cases. 

Classic theories and models could not explain the experimental findings. This thesis 

therefore develops a new theory to account for remanence acquisition in sediment under the 

influence of (a) magnetic torques, (b) randomizing torques, and (c) torques resulting from inter-

particle forces. In the framework of the general theory, DRM and PDRM are no longer exclusive 

processes. Dynamic equilibrium between (a) and (b) in the water column and at the sediment-

water interface generates a DRM, while much stronger randomizing torques may occur through 

bioturbation inside the mixed layer resulting in a PDRM, which is stabilized by mechanical 

interaction forces. Both processes are governed by a lock-in function that depends on rotational 

diffusion, mixed layer thickness and sedimentation rate. This model explains (1) lock-in delays 

that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence 

of small lock-in depths that lead to DRM preservation, (3) specific acquisition efficiencies of 

magnetofossil-rich sediments, and (4) some relative paleointensity artifacts. The model can 

quantitatively explain the observed data, supporting the experimental discovery of the effect of 

microbial bioturbation on remanence acquisition.  

This study confirms that bioturbation is responsible for the acquisition of a PDRM inside the 

surface mixed layer, which eventually replaces the initial DRM if rotational diffusion is fast 

enough with respect to the mean residence time of particles in this layer. These experiments 

support the conclusion that DRM and PDRM represent two stages of a statistical equilibrium 

between magnetic and perturbing torques: DRM is the first stage that applies to the sediment-

water interface, and PDRM is the later stage developing inside the more strongly perturbed mixed 

layer. The kinetics of particle reorientation, which is dictated by a rotational diffusion coefficient, 

determines whether DRM survives the new equilibrium or it is replaced by a PDRM. The 

difference between DRM and PDRM intensities might be larger in naturally deposited sediment 

owing to higher shear strengths that must be overcome by perturbing torques.  This new 

quantitative understanding of how sediment becomes magnetized in the Earth’s field will 

hopefully facilitate the development of better techniques for paleointensity reconstructions, 

especially if proxies for bioturbation activity can be used. 

  



 

 

Chapter 1  Introduction and overview 

The Earth’s gravity and magnetic fields reflect the distributions of mass and electric currents 

inside our planet, therefore providing essential information about internal dynamic processes [e.g. 

Blakely, 1996]. These fields also affect living organisms: gravity in an obvious manner, and 

magnetism for navigation purposes. Besides humans, the most evident example is that of 

magnetotactic bacteria [e.g. Blakemore, 1975; Bellini, 2009a, b; Frankel, 2009; Mao et al., 2014b]. 

More evolved species, such as bees [Kuterbach et al., 1982], trouts [Eder et al., 2012], birds 

[Wiltschko and Wiltschko, 2005] and whales [Walker et al., 2002] appear to use magnetic 

navigation as well. The Earth magnetic field plays an important role as a shield against the solar 

wind, drastically reducing the radiation exposure of living organisms [Elsasser et al., 1956; Black, 

1967; Hays, 1971; Raup, 1985]. Furthermore, planetary magnetic field might be essential for a 

long-term protection against atmospheric erosion from the solar wind, although the quantification 

of such effects is controversial [e.g. McCormac and Evans, 1969; Lundin, 2001; Seki et al., 2001; 

Lundin et al., 2004]. 

Although magnetic forces were known by the ancient Greeks through loadstone (magnetite), 

the geomagnetic field was discovered much later. First observations through a form of magnetic 

compass can be dated back to the ancient Chinese as reported in the book Lun Heng (Critical 

Essays) published in AD 83 [Kono, 2007]. An ancient Chinese work, Meng Xi Bi Tan (The Dream 

Pool Essays, ca. AD 1088), also states that the magnetic south seen by compass slightly deviates 

from the geographic South: this may be the earliest report about the declination of the Earth’s 

magnetic field [Needham et al., 1962; Kono, 2007]. Systematic declination measurements for 

navigation purposes began after the voyage of Columbus in 1493. Declination measurements 

were also performed to provide the correct orientation of sun compasses [Jonkers et al., 2003]. 

The measurements of the other two important elements of the geomagnetic field, i.e. inclination 

and intensity, began with Georg Hartmann and Robert Norman in the 16th century and with Carl 

Friedrich Gauss in 1832, respectively. Carl Friedrich Gauss and Alexander von Humboldt 

organized the Göttingen Magnetic Union which initiated global standardized observations among 

50 observatories [Jonkers, 2007; Kono, 2007]. Nowadays, satellites significantly improve the 

global data coverage that eventually facilitates the harmonic spherical analysis of the field 

developed by Gauss [e.g. Cain, 1971; Barraclough, 1976; Langel and Hinze, 1998; Lowe et al., 

2001; Neubert et al., 2001]. 

Modern and historical geomagnetic field measurements cover only few centuries and record 

the most recent variations of the geomagnetic field (secular variations). Longer records must rely 

on indirect observations based on the magnetization acquired in the Earth’s magnetic field by 

pottery during firing (archaeomagnetism), and by rocks and sediments during their formation 

(paleomagnetism) [Butler, 1992; Tauxe, 1998]. Such records revealed a succession of polarity 

reversals, during which the dominantly dipolar signature of the geomagnetic field is switched. 

Such reversals separate periods of consistent magnetic poarity (chrons) and occur irregularly in 

time, the last being the Brunhes/Matuyama reversal occurred 0.7 Myr ago. The sequence of 
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polarity reversals led to the development of the Geomagnetic Polarity Time Scale (GPTS) [Cande 

and Kent, 1992; Cande and Kent, 1995; Opdyke and Channell, 1996]. The GPTS is an essential 

tool for geochronology, enabling relative dating of polarity sequences of unknown ages. The 

resolution of this dating technique is limited by chron duration. With this regard, field intensity 

variations within chrons have a global or regional coherence which makes intensity estimates 

useful for higher resolution (millennial scale) geochronology [Valet and Meynadier, 1993; 

Roberts et al., 2013]. The reconstruction of field intensity variations benefit from continuous 

records that can only be provided by sediments and sedimentary rocks.  

While the determination of paleofield directions is quite straightforward, being based on a 

stepwise demagnetization of the natural remanent magnetization (NRM), the reconstruction of 

field intensities from the NRM is an extremely challenging task that requires some understanding 

of the physical mechanisms by which the NRM was acquired. All paleointensity techniques are 

based on the comparison of NRM with a magnetization acquired in the laboratory in known fields. 

Ideally, the laboratory magnetization should be acquired in the same manner as NRM was, 

although this is only rarely possible. The only fully quantitative theory of NRM acquisition deals 

with the thermoremanent magnetization (TRM) acquired by rocks containing single-domain (SD) 

particles upon cooling from above their Cure temperature (e.g. 580°C for magnetite) [Néel, 1949]. 

Provided that no chemical alteration took place since rock formation, TRM can be reproduced in 

the laboratory with heating/cooling cycles in controlled fields. The protocol developed by Thellier 

and Thellier [1959], and improved Thellier-type methods including alteration and domain state 

checks [e.g. Coe, 1967; Aitken et al., 1988; Tauxe and Staudigel, 2004; Yu et al., 2004] are widely 

used for absolute paleointensity determinations on igneous rocks [Biggin, 2010]. Although fully 

quantitative models for the TRM acquisition in non-SD particles are not available, absolute 

paleointensity protocols have been developed, which are relatively insensitive to the domain state 

of remanence carriers [e.g. Dekkers and Böhnel, 2006]. 

 
Figure 1-1 Schematic representation of sediment redeposition in five time frames. A homogeneous 

sediment suspension settles in a magnetic field, forming a clear sediment-water interface (dashed) after 

some time. The same five particles are highlighted by black dots in each frame. A DRM is acquired by 

alignment of magnetized particles in the ambient field during deposition (frames 1-4). This magnetization 

is stabilized by inter-particle forces developing at contact points (frames 3-4). Sediment mixing (arrow in 

frame 5) is responsible for particle realignment after deposition and generates a PDRM.  
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The NRM acquisition mechanism in sediments is completely different and relies on partial 

mechanical alignment of magnetic particles in the Earth field during or after deposition, which 

generate a depositional remanent magnetization (DRM) and a post-depositional remanent 

magnetization (PDRM), respectively. Because (P)DRM acquisition cannot be replicated under 

identical conditions in the laboratory, sedimentary paleointensity reconstructions are based on 

indirect methods that capture field intensity variations (so-called relative paleointensity), rather 

than absolute intensity values [Tauxe, 1993]. DRM acquisition begins in the water column (Figure 

1-1), where settling particles with a magnetic moment m are aligned by the magnetic torque m × 

B exerted by the geomagnetic field B. This alignment is counteracted by the viscous drag, which 

is proportional to the particle volume, and by random fluctuations of particle orientations due to 

the collision with water molecules (Brownian motion). Viscous drag torques determine the time 

required to attain the final alignment, which is of the order of 1 s for magnetite particles [Stacey, 

1972], and thus sufficiently small to reach full equilibrium during settling. On the other hand, 

Brownian motion control the extent of the alignment at full equilibrium, which is given by the 

Langevin law <cosθ> = L(mB/kBT), where θ is the angle between m and B, <cosθ> is the average 

alignment, L is the Langevin function, kB is the Boltzmann constant, and T the absolute 

temperature. The magnetic moment of magnetite particles capable of carrying a stable remanence 

is sufficiently large to produce equilibrium alignments that, if maintained inside the sediment, 

would yield much larger NRMs that generally observed. This is a well-known problem of simple 

DRM acquisition models that cannot be attributed to inaccuracies in the description of magnetic 

particle alignment and Brownian motion, since accurate experimental validations have been 

obtained for the case of magnetotactic bacteria swimming in water [Frankel and Blakemore, 1980; 

Steinberger et al., 1994]. Therefore, other mechanisms acting against magnetic alignment, such 

as turbulence [Heslop, 2007], particle rolling at the sediment surface [Bilardello et al., 2013], and 

particle aggregation [Tauxe et al., 2006], must be invoked. Widely accepted modern DRM 

acquisition theories rely on particle aggregation (flocculation) mechanisms [Shcherbakov and 

Sycheva, 2010], where magnetic moments of individual constituents are added almost randomly 

in large flocs. The resulting net magnetic moment is no longer proportional to floc volume, so 

that large flocs with small magnetic moments will not have the time to fully align with the field 

during deposition [Tauxe et al., 2006]. The importance of flocculation is demonstrated by the 

influence of salinity on redeposition experiments [Katari and Tauxe, 2000]. 

Once a DRM has been acquired by particles that were just incorporated in the sediment/water 

interface, other processes occurring inside the sediment can lead to further alignment of magnetic 

moments with the Earth’s field, leading to the acquisition of a delayed PDRM. Differences 

between sediment age, dated for instance with 10Be, and the age deduced from paleomagnetic 

records, prove that PDRM can be the dominant NRM acquisition mechanism in some cases [e.g. 

Suganuma et al., 2011]. The sedimentation rate ω links a time delay t with a mean depth z = ωt 

of PDRM of acquisition below the sediment-water interface, which is called lock-in depth. 

Empirical PDRM acquisition models assume a certain distribution of lock-in depths below the 

top mixed layer of the sedimentary column, so that original field variations are convoluted with 
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the lock-in distribution, yielding smoothed and delayed paleomagnetic records [Roberts and 

Winklhofer, 2004]. 

All models proposed so far to explain PDRM acquisition proved to be unsatisfactory 

[Roberts et al., 2013]. For example, further passive alignment of magnetic grains by a long-term 

viscous process that overcomes inter-particle forces [Shcherbakov and Shcherbakova, 1987] is 

too slow to enable significant PDRM acquisition before compaction definitively locks the 

acquired magnetization. This conclusion is supported by redeposition experiments. When 

sediment deposited in a null field is successively exposed to a controlled field, it acquires only 

small fractions of the DRM resulting from deposition in the same field [Shcherbakov and 

Shcherbakova, 1987]. On the other hand, post-depositional alignment of magnetic grains could 

be facilitated by bioturbation, i.e. the mixing process occurring in the topmost ~10 cm of the 

sedimentary column (the so-called benthic mixed layer, Figure 1-1). Laboratory simulations of 

bioturbation, realized by stirring sediments in an applied field, led to the acquisition of a DRM-

like stable magnetization [Kent, 1973; Løvlie, 1976]. However, the magnetization was measured 

on dried sediments, whereby it is known that the drying process itself can lead to significant 

magnetizations [Henshaw and Merrill, 1979]. The role of bioturbation was questioned by 

experiments of Katari et al. [2000], where a bulk of marine sediment exposed to the burrowing 

activity of polychaete worms did not acquire a new magnetization in a reversed field.  

Further complication for the understanding of sedimentary NRM comes from the recent 

discovery that magnetofossils (i.e. the fossil remnants of magnetotactic bacteria) are widespread 

and can be preserved over geological times [Roberts et al., 2012]. Because magnetofossils form 

directly in the uppermost sediment layers, where marine magnetotactic bacteria live and die 

[Petermann and Bleil, 1993], magnetofossil would not contribute to DRM acquisition but could 

possibly acquire a “biogenic remanent magnetization” [Heslop et al., 2013], which is equivalent 

to a PDRM. In this case, given the important magnetic and structural differences existing between 

magnetotactic bacteria first and magnetofossils at a later stage on one hand, and other magnetic 

particles or aggregates on the other hand, important questions arise about the efficiency of 

magnetofossil PDRM acquisition vs. DRM and other PDRM sources. For example, the common 

assumption that magnetotactic bacteria are well aligned with the Earth magnetic field [Frankel 

and Blakemore, 1980], which is considered a fundamental requirement for maintaining a 

biological advantage over other organisms, would lead to full saturation of the resulting PDRM, 

which contrasts with much lower NRM intensities usually observed in magnetofossil-rich 

sediments [e.g. McNeill and Kirschvink, 1993]. On the other hand, chain collapse after bacteria 

dissolution [Kobayashi et al., 2006] would drastically reduce or completely randomize any 

acquired magnetization, making magnetofossil contributions extremely sensitive to chain 

preservation and therefore erratic and unreliable. However, recent relative paleointensity 

investigations suggest that magnetofossils carry a consistent NRM that is far from saturation and 

yet different from the NRM component corresponding to detrital remanence carriers [Ouyang et 

al., 2014]. 

Again, as with conventional PDRM models, postulated acquisition mechanisms do not 

provide a satisfactory explanation of observed paleomagnetic records and apparent rock-magnetic 
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artifacts therein [e.g. Yamazaki et al., 2013]. This is a crucial problem, since future improvements 

of relative paleointensity records must rely on a better understanding of processes leading to NRM 

acquisition and their dependence on the type of remanent magnetization carrier involved, as well 

as other factors such as bioturbation and physical/chemical properties of the sediment. Any 

variation of these parameters can lead to NRM intensity changes that could be erroneously 

attributed to the Earth magnetic field. However, only the role of remanent magnetization carriers 

in the NRM normalization process has been addressed until now [Tauxe, 1993]. 

Some of the abovementioned shortcomings of PDRM acquisition models, especially in 

magnetofossil-rich sediments, have been addressed in Mao et al. [2014b]. For example, the role 

of bioturbation was discussed in relation with existing estimates of solid diffusion rates in the 

mixed layer, which, if extrapolated to the rotational diffusion of magnetic remanence carriers, 

would lead to complete randomization of the initial DRM in unrealistically short times. On the 

other hand, living magnetotactic bacteria appear to be very poorly aligned with the Earth’s 

magnetic field (<cosθ> < 0.01), providing a more realistic starting point for magnetofossil 

PDRMs, which does not require chain collapses to explain observed NRM intensities. Yet, an 

appropriate PDRM acquisition model backed by convincing experimental proofs was missing at 

the time this dissertation was started. 

The aim of the present work was to develop a new theory of PDRM acquisition backed with 

suitable experimental verification. The first two chapters describe PDRM acquisition experiments 

conducted on freshly collected sediment containing living magnetotactic bacteria communities 

that have been extensively investigated in the past [e.g. Mao et al., 2014b]. The long-term 

presence of such bacteria in laboratory-stored sediment ensures that microscopic bioturbation – 

the only form of bioturbation that can be studied in samples that must fit in a rock magnetometer 

– is sustained by a stable community of microorganisms during PDRM acquisition experiments, 

eliminating the need for artificial simulations of sediment mixing, such as stirring. These 

experiments can therefore be considered as the closest possible analogue to post-depositional 

processes occurring in a natural sediment. On the other hand, the presence of magnetofossils 

enables a semi-quantitative derivation of mean particle alignments from measured magnetizations, 

providing precious constraints to PDRM acquisition theories. Experiments demonstrate that 

bioturbation is essential to the acquisition of a PDRM, and that the efficiency of the acquired 

PDRM is smaller than that of a DRM, but not negligible. 

A general theory for (P)DRM is developed in Chapter 4 on the basis of experimental results 

discussed in Chapters 2-3. This theory uses a statistical approach to describe acquired 

magnetizations in terms of dynamic equilibrium between aligning and randomizing torques acting 

on magnetic particles subjected to additional forces representing mechanical interactions between 

particles. Accordingly, the initially acquired DRM is progressively lost in favor of a new 

equilibrium representing the conditions of the mixed layer, where randomizing torques are created 

by bioturbation. The newly acquired PDRM eventually replaces – totally or in part – the initial 

DRM, depending on the bioturbation rate and on the total time spent by sediment particles inside 

the mixed layer. In case of partial PDRM acquisition, NRM intensity fluctuations reflect 

DRM/PDRM proportions, which are in turn modulated by bioturbation intensity and 
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sedimentation rate. This theory is consistent with experimental observations and makes testable 

predictions about the effects of changes in the depositional environment that can be explored in 

future work. Chapter 5 demonstrates a quantitative analysis of experimental data introduced in 

Chapters 2-3 based on theory developed in Chapter 4. 

Parts of the thesis have been published or submitted. The magnetic stability of acquired 

(P)DRM against AF demagnetization is part of the content in the paper by Mao et al. [2014b]. 

The reference is: Mao, X., R. Egli, N. Petersen, M. Hanzlik, and X. Zhao (2014), Magnetotaxis 

and acquisition of detrital remanent magnetization by magnetotactic bacteria in natural sediment: 

First experimental results and theory, Geochem. Geophys. Geosyst., 15, 255–283, 

doi:10.1002/2013GC005034. My contribution includes (1) designing experimental protocol for 

(P)DRM acquisition; (2) performing parts of the (P)DRM acquisition experiments and AF 

demagnetization; (3) analyses and discussion of data. The content of Chapter 4 has been published 

in G-cubed (Geochemistry, Geophysics, Geosystems). The reference is: Egli, R., and X. Zhao 

(2015), Natural remanent magnetization acquisition in bioturbated sediment: General theory and 

implications for relative paleointensity reconstructions, Geochem. Geophys. Geosyst., 16, 995–

1016, doi:10.1002/2014GC005672. My contribution consists of (1) preliminary modelling of the 

decay of PDRM in zero field using the Fokker-Planck equation; (2) discussion and (3) composing 

the manuscript. Chapter 5 is based on the manuscript “Microbially-assisted recording of the 

Earth’s magnetic field in sediment” by Zhao, X., R. Egli, S. Gilder, X. You, K. He and S. Müller, 

which has been submitted to Nature Communications. My contribution involves (1) the design of 

the experimental protocols; (2) performing experiments; (3) data analyses and (4) composition.  

Some work done during the PhD are not included in the thesis due to the little relevance to 

the main theme. One work considers how secondary magnetite produced in the absolute 

paleointensity experiments affects the estimates, which has been published in G-cubed. The 

reference is: Zhao, X., Q. Liu, G. A. Paterson, H. Qin, S. Cai, Y. Yu, and R. Zhu (2014), The effects 

of secondary mineral formation on Coe-type paleointensity determinations: Theory and 

simulation, Geochem. Geophys. Geosyst., 15, 1215–1234, doi:10.1002/2013GC005165. My 

contribution consists of (1) modelling; (2) discussion and (3) composition. A second published 

work investigates the rock magnetic property of aluminum-substituted hematite: Jiang, Z., Liu, 

Q., Zhao, X., Jin, C., Liu, C., and Li, S. (2015). Thermal magnetic behaviour of Al-substituted 

haematite mixed with clay minerals and its geological significance. Geophysical Journal 

International, 200(1), 130-143. I was involved in (1) experimental design; (2) data analysis and 

(3) composition. Another work deals with the identification of magnetofossils in the Cambrian 

carbonaceous rocks where fossils of microorganisms have been found. Comprehensive rock 

magnetic experiments were performed, however, signals of magnetofossil, were not able to be 

distinguished, if any, due to the presence of dominant hard magnetic minerals (hematite and 

pyrrhotite). 

 



 

 

Chapter 2  A case study on the acquisition of 

natural remanent magnetizations in 

magnetofossil-rich sediments 

2.1 Introduction 

Sedimentary strata bear continuous records of past geomagnetic field variations, through the 

natural remanent magnetization (NRM) acquired during and shortly after deposition. The 

directional information of NRM has been widely applied to tectonic reconstruction [Klootwijk et 

al., 1992; Acton and Gordon, 1994] and geochronology [e.g. Gilder et al., 2001; Zhu et al., 2001; 

Zhu et al., 2004]. Variations in relative paleointensity (RPI) derived from sedimentary NRM 

[King, 1955; Levi and Banerjee, 1976; Tauxe, 1993] are often globally coherent because of the 

dominating dipolar component of geomagnetic filed. Therefore, RPI supports high-resolution 

geochronology on millennial scales [Guyodo and Valet, 1996, 1999; Laj et al., 2000; Stott et al., 

2002; Channell et al., 2009] that cannot be obtained from the chronology of geomagnetic reversals 

[Roberts et al., 2013]. Relative paloeintensity also possesses potential importance for 

understanding the dynamics of the geodynamo [e.g. Valet and Meynadier, 1993] and the 

geomagnetic field’s role as a shield against cosmic rays [e.g. Elsasser et al., 1956]. While more 

RPI data can nowadays be obtained at higher resolution, due to instrumental advancements, robust 

interpretation of the fine-scaled variations becomes crucial in order to discriminate dipolar 

geomagnetic variations (global signals) from artifacts related to changes of the magnetic 

mineralogy, depositional environment, and sediment properties [Roberts et al., 2013]. For this 

purpose, many efforts have been devoted to understanding acquisition of sedimentary NRM since 

Johnson et al. [1948], which will be briefly reviewed in the following. A detailed review can be 

found in Tauxe and Yamazaki [2007]. 

The magnetization acquired by settling or resuspended sediment particles at and shortly after 

deposition is called depositional remanent magnetization (DRM). Nagata [1961] describes the 

DRM acquisition mechanism as a rotation of magnetic particles subjected to magnetic and viscous 

drag torques. In case of isolated magnetite particles, full alignment with external magnetic fields 

of the order of 50 μT is reached in less than a second [Stacey, 1972]. In this case, DRM acquired 

in typical geomagnetic field intensities would be close to the saturation remanent magnetization 

(Mrs), regardless of the actual field intensity, providing a useless signal for paleointensity 

reconstructions. Such alignment is never observed in redeposition experiments, where the 

acquired DRM depends, in some cases almost linearly, on the applied field intensity, although 

DRM/Mrs values obtained in this manner are about one order of magnitude larger than NRM/Mrs 

[e.g. Tauxe et al., 2006]. Furthermore, an error in inclination of laboratory DRM, termed as 

inclination shallowing, is oftentimes documented [e.g. King, 1955; Tauxe and Kent, 1984; 

Bilardello et al., 2013]. Differences between NRM acquired in nature and DRM acquired in 

redeposition experiments have been attributed to flocculation [Shcherbakov and Shcherbakova, 
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1983; van Vreumingen, 1993; Tauxe et al., 2006; Shcherbakov and Sycheva, 2010]. Flocculation 

is the aggregation of colliding particles during settling, due to attractive electrostatic and Van der 

Waals forces. During this process, the volume of aggregates, termed as floc, increases more 

rapidly than the net magnetic moment resulting from the vector sum of randomly or almost 

randomly oriented elemental contributions [Tauxe et al., 2006; Heslop, 2007]. As a result, larger 

flocs require more time to align with the geomagnetic field than available during (re)deposition. 

Most importantly, large flocs are more sensitive to hydrodynamic torques developing around 

settling particles in the water column [Heslop, 2007]. Redeposition experiments and numerical 

simulations confirm that DRM intensity drops when flocculation increases [Tauxe et al., 2006; 

Shcherbakov and Sycheva, 2010]. The DRM obtained from redeposition experiments is often 

non-linearly related to the external magnetic field, depending on the size of flocs [Tauxe et al., 

2006; Mitra and Tauxe, 2009]. Lack of proportionality between NRM and geomagnetic field 

would further complicate the application of RPI. 

NRM acquisition can continue after deposition, generating what is known as a post-

depositional remanent magnetization (PDRM). The exact PDRM acquisition mechanism is not 

known: the two main hypotheses rely on passive alignment of particles that are not fully blocked, 

and on bioturbation. These processes have been simulated by laboratory experiments with 

unstirred [Irving, 1957; Irving and Major, 1964; Tucker, 1979] and stirred sediments[Kent, 1973; 

Løvlie, 1976]. Laboratory PDRM is generally characterized by (1) negligible inclination 

shallowing and (2) linear relationship between magnetization and the magnetizing field [Kent, 

1973; Verosub et al., 1979; Barton et al., 1980; Tucker, 1980; Spassov and Valet, 2012; Mao et 

al., 2014b]. On the other hand, the PDRM acquired by unstirred sediment represents a negligible 

fraction of the DRM, and is considered irrelevant in natural sediments. Shcherbakov and 

Shcherbakova [1987] estimated that PDRM could reach at most only ~10% of DRM, in 

agreement with some experimental results [Tauxe, 1993]. On the other hand, experiments 

conducted with stirred sediment led to the acquisition of non-negligible magnetizations [Kent, 

1973], which, however, might have originated from sample drying before measurement 

[Henshaw and Merrill, 1979]. Katari et al. [2000] argued that most reported laboratory PDRM 

experiments overestimate PDRM acquisition efficiencies, since the shear strength of remolded 

sediments used in experiments are significantly reduced. Higher shear strength corresponds to 

stronger inter-particle forces, which prevents particle rotation [Verosub et al., 1979; Payne and 

Verosub, 1982].  

Physical properties of the sediment, such as grain size, might also influence PDRM 

acquisition. For instance, clay and silty sediments are characterized by smaller pores where 

magnetic particles can rotate [Payne and Verosub, 1982], as well as more important flocculation 

effects than sands and carbonates [Spassov and Valet, 2012].  

New challenges for sedimentary NRM acquisition theories are introduced by the recently 

gained knowledge on magnetofossils, i.e. the fossil magnetic remainders of magnetotactic 

bacteria. Since their discovery [Blakemore, 1975], magnetotactic bacteria have been found to be 

ubiquitous in sedimentary environments [Bazylinski et al., 1988; Farina et al., 1990; Petermann 

and Bleil, 1993; Flies et al., 2005; Faivre and Schüler, 2008], leaving fossil chains of magnetite 
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or greigite particles – so called magnetofossils – inside the sediment matrix upon death 

[Kirschvink and Chang, 1984; Petersen et al., 1986; Stolz et al., 1986]. Because magnetotactic 

bacteria live inside the sediment, the natural magnetization possibly acquired by magnetofossils 

is by definition a PDRM, so that magnetotactic bacteria could be an important NRM source that 

might differ substantially from the contribution of other remanence carriers. However, the 

paleomagnetic role of magnetofossils has long been considered irrelevant, due to the widespread 

belief that they would not withstand reductive diagenesis and be preserved over geological times 

[Karlin, 1990; Leslie et al., 1990]. 

This point of view changed recently with development of rock magnetic techniques [Egli, 

2004; Egli et al., 2010; Heslop et al., 2014] which enable reliable magnetofossil detection in a 

wide range of sediments with different ages and provenances [Roberts et al., 2012]. In many cases, 

magnetofossil contribute to >50% of the saturation remanence [Ludwig et al., 2013], so that their 

role as possible PDRM carriers can no longer be neglected. Heslop et al. [2013] coined the term 

“biogenic remanent magnetization” for designating magnetofossil contributions to the NRM. 

Magnetofossil PDRM acquisition might be substantially different from the NRM acquired 

by other remanence carriers. One possible reason is that magnetotactic bacteria are expected to 

be well aligned with the Earth magnetic field, as seen in water, because this alignment is required 

for navigation purposes in what is known as magnetotaxis [Frankel and Blakemore, 1980]. In this 

case, magnetofossils would inherit this initial alignment, and a strong randomization mechanisms 

is required to reduce the corresponding magnetization by ~4 orders of magnitudes in order to 

match NRM intensities of magnetofossil-bearing sediments [McNeill and Kirschvink, 1993; 

Ouyang et al., 2014]. If such randomization action is associated with bioturbation, it would affect 

other remanence carriers as well, resulting in unrealistically large differences between NRM 

acquisition efficiencies of magnetofossils and detrital particles, which are not observed [Ouyang 

et al., 2014]. Magnetosome chain collapse after dissolution of supporting cell structures 

[Kobayashi et al., 2006] could provide a selective mechanism of NRM randomization acting only 

on magnetofossils. However, this mechanism require all chains to be affected by structural 

collapse, while Ludwig et al. [2013] set <50% as an upper limit. These simple thoughts 

demonstrate that PDRM acquisition might be far more complicated than suggested by our current 

understanding about sedimentary processes affecting the orientation of magnetic particles. 

Therefore, an experimental approach is needed to improve our understanding of NRM acquisition 

in sediment. 

Paterson et al. [2013] performed redeposition experiments with pure suspensions of cultured 

magnetotactic bacteria which were allowed to dry in a magnetic field. The resulting magnetization 

was parallel to the applied field and proportional to its intensity, leading to the conclusion that 

magnetofossils could provide NRM contributions suited to RPI studies. The remanence acquired 

in these experiments, however, is carried by whole cells, instead of fossil chains dispersed in a 

non-magnetic matrix, and could result from drying [Henshaw and Merrill, 1979], rather than 

PDRM acquisition.  

Mao et al. [2014b] used magnetofossil-rich freshwater sediments to investigate the NRM 

acquisition behavior under more realistic conditions, focusing on the relation between the 
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alignment of living magnetotactic bacteria and their fossil remainders. They found that bacteria 

living in sediment are very poorly aligned (<1%) with the Earth magnetic field. This finding 

challenges existing models of magnetic navigations, but, on the other hand, it provides a less 

critical starting point for magnetofossil NRM. In fact, the observed alignment is similar to that of 

magnetic particles in redeposition experiments [Tauxe et al., 2006], so that PDRM would start 

from similar initial conditions for all remanence carriers. Mao et al. [2014b] also documented a 

linear dependence of PDRM on magnetizing fields with a PDRM/Mrs ratio that is comparable to 

that of geological records. The poor alignment of magnetotactic bacteria and PDRM acquisition 

in the same sediment were interpreted as being the result of an equilibrium between magnetic 

torques and randomizing forces arising from bioturbation. The experiments of Mao et al. [2014b], 

however, were not based on full sediment deposition in a water column, so that the obtained 

magnetization might not fully represent a PDRM.  

In order to address the possible role of bioturbation in the acquisition of a PDRM in a realistic 

manner that is as close as possible to real conditions in sediments, we performed redeposition 

experiments with freshly collected, magnetofossil-rich sediment known to host stable 

magnetotactic bacteria populations during laboratory storage [Mao et al., 2014b]. Magnetotactic 

bacteria are not by themselves necessary for these experiments, since they represent a negligible 

fraction of the living biomass, and, most importantly, a negligible fraction of the total 

magnetofossil concentration deduced from magnetic measurements. However, their presence 

means that the sediment is hosting a stable microbial community during the redeposition 

experiments, where motile organisms can provide the required driving forces for bioturbation. 

Mao et al. [2014a] showed that magnetotactic bacteria can displace vertically by several cm/week 

inside the same type of sediment used here for the PDRM experiments, ensuring us about 

microbial motility and associated bioturbation on a microscopic scale. These conditions have been 

never realized in previous redeposition experiments, since old sediment retrieved from cores and 

subjected to treatments typically used to disperse sediment particles can be considered as lifeless. 

In this chapter, we discuss the results of (P)DRM acquisition/decay experiments in the 

framework of diffusive processes associated with bioturbation, while a proof of the role of 

microorganisms in these experiments is provided in Chapter 3. 

2.2 Materials and Methods 

2.2.1 Sediment collection 

Sediment material for this study was collected from the top ~10 cm sediment layer in a small 

pond with ~1 m maximum water depth, located next to our paleomagnetism laboratory in 

Niederlippach (Bavaria, Germany, 48°35’14.98’’ N, 12°04’43.71’’ E) in October of 2012. The 

pond sediment is known to contain abundant magnetotactic bacteria populations, including the 

rod-shaped M. bavaricum and round cocci [Jogler et al., 2010; Mao et al., 2014b]. The sediment 

is dominantly made of clay and silt, with only 10% of particles > 63 μm based on sieve analysis. 

Grain size distributions (Figure 2-1) was measured with a Beckman Coutler LS230 laser 
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diffractometer on aqueous suspensions that were not subjected to dispersion treatments, owing to 

the fact that only the size of grains and grain aggregates behaving as solid units is relevant in 

PDRM experiments. 

 
Figure 2-1 Grain size distribution of untreated sediments. 

Sediments were transferred to glass aquaria at ambient temperature as described in 

Blakemore et al. [1979]. A stable chemical stratification with a well-defined oxygen gradient is 

re-established within one week of laboratory storage. After this initial stabilization, magnetotactic 

bacteria populations have been characterized with the hanging drop assay with a specially 

equipped optical microscope (Magnetodrome) as described in Mao et al. [2014b]. A few weeks 

after the sampling, M. Bavaricum was predominant, while round cocci became more numerous 

after 7 months. Such cycles are commonly observed with this type of sediment, while the average 

concentration of magnetotactic bacteria remains on the order of 105 cells/mL. 

2.2.2 Rock magnetic properties 

Bulk magnetic properties of the pond sediment are typical of many magnetofossil-bearing 

sediments, with hysteresis parameters (Mrs/Ms ≈ 0.33, Hcr/Hc = 2.273) typical for pseudo-single 

domain (PSD) particles (Figure 2-2a). On the other hand, comparison of the stepwise acquisition 

of an isothermal remanent magnetization (IRM) with the DC demagnetization of the saturation 

IRM, known as Wohlfarth-Cisowski test [Cisowski, 1981], suggests that the magnetization is 

dominated by single-domain (SD) particles with little magnetostatic interactions (Figure 2-2b). A 

similar magnetic composition is also suggested by the ratio χARM/IRM between the anhysteretical 

remanent magnetization (ARM) susceptibility, χARM and IRM, which is >0.15, as expected for 

non-interacting SD particles [Egli and Lowrie, 2002; Egli, 2004]. The contribution of high-

coercivity minerals (e.g. hematite and goethite) to the saturation remanence is small, as seen from 

IRM0.3T/Mrs ≈ 95%. 
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Figure 2-2 Rock magnetic measurements. (a) The typical hysteresis loop after slope correction 

is characterized by Mrs/Ms ≈ 0.33 and Bc = 19 mT. (b) IRM acquisition and backfield 

demagnetization are presented as a Wohlfarth-Cisowski test [Cisowski, 1981], suggesting the 

magnetic minerals have negligible magnetic interaction. Both data demonstrate high coercivity 

minerals have negligible contribution. 

The nature of remanence carriers in the sediment used for (P)DRM acquisition experiments 

has been further investigated with a combination of selective dissolution of SD magnetite and 

high-resolution measurements of first-order reversal curves (FORC) using the procedure 

described in Ludwig et al. [2013]. For this analysis, dried and homogenized sediment has been 

divided into two aliquots: the first aliquot was used directly for measurements, while the second 

aliquot was treated with a citrate-bicarbonate-dithionite (CBD) solution optimized for 

magnetofossil dissolution according to the receipt given in Ludwig et al. [2013]: about 30 g of 

sediment were added to 200 ml of water containing 5 g sodium dodecyl sulphate (a detergent for 

cell dissolution), 15 g sodium citrate, and 4 g sodium bicarbonate. After heating the sediment 

suspension to 50°C, 6 g sodium dithionite were added and the suspension was stirred at constant 

temperature for ~ 1 h. Afterwards, the remaining sediments were separated by stepwise vacuum 

filtration with decreasing pore size of the filters down to 100 nm for magnetic analysis. The 

treated sediment, referred to as CBD-residue in the following, was then measured with the same 

protocol as the original sample (bulk sediment). As shown by Ludwig et al. [2013], the difference 

between identical measurements untreated and treated material corresponds to the in-situ 

magnetic signature of CBD-extractable magnetite, i.e. crystals <0.5 µm in size, which are directly 

dispersed in the sediment matrix. Larger crystals, or SD magnetite inclusions in silicate host 

minerals, which are protected from dissolution, are unaffected by the CBD treatment. Therefore, 

the CBD treatment selectively removes secondary SD magnetite, i.e. magnetofossils and 

authigenic particles. 

High-resolution FORC measurements [Egli et al., 2010], on the other hand, are now widely 

used as a standard tool for magnetofossil detection [Roberts et al., 2013]. Single magnetofossil 

chains, as well as isolated SD particles, have a characteristic FORC signature consisting of a 
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horizontal ridge along Hb = 0. The intrinsic sharpness of this ridge is a diagnostic signature with 

respect to other magnetic contributions characterized by a continuous FORC function, so that the 

magnetic contribution of particles contributing to the central ridge can be quantified [Egli, 2013]. 

Collapsed magnetosome chains [Kobayashi et al., 2006], on the other hand, do not contribute to 

the central ridge because of strong and random magnetostatic interactions occurring within the 

dense particle clusters resulting from chain collapse. The whole magnetic signature of secondary 

magnetite particles is captured only by comparison of bulk and CBD-residue. The analysis of a 

magnetofossil-rich pelagic carbonate by Ludwig et al. [2013] shows that the contributions of the 

central ridge and remaining parts of the FORC diagram to the total FORC magnetization are 

almost equal, suggesting that 50% of all CBD-extractable particles were isolated or arranged in 

isolated linear chains, while the other 50% formed clusters of interacting particles. 

 
Figure 2-3 Day plot with theoretical mixing lines between superparamagnetic (SP), single-

domain (SD) and multidomain (MD) magnetite particles (gray lines, after Dunlop [2002]). 

Circled numbers indicate the hysteresis parameters of untreated sediment (1), CBD-residue (2), 

and the difference between untreated sediment and residue (3). Bulk properties of 

magnetofossil-bearing sediments, cultured magnetotactic bacteria and interacting SD particles 

are shown for comparison. 

High-resolution FORC measurements in field steps of ~0.5 mT have been performed with a 

Princeton Measurement Corporation VSM at the University of Minnesota and processed with 

VARIFORC [Egli, 2013]. The CBD treatment has a clear effect on bulk hysteresis properties 

(Figure 2-3), which are located near the SD-MD mixing line of the Day plot [Dunlop, 2002], with 

the CBD-residue being more close to the MD end-member and the CBD-extractable fraction 

being more close to the SD end-member. The mixing line defined by the CBD treatment is 

compatible by the trend formed by magnetofossil-rich sediments as expected from mixtures of 
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MD-like primary minerals and SD-like secondary minerals. The SD end-member of this trend 

coincides with the ideal hysteresis of non-interacting SD particles with uniaxial anisotropy. On 

the other hand, CBD-extractable minerals in our sediments are relatively far from this end-

member. 

 
Figure 2-4 High-resolution FORC measurements of the untreated sediment (a), and the 

corresponding CBD residue (b). Notice the difference in scale. Every 16th curve in (a) and every 

20th curve in (b) are shown for clarity. (c) FORC diagram of the untreated sediment. The 

following VARIFORC processing parameters have been used. Reference smoothing factor: 12; 

increase rate of the smoothing factor: 0.2; smoothing factor limitation along Hc = 0 and Hb = 0:6. 

(d) FORC diagram of the CBD-treated sediment. The following VARIFORC processing 

parameters have been used. Reference smoothing factor: 13; increase rate of the smoothing 

factor: 0.3; smoothing factor limitation along Hc = 0 and Hb = 0:7. See the VARIFORC manual 

(www.conrad-observatory.at/cmsjoomla/en/download) for more details about the parameters. 

 The saturation remanence of the CBD residue is ~13% of the untreated sediment (Figure 

2-4), which means that only a minor fraction of all remanence carriers consists of magnetic 

particles that are resistant to the CBD treatment. As discussed before, these remanence carriers 
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are >500 nm in size, or of smaller sizes but protected from dissolution by inclusion in a silicate 

matrix. The FORC diagram of untreated sediment contains a central ridge superimposed to 

continuous positive and negative contributions over the remaining FORC space (Figure 2-4c). 

Negative contributions near the vertical axis in the lower quadrant are the typical signature of 

reversible magnetic moment rotation in SD particles [Newell, 2005]. On the other hand, the 

FORC signature of the CBD-residue is characterized by triangular contour lines with maximum 

vertical extension at Hc = 0, which is typical for PSD particles [Roberts et al., 2000; Muxworthy 

and Dunlop, 2002]. With these measurements we conclude that ~13% of the saturation remanence 

is carried by PSD particles of primary origin, while remaining remanence carriers are associated 

with SD minerals. 

The FORC diagram of CBD-extractable particles is very similar to that of the untreated 

sediment (Figure 2-5), due to the limited contribution of non-extractable particles. FORC 

contributions over the upper quadrant (Figure 2-5b) are incompatible with non-interacting SD 

particles [Newell, 2005] or isolated magnetosome chains [Egli et al., 2010] and must therefore be 

associated with interacting SD particles, possibly from collapsed magnetosome chains [Ludwig 

et al., 2013]. The central ridge has been isolated from other FORC contributions using 

VARIFORC (Figure 2-5c). This ridge defines a clearly bimodal coercivity distribution fcr peaking 

at Hc = 0 and Hc = 60 mT (Figure 2-5d). The second peak is compatible with the magnetofossil 

coercivity component ‘BH’ often seen in freshwater sediments [Egli, 2004]. This component has 

been attributed to chains of elongated magnetosomes. The peak at Hc = 0, on the other hand, could 

be compatible with nearly equidimensional SD particles similar to pedogenic magnetite found in 

soils [Egli, 2004]. A bimodal coercivity distribution is also obtained from backfield 

demagnetization data contained in a subset fbk of the FORC measurements. About 30% of the 

total FORC magnetization is carried by the central ridge: for comparison, this proportion was ~50% 

in the pelagic carbonate analyzed in Ludwig et al. [2013]. 
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Figure 2-5 FORC diagrams and coercivity distributions. (a) FORC diagram of CBD-extractable 

particles obtained with VARIFORC. Same processing parameters as in Figure 2-4c have been 

used. (b) FORC diagram remaining after subtraction of the central ridge with VARIFORC. The 

isolated central ridge is shown in (c) with a 2× vertical exaggeration, which highlights a small 

upward shift of the whole ridge. The shift is due to thermal activation effects and is a common 

feature for all sedimentary materials featuring a central ridge. All FORC diagrams share the 

same color scale. (d) Three types of coercivity distribution derived from FORC measurements, 

with shaded bands around each curve representing the 2σ confidence level. The first two 

distributions, ƒbk and ƒir, originate from FORC measurements in H = 0 and from the irreversible 

component of the lower branch of the hysteresis loop, respectively. These coercivity 

distributions are generated by VARIFORC as part of the standard output. The third distribution, 

ƒcr, is associated with the central ridge. ƒir is the only distribution that exists for positive and 

negative fields, like the hysteresis loop from which it is derived. Negative arguments of ƒir 

originate from irreversible magnetization processes that occur without reversing the field 

direction. Only non-interacting, uniaxial single-domain particles produce a strictly positive ƒir. 

(e) Total magnetizations derived from FORC measurements (Ms and Mrs), integration of the 

FORC diagram (MFORC), and integration of the coercivity distributions shown in (d) (Mbk, Mir, 

and Mcr). 
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FORC analysis of untreated and CBD-treated sediment suggest the following conclusions. 

Remanence carriers in the sediment are mainly SD particles of magnetofossil origin. The central 

ridge indicates that ~30% of the particles occur in isolated form or as isolated magnetosome 

chains in the sediment matrix. The remaining SD particles are clustered, probably as a 

consequence of chain collapse. If clusters originate from magnetosome chain collapse, they are 

expected to be isolated from each other as the original chains were. About ~13% of the saturation 

remanence originates from PSD particles as part of a detrital component. These findings are 

similar to those obtained for a pelagic carbonate from the equatorial Pacific [Ludwig et al., 2013], 

where, however, the proportion of SD particles contributing to the central ridge was larger. 

2.2.3 Redeposition Experiments  

2.2.3.1 General set-up 

Redeposition (DRM) experiments have been performed in glass vials with an inner diameter 

of 22 mm and a volume of 15 ml as the container (Figure 2-6a), which have negligible remanent 

magnetization (~0.26 nAm2 on average), in comparison with the magnetic moment acquired by 

the sediment (>20 nAm2 in 20 µT). Each sample consists of ca. 5 ml of slurry and 10 ml of tap 

water. Loaded vials were sealed and vigorously shaked in order to fully randomize the sediment 

suspension before the acquisition of magnetization. Magnetic field was provided by Helmholtz 

coils that is ~ 1m on each side with good homogeneity (with < 1% standard deviation) in the 

sample region (Figure 2-6c). The remanent magnetization acquired after given amount of time 

(TDRM_f, see Table 2-1 at the end of this chapter for the summary of parameters used in the 

experiments) in the applied field was measured with a superconducting rock magnetometers. For 

this purpose, vials were transferred to the magnetometer very gently to keep the mechanical 

disturbance as low as possible. The vials were then lowered down into the optimum measurement 

position of the magnetometer by a non-magnetic sample holder very carefully. After a 

measurement which takes ~ 3 minutes/sample, samples were then randomized for acquisition 

with a different TDRM_f. Triple samples were used in each acquisition for the concern of 

reproducibility.  

For PDRM experiments, sediments were prepared in the same way as were in DRM 

experiments except that before the acquisition starts samples were placed in the shielded room to 

settle for a certain time (TPDRM_0) after the initial randomization. Afterwards, samples were 

transferred to the applied field very gently. Acquired PDRM were then measured periodically 

during the course of acquisition (TPDRM_f) in a same manner as that in DRM experiments except 

that samples were returned to identical position and orientation for experiment continuation 

without any deliberate mechanical disturbances. After TPDRM_f was reached, samples were 

carefully transferred to null field and the subsequent changes in their previously acquired PDRM 

were periodically measured for a few days.  

The values for the aforementioned parameters used in (P)DRM experiments are as follows. 

TDRM_f was set to be 2, 4, 8, 16, 36 48, 80 hours, 6, 8.5 and 9 days. For most samples, TPDRM_0 is 

4.5 days when the porosity becomes stabilized at 80.8% ± 3.5%, which was deduced from the 

difference in volume before and after consolidation. TPDRM_0 is 16 hours for only one control 
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group to demonstrate the effect of initial porosity on the PDRM acquisition. TPDRM_f is mostly 1 

week. The field intensity (B) was set to be B = 60 ± 0.4 µT with inclination Ic = 50° for the 

(P)DRM acquisition except for tests for inclination shallowing and field dependence. In the 

inclination shallowing test, field inclination was set to 0°, 20°, 50°, 80° with constant B = 60 µT. 

For field dependence of (P)DRM, B was set to 20, 40, 60, 80,100 and 150 µT with constant Ic = 

50°. 

 
Figure 2-6 The apparatus for redeposition experiments.(a) Snap cap vials are used to contain 

sediments and water. It allows NRM measurements without drying sediments. Red lines on the 

vials mark the orientation. (b) Loaded vials are mounted on a substrate. The marks of vials are 

aligned with marks of the substrate. (c) The substrate is fixed in the Helmholtz coils which 

provide a homogeneous magnetic field for NRM acquisition, with its marks parallel to the north 

of the magnetic field. 

2.2.3.2 Pre-treatments 

In order to determine the structure and domain state of remanence carriers involved in the 

(P)DRM acquisition experiments, we prepared 4 types of control samples subjected to different 

magnetic treatments. Three treatments were applied before each redeposition experiment: (1) 

IRM at 100 mT, which saturates all low-coercivity magnetic minerals (2) ARM (peak AC = 100 

mT with DC = 100 μT), which selectively saturates SD particles and (3) AF demagnetization with 

a peak field of 100 mT. The fourth treatment was an AF demagnetization applied after 

redeposition but before PDRM acquisition. 

Another control group of samples was prepared by desiccating and disaggregating some 

sediment, which was successively rehydrated with distilled water. The resulting batch of control 

samples, called “crushed sediment” in the following, served two purposes: (1) check if 

disaggregated sediments is suitable for redeposition studies, and (2) eliminate bioturbation in the 

same manner as it is done with “classical” redeposition experiments. 

The last control group consists of desiccated sediments that are AF-demagnetized before 

acquisition. This batch of samples were then subjected to magnetic field and measured in the 
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same manner as other groups. The resulting remanent magnetization will be compared with 

PDRMs of wet samples.  

2.2.4 AF demagnetization of acquired magnetizations 

Three samples were manually AF demagnetized in the originally wet condition after 

(P)DRM acquisition. These samples acquired (1) a DRM with TDRM_f = 7 days, (2) a PDRM with 

TPDRM_f = 7 days, and (3) a PDRM with TPDRM_f = 1 day, respectively. High-resolution AF 

demagnetization was also performed with SUSHIBAR [Wack and Gilder, 2012] after complete 

drying. The dried samples were successively used for measuring detailed AF demagnetization 

curves of ARM and SIRM. The samples were demagnetized every 1 or 2 mT in the range of 1 

mT to 50 mT and every 5 or 10 mT in the range from 50 to 90 mT. 

2.3 Results and discussions 

2.3.1 DRM acquisition 

Results of DRM acquisition experiments as a function of time elapsed (i.e. TDRM_f) in a given 

field are shown in Figure 2-7. The maximum DRM intensity is obtained with the first 

measurement in < 20 minutes, long before a stable height of the sediment column is approached 

(Figure 2-7c). Unlike classical redeposition experiments with lifeless sediment, initial rapid DRM 

acquisition in <20 minutes is followed by a steady decrease of DRM intensity in a constant 

applied field. Inclination, on the other hand, did not change significantly with time, and was ~6° 

shallower than the magnetizing field (Figure 2-7b). This corresponds to a shallowing factor 

(fshallow) [King, 1955] of 0.81. 

DRM intensity did not reach an equilibrium with the applied field after 9 days, however, the 

rate of change decreased significantly. DRM at TDRM_f = 16 hours (DRM16hrs) is used to investigate 

the dependence of inclination shallowing on the field direction and for later comparison with 

PDRM acquisition experiments. DRM intensity and inclination depend on the field inclination 

(If). As seen in Figure 2-8a, the moment of DRM acquired at If = 80° is ~ 80% of that acquired at 

If = 0° (Figure 2-8b). On the other hand, a maximum inclination shallowing of ~7° is observed 

for If = 50°. These results are a characteristic feature of DRM, as found in previous studies [Tauxe 

and Kent, 1984; Bilardello et al., 2013], and can be explained with the classic inclination 

shallowing model of King [1955]. 
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Figure 2-7 DRM acquisition versus time. (a) The intensity of DRM of raw sediments (black 

symbols) decreases with increasing acquisition time after the maximum is reached within < 2 

hours. On the other hand, DRM of crushed sediments (gray symbols) is constant with 

acquisition time, though with larger scatters. (b) Inclination of DRM of raw sediments is 

constantly lower than that of the magnetizing field independent of acquisition time, 

corresponding to a shallowing factor [King, 1955] of 0.81. The scatter in inclination of crushed 

sediments is still higher, but the average inclination is similar to that of raw sediments. (c) The 

height of raw sediment column is measured as a function of settling time which is identical to 

the acquisition time for DRM. During the first 2 hours of redeposition, sediments are mere in 

suspension state. After 4 hours, a clear interface between water and sediment has formed. After 

8 hours, water suspension becomes clear, but the sediments still feels like suspensions. The 

change in height becomes insignificant after 16 hours when sediments become sensibly stiffer.  
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Figure 2-8 Dependence of DRM on field direction. DRM (16 hours long) of raw sediments is 

obtained in fields with different inclination (If) but with same intensity of 60 μT. (a) The average 

of the intensity declines with increasing inclination of the field. (b) Inclination of DRM is 

slightly dependent on the field inclination with a relatively higher deviation at If = 50°. The 

dependence suggests the shape of DRM carriers are anisotropic with prevent them aligning at 

higher If. 

2.3.2 PDRM acquisition 

Results of PDRM acquisition experiments are shown in Figure 2-9. PDRM is acquired 

progressively with time, with a more rapid growth during the first days, followed by what appears 

to be the asymptotic approach to a final equilibrium that is not reached in 26 days (Figure 2-9a). 

Therefore, most PDRM acquisition experiments have been interrupted after a 7 day field exposure 

(TPDRM_f = 7 days), at which point ~67% of the 26-day PDRM value is reached. Control 

experiments with dried sediments where particle rotation is not possible are characterized by the 

acquisition of a much smaller magnetization (Figure 2-9), so that a significant viscous 

contribution to the PDRM acquisition can be excluded. 

Another important parameter controlling PDRM acquisition is the time elapsed since 

beginning of deposition before the field is turned on (TPDRM_0). In general, the rate at which PDRM 

is acquired decreases with increasing TPDRM_0: for example the initial PDRM acquisition rate for 

TPDRM_0 = 16 hours is twice as large as that corresponding to TPDRM_0 = 4.5 days (Figure 2-9b). 

On the other hand, the PDRM increase rate after ~5 days is the same for the two cases. These 

results suggest that the PDRM acquisition capability of the sediment decreases during the initial 

stages of deposition, probably because of compaction and buildup of inter-particle forces. In our 

experiments, most changes in the PDRM acquisition capability occur during the first 5 days. 

Therefore, all subsequent PDRM acquisition experiments have been performed with TPDRM_0 = 5 

days, so that quasi-stationary sediment properties can be assumed. 

PDRM directions coincide with the magnetizing field vector (Figure 2-9d) and no systematic 

inclination shallowing is observed. The absence of inclination shallowing is a typical 

characteristics of PDRM [e.g. Irving and Major, 1964; Kent, 1973; Tucker, 1979].  
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Unlike most PDRM acquisition experiments without active stirring [Tauxe and Kent, 1984; 

Shcherbakov and Shcherbakova, 1987], the PDRM acquired in our experiments is a significant 

fraction of a DRM acquired in the same field, in any case >30% (Figure 2-9c). Considering that 

PDRM experiments were interrupted before a final equilibrium is reached, and that the PDRM 

acquired in nature replaces a DRM, as shown later, PDRM acquisition can no longer be 

considered a negligible NRM source. 

 
Figure 2-9 PDRM acquisition versus time. (a) PDRM of raw sediments is continuously acquired 

in 26 days with varying rates. PDRM acquisition started with a settling time in zero field 

(TPDRM_0) = 4.5 days before acquisition (PDRM4.5days). The initial segment represents a faster 

increase but lasts just < 1 day. The increase proceeds with a constant rate on the logarithmic 

time scale after 1 day of acquisition (inset). (b) PDRM with TPDRM_0 = 16 hours (PDRM16hrs, 

blue symbols) have higher acquisition efficience than that of PDRM4.5days. None of them is 

viscous remanent magnetization (VRM) as evidenced by comparison with consolidated 

samples (gray symbols) which acquire pure VRM. Crushed samples that were prepared by 

rehydrating powders of mechanically milled raw sediments, however, acquired very weak 

remanence which could be a combination of PDRM and VRM. (c) PDRM16hrs and PDRM4.5days 

are significant compared to their DRM which are acquired in 16 hours. (d) Inclination of PDRM 

agrees well with the magnetizing field. 
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A series of PDRM acquisition experiments have been conducted with sediment that was 

previously dried, crushed, and rehydrated (referred in the following as “crushed sediment”). This 

treatment mimics the experimental procedure commonly used in redeposition experiments, 

transforming the original fresh sediment with its community of microorganisms into a lifeless 

reprocessed material. This treatment reduces the PDRM acquisition capability of the original 

sediment by more than one order of magnitude (Figure 2-9b), and reproduces the typical results 

obtained by redeposition experiments [Katari et al., 2000]. This example shows that unaltered 

sediment properties are of paramount importance for the correct reproduction of NRM acquisition 

processes, therefore crushed sediments are not suitable for reproducing the natural PDRM 

acquisition. 

2.3.3 (P)DRM carriers 

As deduced from rock magnetic experiment, remanence carriers in the sediment can be 

divided into three main categories: (1) isolated SD particles or isolated, intact chains of SD 

particles (magnetofossils), (2) interacting SD particles (clusters, collapsed magnetosome chains 

or multiple chains), and (3) negligible amounts of PSD particles. How are these particles, and 

especially magnetofossils, arranged inside the sediment? Mao et al. [2014b] discussed the initial 

fate of magnetosome chains once dead magnetotactic bacteria and their supporting structures are 

dissolved. They excluded the possibility that such chains could remain freely suspended in the 

pore water, because in this case they would become completely aligned with the Earth magnetic 

field, yielding a saturated NRM. Instead, chains would adhere electrostatically to other sediment 

particles, forming for example magnetite-clay aggregates, such as those observed by Galindo-

Gonzalez et al. [2009]. This aggregation process, which can be considered as a sort of flocculation 

occurring inside the sediment column rather than in the water, would probably stabilize 

magnetosome chains against complete collapse, preserving the original magnetic moments. This 

hypothesis is supported by the fact that the central ridge of FORC diagrams obtained from 

magnetofossil-bearing sediments contributes significantly to the total magnetization. 

Remanence carriers can thus be imagined as intact or collapsed magnetosome chains 

adhering to larger non-magnetic sediment particles. The elevated magnetic moment of intact 

chains would contribute to NRM acquisition, while collapsed chains with a small resulting 

moment would be less important remanence carriers. During PDRM acquisition, magnetic flocs 

can thus be imagined as aggregates of one or more chains attached to non-magnetic sediment 

particles that behave as discrete elastic units during bioturbation. The nature of the remanence 

carriers and floc structure has been investigated with two types of experiments, as described in 

the following. 
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Figure 2-10 AF demagnetization of remanent magnetization of wet and dry sediments. (a) 

Results of wet samples. DRM was acquired in field of 60 μT for 7 days. For PDRM acquisition, 

the sample was first kept in zero field for > 1 month and was AF demagnetized at 90 mT shortly 

before the PDRM acquisition. After a certain time of acquisition (7 days or 22 hours), the 

acquired PDRM was AF demagnetized. (b) Raw sediments were consolidated after acquisition 

of (P)DRM. The demagnetization of NRM are compared with that of ARM and IRM of the 

same sample. 

2.3.3.1. AF demagnetization curves 

The shape of AF demagnetization curves of PDRM depend on the time TPDRM_0 elapsed 

before acquisition was started (Figure 2-10a). In particular, the median destructive field, defined 

as the AF peak field required to erase 50% of the initial magnetization, increases with TPDRM_0 

and the curve shape changes from exponential (TPDRM_0 = 22 hours) to sigmoidal (TPDRM_0 = 7 

days). A similar phenomenon has been documented by Mao et al. [2014b] with experiments on 

the same type of sediment. By changing the direction of the applied field during PDRM 

acquisition, Mao et al. [2014b] could show that exponential AF demagnetization curves with 

small median descructive fields are controlled by mechanical unblocking of magnetic particles or 

flocs in the alternating field. This phenomenon tends to disappear with increasing time from 

deposition, due to the buildup of inter-particle forces that prevent mechanical unblocking. The 

AF stability of DRM, on the other hand, changes little with time, as expected from particles or 

flocs that become rapidly blocked during the early stages of deposition. 

In order to avoid possible biases introduced by mechanical unblocking processes, a set of 

high-resolution AF demagnetization curves has been obtained with dried sediment samples. In 

this case, sediment has been allowed to dry in the (P)DRM acquisition field. AF demagnetization 

curves of ARM and IRM acquired by the dried sediment have been measured after (P)DRM 

acquisition to provide a term of comparison (Figure 2-10b). AF demagnetization curves of DRM 

and PDRM are similar in shape to the AF demagnetization of ARM, rather than IRM. In particular, 

the ARM and PDRM curves are practically identical. These results suggest that (1) (P)DRM 

remanence carriers are mainly SD, given the high selectivity of ARM towards SD particles [Egli 

and Lowrie, 2002], and (2) the natural magnetic moments of flocs are best reproduced by an ARM, 
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rather than an IRM. The nature of (P)DRM remanence carriers can be further explored by 

combining the AF demagnetization results with the magnetic composition of the sediment 

deduced from FORC measurements (section 2.2.2). Three main groups of remanence carriers can 

be distinguished: (a) PSD particles of detrital origin, (b) non-interacting SD particles (isolated 

crystals or isolated, single magnetosome chains), and (c), strongly interacting SD particles 

(clusters or collapsed chains) with relative contributions to the total FORC magnetization listed 

in Table 2-2. Because the FORC magnetization is similar to a saturation remanence, these results 

can be considered as rough approximations for the relative contributions of the three groups to 

Mrs. ARM contributions, on the other hand, can be deduced from Mrs through expected χARM/Mrs 

values (Table 2-2). These estimates indicate that ~80% of the ARM is carried by non-interacting 

SD particles or magnetosome chains. A similar proportion is also expected for the PDRM, given 

the identical shape of the corresponding AF demagnetization curves. The shape of the DRM 

demagnetization curve, on the other hand, is intermediate between the ARM and IRM curves over 

the low-coercivity range (0-20 mT), which is dominated by PSD and interacting SD contribution, 

as seen from coercivity distribution curves deduced from FORC measurements (section 2.2.2). 

Overall, it appears that the most important contribution to the (P)DRM acquired during 

redeposition experiments comes from non-interacting SD particles, probably in form of intact 

magnetosome chains. The nature of such carriers is explored in detail with experiments described 

in the next section. 

2.3.3.2. Redeposition experiments with magnetic pre-treatments 

The magnetic structure of magnetic flocs has been further investigated by subjecting the 

sediment to different magnetic treatments before and during redeposition experiments. These 

treatments were aimed at changing the net magnetic moment of the flocs and observe the 

consequences for PDRM acquisition. Predicted consequences for different floc configurations 

and magnetic treatments are summarized in Table 2-3. 

The following scenarios can be envisaged:  

1. Each floc consists of a single magnetosome chain or a single SD particle. In this case, the 

floc magnetic moment coincides with the saturation moment ms, reagardless of the magnetic pre-

treatment. A natural consequence of this scenario is that the SD magnetic carriers are well 

dispersed in the sediment matrix, being separated by at least one sediment particle diameter (i.e. 

~20 µm on average in our sediment). As a result, rock magnetic properties are dominated by the 

signature of non-interacting SD particles. We know from FORC measurements (see section 2.2.2), 

that this condition is met by up to ~33% of the remanence carriers. 

2. Each floc consists of several unaligned magnetosome chains or SD particles. This scenario 

is similar to the previous one, except that flocs contain more than one SD magnetic carrier 

(magnetosome chain or particle), as a result of an aggregation process. Because the original 

alignment of the individual remanence carriers is small, this property is transferred to the whole 

floc, which behaves as a miniature sample containing (almost randomly) oriented SD particles. 

The natural net magnetic moment of flocs is thus given by the vector sum of individual moments 

with a small residual alignment, which is dictated by the intensity of the geomagnetic field during 

aggregation. The net magnetic moment remains small after AF or ARM pre-treatments, so that 
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the (P)DRM acquired during redeposition experiments is not expected to exceed the values 

obtained from the untreated sediment. On the other hand, the application of a large saturating 

field (IRM treatment), will switch individual magnetic moments in the flocs to <90° angles to the 

applied field, so that each floc will acquire a magnetic moment corresponding to a saturation 

remanence. Because these flocs can be imagined as aggregates of weakly interacting SD particles, 

the resulting magnetic moment is ~50% of the saturation moment ms. Accordingly, redeposition 

experiments performed with IRM-treated sediment should yield significantly larger (P)DRM 

intensities with respect to the untreated sediment. This scenario can be expected in cases where 

the local concentration of SD particles or magnetosome chains was sufficiently large to produce 

repeated events where a magnetic carrier adheres to a sediment particle. 

3. Each floc consists of SD particle clusters or collapsed magnetosome chains. In this case, 

flocs contain strongly interacting SD particles, either formed directly by chemical precipitation, 

induced for instance by metal-reducing bacteria [Moskowitz et al., 1989], or as a result of chain 

collapse. In the latter case, the original saturated moment of individual magnetosome chains is 

almost completely nullified, as deduced from the structure of collapsed chains [Kobayashi et al., 

2006]. On the other hand, chemical precipitation of SD particles in dense clusters produces a 

chemical remanent magnetization (CRM) whose intensity is strongly depressed by magnetostatic 

interactions [Shcherbakov et al., 1996]. In both cases, the magnetic moment of individual flocs is 

only a small fraction of the saturation moment. The same is true after AF or ARM treatments, 

which are not expected to change the sediment’s (P)DRM acquisition capability during 

redeposition experiments. On the other hand, a strong magnetic field will induce a saturation 

remanence state in each floc, which, due to magnetostatic interactions is expected to be comprised 

between 20% and 50% of the saturation moment ms [Muxworthy et al., 2003; Li et al., 2010], and 

in any case significantly larger than the original magnetic moment. Accordingly, the IRM pre-

treatment is expected to significantly enhance (P)DRM intensities acquired in redeposition 

experiments, while other magnetic treatments should produce only minor effects. 

4. Each floc consists of multiple magnetosome chains inherited from a single magnetotactic 

bacterium. Several magnetotactic bacteria species produce double or multiple parallel 

magnetosome chains [Spring et al., 1995; Jogler et al., 2010], and possess, as a whole, a saturated 

magnetic moment [Hanzlik et al., 2002; Simpson et al., 2005]. As demonstrated by magnetic 

moment measurements of individual bacteria, multiple chains, unlike single ones, possess 

intermediate magnetic states and therefore do not behave, as a whole, like isolated SD particles. 

In particular, multiple chains can exist in a demagnetized state. If, in analogy to case 1, the original 

magnetic moment is maintained after cell dissolution and transferred to individual flocs, these 

flocs will be characterized by a saturation moment that can be demagnetized by AF and ARM 

treatments, and re-created by application of a strong magnetic field (IRM). Accordingly, (P)DRM 

intensities obtained from redeposition experiments with untreated and IRM-treated sediment are 

expected to be similar, while AF and ARM treatments are expected to reduce (P)DRM intensities 

significantly. 

5. Each floc contains one or more PSD or MD particles. This case describes the expected 

(P)DRM contribution of primary minerals. The magnetic moment of these remanence carriers 
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corresponds to the NRM acquired by the parent rock, which has often a TRM in origin. 

Accordingly, the natural magnetic moment of such particles, as well as the whole flocs, is only a 

fraction of the saturation moment ms. These particles possess multiple magnetic states and are 

therefore affected by magnetic pre-treatments. Resulting magnetic moments, and therefore 

(P)DRM intensities, will be proportional to the type of remanence acquired with the magnetic 

treatment. The following (P)DRM intensity ranking can therefore be expected: AF < ARM < 

NRM << IRM. 

As shown by Table 2-3, each of the five categories of magnetic flocs has its own signature 

in terms of (P)DRM sensitivity to the magnetic pre-treatment. Thus we could infer the structure 

of flocs by comparing the (P)DRM with different magnetic pre-treatments. 

Magnetic pre-treatments have been applied to the sediment suspension before redeposition 

experiments were started. The application of a saturating field (IRM pre-treatment) rotates the 

individual flocs and saturates their magnetic moment. On the other hand, the effect of alternating 

fields on suspended flocs is less straightforward, because particle rotation could prevent changes 

of their magnetic state. In the following, the effect of an alternating field H = H0sin(2πvt) with 

amplitude H0 and frequency n on a floc with radius R, which behaves as a SD particle with 

uniaxial anisotropy, is illustrated. In this case, the angle j between the floc’s magnetic moment m 

and H0 minimizes the total magnetic free energy given by: 

2
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where HK is the microcoercivity and b the angle between the easy axis and H0. Floc rotation, on 

the other hand, is governed by the equilibrium between magnetic torque and viscous drag 

[Steinberger et al., 1994], i.e.: 
3

0 08 sin(2 )sinfR mH t     , 

where η ≈ 1 mPa·s is the dynamic viscosity of water, and f a viscous resistance factors that 

depends on the floc shape (f = 1 for a sphere). Numerical solutions of the coupled equations with 

initial condition β(t = 0) = β0 and φ(t = 0) = 0 give the angle φ-β between magnetic moment and 

easy axis. Two examples with β0 = 45°, n = 200 Hz (corresponding to the frequency of the ASC 

demagnetizer used for the experiments), H0 = 0.1 T (corresponding to the AF peak field used in 

the experiments), HK = 0.08 T (corresponding to twice the median destructive field of ARM) and 

m = 2 × 10-16 Am2 (corresponding to a chain of 12 magnetosomes with a diameter of 40 nm) are 

shown in Figure 2-11. In general, moment switching occurs with floc radii >1 µm for most values 

of β0. Because the mean grain size of sediment used for the experiments is ~10 µm, the AF field 

is expected to affect the magnetic moments in a similar manner as for fully blocked particles. 
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Figure 2-11 Effects of alternating field on rotation of flocs. Calculated effects of a single period 

of the alternating field H = H0sin(2πvt) with µ0H0 = 0.1 T and n = 200 Hz on a floc with radius 

R that behaves as a uniaxial SD particle with microcoercivity HK = 0.08 T. Plotted curves 

represent the normalized field H/H0 and the cosine of the angle β between H0 and the magnetic 

easy axis, and the angle φ between H0 and the magnetic moment. Other model parameters are 

the initial particle orientation β(0) = 45°, and the magnetic moment m = 2 × 10-16 Am2. Magnetic 

moment and microcoercivity are representative for a single chain of 12 magnetosomes with a 

diameter of 40 nm each. (a) The viscous drag prevents any significant floc rotation, as seen 

from the constant value of cosβ, and the magnetic moment is switched during the second half 

of the AF cycle, as seen from the opposed signs of cosβ and cosφ. (b-c) The viscous drag is 

sufficient to prevent full particle rotation, and the magnetic moment is switched. (d) Magnetic 

moment switching is prevented by particle rotation, so that cosβ = cosφ at the end of the AF 

cycle, as it was at the beginning. 

Overall, magnetic pre-treatments did not affect PDRM acquisition significantly (Figure 

2-12). In particular, PDRM intensity is not consistently related to the magnetic moment increase 

expected from the magnetic pre-treatment, since PDRM0 ≈ PDRMIRM < PDRMAF < PDRMARM. 

Therefore, the observed PDRM intensity variations, which do not exceed 20% of PDRM0, must 

be attributed to other factors. According to Table 2-3, only flocs which behave as individual SD 

particles are insensitive to magnetic pre-treatments, and therefore compatible with the results 

shown in Figure 2-12 and the fact the AF demagnetization curves of PDRM are identical to the 

AF demagnetization of ARM (Figure 2-10). For magnetofossil bearing sediments, this means that 

PDRM remanence carriers consist of fossil magnetosome chains that are individually attached to 

sediment particles. As seen in section 2.2.2 such remanent magnetization carriers contribute to 

~30% of Mrs. On the other hand, the remaining carriers (PSD and interacting SD particles), whose 
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magnetic moments can be heavily affected by magnetic pre-treatments (Table 2-3), do not appear 

to contribute significantly to PDRM acquisition. This means that PDRM acquisition must be 

affected by non-magnetic parameters (such as floc size), which are systematically related to the 

type of magnetic carriers, i.e. intact magnetosome chains with high PDRM efficiency on one hand, 

and PSD, as well as interacting SD particles, on the other hand. 

 
Figure 2-12 Results of PDRM acquisition after pre-treatments.(a) Minor difference in PDRM 

acquisition are produced by pre-treatment before redeposition (solid lines). AF demagnetization 

after redeposition but before acquisition results in great enhancement (blue dashed line), which 

is even higher than PDRM acquisition with TPDRM_0 = 16 hours (black dashed line). (b) The 

normalized curves with pretreatments before redeposition follow the same trend as PDRM 

acquisition of the untreated sediment. Much higher acquisition efficiencies are obtained with 

AF demagnetization after deposition. Numbers in the legend indicates TPDRM_0 for each group. 

Finally, the role of AF demagnetization at different stages of PDRM acquisition experiments 

has been investigated. For this purpose, AF demagnetization was applied on redeposited, 

untreated sediment shortly before PDRM acquisition. In this case, PDRM acquisition efficiency 

almost doubled (Figure 2-12). Because AF demagnetization did not change PDRM acquisition 

results when performed before redeposition, the observed effect cannot be attributed to a 

systematic change of the magnetic moments. On the other hand, the AF field introduces strong 

magnetic torques that “vibrate” magnetic flocs, loosing inter-particle forces that prevent full 

magnetic alignment during and after redeposition. Reduced inter-particle forces can explain the 

observed increase in PDRM acquisition efficiency, which is very similar to the increase obtained 

by reducing the time interval between redeposition and beginning of PDRM acquisition, i.e. 

TPDRM_0 (Figure 2-12). 

2.3.4 Significance of randomizing torques in sediments 

PDRM acquisition results discussed in previous sections can be summarized as follows. 

Experiments with crushed sediment, which mimic the usual procedure used for redeposition, are 

characterized by a very inefficient PDRM acquisition, which attains only a fraction of the DRM 
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acquired under similar conditions. These results are fully compatible with previous redeposition 

experiments with unstirred sediment [Tauxe and Kent, 1984], and with what is expected from 

passive alignment of magnetic grains in the sediment matrix [Shcherbakov and Shcherbakova, 

1987]. On the other hand, same experiments with fresh, untreated sediment hosting living bacteria 

populations are characterized by the acquisition of a PDRM that reaches a significant fraction 

(>30%) of the DRM and is not affected by inclination shallowing. This PDRM is similar to the 

magnetization acquired in stirred sediments [Kent, 1973]. Because the only difference between 

the two types of redeposition experiments is the degree of sediment alteration, and in particular 

the presence of living organisms, we must conclude that mechanical disturbances – introduced 

either artificially by stirring or naturally by living organisms – are essential for promoting PDRM 

acquisition. The mechanical disturbance of sediment by living organisms is known as bioturbation. 

Bioturbation is the phenomenon by which sediment is mixed by benthic organisms within 

the so-called benthic mixed layer, which generally comprises the topmost 2-20 cm of the 

sedimentary column (Figure 2-13). A consequence of this activity is that the age of the mixed 

layer is continuously reset, as seen from depth-invariant concentrations of age-dependent tracers 

(e.g., radionuclides) [Boudreau, 1994; Trauth et al., 1997]. While the influence of bioturbation on 

vertical sediment transport has been widely studied, possible effects on the orientation of 

magnetic carriers are mostly unknown, so that opposite points of view exist on DRM preservation 

through the mixed layer, ranging from full preservation [e.g. Katari et al., 2000] to full destruction 

[e.g. Mao et al., 2014b]. Bioturbation models are usually divided into two main categories 

according to the invoked transport mechanism, i.e., non-local (advection-like) and local 

(diffusion-like). These two mechanisms affect the orientation of magnetic carriers in a specific 

manner which have different impacts on sedimentary NRM. 

The paradigm example of so-called non-local sediment mixing is represented by the activity 

of burrowing organisms, in particular polychaete worms (Figure 2-13). These worms transport 

sediment ingested at a certain depth by egesting it near the sediment surface [Shull, 2001]. This 

activity produces a conveyor belt-like vertical mixing of solid material. A new DRM is acquired 

during redeposition of the egested sediment, so that the mixed layer is subjected to a continuous 

DRM renewal with no PDRM overprint [Katari et al., 2000]. Some other non-local sediment 

mixing mechanisms, such as crawling of crustaceans [e.g. Solan et al., 2004], are expected to 

work in a similar manner through sediment resuspension. On the other hand, burrowing activities 

unavoidably produce some small-scale (local) mixing: for example, polychaete worms release 

part of the ingested sediment in-situ, without transporting it to the surface [Shull, 2001]. 
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Figure 2-13 Schematic representation of processes that contribute to acquisition of sedimentary 

magnetizations. 1: Marine snow. 2: Flocculation (first step of DRM acquisition). 3: Settling. 4: 

Sediment resuspension (DRM renewal). 5: Non-local sediment mixing by polychaete worms. 

6: Local (diffusive) sediment mixing (DRM randomization, PDRM acquisition). 7: Transition 

to the consolidating layer (DRM and PDRM locking). 

Local mixing models represent sediment fluxes in terms of a solid diffusion process that 

depends on a single parameter: the self-diffusion or biodiffusion constant Db, in units of 

length2/time [Boudreau, 1986a; Meysman et al., 2003]. The random nature of solid diffusion at 

the level of individual sediment particles implies that any remanent magnetization becomes 

progressively overprinted. In most cases, radioactive tracer profiles can be fitted by assuming a 

depth-independent value of Db over a layer of thickness L, which is identified with the surface 

mixed layer [Reed et al., 2006]. Local mixing models are widespread, because they provide 

simple estimates of the bioturbation depth L and the bioturbation intensity Db. Values of Db from 

0.01 to 200 cm2/yr in combination with mixing depths between 2 and 20 cm have been reported 

for various coastal, shelf, slope, and deep-sea sediments [e.g. Boudreau, 1994; Teal et al., 2008].  

Diffusive material transport is described macroscopically by the translational Fick’s law 

b/C t D C    , where C is the concentration of a given substance. At the scale of individual 

sediment particles – defined here as elemental units that behave as individual elastic bodies – 

Fick’s diffusion is equivalent to a random walk with net displacement 
2

b6r D t    over time t 

[Berg, 1983]. By analogy, the orientation of individual particles subjected to random 

perturbations is equivalent to an angular random walk 
2

r2D t   , where θ is the angle to an 

initial orientation, and Dr is the rotational diffusion coefficient in units of angle2/time. The 
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statistical orientation of a large number of particles subjected to rotational diffusion is governed 

by the rotational counterpart of Fick’s law, i.e.: 

r

p
D p

t


 


,                                                   (2-1) 

where p = p(t,θ,φ) is the probability density function of orientation vectors (e.g., magnetic 

moments) in spherical coordinates [Perrin, 1934]. While several studies exist on translational and 

rotational diffusion of colloidal suspensions, Dr has never been measured in sediment. 

Nevertheless, order-of-magnitude estimates of Dr can be obtained from translational diffusion. In 

the case of Brownian motion (i.e., particle movement caused by molecular collisions), rotational 

and translational diffusion are related by the Stokes-Einstein-Debye law: 
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



,     (2-2) 

where Γb and Γr are the translational and rotational viscous drag coefficients, respectively, which 

depend on particle shape and size. For the Brownian motion of spherical and disk-like particles 

of radius a, 
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[Koenderink et al., 2003]. The relation between translational and rotational diffusion of dense 

particle aggregates, such as sediments, is more complex and less well known. 

Generally, the orientation of isolated particles subjected to random perturbations in zero field 

is governed by eq. (2-1) with a given initial distribution of magnetic moment directions. If the 

initial distribution is a function of the angle θ to a reference direction (i.e., an initially applied 

magnetic field) and the diffusion process is isotropic, the solution of eq. (2-1) obtained from full 

initial alignment at t = 0 is given by: 

r ( 1)

0

1
( , ) (2 1) (cos )

4

D l l t
l

l

p t l e P 



 



                                (2-4) 

where Pl are Legendre polynomials of order l (Appendix A1. Rotational diffusion). The 

progressive magnetization loss during sediment mixing follows directly from eq. (2-4) as 

r2cos
( 0)

D tM
e

M t
   


                                        (2-5) 

[Perrin, 1934]. This expression yields the half-life t1/2 = ln2/(2Dr) of any mixed layer 

magnetization in zero field.  

As seen above, bioturbation can be modeled as rotational diffusive process that affect the 

orientation of magnetic flocs. Accordingly, any existing magnetization is subjected to an 

exponential decay in zero field, whose rate is controlled by the rotational diffusion coefficient Dr. 

Decay experiments have been performed by transferring the sediment to a shielded room with 

<500 nT residual field after acquisition of a (P)DRM. Control experiments have been performed 

with crushed sediment and with dried sediment, the latter for excluding possible contributions 

from magnetic viscosity. Results are summarized in Figure 2-14. Both DRM and PDRM acquired 

in fresh sediment are subjected to an exponential-like decay which is much more rapid than the 
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decay observed in crushed and in dried sediments. Therefore, magnetic viscosity does not 

contribute significantly to the observed decay and appears to be an exclusive feature of sediment 

that is not subjected to treatments that destroy living organisms. This provides, along with the 

experiments described in Chapter 3, a proof for the role of bioturbation in PDRM acquisition. 

 
Figure 2-14 NRM decays of raw sediments in zero field on a linear scale (a) and a logarithmic 

scale (b). Open symbols represent measurements of individual samples and lines are averages 

of 3 independent samples for each group. 

Though DRM and PDRM are characterized by identical total redeposition times (11.5 days), 

before zero field conditions are applied, PDRM decays more rapidly than DRM. The half-life 

time estimated from linear extrapolation of Figure 2-14b is ~5 days for the PDRM and ~90 days 

for the DRM. This difference cannot be attributed neither to sediment aging, since DRM and 

PDRM acquisition experiments shown here share the same total acquisition time, nor to 

differences in bioturbation rates, since identical sediment have been used. Therefore, decay times 

of DRM and PDRM must be controlled by specific characteristics of the corresponding 

remanence carriers. Floc size is a potential factor controlling the decay time through the Einstein-

Debye relation between translational and rotational diffusion (eq. 2-3): inside a sediment 

subjected to the same translational diffusion process, Dr is inversely proportional to the square of 

floc size. Accordingly, PDRM acquisition could depend on the alignment of flocs that are smaller 

on average than those that become immediately blocked during DRM acquisition. 

Decay of laboratory (P)DRM in zero field was occasionally reported in previous studies. 

Tauxe and Kent [1984] found that the initially acquired PDRM of river sediments, which was 10% 

of DRM acquired in the same field, decreased by ~ 30% in zero field in a period equivalent to the 

acquisition time. The loss in PDRM was considered as viscous decay. Katari et al. [2000] also 

discovered PDRM decay in zero fields which follows a pattern that can be fitted to a combination 

of exponential decay. This pattern is very similar to our results, and might be the result of 

bioturbation, since their experiments have been performed with untreated sediment. 
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2.3.5 Field dependence of NRM 

In order to test the field dependence of (P)DRM, redeposition experiments have been 

performed in field intensities ranging from 20 µT to 150 µT with an inclination of 50°. As seen 

in sections 2.3.1-2, (P)DRM intensities depend on the acquisition time. DRM is a nearly 

instantaneous process occurring during initial deposition. As discussed in Chapter 4, the slight 

DRM intensity decrease with time can be attributed to its progressive replacement with a weaker 

PDRM. Therefore, DRM after 16 hours acquisition time is identified here with the initial DRM. 

On the other hand, normalized PDRM acquisition approaches asymptotically a final equilibrium 

with decreasing rates almost independent of the applied field (Figure 2-15b). Therefore, PDRM 

intensity is identified with the PDRM acquired during 7 days after 4.5 days deposition in zero 

field. 

Both DRM and PDRM depend non-linearly on the applied field intensity (Figure 2-15, and 

are well fitted by a Langevin function, i.e. 

0 m rs

crit crit

B B
M M f M

B B

   
    

   
L L ,                             (2-6) 

where M0 is the saturation (P)DRM obtained in B→∞, fm is the ratio of M0 to Mrs, L(x) = cothx - 

1/x is the Langevin function and Bcrit is the critical field below which M increases approximately 

linearly with the applied field B. Best-fit Bcrit for PDRM is higher than that for DRM (Figure 

2-15a). Consistently, as seen in Figure 2-15c and d, PDRM has an expected linear response to the 

field up to ~ 60 μT while the dependence of DRM becomes appreciably non-linear above 40 μT. 

The theoretical background for the use of L is given in Chapter 4.  
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Figure 2-15 Field dependence of NRM acquired by raw sediments. (a) DRM and PDRM are 

acquired in different fields (B) with 50° inclination. The acquisition time is 16 hours for DRM 

and 7 days for PDRM, after 4.5 days of redeposition in zero field. Experiments have been 

performed on triplicates, and error bars represent the standard deviation. Lines represent least-

squares fits with a Langevin law. Numbers indicates the values of the critical field, Bcrit, of eq. 

2-6. (b) Normalized PDRM as a function of acquisition time. The dependence of PDRM on 

acquisition time is nearly independent of field intensity. (c) Nonlinearity of DRM, as seen on 

normalized plots. The straight line indicates the expected linear trend. When the normalizer (B1) 

is much larger than Bcrit = 20 μT, curves clearly deviate from the linear trend in the range of 0 

< B/B1 < 1. (d) Nonlinearity of PDRM. The curves are practically linear in the range of 0 < B/B1 

< 1 for moderate B1 relative to Bcrit (40μT).  

2.4 Conclusions 

In order to improve our understanding of the PDRM acquisition mechanism, we improved 

classic redeposition experiments using fresh sediment containing natural populations of living 

microorganisms. In this manner, natural bioturbation was not suppressed by usual treatments such 

as drying, grinding, and redispersion, which are often used simulate the flocculation process. 
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Results from these redeposition experiments were similar to previous experiments as far as DRM 

acquisition is concerned. On the other hand, we could demonstrate that a significant PDRM is 

acquired at various times after deposition, similarly to experiments with stirred sediment and 

unlike all redeposition experiments without stirring. The PDRM acquired after 7 days in a 

magnetic field reaches ~30% of the DRM, and higher PDRM intensities can be expected for 

longer acquisition times. Therefore, it appears, as proposed by Kent [1973], that bioturbation is 

an essential mechanism required for PDRM acquisition. Unlike original experiments with stirred 

sediments, we attained the same conclusion using a natural sediment without artificial simulations 

of the bioturbation process and avoiding magnetic measurements on dried sediment, which might 

be falsified by an additional remanent magnetization acquired during the drying process. The role 

of bioturbation is proved and explained in Chapter 3 and 5. 

We have also demonstrated that any initial sediment magnetization, such as a DRM, decays 

in zero field. This decay is due to the progressive randomization of particle orientation, rather 

than magnetic viscosity. Randomization can be described in terms of a rotational diffusion 

process, which is likely promoted by microbial activity. This process is absent in sediment 

subjected to treatments that destroy the original microbial community (i.e. drying and crushing), 

where a significant PDRM acquisition is also absent. Therefore it appears that rotational diffusion 

of magnetic carriers inside the sediment, which is a possible manifestation of bioturbation, is the 

essential mechanism responsible for PDRM acquisition. 

The nature of magnetic particles (flocs) involved in PDRM acquisition was investigated by 

performing redeposition experiments with sediment subjected to magnetic treatments (AF, ARM, 

IRM) expected to modify the original magnetic moments. The lack of appreciable differences 

with respect to the PDRM obtained with untreated sediment indicate that the magnetic moments 

of flocs behave as if they originate from individual SD particles. For instance, AF 

demagnetization did not reduce PDRM intensity and application of a saturating field did not 

enhance PDRM intensity, as one would expect from magnetic moments arising from non-SD 

magnetic carriers or flocs containing unaligned SD particles. Given the magnetofossil-bearing 

nature of the sediment used for the experiments, flocs involved in PDRM acquisition likely 

consist of single magnetosome chains adhering to one or more sediment particles. This conclusion 

is also supported by the identical shape of AF demagnetization curves of PDRM and ARM, where 

ARM is strongly selective to non-interacting SD particles and isolated magnetosome chains. Rock 

magnetic analyses indicate that this type of flocs contributes to ~30% of Mrs. The apparent lack 

of PDRM contributions from other types of remanence carriers (specifically PSD and interacting 

SD particles) must depend on their intrinsic low acquisition efficiency, due for instance to a grain 

size effect. 
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Table 2-1 Quantities used in the redeposition experiments 

TDRM_f DRM acquisition time 

TPDRM_0 
Residence time in zero field since the start of redeposition before  

PDRM acquisition  

TPDRM_f PDRM acquisition time 

DRM16hrs DRM acquired in 16 hours, i.e. TDRM_f = 16 hours 

PDRM16hrs PDRM acquired with TPDRM_0 = 16 hours 

PDRM4.5days PDRM acquired with TPDRM_0 = 4.5 days 

 

 

Table 2-2 Relative contributions of three remanence carrier categoriesidentified with FORC 

analysis (i.e. PSD, non-interacting SD and interacting SD particles) to the saturation remanence 

Mrs and the ARM, respectivles. Contributions to Mrs have been deduced from FORC 

magnetization, and ARM contributions from the corresponding Mrs values through χARM/Mrs 

estimates. 

Remanence carriers Relative contributions 

to Mrs 

Expected χARM/Mrs 

(mm/A) 

Relative contributions  

to ARM 

PSD 16.6% ~0.31 4.7% 

Non-interacting SD 24.7% ~3.51 81.5% 

Interacting SD 58.6% ~0.252 13.8% 

1 From Egli and Lowrie [2002].2 From Chen et al. [2007] 

 

 

Table 2-3 Predicted effect of different magnetic pre-treatments on the magnetic moment of 

flocs (none = untreated sediment, AF = AF demagnetization, ARM = AF demagnetization with 

a small bias field Harm, IRM = application of a saturating field). The expected floc magnetic 

moment is given for each combination of magnetic treatment (rows) and floc structure 

(columns). Furthermore, ms is the saturation moment of a floc, i.e. the magnetic moment in a 

saturating field, H is the geomagnetic field, χarm is the ARM susceptibility, and Mrs/Ms is the 

remanence ratio. 

Structure of floc 

(column) 

Treatment(row) 

1 SD or 

1 chain 

per floc 

Several 

unaligned SD 

particles (or 

chains) per floc 

SD clusters 

(or 

collapsed 

chains) per 

floc 

1 multiple 

magneto-

some chain 

per floc 

1 or more 

PSD or MD 

per floc 

None 

AF 

ARM 

IRM 

ms 

ms 

ms 

ms 

Small  

~0 

Small 

~0.5 ms 

Small 

~0 

Small 

0.2-0.5 ms 

ms 

~0 

Small 

ms 

Small 

~0 

ms χarm Harm 

ms Mrs/Ms 

 



 

 

Chapter 3  Microbial bioturbation affects the 

acquisition of a natural remanent 

magnetization in sediment 

3.1 Introduction 

The ocean floor is mostly covered by sediments and about 65% of the Earth’s continents is 

covered by sedimentary rocks [Amiotte Suchet et al., 2003]. Sediments and sedimentary rocks 

represent the most important archives of the Earth’s history, providing continuous records of its 

past climate and its magnetic field [e.g. Kent, 1982; Valet and Meynadier, 1993]. The resolution 

of paleoclimatic and paleomagnetic records, and their lag with respect to the time of deposition, 

are strongly influenced by benthic organisms, in particular through their mechanical action known 

as bioturbation [Richter, 1952; Boudreau, 1986b, a]. Bioturbation is responsible for thorough 

mixing of the uppermost sediment layer, as deduced from the vertical distribution of radioactive 

isotopes [Aller, 1982; Boudreau, 1994]. The mixing action of bioturbation is also expected to 

affect the orientation of remanent magnetization carrriers through rotational diffusion, and thus 

the acquisition of a natural remanent magnetization (NRM) in the geomagnetic field. The 

resulting delay of paleomagnetic records has been modeled by a so-called lock-in function [Bleil 

and von Dobeneck, 1999; Roberts and Winklhofer, 2004] which describes the fraction of locked 

remanence carriers as a function of depth, generally below the mixed layer. On the other hand, as 

shown in Chapter 2, bioturbation seems to promote the acquisition of a post-depositional 

remanent magnetization (PDRM) inside the mixed layer, which would progressively replace a 

depositional remanent magnetization (DRM). Here, we provide a proof for the role of microbial 

biourbation for DRM replacement and PDRM acquisition by performing redeposition 

experiments using sediment containing different concentrations of bacteria. These results will be 

used to construct a general theory of (P)DRM acquisition in bioturbated sediments (Chapters 4 

and 5). 

3.2 Materials and methods 

3.2.1 Redeposition experiments 

Sediments used in this study were sampled from the same pond in Niederlippach, Bavaria, 

Germany. But the sediments are divided into 3 groups by the storage time in the laboratory or by 

the treatment prior to the redeposition experiments. Group A , B and C consist of sediments that 

had been stored in the aquariums in the laboratory for 1 week, 3 months and 1 year, respectively, 

before experiments. Group D had been separated from group C 3 months before experiments and 

had been sealed in vials since then. Group E had been divided from group C shortly before 

experiments. After being loaded into vials, specimens of group E was introduced to 4 types of 
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antibiotics combined as a broad-spectrum bactericide. Antibiotics used are chloromycetin (30 

mg/ml), ampicillin (100 mg/ml), streptomycin (50 mg/ml) and kanamycin (50 mg/ml). Each 

specimen received 20 μL of each antibiotic, i.e. a total of 80 μL of antibiotics. For redeposition 

experiments, each specimen consists of ca. 5 ml of slurry and 10 ml of tap water which are loaded 

in vials (22 mm in diameters and ca. 5 cm in height). Specimens were then sealed off so that they 

can be randomized by shaking before NRM acquisition. The protocol of NRM acquisition follows 

the description in Chapter 2. Specifically, the initializing redeposition time in zero field before 

PDRM acquisition (TPDRM_0) is fixed to be 4.5 days, and the acquisition time (TPDRM_f) is 7 days 

for PDRM acquisition. The DRM acquisition time (TDRM_f) is 11 days or 16 hours. The inclination 

(If) of the magnetizing fields is always ~ 50° and the intensity (B) is 60 μT. Decay of (P)DRM in 

zero field are also monitored for some specimens right after maximum TPDRM_f and TDRM_f are 

reached.  

3.2.2 Bacteria enumeration 

The spread plate method [Buck and Cleverdon, 1960] was used for the enumeration of viable 

bacteria that can grow on agar medium. We used Lysogeny broth (LB) agar plates as culture 

media, which consist of 1% w/v tryptone, 0.5% w/v yeast extract, 1% w/v NaCl and H2O [Bertani, 

1951], where % w/v represents the mass concentration (ratio of weight to volume, 1% m/v = 1g/ 

100ml), e.g. 10g NaCl in 1000 ml solution makes 1% w/v. LB agar media are rich in nutrition 

and have been standard media for the cultivation of Escherichia coli (E. coli) which is a widely 

studied type of microorganism. Specimens for enumeration were first loaded in vials in the same 

way as in the redepositional experiments. Antibiotics were introduced to specimens from Group 

E afterwards. All specimens were then sealed off, randomized, i.e., redeposited. They were kept 

undisturbed for > 10 days so that the states of compaction or porosity of sediments are similar to 

that of specimens in the PDRM acquisition experiments. Later, 100 μL of slurry was extracted 

from below the sediment/water interface with pipet and diluted with 3.9 mL of sterilized water. 

After sufficient homogenization by vibration, 10 μL of dilution was extracted, mixed with 80 μL 

of sterilized water and evenly spread on a plate. Each group of sediments has at least 3 such 

specimens for enumeration. The specimens were then incubated at 37°C for 16 hours, after which 

visible colony forming units are present and counted. 

3.2.3 Grain size distribution 

Grain size distribution is measured for all groups of specimens on a particle size analyzer 

using laser diffraction technique (Beckman Coutler LS230 at the Section for Mineralogy, 

Petrology and Geochemistry, Munich University). The instrument is dedicated for measuring the 

grain size distribution of wet sample, which greatly keeps the in-situ information of sediment 

particles. The measuring range of the instrument is from 400 nm to 2 mm. Each specimen is 

measured three times.  
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3.3 Results and discussions 

Figure 3-1a shows the PDRM acquisition results of all groups, with the average of each 

group being illustrated as lines. Among sediments with 1 year of storage, untreated sediments 

(group C) has the highest PDRM intensity, which is > 2% of its SIRM after 7 days of acquisition 

(Figure 3-1a). Group D presents intermediate PDRM intensity and group E has the lowest 

intensity of PDRM which finally reaches only < 1% of their SIRMs. Despite the difference in 

intensities, all groups of specimens record similar inclination of PDRM (Figure 3-1b) that is 

slightly larger than the inclination of the magnetizing field (indicated by the dashed line in Figure 

3-1b). Except for group A, the acquisition curves of PDRM clusters after the normalization by 

their own maximum PDRM (Figure 3-1c), suggesting the acquisition of these specimens proceeds 

towards their equilibriums at very similar rates. Group A presents an evident higher acquisition 

rate in the first 2 days of acquisition than others, though its final intensity is not the highest.  

When transferred to zero fields, previously acquired PDRM of all specimens starts to decay 

with different rates (Figure 3-1d). The decay rate is slowing down with time. As shown in Chapter 

2, this decay is not caused by magnetic viscosity. The decay rate is conveniently described by the 

half-life time (Thalf) of PDRM which is the time when half of the acquired PDRM is lost in zero 

fields. Among groups A-C, Thalf increases for specimens with shorter storage time in laboratory. 

Among groups C-D which have identical storage time, Thalf clearly depends on the treatments that 

supposedly affect the microbial activities. 
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Figure 3-1 PDRM acquisition and decay. Five groups of sediments are subjected to PDRM 

acquisition in the field (60 μT) with 50° inclination. (a) PDRM acquisition in 7 days. TPDRM_0 

is identically 4.5 days for all specimens. Each group has 3 parallel specimens, which are 

represented by symbols. The average is illustrated by solid lines. (b) Inclination of PDRM with 

time. The field inclination is indicated by the dashed line. PDRM is characterized by negligible 

inclination error. (c) Normalized PDRM by respective maximum value obtained in 7 days. 

Group A, which is the most fresh sediments in terms of the in-laboratory storage time, shows a 

different acquisition rate than other groups. (d) PDRM decay in zero fields at different rates. 

The experimental results can be fitted by   (1 )b t c t

df t ae a e    , the best-fits are shown 

as solid lines. Best-fit parameters are listed in Table 3-1. 
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Figure 3-2 DRM acquisition and decay in zero fields of 4 groups of sediments. The magnetic 

field is the same as for PDRM acquisition shown in Figure 3-1. After the initial randomization, 

specimens were kept in the field to acquire remanence except for measurements. After each 

measurement specimens were immediately put back to field without randomization. (a) 

Evolution of DRM of 4 groups of sediments was monitored for > 11 days. Each group has 3 

parallel specimens (symbols), the average is illustrated by solid lines. Group E shows negligible 

changes upon time, whereas DRMs of other groups consistently decline in field. The scatters 

within groups are larger than that of PDRM in Figure 3-1a. (b) Normalization by respective 

initial DRMs decreases the scatter in general. It shows the relative pattern over time is 

consistent and suggests the poorer reproducibility of DRM is introduced in the very early stage 

(<12 hours) when the mechanical state of specimens are most unstable. (c) Inclination 

shallowing occurs to most specimens with different extents. The average inclination of each 

group is shown in the inset, which shows that the inclination of all groups gets closer to the 

field inclination (50°) over time. (d) When transferred to zero fields, DRMs begin to decrease 

and the data can be fitted by the same function that fits PDRM decay. 

Figure 3-2a shows the evolution of DRM in ~11 days for above mentioned sediments except 

group B. The relatively large scatter of DRM intensities within the same groups is probably 

caused by slight differences in the rapidly changing sediment properties during the initial stages 
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of deposition. In fact, if DRMs are normalized by their initial values, results within the same 

groups become less scattered except for group D (Figure 3-2b). All groups show decline in the 

intensity of DRM with different extents. Unlike PDRM, most DRM consistently present 

inclination shallowing (Figure 3-2c). The averages of inclination of DRM are shown in the inset 

of Figure 3-2c for clarity. It is interesting to notice that the inclination of group C is getting closer 

to 50° as acquisition time increases. There is also such a tendency for other groups, though tiny. 

The hypothesis that compaction results in the decline in DRM seems less satisfactory because (1) 

compaction can hardly lead to the improvement in inclination and (2) the change in heights of 

different specimens are very similar while the amount of loss in DRM are different. A better 

explanation is therefore in demand.  

 
Figure 3-3 Decay of DRM acquired in 16 hours. (a) All samples had received 16 hours of DRM 

acquisition in a field of 60 μT before the decay test. The decay were observed in zero fields. 

Solid lines are best-fits by the same function as for PDRM. The half decay time (Thalf) of each 

group is estimated from best-fits. (b) Thalf of 16-hour DRM is linearly proportional to Thalf’s of 

11-day DRM (circles) and PDRM (squares). (c) The amount of lost in DRM during 11 days of 

acquisition is inversely correlated with Thalf by the exponential law, which indicates the 

correlation between DRM lost in field and DRM decay in zero fields. Concentration of viable 

bacteria and Thalf’s of (P)DRM are listed in Table 3-2. 

We noticed that the specimens can be ranked as A > C > D > E by the relative amount of 

loss in DRM (average value) during 11 days of acquisition (Figure 3-2b), which is consistent with 

the ascending orders of Thalf of PDRM (Figure 3-1d) and Thalf of DRM (Figure 3-2d). Question is 

whether the loss of remanence in and off field have common origin, i.e., are the randomizing 

forces responsible for (P)DRM decay (happening 11 days after initializing redeposition) also 

affecting the acquisition of DRM within the 11 days since redeposition? To answer this question, 

first we need to verify the existence of randomizing effect in the first 11 days of acquisition. To 

this end, we can monitor the change of DRM in zero fields after 16 hours of acquisition 

(DRM16hrs). The mechanical conditions of the sediments in this case is identical to that during 11 

days of DRM acquisition. As Figure 3-3a shows, DRM16hrs of all groups of specimens start to 
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decay in the similar pattern to that shown in Figure 3-2d, which confirms that randomizing forces 

are present since the early stage of redeposition. It turns out that Thalf of DRM16hrs can also be 

ranked in the identical order, i.e. A < B < C < D < E, which allows us to conclude that the 

randomizing forces in the early stage do not result from compaction, because compaction should 

be proceeding identically among specimens whose settling velocities are identical. Alternatively, 

the randomizing forces should have common origin with those responsible for the decays of 

PDRM and of 11-day DRM, as indicated by the good correlations among the Thalf’s of 16-hour 

and 11-day DRMs and Thalf’s of PDRMs (Figure 3-3b). Moreover, the DRM loss in 11 days varies 

among groups, and the values are inversely proportional to the Thalf of DRM16hrs (Figure 3-3c). 

Altogether, it implies that all the interesting phenomena discovered so far in this study, from 

DRM loss in fields to (P)DRM decay in zero fields, can be possibly accounted for by a common 

reason which is randomization of remanence carriers. In this scenario, some DRM carriers are 

broken down under the randomizing forces upon time. Such dissembled carriers probably have 

larger size because their floc strength tends to be weaker [Jarvis et al., 2005]. Meanwhile a 

fraction of the affected particles should be able to adjust their orientation after breakage, which 

in fact becomes a process of PDRM acquisition. The overall effect is therefore expected to result 

in decline in net amplitude but slight improvement in the inclination.  

The next question is what causes the randomization if it is not compaction. Notice that the 

addition of antibiotics simultaneously results in a series of significant changes in the acquisition 

behaviors, i.e. lowest PDRM intensity, smallest DRM loss in field and slowest rates of (P)DRM 

decay in zero fields, making the antibiotics the candidate for the prominent difference of group E 

from the others. The volume of antibiotics is negligible to the volume of water and sediments of 

each specimen (< 0.6% vol), it should not cause any dramatic changes in the mechanical 

conditions such as dynamic viscosity and flocculation. For example, the grain size distribution of 

group E is similar to those of other groups (Figure 3-4). Therefore, antibiotics affected PDRM 

acquisition only through changing the number of living microbes (Table 3-2), and thus the 

intensity of bioturbation. 

 
Figure 3-4 Grain size distributions of sediments of all groups. Numbers in the brackets are the 

median grain size of each group. No systematic difference is observed. 
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3.4 Conclusions 

In this chapter, we control the microbial population in sediments investigated for 

redeposition experiments, creating five groups of samples with decreasing bacteria concentrations. 

The PDRM acquisition rates, as well as the (P)DRM decay rates, appear to be controlled by 

bacteria concentration, with fastest acquisition/decay occurring in sediment with the largest 

concentrations. Because the addition of antibiotics is not expected to affect other sediment 

properties except for the concentration of microorganisms, our experiments demonstrate the role 

of microbes – and therefore bioturbation – in post-depositional processes involving the orientation 

of remanent magnetization carriers.  

 

 

Tables of Chapter 3 

Table 3-1 Best-fit parameters for PDRM decay curves 

Group a D1 D2 

A 1.06E+00 9.40E-02 3.83E+00 

B 1.26E+00 8.15E-02 2.89E-01 

C 1.00E+00 4.49E-02 / 

D 1.00E+00 2.65E-02 / 

E 9.24E-01 1.06E-02 3.50E+00 

 

Best-fit parameters for 16-hour DRM decay curves 

Group a D1 D2 

A 9.65E-01 1.59E-01 1.88E-13 

B 9.41E-01 4.72E-02 4.00E-15 

C 9.53E-01 3.36E-02 1.52E-14 

D 9.57E-01 1.35E-02 9.79E-17 

E 8.97E-01 5.03E-03 4.27E-16 

 

 

Table 3-2 Viable bacteria counts and half-life times of PDRM and DRM(16 hours) 

Group Bacteria count (103 cells/mL) Thalf of PDRM (day) Thalf of DRM (day) 

A 279.25 ± 10.24 1.54 0.73 

B 246.67 ± 9.24 2.03 2.58 

C 213.50 ± 15.77 2.63 3.58 

D 206.63 ± 7.76 4.37 11.00 

E 126.00 ± 8.71 8.88 26.51 

 

 

 



 

 

Chapter 4  General theory on the acquisition of 

natural remanent magnetization in 

bioturbated sediment 

The content in this chapter was published in Geochemistry, Geophysics, Geosystems. in 2015.  

Abstract 

We present a general theory for the acquisition of natural remanent magnetizations (NRM) 

in sediment under the influence of (a) magnetic torques, (b) randomizing torques, and (c) torques 

resulting from interaction forces. Dynamic equilibrium between (a) and (b) in the water column 

and at the sediment-water interface generates a detrital remanent magnetization (DRM), while 

much stronger randomizing torques may be provided by bioturbation inside the mixed layer. 

These generate a so-called mixed remanent magnetization (MRM), which is stabilized by 

mechanical interaction forces. During the time required to cross the surface mixed layer, DRM is 

lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are 

governed by a MRM lock-in function. The final NRM intensity is controlled mainly by a single 

parameter γ that is defined as the product of rotational diffusion and mixed layer thickness, 

divided by sedimentation rate. This parameter defines three regimes: (1) slow mixing (γ < 0.2) 

leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing (γ > 10) with 

MRM acquisition and full DRM randomization, and (3) intermediate mixing. Because the 

acquisition efficiency of DRM is larger than that of MRM, NRM intensity is particularly sensitive 

to γ in case of mixed regimes, generating variable NRM acquisition efficiencies. This model 

explains (1) lock-in delays that can be matched with empirical reconstructions from 

paleomagnetic records, (2) the existence of small lock-in depths that lead to DRM preservation, 

(3) specific NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) some relative 

paleointensity artifacts. 

4.1 Introduction 

Understanding the acquisition of a natural remanent magnetization (NRM) by sediment 

settling in the Earth’s magnetic field is a long-standing problem in paleomagnetism that has been 

subjected to detailed experimental and theoretical investigations for over 60 years [e.g. Roberts 

et al., 2013]. The two main NRM acquisition processes considered by these investigations are the 

depositional remanent magnetization (DRM), which is acquired during and shortly after 

deposition, and a delayed, so-called post-depositional remanent magnetization (PDRM). DRM 

acquisition models focus on flocculation of settling particles in the water column, particle rolling 

at the point of deposition [Griffiths et al., 1960; Jezek et al., 2012; Bilardello et al., 2013], and 
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resuspension/reflocculation near the sediment-water interface [van Vreumingen, 1993; Katari and 

Tauxe, 2000; Tauxe et al., 2006; Heslop, 2007; Shcherbakov and Sycheva, 2010]. On the other 

hand, PDRM is defined as a remanent magnetization that is acquired upon magnetic particle 

rotation against the yield strength of sediment until it is fully locked inside the consolidating layer 

[Shcherbakov and Shcherbakova, 1987; Roberts et al., 2013]. Delayed PDRM acquisition has 

been modeled by a so-called lock-in function, which represents the fraction of blocked PDRM as 

a function of depth below the surface mixed layer [Bleil and von Dobeneck, 1999; Channell and 

Guyodo, 2004; Roberts and Winklhofer, 2004; Suganuma et al., 2011]. 

The role of bioturbation as a possible PDRM acquisition mechanism was first considered by 

Kent [1973] and Tucker [1980], who assumed that remanence carriers could be realigned during 

sediment disturbance by benthic organisms. This type of PDRM originates inside the surface 

mixed layer, where benthic organisms are active, rather than below. Lock-in functions with non-

zero contributions from the surface mixed layer have been proposed by Channell and Guyodo 

[2004]. Although the role of sediment mixing during PDRM acquisition has been recognized, the 

exact mechanism remains unclear. Mao et al. [2014b] explained laboratory PDRM acquisition in 

sediment containing living magnetotactic bacteria in terms of a dynamic equilibrium between 

aligning magnetic torques on the one hand, and randomizing forces due to sediment mixing on 

the other hand. With explicit reference to the physical alignment of magnetofossils, this type of 

PDRM has been referred to as ‘biogenic remanent magnetization’ [Heslop et al., 2013], in order 

to distinguish it from the more general concept of biogeochemical remanent magnetizations 

acquired within a chemical lock-in zone [Tarduno and Wilkison, 1996; Tarduno et al., 1998; 

Larrasoaña et al., 2014]. Because bioturbation can affect a wide range of remanence carriers, 

including those with non-biogenic origins, we use the term ‘mixing remanent magnetization’ 

(MRM) for all types of remanent magnetizations acquired in sediment through internally driven 

mixing. As far as laboratory experiments are concerned, MRM is not necessarily identifiable with 

the PDRM acquired by sediment stirring [e.g. Kent, 1973], because, as we will discuss in section 

4.2, bioturbation is characterized by specific mixing signatures. 

The role of MRM as a source of NRM is unknown, given the existence of contradictory 

conclusions about DRM preservation inside the surface mixed layer. For example, Katari et al. 

[2000] reported substantial NRM preservation in marine sediments exposed to the burrowing 

activity of polychaete worms in a reversed polarity field for 3 weeks. On the other hand, simple 

calculations based on solid diffusion constants associated with bioturbation support the opposite 

conclusion that any original magnetic orientation will be randomized before magnetic particles 

reach the consolidating layer [Mao et al., 2014b]. The scope of the present paper is to provide a 

general model for remanent magnetization acquisition inside the surface mixed layer using a 

minimum set of physical parameters to characterize bioturbation and mechanical sediment 

properties. This model is used to explain important known aspects of NRM acquisition, namely 

(1) lock-in delays through a lock-in function that can be matched with empirical reconstructions 

based on paleomagnetic records, in particular those of Channell and Guyodo [2004], (2) the 

occurrence of DRM preservation and small lock-in depths for specific sedimentary settings 

[Tauxe et al., 2006], (3) the specific NRM acquisition efficiency of magnetofossil-rich sediments 
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[e.g. McNeill and Kirschvink, 1993], and (4) variable NRM acquisition efficiency that can explain 

relative paleointensity artifacts [Yamazaki et al., 2013; Ouyang et al., 2014]. 

4.2 Sediment mixing models 

Bioturbation is the phenomenon by which sediment is mixed by benthic organisms within 

the so-called benthic mixed layer, which generally comprises the topmost 2-20 cm of the 

sedimentary column (see Figure 2-13). A consequence of this activity is that the age of the mixed 

layer is continuously reset, as seen from depth-invariant concentrations of age-dependent tracers 

(e.g., radionuclides) [Boudreau, 1994; Trauth et al., 1997]. While the influence of bioturbation on 

vertical sediment transport has been widely studied, possible effects on the orientation of 

magnetic carriers are mostly unknown, so that opposite points of view exist on DRM preservation 

through the mixed layer, ranging from full preservation [e.g. Katari et al., 2000] to full destruction 

[e.g. Mao et al., 2014b]. Bioturbation models are usually divided into two main categories 

according to the invoked transport mechanism, i.e., local (diffusion-like) and non-local 

(advection-like). These two mechanisms affect the orientation of magnetic carriers in a specific 

manner, leading to different DRM preservation and MRM acquisition capabilities, as discussed 

in the following. 

4.2.1 Non-local mixing models 

The paradigm example of so-called non-local sediment mixing is represented by the activity 

of burrowing organisms, in particular polychaete worms (see Figure 2-13). These worms transport 

sediment ingested at a certain depth by egesting it near the sediment surface [Shull, 2001]. This 

activity produces a conveyor belt-like vertical mixing of solid material: upward transport occurs 

inside the worms, while the surrounding sediment is slowly buried by the resuspended and 

redeposited material egested near the sediment surface. A new DRM is acquired during 

redeposition, so that the mixed layer is subjected to a continuous DRM renewal with no PDRM 

overprint [Katari et al., 2000]. Some other non-local sediment mixing mechanisms, such as 

crawling of crustaceans [e.g. Solan et al., 2004], are expected to work in a similar manner through 

sediment resuspension. On the other hand, burrowing activities unavoidably produce some small-

scale (local) mixing: for example, polychaete worms release part of the ingested sediment in-situ, 

without transporting it to the surface [Shull, 2001]. 

Non-local sediment transport is modeled through a so-called exchange function 1 2( , )K z z , 

which expresses the velocity of sediment transport from depth 1z  to depth 2z  [Boudreau, 

1986b; Meysman et al., 2003] (see Appendix A0 for a list of symbols and mathematical notations 

used in this Chapter). Only exchange functions of the type 1( ,0)K z  can be expected to preserve 

magnetizations inside the mixed layer, because randomized sediment is supplied just at the 

sediment-water interface (i.e., 2 0z  ). However, more realistic models, based for instance on 

exponential exchange functions of the type 1 2| |/
1 2( , ) z zK z z e    [e.g. Solan et al., 2004], 

assume that sediment transport takes place between any pair of depths with consequent DRM loss. 
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Non-local transport models cannot be solved uniquely with respect to tracer concentration profiles, 

so that arbitrary assumptions need to be made about the exchange function and the fraction of 

transported material subjected to DRM losses. 

4.2.2 Local mixing models 

Local mixing models represent sediment fluxes in terms of a solid diffusion process that 

depends on a single parameter: the self-diffusion or biodiffusion constant Db, in units of 

length2/time [Boudreau, 1986a; Meysman et al., 2003]. The random nature of solid diffusion at 

the level of individual sediment particles implies that any remanent magnetization becomes 

progressively overprinted. In most cases, radioactive tracer profiles can be fitted by assuming a 

depth-independent value of Db over a layer of thickness L, which is identified with the surface 

mixed layer [Reed et al., 2006]. Local mixing models are widespread, because they provide 

simple estimates of the bioturbation depth L and the bioturbation intensity Db. Values of Db from 

0.01 to 200 cm2/yr in combination with mixing depths between 2 and 20 cm have been reported 

for various coastal, shelf, slope, and deep-sea sediments [e.g. Boudreau, 1994; Teal et al., 2008]. 

In reality, mixing depth estimates depend on tracer half-lives, as expected in the case of smoothly 

declining bioturbation rates at the bottom of the mixed layer. Some organisms are capable of 

burrowing to depths of 2 m [e.g. Pemberton et al., 1976]; however, such deep mixing is probably 

rare. Db is proportional to sediment biomass, and thus to available nutrients [Reed et al., 2006]. 

A positive correlation with the organic carbon flux is also found for L, with an upper limit of ~20 

cm imposed by biological constraints [Trauth et al., 1997; Boudreau, 1998]. Finally, a weak 

positive correlation exists between Db and the sedimentation rate ω, because nutrients are more 

abundant in coastal environments, where sediment accumulates more rapidly [Boudreau, 1994]. 

Diffusive material transport is described macroscopically by the translational Fick’s law 

∂C/∂t = DbΔC, where C is the concentration of a given substance. At the scale of individual 

sediment particles – defined here as elemental units that behave as individual elastic bodies – 

Fick’s diffusion is equivalent to a random walk with net displacement <r2> = 6Dbt over time t 

[Berg, 1983]. By analogy, the orientation of individual particles subjected to random 

perturbations is equivalent to an angular random walk <θ2> = 2Drt, where θ is the angle to an 

initial orientation, and Dr is the rotational diffusion coefficient in units of angle2/time. The 

statistical orientation of a large number of particles subjected to rotational diffusion is governed 

by the rotational counterpart of Fick’s law, i.e.: 

r

p
D p

t


 


,                                                   (4-1) 

where p = p(t,θ,φ) is the probability density function of orientation vectors (e.g., magnetic 

moments) in spherical coordinates [Perrin, 1934]. While several studies exist on translational and 

rotational diffusion of colloidal suspensions, Dr has never been measured in sediment. 

Nevertheless, order-of-magnitude estimates of Dr can be obtained from translational diffusion. In 

the case of Brownian motion (i.e., particle movement caused by molecular collisions), rotational 

and translational diffusion are related by the Stokes-Einstein-Debye law: 
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b r

D

D





,     (4-2) 

where Γb and Γr are the translational and rotational viscous drag coefficients, respectively, which 

depend on particle shape and size. For the Brownian motion of spherical and disk-like particles 

of radius a, 

r r
2

b bspheres disks

3
2

4

D D

D D a

   
    

   
 (4-3) 

[Koenderink et al., 2003]. The relation between translational and rotational diffusion of dense 

particle aggregates, such as sediments, is more complex and less well known. Significant 

deviations from the Stokes-Einstein-Debye relation have been reported for colloidal suspensions 

[Koenderink et al., 2003] and colloidal clay gels [Jabbari-Farouji et al., 2012], which means that 

translational and rotational diffusion can be decoupled by strong inter-particle interactions. For 

example, the so-called cage effect, by which particles are confined inside void spaces, suppress 

particle translation but not rotation. Of particular interest for sediments is the case of colloidal 

clay gels, where Dr/Db is lowered by up to two orders of magnitudes with respect to eq. (4-3) 

[Kim et al., 2011]. Bioturbation could have a similar effect through non-local transport 

mechanisms (section 4.2.1). 

Generally, the orientation of isolated particles subjected to random perturbations in zero field 

is governed by eq. (4-1) with a given initial distribution of magnetic moment directions. If the 

initial distribution is a function of the angle θ to a reference direction (i.e., an initially applied 

magnetic field) and the diffusion process is isotropic, the solution of eq. (4-1) obtained from full 

initial alignment at t = 0 is given by: 

r ( 1)

0

1
( , ) (2 1) (cos )

4

D l l t
l

l

p t l e P 



 



  ,                             (4-4) 

where Pl are Legendre polynomials of order l (Appendix A1. Rotational diffusion). The 

progressive magnetization loss during sediment mixing follows directly from eq. (4-4) as 

r2cos
( 0)

D tM
e

M t
   


                                       (4-5) 

[Perrin, 1934]. This expression yields the half-life t1/2 = ln2/(2Dr) of any mixed layer 

magnetization in zero field. The fraction of DRM surviving the transit of sediment through the 

mixed layer is obtained from eq. (4-5) if t is identified with the mean residence time L/ω. In this 

case, we obtain <cosθ> = e-γ, where γ = 2DrL/ω is what we shall call the (average) rotational 

diffusivity parameter of the surface mixed layer. We can now try to evaluate the fate of a DRM 

inside the mixed layer on the basis of Dr-estimates obtained from eq. (4-3). Using a < 100 μm for 

the typical size of sediment particles [Sverdrup et al., 1942] together with Db-estimates 

corresponding to various sedimentary settings listed in Table 4-1, we obtain Dr > 150 rad2/yr and 

unrealistically small DRM half-lives of < 20 hours. On the other hand, luminophore imaging of 

ongoing macroscopic bioturbation are characterized by a ≈ 1 mm [Solan et al., 2004], in which 

case Dr > 1.5 rad2/yr and t1/2 < 84 days. Even smaller diffusion values can be obtained on the basis 
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of sub-Fickian rotational diffusion processes. In such cases, DRM might survive its journey 

through the mixed layer. 

The problem with DRM survival estimates based on Db is that an unknown fraction of the 

biodiffusion rate originates from the non-local transport processes discussed in section 4.2.1, 

whose efficiency in terms of rotational diffusion is unknown. In the following, we discuss a 

different strategy for obtaining a lower limit of Dr, which is based on bioturbation caused by 

microorganisms. Because the size of many microorganisms is comparable with that of sediment 

particles, the associated mixing action is of local nature by definition, greatly reducing 

uncertainties of Dr/ Db. On the other hand, direct measures of microscopic bioturbation rates are 

not available, except for some key observations related to magnetotactic bacteria living in 

sediment. Their poor (~1%) alignment with the Earth’s magnetic field contrasts with observations 

of the same bacteria in water, which demonstrates the existence of mechanical interactions 

between motile microorganisms and sediment particles [Mao et al., 2014a]. 

The displacement of motile microorganisms is governed by a biased random walk 

(chemotaxis) with self-diffusion coefficient DB [Berg, 1983]. Collisions with non-motile particles 

transmit part of this diffusion to the whole sediment, proportionally to the volume fraction ε of 

motile organisms [Wilson et al., 2011] and to the probability of mechanical interactions with 

sediment, which we assume to be proportional to the ratio between microorganism and sediment 

particle cross-sections. Therefore, we set 
2

b b B( / )D a a D  for microorganism-driven solid 

diffusion in sediment, where ba  and a are the radii of microorganisms and sediment particles, 

respectively. Furthermore, mobNv   is deduced from benthic microbial abundances N in 

cells/cm3 [Kallmeyer et al., 2012], mean cell volumes 30.03 μmv   [e.g. Cole et al., 1993; 

Šestanović et al., 2005], and fraction mob 0.2   of motile microbes [Fenchel, 2001; Mitchell 

and Kogure, 2006]. Finally, microscopy of cultured bacteria suspensions yields 
2

B 0.1 cm /yrD   

[Wilson et al., 2011; Martinez et al., 2012], while 
2

B 1 cm /yrD   can be deduced from the 

displacement of magnetotactic bacteria in sediment shielded from magnetic fields (i.e., 
2 0.2r    cm over 14 days, Mao et al. [2014b]). 

Using the most conservative estimates of DB in combination with a ≈ 10 - 100 µm and

b 0.2a  µm, we obtain Dr values comprised between 96 10  and 20.02 rad /yr  (Table 4-1), 

which, being based only on part of the whole benthic community, should be considered as a lower 

limit of rotational biodiffusion. Accordingly, upper limits for the DRM fraction that survives 

bioturbation are comprised between ~0 and ~100%, depending on the sedimentary setting (Table 

4-1). The best chances of DRM survival occur in nutrient-poor (i.e., small DrL) and rapidly 

accumulating sediment (i.e., large ω), where γ < 1. Even if our estimates are affected by order-

of-magnitude uncertainties, they provide strong evidence for the possibility that significant 

fractions of the total NRM can be acquired inside the surface mixed layer. Furthermore, cases 

with partial DRM preservation listed in Table 4-1 are of particular interest for relative 

paleointensity reconstructions, because, as we will see later, different DRM and PDRM 

acquisition efficiencies can lead to NRM fluctuations driven by the rotational diffusivity γ of the 

surface mixed layer. 
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4.3 Equilibrium solutions for particle orientations in water and sediment 

The orientation of sediment particles is controlled by the simultaneous action of (a) driving 

forces (i.e., bioturbation and Brownian motion), (b) viscous forces, (c) many-body interaction 

forces (e.g., hard contacts, electrostatic, Van der Waals) and (d) external forces (gravity, magnetic 

torques). The nature of most forces is extremely complex and unknown in detail; therefore, we 

approach the problem in a statistical manner. Torques are conveniently defined as the gradient 

V  of a so-called torque potential ( , )V    expressed in spherical coordinates ( , )  , where 

  is the angle to the applied field. In this case, magnetic torques are generated by cosV mB   , 

where B is the ambient field and m the magnetic moment of individual sediment particles or flocs. 

On the other hand, the random nature of interactions with neighbor particles is best described by 

an appropriately defined random potential, as shown later in section 4.3.2. 

The probability density function ( , , )p p t    of particle orientations subjected to 

rotational diffusion in a torque potential V is governed by the so-called Smoluchowski-Debye 

equation: 

 r
r

1p
D p p V

t


    

 
,                                          (4-6) 

where r  is the rotational viscous drag coefficient. This coefficient depends on the size and 

shape of the diffusing particles: for example, 
3

r 8 a   for spheres with radius a immersed in 

a fluid with dynamic viscosity η. Under stationary conditions, p reaches a dynamic equilibrium 

with the ambient field, fulfilling eq. (4-6) with / 0p t   . The general solution of the 

Smoluchowski-Debye equation at equilibrium is the Boltzmann distribution: 

0
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where 0p  is a constant ensuring that the total probability associated with p is 1 (Appendix A ). 

The expected magnetization M resulting from magnetic moment orientations with distribution p 

is obtained by integrating the z-components of the moment vectors over the unit sphere, i.e., 
2

0 0
0

( , ) cos sin d d
M

p
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 
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where M0 is the maximum magnetization obtained from full alignment in the external field. 

In the following, we discuss specific solutions of the Smoluchowski-Debye equation 

representing limit cases of particles or flocs with negligible interactions, as typically encountered 

in the water column and near the sediment-water interface, and with strong interacting forces, as 

expected in the mixed layer, and more so in the consolidating layer. 

4.3.1 Isolated particles in a perturbed medium 

We assume magnetic particles to be suspended in a viscous medium, with rotational 

diffusion originating from Brownian motion or from turbulence. The sole potential acting on the 

particles originates from magnetic torques, i.e., cosV mB   . In this case, eq. (4-7) yields the 

well-known Fisher-Von Mises distribution [Fisher, 1953]: 
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with r r/( )mB D   . The associated magnetization obeys a Langevin law with: 

eq

0 r r

M mB
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L                                                 (4-10) 

where ( ) coth 1/x x x L  is the Langevin function. The fluctuation-dissipation theorem gives 

r B r/D k T   for the case of Brownian motion, where Bk  is the Boltzmann constant and T the 

absolute temperature, so that 

eq

0 B
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describes the alignment of magnetic particles in undisturbed fluids. This solution has been used 

to quantify the statistical alignment of magnetic bacteria in water [Frankel and Blakemore, 1980; 

Mao et al., 2014b]. An important generalization of eq. (4-11) is obtained if kBT, which is the mean 

torque of perturbations arising from molecular collisions, is replaced by the mean torque τp of 

unspecified random perturbations, i.e., 

 

eq

0 p

M mB

M 

 
  

 

L                                                      (4-12) 

(Figure 4-1). An essential condition for the validity of eq. (4-12) is that flocs behave as discrete 

bodies with negligible reciprocal interaction forces. For example, τp can be identified with the 

amplitude of hydrodynamic torques from small vortices created by magnetic flocs sinking in the 

water column [Heslop, 2007]. In this case, eq. (4-12), along with an appropriate description of 

flocculation dynamics [Shcherbakov and Sycheva, 2010], governs DRM acquisition. Using the 

calculations of Heslop [2007], eq. (4-12) yields eq 0/ 0.88M M   for 8 µm flocs with an aspect 

ratio of 1.1 sinking in a 50 µT field, and eq 0/ 0.09M M   for 12 µm flocs. This example 

illustrates the well-known problem of non-linear DRM acquisition by smaller flocs [Tauxe et al., 

2006]. 

 
Figure 4-1 Normalized equilibrium magnetization, Meq/M0, of particles with magnetic moment 

m in a magnetic field B, when subjected to random perturbing torques Tp with zero mean and 

standard deviation τp. The magnetization corresponding to mB/τp = 1 is marked by a dot, with a 

sequence of 500 perturbations shown in the inset. 
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4.3.2 Equilibrium magnetization in mixed sediment 

Mao et al. [2014b] used eq. (4-12) to explain PDRM acquisition experiments in sediments 

with 68-88% porosity, identifying τp with the typical energy of microscopic bioturbation events. 

A serious limit of this approach is represented by the fact that individual sediment particles 

(defined as the smallest units with elastic body behavior) are not independent from each other, as 

required by eq. (4-12). Instead, a dense network of inter-particle forces grows rapidly below the 

sediment-water interface, as seen in colloidal suspensions upon reaching a critical packing 

fraction [Weitz, 2011]. This network holds individual particles in place against random 

perturbations, and is responsible for the rheological response of sediment to mechanical stresses. 

As with the case of random perturbations, we are interested in particle rotation, and represent 

holding forces in terms of torques derived from a so-called “holding” potential ( , )U   . Each 

particle is characterized by its own holding potential, which depends on the relative position of 

neighbor particles, and the type of interaction forces (e.g., hard contacts, electrostatic, Van der 

Waals). Given the disordered nature of sediment, this potential possesses local minima 

corresponding to a certain number of random, or almost random orientations at equilibrium. 

Small perturbations produce reversible particle rotation within the potential wells of U, 

which determine the elastic response of sediment. Larger perturbations, on the other hand, might 

be sufficient to overcome the potential barriers between local minima, in which case irreversible 

particle rotation will occur, yielding plastic deformations. Especially for irreversible rotations, 

holding potentials change in response to relative particle displacement/rotation, so that a rigorous 

formulation of ( , )U    must take the time evolution of particle interactions into account. 

Because details about such interactions are largely unknown, we proceed with a simplified 

approach based on static random potentials. These potentials can reproduce the fundamental 

difference between sediment and diluted suspensions, i.e., the existence of forces that must be 

overcome in order to irreversibly change particle orientations. Holding potentials are ultimately 

responsible for blocking remanence carriers against changes of the ambient field and, in the 

laboratory, against applied fields, for instance during alternating field (AF) demagnetization. 

As seen in section 4.3.1, solutions of the Smoluchowski-Debye equation for the statistical 

distribution ( , )p    of particle orientations at equilibrium are governed by the total potential of 

each particle, which is now given by cos ( , )i i iV m B U      for particle i. Because each 

particle is subjected to its own holding potential, ( , )p    is the ensemble average of single 

particle solutions, i.e., 

r r

cos ( , )
( , ) exp i i

i

m B U
p c

D

  
 

 
   

,                           (4-13) 

where    is used to indicate an ensemble average. r rD   is conveniently replaced by the 

amplitude τp of randomizing torques. In order to evaluate eq. (4-13), we need an explicit 

formulation of iU  as a random potential with an appropriate number of local minima 

representing stable orientations in the force field caused by neighbor particles. For this purpose, 

we follow the general solution approach of Alexiewicz [2000] and represent iU  as a series of 

spherical harmonic functions, i.e., 
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,

( , ) ( cos sin ) (cos )m
i l i m i m l

l m

U u m m P        ,                (4-14) 

where 
m

lP  are the associated Legendre polynomials with Schmidt quasi-normalization [Winch 

et al., 2005], lu  are coefficients expressing the expected spectral amplitude of terms with order 

l, and ,i m , ,i m  are random realizations of a statistical variable with zero expectation, unit 

variance, and a given probability density function, e.g., the normal distribution (0,1)N . The 

spectral amplitudes lu  should be chosen so that the number of local minima is comprised 

between 2 (i.e. uniaxial holding potentials) and the maximum number (~10, Torquato [1995]) of 

nearest random packing neighbors. Furthermore, the associated torques i iU T  shall be 

characterized by a white spherical harmonic spectrum. These conditions can be satisfied only if 

the sum in eq. (4-14) is truncated to a certain maximum harmonic degree n. In this case, 
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yields unit root mean square torques, i.e., 
2 1iT    (see Appendix A3. Construction of random 

holding potentials for a proof based on Constable and Parker [1988]). Some realizations of iU  

with n = 4,6,9 are shown in Figure 4-2. 

 
Figure 4-2 Examples of random holding potentials ( , )U    generated with eq. (15) using 

spherical harmonic functions with maximum degree n = 4 (a), n = 6 (b), and n = 9 (c). Three 

examples are given for each n, with the right-hand image showing the same potential as the 

left-hand one after 180° rotation. Stable particle orientations are defined by local minima of 

( , )U    (blue). 

The ensemble average of eq. (4-13) with iU  given by eq. (4-15) yields the mean 

equilibrium magnetization: 
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,        (4-16) 

where   denotes integration over the unit sphere, and τp, τh are the root mean square amplitudes 

of perturbing and holding torques acting on individual particles, respectively. 

 
Figure 4-3 Effects of holding poentials on particle alignment. (a) Probability density function 

p(θ,φ) of particle orientation in a total potential –mB+U (blue surface) and –mB+5U (orange 

surface), where U is a random holding potential. Local minima of U produce probability 

maxima at random orientations (peaks) that do generally not coincide with the direction (θ0,φ0) 

of B. This effect is particularly pronounced for large amplitudes of U (orange surface), resulting 

in smaller mean particle alignments and equilibrium magnetizations. (b) Decrease of the 

equilibrium magnetization M in random holding potentials of the type shown in Figure 4-2, 

with respect to the case of no holding potential (i.e., βh = 0). Each dot corresponds to the 

ensemble average of up to 3×105 random potential realizations with maximum spherical 

harmonic order n = 4,6,9. Lines are least-squares fits of the numerical results according to eq. 

(4-18). The dependence of the fitting parameter q on n is shown in the inset. 

Eq. (4-16) cannot be evaluated analytically; however, the main characteristics of the 

equilibrium magnetization can be understood by considering two limit cases. The first limit case 

is that of a weak holding potential, i.e., h p  , which means that particles are practically free 

to rotate under the influence of perturbing torques, yielding the Langevin law in eq. (4-12). For 

strong holding forces, i.e., h p  , the orientation of individual particles is dictated by local, 

randomly positioned minima of iU . Such orientations deviate from the equilibrium resulting 

from the interplay between magnetic and perturbing forces, thereby reducing the overall 

alignment with the applied field (Figure 4-3a). In practice, the Langevin approximation obtained 

by neglecting the holding potential is valid for h p/ 1    (Figure 4-3b). Above this limit, 

eq 0/M M  starts to decrease with increasing h , i.e., 

eq

0 h

M mB
q

M 

 
  

 
L                                                    (4-17) 
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where q is a constant that depends weakly on the maximum order n of the spherical harmonics 

used to construct the random holding potentials (i.e., q ≈ 3.0, 3.9, 4.9 for n = 4, 6, 9, respectively). 

Finally, a general analytical approximation of eq. (4-16) that holds for both limit cases as well as 

intermediate solutions is given by 

eq

2 2
0 p h( / )

M mB

M q 

 
  

 
 

L                                         (4-18) 

(Figure 4-3b). In this case, 0.61.31q n  is the value of the “Boltzmann factor” 
h h p/    for 

which the equilibrium MRM attained in small fields is 1/22 71%   of the value predicted by 

the Langevin law in absence of holding forces. If pmB  , as expected inside the mixed layer 

(see section 4.4), a linear approximation of eq. (4-18) based on ( ) /3x xL  yields 

eq

2 2
0 p h3 ( / )

M mB

M q 



.                                           (4-19) 

An important effect of the holding potential, beside that of lowering the equilibrium MRM, 

consists in slowing down the rate at which this equilibrium is approached: as h  becomes larger 

than τp, fewer perturbations are able to overcome the energy barriers of iU  to produce 

irreversible magnetic moment rotations, until the system becomes entirely fixed for h p  . 

This effect plays a fundamental role in locking the acquired MRM at the bottom of the mixed 

layer, as explained in section 4.4. 

4.3.3 Inclination shallowing 

Sediment NRM is often affected by inclination shallowing, due to rotation of elongated 

magnetic grains toward horizontal directions [Griffiths et al., 1960; Mitra and Tauxe, 2009; Jezek 

et al., 2012] and to sediment compaction [Arason and Levi, 1990]. While compaction-shallowing 

occurs at depths of several tens of meters below the mixed layer and is not relevant for initial 

NRM acquisition, a possible MRM shallowing source is represented by sediment texture. 

Sediment texture is typically produced by the preferred horizontal layering of platy particles (e.g., 

clay). Although texture buildup inside the mixed layer is counteracted by mixing, a certain degree 

of mechanical anisotropy can be expected in clay-rich sediment. Direct measurements of 

mechanical strength anisotropies are not available for the mixed layer; however, an upper limit 

can be deduced from data for pure clays, where the relative shear strength anisotropy is usually 

comprised between 20 and 60% with an average of ~40% [Won, 2013]. 

On a microscopic scale, mechanical strength anisotropies are caused by interaction forces 

with direction-dependent mean amplitudes, which introduce preferred directions for the 

orientation of non-equidimensional sediment particles. The direction of magnetic moments is 

affected by this phenomenon only if the following conditions are met simultaneously: (1) 

magnetic sediment particles are not equidimensional, and (2) the corresponding net magnetic 

moment direction is systematically related to particle shape. Magnetite-clay aggregates [Galindo-

Gonzalez et al., 2009] fulfill these conditions if the magnetic moment of adhering magnetite 

crystals is parallel to large faces of clay platelets, as is expected for magnetosome chains. 

Magnetic textures created by this mechanism can be modeled by adding a systematic term A to 
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the random holding potentials, with preferred directions defined by local minima of A. The 

simplest form for such a potential is given by an uniaxial anisotropy contribution 

a cos(2 )/2A   , where   is the angle to the vertical and a  is the maximum torque amplitude 

produced by A. In case of MRM acquisition in inclined fields, the total potential acting on 

magnetic particles is then given by: 

a( , ) ( ) cos(2 ) ( , )
2

iV mB U


        n b                             (4-20) 

where (sin cos ,sin sin ,cos )    n  is the unit vector representing the direction of magnetic 

moments in a field B parallel to the unit vector (sin ,0,cos ) b . As seen in section 4.3.2, 

random potentials Ui have the effect of dispersing magnetic moments orientations without 

changing their mean direction. Therefore, Ui can be neglected in inclination shallowing 

calculations and the mean direction of the acquired MRM is obtained by integration of the 

Boltzmann distribution associated with eq. (4-20) after setting Ui = 0, i.e., 

m a
2 ( ) cos(2 )/2

0 0
sin d de

        
    

n b
n n ,                          (4-21) 

where m p/mB  . Furthermore, a a p/    is a new “Boltzmann factor” representing the 

ratio between anisotropy and perturbing torques. Because m 1   inside the mixed layer, eq. 

(4-21) can be linearized with respect to m  and solved analytically (Appendix A4. Inclination 

shallowing), obtaining the classical inclination shallowing equation 

atan tan BI f I                                                  (4-22) 

of King [1955], where 90I    and 90BI    are the magnetization and field 

inclinations, respectively, and 
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                                       (4-23) 

is the inclination shallowing factor associated with the anisotropy potential A (Figure 4-4a). 

Maximum inclination shallowing effects observed in nature correspond to a 0.4f   [Tauxe and 

Kent, 2004], which, if associated with a MRM, would require a 2.5   (Figure 4-4b). On the 

other hand, if MRM blocking occurs at h p/ 1   , as discussed in section 4.4, a  is identifiable 

with the relative anisotropy a h/   of holding forces. This anisotropy can be expected to coincide 

with the relative anisotropy derived from mechanical strength parameters. Assuming 

a h/ 20%    for sediments containing up to 50% clay, the maximum MRM inclination 

shallowing does not exceed 2.3°. Much smaller effects are expected for sediment particles lacking 

strong shape anisotropies, such as in carbonaceous sediments, where MRM inclination 

shallowing should be negligible. 
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Figure 4-4 Effects of anisotropic holding potential on inclination shallowing. (a) Inclination 

shallowing of the equilibrium MRM, calculated with eq. (4-22 and 23) for given values of 

a a p/   , which represent increasing amplitudes of the anisotropy term a cos(2 )/2A    

of the holding potential. (b) Inclination shallowing parameter af  as a function of a  

according to eq. (4-23). 

4.4 MRM acquisition and the lock-in function 

As seen in section 4.3, a dynamic equilibrium between ordering forces (i.e., magnetic torques) 

and randomizing forces (i.e., bioturbation and mechanical interactions) is established inside the 

surface mixed layer if stationary conditions are maintained for sufficiently long times. The 

equilibration time depends on the mixing rate of sediment, which decreases with increasing depth, 

especially near the boundary between mixed and consolidating layers, up to the point where the 

MRM equilibrium becomes fixed. In the framework of PDRM models, the amount of blocked 

magnetization is expressed as a function of depth through a so-called lock-in function [Roberts 

and Winklhofer, 2004]. In this section, we model MRM acquisition and its lock-in by following 

the journey of sediment flocs from the water column to the consolidating layer. For this purpose, 

we use a coordinate system that moves with the mean sinking (in water) or burial (in the sediment 

column) velocity d /dz t  . A thin horizontal layer anchored within this coordinate system will 

not always contain the same material because of different sinking velocities (in water) and 

diffusion (in water and sediment). As seen in section 4.3, rotational diffusion in the presence of 

magnetic torques and mechanical particle interactions is governed by the Smoluchowski-Debye 

equation, so that the statistical distribution ( , , )p t    of particle orientations inside our layer at 

any time t is given by: 

 h
r p

1 1
cos ( ( ))

( ( )) ( ( ))
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p p mB z t U

D z t t z t
 




         

,         (4-24) 

where hU  is a random potential generating torques with root mean square amplitude h , and 

τp is the root mean square amplitude of random perturbing torques (e.g., turbulence in water and 

bioturbation in sediment). Furthermore, 

0

( ) 1
( ) ( )d

tz t
z t z t

L L
     (4-25) 
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is the reduced depth of our layer as a function of time, and Dr, ω, τp, and τh are assumed to be 

steady-state sediment properties that depend only on the reduced depth /z z L  , where L is the 

thickness of the mixed layer. 

A general analytical expression for the time-dependent solution of eq. (4-24 and 25) is not 

known; therefore, we proceed with some simplifications. The first simplification consists in 

assuming ω to be a constant, in which case eq. (4-25) reduces to /z t L  . Next, we neglect all 

potentials and look for a general solution of the (time-dependent) diffusion equation: 

r ( / )
p

D t L p
t




 


,                                            (4-26) 

which describes the fate of a given magnetization in zero field over time. As far as the effect of 

potentials on the preservation of remanent magnetizations is concerned, the reduced probability 

for successful irreversible rotations against strong holding torques (section 4.3.2) is equivalent to 

a decrease of Dr, as we will be shown below. Before proceeding to solve eq. (4-26), we need to 

specify the dependence of the rotational diffusion constant Dr on depth, assuming that it is entirely 

caused by bioturbation. Available estimates of the biodiffusion constant (Db) are generally given 

as bulk averages over the mixed layer. As discussed by Reed et al. [2006], reconstructions of 

b ( )D z  from tracer dynamics require assumptions about the bioturbation mechanism, with 

possible solutions ranging from nearly depth-independent functions to a Gaussian-like decrease 

of b ( )D z  when moving down from the sediment-water interface. The latter model is considered 

more realistic, because Db is expected to depend on the concentration of benthic organisms, and 

therefore on nutrient concentration profiles dictated by organic matter consumption [Rabouille 

and Gaillard, 1991; Boudreau, 1998; Reed et al., 2006]. 

Generally, organic carbon concentrations decrease exponentially within the mixed layer, 

down to levels that no longer support the energetic costs of deep burrowing [Berner, 1980; 

Rabouille and Gaillard, 1991; Roberts and Winklhofer, 2004]. Therefore, we assume that the 

concentration of motile benthic organisms responsible for bioturbation is proportional to the 

exponential decrease of organic carbon content with depth. Accordingly, the simplest bioturbation 

model assumes Db and Dr to be proportional to exponential-like organic carbon profiles, i.e., 

r r,0 b( )D D c z  where Dr,0 is the maximum value of Dr (typically at the top z = 0 of the 

sedimentary column) and b ( )c z  is an exponential profile with b (0) 1c  , e.g., 
3

b ( ) zc z e
   

(Figure 4-5b). Additional factors that affect Dr are (1) species-dependent biological limits, for 

example, burrowing depths, and (2) the reduced probability of irreversible particle rotation as the 

mechanical strength of sediment (i.e., h ) increases. These two factors are somewhat connected 

because motile organisms will not thrive where their activity is severely limited by the mechanical 

strength of sediment. 
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Figure 4-5 Typical sediment property profiles relevant for DRM preservation and MRM 

acquisition. (a) Sediment strength, expressed as the ratio βh = τh/τp between root mean square 

amplitudes of holding torques, τh, and perturbing torques, τp (red line). Perturbing torque 

amplitudes are assumed to be independent of sediment depth, while τh is assumed to be 

proportional to tensile fracture toughness (KIC) profiles measured in marine sediment (from data 

in Johnson et al. [2012]). The average (blue line) of three KIC profiles with double standard 

deviation confidence band (shaded) is shown after normalization with respect to sediment depth 

and amplitude in order to obtain a unit value at the bottom of the mixed layer (dashed line), so 

that β0 = βh(L) = 1. (b) Normalized profiles of benthic organism concentration cb and rotational 

diffusion Dr according to eq. (4-27). (c) Equilibration half-time τ1/2 of mixed layer 

magnetizations, calculated on the basis of properties shown in (a) and (b). Two βh-profiles 

proportional to (a) have been chosen. Note the logarithmic time axis in (c). 

Limitation of Dr by sediment resistance is quantified by the probability for random 

perturbations (i.e., torques with amplitude τp) to overcome the energy barriers of the holding 

potential hU . This situation is equivalent to that of thermal activations, where the probability 

of thermal perturbations with energy Bk T  to overcome a given energy barrier E  is expressed 

by the Arrhenius law B/E k Te . Mean energy barriers of the holding potential are dictated by the 

typical excursions of h ( , )U    over the unit sphere, which coincide with h . In this case, the 

probability of irreversible particle rotations is given by h p/
e

 
 and our model for the rotational 

diffusion constant becomes 

h( )
r r,0 b ( ) zD D c z e   ,                                            (4-27) 

with h h p( ) /z    . Lacking specific information on bioturbation forces, we assume that τp (i.e., 

the driving “force” of bioturbation) is a constant, while h  increases with depth because of 

sediment compaction. As a last step of our model construction, we need a reasonable estimate of 

h ( )z  . Since displacement of benthic organisms is attributed to crack propagation [Dorgan et al., 

2005], we assume h  to be proportional to the tensile fracture toughness KIC of sediment, and 

we use profiles of this parameter measured by Johnson et al. [2012] to construct the depth 

dependence of h . These profiles are characterized by a continuous increase of KIC(z) with a 
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kink and at the bottom z = L of the mixed layer that marks the onset of consolidation (Figure 4-5a). 

The nearly linear dependence of KIC on depth within the mixed layer can be attributed mainly to 

compaction. Similar profiles are also seen with shear strength measurements [Locat et al., 2002]. 

From a rheological point of view, continuous shear associated with bioturbation is expected 

to reduce the shear strength (a phenomenon known as shear thinning, e.g., Barnes [1997]). On the 

other hand, benthic organisms can excrete gelation substances that produce the opposite effect. 

Indeed, mixed results have been found upon adding selected species of burrowing organisms 

[Meadows and Tait, 1989]. Therefore, we avoid explicit links between h  and the concentration 

bc  of benthic organisms, and define h ( )z   as proportional to the ICK -profiles of Johnson et 

al. [2012], with absolute values determined by 0 (1)   (Figure 4-5a). In the absence of direct 

h -estimates, we assume that the bottom of the mixed layer corresponds to places where 

bioturbation becomes increasingly difficult because of holding forces that exceed the driving 

forces of bioturbation. This criterion is equivalent to setting 0 1  . Our model for r ( )D z  uses 

a minimum set of reasonable assumptions about bioturbation and mechanical sediment properties, 

yielding a pseudo-exponential profile of Dr through the mixed layer (Figure 4-5b), which is 

similar to Db-profiles assumed elsewhere [e.g. Bentley et al., 2006]. 

The time evolution of the remanent magnetization of a sediment layer initially located at a 

depth 0z  below the sediment-water interface is obtained from eq. (4-26) with the initial 

condition p(θ, t = 0) corresponding to a given value Mini of M. Any initial distribution p of the 

form given by eq. (4-4) yields the same normalized solution ini( )/M t M . Because the layer moves 

down with respect to the sediment-water interface, this solution can be converted into a depth 

profile through 0z z t  , obtaining 
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M z z L
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 
                           (4-28) 

(Appendix A5. Lock-in model). If Dr from eq. (4-27) is substituted into this solution, initial 

magnetizations decay more or less rapidly to zero or to a constant value, depending on the starting 

depth 0z  (Figure 4-6a). Magnetization decays are more rapid near the top of the sediment 

column, where Dr is maximal, and slow down as the consolidating layer is approached. A 

common characteristic of all solutions is that 0( , )M z z  becomes constant below a certain “full 

blocking” depth Bz L  inside the consolidating layer. Magnetizations B 0( , )M z z  at this depth 

represent fractions of the initial magnetizations acquired at 0z  that survived the journey though 

the mixed layer. These fractions yield, by definition, the MRM lock-in function 

B

r( ) exp 2 ( )d
z

z

L
z D u u







 
     ,                                   (4-29) 

where B B /z z L   (Figure 4-6b). Unlike most definitions of the lock-in function commonly used 

in PDRM models, ( )z  does not start inside the consolidating layer. Instead, it is defined for 

all depths below the sediment-water interface, as proposed by Channell and Guyodo [2004]. The 

reason for such a wide lock-in function is that magnetizations acquired inside the mixed layer can 

be preserved. Moreover, it is possible for a DRM, which in our model is equivalent to 

0(0, 0)M z  , to be partially preserved (i.e., B 0( , 0) 0M z z   ) for some combinations of rD , 

L , and   (Figure 4-6a), in accordance with our preliminary estimates in section 4.2. In this 
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case, the lock-in function is characterized by 0   at the sediment-water interface, and small 

lock-in depths can result in combination with the minimal mixing depths (e.g., 2 cmL  ) 

encountered in some pelagic sediments [Tauxe et al., 2006]. 

 
Figure 4-6 Illustration of the MRM lock-in process. (a) Evolution of normalized initial 

magnetizations acquired at different depths 0z  (blue dots), as the corresponding sediment 

layer gets buried (lines). All magnetizations converge to constant values at depths B 2z z    

(red dots). These values define the lock-in function 0 B 0( ) ( , )z M z z     shown in (b). The 

particular case B 0( , 0)M z z    corresponds to the DRM fraction that survives its journey 

through the mixed layer. (b) Lock-in function deduced from (a). (c) First derivative 0( )z   of 

the lock-in function (solid line), which defines the relative contribution of each depth to the 

final magnetization. The dashed line represents magnetizations corresponding to differences 

between curves in (a). 

The last element of our MRM acquisition model provides an estimate of the MRM intensity 

that is ultimately locked inside the consolidating layer, as discussed in the following. For this 

purpose, we define the lock-in probability density ( )z   as the derivative of ( )z  with respect 

to z  (Figure 4-6c). Accordingly, eq( ) ( )z M z    represents the relative contribution to the 

locked MRM that is delivered by the equilibrium remanence, eq ( )M z , acquired inside a layer 

of thickness dz  at depth z , as specified by eq. (4-18). The total NRM is therefore obtained by 

integration of eq( ) ( )z M z    over z , i.e., 

B
eqNRM DRM

0 0 00

( )
(0) ( ) d

z
M zM M

z z
M M M






   




,                       (4-30) 

where DRM(0)M  is the DRM fraction that survives burial through the mixed layer. Using the 

result derived in section 4.3 for the equilibrium MRM we finally obtain the chief result of this 

paper, i.e.: 

NRM DRM MRM

0 0 0

(0)
M M M

M M M
   ,                                 (4-31) 
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where the MRM lock-in function is given by 

B
h ( )

b( ) exp ( ) d
z u

z
z c u e u

 



      ,                                (4-32) 

(Figure 4-7a), and the acquired MRM is given by 
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L ,                   (4-33) 

where 02 /D L   is the rotational diffusivity parameter of the mixed layer introduced in 

section 4.2. The first and second term on the right-hand side of eq. (4-31) are the DRM and MRM 

contributions to the acquired NRM, respectively. Both terms are functions of γ, whose unit is rad2. 

This parameter represents the mean squared angle of a random walk produced by rotational 

diffusion during the typical residence time of sediment particles within the mixed layer. DRM 

preservation is only possible with γ < 1, while full MRM acquisition with complete DRM 

obliteration is obtained with 1  . 

Numerical evaluations of eq. (4-31-33) reveal that a transition from a DRM-dominated to a 

MRM-dominated NRM occurs between 0.2   and 10   (Figure 4-7). Accordingly, we 

define three regimes of sedimentary NRM acquisition: (1) a slow mixing regime for 0.2  , 

where the preserved magnetization is essentially a DRM, (2) a fast mixing regime for 10  , 

where DRM is fully randomized and replaced by a MRM, and (3) an intermediate mixing regime 

with 0.2 10  , where DRM and MRM coexist, both contributing to a total NRM. Faster 

sediment mixing regimes push the MRM lock-in function below the mixed layer (Figure 4-7a), 

where the biodiffusion rate declines rapidly, producing large lock-in depths that are compatible 

with some paleomagnetic records [e.g. Sagnotti et al., 2005; Suganuma et al., 2011]. 

Because DRM and MRM are characterized by different acquisition efficiencies, total NRM 

intensities can be particularly sensitive to γ in case of intermediate mixing regimes, due to varying 

DRM and MRM proportions. On the other hand, MRM intensity is relatively insensitive to 

mechanical sediment properties (i.e., βh in Figure 4-8a,b) and bioturbation parameters (i.e., cb in 

Figure 4-8c,d), especially for fast mixing regimes. Moreover, the total magnetization is governed 

only by the ratio between magnetic and perturbing torques for mixing regimes characterized by 

20 500  , according to the limit case of eq. (4-19) with h 0  . 



4.4 MRM acquisition and the lock-in function 65 

 

 
Figure 4-7 Lock-in functions and remanent magnetizations acquired in a sediment with 

properties shown in Figure 4-5 and 
3

m 10   (i.e., acquisition in a 50 µT field when the 

mean amplitude h  of holding and perturbing torques at the bottom of the mixed layer is equal 

to the torque exerted by a 50 mT field). (a) Lock-in functions ( )z  for selected values of the 

rotational diffusivity parameter r2 /D L  . The value (0)  of the lock-in function at the 

sediment-water interface yields the fraction of locked-in DRM. The bottom of the mixed layer 

is marked by the dashed line. (b) Finally locked DRM and MRM as a function of   for two 

DRM settings, i.e., DRM1 acquired with same perturbation strength as MRM (i.e., τp,DRM = 

τp,MRM) and the more realistic DRM2 acquired in a less perturbed environment (i.e., τp,DRM = 

0.5τp,MRM). Three mixing regimes yielding full, intermediate, and no DRM preservation, 

respectively, are shown below. The vertical dashed line marks the limit above which lock-in 

starts below the mixed layer. 
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Figure 4-8 Sensitivity of MRM acquisition to variations of the model profiles shown in Figure 

4-5. (a) Sediment strength variations, expressed by proportional βh-profiles with h (1) 0.5   

(case A), h (1) 1   (case B as in Figure 4-5a), and h (1) 2   (case C). (b) MRM intensities 

that correspond to the cases shown in (a). (c) Variations of normalized concentration profiles cb 

of benthic organisms according to an exponential model (case B as in Figure 4-5b), a more box-

shaped function (case C), and an intermediate case (case A). (d) MRM intensities that 

correspond to the cases in (c). MRM intensities depends only weakly on variations of the 

profiles shown in (a) and (c), especially in case of fast mixing regimes with 20 500  . 

4.5 Discussions 

In sections 4.3 and 4.4 we derived equations that describe the mean alignment of magnetic 

particles subjected to the simultaneous action of aligning torques (i.e., magnetic and texture) and 

randomizing torques (i.e., turbulence, bioturbation, and inter-particle mechanical interactions). 

DRM and MRM acquisition depend on the mean intensity of such torques and on the frequency 

of “successful” perturbations inside the corresponding environments (i.e., water column, 

sediment-water interface, and mixed layer). Dynamic equilibrium between the abovementioned 

torques is described by a Langevin law of the type eq 0 m( )M M  L , where 0M  is the 

magnetization of fully aligned magnetic moments, and the “Boltzmann factor” βm = τm/τp is the 

ratio between the amplitudes of magnetic torques, m mB  , and perturbing torques, τp. Two 

main cases can be distinguished according to the nature of perturbing torques. In the first case, 
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magnetic moments are carried by discrete units (i.e., flocs) with few reciprocal interactions. While 

falling inside the water column, magnetic flocs are subjected to Brownian perturbations, as well 

as hydrodynamic disturbances produced by turbulence [Heslop, 2007]. The typical intensity of 

such disturbances yields relatively large values of m , which produce the well-known problem 

of non-linear DRM field dependencies [e.g. Tauxe et al., 2006]. This problem is mitigated by 

accretion of large (>20 µm) flocs through random aggregation of smaller units. 

Floc density increases dramatically at the sediment-water interface, where a network of 

interaction forces begins to form. The physics of DRM acquisition remains the same as long as 

individual flocs behave as independent units with few interactions. Perturbing forces are 

presumably larger than in the water column, due to sediment resuspension by benthic organisms 

and continuous floc reorientation in a turbulent hydrodynamic regime (Figure 4-1). In most cases, 

sediment mixing is expected to be fast enough to expose all materials inside the mixed layer to 

repeated resuspension events and DRM renewal. Under these conditions, new magnetic carriers 

formed inside the mixed layer, such as magnetosome chains, acquire the same type of NRM as 

older carriers, and are subjected to the same lock-in delay. This is confirmed by results of Ouyang 

et al. [2014], who did not find a systematic time lag between detrital and biogenic NRM 

components in paleointensity records from the South China Sea. 

Interaction forces between sediment particles grow rapidly below the sediment-water 

interface, as soon as a sufficient number of contact points is reached. In this case, individual 

magnetic flocs are no longer independent units, and, in the absence of perturbations, the 

orientation of magnetic moments becomes locked, yielding a stable remanent magnetization. 

Bioturbation, however, produces irreversible particle rotations by overcoming the holding forces. 

Flocs are expected to break into smaller units whose internal binding forces exceed those 

produced by bioturbation. Such units might be identified with the “fundamental flocs” assumed 

in some DRM models [e.g. Tauxe et al., 2006]. As far as magnetofossils are concerned, 

fundamental flocs might consist of magnetosome chains adhering to clay particles, as postulated 

by Mao et al. [2014a]. We have modeled bioturbation by the action of perturbing torques, τp, 

against so-called holding potentials. The amplitude of τp depends on a detailed representation of 

bioturbation mechanisms [e.g. Dorgan et al., 2005]; nevertheless, opposing torques, h , caused 

by inter-particle forces must be overcome for successful displacement of living organisms. 

Therefore, βh = τh/τp ≈ 1can be reasonably assumed at the bottom of the mixed layer, where h  

is also responsible for preservation of a remanent magnetization against the torques resulting from 

the application of (large) magnetic fields. A crude estimate of torques produced by bioturbation 

can be derived from τh/τp ≈ 1 and critical fields hB  required to produce irreversible magnetic 

moment rotation in fresh sediment samples taken from the bottom of the surface mixed layer. In 

this case, the “Boltzmann factor” βm = mB/τp is simply given by h/B B , where B is the field in 

which NRM was acquired. Using h 20 mTB   as a representative value for the mixed layer 

[Mao et al., 2014a], one obtains 
3

m 2.5 10    for typical geomagnetic field intensities. In this 

case, we expect the intensity of magnetizations acquired inside the mixed layer to be proportional 

to the geomagnetic field. 
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The time required for any magnetization to reach full equilibrium with the ambient field 

inside the mixed layer is inversely proportional to the rotational diffusion constant Dr associated 

with bioturbation. Direct measurements of Dr are not available, and estimates based on total 

diffusion are extremely difficult to obtain, due to the unknown efficiency of benthic organisms in 

inducing irreversible particle rotations. We attempted crude lower limit estimates of Dr on the 

basis of microbial abundances [Kallmeyer et al., 2012], relying on the assumption that the 

translational and rotational diffusion of microbes is of the same type as for the well-known case 

of Brownian motion (Table 4-1). With such estimates, equilibration times are comprised between 

30 yr and 30 kyr, depending on the sedimentary setting. The fate of a DRM is dictated by Dr and 

by the typical residence time L/ω of sediment particles inside a mixed layer of thickness L, which 

are collectively summarized by the so-called mixed layer diffusivity parameter γ = Dr L/ω, where 

ω is the sedimentation rate. Three mixing regimes can be distinguished on the basis of γ, i.e., (1) 

slow mixing ( 0.2  ) that leads to full DRM preservation, (2) fast mixing ( 10  ) during which 

DRM is completely replaced by a MRM, and (3) intermediate mixing where NRM is a mixture 

of DRM and MRM (Figure 4-7b). According to our calculations, inclination shallowing is not 

expected for MRMs acquired in the fast mixing regime. 

Since MRM is essentially a particular type of PDRM, its conversion to a stable NRM 

depends on a so-called lock-in function, which represents the relative contribution of each depth 

below the sediment-water interface to the final magnetization. The value of the lock-in function 

at the sediment-water interface represents the DRM fraction that survives sediment mixing. Lock-

in functions associated with slow mixing regimes (e.g., Figure 4-7a with γ < 10) are representative 

of pelagic environments with low nutrient inputs, shallow mixed layers ( 2 cmL  ), and small 

lock-in depths of the order of 1 cm, as postulated by Tauxe et al. [2006]. On the other hand, non-

zero values of the lock-in function are confined below the mixed layer in case of rapid mixing 

regimes, yielding typical lock-in depths of ~2 20 cmL   (e.g., Figure 4-7a with 1000  ). 

These lock-in depths are compatible with estimates obtained from paleomagnetic records by 

Suganuma et al. [2011]. Because of the strong sensitivity of the lock-in function to mixing 

regimes, acquired MRM intensities depend mainly on γ, increasing from 0 for slow mixing to the 

equilibrium magnetization 0 m( )M L  for rapid mixing. Numerical MRM intensity estimates can 

be compared with the NRM of magnetofossil-bearing sediments characterized by rapid mixing 

regimes. Because of the excellent dispersion of intact magnetofossil chains, with estimated mean 

distances >9 times the chain length [Ludwig et al., 2013], magnetic flocs probably contain a single 

magnetosome chain or chain bundle with maximum magnetic moment [Hanzlik et al., 2002], as 

inherited from living cells. In this case 0 sM M  can be assumed, and using rs s/ 0.4M M   

[e.g. Ludwig et al., 2013; Mao et al., 2014a], we deduce 
4

rsMRM/ (7-9) 10M    for 

20 1000   (Figure 4-7b). This estimate agrees well with representative NRM values of 

magnetofossil-bearing platform carbonates [McNeill and Kirschvink, 1993]. 

Our analysis of DRM and MRM acquisition enables a first discussion of the sensitivity of 

relative paleointensity records to fluctuations of the NRM acquisition efficiency. With few 

exceptions associated with extremely rapid accumulation of nutrient-poor sediment material (e.g., 

ice rafting), bioturbation is sufficiently active to expose the whole mixed layer to repeated 
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resuspension and redeposition events, so that DRM and MRM can be assumed to be carried by 

the same kind of magnetic particles. Fluctuations of NRM acquisition efficiency in terms of (non-

measurable) magnetic moment alignments are, therefore, entirely due to the acquisition 

mechanism. As discussed above, equilibrium DRM and MRM intensities are mainly controlled 

by m , with major differences being related to the intensity τp of random perturbations. In both 

cases, τp is mainly controlled by the action of benthic organisms, but not by their concentrations. 

This means that major changes in the type of benthic fauna are required to introduce significant 

modifications of resuspension (for DRM) and bioturbation (for MRM) mechanisms. On the other 

hand, the concentration of benthic organisms is directly proportional to Dr and controls the timing 

of DRM randomization and MRM acquisition inside the mixed layer. Therefore, moderate 

fluctuations of the sedimentary environment are expected to change γ through variations of 

benthic biomass and sedimentation rate. As long as these variations occur around a slow ( 0.2  ) 

or fast ( 10  ) mean mixing regime, NRM is controlled either by a DRM or a MRM with nearly 

constant acquisition efficiency, and can be expected to support reliable paleointensity 

reconstructions. On the other hand, fluctuations of intermediate mixing regimes produce 

variations in the relative contributions of DRM and MRM. DRM is more efficient than MRM; 

therefore, the net result is that NRM acquisition efficiency changes in a way that could be 

erroneously attributed to geomagnetic field variations. 

4.6 Conclusions 

A general model has been developed for initial NRM acquisition near the sediment-water 

interface and inside the surface mixed layer. This model considers individual particles – defined 

as the smallest sediment units with elastic body behavior – under the influence of (1) magnetic 

torques, m , which tend to align magnetic moments with the Earth’s field, (2) holding torques, 

h , which arise from inter-particle interactions (e.g. hard contacts, Van der Waals, electrostatic), 

and (3) random perturbing torques, τp, associated with Brownian motion, turbulence (in the water 

column), and bioturbation (in sediment). The sum of magnetic and holding torques is described 

by properly constructed random potentials with a given number of local minima. In the absence 

of perturbations (i.e., τp = 0), stable particle orientations coincide with these minima. Irreversible 

particle rotation is produced by perturbing torques upon overcoming the energy barriers between 

local minima of the random potential. A sequence of such irreversible events is equivalent to a 

rotational diffusion process with diffusion coefficient Dr. This process is formally described by a 

Smoluchowski-Debye equation (eq. 4-6), whose stationary solution is a Boltzmann distribution 

of magnetic moments (eq. 4-7). The Boltzmann distribution defines the remanent magnetization 

resulting from a dynamic equilibrium between the long-term action of aligning torques (τm) on 

the one hand, and the average effect of random torques (τp and τh) on the other hand (eq. 4-18). 

Dynamic equilibrium is reached within a typical time that is inversely proportional to Dr (eq. 4-

5). 
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The magnitudes of Dr, τp, and τh evolve during different stages of NRM acquisition (Figure 

2-13). Holding torques are completely absent inside the water column (i.e., h 0  ), and 

relatively weak perturbations allow the growth of loose particle aggregates (i.e., flocs). The 

concentration of flocs increases sharply across the sediment-water interface, where mechanical 

interactions, and thus h , start to build up. The DRM acquired in this region is still unstable, due 

to the small holding forces. DRM intensities are governed by a Langevin law (eq. 4-12), whereby 

relatively large acquisition efficiencies and non-linear field dependencies are obtained if τp ≤ τm. 

As flocs become buried inside the surface mixed layer, h  increases proportionally to the 

mechanical strength of sediment. Bioturbation produces irreversible magnetic moment 

reorientations in all cases where τp ≥ τh so that DRM is progressively replaced by a new, so-called 

mixing remanent magnetization (MRM). Because perturbing torques produced by bioturbation 

are presumably much stronger than those encountered in the water column, MRM intensity is 

expected to be smaller than DRM intensity (eq. 4-18). 

The amounts of surviving DRM and acquired MRM at each depth below the sediment-water 

interface are controlled by a lock-in function (eq. 4-29), whose shape is mainly determined by the 

so-called rotation diffusivity parameter r /D L  , where L is the thickness of the surface mixed 

layer, and ω is the sedimentation rate. DRM is preserved as the only NRM contribution if 0.2   

(slow mixing regimes), and is completely replaced by a MRM for 10   (fast mixing regimes). 

The strongest changes in NRM acquisition efficiency are thus expected for intermediate mixing 

regimes characterized by 0.2 < γ < 10. Estimates of γ depend critically on Dr, for which direct 

measurements are not available. Lower Dr limits, obtained from minimum bioturbation rates 

expected from motile microorganisms, suggest that slow, fast, and intermediate mixing regimes 

exist for different sedimentary settings (Table 4-1). 

The abovementioned DRM and MRM acquisition processes can introduce relative 

paleointensity artifacts in addition to those generated by normalization with laboratory 

magnetizations [Roberts et al., 2012]. Accordingly, we distinguish two main categories: (1) 

artifacts introduced by NRM acquisition efficiency variations in terms of remanence carrier 

alignment (e.g., DRM and MRM fractions), and (2) artifacts introduced by magnetic components 

with different intrinsic ratios between their NRM contributions and a normalizer magnetization 

(e.g., IRM, ARM). For example, intact magnetofossils have saturated magnetic moments that 

yield larger NRM/IRM and NRM/ARM values compared to other remanence carriers with the 

same degree of alignment. Variable combinations of the two artifact sources can generate 

contradictory or ambiguous results. For example, Ouyang et al. [2014] reported NRM/ARM ratios 

that are 2-4 times higher for biogenic magnetite with respect to a detrital component, while 

Channell et al. [2013] did not report significant differences between the two components. 

Ambiguities associated with paleointensity artifacts are clearly illustrated with the example 

of the eastern equatorial Pacific sediment cores described by Yamazaki et al. [2013], where an 

inverse correlation has been observed between NRM acquisition efficiency (i.e., NRM/IRM) and 

a proxy for magnetizations due to magnetofossils (i.e., ARM/IRM). This correlation can be 

explained as an artifact of category 1 or 2, or both. In the first case, increased ARM/IRM values 

can be associated with faster bioturbation, assuming that magnetotactic bacteria represent a 
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certain fraction of the benthic biomass. Faster bioturbation is characterized by higher Dr- and L-

values, and is driven by larger nutrient supplies. Nutrient supply is in turn supported by primary 

production and/or increased mineral fluxes [Sarmiento and Gruber, 2006], the latter being directly 

related to the sedimentation rate ω. The net effect of these changes on pelagic sediment mixing 

depends on the coupled parameters Dr, L, and ω: the combined increase of Dr and L likely exceeds 

corresponding variations of ω. In this case, γ is expected to co-vary with magnetofossil 

concentrations. The slow-to-intermediate mixing regime deducible from Table 4-1 for the 

locations analyzed by Yamazaki et al. [2013] would react to increased γ with a decrease of the 

overall NRM acquisition efficiency (i.e., NRM/IRM), due to DRM randomization (Figure 4-7). 

This mechanism can explain the inverse correlation between NRM/IRM and ARM/IRM observed 

by Yamazaki et al. [2013], with the lowest NRM/IRM values being typical of magnetofossil 

MRM acquisition, as well as the weak correlation with sedimentation rate. On the other hand, two 

magnetic components with the same NRM acquisition efficiency (e.g., in terms of NRM/IRM) 

but different ARM/IRM values (as is the case for detrital and magnetofossil components, see Egli 

[2004]) will generate an inverse correlation between NRM/IRM and ARM/IRM. 

Our analytical models provide testable predictions about possible effects of sedimentary 

environments on NRM acquisition. Dedicated experiments are needed to obtain reliable estimates 

of bioturbation rates and mechanical sediment properties. A better knowledge of these parameters 

could lead to successful correction of variable NRM acquisition efficiencies in relative 

paleointensity records and to selection of the most reliable records on the basis of favorable 

sedimentary settings rather than limited variations of rock magnetic properties. 
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Table 4-1 Summary of surface mixed layer properties for selected sedimentary settings. 

Location 
ω 

cm/kyr 

L 

cm 
b,trD  

cm2/yr 

b,bacD  

(10 µm) 

cm2/yr 

rD  

(10 µm) 

rad2/yr 

  

(10 µm) 

DRM 

% 

N Pacific gyre 0.2 1 3.3 (2-6) 3 0.02-0.3 2 8×10−11 6×10−5 2 14-100 

S Pacific gyre 0.2 1 3.3 (2-6) 3 0.02-0.3 2 3×10−11 2×10−5 0.8 52-100 

Eq. Pacific 0.5 1, 3 7 (5-8) 3 0.2-0.3 2 3×10−8 0.02 600 0-94 

Southern Ocean 0.31 4 6 (5-7) 3 0.1-0.7 2 2.4×10−8 0.02 700 0-93 

NW Atlantic 5 5 10 (9-12) 3 0.65 6 2.4×10−8 0.02 70 0-99 

Explanations.   is the sedimentation rate; L is the thickness of the mixed layer; b,trD  is the 

translational diffusion constant deduced from tracers. b,bacD  is the estimated minimum 

translational diffusion constant associated with benthic microorganisms, based on 
2

b mob b B( / )D a a NvD  with mob 0.2  , 30.03 μmv  , 
1/3

b (3 /4 ) 0.2 μma v   , 

10μma  , 
2

B 0.1 cm /yrD   and N from Kallmeyer et al. [2012]. Values for 100μma   are 

100 times smaller. Dr is the minimum rotational diffusion constant deduced from b,bacD  and 

eq. (4-3) with 10μma  . Values for 100μma   are 104 times smaller. r2 /D L   is an 

estimate of the minimum rotational diffusivity parameter of the mixed layer, based on Dr and 

10μma  . The last column is the maximum relative fraction e   of DRM that survives 

bioturbation, based on 10 100μma   . 1 Hammond et al. [1996]. 2 Smith and Rabouille [2002]. 
3 Pisias et al. [1995]. 4 Geibert et al. [2005]. 5 Anderson et al. [1988]. 6 Computed with eq. (2) of 

Boudreau [1994]. 



 

 

Chapter 5  Microbially-assisted recording of the 

Earth’s magnetic field in sediment 

Abstract 

Sediments continuously record variations of the Earth’s magnetic field and thus provide one 

of the few seamless archives for studying the geodynamo [Opdyke and Channell, 1996]. The 

recording process occurs via the magnetization acquired by the alignment of magnetic grains 

during and after sediment deposition, known as depositional (DRM) and post-depositional 

(PDRM) remanent magnetization, respectively [Tauxe, 1993]. (P)DRM acquisition mechanisms 

have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns 

the controversial role of bioturbation, i.e. the mechanical disturbance of sediment by benthic 

organisms, during PDRM acquisition [Kent, 1973; Katari et al., 2000; Roberts et al., 2013]. A 

recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between 

laboratory experiments and paleomagnetic records [Egli and Zhao, 2015], yet it lacks 

experimental proof. Here we fill this gap by documenting, for the first time, the generation of a 

bioturbation-controlled PDRM in laboratory redeposition experiments. 

5.1 Introduction 

(P)DRM acquisition can be understood by following the path of settling particles in the water 

column and inside the surface mixed layer, until their orientation becomes fixed during 

consolidation (Figure 5-1a). A net magnetization is generated by particles with a magnetic 

moment m when they rotate towards the local Earth’s field B under the action of the magnetic 

torque m mB  . In the water column and at the sediment-water interface, complete alignment 

is prevented by particle aggregation [Tauxe et al., 2006], hydrodynamic forces [Heslop, 2007], 

and rolling [Bilardello et al., 2013], so that DRM intensity depends on the strength of B. A PDRM 

can be acquired after deposition inside the sediment column. Two main acquisition mechanisms 

have been proposed. In the first case, PDRM is acquired without disturbance from irreversible 

rotation of particles for which m  exceeds the torques generated by inter-particle forces 

[Shcherbakov and Shcherbakova, 1987]. Since these torques are generally much stronger than 

m , only few magnetic carriers will be affected, and most of the original DRM remains intact 

[Katari et al., 2000]. The second acquisition mechanism relies on particle realignment by random 

torques associated with bioturbation. Bioturbation was simulated in the laboratory by stirring 

water-saturated sediment in the presence of an ambient field, where a relatively strong 

magnetization was acquired proportional to the applied field [Kent, 1973]. A major problem with 

these experiments is that the samples were dried before the magnetization was measured, so one 

cannot exclude that the magnetic remanence originated from the drying process itself [Henshaw 

and Merrill, 1979]. 
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Regardless of the acquisition mechanism, most PDRM models assume that lock-in of 

magnetization only begins once substantial surface mixing has ceased, i.e. below the mixed layer 

[Roberts and Winklhofer, 2004; Roberts et al., 2013], so that DRM and PDRM are mutually 

exclusive. A different viewpoint arose from a statistical model of PDRM acquisition in the surface 

mixed layer (Chapter 4). This model considers bioturbation as a rotational diffusion process 

similar to that of Brownian motion, which occurs in the presence of random inter-particle forces. 

In this case, particle orientations are governed by the Smoluchowski-Debye equation, whose 

solution under stationary conditions yields the equilibrium magnetization 

eq 0
p

im B
M M



 
  

 
 

L                                             (5-1) 

where   denotes the ensemble average over particles with magnetic moments mi, subjected to 

randomizing torques of mean amplitude τp; M0 is the magnetization corresponding to full 

alignment, and L is the Langevin function. DRM acquisition is also described by eq. (5-1) with 

appropriate values of τp representing disturbances at the sediment-water interface. In weak fields 

(i.e., miB ≪ τp), Meq is approached exponentially, i.e. 2
eq

DtM M M e   , where M is the 

remanent magnetization, M the initial value of M - Meq, and D the rotational diffusion 

coefficient associated with bioturbation (Appendix B). The degree of DRM replacement by a 

bioturbation-driven PDRM depends on the diffusivity parameter /DL  , where L is the 

thickness of the mixed layer and   the sedimentation rate. This parameter defines three mixing 

regimes: (1) a slow ( 0.2  ) regime where DRM is preserved, (2) a fast ( 10  ) regime where 

DRM is completely replaced by PDRM, and (3) intermediate regimes with partial DRM 

preservation. Within this framework, DRM and PDRM are products of similar processes under 

different conditions: DRM coincides with Meq during the initial stages of sediment deposition in 

the absence of strong perturbing forces, while PDRM represents the evolution of Meq over a much 

longer time in an environment with strong perturbations. 

This Chapter quantifies the data from redeposition experiments of Chapter 2 and 3 using 

abovementioned theory (Chapter 4). A short summary of the experiments is listed as follows. 
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Figure 5-1 Acquisition of sedimentary NRM in nature and in the laboratory. a, 1: marine snow, 

2: flocculation, 3: settling, 4: sediment resuspension, 5: non-local mixing, e.g. by polychaete 

worms, 6: local (diffusive) sediment mixing leading to particle reorientation, 7: burial to the 

consolidating layer. b, Schematic representation of sediment redeposition in five time frames. 

A homogeneous sediment suspension settles in a magnetic field, forming a clear sediment-

water interface (dashed) after some time. The same five particles are highlighted by black dots 

in each frame. A DRM is acquired by alignment of magnetized particles in the ambient field 

during deposition (frames 1-4). This magnetization is stabilized by inter-particle forces 

developing at contact points (frames 3-4). Sediment mixing (arrow in frame 5) is responsible 

for particle realignment after deposition and generates a PDRM. c, Height H of the sediment-

water interface (dots), for three redeposition experiments. The dashed line is a guide for the eye. 

A nearly stable interface is obtained within the first day. 
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5.2 Materials and methods 

The particularity of these experiments is that we used fresh sediment containing abundant 

living microorganisms, including magnetotactic bacteria [Jogler et al., 2010; Mao et al., 2014a; 

Mao et al., 2014b]. We also avoided treatments commonly employed to disaggregate sediments 

and modify the aqueous solutions, which reduce or eliminate the original microorganism 

communities. As a short summary, Organic-rich clay/silt sediment material used for this study 

comes from a small pond situated next to our paleomagnetic laboratory in Niederlippach 

(Germany, 48°35’15” N, 12°04’43” E). The sediment was collected from the uppermost ~10 cm 

and transferred to glass aquaria at ambient temperature, where a new stably stratified oxygen 

gradient was re-established within one week [Mao et al., 2014b]. Magnetotactic bacteria 

populations live in the topmost 10 cm of sediment, where up to 300 motile cells/µl have been 

counted in fresh sediment [Jogler et al., 2010]. Cell counts declined by a factor ~10 after one year 

of storage in aquaria [Mao et al., 2014a]. A similar decline is also seen on total bacteria 

concentrations estimated with the spread plate method. 

Sediment with different microorganism concentrations has been obtained after laboratory 

storage in glass aquaria during 1 week (group A: 280 cells/µl), 3 months (group B: 247 cells/µl) 

and 1 year (group C: 213 cells/µl). Aliquots of group C sediment have been subjected to 

treatments aimed at further reducing the microorganism concentration, i.e. sealed storage for 3 

months, which removes the natural oxygen gradient [Mao et al., 2014a] (group D: 207 cells/µl), 

and addition of broad-spectrum antibiotics as described in Chapter 3 (group E: 126 cells/µl). 

Redeposition experiments were performed in glass vials using sediment material from 

groups A-E. Remanent magnetizations were measured with a vertical bore superconducting rock 

magnetometer [Wack and Gilder, 2012]. Each vial was prepared by diluting 5 ml of sediment 

slurry in 10 ml tap water, sealed, and then vigorously shaken in order to create a homogeneous 

suspension as a starting condition for all experiments (Figure 5-1b). For DRM acquisition 

experiments, the vials were placed in controlled fields of various intensities and inclinations 

generated by Helmholtz coils. A clear sediment-water interface formed within 22 hours (Figure 

5-1c). Magnetizations were measured periodically during the experiments by carefully 

transferring the vials to the magnetometer to avoid mechanical disturbances. A measurement 

series lasted ~10 minutes, when the vials lay in residual shielded room fields of <500 nT, before 

being returned to the controlled field environment. Each DRM (and PDRM) experiment was 

performed in triplicate (e.g., with three independent vials). For the PDRM acquisition 

experiments, sediment suspensions were allowed to settle in a null field for five days, which is a 

sufficient time to obtain a stable sediment column. A controlled field was subsequently applied 

for ~7 days (PDRM acquisition), followed again by zero-field conditions for the remaining time 

to monitor the decay of the PDRM. 
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5.3 Results and discussions 

PDRM acquisition (Figure 5-2a), is due exclusively to mechanical alignment of magnetic 

particles, as confirmed by the lack of acquired PDRM and zero-field decay in control samples 

where particle rotation was hindered by full drying. Acquisition and decay curves were modeled 

assuming a statistical distribution of rotational diffusion coefficients D rather than a single 

coefficient, as smaller particles reorient faster than large ones by virtue of the Stokes-Einstein-

Debye relation between rotational and translational diffusion [Jabbari-Farouji et al., 2012; Egli 

and Zhao, 2015]. The same type of distribution, r ( / )p D D , where D  is the median, controls the 

shape of all PDRM acquisition/decay curves (Appendix B) within experimental errors (Figure 

5-2b). Differences between median rotational diffusion coefficients D  deduced from 

acquisition and decay curves are mostly limited to a factor of two (Figure 5-2c), being therefore 

small in comparison to the four orders of magnitude span of rp  (Figure 5-2d). This means that 

measured acquisition/decay curves reflect equilibration with the ambient field under nearly 

stationary conditions. Typical values of D  for groups A-E, on the other hand, vary in proportion 

to the measured bacteria concentrations (Figure 5-2c-d). This can only be expected if a diffusion 

process governs PDRM acquisition at a rate ( D ) that is in turn controlled by bioturbation. 

Sediment ageing effects can be excluded because groups C-E are approximately of same age yet 

follow the same trend defined by groups A-C. The shape of rp  is reproduced by the grain size 

distribution of sediment (Figure 5-2d) upon substituting the grain diameter a with the Stokes-

Einstein-Debye relation 2D a  (see Appendix B). 

DRM acquisition and its progressive replacement by PDRM was investigated through 

similar experiments where a magnetic field was applied from the beginning of deposition and 

maintained for ~11 days, before measuring its decay in zero field over a period of time (Figure 

5-3a). Contrary to redeposition experiments performed with sediment material containing no 

living microorganisms [Barton et al., 1980; Tauxe et al., 2006], the DRM in our experiments 

slowly decays with time even during continuous field exposure, rather than increasing 

asymptotically. DRM decay becomes rapid and similar to that of PDRM once the field is removed. 

As in the case of PDRM experiments, magnetic viscosity effects could be ruled out, so that 

magnetization changes are caused only by particle reorientation. Other aspects of these 

experiments, such as the recording of shallower than expected inclinations (called inclination 

shallowing, Figure 5-3c-d), mimic those in “classic” redeposition experiments with no living 

organisms. 

The initial DRM intensity and the equilibrium PDRM intensity depend nonlinearly on the 

intensity of the applied field for fields exceeding ~30 µT, typical of surface field intensities on 

Earth. This dependence is well fitted by an analytical approximation of eq. (5-1) assuming a 

uniform distribution of p/mB  , which has been used with success in the past [King, 1955; Barton 

et al., 1980] (Figure 5-3b). Independent fits of the DRM and PDRM data predict very similar 

saturation values (i.e., the magnetization caused by full grain alignment), which means that no 

grains carrying a DRM are excluded from PDRM acquisition. Therefore, differences between the 
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two magnetization types arise entirely from different degrees of partial magnetic moment 

alignment. Such differences depend ultimately on τp, since the same magnetic moments from the 

same grains are involved in both cases (i.e., same values of mB during DRM and PDRM 

acquisition). In particular, τp deduced from the PDRM acquisition curve in Figure 5-3b is twice 

as large as for the DRM curve, confirming that grain alignment perturbations increase below the 

sediment-water interface, due to stronger inter-particle forces overcome by bioturbation. With 

these data in mind, DRM decay in the applied field can be explained by the fact that the DRM 

acquired during the initial stages of deposition is progressively replaced by a new equilibrium – 

the PDRM – as τp increases due to the buildup of inter-particle bonds. Because PDRM in weak 

field is 50% lower than DRM, the net effect is a decrease of the total magnetization. 

5.4 Conclusions 

Our experiments confirm that bioturbation is responsible for the acquisition of a PDRM 

inside the surface mixed layer, which eventually replaces the initial DRM if rotational diffusion 

is fast enough with respect to the mean residence time of particles in this layer. These experiments 

support the conclusion that DRM and PDRM represent two stages of a statistical equilibrium 

between magnetic and perturbing torques: DRM is the first stage that applies to the sediment-

water interface, and PDRM is the later stage developing inside the more strongly perturbed mixed 

layer. The kinetics of particle reorientation, which is dictated by the rotational diffusion 

coefficient, determines whether DRM survives the new equilibrium or it is replaced by a PDRM. 

The difference between DRM and PDRM intensities might be larger in naturally deposited 

sediment, owing to higher shear strengths that must be overcome by τp. The effect of salinity on 

flocculation [Katari and Tauxe, 2000] is another factor that must be taken into consideration when 

extrapolating our (P)DRM intensities to natural sediments. This new quantitative understanding 

of how sediment becomes magnetized in the Earth’s field will hopefully facilitate the 

development of better techniques for paleointensity reconstructions, especially if proxies for 

bioturbation activity can be used. 
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Figure 5-2 PDRM acquisition experiments. a, Magnetization vs. time for sediment groups A-E 

(circles, crosses), after normalization by the mean saturation remanence Mrs. Sediment was 

redeposited in a null field (day -5 to day 0). A 60 µT field with 50° inclination was applied 

during the next 7 days and turned off for the remaining time. Lines are model curves obtained 

from the distribution of D shown in (c). Group V designates the PDRM decay due to magnetic 

viscosity in three fully dried samples, where particle reorientation is no longer possible. b, 

PDRM acquisition of groups A-E in 20, 40, 60, 80, 100, and 150 µT and subsequent zero-field 

decay. Magnetizations are normalized by the equilibrium PDRM (Meq) that would be reached 

after an infinite time. Acquisition/decay times are normalized by the median rotational diffusion 

coefficients, aD  and dD , as deduced from least-squares fits of the measured curves 

(Appendix B). All data collapse onto a single acquisition/decay curve (black lines), as expected 

in case of identical distributions of the rotational diffusion coefficient. c, Median rotational 

diffusion coefficients aD  and dD  deduced from individual acquisition/decay curves of 

sediment groups A-E. aD  has been corrected for the effect of field intensity (see Appendix 

B). Dashed lines indicate constant values of d a/D D , with d a/ 1D D   expected for stationary 

conditions. d, Probability density function pr of the rotational diffusion coefficient D, 

reconstructed from the normalized acquisition/decay curves shown in (b), and mean 

distribution p of grain diameters a for sediment groups A-E (the shaded band corresponds to ± 

one standard deviation of 40 measurements). D and a on the lower axis are normalized by their 

medians. The median dD  of sediment groups A-E vs. measured bacteria concentrations is 

shown in the insert. The dashed line is a guide for the eye. 
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Figure 5-3 DRM experiments. a, DRM acquired in 60 µT by sediment groups A,C, D, and E, 

and subsequent decay in a null field. Lines are fits obtained by assuming that the initial DRM 

(DRMi) is progressively replaced by a PDRM acquired in the applied field. A magnetization 

decay of the same type shown in Figure 5-2 follows after removing the applied field. Curve fits 

have been obtained assuming that DRMi and equilibrium PDRM (Meq) intensities are identical 

at the beginning of the experiments (i.e. eq i/DRM 1M  , see insert). The subsequent 

exponential decrease of Meq, caused by the buildup of inter-particle forces, has been chosen so 

that the final Meq/DRMi matches the measurements shown in (b). The exponential decrease of 

Meq needed to reproduce the observed DRM changes in time is faster for sediments containing 

more bacteria (i.e. groups A and C). b, Dependence of DRMi and Meq on field intensity. Meq 

has been calculated from PDRM acquisition curves as shown in Figure 5-2. Solid lines are 

least-squares fits with 0 0( / )M M S B B , where 
1 1( ) ln[ sinh( )]S x x x x   is a suitable 

approximation of eq. (5-1), M0 is the magnetization corresponding to full alignment of the 

magnetic moments (dashed lines), and B0 = 15.5 µT and 26.7 µT for DRMi and Meq, respectively. 

c, Inclination of DRMi and PDRM acquired a field with 50° inclination. Lines are averages of 

all experiments with sediment groups A-E. DRMi inclinations are slightly shallower, especially 

in sediments containing less bacteria, while no systematic shallowing is observed for the 

PDRMs. d, Inclination of DRMi in 60 mT fields with 0, 20°, 50°, and 80° inclinations (circles). 

Solid lines are plots of the inclination shallowing law Btan tanI f I , where I and IB are the 

inclinations of DRMi and the applied field, respectively, and f is an empirical factor [King, 

1955]. These results confirm that DRMi has the typical properties of a DRM, as seen with 

traditional redeposition experiments.



 

 

Appendix A   
Supplementary materials for Chapter 4 

A0. List of symbols and mathematical notations 

General: 

b Unit vector parallel to the magnetic field direction 

B Magnetic field intensity (flux density) 

ΔE Energy barrier 

φ,ψ Azimuthal angles (spherical coordinates) 

kB Boltzmann constant 

M Magnetization (generic) 

Mrs Saturation remanence 

Ms Saturation magnetization 

m Magnetic moment (of individual grains) 

n Unit vector parallel to a magnetic moment 

t Time 

T Absolute temperature 

θ Angle to a reference direction (e.g. to the magnetic field vector) 

z Depth below the sediment-water interface 

z'=z/L Normalized depth below the sediment-water interface 

 

Sediment properties: 

a Radius of sediment particles (smallest elastic units in sediment) 

KIC Tensile fracture toughness 

η Dynamic viscosity 

L Mixing depth (thickness of the mixed layer) 

ω Sedimentation rate (= sinking velocity) 

 

Bioturbation: 

ab Mean radius of microbes 

cb(z’) Magnetic field intensity (flux density) 

Db Normalized profile of Dr 

DB Self-diffusion coefficient of microorganisms 

Dr Rotational diffusion constant of the mixed layer 

Dr,0 Maximum value of Dr (at the sediment-water interface z’ = 0 ) 

ε Volume fraction of motile microorganisms inside the mixed layer 

εmob Fraction of motile microorganisms 

γ = 2DrL/ω Rotational diffusivity parameter of the mixed layer 
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Γb Translational viscous drag coefficient 

Γr Rotational viscous drag coefficient 

K(z1,z2) Exchange function (non-local mixing) 

p(θ,φ) Probability density function of particle orientations (spherical coordinates) 

t1/2 Half-life of remanent magnetization inside the mixed layer 

 

NRM acquisition: 

Bh Minimum field for rotating remanence carriers against holding forces 

βh =τh/τp Boltzmann factor of holding torques 

βm =τm/τp Boltzmann factor of magnetic torques 

β0 = βh|z=L Boltzmann factor at the bottom of the mixed layer 

DRM Depositional remanent magnetization 

L Langevin function 

MRM Mixing remanent magnetization 

M0 Maximum remanent magnetization (full magnetic moment alignment) 

Meq Equilibrium magnetization 

Mini Initial magnetization 

MNRM NRM intensity 

MDRM DRM intensity 

MMRM MRM intensity 

N Normal distribution 

NRM Natural remanent magnetization 

λ(z’) Lock-in function (probability density) of the reduced depth 

Λ(z’) Lock-in function (cumulative) of the reduced depth 

PDRM Post-depositional remanent magnetization 

q Value of βh for which MRM acquisition efficiency is reduced by ~29% 

τm = mB Maximum magnetic torque amplitude 

τh Root mean square of holding torques (from holding potentials) 

τp Root mean square of random perturbation torques 

Ti ,Ti Torque acting on particle i (vector and module) 

U(θ,φ) Normalized holding potential 

V(θ,φ) Total torque potential 

z0 Initial depth of a magnetized sediment layer 

zB Full blocking depth (where lock-in process is completed) 

 

Inclination shallowing: 

A(θ,φ) Normalized anisotropy potential 

βa =τa/τp Boltzmann factor of anisotropy torques 

fa  Inclination shallowing factor 

τa Maximum amplitude of anisotropy torques 
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A1. Rotational diffusion 

Rotational diffusion is governed by the rotational counterpart of the translational Fick’s law: 
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   (A1-1) 

where p = p(t,θ,φ) is the probability density distribution of the orientation vector in spherical 

coordinates [Perrin, 1934]. In the following, we demonstrate that 
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is a solution of (A2-1) yielding full alignment at t = 0 . Because p depends only on θ, eq. (A1-1) 

can be rewritten as: 
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Inserting the solution given in eq. (A1-2) we obtain 
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for the left-hand side of eq. (A1-3), and, using the substitution x = cosθ and the definition of 

Legendre polynomials 
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for the right-hand side, proving the identity of the two sides. Integration of p over the unit sphere 

gives: 
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as expected for a probability density function. Finally, 
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represents the mean magnetic moment alignment. 

 

A2. Analytical solution of the Smoluchowski-Debye equation 

The Smoluchowski equation 
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describes the probability density p = p(t,θ,φ) of particle orientations subjected to rotational 

diffusion in a torque potential V (θ,φ) . The stationary case is given by 
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As general solution of eq. (A2-2) we assume p =ceaV with coefficients c and a to be 

determined. Accordingly: 
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and 
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Comparison of the two terms gives 
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Finally, integration of the solution over the unit sphere must give a probability of 1, i.e.: 
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yielding 
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A special solution is obtained with potential V=-mBcosθ describing the torque of a particle 

with magnetic moment m in a field B, where θ is the angle between m and B. In this case, the 

Fisher-Von Mises distribution 
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is obtained. 

 

A3. Construction of random holding potentials 

Random potentials yielding a “white” field spectrum on a sphere have been introduced for 

the purpose of representing paleosecular variations of the geomagnetic field. Using Gauss 

coefficients with variance 
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Constable and Parker [1988] obtained the following expression for the component Bθ of the 

“white spectrum” geomagnetic field at the core-mantle boundary: 
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Because B is random and all its components are equal, the same result holds for <
2B >. Eq. (A3-

2) can be applied in identical form to the torque produced by the same potential used for 

representing the geomagnetic field. In this case: 
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A4. Inclination shallowing 

Mean inclination shallowing effects are described by random perturbations of magnetic 

moments subjected to the potential 
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where n =(sinθcosφ,sinθsinφ,cosθ) is the unit vector representing the direction of magnetic 

moments in a magnetic field B parallel to the unit vector b=(sinφ cosφ,0,cosφ) . The probability 

density of magnetic moment directions at equilibrium is given by the Boltzmann distribution 

associated with V, i.e. 
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If βm ≪ 1, as expected in sediment during MRM acquisition, eq. (A4-2) can be linearized, 

obtaining 
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with u =τa/2. The expectation for the horizontal component of the mean magnetic vector is 

obtained by integration of p(θ,φ)n over the unit sphere, i.e.: 
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Similarly, the expectation of the vertical component is given by: 
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The ratio between these two results yields the classical inclination shallowing law 
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with I = 90°-θ and IB = 90°-ψ being the magnetization and field inclinations, respectively. 

Analytical solution of the integrals in eq. (A4-6) finally gives: 
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and thus eq. (4-23) upon back substitution of u. 

 

A5. Lock-in model 

The MRM lock-in function is derived from the time evolution of a fictive initial 

magnetization corresponding to full magnetic moment alignment, instantaneously acquired at a 

depth z0 below the sediment-water interface. The sediment layer containing this magnetization 

gets progressively buried with a velocity ω = dz/dt while it is subjected to a depth-dependent 

rotational diffusion Dr(z). In absence of an external magnetic field, the fate of this magnetization 

is governed by the diffusion equation 
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p
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for the statistical distribution p(θ,φ) of magnetic moment orientations and 
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The depth dependence of Dr is conveniently expressed in normalized coordinate z’ = z/L. 

Assuming ω to be a constant, in this case, eq. (A5-1) is rewritten as 
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Eq (A5-3) is solved in a similar manner as the diffusion equation with constant diffusion 

coefficient (see Appendix A1), assuming 
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where fl (t) are generic functions with fl (0) = 1. The left-hand side of eq. (A5-3) becomes: 
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where 
'

l
f  is the first derivative of fl . For the right-hand side of eq. (A5-3) we obtain:   
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Comparison of the two sides yields: 

       ' 0
r1

l l

z t
f t l l D f t

L

 
    

 
    (A5-7) 

with general solution 
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The mean magnetic moment alignment is then given by: 

 

   

 

1 1
0

0
1 r

0

3
cos cos cos sin

2

exp 2
t

f t P d

z u
f t D du

L



    





   
     

  





   (A5-9) 

Using t = (z-z0)/ω we finally obtain: 
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from which all results in Chapter 4 are obtained.



 

 

Appendix B  

Supplementary materials for Chapter 5 

B1. PDRM acquisition kinetics 

The magnetization acquired during PDRM experiments is controlled by the statistical 

distribution p(t,θ,φ) of magnetic grain orientations at the time t , where orientations are expressed 

in spherical coordinates by the angle θ between magnetic moment vector and applied field 

direction, and the azimuthal angle φ. This distribution obeys the Smoluchowski-Debye equation: 

  
1p

D p p V
t


    

 
  (B1-1) 

where D is the rotational diffusion coefficient, Γ is the rotational viscous drag coefficient (e.g. Γ 

= 8πηa3 for spheres with radius a immersed in a fluid with dynamic viscosity η), and V is a 

potential whose gradient defines a deterministic torque V   that adds to the random torques 

associated with D [Egli and Zhao, 2015]. The potential V is the sum of (1) a systematic term -

miBcosθ, which yields the magnetic torque experienced by particles with magnetic moments mi 

in the applied field B, and (2) a random “holding potential” Ut that accounts for mechanical 

interaction forces between particles. The general solution of equation (B1-1) at equilibrium (i.e. 

/ 0p t   ) is the Boltzmann distribution 
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where p0 is a constant ensuring that the total probability associated with peq is 1. 

As discussed by Egli and Zhao [2015], the overall effect of the holding potential is formally 

equivalent to an increase in Γ. Accordingly, V = -mBcosθ is the effective potential acting on the 

particles and equation (B1-1) can be rewritten as: 
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where β = mB/(DΓ) is the so-called Boltzmann factor. Upon substituting x = cosθ and t’ = Dt we 

obtain the dimensionless form 
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of the Smoluchowski-Debye equation, which we solve numerically in order to reproduce PDRM 

acquisition and decay (i.e., β = 0) experiments. The associated magnetization is obtained by 

intergrating the magnetic moment components along the direction of B, i.e.: 
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where M0 is the magnetization corresponding to full alignment of the magnetization carriers. 

A general analytical solution of the equation (B1-4) exists only for β = 0. In this case 
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where Pl are the Legendre polynomials of order l, and al are coefficients determined by the initial 

distribution p(0, θ). Insertion of this solution into equation (B1-5) gives: 
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[Perrin, 1934]. This means that any initial magnetization decays exponentially in zero field, 

regardless of how it was acquired (i.e., regardless of the initial distribution of magnetic moment 

orientations). 

On the other hand, PDRM acquisition curves can be obtained only by numerical solution of 

equation (B1-4). Acquisition curves originating from a fully randomized initial state (i.e. p(0, θ) 

= 1/4π) have been calculated with Wolfram Mathematica® using the following command: 

NDSolve[{𝐷[𝑝[𝑡, 𝑥], 𝑡] == 𝐷[(1 − 𝑥^2) ∗ (𝐷[𝑝[𝑡, 𝑥], 𝑥] − beta ∗ 𝑝[𝑡, 𝑥]), 𝑥], 

𝑝[0, 𝑥] == 1 (4 ∗ Pi)⁄ }, 𝑝, {𝑡, 0, ta}, {𝑥, −1,1}]          

and given values of beta for β and ta for the maximum acquisition time 
'

a at Dt . In the limit 

case of β → 0, numerical solutions converge to 
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where L(β) = cothβ – 1/β is the Langevin function. Equation (B1-8) holds with a maximum error 

of 0.03 for β ≤ 1. Above this limit, magnetizations are acquired faster than their decay in zero 

field, due to the increasingly strong aligning torques associated with β > 1 (Figure B1). 

In case of PDRM acquired in weak fields (i.e. β < 1), the following relationship holds 

between the acquisition curve Ma and the zero-field decay curve Md: 
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M
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where Meq = Ma (t →∞) is the equilibrium magnetization in the applied field, and Mf = Ma(ta) is 

the “final” PDRM acquired during a time ta. Solution of equation (B1-9) with respect to Md gives: 
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with the “saturation coefficient” s = Mf /Meq. This coefficient is estimated using an appropriate 

model of acquisition/decay curves based on a distribution of rotational diffusion coefficients. 
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Figure B1 PDRM acquisition and decay curves. a, calculated acquisition curves for β = 0.2, 0.5, 

1, 2, 5,and 10. All curves are normalized by the equilibrium magnetization Meq =M(t = ∞). The 

maximum difference ΔM to the limit case given by β → 0 is shown in the insert. b, Incomplete 

acquisition curve in a field B > 0 (blue), followed by zero-field decay (orange). Mf is the 

magnetization acquired during the acquisition time ta. 

B2. Modeling of acquisition/decay curves 

As shown in the previous section, weak-field PDRM acquisition and decay curves inside a 

mixed sediment layer characterized by a rotational diffusion coefficient D are given by: 
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where Meq is the equilibrium magnetization in the applied field. Because D is controlled by many 

factors, including particle size, bioturbated sediment is modeled by a distribution of D values, 

represented by the probability density function pr(D). Accordingly, each magnetized grain is 

subjected to its own rotational diffusion process that produces a small exponential acquisition and 

decay of the form given by equation (B2-1). Integration of (1-e-2Dt)pr over D gives the normalized 

acquisition curve: 
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In real PDRM acquisition experiments, acquisition is interrupted at a time ta before full 

equilibrium with the applied field is reached (i.e. Ma(ta)/Meq = s < 1), so that the PDRM 

contribution of grains subjected to rotational diffusion with coefficient D is proportional to 

pr(D)((1-e-2Dt). The decay of the total PDRM in zero field is thus given by: 
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Equations (B2-2 and B2-3) can be rewritten as: 
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where 
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is the normalized decay curve of the equilibrium PDRM (i.e. the magnetization acquired with ta 

→ ∞). In mathematical terms, fd(2t) is the Laplace transform of pr(D). Conversely, the probability 

distribution pr is uniquely determined by the inverse Laplace transform 
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where ω is a real parameter chosen to avoid singularities of fd in the complex plane. 

In principle, equations (B2-4 to B2-6) can be used to reconstruct pr from a set of PDRM 

acquisition/decay experiments, provided that pr(D), does not change significantly over the 

experiment duration. In order to test the validity of this condition, acquisition and decay curves 

are fitted independently from each other using a suitable parameterized approximation df  of fd 

for which the inverse Laplace transform is known. The model function df  must provide a good 

fit of all experimental data with a minimum number of paramters; ideally a single one representing 

the mean or median of pr(D). In order to guess a suitable analytical expression for df  we plotted 

the logarithm of normalized decay curves vs. the square root of decay time, obtaining straight 

lines with different slopes (Figure B2). These lines are described by d

b tf e , where b is the 

slope on the logarithmic plot. The inverse Laplace transform of df  is the probability density 

function 
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with ξ = 0.227, cumulative distribution 
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and median D0. This probability function yields the decay curve: 
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which is used to fit all experimental data. 
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Figure B2 Rescaling of PDRM decay curves. a, PDRM decay curves for three samples of group 

A (blue circles), normalized by the initial value Mi , and least squares fit with d

b tf e  (gray 

line). b, Same as (a) for the logarithm of M/Mi vs. the square root of decay time. 

Since Meq is unknown, acquisition and demagnetization curves are normalized by the 

maximum PDRM, i.e. Mf = Ma(ta) , instead of Meq, and models include an (unknown) “saturation” 

factor s = Mf/Meq, so that 
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where Da and Dd represent the parameter D0 during PDRM acquisition and decay, respectively. 

In case of stationary conditions, Da = Dd = D0 . Each experiment is thus described by three 

unknown parameters: s, Da, and Dd. Because of the high sensitivity of these parameters on 

measurement errors, additional information is used to constrain the model, using the fact that all 

experiments share the same total acquisition time ta. In this case, the saturation factor s depends 

only on Da and, at least in principle, on the intensity of the field applied during acquisition. As 

discussed previously, strong applied fields speed up the acquisition process and are equivalent to 

an apparent increase of Da. Therefore, Da-values obtained from equation (B2-10) need to be 

corrected a-posteriori, as it will be described later in this section. Finally, s is sensitive to large 

variations in the rotational diffusion coefficient, such as those existing between sample groups A-

E, while samples belonging to the same groups are characterized by minor differences of Da and 

are conveniently modeled with a single value of s, i.e., sA for group A, sB for gourp B, and so on. 

Small corrections of s can be applied a-posteriori once the modeled acquisition curves have been 

calculated. The model parameters Da,i, Db,i and sl for the i-th sample belonging to group l are 

determined by minimization of the sum of squared model residuals, i.e.: 
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where tik is the time corresponding to the k-th measurement of the i-th decay or acquisition curve, 

respectively, and l = A, B, C, D, and E. The model is subsequently refined by calculating the 

saturation factors 
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and minimizing 
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with respect to Da,i and Dd,i. Stationary conditions are expected to yield Da,i = Dd,i after correcting 

Da,i for the effect of the acquisition field intensity. The correction factors have been determined 

from numerical solutions of the Smoluchowski-Debye equation, and are shown in Figure B3 for 

the 20, 40, 60, 80, 100, and 150 μT fields used in the experiments. 

 
Figure B3 Difference between acquisition and decay curves. Ratio between the rotational 

diffusion constants deduced from acquisition curves (Da) and decay curves (Dd), as a function 

of the Boltzmann factor mB/DΓ, calculated from numerical solutions of the Smoluchowski-

Debye equations as described in note of Appendix B1. Values corresponding to fields used in 

PDRM experiments have been deduced from the Langevin fit of PDRM vs. applied field shown 

in Figure 5-3, i.e.  eq 0/M L B B  with B0 = 44.8 μT. 
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