
 

 

 

 

 

 

 

 

 

Zur Rolle von Cyclophilin B in der Pathogenese der Atherosklerose: 

Eine experimentelle Untersuchung zu seiner Expression in murinen 

atherosklerotischen Plaques, zu seiner Wirkung auf das 

Migrationsverhalten von Monozyten und deren Matrix 

Metalloproteinasen-Aktivität, auf das Adhäsionsverhalten von 

Thrombozyten sowie auf das Migrationsverhalten von Leukozyten 

 

 

 

 

 

 

 

 

 

 

 

 

von Carolin Christine Sommer-Kralj 



 

 

 

  



 

 

 

 
 

Inaugural-Dissertation zur Erlangung der Doktorwürde 
der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität 

München 

 
 
 
 
 
Zur Rolle von Cyclophilin B in der Pathogenese der Atherosklerose: 

Eine experimentelle Untersuchung zu seiner Expression in murinen 

atherosklerotischen Plaques, zu seiner Wirkung auf das 

Migrationsverhalten von Monozyten und deren Matrix 

Metalloproteinasen-Aktivität, auf das Adhäsionsverhalten von 

Thrombozyten sowie auf das Migrationsverhalten von Leukozyten 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

von Carolin Christine Sommer-Kralj 

aus Heilbronn-Neckargartach 

 
 

München 2016 

 

  



 

 

 

 

 

 

 

Aus dem Veterinärwissenschaftlichen Department 

der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. med. vet. Manfred Stangassinger 

 

 

Angefertigt an der III. Medizinischen Klinik für Kardiologie  

und Kreislauferkrankungen, 

Eberhard-Karls-Universität Tübingen 

Mentor: PD Dr. Peter Seizer 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Gedruckt mit Genehmigung der Tierärztlichen Fakultät 
der Ludwig-Maximilians Universität München 

 

 

 

 

Dekan: Univ.-Prof. Dr. med. vet. Joachim Braun 

 

Berichterstatter: Univ.-Prof. Dr. med. vet. Manfred Stangassinger 

 

Korreferent/en: Univ.-Prof. Dr. med. vet. Kaspar Matiasek 

 

 

 

 

 

 

 

 

Tag der Promotion:   16. Juli 2016 

 

 

 

 

  



 

 

 

 

 

 

gewidmet 

meinem Mann Tomi,  

meinen Kindern Adrian und Mayla 

und meinen Eltern 

 

 

 

 

 

Ein beidarmig zu umfassender Baum 

wächst aus des Sprösslings feinstem Flaum, 

ein Turm, der einmal neunstöckig werde, 

erhebt sich aus einem Häufchen Erde. 

Eine Reise, tausend Meilen lang, 

mit einem ersten Schritt fing sie an! 

 

~ Laotse ~ 

 



INHALTSVERZEICHNIS 

 

 

 

I 

I Einleitung………….…………………………………………………………………………… 1 

   

II Schrifttum………………………………………………………………………………….…… 3 

1 Atherosklerose……………………………………….………………………………………….. 3 

1.1 Definition und histologische Klassifikation der Atherosklerose..………. 3 

1.2 Die Pathogenese der Atherosklerose…..…………………………………………… 6 

1.2.1 Endotheliale Dysfunktion………………………………………………………………….... 6 

1.2.2 Die frühe atherosklerotische Läsion…………………………………………….……… 7 

1.2.3 

 

Progression der atherosklerotischen Plaque - intermediate lesion     

und fibrous plaque………………………………………………………………………….…… 

 

9 

1.2.4 Komplexe Läsion und Thrombusbildung……………………………………….…..... 11 

1.3 Atherosklerose im Tierreich…..…………….……………………………….…………. 15 

1.4 Die Rolle von Monozyten und Makrophagen in der Atherosklerose... 17 

1.5 Thrombozyten……………………………………………………………………………….… 19 

1.5.1 Hämostase: Die physiologische Funktion von Thrombozyten….…...….... 19 

1.5.2 Zur Rolle der Thrombozyten in der Atherosklerose…….………………………. 19 

1.5.3 Zur Rolle der Thrombozyten in der Atherothrombose………..………….…… 21 

1.5.4 Interaktionen von Thrombozyten mit dysfunktionellem Endothel…….... 22 

1.5.5 Interaktionen von Thrombozyten mit Leukozyten………….……….………….. 23 

2 Matrix Metalloproteinasen (MMPs)……………………………………………………. 25 

2.1 Struktur der MMPs…………………………………………………………………………… 25 

2.2 Einteilung der MMPs……………………………………………………………………….. 26 

2.3 Regulation der MMP-Aktivität…………………………………………………………. 28 

2.4 MMPs in der Atherosklerose……………………………………………………………. 28 

3 

 

Der Extracellular Matrix Metalloproteinase Inducer (CD147, 

EMMPRIN)………………………………………………………………………………………..… 

 

31 

4 Cyclophiline………………………………………………………………………………………… 32 

4.1 Struktur und Vorkommen der Cyclophiline…………………………………….… 33 

4.2 Cyclophiline und Cyclosporin A…..……………………………………………….…… 34 

4.3 Peptidyl-Prolyl-cis/trans-Isomerase-Aktivität der Cyclophiline…….…… 35 

4.4 Weitere Funktionen der Cyclophiline……………………...………………………. 36 

4.5 Biologische Effekte von Cyclophilin B……………………………………………….. 36 

4.6 Cyclophilin B und CD147 (EMMPRIN)..………………………………………...….. 38 

4.7 Die Rolle von Cyclophilin A und B in der Atherosklerose…………….……. 39 

   



INHALTSVERZEICHNIS 

 

 

 

II 

5 Cyclosporin A (CsA) bei entzündlichen Erkrankungen………………………….. 41 

5.1 

 

Das nicht immunsuppressive Cyclosporin A-Derivat NIM 811 (N-

methyl-4-isoleucin-Cyclosporin, (Me-Ile4)-Cyclosporin)……………….….. 

 

42 

5.2 

 

 

Das rein extrazelluläre wirkende Cyclosporin A-Derivat MM284         

( [(4R)-4-[(6-carboxy-1H-benzo[d]imidazol-2-yl)-methyl]-4-      

methyl-l-threonine](1)-CsA )……………………………………………………………. 

 
 

43 
   

III Eigene Untersuchungen…………………………………………………………………. 45 

1 Zielsetzung………………………………………………………………………………………….. 45 

2 Material und Methoden……………………….……………………………………….……. 47 

2.1 Material…………………………………………………………………………………………. 47 

2.1.1 Geräte…………………………………………………………………………………………..……. 47 

2.1.1.1 Allgemein benötigte Geräte für die in vitro- und in vivo-Versuche….. 47 

2.1.1.2 

 

 

Verwendete Geräte für die mikroskopische Auswertung der 

immunhistologischen Färbungen und der Immunfluoreszenz-

färbungen………………………………………………………………………………………. 

 

 

48 

2.1.1.3 

 

 

Verwendete Geräte für die durchflusszytometrischen 

Untersuchungen an Thrombozyten sowie für die Thioglykolat-

induzierte Peritonitis……………………………………………………………………… 

 

 

48 

2.1.1.4 Verwendete Geräte für die SDS-Gelatine-Zymographie…………………. 48 

2.1.1.5 Verwendete Geräte für den Chemotaxis-Assay………………………………. 48 

2.1.1.6 Verwendete Geräte für die Flusskammerversuche…………………………. 49 

2.1.2 Verbrauchsmaterialien…………………………………………………………..…………… 49 

2.1.3 Lösungen, Medien, Reagenzien……………………………………………..………….… 51 

2.1.4 Rezepte für Puffer, Kulturmedien und Färbelösungen………….…………..… 53 

2.1.5 Proteine…………………………..……………….……………………………………….…...….. 55 

2.1.6 Antikörper……………………………………………..……………………………….…………… 55 

2.1.7 Zellen und Zellinien…………………………………………………..………………………… 56 

2.1.8 Mäusestämme…………………………………………………………..……………………….. 56 

2.1.9 Narkose und Schmerztherapie………………………………………..………………….. 56 

 

 

 

 

 

 

 

 

 

 



INHALTSVERZEICHNIS 

 

 

 

III 

2.2 Methoden………………………..………………………………………….………………… 57 

2.2.1 Allgemeines zur Zellkultur……………………….……………………….……… 57 

2.2.2 

 

Isolationsprotokolle und Zellkulturprotokolle für die in den        

Versuchen verwendeten Zellen………………………………………………… 57 

2.2.2.1 Thrombozytenisolation……….….…………………………………………………. 57 

2.2.2.2 Monozytenisolation………….……………………………………………………….. 58 

2.2.2.3 Differenzierung zu Makrophagen………………..………….…………………. 59 

2.2.2.4 Differenzierung zu Schaumzellen………….………………….………………… 59 

2.2.2.5 

 

Kultivierung von human umbilical vein endothelial cells  

(HUVECs)…………………………………………………………………………………... 60 

2.2.3 Nachweismethoden für Cyclophilin B………………..…………………….. 61 

2.2.3.1 Immunhistochemische Vorgehensweise..………………………..……….. 61 

2.2.3.2 

 

 

Zum Nachweis von Cyclophilin B in atherosklerotischen    

Plaques von ApoE- knockout-Mäusen mittels indirekter 

Immunhistochemie…..……………………………………………………………….. 

 
 

61 

2.2.3.3 

 

 

Zum Nachweis von Cyclophilin B in und auf Monozyten, 

Makrophagen und Schaumzellen mittels indirekter 

Immunfluoreszenzfärbung..…………………………………….…………………. 

 
 

64 

2.2.3.4 

 

Zum Nachweis von Cyclophilin B auf der Oberfläche von 

Thrombozyten mittels Fluoreszenz-Durchflusszytometrie….……... 

 

67 

2.2.4 Wirkung von Cyclophilin B auf Monozyten.………………..……………. 69 

2.2.4.1 

 

 

 

Zum Nachweis der veränderten enzymatischen Aktivität von 

Matrix Metalloproteinasen mittels SDS-PAGE (Sodium-

dodecylsulfate polyacrylamide gel electrophoresis)-Gelatine-

Zymographie……………….………..………............................................... 

 

 
 

69 

2.2.4.2 

 

Zum Nachweis der Migrationswirkung von Cyclophilin B     

mittels Chemotaxis-Assay………………………………....………………………. 

 

70 

2.2.5 Wirkung von Cyclophilin B auf Thrombozyten…..……………………… 73 

2.2.5.1 
 

Zum Nachweis  der Interaktionen von Thrombozyten mit 

Gefäßwandkomponenten mittels Flusskammerversuch…………….. 

 

73 

2.2.5.1.1 Aufbau der Flusskammer……………………….…..……………………… 73 

2.2.5.1.2 Beschichtung der Deckgläschen….…….……………………………….. 75 

2.2.5.1.3 

 

Durchführung des Flusskammerversuchs mit kollagen-   

bzw. endothelzellbeschichteten Deckgläschen…….…………….. 

 

76 

2.2.5.1.4 

 

Durchführung des Flusskammerversuchs mit protein-          

beschichteten Deckgläschen…………….………………….…………….. 

 

77 

   



INHALTSVERZEICHNIS 

 

 

 

IV 

2.2.6 In vivo-Versuch.…………………………………………..……………….…………. 78 

2.2.6.1 Versuchstiere, Haltungsbedingungen, Tierversuchsantrag…………. 78 

2.2.6.2 

 

 

Zum Nachweis der Cyclophilin B-Wirkung auf die Migration von 

inflammatorischen Zellen mittels einer Peritonitis-Induktion bei 

Wildtypmäusen (C57BL/6J)………..………………………………………… 

 
 

78 

2.2.6.2.1 Prinzip des Versuchs………………………………..…………………………. 78 

2.2.6.2.2 Versuchsdurchführung……………………………..………………………… 79 

2.2.6.2.3 Auswertung………………………….…………………….………….…………… 80 

2.2.7 statistische Berechnungen…………………………………..…………………… 80 
   

IV Ergebnisse……………………………………………………………………………………... 81 

1 Zur Cyclophilin B- Expression in murinen atherosklerotischen Plaques. 81 

2 Expression von Cyclophilin B in Monozyten………………..…………………….. 83 

3 Expression von Cyclophilin B in Makrophagen…………………….…………..… 86 

4 Expression von Cyclophilin B in Schaumzellen……………………………..……. 89 

5 

 

Cyclophilin B wird auf der Zelloberfläche von  thrombinstimulierten 

Thrombozyten verstärkt exprimiert…………………….…………….………………. 

 

92 

6 

 

Einfluss von Cyclophilin B auf das Migrationsverhalten und die    

Matrix Metalloproteinasen-Aktivität von Monozyten in vitro….…………. 

 

93 

6.1 

 

Cyclophilin B induziert eine gesteigerte Sekretion von MMP-9            

durch Monozyten……………………………………………………………………………… 

 

93 

6.2 

 

Zur chemotaktischen Wirkung von Cyclophilin B auf Monozyten       

in vitro……………………….………………………….………………………………………….. 

 

95 

6.2.1 

 
 

Einfluss von Cyclophilin B sowie der Cyclosporin A-Derivate NIM811                    

und MM284 in Kombination mit Cyclophilin B auf die Migration                       

von Monozyten………………………………………………………………………………….. 

 

 

95 

6.2.2 
 

Einfluss verschiedener Konzentrationen von Cyclophilin B auf die         

Migration von Monozyten………………………………………………………………….. 

 

97 

7 

 

Einfluss von Cyclophilin B auf das Adhäsionsverhalten von 

Thrombozyten in vitro.………………………………………………….………………..…. 

 

98 

7.1 

 

ADP-stimulierte Thrombozyten binden verstärkt an immobilisiertes 

Cyclophilin A und Cyclophilin B…………………………………………………………. 

 

98 

7.2 

 

 

Die durch Cyclophilin B gesteigerte Adhäsion von Thrombozyten        

auf Kollagen wird durch die Cyclosporin A-Derivate NIM811 und           

MM284 reduziert……………………………………………………………………………... 

 

 

101 



INHALTSVERZEICHNIS 

 

 

 

V 

7.3 

 

 

Die durch Cyclophilin B gesteigerte Adhäsivität von Thrombozyten        

auf aktivierten humanen Endothelzellen wird durch die      

Cyclosporin A -Derivate NIM811 und MM284 reduziert……………………. 

 

 

104 

8 

 

Einfluss von Cyclophilin B auf das Migrationsverhalten von 

Leukozyten in vivo mittels Thioglykolat-induzierter Peritonitis…………… 

 

107 
   

V Diskussion…………………………………………………………………..…………………. 110 

1 Diskussion der Versuchsmethoden…………………………………………………….. 110 

1.1 Diskussion der in vitro-Methoden……………………………………………………… 110 

1.1.1 Immunhistologie ……………………………………………………………………………….. 110 

1.1.2 Immunfluoreszenzfärbung………………………………………………………………….. 111 

1.1.3 Durchflusszytometrie………………………………………………………….………………. 112 

1.1.4 Zymographie…………………………………………………………………….…………………. 113 

1.1.5 Chemotaxis-Assay………………………………………………………………………….……. 114 

1.1.6 Flusskammer………………………………………………………………………………….…… 115 

1.2 Diskussion der in vivo-Methoden………………………………………………………. 117 

1.2.1 

 

Tiermodelle in der Atheroskleroseforschung und Gründe für die    

Wahl der Maus als Versuchstier…………………………………..……………………… 

 

117 

1.2.2 Peritonitis-Modell……………………………………….………………………………………. 120 

2 Diskussion der Ergebnisse………………………………………………………………….. 123 

2.1 

 

 

Pathophysiologische Relevanz der Cyclophilin B-Expression in der 

atherosklerotischen Plaque, auf Monozyten, Makrophagen und          

Schaumzellen sowie auf aktivierten  Thrombozyten……………….…….….. 

 

 

127 

2.2 

 

Bedeutung von Cyclophilin B für die proteolytische Aktivität in der 

atherosklerotischen Plaque………………………………………………………………. 

 

129 

2.3 

 

Einfluss von Cyclophilin B auf das Migrationsverhalten von 

Monozyten in vitro…………………………………………………………………...………. 

 

132 

2.4 

 

Einfluss von Cyclophilin B auf das Migrationsverhalten von 

Leukozyten  in vivo………………………………………………………………………….… 

 

134 

2.5 

 

Aktivierte Thrombozyten weisen eine gesteigerte Adhärenz             

auf immobilisiertem CyPA und CyPB auf…………………………………………… 

 

136 

2.6 

 

 

Die Wirkung der nicht immunsuppressiven Cyclophilin-Inhibitoren 

NIM811 und MM284 auf    das Adhäsionsverhalten von 

Thrombozyten in vitro und in vivo…………………………………………………….. 

 

 

138 

2.7 

 

Verknüpfung der hier gewonnenen Erkenntnisse mit den bisher 

bekannten Abläufen bei der Atherosklerose……………….……………………. 

 

142 



INHALTSVERZEICHNIS 

 

 

 

VI 

3 Schlussfolgerung………………………………………………………………………………… 153 

   

VI Zusammenfassung……………………………………………………………………..... 155 

   

VII Summary………………………………………………………………………………........ 157 

   

VIII Literaturverzeichnis…………………………………………………………...………… 159 

   

IX Appendix…………………………………………………………………………………...… 194 

1 Abkürzungsverzeichnis………………………………………………………………………. 194 

2 Abbildungsverzeichnis……………………………………………………………………….. 200 

3 Tabellenverzeichnis…………………………………………………………………………… 204 
   

X Danksagung…………………………………………………………………………………. 205 

 

 

 

 

 

 

 



I     EINLEITUNG 

 

 

 

1 

1  Einleitung 

Herz-Kreislauferkrankungen sind seit vielen Jahren die häufigste Krankheits- und Todesursache des 

Menschen in der westlichen Welt und gewinnen auch in den Entwicklungsländern zunehmend an 

Bedeutung.1 Im Jahr 2012 starben laut Angaben der World Health Organization (WHO) weltweit rund 

17,5 Millionen Menschen an den Folgen kardiovaskulärer Erkrankungen, das entspricht etwa 30% 

aller Todesfälle.2 In Deutschland waren es gemäß statistischem Bundesamt im Jahr 2013 mit 354.493 

Toten sogar fast 40% der Todesfälle.3 Der Großteil dieser Todesfälle ist auf atherosklerotische 

Gefäßveränderungen und den daraus resultierenden Erkrankungen zurückzuführen.4,5 

Im Tierreich spielt die Atherosklerose nur eine untergeordnete Rolle. Sie kommt lediglich beim Vogel 

regelmäßig vor. Bei Säugetieren ist sie deutlich seltener. Sie findet sich bisweilen bei alternden 

Schweinen sowie bei Hunden, die infolge einer Hypothyreose eine Hypercholesterinämie entwickeln, 

und führt nur selten zu klinischen Manifestationen.6,7,8   

Die Atherosklerose ist eine komplexe, multifaktorielle, progressive Erkrankung der mittleren und 

großen Arterien, mit protrahiertem Verlauf, die mit Veränderungen der Intima einhergeht.4,9 

Grundlage für das Entstehen und Fortschreiten der atherosklerotischen Veränderungen stellen 

chronische Entzündungsvorgänge dar.10 Hierbei wirken verschiedene Entzündungszellen und                

-mediatoren zusammen, die sich wechselseitig beeinflussen.  

Insbesondere Monozyten sowie die daraus entstehenden Makrophagen und Schaumzellen, stellen 

wichtige Entzündungszellen im Rahmen der Entstehung atherosklerotischer Veränderungen dar.11,12 

Daneben fungieren auch Thrombozyten als Entzündungszellen. Dieser Funktion wird eine immer 

bedeutender werdende Rolle zugesprochen.13,14,15  

Zur Entstehung der Atherosklerose beim Menschen tragen zahlreiche genetische und 

umweltbedingte Risikofaktoren bei.4 Zu den prädisponierenden genetischen Faktoren zählt 

beispielsweise das männliche Geschlecht, Hypertonie, Hypercholesterinämie, erhöhte Homocystein-

Serumkonzentrationen, Diabetes mellitus, Adipositas und das metabolische Syndrom. Zu den 

Umweltfaktoren zählen unter anderem eine fettreiche Diät, Nikotinabusus, ein schlechter 

körperlicher Trainingszustand und Infektionen mit Erregern wie Chlamydia pneumoniae oder 

Herpesviren.4,9,16  

An Prädilektionsstellen bildet sich eine sogenannte atherosklerotische Plaque. Sie besteht aus Zellen, 

in erster Linie aus Entzündungszellen, des Weiteren aus Endothelzellen und glatten Muskelzellen, 

Bindegewebselementen, Lipiden und Zelldebris und ist in einem späteren Stadium bedeckt von einer 

fibrösen, kollagenreichen Kappe, deren Matrix von den glatten Muskelzellen sezerniert wird.17  

Die größte Gefahr, die von einer atherosklerotischen Veränderung ausgeht, liegt in ihrem 

thrombogenen Potential.10 Meist, das heißt in etwa 60-70% der Fälle, ist es die Ruptur der fibrösen 

Kappe einer Plaque, die verantwortlich für die Entstehung einer Thrombose ist. 18,19,20,21,22 Eine 

entscheidende Rolle hierfür spielen Matrix Metalloproteinasen (MMPs).23,24 Dabei handelt es sich um 

Enzyme, die in erster Linie von Entzündungszellen sezerniert werden und das Kollagen in der fibrösen 

Kappe proteolytisch spalten können.25 Dadurch kann die Kappe destabilisiert werden.25,26   
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Bei einer Ruptur der fibrösen Kappe kommt das hochthrombogene Material der Plaque in Kontakt 

mit Blutbestandteilen, was eine mehr oder weniger ausgedehnte Thrombose mit entsprechenden 

klinischen Symptomen nach sich zieht. 18,19,20,23 Dies wiederum führt in vielen Fällen zu ischämischen 

Reaktionen oder Infarkten im Versorgungsgebiet des Gefäßes distal des Thrombus.9 

Spielen sich diese Vorgänge an den Koronararterien ab, so kann, in Abhängigkeit des Ausmaßes und 

der Dauer der Ischämie, sowie in Abhängigkeit vom Vorhandensein von Kollateralgefäßen, ein akuter 

Myokardinfarkt entstehen.24,27 Dieser stellt eines der häufigsten Krankheitsbilder im Rahmen von 

Herz-Kreislauferkrankungen des Menschen dar und war im Jahr 2013 die zweithäufigste 

Todesursache in Deutschland.28,29 Andere häufige Folgen der Atherosklerose neben dem 

Myokardinfarkt sind Schlaganfälle, die periphere arterielle Verschlusskrankheit und Aorten-

Aneurysmen.1 

Da die Pathomechanismen, die der Entzündungsreaktion der Atherosklerose zugrunde liegen, noch 

immer nicht vollständig geklärt sind, ist es von immenser Bedeutung, das Wechselspiel der 

beteiligten Zellen und Entzündungsmediatoren weiter zu erforschen, um neue Behandlungs-

möglichkeiten entwickeln zu können, die das Entstehen atherosklerotischer Prozesse verhindern 

oder ihr Fortschreiten verzögern können. 

In den letzten Jahren wurden zahlreiche Entzündungsmediatoren beschrieben, die an der 

Pathogenese der Atherosklerose beteiligt sind. Ein wichtiger Mediator in diesem Zusammenhang 

stellt das Immunophilin Cyclophilin A (CyPA) dar, für das in den letzten Jahren eine Beteiligung an der 

Entstehung atherosklerotischer Prozesse belegt wurde.30,31,32  

Einen weiteren Vertreter der Immunophiline stellt Cyclophilin B (CyPB) dar. Es zeigt eine enge 

strukturelle Verwandtschaft zu CyPA und ist ebenso wie CyPA ein starker proinflammatorischer 

Mediator.33,34,35  

Über die Beteiligung von CyPB an atherosklerotischen Prozessen konnten in der Literatur keine 

Hinweise gefunden werden. Ziel dieser Arbeit ist es daher, die Funktionen von CyPB bei der 

Entstehung atherosklerotischer Veränderungen näher zu definieren. Zu diesem Zweck wurde in der 

nachfolgend dargestellten experimentellen Untersuchung zunächst die Expression von CyPB in 

murinen atherosklerotischen Plaques sowie bei Thrombozyten, Monzyten, Makrophagen und 

Schaumzellen nachgewiesen. Darüber hinaus wurde der Effekt von CyPB auf das Migrationsverhalten 

von Monozyten und deren Matrix Metalloproteinasen-Aktivität sowie auf das Adhäsionsverhalten 

von Thrombozyten in vitro untersucht und der Einfluss von CyPB auf das Migrationsverhalten von 

Leukozyten in vivo charakterisiert. 
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II  Schrifttum 

1  Atherosklerose 

1.1  Definition und histologische Klassifikation der Atherosklerose 

Der Begriff „Atherosklerose“ leitet sich aus dem Griechischen ab (athära = Grütze, scleros = hart)  

und wurde im Jahr 1904 von Marchand eingeführt.36 Es handelt sich dabei um eine progressive, 

entzündliche Erkrankung, die hauptsächlich die mittleren und großen Arterien des 

muskulär/elastischen Typs betrifft und durch eine Dysfunktion des Endothels initiiert wird.9,11 

Sie wurde von der WHO folgendermaßen definiert: „Die Atherosklerose ist eine variable    

Kombination von Veränderungen der Intima von Arterien, bestehend aus einer herdförmigen 

Ansammlung von Lipiden, komplexen Kohlenhydraten, Blut und Blutbestandteilen, Bindegewebe und 

Kalziumablagerungen, verbunden mit Veränderungen der Arterienmedia“. 

Die American Heart Association (AHA) hat eine histologische Klassifikation für atherosklerotische 

Läsionen des Menschen aufgestellt.17,37,38 Es werden dabei folgende Stadien unterschieden: 

Typ I-Läsion: Initialläsion 

Dieses Stadium ist durch mikroskopisch erkennbare Lipidablagerungen in der Intima mit 

sporadischen Schaumzellherden gekennzeichnet. Diese Läsionen sind bereits bei Babys und 

Kleinkindern zu finden. 

 

Typ II-Läsion: Fettstreifen bzw. fatty streak 
Es bilden sich multiple Lagen von Schaumzellen aus. Diese Läsionen sind makroskopisch als gelb 

gefärbte Fettstreifen erkennbar und sind bis zum 25. Lebensjahr bei beinahe allen Individuen 

vorhanden.16 

 

Typ III-Läsion: Präatherom oder intermediate lesion  

Hier finden sich Herde von mikroskopisch sichtbaren, extrazellulären Lipidtröpfchen unterhalb 

der Lagen von Schaumzellen, die die extrazelluläre Matrix und glatte Muskelzellen verdrängen. 

 

Typ IV-Läsion:  Atherom 

Eine dichte Ansammlung von extrazellulären Lipiden, der sogenannte lipid core, entsteht. Dies 
führt zu einer deutlichen Desorganisation der Intima, in deren Rahmen glatte Muskelzellen und 

extrazelluläre Matrix verdrängt und durch Lipidansammlungen ersetzt werden. Meist besteht 

noch keine Lumeneinengung.   

 

Typ V-Läsion: Fibroatherom 

Kennzeichnend für dieses Stadium ist die Proliferation glatter Muskelzellen und die Ausbildung 

einer sogenannten fibrous cap, die durch eine Zubildung von Kollagenfasern entsteht. Dies führt 

zu einer beginnenden Lumeneinengung. 

 

Typ VI-Läsion: komplizierte Läsion - complicated lesion 
Dabei handelt es sich um Typ IV- oder Typ V-Läsionen, auf deren Oberfläche sich Erosionen oder 

Fissuren, Hämatome oder Thromben gebildet haben. 
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Typ VII-Läsion: verkalkte Läsion 

Das wichtigste Kennzeichen dieser Läsion besteht in der Mineralisation.  Die Kalkablagerungen 
können den gesamten lipid core und Zelldetritus ersetzen. 

 

Typ VIII-Läsion:  fibröse Läsion 

Hier dominieren fibröse Gewebsveränderungen. Lipidansammlungen sind nur minimal oder 

fehlen sogar ganz. 

 

Die Läsionen vom Typ I – III sind dadurch gekennzeichnet, dass sie klinisch inapparent sind. Bei den 

fortgeschrittenen Läsionen ab Typ IV können plötzliche Komplikationen auftreten. Dadurch kommt 

ihnen eine wichtige klinische Bedeutung zu.17  

Je nach Lokalisation der atherosklerotischen Veränderungen ergeben sich unterschiedliche 

Krankheitsbilder. Die drei bedeutendsten klinischen Manifestationen der Atherosklerose sind die 

koronare Herzkrankheit (mit möglichen Folgeerscheinungen wie Angina pectoris oder akutem 

Myokardinfarkt), die periphere arterielle Verschlusskrankheit sowie die zerebrale Ischämie (die     

eine vaskuläre Demenz oder sogar einen Schlaganfall nach sich ziehen kann). Weitere Lokalisationen 

mit entsprechenden Symptomen sind möglich. Hierzu zählen beispielsweise die Aorta (mit 

atherosklerotischen Aneurysmen), die Mesenterialgefäße (mit Angina abdominalis und 

hämorrhagischer Kolitis), die Nierenarterien (mit Hypertonie und Niereninsuffizienz) und die 

Beckengefäße (mögliche Impotenz bei Männern).39,40 
 

In Abbildung 1 sind die bedeutendsten pathologischen Veränderungen, die während der 

Atherogenese entstehen, schematisch dagestellt.   

 

Abbildung 1: Die wichtigsten Stadien bei der Entstehung einer atherosklerotischen Läsion in der 

Arterienwand (Abb. modifiziert nach Moore und Tabas 2011 
57

) 

Frühe fatty streaks zeichnen sich durch die subendotheliale Einlagerung von Lipoproteinen aus, die die 

Einwanderung von dendritischen Zellen (DCs) und Makrophagen nach sich zieht. Mit fortschreitender 

Entwicklung der Plaque wird die Intima auch von T-Lymphozyten und glatten Muskelzellen (SMC) infiltriert und 

die Retention von Lipoproteinen ist verstärkt. Ein Charakteristikum vulnerabler Plaques ist die Ansammlung 

apoptotischer Zellen und ein gestörter phagozytotischer Abtransport, was zur Bildung des nekrotischen Kerns 

führt. Das Ausdünnen der fibrösen Schutzkappe mindert die Stabilität der Läsion und führt letztlich zur 

Plaqueruptur und Thrombusbildung.  DC = dendritische Zelle,  SMC = glatte Muskelzelle,  EZM = extrazelluläre 

Matrix,  LDL = low density lipoprotein; 
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Für das Tierreich existiert eine histologische Einteilung der atherosklerotischen Veränderungen in 

Stadien analog zu derjenigen des Menschen lediglich für die Taube (Columba livia) sowie für das 

Huhn (Gallus domesticus).41,42  

Die  Veränderungen bei der Taube werden in 5 Stadien eingeteilt: 41  

Stadium 1 ist gekennzeichnet durch die Ausbildung von lipidhaltigen Vakuolen in endothelialen und 

subendothelialen Zellen und durch die Proliferation der glatten Muskelzellen der Gefäßwand. 

Stadium 2 zeichnet sich durch eine Zunahme des Lipidgehaltes in der Plaque aus. Es bilden sich 

amorphe Lipidansammlungen in nekrotischen Zentren der Plaque. 

Im Stadium 3 kommt es zur Einwanderung von glatten Muskelzellen in die Plaque und deren 

Proliferation.  

Stadium 4 ist gekennzeichnet durch die Ausbildung einer fibrösen Kappe aus glatten Muskelzellen auf 

der Plaqueoberfläche. Außerdem kommt es zu einer fettigen Degeneration der mit Cholesterinestern 

beladenen Zellen der Plaque und Ausbildung von Cholesterinspalten in den histologischen 

Präparaten der Plaque. Diese entstehen durch die fettige Degeneration der Zellen in der Plaque und 

der damit einhergehenden Auskristallisation des reinen Cholesterins. Dieses wird bei der 

histologischen Präparation herausgelöst und hinterlässt dabei die charakteristischen, nadelförmigen 

Spalträume.43 

Stadium 5 zeichnet sich durch eine massive Fibrosierung der Plaque, durch die Einlagerung von 

sauren Mukopolysacchariden und Lipiden, sowie durch Ossifikation und Ulzerationen aus. In der 

Plaque sind nur sehr wenige Lymphozyten und Makrophagen vorhanden. 

Die atherosklerotischen Veränderungen beim Huhn sind in 6 Stadien eingeteilt:42 

Stadium 1 ist gekennzeichnet durch Endotheldegeneration und die Entstehung von Ödemen in der 

Intima. 

Stadium 2 zeichnet sich durch Veränderungen des Phänotyps der glatten Muskelzellen aus: die Zellen 

sind klein und weisen ein eosinophiles Zytoplasma auf. 

Im Stadium 3 bildet sich eine zelluläre Plaque aus dicht gepackten glatten Muskelzellen. 

Im Stadium 4 kommt es durch die Einlagerung von Kollagen zur Entstehung einer zellulär-fibrösen 

Plaque. 

Im Stadium 5 bildet sich eine fibröse Plaque: es kommt zu einer Zunahme der kollagenen Fasern, die 

sich um die glatten Muskelzellen in Bündeln ansammeln. 

Im Stadium 6 entsteht eine atheromatöse Plaque: oberflächlich finden sich kollagene Fasern, in der 
Tiefe Schaumzellen und Lipidansammlungen. 
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1.2 Die Pathogenese der Atherosklerose 

1.2.1  Endotheliale Dysfunktion 

Das Endothel stellt die wichtigste Regulationsstelle für die Aufrechterhaltung zahlreicher 

homöostatischer Zustände im Blutgefäß dar.44 Im physiologischen Zustand reguliert es den 

Gefäßtonus, fungiert als selektiv permeable Barriere zwischen Blut und Gewebe, kontrolliert 

Thrombusbildung und Thrombolyse und ist an der Regulierung von Entzündungsprozessen 

beteiligt.4,45 

In der Pathogenese der Atherosklerose kommt dem Endothel ebenfalls eine wichtige Rolle zu. 

Gemäß der response-to-injury-Hypothese nach Ross führt eine Schädigung des Endothels durch 

bestimmte Reize zu einer endothelialen Dysfunktion.9 Dies führt zu einer kompensatorischen 

Reaktion des Endothels in Form eines inflammatorischen Prozesses, welcher die Basis für die 

Entstehung der Atherosklerose darstellt.9 

Hämodynamische Kräfte können die Funktion des Endothels beeinflussen.46 An spezifischen Stellen 

wie Bifurkationen, Aufzweigungen oder Bögen von Arterien kommt es zu Veränderungen der 

Blutflusseigenschaften.9 Hierdurch kommt es zu einer Aktivierung von Endothelzellen. Dabei werden 

Gene induziert, die für bestimmte Adhäsionsmoleküle kodieren.9 Außerdem besteht in diesen 

Bereichen eine erhöhte Permeabilität für Blutzellen und atherogene Makromoleküle wie low density 

lipoprotein (LDL), die durch eine längere Verweildauer dieser Stoffe in diesen Regionen zustande 

kommt.47 Diese Bereiche sind demzufolge Prädilektionsstellen für atherosklerotische Läsionen.4,47 

Durch die erhöhte Permeabilität für Makromoleküle kommt es zur Ansammlung von Lipoproteinen 

(vornehmlich LDL, aber auch β-very low density lipoprotein (β-VLDL) und Lipoprotein a) in der 

subendothelialen Matrix der Arterie.4 Dieser Vorgang findet unter physiologischen Bedingungen nur 

in geringem Maße statt und ist bei erhöhten Plasma-Lipoprotein-Konzentrationen verstärkt.37  

In der subendothelialen Matrix  bindet das LDL an Proteoglykane, wodurch es dort immobilisiert    

und anschließend oxidativ modifiziert oder enzymatisch verändert wird.22,48,49,50 Die oxidative 

Veränderung des LDL erfolgt beispielsweise über die Einwirkung reaktiver Sauerstoffspezies (ROS), 

die von Endothelzellen und Makrophagen in der Intima produziert werden.1 Hierzu gehören unter 

anderem Superoxid-Anionen (O2-.), Hydroxyl-Radikale (HO-), Stickstoffmonoxid (NO-), Lipid-Radikale, 

Wasserstoffperoxid (H2O2), Peroxynitirit (ONOO-) und Hypochlorsäure (HOCl).51 Die modifizierten 

Lipide nehmen eine wichtige Rolle in der Pathogenese der Atherosklerose ein, indem sie zu einer 

zusätzlichen inflammatorischen Aktivierung des Endothels führen.22,52,53 

Weitere Auslöser für das Entstehen einer endothelialen Dysfunktion können neben den oben 

erwähnten Faktoren beispielsweise auch erhöhte Plasma-LDL-Level, Bluthochdruck, Diabetes 

mellitus, Nikotinabusus, erhöhte Plasma-Homocysteinkonzentrationen sowie Infektionen mit 

Chlamydia pneumoniae und mit Herpesviren sein.4  
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1.2.2  Die frühe atherosklerotische Läsion 

Die aktivierten Endothelzellen produzieren chemotaktisch wirksame Zytokine, sogenannte 

Chemokine, die bewirken, dass Leukozyten, insbesondere Monozyten und in geringerem Umfang 

auch T-Zellen, Kontakt mit dem Endothel aufnehmen (tethering), an diesem entlangrollen (rolling) 

und schließlich fest adhärieren (arrest).22,54-57  

Das rolling wird dabei durch E- und P-Selektine vermittelt, die mit P-selectin glycoprotein ligand-1 

(PSGL-1) auf Monozyten und T-Lymphozyten interagieren.53,58,59 Die feste Adhäsion der Leukozyten 

wird durch Integrine wie intercellular cell adhesion molecule 1 (ICAM-1) und vascular cell adhesion 

molecule 1 (VCAM-1) vermittelt, die an die Integrine very late antigen-4 (VLA-4) und lymphocyte 

function-associated antigen 1 (LFA-1) auf den Leukozyten binden.57,59-64 

Der festen Adhäsion der Leukozyten folgt deren Diapedese in den subendothelialen Raum.55,65 Die 

beiden wichtigsten Moleküle, die daran beteiligt sind, sind monocyte chemotactic protein-1 (MCP-1) 

und oxidativ modifiziertes LDL (oxLDL).56  

MCP-1 hat eine starke chemotaktische Wirkung auf Monozyten und T-Zellen.56 Es wird sowohl von 

Endothelzellen, als auch von glatten Muskelzellen und Makrophagen in der atherosklerotischen 

Plaque gebildet.54,56,66-68 MCP-1 bindet an den Chemokinrezeptor CCR2 auf Monozyten und bewirkt 

so deren Migration entlang eines Konzentrationsgradienten.54 

Neben MCP-1 wird die Migration der Monozyten partiell auch durch oxidativ modifiziertes LDL 

hervorgerufen, welches chemotaktisch auf Monozyten wirkt.52,69 Außerdem führt es zu einer 

verstärkten Expression von Adhäsionsmolekülen auf Endothelzellen und der Sekretion von 

Chemokinen.1 

Unter dem Einfluss des Wachstumshormons macrophage colony-stimulating factor (M-CSF), das 

sowohl von glatten Muskelzellen als auch von Endothelzellen gebildet wird, differenzieren die 

Monozyten in den Läsionen zu Makrophagen aus.4,57,68,70 Diese sind in der Lage, eine Reihe von 

hydrolytischen Enzymen, Wachstumsfaktoren, Zytokinen und Chemokinen zu bilden, die das 

Entzündungsgeschehen vorantreiben.9,10 Neben der Ausdifferenzierung der Monozyten bewirkt       

M-CSF auch die Proliferation von Makrophagen sowie die Induktion von Scavenger-Rezeptoren.55,67,68 

Das in der Intima akkumulierte, oxidativ veränderte LDL wird von den Makrophagen phagozytiert. 

Dieser Prozess wird über Scavenger-Rezeptoren gesteuert. In diesem Zusammenhang sind 

insbesondere der Typ-A Scavenger-Rezeptor (SRA) und CD36, ein Mitglied der Typ-B-Familie der 

Scavenger-Rezeptoren zu erwähnen.71  

Die aufgenommenen Cholesterolester werden in Endosomen zu Cholesterol und freien Fettsäuren 

hydrolysiert und innerhalb der Makrophagen weitertransportiert, beispielsweise zur Plasma-

membran oder dem endoplasmatischen Retikulum. Im endoplasmatischen Retikulum können sie 

wieder reesterifiziert werden. Die so entstandenen Cholesterolester sammeln sich in 

membrangebundenen, neutralen Lipidtröpfchen.72  

Die auf diese Art entstandenen lipidbeladenen Makrophagen werden aufgrund ihrer mikroskopisch 

schaumigen Erscheinung als Schaumzellen bezeichnet (siehe Abb. 2) und sind das Kennzeichen früher 

und fortgeschrittener atherosklerotischer Läsionen.10,55 Sie bilden eine Reihe proinflammatorischer 
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Zytokine, die die entzündlichen Prozesse in der Initialläsion und die Leukozyten-Rekrutierung weiter 

fördern.73  

 

 

Abbildung 2:  Mikroskopische Darstellung von Schaumzellen  

A) Schaumzellen in der Media einer atherosklerotisch veränderten Meninxarterie eines Pferdes                        

(HE-Färbung). Die Schaumzellen stellen sich mit deutlichen Vakuolen dar (Abbildung mit freundlicher 

Genehmigung des Urban & Fischer Verlags/Elsevier GmbH, aus Mc Gavin und Zachary 2009 
8
). B) Elektronen-

mikroskopische Aufnahme einer Schaumzelle (Abbildung aus May et al. 2008 
124

) 

 

Scavenger-Rezeptoren unterliegen im Vergleich zu nativen LDL-Rezeptoren keinem negativen 

Feedback-Mechanismus, sodass dieser Prozess nicht durch eine Cholesterol-Sättigung der Zellen 

gestoppt wird. Dies führt schließlich zum Absterben der Schaumzellen und trägt zur Bildung des 

Lipidkerns in späteren Läsionen bei.56 

In Abbildung 3 findet sich eine schematische Darstellung des Aufbaus einer unveränderten arteriellen 

Gefäßwand sowie der initialen Prozesse, die bei der Entstehung einer atherosklerotischen Läsion 

ablaufen. 
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Abbildung 3:  Aufbau einer unverändertenen Arterienwand (A) und Initiation einer atherosklerotischen 

Läsion (B) (Abbildung modifiziert nach Libby et al. 2011 
73

) 

A) Die Tunica intima ist von einer Endothelschicht ausgekleidet, die auf einer Basalmembran liegt. Die Intima 

enthält beim Menschen auch glatte Muskelzellen. Die Tunica media besteht aus glatten Muskelzellen und einer 

komplexen extrazellulären Matrix. Die Tunica adventitia enthält Mastzellen, Fibroblasten und freie 

Nervenendigungen.  B) Die Initiation der Atherosklerose umfasst die Adhäsion von Leukozyten und deren 

Migration in die Intima, die Ausreifung von Monozyten zu Makrophagen, sowie die Aufnahme von Lipiden 

durch diese und die Bildung von Schaumzellen.  SMCs = glatte Muskelzellen, SZ = Schaumzellen;  
 

 

 

1.2.3 Progression der atherosklerotischen Plaque – intermediate lesion und               

fibrous plaque 

Der Übergang vom fatty streak zu einer komplexeren Läsion, die symptomatisch werden kann, ist 

durch die Einwanderung glatter Muskelzellen in die Intima und deren Proliferation gekennzeichnet.52 

Diese Prozesse werden unter anderem durch Interleukin 1 (IL-1), platelet-derived growth factor 

(PDGF) und tumor necrosis factor α (TNF-α) gesteuert. An der Proliferation ist zusätzlich transforming 

growth factor β (TGF-β) beteiligt.74-76  

Glatte Muskelzellen können ebenso wie Makrophagen LDL aufnehmen und wie diese zu 

Schaumzellen werden.52,78 Jedoch geschieht dies nur in geringerem Ausmaß als bei Makrophagen.79 
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Darüber hinaus produzieren glatte Muskelzellen extrazelluläre Matrix, die in erster Linie aus 

Kollagen, sowie aus elastischen Fasern und Proteoglykanen besteht.73,76,78,79 Als Stimulantien hierfür 

wirken PDGF, TGF-β1 und in geringem Umfang auch IL-1. Diese werden von verschiedenen Zellen in 

der Läsion, insbesondere von Makrophagen, gebildet.55,76 

Das hier beschriebene Stadium atherosklerotischer Läsionen, das sich durch eine Ansammlung von 

Schaumzellen, T-Zellen, glatten Muskelzellen und einer schwach entwickelten Bindegewebsmatrix 

auszeichnet, wird als intermediate oder fibrofatty lesion bezeichnet und ist in Abbildung 4 

schematisch dargestellt.80   

 

Abbildung 4:   Progression der atherosklerotischen Läsion (Abbildung modifiziert nach Libby et al. 2011 
73

)  

Bei der Plaqueprogression kommt es zur Migration glatter Muskelzellen aus der Media in die Intima und zur 

Proliferation derselben, sowie zur vermehrten Produktion extrazellulärer Matrix und Ausbildung eines 

nekrotischen Kerns. Es finden sich außerdem Cholesterolkristalle und einsprossende Mikrogefäße.                      

SMC = glatte Muskelzelle;  

 

Schreitet die Matrixproduktion weiter fort, kommt es zu einer Verdickung der Arterienwand, die 

zunächst durch eine graduelle Vasodilatation kompensiert wird, sodass das Gefäßlumen bis zu einem 

gewissen Stadium unverändert bleibt. Dieses Phänomen wird als remodeling bezeichnet. Ab einem 

bestimmten Punkt kann die Arterie die Verdickung der Gefäßwand nicht mehr durch weitere 

Dilatation kompensieren und es kommt zur Vorwölbung der Läsion ins Gefäßlumen, die mit einer 

Veränderung der Blutflusseigenschaften einhergeht.9 

Im weiteren Verlauf entsteht eine fibrous plaque oder auch Fibroatherom.17,80,81 Dabei kommt es zur 

Ausbildung einer fibrösen Schutzkappe, die aus zahlreichen glatten Muskelzellen, einer dichten 

Matrix aus Kollagen und etwas Elastin besteht und auch eine variierende Anzahl von Makrophagen 

und T-Zellen enthalten kann.80,82 Diese fibrous cap bedeckt einen nekrotischen Kern (Synonym: lipid 

core oder Lipidkern, siehe Abb. 5). Dieser besteht aus einer Mischung von extrazellulären Lipiden und 

Zelldebris, der von einem Wall von Schaumzellen umgeben ist; lebende Zellen fehlen in ihm nahezu 

gänzlich.83 Er enthält außerdem prothrombotisch wirkende Substanzen, wie den aus Makrophagen 
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freigesetzten tissue factor, wodurch er für die Thrombogenität einer Läsion maßgeblich 

verantwortlich ist.85-87 T-Lymphozyten können Makrophagen über die Expression von CD40L (CD154) 

zu einer verstärkten Produktion von tissue factor anregen und hierdurch die Thrombogenität der 

Plaque zusätzlich verstärken.86,121  

Die fibröse Schutzkappe stellt also einen wichtigen Schutzmechanismus dar, indem sie die Läsion 

vom Gefäßlumen abschirmt und kann als Heilungsversuch des Körpers angesehen werden.88  

 

Abbildung 5:   Schematischer Aufbau des nekrotischen Kerns einer atherosklerotischen Plaque (Abbildung 

modifiziert nach Davies 1996 
84

) 

Die Lipide des Kerns stammen teils aus abgestorbenen Makrophagen, teils von LDL, das direkt an 

Proteoglykane gebunden wurde, ohne eine intrazelluläre Passage durchlaufen zu haben. Einige Randbereiche 

des Lipidkerns werden von aktivierten Makrophagen gesäumt, die MMPs exprimieren, andere Bereiche des 

Randes sind zellfrei und reaktionslos. 

 

 

1.2.4  Komplexe Läsion und Thrombusbildung 

Die Entstehung solcher fortgeschrittener Läsionen dauert viele Jahre während derer die Läsionen 

asymptomatisch bleiben.21,55,76 Allerdings kann es zu plötzlich auftretenden schwerwiegenden 

Komplikationen wie einem Myokardinfarkt oder einem Schlaganfall kommen, wenn der Blutfluss 

beeinträchtigt und die Sauerstoffversorgung in den Versorgungsgebieten eingeschränkt wird.1,16,80 

Nur selten liegt die Ursache hierfür darin, dass eine Läsion so groß wird, dass sie den Blutfluss im 

Gefäß blockiert.4 Vielmehr resultieren die meisten Myokardinfarkte aus milden bis moderaten 

Stenosen, die weniger als 50% des Lumens verlegen.89 Sie sind auf gefäßverschließende Thromben 

zurückzuführen.4 Aber auch nicht gänzlich okkludierende Thromben können zu klinischen 

Symptomen führen.83  
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Etwa ein Viertel bis ein Drittel der Thrombosen wird durch eine oberflächliche Erosion der Plaque 

ausgelöst (siehe Abb. 6B).16,90 Hierbei kommt es zu Apoptose oder Abschilferung des Endothels, 

woraufhin Thrombozyten mit subendothelialem Kollagen und von Willebrand Faktor (vWF) in 

Kontakt kommen. Dies führt zur Aktivierung der Thrombozyten und zieht ihre Adhäsion nach sich.90,91 

Derartige Veränderungen sind vorwiegend bei jüngeren Menschen und Frauen, sowie bei Diabetikern 

zu finden.83,91,92  

Mit etwa zwei Drittel bis drei Viertel der Fälle werden die meisten Thrombosen allerdings durch ein 

Aufreißen der fibrösen Schutzkappe ausgelöst (siehe Abb. 6A).21,90 Diese sogenannte Plaqueruptur 

stellt die häufigste Ursache für einen Myokardinfarkt dar.21 Dabei kommt das thrombogene Material 

des nekrotischen Kerns in Kontakt mit Blutbestandteilen, aktiviert die Gerinnungskaskade und löst 

die Thrombusbildung aus.52  

Die Festigkeit der Schutzkappe, die wiederum von ihrer Dicke und ihrem Kollagengehalt abhängig ist, 

bestimmt demzufolge die Stabilität der Plaque maßgeblich mit.9,93  

 

Abbildung 6: Vergleichende schematische Darstellung von Plaqueruptur (A) und Plaqueerosion (B) 

(Abbildung modifiziert nach Libby 2009 
91

) 

A) Der Thrombus ist in der Plaque verankert.  B) Der Thrombus sitzt auf der Oberfläche der Plaque. 
 

Neben diesen beiden Faktoren wird die Stabilität der Plaque noch von der Größe und 

Zusammensetzung des nekrotischen Kerns, dem Inflammationszustand in der Schutzkappe sowie 

Ermüdungserscheinungen der Schutzkappe mitbestimmt.21  

So macht ein großer Lipidkern (>40% der Läsion) mit einem hohen Anteil an Cholesterolestern, die 

den Kern erweichen, die Läsion vulnerabler.21 Auch eine geringe Anzahl glatter Muskelzellen - die 

Hauptproduzenten der extrazellulären Matrix - verringert die Stabilität der Plaque.94,95 Außerdem 

wird die Plaque durch eine hohe Anzahl inflammatorischer Makrophagen und T-Lymphozyten 

destabilisiert. 4 Zusätzlich können biomechanische Faktoren wie Blutdruck, Scherkräfte etc. die 

Kappe mechanisch schwächen.21  

Eine Plaqueruptur tritt bevorzugt dort auf wo die Schutzkappe am dünnsten und am stärksten von 

Schaumzellen infiltriert ist.21 In ca. 60% der Fälle ist dies an der Schulterregion der Plaque, der 

Verbindungsstelle der Plaque mit der Gefäßwand.21,96  
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Die Plaqueschulter sowie andere rupturgefährdete Bereiche sind von einer großen Zahl von 

Makrophagen, T-Lymphozyten und Mastzellen infiltriert.21,85,97 Die Zahl kollagensynthetisierender 

glatter Muskelzellen hingegen ist vermindert.98 

Die aktivierten T-Zellen produzieren Interferon γ (IFN-γ).85,91,99 Dieses Zytokin hemmt sowohl die 

Proliferation glatter Muskelzellen als auch ihre Kollagensynthese, sodass sie nicht mehr in der Lage 

sind, die Kollagenmenge, die für die Integrität der Kappe verantwortlich ist, aufrecht zu erhalten 

(siehe Abb. 7, linke Bildhälfte).93,99  

Der Kollagengehalt der Schutzkappe kann außer über eine verminderte Synthese auch durch einen 

verstärkten Abbau reduziert werden. So können Makrophagen von CD40L-exprimierenden T-Zellen 

zur Produktion von Proteinasen, den sogenannten Matrix Metalloproteinasen (MMPs), angeregt 

werden, die den Kollagenabbau der Schutzkappe bewirken.100 Die Kollagenasen MMP-1, MMP-8 und 

MMP-13 katalysieren das initiale Aufbrechen der Kollagenfibrillen. Gelatinasen wie MMP-2 und 

MMP-9 übernehmen den weiteren Abbau des Kollagens (siehe Abb. 7, rechte Bildhälfte).100 

 

Abbildung 7: Regulationsschritte im Auf- und Abbau des Kollagens in der atherosklerotischen Plaque 

(Abbildung  modifiziert nach Libby 2009 
91

) 

Das Entzündungsgeschehen steuert den Kollagenaufbau und -abbau. T-Zellen produzieren IFN-γ. Dieses 

hemmt die Proliferation der glatten Muskelzellen sowie ihre Kollagensynthese, durch welche die fibrous cap 

vor Ruptur geschützt wird. Durch die Bindung von CD40L auf T-Zellen und CD40 auf Makrophagen werden 

letztere zur Bildung interstitieller Kollagenasen wie MMP-1, -8 und -13 angeregt, die die Spaltung von 

Kollagenfibrillen katalysieren. Diese werden im Anschluss durch Gelatinasen weiter gespalten. Durch diese 

Mechanismen kann die Stabilität der atherosklerotischen Plaque beeinträchtigt werden.  

 

Auch Mastzellen sind am Kollagenabbau beteiligt. Sie enthalten Enzyme (Tryptase und Chymase), die 

die Zymogenformen der Matrix Metalloproteinasen aktivieren können.97 
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Die verminderte Kollagensynthese in Kombination mit verstärktem Abbau führt zu einer 

Ausdünnung der fibrous cap.91 Je dünner die Kappe wird, desto vulnerabler wird die Plaque.  

Rupturiert die Plaque schließlich, kommt es in der Folge zu einer Trombusbildung (siehe Abb. 8). 

Diese wird auf  verschiedenen Wegen hervorgerufen: einerseits führt der Kontakt der Thrombozyten 

mit der extrazellulären Matrix der Plaque zu deren Aktivierung. Andererseits wird die Gerinnungs-

kaskade über tissue factor, der von Makrophagen und glatten Muskelzellen produziert wird, 

initiiert.101 Tissue factor findet sich außerdem auf apoptotischen Zellen und seine höchste 

Konzentration lässt sich im nekrotischen Kern nachweisen.49
 

Diese thrombotischen Prozesse führen dann zur Okklusion oder Subokklusion des betreffenden 

Gefäßes.16 In Abhängingkeit von Ausmaß und Dauer des Gefäßverschlusses kommt es zu klinischen 

Symptomen wie dem Myokardinfarkt.24,27 Bei nur wandständigen Thromben in Koronargefäßen 

können plötzliche Symptome wie Angina pectoris auftreten, bei okkludierenden Thromben akute 

Symptome wie ein Myokardinfarkt, instabile Angina pectoris und plötzlicher Herztod.49 

Wandständige Thromben können bindegewebig organisiert werden. Auf diese Weise kann es zu 

einer raschen Weiterentwicklung von kleineren Läsionen zu raumfordernden stenotischen oder 

okkludierenden fibrotischen Läsionen kommen.102 

 

Abbildung 8: Plaqueruptur und Thrombose (Abbildung modifiziert nach Libby et al. 2011 
73

)  

Durch die Ruptur kommen Gerinnungsfaktoren des Blutes in Kontakt mit tissue factor im Inneren der Plaque 

und lösen thrombotische Ereignisse aus, durch die der Blutstrom behindert werden kann.   
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1.3  Atherosklerose im Tierreich  

Die Atherosklerose tritt im Tierreich nur gelegentlich auf und führt nur selten zu klinischen 

Erscheinungen wie Infarkten von Herz oder Gehirn. Natürlicherweise kann sie bei Vögeln und 

alternden Schweinen sowie bei Hunden mit Hypothyreoidismus, die eine Hypercholesterinämie 

entwickeln, vorkommen.8 Auch Stoffwechselstörungen wie Diabetes mellitus oder die idiopathische 

Hyperlipidämie des Zwergschnauzers können gelegentlich zur Entwicklung atherosklerotischer 

Veränderungen bei Hunden führen.103 Bei herbivoren Tieren spielen Lipideinlagerungen und 

atheromatöse Arterienwandnekrosen keine Rolle.7  

Als limitierender Faktor spielt zudem die kurze Lebensdauer, insbesondere von Nutztieren, eine 

entscheidende Rolle.7 So lassen sich beim Hausschwein und Wildschwein etwa im Alter von 10 Jahren 

komplexe atherosklerotische Veränderungen nachweisen. Da diese Zeitspanne die Nutzungsdauer 

der Tiere überschreitet, findet man bei Schlachttieren im Allgemeinen nur Frühstadien, insbesondere 

in der Abdominalaorta und in Zerebralarterien. 7   

Bei den Vögeln sind insbesondere Psittaciden prädisponiert, atherosklerotische Veränderungen zu 

entwickeln. Bei ihnen sind vor allem die großen Gefäße an der Herzbasis betroffen. Klinisch 

manifeste Erkrankungen werden gehäuft bei Graupapageien, Nymphensittichen und Amazonen 

gefunden, insbesondere bei älteren und weiblichen Tieren.104 Aber auch andere Vogelordnungen wie 

die Anseriformes (Schwan, Gans, Ente etc.), Columbriformes (Taube etc.) oder Galliformes (Huhn, 

Fasan etc.) sind empfänglich für Atherosklerose.105 

Atherosklerose bei Hunden (siehe Abb. 9) und Katzen ist für gewöhnlich eine Folge anderer 

Erkrankungen wie Hypothyreose, Diabetes mellitus, Hypercholesterinämie oder Hypertriglycerid-

ämie.106 Bei einer Untersuchung von 12.384 Hunden innerhalb einer Periode von 14 Jahren zeigten 

nur 21 Tiere atherosklerotische Veränderungen. Myokardfibrosen sowie Myokardinfarkte wurden 

ebenfalls beobachtet. 85% der betroffenen Tiere waren männlich, nur 15% weiblich. Zudem zeigten 

Hunde der Rasse Zwergschnauzer, Dobermann sowie Labrador Retriever eine höhere Rasse-

prävalenz.107 Eine Verbindung von Chlamydieninfektion und Atherosklerose, wie sie beim Menschen 

häufig zu finden ist, konnte nicht gefunden werden.108 
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Abbildung 9: Fotografische Darstellung atherosklerotischer Gefäßabschnitte in den Koronararterien (A) 

und zerebralen Arterien (B) bei einem Hund mit Hypothyreoidismus (Abbildung mit freundlicher 

Genehmigung des Urban & Fischer Verlags/Elsevier GmbH, aus Mc Gavin und Zachary 2009 
8
) 

A) Die betroffenen Koronararterien am Ventrikel des linken Herzens treten deutlich als Stränge (Pfeile) mit 

verdickten Wänden hervor.  B) Ventralseite des Gehirns eines Hundes mit Hypothyreose. Die zerebralen 

Arterien zeigen segmentale, gelbe, verdickte und granuläre Atherome (Pfeile). 
 

Herzerkrankungen sind auch bei Menschenaffen weit verbreitet. Jedoch sind die zugrundeliegenden 

Ursachen bei Mensch und Affe unterschiedlicher Natur. Atherosklerotische Veränderungen sind bei 

Primaten nur äußerst selten vorliegende Befunde, obwohl sie häufig Blut-Lipidprofile haben, bei 

denen der Mensch als Risikopatient eingestuft werden würde.109 

So können bei in Gefangenschaft lebenden Schimpansen und Gorillas trotz einer relativ gesunden 

Zusammensetzung ihrer Futterration (diese enthält nur geringe Cholesterol-Mengen und wenig 

ungesättigte Fettsäuren) schon relativ früh in ihrem Leben hohe Serum-Cholesterolspiegel  gemessen 

werden. Und auch die Cholesterol-Profile von Schimpansen haben ähnliche HDL- und LDL-

Komponenten wie diejenigen des Menschen. Darüber hinaus kommen auch prädisponierende 

Faktoren, die das Risiko für die Entstehung atherosklerotischer Veränderungen beim Menschen 

erhöhen, wie beispielsweise eine durch zu hohe Salzaufnahme ausgelöste Hypertension oder 

Übergewicht bei Tieren in Gefangenschaft regelmäßig vor.109,110 

Aus diesem Grund ist es sehr wahrscheinlich, dass die erhöhte Neigung des Menschen zur 

Entwicklung atherosklerotischer Veränderungen auch auf andere Gründe (genetische Faktoren 

und/oder Umweltfaktoren) zurückzuführen ist.109,110 

Für die Erforschung der Pathogenese der Atherosklerose kamen im Laufe der Zeit verschiedene 

Tiermodelle zum Einsatz, bei denen atherosklerotsiche Läsionen entweder von selbst entstehen oder 

durch verschiedene Stimuli herbeigeführt werden können.111,112 Diese sind in der Diskussion im 

Kapitel 1.2.1 näher beschrieben. 
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1.4  Die Rolle von Monozyten und Makrophagen in der Atherosklerose  

Monozyten und Makrophagen nehmen eine Schlüsselrolle in der Entstehung der Atherosklerose 

ein.9,14,113 Die Auswanderung von Monozyten aus dem zirkulierenden Blut in die Intima von Arterien 

(siehe Abb. 10) wird als entscheidender Schritt in der Pathogenese dieser Erkrankung 

angesehen.9,52,57,115 

 

Abbildung 10:  Adhäsion von Leukozyten am Endothel einer Arterie beim Menschen (Abbildungen aus         

Davies et al. 1988 
114

) 

A) Leukozyten adhärieren an intaktem Endothel über einer atherosklerotischen Plaque. Im Vordergrund ist     

ein Endothelbezirk mit normal angeordneten Zellen, auf dem keine Leukozyten adhärieren (407-fache 

Vergrößerung). B) Vergrößerter Ausschnitt aus Bildteil A: Ein Leukozyt (wahrscheinlich ein Monozyt) beim 

Durchdringen des Endothels (Bildausschnitt aus A, 2035-fache Vergrößerung). C) Adhärente Leukozyten auf 

Endothelzellen (2200-fache Vergrößerung). D) Ein Leukozyt, der sich bereits unter den Rand einer Endothelzelle 

geschoben hat (3870-fache Vergrößerung).  

 

Man geht davon aus, dass die Monozyten in der Folge in der Intima und Subintima zu Makrophagen 

ausdifferenzieren.11 Makrophagen machen den größten Teil der Leukozyten in der 

atherosklerotischen Plaque aus.11,116,117 Sie spielen eine Rolle bei der Phagozytose, sind antigen-

präsentierende Zellen und sezernieren Zytokine, Chemokine, wachstumsregulierende Moleküle, 

Matrix Metalloproteinasen und andere hydrolytische Enzyme.9 

Insbesondere durch ihre Fähigkeit Zytokine, proteolytische Enzyme und Wachstumsfaktoren zu 

produzieren, nehmen sie entscheidenden Einfluss auf die Gewebeschädigung und Reparatur-

prozesse, die im Rahmen der Progression atherosklerotischer Läsionen auftreten.9  

Im Anschluss an die Differenzierung der Monozyten zu Makrophagen in den Atherosklerose-

Prädilektionsstellen und ihrer Aktivierung kommt es zur Aufnahme von Lipoproteinen. Diese 
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Vorgänge führen zur Freisetzung proinflammatorischer Zytokine, Chemokine und Wachstums-

faktoren, wodurch sie Einfluss auf die Migration und Proliferation von Zellen nehmen.80,113 

Makrophagen stellen außerdem die Hauptquelle für Schaumzellen dar, welche charakteristisch für 

atherosklerotische Plaques sind.55,80 Sie sind in der Lage, eine verstärkte Nachbildung ihres eigenen 

Zelltyps auszulösen, indem sie zur Oxidation von LDL beitragen, welches dann von Makrophagen 

phagozytiert wird.80  Die Oxidation von LDL bewerkstelligen sie auf unterschiedliche Arten: zum  

einen enzymatisch (vermittelt durch Lipoxygenase, Sphingomyelinase, Myeloperoxidase und 

sekretorische Phospholipase A2) und zum anderen durch reaktive Sauerstoffspezies (ROS).80,88,118  

Über die Sekretion von Macrophage colony-stimulating factor (M-CSF) und granulocyte macrophage 

colony-stimulating factor (GM-CSF) können sie die Proliferation von Monozyten induzieren, und 

durch die Freisetzung von PDGF, IL-1, TNF-α und TGF-β bewirken sie die Proliferation glatter 

Muskelzellen.76,80 Neben Wachstumsfaktoren können auch Wachstumsinhibitoren sezerniert 

werden.80  

Eine weitere Funktion von Makrophagen liegt in der Verstärkung der Leukozyten-Rekrutierung in 

atherosklerotische Plaques über TNF-α und IL-1 sowie durch Sekretion von MCP-1.88,119 Die 

Auswanderung von Monozyten in die Gefäßwand wird unter anderem über M-CSF, GM-CSF,         

MCP-1 und oxLDL gesteuert.80  

Des Weiteren produzieren Makrophagen auch chemotaktisch wirksame Moleküle für glatte 

Muskelzellen (wie beispielsweise TGF-β und PDGF) und fördern ihre Einwanderung in die 

atherosklerotische Plaque.80 

Durch Sekretion dieser proinflammatorischen Mediatoren werden Makrophagen somit zum 

Hauptmediator von Zellmigration und -proliferation. Demzufolge stellt die Zahl, der Aktivierungs-

zustand und die Lokalisation von Makrophagen einen bedeutenden Faktor dar, der bestimmt, ob 

eine Läsion weiter fortschreitet oder nicht.80  

Makrophagen fördern außerdem die Destabilisierung der fibrösen Schutzkappe und steigern damit 

das Risiko für eine Plaqueruptur. Dies wird hauptsächlich über die Sekretion Matrix Metallo-

proteinasen (MMPs) vermittelt, die die extrazelluläre Matrix degradieren.90 MMPs werden im  

Kapitel 2.2 beschrieben.  

Ein weiteres Charakteristikum von Makrophagen ist die Expression von tissue factor auf der 

Zelloberfläche. Dieser aktiviert nach Plaqueruptur die Koagulationskaskade und initiiert somit die 

Thrombusbildung.86,120 Die Expression von tissue factor auf Makrophagen kann durch T-Lymphozyten 

verstärkt werden. Letztere exprimieren CD154 (CD40L). Dieses bindet an CD40 auf der Oberfläche 

von Makrophagen und verstäkt so deren Expression von tissue factor.86,121 
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1.5 Thrombozyten 

1.5.1  Hämostase: Die physiologische Funktion von Thrombozyten  

Die physiologische Funktion der Thrombozyten besteht darin, blutende Wunden durch 

Thrombusbildung zu verschließen.122 Kommt es durch traumatische Einwirkungen zu einer Verletzung 

der Gefäßwand, wird durch Thrombozyten die Hämostase eingeleitet.123 

Bei der primären Hämostase wird zuerst ein noch fragiler, weißer Thrombus gebildet. Die Plättchen 

heften sich zunächst an subendotheliale Strukturen an (Adhärenz) und lagern sich dann mit weiteren 

Thrombozyten zusammen (Aggregation). Bei der sekundären Hämostase wird die Gerinnungskaskade 

aktiviert und es wird ein roter Thrombus gebildet, der durch Fibrin stabilisiert wird. Dies ermöglicht 

schließlich die Wundheilung.123 

 

 

1.5.2 Zur Rolle der Thrombozyten in der Atherosklerose 

Eine weitere Zellart, die neben Makrophagen eine bedeutende Rolle in der Initiation und Progression 

der Atherosklerose spielt, ist der Thrombozyt.9,14  

Die Interaktionen von Thrombozyten mit Endothelzellen und Leukozyten (siehe Abb. 11) können 

entzündliche und atherogene Prozesse an der Gefäßwand auslösen.124 Ein wichtiger Aspekt in   

diesem Zusammenhang ist, dass Thrombozyten die Rekrutierung von Leukozyten in die Gefäßwand 

bewirken können.13 Die Mechanismen der daran beteiligten Zellinteraktionen umfassen dabei sowohl 

autokrine als auch parakrine Signalwege, sowie direkte Rezeptor-Interaktionen und führen zu einer 

sich gegenseitig verstärkenden Aktivierung der beteiligten Zellen.124,125 

Die Interaktionen von Thrombozyten mit Endothelzellen werden im Kapitel 1.5.4 beschrieben, 

diejenigen von Thrombozyten mit Leukozyten in Kapitel 1.5.5.  
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Abbildung 11:  Interaktionsmöglichkeiten von Thrombozyten mit anderen Zellen während der 

Atherogenese (Abbildung modifiziert nach May et al. 2008 
124

) 

Blutplättchen können entzündliche Prozesse bei Monozyten, neutrophilen Granulozyten oder Endothelzellen 

hervorrufen, die in der Folge wiederum Reaktionen wie Zelladhäsion, Chemotaxis und Zellmigration, 

Proteolyse, Thrombose und Zelldifferenzierung zu Makrophagen und Schaumzellen auslösen. Damit wird ein 

atherogenes Milieu in der Gefäßwand geschaffen, das die Plaquebildung begünstigt. VCAM-1 = vascular cell 

adhesion molecule 1, ICAM-1 = intercellular cell adhesion molecule 1, PAI-1 = Plasminogen-Aktivator-Inhibitor 

Typ 1, Mac1 = macrophage-1 antigen, VLA-4 = very late antigen-4, CD62L = L-Selektin, NF-κB = nuclear factor 

'kappa-light-chain-enhancer' of activated B-cells, IL-8 = Interleukin 8; 

 

Des Weiteren sind Thrombozyten in der Lage, die Proliferation glatter Muskelzellen zu stimulieren 

(über TGF-β, PDGF und Serotonin) sowie durch Sekretion von MMP-2 zum Abbau der extrazellulären 

Matrix beizutragen.126  

Auch bei der Plaqueruptur oder -erosion spielen Thrombozyten eine bedeutende Rolle, da sie nach 

ihrer Aktivierung eine Thrombusbildung und ischämische Krankheitsbilder auslösen können.127     

Diese Prozesse werden im Kapitel 1.5.3 beschrieben. 

Obwohl Thrombozyten keinen Zellkern besitzen, sind sie trotzdem zu einer begrenzten 

Proteinsynthese fähig.124,128 Außerdem enthalten sie verschiedene Speichergranula (α-Granula, 

Lysosomen und dichte Granula) sowie ein komplexes Membransystem, wodurch sie in der Lage   

sind, eine Vielzahl von Stoffen wie Adhäsionsproteine (P-Selektin, vWF etc.), Wachstumsfaktoren 

(PDGF, TGF-β), Chemokine (RANTES, SDF-1, PF4 etc.) sowie zytokinähnliche Faktoren (CD40L,         

IL1β etc.) zu speichern und bei Bedarf schnell freizusetzen.124,129 Durch diese Stoffe werden    

Prozesse wie zum Beispiel die Zelladhäsion und -aggregation, Chemotaxis, Zellproliferation, 

Gerinnung und Proteolyse gesteuert, die wiederum entzündliche Prozesse beschleunigen.124 
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1.5.3  Zur Rolle der Thrombozyten in der Atherothrombose 

Dieselben Prozesse wie bei der physiologischen Hämostase laufen auch nach der Ruptur einer 

atherosklerotischen Plaque ab.127 

Durch die Plaqueruptur wird die darunterliegende Bindegewebsmatrix freigelegt, wodurch die 

Thrombusbildung initiiert wird.127 Die Adhäsion der Thrombozyten an die extrazelluläre Matrix wird 

dabei über Glykoproteine auf der Plättchenoberfläche vermittelt.122 Es kommt zu Interaktionen 

zwischen vWF und dem Glykoprotein Ib/IX/V (GPIb/IX/V) sowie Kollagen und dem Glykoprotein VI 

(GPVI).127 Durch diese Bindung kommt es (wie in Abb. 12 rechts dargestellt) zur Aktivierung und 

Formveränderung der Thrombozyten mit der Ausbildung von Pseudopodien.122,123,126 Diese 

aktivierten Thrombozyten werden als Echinospherozyten bezeichnet.130 

 

Abbildung 12:  Vergleich der Morphologie eines ruhenden Thrombozyten (links) und eines aktivierten 

Thrombozyten (rechts) (Abbildung mit freundlicher Genehmigung des Platelet Research Laboratory,   

Barcelona, Spanien 
130b

) 

Links:  elektronenmikroskopische  Aufnahme eines ruhenden Thrombozyten mit diskoider Form (10.000fache 

Vergrößerung). Rechts: adhärenter Thrombozyt mit Formveränderung und Pseudopodien (3.000fache 

Vergrößerung). 

 

Die Aktivierung führt zudem zu einer Konformationsänderung der Integrinrezeptoren αIIbβ3 

(GPIIb/IIIa, Fibrinogenrezeptor) und α2β1 (Kollagenrezeptor), die eine feste Bindung an die 

extrazelluläre Matrix vermitteln.126,131,132,133,134 

Außerdem kommt es zur Degranulation, was zur Verstärkung der Plättchenaktivierung führt und die 

Stabilisierung des Thrombus durch Fibrin einleitet.123  

Wie bereits beschrieben, kommt es durch diese Prozesse zu einer (Sub-)Okklusion des betreffenden 

Gefäßes (siehe Abb. 13) und möglichen Folgeerscheinungen wie dem akuten Myokardinfarkt, 

instabiler Angina pectoris und plötzlichem Herztod.16,27,49,102  
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Abbildung 13:   Atherosklerotische Plaque in drei verschiedenen Stadien (Abbildungen aus Davies 1996 
84

)  

Links: atherosklerotische Plaque mit einem gelben Lipidkern und einer fibrösen Schutzkappe. Mitte: 

atherosklerotische Plaque mit rupturierter fibrous cap und einem Thrombus, der sich teils innerhalb der 

Plaque und teils im Gefäßlumen befindet. Rechts: Infarzierte Arterie nach Plaqueruptur an der Plaqueschulter 

mit einem großen Thrombus, der einen großen Anteil des Gefäßdurchmessers verlegt. 

 

 

1.5.4 Interaktionen von Thrombozyten mit dysfunktionellem Endothel 

Zusätzlich zur Interaktion von Thrombozyten mit subendothelialer Matrix können Thrombozyten 

auch an ein intaktes und aktiviertes und somit dysfunktionelles Endothel adhärieren.127,135 

Entzündlich aktivierte Endothelzellen exprimieren Moleküle wie Fibronektin, ICAM-1, P-Selektin,      

E-Selektin, Integrin ανβ3 und vWF, die die Plättchenadhäsion fördern.135-137  

Ähnlich wie bei Gefäßverletzungen wird die Adhäsion von Thrombozyten an intaktes Endothel durch 

einen mehrstufigen Prozess gesteuert, der die Kontaktaufnahme (tethering), das Rollen (rolling) und 

die feste Adhäsion (adhesion) beinhaltet (siehe Abb. 14).126  

Das Entlangrollen der Plättchen am Endothel wird durch Selektine vermittelt.126,138 P-Selektin wird 

nach inflammatorischer Aktivierung von Endothelzellen innerhalb von Sekunden auf der 

Zelloberfläche exprimiert.126 Die Bindung der Thrombozyten an P-Selektin wird über PSGL-1 und den 

GP-Ib/IX/V-Rezeptor (von Willebrand-Rezeptor) vermittelt.139,140,141 GP-Ib/IX/V vermittelt also sowohl 

die Plättchenadhäsion an die subendotheliale Matrix als auch an intaktes Endothel.140 Auch das auf 

Endothelzellen exprimierte E-Selektin erlaubt einen losen Kontakt mit den Blutplättchen.126,137  

Integrine vermitteln schließlich die feste Adhäsion von Thrombozyten.122,126 Dabei kommt es zu 

Interaktionen zwischen dem Integrin αIIbβ3 (GPIIb/IIIa) und verschiedenen Brückenproteinen wie vWF, 

Fibronektin oder Fibrinogen, die dann an den Gegenrezeptor auf der Endothelzelle binden.136 Das 

Integrin ανβ3 auf der Oberfläche der Endothelzellen stellt einen gemeinsamen Rezeptor für alle 

Brückenproteine dar.136,143 
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Abbildung 14:   Interaktionen zwischen Thrombozyten und Endothelzellen in Form des rolling und der 

festen Adhäsion (Abbildung modifiziert nach Gawaz et al. 2005 
126

) 

Aktivierte Endothelzellen exprimieren P-Selektin. Dieses interagiert mit GPIbα und PSGL-1 auf der 

Thrombozytenoberfläche und vermittelt das rolling der Plättchen. Die feste Adhäsion wird durch Interaktion 

von αIIbβ3 und ανβ3 mit Fibrinogen als Brückenprotein vermittelt. PSGL-1 = P-Selektin Glykoprotein Ligand 1, 

αIIbβ3 = Glykoprotein IIb/IIIa, GPIbα = Glykoprotein Ibα; 

 

In neueren Untersuchungen unserer Arbeitsgruppe konnte GPVI als weiterer Rezeptor auf 

Thrombozyten identifiziert werden, der die Adhäsion von Thrombozyten an aktiviertes Endothel 

vermittelt.143 GPVI ist als Hauptrezeptor für Kollagen auf Thrombozyten bekannt, der bei arteriellen 

Gefäßverletzungen die Aktivierung, Degranulation und somit die primäre Hämostase vermittelt.143  

Im Falle der Adhäsion an intaktes Endothel nutzt GPVI das Matrixprotein Vitronektin als 

Bindungspartner. Dieses wird von aktivierten Endothelzellen sowohl in vitro als auch in vivo (auf 

Endothelzellen diabetischer Mäuse mit atherosklerotischen Veränderungen) gebunden.144-146 

 

 

1.5.5  Interaktionen von Thrombozyten mit Leukozyten 

Thrombozyten begünstigen die Anheftung von Leukozyten ans Gefäßendothel.124,126 Dies 

bewerkstelligen sie auf  verschiedene Arten: Erstens durch die Bildung von Koaggregaten mit 

Leukozyten. Dabei unterstützen sie die Bindung an die Gefäßwand einerseits dadurch, dass sie 

Adhäsionsrezeptoren auf den Leukozyten aktivieren, andererseits können sie als Brückenglied 

zwischen Leukozyten und Endothelzellen fungieren.124  

Zweitens können sie nach Adhäsion am Endothel Leukozyten chemotaktisch anlocken und 

gleichzeitig ihre Adhäsion durch Ausbildung einer „klebrigen Oberfläche“ begünstigen.124 Dabei 

kommt es durch Bindung von PSGL-1 auf Leukozyten und P-Selektin auf Thrombozyten zunächst zum 

rolling der Leukozyten.147,148 Anschließend wird über die Bindung von monozytärem Mac-1 

(Macrophage-1 antigen, CD11b/CD18) an thrombozytäres GPIbα und/oder anderen Rezeptoren der 

Plättchenoberfläche wie junctional adhesion molecule 3 (JAM-3), intercellular adhesion molecule 2 

(ICAM-2) oder Brückenproteinen wie Fibrinogen (welches an GPIIb/IIIa bindet) oder Kininogen (das 
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an GPIbα bindet), die feste Adhäsion vermittelt.149-154 Leukozyten binden dabei bevorzugt an 

Thrombozyten, da die Dichte von P-Selektin auf aktivierten Plättchen höher ist als auf 

Endothelzellen.135 

Drittens verändern Thrombozyten durch die bei der Degranulation freigesetzten Mediatoren die 

Eigenschaften von Endothelzellen in der Art, dass die Chemotaxis, Adhäsion und Transmigration von 

Monozyten unterstützt wird.126 Eine wichtige Rolle spielt hier das von Thrombozyten sezernierte 

Zytokin IL-1β, das die Expression von ICAM-1 und ανβ3 auf Endothelzellen verstärkt, was in der Folge 

zu einer gesteigerten Adhäsion von Monozyten führt.126,155  Außerdem verstärkt es die Sekretion von 

MCP-1 durch Endothelzellen und trägt so zur Leukozytenrekrutierung bei.155-157 Ein weiterer wichtiger 

Mediator, der zu Freisetzung von Chemokinen und zur Expression von Adhäsionsmolekülen führt, ist 

CD40-Ligand (CD40L, CD154). Durch Bindung an CD40 auf der Endothelzelloberfläche vermittelt er 

eine gesteigerte endotheliale Interleukin-8 (IL-8)- und MCP-1-Sekretion und verstärkt die Expression 

von E-Selektin-, VCAM-1- und ICAM-1 sowie die Expression von tissue factor durch 

Endothelzellen.158,159 

Überdies wird die Chemotaxis von Leukozyten durch Mediatoren wie platelet-activating factor (PAF) 

und macrophage inflammatory protein-1α (MIP-1α) gefördert.126 

Abbildung 15 gibt einen schematischen Überblick über die für die Atherogenese relevanten 

Interaktionen zwischen Thrombozyten und Monozyten. 

 

Abbildung 15:   Am Endothel adhärierende Thrombozyten rekrutieren und aktivieren Monozyten 

(Abbildung modifiziert nach Gawaz et al. 2005 
126

) 

Adhärente Thrombozyten interagieren mit Monozyten vornehmlich über PSGL-1/P-Selektin-Bindung bzw. über 

Mac-1/ GPIb bzw. Mac-1/αIIbβ3 (plus Fibrinogen-Brücke). Dabei lösen sie bei Monozyten die Sekretion von 

Chemokinen, Cytokinen und prokoagulatorischem tissue factor aus, verstärken die Expression von 

Adhäsionsmolekülen und Proteasen und induzieren die Differenzierung zu Makrophagen. Dies schafft ein 

atherogenes Milieu und fördert die Plaqueprogression. 
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2  Matrix Metalloproteinasen (MMPs) 

Matrix Metalloproteinasen (MMPs) bilden eine Familie von Zink (Zn2+)- und Kalzium (Ca2+)-

abhängigen Endopeptidasen, die in der Lage sind, die Bestandteile der extrazellulären Matrix 

abzubauen.160,161 Sie werden von vielen unterschiedlichen Zelltypen sezerniert und sind sowohl an 

physiologischen Gewebeumbauprozessen wie beispielsweise der Organentwicklung oder 

Wundheilung, als auch an pathologischen Gewebeumbauprozessen wie der Metastasierung von 

Tumoren, an entzündlichen Prozessen sowie an kardiovaskulären Krankheitsprozessen wie der 

Destabilisierung atherosklerotischer Plaques beteiligt.162,163 Mit Ausnahme von 6 membranständigen 

Vertretern werden alle anderen MMPs zunächst als Präproenzyme synthetisiert und nach ihrer 

Synthese im endoplasmatischen Retikulum als inaktive pro-MMPs konstitutiv in die extrazelluläre 

Matrix sezerniert.164,165  

 

 

2.1  Struktur der MMPs 

Alle MMPs bestehen aus homologen Sequenz-Abschnitten, wodurch sie eine relativ konservierte 

Struktur besitzen (siehe Abb. 16).165,166  

Am aminoterminalen Ende befindet sich zuerst das sogenannte Signalpeptid (Prä-Domäne), das für 

die Sekretion des Enzyms von Bedeutung ist.165,167 Demnach sind die meisten MMPs sezernierte 

Proteine. Es finden sich allerdings auch einige membranständige Vertreter.165  

Im Anschluss daran befindet sich die ca. 80 Aminosäuren lange Propeptid-Domäne (oder                    

Pro-Domäne), die bis zu ihrer Entfernung die Inaktivität des Enzyms gewährleistet.165,167  Sie wird bei 

der Aktivierung des Enzyms abgespalten.167  

Die katalytische Domäne ist für die proteolytische Aktivität des Enzyms verantwortlich.167  Sie ist ca. 

170 Aminosäuren lang und enthält ein Zink-Bindungsmotiv, ein Zink-Ion, sowie 2 bis 3 Calcium-Ionen, 

die zur Stabilität und Enzymaktivität benötigt werden.164 Die Matrix Metalloproteinasen 2 und 9 

besitzen zusätzlich drei zystinreiche Inserts, die zur Bindung und Spaltung von Kollagen und Elastin 

benötigt werden.168,169 

Bis auf MMP-7, MMP-23 und MMP-26 besitzen alle anderen MMPs noch eine Hämopexin-ähnliche 

Domäne, die mit der katalytischen Domäne über eine hinge- oder linker-Region verbunden ist.165,170  

Die Hämopexin-ähnliche Domäne nimmt Einfluss auf die Bindung der TIMPs (tissue inhibitors of 

matrix metalloproteinases, Inhibitoren der MMPs), die Substratbindung und auf proteolytische 

Eigenschaften.165,171 Die hinge-Region variiert zwischen den verschiedenen MMPs in ihrer Länge und 

Zusammensetzung und beeinflusst ebenfalls die Substratspezifität der MMPs.172  

Die membranständigen MMPs haben an ihrem carboxyterminalen Ende zusätzlich noch eine 

transmembranöse Domäne.167 
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Abbildung 16:  Grundstruktur der MMPs (Abbildung modifiziert nach Westermarck und Kähäri 1999 
173

) 

Am aminoterminalen Ende findet sich zunächst das Signalpeptid bzw. die Prä-Domäne, danach folgt die 

Propeptid- bzw. Pro-Domäne. Im Anschluss daran findet sich die katalytische Domäne mit dem gebundenen 

Zink-Ion und den bei MMP-2 und-9 vorkommenden zystinreichen Inserts. Carboxyterminal davon findet sich 

die hinge- oder linker-Region, die die katalytische Domäne mit der Hämopexin-ähnlichen Domäne verbindet. 

Bei den membranständigen MMPs folgt schließlich die Transmembrandomäne.  

 

 

2.2  Einteilung der MMPs 

In Abhängigkeit von ihrer Struktur und Substratspezifität werden die MMPs in weitere Untergruppen 

unterteilt: die Kollagenasen (MMP-1, -8, -13 und -18), die Gelatinasen (MMP-2 und -9), die 

Stromelysine (MMP-3, -10 und -11) und membranständige MMPs (MMP-14, -15, -16, -17, -24 und       

-25).163,167,173 

Außerdem gibt es noch 7 weitere MMPs, die sich nicht in die oben genannten Gruppen einordnen 

lassen. Bei ihnen handelt es sich um MMP-7, -12, -19, -20, -21, -23 und -28.163  

Die für die Atherosklerose relevanten MMPs sind in Tabelle 1 zusammengefasst. 
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Tabelle 1: Matrix Metalloproteinasen in atherosklerotisch veränderten Gefäßabschnitten          

(nach Dollery et al. 1995
160

, Shah 1998
28

, Westermarck und Kähäri 1999
173

, Creemers et al. 2001
167

, 

Galis und Khatri 2002
161

 und Visse und Nagase 2003
163

)  

Beschreibung von Gruppenzugehörigkeit, Substratspezifität, Stimuli und Vorkommen von MMPs in 

Zellen der atherosklerotischen Plaque. Molekulargewicht: Gewicht der enzymatisch aktiven Form in 

Klammern angegeben. kDA = Kilodalton, SMC = glatte Muskelzellen, oxLDL = oxidiertes LDL, eLDL = 

enzymatisch verändertes LDL. 
 

MMP Trivialname Unter- 

gruppe 

Mol.- 

gew. 

(kDa) 

Substrate Stimulus für 

Freisetzung 

Vorkommen in 

MMP-1 Kollagenase 1,  

interstitielle  

Kollagenase 

Kollagen-

asen 

52 

(41) 

Kollagen Typ I, II, III, 

V, VII, VIII und X, 

Aggrecan, Serpine, 

α2-Makroglobulin 
 

IL-1, TNF-α, 

Hyper-

cholesterin-

ämie 

Monozyten, 

Makrophagen, 

Schaumzellen,  

SMCs,  
Endothelzellen 

MMP-2 Gelatinase A Gelatin-

asen 

72 

(67) 

Gelatine, Kollagen 

Typ I, II, III, IV, V, 

VII und X, Elastin, 

Fibronektin, 

Laminin, Nidogen 

aktiviert proMMP-9 
und -13 

IL-1, TNF-α, 

Thrombin 

Monozyten, 

Makrophagen, 

Schaumzellen,  

SMCs,  

Endothelzellen 

MMP-3 Stromelysin 1 Strome-

lysine 

57 

(45) 

Proteoglykane, 

Laminine, 

Fibronektin, 

Vitronektin, 

Nidogen und 

Kollagen Typ IV, V, 
IX, X  

Aktiviert einige 

proMMPs 

IL-1, TNF-α, 

Plasmin, 

Mastzellde-

granulation, 

Hyper-

cholesterin-
ämie 

 

Makrophagen, 

Schaumzellen, 

SMCs 

MMP-7 Matrilysin 1 Matri-

lysine 

28 

(19) 

Gelatine, Elastin, 

Laminin, 

Fibronektin, 
Versikan 

(Proteoglykan), 

Kollagen Typ IV 

Hyper-

cholesterin-

ämie 

Makrophagen, 

Schaumzellen 

MMP-9 Gelatinase B Gelatin-

asen 

92 

(82) 

Gelatine, Laminin, 

Nidogen, Kollagen 

Typ I, II, III, IV, V, VII 

und X 

oxLDL, 

eLDL, 

Scherkräfte 

Monozyten, 

Makrophagen, 

Schaumzellen,  

SMCs 

MMP-12 Metallo-

elastase 

andere 

MMPs 

57 

(45) 

Elastin und diverse 

andere Proteine 

Plasmin Makrophagen 

MMP-14 MT1-MMP Membran- 
ständige 

MMPs 

66 Kollagen Typ I, II 
und III, Gelatine, 

Fibronektin, 

Laminin, 

Vitronektin, 

Aggrecan 
Aktivierung von  

Pro-MMP-2 

IL-1, TNF-α, 
oxLDL, eLDL 

Makrophagen, 
SMCs, 

Endothelzellen 
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2.3  Regulation der MMP-Aktivität 

Die Regulation der MMP-Aktivität geschieht auf unterschiedlichen Wegen. Erstens auf 

Transkriptionsebene bei der de novo-Synthese der MMPs, zweitens durch die Aktivierung inaktiver 

Proenzyme (Zymogene) und drittens durch die Hemmung der MMP-Aktivität durch 

physiologischerweise exprimierte Inhibitoren der MMPs, den sogenannten TIMPs – tissue inhibitors 

of matrix metalloproteinases.174 

 

2.4 MMPs in der Atherosklerose 

MMPs nehmen in der gesamten Entstehung der Atherosklerose eine wichtige Rolle ein, indem sie die 

Umbauvorgänge in den Blutgefäßen ermöglichen.160,161  

Entzündungszellen stellen eine wichtige Quelle für MMPs dar. Darüber hinaus können auch Zellen 

der Gefäßwand durch Entzündungszellen, wie beispielsweise Makrophagen, zur Produktion von 

MMPs angeregt werden.161,175  

Die Einwanderung von Leukozyten in die Intima als einleitender Schritt bei der Atherogenese, wird 

durch MMPs begünstigt. Dabei wird die Migration der Monozyten durch MMP-9 vermittelt, diejenige 

der T-Zellen durch MMP-2.176,177 Auch im späteren Verlauf, z.B. für die Einwanderung glatter 

Muskelzellen aus der Tunica muscularis in den Subintimalraum, spielen MMPs eine wichtige Rolle.178 

Weiterhin können auch T-Lymphozyten einen Einfluss auf die Expression von MMPs und den Abbau 

der fibrösen Schutzkappe nehmen. So kann die Expression von MMP-1 und -3 durch Makrophagen 

über eine Bindung von CD40L auf T-Zellen mit CD40 auf Makrophagen gesteigert werden.86  

Neben Entzündungszellen und glatten Muskelzellen können auch Thrombozyten eine regulierende 

Funktion für MMPs in der Atherosklerose einnehmen. Durch die Adhäsion der Thrombozyten an 

Endothelzellen (HUVECs) wird die endotheliale Expression von MT1-MMP, MMP-1, -2 und -9 

gesteigert. Dieser Prozess wird über CD40 vermittelt.179 Außerdem sind Thrombozyten über die 

Sekretion von MMP-2 selbst in der Lage, zum Abbau der extrazellulären Matrix beizutragen.126 

Die extrazelluläre Matrix atherosklerotischer Plaques besteht hauptsächlich aus Kollagen                  

Typ I und III und zu geringeren Anteilen aus Elastin und Proteoglykanen.5 Insbesondere Kollagen     

Typ I ist eines der am häufigsten vorkommenden Proteine in der fibrösen Schutzkappe der Plaque.180 

Durch die Bindung von Monozyten an Kollagen Typ I wird die Transkription und Sekretion von    

MMP-9 stimuliert.181 Dieser Vorgang kann durch eine gemeinsame Inkubation mit Thrombozyten 

noch deutlich verstärkt werden.180 Thrombozyten beeinflussen neben der MMP-Expression von 

Endothelzellen also auch die MMP-Aktivität bei Monozyten. Diese Zusammenhänge könnten die 

Überexpression von MMP-9 in vulnerablen Regionen atherosklerotischer Plaques erklären.180,182 

Auch an der Entstehung vulnerabler Plaques sind MMPs maßgeblich mitbeteiligt, indem sie nach 

Sekretion durch Makrophagen den Kollagenabbau in der fibrösen Schutzkappe vermitteln.24 Das 



II     SCHRIFTTUM 

 

 

 

29 

MMP-Spektrum aktivierter Makrophagen umfasst MMP-1, -2, -3, -8, -9 und -14.119,183 Makrophagen 

sezernieren außerdem Zytokine, die Gefäßzellen zur MMP-Produktion anregen.161  

Durch intrazelluläre Ansammlung von Lipiden, wie sie für Schaumzellen in atherosklerotischen 

Plaques charakteristisch ist, kommt es zu einer gesteigerten MMP-Expression durch diese Zellen.25,184 

Die in instabilen Plaques charakteristischerweise vorkommenden Schaumzellen sind die 

Hauptproduzenten der MMPs-1, -2, -3, -7 und -9.25,161,182,185 Außerdem produzieren sie MMP-14.161 

Insbesondere MMP-2, MMP-9 und MMP-14 werden mit der Entstehung vulnerabler, ruptur-

gefährdeter Plaques in Verbindung gebracht.23,186,187 Die Freisetzung von MMP-1 und MMP-3 aus 

Schaumzellen erfolgt, ohne dass hierfür ein weiterer Stimulus nötig ist.25 

Auch reaktive Stickstoff- und Sauerstoffspezies (wie z.B. NO- und O2-.), die zu oxidativem Stress 

führen, können die Umbauvorgänge der Gefäßwand modulieren.161 Dabei wird das Gleichgewicht 

zwischen MMPs und TIMPs so verschoben, dass es zu einem gesteigerten Abbau der extrazellulären 

Matrix kommt.161 Auch für H2O2 konnte eine MMP-regulierende Wirkung nachgewiesen werden.188 

Die Ansammlung von Schaumzellen in der Plaque steigert die Produktion reaktiver Sauerstoffspezies, 

wodurch es zu einer weiteren Aktivierung inaktiver MMPs in der Gefäßwand kommen kann.161,188  

Auch Mastzellen in der Schulterregion der Plaque können bei ihrer Degranulation zu einer ROS-

vermittelten Aktivierung von MMPs beitragen.70 Darüber hinaus kann auch eine Hyper-

cholesterinämie über oxidativen Stress zu einer exzessiven Umstrukturierung der Gefäßwand 

führen.161 

Neben oxidativem Stress sind auch mechanische Scherkräfte, die am Endothel angreifen, an der 

Regulation der MMPs beteiligt.174,189 Außerdem kommt es durch erhöhten transmuralen Druck zu 

einer gesteigerten Expression von MMP-2 und -9, was die Schlussfolgerung zulässt, dass MMPs auch 

an den initialen, durch Hypertension hervorgerufenen Umbauprozessen beteiligt sind.190 Darüber 

hinaus führt auch eine Hyperlipidämie zu einer gesteigerten MMP-Expression in atheromatösen 

Läsionen.191  

Diese Zusammenhänge erklären, weshalb die Inzidenz von akuten Koronarsyndromen durch Gabe 

von Lipidsenkern, Antioxidantien, β-Adrenorezeptorblockern und ACE-Hemmern reduziert werden 

kann.185,192-198 Dabei dürfte die Plaquestabilisierung durch eine direkte bzw. indirekte Hemmung der 

MMP-Aktivität in der vulnerablen Plaque ein wichtiger pathophysiologischer Mechanismus 

sein.25,174,184,191 

Die Rolle der MMPs in der Atherosklerose ist in Abbildung 17 schematisch dargestellt. 
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Abbildung 17:  Zur Rolle der MMPs in der Atherosklerose (Abbildung modifiziert nach Galis und             

Khatri 2002 
161

) 

Zellen der Gefäßwand produzieren und sezernieren MMPs. In atherosklerotischen Läsionen ist die Expression 

von MMPs verstärkt und das Spektrum der MMPs ist durch das Vorhandensein von Entzündungszellen, 

löslichen Faktoren, Zell-Zell- sowie Zell-Matrix-Interaktionen breit gefächert. Letztlich schwächen MMPs die 

Arterienwand und tragen somit zur Destabilisierung und Ruptur der Plaque bei.  

A) Zunächst kommt es zur Einlagerung von Lipoproteinen in der Intima sowie zur MMP-vermittelten 

Einwanderung von Monozyten und T-Lymphozyten. Die Adhäsion von Thrombozyten fördert die endotheliale 

MMP-Sekretion. B) Im Rahmen der Plaqueprogression kommt es zur Einwanderung von glatten Muskelzellen 

aus der Media und zur Differenzierung von Monozyten und glatten Muskelzellen zu Schaumzellen. T-Zellen 

regen Makrophagen und Schaumzellen über die Bindung von CD40L und CD40 zur weiteren MMP-Produktion 

an. ROS = reaktive Sauerstoffspezies; 
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3  Der Extracellular Matrix Metalloproteinase Inducer (CD147, EMMPRIN) 

Die Erstbeschreibung des Glykoproteins CD147 (EMMPRIN) fand im Jahr 1982 durch Biswas statt.199 

Es wurde damals zunächst als ein von Tumorzellen sezernierter Faktor beschrieben, der umliegende 

Fibroblasten zur Produktion von Kollagenase anregt und daher als tumor cell-derived collagenase 

stimulatory factor (TCSF) bezeichnet.199-201 Später konnte nachgewiesen werden, dass es neben der 

Kollagenase MMP-1 auch die Expression von MMP-3 und MMP-2 stimulieren kann.202,203 Dies führte 

zur Umbenennung des Proteins in Extracellular Matrix Metalloproteinase Inducer (EMMPRIN), um 

seine Rolle bei der Induktion von MMPs hervorzuheben.204 Inzwischen weiß man, dass es neben 

MMP-1, -2 und -3 auch an der Stimulierung und Aktivierung weiterer MMPs wie beispielsweise 

MMP-14 und MMP-15 sowie MMP-9 beteiligt ist.205-209 

CD147 (EMMPRIN) ist ein ubiquitär exprimiertes Protein.210 Abgesehen von seinem Vorkommen bei 

diversen neoplastischen Zellarten, wird es von vielen weiteren Zellarten exprimiert.211 Neben seiner 

Expression im Endometrium und auf glatten Muskelzellen, wird es auch auf epithelialen, 

endothelialen und hämatopoetischen Zellen sowie in Leukozyten in variierenden Mengen 

exprimiert.212-216 Auf Monozyten wird es konstitutiv exprimiert. Seine Expression auf Granulozyten 

und Lymphozyten hingegen ist abhängig von deren Aktivierungszustand.217  

Neben seiner Funktion als MMP-Inducer, spielt CD147 (EMMPRIN) eine bedeutende Rolle bei einer 

Reihe von physiologischen und pathologischen Prozessen.218 So übt es zum Beispiel eine wichtige 

Funktion bei der embryonalen Entwicklung, der Reproduktion (Spermatogenese und Implantation) 

und der neuronalen Entwicklung aus, und ist bei räumlichen Lernprozessen und Gedächtnis-

funktionen beteiligt.219-224 Über die Induktion von MMPs nimmt es auch Einfluss auf die 

Metastasierung von Tumoren.225 Es ist außerdem bei einer Reihe von pathologischen Prozessen wie 

der rheumatoiden Arthritis, dem Eintritt von Viren in Wirtszellen sowie bei kardiovaskulären 

Erkrankungen wie dem Myokardinfarkt, der Herzinsuffizienz und der Atherosklerose involviert und 

wird dabei verstärkt exprimiert.209,227-232 

Wie in Abbildung 18 schematisch dargestellt, handelt es sich bei CD147 (EMMPRIN) um ein 248 

Aminosäuren langes, integrales Membranprotein (Typ I), das abhängig vom Grad seiner 

Glykosylierung am aminoterminalen Ende eine molekulare Masse zwischen 45 und 65kDa 

besitzt.204,233 Es wird der Familie der Immunglobuline zugeordnet, die an Interaktionen zwischen 

Zelloberflächen und an der immunologischen Erkennung beteiligt sind.204,212,217,234  

Es besteht aus einer 185 Aminosäuren langen extrazellulären Domäne, einer 24 Aminosäuren langen 

transmembranösen und einer 39 Aminosäuren langen zytoplasmatischen Domäne.204 Der 

aminoterminale, extrazelluläre Teil von CD147 (EMMPRIN) besteht aus zwei immunglobulinartigen 

Regionen, die stark glykosyliert sind.235-239 Die transmembranöse Domäne besteht aus einer Abfolge 

von hydrophoben Aminosäuren und ist zwischen den verschiedenen Tierarten beinahe vollständig 

konserviert.218,234,240 Die zytoplasmatische Domäne ist nur moderat konserviert.240  
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Abbildung 18:  Struktur des Extracellular Matrix Metalloproteinase Inducer (CD147, EMMPRIN) (Abbildung 

modifiziert nach Nabeshima et al. 2006 
233

)  

ECI und ECII stellen die erste und zweite extrazelluläre Immunglobulin-Domäne dar, TD die transmembranöse 

Domäne, CD die zytoplasmatische Domäne. ECI ist an der Induktion von MMPs, der homophilen Bindung von 

CD147 (EMMPRIN) in cis- und trans-Stellung und der Interaktion mit Integrinen beteiligt. ECII ist verantwortlich 

für die Bindung von Caveolin-1, TD für die Bindung von CyP60 und CD für die Bindung von MCT-1 

(Monocarboxylat Transporter 1).  AS = Aminosäuren; 

 

Das Gen, das für CD147 (EMMPRIN) kodiert, wird als BSG bezeichnet und findet sich beim Menschen 

auf Chromosom 19.241 

 

 

4 Cyclophiline 

Cyclophiline stellen eine Familie von Proteinen dar, die in den Zellen von Säugetieren, Pflanzen, 

Insekten, Pilzen und Bakterien vorkommen.34 Im menschlichen Genom wurden bisher 17 

verschiedene Cyclophiline identifiziert.35,242 Drosophila besitzt mindestens 9 verschiedene, die 

Pflanze Arabidopsis thaliana 29 vermeintliche Cyclophiline und bei Saccharomyces cerevisiae 

konnten 8 Cyclophiline nachgewiesen werden.243-245  

Die beiden häufigsten Vertreter beim Menschen sind Cyclophilin A (CyPA) und Cyclophilin B (CyPB).246 

CyPB konnte in vielen unterschiedlichen Blutzellen (außer Erythrozyten) mit durchschnittlich 

250ng/mg Gesamtprotein nachgewiesen werden und kann im Blut in physiologischen 

Konzentrationen von 2,4-3,1nM vorkommen.247,248 
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4.1 Struktur und Vorkommen der Cyclophiline 

Die Struktur der Cyclophiline wurde während der Evolution stark konserviert. Alle Isoformen zeigen 

eine Sequenz-Homologie von über 50%.249  

Alle Cyclophiline weisen eine gemeinsame, etwa 109 Aminosäuren lange Domäne auf, die als 

Cyclophilin-like domain (CLD) bezeichnet wird. Sie wird von Domänen umgeben, die für die jeweiligen 

Cyclophiline spezifisch sind und sowohl mit ihrer Funktion als auch mit ihrer Zuordnung zu 

bestimmten subzellulären Kompartimenten assoziiert sind.34  

CyPA und CyPB stimmen zu 65% in ihrer Aminosäurenabfolge überein.250 CyPA ist ein 18 kDa großes 

Protein.251 Es besteht aus einer fassartigen, achtsträngigen, antiparallel verlaufenden β-Faltblatt-

Struktur, die an beiden Kopfenden von je einer α-Helix umgeben ist. Im Inneren des Fasses bilden 

hydrophobe Seitenketten (zum Teil aromatische Ringe) einen hydrophoben Kern, der die 

Bindungsstelle für Cyclosporin A darstellt.252,253 Bei CyPB handelt es sich um ein 21 kDa großes 

Protein.247 Der Aufbau von CyPB ähnelt stark dem von CyPA (siehe Abb. 19). Die Hauptunterschiede 

zu CyPA finden sich in zwei Schleifen-Regionen, die durch die Seitenketten der Aminosäuren 19-24 

und 152-164 gebildet werden, sowie am amino- und carboxyterminalen Ende.33,34  

 

Abbildung 19:  Gegenüberstellung der Struktur von CyPA (Kallen et al. 1991
253a

) und CyPB (modifiziert nach 

Kozlov et al. 2010 
253b

) 
 

CyPB wird durch eine abtrennbare Signalsequenz am aminoterminalen Ende dem endoplasmatischen 

Retikulum zugeführt.254,255 Ein zusätzliches, c-terminales Aminosäuremotiv bewirkt, dass es dort 

zurückgehalten wird.256 Infolge seines Vorkommens im endoplasmatischen Retikulum weist es im 

Zytoplasma ein netzartiges, diskontinuierliches Verteilungsmuster auf.257 Ein kleiner Anteil des CyPB 

konnte intrazytoplasmatisch auf der Außenseite des endoplasmatischen Retikulums nachgewiesen 

werden.258 Außerdem findet es sich auch extrazellulär.259 Seine Hauptlokalisation befindet sich 

jedoch im Zellkern, wobei die Bereiche des Nucleolus ausgespart sind.257  

Andere Isoformen finden sich beispielsweise im Zytosol, den Mitochondrien oder dem Zellkern.34 So 

kommen CyPA und CyP40 bei Säugetieren im Zytosol vor.34 CyPNK, das größte Cyclophilin mit einem 

großen, hydrophilen, positiv geladenen carboxyterminalen Ende, befindet sich ebenfalls im 

Zytosol.260,261 CyPC besitzt ebenso wie CyPB eine Aminosäuresequenz, die es dem endoplasmatischen 

Retikulum zuführt.255 CyPD besitzt eine Signalsequenz, die es zu den Mitochondrien dirigiert.262-264 

CyPE besitzt eine aminoterminale RNA-Bindungsregion und findet sich im Zellkern.265  
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4.2 Cyclophiline und Cyclosporin A 

Ein Merkmal, das die meisten Cyclophiline gemeinsam haben, ist ihre Affinität zu der immun-

supprimierenden Substanz Cyclosporin A (CsA). Dabei unterscheiden sich die Isoformen in ihrer 

Bindungsaffinität zu Cyclosporin A.266 Cyclophilin-Isoformen, die keine Affinität zu Cyclosporin A 

aufweisen, sind PPIL2 (peptidylprolyl isomerase (cyclophilin)-like 2, CyP60), PPIL6 (peptidylprolyl 

isomerase (cyclophilin)-like6), RANBP2 (RAN binding protein 2) und SDCCAG-10 (serologically defined 

colon cancer antigen 10).242  

CyPA und CyPB stellen die beiden wichtigsten Bindungsproteine für Cyclosporin A dar.247 Dabei zeigt 

CyPB eine zehnmal höhere Affinität zu Cyclosporin A als CyPA.267 

Die Bindung von Cyclosporin A an Cyclophiline (siehe Abb. 20) führt zur Bildung von Komplexen, die 

die Phosphataseaktivität von Calcineurin hemmen.268 Dadurch wird die Transkription von Genen, die 

Cytokine wie beispielsweise IL-2 kodieren, in T-Lymphozyten verhindert und eine immun-

supprimierende Wirkung erzielt.268,269  

 

Abbildung 20: Immunsupprimierende Wirkung des intrazellulären CyPA-CsA-Komplexes (Abbildung 

modifiziert nach Seizer et al. 2014 
32

) 

Das im Rahmen einer medikamentösen Therapie angewandte Cyclosporin A penetriert die Zellmembran und 

bindet intrazellulär an CyPA. Der CyPA-CsA-Komplex wiederum bindet an Calcineurin und hemmt seinerseits 

die Calcineurin-vermittelte NFAT-Aktivierung in T-Zellen. CsA = Cyclosporin A; NFAT = nuclear factor of 

activated T-cells; 

 

 

 

 



II     SCHRIFTTUM 

 

 

 

35 

4.3 Peptidyl-Prolyl-cis/trans-Isomerase-Aktivität der Cyclophiline 

Ein weiteres gemeinsames Merkmal der meisten Cyclophiline ist ihre enzymatische Wirkung als 

Peptidyl-Prolyl-cis/trans-Isomerasen (PPIasen). Sie katalysieren die Umwandlung von trans- und cis-

Isomeren von Peptid-Bindungen, an denen die Aminosäure Prolin beteiligt ist (siehe Abb. 21).251 

Allerdings gibt es auch in dieser Gruppe Vertreter, die eine Ausnahme hiervon darstellen. Dabei 

konnte eine positive Korrelation zwischen der fehlenden PPIase-Aktivität und der Unfähigkeit an 

Cyclosporin A zu binden, festgestellt werden.242  

Peptidbindungen haben einen partiellen Doppelbindungscharakter und können daher in einer cis- 

und trans-Konformation vorliegen. Die trans-Konformation, bei der sich die Seitenketten 180 Grad 

gegenüberliegen (siehe Abb. 21, linke Seite), ist energetisch und räumlich günstiger als die cis-

Konformation, bei der sich die Seitenketten auf derselben Seite befinden (siehe Abb. 21, rechte 

Seite). Peptidbindungen werden von Ribosomen daher normalerweise in dieser Konformation 

synthetisiert.34 99,95% aller Peptidbindungen liegen in der trans-Konformation vor. Peptidbindungen 

an denen die Aminosäure Prolin beteiligt ist, liegen bis zu 6% in der cis-Konformation vor.270 Die 

spontane Isomerisierung der cis- in die trans-Konformation ist ein langsam ablaufender, 

energieverbrauchender Prozess und daher der limitierende Schritt bei der Proteinfaltung. 

Cyclophiline stabilisieren und beschleunigen diese Umwandlung und nehmen dadurch eine zentrale 

Rolle bei der Faltung von Proteinen ein.249,271  

 

Abbildung 21:  Schematische Darstellung der cis- und trans-Isomerie bei einer Peptidbindung zwischen 

Prolin und einer anderen Aminosäure (P1) (Abbildung modifiziert nach Wang und Heitman 2005 
34

) 

Die Pfeile deuten an, dass die Reaktion normalerweise vermehrt in Richtung der energetisch günstigeren trans-

Konformation abläuft. PPIasen fördern die Umwandlung in die cis-Konformation. Die griechischen Buchstaben 

geben die C-Atome des Prolins an, P2 bezeichnet eine dritte Aminosäure am anderen Ende des Prolins. 

 

Das erste Protein mit PPIase-Aktivität wurde 1984 aus der Rinde einer Schweineniere isoliert und 

später als CyPA identifiziert.271-273 Kurze Zeit danach konnte eine weitere, sezernierte PPIase 

identifiziert werden, die dann als CyPB bezeichnet wurde.254,274  
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4.4 Weitere Funktionen der Cyclophiline 

Cyclophiline besitzen mannigfaltige Funktionen im Organismus. Obwohl sie mit vielfältigen zellulären 

Prozessen wie beispielsweise der Infektiosität von Viren, der Funktion als Chaperon, 

Mitochondrienfunktionen, Apoptose und der Regulierung des Proteintransports sowie der 

Zellkommunikation in Verbindung gebracht werden, wird ihre physiologische Rolle bislang nur 

unvollständig verstanden.275-281  

Auf die Funktionen von Cyclophilin B wird in den folgenden Kapiteln genauer eingegangen. 

 

 

4.5 Biologische Effekte von Cyclophilin B 

Wie schon zuvor beschrieben, ist CyPB als ein im endoplasmatischen Retikulum ansässiges 

Cyclophilin an der post-translationalen Faltung von Proteinen beteiligt.282  

Bei Pferden der Rasse Quarter Horse konnte eine autosomal rezessiv vererbbare, degenerative 

Hauterkrankung (Hyperelastosis cutis) beschrieben werden, die durch eine missense-Mutation in 

CyPB ausgelöst wird. Sie ist gekennzeichnet durch eine starke Überdehnbarkeit der Haut, schweren 

Läsionen am Rücken und starker Narbenbildung. Aufgrund der schlechten Behandlunsmöglichkeiten 

müssen die meisten betroffenen Tiere euthanasiert werden.283,284  

Bei CyPB-knockout-Mäusen konnte eine schwere Form von Osteogenesis imperfecta ausgelöst 

werden, eine Erkrankung mit einer Vielzahl von Defekten in kollagen-enthaltenden Strukturen wie 

Knochen, Haut und Bindegewebe. Die Tiere entwickelten schon frühzeitig eine ausgeprägte Kyphose 

und Osteoporose. Diese Feststellung legt nahe, dass CyPB eine bedeutende Rolle bei der der Bildung 

von Kollagen spielen könnte.282  

Des Weiteren konnte eine Beteiligung von intrazellulärem, an der zytoplasmatischen Seite vom 

endoplasmatischen Retikulum lokalisiertem CyPB bei Hepatitis C-Infektionen festgestellt werden. 

Ihm kommt eine  entscheidende Bedeutung für die effiziente Replikation des Virus zu. Es interagiert 

mit der RNA-Polymerase NS5B des Hepatitis C-Virus und stimuliert so deren Aktivität, wodurch 

wiederum die Virusreplikation gesteigert wird.258 

Im Zellkern ist es zusammen mit Prolaktin an der Regulation der Transkription und letztlich an der 

Zellproliferation beteiligt.285 Man vermutet, dass diese Effekte über eine Konformationsänderung des 

Transkriptionsfaktors Stat5 ausgelöst werden, welche wiederum über die PPIase-Aktivität von CyPB 

vermittelt wird.285 

CyPB kann, wie schon beschrieben, auch extrazellulär vorkommen.247 Es wurde zum Beispiel in 

Muttermilch und Plasma nachgewiesen und kann dort Konzentrationen von bis zu 150µg/ml 

erreichen.247,274,286 Extrazellulärem CyPB fehlt die aminoterminale Sequenz, die für die Lokalisation im 

endoplasmatischen Retikulum zuständig ist.255  

Die Sekretion von CyPB kann von einer Reihe von Zellen durch verschiedene Auslöser erfolgen.287 So 

können beispielsweise glatte Muskelzellen CyPB als Reaktion auf oxidativen Stress freisetzen.288 
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Ebenso kann eine spezifische und schnelle Sekretion von CyPB durch Cyclosporin A ausgelöst werden. 

Dabei wird CyPB über den konstitutiven Sekretionsweg in voller Länge in den Extrazellularraum 

sezerniert.255,267 Dies konnte durch Versuche an epidermalen Keratinozyten, Nierenepithelzellen, 

embryonalen Nierenzellen, und epithelialen Tumorzellen aus dem Gebärmutterhals belegt 

werden.255,267,289,290 Auch hypophysäre Zellen können CyPB sezernieren.  Als Stimuli hierfür dienen 

Östradiol, Insulin sowie epidermal growth factor (EGF).291 Eine spontane Sekretion von CyPB konnte 

für Chondrozyten, Fibroblasten und Pankreastumorzellen nachgewiesen werden.292-294 

Extrazelluläres CyPB ist ebenso wie CyPA ein starker proinflammatorischer Mediator.35 Jedoch ist es 

alleine nicht in der Lage, entzündungsfördernde Cytokine zu induzieren.295  

In Körperflüssigkeiten konnten als Reaktion auf entzündliche Stimuli große Mengen CyPB 

nachgewiesen werden.296 So konnten bei schwerer Sepsis erhöhte CyPB-Spiegel im Serum erkrankter 

Patienten gefunden werden.297 Auch bei Asthma-Patienten konnten, im Vergleich zu Kontrollgruppen 

gesunder Personen, erhöhte CyPB-Spiegel in Spülproben aus der Nase nachgewiesen werden. Dies 

lässt die Vermutung zu, dass CyPB zur Rekrutierung von proinflammatorischen Leukozyten 

beiträgt.298  

Die Sekretion von CyPB durch Chondrozyten lässt vermuten, dass es eine Rolle bei 

Gelenkerkrankungen wie der rheumatoiden Arthritis spielen könnte.293 

Bei HIV-Infektion konnten ebenfalls erhöhte CyPB-Spiegel nachgewiesen werden. Dabei waren die 

Werte im Vergleich zum physiologischen Wert um das 1,6fache erhöht.248 Man vermutet, dass CyPB 

die Pathogenese der HIV-Infektion beeinflusst, indem es mit dem Hüll-protein gp120 interagiert. 

Dabei könnte es entweder durch die PPIase-Aktivität des CyPB zu einer Konformationsänderung des 

gp120 kommen, was die Viruspenetration vereinfacht oder alternativ das Andocken der Virionen 

durch einen gp120/CyP-Komplex erleichtert werden.248 Auch die Infektiosität humaner onkogener 

Papillomaviren wird durch CyPB beeinflusst. Dabei triggert auf der Zelloberfläche lokalisiertes CyPB 

die Internalisierung der Viruspartikel.299  

Neben diesen entzündlichen und infektiösen Erkrankungen, konnte auch eine Beteiligung von CyPB 

bei tumorösen Erkrankungen nachgewiesen werden. So konnte zum Beispiel eine gesteigerte CyPB-

Expression beim Mammakarzinom festgestellt werden. Dabei wird vermutet, dass CyPB die 

Zellproliferation und -migration beeinflusst, indem es die Expression von Hormonrezeptoren und 

Genprodukten beeinflusst.300 CyPB wird auch bei 80-90% der hepatozellulären Karzinome und 

Kolonneoplasien überexprimiert. Es konnte nachgewiesen werden, dass es Tumorzellen vor Hypoxie 

und Apoptose, die durch Chemotherapeutika hervorgerufen werden, schützt.35 Außerdem konnte ein 

protektiver Effekt von CyPB auf Hepatozyten gegenüber oxidativem Stress festgestellt werden.301  
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4.6 Cyclophilin B und CD147 (EMMPRIN) 

Extrazelluläres CyPB ist an der Kommunikation zwischen Zellen und an der Signalgebung bei 

entzündlichen Prozessen beteiligt.35 

Es kann Signale, wie beispielsweise die Freisetzung von Ca2+ sowie die Aktivierung von Proteinkinasen 

in Zielzellen auslösen.302,303 Dabei konnte CD147 (EMMPRIN) als Hauptsignalrezeptor für CyPB 

identifiziert werden, der die Signale in Zielzellen überträgt.287,302  

CyPB besitzt eine starke chemotaktische Wirkung auf neutrophile Granulozyten und T-Lymphozyten, 

die über CD147 (EMMPRIN) vermittelt wird.296,302 Auch die Migration von Makrophagen konnte  

durch CyPB ausgelöst werden.295,304 Dies konnte durch Versuche mit Antikörpern gegen CD147 

(EMMPRIN) belegt werden, bei denen der chemotaktische Effekt von CyPB auf Leukozyten 

aufgehoben werden konnte.302 Diese Eigenschaft zeigt, dass es in der akuten Phase von 

Entzündungen zur Infiltration von Leukozyten beitragen kann und so das Entzündungsgeschehen 

reguliert.246,295,296,302,305  

Eine weitere Funktion von sezerniertem, extrazellulärem CyPB, die über CD147 (EMMPRIN) 

vermittelt wird, ist die integrin-vermittelte, feste Adhäsion von T-Lymphozyten an die extrazelluläre 

Matrix.296,306 Dies konnte dadurch belegt werden, dass Antikörper gegen CD147 (EMMPRIN) die 

Adhäsion der T-Zellen verhindert.296 Dieser Effekt betrifft vornehmlich CD4+-T-Zellen (Memory-T-

Zellen), was die Hypothese untermauert, dass es zur Regulierung der Infiltration bestimmter T-Zell-

Subpopulationen in entzündlich veränderte Gebiete beiträgt.296  

Sowohl für die CyPB/CD147(EMMPRIN)-vermittelten Signalkaskaden, als auch für die 

chemotaktischen Wirkungen von CyPB und die CyPB/CD147(EMMPRIN)-vermittelte Adhäsion von     

T-Lymphozyten an die extrazelluläre Matrix, ist die zusätzliche Bindung von CyPB an Proteoglykane, 

die in der extrazellulären Matrix sowie auf T-Zellen, Granulozyten und Makrophagen vorkommen, 

erforderlich.218,296,306  Im Speziellen handelt es sich dabei um Glykosaminoglykane der Heparansulfat-

Familie.307 Sie dienen auf diesen Zellen vermutlich als Hauptbindungsstelle für Cyclophiline.218 So 

konnten durch Entfernung dieser Proteoglykane von der Zelloberfläche Signalkaskaden in 

neutrophilen Granulozyten ausgeschalten, sowie die Chemotaxis von neutrophilen Granulozyten und 

T-Zellen aufgehoben werden.306,308  

Die Bindung von CyPB an die Proteoglykane und CD147 (EMMPRIN) wird über zwei verschiedene 

Bindungsstellen vermittelt.296 Die Bindung an CD147 (EMMPRIN) wird über eine Bindungsstelle im 

konservierten Kern von CyPB bewerkstelligt, was erklärt, dass Chemotaxis und Ca2+-Signale auch 

durch CyPA ausgelöst werden können.296 Allerdings werden diese Effekte effizienter durch CyPB 

ausgelöst als durch CyPA.296 Die Bindung an Heparansulfat wird durch eine Sequenz im 

aminoterminalen Ende von CyPB vermittelt, die spezifisch für CyPB ist. Dies erklärt die Tatsache, dass 

die feste Adhäsion von T-Zellen nur durch CyPB ausgelöst werden kann.296  

Die Aminosäurereste des katalytischen Zentrums der Cyclophiline sind entscheidend für die 

Signalvermittlung in Zielzellen und die chemotaktische Aktivität dieser Proteine.218 So können 

beispielsweise CyPA-Mutanten, denen die PPIase-Aktivität fehlt, keine Signalkaskaden in Zielzellen 

mehr auslösen.308 Dies lässt die Schlussfolgerung zu, dass die Signale am CD147(EMMPRIN)-Rezeptor 

durch die PPIase-Aktivität der Cyclophiline ausgelöst werden, die nur eine schwache Bindung von 
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Ligand und Rezeptor erfordern.218 CyPB zeigt nur schwache und vorübergehende Interaktionen mit 

CD147 (EMMPRIN), die vergleichbar mit einem Enzym/Substrat-Komplex sind. Die Interaktion mit 

Heparansulfat führt zu einer Anreicherung von CyPB in der Umgebung des CD147(EMMPRIN)-

Rezeptors.306,309 Dabei nimmt das Heparansulfat keinen Einfluss auf die enzymatische Aktivität von 

CyPB, sodass dieses die Asp179-Pro180-Bindung der extrazellulären Domäne von CD147 (EMMPRIN) 

isomerisieren kann, wodurch wiederum intrazelluläre Signalkaskaden in den Zielzellen ausgelöst 

werden können.306 Dies könnte ein Ansatz für künftige therapeutische Maßnahmen sein, um den 

durch Cyclophiline vermittelten Entzündungsprozess zu modulieren.306 

Neben den bisher beschriebenen Funktionen hat die Interaktion von CyPB und CD147 (EMMPRIN) 

auch Einfluss auf die Infektiosität des Masernvirus. So konnte seine Infektiosität durch Antikörper 

gegen CD147 (EMMPRIN) in vitro um 40% reduziert werden, wodurch bewiesen werden konnte, dass 

es CD147 (EMMPRIN) als Rezeptor benutzt.310  

 

 

4.7  Die Rolle von Cyclophilin A und B in der Atherosklerose  

Die Rolle von CyPA in Bezug auf atherosklerotische Prozesse wurde in vielen Studien ausführlich 

untersucht. Die gewonnen Daten belegen, dass es einen wichtigen (pro)atherogenen Stimulus für die 

Entwicklung der Atherosklerose darstellt.51 

CyPA, sowie sein Rezeptor CD147 (EMMPRIN), konnten in histopathologischen Untersuchungen 

atherosklerotischer Plaques von ApoE-knockout-Mäusen, die als Tiermodell für Atherosklerose 

dienen, nachgewiesen werden. Dabei scheint eine Kolokalisation von CyPA und eingewanderten 

Monozyten und Makrophagen vorzuliegen.311-315  

Darüber hinaus nimmt CyPA direkten Einfluss auf Zellen, die an der Entstehung der Atherosklerose 

beteiligt sind.51 Hierzu gehören Endothelzellen, Monozyten/Makrophagen sowie die daraus 

entstehenden Schaumzellen, glatte Muskelzellen sowie Thrombozyten.13,51,124,316 

CyPA wird unter anderem von dysfunktionellen Endothelzellen freigesetzt.51 Als Reaktion auf 

Risikofaktoren wie zum Beispiel Bluthochdruck, Hyperlipidämie, Hyperglykämie, Nikotinabusus oder 

der Anwesenheit von Chlamydia pneumoniae werden von diversen Zellen in der Arterienwand 

Entzündungsmediatoren und reaktive Sauerstoffspezies freigesetzt, die zu endothelialer Dysfunktion 

und Freisetzung von CyPA führen.51,317-320  

Die Endothelzellen werden durch extrazelluläres CyPA zur Expression von Adhäsionsmolekülen wie 

beispielsweise ICAM-1, VCAM-1 oder E-Selektin angeregt. Dies ist eine wichtige Grundlage für das 

Auswandern von Entzündungszellen im Rahmen der Plaqueentstehung.315,317,318,321 

Außerdem führt CyPA zur Apoptose von Endothelzellen.313 Während es in niedrigen Konzentrationen 

in vitro zur Proliferation von Endothelzellen führt, bewirken hohe CyPA-Konzentrationen eine 

verminderte Lebensfähigkeit derselben.318 
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Neben Endothelzellen hat CyPA auch eine breitgefächerte Wirkung auf Leukozyten. Es beeinflusst 

unter anderem die Leukozytenrekrutierung. So stellt das auf den Endothelzellen durch CyPA 

induzierte E-Selektin einen wichtigen Bindungspartner für das auf Leukozyten exprimierte PSGL-1 

dar. Auf diese Weise steigert es das rolling von Leukozyten.322 Über die Induktion des Adhäsions-

moleküls VCAM-1 auf Endothelzellen beeinflusst es darüber hinaus die feste Adhäsion von 

Leukozyten.315 VCAM-1 spielt eine wichtige Rolle für die Atherogenese.323 Es stellt einen Liganden für 

das Integrin VLA-4 dar, das vornehmlich auf Lymphozyten und Monozyten exprimiert wird und 

vermittelt somit die selektive Adhäsion mononukleärer Zellen am Endothel.324  

Außerdem besitzt CyPA eine starke chemotaktische Wirkung auf Monozyten, neutrophile und 

eosinophile Granulozyten sowie T-Zellen.296,308,325-329 Auf diese Weise bewirkt es eine Akkumulation 

von Leukozyten im Bereich atherosklerotischer Läsionen.51  

Die in die Intima ausgewanderten Entzündungszellen werden weiter durch die Wirkungen von CyPA 

beeinflusst:  

So bewirkt CyPA zum Beispiel die Proliferation von Makrophagen, was als eine 

Kompensationsreaktion zur Elimination der exzessiven Lipidansammlungen in der Gefäßwand 

angesehen werden kann und letztlich zu einer vermehrten Schaumzellbildung führt.321,330,331  

Außerdem bewirkt CyPA die Aktivierung  von Makrophagen.332 Dies führt über einen NF-κB-

gesteuerten Signalweg zur Bildung von proinflammatorischen Zytokinen wie z.B. TNFα, IL-6, IL-8, 

MCP-1, IL-1β, MMPs und tissue factor.324,333 Über diesen Signalweg kommt es auch zu einer 

gesteigerten Expression des Zytokins M-CSF.314 Dieses nimmt eine bedeutende Rolle in der 

Umwandlung von Monozyten zu Schaumzellen ein, indem es eine vermehrte Expression des 

Scavenger-Rezeptors A bewirkt und somit die Aufnahme modifizierter Lipide ermöglicht.315 

Auch die Bildung von Matrix Metalloproteinasen wird durch CyPA beeinflusst.334 MMPs stellen einen 

wichtigen Faktor für die Progression der Plaque dar, indem sie die Einwanderung der 

Entzündungszellen und glatter Muskelzellen in die Gefäßwand begünstigen, sowie den Abbau der 

fibrous cap vermitteln und so maßgeblich zur Entstehung vulnerabler Plaques beitragen.24,176,177,178  

Im Rahmen der Differenzierung von Monozyten und Makrophagen zu Schaumzellen kommt es zu 

einer gesteigerten Sekretion von CyPA sowie einer vermehrten Oberflächenexpression von CD147 

(EMMPRIN) auf der Schaumzelloberfläche. Die Bindung von CyPA an CD147 (EMMPRIN) führt 

letztlich zu einer gesteigerten Sekretion von MMP-9.314 

Außer von Endothelzellen und Makrophagen/Schaumzellen wird CyPA auch von glatten Muskelzellen 

sezerniert und bewirkt deren Proliferation und Migration.319,335 Auf diese Weise trägt es zum 

vaskulären remodeling während der Atherogenese bei.335 

Thrombozyten stellen im Rahmen der Atherosklerose ebenfalls wichtige Entzündungszellen dar.124 

Einerseits können sie die Rekrutierung von Leukozyten vermitteln, andererseits können sie durch die 

Sekretion von Chemokinen andere Zellen anlocken.13,124,129 CyPA führt über die Bindung an CD147 

(EMMPRIN) auf der Thrombozytenoberfläche zu deren Aktivierung.316,336 Dies führt zu vermehrten 

Expression von Adhäsionsmolekülen auf der Plättchenoberfläche und schließlich zur Adhäsion von 

Thrombozyten am Endothel. Im Falle einer Plaqueerosion oder -ruptur könnten diese Prozesse 

letztlich zur Thrombusbildung führen.  
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Neben den zahlreichen in vitro-Versuchen konnte der Einfluss von CyPA auf die Entstehung 

atherosklerotischer Veränderungen auch in vivo bestätigt werden. In einer Untersuchung von Nigro 

et al. konnte an ApoE-CyPA-Doppel-knockout-Mäusen, die für 4 Wochen mit einer cholesterinreichen 

Diät gefüttert wurden, eine deutlich verminderte Bildung atherosklerotischer Veränderungen im 

Vergleich zu reinen ApoE-knockout-Mäusen, die als Tiermodell für Atherosklerose dienen, 

beschrieben werden. Die reduzierte Plaquebildung ist dabei auf ein vermindertes CyPA-vermitteltes 

Entzündungsgeschehen zurückzuführen, das unter anderem mit einer reduzierten Einlagerung von 

LDL in der Wand der Aorta und einer verminderten Expression von Scavenger-Rezeptoren 

einhergeht. Auch eine verminderte Expression von VCAM-1 im Aortenbogen  sowie eine reduzierte 

Apoptoserate von Endothelzellen stehen damit in Zusammenhang.315 

Über das Vorkommen von CyPB in der atherosklerotischen Plaque, seinen Einfluss auf die Regulation 

von MMPs und somit seine potentielle Rolle für die Plaqueprogression und -destabilisierung konnten 

in der Literatur keine konkreten Daten gefunden werden.  

Die in vitro nachgewiesene chemotaktische Wirkung von CyPB auf Entzündungszellen wie 

neutrophile Granulozyten, T-Zellen und Makrophagen  zeigt, dass es an inflammatorischen Prozessen 

beteiligt ist.295,296,302 Jedoch konnten in der Literatur keine Hinweise auf die Beteiligung an den 

entzündlichen Prozessen der Atherosklerose gefunden werden. 

Die Wirkung von CyPB auf Thrombozyten wurde bereits in Vorarbeiten unserer Arbeitsgruppe 

untersucht. Durch die Einwirkung von CyPB kommt es bei Thrombozyten zu einer gesteigerten 

Expression von Adhäsionsmolekülen. Dies konnte durch gesteigerte Adhäsivität (rolling und 

Adhäsion) von Thrombozyten in Flusskammerexperimenten und in vivo bewiesen werden.316   

 

 

5 Cyclosporin A (CsA) bei entzündlichen Erkrankungen 

Die Wanderung von Leukozyten spielt eine bedeutende Rolle bei entzündlichen Erkrankungen. Die 

Beteiligung von CyPA bei atherosklerotischen Prozessen, die enge strukturelle Verwandtschaft 

zwischen CyPA und CyPB, das Vorkommen erhöhter CyPB-Konzentrationen bei entzündlichen 

Geschehen, sowie die Fähigkeit von CyPB, die Migration von Makrophagen, T-Zellen und 

neutrophilen Granulozyten auszulösen, lassen auch eine Beteiligung von CyPB bei der Entstehung der 

Atherosklerose vermuten.32,33,51,250,295,296,302 

Neuere Forschungen zeigen, dass die Antagonisierung der Cyclophilin-Wirkungen eine 

therapeutische Möglichkeit darstellen könnte, entzündliche Erkrankungen, die mit der Wanderung 

von Leukozyten einhergehen, zu reduzieren.337 Eine Möglichkeit hierfür besteht in der 

therapeutischen Anwendung von Cyclosporin A (CsA). 

Die Behandlung mit Cyclosporin A ist jedoch mit einer Reihe von Nebenwirkungen verbunden. Hierzu 

gehören beispielsweise eine nephrotoxische, hepatotoxische und neurotoxische Wirkung, das Risiko 

für die Entwicklung von Diabetes mellitus und Bluthochdruck sowie Hyperkaliämie.338-340  
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Auch eine erhöhte Disposition für die Entstehung von atherosklerotischen Veränderungen und die 

Entwicklung von Hyperlipidämien stehen im Zusammenhang mit einer Cyclosporin A-Behandlung.340 

In diesem Zusammenhang ist es wichtig, nochmals zu erwähnen, dass es durch Cyclosporin A zu einer 

Sekretion von CyPB kommt.255,267  

Darüber hinaus stellt die immunsupprimierende Wirkung von Cyclosporin A eine unerwünschte 

Wirkung für einen möglichen therapeutischen Einsatz von Cyclosporin A zur Unterdrückung der 

Cyclophilin-Wirkungen dar. Aus diesem Grund ist man auf der Suche nach Cyclosporin A-Derivaten, 

deren immunsupprimierende Wirkung aufgehoben wurde.  

 

 

5.1 Das nicht immunsuppressive Cyclosporin A-Derivat NIM811 (N-methyl-4-

isoleucin Cyclosporin; (Me-Ile
4
)-Cyclosporin) 

NIM811 ist ein Cyclosporin A-Derivat, das an Position 4 des Cyclosporin-Rings substituiert ist.341     

Wie in Abbildung 22 gezeigt, unterscheidet sich die chemische Struktur von NIM811 zu der von 

Cyclosporin A darin, dass es eine Methyl-Isoleucin-Gruppe anstelle von Methyl-Leucin an Position 4 

aufweist.342  

 

Abbildung 22:  Vergleich der chemischen Struktur von Cyclosporin A mit der von NIM811 (Abbildung 

modifiziert nach Ma et al. 2006 
343

) 

Einbau einer Isobutylgruppe bei NIM811 im Austausch gegen eine sekundäre Butylgruppe an Position 4 bei CsA. 
 

Es weist jedoch im Gegensatz zu Cyclosporin A keine immunsuppressiven Eigenschaften auf, da durch 

die strukturelle Veränderung an Position 4 die Bindungsstelle des CyPA/CsA-Komplexes für 

Calcineurin blockiert wird.341,343  

Darüber hinaus hat es eine doppelt so hohe Bindungsaffinität zu Cyclophilinen als Cyclosporin A.343 

Die orale Bioverfügbarkeit von NIM811 ist vergleichbar mit der von Cyclosporin A, jedoch besitzt es 

eine geringere Nephrotoxizität.341 
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Es weist eine starke und selektive anti-HIV-Aktivität in vitro auf, die über CyPA vermittelt wird.341,344  

Außerdem besitzt es einen hemmenden Effekt auf die Replikation des Hepatitis C-Virus in vitro. Wie 

schon beschrieben, reguliert CyPB die Funktion der RNA-Polymerase NS5B des Hepatitis C-Virus und 

somit seine Genomreplikation. Dieser Effekt konnte durch Cyclosporin A und NIM811 gehemmt 

werden.258,345 Die Hemmung durch NIM811 ist vor allem in niedrigen Dosierungen höher als die von 

Cyclosporin A.346 Klinische Studien liegen allerdings bisher nicht in aussagekräftiger Anzahl vor.35  

Aufgrund seiner Fähigkeit, die Zellmembran zu penetrieren ist NIM811 jedoch in der Lage, auch die 

Wirkung intrazellulärer Cyclophiline wie beispielsweise CyPD zu inhibieren. Dies kann zu 

unerwünschten Nebenwirkungen führen.32,343 Aus diesem Grund wurde ein zellimpermeables 

Cyclosporin A-Derivat entwickelt, das ausschließlich die Wirkung extrazellulärer Cyclophiline 

blockiert.337 

 

 

5.2 Das rein extrazelluläre wirkende Cyclosporin A-Derivat MM284 ( [(4R)-4-[(6-

carboxy-1H-benzo[d]imidazol-2-yl)-methyl]-4-methyl-l-threonine](1)-CsA ) 

Bei MM284 handelt es sich um ein an Position 1 mit einem Benzimidazol-Ring substituiertes Derivat 

von Cyclosporin A (siehe Abb. 23). Der Einbau dieses negativ geladenen Restes verhindert die 

Passage von MM284 durch die Zellmembran und macht es hierdurch zu einem, im Gegensatz zu 

NIM811, zellimpermeablen Cyclosporin A-Analog.337,347 

 

Abbildung 23:   Chemische Struktur von MM284 (nach Malesevic et al. 2013 
337

) 

An Position 1 des Cyclosporin A-Grundgerüstes wurde ein Benzimidazol-Ring substituiert.  

 

Seine Zellimpermeabilität und sein Unvermögen die Calcineurin-Aktivität und NF-AT-Aktivierung zu 

beeinflussen, zeigen dass diesem Stoff eine immunsupprimierende Wirkung fehlt.337 

MM284 inhibiert die enzymatische Aktivität von CyPA im gleichen Maße wie Cyclosporin A, woraus 

man schlussfolgern kann, dass es eine enge Bindung mit CyPA eingeht.348 
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Aufgrund seiner Zellimpermeabilität inhibiert MM284 lediglich die Aktivität extrazellulärer 

Cyclophiline.337,347 

Diese inhibierende Wirkung konnte beispielsweise durch eine Hemmung der Migration 

verschiedener Arten von Leukozyten entgegen eines CyPA-Gradienten in vitro gezeigt werden.348 

Außerdem konnte die Rekrutierung von Leukozyten in einem Versuchsmodell, bei dem eine 

Peritonitis und eine Hypersensitivitätsreaktion bei Mäusen induziert wurde, inhibiert werden.337  

Des Weiteren konnte es in einem Tiermodell die Symptome der Hanot-Krankheit (primäre biliäre 

Zirrhose) abschwächen. Es wird vermutet, dass diese Effekte durch eine verminderte Expression von 

TIMP-4 und MMP-7 vermittelt werden.349
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III  Eigene Untersuchungen 

1  Zielsetzung 

Zelluläre Entzündungsprozesse spielen sowohl für die Entstehung und Progression der 

Atherosklerose als auch für die Destabilisierung der Plaque und den dadurch entstehenden 

Komplikationen wie dem akuten Myokardinfarkt eine wichtige Rolle. Dabei ist eine Vielzahl von 

verschiedenen Zellen beteiligt.  

Einen entscheidenden Einfluss auf die atherosklerotischen Prozesse nehmen unter anderem 

Thrombozyten. Einerseits fördern sie durch ihre Interaktionen mit Leukozyten und Endothelzellen 

das Entzündungsgeschehen, indem sie über verschiedene Aktivierungsmechanismen entzündliche 

und atherogene Prozesse auslösen, andererseits sind sie an der Entstehung von Komplikationen wie 

dem akuten Myokardinfarkt maßgeblich beteiligt, indem sie nach der Ruptur bzw. Erosion einer 

vulnerablen Plaque einen thrombotischen Gefäßverschluss nach sich ziehen können.122,124 

Neben Thrombozyten nehmen auch Monozyten/Makrophagen sowie glatte Muskelzellen eine 

zentrale Rolle in der Entstehung der Atherosklerose ein. Diese Zelltypen stellen die 

Hauptproduzenten von Matrix Metalloproteinasen (MMPs) dar.25,350 Hierdurch vermitteln sie die 

proteolytische Aktivität, die entscheidend für die Einwanderung von Monozyten und damit für die 

Progression der Atherosklerose ist und schließlich die Ruptur der Plaque und akute Komplikationen 

wie beispielsweise einen Myokardinfarkt nach sich ziehen kann.177,350,351  

Für das Immunophilin Cyclophilin A (CyPA) konnte in den letzten Jahren eine entscheidende Rolle für 

die Entstehung atherosklerotischer Prozesse aufgezeigt werden.32,51 Es wirkt dabei als wichtiger 

Mediator, der die entzündlichen Prozesse der Atherosklerose vorantreibt.  

Ein weiterer Vertreter der Cyclophilin-Familie ist Cyclophilin B (CyPB). Es wird bei chronischen 

inflammatorischen Erkrankungen und auch bei schwerer Sepsis verstärkt exprimiert.35,297 CyPB wird 

außerdem von glatten Muskelzellen freigesetzt und besitzt besonders für T-Zellen eine ausgeprägte 

chemotaktische Aktivität.288,296  

Seine Beteiligung an atherosklerotischen Prozessen wurde in der Vergangenheit noch nicht 

untersucht. Die ähnliche Struktur von CyPA und CYPB sowie das extrazelluläre Vorkommen beider 

Vertreter geben jedoch Anlass zur Vermutung, dass CyPB ebenso wie CyPA Einfluss auf die 

Entwicklung atherosklerotischer Prozesse nehmen könnte.33,250,259,336,352  

Aufgrund der Freisetzung von CyPB durch glatte Muskelzellen, der chemotaktischen Wirkung auf       

T-Zellen, sowie der in vitro nachgewiesenen chemotaktischen Aktivität für Makrophagen, war ein Ziel 

der vorliegenden Arbeit, zu prüfen, ob CyPB auch einen Einfluss auf die Migration von Monozyten 

oder anderer Leukozyten nehmen und somit die Progression der Atherosklerose fördern 

könnte.288,295,296 

Eine weitere Fragestellung, die sich aus den oben geschilderten Zusammenhängen ergab, war, ob 

CyPB die Bildung von MMPs durch Monozyten beeinflusst. 
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Allain et al. konnten in einem statischen Versuchsansatz zeigen, dass es durch die Stimulation von 

Thrombozyten mit CyPB zu einer gesteigerten der Adhäsion auf Kollagen sowie zu einer Aktivierung 

der Blutplättchen kommt.353 In einer kürzlich durchgeführten Untersuchung unserer Arbeitsgruppe 

konnte auch im Flusskammerversuch eine deutliche Zunahme des rollings und der Adhäsion von 

Thrombozyten an Kollagen sowie an humanen Endothelzellen aus der Nabelschnur (human umbilical 

vein endothelial cells, HUVECs) sowohl unter dem Einfluss von CyPB als auch unter demjenigen von 

CyPA nachgewiesen werden.316 Diese Prozesse könnten im Rahmen der Atherogenese einen 

wesentlichen Faktor darstellen, der die Plaqueentstehung begünstigt. Daraus ergab sich als weitere 

Fragestellung, inwiefern die Wirkung von CyPB auf die Adhäsion der Thrombozyten durch die nicht 

immunsuppressiven Cyclophilin-Inhibitoren NIM811 und MM284 in vitro beeinflusst werden könnte.  

In der folgenden Auflistung sind die Fragestellungen und Ziele der vorliegenden Arbeit nochmals 

zusammengefasst: 

1) Nachweis der CyPB-Expression in der atherosklerotischen Plaque ApoE-defizienter Mäuse 

2) Nachweis der CyPB-Expression bei verschiedenen Zelltypen, die eine Rolle in der Pathogenese 

der Atherosklerose spielen (Thrombozyten, Monozyten, Makrophagen, Schaumzellen) 

3) Einfluss von CyPB auf die Sekretion von Matrix Metalloproteinasen durch Monozyten 

4) Einfluss von CyPB und CyPB in Kombination mit den Cyclosporin-Analoga NIM811 und MM284 

auf die Migration von Monozyten in vitro 

5) Einfluss von CyPB auf die Migration verschiedener Leukozyten-Subpopulationen in vivo 

6) Einfluss von CyPB und CyPB in Kombination mit den Cyclosporin-Analoga NIM811 und MM284 

auf das Adhäsionsverhalten von Thrombozyten auf unterschiedlichen Matrices in vitro 

7) Beurteilung des Adhäsionsverhaltens aktivierter Thrombozyten auf immobilisiertem CyPA und 

CypB 
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2  Material und Methoden 

2.1  Material 

2.1.1  Geräte 

2.1.1.1 Allgemein benötigte Geräte für die in vitro- und in vivo-Versuche  

Brutschrank Sanyo MCO-18AIC Sanyo Electric Biomedical Co. Ltd., München 

Eppendorf-Ständer Brand, Wertheim 

Falconständer Brand, Wertheim 

Hämatologie-Analysegerät KX-21N Sysmex, Kobe, Japan 

Magnetrührer Ikamag® RCT IKA-Werke (Janke & Kunkel), Staufen  

Magnetrührstäbchen VWR, Darmstadt 

pH-Meter HI 9025 Hanna Instruments, Kehl a. R. 

Pipette Eppendorf research Eppendorf AG, Eppendorf, Hamburg 

Pipettierhilfe accu-jet® pro Brand, Wertheim 

Präzisionswaage TE-1200-0CE Sartorius AG, Göttingen 

Reinstwasseranlage TKA-GenPure TKA Thermo Electron LED GmbH, Niederelbert 

Schüttler Ika® KS260 basic IKA-Werke (Janke & Kunkel), Staufen 

Tischzentrifuge Heraeus Multifuge 1s Kendro Laboratory Products GmbH, Langenselbold 

Vortexer Ika® MS3 basic IKA-Werke (Janke & Kunkel), Staufen  

Sterilbank Heraeus HERAsafe HS18 Kendro Laboratory Products GmbH, Langenselbold 
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2.1.1.2 Verwendete Geräte für die mikroskopische Auswertung der immunhistologischen 

Färbungen und der Immunfluoreszenzfärbungen 

Kamera-System 

Kamera: Nikon Digital Sight 5M Nikon, Tokyo, Japan 

Steuerung: Nikon Digital Sight DS-U1 Nikon, Tokyo, Japan 

mit: Imaging-Software NIS-Elements Nikon, Tokyo, Japan 
 

Fluoreszenzmikroskop Optiphot-2 Nikon, Tokyo, Japan   

mit Filter-Block B-2A: Anregungsfilter: 450-490nm, dichroitischem Spiegel: 510nm,                        

Emissionsfilter: 520nm 

und Filter-Block DAPI: Anregungsfilter 340-380nm, dichroitischem Spiegel: 400nm,    

Emissionsfilter: 435-485nm 

 

 

2.1.1.3 Verwendete Geräte für die durchflusszytometrischen Untersuchungen an Thrombozyten 

sowie für die Thioglykolat-induzierte Peritonitis 

Durchflusszytometer FACSCalibur™ Becton Dickinson GmbH, Heidelberg 

 

 

2.1.1.4 Verwendete Geräte für die SDS-Gelatine-Zymographie 

Elektrophorese-Kammer Novex, Life Technologies GmbH, Darmstadt 

Novex® Mini Cell  

XCellSureLock
TM

 Electrophoresis Cell     

Scanner ViewPix 700 Biostep GmbH, Burkhardtsdorf 

Spannrahmen für Zymogram-Gele Novex, Life Technologies GmbH, Darmstadt 

 

 

2.1.1.5 Verwendete Geräte für den Chemotaxis-Assay 

Migrationskammer  NeuroProbe, Gaithersburg, USA 

AC48 chemotaxis chamber 
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2.1.1.6  Verwendete Geräte für die Flusskammerversuche  

CD-Recorder VDR-3000 Datavideo® Technologies Co., Hadfield, UK 

Flusskammer  provitro GmbH, Berlin 

Lichtmikroskop Axiovert 2000 Carl Zeiss AG, Göttingen     

mit Quecksilberhöchstdrucklampe 

HBO 100  

Monitor X15 AG Neovo, Taipei, Taiwan  

Perfusor® fm Braun, Melsungen 

 

 

2.1.2  Verbrauchsmaterialien 

Abdecktuch  Foliodrape® Paul Hartmann AG, Heidenheim 

Augen- und Nasensalbe  Bepanthen® Bayer, Leverkusen 

Butterfly  Safety-Multifly®-Set 21G Braun, Melsungen 

Cellophan-Folien Novex, Life Technologies GmbH, Darmstadt 

Deckgläschen 25mm (für Flusskammer) Glaswarenfabrik Karl Hecht, Sondheim 

Deckgläschen 24 x 60mm R. Langenbrinck, Emmendingen 

(für Histologie) 

Dreiwegehahn Discofix®C Braun, Melsungen 

Einmalspritze 20ml Braun, Melsungen 

Eppendorf Tubes  (0,5ml, 1,5ml, 2ml) Eppendorf AG, Eppendorf, Hamburg 

Falconröhrchen  (15ml, 50ml) Becton Dickinson GmbH, Heidelberg 

Fettstift  Liquid Blocker Pap Pen Science Services, München 

Filtereinheit  Millex® GP 0,22μm Merck Millipore, Merck Chemicals GmbH, Schwalbach 

Filter für Migrationskammer  NeuroProbe, Gaithersburg, USA 

Standard PCTE 5µm 

Hautdesinfektionsmittel Braun, Melsungen 

Softasept N 

Kanülen BD Microlance
TM

 3 20G Becton Dickinson GmbH, Heidelberg 

Lab-tekTM Chamber Slide, 16 well Nunc, New York, USA 
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Mäusefutter  

atherogene Diät: Ssniff Spezialdiäten GmbH, Soest 

Experimentalfutter nach Paigen  

Artikel-Nr.: S8127-E510 
 

Basisdiät: SSniff Spezialdiäten GmbH, Soest 

Haltungsfutter für Mäuse und Ratten  

Mäusekäfige Makrolon Typ II long Tecniplast, Hohenpreißenberg 

mit Einstreu (entstaubtes ABEDD-LAB & VET Service GmbH, Wien, Österreich 

Weichholzgranulat)  
 

Membranadapter Sarstedt AG, Nümbrecht  

Neubauer-Zählkammer C-Chip peqlab, Erlangen 

Objektträger Brand, Wertheim 

Pasteurpipetten (2,5ml) Ratiolab GmbH, Dreieich  

Perfusorspritzen, 50ml Braun, Melsungen 

Pipettenspitzen (2µl, 20µl, 1000µl) Eppendorf AG, Eppendorf, Hamburg 

Pipettenspitzen Multiflex®(0,5-200µl) Roth, Karlsruhe 

Prolene® -Faden, 0,7 metric Ethicon, Norderstedt 

Rührstäbchen ChronoLog, Leiden, Niederlande 

 

S-Monovette 8,5ml CPDA  Sarstedt AG, Nümbrecht 
(citrate phosphate dextrose adenine)  

Sechs-Loch-Platte Becton Dickinson GmbH, Heidelberg 

Sechsundneunzig-Loch-Platte Becton Dickinson GmbH, Heidelberg 

Verschlussfolie Parafilm M Brand, Wertheim 

Zellkulturflaschen (175mm2) Greiner bio-one, Frickenhausen 

Zellkulturschalen (100x20mm) Becton Dickinson GmbH, Heidelberg  

Zymogram-(Gelatine-) Gel (10%) Novex, Life Technologies GmbH, Darmstadt 
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2.1.3 Lösungen, Medien, Reagenzien 

ADP (1mmol, 5ml) Chrono-Log Corp., Havertown, USA 

Albumin Fraction V (BSA) AppliChem GmbH, Darmstadt 

Bovines Kollagen Typ I (3mg/ml) Becton Dickinson GmbH, Heidelberg  

Bromphenolblau Merck, Darmstadt 

Coomassie Brilliant Blau R-250 BioRad Laboratories GmbH, München 

D-(+)-Glucose Sigma-Aldrich Chemie GmbH, Steinheim 

DAPI (4‘,6-Diamidin-2-phenylindol) Sigma-Aldrich Chemie GmbH, Steinheim 

Eisessig Merck, Darmstadt  

EndoPrime Kit  PAA, Pasching, Austria 

Ethanol 99%, vollständig vergällt SAV Liquid Production GmbH, Flintsbach 

Fetales Kälberserum (FBS)  Gibco, Life Technologies GmbH, Darmstadt 

Ficoll Trennlösung  Biochrom AG, Berlin 

Biocoll Separating Solution 

Fluorescence Mounting Medium Dako, Hamburg 

Formaldehyd (4%) Fischar GmbH & Co. KG, Saarbrücken 

Gelatine-Lösung (2%, TypB) Sigma-Aldrich Chemie GmbH, Steinheim 

GelDryTM Drying Solution Gibco, Life Technologies GmbH, Darmstadt 

Giemsas Azur-Eosin-Methylenblau- Merck, Darmstadt 

Lösung 

L-Glutamin Gibco, Life Technologies GmbH, Darmstadt 

Glycerol Merck, Darmstadt 

Glycin Roth, Karlsruhe 

HEPES (N-2-Hydroxyethylpiperazin- Roth, Karlsruhe 

N‘-2-Ethansulfonsäure)  

humanes Serum aus dem Zentrum für Transfusionsmedizin des 

Universitätsklinikums Tübingen  

Kaliumchlorid (KCl) Merck, Darmstadt 

Kochsalz-Lösung (NaCl) AppliChem, Darmstadt 
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LSAB + System-HRP Dako, Hamburg 

bestehend aus gebrauchsfertigem 

Biotinylated Link (biotinylierter Sekundärantikörper) 

Streptavidin HRP (Streptavidin-Biotin-(Meerrettich-)Peroxidase-Komplex) 

DAB+ Substrat-Puffer (pH7,5, mit Wasserstoffperoxid) & 

DAB+-Chromogen (3-3’-Diaminobenzidin-Chromogen-Lösung)) 

Lysepuffer Becton Dickinson GmbH, Heidelberg  

Mayer‘s Hämalaunlösung Merck, Darmstadt 

Methanol (100%) VWR, Fontenay-saus-Bois, Frankreich 

May-Grünwalds  Merck, Darmstadt 

Eosin-Methylenblau-Lösung  

Natriumhydrogenkarbonat (NaHCO3) Merck, Darmstadt 

Natriumhydroxid (NaOH) Merck, Darmstadt  

Natriumpyruvat Sigma-Aldrich Chemie GmbH, Steinheim  

nicht essentielle Aminosäuren Gibco, Life Technologies GmbH, Darmstadt 

Novex® Zymogram  Novex, Life Technologies GmbH, Darmstadt 

Entwicklungspuffer (10x)  

Novex® Zymogram  Novex, Life Technologies GmbH, Darmstadt 

Renaturierungspuffer (10x)  

Paraformaldehyd (0,5%) Merck, Darmstadt 

PBS-Tabletten Gibco, Life Technologies GmbH, Darmstadt 

Penicillin/Streptomycin  PAA Laboratories GmbH, Pasching, Österreich 

(10.000µg/ml Streptomycin, 

10.000U/ml Penicillin)  

Phosphate-buffered Saline (PBS) PAA Laboratories GmbH, Pasching, Österreich 

Phosphate-buffered Saline (PBS) Gibco, Life Technologies GmbH, Darmstadt 

mit 0,9mM CaCl2  

und 0,49mM MgCl2 

 

Protein Block Serum-Free Dako, Hamburg 

RPMI-1640 PAA Laboratories GmbH, Pasching, Österreich 

Roti®-Histol Roth, Karlsruhe 

Roti®-Histokitt Roth, Karlsruhe 
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Salzsäure (HCl) Merck, Darmstadt 

SeeBlue®Plus2 Prestained Standard Gibco, Life Technologies GmbH, Darmstadt 

Sodium Dodecyl Sulfate (SDS) Roth, Karlsruhe  

tri-Natriumcitrat-Dihydrat 0,1M Merck, Darmstadt 

Tris Sigma-Aldrich Chemie GmbH, Steinheim  

Trypan Blau Sigma-Aldrich Chemie GmbH, Steinheim 

Trypsin-EDTA (0,05%) Gibco, Life Technologies GmbH, Darmstadt 

Tween® 20 Merck, Hohenbrunn 

Wasserstoffperoxid (30%) Roth, Karlsruhe 

Zitronensäure  Sigma-Aldrich Chemie GmbH, Steinheim 

 

 

2.1.4  Rezepte für Puffer, Kulturmedien und Färbelösungen 

ACD-Puffer 12,5g Na3-Citrat 

6,82g Zitronensäure 

10g Glucose 

mit Aqua dest. auf 500ml ergänzen 

mit NaOH auf pH 4,6 einstellen 

Citratpuffer, pH6  41ml tri-Natriumcitrat-Dihydrat 0,1M  

 9ml Zitronensäure 0,1M 

 450ml Aqua dest. 

 pH bei Bedarf mit HCl oder NaOH einstellen  

Coomassie Brilliant Blau   0,25g Coomassie Brilliant Blau R-250 

 45ml Aqua dest. 

 45ml Methanol 

 10ml Eisessig  

HUVEC-Medium 500ml EndoPrime Base Medium 

 5ml EndoPrime Supplement (100x) (1%) 

 1ml EndoPrime EGF (2,5μg/ml) (0,2%) 

 1ml EndoPrime VEGF (250ng/ml) (0,2%) 

 10ml EndoPrime FBS (2%) 

 5ml Penicillin Streptomycin (1%) 
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Ladepuffer (5x)  6,5ml 1M TrisHCl pH 6,8 

  (non-reducing) 2ml 10% SDS 

 1ml Glycerol 

 1 Spatelspitze Bromphenolblau 

Laufpuffer (10x) 30g Tris (25mM) 

 144g Glycin 

 10g SDS (0,1%) 

 mit Aqua dest. auf 1000ml auffüllen und auf 65°C erhitzen 

Monozytenmedium  445ml RPMI-1640  

 +50ml FBS (10%) 

 +5ml PenStrep (1%) 

PBS, unsteril 1000ml Aqua dest 

 2 Tabletten PBS 

Schaumzellmedium 380ml RPMI-1640 

+100ml humanes Serum (20%)  

+5ml nicht essentielle Aminosäuren (1%)  

+5ml Natriumpyruvat (1%) 

+5ml L-Glutamin (1%) 

+5ml PenStrep (1%) 

TrisHCl (pH 6,8) 12,21g Tris 

 mit Aqua dest. auf 100ml auffüllen 

pH mit HCl (37%) auf 6,8 einstellen 

Tween-PBS 0,05% 500µl Tween 20 

 in 1000ml PBS (unsteril) lösen 

Tyrodes-Puffer (10x) 80g Natriumchlorid 

 10,15g Natriumhydrogencarbonat 

 1,95g Kaliumchlorid 

 mit Aqua dest. auf 1000ml auffüllen 

Tyrodes-Puffer pH 7,4 20ml Tyrodes-Puffer 10x 

  und pH 6,5 0,2g BSA 

 0,2g Glucose 

 mit Aqua dest. auf 200ml auffüllen 

 mit HEPES auf pH 7,4 einstellen und 50ml davon abnehmen 

 Rest mit HCl auf pH 6,5 einstellen 

Wasserstoffperoxid 3% 10ml H2O2 (30%) 

 90ml Methanol (100%) 
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2.1.5  Proteine 

Collagen-related peptide (CRP) freundlicherweise zur Verfügung gestellt von Herrn    

Prof. Dr. R. Farndale, Universität Cambridge          

Fc (4,02mg/ml) Eigenherstellung  

MM284 freundlicherweise zur Verfügung gestellt von Herrn            

Prof. Dr. G. Fischer, Halle (Saale) 

NIM811 freundlicherweise zur Verfügung gestellt von der          

Novartis Pharma GmbH, Basel, Schweiz 

rekombinantes humanes CD147-Fc Procorde GmbH, Martinsried  

rekombinantes humanes Cyclophilin A   R&D Systems GmbH, Wiesbaden 

rekombinantes humanes Cyclophilin B  Novus Biologicals, Cambridge, UK 

rekombinantes humanes IFN-γ  Peprotech, Rocky Hill, USA 

rekombinantes humanes TNF-α Peprotech, Rocky Hill, USA 

Thrombin (20U/ml) Roche GmbH, Mannheim 

Thrombin receptor-activating peptide (TRAP) Sigma-Aldrich Chemie GmbH, Steinheim 

 

 

2.1.6  Antikörper 

Für die Immunhistologie: 

a) Primärantikörper: 

 Rabbit anti-CyPB-AK   abcam, Cambridge, UK 

 Rabbit IgG1 (Isotyp-Kontrolle) Dako, Hamburg 

Negative Control Rabbit  

 Immunglobulin Fraction 

b) Sekundärantikörper: 

Biotinylated Link Universal  Dako, Hamburg 

 

Für die Immunfluoreszenzfärbungen: 

a) Primärantikörper: 

Rabbit anti-CyPB-AK abcam, Cambridge, UK 

Rabbit IgG1 (Isotyp-Kontrolle) Dako, Hamburg 

Negative Control Rabbit  

Immunglobulin Fraction  
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b) Sekundärantikörper: 

Alexa Fluor® 488 goat-anti-rabbit Gibco, Life Technologies GmbH, Darmstadt 

 

Für die Durchflusszytometrie: 

a) Primärantikörper: 

Rabbit IgG (Isotyp-Kontrolle) Santa Cruz Biotechnology, Heidelberg 

Rabbit anti-CyPB-AK abcam, Cambridge, UK 

b) Sekundärantikörper: 

Alexa Fluor® 488 donkey-anti-rabbit Gibco, Life Technologies GmbH, Darmstadt 

 

 

2.1.7  Zellen und Zelllinien 

humane Monozyten gesunde Blutspender 

humane Thrombozyten gesunde Blutspender 

HUVEC (human umbilical vein Gibco Invitrogen, Karlsruhe 

  endothelial cells) 

 

2.1.8  Mäusestämme  

C57BL/6J (Wildtyp) Charles River Laboratories, Erkrath 

B6.129P2-Apoetm1Unc/J  The Jackson Laboratory, Maine, USA 

(ApoE-knockout-Maus) 

 

 

2.1.9  Narkose und Schmerztherapie 

Buprenorphinhydrochlorid (Temgesic®) RB Pharmaceuticals Limited, Berkshire, UK 

Isofluran CP® CP Pharma Handelsgesellschaft mbH, Burgdorf  
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2.2   Methoden 

2.2.1   Allgemeines zur Zellkultur 

Alle Zellkulturversuche wurden unter sterilen Arbeitsbedingungen in einer Sicherheitswerkbank 

durchgeführt, um Kontaminationen zu vermeiden. Die verwendeten Medien und Lösungen wurden, 

soweit sie nicht schon vom Hersteller steril geliefert wurden, vor ihrer Verwendung sterilfiltriert. 

Dazu wurde ein Filter mit einer Porengröße von 0,2µm verwendet. Die verwendeten Kulturgefäße 

waren bereits vom Hersteller sterilisiert.  

Die Zellkulturen wurden in einem Brutschrank bei 37°C, 5% CO2 und wassergesättigter Atmosphäre 

gehalten.  

Die verwendeten Reagenzien wurden gemäß Herstellerangaben bei der erforderlichen Temperatur 

gelagert. Tiefgefrorene Substanzen (-20°C und -80°C) wurden auf Eis aufgetaut und nach ihrer 

Verwendung sofort wieder tiefgefroren. 

Für die Herstellung von Pufferlösungen wurde Wasser aus einer Reinstwasseranlage verwendet, 

dessen elektrischer Widerstand über 18 MΩ*cm lag. 

 

 

2.2.2   Isolationsprotokolle und Zellkulturprotokolle für die in den Versuchen 

verwendeten Zellen  

2.2.2.1  Thrombozytenisolation 

Zunächst wurde von gesunden, humanen, weiblichen Blutspendern insgesamt 60ml Blut aus der 

Vena mediana cubiti in sterile 20ml-Spritzen, die zuvor mit 4ml acid-citrate-dextrose-Puffer (ACD-

Puffer) befüllt wurden, entnommen. Dieses wurde zu jeweils 10ml in sechs 15ml-Falcons überführt 

und zentrifugiert (210xg, 20 Minuten, bei Raumtemperatur, ohne Bremse).  

Durch die Zentrifugation wurden die Blutbestandteile nach ihrer Größe aufgetrennt und es sind zwei 

Phasen entstanden. In der unteren Phase sind sedimentierte, kernhaltige Zellen enthalten, in der 

oberen Phase plättchenreiches Plasma (PRP).  

Die oberen Phasen von jeweils zwei 15ml-Falcons wurden vorsichtig mit einer Einmalplastikpipette 

abgenommen, zusammen in ein 50ml-Falcon überführt und dann mit Tyrodes-Puffer (pH 6,5) auf 

35ml aufgefüllt. Es folgte ein weiterer Zentrifugationsschritt (840xg, 10 Minuten, bei Raum-

temperatur). Der dabei entstandene Überstand wurde verworfen, das Thrombozytenpellet vorsichtig 

in 500µl Tyrodes-Puffer (pH 6,5) resuspendiert und anschließend mit weiteren 500µl Tyrodes-    

Puffer (pH 7,4) versetzt. Zuletzt wurde die Zellzahl mit Hilfe eines Hämatologie-Analysegerätes 

bestimmt und die gewünschte Zellkonzentration mit Tyrodes-Puffer (pH 7,4) eingestellt. 

 



III     EIGENE UNTERSUCHUNGEN 
 

 

 

58 

2.2.2.2  Monozytenisolation 

Die Anreicherung mononukleärer Zellen erfolgte über eine modifizierte isopyknische 

Dichtegradientenzentrifugation mit Ficoll Paque (einem neutralen, stark verzweigtem Polymer aus 

Saccharose-Monomeren, die über Epichlorhydrin kreuzvernetzt sind) und einer darauf folgenden 

Selektion von Monozyten über Adhäsion. 

Zunächst wurden von gesunden, humanen, männlichen Blutspendern aus der Vena mediana cubiti 

60ml Blut in CPDA (citrate phosphate dextrose adenine)-Monovetten entnommen und dieses mit 

60ml PBS verdünnt. Dann wurde in sechs 50ml-Falconröhrchen je 20ml Ficoll Paque vorgelegt und 

mit jeweils 20ml des verdünnten Blutes vorsichtig überschichtet, sodass zwei Phasen entstanden. 

Durch einen Zentrifugationsschritt (900xg, 20 Minuten, bei Raumtemperatur, ohne Bremse) wurden 

die Blutbestandteile dann nach ihrer Dichte getrennt, wodurch mehrere Phasen entstanden (siehe 

Abb. 24).  

                    

Abbildung 24:  Dichtegradientenzentrifugation mit Ficoll Paque (Abbildung modifiziert nach Miltenyi    

Biotec GmbH 
354

) 

Links: Falcon mit 2 Phasen vor der Zentrifugation. Rechts: nach der Zentrifugation sind mehrere Phasen 

entstanden: Monozyten und Lymphozyten reichern sich aufgrund ihrer geringeren Dichte auf der Ficoll-Schicht 

an.  

 
 

Die unterste Schicht besteht aus Erythrozyten und Granulozyten, da diese Zellen eine größere Dichte 

haben als das Ficoll Paque. Darüber folgt eine Schicht aus Ficoll Paque, dann eine milchige 

Intermediärschicht, die vorwiegend Monozyten und Lymphozyten enthält. In der obersten Schicht 

findet sich das Plasma.   

Die Intermediärschicht wurde mit einer sterilen Transferpipette abgesaugt und in ein neues 50ml-

Falconröhrchen überführt. Diese Zellsuspension wurde dann mit Phosphatpuffer (PBS) auf 50ml 

Gesamtvolumen verdünnt und anschließend zentrifugiert (500xg, 10 Minuten, mit Bremse, bei 

Raumtemperatur). Der Überstand wurde verworfen, das Pellet in PBS resuspendiert und der 

Zentrifugationsschritt wiederholt. Durch diese Waschschritte wurde die Leukozytensuspension vom 

restlichen Ficoll Paque und anderen Verunreinigungen wie Thrombozyten gereinigt. Der Überstand 

wurde abermals verworfen, das Zellpellet in 1ml Monozytenmedium resuspendiert und anschließend 

in der Neubauer-Kammer die Zellzahl bestimmt.   
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Die Zellsuspension wurde mit Monozytenmedium auf eine Zellzahl von 1 x 106 Zellen/ml verdünnt, in 

Zellkulturflaschen gegeben und für 18 Stunden bei 37°C und 5% CO2 im Brutschrank inkubiert. Dieser 

Schritt dient dazu, Monozyten aus der Zellsuspension heraus zu selektieren. Monozyten sind im 

Gegensatz zu Lymphozyten dazu in der Lage, Pseudopodien auszubilden und dadurch an 

Plastikoberflächen zu adhärieren.  

Am nächsten Tag wurde das Medium mit den nicht adhärent gewordenen Zellen abgenommen und 

der Boden der Zellkulturflasche mehrmals mit PBS gespült, um die Lymphozyten vollständig zu 

entfernen. Die in der Zellkulturflasche verbliebenen Monozyten wurden mit 0,05%iger Trypsin-

Ethylendiamintetraessigsäure (Trypsin-EDTA) abgelöst. Dazu wurden nach dem Abpipettieren des 

PBS 10ml Trypsin-EDTA in die Zellkulturflaschen gegeben und für 2 Minuten auf dem Boden der 

Zellkulturflasche vorsichtig hin- und hergeschwenkt. Dann wurde 20ml Medium zugegeben und der 

Boden der Zellkulturflasche mit dieser Lösung mehrmals überspült. Zum Schluss wurde die 

vollständige Ablösung der Monozyten unter dem Mikroskop kontrolliert. 

Zuletzt wurden die Monozyten nochmals zentrifugiert (500xg, 10 Minuten, mit Bremse, bei 

Raumtemperatur) und anschließend mit Monozytenmedium auf die für den folgenden Versuch 

benötigte Zellzahl eingestellt. 

 

 

2.2.2.3  Differenzierung zu Makrophagen 

Zunächst wurden Monozyten wie im vorherigen Kapitel beschrieben isoliert. Die Zellkultur erfolgte in 

sogenannten chamber slides. Dazu wurden jeweils 100.000 Zellen/200µl Monozytenmedium in jede 

Reaktionskammer der chamber slides gegeben und für 6 Tage im Brutschrank belassen. In dieser Zeit 

reiften die Monozyten zu Makrophagen aus. Nach 2-3 Tagen fand ein Mediumwechsel statt.  

 

 

2.2.2.4  Differenzierung zu Schaumzellen 

Die Monozyten wurden wie beschrieben isoliert und in einer Konzentration von 3,3 x 105 Zellen/ml in 

einem speziellen Medium zur Differenzierung von Schaumzellen kultiviert. Dieses Medium enthält 

humanes Serum mit den darin vorkommenden Lipoproteinen, die von den Monozyten phagozytiert 

werden können. Von dieser Zellsuspension wurden jeweils 150µl (entsprechend 50.000 Monozyten) 

in die Vertiefungen der chamber slides gegeben und bei 37°C inkubiert.  

Am nächsten Tag wurden Thrombozyten isoliert und mit Tyrodes-Puffer (pH 7,4) auf eine 

Konzentration von 8 x 108 Zellen/ml eingestellt. Von dieser Thrombozytenlösung wurden jeweils  50µl 

(entsprechend 40 Millionen Thrombozyten) zu den schon in den chamber slides befindlichen 

Monozyten gegeben und zusammen mit diesen für 8 Tage inkubiert. Während dieser Zeit wurden die 

Thrombozyten durch die Monozyten/Makrophagen phagozytiert und diese sind dabei zu 

Schaumzellen ausgereift. Das Medium wurde während der Heranreifung der Schaumzellen jeden 

zweiten Tag gewechselt.  
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2.2.2.5. Kultivierung von human umbilical vein endothelial cells (HUVECs) 

Aus der Nabelschnur isolierte Endothelzellen werden als ein Modell für die Untersuchung der 

Funktion von Endothelzellen verwendet.  

Die kommerziell bezogenen Endothelzellen wurden in einem speziellen Endothelzell-Medium 

kultiviert, das mit bestimmten Supplementen und Wachstumsfaktoren angereichert wurde, die das 

Zellwachstum unterstützen. Zusätzlich wurde das Medium mit 1% Penicillin-Streptomycin versetzt, 

um ein Wachstum von Keimen zu verhindern.  

Die Endothelzellen wurden in Zellkulturflaschen, die mit 0,2%iger Gelatine beschichtet wurden, mit 

dem oben beschriebenen Medium bei 37°C kultiviert. Dazu wurden pro Zellkulturflasche jeweils          

3 x 106 Zellen in 25ml Medium verbracht und einige Tage im Brutschrank belassen.  

Sobald die Zellen auf dem Boden der Zellkulturflasche zu 80 bis 90% konfluent gewachsen waren, 

konnten sie vom Boden der Kulturflaschen abgelöst und für den Versuch genutzt werden. Dazu 

wurde zunächst das Medium mit einer sterilen Stangenpipette aus den Flaschen abgenommen und 

verworfen. Dann wurde der Boden der Kulturflaschen zweimal mit 10ml PBS gespült, das dann 

ebenfalls verworfen wurde. Anschließend wurden die Zellen mit 7ml Trypsin-EDTA überschichtet, um 

die an der Kulturflasche haftenden Zellen abzulösen. Diese Reaktion wurde durch 3-minütige 

Inkubation bei 37°C beschleunigt. Nun wurde das Trypsin-EDTA mit 10ml Endothelzell-Medium 

verdünnt, um die Reaktion zu stoppen. Der Boden der Flasche wurde noch mehrmals mit der Lösung 

überspült, um die restlichen, noch locker haftenden Zellen vollständig abzulösen. Dann wurde die 

Zellsuspension in ein 50ml Falcon überführt und für 5 Minuten zentrifugiert (300xg, bei 

Raumtemperatur, mit Bremse). Nach Verwerfen des Überstandes wurde das Zellpellet in 3ml HUVEC-

Medium gelöst und die Zellzahl mithilfe einer Neubauer-Zählkammer bestimmt. Anschließend konnte 

die Zellsuspension auf die gewünschte Zellkonzentration eingestellt und für die weitere Kultivierung 

bzw. für den Flusskammerversuch verwendet werden.  

Für den Flusskammerversuch wurde die Zellsuspension auf eine Zellkonzentration von                         

2,5 x 105Zellen/ml eingestellt. 
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2.2.3   Nachweismethoden für Cyclophilin B 

2.2.3.1  Immunhistochemische Vorgehensweise 

Durch die Immunhistochemie können in einem histologischen Gewebeschnitt bestimmte Proteine 

mit Hilfe von markierten Antikörpern nachgewiesen werden. Der Antikörper bindet mit einer 

bestimmten Affinität an das zu untersuchende Epitop in den Gewebeschnitten und kann durch das 

an ihn gekoppelte Detektionssystem sichtbar gemacht werden. Auf diese Weise erhält man an dem 

Ort, an dem das Epitop vorhanden ist, ein Signal und kann so das Vorhandensein des Epitops in 

bestimmten Gewebeabschnitten bzw. Zellabschnitten lokalisieren. 

Ist das Detektionssystem direkt an den an das Epitop bindenden Antikörper gekoppelt, spricht man 

von direkter Immunhistochemie. Wird ein mit dem Detektionssystem gekoppelter, sekundärer 

Antikörper gegen das Fc-Fragment des Primärantikörpers verwendet, spricht man von indirekter 

Immunhistochemie. 

Es gibt eine Reihe von verschiedenen Detektionssystemen. Die verwendeten Antikörper können 

entweder mit einem Fluorochrom markiert sein, und das nachzuweisende Epitop auf diese Weise 

sichtbar machen, oder an Enzyme gekoppelt sein, die eine Enzym-Substrat-Reaktion auslösen, mit 

deren Hilfe eine zunächst noch farblose Substrat/Chromogen-Lösung in einen sichtbaren Farbstoff 

verwandelt wird. 

Kommen fluoreszenzfarbstoff-markierte Antikörper zum Einsatz, spricht man von 

Immunfluoreszenzfärbung.  

 

 

2.2.3.2  Zum Nachweis von Cyclophilin B in atherosklerotischen Plaques von ApoE-

knockout-Mäusen mittels indirekter Immunhistochemie 

Ziel des im Folgenden geschilderten Versuchs war es, das Protein Cyclophilin B (CyPB) in der 

atherosklerotischen Plaque nachzuweisen. Die Immunhistochemie wurde deshalb nach der Labeled 

Streptavidin-Biotin-Methode (LSAB-Methode) durchgeführt (siehe Abb. 25).  

Bei der LSAB-Methode handelt es sich um eine indirekte immunenzymatische Färbung. Sie beruht auf 

der Fähigkeit von Streptavidin (einem von Streptomyces avidinii synthetisierten Protein), an das 

Vitamin Biotin zu binden. Dabei kommen zunächst gegen das Epitop gerichtete, unkonjugierte 

Primärantikörper zum Einsatz. Diese werden mit biotinmarkierten sekundären Antikörpern 

detektiert. Durch Zugabe eines enzymmarkierten Streptavidin-Biotin-Komplexes, das an die 

biotinmarkierten Sekundärantikörper bindet, kann das nachzuweisende Epitop sichtbar gemacht 

werden. Hierzu wird das Chromogen DAB (3,3-Diaminobenzidin) verwendet. Dieses wird durch das 

an Streptavidin gekoppelte Enzym (aus dem Meerrettich stammende Peroxidase) im Sinne einer 

Enzym-Substrat-Reaktion zu einer braunen Substanz umgesetzt.  
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Abbildung 25:  Prinzip der Labeled Streptavidin-Biotin- bzw. LSAB-Methode (Abbildung mit freundlicher 

Genehmigung von Dako Deutschland GmbH, Hamburg 
355

)  

Das nachzuweisende Antigen wird zunächst mit einem Primär-Antikörper markiert, an den ein biotinylierter 

Sekundärantikörper bindet. Dieser bindet seinerseits einen peroxidasemarkierten Streptavidin-Biotin-Komplex. 

Die Peroxidase setzt schließlich das zugegebene Chromogen DAB in einen braunen Farbstoff um, wodurch das 

Antigen sichtbar gemacht wird. 

 

Für die Färbung wurden formalinfixierte, in Paraffin eingebettete Gewebeschnitte von Aorten von 

Apolipoprotein E (ApoE)-knockout Mäusen verwendet, die für 6 Wochen mit einer atherogenen Diät            

(1,25% Cholesterol-Gehalt) gefüttert wurden. 

Für die Färbung der histologischen Gewebeschnitte war zunächst eine Entparaffinierung erforderlich. 

Dazu wurden die Objektträger zwei mal zehn Minuten in das Lösungsmittel Roti®-Histol eingelegt, 

danach folgte zur Rehydrierung eine absteigende Alkoholreihe. Dazu wurden die Objektträger jeweils 

5 Minuten in 100%iges, 95%iges und 70%iges Ethanol eingelegt. Nach einem 30-sekündigen 

Waschschritt in Aqua dest. wurden die Objektträger in PBS überführt. 

Anschließend wurden die Schnitte 15 Minuten in Citratpuffer (pH 6) gekocht. Dieses Verfahren dient 

der Demaskierung der Epitope. Durch die Fixierung des Gewebes mit Formalin kommt es zu 

Vernetzungen zwischen Membran-Proteinen und Formalinmolekülen. Dadurch  werden die Antigene 

„maskiert“ und die Bindung des Primärantikörpers an das Epitop erschwert. Durch Erhitzung in 

Pufferlösungen (sogenannten retrieval solutions), wie dem Citratpuffer, werden die ausgebildeten 

Vernetzungen wieder aufgebrochen. Der Primärantikörper kann nun wieder an das Epitop binden. 

Nachdem die Objektträger wieder abgekühlt waren, folgten drei Waschschritte für jeweils zwei 

Minuten in Tween-PBS (0,05%). Dann wurden die Objektträger für 15 Minuten in  Wasserstoffperoxid 

(3%ig, in Methanol verdünnt) inkubiert, um die endogene Peroxidase zu blockieren. Bei nicht 

ausreichender Blockierung der endogenen Peroxidase, kann diese im letzten Schritt der Färbung 

ebenfalls mit der DAB-Lösung reagieren und falsch positive Signale hervorrufen. Im Anschluss folgten 

weitere drei Waschschritte in Tween-PBS. 

Für die weitere Färbung wurden die einzelnen Schnitte auf den Objektträgern mit Fettstift umrandet, 

um ein Ineinanderlaufen der Antikörper zu verhindern und die benötigte Menge der Reagenzien zu 

reduzieren. Außerdem wurden die Schnitte von nun an waagerecht liegend in einer feuchten 
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Inkubationskammer gefärbt. Die feuchte Umgebung ist vonnöten, um ein Verdunsten der fortan auf 

die Objektträger aufgebrachten Lösungen zu vermeiden. 

Die Schnitte wurden danach für 20 Minuten in Proteinblockierungsreagenz inkubiert. Dieser Schritt 

dient dazu, unspezifische Färbereaktionen zu verhindern. Diese entstehen durch hydrophobe oder 

ionische Wechselwirkungen zwischen Antikörper und anderen als den nachzuweisenden 

Gewebebestandteilen, insbesondere Kollagen- und Bindegewebselementen. Das Protein-

blockierungsreagenz bindet an diese Komponenten und verhindert so diese Wechselwirkungen. Eine 

unspezifische Hintergrundfärbung kann hierdurch reduziert werden.  

Anschließend wurde der 1:200 in PBS verdünnte, unkonjugierte Primärantikörper bzw. die Isotyp-

Kontrolle auf die einzelnen Schnitte aufgebracht und über Nacht bei 4°C inkubiert. 

Am nächsten Tag wurden die Objektträger zunächst fünfmal für zwei Minuten in Tween-PBS 

gewaschen, dann wurde der biotinylierte Sekundärantikörper aufgetragen und 30 Minuten bei 

Raumtemperatur inkubiert. In dieser Zeit konnte er an den Primärantikörper binden.  

Im Anschluss wurde der Streptavidin-Biotin-Peroxidase-Komplex auf die einzelnen Schnitte 

aufpipettiert und für 30 Minuten bei Raumtemperatur inkubiert. Dabei bindet das Streptavidin, an 

das das Enzym Peroxidase gekoppelt ist, an den biotinylierten Sekundärantikörper. Dieser Schritt 

dient der Verstärkung des Signals, um auch kleine Antigen-Mengen detektieren zu können. 

Während der Inkubationszeit wurde die Substrat-Chromogen-Lösung angesetzt. Dazu wurde 1ml 

DAB-Puffer mit 1 Tropfen DAB-Substrat (Wasserstoffperoxid, H2O2) gemischt. Das in der Substrat-

Chromogen-Lösung enthaltene H2O2 dient als Substrat für die Peroxidase. Es wird durch diese zu 

einem braunen Farbstoff oxidiert und macht das nachzuweisende Epitop schließlich sichtbar.  

Im nächsten Schritt wird zunächst der Sekundärantikörper vom Objektträger abgekippt. Nach 

weiteren drei Waschschritten in Tween-PBS wurde dann die vorher angesetzte Substrat-Chromogen-

Lösung auf die einzelnen Schnitte pipettiert und für 1 Minute einwirken gelassen.  

Nach weiteren drei Waschschritten in Tween-PBS wurden die Schnitte 3 Minuten in Mayers 

Hämalaun gefärbt, um die Zellkerne sichtbar zu machen. Anschließend wurden die Schnitte 10 

Minuten in fließendem Leitungswasser gebläut. 

Zuletzt folgte zur Entwässerung der Schnitte eine aufsteigende Alkoholreihe. Dazu wurden die 

Schnitte jeweils 5 Minuten in 70%igem, 80%igem, 90%igem, 95%igem und 100%igem Ethanol 

inkubiert. Nach zweimaliger, fünfminütiger Inkubation in Roti®-Histol wurden die Schnitte mit Roti®-

Histokitt unter dem Abzug eingedeckelt. Nach einer zweitägigen Wartezeit, in der die eingedeckelten 

Schnitte trocknen konnten, fand die mikroskopische Beurteilung statt. 

Die einzelnen Komponenten und deren Konzentrationen für die hier beschriebene Färbung sind in 

Tabelle 2 wiedergegeben. 
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Tabelle 2: Verwendete Komponenten für die Immunhistologie und ihre Konzentrationen  

 

Komponente Konzentration 
Hersteller-

bezeichnung 

Primärantikörper 

(Rabbit polyclonal Antibody to Cyclophilin B) 
1µg/ml Ab16045, abcam 

IgG-Kontrolle  

(Negative Control Rabbit Immunglobulin Fraction) 
1µg/ml X0903, Dako 

Sekundärantikörper  

(Biotinylated Link Universal) 
unverdünnt LSAB-Kit, Dako 

Streptavidin-Biotin-(Meerrettich-)Peroxidase-Komplex  

(Streptavidin-HRP) 
unverdünnt LSAB-Kit, Dako 

DAB-Lösung  

(DAB+-Chromogen  (3-3‘-Diaminobenzidin-Chromogen-

Lösung)  + DAB+-Substrat-Puffer (pH 7,5; enthält 

Wasserstoffperoxid)) 

unverdünnt LSAB-Kit, Dako 

 

 

 

2.2.3.3   Zum Nachweis von Cyclophilin B in und auf Monozyten, Makrophagen und 

Schaumzellen mittels indirekter Immunfluoreszenzfärbung 

 

Die Immunfluoreszenzfärbung ist eine Methode zum Nachweis von Antigenen in Zellen oder 

Geweben mittels fluorochrom-gekoppelter Antikörper. Bei der indirekten Immunfluoreszenzfärbung 

wird das nachzuweisende Antigen zunächst mit Hilfe eines spezifischen, unkonjugierten Antikörpers 

gebunden. In einem zweiten Schritt wird ein fluoreszenzfarbstoff-markierter Antikörper eingesetzt, 

der gegen den Primärantikörper gerichtet ist. Das an den Antikörper gekoppelte Fluorochrom wird 

durch Licht einer bestimmten Wellenlänge angeregt und emittiert wiederum Licht einer anderen 

Wellenlänge, welches mithilfe des Fluoreszenzmikroskops detektiert wird. 

Für die Immunfluoreszenzfärbung wurden sogenannte chamber slides verwendet. Dabei handelt es 

sich um Objektträger, auf denen 16 abnehmbare Medienkammern für Zellkulturen aufgebracht sind 

(siehe Abb. 26). Dies ermöglicht die Färbung der Zellen direkt am Ort der Zellkultur.  
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Abbildung 26:  Chamber slide (Abbildung mit freundlicher Genehmigung von Sigma-Aldrich 
356

)  

 

Für die Färbung der Monozyten wurden in einem chamber slide  pro Vertiefung jeweils 100.000 

Monozyten ausgesät und dort über Nacht belassen. In dieser Zeit konnten die in Lösung befindlichen 

Zellen am Boden des chamber slide adhärieren. Am nächsten Tag konnte die Färbung der Monozyten 

durchgeführt werden. Die Färbung von Makrophagen und Schaumzellen erfolgte nach Kultur der 

Zellen in chamber slides wie bereits beschrieben.  

Die Zellen in den 8 rechten Kammern des chamber slide wurden für 2 Stunden bei 37°C mit 2µg/ml 

LPS stimuliert, die anderen Kammern des chamber slide blieben unstimuliert. Dann wurde das 

Medium abgenommen, die Zellen einmal mit PBS gewaschen und dann für 15 Minuten mit 4%igem 

Formaldehyd bei Raumtemperatur fixiert. Anschließend wurden die Zellen nochmals mit PBS 

gewaschen und die Zellmembranen der Zellen in der unteren Reihe des chamber slides mit 0,2%igem 

Triton-X für 15 Minuten bei Raumtemperatur permeabilisiert (siehe Abb. 27). 

 

 

Abbildung 27:  Einteilung der Reaktionskammern der chamber slides für die Immunfluoreszenzfärbung von 

Monozyten, Makrophagen und Schaumzellen 
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Nach einem erneuten Waschschritt wurden die Zellen mit 3%igem bovinen Serumalbumin (BSA, in 

PBS verdünnt) für 20 Minuten bei Raumtemperatur inkubiert. Dieser Schritt dient dazu, unspezifische 

Bindungen zu blockieren. Nach einem weiteren Waschschritt wurde der mit PBS verdünnte 

Primärantikörper sowie die Isotyp-Kontrolle in die entsprechenden Vertiefungen gegeben (siehe Abb. 

27) und bei Raumtemperatur für 1 Stunde inkubiert. Der Antikörper gegen CyPB wurde in einer 

Konzentration von 1µg/ml eingesetzt. Als Kontrolle wurde rabbit-IgG verwendet, das ebenfalls bei 

einer Konzentration von 1µg/ml angewendet wurde. Nach einem weiteren Waschschritt mit PBS 

wurde der mit einem Fluoreszenzfarbstoff gekoppelte Sekundärantikörper mit PBS auf eine 

Konzentration von 10µg/ml verdünnt, in alle Vertiefungen gegeben und im Dunkeln für 1 Stunde bei 

Raumtemperatur inkubiert. Im Anschluss wurden die Vertiefungen zweimal mit PBS gewaschen. 

Die Zellkerne wurden mit 4′,6-Diamidin-2-Phenylindol (DAPI), das in einer Konzentration von  

300µg/ml eingesetzt wurde, für 3 Minuten im Dunkeln angefärbt. Nach weiteren zwei 

Waschschritten mit PBS wurden die Reaktionskammern des chamber slide abgenommen, der 

Objektträger mit Fluorescence Mounting Medium eingedeckelt und bis zum nächsten Tag im Dunkeln 

unter dem Abzug zum Trocknen aufbewahrt.  

Am darauffolgenden Tag fand die Fluoreszenzmikroskopie statt. Der Sekundärantikörper Alexa    

Fluor® 488 besitzt ein Anregungsmaximum von 493nm und ein Emissionsmaximum von 519nm.         

Er weist damit eine Fluoreszenz im grünen Spektralbereich auf. Entsprechend seiner Absorptions- 

und Emissionsmaxima wurde ein Anregungsfilter mit einer Wellenlänge von 450-490nm verwendet, 

und ein Emissionsfilter mit einer Wellenlänge von 520nm. DAPI besitzt ein Anregungsmaximum von 

358nm und ein Emissionsmaximum von 461nm und fluoresziert somit im blauen Bereich des 

Lichtspektrums. Dementsprechend wurde hier ein Anregungsfilter mit einer Wellenlänge von         

340-380nm verwendet, und ein Emissionsfilter mit einer Wellenlänge von 435-485nm.  

Die einzelnen Komponenten und deren Konzentrationen für die indirekte Immunfluoreszenzfärbung 

sind in Tabelle 3 wiedergegeben. 

Tabelle 3: Verwendete Komponenten für die Immunfluoreszenzfärbung und ihre Konzentrationen  

Antikörper 
verwendete 

Konzentration 
Herstellerbezeichnung 

Primärantikörper 

(Rabbit polyclonal Antibody to Cyclophilin B) 
1µg/ml Ab16045, abcam 

IgG-Kontrolle  

(Negative Control Rabbit Immunglobulin Fraction) 
1µg/ml X0903, Dako 

Sekundärantikörper  

(Alexa Fluor® 488 goat-anti-rabbit IgG (H+L) 

Antibody) 

10µg/ml A-11008, Gibco Invitrogen 

DAPI (4′,6-Diamidin-2-Phenylindol) 300µg/ml D9542, Sigma-Aldrich GmbH 
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2.2.3.4   Zum Nachweis von Cyclophilin B auf der Oberfläche von  Thrombozyten 

mittels Fluoreszenz-Durchflusszytometrie 

Die Durchflusszytometrie stellt eine Methode dar, bei der Zellen einzeln an einem Laser 

vorbeigeleitet werden. Dabei wird die Lichtbrechung an den Partikeln gemessen. Das hierbei 

erzeugte Streulicht (light scatter) wird in 2 Komponenten aufgeteilt: Der forward scatter (FSC - 

Vorwärts-Streulicht) liefert Informationen über die Größe des Partikels, der side scatter (SSC - 

Seitwärts-Streulicht) liefert Informationen über seine Granularität, also den Gehalt an Granula in 

dem Partikel. Diese Werte sind für jede Zellart individuell und es lassen sich somit einzelne Zelltypen 

aus einer heterogenen Probe unterscheiden und zählen.359 

Eine besondere Form der Durchflusszytometrie stellt die Fluoreszenz-Durchflusszytometrie dar. 

Dabei werden die Zellen zusätzlich mit einem fluoreszenzfarbstoff-gekoppelten Antikörper markiert. 

Durch das Laserlicht wird der Fluoreszenzfarbstoff angeregt und emittiert Licht einer bestimmten 

Wellenlänge. Mit Hilfe dieses emittierten Fluoreszenzsignals können antikörpermarkierte Rezeptoren 

auf der Zelloberfläche qualitativ und quantitativ identifiziert werden.359 

Durch die Kombination aus Lichtbrechung und emittiertem Fluoreszenzsignal kann ein genaueres Bild 

über die Eigenschaften eines Partikels gewonnen werden.359 

Für die fluoreszenz-durchflusszytometrischen Versuche in dieser Arbeit wurde das 

Durchflusszytometer FACSCalibur™ verwendet.  

Thrombozyten wurden, wie im Kapitel 2.2.2.1 beschrieben, isoliert. Anstelle von Tyrodes-Puffer 

wurde zur Isolierung allerdings PBS, das mit Kalziumchlorid (CaCl2, 0,9mM) und Magnesiumchlorid 

(MgCl2, 0,49mM) versetzt war, verwendet. Nach der Gewinnung des plättchenreichen Plasmas wurde 

die Zellzahl auf 1 x 107 Zellen/ml eingestellt und jeweils 100µl dieser Zellsuspension in                         

10 Rundbodenröhrchen gegeben. Jeweils 2 der Röhrchen wurden mit 20µM ADP, 25µM         

Thrombin receptor-activating peptide (TRAP), 10µg/ml Collagen-related peptide (CRP) bzw.      

0,1U/ml Thrombin für 1 Stunde bei Raumtemperatur inkubiert. Die übrigen 2 Röhrchen wurden als 

Negativ- bzw. Isotyp-Kontrolle unstimuliert belassen. 

Im Anschluss wurden die Thrombozyten mit den Antikörpern markiert. Hierfür wurden zunächst 

ungelabelte Primärantikörper, also solche die nicht mit einem Fluoreszenzfarbstoff markiert waren, 

verwendet. In einem zweiten Schritt wurden diese dann mit einem gegen den Primärantikörper 

gerichteten fluoreszenzfarbstoff-gekoppelten (gelabelten) Sekundärantikörper markiert, damit sie im 

Durchflusszytometer detektiert werden konnten. 

Die Röhrchen mit den stimulierten Thrombozyten und eines der Röhrchen mit unstimulierten 

Thrombozyten wurden in einem ersten Schritt für 30 Minuten mit einem gegen CyPB gerichteten 

Primärantikörper (Konzentration: 15µg/ml) inkubiert. Dann folgte ein Waschschritt mit PBS. Dazu 

wurde jeweils 1ml PBS in die Rundbodenröhrchen gegeben und im Anschluss für 5 Minuten bei 200xg 

zentrifugiert. Der Überstand wurde dekantiert und die Zellen wieder in 100µl PBS mit CaCl2 und 

MgCl2 resuspendiert.   

Im Anschluss wurde der gebundene Primärantikörper mit einem Alexa Fluor® 488-gelabelten 

Sekundärantikörper markiert, der gegen die Tierart, in der der Primärantikörper generiert wurde, 

gerichtet ist. Dazu wurden die Thrombozyten für 30 Minuten unter Lichtausschluss mit 15µl des 
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Alexa Fluor® 488-Antikörpers inkubiert. Nach der Einwirkung des Sekundärantikörpers erfolgte ein 

weiterer Waschschritt in der oben beschriebenen Methode, um nicht gebundene Antikörper aus der 

Zellsuspension zu entfernen.  

Die Färbung des verbleibenden Röhrchens diente der Isotyp-Kontrolle. Die unstimulierten 

Thrombozyten wurden nach demselben Protokoll gefärbt wie die anderen Zellen, mit dem 

Unterschied, dass hier anstelle des Primärantikörpers ein aus dem Hasen stammender IgG-

Antikörper (Konzentration: 15µg/ml) verwendet wurde.  

Das Zellpellet wurde schließlich in 300µl 0,5%igem Paraformaldehyd resuspendiert und fixiert. Im 

Anschluss wurden die Zellen mit Hilfe des Durchflusszytometers detektiert und die mittlere 

Fluoreszenzintensität (MFI) gemessen. Die Stärke der Fluoreszenz dient dabei als Indikator für die 

gebundene Antikörpermenge.  

Die einzelnen Antikörper für die Detektion und die Quantifizierung der Thrombozyten mittels 

Fluoreszenz-Durchflusszytometrie sind in Tabelle 4 wiedergegeben. 

Tabelle 4: Verwendete Antikörper für die Färbung der Thrombozyten und ihre Konzentrationen  

Antikörper 
verwendete 

Konzentration 
Herstellerbezeichnung 

Primärantikörper 

(Rabbit polyclonal Antibody to Cyclophilin B) 
15µg/ml Ab16045, abcam 

IgG-Kontrolle  

(Rabbit IgG) 
15µg/ml sc-2027, Santa Cruz 

Sekundärantikörper  

(Alexa Fluor® 488 donkey-anti-rabbit Antibody) 
300µg/ml A-21206, Gibco 
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2.2.4 Wirkung von Cyclophilin B auf Monozyten  

2.2.4.1  Zum Nachweis der veränderten enzymatischen Aktivität von Matrix 

Metalloproteinasen mittels SDS-PAGE (Sodium dodecylsulfate polyacryl-

amide gel-electrophoresis)-Gelatine-Zymographie 

Die Zymographie ist eine auf einer SDS-PAGE (Sodium dodecylsulfate polyacrylamide gel-

electrophoresis) basierende Methode, mit deren Hilfe die Matrix Metalloproteinasen MMP-2 und 

MMP-9 aufgrund ihrer enzymatischen Aktivität qualitativ und quantitativ nachgewiesen werden 

können.  

Die bei dieser Methode verwendeten Polyacrylamidgele werden mit einer unterschiedlich großen 

Menge Gelatine versetzt, die als Substrat für die MMPs dient und von den Gelatinasen abgebaut 

wird. Dies wird bei der abschließenden Färbung der Gele zur Sichtbarmachung der MMPs genutzt. 

Im vorliegenden Versuch wurden die Überstände von Monozytenkulturen auf das Vorhandensein  

der MMPs untersucht. Die Monozyten wurden hierfür wie im Kapitel 2.2.2.2 beschrieben isoliert    

und jeweils 2 x 105Zellen/200µl Monozytenmedium in die Vertiefungen von 96-Loch-Platten 

ausgesät. Nach einer dreistündigen Inkubationszeit bei 37°C, während der die Monozyten wieder 

adhärent werden konnten, wurde das Medium vorsichtig abgenommen und gegen 100µl frisches 

Monozytenmedium ausgetauscht. Nun wurden die Zellen mit CyPB (Konzentration: 100nM bzw. 

200nM) für 18 Stunden inkubiert. Als Negativkontrolle wurden die Zellkulturüberstände von 

Monozyten verwendet, die lediglich in Monozytenmedium ohne weitere Zugaben kultiviert wurden, 

als Positivkontrolle diejenigen von Lipopolysaccharid (LPS)-stimulierten Monozyten (LPS-

Konzentration: 2µg/ml). Nach Ablauf der 18 Stunden wurden die Überstände abgenommen und 

konnten für die Zymographie weiter bearbeitet werden. 

Alle Überstände wurden zunächst im Verhältnis 1:10 verdünnt. Dann wurden jeweils 20µl der Probe 

mit 5µl nicht reduzierendem Ladepuffer (5x) für 20 Minuten bei Raumtemperatur inkubiert. Der 

Puffer enthält das anionische Tensid Sodium dodecylsulfate (SDS), das eine reversible Inaktivierung 

der Proteasen bewirkt und durch seine anionischen Eigenschaften die Eigenladung der MMPs 

überdeckt.   

Während der Inkubationszeit wurde die Elektrophoresekammer mit einem Zymogram-Gel (mit 10% 

Gelatine) beladen und die Kammer bis über den oberen Rand des Gels mit auf 4°C gekühltem 

Laufpuffer, der ebenfalls SDS enthält, gefüllt. Dann wurden die Proben und ein Proteinstandard 

(Seeblue® Plus2 Prestained Standard) vorsichtig in die Taschen des Gels pipettiert.  

Nach Verschließen der Kammer wurde eine elektrische Spannung angelegt, die die Migration der 

negativ geladenen Proteine durch das Gel von der Anode in Richtung Kathode bewirkt. Dabei werden 

sie entsprechend ihrer molekularen Masse (MMP-2: 72kDa, MMP-9: 92kDA) aufgetrennt.  

Die Spannung wurde zunächst auf 60V eingestellt, bis die Proben ein Stück weit in das Gel gewandert 

waren und dort eine horizontale Linie bildeten. Dann wurde sie auf 80V erhöht. Sobald die Banden 

des Markers eine gute Auftrennung zeigten, wurden die Gele entnommen und zur Entfernung des 

SDS zweimal in Aqua dest. gewaschen. Anschließend wurden die Gele für 30 Min. in 1:10 

verdünntem, auf 37°C angewärmten Renaturierungspuffer auf dem Schüttler inkubiert, wodurch die 
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MMPs in ihre enzymatisch aktive Form zurückversetzt wurden. Nach einem kurzen Waschschritt in 

1:10 verdünntem Entwicklungspuffer wurden die Gele nochmals für 30 Min. auf dem Schüttler in 

Entwicklungspuffer inkubiert. Schließlich wurde der Entwicklungspuffer erneut gegen frischen 

ausgetauscht und die Gele darin über Nacht bei 37°C belassen. Während dieser Zeit konnten die 

MMPs die Gelatine in den Gelen verdauen.  

Am nächsten Tag wurden die Gele für 30 Minuten auf dem Schüttler in Coomassie Brilliant Blau  

gefärbt und anschließend solange in Aqua dest. gespült, bis die transparenten Banden auf dem 

blaugefärbten Gelhintergrund sichtbar wurden.  

Zuletzt wurden die Gele mit Hilfe eines Spannrahmens und GelDry
TM

 Drying Solution zwischen zwei 

Zellophanfolien für 2 Tage getrocknet und die Banden schließlich densitometrisch ausgewertet. Dazu 

wurden die Gele zunächst als schwarz-weiß-Bild eingescannt, die Farben invertiert und die Intensität 

der Banden mit Hilfe eines Grafikprogrammes (ImageJ) gemessen. Die dabei gewonnenen Daten 

konnten im Anschluss statistisch ausgewertet werden.  

 

 

2.2.4.2    Zum Nachweis der Mirgationswirkung von Cyclophilin B mittels    

Chemotaxis-Assay 

Die Migration von Monozyten entlang eines chemotaktischen Gradienten spielt bei der 

Atherosklerose eine wichtige Rolle. Dabei spielen insbesondere MCP-1 sowie in geringerem Umfang 

auch oxidativ modifiziertes LDL als chemotaktisch wirksame Moleküle eine wichtige Rolle.52,54,56,69 

Ziel des hier angewendeten Chemotaxis-Assays war es, herauszufinden, ob CyPB als chemotaktisch 

wirksames Agens für Monozyten wirkt und ob diese entlang eines CyPB-Gradienten migrieren 

können. Darüber hinaus sollte im gleichen Ansatz geklärt werden, ob die Wirkung von CyPB durch die 

Cyclosporin A-Derivate NIM811 und MM284 inhibiert werden kann. 

In dieser Versuchsanordnung wurde ein 2-Kammer-System mit 48 Reaktionskammern verwendet 

(48-well Micro Chemotaxis Chamber) (siehe Abb. 28). Dabei befand sich im unteren Teil der Kammer 

die zu untersuchende Substanz und im oberen Teil der Kammer die Monozyten. Dazwischen wurde 

eine Gummidichtung eingelegt, die an den Stellen, an denen die beiden Reaktionskammern 

miteinander in Verbindung stehen, Aussparungen aufweist. Hierdurch sollte ein Ineinanderfließen 

der verschiedenen Substanzen in den unterschiedlichen Kammern verhindert werden. Außerdem 

wurde ein Polycarbonatfilter mit einer Porengröße von 5µm zwischen den unteren und oberen Teil 

der Apparatur eingelegt, den die Monozyten bei ihrer Migration nicht überwinden konnten. Sie 

bleiben daran hängen, konnten darauf fixiert und anschließend mikroskopisch ausgezählt werden. 
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Abbildung 28:  Migrationskammer (Abbildung mit freundlicher Genehmigung von Neuroprobe Inc., 

Gaithersburg, Maryland, USA 
357

) 

 

Die Migration fand bei 37°C im Brutschrank statt. Es wurden zwei Versuchsanordnungen 

durchgeführt: bei der ersten Variante wurde der Filter nach einer Migrationsdauer von 4 Stunden 

ausgewertet, bei der zweiten nach 18 Stunden. 

Zum Beladen der Migrationskammer wurden zunächst die Kammern im unteren Teil der Apparatur 

mit jeweils 28µl der in Monozytenmedium gelösten Testsubstanzen befüllt: 

Im Ansatz für den 4-Stunden-Test wurden die Vertiefungen mit CyPB (Konzentration: 200nM) sowie 

CyPB (Konzentration: 200nM) in Kombination mit dem sowohl intra- als auch extrazellulär wirkenden 

Cyclosporin A-Derivat NIM811 (Konzentration: 200nM) bzw. dem rein extrazellulär wirkenden 

Cyclosporin A-Derivat MM284 (Konzentration 800nM) befüllt. In eine der Vertiefungen wurde als 

Positivkontrolle Monozytenmedium, das mit monocyte chemotactic protein-1 (MCP-1, Konzentration: 

50ng/ml) versetzt wurde, gegeben, in eine andere Monozytenmedium ohne Zusätze als 

Negativkontrolle. 

Im Ansatz für den 18-Stunden-Test wurden die Vertiefungen mit CyPB in einer Konzentrationsreihe 

(Konzentrationen: 100nM, 200nM, 400nM sowie 800nM), sowie CyPB (Konzentration: 200nM) in 

Kombination mit dem sowohl intra- als auch extrazellulär wirkenden Cyclosporin A-Derivat NIM811 

(Konzentration: 200nM) bzw. dem rein extrazellulär wirkenden Cyclosporin A-Derivat MM284 

(Konzentration: 800nM) befüllt. Wie beim 4-Stunden-Test wurde auch hier in eine Vertiefung 

Monozytenmedium mit monocyte chemotactic protein-1 (MCP-1, Konzentration: 50ng/ml) als 

Positivkontrolle gegeben, in eine andere Monozytenmedium ohne Zusätze als Negativkontrolle. 

Bei der Kombination von CyPB mit NIM811 bzw. MM284 wurden die beiden Substanzen in beiden 

Versuchsansätzen jeweils für eine halbe Stunde vor dem Lösen in Monozytenmedium und Befüllen 

der Kammer koinkubiert.  

Anschließend wurde der Filter kurz in Monozytenmedium inkubiert, kurz antrocknen gelassen und 

luftblasenfrei auf den unteren Teil der Kammer aufgebracht. Darüber wurde die Gummidichtung 

gelegt, die ein Ineinanderlaufen der verschiedenen Ansätze verhindern sollte, sowie die obere Platte 

und die Apparatur vorsichtig zusammengeschraubt.  

Nun wurden die oberen Vertiefungen mit 50 µl Monozytensuspension (Konzentration:                           

4 x 105Zellen/ml, entsprechend 20.000 Zellen pro Vertiefung) befüllt. Dabei kamen in die 

Vertiefungen, die über denjenigen mit der Kombination aus CyPB und NIM811 bzw. MM284 liegen, 
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zusätzlich jeweils NIM811 bzw. MM284 (Konzentration: 200nM), um einen Konzentrationsgradienten 

bei diesen Substanzen zu verhindern.  

Zuletzt wurde die gesamte Migrationskammer in Frischhaltefolie eingewickelt, um ein Verdunsten 

des Mediums zu verhindern, und für 4 bzw. 18 Stunden bei 37°C inkubiert. 

Nach dieser Zeit wurde der Filter vorsichtig aus der Migrationskammer entnommen, wobei darauf 

geachtet werden musste, dass die Zellseite des Filters nicht berührt wird. Die auf dem Filter 

haftenden Zellen wurden dann für 10 Minuten bei Raumtemperatur in Methanol fixiert. 

Anschließend wurde der Filter 3 Minuten in Eosin-Methylenblau-Lösung nach May-Grünwald gefärbt, 

dann für 1 Minute in Aqua dest. gewaschen und zuletzt in 1:10-verdünnter Giemsa-Lösung 15 

Minuten inkubiert. Nach dem abschließenden Spülen mit Aqua dest. wurde der Filter auf einen 

Objektträger aufgelegt, und mit Roti®-Histokitt unter einem Deckgläschen eingedeckelt. 

Ausgewertet wurde der Filter durch mikroskopische Auszählung der haftengebliebenen Zellen auf 

der gesamten Fläche der jeweiligen Vertiefung bei 200facher Vergrößerung.  

Dabei wurde die Gesamtzahl der migrierten Zellen bei der Positivkontrolle (MCP-1) gleich 100% 

gesetzt. Die Anzahl der migrierten Zellen bei der Negativkontrolle bzw. bei den Testsubstanzen 

wurden dazu prozentual ins Verhältnis gesetzt. 

Die Substanzen, die für den oben beschriebenen Assay verwendet wurden, sind in Tabelle 5 

wiedergegeben. 

Tabelle 5: Verwendete Substanzen für den Chemotaxis-Assay und ihre Konzentrationen  

Ansatz Substanz und eingesetzte Konzentration 

A 100nM CyPB 

B 200nM CyPB 

C 400nM CyPB 

D 800nM CyPB 

E 200nM CyPB + 200nM NIM811 

F 200nM CyPB + 200nM MM284 

G 50ng/ml MCP-1 (Positivkontrolle) 

H reines Monozytenmedium (Negativkontrolle) 
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2.2.5  Wirkung von Cyclophilin B auf Thrombozyten 

2.2.5.1  Zum Nachweis der Interaktionen von Thrombozyten mit 

Gefäßwandkomponenten mittels Flusskammerversuch 

Der Flusskammerversuch dient als ein in vitro-Modell, in dem die physikalischen Bedingungen, die in 

Endstromgebieten von Blutgefäßen vorherrschen, nachgestellt werden können.  

Die zu untersuchenden, in Lösung befindlichen Zellen werden mit Hilfe einer Perfusionspumpe an 

einer stationären Phase, die die Gefäßwand simuliert, vorbeigeleitet. Dabei lassen sich die 

Interaktionen zwischen diesen Zellen und der stationären Phase, wie beispielsweise das rolling oder 

die feste Adhäsion, genauer untersuchen. 

 

 

2.2.5.1.1   Aufbau der Flusskammer 

Die Flusskammer (siehe Abb. 29) besteht aus einem Metallgestell, auf den ein Plexiglasblock mit 

25mm Durchmesser und einem längsovalen Sichtfenster aufgebracht ist, an dessen Enden sich 

Öffnungen für den Zu- und Abfluss der Zellsuspension befinden. Dieser Block bildet den Boden des 

Flusskanals. Auf ihn wird ein 0,5mm hoher Dichtungsring aufgelegt, der den Flusskanal seitlich 

begrenzt. Durch ihn werden die Zellen einerseits innerhalb eines bestimmten Flusskanals geleitet, 

andererseits kann durch die Höhe des Dichtungsrings die vorherrschende Schubspannung variiert 

werden. Anschließend wird ein Deckgläschen aufgelegt, das mit den zu untersuchenden Substanzen 

beschichtet wurde. Dieses bildet die Decke des Flusskanals. Gummidichtung und Deckgläschen 

werden mit einem Spannring auf der Flusskammer befestigt. 

 

Abbildung 29:  Aufbau der Flusskammer (Abbildung mit freundlicher Genehmigung der Provitro AG, Berlin; 

Abbildung modifiziert nach 
358

) 

Die Flusskammer besteht aus einem Korpus, auf dem ein mit den gewünschten Substanzen beschichtetes 

Deckgläschen aufgelegt werden kann. Zwischen Korpus und Deckgläschen befindet sich eine Gummidichtung, 

die die Zellen entlang eines Kanals mit definierter Höhe durch die Kammer leitet. Deckgläschen und 

Gummidichtung werden mithilfe eines Spannrings am Korpus befestigt.  
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Die zu untersuchenden Zellen werden mit Hilfe eines Perfusors mit einer konstanten 

Flussgeschwindigkeit durch die Flusskammer geleitet. Die Interaktionen zwischen Zellen und 

stationärer Phase können dabei unter dem Mikroskop beobachtet und mit Hilfe einer Kamera und 

eines DVD-Recorders für die spätere Auswertung aufgezeichnet werden (Versuchsaufbau siehe    

Abb. 30). 

 

 

Abbildung 30:  Aufbau des Arbeitsplatzes für die Flusskammer 

Oben: Versuchsapparatur mit Perfusor, Flusskammer, Mikroskop, Kamera, Monitor und DVD-Recorder.                              

Unten:  Flusskammer  mit  zuführender  Flüssigkeitsleitung,  Abflussleitung  und  Abfallauffangschale.   Mit  

Hilfe  des  Perfusors werden die Zellen durch die Flusskammer geleitet. Die Zellinteraktionen werden mittels 

eines inversen Mikroskops am Monitor beobachtet und mit einer Kamera sowie einem DVD-Recorder für die 

spätere Auswertung aufgezeichnet. 

 
Im vorliegenden Versuch wurden die Interaktionen von Thrombozyten mit den folgenden stationären 

Phasen untersucht: 

a) Deckgläschen mit Kollagenbeschichtung 

b) Deckgläschen mit Endothelzell-Beschichtung (HUVECs)  

c) Deckgläschen beschichtet mit verschiedenen rekombinanten Proteinen 
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2.2.5.1.2  Beschichtung der Deckgläschen 

Die Deckgläschen wurden zunächst in den Vertiefungen von 6-Loch-Platten verteilt, wobei in jede 

Vertiefung 1 Deckglas gegeben wurde. In diesen wurden die Deckgläschen dann für 1 Stunde zur 

Desinfektion in 70%iges Ethanol eingelegt. Anschließend wurden sie mit Hilfe einer sterilen Pinzette 

für 10 Minuten zum Trocknen an den Rand der Vertiefungen gelehnt. Danach wurden sie zurück in 

die Vertiefungen gelegt und je nach Versuchsansatz mit unterschiedlichen Substanzen beschichtet: 

Für den ersten Versuchsansatz wurden die Deckgläschen zunächst mit Kollagenlösung 

(Konzentration: 10µg/ml) beschichtet und vor der Verwendung für 16 Stunden bei 4°C inkubiert.  

Für den zweiten Versuchsansatz wurden die Deckgläschen mit Endothelzellen (HUVECs) beschichtet. 

Dazu wurden die Deckgläschen zunächst mit 0,2%iger Gelatine für 15 Minuten bei 37°C inkubiert. In 

dieser Zeit wurden die HUVECs wie im Kapitel 2.2.2.5 beschrieben von der Zellkulturflasche abgelöst 

und auf eine Zellkonzentration von 2,5 x 105Zellen/ml eingestellt. Nach dem Abpipettieren der 

überschüssigen Gelatine aus den Vertiefungen der 6-Loch-Platten, konnten die Deckgläschen mit den 

Endothelzellen beschichtet werden. Dazu wurden 2ml der Endothelzell-Suspension in jede Vertiefung 

der 6-Loch-Platten gegeben und im Brutschrank weiter kultiviert. Sobald die Zellen auf den 

Deckgläschen konfluent gewachsen waren, also ein Zellmonolayer entstanden war, konnten die 

Deckgläschen für den Versuch verwendet werden. Dies war je nach Passagezahl der HUVECs 

normalerweise schon am nächsten oder übernächsten Tag der Fall. Am Versuchstag mussten die 

Endothelzellen zunächst aktiviert werden. Dazu wurden das Medium 6 Stunden vor Versuchsbeginn 

mit Interferon-γ (IFN-γ) in einer Konzentration von 50ng/ml und Tumornekrosefaktor-α (TNF-α) in 

einer Konzentration von 20ng/ml versetzt. 

Für den dritten Versuchsansatz wurden die Deckgläschen zunächst wieder mit 0,2%iger Gelatine 

beschichtet und anschließend mit verschiedenen rekombinanten Proteinen gecoatet.  

Für die Beschichtung mit Gelatine wurden die Deckgläschen zunächst für 15 Minuten bei 37°C mit 

0,2%iger Gelatine inkubiert. Danach wurde die Gelatinelösung abgesaugt, die Deckgläschen kurz mit 

PBS gespült und dann für 20 Minuten mit 2%igem BSA inkubiert, um unspezifische Bindungen zu 

blockieren. Nach einem erneuten Waschschritt mit PBS konnten die Deckgläschen mit den zu 

untersuchenden rekombinanten Proteinen gecoatet werden.  

Hierfür wurde sowohl rekombinantes, humanes CyPA, CyPB bzw. CD147-Fc (EMMPRIN-Fc) 

verwendet. Als Negativkontrolle für CyPA und CyPB wurden BSA-beschichtete Deckgläschen 

eingesetzt, als Negativkontrolle zu CD147-Fc (EMMPRIN-Fc) wurden die Deckgläschen mit humanem 

IgG-Fc-Fragment-beschichtet.   

Für die Beschichtung mit den oben genannten Proteinen wurden die Deckgläschen jeweils für 15 

Minuten bei 37°C mit den Proteinen inkubiert. Dazu wurde zunächst die PBS-Spüllösung aus den 

Vertiefungen abgesaugt. Daraufhin wurde je 1ml der Proteinlösung in der benötigten Konzentration 

in die Vertiefungen pipettiert. CD147-Fc (EMMPRIN-Fc) wurde in einer Konzentration von 20µg/ml 

verwendet, CyPA und CyPB in einer Konzentration von 200nM. Als Kontrolle wurde humanes IgG-Fc-

Fragment in einer Konzentration von 20µg/ml bzw. 2%iges BSA verwendet. 
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2.2.5.1.3  Durchführung des Flusskammerversuchs mit kollagen- bzw. 

endothelzellbeschichteten Deckgläschen 

Die Thrombozyten wurden am Versuchstag wie beschrieben isoliert und die Zellzahl ermittelt. Dann 

wurde die Zellsuspension auf 7 Eppendorfgefäße verteilt und bis zur Verwendung im Brutschrank 

gelagert.  

Die einzelnen Portionen wurden dann je nach Versuchsanordnung zeitversetzt für 30min bei 37°C mit 

den zu testenden Proteinen (CyPB, NIM811, MM284, ADP) inkubiert, sodass die Zellsuspensionen 

nach Ablauf der Inkubationszeit sofort für den Flusskammerversuch verwendet werden konnten. Als 

Negativkontrolle wurden unstimulierte Thrombozyten verwendet.  

Die verwendeten Reagenzien für die Stimulation der Thrombozyten und deren Konzentrationen sind 

in Tabelle 6 aufgeführt.  

Nach Ablauf der Inkubationszeit wurden die Zellsuspensionen dann mit Tyrodes-Puffer (pH 7,4), der 

auf 37°C angewärmt war, auf eine Zellkonzentration von 4 x 107Zellen/ml eingestellt, in 

Perfusorspritzen gefüllt und diese mit einem Dreiwegehahn versehen, über welchen später die 

Verbindung zur Flusskammer hergestellt werden konnte. 

Tabelle 6: Verwendete Substanzen zur Stimulation von Thrombozyten für den Flusskammerversuch 

und ihre Konzentrationen  

Ansatz Substanz und eingesetzte Konzentration 

A 200nM CyPB 

B 200nM CyPB + 200nM NIM811 

C 200nM CyPB + 200nM MM284 

D 200nM CyPB + 500nM MM284 

E 200nM CyPB + 800nM MM284 

F 20µM ADP (Positivkontrolle) 

G unstimuliert (Negativkontrolle) 

 

Im Anschluss wurde ein kollagen- bzw. endothelzellbeschichtetes Deckgläschen in die Flusskammer 

eingelegt und dieses mit dem Spannring befestigt. Dann wurde die Perfusorspritze in der Perfusor 

eingelegt, mit der Zuleitung der Flusskammer verbunden und eine Flussgeschwindigkeit von 

15ml/min eingestellt, was einer Scherrate von 2000-s entspricht, wie sie in arteriellen 

Endstromgebieten vorherrscht. Vor den einzelnen Messungen wurde zunächst eine 10-minütige 

Vorlaufzeit abgewartet.  

Dann wurden pro Deckgläschen 4 für den Versuchsansatz repräsentative Stellen ausgesucht und an 

diesen Stellen je eine Sequenz von 40 sec aufgezeichnet. Pro aufgezeichneter Sequenz wurden 

sowohl die rollenden als auch die fest adhärierenden Zellen an 4 Bildausschnitten quantifiziert. Dazu 
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wurde auch hierfür ein repräsentativer Bereich in jedem Quadranten des Monitors ausgewählt. Für 

die Auszählung der Zellen wurde eine Schablone mit einer Aussparung, die einer Fläche von      

100µm x 150µm entsprach, am Monitor aufgeklebt und die Zellen darin ausgezählt (siehe Abb. 31). 

 

 

Abbildung 31:  Schema zur Auswertung der Flusskammersequenzen 

Mit Hilfe einer Auswertungsschablone wurden an 4 verschiedenen, repräsentativen Stellen die rollenden und 

adhärenten Zellen pro Videosequenz ausgezählt. 
 

 

 

2.2.5.1.4  Durchführung des Flusskammerversuchs mit proteinbeschichteten 

Deckgläschen 

Die Thrombozyten wurden am Versuchstag wie beschrieben isoliert und die Zellzahl ermittelt.     

Dann wurden die gesamten Zellen mit 20µM ADP für 30 Minuten im Brutschrank stimuliert, um die 

Expression von Adhäsionsmolekülen auf der Oberfläche der Thrombozyten zu induzieren. Nach 

Ablauf der Inkubationszeit wurde die Zellsuspension mit Tyrodes-Puffer (pH 7,4) auf eine Zellzahl    

von 4 x 107Zellen/ml verdünnt und auf 5 Perfusorspritzen verteilt. 

Anschließend wurde ein Deckgläschen, das wie in Kapitel 2.2.5.1.2 beschrieben, mit den 

rekombinanten Proteinen CyPA, CypB, CD147-Fc (EMMPRIN-Fc), BSA sowie IgG-Fc-Fragment 

gecoatet wurde, in die Flusskammer eingelegt und mit dem Spannring befestigt. Der restliche 

Versuchsablauf erfolgt analog zu der im vorherigen Kapitel beschriebenen Methode.  
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2.2.6  In vivo-Versuch 

2.2.6.1  Versuchstiere, Haltungsbedingungen, Tierversuchsantrag 

Für den Tierversuch kamen Wildtyp-Mäuse des Stammes C57BL/6J zum Einsatz. Dabei wurden 

sowohl männliche als auch weibliche Tiere verwendet, die zum Zeitpunkt der Versuchsdurchführung 

ein Alter von 12-16 Wochen hatten.  

Die Haltung der Tiere erfolgte in Kleingruppen von bis zu 5 Tieren in Käfigen, die mit entstaubtem 

und entkeimtem Weichholzgranulat aus Espenholz eingestreut waren. Als Beschäftigungs- und 

Nestbaumaterial wurde den Tieren sterilisierter Zellstoff zur Verfügung gestellt. Futter und Wasser 

standen ad libitum zur Verfügung.  

In der Tierhaltung herrschte eine durchschnittliche Raumtemperatur von 22°C. Ein Tag-Nacht-

Rhythmus wird mit Hilfe einer Beleuchtungsanlage geregelt, bei einer Lichtdauer von 12 Stunden pro 

Tag. 

Der Versuch wurde vom Regierungspräsidium Tübingen gemäß Tierschutzgesetz §8 unter der 

Versuchsnummer M7/14 genehmigt und gemäß der Richtlinien des Tierschutzgesetzes durchgeführt. 

 

 

2.2.6.2 Zum Nachweis der Cyclophilin B-Wirkung auf die Migration von 

inflammatorischen Zellen mittels einer Peritonitis-Induktion bei 

Wildtypmäusen (C57BL/6J) 

2.2.6.2.1 Prinzip des Versuchs 

Zur Untersuchung des Einflusses von CyPB auf die Migration von Leukozyten in vivo wurde ein Model, 

bei dem eine Peritonitis bei Mäusen (C57BL/6J) induziert wurde, angewendet.  

Dabei wurde durch intraperitoneale Injektion einer reizenden Substanz eine sterile Peritonitis 

ausgelöst, in deren Rahmen es zu einer Auswanderung von Leukozyten in die Bauchhöhle kam. Durch 

eine Lavage der Bauchhöhle konnten die migrierten Entzündungszellen gewonnen werden. Im 

Anschluss wurden die einzelnen Zelltypen mit Hilfe der Durchflusszytometrie untersucht. 
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2.2.6.2.2 Versuchsdurchführung 

Die Mäuse wurden zur intraperitonealen Injektion der verschiedenen Substanzen kurzzeitig mit 

Isofluran narkotisiert und der hintere Bauchbereich desinfiziert. Dann wurden jeweils 500µl einer 

4%igen Thioglykolat-Lösung bzw. einer 0,5%igen CyPB-Lösung (entsprechend 10µg CyPB pro Maus) 

im hinteren Drittel des Bauchs paramedian auf der linken Seite intraperitoneal injiziert. Beide 

Substanzen waren in 0,9%iger, physiologischer Kochsalzlösung gelöst. Bei den Negativkontrolltieren 

wurde zur Injektion 500µl sterile physiologische Kochsalzlösung verwendet.  

Zur Schmerztherapie wurde den Tieren zu Beginn des Versuchs und im weiteren Verlauf alle                

8 Stunden 50µg Buprenorphin (entsprechend einer Dosierung von 25mg/kg Körpergewicht) subkutan 

injiziert.  

Nach 24 Stunden wurden die Tiere erneut narkotisiert und dann durch zervikale Dislokation getötet. 

Im Anschluss erfolgte eine Bauchhöhlenlavage zur Gewinnung der in die Bauchhöhle gewanderten 

Entzündungszellen (siehe Abb. 32).  

Dazu wurde den Tieren nach Desinfektion des Bauchbereichs zunächst 3ml PBS-Lösung und 2ml Luft 

intraperitoneal injiziert. Dann wurden die Tiere auf der Arbeitsfläche mehrfach hin und her gerollt, 

um die eingewanderten Leukozyten gleichmäßig in der Spülflüssigkeit zu verteilen. Im Anschluss 

wurde zunächst die Haut im Bauchbereich entfernt und ein kleiner Schnitt in der Linea alba gesetzt 

durch den die Spülflüssigkeit mit Hilfe einer Pasteurpipette abgesaugt werden konnte. Die Spülung 

der Bauchhöhle wurde noch fünf Mal mit jeweils 1ml PBS wiederholt, um die Entzündungszellen 

möglichst vollständig zu gewinnen. 

 

Abbildung 32:  Durchführung einer Bauchhöhlenlavage bei der Maus  

A) Eröffnung der mit Spüllösung und Luft gefüllten Bauchhöhle in der Linea alba. B) Absaugen der 

Spülflüssigkeit. C und D) Erneute Spülung der Bauchhöhle und Gewinnung der Spülflüssigkeit. 
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Die Lavageflüssigkeit mit den gewonnenen Entzündungszellen wurde zentrifugiert (5 Minuten,   

500xg, bei Raumtemperatur, mit Bremse), der Überstand verworfen und das Pellet in 1ml Lysepuffer, 

der vorwiegend aus Diethylenglykol und Formaldehyd besteht, resuspendiert, um beigemengte 

Erythrozyten zu entfernen. Danach wurde die Zellzahl mit Hilfe der Neubauer-Zählkammer  

bestimmt, jeweils 5 x 105 Zellen in Rundbodenröhrchen gegeben und für weitere 10 Minuten im 

Lysepuffer inkubiert. Nach einem weiteren Zentrifugationsschritt (5 Minuten, 500xg, bei 

Raumtemperatur, mit Bremse) wurde das entstandene Pellet in 200µl 0,5%igem Paraformaldehyd 

(PFA) resuspendiert und mit 10µl der Allophycocyanin (APC)-gekoppelten Antikörper im Dunkeln 

inkubiert.  

Zur Bestimmung der unterschiedlichen Leukozyten-Subpopulationen wurden verschiedene 

Antikörper verwendet: F4/80 dient zur Identifizierung von Makrophagen. Mit CD11b können 

Monozyten, Makrophagen, Granulozyten sowie NK-Zellen detektiert werden. Bei Ly-6G handelt es 

sich um einen Marker für neutrophile Granulozyten und bei CD3 um einen Marker für T-Zellen. 

Im Anschluss wurden die gefärbten Zellen mit Hilfe des Durchflusszytometers identifiziert und die 

Gesamtzellzahl der einzelnen Leukozyten-Arten berechnet.  

 

 

2.2.6.2.3 Auswertung 

Mit Hilfe des Durchflusszytometers wurden insgesamt 200.000 Zellen pro Rundbodenröhrchen 

gemessen. Die Anzahl der jeweils CD11b-, F4/80-, Ly-6G- und CD3-positiven Zellen wurden vom 

Durchflusszytometer gemessen und als Prozentwert angegeben.  

Die Prozentzahl der CD11b-, F4/80-, Ly-6G- und CD3-positiven Zellen in der gesamten Lavage wurde 

mit folgender Formel berechnet: Gesamtzellzahl der Lavage x Gesamtvolumen der Lavage x 

Prozentwert der CD11b-, F4/80-, Ly-6G- und CD3-positiven Zellen. 

 

 

2.2.7 Statistische Berechnungen  

Die Ergebnisse sind als Mittelwerte ± Standardfehler des Mittelwerts (S.E.M. – Standard error of the 

mean) angegeben. Der S.E.M. dient zur Berechnung der Streubreite der Mittelwerte und wird als 

Quotient aus der Standardabweichung und der Wurzel des Stichprobenumfangs definiert. 

Die statistischen Berechnungen erfolgten mit Hilfe eines Statistikprogramms (Graphpad 6.0, 

Graphpad Software, La Jolla, USA). Zur Berechnung der Signifikanz wurde der Dunnett-Test 

herangezogen. Dabei wurde ein p-Wert von p < 0,05 als signifikant definiert und in den Schaubildern 

mit einem Stern * gekennzeichnet.       
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IV Ergebnisse 

1 Zur Cyclophilin B-Expression in murinen atherosklerotischen Plaques  

Zum Vorkommen von CyPB in der atherosklerotischen Plaque konnten in der Literatur keine Angaben 

gefunden werden.  

Aus diesem Grund wurde die Expression von CyPB an Gewebeschnitten von atheromatös 

veränderten Gefäßabschnitten ApoE-defizienter Mäuse (Stamm: B6.129P2-Apoetm1Unc/J) mittels 

Immunhistochemie untersucht. 

Die Tiere wurden vor ihrer schmerzlosen Tötung und der Entnahme der Aortenbögen 6 Wochen lang 

mit einer atherogenen Diät (1,25% Cholesterol-Gehalt) gefüttert, um die Plaquebildung zu fördern. 

Die Färbung wurde mit Hilfe der Labeled-Streptavidin-Biotin (LSAB)-Methode durchgeführt. Dabei 

wurde ein Antikörper gegen CyPB (Konzentration: 1µg/ml) und als Kontrolle ein Isotyp-IgG in 

derselben Konzentration verwendet. 

Die immunhistochemische Färbung der atherosklerotischen Plaques ergab im Vergleich zu 

unveränderten Gefäßabschnitten eine deutlich verstärkte Expression von CyPB in der Plaque. 

Innerhalb der Plaque konnte eine zusätzlich verstärkte Expression im Bereich der fibrösen Kappe 

nachgewiesen werden (siehe Abb. 33).  
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Abbildung 33:  Exemplarische Darstellung der immunhistochemischen Detektion der CyPB-Expression in 

atherosklerotischen Plaques ApoE-defizienter Mäuse (Stamm: B6.129P2-Apoe
tm1Unc

/J) 

Bereiche, in denen CyPB exprimiert wird, stellen sich braun dar. Im Bereich der Plaque zeigt sich eine deutlich 

verstärkte Expression von CyPB im Vergleich zu unveränderten Gefäßabschnitten. Insbesondere die fibröse 

Kappe lässt eine verstärkte CyPB-Expression erkennen (siehe Pfeile).  

A und B: 40fache Vergrößerung, C und D: 100fache Vergrößerung. Die Maßbalken rechts unten       

entsprechen 100µm. 
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2 Expression von Cyclophilin B in Monozyten 

Mittels einer indirekten Immunfluoreszenzfärbung wurde das Verteilungsmuster von CyPB sowohl an 

intakten, nicht permeabilisierten Monozyten als auch an Monozyten mit permeabilisierten 

Zellmembranen untersucht.  

Da der Antikörper gegen CyPB die intakte Zellmembran nicht durchdringt, kann nach der 

Permeabilisierung der Zellmembran zwischen intrazellulär vorkommendem CyPB und solchem, das 

extrazellulär auf der Zellmembran lokalisiert ist, differenziert werden. 

In beiden Monozyten Gruppen wurden jeweils ruhende Zellen mit LPS-aktivierten Zellen (LPS-

Konzentration im Monozytenmedium: 2µg/ml, Stimulation für 2 Stunden bei 37°C) verglichen. 

Die Ergebnisse dieser Untersuchungen ergaben, dass CyPB auf der Zelloberfläche von Monozyten 

exprimiert wird (siehe Abb. 34 B1-B3 und C1-C3). Durch die zweistündige Stimulation der Zellen mit 

LPS konnte die Expression auf der Zelloberfläche verstärkt werden (siehe Abb. 34 C1-C3). 

Durch die Immunfluoreszenzfärbung permeabilisierter Monozyten konnte eine Expression von CyPB 

im Zytoplasma der Monozyten nachgewiesen werden (siehe Abb. 35 B1-B3 und C1-C3). Die 

zweistündige Stimulation mit LPS löste keine Veränderung des Verteilungsmusters aus (siehe Abb. 35 

C1-C3). 
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Abbildung 34:  Exemplarische Darstellung der CyPB-Expression auf der Monozytenoberfläche 

Nicht permeabilisierte Monozyten wurden mit einem Primärantikörper gegen CyPB markiert und dessen 

Bindung mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI angefärbt (blaue Fluoreszenz).  

A1-A3)  Isotyp-Kontrolle 

B1-B3)  CyPB wird auf der Zelloberfläche von Monozyten exprimiert. 

C1-C3)  Die Expression wird durch Stimulation der Monozyten mit LPS verstärkt. 

Der Maßbalken entspricht 20µm. 
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Abbildung 35:  Exemplarische Darstellung der intrazellulären Expression von CyPB in Monozyten 

Permeabilisierte Monozyten wurden mit einem Primärantikörper gegen CyPB markiert und dessen Bindung 

mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI angefärbt (blaue Fluoreszenz).  

A1-A3) Isotyp-Kontrolle 

B1-B3)  CyPB wird im Zytoplasma von Monozyten exprimiert. 

C1-C3)  Die Expression von CyPB innerhalb der Zelle verändert sich durch LPS-stimulation nicht. 

Der Maßbalken entspricht 20µm. 
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3 Expression von Cyclophilin B in Makrophagen  

Monozyten wurden für 6 Tage in Monozytenmedium bei 37°C in chamber slides kultiviert (100.000 

Zellen pro Vertiefung), um sie zu Makrophagen ausreifen zu lassen.  

Ihre Färbung erfolgte analog zur Vorgehensweise bei den Monozyten, und zwar sowohl an nicht 

permeabilisierten als auch an permeabilisierten Makrophagen. Auch bei diesem Versuch wurden in 

jeder Gruppe ruhende mit LPS-aktivierten Makrophagen verglichen. 

In den Fluoreszenzbildern (siehe Abb. 36 und 37) ist deutlich zu erkennen, dass es durch die 

Kultivierung der Zellen und ihrer Differenzierung zu Makrophagen zu einer Veränderung ihres 

morphologischen Erscheinungsbildes kommt. Sie stellen sich, wie es für diesen Zelltyp typisch ist, mit 

granuliertem Zytoplasma dar und sind deutlich größer als Monozyten. 

Weiterhin ist zu erkennen, dass CyPB auf der Zelloberfläche von ruhenden sowie aktivierten 

Makrophagen exprimiert wird (siehe Abb. 36 B1-B3 und C1-C3). Durch Stimulation der Zellen mit 

2µg/ml LPS (für 2 Stunden, bei 37°C) konnte die Expression auf der Zelloberfläche noch verstärkt 

werden (siehe Abb. 36 C1-C3). 

Die Färbung permeabilisierter Makrophagen ergab, dass CyPB im Zytoplasma von Makrophagen 

vorkommt (siehe Abb. 37 B1-B3 und C1-C3). Nach zweistündiger Stimulation mit LPS (2µg/ml) konnte 

eine verstärkte Expression im Zellkern der Zellen nachgewiesen werden (siehe Abb. 37 C1-C3). 
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Abbildung 36:  Exemplarische Darstellung der Expression von CyPB auf der Oberfläche von Makrophagen 

Nicht permeabilisierte Makrophagen wurden mit einem Primärantikörper gegen CyPB markiert und dessen 

Bindung mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI gegengefärbt (blaue Fluoreszenz).  

A1-A3) Isotyp-Kontrolle 

B1-B3) CyPB wird auf der Zelloberfläche von Makrophagen exprimiert. 

C1-C3)   Die Expression von CyPB auf der Zelloberfläche wird durch Stimulation der Makrophagen mit 

LPS verstärkt. 

Der Maßbalken entspricht 20µm. 
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Abbildung 37:  Exemplarische Darstellung der intrazellulären Expression von CyPB in Makrophagen 

Permeabilisierte Makrophagen wurden mit einem Primärantikörper gegen CyPB markiert und dessen Bindung 

mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI gegengefärbt (blaue Fluoreszenz).  

A1-A3) Isotyp-Kontrolle 

B1-B3) CyPB wird im Zytoplasma von Makrophagen exprimiert. 

C1-C3) Durch die Stimulation mit LPS kommt es zu einer gesteigerten CyPB-Expression im Zellkern 

der Makrophagen. 

Der Maßbalken entspricht 20µm. 
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4 Expression von Cyclophilin B in Schaumzellen  

Monozyten (50.000 Zellen pro Vertiefung des chamber slide) wurden für 8 Tage zusammen mit 

Thrombozyten (40 Millionen Thrombozyten pro Vertiefung des chamber slide) bei 37°C im 

Schaumzellmedium kultiviert, um zu Schaumzellen zu differenzieren. 

Die Färbung erfolgte analog zur Vorgehensweise bei den Monozyten sowohl an nicht 

permeabilisierten als auch an permeabilisierten Schaumzellen. Auch bei diesem Versuch wurden in 

jeder Gruppe ruhende mit LPS-aktivierten Schaumzellen verglichen. 

Die Fluoreszenzbilder (siehe Abb. 38 und 39) zeigten auch hier eine deutlich veränderte Morphologie 

der Schaumzellen im Vergleich zum Monozyten. Am augenscheinlichsten ist die deutliche 

Größenzunahme. Die Größe einer Schaumzelle kann zwischen der einer Epithelzelle und der einer 

Riesenzelle schwanken. Außerdem kann sie einen oder mehrere Zellkerne enthalten.360 

Übereinstimmend mit diesen Aussagen konnte im vorliegenden Versuch festgestellt werden, dass die 

Schaumzellen teilweise unterschiedlich groß waren. Dieser Effekt konnte sowohl bei den stimulierten 

als auch bei den unstimulierten Zellen beobachtet werden. Vereinzelt konnten auch mehrkernige 

Zellen gefunden werden (siehe z.B. Abb. 38 C1-C3). Weiterhin ist das vakuolisierte Zytoplasma zu 

erkennen, das auf die Cholesterineinschlüsse in den Zellen hindeutet.  

Die Immunfluoreszenzfärbung der nicht permeabilisierten Schaumzellen ergab darüber hinaus, dass 

CyPB auf deren Zelloberfläche exprimiert wird (siehe Abb. 38 B1-B3 und C1-C3). Durch Stimulation 

der Zellen mit 2µg/ml LPS konnte die Expression auf der Zelloberfläche verstärkt werden (siehe Abb. 

38 C1-C3). 

Auch bei permeabilisierten Schaumzellen konnte eine Expression von CyPB im Zytoplasma der Zellen 

nachgewiesen werden (siehe Abb. 39 B1-B3 und C1-C3). Nach zweistündiger Stimulation mit LPS 

(2µg/ml) konnte, ebenso wie bei Makrophagen, eine verstärkte Expression im Zellkern nach-

gewiesen werden. Außerdem war eine gesteigerte Expression im Zytoplasma zu erkennen (siehe 

Abb. 39 C1-C3). 
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Abbildung 38:  Exemplarische Darstellung der Expression von CyPB auf der Schaumzelloberfläche  

Nicht permeabilisierte Schaumzellen wurden mit einem Primärantikörper gegen CyPB markiert und dessen 

Bindung mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI gegengefärbt (blaue Fluoreszenz).  

A1-A3) Isotyp-Kontrolle 

B1-B3) CyPB wird auf der Zelloberfläche von Schaumzellen exprimiert. 

C1-C3)   Die Expression von CyPB auf der Zelloberfläche wird durch Stimulation der Schaumzellen mit 

LPS verstärkt.   

Der Maßbalken entspricht 20µm. 
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Abbildung 39:  Exemplarische Darstellung der intrazellulären Expression von CyPB in Schaumzellen 

Permeabilisierte Schaumzellen wurden mit einem Primärantikörper gegen CyPB markiert und dessen Bindung 

mittels eines Alexa Fluor® 488-markierten Sekundärantikörpers nachgewiesen (grüne Fluoreszenz). Die 

Zellkerne wurden mit DAPI gegengefärbt (blaue Fluoreszenz).  

A1-A3) Isotyp-Kontrolle 

B1-B3) CyPB wird im Zytoplasma von Schaumzellen exprimiert. 

C1-C3)   Durch die Stimulation mit LPS kommt es zu einer gesteigerten CyPB-Expression im Zytoplasma 

und Nucleus der Schaumzellen.   

Der Maßbalken entspricht 20µm. 
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5 Cyclophilin B wird auf der Zelloberfläche von thrombinstimulierten 

Thrombozyten verstärkt exprimiert 

Im nachfolgenden Versuchsansatz sollte das Vorkommen von CyPB auf Thrombozyten nachgewiesen 

werden. Dazu wurden sowohl ruhende als auch aktivierte Thrombozyten durchflusszytometrisch 

untersucht.  

Zur Stimulation der Thrombozyten wurden 20µM Adenosindiphosphat (ADP), 25µM Thrombin 

receptor-activating peptide (TRAP), 10µg/ml Collagen-related peptide (CRP) bzw. 0,1U/ml Thrombin 

verwendet. Die ruhenden und aktivierten Thrombozyten wurden (mit Ausnahme der Isotyp-

Kontrolle) zunächst mit einem Primärantikörper gegen CyPB inkubiert. In einem zweiten Schritt 

wurde dieser durch die Zugabe eines fluoreszenzfarbstoff-gekoppelten Sekundärantikörpers markiert 

und konnte dadurch detektiert werden. Als Isotyp-Kontrolle dienten ruhende Thrombozyten, bei 

denen anstelle des Primärantikörpers ein aus dem Hasen stammender IgG-Antikörper (rabbit IgG) 

verwendet wurde. Die Detektion der Zellen erfolgte mit Hilfe des Durchflusszytometers.  

Wie in Abbildung 40 dargestellt, zeigte der Versuch, dass CyPB auf ruhenden Thrombozyten nicht 

exprimiert wird. Die Stimulation mit ADP, TRAP bzw. CRP führte nicht zu einem signifikanten Anstieg 

der Oberflächenexpression von CyPB. Die Stimulation mit Thrombin hingegen bewirkte eine 

signifikante Steigerung der Expression von CyPB auf der Oberfläche von Thrombozyten. 

      

 

Abbildung 40:  Darstellung der mittleren Oberflächenexpression (+S.E.M.) von CyPB auf stimulierten 

Thrombozyten im Säulendiagramm (n= 5 Versuchsansätze) 

Mit Hilfe der Durchflusszytometrie wurden folgende Ergebnisse erzielt:  

Auf der Oberfläche von ruhenden Thrombozyten konnte kein CyPB nachgewiesen werden. Auch durch die 

Stimulation mit 20µM ADP, 25µM TRAP bzw. 10µg/ml CRP kam es zu keiner signifikanten Steigerung der CyPB-

Oberflächenexpression. Die Stimulation mit 0,1U/ml Thrombin hingegen bewirkte eine signifikante Steigerung 

der Expression von CyPB auf der Oberfläche von Thrombozyten. 

Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zu ruhenden 

Thrombozyten). MFI = mittlere Fluoreszenzintensität. 
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6 Einfluss von Cyclophilin B auf das Migrationsverhalten und die Matrix 

Metalloproteinasen-Aktivität von Monozyten in vitro 

6.1  Cyclophilin B induziert eine gesteigerte Sekretion von MMP-9 durch 

Monozyten 

Im vorliegenden Versuch wurde der Einfluss von CyPB auf die Bildung von MMPs durch Monozyten 

untersucht. 

Monozyten wurden in einer 96-Loch-Platte ausgesät (200.000 Zellen/Vertiefung) und für 18 Stunden 

bei 37°C mit 100nM bzw. 200nM CyPB inkubiert. Als Negativkontrolle dienten unstimulierte 

Monozyten, als Positivkontrolle LPS-stimulierte Monozyten. Nach Ablauf der 18 Stunden wurden die 

Überstände entnommen und im Verhältnis 1:10 in PBS verdünnt. Im Anschluss konnten sie für die 

Zymographie verwendet werden. 

Die Zymogramme (siehe Abb. 41) zeigen eine erhöhte Aktivität von MMP-9 in den Überständen der 

Monozyten, die mit CyPB inkubiert wurden, im Vergleich zur Negativkontrolle. Dabei ist die durch 

100nM CyPB ausgelöste Aktivitätssteigerung der MMP-9 in den Überständen nicht signifikant im 

Vergleich zur Negativkontrolle. Nach Stimulation der Monozyten mit 200nM CyPB hingegen, lässt 

sich eine signifikante Steigerung der MMP-9-Aktivität messen (siehe Abb. 42).  

Im Gegensatz zur MMP-9-Aktivität zeigten sich keine relevanten Änderungen bei der MMP-2-

Aktivität (siehe Abb. 43). 

 

Abbildung 41:   Zymographische Darstellung der Freisetzung von MMP-9 aus CyPB-stimulierten  Monozyten  

Die Abbildung zeigt ein repräsentatives von n=6 Zymographie-Gelen. Monozyten wurden für 18 Stunden bei 

37°C mit 100nM bzw. 200nM CyPB inkubiert und die Überstände im Anschluss auf die Aktivität von MMP2-  

und -9 untersucht. Die Überstände der mit 200nM CyPB stimulierten Monozyten wiesen eine signifikant 

erhöhte Aktivität von MMP-9 gegenüber den Überständen der unstimulierten Monozyten auf.  
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Abbildung 42:  Darstellung der Mittelwerte (+S.E.M.) der MMP-9-Aktivität (92kDa-Bande) von n=6 

Zymogrammen im Säulendiagramm  

Nach 18-stündiger Stimulation der Monozyten mit 200nM CyPB konnte eine signifikante Steigerung der     

MMP-9-Aktivität in den Überständen der Monozytenkultur gemessen werden. Die Stimulation mit nur 100nM 

CyPB führte zu keiner signifikanten Steigerung der MMP-9-Aktivität.  

Die ermittelte Intensität der Bandenfärbung (=integrierte Dichte) wurde mittels Dunnett-one-way-ANOVA auf 

ihre statistische Signifikanz überprüft. (*p < 0,05 im Vergleich zur Negativkontrolle). 

 

 

 

Abbildung 43:  Darstellung der Mittelwerte (+S.E.M.) der MMP-2-Aktivität (72kDa-Bande) von n=6 

Zymogrammen im Säulendiagramm  

Nach 18-stündiger Stimulation der Monozyten mit 100nM bzw. 200nM CyPB konnte keine signifikante 

Steigerung der MMP-2-Aktivität in den Überständen der Monozytenkultur festgestellt werden  

Die ermittelte Intensität der Bandenfärbung (=integrierte Dichte) wurde mittels Dunnett-one-way-ANOVA auf 

ihre statistische Signifikanz überprüft. (*p < 0,05 im Vergleich zur Negativkontrolle). 
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6.2 Zur chemotaktischen Wirkung von Cyclophilin B auf Monozyten in vitro 

6.2.1  Einfluss von Cyclophilin B sowie der Cyclosporin A-Derivate NIM811 und MM284 in 

Kombination mit Cyclophilin B auf die Migration von Monozyten 

Um zu untersuchen, ob CyPB einen Einfluss auf die Migration von Monozyten nehmen kann, und ob 

die Wirkung von CyPB durch den sowohl extra- als auch intrazellulär wirkenden Cyclophilin-Inhibitor 

NIM811 bzw. den rein extrazellulär wirkenden Cyclophilin-Inhibitor MM284 inhibiert werden kann, 

wurde ein Chemotaxis-Assay mit Hilfe einer modifizierten Boyden-Kammer durchgeführt.  

Für diesen Chemotaxis-Assay wurden die Vertiefungen im unteren Teil der Migrationskammer mit 

den zu testenden Lockstofflösungen (zum einen 200nM CyPB und zum anderen 200nM CyPB in 

Kombination mit 200nM NIM811 bzw. 200nM CyPB in Kombination mit 800nM MM284) bzw. den 

Kontrolllösungen (Monozytenmedium ohne Zusätze als Negativkontrolle bzw. Monozytenmedium 

mit MCP-1 in einer Konzentration von 50ng/ml als Positivkontrolle) befüllt. In die oberen Kammern 

wurde die Monozytensuspension (Zellkonzentration von 4 x 105 Zellen/ml, entsprechend 200.000 

Monozyten pro Kammer) gegeben. Die Kammern waren durch einen porösen Filter getrennt, an dem 

die entlang des Konzentrationsgradienten migrierenden Zellen haften blieben und für die 

mikroskopische Auswertung angefärbt werden konnten. Die Migrationskammer wurde für 4 bzw. 18 

Stunden bei 37°C inkubiert, bevor der Filter entnommen, gefärbt und ausgewertet wurde. 

Sowohl nach 4-stündiger Inkubation, als auch nach 18-stündiger Inkubation der Monozyten in der 

Migrationskammer, kam es zu keiner signifikanten Zunahme der Migration von Monozyten entlang 

des CyPB-Gradienten im Vergleich zur Negativkontrolle. Auch die Zugabe der Cyclophilin-Inhibitoren 

NIM811 bzw. MM284 zu CyPB in die Lockstoffkammern beeinflusste die Migration der Monozyten 

nicht weiter. Lediglich nach Zugabe des als Positivkontrolle verwendeten MCP-1 in die 

Lockstoffkammer kam es zu einer signifikant gesteigerten Zunahme der Monozytenmigration (siehe 

Abb. 44 A und B). 
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Abbildung 44:  Darstellung der chemotaktischen Wirkung von CyPB sowie von Cyclosporin A-Derivaten auf 

Monozyten nach 4 Stunden (A) bzw. 18 Stunden (B) 

Die Abbildungen zeigen den prozentualen Anteil migrierter Monozyten, die entgegen einer Konzentration von 

200nM CyPB, sowie entgegen einer Kombination aus 200nM CyPB und 200nM NIM811 bzw. 800nM MM284 

gewandert sind, im Vergleich zur Positivkontrolle.   

Als Negativkontrolle diente reines Monozytenmedium, als Positivkontrolle Monozytenmedium, das mit 

50ng/ml MCP-1 angereichert wurde.  

In beiden Versuchsansätzen nimmt CyPB keinen signifikanten Einfluss auf die Zahl migrierter Monozyten. Auch 

die Inhibitoren NIM811 und MM284 beeinflussten die Migration von Monozyten nicht weiter.  

Angegeben sind die Mittelwerte ± S.E.M. von 4 Versuchsansätzen pro zu testender Substanz bei 4 Stunden  

bzw. 3 Ansätzen bei 18 Stunden. Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05). 

Dabei wurden MCP-1 und CyPB (200nM) gegen die Negativkontrolle verglichen und CyPB (200nM)/NIM811 

(200nM) sowie CyPB (200nM)/MM284 (200nM) gegen CypB (200nM). n.s. = nicht signifikant; 
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6.2.2 Einfluss verschiedener Konzentrationen von Cyclophilin B auf die Migration von 

Monozyten 

Nachdem bei einer Konzentration von 200nM CyPB keine Migration von Monozyten ausgelöst 

werden konnte, sollte untersucht werden, ob niedrigere oder höhere CyPB-Konzentrationen einen 

Einfluss auf das Migrationsverhalten nehmen können. Dazu wurden die unteren Kammern der 

Migrationskammer mit Monozytenmedium, das eine Konzentration von 100nM, 200nM, 400nM bzw. 

800nM CyPB enthielt, befüllt. Die Zellen wurden in der Migrationskammer für 18 Stunden bei 37°C 

inkubiert, bevor der Filter entnommen, gefärbt und ausgewertet wurde. 

Bei keiner der verwendeten Konzentrationen kam es zu einer signifikanten Zunahme der Migration 

von Monozyten im Vergleich zur Negativkontrolle (siehe Abb. 45). 

 

 

 

Abbildung 45:  Einfluss unterschiedlicher CyPB-Konzentrationen auf die Migration von Monozyten nach         

18 Stunden 

Die Abbildung zeigt den prozentualen Anteil migrierter Monozyten, die im Chemotaxis-Assay entgegen einer 

CyPB-Konzentration von 100nM, 200nM, 400nM bzw. 800nM CyPB gewandert sind, im Verhältnis zur 

Positivkontrolle. Als Negativkontrolle diente reines Monozytenmedium, als Positivkontrolle 

Monozytenmedium, das mit 50ng/ml MCP-1 angereichert wurde. 

Der Versuch zeigt, dass keine der verwendeten CyPB-Konzentrationen eine signifikante Steigerung der 

Migration der Monozyten entgegen des Konzentrationsgradienten bewirkte. Angegeben sind die Mittelwerte   

± S.E.M. von 3 Versuchsansätzen pro zu testender Substanz. Die statistische Signifikanz wurde mittels Dunnett 

Test bestimmt (*p < 0,05 im Vergleich zur Negativkontrolle). 
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7 Einfluss von Cyclophilin B auf das Adhäsionsverhalten von 

Thrombozyten in vitro 

7.1  ADP-stimulierte Thrombozyten binden verstärkt an immobilisiertes 

Cyclophilin A und Cyclophilin B  

Im vorliegenden Versuch sollte der Einfluss von immobilisiertem CyPA und CyPB auf ADP-aktivierte 

Thrombozyten in vitro unter Nachstellung arterieller Flussbedingungen mittels Flusskammer 

untersucht werden. 

Hierzu wurden zunächst Deckgläschen zunächst mit 0,2%iger Gelatine beschichtet und anschließend 

mit 200nM CyPA bzw. 200nM CyPB über Nacht gecoatet. Als Positivkontrolle dienten CD147-Fc 

(EMMPRIN-Fc)-beschichtete Deckgläschen (Konzentration: 20μg/ml). Als Negativkontrolle wurden 

Deckgläschen mit 20μg/ml Fc-Fragment bzw. 2%igem BSA beschichtet.  

Am Folgetag wurden Thrombozyten isoliert, auf eine Konzentration von 4 x 107Zellen/ml eingestellt 

und mit 20µM ADP für 30 Minuten bei 37°C inkubiert. Die aktivierten Zellen wurden mit Hilfe der 

Flusskammer über die Deckgläschen perfundiert. 

Die in den Abbildungen 46 und 47 wiedergegebenen Ergebnisse zeigen, dass es im Vergleich zur 

Negativkontrolle (BSA-gecoatete Deckgläschen) sowohl bei den CyPA- als auch bei den CyPB-

beschichteten Deckgläschen zu einer signifikanten Steigerung des rollings und der Adhäsion von 

aktivierten Thrombozyten kam (*p<0,05).  

Auch bei dem als Positivkontrolle verwendeten CD147-Fc (EMMPRIN-Fc) konnte eine signifikante 

Steigerung des rollings sowie auch der festen Adhäsion von aktivierten Thrombozyten im Vergleich 

zur Negativkontrolle (Fc-Fragment) festgestellt werden (*p<0,05). Diese war ähnlich stark ausgeprägt 

wie diejenige auf den Cyclophilinen. 

Abbildung 48 zeigt repräsentative mikroskopische Aufnahmen adhärenter Thrombozyten auf CyPA-, 

CyPB- sowie CD147-Fc (EMMPRIN-Fc)-beschichteten Deckgläschen. 
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Abbildung 46:  Immobilisiertes CyPA und CyPB vermitteln gesteigertes thrombozytäres rolling  

Rolling ADP-stimulierter Thrombozyten auf Deckgläschen, die mit CyPA bzw. CyPB, sowie CD147-Fc   

(EMMPRIN-Fc) beschichtet wurden. Die Abbildung zeigt die Mittelwerte + S.E.M. von 9 ausgezählten 

Deckgläschen je Versuchsansatz. Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05 im 

Vergleich zu BSA bzw. Fc-Fragment). 

 

 
 

 

Abbildung 47:  Immobilisiertes CyPA, CyPB und CD147-Fc (EMMPRIN-Fc) vermitteln eine gesteigerte 

thrombozytäre Adhäsion 

Anzahl der adhärenten  ADP-stimulierten Thrombozyten auf Deckgläschen, die mit CyPA bzw. CyPB, sowie 

CD147-Fc (EMMPRIN-Fc) beschichtet wurden. Die Abbildung zeigt die Mittelwerte + S.E.M. von 9 ausgezählten 

Deckgläschen je Versuchsansatz. Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05 im 

Vergleich zu BSA bzw. Fc-Fragment). 
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Abbildung 48:  Repräsentative mikroskopische Aufnahmen adhärenter Thrombozyten auf CyPA-, CyPB- 

sowie CD147-Fc (EMMPRIN-Fc)-beschichteten Deckgläschen im Flusskammer-Versuch 

Die Einzelbilder zeigen einen Bildausschnitt von 200 x 300µm bei 200facher Vergrößerung. Die Pfeile zeigen die 

adhärenten Thrombozyten des Bildausschnittes auf den proteinbeschichteten Deckgläschen.  
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7.2  Die durch Cyclophilin B gesteigerte Adhäsion von Thrombozyten auf Kollagen 

wird durch die Cyclosporin A-Derivate NIM811 und MM284 reduziert 

Im vorliegenden Flusskammer-Versuch wurde der Einfluss des sowohl extra- als auch intrazellulär 

wirkenden Cyclophilin-Inhibitors NIM811 mit dem des rein extrazellulär wirkenden Cyclophilin-

Inhibitors MM284 auf das rolling und die Adhärenz CyPB-stimulierter Thrombozyten auf Kollagen 

untersucht. 

Für den Versuch wurden zunächst Deckgläschen mit Kollagen (Konzentration: 10µg/ml, für 2 Stunden 

bei 37°C) beschichtet. Anschließend wurden Thrombozyten isoliert, auf eine Zellzahl von                       

4 x 107Zellen/ml eingestellt und für 30 Minuten mit 200nM CyPB bzw. 200nM CyPB in Kombination 

mit NIM811 (Konzentration: 800nM) oder MM284 (Konzentrationen: 200nM, 500nM, 800nM) 

inkubiert. Im Falle der Kombination von CyPB und NIM811 bzw. MM284 wurden die Inhibitoren 

vorab zunächst für 10 Minuten mit CyPB koinkubiert und dann für 30 Minuten zu den Thrombozyten 

gegeben.  

Die in den Abbildungen 49 und 50 wiedergegebenen Ergebnisse zeigen, dass sowohl das durch CyPB 

gesteigerte rolling als auch die feste Adhäsion der Thrombozyten auf Kollagen durch die Inhibitoren 

NIM 811 und MM284 signifikant reduziert wird (*p<0,05). Bei MM284 konnte die stärkste Hemmung 

der CyPB-Wirkung bei einer Konzentration von 500nM festgestellt werden. Aus diesem Grund wurde 

für die weiteren Flusskammerversuche nur noch diese Wirkstoffkonzentration verwendet. 

Abbildung 51 zeigt repräsentative mikroskopische Aufnahmen von adhärenten Thrombozyten auf 

kollagenbeschichteten Deckgläschen nach CyPB-Stimulation bzw. Inhibition der CyPB-Wirkung mit 

NIM811 und MM284. 
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Abbildung 49:  Das durch CyPB gesteigerte rolling von Thrombozyten auf Kollagen wird durch die 

Inhibitoren NIM 811 und MM284 signifikant reduziert 

Rolling CyPB-stimulierter bzw. NIM811- und MM284-inhibierter Thrombozyten auf Kollagen. Die Abbildung 

zeigt die Mittelwerte + S.E.M. von 9 ausgezählten Deckgläschen je Versuchsansatz. Die statistische Signifikanz 

wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zum Monozytenmedium mit 200nM CyPB). 

 
 

 

 
Abbildung 50:  Die durch CyPB gesteigerte Adhäsion von Thrombozyten auf Kollagen wird durch die 

Inhibitoren NIM 811 und MM284 signifikant reduziert 

Adhäsion CyPB-stimulierter bzw. NIM811- und MM284-inhibierter Thrombozyten auf Kollagen. Die Abbildung 

zeigt die Mittelwerte + S.E.M. von 9 ausgezählten Deckgläschen je Versuchsansatz. Die statistische Signifikanz 

wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zum Monozytenmedium mit 200nM CyPB). 
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Abbildung 51: Repräsentative mikroskopische Aufnahmen von adhärenten Thrombozyten auf 

kollagenbeschichteten Deckgläschen nach Stimulation mit CyPB bzw. Inhibition der CyPB-Wirkung mit 

NIM811 und MM284 im Flusskammer-Versuch  

Die Einzelbilder zeigen einen Bildausschnitt von 200 x 300µm bei 200facher Vergrößerung. Die Pfeile zeigen die 

adhärenten Thrombozyten des Bildausschnittes auf den kollagenbeschichteten Deckgläschen.  
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7.3 Die durch Cyclophilin B gesteigerte Adhäsion von Thrombozyten auf 

aktivierten humanen Endothelzellen wird durch die Cyclosporin A-Derivate 

NIM811 und MM284 reduziert 

Im vorliegenden Flusskammer-Versuch wurde der Einfluss des sowohl extra- als auch intrazellulär 

wirkenden Cyclophilin-Inhibitors NIM811 mit dem des rein extrazellulär wirkenden Cyclophilin-

Inhibitors MM284 auf das rolling und die Adhärenz CyPB-stimulierter Thrombozyten gegenüber 

aktivierten humanen Endothelzellen (HUVECs) verglichen.  

Für den Versuch wurden zunächst Deckgläschen mit den HUVECs beschichtet und solange kultiviert 

bis ein dichter Zellrasen entstanden war. Vor Beginn des Versuchs wurden die Endothelzellen für        

6 Stunden mit TNF-α (Konzentration: 50ng/ml) und IFN-γ (Konzentration: 20ng/ml) aktiviert. Dann 

wurden Thrombozyten isoliert, auf eine Zellkonzentration von 4 x 107Zellen/ml eingestellt und für                   

30 Minuten im Brutschrank mit 200nM CyPB bzw. mit der Kombination aus 200nM CyPB und 200nM 

NIM811 oder 200nM CyPB und 500nM MM284 stimuliert. Die Inhibitoren NIM811 und MM284 

wurden vor der Inkubation mit den Thrombozyten zunächst für 10 Minuten mit CyPB koinkubiert. Als 

Negativkontrolle dienten unstimulierte Thrombozyten, als Positivkontrolle ADP-stimulierte 

Thrombozyten (Konzentration: 20µM). 

Die in den Abbildungen 52 und 53 wiedergegebenen Ergebnisse zeigen, dass sowohl das durch CyPB 

gesteigerte rolling als auch die feste Adhäsion der Thrombozyten auf aktivierten humanen 

Endothelzellen durch das Cyclosporin A-Analogon NIM811 und sowie den neu entwickelten 

Cyclophilin-Inhibitor MM284 signifikant reduziert werden (*p<0,05).  

Abbildung 54 zeigt repräsentative mikroskopische Aufnahmen von adhärenten Thrombozyten auf 

endothelzellbeschichteten Deckgläschen nach CyPB-Stimulation bzw. Inhibition der CyPB-Wirkung 

mit NIM811 und MM284. 

 

 

 

 

 

 

 

 

 

 

 



IV     ERGEBNISSE 

 

 

 

105 

 

 

Abbildung 52:  Das durch CyPB gesteigerte rolling von Thrombozyten auf aktivierten humanen 

Endothelzellen (HUVECs) wird durch die Inhibitoren NIM 811 und MM284 signifikant reduziert 

Rolling CyPB-stimulierter bzw. NIM811- und MM284-inhibierter Thrombozyten auf HUVECs. Die Abbildung 

zeigt die Mittelwerte + S.E.M.  von 9 ausgezählten Deckgläschen je Versuchsansatz. Die statistische Signifikanz 

wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zum Monozytenmedium mit 200nM CyPB). 

 
 

 

Abbildung 53:  Die durch CyPB gesteigerte Adhäsion von Thrombozyten auf aktivierten humanen 

Endothelzellen (HUVECs) wird durch die Inhibitoren NIM 811 und MM284 signifikant reduziert 

Adhäsion CyPB-stimulierter bzw. NIM811- und MM284-inhibierter Thrombozyten auf HUVECs. Die Abbildung 

zeigt die Mittelwerte + S.E.M.  von 9 ausgezählten Deckgläschen je Versuchsansatz. Die statistische Signifikanz 

wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zum Monozytenmedium mit 200nM CyPB). 
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Abbildung 54:  Repräsentative mikroskopische Aufnahmen adhärenter Thrombozyten auf endothelzell-

beschichteten Deckgläschen nach Stimulation mit CyPB und nach Inhibition der CyPB-Wirkung mit NIM811 

und MM284 im Flusskammer-Versuch.  

Die Einzelbilder zeigen einen Bildausschnitt von 200 x 300µm bei 200facher Vergrößerung. Die Pfeile zeigen 

eine Auswahl adhärenter Thrombozyten auf den HUVEC-beschichteten Deckgläschen.  
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8 Einfluss von Cyclophilin B auf das Migrationsverhalten von Leukozyten 

in vivo mittels Thioglykolat-induzierter Peritonitis 

Die Untersuchung der Wirkung von CyPB auf die Migration von Leukozyten in vivo wurde an einem 

Peritonitis-Modell an Wildtypmäusen (Stamm: C57BL/6J) vorgenommen.  

Dazu wurde den narkotisierten Tieren zu Versuchsbeginn 500µl einer 0,5%igen CyPB-Lösung 

(entsprechend 10µg CyPB pro Maus) intraperitoneal injiziert. Für die Positivkontrolle wurde 

stattdessen eine intraperitoneale Injektion von 4%igem Thioglykolat vorgenommen. Beide 

Substanzen waren in physiologischer Kochsalzlösung gelöst. Bei den Tieren, die als Negativkontrolle 

dienten, wurden 500µl physiologische Kochsalzlösung injiziert. Zur Schmerztherapie wurde den 

Tieren zu Versuchsbeginn, sowie nach 8 und 16 Stunden Buprenorphin (Dosierung: 25mg/kg 

Körpergewicht) subkutan verabreicht.  

Nach 24 Stunden wurden die Tiere schmerzlos getötet und eine Lavage der Bauchhöhle mit PBS 

durchgeführt. Anschließend wurden Erythrozyten lysiert und die Gesamtzellzahl in der Lavage 

bestimmt.  

Wie in Abbildung 55 dargestellt, konnte bei den Tieren, die eine intraperitoneale Thioglykolat-

Injektion erhalten haben eine signifikante gesteigerte Zellzahl in der Bauchhöhle im Vergleich zur 

Negativkontroll-Gruppe festgestellt werden. Nach Injektion von CyPB konnte dieser Effekt hingegen 

nicht beobachtet werden.  

 

Abbildung 55: Migration von Leukozyten in die Peritonealhöhle von Mäusen nach intraperitonealer 

Injektion von rekombinantem CyPB, von physiologischer NaCl-Lösung (Negativkontrolle) oder von 

Thioglykolat (Positivkontrolle) 

Gesamtzellzahl in der Bauchhöhlenlavage der Mäuse, 24 Stunden nach intraperitonealer Injektion der 

Substanzen (Angegeben ist der Mittelwert + S.E.M.  von jeweils 5 Tieren bei Thioglykolat bzw. von 7 Tieren bei 

NaCl und CyPB. Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05 im Vergleich zu 

Thioglykolat).  
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Um zu untersuchen, ob die Applikation von CyPB eventuell zu einer prozentualen Veränderung der 

Migration von bestimmten Leukozytensubpopulationen führt, wurden die Zellen nach einer 

Markierung mit Antikörpern gegen bestimmte Oberflächenantigene, die spezifisch für die jeweilige 

Subpopulation sind, durchflusszytometrisch identifiziert. 

Für die Färbung wurden jeweils 5 x 105Zellen in 200µl 0,5%igem Paraformaldehyd (PFA) mit je 10µl 

F4/80-APC (Marker für Makrophagen), CD11b-APC (Marker für Monozyten, Makrophagen, 

Granulozyten sowie NK-Zellen), Ly-6G-APC (Marker für neutrophile Granulozyten) und CD3-APC 

(Marker für T-Zellen) für 30 Minuten im Dunkeln inkubiert. Zuletzt wurden die Zellpopulationen mit 

Hilfe des Durchflusszytometers quantifiziert. 

Dabei zeigte sich, dass es durch die intraperitoneale CyPB-Injektion nach 24 Stunden zu keiner 

gesteigerten Migration von F4/80-positiven, CD11b-positiven, Ly-6G-positiven oder CD3-positiven 

Leukozyten-Subpopulationen in die Bauchhöhle von C57BL/6-Mäusen kam (siehe Abb. 56). 

 

Abbildung 56:  Migration von bestimmten Leukozyten-Subpopulationen in die Peritonealhöhle von 

Mäusen nach intraperitonealer Injektion von rekombinantem CyPB, von physiologischer NaCl-Lösung 

(Negativkontrolle) oder von Thioglykolat (Positivkontrolle) 

Eine Migration von F4/80-positiven, CD11b-positiven, Ly-6G-positiven bzw. CD3-positiven Zellen in die 

Bauchhöhle von  C57BL/6-Mäusen wurde 24 Stunden nach intraperitonealer Injektion von 10µg CyPB nicht 

signifikant gesteigert. Angegeben ist der Mittelwert + S.E.M.  von jeweils 5 Mäusen bei Thioglykolat bzw. von 7 

Tieren bei NaCl und CyPB. Die statistische Signifikanz wurde mittels Dunnett Test bestimmt (*p < 0,05 im 

Vergleich zu Thioglykolat). n.s. = nicht signifikant; 
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Zur Untersuchung des systemischen Einflusses der intraperitonealen CyPB-Injektion, wurde den 

Mäusen 2 Tage vor den intraperitonealen Injektionen sowie 24 Stunden nach den intraperitonealen 

Injektionen von CyPB, physiologischer NaCl-Lösung (Negativkontrolle) sowie von Thioglykolat 

(Positivkontrolle) Blut aus dem retrobulbären Venenplexus entnommen. Die Gesamtleukozytenzahl 

wurde mit Hilfe eines Hämatologie-Analysegerätes bestimmt.  

Wie die in Abbildung 57 wiedergegebenen Ergebnisse zeigen, führt die intraperitoneale Injektion  

von CyPB nach 24 Stunden zu keiner signifikanten Veränderung der Leukozytenzahl im peripheren 

Blut der Versuchstiere im Vergleich zum Ausgangswert vor der Injektion. Nach i.p. Injektion von 

Thioglykolat kommt es im Blutbild zu einem signifikanten Anstieg der Leukozytenzahl im Vergleich 

zum Ausgangswert vor der Behandlung.  

Nach i.p. Injektion von CyPB kommt es zu einer signifikanten Reduktion der Leukozytenzahl im 

peripheren Blut im Vergleich zur Negativkontroll-Gruppe (i.p. NaCl-Injektion) und Positivkontroll-

Gruppe (i.p. Thioglykolat-Injektion). 

 

Abbildung 57:  Vergleich der Leukozytenzahl im peripheren Blut von Mäusen 48 Stunden vor und 24 

Stunden nach der intraperitonealen Injektion von CyPB, physiologischer NaCl-Lösung (Negativkontrolle) und 

Thioglykolat (Positivkontrolle) 

Angegeben ist der Mittelwert + S.E.M.  von 10 Mäusen vor Induktion der Peritonitis, von 4 Mäusen der NaCl-

Gruppe, sowie von je 3 Mäusen der Thioglykolat- bzw. CyPB-Gruppe. Die statistische Signifikanz wurde mittels 

Dunnett Test bestimmt (*p < 0,05). 
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V Diskussion 

1 Diskussion der Versuchsmethoden 

1.1 Diskussion der in vitro-Methoden 

1.1.1 Immunhistologie 

Die Immunhistochemie ist eine häufig genutzte Methode, bei der Antigene wie Proteine oder 

Polysaccharide mit Hilfe von markierten Antikörpern spezifisch nachgewiesen werden können.361     

Die Methode kann sowohl bei Zellkulturen als auch bei Gewebeschnitten angewendet werden. 

Bei der Immunhistochemie handelt es sich um eine sehr sensitive aber auch relativ fehleranfällige 

Methode. Die nachzuweisenden Antigene werden dabei mit Hilfe eines enzymgekoppelten 

Antikörpers erfasst. Das Enzym setzt sein Substrat - ein sogenanntes Chromogen - zu einem 

sichtbaren Farbstoff um und macht das Antigen so sichtbar.  

Enzyme sind in der Lage, innerhalb kurzer Zeit große Mengen Substrat umzusetzen. Dies führt zu 

einer deutlichen Signalverstärkung und ist für die hohe Sensitivität der Methode verantwortlich. 

Jedoch ist die Enzymaktivität stark abhängig von äußeren Einflüssen wie zum Beispiel der 

Temperatur, dem herrschenden pH-Wert und der Substratkonzentration. Sind diese Faktoren nicht 

optimal aufeinander abgestimmt, so kann dies zu einer mangelhaften Qualität der Färbung führen.  

Ein weiterer Grund für die Fehleranfälligkeit der Methode ist in den Bindungseigenschaften des 

Antikörpers zu sehen. Antikörper sollten eine hohe Spezifität und Affinität gegenüber dem 

nachzuweisenden Antigen besitzen und möglichst keine Kreuzreaktionen eingehen. Aus diesem 

Grund ist es wichtig, den Antikörper in Vorversuchen umfassend zu testen und dabei gegebenenfalls 

auch Antikörper mehrerer Hersteller auszuprobieren. Dies kann in einigen Fällen zu nennenswerten 

Kosten führen. 

Für die Färbung der atherosklerotischen Plaque wurde in dieser Arbeit ein kommerziell erhältliches 

Immunhistochemie-Kit verwendet. Demnach ist davon auszugehen, dass die einzelnen Färbe-

komponenten hinsichtlich pH-Wert, Pufferkapazität etc. optimal aufeinander abgestimmt sind und 

Fehlerquellen somit auf ein Minimum reduziert wurden. Lediglich der Primärantikörper musste in 

einigen Vorversuchen an das Kit angepasst werden. 

Wichtig zu erwähnen ist allerdings, dass es trotz optimaler Abstimmung aller Färbekomponenten zu 

einer unspezifischen Hintergrundfärbung insbesondere im Bindegewebe kommen kann. Hierfür    

sind beispielsweise das Vorkommen von endogener Peroxidase oder auch das Vorhandensein von 

Biotin im Bindegewebe verantwortlich. Diese Gewebsanteile können im Verlauf der 

Immunhistochemie mit den Färbekomponenten interagieren und so zu einer unspezifischen 

Braunfärbung von Bindegewebsanteilen führen.  

Diese Braunfärbung kann nicht von dem Signal, das durch die mittels Antikörper detektierten 

Antigene entstanden ist, unterschieden werden, sodass die Färbung nicht mehr zu beurteilen wäre. 

Aus diesem Grund werden in jedem Versuchsansatz parallel zur Färbung mit dem spezifischen 

Antikörper auch Kontrollfärbungen (Negativ- und Isotyp-Kontrolle) durchgeführt. Bei der 
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Negativkontrolle wird die Färbung ohne einen Antikörper durchgeführt, bei der Isotyp-Kontrolle 

kommt ein Isotyp-Antikörper zum Einsatz, der aus derselben Tierart wie der Antikörper gegen das 

nachzuweisende Antigen stammt. Durch einen Vergleich der Intensität der Braunfärbungen in den 

verschiedenen Färbungen kann zwischen unspezifischen Reaktionen und einem spezifischen 

Antikörper-Signal differenziert werden. 

Bei den immunhistologischen Färbungen in dieser Arbeit brachte die hier beschriebene Problematik 

keine großen Schwierigkeiten. Bei den Negativkontrollen (mikroskopische Aufnahmen nicht gezeigt) 

konnte nahezu keine unspezifische Hintergrundfärbung detektiert werden. Bei den Färbungen der  

Isotyp-Kontroll-Gruppe lag jedoch eine minimale Braunfärbung vor. Diese war allerdings deutlich 

schwächer ausgeprägt als bei den Färbungen der Gruppe mit den anti-CyPB-Antikörpern, sodass der 

Braunton bei den mit dem anti-CyPB-Antikörper gefärbten Schnitten eindeutig als positives Signal 

gewertet werden kann.  

 

 

1.1.2 Immunfluoreszenzfärbung 

Bei der Immunfluoreszenz handelt es sich um eine spezielle Form der Immunhistochemie, bei der die 

Antikörper mit einem Fluorochrom gekoppelt sind.  

Die Fluoreszenzfarbstoffe werden chemisch an die Antikörper gebunden, was die Eigenschaften der 

Antikörper verändern kann. Daher sind auch hier Vorversuche nötig, bei denen die Antikörper 

zunächst bezüglich ihrer Funktionalität getestet werden müssen. 

Ein großer Vorteil von Immunfluoreszenzfärbungen liegt in ihrer einfachen und schnellen 

Durchführbarkeit und in ihrer hohen Sensitivität. Die indirekte Immunfluoreszenz weist gegenüber 

der direkten Immunfluoreszenz eine deutlich erhöhte Sensitivität auf, da mehrere fluorochrom-

gekoppelte Sekundärantikörper an den Primärantikörper binden können und es somit zu einer 

Amplifikation des Signals kommt.362 

Ein weiterer Vorteil der Methode liegt in der Möglichkeit, verschiedene Antigen-Strukturen 

gleichzeitig in einem Präparat nachzuweisen. Dadurch ist es zum Beispiel möglich, die Lokalisation 

eines Proteins in einem bestimmten Zellkompartiment nachzuweisen. Ein solcher Versuchsansatz 

erfordert die Verwendung unterschiedlicher Fluorochrome, die durch unterschiedliche Licht-

Wellenlängen angeregt werden. Dies kann allerdings durch mögliche Interaktionen zwischen den 

verschiedenen Antikörpern zu  Schwierigkeiten bei der Färbung führen. 

Ein großer Nachteil bei Immunfluoreszenzfärbungen liegt in der Instabilität der Fluorochrome. Daher 

muss die Färbung ab dem Zeitpunkt, bei dem der fluorochrom-gekoppelte Antikörper eingesetzt 

wird, möglichst im Dunkeln durchgeführt werden. Auch die Lagerung der gefärbten Präparate muss 

im Dunkeln geschehen, und die Auswertung sollte im Optimalfall innerhalb von ein bis zwei Tagen 

durchgeführt werden, da die Fluoreszenz sonst nachlassen könnte. Ebenso sollte bei der 

mikroskopischen Auswertung auf zügiges Arbeiten geachtet werden, da die Fluorochrome auch 

durch das Anregungslicht zerfallen und verblassen. 
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Ein weiterer Nachteil dieser Methode besteht in dem hohen apparativen Aufwand für die 

Auswertung. Es wird ein spezielles Fluoreszenzmikroskop sowie eine Kamera mit spezieller Software 

benötigt, um die Präparate auszuwerten. 

Ein häufig auftretendes Problem bei Immunfluoreszenzfärbungen liegt darin, dass die Antikörper 

häufig unspezifische Reaktionen mit Gewebekomponenten eingehen und somit unspezifische Signale 

vorliegen. Dies kann sowohl von der Qualität des Antikörpers als auch von der Art des 

Untersuchungsmaterials abhängen. Diese beiden Faktoren sind  also maßgeblich verantwortlich für 

die Qualität der Färbung. 

Die Immunfluoreszenzfärbungen für die Versuche dieser Arbeit wurden nach einem in unserem 

Labor etablierten Standard-Protokoll (wie im Methoden-Teil dieser Arbeit beschrieben) durchgeführt. 

Somit waren auch hier potentielle Fehlerquellen auf ein Minimalmaß reduziert. Da derselbe 

Primärantikörper wie bei der Immunhistochemie der atherosklerotischen Plaque verwendet wurde 

und dieser hinsichtlich seiner Bindungseigenschaften somit schon getestet war, musste lediglich noch 

die benötigte Arbeitskonzentration in Vorversuchen ermittelt werden. 

 

 

1.1.3 Durchflusszytometrie 

Die Durchflusszytometrie stellt eine Methode dar, bei der Zellen einzeln an einem Laserstrahl 

vorbeigeleitet werden und dadurch identifiziert werden können. Dabei wird die Lichtbrechung 

(forward und side scatter) an den Partikeln gemessen. Diese Komponenten sind charakteristisch für 

verschiedene Zellen und ermöglichen so die Zuordnung zu einem bestimmten Zelltyp.359 

Bei der Fluoreszenz-Durchflusszytometrie können durch die zusätzliche Markierung der Zellen mit 

fluoreszenzfarbstoff-gekoppelten Antikörpern darüber hinaus bestimmte Oberflächenantigene 

identifiziert und die Zellen so noch näher charakterisiert werden.359 

Es handelt sich also um eine Methode bei der mehrere Parameter gleichzeitig erfasst werden 

können. Sowohl die Lichtbrechung als auch das emittierte Fluoreszenzsignal können zueinander in 

Bezug gebracht werden. Auf diese Weise entsteht ein genaues Bild der Zellen. 

Ein weiterer Vorteil der Durchflusszytometrie ist darin zu sehen, dass sehr große Zellzahlen in kurzer 

Zeit ausgewertet werden können. 

Ein Nachteil der Methode besteht in der Gefahr einer unspezifischen Zellaktivierung im Rahmen der 

Färbung der Zellen mit den fluoreszenzfarbstoff-markierten Antikörpern. Diese tritt besonders häufig 

bei Zellmonokulturen auf und entsteht im Rahmen der erforderlichen Zentrifugationsschritte und 

beim Pipettieren. Hierbei kann es zu einer Veränderung der Antigene auf der Oberfläche der zu 

untersuchenden Zellen kommen und somit zu einer Verfälschung der Versuchsergebnisse. Diese 

könnten sich beispielsweise als falsch positive Signale bei den Negativkontrollen oder als stark 

unterschiedliche und widersprüchliche Messergebnisse bei den Versuchswiederholungen zeigen. Um 

das Risiko einer unspezifischen Zellaktivierung zu reduzieren, erfolgte das Handling der Zellen 

möglichst vorsichtig und die erforderlichen Zentrifugationsschritte, die damit zusammenhängende 
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Resuspendierung der Zellen sowie weitere erforderliche Pipettierschritte wurden in dem 

angewendeten Versuchsprotokoll auf das notwedige Maß reduziert. 

Ein weiterer sehr großer Nachteil der Methode ist in den hohen Anschaffungskosten des 

Durchflusszytometers sowie in seiner Wartung zu sehen. Außerdem ist die Handhabung des Gerätes 

sehr komplex und erfordert ein breites Hintergrundwissen. Aus diesem Grund wurde die 

Grundeinstellung des Gerätes in den Vorversuchen zusammen mit einer erfahrenen Person 

vorgenommen. 

Darüber hinaus kann auch die zeitaufwändige Pflege des Gerätes (Reinigungs- und Spülvorgänge 

nach der Benutzung) als nachteiliger Faktor gewertet werden.  

 

 

1.1.4 Zymographie 

Matrix Metalloproteinasen sind durch den Abbau der extrazellulären Matrix wesentlich an der 

Destabilisierung der atherosklerotischen Plaque beteiligt. Außerdem ermöglichen sie die 

Auswanderung von Entzündungszellen im Rahmen der Atherogenese.  

Die Gelatine-Zymographie ist eine der am häufigsten verwendeten Methoden zur Detektion der 

Matrix Metalloproteinasen 2 und 9 in Zelllysaten oder Zellkulturüberständen. Neben der 

Zymographie können zum Beispiel auch der Western-Blot oder die PCR (Polymerase-Kettenreaktion) 

zum Nachweis von Matrix Metalloproteinasen zum Einsatz kommen.179,209,363,364  

Die Zymographie stellt eine sehr sensitive Methode dar. Darüber hinaus ist sie relativ kostengünstig, 

da keine Antikörper wie bei der PCR oder beim Western Blot benötigt werden. 

Die vielen Einzelschritte bei der Durchführung einer Zymographie bergen allerdings zahlreiche 

Fehlerquellen.  

So ist ein wichtiger Aspekt, dass die Elektrophorese bei möglichst niedriger Temperatur stattfindet. 

Dies ist vonnöten, damit die Enzyme inaktiviert bleiben und nicht schon während der Wanderung 

durch das Gel die darin enthaltene Gelatine abbauen. Im Optimalfall sollte die Elektrophorese also in 

einem Kühlraum stattfinden oder die Gelkammer während der Laufphase gekühlt werden. Außerdem 

sollte gekühlter Laufpuffer verwendet werden und eine möglichst niedrige Spannung angelegt 

werden, damit sich die Kammer nicht aufheizt. 

Außerdem sollte die Renaturierung der Proteasen möglichst mit angewärmtem Renaturierungspuffer 

bei 37°C stattfinden, damit man eine möglichst vollständige Renaturierung der Enzyme erzielen kann. 

Auch die Verdauung der Gelatine durch die Matrix Metalloproteinasen sollte bei physiologischen 

Temperaturen stattfinden, da die Gelatinasen in diesem Temperaturbereich optimal arbeiten 

können. 

Ein weiteres Problem stellt das Herausnehmen der Gele aus dem Rahmen dar. Die Gele sind im 

nassen Zustand sehr fragil und neigen dazu, zu reißen. Auch bei der Trocknung der Gele besteht die 

Gefahr des Reißens, da sie durch die Trocknung spröde werden. Daher muss die Trocknung in einem 
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Spannrahmen erfolgen. Außerdem sollten die Gele nach dem Trocknen eingescannt werden, damit 

sie für die Auswertung erhalten bleiben. 

Eine weitere Fehlerquelle könnte die Vorbehandlung des Blutes nach der Entnahme darstellen. Nicht 

veröffentlichte Vorversuche haben gezeigt, dass diese einen wesentlichen Einfluss auf die MMP-

Sekretion der Monozyten hat. Um höhere Zellzahlen zu gewinnen, wurden die Vorversuche zunächst 

mit Monozyten, die aus buffy coats (Zentrum für Transfusionsmedizin, Universitätsklinikum 

Tübingen) gewonnen wurden, durchgeführt. Dabei konnten wir feststellen, dass bei diesen Zellen 

keine Steigerung der MMP-Sekretion durch Stimulation mit LPS erzielt werden konnte. Dies lässt 

darauf schließen, dass entweder die Gerinnungshemmung bei der Blutentnahme oder die 

nachfolgende Behandlung des Blutes einen Einfluss auf die Funktionalität der Monozyten haben 

könnte. 

 

 

1.1.5 Chemotaxis-Assay 

Die Migration von Entzündungszellen stellt einen Schlüsselprozess im Rahmen entzündlicher 

Prozesse dar. Auch für die Atherosklerose kann die Auswanderung von Monozyten als eine 

Grundvoraussetzung für die Entstehung der Läsionen angesehen werden. 

Um die Migration von Zellen zu untersuchen, wurden im Laufe der Zeit viele verschiedene Methoden 

entwickelt. Das erste Modell war die sogenannte Boyden-Kammer.365 Sie besteht aus zwei 

übereinanderliegenden Kammern, die durch einen Filter getrennt werden. Die obere Kammer wird 

mit den beweglichen Zellen gefüllt, die untere mit den chemotaktisch wirksamen Substanzen. Die 

beweglichen Zellen wandern entlang des chemotaktischen Gradienten, bleiben im Filter hängen und 

können fixiert, gefärbt und quantifiziert werden.  

Die ursprüngliche Boyden-Kammer wurde zwischenzeitlich mehrfach modifiziert.366-373 Heute sind 

multiwell-Kammern die am weitesten verbreiteten Modelle zur Untersuchung des 

Migrationsverhaltens von Zellen. Ein großer Vorteil dieser multiwell-Kammern ist darin zu sehen, 

dass mehrere Versuchsansätze zur selben Zeit und bei identischen Bedingungen durchgeführt 

werden können.  

Die Methode der modifizierten Boyden-Kammer ist einfach durchzuführen und bedarf keiner 

aufwändigen Apparaturen. Außerdem ist sie quantitativ auswertbar und somit statistisch gut 

bewertbar. Allerdings ist ein großer Zeit- und Arbeitsaufwand für die mikroskopische Auswertung der 

gefärbten Filter nötig. 

Ein weiterer Nachteil der Methode ist, dass Konzentrationsgradienten in Kultur laut Literatur nicht 

sehr lange aufrechterhalten werden können. Daher wird für die meisten Arten von 

Migrationsversuchen empfohlen, Zeiträume von 4 Stunden nicht zu überschreiten.374  

Ein Problem, das bei der Versuchsdurchführung häufig auftreten kann, ist, dass sich Luftblasen beim 

Befüllen der Kammer bilden. Diese führen auf dem Filter zu zellfreien Bereichen und verfälschen das 

Ergebnis. Daher ist es wichtig, dass beim Befüllen der Vertiefungen ein kleiner Flüssigkeitsmeniskus 
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entsteht. Dieser darf jedoch nicht zu groß werden, da sonst das Risiko des Ineinanderlaufens der 

unterschiedlichen Substanzen beim Auflegen des Filters besteht. 

Auch beim Auseinandernehmen der Kammer und dem Handling des Filters während des Waschens 

und Färbens ist Vorsicht geboten. So darf die „Zellseite“ des Filters nicht berührt werden oder der 

Filter vor der Fixation austrocknen. 

Für den Chemotaxis-Assay der vorliegenden Arbeit wurde eine multiwell-Boyden-Kammer mit 48 

Migrationskammern verwendet, wodurch gewährleistet werden konnte, dass pro Versuchs-

durchgang alle eingesetzten Substanzen unter denselben Versuchsbedingungen getestet wurden. 

Der Versuch wurde nach einer im Labor bereits etablierten Methode (wie im Methodenteil 

beschrieben) durchgeführt. 

 

 

1.1.6 Flusskammer 

Die Extravasation, also die Auswanderung von Zellen aus dem Blutgefäßsystem in das umliegende 

Gewebe, gilt als Schlüsselprozess bei Entzündungserscheinungen. Auch bei der Atherosklerose stellt 

die Auswanderung von Entzündungszellen einen wichtigen Faktor dar, der die Entstehung einer 

Plaque mitverursacht. 

Statische Versuchsmodelle vernachlässigen die dynamischen Kräfte, die innerhalb eines Blutgefäßes 

auf Zellen einwirken. Somit lassen sich mit diesen Modellen keine aussagekräftigen Erkenntnisse 

bezüglich des Adhäsionsverhaltens von Zellen unter physiologischen Bedingungen gewinnen.  

Das Flusskammermodell  hingegen stellt eine weit verbreitete in vitro-Methode dar, mit deren Hilfe 

die physiologischen Strömungsverhältnisse, die in einem Blutgefäß herrschen, nachgestellt werden 

können.375-381 Sie ermöglicht die Beobachtung des Adhäsionsverhaltens von Zellen an einer variablen 

Matrix unter (patho-)physiologischen, dynamischen Flussbedingungen. Innerhalb unseres Labors ist 

das Flusskammermodell gut etabliert und wurde bereits vielfach für verschiedene Versuche 

eingesetzt.316,382,383  

In Abhängigkeit von den Maßen des Flusskammerkanals sowie der Geschwindigkeit, mit der die zu 

untersuchenden Zellen durch die Flusskammer perfundiert werden, können unterschiedliche 

Scherraten erreicht werden und somit physiologische sowie pathophysiologische Flussbedingungen 

simuliert werden. 

Je nach Fragestellung kann die Flusskammer mit Vollblut oder mit bestimmten Zelltypen perfundiert 

werden. Die einzelnen Zelltypen können dabei mit verschiedenen Substanzen vorbehandelt und in 

ihrem Verhalten beeinflusst werden. So können sie beispielsweise mit diversen Substanzen stimuliert 

oder inhibiert werden, oder ihre Oberflächenmoleküle können blockiert werden. Dies ermöglicht es, 

präzise Erkenntnisse über die Funktion verschiedener Rezeptoren zu gewinnen. 

Als Untersuchungsmatrix für die stationäre Phase der Flusskammer können unterschiedlichste 

Substanzen dienen. So können beispielsweise Matrixbestandteile wie Kollagen, unterschiedliche 

Adhäsionsmoleküle oder ganze Zellen verwendet werden. Letztere können ihrerseits auch durch 
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verschiedene Substanzen aktiviert oder gehemmt werden. Auf diese Weise lassen sich unter 

anderem spezifische Rezeptor-Ligand-Wechselwirkungen oder Wechselwirkungen zwischen Zellen 

und bestimmten Oberflächenmolekülen genauer untersuchen. 

Die mannigfaltigen experimentellen Variationen, die das Flusskammermodell bietet, erlauben es, 

vielfältige Erkenntnisse über die Interaktionen von Zellen mit anderen Zellen, mit Rezeptoren oder 

mit Matrices zu gewinnen. 

Ein bedeutender Vorteil der Flusskammermethode ist, dass man das Verhalten von Zellen zunächst in 

vitro untersuchen kann, bevor man auf Tiermodelle zurückgreift, um die in vitro gewonnenen 

Erkenntnisse in vivo zu verifizieren. Auf diese Weise lassen sich die benötigten Tierzahlen für 

Tierversuche deutlich reduzieren. 

Ein weiterer Vorteil der Flusskammermethode liegt in ihrer relativ einfachen Durchführbarkeit. Es 

werden keine aufwändigen Gerätschaften benötigt und die Versuchsbedingungen können bei 

Versuchswiederholungen leicht reproduziert werden. 

Trotz der einfachen Methodik des Modells gab es bei der Durchführung der Flusskammerversuche in 

vorliegender Arbeit auch einige Schwierigkeiten. Insbesondere die Undichtigkeit der Flusskammer 

war ein häufig auftretender Störfaktor. Der Spannring mit dem die Deckgläschen auf der 

Flusskammer-Basis befestigt wurden, stand oftmals unter Spannung, sodass er sich während des 

Versuchs gelöst hat und die Kammer dabei undicht wurde oder das Deckgläschen durch die 

Spannung plötzlich gesprungen ist, was zur Folge hatte, dass der entsprechende Versuchsansatz 

abgebrochen werden musste. 

Auch bei den Versuchen mit den endothelzellbeschichteten Deckgläschen gab es häufiger Probleme. 

Durch die Kultivierung der HUVECs kommt es zu Veränderungen der Endothelzellen, die mit 

zunehmender Passagezahl ausgeprägter werden. Je nach Passagezahl der HUVEC-Zellen zeigten diese 

ein unterschiedlich gutes Adhäsionsverhalten auf den gelatinebeschichteten Deckgläschen, mit der 

Folge, dass sie sich durch die Scherkräfte der vorbeifließenden Zellsuspension oftmals vom 

Deckgläschen ablösten. Um dies zu vermeiden, wurden stets Zellen mit möglichst niedriger 

Passagezahl verwendet. Außerdem konnte dieser Effekt dadurch abgemildert werden, dass die 

Thrombozyten anstelle von PBS in HUVEC-Medium durch die Kammer perfundiert wurden. 

Wichtig zu erwähnen ist in diesem Zusammenhang, dass die Auswertung der Versuchs-

aufzeichnungen nur in den Bezirken erfolgen durfte, in denen ein konfluenter HUVEC-Zellrasen 

vorlag. Dadurch wurden nur diejenigen Thrombozyten ausgezählt, die an Endothelzellen hafteten. 

Ein Nachteil der Flusskammermethode ist, dass andere physiologische Faktoren neben der Flussrate 

wie zum Beispiel eine physiologische Körpertemperatur im Modell nur bedingt nachgestellt werden 

können. Die Zellen wurden zwar bei 37°C inkubiert, das Perfusionsmedium vorgewärmt und die 

Zellsuspension bis zur Verwendung bei 37°C gelagert und auch die Temperatur hielt sich in der 

Spritze bei der Durchführung des Versuchs relativ gut bis zum Ende des Versuchs, jedoch war die 

Zellsuspension im Schlauchsystem bis zum Erreichen der Flusskammer zu einem gewissen Grad 

abgekühlt. Dies könnte einen Einfluss auf die Adhäsion der Zellen an der stationären Phase nehmen 

und zu unterschiedlichen Ergebnissen im Vergleich zum in vivo-Modell führen. 
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Auch eine pulsatile Strömung, wie sie im arteriellen Blutsystem herrscht, konnte mit dem für die 

Versuche genutzten Perfusor nicht hergestellt werden. Dies stellt einen weiteren Unterschied dar, 

der zu andersartigen Reaktionen der Zellen im Vergleich zum natürlichen System führen könnte. 

Dieser Unterschied könnte mit einer programmierbaren Pumpe, die in der Lage ist einen pulsatilen 

Fluss zu generieren, ausgeglichen werden.384,385 

Ein weiteres Problem stellte die Sedimentation der Zellen in der Perfusorspritze während der 

zehnminütigen Vorlaufzeit dar. Hierdurch veränderte sich die Zellkonzentration in der Zellsuspension 

mit der Zeit. Aus diesem Grund wurde für jedes Deckgläschen eine separate Perfusorspritze 

verwendet, die vor dem Einlegen in den Perfusor vorsichtig geschwenkt wurde, um die Zellen zu 

resuspendieren. 

In den vorliegenden Versuchen wurden die Interaktionen von Thrombozyten mit extrazellulärer 

Matrix (Kollagen), mit Endothelzellen und mit immobilisiertem, rekombinanten CyPA und CyPB 

untersucht. Die Scherrate von 2000–s, die durch die Kombination aus Perfusionsgeschwindigkeit und 

Dicke des Dichtungsrings, der die Abmessungen des Flusskanals begrenzte, eingestellt wurde, galt für 

alle Versuchsansätze. Sie entspricht dem Wert bei physiologischer Flussgeschwindigkeit im 

arteriellen Blutgefäßsystem. 

 

 

1.2 Diskussion der in vivo-Methoden  

1.2.1 Tiermodelle in der Atheroskleroseforschung und Gründe für die Wahl der Maus als 

Versuchstier 

In der Atheroskleroseforschung kamen im Laufe der Zeit unterschiedliche Tiermodelle zum Einsatz, 

mit deren Hilfe die Pathomechanismen, die der Atherosklerose zugrunde liegen, genauer erforscht 

und neue Therapiemethoden entwickelt werden sollen.111  

Ein wichtiger Parameter bezüglich der Eignung einer Spezies als Modell für die 

Atheroskleroseforschung ist, dass sie Läsionen sowie die zugehörigen Komplikationen entwickelt, die 

denen des Menschen möglichst ähnlich sind.111  

Die verwendeten Tiermodelle lassen sich in 4 verschiedene Kategorien einteilen:112  

• Modelle, bei denen die Läsionen durch unterschiedliche Methoden induziert werden: 

hierzu kommen neben diätetischen Induktionsmethoden auch physikalische, chemische oder 

immunologische Methoden zum Einsatz;111 

• Modelle, bei denen sich die Läsionen spontan entwickeln; 

• nichtreaktive Modelle; 

• Modelle, für die es kein Pendant beim Menschen gibt; 

Das erste Tiermodell, an welchem die Entstehung atherosklerotischer Veränderungen untersucht 

wurde, war das Kaninchen.386 Kurze Zeit später konnte Anitschkow beweisen, dass diese 
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Veränderungen durch die Fütterung von großen Mengen Cholesterin hervorgerufen werden 

können.387  

In den frühen Phasen der Atheroskleroseforschung wurden häufig auch nichtmenschliche Primaten 

und Schweine verwendet.388-392 Die Ähnlichkeiten zwischen Mensch und nichtmenschlichen Primaten 

(beispielsweise die Thrombozytenfunktion, das fibrinolytische System oder die Pharmakokinetik von 

Medikamenten) sprachen für die Nutzung dieser Modelle zur Erforschung kardiovaskulärer 

Pathologien. Auch das Schwein bietet einige Vorteile, die es zu einem guten Modell zur Erforschung 

der Atherosklerose machten. Wie bereits beschrieben, entwickelt es spontan atherosklerotische 

Läsionen. Außerdem ähnelt die Anatomie des Herzens derjenigen des Menschen. Gegen die Nutzung 

dieser Tierarten sprechen einerseits die hohen Haltungskosten, der große Platzbedarf und ein nicht 

unkompliziertes Handling der Tiere. Eine ungenaue genetische Charakterisierung, ein Mangel an 

verfügbaren Antikörpern sowie transgener Tiermodelle sind weitere nachteilige Eigenschaften dieser 

Tierarten. Darüber hinaus sprechen ethische Bedenken, insbesondere bei den Primaten, gegen die 

Nutzung dieser Tierarten in der Atheroskleroseforschung.389 

Neben diesen Tierarten wurden im Laufe der Zeit auch viele andere Tierarten wie Ratten, Hunde, 

Hamster, Meerschweinchen und Tauben als Versuchstiere eingesetzt.111,112,393-397  

Keines dieser Tiermodelle ist jedoch optimal zur Erforschung aller Phasen der Atherosklerose 

geeignet. Einige dienen besser zur Erforschung der Initiation, andere für die Erforschung der 

Progression oder von Atherosklerose-Endstadien.112 Hunde, Hamster, Meerschweinchen und Vögel 

unterliegen insbesondere in Bezug auf die Haltungsbedingungen außerdem vielen limitierenden 

Faktoren, die zur Folge haben, dass sie seltener für die Atheroskleroseforschung eingesetzt 

werden.397  

Heute werden in der Atheroskleroseforschung in erster Linie Mäuse und Kaninchen als Versuchstiere 

verwendet.112  

Wichtige Gründe für die Wahl der Maus als Versuchstier sind vor allem in der relativ einfachen und 

kostengünstigen Haltung zu sehen. Weitere Vorteile der Maus liegen beim geringen Platzbedarf für 

Haltung und Versuche, im einfachen Handling, sowie in der kurzen Generationszeit und einer hohen 

Reproduktionsrate. Auch ist die Maus relativ unempfindlich gegenüber Umwelteinflüssen (wie z.B. 

Geräuschen) und stellt keine besonderen Ansprüche an ihre Ernährung. 

Das Genom der Maus ist vollständig entschlüsselt. Dies bietet die Möglichkeit, genetische 

Manipulationen vorzunehmen und knockout-Stämme zu schaffen. Bei diesen können die 

Auswirkungen des Fehlens bestimmter Gene und der entsprechenden Genprodukte untersucht 

werden.  

Einige Gen-knockouts führen dazu, dass die Tiere bestimmte Erkrankungen entwickeln, die denen des 

Menschen ähneln. Diese „Krankheitsmodelle“ können gezielt gezüchtet werden und bieten die 

Möglichkeit, die Pathomechanismen, die den entsprechenden Erkrankungen des Menschen zugrunde 

liegen, aufzudecken. 

Dies ist insbesondere deshalb von Bedeutung, da genetisch unveränderte Mäuse keine 

atherosklerotischen Läsionen entwickeln. Dies ist auf ihren Lipidstoffwechsel zurückzuführen, der 
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sich von demjenigen des Menschen stark unterscheidet. Cholesterin wird bei ihnen größtenteils in 

HDL-ähnlichen Partikeln transportiert.389 Aus diesem Grund wurden transgene Mauslinien wie die 

Apolipoprotein E-defiziente Maus (ApoE-/--Maus) und die LDL-Rezeptor-defiziente Maus (LDL-/--Maus) 

gezüchtet.398  

Vor der Verfügbarkeit dieser modifizierten Maus-Stämme, war die Wildtypmaus (C57BL6/J-Maus 

oder Black six-Maus) das am häufigsten genutzte Modell in der Atheroskleroseforschung.388,399,400   

Sie gilt als sehr robust, langlebig, fortplanzungsfreudig und tumorresistent. Bei normaler Fütterung 

entwickelt dieser Mausstamm keine atherosklerotischen Veränderungen und kann daher auch gut als 

Modell für vielfältige andere Versuche eingesetzt werden.401 Unter entsprechender atherogener Diät 

(cholesterin- und lipidreich, auch als Western-type-Diet bezeichnet) bilden sie nach einigen Wochen 

atherosklerotische Veränderungen in der Aorta aus.401 Diese unterscheiden sich allerdings von 

denjenigen des Menschen. Sie ähneln ausgedehnten fatty streaks, die große Mengen von 

Schaumzellen und teilweise glatten Muskelzellen enthalten.388,400 Außerdem finden sich die Läsionen 

im Gegensatz zum Menschen hauptsächlich im Aortenstamm.388 

Seit der Entwicklung der transgenen Mauslinien, ist die ApoE-knockout-Maus das am häufigsten 

verwendete Modell zur Erforschung der Atherosklerose.398 ApoE-knockout-Mäuse entwickeln bereits 

ohne diätetische Beeinflussung eine schwere Hypercholesterinämie und zeigen schon im Alter von 3 

Monaten fatty streaks in der Aorta, die mit zunehmendem Alter weiter fortschreiten.388,402            

Diese Eigenschaften machen die  ApoE-/--Maus zu einem geeigneten Modell für die Erforschung der 

Atherogenese und den daraus resultierenden Veränderungen.402 

Durch die Fütterung einer Western-type-Diet kann die Hypercholesterinämie bei diesen Mäusen noch 

zusätzlich verstärkt werden. In der Folge kommt es zu erhöhten Plasma-Konzentrationen von very 

low density-lipoprotein, intermediate lipoprotein und low density-lipoprotein und zu einer deutlich 

frühzeitigeren Atherogenese.388  

Die atherosklerostischen Veränderungen dieser Linie sind denen des Menschen sehr ähnlich und 

umfassen das gesamte Spektrum der Läsionen, die während der Atherogenese des Menschen 

auftreten.388,403 Sie beginnt mit der Adhäsion von Monozyten an Gefäßen, der Bildung von 

schaumzellreichen fatty streaks und endet mit Fibroatheromen, bei denen ein nekrotischer Kern von 

einer fibrous cap bedeckt ist, die große Mengen glatter Muskelzellen enthält.388,398 Im Gegensatz  

zum Menschen kommt eine Plaqueruptur jedoch praktisch nicht vor.404  

Ein weiterer Grund, der für die Wahl der Maus als Tiermodell für die Atheroskleroseforschung 

spricht, ist ihre geringe Größe. Aufgrund derer werden nur kleine Mengen von Medikamenten und 

Narkosemitteln sowie von Testsubstanzen benötigt. Dies bedeutet eine zusätzliche Kostenersparnis 

bei der Durchführung von Versuchen mit Mäusen gegenüber größeren Tierarten. 

Die geringe Körpergröße der Maus kann sich für manche Versuchsvorhaben jedoch auch als 

nachteilig erweisen, da bestimmte Eingriffe hierdurch erschwert oder sogar unmöglich gemacht 

werden.  

Auch bezüglich der Narkose ist bei der Maus, ebenso wie bei anderen Kleinsäugern, besondere 

Vorsicht geboten. Es besteht ein erhöhtes Risiko für die Entwicklung einer kardiovaskulären 

Depression mit konsekutivem Kreislaufversagen. Aus diesem Grund wurde die Narkose mit Isofluran 
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durchgeführt. Dieses flutet schnell an- und ab und macht die Narkose somit sehr gut steuerbar. 

Außerdem bewirkt es nur eine geringgradige kardiovaskuläre Depression.405,406 

Darüber hinaus muss bei der Narkose darauf geachtet werden, dass die Körpertemperatur der Mäuse 

in einem relativ konstanten Bereich gehalten wird. Mäuse, bzw. Kleintiere im Allgemeinen, haben im 

Verhältnis zu ihrer Körpergröße eine relativ große Körperoberfläche. Dies bedingt einen hohen 

Wärmeverlust, sodass sie sehr schnell auskühlen. Dies kann zu einer zusätzlichen kardiovaskulären 

Depression mit Bradykardien führen. 

Weiterhin ist zu beachten, dass die Maus im Herz-Kreislaufsystem viele physiologische Unterschiede 

gegenüber dem Menschen aufweist. So liegt die durchschnittliche Herzfrequenz beim Menschen bei 

73 Schlägen pro Minute, bei der Maus hingegen zwischen 450 und 550 Schlägen pro Minute. 

Weiterhin bestehen deutliche Unterschiede in der Atemfrequenz (12 Atemzüge pro Minute beim 

Menschen gegenüber 106-163 Atemzügen pro Minute bei der Maus) und beim durchschnittlichen 

arteriellen Blutdruck. Dieser liegt beim Menschen bei 120/80mmHg liegt und bei der Maus bei     

112-124/48-62mmHg.405 

Für die Versuche der vorliegenden Arbeit wurden zwei Mausstämme verwendet. Zum einen der 

Wildtypmausstamm C57BL/6J für den in vivo-Versuch und zum anderen der ApoE-knockout-Stamm 

B6.129P2-Apoetm1Unc/J für die immunhistochemische Untersuchung der atherosklerotischen Plaque.  

 

 

1.2.2 Peritonitis-Modell 

Die Migration von Leukozyten an die Stelle des inflammatorischen Stimulus spielt eine zentrale    

Rolle beim Entzündungsgeschehen. Es handelt sich um einen sehr komplexen Prozess, der die 

Zellaktivierung, Adhäsion, Chemotaxis und Transmigration umfasst.407  

Ein großer Teil unseres Wissens über die unterschiedlichen Mediatoren und Zelltypen, die an akuten 

Entzündungen beteiligt sind, konnte durch das Modell der sterilen Peritonitis gewonnen werden.408 

Es stellt eine relativ einfach durchführbare und kostengünstige Methode dar.  

In der Regel werden für dieses Modell Kleinnager verwendet. Bisweilen kommen auch größere 

Tierarten zum Einsatz.407 

Die Peritonealhöhle stellt einen präformierten Hohlraum dar, in den inflammatorisch wirksame 

Substanzen injiziert werden können.407 Durch diese Injektion werden die typischen Kennzeichen 

einer Entzündung wie Schmerz, die Infiltration von Leukozyten und die Synthese von 

Entzündungsmediatoren ausgelöst.408 Je nach injizierter Substanz können unterschiedliche 

Entzündungsmediatoren, Enzyme oder Rezeptoren die Rekrutierung der Leukozyten beeinflussen.407   

Ein häufig verwendeter Mediator zur Induktion einer Peritonitis ist Thioglykolat, das Salz der 

Mercaptoessigsäure. Auch Lipopolysaccharid (LPS), ein Bestandteil der Zellmembran gramnegativer 

Bakterien, und Zymosan, ein Polysaccharid aus Glucose aus der Zellwand von Saccharomyces 

cerevisiae, werden häufig zur Peritonitis-Induktion verwendet.407,408  
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Die Bauchhöhle ist auch im Normalzustand von Entzündungszellen kolonisiert. Es finden sich dort 

Makrophagen, T- und B-Zellen, NK-Zellen, Mastzellen und dendritische Zellen.409,410  

Nach Induktion einer Peritonitis mit Thioglykolat kommt es zu einem raschen und starken Anstieg der 

Gesamtzellzahl in der Peritonealflüssigkeit. Nach 24 Stunden kann bereits eine bis zu zehnfach 

erhöhte Zellzahl gemessen werden, nach 3 Tagen sogar eine mehr als zwanzigfach erhöhte 

Zellzahl.411  

Die Betrachtung der Zelltypen zeigt, dass es zunächst zur Einwanderung von neutrophilen 

Granulozyten kommt. Diese beginnt nach 4 Stunden und erreicht nach 24 Stunden ihren Höhepunkt. 

Erste Makrophagen können nach 24 Stunden in der Bauchhöhle gefunden werden. Nach 3-4 Tagen 

erreichen sie dort ihre Höchstwerte.411 

Durch die Thioglykolat-Injektion kommt es außerdem zum Anstieg diverser Entzündungsmediatoren 

wie zum Beispiel MCP-1, TNF-α, IFN-γ sowie IL-6, -7, -10 und -11. Diese erreichen ihre Höchstwerte 

bereits nach 24 Stunden und sinken bis zum dritten Tag wieder ab.411 

Bei derartigen Peritonitis-Induktionen kann es zu einigen Schwierigkeiten kommen, welche die 

Versuchsergebnisse verfälschen können.  

Da die Injektion der Thioglykolatlösung in die Bauchhöhle blind erfolgt, kann nicht ausgeschlossen 

werden, dass dabei der Darm perforiert wird. Hierdurch kann es zur Auswanderung von Bakterien 

aus dem Darm in die Bauchhöhle kommen, was zur Entstehung einer septischen Peritonitis führt, mit 

der Folge, dass sich die zellulären Reaktionen deutlich von denen bei der sterilen Peritonitis 

unterscheiden.  

Neben dem Risiko einer Darmperforation bei der intraperitonealen Injektion, besteht auch die 

Möglichkeit, ein Gefäß zu verletzen. Durch die dabei entstehende Blutung kann die 

Zusammensetzung der Entzündungszellen in der peritonealen Lavageflüssigkeit verändert sein. Das 

Risiko derartiger Verletzungen ist insbesondere am wachen Tier groß. Plötzliche Abwehrbewegungen 

der Tiere können zum Verrutschen der Kanüle führen und die oben genannten Verletzungen nach 

sich ziehen. Aus diesem Grund wird die Injektion häufig - wie auch in dieser Untersuchung - am 

narkotisierten Tier durchgeführt.  

Ein anderes Modell zur kontrollierten und reproduzierbaren Schaffung von Entzündungsreaktionen 

stellt das air pouch-Modell dar. Bei diesem Modell wird durch mehrmalige Injektion von steriler Luft 

in die Unterhaut zwischen den Schulterblättern eine kleine Tasche (pouch) generiert. Durch die 

wiederholte Luftinjektion bildet sich eine Epithelschicht an den Begrenzungen der Gewebstasche. 

Nachdem sich diese gebildet hat, kann in diese Tasche ein chemotaktischer Faktor oder ein 

Entzündungsmediator injiziert werden und das Exsudat auf Entzündungsmediatoren oder migrierte 

Entzündungszellen untersucht werden.407,412 Diese Methode ist ebenso wie das Peritonitis-Modell 

relativ kostengünstig und technisch nicht sehr anspruchsvoll. Jedoch  erfordert die Ausbildung des 

pouches eine mehrtägige Vorbereitungszeit. Somit ist diese Methode wesentlich zeitaufwändiger als 

das Peritonitis-Modell. Aus diesem Grund wurde zur Untersuchung des Migrationsverhaltens von 

Leukozyten in dieser Arbeit das Peritonitismodell bevorzugt. 
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Ein drittes Modell zur Untersuchung entzündlicher Reaktionen stellt das Ischämie-

Reperfusionsmodell dar. Durch das Ligieren eines Blutgefäßes wird dort eine Ischämie provoziert, 

wodurch das Endothel, das sich normalerweise in einem antikoagulatorischen und antiinflammativen 

Zustand befindet, in einen prothrombotischen Zustand versetzt wird.413 Es wird aktiviert und 

entwickelt adhäsionsvermittelnde Eigenschaften, was bedeutet, dass es vermehrt Adhäsions-

rezeptoren wie P-Selektin und ICAM-1 exprimiert.413,414 Außerdem kommt es zur einer gesteigerten 

Freisetzung von Chemokinen, Wachstumsfaktoren und einer erhöhten Permeabilität.413 Dieser 

Zustand ähnelt dem Zustand bei der Initiation der Atherosklerose und kann zur Untersuchung der 

dabei ablaufenden entzündlichen Vorgänge eingesetzt werden. Auch dieses Modell ist wie das air 

pouch-Modell im Vergleich zum Peritonitismodell deutlich zeitaufwändiger und komplexer in der 

Durchführung. Die zu erlernende Operationstechnik ist wesentlich schwieriger als die 

Injektionstechnik für das Peritonitismodell. Außerdem ist für die Versuchsdurchführung eine 

längerdauernde Narkose erforderlich, da das Gefäß für die Ischämiephase etwa eine Stunde lang 

ligiert bleiben muss. Aufgrund dessen besteht bei dieser Methode ein erhöhtes Narkoserisiko. 

Darüber hinaus ist die Auswertung des Ischämie-Reperfusionsmodells sehr zeitintensiv, da hier 

einzelne Zellen ausgezählt werden müssen.  

Mit dem vorliegenden Versuchsansatz sollte zunächst die grundsätzliche Frage geklärt werden, ob es 

durch CyPB zu einer gesteigerten Migration von Entzündungszellen kommt. Da die hierfür relevanten 

Informationen auch durch das Peritonitismodell gewonnen werden konnten, wurde die 

Wirkungsweise von CyPB für diese Arbeit lediglich in diesem Modell untersucht. 
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2 Diskussion der Ergebnisse 

Die Atherosklerose ist eine Erkrankung, die durch eine chronische Entzündung der Gefäßwand 

gekennzeichnet ist.415 Beim Menschen spielt die Atherosklerose eine bedeutende Rolle. Weltweit 

starben im Jahr 2012 rund 17,5 Millionen Menschen an den Folgen kardiovaskulärer Erkrankungen.2 

Der Großteil davon ist auf atherosklerotische Veränderungen zurückzuführen.4 Somit stellt die 

Atherosklerose nach Krebserkrankungen eine der häufigsten Todesursachen in der westlichen Welt 

dar.2  

Innerhalb des Tierreiches hingegen spielen atherosklerotische Veränderungen nur eine 

untergeordnete Rolle. Lediglich bei Vögeln kommt sie mit einer gewissen Häufigkeit vor. Bei Hunden, 

die in Folge einer Schilddrüsenunterfunktion eine Hypercholesterinämie entwickeln, können 

gelegentlich atherosklerotische Veränderungen gefunden werden, und auch bei alternden 

Schweinen (sowohl Haus- als auch Wildschwein) können diese vorkommen.8 Aufgrund der häufig 

sehr begrenzten Nutzungsdauer dieser Tiere, können bei ihnen jedoch nur Atherosklerose-

Frühstadien gefunden werden.7 

Während Atherogenese werden verschiedene Stadien durchlaufen. Im Verlauf der Plaquebildung 

kommt es in der Gefäßwand zu vielfältigen Interaktionen zwischen Entzündungszellen und anderen 

aktivierten Zellen wie Makrophagen/Schaumzellen, Lymphozyten und glatten Muskelzellen.314   

Der Einfluss des Immunophilins CyPA als Mediator für kardiovaskuläre Erkrankungen  stand in den 

letzten Jahren im Zentrum des Interesses vieler Forschungsprojekte.30,32,314 Einerseits stellt es      

einen wichtigen Mediator für kardiovaskuläre Entzündungsprozesse dar.32 Andererseits nimmt es 

auch auf die im Rahmen der Atherosklerose ablaufenden Entzündungsprozesse (siehe Abb. 58) auf 

verschiedenen Ebenen Einfluss.51  

CyPA stellt einen Verbindungsfaktor zwischen verschiedenen Risikofaktoren (wie Hyperlipidämie, 

Bluthochdruck oder Diabetes) und der Entstehung atherosklerotischer Veränderungen dar (siehe 

Abb. 58A) .51,416-418  

Außerdem wird es durch verschiedene entzündliche Stimuli von Endothelzellen, Monozyten, 

Makrophagen, Schaumzellen, glatten Muskelzellen und Thrombozyten freigesetzt (siehe Abb. 58A 

und 58B).312,314,318,319,325,333,334 Diese Zelltypen spielen eine entscheidende Rolle bei der Entstehung der 

Atherosklerose.  

CyPA nimmt desweiteren Einfluss auf die Initiation der Atherosklerose. Es ist in der Lage, 

Endothelzellen zu schädigen und ihre Apoptose auszulösen (siehe Abb. 58A).315 Dieser Prozess wird 

als ein entscheidender Faktor für die Initiation der Atherosklerose vermutet.315   

Eine weitere atherogene Eigenschaft von CyPA stellt seine Fähigkeit zur entzündlichen Aktivierung 

von Endothelzellen dar, was sich in einer gesteigerten Expression von Adhäsionsmolekülen wie 

VCAM-1 äußert (siehe Abb. 58A).315  

Auch Thrombozyten werden durch CyPA beeinflusst. Die Bindung von CyPA an CD147 (EMMPRIN) auf 

der Plättchenoberfläche bewirkt deren Aktivierung.316,336 Dies führt zur vermehrten Expression von 

Adhäsionsmolekülen auf der Plättchenoberfläche419 und schließlich zur Adhäsion von Thrombozyten 
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am Endothel.336 Diese können als Brückenzellen zwischen Endothelzellen und Leukozyten fungieren 

und so deren Rekrutierung begünstigen (siehe Abb. 58C).124  

CyPA besitzt außerdem eine potente chemotaktische Wirkung auf Entzündungszellen wie 

beispielsweise Monozyten und T-Lymphozyten (siehe Abb. 58B).51,296,420 Außerdem bewirkt es bei 

Endothelzellen über die Induktion von Adhäsionsrezeptoren und einer gesteigerten IL-6-Expression, 

die Rekrutierung von Entzündungszellen in atherosklerotische Läsionen  (siehe Abb. 58B).115,315,322,324  

Darüber hinaus ist CyPA in der Lage, die Expression von Scavenger-Rezeptoren zu regulieren (siehe 

Abb. 58B). Auf diese Weise beeinflusst es die Aufnahme von LDL in die Gefäßwand315 und die 

Entstehung von fatty streaks.115   

Neben Endothelzellen ist CyPA auch in der Lage, Entzündungszellen zu aktivieren.51 So löst es die 

Sekretion von M-CSF und MMPs bei Makrophagen aus (siehe Abb. 58B und 58C).314 M-CSF begünstigt 

die Umwandlung von Makrophagen zu Schaumzellen.315 MMPs begünstigen die Plaquebildung, 

indem sie die Einwanderung von Entzündungszellen und glatten Muskelzellen in die Gefäßwand 

vereinfachen (siehe Abb. 58C).176,177,178,351 Auch Schaumzellen werden durch die Bindung von CyPA an 

CD147 (EMMPRIN) zur MMP-Sekretion angeregt (siehe Abb. 58C).314,334 Außerdem vermitteln sie 

durch ihre proteolytische Aktivität die Plaquedestabilisierung.24 

CyPA nimmt darüber hinaus Einfluss auf die Plaqueruptur sowie auf thrombotische Geschehnisse, die 

zur Komplikation atherosklerotischer Prozesse führen.312,314,421,422  
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Abbildung 58:  Wirkung von CyPA in der Atherosklerose (Zusammenfassung der zugehörigen Literatur) 

A) Atherosklerose-Risikofaktoren führen zur Freisetzung von CyPA durch Endothelzellen sowie zur Expression 

von Adhäsionsmolekülen und der Apoptose von Endothelzellen. B) Freies CyPA wirkt chemotaktisch auf 

Entzündungszellen und bewirkt über eine gesteigerte Expression von Adhäsionsmolekülen die 

Leukozytenrekrutierung in die Intima. Über die Auslösung der M-CSF-Sekretion bei Makrophagen fördert es die 

Umwandlung von Monozyten zu Schaumzellen. Im Rahmen dieser Differenzierung kommt es zu einer 

gesteigerten CyPA-Sekretion durch die 3 Zelltypen. CyPA wird auch von glatten Muskelzellen freigesetzt und 

bewirkt deren Proliferation und Migration in die Intima. C) CyPA bewirkt die Sekretion von MMPs bei 

Monozyten, glatten Muskelzellen und Schaumzellen. Auf diese Weise fördert es die Rekrutierung der Zellen in 

die Intima und die Destabilisierung der Plaque. Bei Thrombozyten bewirkt CyPA eine Aktivierung, was mit einer 

gesteigerten Adhäsion am dysfunktionellen Endothel einhergeht. Durch ihre Wirkung als Brückenzellen 

verstärken Thrombozyten so zusätzlich die Rekrutierung von Entzündungszellen. 
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Über die Rolle von CyPB für die Entstehung der Atherosklerose konnten in der Literatur keine 

Angaben gefunden werden. Seine enge strukturelle Verwandtschaft zu CyPA, das extrazelluläre 

Vorkommen beider Vertreter, sowie seine in vitro nachgewiesene chemotaktischen Wirkung 

gegenüber neutrophilen Granulozyten und T-Lymphozyten lassen jedoch die Spekulation zu, dass es 

ebenso wie CyPA an der Entstehung der Atherosklerose beteiligt sein könnte.33,250,259,296,302,336,352  

Seine bereits aufgezeigte Beteiligung bei anderen entzündlichen Erkrankungen wie Sepsis, Asthma 

oder rheumatoider Arthritis bestärkt diese Vermutung zusätzlich.293,297,298  

In der vorliegenden Arbeit konnte das Vorkommen von CyPB in der atherosklerotischen Plaque 

erstmals nachgewiesen werden (siehe Abb. 33). Die Tatsache, dass es auch im Zytoplasma und im 

Zellkern von Monozyten, Makrophagen und Schaumzellen sowie auf der Oberfläche thrombin-

stimulierter Thrombozyten nachgewiesen werden konnte (siehe Abb. 34-40), legt die Vermutung 

nahe, dass CyPB auch in der Pathogenese der Atherosklerose eine Rolle spielen könnte. 

In weiteren Untersuchungen wurde der Einfluss auf die oben genannten Zelltypen genauer 

untersucht. Es sollten dabei mögliche Pathomechanismen von CyPB im Rahmen der Atherogenese 

aufgedeckt werden. 

Die Daten der vorliegenden Arbeit sprechen dafür, dass CyPB keinen Einfluss auf das Migrations-

verhalten von Leukozyten, insbesondere demjenigen von Monozyten nimmt (siehe Abb. 44, 45, 55 

und 56). Jedoch konnte im Blutbild nach intraperitonealer Applikation des Proteins eine leichte 

Reduktion der Gesamtleukozytenzahl beobachtet werden (siehe Abb. 57). Außerdem konnte 

nachgewiesen werden, dass die proteolytische Aktivität von Monozyten durch CyPB gesteigert wird 

(siehe Abb. 41-43).  

Darüber hinaus konnte bestätigt werden, dass aktivierte Thrombozyten ein gesteigertes 

Adhäsionsverhalten gegenüber immobilisiertem CyPA und CyPB aufweisen (siehe Abb. 46-48).  

Außerdem wurde der Einfluss der nicht immunsuppressiven Cyclosporin A-Derivate NIM811 und 

MM284 auf das Adhäsionsverhalten der Thrombozyten untersucht (siehe Abb. 49-54). Während    

das zellpermeable Derivat NIM811 sowohl die Wirkung intra- als auch extrazellulärer Cyclophiline 

inhibieren kann, ist die Wirkung von MM284 aufgrund seiner Zellimpermeabilität auf die   

Inhibierung extrazellulärer Cyclophiline beschränkt. Die Ergebnisse der durchgeführten 

Untersuchungen zeigten, dass die stimulierende Wirkung von CyPB auf das Adhäsionsverhalten der 

Thrombozyten im Flusskammerversuch durch beide Cyclosporin A-Derivate in gleichem Maße 

inhibiert wird.  
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2.1 Pathophysiologische Relevanz der Cyclophilin B- Expression in der 

atherosklerotischen Plaque, auf Monozyten, Makrophagen und 

Schaumzellen sowie auf aktivierten  Thrombozyten. 

In der vorliegenden Arbeit konnte das Vorkommen von CyPB in der atherosklerotischen Plaque   

ApoE-defizienter Mäuse (Stamm: B6.129P2-Apoetm1Unc/J) mit Hilfe der Immunhistochemie erstmalig 

nachgewiesen werden. CyPB reichert sich innerhalb der Plaque vermehrt im Bereich der fibrösen 

Schutzkappe an. Somit ist die Lokalisation in der Plaque ähnlich der von CyPA.382  

Dieser Nachweis bestärkte unsere Hypothese, dass CyPB ebenso wie CyPA an den entzündlichen 

Prozessen, die im Rahmen der Atherosklerose ablaufen, beteiligt sein könnte.  

In der Literatur konnten lediglich allgemeine Aussagen zum Vorkommen von CyPB gefunden werden. 

Es findet sich intrazellulär im endoplasmatischen Retikulum und im Zellkern.254,255,259 Zudem kann es 

extrazellulär vorkommen und wird von Chondrozyten spontan sezerniert.247,293 

Monozyten und die daraus entstehenden Makrophagen und Schaumzellen spielen eine bedeutende 

Rolle in der Pathogenese der Atherosklerose.113 In der Literatur konnten allerdings keine konkreten 

Angaben über die Expression von CyPB in ruhenden bzw. aktivierten Monozyten, Makrophagen oder 

Schaumzellen gefunden werden. Deshalb wurde in weiteren Versuchen das Vorkommen von CyPB in 

diesen Zelltypen untersucht.  

Mittels Immunfluoreszenzfärbung gelang es uns folgendes (siehe Abb. 34-39) aufzuzeigen: Die 

Expression von CyPB auf der Oberfläche sowie im Zytoplasma von ruhenden Monozyten, 

Makrophagen und Schaumzellen ist gegeben. Die Oberflächenexpression konnte durch Stimulation 

mit LPS bei allen drei Zelltypen noch zusätzlich verstärkt werden. Die Stimulation von Makrophagen 

und Schaumzellen mit LPS führte darüber hinaus zu einer vermehrten Expression von CyPB im 

Zellkern. Dieser Effekt konnte bei Monozyten jedoch nicht beobachtet werden. Schaumzellen zeigten 

nach LPS-Stimulation außerdem eine leicht gesteigerte CyPB-Expression im Zytoplasma. 

Monozyten/Makrophagen können durch verschiedene Stimuli aktiviert werden: Ein wichtiger 

Stimulus ist beispielsweise Lipopolysaccharid (LPS), der Hauptbestandteil der Zellmembran gram-

negativer Bakterien, der beim Zerfall derselben freigesetzt wird. Durch die Bindung von LPS werden 

eine Reihe von Signalkaskaden aktiviert, die letztlich zur Stimulation von Transkriptionsfaktoren wie 

NF-κB führen.423,424 Auf derartige Prozesse könnte das gesteigerte Vorkommen von CyPB im Zellkern 

(siehe Abb. 37 C1-C3 und 39 C1-C3), im Zytoplasma (siehe Abb. 37 C1-C3 und 39 C1-C3) sowie auch 

seine gesteigerte Oberflächenexpression nach Stimulation mit LPS (siehe Abb. 34 C1-C3, 36 C1-C3 

und 38 C1-C3)  zurückzuführen sein.  

Die Stimulation von Monozyten mit LPS führte im Gegensatz zu derjenigen von Makrophagen und 

Schaumzellen zu keiner gesteigerten CyPB-Expression im Zellkern (siehe Abb. 35 C1-C3). Bei 

Monozyten handelt es sich um noch nicht ausdifferenzierte Zellen. Sie reifen erst nach Verlassen der 

Blutbahn im Gewebe zu reifen Effektorzellen aus.425 Hierin könnten die unterschiedlichen Reaktionen 

von Monozyten und Makrophagen/Schaumzellen auf die Stimulation mit LPS begründet sein. 
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Neben Monozyten/Makrophagen spielen auch Thrombozyten eine wichtige Rolle bei der   

Entstehung atherosklerotischer Läsionen.9 Sie fungieren als wichtige Entzündungszellen, welche die 

Rekrutierung von Leukozyten vermitteln und durch die Sekretion von Chemokinen andere Zellen 

anlocken.9,13,14,124,129  

Auch über das Vorkommen von CyPB bei Thrombozyten konnten in der Literatur keine Daten 

gefunden werden.  

In der vorliegenden Arbeit gelang es uns mit Hilfe der Fluoreszenz-Durchflusszytometrie 

nachzuweisen, dass CyPB auf der Oberfläche von ruhenden Thrombozyten nicht exprimiert wird. 

Auch die Stimulation mit ADP, TRAP oder CRP - Substanzen, die gängige Stimulantien für 

Thrombozyten darstellen - nahm keinen Einfluss auf die Oberflächenexpression von CyPB. Jedoch 

konnte nach Stimulation mit Thrombin eine signifikant gesteigerte Expression von CyPB auf der 

Thrombozytenoberfläche gemessen werden (siehe Abb. 40).   

Die unterschiedliche Reaktion der Thrombozyten gegenüber Thrombin und den anderen 

verwendeten Stimulantien könnte dadurch erklärt werden, dass verschiedenen Substanzen zum Teil 

unterschiedliche Signalwege bei den Thrombozyten aktivieren.  

So aktiviert ADP Thrombozyten über G-Protein-gekoppelte Rezeptoren (englisch: G protein-coupled 

receptor, GPCR). Dabei handelt es sich um eine Familie von 7 Transmembranrezeptoren, die die 

Signale über heterotrimere G-Proteine in die Blutplättchen übertragen.426 Die Aktivierung der 

Thrombozyten durch ADP erfolgt dabei im Speziellen über die Rezeptoren P2Y1 und P2Y12.
426-428 

Bei Collagen-related peptide (CRP) handelt es sich um ein synthetisches Peptid, das ebenso wie 

Kollagen eine tripelhelicale Struktur besitzt.429-432 Erst nach Quervernetzung in der Quartärstruktur 

kommt ein Molekül zustande, das eine potente und selektive agonistische Wirkung zu GPVI 

besitzt.133,432-435 Die Aktivierung der Thrombozyten durch CRP erfolgt über einen Tyrosinkinase-

vermittelten Signalweg, der die Kinasen Syk und Phospholipase Cγ2 (PLCγ2) beinhaltet.437-441 Die 

experimentelle Verwendung von CRP birgt häufig Schwierigkeiten, da es durch die Ausbildung der 

Quartärstruktur immer zu einer unterschiedlichen Aktivität des Proteins kommt.442  

Die Thrombin-induzierte Aktivierung von Thrombozyten ist über Protease-aktivierte Rezeptoren 

(PAR), einer Untergruppe der G-Protein-gekoppelten Rezeptoren vermittelt. Beim Menschen wird die 

Aktivierung der Thrombozyten über PAR1 und PAR4 vermittelt, bei Mäusen über PAR3 und 

PAR4.426,443,444  

Bei Thrombin receptor-activating peptide (TRAP) handelt es sich um ein synthetisch hergestelltes 

Hexapeptid, das mit den Aminosäuren 42 bis 47 des Thrombinrezeptors interagiert und die Effekte 

von Thrombin wie beispielsweise die Thrombozytenaggregation, eine gesteigerte Phosphorylierung 

von Tyrosin, die reduzierte Bildung von cyclischem Adenosinmonophosphat (cAMP), sowie eine 

erhöhte zytosolische Calzium-Konzentration, nachahmt.445-448 Dabei unterscheidet sich jedoch die 

durch Thrombin und TRAP induzierte Art der Rezeptoraktivierung: Während der PAR nach der 

Bindung von Thrombin aktiviert wird, indem das aminoterminale Ende des Rezeptors abgespalten 

wird, verläuft die Rezeptoraktivierung durch TRAP unabhängig von dieser Abspaltung.449 Da 

Thrombin und TRAP über denselben Signalweg wirken, wäre es naheliegend, dass beide Substanzen 

dieselbe Reaktion bei Thrombozyten hervorrufen. Die durch TRAP ausgelöste CyPB-Expression fällt 
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jedoch in dem hier durchgeführten Versuch um etwa 45% schwächer aus als die Thrombin-

vermittelte. Eine Erklärung hierfür könnte beispielsweise in der unterschiedlichen Affinität der 

beiden Substanzen zu ihrem Rezeptor gesehen werden. Auch die unterschiedliche Art der 

Rezeptoraktivierung könnte zu einer unterschiedlich starken Aktivierung der durch die 

Rezeptorbindung ausgelösten nachgeschalteten Signalwege führen. Eine weitere Möglichkeit für die 

schwächere Wirkung von TRAP könnte in einer nicht optimal gewählten Konzentration der Substanz 

für die Stimulation des Thrombinrezeptors liegen. Dies liese sich durch eine Wiederholung des 

Versuchs mit unterschiedlichen Konzentrationen von TRAP ausschließen. 

 

 

2.2 Bedeutung von Cyclophilin B für die proteolytische Aktivität in der 

atherosklerotischen Plaque 

Nachdem in den vorherigen Versuchen das Vorkommen von CyPB in der atherosklerotischen Plaque 

sowie in monozytären Zellen und Thrombozyten nachgewiesen werden konnte, sollte im nächsten 

Schritt festgestellt werden, ob CyPB Einfluss auf weitere Stufen der Atheroskleroseentstehung haben 

könnte. In diesem Zusammenhang wurde der Einfluss von CyPB auf die Sekretion der MMPs 2 und 9 

untersucht. 

Matrix Metalloproteinasen spielen eine bedeutende Rolle für die Progression der Atherosklerose. Sie 

vermitteln unter anderem das remodeling der Gefäßwand, indem sie die Einwanderung glatter 

Muskelzellen in die Plaque ermöglichen.178 Außerdem erleichtern sie die Einwanderung von 

Entzündungszellen in die Plaque. Dabei wird die Einwanderung von Monozyten in die Intima über 

MMP-9 und MT1-MMP vermittelt.177,351 Des Weiteren spielen MMPs eine wichtige Rolle für den 

Abbau des Kollagens in der fibrösen Schutzkappe und somit für die Plaquedestabilisierung.24  

Auch bei der Entstehung von Komplikationen im Rahmen der Atherosklerose spielen Matrix 

Metalloproteinasen eine wichtige Rolle. In diesem Zusammenhang sind vor allem MMP-2 und    

MMP-9 zu erwähnen.23,182,450,451 Sie werden mit der Entstehung vulnerabler, rupturgefährdeter 

Plaques in Verbindung gebracht.23,186,187,452 MMP-2 wird vorrangig von glatten Muskelzellen und 

Endothelzellen gebildet.453 MMP-9 findet sich vor allem in der Schulterregion der Plaque und in 

Bereichen der fibrous cap und korreliert somit positiv mit den hier nachzuweisenden Makrophagen- 

und T-Zell-Infiltraten.454 

Makrophagen sind die vorherrschenden Entzündungszellen in atherosklerotischen Plaques.455 Durch 

Einlagerung von Lipiden entstehen aus ihnen Schaumzellen.456 Beide Zelltypen sezernieren ein 

breites Spektrum von MMPs. Das MMP-Spektrum aktivierter Makrophagen umfasst MMP-1, -2, -3,     

-8, -9 und -14.183 Die Hauptproduzenten der MMPs-1, -2, -3, -7 und -9 stellen jedoch Schaumzellen 

dar.25,181,182  Auch in Monozyten konnte ein breites Spektrum von MMPs nachgewiesen werden.457 

Dieses umfasst die MMPs -1, -2, -3, -7, -8, -9, -10, -11, -12, -14, -17, -19 und MMP-25.453,457  

Im vorliegenden Versuch konnte gezeigt werden, dass die Stimulation von Monozyten mit CyPB zu 

einer gesteigerten Sekretion der MMP-9 führt (siehe Abb. 41 und 43). Die Sekretion von MMP-2 

wurde durch die Wirkung von CyPB nicht beeinflusst (siehe Abb. 41 und 42). 
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Da als Reaktion auf entzündliche Stimuli große Mengen CyPB in Körperflüssigkeiten nachgewiesen 

werden können,296 kann man davon ausgehen, dass auch im Rahmen der entzündlichen Prozesse der 

Atherosklerose zu erhöhten Blutkonzentrationen von CyPB kommt. Dieses könnte über eine 

verstärkte Freisetzung von MMP-9 aus Monozyten folglich die bereits beschriebene, durch MMP-9 

begünstigte Einwanderung von Monozyten aus dem Blutgefäßsystem in die Intima177,351 verstärken 

und so Einfluss auf die Plaqueprogression nehmen. 

Da MMP-9 außerdem am Kollagenabbau beteiligt ist und daher eine wichtige Rolle im Rahmen der 

Entstehung vulnerabler Plaques spielt,24 besteht die Möglichkeit, dass das in der atherosklerotischen 

Plaque verstärkt exprimierte CyPB über die Freisetzung von MMP-9 aus Monozyten außerdem 

Einfluss auf die Plaquedestabilisierung und folglich auf die Entstehung von Komplikationen wie dem 

akuten Myokardinfarkt nehmen könnte.  

Im Fall von CyPA wird die Freisetzung von MMP-9 aus Monozyten durch seine Bindung an CD147 

(EMMPRIN) vermittelt.314,382 CyPA ist einer der wichtigsten Liganden von CD147 (EMMPRIN).465 

Neben CyPA ist auch CyPB ein wichtiger Bindungspartner von CD147 (EMMPRIN).302 Dies legt die 

Vermutung nahe, dass CD147 (EMMPRIN) auch für die CyPB-vermittelte MMP-Sekretion als 

signalgebender Rezeptor fungiert. Dieser Zusammenhang müsste in weiteren Versuchen, bei denen 

die Monozytenkulturen vor der Stimulation mit CyPB mit blockierenden Antikörpern gegen CD147 

(EMMPRIN) behandelt werden, belegt werden. 

Die möglichen Mechanismen über die CyPB Einfluss auf die Plaqueprogression sowie auf die 

Entstehung vulnerabler Plaques nehmen könnte, sind in Abbildung 59 dargestellt. 
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Abbildung 59: Darstellung der hypothetischen Förderung der Plaqueprogression (A) sowie der 

Plaquedestabilisierung (B) über die CyPB-vermittelte Freisetzung von MMP-9 aus Monozyten 

 

Bar-Or et al. zeigten in einem ähnlichen Versuchsansatz, dass es nach Stimulation von Monozyten zu 

einer down-regulation von MMP-9 und anderen MMPs kommt.457 Jedoch erfolgte die Stimulation in 

den dort beschriebenen Versuchen zunächst für 2 Stunden mit 10U/ml IFN-γ und anschließend mit 

100ng/ml LPS für 6 Stunden.  

Bei dem in der vorliegenden Arbeit durchgeführten Versuch wurde eine deutlich höhere LPS-

Konzentration von 2µg/ml gewählt. Außerdem wurde eine Inkubationszeit von 18 Stunden gewählt. 

Hierin könnte ein Grund für die andersartige Reaktion der Zellen in den beiden Versuchen gesehen 

werden.  
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Auch durch die Kultivierung von Monozyten kann es zu einer Veränderung des sezernierten         

MMP-Spektrums kommen. So exprimieren frisch isolierte humane Monozyten hohe Mengen von 

MMP-8, -11, -17, -23 und -25. Durch eine Kultivierung kommt es nach einiger Zeit zu einer down-

Regulation aller MMPs außer von MMP-11 und gleichzeitig zu einer Aufregulierung der MMPs-1, -2,   

-3, -7, -9, -10, -12, -14 und -19.453 

Neben der Veränderung des MMP-Spektrums durch die Kultivierung der Monozyten, könnte auch 

eine „Verunreinigung“ der Monozyten-Monokultur mit Fremdzellen, wie beispielsweise T-Zellen, 

einen Einfluss auf das Spektrum der Matrix Metalloproteinasen nehmen. Die Bindung von CD40L auf 

der Oberfläche von T-Zellen an CD40 auf der Monozytenoberfläche könnte hierbei zu einer 

gesteigerten MMP-9-Expression durch Monozyten führen.458 

Darüber hinaus wird die MMP-Expression auch durch das Vorhandensein von Zytokinen beeinflusst. 

So steigert beispielsweise das Vorhandensein von TNF-α oder IL-1β die Expression von MMP-9 und     

MMP-12.459-461  

 

 

2.3  Einfluss von Cyclophilin B auf das  Migrationsverhalten von Monozyten in 

vitro 

Die Auswanderung von Monozyten aus dem Blutgefäßsystem in die Intima stellt eine Schlüsselrolle 

für die Entstehung atherosklerotischer Veränderungen dar.52,53,57 Die Auswanderung verläuft dabei in 

einem mehrstufigen Prozess, der das rolling und die feste Adhäsion der Entzündungszellen am 

aktivierten Endothel und schließlich die Diapedese in die Intima entgegen eines MCP-1-Gradienten 

umfasst.22,55,56,57,65 Die ausgewanderten Monozyten differenzieren dann in der Intima zu 

Makrophagen und Schaumzellen.22 

CyPB besitzt in vitro eine starke chemotaktische Wirkung auf neutrophile Granulozyten und                

T-Lymphozyten, die über CD147 (EMMPRIN) vermittelt wird.296,302 Auch die Migration von 

Makrophagen konnte durch CyPB ausgelöst werden.295 Dies gab Anlass zur Vermutung, dass CyPB 

auch eine chemotaktische Aktivität gegenüber Monozyten haben könnte.  

Weitere Faktoren, die diese Vermutung bestärkten, lagen in den bisherigen Erkenntnissen der 

vorliegenden Arbeit - zum einen die verstärkte Expression von CyPB in der atherosklerotischen 

Plaque (siehe Abb. 33), und zum anderen die verstärkte Oberflächenexpression von CyPB auf 

aktivierten Makrophagen und Schaumzellen (siehe Abb. 36 und 38), die in großen Mengen in der 

atherosklerotischen Plaque vorkommen. Darüber hinaus konnte nachgewiesen werden, dass 

Makrophagen nach LPS-Stimulation CyPA sezernieren.325,326 Aufgrund dieser Tatsachen kann man 

vermuten, dass auch CyPB von diesen Zellen, sowie von Schaumzellen freigesetzt wird. Sie könnten 

somit als mögliche Quelle für das in der Plaque exprimierte CyPB angesehen werden.  

Weitere mögliche Quellen für das in der Plaque exprimierte CyPB könnten außerdem glatte 

Muskelzellen der Gefäßwand darstellen. Diese setzen CyPB als Reaktion auf oxidativen Stress frei.288  
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Auch Gewebszellen wie Fibroblasten, die CyPB konstitutiv sezernieren, könnten eine Quelle für CyPB 

darstellen.32   

Mit der Untersuchung der chemotaktischen Wirkung von CyPB auf Monozyten sollte die Frage 

geklärt werden, ob CyPB einen Einfluss auf die Auswanderung von Monozyten in die Gefäßwand im 

Rahmen der Atherogenese nehmen kann, und ob die Migration der Monozyten durch das auf den 

Makrophagen und Schaumzellen in der Plaque exprimierte CyPB somit zusätzlich verstärkt wird. 

Der durchgeführte Chemotaxis-Assay zeigte jedoch, dass CyPB bei der in vitro genutzten Standard-

Konzentration von 200nM keine Migration von Monozyten bewirkt. Auch durch eine Steigerung der 

CyPB-Konzentration auf bis zu 800nM oder durch den Einsatz von nur 100nM CyPB konnte keine 

Migration der Monozyten ausgelöst werden (siehe Abb. 45). 

Marcant et al. konnten in vitro eine deutliche Zunahme der Migration von Makrophagen entlang 

eines CyPB-Gradienten feststellen.295,304 Eine Ursache für die unterschiedliche Reaktion der beiden 

Zelltypen könnte in der Veränderung der Rezeptoren auf der Zelloberfläche und der damit 

einhergehenden Veränderungen der Zellstoffwechselvorgänge im Rahmen der Differenzierung von 

Monozyten zu Makrophagen liegen. Eine weitere Ursache könnte in den Unterschieden bei der 

verwendeten Migrationskammer oder dem angewendeten Versuchsprotokoll gesehen werden.  

In der vorliegenden Untersuchung wurden die Migrationsversuche über einen Zeitraum von 4 und 

von 18 Stunden durchgeführt. Laut Literatur kann der Konzentrationsgradient von Zytokinen in Kultur 

nicht sehr lange aufrechterhalten werden. Daher werden für die meisten Arten von 

Migrationsversuchen Zeiträume von 4 Stunden üblicherweise nicht überschritten.374 Nachdem in der 

vorliegenden Arbeit im 4-Stunden-Ansatz keine Steigerung der Monozytenmigration durch CyPB 

ausgelöst werden konnte, sollte mit dem 18-Stunden-Ansatz getestet werden, ob durch eine 

verlängerte Inkubationszeit eine höhere Ausbeute migrierter Zellen erreicht werden kann. Die 

Ergebnisse zeigten jedoch, dass auch eine verlängerte Inkubationszeit keinen Einfluss auf die Zahl 

migrierter Monozyten entlang des CyPB-Gradienten nimmt (siehe Abb. 44 A und B). 

Um eine Diffusion der verwendeten Substanzen durch den Filter und somit einen Ausgleich des 

Konzentrationsgradienten im Verlauf der auf 18 Stunden verlängerten Inkubationszeit auszu-

schließen, müsste man die Konzentrationen von CyPB und MCP-1 in der oberen und unteren Kammer 

zu verschiedenen Zeitpunkten bestimmen. Jedoch ist MCP-1 mit einer atomaren Masse von 13kDa 

ein kleineres Protein als CyPB mit 21kDa.247,462 Ein Konzentrationsausgleich wäre also eher bei MCP-1 

zu erwarten als bei CyPB. MCP-1 konnte jedoch sowohl nach 4 sowie nach 18 Stunden eine 

(quantitativ vergleichbare) signifikant gesteigerte Migration von Monozyten bewirken. Daher ist 

davon auszugehen, dass dieser Effekt im vorliegenden Versuch keine Bedeutung hat. 
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2.4 Einfluss von Cyclophilin B auf das  Migrationsverhalten von Leukozyten in 

vivo 

Für die Auswanderung von Leukozyten aus dem Gefäßsystem in die Bauchhöhle sind dieselben 

Mechanismen verantwortlich wie für die Wanderung in den subendothelialen Raum. Im vorliegenden 

Versuch wurde zur Untersuchung der Leukozytenmigration in vivo ein Peritonitis-Induktionsmodell 

an Mäusen gewählt. Die  Zellmigration wird hierbei durch die Injektion proinflammatorischer Stimuli 

getriggert. 

Bisher noch nicht publizierte Daten unserer Arbeitsgruppe weisen darauf hin, dass CyPA nach 

intraperitonealer Injektion die Migration von Leukozyten in die Bauchhöhle auslöst. Dies veranlasste 

uns dazu, die chemotaktische Wirkung von CyPB ebenfalls in vivo im Peritonitis-Modell zu prüfen, 

obwohl der in vitro-Versuch (siehe Abb. 45) keinen Hinweis auf eine chemotaktische Wirksamkeit 

von CyPB gegenüber Monozyten ergab.  

CyPA und CyPB werden von vielen unterschiedlichen Zelltypen durch verschiedene Stimuli freigesetzt 

und kommen deshalb auch extrazellulär vor.259,287,325,463  

CyPA ist ein stark chemotaktisch wirksames Agens für Monozyten, neutrophile und eosinophile 

Granulozyten.326,420 Gegenüber T-Lymphozyten zeigt es eine nur mäßige chemotaktische Wirkung.296 

Wie bereits beschrieben, wirkt auch CyPB in vitro als potentes chemotaktisches Agens gegenüber 

neutrophilen Granulozyten, T-Lymphozyten und Makrophagen.295,296,302  

Diese chemotaktischen Wirkungen von CyPA und von CyPB sind abhängig von ihrer Bindung an 

CD147 (EMMPRIN).296,302,308,328  

Im Gegensatz zu CyPA, konnte nach intraperitonealer Injektion von CyPB keine Zunahme der in die 

Peritonealhöhle migrierten Leukozyten festgestellt werden. Auch eine gesteigerte Migration einer 

bestimmten Leukozyten-Subpopulation konnte nicht festgestellt werden (siehe Abb. 55 und 56).  

So kam es nach der intraperitonealen Injektion von CyPB bei den Ly-6G-positiven Zellen (neutrophile 

Granulozyten) nur zu einem äußerst geringen Anstieg der Zellzahl in der Bauchhöhlenlavage (siehe 

Abb. 56). Dieses Ergebnis steht im Widerspruch zu den Ergebnissen des Chemotaxis-Assays von 

Yurchenko et al.302 In seiner Untersuchung konnte eine signifikante Zunahme der Migration von 

neutrophilen Granulozyten entlang eines CyPB-Gradienten festgestellt werden. Gemäß Literatur ist 

24 Stunden nach Injektion von Thioglykolat die höchste Konzentration von neutrophilen 

Granulozyten  in der Bauchhöhle nachzuweisen.411 Demnach ist davon auszugehen, dass die von uns 

gewählte Versuchsdauer zur Beurteilung der Wirkung von CyPB auf neutrophile Granulozyten für 

dieses Vorhaben geeignet war. Möglicherweise weichen unsere Ergebnisse von denen von  

Yurchenko et al.302 deshalb ab, weil letztere in in vitro-Versuchen mit humanen Zellen durchgeführt 

wurden und unsere in in vivo-Versuchen an der Maus erzielt wurden. Die neutrophilen Granulozyten 

der Maus könnten ein andersartiges Spektrum von Oberflächenrezeptoren exprimieren als 

diejenigen des Menschen und daher eine schwächere Reaktion gegenüber CyPB aufweisen. Eine 

andere Erklärung könnte darin liegen, dass die Zellmigration im komplexen natürlichen System noch 

von einer Reihe anderer Faktoren beeinflusst wird, und die Reaktion der Zellen gegenüber CyPB in 

vivo daher anders ausfällt als im in vitro-Modell. 
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Auch bei den F4/80-positiven Zellen (Makrophagen) konnten wir keine signifikante Steigerung der 

Zellmigration detektieren (siehe Abb. 56). Dagegen konnte mittels eines Chemotaxis-Assays von 

Marcant et al. jedoch eine Migration von Makrophagen entlang eines CyPB-Gradienten ausgelöst 

werden.295,304 Nach einem Literaturhinweis wird die größte Anzahl von Makrophagen nach 

Peritonitis-Induktion mit Thioglykolat erst nach 3-4 Tagen erreicht.411 Möglicherweise war die von 

uns gewählte Versuchsdauer zur Beurteilung der Wirkung von CyPB auf Makrophagen nicht 

ausreichend. Um dies zu klären, sollte der Peritonitis-Versuch mit einer Versuchsdauer von 3-4 Tagen 

wiederholt werden. 

Bei den CD3-positiven Zellen (T-Lymphozyten) und den CD11b-positiven Zellen (die sowohl 

Monozyten, Makrophagen, Granulozyten sowie auch NK-Zellen beinhalten) konnte in der CyPB-

Gruppe im Vergleich zur Negativkontrollgruppe ebenfalls keine signifikante Veränderung der 

Migration dieser Zellen festgestellt werden (siehe Abb. 56).  

Die Ergebnisse unseres Migrationsversuchs legen die Vermutung nahe, dass zumindest in vivo CyPB 

im Gegensatz zu CyPA keinen Einfluss auf die Zellmigration nimmt. Diese Unterschiede könnten darin 

begründet sein, dass CyPA im Gegensatz zu CyPB in der Lage ist, Entzündungsmediatoren (wie 

beispielsweise TNF-α, IL-1β, IL-8 und MCP-1) freizusetzen.333 Diese Prozesse werden über die 

Aktivierung der Proteinkinasen ERK1/2 (extracellular signal-regulated kinases 1/2), p38-MAPK (p38- 

mitogen-activated protein kinase), JNK (c-Jun N-terminale Kinasen) und den NF-κB-Signalweg 

vermittelt.313,333,334,464  

Marcant stellte sogar die Vermutung auf, dass CyPB einen antiinflammatorischen Effekt auf 

Makrophagen ausüben könnte.304 Dies ließe sich dadurch begründen, dass eine Vorinkubation von 

Makrophagen mit CyPB die Sekretion von Entzündungsmediatoren nach LPS-Applikation 

hemmt.295,304 

Auch einige Ergebnisse dieser Arbeit haben die Hypothese von Marcant bestärkt. Zum einen lieferte 

die Untersuchung des Blutbilds bei der Opferung der Mäuse, 24 Stunden nach Induktion der 

Peritonitis, einen Hinweis auf einen möglichen antiinflammatorischen Effekt von CyPB. Bei der 

Gruppe der Mäuse, die eine intraperitoneale CyPB-Injektion erhielten, konnte im Vergleich zur 

Negativkontrollgruppe (NaCl-Injektion) eine signifikant reduzierte durchschnittliche Leukozytenzahl 

im Blut nachgewiesen werden (siehe Abb. 57). Ebenso lag die in der Bauchhöhlenlavage ermittelte 

Gesamtzellzahl bei der Gruppe der Mäuse, die eine intraperitoneale CyPB-Injektion erhalten haben, 

zumindest tendenziell niedriger als bei der Gruppe, bei der eine NaCl-Injektion vorgenommen wurde 

(allerdings nicht signifikant) (siehe Abb. 55).  
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2.5  Aktivierte Thrombozyten weisen eine gesteigerte Adhärenz auf 

immobilisiertem CyPA und CyPB auf 

In der vorliegenden Arbeit konnte gezeigt werden, dass aktivierte Thrombozyten ein gesteigertes 

Adhäsionsverhalten sowohl auf immobilisiertem CyPA als auch auf immobilisiertem CyPB aufweisen 

(siehe Abb. 46 und 47 sowie 60). Dabei wurde das rolling auf immobilisiertem CyPB im Gegensatz zur 

Negativkontrolle (BSA) um etwa 470% gesteigert. Bei immobilisiertem CyPA betrug die Steigerung  

etwa 410%. Die feste Adhäsion der aktivierten Thrombozyten auf immobilisiertem CyPB wurde um 

etwa 200% gesteigert, auf immobiliertem CyPA konnte eine Steigerung von 190% ermittelt werden. 

Somit zeigt CyPB eine geringgradig (jedoch nicht signifikant) stärkere adhäsionsvermittelnde Wirkung 

als CyPA.  

Die Thrombozyten zeigten die stärkste Reaktion (sowohl bezüglich des rollings als auch der festen 

Adhäsion) gegenüber immobilisiertem CD147 (EMMPRIN), das in den vorliegenden Versuchen mit 

einem Wert von 100% als Positivkontrolle diente.  

Die adhäsive Wirkung der Thrombozyten gegenüber CyPA bzw. CyPB fiel nur geringgradig schwächer 

aus als bei CD147 (EMMPRIN). Dabei konnten bei CyPB etwa 8% weniger rollende Zellen als bei 

CD147 (EMMPRIN) ermittelt werden, und bei CyPA etwa 18% weniger. Bei der festen Adhäsion 

waren es bei CyPB etwa 12% weniger Zellen und bei CyPA etwa 17% weniger.  

Ein Versuch von Allain et al.353 sowie kürzlich durchgeführte Versuche unserer Arbeitsgruppe316  

haben gezeigt, dass Thrombozyten sowohl durch CyPA als auch durch CyPB stimuliert werden 

können. Dies  äußert sich in vitro in einer gesteigerten Adhäsion der Plättchen (rolling und feste 

Adhäsion) sowohl auf Kollagen als auch auf aktiviertem Endothel.353 Die Stimulation der 

Thrombozyten wird dabei über die Bindung von CyPB an CD147 (EMMPRIN) vermittelt.316 

CD147 (EMMPRIN)  ist ein Rezeptor, der auf der Oberfläche von Thrombozyten exprimiert wird, und 

zwar bei ruhenden Thrombozyten nur in geringen Mengen. Nach der Stimulation von Thrombozyten 

mit Stimulatoren wie Thrombin, ADP oder Kollagen kommt es zum Transfer von CD147 (EMMPRIN) 

aus dem offenen kanalikulären System auf die Plättchenoberfläche und damit zu einer gesteigerten 

Oberflächenexpression.350  

CD147 (EMMPRIN) stellt einen signalgebenden Rezeptor für CyPA und CyPB dar.302,308,465 Er nimmt 

beispielsweise Einfluss auf die Migration von neutrophilen Granulozyten. Deren Migration kann 

durch die Blockierung von CD147 (EMMPRIN) mittels anti-CD147-Antikörper gehemmt werden.327 

Durch CD147-CD147 (EMMPRIN-EMMPRIN)-Interaktionen kommt es als Zeichen der Aktivierung der 

Thrombozyten zu einer erhöhten Expression von P-Selektin auf deren Oberfläche.350 Auch die 

Bindung von CyPA und CyPB an CD147 (EMMPRIN) führt zu einer gesteigerten P-Selektin-Expression 

auf der Plättchenoberfläche.419 Dies zeigt, dass die beiden Cyclophiline eine stimulierende Wirkung 

auf Thrombozyten ausüben. 

Neben seiner Funktion als signalgebender Rezeptor kann CD147 (EMMPRIN) auch als 

Adhäsionsrezeptor fungieren. So wird durch die bereits erwähnte direkte Interaktion zwischen CD147 

(EMMPRIN)-Molekülen das rolling  von CD147 (EMMPRIN)-exprimierenden Zellen über CD147 

(EMMPRIN)-Moleküle auf der Matrix vermittelt.466 Auch die feste Adhäsion von T-Zellen an die 
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extrazelluläre Matrix wird über CD147 (EMMPRIN) vermittelt. Dabei fungiert CyPB als Bindungs-

partner für CD147 (EMMPRIN).296  

Die in der vorliegenden Arbeit gewonnenen Erkenntnisse (siehe Abb. 46 und 47) lassen vermuten, 

dass auch die feste Adhäsion der ADP-stimulierten Thrombozyten auf immobilisiertem CyPA und 

CyPB über CD147 (EMMPRIN) auf der Thrombozytenoberfläche vermittelt wird. Wenn dies zutrifft, so 

könnte man auch vermuten, dass durch CD147-CD147 (EMMPRIN-EMMPRIN)-Interaktionen nicht nur 

ein gesteigertes rolling von Zellen hervorgerufen werden kann,466 sondern auch die feste Adhäsion 

vermittelt werden kann.  

Die hierbei zugrundeliegenden Mechanismen und andere eventuell beteiligte Rezeptoren müssen in 

weiteren Versuchen genauer geklärt werden. 

 

Abbildung 60:  Adhäsionsverhalten (rolling und feste Adhäsion) ADP-stimulierter Thrombozyten auf 

immobilisiertem CyPA (A), CyPB (B) und CD147 (EMMPRIN) (C) 

ADP-stimulierte Thrombozyten weisen in vitro eine gesteigerte Adhäsion (sowohl rolling als auch feste 

Adhäsion)  auf immobilisiertem CyPA, auf immobilisiertem CyPB, sowie auf immobilisiertem CD147 (EMMPRIN) 

auf. 
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2.6 Die Wirkung der nicht immunsuppressiven Cyclophilin-Inhibitoren NIM811 

und MM284 auf das Adhäsionsverhalten von Thrombozyten in vitro  

Cyclophiline nehmen Einfluss auf verschiedene Immun- und Entzündungsreaktionen, die mit der 

Entwicklung der Atherosklerose in Verbindung stehen.347 Neuere Forschungen zeigen, dass die 

Antagonisierung der Cyclophilin-Wirkungen eine therapeutische Möglichkeit darstellen könnte, 

entzündliche Erkrankungen, die mit der Wanderung von Leukozyten einhergehen, zu reduzieren.337 

Auch die Entwicklung atherosklerotischer Veränderungen könnte demzufolge  durch den Einsatz von 

Cyclophilin-Inhibitoren moduliert werden. 

Neben Leukozyten spielen auch Thrombozyten eine bedeutende Rolle bei der Initiation und 

Progression der Atherosklerose und bei den sich daraus entwickelnden Komplikationen wie dem 

akuten Myokardinfarkt.9 Zum einen können sie die Entstehung atherosklerotischer Veränderungen 

fördern, indem sie an aktiviertes Endothel adhärieren und dadurch die Rekrutierung von    

Leukozyten in die Gefäßwand begünstigen.13,124,135,467 Zum anderen spielen sie eine wichtige Rolle   

bei der Entstehung thrombotischer Komplikationen im Zusammenhang mit atherosklerotischen 

Veränderungen. Durch den Kontakt mit Kollagen, wie er im Rahmen einer Plaqueruptur oder -erosion 

vorkommt, werden die Thrombozyten aktiviert und binden an die extrazelluläre Matrix. Dies führt  

zur konsekutiven Thrombusbildung und ischämischen Krankheitsbildern.13,90,126,133,134,467  

Allain et al. konnten in einem statischen Versuchsansatz zeigen, dass die Adhäsion von 

Thrombozyten an Kollagen nach Stimulation mit CyPB gesteigert werden kann.353 Dieser Prozess ist 

abhängig vom Vorhandensein von extrazellulärem Ca2+ und geht mit einem Ca2+-Einstrom in die 

Thrombozyten einher. Die durch CyPB vermittelte Adhäsion der Thrombozyten an Kollagen konnte in 

diesem Versuch durch die Zugabe von Cyclosporin A reduziert werden. 

Kürzlich gewonnene Untersuchungsergebnisse unserer Arbeitsgruppe haben belegt, dass sowohl die 

Stimulation mit CyPA als auch mit CyPB unter dynamischen Bedingungen zu einer Aktivierung und 

einer gesteigerten Adhäsion (rolling und die feste Adhäsion) der Plättchen auf verschiedenen 

Matrices wie Kollagen oder HUVECs führt.316 Mittels der in der vorliegenden Arbeit durchgeführten 

Flusskammerversuche konnte der Effekt von CyPB auf die Plättchenadhäsion nochmals bestätigt 

werden.  

Wie bereits beschrieben, ist es wahrscheinlich, dass auch bei den inflammatorischen Prozessen im 

Rahmen der Atherosklerose erhöhte CyPB-Plasmakonzentrationen vorliegen. Dies legt die 

Vermutung nahe, dass CyPB auch in vivo eine Rolle bei der Thrombozytenaktivierung und in der Folge 

bei der Plaqueprogression und der Entstehung thrombotischer Komplikationen spielen könnte. 

Diese Vermutung wird durch die in der vorliegenden Arbeit nachgewiesene verstärkte Expression von 

CyPB auf thrombinstimulierten Thrombozyten noch weiter bestärkt. Da in einer Untersuchung 

unserer Arbeitsgruppe nachgewiesen werden konnte, dass CD147 (EMMPRIN) in der 

atherosklerotischen Plaque verstärkt exprimiert wird382 und die Adhäsion von Thrombozyten 

vermutlich teilweise auch über CD147 (EMMPRIN) vermittelt wird, könnte die Entstehung von 

Thromben im Rahmen von Plaquerupturen oder -erosionen durch derartige Interaktionen gefördert 

werden. 
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Aus diesen Erkenntnissen lässt sich folgern, dass durch den therapeutischen Einsatz von Cyclophilin-

Inhibitoren bereits die Entstehung der Atherosklerose und die Entwicklung thrombotischer 

Geschehnisse im Rahmen der Plaqueruptur beeinflusst werden könnten. So führte beispielsweise im 

Falle des akuten Myokardinfarktes die Behandlung mit Cyclosporin A zu einer reduzierten 

Infarktgröße bei den betroffenen Patienten.468  

Die Behandlung mit Cyclosporin A bringt jedoch auch eine Reihe an unerwünschten Wirkungen mit 

sich.340 In diesem Zusammenhang ist insbesondere die immunsupprimierende Wirkung von 

Cyclosporin A zu erwähnen. 

Im Gegensatz zu der oben genannten Studie von Piot et al.,468 bei der ein positiver Effekt für 

Cyclosporin A im Rahmen der Atherosklerose-Behandlung nachgewiesen werden konnte, gibt es 

auch eine Reihe von Studien, die zeigen, dass die Behandlung mit Cyclosporin A eine erhöhte 

Disposition für die Entstehung der Atherosklerose mit sich bringt.340,469,470   

So nimmt Cyclosporin A beispielsweise Einfluss auf den Lipoprotein-Metabolismus und führt unter 

Langzeitbehandlung zur Entwicklung einer Hyperlipidämie.340,469,470   

Außerdem beeinflusst es die Funktionen von Endothelzellen, glatten Muskelzellen und   

Makrophagen - Zelltypen, die an der Entstehung der Atherosklerose maßgeblich beteiligt sind - auf 

unterschiedliche Art und Weise. Dabei vermittelt es auch hier teils proatherogene und teils 

antiatherogene Effekte:340   

Bei Endothelzellen hemmt Cyclosporin A beispielsweise den Transkriptionsfaktor nuclear factor of 

activated T-cells (NFAT) und dadurch ihre Proliferation.340 Auch CyPA-vermittelte 

proinflammatorische Effekte, wie die Sekretion von tissue factor und die Expression von 

Adhäsionsmolekülen auf Endothelzellen, werden durch Cyclosporin A inhibiert. Auf diese Weise 

könnte es einen atheroprotektiven Effekt auf das Endothel ausüben.340 

Bei glatten Muskelzellen führt es zu einer verminderten MPC-1-Sekretion und reduziert dadurch 

wahrscheinlich die Infiltration von Makrophagen und die Entstehung von atherosklerotischen 

Läsionen.471 Außerdem hemmt es die Proliferation und die Migration von glatten Muskelzellen 

sowohl in vitro als auch in vivo.471 Andererseits ruft Cyclosporin A bei glatten Muskelzellen auch eine 

gesteigerte Sekretion von Interleukin 8 hervor, wodurch es die Rekrutierung von Makrophagen 

begünstigen könnte.472 Des Weiteren trägt es über verschiedene Mechanismen, wie z.B. eine 

gesteigerte Bildung von Angiotensin II und Vasopression, zur Entstehung einer Hypertension bei, 

wodurch es die Entstehung atherosklerotischer Veränderungen begünstigen kann.473,474 

Bei Makrophagen hemmt Cyclosporin A die LPS-vermittelte Sekretion von proinflammatorischen 

Zytokinen wie IL-1, IL-6 und IL-8 und könnte dadurch antiatherogen wirken.475 Andererseits hemmt 

es die Sekretion von ApoE bei Schaumzellen,476 welches starke antiatherogene Eigenschaften hat und 

die Entwicklung atherosklerotischer Läsionen verhindern kann.477  

Cyclosporin A bewirkt außerdem die Sekretion von CyPB bei Keratinozyten und HeLa-

(Zervixkarzinom-)Zellen.255,267 Im Rahmen der Ergebnisse dieser Arbeit könnte in einer gesteigerten 

Freisetzung von CyPB ein weiterer Mechanismus gesehen werden, über den Cyclosporin A die 
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Entwicklung atherosklerotischer Prozesse begünstigt (die Hypothesen zu den zugrundeliegenden 

Mechanismen werden in Kapitel 2.7 näher ausgeführt). 

Aus der Auflistung der letztgenannte Cyclosporin A-Wirkungen lässt sich schlussfolgern, dass es zur 

Behandlung der Atherosklerose kaum geeignet ist. Aufgrund dieser Gegebenheit steht die 

Entwicklung von Cyclosporin A-Derivaten mit einem veränderten biologischen Verhalten im Zentrum 

vieler Untersuchungen. Das Ziel dabei ist es, die durch Cyclosporin A hervorgerufenen 

unerwünschten Nebenwirkungen und das Risiko vaskulärer Veränderungen abzuschwächen. 

Die strukturellen Veränderungen bei den Cyclosporin A-Derivaten NIM811 und MM284 führen z.B. 

dazu, dass die Aktivität von Calcineurin nicht mehr beeinflusst werden kann, wodurch bei beiden 

Derivaten die immunsuppressive Wirkung verlorengeht.337,341,343 

NIM811 und der neu entwickelte Cyclophilin-Inhibitor MM284 unterscheiden sich in ihrer Fähigkeit, 

die Zellmembran zu penetrieren: Während NIM811 dazu in der Lage ist, und somit sowohl 

extrazelluläre als auch intrazelluläre Cyclophiline in ihrer Wirkung inhibieren kann, ist MM284 auf 

Grund der Substitution eines polaren Restes am Cyclosporin-Grundgerüst nicht mehr in der Lage, die 

Zellmembran zu penetrieren. Dadurch kann nur die Wirkung extrazellulärer Cyclophiline inhibiert 

werden, während die biologischen Effekte intrazellulärer Cyclophiline sowie intrazelluläre Signalwege 

von seinen Wirkungen unberührt bleiben.337,343,347 

In neueren Untersuchungen unserer Arbeitsgruppe konnte gezeigt werden, dass das durch CyPB 

ausgelöste gesteigerte rolling und die gesteigerte Adhäsion von Thrombozyten durch die 

gemeinsame Inkubation von CyPB mit dem intra- und extrazellulär wirkenden Cyclosporin A-Derivat 

NIM811 signifikant reduziert werden konnte.316 

Im vorliegenden Versuch wurde die Wirkung von NIM811 auf das Adhäsionsverhalten von 

Thrombozyten mit derjenigen von MM284 verglichen (siehe Abb. 61). Bisher war MM284 nur im 

Hinblick auf seine inhibierende Wirkung gegenüber extrazellulärem CyPA untersucht worden.337    

Der vorliegende Versuch zeigte, dass MM284 ebenfalls eine inhibierende Wirkung gegenüber 

extrazellulärem CyPB aufweist und dass MM284 die stimulierende Wirkung von CyPB auf die 

Adhärenz von Thrombozyten im selben Maße hemmt wie NIM811 (siehe Abb. 49-54).  
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Abbildung 61: Einfluss von CyPA und CyPB (A) sowie von NIM811 und MM284 (B) auf den 

Aktivierungszustand von Thrombozyten  

A) Die Bindung von CyPA bzw. CyPB an CD147 (EMMPRIN) führt zur Aktivierung und in der Folge zu einer 

gesteigerten Adhäsion (rolling und feste Adhäsion) von Thrombozyten auf Kollagen und HUVECS. B) Dieser 

Effekt kann sowohl durch den Cyclophilin-Inhibitor NIM811 als auch durch MM284 inhibiert werden. 
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In einer aktuellen Untersuchung unserer Arbeitsgruppe wurde die Wirkung der beiden Cyclosporin A-

Derivate auf die Thrombusbildung in vivo untersucht.336 Hierzu wurde ein Versuchsmodell gewählt, 

bei dem Darmarteriolen durch Eisen(III)Chlorid verletzt wurden.  

Bei NIM811 handelt es sich, wie bereits beschrieben, um ein zellpermeables Cyclosporin A-Derivat, 

das sowohl die Wirkung extra- als auch intrazellulärer Cyclophiline inhibiert. Bei seiner Verwendung 

kann also nicht zwischen der Unterdrückung von intra- und extrazellulären Signalwegen 

unterschieden werden.337  Im Gegensatz dazu handelt es sich bei MM284 um ein zellimpermeables 

Cyclosporin A-Derivat, das nur die Wirkung der extrazellulären Cyclophiline inhibiert.337   

Um zwischen dem Einfluss extrazellulärer und intrazellulärer Cyclophiline auf die Thrombusformation 

zu unterscheiden, wurden beide Cyclophilin-Inhibitoren im Tierversuch eingesetzt.  

Die Ergebnisse des vorliegenden Versuchs zeigten eine deutliche Verzögerung der Thrombusbildung 

bei den Mäusen, die mit MM284 bzw. NIM811 behandelt wurden im Vergleich zu der Gruppe, die 

lediglich mit Lösungsmittel (PBS) behandelt wurden. Dabei führte der Einsatz von MM284 zu einer 

ähnlich verzögerten Thrombusbildung wie der Einsatz von NIM811. Daraus lässt sich folgern, dass die 

Adhäsion von Thrombozyten in erster Linie durch die Wirkung extrazellulärer Cyclophiline stimuliert 

wird.  

Mit diesem Versuchsansatz kann allerdings nicht zwischen dem Einfluss von CyPA und CyPB auf die 

Thrombozyten differenziert werden, da die eingesetzten Inhibitoren hemmende Wirkung gegenüber 

beiden Cyclophilinen aufweisen. Welche Rolle CyPA bzw. CyPB für die Thrombusbildung spielen, 

müsste in weiteren Versuchsansätzen näher untersucht werden.   

Hierzu müssten Methoden zum Einsatz kommen, bei denen trotz der engen strukturellen 

Verwandtschaft zwischen CyPA und CyPB, ein selektiv hemmender Effekt gegenüber CyPA oder CyPB 

erzielt werden kann. Erste, noch nicht publizierte Daten aus unserer Arbeitsgruppe zeigen, dass eine 

präferentielle Hemmung von CyPA mit einer Antikörper-basierten Strategie möglich ist. 

 

 

2.7 Verknüpfung der hier gewonnenen Erkenntnisse mit den bisher bekannten 

Abläufen bei der Atherosklerose 

In der vorliegenden Arbeit konnte gezeigt werden, dass CyPB in der atherosklerotischen Plaque 

exprimiert wird. Auch Monozyten, Makrophagen, Schaumzellen und aktivierte Thrombozyten, die 

eine wichtige Rolle bei der Atherogenese spielen, exprimieren CyPB auf ihrer Oberfläche. 

An den Prädilektionsstellen für die Entwicklung atherosklerotischer Läsionen entwickeln sich die 

initialen Veränderungen zunächst unter einem intakten, aktivierten und dysfunktionellen 

Gefäßendothel, das jedoch eine erhöhte Permeabilität aufweist. In späteren Stadien können die 

Endothelzellen abschilfern und es entstehen über den bereits fortgeschrittenen Läsionen 

endothelzellfreie Bezirke.56 In diesen Regionen lassen sich Thrombozyten und Monozyten 

nachweisen, die an dem freiliegenden subendothelialen Gewebe adhärieren.114  
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Abbildung 62:  Typische lokale Thrombozytenadhäsion über einem Endotheldefekt (Abbildung aus Davies      

et al. 1988
 114

).  

Thrombozyten adhärieren an der subendothelialen Matrix unter einer einzelnen abgeschilferten Endothelzelle. 

Teilweise ist eine Formveränderung der Thrombozyten zu erkennen (Vergrößerung 3570-fach). 

 

Eine Ursache für den Endothelzellverlust kann in der Wirkung von CyPA auf Endothelzellen gesehen 

werden. Endothelzellen sezernieren CyPA unter der Wirkung hoher Konzentrationen reaktiver 

Sauerstoffspezies, die u.a. von Makrophagen in der Läsion freigesetzt werden.315 Einerseits löst dies 

die Apoptose von Endothelzellen aus, mit einem lokalen Verlust von Endothelzellen in der Folge. 

Andererseits können dadurch Endothelzellen aktiviert werden.315 An diesen aktivierten 

Endothelzellen können wiederum Thrombozyten adhärieren.13 Auch diese sind durch die Einwirkung 

reaktiver Sauerstoffspezies zur Sekretion von CyPA fähig und können so einer zusätzlichen Steigerung 

der Apoptoserate von Endothelzellen führen.51  

Durch das Fehlen der Endothelzellschicht wird subendotheliales Kollagen (vom Typ I) bzw. tissue 

factor freigelegt.84,135 Dieses führt zur Aktivierung und Adhäsion von Thrombozyten sowie zu einer 

Thrombusbildung.84,90 

Die Ausdehnung der so entstandenen endothelzellfreien Bezirke kann von sehr kleinen Arealen mit 

mikroskopisch kleinen Thromben, die keine klinische Relevanz haben, bis hin zu großen Bezirken 

reichen, die mit ausgedehnten, fibrin- und plättchenreichen Thromben einhergehen.84 Bei 

fortgeschrittenen Läsionen findet sich in der Regel immer eine fokale Thrombozyten-     

ablagerung.478  

Die Ergebnisse des Flusskammerversuchs der vorliegenden Arbeit haben gezeigt, dass aktivierte 

Thrombozyten an immobilisiertem CyPB adhärieren (siehe Abb. 46-48). Im Rahmen der oben 

beschriebenen Vorgänge könnte es durch einen Verlust der Endothelzellschicht auf der 

Plaqueoberfläche zum Kontakt des in der Plaque befindlichen CyPB mit den Thrombozyten im 

Blutstrom kommen. Auf diese Weise könnte es zu einem gesteigerten rolling und zur gesteigerten 

Adhäsion von Thrombozyten auf dem freigelegten subendothelialen Gewebe kommen. Dies könnte 

in der Folge zur Entstehung einer Koronarthrombose mit den bekannten Komplikationen führen 

(siehe Abb. 63). 



V     DISKUSSION 

 

 

 

144 

Der geschilderte Mechanismus könnte nicht nur im Fall einer Erosion, sondern auch bei der Ruptur 

einer atherosklerotischen Plaque, die Entstehung solcher akuter Komplikationen begünstigen.  

Im vorliegenden Flusskammerversuch konnte nicht nur eine Adhäsion aktivierter Thrombozyten an 

immobilisiertem CyPB, sondern auch an immobilisiertem CyPA nachgewiesen werden. CyPA wird 

ebenso wie CyPB in der atherosklerotischen Plaque exprimiert.311-315 Im Falle einer Plaqueerosion 

oder -ruptur könnte also neben CyPB ebenfalls das in der Plaque exprimierte CyPA über den oben 

beschriebenen Mechanismus für die Aktivierung und Adhäsion von Thrombozyten mitverantwortlich 

sein.  

CD147 (EMMPRIN) stellt einen gemeinsamen, oberflächlichen Rezeptor für beide Cyclophiline dar 

und vermittelt einen großen Teil der Wirkungen extrazellulär vorkommender Cyclophiline.302  

Außerdem kann er als Adhäsionsrezeptor fungieren.466  

Da CD147 (EMMPRIN) auf aktivierten Thrombozyten verstärkt exprimiert wird,350 ist es naheliegend, 

dass auch die Adhäsion der Thrombozyten im vorliegenden Flusskammerversuch über CD147 

(EMMPRIN) vermittelt wird.  

Trifft diese Vermutung zu, so kann man davon ausgehen, dass auch in vivo die Adhäsion von 

Thrombozyten über die Bindung von CD147 (EMMPRIN) auf der Thrombozytenoberfläche an das in 

der Plaque exprimierte CyPA und CyPB vermittelt wird und CyPB demnach an den 

Pathomechanismen, die für die Entstehung einer Koronarthrombose verantwortlich sind, beteiligt ist.  

Aus diesem Grund muss diese Hypothese zunächst in weiteren Versuchen mit blockierenden 

Antikörpern gegen CD147 (EMMPRIN) bestätigt werden. 
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Abbildung 63:  Darstellung der hypothetischen Wirkung von CyPB nach Plaqueerosion oder -ruptur auf die 

Thrombozytenadhäsion (rolling und feste Adhäsion auf CyPB im subendotheilalem Gewebe) (A) und die 

Thrombusbildung (B) 

Gemäß  den Ergebnissen dieser Arbeit wird CyPB auch auf der Oberfläche der Monozyten, Makrophagen und 

Schaumzellen exprimiert. Aus Gründen der Übersichtlichkeit wurde dies in der Abbildung nicht eingezeichnet.  
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Die Ruptur einer Plaque stellt kein seltenes Ereignis während der Entwicklung atherosklerotischer 

Veränderungen an den Koronargefäßen dar. Auf das Aufbrechen der Plaqueoberfläche folgt eine 

mehr oder weniger starke Blutung in die Plaque hinein und eine unterschiedlich stark ausgeprägte, 

luminale Thrombusbildung.56 Diese muss nicht unbedingt so ausgedehnt sein, dass sie eine Ischämie 

in den distal liegenden Versorgungsgebieten des Koronargefäßes auslöst und ein Myokardinfarkt 

entsteht. Eine weniger ausgeprägte Thrombusbildung kann oft klinisch inapparent bleiben und durch 

die nachfolgenden Heilungsprozesse das Wachstum der Plaque stimulieren und dadurch zu einer 

schnellen Progression der Plaque führen.56,479,480 

Im Rahmen des Heilungsprozesses wird der Thrombus zunächst mehr oder weniger stark lysiert. In 

der Folge kommt es zur Proliferation glatter Muskelzellen. Diese synthetisieren neues Kollagen, um 

die verletzte Intima wiederherzustellen. Schließlich kommt es zur Re-Endothelialisierung.84,479 

Derartige Heilungsprozesse führen zu einem schnellen Wachstum der Läsion, die von einer milden 

Vergrößerung der Plaque bis hin zu einer hochgradigen Stenose des Gefäßes reichen kann.479 

Dieser Ablauf könnte eine Erklärung dafür darstellen, warum die in Serienangiografien beobachtete 

Progression atherosklerotischer Läsionen eher episodisch als linear vonstattengeht.479,480  

Im Rahmen der in Abbildung 63 zusammengefassten Abläufe, könnte das in der Plaque exprimierte 

und bei der Plaqueruptur freigelegte CyPA und CyPB an einer schnellen, nicht vorhersehbaren 

Weiterentwicklung atherosklerotischer Läsionen beteiligt sein. Dabei rufen die dort exprimierten 

Cyclophiline möglicherweise zunächst über eine verstärkte Adhäsion von Thrombozyten an der 

Rupturstelle die Entstehung eines Thrombus hervor. Diese Gefäßläsion könnte in der Folge über den 

oben beschriebenen Heilmechanismus abgebaut werden und eine schnelle Progression der Läsion 

bewirken (siehe Abb. 64). 
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Abbildung 64:  Darstellung der hypothetischen Beteiligung von CyPB an der schnellen Plaqueprogression 

nach Plaqueruptur mit konsekutiver Thrombusbildung (A) und Reorganisierung der Gefäßwand durch 

Thrombolyse, Einwanderung glatter Muskelzellen, Synthese von Kollagen und Re-Endothelialisierung (B)  

Gemäß  den Ergebnissen dieser Arbeit wird CyPB auch auf der Oberfläche der Monozyten, Makrophagen und 

Schaumzellen exprimiert. Aus Gründen der Übersichtlichkeit wurde dies in der Abbildung nicht eingezeichnet.  
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Thrombozyten stellen wichtige Entzündungszellen im Rahmen der Atherosklerose dar.13,14,15 Sie 

adhärieren am dysfunktionellen Endothel, setzen Entzündungsmediatoren frei, die Leukozyten 

anlocken und begünstigen die Anheftung von Leukozyten am Endothel, indem sie eine „klebrige 

Oberfläche“ ausbilden auf der die Leukozyten bevorzugt adhärieren (siehe Abb. 65). Hierdurch wird 

die Auswanderung der Entzündungszellen in die Gefäßwand erleichtert.4,9,124,126,135,136  

Carpentier et al. konnten nachweisen, dass CyPB sowohl an Endothelzellen von Kapillaren der Blut-

Hirn-Schranke als auch an Endothelzellen von Kapillaren anderer Gewebearten binden kann.481 Es ist 

daher davon auszugehen, dass CyPB auch an Endothelzellen anderer Blutgefäße, wie beispielsweise 

an diejenigen von Koronargefäßen, binden kann.  

Die im Blut zirkulierenden Thrombozyten könnten an das aus dem Plasma stammende und an den 

Endothelzellen der Koronargefäße gebundene CyPB adhärieren und somit dort ihre Wirkung als 

Entzündungszellen entfalten. Dieser Vorgang stellt eine weitere Möglichkeit dar, wie CyPB die 

Progression der Atherosklerose vorantreiben könnte.  

CyPB kommt im Plasma gesunder Blutspender in einer Konzentration von etwa 5nmol/l vor.247,353   

Die von Allain et al. beschriebene Aktivierung von Thrombozyten erfordert allerdings deutlich höhere 

CyPB-Blutspiegel.353 Als Reaktion auf entzündliche Stimuli können große Mengen CyPB in 

Körperflüssigkeiten nachgewiesen werden.296 Beispielsweise bei septischen Zuständen wurden CyPB-

Spiegel im Plasma erreicht werden, die zu einer Aktivierung von Thrombozyten führen.353  

Es ist demnach davon auszugehen, dass es auch im Rahmen der inflammatorischen Prozesse der 

Atherosklerose zu erhöhten CyPB-Plasmakonzentrationen kommt. Hierdurch könnte der bereits 

beschriebene progressionsfördernde Effekt von CyPB noch zusätzlich verstärkt werden. 

 

Abbildung 65:  Darstellung der hypothetischen CyPB-vermittelten Rekrutierung von Leukozyten in die 

Gefäßwand 

Thrombozyten adhärieren an CyPB, das an Endothelzellen gebunden ist. Dadurch begünstigen sie 

möglicherweise die Auswanderung von Leukozyten in die Gefäßwand und in der Folge die Plaqueprogression. 
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CyPB bindet in der extrazellulären Matrix an Heparansulfat-Proteoglykane, von welchen es durch 

MMPs in einer aktiven Form freigesetzt werden kann.482 Es wird als Reaktion auf entzündliche Stimuli 

und oxidativen Stress verstärkt exprimiert und sezerniert, und es wird ihm eine Rolle bei der 

Modulation entzündlicher Reaktionen zugesprochen.292,293 Man vermutet, dass Proteoglykane dazu 

dienen, ein „Gewebereservoir“ für CyPB zu schaffen. Das dort immobilisierte CyPB kann 

einwandernden Leukozyten präsentiert werden. Außerdem kann hierdurch die Akkumulation von 

hohen Konzentrationen am Ort des inflammatorischen Stimulus gewährleistet, und so die Interaktion 

mit den Entzündungszellen vermittelt werden.482 Darüber hinaus konnten Melchior et al. zeigen, dass 

es durch die Bindung von CyPB an Makrophagen zur Freisetzung proinflammatorischer Zytokine 

kommt.482 Dies weist darauf hin, dass CyPB eine modulierende Funktion bei inflammatorischen 

Geschehnissen einnehmen könnte. 

Übertragen auf die Situation der Atherosklerose könnte das bedeuten, dass das in der Plaque 

exprimierte CyPB auch an der Modulation der Entzündungsprozesse, die sich im Rahmen der 

Atherogenese abspielen, beteiligt ist. Unsere Vermutung in diesem Zusammenhang war, dass CyPB 

neben anderen Zytokinen die Rekrutierung von Monozyten in die Intima beeinflusst.  

In der vorliegenden Arbeit konnte zwar in vitro kein Einfluss von CyPB auf die Migration von 

Monozyten nachgewiesen werden (siehe Abb. 44 und 45), was unsere Hypothese widerlegt, dass es 

die Wirkung von MCP-1, das die Rekrutierung von Monozyten in die Intima bewirkt, zusätzlich 

unterstützen könnte. Marcant et al. konnten allerdings zeigen, dass CyPB in vitro eine 

chemotaktische Wirkung gegenüber Makrophagen besitzt.295 Bei dem in vorliegender Arbeit 

durchgeführten Peritonitis-Versuch konnte jedoch kein Einfluss von CyPB auf das Migrations-

verhalten von Makrophagen nachgewiesen werden (siehe Abb. 56). Möglicherweise war jedoch die 

Versuchsdauer in unserem Versuch nicht lange genug, um die Möglichkeit auszuschließen, dass CyPB 

Einfluss auf die Einwanderung von Makrophagen in die Plaque nehmen könnte. 

Im Falle einer Plaqueruptur kommt das thrombogene Material des nekrotischen Kerns in Kontakt mit 

Blutbestandteilen, aktiviert die Gerinnungskaskade und löst die Thrombusbildung aus.52,483 Eine 

Plaqueruptur tritt bevorzugt dort auf, wo die Schutzkappe am dünnsten und am stärksten von 

Schaumzellen infiltriert ist.21 Auch Makrophagen können in diesen Bereichen in großer Zahl gefunden 

werden.97 Makrophagen und Schaumzellen produzieren ein breites Spektrum an MMPs und sind am 

Abbau der fibrous cap maßgeblich beteiligt.24,161  

Wie vorab beschrieben, wird das an Heparansulfat-Proteoglykane gebundene CyPB durch MMPs in 

aktiver Form aus seinem „Gewebereservoir“ freigesetzt. In der vorliegenden Arbeit konnte gezeigt 

werden, dass die Stimulation von Monozyten mit CyPB zu einer gesteigerten MMP-Sekretion führt 

(siehe Abb. 41 und 42). Durch diese gesteigerte MMP-Freisetzung könnte es wiederum zu einer 

gesteigerten Abspaltung von CyPB  aus seinem „Gewebereservoir“ kommen. Dieses stünde 

seinerseits somit zur Aktivierung anderer CD147 (EMMPRIN)-exprimierender Zellen oder zur 

weiteren Stimulation der MMP-Produktion zur Verfügung. Auf diese Weise könnte CyPB die 

Destabilisierung der fibrous cap zusätzlich fördern.  
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Abbildung 66:  Darstellung der hypothetischen Wirkung von CyPB bei der Modulation von 

Entzündungsprozessen bei der Atherosklerose 
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Der Einsatz von Cyclosporin A und seinen Derivaten stellt einen neuen therapeutischen Ansatzpunkt 

bei der Behandlung entzündlicher Erkrankungen, die mit der Wanderung von Leukozyten 

einhergehen, dar.337 

Der inhibierende Effekt des sowohl intra- als auch extrazellulär wirkenden Cyclosporin A-Derivates 

NIM811 auf die stimulierende Wirkung von CyPA und CyPB gegenüber Thrombozyten wurde bereits 

in Flusskammerversuchen unserer Arbeitsgruppe untersucht316 und konnten in der vorliegenden 

Arbeit nochmals bestätigt werden. Darüber hinaus konnte in den hier durchgeführten Versuchen 

gezeigt werden, dass die stimulierende Wirkung von CyPB auf Thrombozyten im Flusskammermodell 

auch durch das rein extrazellulär wirkende Cyclosporin A-Derivat MM284 inhibiert werden kann 

(siehe Abb. 49-54). 

Dieser Befund eröffnet die Möglichkeit für einen potentiellen künftigen therapeutischen Einsatz des  

Cyclosporin A-Derivates bei thrombotischen Komplikationen im Rahmen von Plaquerupturen oder      

-erosionen. So könnte die Wirkung des nach Plaqueruptur oder -erosion oberflächlich exprimierten 

CyPB auf die Adhäsion von Thrombozyten durch MM284 gehemmt werden. Die dadurch induzierte 

Verhinderung des rollings und der Adhäsion der Thrombozyten könnte auch zu einer reduzierten 

Thrombusbildung führen. Hierdurch könnten ischämische Reaktionen distal der Rupturstelle 

verhindert oder reduziert werden und somit das Risiko der Entstehung von Komplikationen (wie z.B. 

einer instabilen Angina pectoris oder eines Myokardinfarktes) eingedämmt bzw. deren Ausmaß 

reduziert werden.  

Die Hypothese zum Ablauf der möglichen therapeutischen Wirkung der beiden Cyclosporin A-

Derivate findet ihre Darstellung in Abbildung 67. 

Die Ergebnisse des vor kurzem in unserer Arbeitsgruppe durchgeführten in vivo-Versuchs der 

Thrombusformation an den Darmgefäßen, bei denen sowohl NIM811 als auch MM284 zu einer 

signifikanten Verzögerung der Thrombusbildung geführt haben,336 bekräftigen die Ergebnisse des 

Flusskammerversuchs zusätzlich.  

Jedoch ist hier davon auszugehen, dass die verzögerte Thrombusbildung im Tiermodell nicht nur auf 

die Blockierung der CyPB-Wirkung, sondern zusätzlich auf die Blockierung von CyPA zurückzuführen 

ist. Um die Effekte der CyPA-Inhibierung von denen der CyPB-Inhibierung abzugrenzen, könnte der 

Versuch zum einen mit CyPA/CyPB-knockout-Tieren wiederholt werden. Eine andere Möglichkeit 

könnte der Einsatz von Antikörpern mit präferentieller Wirkung gegenüber CyPA darstellen.  

Ob die beiden Cyclosporin A-Derivate NIM811 und MM284 ebenso wie Cyclosporin A zu einer 

Sekretion von CyPB durch die an der Atheroskleroseentstehung beteiligten Zellen führen, wodurch 

dann die in dieser Arbeit beschriebenen möglichen Effekte von CyPB im Rahmen der Atherogenese 

verstärkt werden könnten, sollte in künftigen Versuchen geklärt werden. Dies könnte beispielsweise 

mittels eines Enzyme-linked immunosorbent assay (ELISA) aus den Überständen von Zellkulturen,   

die mit NIM811 bzw. MM284 behandelt wurden, geschehen. 

Um genauer beurteilen zu können, ob die Cyclosporin A-Derivate NIM811 und MM284 zur Therapie 

der Atherosklerose geeignet sein könnten, müssten weitere Untersuchungen durchgeführt werden. 

So müsste z.B. geklärt werden, ob die beiden Substanzen ebenso wie Cyclosporin A das Entstehen 

atherosklerotischer Prozesse fördern. Diese Erkenntnisse könnten nach einer umfassenden 
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Darstellung von weiteren biologischen Effekten der Cyclosporin A-Derivate durch deren Einsatz in 

klinischen Studien gewonnen werden.  

 

 

Abbildung 67:  Darstellung einer hypothetischen therapeutischen Wirkung von NIM811 bzw. MM284: 

Durch Blockade des nach Plaqueruptur (A1) oder -erosion (B1) oberflächlich in der Plaque exprimierten CyPB 

wird eine mögliche CyPB-vermittelte Thrombusbildung verhindert (A2 und B2) 
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3 Schlussfolgerung 

CyPA und CyPB spielen eine wichtige Rolle bei einer breiten Palette von entzündlichen   

Erkrankungen wie beispielsweise der rheumatoiden Arthritis,293 bei septischen Zuständen,297 

unterschiedlichen Viruserkrankungen248,258,299,484 oder Asthma.298  

Während in diversen Untersuchungen eine Beteiligung von CyPA bei der Entstehung der 

Atherosklerose und beim akuten Myokardinfarkt belegt werden konnte, ist die Rolle von CyPB in 

Bezug auf diese Krankheitsbilder bisher noch unklar. Durch die in dieser Arbeit durchgeführten 

Versuche konnte die Bedeutung von CyPB für die Atherosklerose genauer charakterisiert werden. 

CyPB wird in der atherosklerotischen Plaque exprimiert. Außerdem konnte CyPB im Zytoplasma und 

im Zellkern von Monozyten, Makrophagen und Schaumzellen, sowie auf der Oberfläche 

thrombinstimulierter Thrombozyten nachgewiesen werden. Dabei handelt es sich um Zelltypen, die 

maßgeblich an der Entstehung und der Weiterentwicklung atherosklerotischer Veränderungen 

beteiligt sind. Dies lässt die Spekulation zu, dass CyPB ebenso wie CyPA einen Einfluss auf die 

Atherogenese nehmen könnte. Dabei legen die Ergebnisse der vorliegenden Arbeit die Vermutung 

nahe, dass CyPB über seine Wirkungen auf Thrombozyten und Monozyten sowohl die Progression 

der Atherosklerose fördern könnte als auch an der Destabilisierung der Plaque und der Entstehung 

von thrombotischen Ereignissen beteiligt sein könnte. 

Der Einsatz von Cyclosporin A-Derivaten steht seit einiger Zeit als möglicher Therapieansatz zur 

Beeinflussung entzündlicher Erkrankungen, die mit der Migration von Leukozyten einhergehen, im 

Zentrum des Forschungsinteresses.337 Die vorliegenden Versuche zeigen, dass durch die Cyclosporin 

A-Derivate NIM811 und MM284 ebenfalls deutliche Effekte auf das Adhäsionsverhalten von 

Blutplättchen erzielt werden können. So konnte die adhäsionssteigernde Wirkung von CyPB auf 

Thrombozyten im Flusskammer-Modell durch beide Cyclosporin A-Derivate signifikant reduziert 

werden. 

Thrombozyten sind nicht nur für die fatalen Komplikationen der Atherosklerose, die mit der 

Entstehung von Thromben einhergehen, verantwortlich, sie spielen im Rahmen der Atherosklerose 

auch einen bedeutende Rolle als Entzündungszellen, die die Entstehung atherosklerotischer 

Veränderungen fördern, indem sie andere Entzündungszellen anlocken und als „Brückenglied“ 

fungieren, um deren Einwanderung zu begünstigen. 

Über inhibierende Wirkung der beiden Cyclosporin A-Derivate auf die CyPB-vermittelte 

Thrombozytenadhäsion könnte möglicherweise auch in vivo Einfluss auf die Atherogenese 

genommen werden. So besteht die Möglichkeit, dass durch eine reduzierte Thrombozytenadhäsion 

am Endothel oder der geschädigten Gefäßwand sowohl die Progression der Atherosklerose in einem 

frühen Stadium verlangsamt oder sogar unterbunden werden kann, als auch die Entstehung fataler 

Thrombosen verhindert, beziehungsweise deren Ausmaß verringert werden kann. 

Auch die CyPB-vermittelte proteolytische Aktivität von Monozyten könnte durch den Einsatz von 

Cyclosporin A-Derivaten möglicherweise reduziert werden. Auf diese Weise könnte die 

Destabilisierung der fibrösen Kappe der Plaque verhindert und somit das Risiko für eine Plaqueruptur 

reduziert werden.  
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Die durch die Ergebnisse der vorliegenden Versuche initiierten und in den Abbildungen 59 und 63 bis 

66 dargestellten Hypothesen bezüglich des Einflusses von CyPB auf die unterschiedlichen 

Atherosklerosestadien sind naheliegend. Ihre Richtigkeit sollte in künftigen Versuchen jedoch  noch 

bestätigt werden.  

Hierbei sollte insbesondere geklärt werden, welche Rolle CD147 (EMMPRIN) bzw. andere Rezeptoren 

für die Wirkung von CyPB auf Monozyten und Thrombozyten einnehmen. Dieses Wissen eröffnet die 

Möglichkeit, die CyPB-vermittelten Effekte zu beeinflussen und so neue Behandlungsstrategien zu 

entwickeln mit denen Einfluss auf die verschiedenen Stadien der Atherogenese genommen werden 

kann.  

Da auch die neuartige Generation von Cyclophilin-Inhibitoren als mögliche Therapeutika im Rahmen 

entzündlicher Erkrankungen in Betracht gezogen werden und über sie möglicherweise Einfluss auf 

den Verlauf der Atherogenese genommen werden kann, sollte der Einfluss von NIM811 und MM284 

auf die Zelltypen, die an der Atherogenese beteiligt sind, näher untersucht werden, und die in dieser 

Arbeit formulierten Hypothesen über Einfluss der beiden Cyclosporin-A-Derivate bei der 

Plaqueerosion und -ruptur in weiteren Versuchen überprüft werden. 
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VI  Zusammenfassung 

Zur Rolle von Cyclophilin B in der Pathogenese der Atherosklerose:                                     

Eine experimentelle Untersuchung zu seiner Expression in murinen atherosklerotischen 

Plaques, zu seiner Wirkung auf das Migrationsverhalten von Monozyten und deren   

Matrix Metalloproteinasen-Aktivität, auf das Adhäsionsverhalten von Thrombozyten 

sowie auf das Migrationsverhalten von Leukozyten 

Obwohl die durch die koronare Herzkrankheit ausgelöste Mortalitätsrate beim Menschen in den 

letzten Jahrzehnten deutlich zurückgegangen ist, steigt die Morbidität für diese Erkrankung noch 

immer kontinuierlich an. Die Hauptursache für die Entstehung der koronaren Herzkrankheit liegt 

nahezu immer in atherosklerotischen Veränderungen der Koronargefäße. Da Thrombozyten im 

Rahmen der Atherogenese auch als Entzündungszellen fungieren können, rücken sie immer mehr ins 

Zentrum des Forschungsinteresses. Darüber hinaus sind sie für die Entstehung thrombotischer 

Komplikationen wie dem akuten Myokardinfarkt verantwortlich. Auch  Monozyten und die daraus 

entstehenden Makrophagen und Schaumzellen spielen bei der Entwicklung der Atherosklerose eine 

Schlüsselrolle, indem sie die entzündlichen Prozesse in der Gefäßwand durch Sekretion von 

Entzündungsmediatoren und proteolytischen Enzymen vorantreiben. Ein wichtiges Anliegen der 

heutigen Forschung zur Pathogenese der Atherosklerose besteht deshalb darin die Funktionen dieser 

Zellen sowie deren Mediatoren möglichst umfassend darzustellen.  

Vorrangiges Ziel der vorliegenden Arbeit war es, herauszufinden, ob CyPB als proinflammatorischer 

Mediator eine wichtige Funktion bei der Entwicklung atherosklerotischer Veränderungen spielt.  

So konnte mit Hilfe der Immunhistochemie in dieser Arbeit erstmalig nachgewiesen werden, dass 

CyPB in der atherosklerotischen Plaque verstärkt exprimiert wird. Außerdem konnte CyPB mit Hilfe 

der Immunfluoreszenz in und auf Monozyten, Makrophagen und Schaumzellen sowie mittels 

Durchflusszytometrie auf der Oberfläche aktivierter Thrombozyten nachgewiesen werden.  

Es lag deshalb nahe, den Einfluss von CyPB auf die oben genannten Zellarten weiter zu untersuchen. 

So wurde der Einfluss von CyPB auf das Migrationsverhalten von Monozyten mit Hilfe einer 

modifizierten Boyden-Kammer in vitro untersucht. Dabei zeigte sich, dass CyPB keine chemotaktische 

Wirkung gegenüber Monozyten ausübt. In einem zusätzlichen Tierversuch, bei dem die Migration 

von Leukozyten durch die Auslösung einer sterilen Peritonitis untersucht wurde, konnte die fehlende 

chemotaktische Wirkung von CyPB nochmals verifiziert werden. Diese Ergebnisse stehen jedoch im 

Widerspruch zu Befunden, bei denen eine chemotaktische Wirkung von CyPB auf humane                   

T-Lymphozyten sowie neutrophile Granulozyten nachgewiesen wurden.296,302  

Der Einfluss von CyPB auf die durch Monozyten vermittelte proteolytische Aktivität in der Plaque 

wurde mit Hilfe der SDS-Gelatine-Zymographie untersucht. Dabei konnte gezeigt werden, dass die 

Sekretion der MMP-9 durch CyPB (Konzentration: 200nM) um ca. 40% gesteigert werden konnte.  

Aufgrund der in dieser Arbeit nachgewiesenen deutlichen Expression von CyPB in der 

atherosklerotischen Plaque, wurden zunächst die Interaktionen von immobilisiertem CyPB mit 

aktivierten Thrombozyten im Flusskammermodell untersucht.  Hierbei konnte nachgewiesen werden, 

dass sowohl das rolling als auch die feste Adhäsion aktivierter Thrombozyten auf immobilisiertem 



VI     ZUSAMMENFASSUNG 

 

 

 

156 

CyPB (Konzentration: 200nM) gegenüber der Negativkontrolle signifikant  gesteigert werden konnte 

(rolling: um 470%, feste Adhäsion: um 200% gesteigert). Da CyPA ebenso wie CyPB verstärkt in der 

atherosklerotischen Plaque exprimiert wird, lag es nahe auch die Interaktionen von CyPA 

(Konzentration: 200nM) mit aktivierten Thrombozyten zu untersuchen. Auch hierfür konnte ähnlich 

zum CyPB eine Steigerung des rollings (um ca. 410%) und der festen Adhäsion der aktivierten 

Thrombozyten (um etwa 190%) gegenüber der Negativkontrolle festgestellt werden.  

Nachdem in Vorarbeiten unserer Arbeitsgruppe bereits gezeigt werden konnte, dass CyPB in der Lage 

ist, Thrombozyten zu stimulieren und ihre Adhäsion (rolling und feste Adhäsion) auf Kollagen und 

Endothelzellen auszulösen, lag es nahe, in vorliegender Arbeit die Inhibierung der CyPB-Wirkungen 

zu untersuchen. Dies war insbesondere im Hinblick auf die Entwicklung von möglichen neuartigen 

Therapeutika zur Unterdrückung thrombotischer Komplikationen infolge atherosklerotischer 

Veränderungen von besonderem Interesse. Hierzu wurde der rein extrazellulär wirksame Cyclophilin-

Inhibitor MM284 und der sowohl intra- als auch extrazellulär wirksame Cyclophilin-Inhibitor NIM811 

in ihrem Einfluss auf das Adhäsionsverhalten CyPB-stimulierter Thrombozyten getestet und 

verglichen. Dabei konnte gezeigt werden, dass der Einsatz sowohl von NIM811 als auch von MM284 

zu einer signifikanten Reduktion des rollings und der festen Adhäsion von CyPB-stimulierten 

Thrombozyten führt. So konnte auf Kollagen das rolling durch NIM811 um etwa 58% vermindert 

werden und die feste Adhäsion um etwa 60%. Im Vergleich dazu konnte das rolling auf Kollagen 

durch MM284 um 70% reduziert werden und die feste Adhäsion um etwa 73%. Auch auf 

Endothelzellen konnte der inhibierende Effekt der beiden Substanzen auf das Adhäsionsverhalten 

von Thrombozyten beobachtet werden. So führte NIM811 zu einer um ca. 40% reduzierten Rate 

rollender Thrombozyten. Deren feste Adhäsion wurde um 35% vermindert. MM284 führte zu einer 

Reduktion rollender Zellen von 48% und fest adhärenter Zellen von ca. 45%.  

Die Ergebnisse der vorliegenden Arbeit zeigen, dass CyPB mit großer Wahrscheinlichkeit eine Rolle 

bei der Entstehung atherosklerotischer Veränderungen spielt. Jedoch ist seine Funktion in diesem 

Zusammenhang noch nicht ausreichend detailliert untersucht. Es müsste noch näher charakterisiert 

werden, welche Funktionen es während der verschiedenen Atherosklerosestadien ausübt, über 

welche Rezeptoren seine Wirkung vermittelt wird und welche Mediatoren zu seiner Freisetzung 

führen. 

Auch in Bezug auf die Inhibierung der CyPB-Wirkungen bei Thrombozyten durch die beiden nicht 

immunsuppressiven Cyclosporin A-Analoga NIM811 und MM284 sind noch viele Fragen offen. Um 

den therapeutischen Einsatz dieser Stoffe für die Behandlung der Atherosklerose empfehlen zu 

können, sind ebenfalls noch weitere Versuche vonnöten, insbesondere um gewünschte und 

unerwünschte Effekte bei der Anwendung der beiden Substanzen sowie deren Effizienz genauer 

beurteilen zu können. 
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VII  Summary 

About the role of Cyclophilin B in the pathogenesis of atherosclerosis:                                    

an experimental study on its expression in murine atherosclerotic plaques, its effects on 

the migration of monocytes and their expression of matrix metalloproteinases, the 

adhesive properties of platelets as well as the migration of leukocytes 

Although mortality rates from coronary heart disease in the western countries have declined in the 

last few decades morbidity caused by this disease is increasing. Coronary heart disease is almost 

always caused by atherosclerosis. Because platelets can act as inflammatory cells in atherogenesis, 

they have become more and more subject to scientific research. In addition, they are responsible for 

the development of thrombotic complications. Furthermore, monocytes as well as macrophages and 

foam cells that subsequently develop out of monocytes play a key role in the development of 

atherosclerosis as they promote the inflammatory processes in the arterial wall by secretion of 

inflammatory mediators and proteolytic enzymes. Because of this it is a fundamental concern of 

modern research to better understand the functions of the different mediators involved in the 

pathogenesis of atherosclerosis.  

The main objective of this study was to find out if CyPB plays a role as proinflammatory mediator in 

the development of atherosclerotic lesions.  

We could proof for the first time by means of immunohistochemistry that CyPB is expressed in 

atherosclerotic plaques. Immunofluorescence stainigs revealed that CyPB is expressed in monocytes, 

macrophages and foam cells. In flow cytometric analysis we could show that CyPB is expressed on 

the surface of activated platelets.  

Based on these findings we further analyzed the effects of CyPB on these cells. We investigated the 

influence of CyPB on the migration of monocytes in vitro by using a modified Boyden-chamber. We 

observed that CyPB has no chemotactic effect on this cell type. In an additional animal experiment 

investigating the effects of CyPB on the migratory properties of leukocytes by inducing a sterile 

peritonitis, the lacking chemotactic effect of CyPB could be confirmed once again. These results 

however, are contradictionary to results in which a chemotactic effect of CyPB on human                   

T-lymphocytes as well as granulocytes could be detected.296,302 

The influence of CyPB on the proteolytic activity in the atherosclerotic plaque, mediated by 

monocytes, was analyzed by means of SDS-gelatin-zymography. Thereby we could show that the 

CyPB-mediated secretion of MMP-9 (concentration of CyPB: 200nM) in monocytes was increased by 

40%. 

Furthermore, the Influence of CyPB on the function of platelets was a focus of our research. Because 

of the considerable expression of CyPB in atherosclerotic plaque prooven in this study we 

investigated the interactions of immobilized CyPB and activated platelets. Thereby we could show 

that both, rolling and firm adhesion of activated platelets on immobilized CyPB (concentration: 

200nM), could significantly be enhanced compared to negative control (enhancement of rolling by 

470%, enhancement of firm adhesion by 200%). Additionally, we investigated the interactions of 

CyPA (concentration: 200nM) with activated platelets as a comparison. The results showed 
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comparable values to that of CyPB, with an increase of rolling cells by 410% and an increase of 

adherent cells by 190%. 

After we had shown in preliminary studies of our working group that CyPB activates platelets and 

triggers their adhesion (rolling and firm adhesion) to collagen and endothelial cells, one aim of this 

study was to examine the inhibition of CyPB mediated effects. This is of particular importance for the 

development of new therapeutic approaches to suppress thrombotic complications resulting from 

atherosclerotic lesions. For this purpose we tested and compared the influence of two types of 

cyclophilin-inhibitors: the novel and merely extracellular active Cyclosporin A-derivative MM284 and 

the extracellular as well as intracellular active Cyclosporin A-derivative NIM811.  

Thereby we could show that both derivatives significantly reduced rolling and firm adhesion of    

CyPB-stimulated platelets. On collagen NIM811 reduced the amount of rolling cells by about 58% and 

the amount of firmly adherent cells by about 60%. Compared to that, MM284 reduced the amount of 

rolling cells on collagen by about 70% and that of firmly adherent cells by about 73%. The inhibiting 

effect of both derivatives on the adhesional properties of platelets could also be verified on 

endothelial cells. In this case, NIM811 reduced the amount of rolling cells by about 40% and the 

amount of firmly adherent cells by about 35%. MM284 reduced the amount of rolling cells on 

endothelial cells by about 48% and that of firmly adherent cells by about 45%.  

The present study shows that CyPB is in all probability involved in atherosclerosic processes. 

However, its role in this regard has not sufficiently been analyzed in detail yet. Further studies will be 

necessary to better characterize its role in the different stages of atherosclerosis, and to determine 

which receptors mediate its functions, and which compounds lead to its release. 

The inhibitory effects of the two non-immunosuppressive Cyclosporin A-derivatives regarding the 

effects of CyPB are only insufficiently clarified. However, further studies will be required to be able to 

recommend the use of these substances in therapy of atherosclerosis. In particular, it is important to 

research the desired and adverse effects of these substances and their range of efficiency. 
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IX  Appendix 

1 Abkürzungsverzeichnis 

 

Abb. Abbildung 

ACD acid-citrate-dextrose 

ACE-Hemmer Angiotensin Converting Enzyme-Hemmer 

ADP Adenosindiphosphat 

AHA American Heart Association 

APC Allophycocyanin 

ApoE Apolipoprotein E 

Asp Asparaginsäure 

AS Aminosäure 

Aqua dest. destilliertes Wasser 

α2β1 Kollagenrezeptor 

B6 (C57BL/6J) Mäusestamm: Wildtyp, Black six 

B6.129P2-Apoetm1Unc/J Mäusestamm: ApoE-knockout-Maus 

bFGF basic fibroblast growth factor 

BSA bovines Serumalbumin 

BSG Basigin 

β-VLDL β-very low density lipoprotein 

°C Grad Celsius 

Ca2+ zweiwertiges Kalzium-Ion 

CaCl2 Kalziumchlorid 

CCR2 C-C chemokine receptor type 2 (Chemokinrezeptor Typ 2) 

CD cluster of differentiation (Differenzierungsmarker) 

CD3 cluster of differentiation 3 (T-Zell- Korezeptor, Marker für T-Zellen) 

CD11b cluster of differentiation 11b (Marker für myeloide Zellen) 
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CD36 cluster of differentiation 36  (gehört zur Klasse der Typ B Scavenger-

Rezeptoren) 

CD40 cluster of differentiation 40 (kostimulierendes Protein auf 

antigenpräsentierenden Zellen) 

CD40L/CD154 cluster of differentiation 40- Ligand (Glykoprotein auf aktivierten             

T-Zellen) 

CD62L cluster of differentiation 62- Ligand (L-Selektin) 

CD147 cluster of differentiation 147 (EMMPRIN) 

CLD Cyclophilin-like domain 

CO2 Kohlenstoffdioxid 

CPDA citrate phosphate dextrose adenine 

CRP Collagen-related peptide 

CsA Cyclosporin A 

Cu2+ zweiwertiges Kupfer-Ion 

CyPA Cyclophilin A 

CyPB Cyclophilin B 

DAB 3,3-Diaminobenzidin 

DAPI 4′,6-Diamidin-2-phenylindol 

DC dentritische Zelle 

DVD Digital Versatile Disc 

EDTA Ethylendiamintetraessigsäure 

EGF epidermal growth factor 

EMMPRIN (CD147) extracellular matrix metalloproteinase inducer 

eLDL enzymatisch modifiziertes low density lipoprotein 

ERK1/2 extracellular signal-regulated kinases 1/2 

EZM extrazelluläre Matrix 

F4/80 Oberflächenglykoprotein auf Makrophagen (Makrophagen-Marker) 

Fc fragment crystallisable (Fc-Fragment bzw. konstanter Anteil eines 

Antikörpers) 
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g relative Zentrifugalbeschleunigung 

GM-CSF granulocyte macrophage colony-stimulating factor 

GP Glykoprotein 

GP Ib/IX/V Glykoprotein Ib/IX/V-Rezeptor-Komplex 

GP Ibα Glykoprotein Ibα 

GP IIb/IIIa bzw. αIIbβ3 Glykoprotein IIb/IIIa 

GP VI Glykoprotein VI 

GPI Glycophosphatidylinositol 

H2O2 Wasserstoffperoxid 

HO-  Hydroxyl-Radikal 

HE Hämatoxylin-Eosin 

HIV humanes Immundefizienz-Virus 

HOCl Hypochlorsäure 

HUVEC human umbilical vein endothelial cell 

ICAM-1 intercellular cell adhesion molecule 

IFN-γ Interferon γ 

IgG Immunglobulin 

IL-1 Interleukin 1 

IL-6 Interleukin 6 

IL-8 Interleukin 8 

i.p. intraperitoneal 

kDa Kilodalton 

JAM-3 junctional adhesion molecule C 

JNK c-Jun N-terminale Kinasen (JNK), auch stress-activated phospho-kinases 

(SAPK) 

LDL low density lipoprotein (Lipoprotein geringer Dichte) 

LFA-1 lymphocyte function-associated antigen 1 

(Lymphozytenfunktionsasoziiertes Antigen) 
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LPS Lipopolysaccharid 

LSAB-Methode Labeled Streptavidin-Biotin-Methode  

Mac-1 Macrophage-1 antigen 

MAPK mitogen-activated protein kinase 

MCP-1 monocyte chemotactic protein (-1) 

MCT-1/-4 Monocarboxylattransporter 1/4 

M-CSF macrophage colony-stimulating factor  

MFI mittlere Fluoreszenzintensität 

mg Milligramm 

MgCl2 Magnesiumchlorid 

MHC major histocompatibility complex 

Min Minute 

MIP-1α macrophage inflammatory protein 1α 

ml Milliliter 

mm Millimeter 

mM millimolar 

MM284 [(4R)-4-[(6-carboxy-1H-benzo[d]imidazol-2-yl)-methyl]-4-methyl-l-

threonine](1)-Cyclosporin 

MMP Matrix Metalloproteinase 

MT-MMP membrane-type Matrix Metalloproteinase 

MΩ Megaohm 

µg Mikrogramm 

µl Mikroliter 

µM mikromolar 

µm Mikrometer 

n Anzahl 

NFAT nuclear factor of activated T-cells 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 
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ng Nanogramm 

NIM811 N-methyl-4-isoleucin Cyclosporin 

NK-Zelle natürliche Killerzelle 

nm Nanometer 

nM nanomolar 

NO-  Stickstoffmonoxid 

O2-.  Superoxid-Anion 

ONOO-  Peroxynitrit 

oxLDL oxidativ modifiziertes Low Density Lipoprotein (Lipoprotein mit geringer 

Dichte) 

p p-Wert, Signifikanzwert 

PAF platelet activating factor 

PAGE Polyacrylamid-Gelelektrophorese 

PAI-1 Plasminogen-Aktivator-Inhibitor Typ 1 

PBS Phosphate-buffered saline (Phosphatpuffer) 

PCR Polymerase chain reaction 

PDGF Platelet derived growth factor  

PFA Paraformaldehyd 

PF4 Platelet factor 4 

pH potential hydrogenii (lat.) 

PPIase Peptidyl-Prolyl-cis/trans-Isomerase 

PPIL-2 peptidylprolyl isomerase (cyclophilin)-like 2 

PPIL-6 peptidylprolyl isomerase (cyclophilin)-like 6 

Pro Prolin 

PRP plättchenreiches Plasma 

PSGL-1 P-Selektin Glykoprotein Ligand-1 

RANBP2 RAN binding protein 2 

RANTES regulated on activation, normal T cell expressed and secreted 
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RNA Ribonukleinsäure 

ROS reactive oxygen species (reaktive Sauerstoffspezies) 

SDF-1 stromal cell-derived factor 1 

SDS Sodium-Dodecyl-Sulfate (Natriumdodecylsulfat) 

SDS-PAGE Sodium Dodecyl Sulfat- Polyacrylamid-Gelelektrophorese 

sec Sekunde 

S.E.M. standard error of the mean (Standardabweichung) 

SMC smooth muscle cell (glatte Muskelzelle) 

SRA Scavenger-Rezeptor A 

SDCCAG-10 serologically defined colon cancer antigen 10 

Tab. Tabelle 

TCSF tumor cell-derived collagenase stimulatory factor 

TGFβ transforming growth factor β 

TIMP tissue inhibitors of matrix metalloproteinases 

TNF-α Tumornekrosefaktor-α 

TRAP Thrombin Receptor Activating Peptide 

U unit (Einheit) 

V Volt 

VCAM-1 vascular cell adhesion molecule 1 

VEGF vascular epidermal growth factor 

VLA-4 (CD49d) very late antigen-4  

vWF von Willebrand Faktor 

WHO World Health Organisation (Weltgesundheitsorganisation) 

Zn2+  zweiwertiges Zink-Ion   



IX     APPENDIX 

 

 

 

200 

2  Abbildungsverzeichnis 

 

Abb. 1:  Die wichtigsten Stadien bei der Entstehung einer atherosklerotischen Läsion in der 

Arterienwand 

Abb.2: Mikroskopische Darstellung von Schaumzellen 

Abb. 3: Aufbau einer unveränderten Arterienwand (A) und Initiation einer atherosklerotischen 

Läsion (B) 

Abb. 4: Progression der atherosklerotischen Läsion   

Abb. 5: Schematischer Aufbau des nekrotischen Kerns einer atherosklerotischen Plaque 

Abb. 6:  Vergleichende schematische Darstellung von Plaqueruptur (A) und Plaqueerosion (B) 

Abb. 7: Regulationsschritte im Auf- und Abbau des Kollagens in der atherosklerotischen Plaque 

Abb. 8: Plaqueruptur und Thrombose 

Abb. 9:  Fotografische Darstellung atherosklerotischer Gefäßabschnitte in den Koronararterien 

(A) und zerebralen Arterien (B) bei einem Hund mit Hypothyreoidismus 

Abb. 10: Adhäsion von Leukozyten am Endothel einer Arterie beim Menschen 

Abb. 11: Interaktionsmöglichkeiten von Thrombozyten mit anderen Zellen während der 

Atherogenese 

Abb. 12: Vergleich der Morphologie eines ruhenden Thrombozyten (links) und eines aktivierten 

Thrombozyten (rechts) 
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Abb. 14: Interaktionen zwischen Thrombozyten und Endothelzellen in Form des rolling und der 

festen Adhäsion 

Abb. 15: Am Endothel adhärierende Thrombozyten rekrutieren und aktivieren Monozyten   

Abb. 16: Grundstruktur der MMPs 

Abb. 17: Zur Rolle der MMPs in der Atherosklerose 

Abb. 18: Struktur des Extracellular Matrix Metalloproteinase Inducer (CD147, EMMPRIN) 

Abb. 19: Gegenüberstellung der Struktur von CyPA und CyPB  
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Abb. 20: Immunsupprimierende Wirkung des intrazellulären CyPA-CsA-Komplexes 

Abb. 21: Schematische Darstellung der cis- und trans-Isomerie bei einer Peptidbindung zwischen 

Prolin und einer anderen Aminosäure (P1)  

Abb. 22: Vergleich der chemischen Struktur von Cyclosporin A mit der von NIM811 

Abb. 23: Chemische Struktur von MM284 

Abb. 24: Dichtegradientenzentrifugation mit Ficoll Paque 

Abb. 25: Prinzip der Labeled Streptavidin-Biotin- bzw. LSAB-Methode 

Abb. 26: Chamber slide 

Abb. 27: Einteilung der Reaktionskammern der chamber slides für die Immunfluoreszenzfärbung 

von Monozyten, Makrophagen und Schaumzellen 

Abb. 28: Migrationskammer 

Abb. 29: Aufbau der Flusskammer 

Abb. 30: Aufbau des Arbeitsplatzes für die Flusskammer 

Abb. 31: Schema zur Auswertung der Flusskammersequenzen 

Abb. 32: Durchführung einer Bauchhöhlenlavage bei der Maus 

Abb. 33: Exemplarische Darstellung der immunhistochemischen Detektion der CyPB-Expression in 

atherosklerotischen Plaques ApoE-defizienter Mäuse (Stamm: B6.129P2-Apoetm1Unc/J) 

Abb. 34: Exemplarische Darstellung der CyPB-Expression auf der Monozytenoberfläche 

Abb. 35: Exemplarische Darstellung der intrazellulären Expression von CyPB in Monozyten 

Abb. 36: Exemplarische Darstellung der Expression von CyPB auf der Oberfläche von 

Makrophagen 

Abb. 37: Exemplarische Darstellung der intrazellulären Expression von CyPB in Makrophagen 

Abb. 38: Exemplarische Darstellung der Expression von CyPB auf der Schaumzelloberfläche 

Abb. 39: Exemplarische Darstellung der intrazellulären Expression von CyPB in Schaumzellen 

Abb. 40: Darstellung der mittleren Oberflächenexpression (+S.E.M.) von CyPB auf stimulierten 

Thrombozyten im Säulendiagramm (n= 5  Versuchsansätze) 
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Abb. 41: Zymographische Darstellung der Freisetzung von MMP-9 aus CyPB-stimulierten  

Monozyten 

Abb. 42:  Darstellung der Mittelwerte (+S.E.M.) der MMP-9-Aktivität (92kDa-Bande) von n=6 

Zymogrammen im Säulendiagramm 

Abb. 43: Darstellung der Mittelwerte (+S.E.M.) der MMP-2-Aktivität (72kDa-Bande) von n=6 

Zymogrammen im Säulendiagramm 

Abb. 44: Darstellung der chemotaktischen Wirkung von CyPB sowie von Cyclosporin A-Derivaten 

auf Monozyten nach 4 Stunden (A) bzw. 18 Stunden (B) 

Abb. 45: Einfluss unterschiedlicher CyPB-Konzentrationen auf die Migration von Monozyten nach 

18 Stunden 

Abb. 46: Immobilisiertes CyPA und CyPB vermitteln gesteigertes thrombozytäres rolling 

Abb. 47: Immobilisiertes CyPA, CyPB und CD147 (EMMPRIN)-Fc vermitteln eine gesteigerte 

thrombozytäre Adhäsion 

Abb. 48: Repräsentative mikroskopische Aufnahmen adhärenter Thrombozyten auf CyPA-, CyPB- 

sowie CD147-Fc (EMMPRIN-Fc)-beschichteten Deckgläschen im Flusskammer-Versuch 

Abb. 49: Das durch CyPB gesteigerte rolling von Thrombozyten auf Kollagen wird durch die 

Inhibitoren NIM 811 und MM284 signifikant reduziert 

Abb. 50: Die durch CyPB gesteigerte Adhäsion von Thrombozyten auf Kollagen wird durch die 

Inhibitoren NIM 811 und MM284 signifikant reduziert 

Abb. 51: Repräsentative mikroskopische Aufnahmen von adhärenten Thrombozyten auf 

kollagenbeschichteten Deckgläschen nach Stimulation mit CyPB bzw. Inhibition der 

CyPB-Wirkung mit NIM811 und MM284 im Flusskammer-Versuch 

Abb. 52: Das durch CyPB gesteigerte rolling von Thrombozyten auf aktivierten humanen 

Endothelzellen (HUVECs) wird durch die Inhibitoren NIM 811 und MM284 signifikant 

reduziert 

Abb. 53: Die durch CyPB gesteigerte Adhäsion von Thrombozyten auf aktivierten humanen 

Endothelzellen (HUVECs) wird durch die Inhibitoren NIM 811 und MM284 signifikant 

reduziert 

Abb. 54: Repräsentative mikroskopische Aufnahmen adhärenter Thrombozyten auf endothelzell-

beschichteten Deckgläschen nach Stimulation mit CyPB und nach Inhibition der CyPB-

Wirkung mit NIM811 und MM284 im Flusskammer-Versuch 
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Abb. 55: Migration von Leukozyten in die Peritonealhöhle von Mäusen nach intraperitonealer 

Injektion von rekombinantem CyPB, von physiologischer NaCl-Lösung (Negativkontrolle) 

oder von Thioglykolat (Positivkontrolle) 

Abb. 56: Migration von bestimmten Leukozyten-Subpopulationen in die Peritonealhöhle von 

Mäusen nach intraperitonealer Injektion von rekombinantem CyPB, von physiologischer 

NaCl-Lösung (Negativkontrolle) oder von Thioglykolat (Positivkontrolle) 

Abb. 57: Vergleich der Leukozytenzahl im peripheren Blut von Mäusen 48 Stunden vor und 24 

Stunden nach der intraperitonealen Injektion von CyPB, physiologischer NaCl-Lösung 

(Negativkontrolle) und Thioglykolat (Positivkontrolle) 

Abb. 58:  Wirkung von CyPA in der Atherosklerose  

Abb. 59: Darstellung der hypothetischen Förderung der Plaqueprogression (A) sowie der 

Plaquedestabilisierung (B) über die CyPB-vermittelte Freisetzung von MMP-9 aus 

Monozyten 

Abb. 60: Adhäsionsverhalten (rolling und feste Adhäsion) ADP-stimulierter Thrombozyten auf 

immobilisiertem CyPA (A), CyPB (B) und CD147 (EMMPRIN) (C) 

Abb. 61: Einfluss von CyPA und CyPB (A) sowie von NIM811 und MM284 (B) auf den 

Aktivierungszustand von Thrombozyten 

Abb. 62: Typische lokale Thrombozytenadhäsion über einem Endotheldefekt 

Abb. 63: Darstellung der hypothetischen Wirkung von CyPB nach Plaqueerosion oder –ruptur auf 

die Thrombozytenadhäsion (rolling und feste Adhäsion auf CyPB im subendotheilalem 

Gewebe) (A) und die Thrombusbildung (B) 

Abb. 64: Darstellung der hypothetischen Beteiligung von CyPB an der schnellen 

Plaqueprogression nach Plaqueruptur mit konsekutiver Thrombusbildung (A) und 

Reorganisierung der Gefäßwand durch Thrombolyse, Einwanderung glatter 

Muskelzellen, Synthese von Kollagen und Re-Endothelialisierung (B) 

Abb. 65: Darstellung der hypothetischen CyPB-vermittelten Rekrutierung von Leukozyten in die 

Gefäßwand 

Abb. 66: Darstellung der hypothetischen Wirkung von CyPB bei der Modulation von 

Entzündungsprozessen bei der Atherosklerose  

Abb. 67: Darstellung einer hypothetischen therapeutischen Wirkung von NIM811 bzw. MM284: 

Durch Blockade des nach Plaqueruptur (A1) oder -erosion (B1) oberflächlich in der 

Plaque exprimierten CyPB wird eine mögliche CyPB-vermittelte Thrombusbildung 

verhindert (A2 und B2)  
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