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Summary 

In all living organisms DNA double-strand breaks (DSBs) are among the most 

threatening DNA lesions leading to genome instability and cancer development in 

humans. Unrecognized or unrepaired DSBs can lead to chromosomal aberrations 

resulting in apoptosis or mutations, which cause carcinogenesis. The two major pathways 

to repair DSBs are non-homologous end joining (NHEJ) and homologous recombination 

(HR). During NHEJ the two DNA breaks are ligated together, which can result in the loss 

of genetic information when the DNA ends have been processed. In contrast, HR is a 

more error-free pathway to repair DNA DSBs by using the sequence information of a 

sister chromatid to restore the lost genetic information. In NHEJ and HR the Mre11-

Rad50-Nbs1 (MRN) complex plays an important role as DSB sensor, repair complex and 

signaling machinery by recruiting the ATM (ataxia-telangiectasia mutated) kinase, which 

activates the cell-cycle checkpoint. Mutations in MRE11, RAD50 or NBS1 genes are 

found in diseases like Nijmegen breakage syndrome (NBS), NBS-like disorder (NBSLD) 

and ataxia-telangiectasia-like disorder (ATLD) where defects in checkpoint signaling and 

chromosomal fragility are detected. After extended investigations of the NHEJ and HR 

repair pathways, high resolution crystal structures of the eukaryotic Rad50 in complex 

with DNA and the Rad50 interaction domain of Mre11 were missing when this project 

started. Recently published studies reveal the structural change of a prokaryotic MR 

complex after ATP binding and the binding mode of bacterial Rad50 to DNA. The aim of 

this work was to investigate the eukaryotic MRN complex from Chaetomium 

thermophilum (Ct) on structural and biochemical level. After optimizing the purification 

of MR(N) subcomplexes, the crystal structures of the dimeric CtMre11 catalytic domain 

and of the ATP S-bound dimeric CtRad50 nucleotide-binding domain (NBD) in complex 

with the C-terminal Rad50-binding domain (RBD) of Mre11 were solved. This led to the 

structural model of the ATP-bound eukaryotic MR complex. Further, the structure of the 

DNA-bound CtRad50NBD dimer was determined and the mode of binding was further 

investigated by in vitro and in vivo experiments. These new findings explain the ATP-

dependent DNA binding of eukaryotic Rad50 and indicate an important tethering function 

during DNA repair. For future perspectives, the presented results enable a more detailed 

structural and biochemical knowledge about DNA damage repair, telomere and genome 

maintenance.  
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Zusammenfassung 

In allen lebenden Organismen gehören DNA-Doppelstrangbrüche (DSBs) zu den 

gefährlichsten Schäden, da sie zu Genominstabilität und Krebsentstehung im Menschen 

führen können. Unerkannte oder nicht reparierte DSBs können Chromosomen verändern 

und dadurch Apoptose einleiten oder Mutationen verursachen, die die Tumorentwicklung 

fördern. Die zwei wichtigsten Mechanismen DSBs zu reparieren sind die nicht-homologe 

Endverknüpfung (engl.: non-homologous end-joining; NHEJ) und homologe 

Rekombination (HR). Während NHEJ werden die DNA-Brüche verbunden, was zum 

Verlust genetischer Information führen kann, wenn die Enden prozessiert wurden. HR is 

dagegen größtenteils fehlerfrei, da die Sequenzinformation eines Schwesterchromatides 

genutzt wird, um die verlorene genetische Information wiederherzustellen. In NHEJ und 

HR spielt der Mre11-Rad50-Nbs1-Komplex (MRN-Komplex) eine wichtige Rolle als 

DSB-Sensor, Reparaturkomplex und Signalmaschinerie, da er die ATM-Kinase rekrutiert, 

die den Zellzykluskontrollpunkt aktiviert. Mutationen im MRE11-, RAD50- oder NBS1-

Gen werden in Krankheiten gefunden, in denen fehlerhafte Zellzykluskontrolle und 

Chromosomeninstabilität vorkommen. Trotz ausführlicher Untersuchungen der NHEJ- 

und HR-Reparaturmechanismen gab es bisher noch keine hochauflösende Kristallstruktur 

von eukaryotischem Rad50 alleine und im Komplex mit DNA oder der Rad50-

interagierenden Domäne von Mre11. Veröffentlichte Studien zeigen strukturelle 

Änderungen des prokaryotischen MR-Komplexes nach ATP-Bindung und die Interaktion 

von bakteriellem Rad50 mit DNA.  

Das Ziel dieser Arbeit war die strukturelle und biochemische Untersuchung des 

eukaryotischen MRN-Komplexes von Chaetomium thermophilum (Ct). Dabei wurde die 

Strukturen der dimerisierten katalytischen Einheit von Mre11 gelöst und der ATP S-

gebundenen dimerischen Rad50 Nukleotid-bindenden Domäne (NBD) im Komplex mit 

der C-terminalen Rad50-bindenden Domäne von Mre11 gelöst. Dies führte zu dem 

strukturellen Modell des ATP-gebundene eukaryotischen MR-Komplexes. Des Weiteren 

wurde die Struktur von DNA-gebundenem CtRad50NBD-dimer gelöst und der 

Bindungsmodus mittels in vitro und in vivo Experimenten untersucht. Diese neuen 

Ergebnisse erklären die ATP-abhängige DNA-Bindung von eukaryotischem Rad50 und 

deuten auf eine wichtige Funktion währen der DNA-Reparatur hin. Diese Resultate 

liefern ein detaillierteres Wissen über DNA-Reparatur für zukünftige Forschungsprojekte. 
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1. Introduction 

1.1 DNA damages 

Deoxyribonucleic acid (DNA) stores the genetic information of all living organisms. For 

these organisms DNA damage represents a considerable threat for genome stability 

potentially leading to cell death and mutations, which further can cause abnormal cell 

growth and cancer development in humans. Different DNA damaging agents can cause 

changes in the structure of the DNA. Their sources and repair pathways have been studied 

intensively during last decades (Figure 1). 

 

 
Figure 1: DNA damage and repair pathways. The sources for DNA damage, the resulting lesions and 
the corresponding repair pathways are illustrated. Figure adapted from (Dexheimer 2013). 

 

Modifications that do not change the overall structure of the DNA or disturb base-pairing 

can be repaired by direct DNA damage reversal (DDR). Alkylating agents for example 

can lead to methyl phosphotriesters or O6-methylguanine in the DNA. The latter 

modification can lead to G:C  A:T transition after replication, but during DDR the 
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DNA modification is removed without incising the DNA sugar-phosphate backbone or 

without removing a base (Eker et al. 2009).  

Endogenous metabolism also leads to more complex base modifications like deamination, 

alkylation or oxidation. By reactive oxygen species (ROS) for instance guanine can be 

oxidized to 8-oxo-7,8-dihydroguanine (8-OxoG). These base modifications are repaired 

by the base excision repair (BER) pathway. Thereby the damaged base is removed after 

recognition by a DNA glycosylase and an abasic site is generated (Hoeijmakers 2001). 

This abasic site can also arise by spontaneous hydrolysis in the cell and it is estimated that 

in a human cell approximately 9,000 abasic sites occur per day (Nakamura et al. 1998, 

Kunkel 1999). In BER the abasic site is incised, the sugar residue removed and the gap is 

filled by a DNA polymerase. The remaining nick is sealed by a DNA ligase (Kim and 

Wilson 2012). DNA single-strand breaks (SSBs), which occur after DNA incision during 

BER, are also results of oxidative attacks by ROS or of abortive DNA topoisomerase I 

activity. The latter SSBs are recognized and bound by poly (ADP-ribose) polymerase 

(PARP). After PARP activation and recruitment of additional factors the repair pathway 

enters BER at the state that follows the abasic site formation and DNA cleavage 

(Hoeijmakers 2001, Caldecott 2014). DDR and BER function predominantly at the repair 

of DNA damage lesions with largely unaltered DNA structures.  

More severe DNA lesions like base cross-links or bulky adducts distort the DNA helix or 

block transcription and thus require more substantial repair mechanisms. Ultraviolet (UV) 

light induces for instance thymine dimers, cyclobutane-pyrimidine dimers or 6-4 

pyrimidine-pyrimidone photoproducts. ROS are able to generate cyclopurines and the 

chemotherapeutic drug cisplatin for example also induces intra-strand cross-links. 

Nucleotide excision repair (NER) is the major pathway repairing these lesions. It is 

subdivided into global genomic NER (GG-NER) and transcription-coupled NER (TC-

NER), which is associated to RNA polymerase stalling. After recognition of the DNA 

lesion, the sugar phosphate is incised 3´ and 5´ of the damaged site and a 22–30 bp long 

single-stranded DNA fragment is excised. The gap is filled by DNA polymerases and 

subsequently ligated (Reardon and Sancar 2003, Marteijn et al. 2014).  

Another form of DNA damage occurs during the replication of highly repetitive 

sequences that can lead to DNA polymerase slippage and the formation of insertion or 

deletion loops. These loops as well as mispaired nucleotides are repaired by mismatch 
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repair (MMR). Mismatch recognition precedes the recruitment of other MMR factors. 

Then the newly synthesized DNA strand is identified and after degradation of this strand 

towards the mismatch the DNA is resynthesized (Hoeijmakers 2001). Of note, repair 

mechanisms represent very complex, partly overlapping repair pathways and common 

factors therein.  

 

1.2 DNA double-strand breaks 

Among the most dangerous DNA damage lesions are DNA double-strand breaks (DSBs) 

in which, simultaneously, the sugar-phosphate backbone on both DNA strands contains 

breaks within a short distance. Already one single DSB seems to be sufficient to activate 

cell-cycle arrest and to induce cell death (Bennett et al. 1996, Huang et al. 1996). DSBs 

can be introduced endogenously by intracellular metabolism products like ROS or by 

replication stress. Thereby un- or misrepaired DNA adducts cause replication fork 

stalling, which may be processed into DSBs. Repair intermediates like gaps, nicks or 

SSBs can also be converted into DSBs when replicated by a DNA polymerase (Ciccia and 

Elledge 2010, Ghosal and Chen 2013, Zeman and Cimprich 2014). Further, exogenous 

DNA-damaging agents like genotoxic chemicals or ionizing radiation can cause DSBs. 

Genotoxic chemicals can inhibit topoisomerases, which directly lead to DSBs or 

indirectly when replication forks collide. Antitumor drugs like camptothecin (CPT) 

inhibit topoisomerase I, which results in an increase of TopI-bound SSBs, leading to 

DSBs when replication forks collapse (Pommier et al. 2003). Moreover the anticancer 

drug etoposide inhibits topoisomerase II and prevents the ligation of the introduced DSB 

(Bromberg et al. 2003, Degrassi et al. 2004). In tumor treatment the aim of inducing 

DSBs is to induce apoptosis in highly proliferating cancer cells. 

Highly energetic ionizing radiation (IR) can have different sources. IR appears as gamma 

radiation during decay of atomic nuclei, as X-rays in medical procedures, or as cosmic 

radiation. IR can cause direct DNA damage by energy transfer or indirectly by generating 

ROS (Mahaney et al. 2009). For instance two IR-induced SSBs in close proximity and on 

each DNA strand can lead to a DSB. Moreover a ROS induced SSB can cause a DSB 

when a replication fork passes this break (Sutherland et al. 2000, Aguilera and Gomez-

Gonzalez 2008, Cadet et al. 2012, Mehta and Haber 2014).  
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On the other hand, programmed DSBs are induced specifically by endonucleases, for 

example during recombination of homologous chromosomes in meiotic cells. This leads 

to genetic diversity, which is fundamental for evolution (Lam and Keeney 2015). During 

immune system development DSBs are created in class switch and V(D)J recombination 

to generate antibody diversity (Gapud and Sleckman 2011, Xu et al. 2012). Moreover, in 

Saccharomyces cerevisiae, DSBs are also introduced for yeast mating type switching 

(Haber 2012). Un- or misrepaired DSBs can result in apoptosis or gross chromosomal 

aberrations, which can lead to carcinogenesis in humans (Myung et al. 2001a, Myung et 

al. 2001b, Hanahan and Weinberg 2011). To repair DSBs several mechanisms have been 

developed during evolution to maintain genome integrity.  

 

1.3 DNA double-strand break repair pathways 

 
Figure 2: Model of different DSB repair pathways. DSBs can be repaired by canonical non-
homologous end joining (c-NHEJ), alternative NHEJ (alt-NHEJ) or microhomology-mediated end 
joining, and homologous recombination (HR). Important factors are illustrated. Figure adapted from 
(Chiruvella et al. 2013). 

 

The non-homologous end joining (NHEJ) pathway and homologous recombination (HR) 

are the two major pathways to repair double stranded DNA (dsDNA) lesions (Figure 2). 

If these DNA damage response pathways are inaccurate, DSBs can lead to genome 

instability, which threatens genome integrity in daughter cells and might cause cancer 

development (Pardo et al. 2009). 
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1.3.1 Canonical and alternative non-homologous end joining (NHEJ) 

One major DSB repair pathway is non-homologous end joining (NHEJ), which is 

template independent and thus can take place during the whole cell cycle. Nevertheless, 

in mammals NHEJ seems to be the major pathway outside of S phase which indicates a 

cell cycle dependent regulation (Ferretti et al. 2013). In canonical NHEJ (c-NHEJ), 

basically two DNA ends are detected and bound by the Ku complex and the DNA ends 

are ligated by Ligase IV. At other subclasses of NHEJ, called alternative NHEJ (alt-

NHEJ) or microhomology-mediated end joining (MMEJ), DNA ends are processed more 

substantially until complementary sequences are generated. These sequences anneal with 

each other and the break can be filled up and ligated. This repair process may result in the 

loss of genetic information due to nucleolytic degradation of the DNA ends (Figure 2) 

(Thompson 2012, Chiruvella et al. 2013).  

 

1.3.2 Homologous recombination (HR) 

The more accurate DSB repair mechanism is the homologous recombination (HR) 

pathway. HR or homology directed repair (HDR) are present in all kingdoms of life to 

maintain genome stability and to guarantee genetic diversity. HR initiation is triggered by 

unprotected dsDNA ends, which occur for example at collapsed replication forks or 

normal DSBs. In contrast to NHEJ, HR is restricted to S and G2 phase of the cell cycle 

and requires a sister chromatid or a homologous chromosome as a template to repair the 

DSB. In HR the DNA ends are processed extensively in various steps (Symington 2014). 

First, DSB sensors recognize the DNA ends and initiate resection. If the DNA ends do not 

represent a clean cut but modified DNA ends or ends that are blocked by end-binding 

proteins like Ku, the ends have to be freed for HR. To clean the DNA ends, the Mre11-

Rad50-Nbs1 (MRN) complex together with CtIP (CtBP-interacting protein) 

endonucleolytically cut the DNA and process the dsDNA towards the break and thereby 

free the DNA break (Garcia et al. 2011, Cannavo and Cejka 2014). 

MRN is denoted Mre11-Rad50-Xrs2 (MRX) in S. cerevisiae and CtIP is denoted Sae2 in 

S. cerevisiae and Ctp1 in Schizosaccharomyces pombe. For clarity reasons the terms 

“MRN” and “CtIP” will be used throughout this thesis. 
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Figure 3: Model of NHEJ and HR pathways in DSB repair. DSBs can be repaired by c-NHEJ or after 
short-range resection by alt-NHEJ/MMEJ and HR. Alt-NHEJ and HR have a common initial 
resection step to process DSBs. Long-range resection then guides the repair process towards HR. 
Important steps during HR are RPA binding to single-stranded DNA (ssDNA), Rad51 filament 
formation, D-loop formation and DNA synthesis. Resolution via double-strand break repair (DSBR) 
or synthesis-dependent strand annealing (SDSA) results in crossover or non-crossover products. 
Figure adapted from (Liu and Huang 2014). 
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Since MMEJ and HR share common initial factors, MMEJ is still able to occur after 

short-range resection (Figure 2 and Figure 3) (Chiruvella et al. 2013, Truong et al. 2013). 

The followed long-range resection in 5´–3´ direction then guides the pathway towards 

HR. Long-range resection is performed by nucleases and helicases like EXO1, DNA2 and 

BLM. Replication protein A (RPA) binds to the generated 3´ single-stranded DNA 

(ssDNA) and subsequently is replaced by the strand exchange protein Rad51 (denoted 

RecA in E. coli). The formed Rad51-ssDNA filament searches for, and invades into the 

homologue DNA strand. Thereby a D-loop is formed by pairing of the ssDNA filament 

with the homologous sequence on the template strand. By using the 3´ tail as a primer and 

the homologous DNA strand as template, the DNA polymerases Pol  and Pol  extend the 

3´ end in 5´ to 3´ direction. After Holiday junction formation and resolution, or D-loop 

cleavage the DNA break is repaired (Figure 3). If a second DNA end is not present, for 

instance at collapsed replication forks, break-induced replication (BIR) occurs to copy the 

sequence from the homologous region to the telomere. At DSBs with flanking direct 

repeats, single-strand annealing (SSA) can take place when the resected complementary 

strands are exposed. SSA always leads to sequence deletion and therefore is highly 

mutagenic (Mehta and Haber 2014). One crucial factor in DSB detection and the pathway 

choice between NHEJ and HR is the MRN complex. 

 

1.4 Mre11-Rad50-Nbs1 complex 

The MRN complex consists of Mre11 (meiotic recombination 11) and Rad50 (radiation 

50), whose homologs are found in all kingdoms of live, plus the solely in eukaryotes 

present Nbs1 (Nijmegen breakage syndrome 1) subunit (Game and Mortimer 1974, 

Ajimura et al. 1993, Sharples and Leach 1995, Carney et al. 1998, Varon et al. 1998, 

Hopfner et al. 2000a). The Mre11-Rad50 core complex is even found in viruses, for 

instance the bacteriophage T4 (Herdendorf et al. 2011) and in some organisms, homologs 

of Mre11 and Rad50 are fused together into one peptide chain (Yoshida et al. 2011). In 

bacteriophage T4, the MR homolog (denoted gp46/gp47; gene products 46/47) plays a 

crucial role during late stages of infection, at the beginning of recombination-dependent 

replication (Kreuzer and Brister 2010, Almond et al. 2013). The bacterial homolog of MR 

(SbcCD; suppressor of recBC mutations CD) functions in the wake of replication forks by 

degrading hairpin structures and together with RecA (recombination protein A) prevents 
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inverted chromosome duplication in the cell (Zahra et al. 2007, Eykelenboom et al. 2008, 

Darmon et al. 2010). After recruitment to DSBs archaeal and eukaryotic MR(N) repairs 

DSBs caused by genotoxic chemicals, ionizing radiation or at stalled replication forks 

(Costanzo et al. 2001, Trenz et al. 2006, Frols et al. 2007, Quaiser et al. 2008, Delmas et 

al. 2013, Mehta and Haber 2014). Further, eukaryotic MRN is important for the 

maintenance of replicated telomeres and the processing of DNA ends that are blocked by 

DNA hairpins or bound proteins like Ku or Spo11, which is important for meiotic 

recombination (Lobachev et al. 2002, Neale et al. 2005, Bonetti et al. 2009, Bonetti et al. 

2010). For the processing of blocked DNA ends an endonycleolytic cut away from the 

break is necessary to free the DNA end. This process is triggered by CtIP (Sae2/Ctp1) 

(Connelly et al. 2003, Bonetti et al. 2009, Mimitou and Symington 2010, Langerak et al. 

2011, Cannavo and Cejka 2014). 

As a key player in DSB repair MRN is involved in DSB sensing, binding as well as the 

resection of the DNA end. In addition, MRN functions as a recruitment platform for other 

DNA repair factors and as a DNA damage signal transducer by activation of the ATM 

(ataxia-telangiectasia mutated) checkpoint kinase (Assenmacher and Hopfner 2004, 

Williams et al. 2010). In mice complete deletion of either Mre11, Rad50 or Nbs1 results 

in lethality during embryogenesis (Xiao and Weaver 1997, Luo et al. 1999, Zhu et al. 

2001, Buis et al. 2008). In humans, hypomorphic mutations in MRN genes are associated 

with different diseases, which are discussed below (Chapter 1.5). 

 

1.4.1 Biochemical functions of the MRN complex 

Biochemical in vitro studies with MR(N) proteins from bacteria, archaea, yeast and 

humans revealed Mn2+-dependent nuclease activities of the Mre11 subunit. It possesses 

3´–5´ dsDNA exonuclease activity, ssDNA endonuclease activity and dsDNA 

endonuclease activity, in which only one DNA strand of the DNA duplex is incised 

(Connelly et al. 1997, Furuse et al. 1998, Paull and Gellert 1998, Trujillo et al. 1998, 

Connelly et al. 1999, Hopfner et al. 2000a, Herdendorf et al. 2011, Cannavo and Cejka 

2014). E. coli MR is also able to introduce a DSB by nicking both strands of the DNA 

duplex to remove protein from a DNA end (Connelly et al. 2003). The processive 

exonuclease activity of Mre11 on 3´ dsDNA as well as the dsDNA endonuclease are 

influenced by ATP binding to the Rad50 ATPase (Majka et al. 2012). Thereby, inhibited 
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ATP hydrolysis negatively regulates the dsDNA exo- and endonuclease (Connelly et al. 

1997, Hopfner et al. 2001, Trujillo and Sung 2001, Herdendorf et al. 2011, Lim et al. 

2011, Cannavo and Cejka 2014, Deshpande et al. 2014), whereas it was reported that the 

ssDNA endonuclease of MR from E. coli and bacteriophage T4 is ATP-independent 

(Connelly and Leach 1996, Herdendorf et al. 2011). A recent study with yeast MRN 

(MRX) and CtIP (Sae2), which promotes the Mre11 dsDNA endonuclease, shows that 

ATP is essential for the endonuclease activity and the results indicate increased 

exonuclease activity when ATP is absent. Interestingly, the MRN-CtIP (denoted MRX-

Sae2 in S. cerevisiae) interaction always leads to the incision of the 5´ DNA strand, 

resulting in a single-stranded 3´ strand (Cannavo and Cejka 2014). MR(N) is also able to 

open hairpin DNA and to process it in an ATP-dependent manner (Paull and Gellert 

1998, Connelly et al. 1999, Trujillo and Sung 2001). Covalently bound proteins to DNA 

ends, e.g. Spo11, can be removed by MR(N) (Connelly et al. 2003, Hartsuiker et al. 

2009). 

Despite extensive research since the first archaeal Rad50 structure was solved in 2000 

(Hopfner et al. 2000b), detailed knowledge about the mechanism of eukaryotic MRN in 

DSB sensing and processing are still missing. Until now many biochemical DNA binding 

studies with MR(N) homologs revealed relatively weak affinity to DNA ends compared 

to other DSB sensors like the Ku complex (Blier et al. 1993, Walker et al. 2001, Lee et 

al. 2003a, Möckel et al. 2012). However, picomolare DNA binding affinities have been 

measured in single molecule fluorescence energy transfer (Förster resonance energy 

transfer, FRET) experiments of human MRN (Cannon et al. 2013). It is unclear whether 

this difference may be explained by different experimental set-ups or because in vitro 

MR(N) can form large higher-order molecular assemblies, which influence the DNA 

binding affinity (de Jager et al. 2001). This could also explain the necessity of the Rad50 

coiled-coils (CCs), to form multimers that increase the affinity to DNA (Lee et al. 2013). 

Beside the CC domain, Rad50 comprises a ABC (ATP-binding cassette)-type ATPase 

domain that binds and hydrolyses ATP. The ATPase domain is formed by an N-terminal 

Walker A, C-terminal Walker B and a signature motif (Walker et al. 1982, Hopfner et al. 

2000b). If the ATP-free or -bound state is the predominant state in vivo and whether so 

far unknown factors play a role in regulating the ATPase activity, have to be studied in 

the future. By generating mutants that are deficient in either ATP binding or hydrolysis, 

different functions have been identified in the past. Stabilizing Rad50 in ATP-bound or 
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ATP-free state showed severe differences in the MRN activity, especially in the control of 

the nuclease activity. Stabilizing the Rad50 dimer conformation for instance by non-

hydrolysable ATP analogs, decreases the dsDNA exonuclease activity of MR(N). In 

contrast, ATP hydrolysis or inhibition of the ATP-dependent Rad50 dimerization 

stimulate the exonucleolytic processing of dsDNA (Hopfner et al. 2001, Trujillo and 

Sung 2001, Lim et al. 2011, Majka et al. 2012, Cannavo and Cejka 2014, Deshpande et 

al. 2014). Interestingly, the dsDNA endonuclease activity also requires ATP binding and 

hydrolysis, and is reduced when the non-hydrolysable ATP analog ATP S is present but 

also when ATP is absent at all (Trujillo and Sung 2001, Cannavo and Cejka 2014). The 

ssDNA endonuclease activity seems to be largely independent of the ATP-state (Connelly 

and Leach 1996, Herdendorf et al. 2011). Furthermore, Rad50 ATPase activity also plays 

a crucial role during hairpin or dsDNA unwinding and influences DNA tethering during 

end-joining (Paull and Gellert 1999, Cannon et al. 2013, Deshpande et al. 2014). 

The eukaryotic Nbs1 subunit has no catalytic activity within the MRN complex but 

regulatory functions. Nbs1 stimulates DNA binding of MRN, DNA unwinding and 

hairpin processing (Paull and Gellert 1999, Trujillo et al. 2003). Upon DSB formation 

Nbs1 is necessary for the recruitment and the activation of the checkpoint kinase ATM, 

which phosphorylates Nbs1. Although in vitro MR can interact with ATM, the Nbs1 C-

terminus is important for the activation of ATM. In particular, in Xenopus egg extract 

with depleted Nbs1, the last 147 amino acids of Nbs1 are able to restore ATM activation. 

In a mouse model it was shown that the Nbs1 C-terminus plays a role in signaling of 

apoptosis and cell cycle arrest (Gatei et al. 2000, Lee et al. 2003b, Nakada et al. 2003, 

Lee and Paull 2004, Falck et al. 2005, Lee and Paull 2005, You et al. 2005, Berkovich et 

al. 2007, Stracker et al. 2007). Besides the signaling function, Nbs1 builds a platform to 

recruit other DNA repair factors like DNA2, MDC1 (mediator of DNA damage 

checkpoint protein 1), BRCA1 (breast cancer 1) or CtIP to DSBs (Wang et al. 2000, 

Kobayashi et al. 2002, Chapman and Jackson 2008, Chen et al. 2008, Melander et al. 

2008, Spycher et al. 2008, Wu et al. 2008, Wawrousek et al. 2010, Nimonkar et al. 

2011). Within the MRN complex Nbs1 is responsible for the nuclear localization of the 

complex and ionizing radiation-induced MR foci do not form in the nucleus when Nbs1 is 

not present (Carney et al. 1998, Desai-Mehta et al. 2001, Tsukamoto et al. 2005). A S. 

cerevisiae mutation in the MRE11 gene, which destabilized the Mre11-Nbs1 (MN) 

interaction (denoted Mre11-Xrs2 in S. cerevisiae), resulted in an mre11 knockout 
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phenotype on DNA damage repair. This phenotype was rescued by fusing a nuclear 

localization signal (NLS) to the Mre11 protein, because the reduced MN interaction leads 

to no detectable Mre11 in the nucleus (Schiller et al. 2012). A crystal structure of S. 

pombe Nbs1 in complex with CtIP (denoted Ctp1 in S. pombe) revealed that the very N-

terminal FHA (forkhead associated) domain interacts with a phosphorylated threonine, 

which is probably important for the recruitment to DSB sites and thus for DNA damage 

repair (Williams et al. 2009). In yeast, very recent studies with CtIP and MRN (denoted 

Sae2 and MRX, respectively in S. cerevisae) indicate that CtIP is also important for the 

removal of MRN from DSBs after recognition and repair initiation (Chen et al. 2015). 

Although many MRN enzymatic functions are executed by one subunit, its regulation can 

take place by other subunits. Thus, all functional and regulatory aspects have to be 

considered in respect to the whole assembly, which represents a very complex system.  

 

1.4.2 Structural insights into the Mre11-Rad50-Nbs1 complex 

In the past, structural studies about the MRN complex from different organisms have led 

to numerous models for the molecular architecture of the MRN complex. 

 

1.4.2.1 The Mre11 subunit 

Mre11 can be considered as the core of the MRN complex, because of its interaction with 

the Rad50 and Nbs1 subunits. The highly conserved architecture of the dimer 

conformation and the N-terminal nuclease domain becomes evident by Mre11 crystal 

structures from bacteria, archaea and eukaryotes (Figure 4) (Hopfner et al. 2001, Arthur 

et al. 2004, Williams et al. 2008, Das et al. 2010, Lammens et al. 2011, Lim et al. 2011, 

Limbo et al. 2012, Möckel et al. 2012, Schiller et al. 2012, Liu et al. 2014). In yeast, 

mutating the dimer interface phenocopies a mre11 knock-out on DNA damage repair and 

shows the functional importance of the Mre11 dimer. In vitro, monomeric P. furiosus 

Mre11 has decreased DNA affinity, but the nuclease activity seems unaltered (Williams 

et al. 2008, Schiller et al. 2012). Mre11 contains a highly conserved phosphodiesterase 

domain at the N-terminus and a capping domain afterwards (Figure 4). The enzymatic 

active site of Mre11 is formed by two coordinated manganese ions in the 

phosphodiesterase domain (Trujillo et al. 1998, Hopfner et al. 2001). 
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Figure 4: (A) Domain model of Mre11 protein. Nuclease domain, capping and Rad50-binding 
domains of Mre11 are highlighted in blue. (B) Crystal structure of dimeric Pyrococcus furiosus 
Mre11 nuclease and capping domain (PDB code: 1II7). Mre11 protomers are colored in light and 
deep blue. Manganese ions in the active sites are depicted as spheres (cyan). 

 

In vitro, dimeric Mre11 can bridge two DNA ends, which could be essential considering 

its function in end-joining pathways or HR (Figure 5A) (Chen et al. 2001, Williams et al. 

2008, Reis et al. 2012, Ghodke and Muniyappa 2013). In eukaryotes, it has been shown 

that further DNA-binding sites are present in the Mre11 C-terminus. They are crucial for 

DSB repair, but also for the formation and processing of DSBs in meiotic recombination 

(Furuse et al. 1998, Usui et al. 1998). Another interesting motif has been observed in 

homologs of metazoan Mre11, where a glycine/arginine-rich motif facilitates DNA 

binding, nucleolytic processing in vitro and recruitment to DSBs in vivo (Dery et al. 

2008). A superimposition of so far published crystal structures shows that the Mre11 

dimer is not rigid and adopts different angles between the two protomers (Figure 5B). A 

variation of the angle between the two protomers can also be observed within structures 

of the same organism. The structures of S. pombe Mre11 show very different dimer 

conformations with and without Nbs1 (Schiller et al. 2012). The dimer flexibility of 

Mre11 might also be influenced by Rad50, DNA or Nbs1 binding and thus might have 

important functional aspects that have to be analyzed in future experiments. The crystal 

structure of human Mre11 represents an unusual dimer interface, which is stabilized by a 

disulfide bond and thereby decreases flexibility (Park et al. 2011). Previously, it has been 

shown that Mre11 contains a conserved metal binding site and the coordinating histidines 

explain the preference for manganese over magnesium for the 3´–5´ exonuclease activity 
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(Hopfner et al. 2001). However, in P. furiosus Mre11 the magnesium-dependent 

endonuclease promotes resection of the 5´ strand (Hopkins and Paull 2008). The 

structural mechanism of this enzymatic reaction has to be analyzed in future studies and 

although the interaction between Mre11 and DNA has been characterized (Williams et al. 

2008), a detailed structure of the active site during endonucleolytic DNA processing is 

still missing. 

 

 
Figure 5: Crystal structures of Mre11-DNA complex. (A) Crystal structure of Mre11 (blue) bound to 
two dsDNA ends (left) and synaptic DNA (right) are depicted. (B) Comparison of different published 
Mre11 structures reveales a movement of the capping domain. Dimeric crystal structures are aligned 
onto the left monomer of P. furiosus Mre11 (blue). For clarity, the overlaid monomers are not 
depicted, the right monomers are transparent, and the first -helix from the capping domain is 
marked from blue to red to highlight the differences. DNA (sand) indicates the accessible nuclease 
active site. The PDB codes are 1S8E (Arthur et al. 2004), 3DSD, 3DSC (Williams et al. 2008), 2Q8U 
(Das et al. 2010), 3AUZ, 3AV0 (Lim et al. 2011), 4HD0 (Limbo et al. 2012), 3THO, 3THN (Möckel et 
al. 2012), 3QG5 (Lammens et al. 2011), 1II7 (Hopfner et al. 2001), 4FBQ, 4FBW, 4FBK, and 4FCX 
(Schiller et al. 2012). Adapted from (Schiller et al. 2014). 

 

1.4.2.2 The Rad50 subunit 

In bacteria and archaea, the Mre11 C-terminal end forms two or three helices, which bind 

to the Rad50 subunit (Lammens et al. 2011, Lim et al. 2011, Möckel et al. 2012). Rad50 

is a member of the structural maintenance of chromosomes (SMC) family. First structural 

investigations of P. furiosus Rad50 revealed a globular N- and C-terminal domain, which 

together form a nucleotide binding domain (NBD). Out of the NBD protrude very long 

CCs (coiled-coils), which fold back on themselves and enable the interaction between the 

N- and C-terminus (Figure 6A, B) (Hopfner et al. 2000b). Between the different domains 

of life the lengths of the CCs can vary extremely and seem to increase with the 

complexity of the kingdom (Schiller et al. 2014). The CCs contain a highly conserved 

CXXC motif at the apex, which forms the zinc-binding hook. For dimerization one zinc 
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ion is coordinated by four cysteines, two from each CXXC motif of one CC (Hopfner et 

al. 2002). The Zn-mediated interactions between two CCs enable intra- as well as inter-

complex interactions. Electron microscopy and atomic force microscopy (AFM) studies 

revealed inter-complex interactions, which in principle enable the tethering of two DNA 

molecules (de Jager et al. 2001, Hopfner et al. 2002, Moreno-Herrero et al. 2005). These 

results might explain how a sister chromatid is kept in close spatial proximity during HR. 

The globular domain of Rad50 forms the NBD, which can dimerize upon binding of two 

ATP nucleotides and Mg2+ ions. Monomeric Rad50 consists of interacting N- and C-

terminal regions of the polypeptide chain. The NBD structure can be separated into lobe I 

and lobe II (Figure 6B). The ATP binding site is characterized by the N-terminal Walker 

A motif and the C-terminal Walker B motif plus the signature motif interacting in trans. 

One ATP-Mg2+ molecule is trapped between lobe I of one Rad50 protomer and lobe II of 

the other protomer (Figure 6C) (Hopfner et al. 2000b).  

 

 
Figure 6: (A) Domain model of Rad50 protein. N- and C-terminal ATPase domains of Rad50 
(ATPase-N; ATPase-C) as well as the Mre11-interacting domains are marked (orange). The Coiled-
coil domains (grey) and the zinc-hook (Zn, red) are depicted. (B) Crystal structure of monomeric P. 
furiosus Rad50 with protruding coiled-coils. Lobe I and lobe II are highlighted in light and dark 
orange. Walker A (red), Walker B (magenta) and Signature (blue) motifs are marked (PDB code: 
1II8). (C) Crystal structure of first Rad50 dimer from P. furiosus (PDB code: 1F2U). Rad50 
protomers are highlighted in light orange and orange. ATP (magenta) and Magnesium (green) are 
depicted. 

 

Studies with bacterial Rad50 revealed a structural rearrangement within the Rad50 

protomer upon ATP binding. Thereby, the beta-sheets in lobe I move in respect to each 

other, which also leads to a different orientation of the CCs. Further, areas close to the 
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ATP binding motif undergo structural movements upon nucleotide binding and a 

positively charged region emerges in the dimer groove in Thermotoga maritima 

(Lammens et al. 2011, Williams et al. 2011, Möckel et al. 2012). In vitro studies with 

prokaryotic Rad50 showed that the affinity of Rad50 to DNA is stimulated by ATP (Lim 

et al. 2011, Möckel et al. 2012). Since Mre11 and Rad50 are able to bind DNA, the ATP-

bound state probably regulates which subunit is accessible. 

 

1.4.2.3 The Nbs1 subunit 

 
Figure 7: (A) Domain model of Nbs1 protein. The N-terminal FHA, BRCT1 and BRCT2 domains are 
highlighted and the predicted C-terminal Mre11- and ATM-interacting regions are marked. (B) 
Crystal structure of N-terminal FHA, BRCT1 and BRCT2 domains (red) in complex with a 
phosphorylated peptide of CtIP (denoted Ctp1 in S. pombe) (black). The PDB entry is 3HUF. 

 

Secondary structure predictions of Nbs1 reveal large unstructured regions and crystal 

structures of N-terminal Nbs1 from S. pombe have been solved. The Nbs1 amino 

terminus comprises the FHA, BRCT1 (BRCA1 C-terminus 1) and BRCT2 domains 

(Lloyd et al. 2009). Another crystal structure explains the mode of binding of 

phosphorylated S. pombe CtIP (denoted Ctp1) to the FHA domain of Nbs1 (Figure 7) 

(Williams et al. 2009). Via the N-terminal region Nbs1 functions as a recruitment 

platform for other DSB repair factors. The Mre11-interacting region and ATM-binding 

domains are located in the C-terminal part of the Nbs1 polypeptide. The conserved ATM-

interacting carboxy terminus is characterized by a FXF/Y motif and a cluster of acidic 

amino acids. As already mentioned, in Xenopus the C-terminal part of Nbs1 is sufficient 
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to activate ATM (Falck et al. 2005, You et al. 2005). Whether the relatively large 

unstructured and probably flexible regions in Nbs1 function as a tether for the recruitment 

of other repair factors has to be studied. Additional structural information about Nbs1 is 

gained by S. pombe Mre11 crystal structures bound to the C-terminal Mre11 interacting 

region of Nbs1 (Schiller et al. 2012). 

 

1.4.2.4 Eukaryotic crystal structure of Mre11-Nbs1 

The only structural information about interactions between the subunits within the 

eukaryotic MRN complex comes from S. pombe MN crystal structures. It has been shown 

that a conserved motif in the C-terminal region of Nbs1 interacts with Mre11. 

Interestingly, Nbs1-free Mre11 adopts a different conformation than Nbs1-bound Mre11 

and the eukaryotic specific insertion loops become structured upon complex formation. 

Nbs1 binds asymmetrically to the Mre11 dimer. Thereby, one Nbs1 peptide binds to the 

outer side of each Mre11 protomer but only one peptide bridges the Mre11 dimer 

interface. The latter interaction is characterized by a conserved NFKxFxK motif, which 

leads to the mentioned ordering of the eukaryote specific insertion loops and probably 

stabilizes the Mre11 dimer (Schiller et al. 2012). 

 

1.4.2.5 Bacterial and archaeal Mre11-Rad50 crystal structures 

The bacterial and archaeal MR complex contains a globular head domain consisting of 

the Mre11 nuclease domain and the NBD of Rad50 (Rad50NBD) (Connelly et al. 1998, 

Anderson et al. 2001, de Jager et al. 2001). Thereby, the center of the head module is 

formed by the dimerized Mre11 nuclease (Hopfner et al. 2001, Williams et al. 2008, Das 

et al. 2010, Park et al. 2011). Each Mre11 protomer interacts with one Rad50 where the 

CCs protrude out of the Rad50NBD. This head complex forms a conserved 

heterotetrameric M2R2 structure. In ATP-bound state, the Rad50NBD protomers dimerize 

and decrease the accessibility of the Mre11 active site, which becomes more accessible 

upon ATP hydrolysis (Figure 8). Whereas the C-terminal Rad50-binding domain of 

Mre11 (Mre11RBD) consists of a helix-loop-helix motif in bacteria, there is no detailed 

structural information about the eukaryotic interface between Mre11 and Rad50 so far (de 

Jager et al. 2001, Hopfner et al. 2001, Lammens et al. 2011, Lim et al. 2011, Limbo et al. 

2012, Möckel et al. 2012). 
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Figure 8: ATP-dependent movement of the bacterial Mre11-Rad50 complex. Structures of T. 
maritima MR in nucleotide-bound (left) and nucleotide-free (right) state are depicted. Figure adapted 
from (Schiller et al. 2014). 

 

1.4.3 The MRN complex in DNA end metabolism 

MRN possesses multiple functions and is involved in DSB recognition, DSB repair 

initiation, DSB processing, DNA tethering and activation of the cell cycle checkpoint. It 

plays an important role in the choice between DSB repair pathways where end resection 

is needed (HR, alt-NHEJ; MMEJ) and c-NHEJ (Chiruvella et al. 2013, Truong et al. 

2013). Additionally, MRN is involved in processes like meiotic recombination and 

telomere maintenance (Mimitou and Symington 2009). 

The MRN complex in HR 

During HR in mitotic cells MRN functions as a DSB sensor by being among the first 

complexes that are recruited to DSBs and initiate the HR pathway (Lisby et al. 2004).The 

MRN complex and especially the endonuclease activity of Mre11 are important for the 

initial resection of the 5´ DNA end preceding HR (Williams et al. 2008). At unclean 

DNA ends, which might comprise phosphor 3´-ends or hairpin structures but also bound 

proteins, the ends can be freed by MRN. Thereby, the endonucleolytic cut is triggered by 

CtIP and the DNA is processed towards the break to generate a clean and free ssDNA 

end. Recruitment of Exo1 and the Sgs1-Dna2 complex as well as other nucleases and 

helicases enables the long-range resection of several hundred bases to generate 3´ ssDNA, 

to which RPA can bind (Shim et al. 2010, Garcia et al. 2011, Cannavo and Cejka 2014). 

Besides initiation of DNA end resection in HR, MRN functions as a scaffolding factor to 

tether two DNA molecules by inter-complex interactions (de Jager et al. 2001, Hopfner et 

al. 2002, Moreno-Herrero et al. 2005). Upon DSB sensing MRN transduces the signal to 

the ATM kinase, which leads to downstream signaling. ATM phosphorylates various 
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repair and checkpoint factors like Nbs1, H2AX histone, SMC1, checkpoint kinases Chk1, 

Chk2 and transcription regulator p53. This leads to the formation of repair foci and cell 

cycle checkpoint activation to enable DNA repair (Paull 2015). 

 

The MRN complex in meiotic recombination 

In meiotic recombination DSBs are induced by the Spo11 (sporulation 11) protein that 

covalently binds to the DNA end and has to be removed in advance of the recombination 

process. Studies in yeast showed that the MRN complex is needed for the removal of 

Spo11. Since Spo11 forms a covalent bond with the 5´ DNA end, the polarity could 

explain the preferential processing by MRN of this strand. Reported mutations in the 

RAD50 gene represent a separation-of-function phenotype (rad50S) by being able to 

repair DNA damage but showing accumulation of unresected Spo11-bound DSBs, which 

leads to a defect in meiotic recombination and no spore formation in yeast (Alani et al. 

1990, Mimitou and Symington 2009). 

 

The MRN complex in telomere maintenance 

Newly replicated chromosomes represent a one-sided DSB on the leading strand. 

Telomeres are special DNA-protein structures at the ends of eukaryotic chromosomes to 

protect them from recognition by the DNA damage repair machinery and to prevent 

degradation, fusion or recombination (Faure et al. 2010). The MRN complex plays an 

important role in telomere maintenance and thereby also ensures genome integrity. MRN 

together with CtIP is necessary for the resection of the C-rich 5´ DNA end to generate the 

3´ G-strand which is important for telomere elongation and t-loop formation in mammals 

(Bonetti et al. 2014). MRN senses dysfunctional telomeres and in S. cerevisiae MRN 

recruits Tel1, which is the ATM homolog, to stimulate telomere lengthening by the 

telomerase (Goudsouzian et al. 2006, Hector et al. 2007, Deng et al. 2009, Hirano et al. 

2009, Stracker and Petrini 2011). Deletion of MRN (MRX) genes or complex disrupting 

mutations lead to telomere shortening in yeast cells (Kironmai and Muniyappa 1997, 

Boulton and Jackson 1998, Schiller et al. 2012). 
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MRN in NHEJ 

Since the Ku complex shows high affinity to DNA ends and forms a ring structure around 

dsDNA it seems to be the predominant factor for c-NHEJ (Blier et al. 1993, Walker et al. 

2001). However, MRN depletion leads to a reduced end-joining efficiency in c-NHEJ as 

well as alt-NHEJ/MMEJ (Rass et al. 2009, Xie et al. 2009). Interestingly, the Rad50 

ATPase activity, but not the Mre11 nuclease activity, is important for c-NHEJ (Zhang and 

Paull 2005). The repair process is guided towards alt-NHEJ by the MRN complex 

together with CtIP. Thereby the Mre11 nuclease activity is important for the initial short-

range resection and the release of proteins bound to DNA ends, like Ku. For alt-NHEJ the 

factors that are important for the short-range resection, also play a role in the initial 

resection process during HR (Figure 2) (Langerak et al. 2011, Chiruvella et al. 2013, 

Truong et al. 2013). 

 

1.5 MRN mutations in human diseases 

In mice deletions of Mre11, Rad50 and Nbs1 are lethal during embryogenesis (Luo et al. 

1999, Zhu et al. 2001, Buis et al. 2008). In human, hypomorphic mutations of the 

MRE11, RAD50 or NBS1 genes are in relation to different disease like Nijmegen breakage 

syndrome (NBS), NBS-like disorder (NBSLD) and ataxia-telangiectasia-like disorder 

(ATLD) (Figure 9). Cells from these patients and cells from patients with Ataxia 

telangiectasia (A-T) disease, which results by ATM disruption, show similar phenotypes, 

and thus indicate the functional connection between ATM and MRN (Reynolds and 

Stewart 2013). As common characteristics, patient cells carrying MRN mutations 

comprise higher sensitivity to DSB inducing agents like ionizing radiation and show 

spontaneous chromosome instability (Taylor et al. 1975, Taylor et al. 2004). A-T patients 

develop cerebellar neurodegeneration, which leads to gait ataxia (loss of balance), 

dysarthria (speaking problems), oculomotor apraxia (abnormal eye movement), 

dyssynergia (loss of smooth muscle movements) and have a higher risk to develop cancer. 

On the other hand, some A-T patients show mild neurological and clinical characteristics 

(Taylor et al. 2004, Uchisaka et al. 2009, Reynolds and Stewart 2013). ATLD patients 

exhibit similar phenotypes like A-T patients, including cerebellar atrophy, except that no 

telangiectasia has been reported so far and just two siblings out of 18 reported ATLD 

cases, developed lung cancer (Uchisaka et al. 2009). Over 90 % of all NBS patients carry 
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a mutation in the NBS1 gene that leads to the expression of an approx. 26 kDa N-terminal 

(Nbs1p26) and a 70 kDa C-terminal fragment (Nbs1p70). Nbs1p26 contains the FHA and 

BRCT1 domains and Nbs1p70 contains the BRCT2, Mre11- and ATM-interacting 

domains (Maser et al. 2001, Digweed and Sperling 2004, Williams et al. 2009). NBS and 

A-T patients comprise immunodeficiency and a higher cancer predisposition. Cells from 

these patients are more sensitive to ionizing radiation and show altered cell cycle 

checkpoints as well as translocations between chromosome 7 and 14. In contrast to A-T 

and ATLD patients, NBS patients exhibit microcephaly combined with mental retardation 

and no neurodegeneration. NBS patients do not present ataxia, telangiectasia, dysarthria 

or abnormal eye movements (Taylor et al. 2004, Reynolds and Stewart 2013). So far, one 

patient with mutations on both RAD50 alleles has been described as NBS-like disorder 

(NBSLD) because of similar clinical characteristics. The mutations lead to the expression 

of Rad50 protein with elongated C-terminus (Waltes et al. 2009). Two patients with 

mutations in MRE11 genes showed NBSLD symptoms like microcephaly and 

chromosomal instability (Matsumoto et al. 2011).  

 
Figure 9: Model of the MRN complex and human disease. The model consists of S. pombe MN, Nbs1 
and Methanocaldoccus jannaschii MR without Mre11 catalytic domain. PDB codes are 4FBW 
(Schiller et al. 2012), 3HUE (Williams et al. 2009), and 3AVO (Lim et al. 2011). MRN mutations that 
are found in human disorders are mapped onto a MRN model (Mre11: blue; Rad50: orange; Nbs1: 
red). NBS/-LD, ATLD and PMA mutations are highlighted in yellow, green and lilac, respectively. 
Figure is addapted from (Schiller et al. 2014). 
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It was discussed that in A-T/ATLD cells the MRN-ATM pathway is so severely 

damaged, that DSBs appearing during development are not recognized but with 

increasing lifespan accumulate to a level were ATM-independent apoptosis is induced, 

which leads to degeneration of neurons. Malfunctioning ATM control might also lead to 

re-entry of the cell-cycle of developed neurons, which then are committed to cell death. In 

NBS/NBSLD small amounts of partially functional MRN, which is able to activate ATM, 

are probably present. But after recognition of DSBs and ATM-activation, the inaccurate 

DSB repair leads to apoptosis during development of the nervous system, and thus to 

microcephaly (Reynolds and Stewart 2013). Recently, another MRE11 mutation has been 

found in a PMA (progressive myoclonic ataxia) patient, which might destabilize the 

interaction between Mre11 and Nbs1 (Figure 9) (Miyamoto et al. 2014).  

 

1.6 Aims of this work 

The MRN complex plays an important role in many DNA repair processes to ensure 

genome integrity. During extensive research in the past, many structural and biochemical 

characteristics of the MRN complex were determined. Most of the structural work was 

performed with bacterial or archaeal MR homologs and many biochemical experiments 

with eukaryotic MRN confirmed studies about prokaryotic MR. Nevertheless, it is 

indispensable to gain knowledge about the architecture of the eukaryotic MRN complex. 

Also considering experimental approaches in eukaryotic organisms, high resolution 

structures of the MRN complex are needed. When the work for this thesis was started, 

crystal structures of eukaryotic Rad50 and Rad50 interacting with Mre11 or dsDNA were 

still missing. 

The aims of this work were to characterize the architecture of the eukaryotic MRN 

complex from Chaetomium thermophilum (CtMRN) and to investigate the DNA binding 

of the Rad50 subunit. For crystallization of CtMR(N) various subcomplexes had to be 

purified and crystallization trials had to be performed. To gain structural information 

about CtMR(N) the structure of the CtMre11 catalytic domain had to be solved (Chapter 

2.1). For a model of the MR(N) complex and to characterize the structural architecture of 

eukaryotic Rad50, the crystal structure of dimeric CtRad50NBD in complex with the 

CtMre11RBD or dsDNA had to be determined. Besides crystallization, the MR(N) 

complex from C. thermophilum had to be characterized biochemically using small angle 



1. Introduction 
 

24 
 

X-ray scattering (SAXS) analysis. Thereby, the ATP-dependent conformational 

rearrangements of MR(N) and the DNA-binding mode had to be investigated (Chapter 

2.2). To analyze the role of Rad50 during DSB repair, in vivo plate survival assays with 

yeast Rad50 mutants and in vitro DNA binding assays had to be performed (Chapter 2.2 

and Chapter 2.3). 
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2. Results 

 

 

 

 

 

 

 

 

2.1 Structure of the catalytic domain of Mre11 from Chaetomium thermophilum 
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Edited by N. Sträter, University of Leipzig,

Germany

Keywords: Mre11 nuclease; MRN complex.

PDB reference: Mre11 catalytic domain, 4yke

Supporting information: this article has

supporting information at journals.iucr.org/f

Structure of the catalytic domain of Mre11 from
Chaetomium thermophilum

Florian Ulrich Seifert, Katja Lammens and Karl-Peter Hopfner*

Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25,

81377 Munich, Germany. *Correspondence e-mail: hopfner@genzentrum.lmu.de

Together with the Rad50 ATPase, the Mre11 nuclease forms an evolutionarily

conserved protein complex that plays a central role in the repair of DNA

double-strand breaks (DSBs). Mre11–Rad50 detects and processes DNA ends,

and has functions in the tethering as well as the signalling of DSBs. The Mre11

dimer can bind one or two DNA ends or hairpins, and processes DNA

endonucleolytically as well as exonucleolytically in the 30-to-50 direction. Here,

the crystal structure of the Mre11 catalytic domain dimer from Chaetomium

thermophilum (CtMre11CD) is reported. CtMre11CD crystals diffracted to 2.8 Å

resolution and revealed previously undefined features within the dimer

interface, in particular fully ordered eukaryote-specific insertion loops that

considerably expand the dimer interface. Furthermore, comparison with other

eukaryotic Mre11 structures reveals differences in the conformations of the

dimer and the capping domain. In summary, the results reported here provide

new insights into the architecture of the eukaryotic Mre11 dimer.

1. Introduction

Double-strand breaks (DSBs), which occur through exposure

to genotoxic chemicals, ionizing radiation or reactive oxygen

species or during replication-fork blockage (Costanzo et al.,

2001; Sutherland et al., 2000; Aguilera & Gómez-González,

2008; Cadet et al., 2012; Mehta & Haber, 2014), are one of the

most threatening forms of DNA damage. On the other hand,

DSBs are enzymatically introduced in a programmed fashion

during meiosis and V(D)J or class-switch recombination

during immunoglobulin development (Lam & Keeney, 2014;

Gapud & Sleckman, 2011; Xu et al., 2012). To prevent chro-

mosomal rearrangements and genome instability, organisms in

all kingdoms of life have developed different DSB-repair

pathways (Hanahan & Weinberg, 2011; Myung, Chen et al.,

2001; Myung, Datta et al., 2001).

DSBs are repaired by principal pathways such as non-

homologous end joining (NHEJ) and homology-directed

repair or homologous recombination (HR), or alternative

pathways such as microhomology-mediated end joining

(MMEJ) (Chiruvella et al., 2013; Chapman et al., 2012). In

eukaryotes, the Mre11–Rad50–Nbs1 (MRN) complex plays a

key role in the early steps of DSB repair, and its function in

the initial detection and processing of DNA ends is important

for the choice between resection-dependent (HR, MMEJ) and

resection-independent (NHEJ) pathways (Lisby et al., 2004;

Truong et al., 2013; Chiruvella et al., 2013; Shibata et al., 2014).

MRN consists of a dimer of Mre11, two Rad50s and, in

eukaryotes, Nbs1 (Lammens et al., 2011; Schiller et al., 2012;

Möckel et al., 2012; Lim et al., 2011; Arthur et al., 2004; Das et

al., 2010; Limbo et al., 2012). The Mre11 nuclease forms the

enzymatically active centre of the complex. In vitro, Mre11 is
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able to process DNA exonucleolytically in the 30-to-50 direc-
tion and cuts ssDNA endonucleolytically (Trujillo et al., 1998;

Hopfner et al., 2001). To date, Mre11 has been found as a

dimer in all available crystal structures. Although comparison

of these structures reveals a highly conserved overall shape of

the protein, consisting of an N-terminal phosphodiesterase

domain followed by a capping domain, the dimer angle

between the Mre11 protomers can adopt remarkably different

conformations (Schiller et al., 2014). In eukaryotes, the dimer

angle is stabilized by latching loops that provide a critical

interaction site for Nbs1 with Mre11 (Schiller et al., 2012; Park

et al., 2011). However, a substantial portion of the functionally

important, eukaryote-specific latching loops remained disor-

dered in previously determined structures (Schiller et al., 2012;

Park et al., 2011). Here, we present the crystal structure of the

Mre11 catalytic domain dimer from the thermophilic eukar-

yote Chaetomium thermophilum (CtMre11CD) at 2.8 Å reso-

lution. We find interpretable electron density for the entire

latching loops, revealing an unexpected expansion of the

Mre11 dimer interface by this functionally critical region.

2. Materials and methods

2.1. Protein expression and purification

For co-expression, open reading frames for the components

of the MRN head complex (MRNHC) were cloned into two

different expression vectors. The Mre11 sequence coding for

amino acids 1–537 was cloned into pET-21b vector (Novagen)

with NdeI and NotI, and a C-terminal His6 tag from the vector

was fused to the polypeptide chain. Three constructs coding

for the Rad50 N- and C-termini (amino acids 1–224 and 1103–

1315, respectively) as well as Nbs1 (amino acids 565–714) were

first cloned into a modified polycistronic pET-29 vector with

NdeI/NotI and then combined with AarI/AscI into a single

vector. After co-transformation and induction at an OD600 of

0.8 with IPTG (0.3 mM final concentration), expression in

Escherichia coli Rosetta (DE3) cells took place overnight at

18� C. After cell resuspension in lysis buffer (300 mM NaCl,

25 mM Tris pH 8.0) plus 10 mM imidazole and disruption by

sonication, cell debris was removed by centrifugation. The

supernatant was incubated with nickel–NTA (Qiagen) for 2 h

at 7�C. The nickel–NTA column was washed with 10 column

volumes (CVs) of lysis buffer and 5 CVs each of lysis buffer

containing 20 and then 50 mM imidazole. The protein complex

was eluted with lysis buffer containing 250 mM imidazole.

Subsequently, size-exclusion chromatography (Superdex 200

26/60, GE Healthcare) was performed (buffer: 200 mM NaCl,

25 mM Tris pH 8.0); the purified protein was concentrated to

7.0 mg ml�1 and aliquots were frozen in liquid nitrogen.

2.2. Crystallization

Crystallization trials with the MRNHC protein were

performed by hanging-drop vapour diffusion (Table 1). Small

plate-shaped crystals appeared after three months, and after a

further month these were transferred into reservoir solution

containing 10%(v/v) 2,3-butanediol for cryoprotection. The

crystals were flash-cooled and stored in liquid nitrogen.

2.3. Data collection and processing

Data were collected on the X06SA beamline at the Swiss

Light Source (SLS), Villigen, Switzerland. The data were

indexed and integrated with XDS (Kabsch, 2010a,b). Data-

collection statistics are shown in Table 2.

2.4. Structure solution and refinement

The L-test from POINTLESS indicated the presence of

twinning and further analysis with phenix.xtriage identified the

twin operator as k, h, �l (Adams et al., 2010; Winn et al., 2011;

Evans, 2006, 2011). The structure of the C. thermophilum

Mre11 catalytic domain (CtMre11CD; amino acids 4–412) was

solved by molecular replacement with Phaser (McCoy et al.,

2007). The search model was the structure of monomeric

Schizosaccharomyces pombeMre11 (PDB entry 4fbq; Schiller

et al., 2012), which was co-crystallized with an Nbs1 construct.

The structure was refined with PHENIX, accounting for

twinning (Adams et al., 2010), in combination with manual

model building using Coot (Emsley & Cowtan, 2004; Emsley et

al., 2010). An initial round of rigid-body refinement was

followed by restrained refinement with TLS refinement. The
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Table 1
Crystallization.

Method Hanging-drop vapour diffusion
Plate type 24-well plates (Crystalgen SuperClear

Plates, pregreased; Jena Bioscience)
Temperature (K) 292
Protein concentration (mg ml�1) 7.0
Buffer composition of protein
solution

200 mM NaCl, 25 mM Tris pH 8.0

Composition of reservoir solution 200 mM ammonium citrate tribasic
pH 6.8–7.0, 18%(w/v) PEG 3350

Volume and ratio of drop 3 ml; 2:1 protein:reservoir
Volume of reservoir (ml) 500

Table 2
Data collection and processing.

Values in parentheses are for the outer shell.

Diffraction source Beamline X06SA, SLS
Wavelength (Å) 0.979600
Temperature (K) 199.4
Detector MAR Mosaic 225 CCD
Crystal-to-detector distance (mm) 270.00
Rotation range per image (�) 1.0
Total rotation range (�) 180
Exposure time per image (s) 1.0
Space group P212121
a, b, c (Å) 56.7, 56.6, 304.6
�, �, � (�) 90, 90, 90
Mosaicity (�) 0.245
Resolution range (Å) 50.00–2.78 (2.95–2.78)
Total No. of reflections 168505 (22412)
No. of unique reflections 25153 (3657)
Completeness (%) 98.1 (89.5)
Multiplicity 6.7 (6.13)
hI/�(I)i 11.18 (1.81)
CC1/2 99.6 (74.5)
Rmeas 0.136 (0.962)
Overall B factor from Wilson plot (Å2) 65.1
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Fo � Fc map revealed density for two manganese ions in the

active site, and water molecules were added manually. Struc-

ture factors and atomic coordinates of CtMre11CD have been

deposited in the Protein Data Bank with accession code 4yke

and refinement statistics are reported in Table 3.

3. Results and discussion

We crystallized the catalytic domain of CtMre11 (CtMre11CD;

amino acids 4–412) and determined the structure by molecular

replacement using S. pombeMre11 (SpMre11CD) as the search

model (PDB entry 4fbq; Schiller et al., 2012). The crystal-

lization screen contained the MRN head complex (MRNHC)

and, presumably owing to proteolysis, CtMre11CD crystals

formed. CtMre11CD contains an N-terminal nuclease domain,

which is characterized by a phosphodiesterase motif, and a

C-terminal capping domain (amino acids 300–412; Fig. 1a).

The asymmetric unit consists of two Mre11 protomers that

together form the characteristic, previously observed Mre11

dimer mediated by interactions between �-helices �2 and �3
(Hopfner et al., 2001; Schiller et al., 2012; Fig. 1 and Supple-

mentary Fig. S1). The interface between these two helices

consists of mainly hydrophobic residues: Tyr70, Met73, Leu139

and Val142. The dimer interface is extended by Arg66, which

forms hydrogen bonds to Asn62, Ser129 and Leu134 from the

other protomer (Fig. 2a). The two manganese ions that are

present in the nuclease domains of both CtMre11CD proto-

mers are coordinated in a similar fashion by the absolutely

conserved residues Asp17, His19, Asp57, Asn124, His213,

His241 and His243 (Schiller et al., 2012; Fig. 2b).

Structural comparison of the individual Mre11 protomers of

CtMre11CD with Homo sapiens Mre11CD (HsMre11CD) and

SpMre11CD reveals that they have similar structures, consis-

tent with their high sequence identities of 46 and 61%,

respectively (Schiller et al., 2012; Park et al., 2011; Sievers et al.,

2011; Goujon et al., 2010). CtMre11CD largely adopts the

conformation of SpMre11CD, but is even more compact than

either Nbs1-bound or unbound SpMre11CD owing to an
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Table 3
Structure refinement.

Values in parentheses are for the outer shell.

Resolution range (Å) 49.52–2.78 (2.89–2.78)
Completeness (%) 98.2
No. of reflections, working set 25153 (2253)
No. of reflections, test set 1251 (110)
Final Rwork (%) 19.8 (30.8)
Final Rfree (%) 23.1 (40.1)
No. of non-H atoms

Protein 6548
Manganese 4
Water 60
Total 6612

R.m.s. deviations
Bonds (Å) 0.003
Angles (�) 0.683

Average B factors (Å2)
Protein 83.9
Manganese 60.0
Water 45.0

Ramachandran plot
Favoured regions (%) 96
Additionally allowed (%) 4
Outliers (%) 0

Figure 1
Crystal structure of CtMre11CD and comparison with Nbs1-bound and unbound SpMre11CD structures (SpMre11CD and SpMre11CD–Nbs1,
respectively). (a) Structures of the dimer of the catalytic domains of SpMre11CD, CtMre11CD and SpMre11CD in complex with the Nbs1 peptide (purple;
SpMre11CD–Nbs1; PDB entries 4fcx, 4yke and 4fbw, respectively). The models are displayed in ribbon representation. Mre11 protomers are highlighted
in light and deep blue. (b) Details of the Mre11 dimer interface and the eukaryotic insertion loops (lime and brown). The conformation of the
CtMre11CD insertion loops is similar to the conformation of the loops in the SpMre11CD–Nbs1 structure.
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approximately 5 Å movement of the capping domain towards

the nuclease active site (Fig. 2c). In contrast, the conformation

of the Mre11CD dimer displays greater variation between the

eukaryotic Mre11 structures. CtMre11CD and SpMre11CD

adopt similar conformations yet differ with respect to the

human Mre11CD dimer, in which a significantly different

interface between the two nuclease domains is stabilized by a

disulfide bond. This disulfide bond is absent in the S. pombe

structures and the presented CtMre11 structure (Park et al.,

2011; Schiller et al., 2012).

Interestingly, comparison with SpMre11CD and the

SpMre11CD–Nbs1 complex reveals that CtMre11CD has fully

ordered insertion loops even in the absence of Nbs1, and we

are now able to model the entire eukaryote-specific loop

insertion that plays a critical role in the interaction with Nbs1

and in damage signalling (Figs. 1 and 2d). In the case of
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Figure 2
Details of the Mre11CD crystal structure from C. thermophilum. (a) Detailed view of the CtMre11CD dimer interface consisting of �-helices �2 and �3
from each protomer. (b) CtMre11CD nuclease active site with two coordinated manganese ions (cyan). (c) Overlay of SpMre11CD (grey), SpMre11CD–
Nbs1 (light blue) and CtMre11CD (deep blue) by alignment of the nuclease domains onto the nuclease domain of CtMre11CD indicates the movement of
the capping domain by up to 5 Å. (d) Fully modelled eukaryotic insertion loop (lime and brown). The interaction between Arg77 and Phe102 is
highlighted. Selected residues are depicted as colour-coded sticks and annotated. Hydrogen bonds in (a) and (d) are highlighted as dashed lines.
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SpMre11CD, Nbs1 binding partially orders the insertion loops,

resulting in a more compact Mre11 dimer (Schiller et al., 2012;

Fig. 1b). Indeed, the dimeric conformation of CtMre11CD with

fully ordered insertion loops is very similar to that of

SpMre11CD bound to Nbs1, but is quite distinct from the more

open SpMre11CD dimer conformation in the absence of Nbs1

(Fig. 3). The Nbs1-binding site bridging the SpMre11 dimer

is occupied in the presented structure by symmetry-related

molecules that may stabilize the insertion loops. This dimeric

structure of Mre11 enables each nuclease active site to bind a

dsDNA substrate and thus allows the bridging of two DNA

ends (Williams et al., 2008). Interestingly, the insertion loops

extend the Mre11 dimer interface through reaching across the

lateral CtMre11CD dimer interface. Notably, the conserved

phenylalanine (Phe102 in C. thermophilum) stacks with and

stabilizes Arg77, a critical residue in stabilizing the Mre11

dimer interface (Schiller et al., 2012), of the opposing

protomer (Fig. 2d). As a result, the 1490 Å2 Mre11–Mre11

interface of CtMre11CD is twice as large as that of Mre11 from

the thermophilic archaeon Pyrococcus furiosus (Krissinel &

Henrick, 2007), in which the insertion loops are absent.

In summary, this structure of CtMre11CD fully defines the

eukaryotic insertion loops and shows that these loops expand

the Mre11 dimer interface (Hopfner et al., 2001). Furthermore,

our results show considerable flexibility not only between the

Mre11 protomers but also between the phosphodiesterase

domain and the capping domain.

Acknowledgements

We thank Brigitte Kessler for help with cloning and protein

purification and Robert Byrne for comments on the manu-

script, as well as the staff of the Swiss Light Source, Villigen,

Switzerland for technical support. This work was funded by

the German Research Council projects GRK1721 and

SFB684, the Center for Integrated Protein Sciences Munich

and the European Research Council Advanced Grant

ATMMACHINE to K-PH.

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221.
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Lammens, K., Bemeleit, D. J., Möckel, C., Clausing, E., Schele, A.,
Hartung, S., Schiller, C. B., Lucas, M., Angermüller, C., Söding, J.,
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Figure 3
Overlay of CtMre11CD, SpMre11CD and SpMre11CD–Nbs1. Structures of
SpMre11CD (grey) and SpMre11CD–Nbs1 (light blue) dimers are aligned
via one of the two CtMre11CD (dark blue) protomers to show the
variability of the dimer interface and dimer angle. The distance between
the capping domains of CtMre11CD and SpMre11CD reaches 28 Å.
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Supplementary Figure S1: Elution profile of CtMre11CD and gel filtration standard 
(Bio-Rad) on analytical size exclusion chromatography column (S200 increase 5/150 
GL). CtMre11CD (red) compared to gel filtration standard (blue): 1st peak (670 
kDa), 2nd peak (158 kDa), 3rd peak (44 kDa), 4th peak (17 kDa), 5th peak (1.35 
kDa). The catalytic domain of CtMre11 elutes at approximately the volume of a 
globular protein with a molecular weight of 158 kDa. These data show that Mre11 
forms a defined multimer, given its non-globular shape presumably a dimer.
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Summary 

The Mre11-Rad50-Nbs1 (MRN) complex is a central factor in the repair of DNA 

double-strand breaks (DSBs). The ATP-dependent mechanisms of how MRN detects 

and endonucleolytically processes DNA ends for the repair by microhomology-

mediated end joining or further resection in homologous recombination are still 

unclear. Here we report the crystal structures of the ATP S bound dimer of the 

Rad50NBD (nucleotide-binding domain) from the thermophilic eukaryote 

Chaetomium thermophilum (Ct) in complex with either DNA or CtMre11RBD (Rad50-

binding domain) along with biochemical studies. Our analyses provide a structural 

framework for the architecture of the eukaryotic Mre11-Rad50 complex and clarify 

how MRN binds internal DNA as well as cohesive ends with 3´ tails in an ATP-

dependent fashion. 

 

Introduction 

DNA double-strand breaks (DSBs) threaten genome stability in all kingdoms of life. They 

arise during replication fork collapse and can be results of ionizing radiation, reactive 

oxygen species (ROS) or genotoxic chemicals (Sutherland et al. 2000 , Costanzo et al. 

2001, Pommier et al. 2003, Mahaney et al. 2009). Un- or misrepaired DSBs can result in 

cell death or gross chromosomal aberrations and DSB induced genome instability is a 

hallmark of cancer (Hanahan and Weinberg 2011). DSBs are also enzymatically 

generated physiological intermediates in meiotic recombination, V(D)J and class switch 

recombination as well as yeast mating type switching (Gapud and Sleckman 2011, Haber 

2012, Xu et al. 2012, Lam and Keeney 2015). All kingdoms of life require mechanisms to 

sensitively detect and repair DSBs in order to maintain the integrity of the genome. 

Several pathways can repair DSBs. In canonical non-homologous end joining (c-NHEJ), 

the DNA ends are ligated directly in a reaction that depends on Ku and Ligase IV. 

However, a Ku and Ligase IV independent end-joining pathway also exists and is denoted 

alternative NHEJ (alt-NHEJ). Hereby, the DNA ends often undergo limited processing by 

endo/exonucleases and are joined at microhomologies (denoted also microhomology-

mediated end joining, MMEJ). These template-independent end-joining reactions are 
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error-prone and can result in loss of genetic information or chromosomal alterations 

(Chiruvella et al. 2013). 

The template-dependent homologous recombination (HR) repairs DNA ends in a 

typically error-free manner, but is limited to S and G2 phases of the cell cycle. HR shares 

the initial DNA processing steps with MMEJ, but in HR the DNA ends are further 

resected to several hundred bases long 3´ single-strand tails. These tails are paired with 

homologous regions of the sister chromatid (or the homologous chromosome in meiosis) 

and are extended by DNA polymerases, thereby restoring the disrupted genetic 

information. The choice between NHEJ and HR is regulated in a cell cycle dependent 

manner (Chiruvella et al. 2013, Symington 2014). 

The Mre11-Rad50-Nbs1 complex and its archaeal Mre11-Rad50, bacterial SbcC-SbcD 

and bacteriophage gp46-gp47 homologs, collectively denoted MRN or MR, are central 

factors in the cellular processes surrounding DSBs, hairpin structures, DNA ends and 

telomeres (Schiller et al. 2014). MRN is implicated in both end-joining and HR and 

among the first repair factors at DSBs in eukaryotic cells (Lisby et al. 2004, Mladenov 

and Iliakis 2011). MRN is an ATP-dependent endo/exonuclease that processes DNA ends 

in HR and MMEJ. It displays 3´–5´ dsDNA exonuclease activity, hairpin opening 

activity, ssDNA endonuclease activity and an ATP-dependent dsDNA endonuclease 

activity (Paull and Gellert 1998, Connelly et al. 1999, Hopfner et al. 2000a, Trujillo and 

Sung 2001, Truong et al. 2013, Cannavo and Cejka 2014). In the latter, MRN cleaves the 

5´ strand near or at some distance from the DSB in a reaction that also requires the 

Sae2/CtIP protein in eukaryotes (Cannavo and Cejka 2014). The nuclease activity of 

MRN helps to remove Ku from DNA ends, can clear “dirty” DNA ends and generates 

initial 3´ overhangs for MMEJ or further resection in HR (Garcia et al. 2011a, Langerak 

et al. 2011, Truong et al. 2013, Cannavo and Cejka 2014). MRN also recruits other repair 

factors to DSBs and helps eliciting the DNA damage response by activating the ataxia 

telangiectasia mutated (ATM) kinase (Lisby et al. 2004, Berkovich et al. 2007, Limbo et 

al. 2007, Mimitou and Symington 2008, Deshpande et al. 2014). Hypomorphic mutations 

in human MRN result in genetic instability and cause ataxia telangiectasia like disorder 

(ATLD), Nijmegen breakage syndrome (NBS), NBS like disorder (NBSLD) and 

progressive myoclonic ataxia (PMA) that are characterized to various extents by cancer 

predisposition, immune deficiency and neurological disorders (Carney et al. 1998, Varon 
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et al. 1998, Stewart et al. 1999, Waltes et al. 2009, Matsumoto et al. 2011, Miyamoto et 

al. 2014).  

The MRN complex consists of two subunits of the endo/exonuclease Mre11, two subunits 

of the ATPase Rad50, plus the Nbs1 subunit (Lammens et al. 2011, Lim et al. 2011, 

Möckel et al. 2012, Schiller et al. 2012). Nbs1 (denoted Xrs2 in Saccharomyces 

cerevisiae) is only found in eukaryotes and is important for ATM activation, nuclear 

localization  of MRN and recruitment of other repair factors (Desai-Mehta et al. 2001, 

You et al. 2005, Limbo et al. 2007, Chen et al. 2008, Mimitou and Symington 2008). 

Mre11 together with the Rad50 nucleotide-binding domains (NBDs) and the Mre11-

interacting motif of Nbs1 forms the globular catalytic domain of MRN that binds and 

processes DNA in an ATP-dependent fashion. Rad50 further possesses a 15–50 nm long 

coiled-coil domain with a terminal Zn-hook dimerization motif (Schiller et al. 2014). The 

precise mechanistic functions of the coiled-coil domains are still unclear, but they are 

important for functions of the complex in NHEJ, ATM activation and DNA end 

processing (Hohl et al. 2011, Lee et al. 2013, Roset et al. 2014). 

Structural studies revealed that ATP induces large conformational changes in the MR 

complex. While the Mre11 nuclease sites are accessible for dsDNA in the ATP-free form, 

ATP binding engages the two Rad50 NBDs and the resulting ATP-bound NBD dimer 

blocks the Mre11 DNA-binding cleft (Lim et al. 2011, Möckel et al. 2012). Mutational 

analyses showed that ATP binding but not hydrolysis by Rad50 is important for 

checkpoint activation, DNA tethering and telomere maintenance, whereas both ATP 

binding and ATP hydrolysis are required for DSB repair and DNA processing (Lee et al. 

2013, Deshpande et al. 2014, Rojowska et al. 2014). These data suggest that the ATP-

bound form of Rad50 functions in DNA tethering and ATM activation, while a full ATP 

binding and hydrolysis cycle is critical for efficient DNA processing.  

The mechanism for the ATP-dependent DNA binding and DNA tethering by Rad50 is 

still unclear. We recently identified a DNA-binding motif on bacterial Rad50 (Rojowska 

et al. 2014), however it remained unresolved how ATP promotes a high affinity DNA 

binding conformation. Here we report the crystal structure of the Chaetomium 

thermophilum CtRad50NBD dimer in complexes with ATP S and DNA or the Rad50-

binding domain of Mre11 (Mre11RBD). Although the general architecture of Mre11-

Rad50 is similar to that of prokaryotic homologs, we also observe some notable 
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differences, including a substantially enlarged Mre11-Rad50 interaction interface. Most 

importantly, we present the crystal structure of CtRad50NBD in complex with ATP S and 

dsDNA. This structure clarifies how Rad50 binds to DNA in an ATP-dependent fashion 

and shows that Rad50 dimers recognize approximately 18 base pairs of dsDNA across the 

NBD dimer interface. Interestingly, fluorescence anisotropy measurements further show 

that Rad50 not only binds dsDNA of sufficient length but can also efficiently bind shorter 

DNA molecules if they have cohesive 3´ tails. Functional studies indicate that the 

presented DNA binding conformation is also critical for the DNA repair functions of 

Rad50. This suggests that the observed DNA interaction is not only a critical form in 

DNA signaling and tethering, but also an important intermediate in DNA end processing. 

Together, our studies establish a framework for the architecture and ATP-dependent 

dynamics of the eukaryotic Mre11-Rad50 catalytic head module and reveal how Rad50 

binds dsDNA and bridges DNA ends in an ATP-dependent manner. 

 

Results 

Structure of C. thermophilum Rad50NBD in complex with ATP S:Mg2+ and the 

Rad50-binding domain of Mre11 

To obtain the structure of a eukaryotic Rad50 protein and its complex with Mre11RBD, we 

co-purified CtRad50NBD with the putative Rad50-binding domain of Mre11 (suppl. Fig. 

S1). Crystals containing a Rad50NBD dimer bound to two Mre11RBDs (residues 438–531) 

and two ATP S:Mg2+ molecules in the asymmetric unit diffracted to 3.0 Å and we 

obtained experimental phases by a single-wavelength anomalous diffraction experiment 

with selenomethionine-derivatized protein. Data collection and refinement statistics are 

summarized in supplementary Table S1. 

Two CtRad50NBDs assemble into a dimer with two ATP S:Mg2+ molecules sandwiched in 

the dimer interface (Fig. 1A). Each of the two ATP S:Mg2+ molecules is bound to 

opposing Walker A, Walker B and signature motifs in a generally symmetric dimer 

conformation (Fig. 1B) (Hopfner et al. 2000b). In general, our structure represents a pre-

hydrolysis state (see also below for the DNA complex) with a tight coordination of the 

three phosphates by residues from Walker A and signature motifs, a tightly coordinated 
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Mg2+ ion and a formed catalytic “dyad” between Glu1238 (Walker B motif) and His1275 

(His-switch) (Zaitseva et al. 2005).  

The two protruding coiled-coil domains each bind one helical Mre11RBD on the “outside” 

face of the Rad50NBD dimer. Mre11RBD is a five-membered helical bundle that 

predominantly interacts with the C-terminal -helix of the antiparallel Rad50 coiled-coil 

domain (Fig. 1C). Hereby, the first three -helices of Mre11RBD bind approximately nine 

turns of the C-terminal ( H) and three turns of the N-terminal ( G) -helix of the coiled-

coil. The short fourth helix caps the RBD, while the fifth helix forms a “spine” that 

protrudes backwards to the lobe I of Rad50NBD. The structure of eukaryotic Mre11RBD-

Rad50NBD generally resembles that of its prokaryotic homologs but it reveals notable 

differences and extensions that are described in more detail in the following section. 

 

Comparison to prokaryotic Mre11-Rad50 

Compared to the previously determined structures of prokaryotic Rad50 and Mre11, 

CtRad50NBD and CtMre11RBD contain a number of structural insertions (Fig. 2, suppl. Fig. 

S2). The perhaps most notable and unexpected of these elements is the substantially 

enlarged Rad50-binding domain of Mre11. RBDs of bacterial SbcD (Thermotoga 

maritima) and archaeal Mre11 (Methanocaldococcus jannaschii) correspond to -helices 

1–2 or 1–3 of the RBD of CtMre11. Of note, the location of the CtMre11RBD helix 5, 

pointing towards the Rad50NBD suggests that the remaining C-terminal polypeptide chain 

of eukaryotic Mre11 (about 100-200 additional amino acids depending on the species) is 

situated in the vicinity of the globular “head” of MRN, consistent with findings that 

identify the C-terminal region as important for stable DNA and Xrs2 binding as well as 

for meiotic recombination (Furuse et al. 1998, Usui et al. 1998, Bhattacharyya et al. 

2008). Another indication for the importance of the conformation of the Mre11RBD 

domain is the fact that a mutation in this domain (T481 K in human; Q489 in C. 

thermophilum) was found in a patient with AT-like disease (ATLD5/6) (Delia et al. 

2004). 

A noteworthy insertion is insertion II that is located in close proximity to the ATP-

coordinating residues 62–68 (suppl. Fig. S2). This element forms a short -helix at the 

Rad50-Rad50 interface in the ATP-bound state. Interestingly, the regions around 
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insertions I and II harbor three Rad50S mutations (Ser14 Pro, Arg20 Met and 

Val63 Glu in S. cerevisiae), suggesting that these insertions could play a role in the 

regulation of MRN activity by CtIP/Sae2 (Alani et al. 1990, Cannavo and Cejka 2014). 

Compared to prokaryotic Rad50, the CtRad50 dimer groove is enlarged by -hairpin 

insertion III on top of lobe I and by insertion IV, a -hairpin ( 8 and 9) that binds along 

the coiled-coil. 

Opposite from insertion II is another notable feature of eukaryotic Rad50 that concerns 

the ATP-binding site. The adenine moiety is bound by the opposing protomer at a rather 

hydrophobic face formed by Met1194 and Met1201. These methionines are part of an 

intriguing eukaryote-specific sulfur rich cluster that consists of two to four methionines 

(166, 1194, 1201 and 1203) plus a highly conserved cysteine (Cys1207) in the eukaryotic 

signature motif (suppl. Fig 2). A sulfur rich cluster at the ATP-binding site has been 

shown to regulate the ATPase activity of the ATP synthase in response to ROS (Buchert 

et al. 2012). Considering that ATM is directly activated by ROS (Guo et al. 2010), the 

unusual clustering of sulfur containing residues at the ATP-binding site of eukaryotic 

Rad50 raises the question as to whether MRN is also subject to regulation by ROS.  

In summary, our structure defines notable features and expansions of eukaryotic Rad50 as 

compared to its simpler prokaryotic homologs and provides a framework to rationalize 

many functional and disease related mutations in Mre11RBD and Rad50NBD (see 

discussion). 

 

Architecture and dynamics of the eukaryotic Mre11-Rad50 head complex 

The structure of CtMre11RBD-Rad50NBD reported here together with a structure of the 

catalytic domain dimer of CtMre11 (CtMre11CD) (Seifert et al. 2015) enabled us to 

address the architecture and dynamics of the eukaryotic Mre11-Rad50 head module by 

chemical cross-linking and mass spectrometry (CXMS) experiments as well as small 

angle X-ray scattering (SAXS). We superimposed the crystal structures of CtMre11CD 

and CtMre11RBD-Rad50NBD onto the crystal structure of archaeal Mre11-Rad50NBD (PDB 

code 3AVO). This rigid-body superposition led to a very reasonable fit between the 

Mre11 dimer and the Rad50 dimer (Fig. 3A). In this modeled complex, the C-terminus of 

the Mre11 capping domain (Ala-412) and the N-terminus of Mre11RBD (Ser-438) are 
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approximately 10 Å apart, a distance that could be easily spanned by the 25 amino acids 

that connect these modules in the primary structure.  

To validate this model, we cross-linked the MRN head complex (MRNhc) with the lysine-

specific cross-linker disuccinimidyl suberate (DSS) in the presence and absence of 

ATP S:Mg2+ and identified cross-linked peptides by mass spectrometry (suppl. Fig. S3) 

(Tosi et al. 2013, Leitner et al. 2014). Cross-links were found between all three different 

polypeptide chains (Fig. 3B): 91 specific non-redundant cross-links in the presence and 

149 non-redundant cross-links in the absence of ATP S:Mg2+ (suppl. Table S3). The C-

terminal part of the Nbs1 construct used here cross-links to many regions of the 

Rad50NBD and Mre11 and is probably flexible. Next, we mapped cross-links between 

Mre11 and Rad50 onto the model for the closed complex. In the presence of ATP S, we 

identified 15 cross-links between Mre11 and Rad50. All cross-links except two identified 

in the presence of ATP S:Mg2+ map with a lysine C -lysine C  distance of 15-41 Å, 

validating the docked model (Fig. 3C). In the absence of ATP S, we identified 35 cross-

links between Rad50 and Mre11. The increased amount of cross-links could be the result 

of an increased flexibility between Mre11 and Rad50 or the presence of additional 

conformational states. In support of these possibilities, we also find a much broader 

distance distribution of these cross-links when mapped onto the model for the closed 

conformation, with many cross-links mapping to C -lysine C  distance of >41Å.  

To further analyze ATP-dependent structural dynamics, we performed SAXS analyses. 

Both the maximum distances (Dmax) as well as the mean distances in the particle become 

substantially smaller in the presence of ATP S (Fig. 3D). These data reveal that the 

eukaryotic Mre11-Rad50 head complex likely adopts a more closed state in the presence 

of ATP, which is consistent with the CXMS data (Fig. 3B, C) and the structural dynamics 

observed for bacterial and archaeal MR complexes (Lammens et al. 2011, Williams et al. 

2011, Möckel et al. 2012, Deshpande et al. 2014).  

Altogether, these analyses show that also the eukaryotic Mre11-Rad50 head module 

undergoes ATP-dependent structural transitions and adopts a more compact state in the 

presence of ATP, consistent with the model that a Rad50 dimer binds into the active site 

groove of the Mre11 dimer.  
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Structural basis for ATP-dependent DNA binding by Rad50 

To establish a framework for DNA binding to eukaryotic Rad50 and to reveal how ATP 

promotes DNA binding to Rad50 proteins, we crystallized CtRad50NBD in the presence of 

22mer dsDNA and ATP S:Mg2+. Crystals in space group P212121 diffracted X-rays to 2.5 

Å resolution and we determined the structure by molecular replacement using 

CtRad50NBD as a search model. The asymmetric unit contained one Rad50 dimer bound 

to two ATP S:Mg2+ molecules and 15 bp dsDNA. Although stoichiometric amounts of 

Mre11 were also present in the crystallization drops, Mre11 was not part of the crystals. 

Data collection, refinement and model statistics are summarized in suppl. Table S1.  

dsDNA is well defined in the electron density and forms a quasi-continuous, undulating 

mainly B-form DNA double-helix in the crystal lattice (Fig. 4A, suppl. Fig. S4A, B). The 

asymmetric unit accommodates only 15 of the 22 base pairs, so either Mre11 in the 

crystallization drops partially degraded the DNA during the relatively long crystallization 

time (4 months) or, alternatively, the DNA molecules are shifted between adjacent 

asymmetric units. In either case, although density for the DNA backbone and bases is for 

the most part well defined, we refrained from assigning a defined sequence to the bound 

DNA.  

The DNA duplex is situated in the positively charged groove between the two coiled-coils 

of the Rad50 dimer (Fig. 4B, suppl. Fig. S4C–E). Each of the two strands binds both sides 

of the Rad50 dimer, resulting in a symmetric interaction of the DNA minor groove along 

the dimer interface. The observed DNA-binding mode explains the up to now unclear 

dependency of Rad50 DNA binding on the presence of ATP: the ATP-driven 

reorientation of lobes I and II and dimer formation of two Rad50NBDs positions and 

assembles eight DNA binding motifs (four on each side of the dimer) to recognize an 

approximately 18 base pair long DNA duplex via both backbone strands. 

 

Details of ATP-dependent DNA binding of the Rad50 dimer 

The Rad50NBD dimer binds in total 12 bases within an 18bp duplex, six on each of the two 

halves of the 2-fold symmetric DNA-binding site. These six bases, three for each of the 

two strands per NBD, are bound via four DNA-binding motifs (I-IV) (Fig. 5A–C). 

Hereby, the DNA is recognized through the minor groove backbone, consistent with a 
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sequence independent mode of DNA binding. Motifs I–III are located on lobe I, while 

motif IV is located on lobe II. Together, these motifs clamp the DNA between the 

opposing Rad50 protomers on each of the two halves of the dimer. For the further 

discussion, we will denote the strand polarity as the direction from the center towards the 

outside of the Rad50 dimer, i.e. a 3´ 5´ strand on one side of the Rad50 dimer becomes 

the 5´ 3´ strand on the other side and vice versa.  

Motif I is the top strand of the peripheral -sheet ( of the ABC (ATP-binding cassette) 

fold and binds the 5´ 3´ strand via interactions between the backbone of two consecutive 

bases to the main chain oxygen atoms of Thr110 and Gln113 as well as the main chain 

nitrogen atom of Thr113 (Fig. 5A–C). Motif II, the previously identified strand-loop-helix 

motif (Rojowska et al. 2014), contributes to the DNA interaction by providing charge 

complementarity and through interactions of Arg132 with the major groove and/or DNA 

backbone, but intriguingly appears to have a minor role in overall DNA recognition 

compared to what was previously found for bacterial Rad50 (see discussion).  

The 3´ 5´ strand is bound across the Rad50NBD dimer interface by motifs III and IV. 

Motif III is situated in the central cavity of the DNA binding groove and connects the two 

main ATP-binding elements, the helix A (following the P-loop/Walker A motif) and the 

adenine recognition loop (aa 64–68) (Fig. 5A–C). As such, this loop could play an 

important role in coupling DNA binding and ATP binding or hydrolysis. Motif III binds a 

DNA backbone phosphate via main chain and side chain interactions of Asn58 and by 

inserting Arg61 into the minor groove. The two preceding phosphates are recognized by 

Arg1204 as well as Motif IV from the opposing NBD. Motif IV is located at the N-

terminal turn of F, which connects the nucleotide-binding and coiled-coil domains. 

Arg1204 is situated in the Rad50 dimer interface and besides directly binding to the 

phosphate backbone it also stacks with Asn58 on motif III and could thereby more 

broadly facilitate DNA binding.  

In summary, both strands of the dsDNA are recognized in a fashion that predominantly 

involves hydrogen bonds between the DNA backbone and the protein main chain in 

conjunction with three arginine fingers that reach into the minor groove or directly bind 

the DNA backbone at the Rad50 dimer interface. The interactions with Arg1204 and 

motifs III and IV can only form in the tightly engaged, ATP-bound Rad50NBD dimer and 
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the observed DNA-binding mode provides a mechanistic basis for the ATP-dependent 

recognition of DNA by Rad50. 

 

Functional analysis of Rad50 DNA interaction in S. cerevisiae 

To test the relevance of the observed ATP-dependent DNA interaction of Rad50 in a 

functional context in vivo, we analyzed the capability of rad50 mutants to rescue the 

camptothecin (abortive topoisomerase I) sensitivity of a rad50 strain. Some previously 

designed mutants in the DNA binding groove of Rad50 on the basis of the DNA complex 

of Thermotoga maritima (Tm) Rad50 did not reduce the activity of Rad50 in the repair of 

camptothecin induced lesions, although they robustly decreased the activity of Rad50 in 

telomere maintenance. However, the sequence based alignments between T. maritima and 

S. cerevisiae turned out to be too imprecise and some of the resulting residues were 

apparently not in direct contact with DNA as observed now in the new eukaryotic Rad50-

DNA complex. On the other hand, a mutation of S. cerevisiae R1201Sc E 

(corresponding to R1204Ct) resulted in severe defects not only in telomere maintenance 

but also DSB repair, arguing that the observed ATP-dependent interaction of DNA by 

Rad50 is critical not only for telomere maintenance but also for DSB processing. 

Although the corresponding mutation did not disrupt the ATP-induced dimer formation of 

TmRad50, R1201Sc E might still interfere with a proper ATP-dependent engagement of 

Rad50NBDs in S. cerevisiae in vivo, due to its central location in the dimer interface. 

Hence, to independently validate the relevance of the observed DNA complex, we 

mutated K60Sc E (corresponding to Arg61Ct). Arg61 binds into the minor groove and 

therefore is intimately involved in DNA interaction, but has no apparent structural role. 

Intriguingly, K60Sc E leads to a comparably severe camptothecin sensitivity like the 

S1205Sc R and E1235Sc Q (Walker B) mutations (Fig. 5D, suppl. Fig. S5). We 

therefore conclude that for the repair of camptothecin induced DSBs DNA binding along 

the Rad50 groove is as important as ATP binding and hydrolysis by Rad50. 

 

DNA double-strand break tethering 

Biochemical studies indicated that MR and to a minor extent Rad50NBD can tether DNA 

ends in the presence of ATP, a function that is likely important for e.g. MMEJ 
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(Deshpande et al. 2014). While our structure now explains the critical role of ATP in 

DNA binding by assembling a dsDNA recognition platform that recognizes 

approximately 18 base pairs of DNA, it also indicates that ATP-Rad50 does not 

specifically recognize a DNA end. Our observation that a quasi-continuous dsDNA is 

assembled across Rad50 dimers in the crystal lattice by shorter oligonucleotides raises the 

question whether Rad50 could directly tether two DNA ends by a mechanism that 

involves e.g. stacking of two DNA ends across the DNA binding platform. This would 

explain both, the observation that MR can bind internal sites of DNA, in the vicinity of 

DNA ends, but also facilitate tethering of DNA ends by ligases in vitro.  

To address this question, we performed fluorescence anisotropy measurements, which 

allow the measurements of precise dissociation constants (Kd) (Fig. 6, suppl. Fig. 6, 

suppl. Table S2). We first tested the effect of the DNA length as well as the presence of 

ATP on the DNA binding affinity of the Rad50NBD. In the absence of ATP, we do not 

observe any substantial binding of a 35mer dsDNA (“1” in suppl. Fig. 6 and suppl. Table 

S2) to CtMre11RBD-Rad50NBD, while in the presence of ATP, the 35mer — short enough 

to prevent binding of two Rad50 dimers but long enough to reach across a Rad50 dimer 

— robustly binds to CtRad50NBD-Mre11RBD with a Kd = 0.45±0.03 μM. These data show 

that ATP is critical for DNA binding to CtMre11RBD-Rad50NBD and validate the structural 

data. A corresponding dsDNA 17mer (2.1) that is too short to fully reach across the 

Rad50NDB dimer was bound with a Kd = 3.1±0.4 μM to ATP-Mre11RBD-CtRad50NBD. This 

substantially reduced affinity compared to the 35mer DNA (1) is consistent with the 

structural results that show that Rad50 needs 18 bp to fully reach across its DNA binding 

platform. 

However, instead of binding a single duplex of at least 18 bp, the Rad50 dimer might also 

bind two DNA ends with either stacked or annealed complementary overhangs. To 

address this possibility, we also tested DNA substrates with different types of overhangs 

in the binding studies. A 20mer with a five base 5´ overhang (3.1) has a similar affinity 

(Kd = 2.7±0.3 μM) to the blunt ended 17mer (2.1). However, a 5 base pair 3´ overhang 

(4.1) resulted in a notable increase in binding affinity (Kd = 0.99±0.10 μM), indicating a 

preference for 3´ overhangs. This distinction can be explained by the binding mode of 

DNA to the Rad50 dimer (see discussion). Extending the 3´ or 5´ overhangs to 20 bases 

resulted in tight binding with Kd values of 0.34±0.02 μM (5.1) and 0.54±0.04 μM (6.1), 

respectively. These long DNAs could easily span the Rad50NBD dimer, but at least a 
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partial DNA duplex is required since a 35bs ssDNA (13) bound with a reduced Kd = 

1.9±0.3 μM.  

To test the simultaneous binding of two DNA ends to the Rad50 dimer, we mixed two 

20mers that contained five nucleotide long complementary 3´ (4) or 5´ (3) overhangs. The 

two 20mers in each of the two mixtures can anneal via these overhangs, resembling two 

tethered partially processed DNA ends with a short homology. In the case of 5´ overhangs 

(3), we calculated a Kd = 2.2±0.3 μM for the labeled DNA in the presence of a second 

20mer with a complementary overhang. Thus, the binding affinity is not notably 

increased compared to the Kd in the absence of the second 20mer. However, the situation 

is substantially different in the case of complementary 3´ overhangs (4). Here we 

calculated a Kd = 0.45±0.4 μM for the labeled DNA in the presence of a second molecule 

with a complementary overhang. This affinity is the same as observed for the continuous 

35bp dsDNA (Kd = 0.45±0.03 μM). In summary, these data provide a quantitative 

evaluation of ATP-dependent binding of DNA to the Mre11RBD-Rad50NBD module. 

Consistent with the structural analysis, the equilibrium binding assays suggest that the 

ATP-bound Rad50 dimer binds either a continuous duplex, a partial duplex of sufficient 

length, or two DNA ends that are annealed via short 3´ overhangs. 

 

Discussion 

We provide a first structural framework for the eukaryotic Rad50 nucleotide-binding 

domain (NBD) and its complexes with either the Rad50-binding domain (RBD) of Mre11 

(Mre11RBD) or dsDNA. Our structural and biochemical results clarify the mechanism of 

ATP-dependent DNA binding by the Rad50 DSB repair enzyme and reveal that ATP-

induced Rad50 dimer formation generates a platform to recognize approximately 18bp of 

a continuous or partial DNA duplex, or shorter DNA with complementary 3´ overhangs 

such as MMEJ substrates. 

MRN is a central factor in the metabolism of DNA ends in all kingdoms of life and has 

functions in the tethering, processing and — in eukaryotes — checkpoint signaling of 

DSBs (Stracker and Petrini 2011). Hereby, MRN has the ability and key function to clear 

protein bound or “dirty” DNA ends in order to elicit MMEJ or HR. These DNA ends 

include meiotic breaks that are blocked by covalently attached Spo11, but also hairpin 
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structures, other DNA topoisomerase adducts, or DNA ends bound by the NHEJ factor 

Ku (Liu et al. 2002, Lobachev et al. 2002, Neale et al. 2005, Mimitou and Symington 

2010, Langerak et al. 2011, Sacho and Maizels 2011). Hereby, MRN cleaves the 5´ strand 

near or at some distance from the DNA end in a reaction that requires ATP hydrolysis, 

Mre11’s nuclease motif and the Sae2/CtIP protein (Garcia et al. 2011b, Cannavo and 

Cejka 2014, Shibata et al. 2014).  

Current models propose that MRN has distinct structural states that are controlled by ATP 

binding to Rad50 (Hopfner 2014). In the presence of ATP, prokaryotic MR adopts a 

closed conformation, in which the ATP-bound Rad50NBD dimer binds into the DNA-

binding groove of the Mre11 and blocks its nuclease active sites (Lim et al. 2011, Möckel 

et al. 2012). We show here that CtRad50NBDs forms a similar dimer structure, whereby 

two ATP molecules are sandwiched between opposing Walker A/B and signature motifs. 

The CtRad50 dimer also has the appropriate dimensions and shape to fit into the DNA 

binding groove of CtMre11. Together with the SAXS and CXMS studies, our structural 

analysis suggests that eukaryotic MR can adopt a similar closed complex in the presence 

of ATP. In the absence of ATP, however, the Rad50 modules would disengage and allow 

access to the Mre11 dimer active site.  

The critical role of ATP binding to Rad50 in most, if not all functions of the MRN 

complex is well established. A Rad50 signature motif mutant prevents formation of the 

“closed” Rad50 dimer and phenocopies a rad50 null mutation (Rojowska et al. 2014). 

This suggests that the dimerized Rad50NBDs represent a critical intermediate state in 

presumably all functional roles of MRN such as telomere maintenance, DSB processing, 

ATM activation and DNA tethering. Mutations that stabilize the closed conformation by 

slowing down ATP hydrolysis also render the cells highly sensitive to DNA damaging 

agents, but appear to be remarkably proficient in DNA tethering, telomere maintenance 

and ATM activation. Altogether, current models suggest that an engaged Rad50 dimer 

triggers an MRN conformation that activates ATM and tethers DNA, while both ATP 

binding and ATP hydrolysis by MRN are required for DNA end processing (Lee et al. 

2013, Deshpande et al. 2014, Rojowska et al. 2014).  

Our results suggest that the Rad50 DNA binding module has a preference for 3´ overhang 

DNA, whereby two shorter DNA ends with two complementary five base pair 3´ 

overhangs are bound with virtually the same affinity as a longer continuous stretch of 
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DNA. These data together with our structural results provide a convincing model for the 

observed ATP-dependent tethering function of MRN and Rad50NBD (Fig. 7A). Thereby, 

Rad50 could directly link two DNA ends with complementary (5 nt) 3´ tails, the 

substrates expected to undergo MMEJ as an alternative pathway to NHEJ. The preference 

for 3´ tails by the Rad50 module can also be explained by DNA binding data with the full 

length human MR complex. In the absence of ATP, it was observed that MR has a 

preference for 5´ tails while in the presence of ATP or AMP-PNP, the complex has a 

strong preference for 3´ tails (de Jager et al. 2002). Our data would suggest that in the 

absence of ATP, the Rad50NBDs are disengaged and DNA binding by MRN is dominated 

by the Mre11 dimer. In the presence of ATP, however, the Rad50NBDs engage, block the 

Mre11 dimer from binding DNA, and bind DNA either internally or at resected 3´ tails. 

The here reported results also nicely explain how the DNA binding motifs preferentially 

interact with DNA containing 3´ overhangs than with 5´ tails (Fig. 7B). Thereby, DNA 

with a 3´ overhang is able to interact with DNA binding motifs I, III of one protomer and 

the overhang is able to bridge the dimer and to interact with Arg1204 and motif IV of the 

second protomer. This explains not only the relevance of the Rad50 dimer conformation 

but also how two complementary 3´ overhangs can be stabilized for pairing and 

subsequently be annealed in vitro or during MMEJ (Deshpande et al. 2014). 

Our structural and functional results clarify the effect of ATP on the interaction of DNA 

by Rad50 but also by MRN. Consistent with DNA binding along the ATP-bound Rad50 

dimer, the critical role of ATP in the DNA binding capacity of both full length Rad50 or 

the isolated NBD has been seen very early on (Raymond and Kleckner 1993, Hopfner et 

al. 2000b).  

Intriguingly, the structure of the eukaryotic Rad50-ATP-DNA complex reported here is 

quite different to the structure of the bacterial Rad50-ATP-DNA complex. Although the 

general DNA-binding area, i.e. the NBD surface on lobe I next to the coiled-coils, is the 

same for both structures, the DNA binding modes are distinct: the DNA in the bacterial 

complex binds with only one of the two backbone strands to lobe I, only binds to one 

protomer of the Rad50NBD dimer and does not bind along the Rad50-DNA binding groove 

to bind the other protomer (suppl. Fig. 7). As a result, this earlier study has failed to 

explain the requirement of ATP-induced Rad50 dimer formation for DNA recognition by 

Rad50. What comes as a surprise, however, is the observation that even the binding 

motifs on lobe I between the two structures are distinct. In particular, the DNAs bind to 
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non-equivalent, but adjacent -strands on lobe I. Although the chemistry of the backbone-

backbone interaction between DNA and Rad50 appears to be well conserved, the 

particular residues are not the same. In the bacterial complex, DNA is “rolled” laterally 

along the -sheet wall. While the structure of the eukaryotic complex reported here 

convincingly explains the biochemical and allosteric interplay between ATP and DNA 

binding to Rad50, the distinct binding mode observed for bacterial Rad50 requires further 

investigations. We do not want to rule out species dependent differences, but find this 

rather unlikely. It is possible that the crystal lattice prevented a conformation where DNA 

reaches across both Rad50 protomers in the bacterial complex. However, structure guided 

mutagenesis corroborated the DNA complex in solution in vitro. It is therefore possible 

that the bacterial structure resembles a different functional state of MR. It should be noted 

that the CtRad50NBD displays a robust DNA-binding activity even in the absence of 

additional domains of the MRN complex. However, results from the work on other 

species of MRN or MRX revealed that the coiled-coil domains are important for most of 

the MRN functions and that they increase the binding affinity to DNA (Hohl et al. 2011, 

Lee et al. 2013).  

Altogether, our results give new insights into the molecular architecture of the eukaryotic 

MR(N) complex and its function in ATP-dependent DNA tethering. Thereby, dimeric 

Rad50 can bind dsDNA internally or tether two DNA ends with complementary 3´ 

overhangs, which probably is important for DNA double-strand break repair and MMEJ.  

 

Materials and Methods  

Protein preparation 

For the expression and purification of the different MR(N) sub-complexes from 

Chaetomium thermophilum (Chaetomium thermophilum var. thermophilum DSM 1495), 

the Mre11 gene was cloned into pET21b vector (Novagen) with NdeI/NotI. Depending on 

the construct a C-terminal 6xHis affinity tag from the plasmid or a cleavage site for 

Prescission protease (GE Healthcare) with a 8xHis affinity tag were introduced. Different 

constructs of N- and C-terminal Rad50 genes (hypothetical protein CTHT_0073630; 

XP_006697619) were cloned with or without a fragment of Nbs1 (coding for a start 

methionine and residues 565–714) into a modified polycistronic pET29b vector 
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(Novagen) with NdeI/NotI and NotI/Bpu1102I (Fermentas). To stabilize Rad50, the N- 

and C-termini were fused together with a sequence coding for a GGAGGAGG amino 

acid linker. See suppl. Figure S1 for list of MRN sub-complexes and constructs. 

For co-expression of different MR(N) constructs, pET21b and pET29b plasmids were co-

transformed into E. coli Rosetta (DE3) cells (Novagen) and cells were grown at 37°C to 

an OD600 of 0.6 in LB. After induction with 0.3 mM IPTG, protein expression was carried 

out at 18°C overnight. Cells were centrifuged, resuspended in buffer A (25 mM Tris pH 

8.0, 300 mM NaCl, 10 mM imidazole) and lysed by sonication. For the purification of the 

MR head complex (MRhc) complex, which resulted in Rad50NBD-DNA crystals, protease 

inhibitor (SIGMAFASTTM Protease inhibitor Tablets, Sigma-Aldrich) was added to the 

lysis buffer. Cell debris was removed by centrifugation and the supernatant was incubated 

for 1 h with Ni-NTA resin (Qiagen) at 10°C. Subsequently, using gravity flow, three 

wash steps were performed with buffer A containing 10, 20 and 50 mM imidazole. The 

protein was eluted with buffer A containing 250 mM imidazole and applied to a size-

exclusion chromatography column using a Superdex-200 (GE Healthcare) with 

gelfiltration buffer (25 mM Tris pH 8.0, 200 mM NaCl). Afterwards the protein was 

concentrated and flash-frozen in liquid nitrogen for storage at -80°C. 

For selenomethionine-derivatized MRBDRNBD, the E. coli B834 Rosetta (DE3) strain and 

selenomethionine media (Molecular Dimensions) were used. Co-expression and co-

purification of selenomethionine-labeled MRBDRNBD was performed according to the 

protocol mentioned above, using buffer A with additional 5 mM beta-mercaptoethanole. 

For the three wash steps during affinity chromatography purification, buffer A with 10 

and 25 mM imidiazole as well as 1 M NaCl was used.  

In the MRhc complex the linked Rad50 (aa 1-224-GGAGGAGG-1109-1315) contained an 

E1238 Q mutation in the Walker B motif to inhibit ATP hydrolysis and to increase the 

dimerization efficiency.  

 

Crystallization, data processing, structure determination and refinement 

Crystals of Mre11RBD-Rad50NBD (MRBDRNBD) were grown by hanging drop vapor 

diffusion method using the purified MRBDRNBD complex (11.8 mg/mL) with 12 mM 

MgCl2, 5 mM ATP S and 150 μM dsDNA. dsDNA was generated with equimolar 
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concentrations of 22mer ssDNA (5´-GATTCGTGTAGCTACACGAATC-3´) and 23mer 

ssDNA (5´-GATTCGTGTAGCTACACGAATCA-3´) in annealing buffer (500 mM 

NaCl, 100 mM Tris pH 7.5) and incubating at 95° C for 5 min. and cooling down to 4° C 

(0.1° C/s). 1 μL reservoir solution (11% (w/v) PEG 1500; 0.1 M NaCl; 0.1 M MgCl2; 0.1 

M HEPES pH 8) was mixed with 2 μL protein solution and after three months crystals 

appeared. These were cryoprotected in reservoir solution containing 15% (v/v) 2, 3-

butanediol and flash-cooled in liquid nitrogen. Diffraction data up to a resolution of 3.0 Å 

were collected at the X06SA beamline (Swiss Light Source (SLS), Villigen, Switzerland) 

and after indexing with XDS (Kabsch 2010b, Kabsch 2010a), the structure of MRBDRNBD 

was solved by single-wavelength anomalous dispersion (SAD) using autoSHARP 

(Vonrhein et al. 2007) and Buccaneer for automated model building (Cowtan 2006, 

Cowtan 2008). Rounds of manual model building with Coot (Emsley and Cowtan 2004, 

Emsley et al. 2010) and refinement with PHENIX (Adams et al. 2010) resulted in a 

model with good R-factors. The crystals contained one MRBDRNBD dimer per asymmetric 

unit and the space group was I 222.  

To crystallize CtRad50NBD-DNA by the hanging-drop vapor diffusion method, the 

purified MRhc complex (14.1 mg/mL) was mixed with 12 mM MgCl2, 5 mM ATP S and 

95 μM dsDNA (final concentrations). Therefore, 5 mM ssDNA (5´-

GATTCGTGTAGCTACACGAATC-3´) was annealed in annealing buffer to final 

concentration of 2.5 mM dsDNA. For crystallization 2 μL reservoir solution (42% (v/v) 

pentaerythritol propoxylate (5/4 PO/OH) and 0.25 M potassium acetate) were mixed with 

1 μL protein-DNA solution. After four months two needle-shaped crystals appeared. 

Crystals were transferred into 2 μL reservoir solution for cryoprotection and stored in 

liquid nitrogen. Data were collected on the X06SA beamline at the SLS in Villigen and 

one crystal diffracted X-rays up to 2.5 Å. Data were indexed with XDS (Kabsch 2010b, 

Kabsch 2010a) and the structure was solved by molecular replacement with the 

CtRad50NBD structure using Phaser (McCoy et al. 2007). After rounds of manual model 

building in Coot (Emsley and Cowtan 2004, Emsley et al. 2010) and refinement with 

PHENIX (Adams et al. 2010), difference density for the DNA was suitable for building 

B-Form dsDNA into the electron map. Further rounds of manual model building and 

refinement resulted in good R-factors. The space group was P212121 and Rad50NBD-DNA 

crystals contained one dimer and 15 bp dsDNA per asymmetric unit.  
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See suppl. Table S1 for collection and refinement statistics. Figures were prepared using 

PyMOL (The PyMOL Molecular Graphics System, Version 1.2r3pre. LLC. Schrödinger 

(Schrodinger 2010)).  

 

Small angle X-ray scattering (SAXS) experiment 

C. thermophilum MRhc protein was purified as described above and the flow-through of 

the concentration step was used as buffer reference for the small-angle X-ray scattering 

(SAXS) measurements. The MRhc complex without ATP S was concentrated up to 4.4 

mg/mL and stored at 4° C. For measurement of the MRhc complex in the presence of a 

non-hydrolysable ATP analog, ATP S and MgCl2 were added (final conc. 2 mM and 8 

mM, respectively) before concentrating the protein up to 4.9 mg/mL and storing at 4° C. 

The two samples were measured at the EMBL P12 beamline of the German Electron 

Synchrotron (DESY, Hamburg, Germany). The P(r) distribution curve and the maximum 

inter-particle distance (Dmax) were calculated using the ATSAS 2.5.1 package 

(Petoukhov et al. 2012). The Kratky plot shows a smaller Dmax of the protein in presence 

of ATP S and the mean distance in the protein also decreases. 

 

Chemical cross-linking experiment and mass spectrometry (CXMS) analysis 

The MRNhc complex with linked Rad50 N- and C-terminal regions was purified as 

described above and applied to a S200 GL10/300 (GE Healthcare) size exclusion 

chromatography column (buffer: 25 mM HEPES pH 8.2, 200 mM NaCl). For analysis in 

the presence of ATP S, the protein was mixed with MgCl2 and ATP S (12 mM and 5 

mM final conc., respectively) before the reaction. 57 μg of the complex (0.45 μg/μL) 

were cross-linked with an equimolar mixture of isotopically light and heavy labelled 

disuccinimidyl suberate (DSS-d0/d12, Creative Molecules Inc.; final concentration: 0.11 

mM) dissolved at 50 mM in DMF (dimethylformamide, Sigma-Aldrich) immediately 

prior to cross-linking. The cross-linking reaction was performed at 30°C, 1,000 rpm for 

35 min and quenched by the addition of 100 mM final concentration Tris/HCl pH 8.0 and 

further incubation at 30°C, 1,000 rpm for 15 min. The cross-linking efficiency was 

visualized by SDS-PAGE in combination with silver staining following standard 

protocols. The preparation of cross-linked peptides for MS analysis followed a standard 
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in-solution protocol as described (Herzog et al. 2012, Jennebach et al. 2012, Leitner et al. 

2012). In short, proteins were denatured by adding two volumes of 8 M urea. Cross-

linked proteins were reduced with 5 mM final concentration tris(2-

carboxyethyl)phosphine (TCEP, Thermo Scientific) for 45 min at 35°C and subsequently 

alkylated in the dark for 30 min at room temperature (10 mM iodoacetamide final 

concentration) followed by proteolytic digestion for 2h with Lys-C (Wako) and overnight 

trypsin incubation at 35°C at an enzyme-substrate ratio of 1 to 50 (w/w). Desalted 

samples were enriched for cross-links by size exclusion chromatography (Superdex 

Peptide PC 3.2/30 column, GE Healthcare) prior to LC-MS/MS analysis (liquid 

chromatography coupled to tandem mass spectrometry). Peptide samples were analyzed 

on an LC-MS/MS system using an UHPLC (EASY-nLC 1000, Thermo Scientific) online 

coupled to an LTQ Orbitrap Elite system (15 cm x 0.050 mm I.D. reversed phase column 

packed with 2 μm C18 beads (Acclaim® PepMap RSLC analytical column), Thermo 

Scientific) equipped with a standard nanoelectrospray source. 5 peptide fractions were 

separated using each a 60 min gradient of solvent B (98% acetonitrile, 0.1% formic acid) 

from 2 to 35% at a flow rate of 250 nL/min. Each sample was injected twice to improve 

identification of cross-linked peptides. The mass spectrometer was operated in data-

dependent mode, selecting up to 10 precursors from a MS1 scan (resolution = 120,000) in 

a mass range of 300-2,000 m/z for rapid collision-induced dissociation (rCID). Singly and 

doubly charged precursors as well as precursors of unknown charge state were rejected 

for MS2 selection. rCID was performed for 10 ms using 35% normalized collision energy 

and an activation q of 0.25. Dynamic exclusion was activated with a repeat count of 1, 

exclusion duration 30 s at a list size of 500 and a mass window of ±10 ppm. Ion target 

values were 1,000,000 (or maximum fill time of 10 ms) for the survey scan and 10,000 

(or maximum fill time of 100 ms) for the MS2 scan, respectively. Data were identified 

using the xQUEST/xPROPHET software package assisted by manual validation 

(Walzthoeni et al. 2012). Standard settings were used. Briefly, data were searched against 

a self-defined protein database containing the sequences of the Mre11, Rad50 and Nbs1 

constructs. The maximum number of missed cleavages (excluding the cross-linking site) 

= 2, peptide length = 4-45, enzyme = trypsin, fixed modifications = carbamidomethyl-

Cys (57.02146 Da), variable modification = Met-oxidation (15.99491 Da), mass shift of 

the light cross-linker (138.0680796 Da), mass shift of the mono-links (156.0786442 Da 

and 155.0964278 Da), MS1 tolerance = 10 ppm, MS2 tolerance = 0.2 for common ions 

and 0.3 Da for cross-linked ions. The theoretical candidate spectra were scored according 
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to their quality of the match and cross-linked candidates were filtered by a MS1 mass 

tolerance of -5 to 5 ppm and an ld-score of  22. All spectra passing the filtering criteria 

were further manually validated. Identifications were only considered for the final result 

list in case both peptides had at least four bond cleavages in total or three adjacent ones 

and a minimum length of five amino acids. Distances for theoretical intra- or inter-

molecular cross-links (intra-links or inter-links) were measured using the Xlink Analyzer 

Chimera plugin (Kosinski et al. 2015). Full list of the detected cross-links can be found in 

supplementary Table S3. 

 

Fluorescence anisotropy measurements 

For fluorescence anisotropy measurements labeled and unlabeled ssDNA was dissolved 

in H2O, mixed with a 1.1 fold molar excess of unlabeled DNA and annealed by heating 

up to 95°C with subsequently slow cooling down. For DNA substrates with 

complementary single-stranded overhangs, the two DNAs were mixed in a 1:1 molar 

ratio, cooled down and incubated at 4°C for 1–2 h. MRBDRNBD dilutions with protein 

concentrations of 0, 0.1, 0.16, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, 1.98, 3.0, 4.0, 6.0, 7.98, 10.0, 

12.0, 15.9, 20.1, 25.0 and 30.0 μM were prepared in assay buffer (100 mM NaCl, 40 mM 

Tris pH 8, 10 mM MgCl2, 4 mM ATP). After incubation for 1 h the protein dilutions were 

mixed with labeled dsDNA (50 nM final conc.) in a 1:1 (v/v) ratio. After 30 min 

equilibration, the fluorescence anisotropy was measured with the TECAN plate reader 

(TECAN infinite® M1000). The data were analyzed with GraphPad Prism (Version 6 for 

Windows, GraphPad Software, La Jolla California USA, www.graphpad.com.) and fit to 

a single-site binding model accounting for receptor depletion (suppl. Fig. S6 and suppl. 

Table S3). Following equation was used for Kd calculations:  

Y = Af - (Af - Ab) * (((Lt+x+Kd) - ((Lt+x+Kd)^2 - (4*Lt*x))^0.5) / (2*Lt)) 

Y = anisotropy; Af = anisotropy of free ligand; Ab = anisotropy of bound ligand; x = Pt = 

Receptor concentration (total); Lt = ligand concentration (total) = 50 nM; Kd = 

dissociation constant 

 

 

 



Seifert et al.

22

Plate survival assay 

The plate survival assay with S. cerevisiae carrying wild-type or mutated Rad50 allele 

was performed as described before (Rojowska et al. 2014). Briefly, freshly growing cells 

from a plate were resuspended in deionized water and diluted to OD600 of 1. W303-1a 

wild-type and W303-1a rad50 strains were kind gifts from Katja Strässer and Steve 

Jackson, respectively. 
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Figures: 

 
Figure 1: Eukaryotic CtMre11RBD-Rad50NBD crystal structure. (A) Dimeric structure of C. 

thermophilum Mre11 Rad50-binding domain (CtMre11RBD; light and dark blue) bound to the 

nucleotide-binding domain (NBD) of Rad50 (CtRad50NBD; light and dark orange). Two ATP S:Mg2+ 

(magenta and green, respectively) molecules are sandwiched in between the CtMre11RBD-Rad50NBD 

(CtMRBDRNBD) dimer. Rad50 monomers are characterized by lobe I and lobe II, which together form 

the Rad50NBD. (B) Stereo view of the ATPase active site. The ATP-interacting residues are highlighted 

and hydrogen bonds are indicated. (C) Detailed view of the CtMre11RBD-Rad50NBD interface. 

Residues that facilitate the interaction between the CtMre11RBD and the coiled-coil (CC) domain of 

Rad50 are represented as sticks. 
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Figure 2: Comparison between dimeric Mre11RBD-Rad50NBD crystal structures. Crystal structures of 

dimeric Chaetomium thermophilum (A), Pyrococcus furiosus (B), Thermotoga maritima (C) and 

Methanocaldococcus jannaschii (D) Mre11RBD-Rad50NBD (PDB codes: 3QKU, 3QF7 and 3AV0, 

respectively). The Rad50NBD (gray) and the Mre11RBD (light blue) are depicted. The eukaryotic 

extended helices in the CtMre11RBD (dark blue) and the eukaryotic insertions (iron) are highlighted.  
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Figure 3: Mre11-Rad50NBD complex in ATP-bound state. (A) Comparison of bacterial, archaeal and 

eukaryotic MRNBD in ATP-bound state. Eukaryotic MRNBD docking model consists of dimeric 

CtMre11CD (light and dark blue) and CtMre11RBD-Rad50NBD (Mre11 in light and deep blue; Rad50 in 

beige and orange) superimposed onto MRNBD (PDB code: 3AV0) from M. jannaschii. Identified cross-

links between Rad50 and Mre11 subunits are marked as green lines. (B) Map of the identified intra- 

(red) and inter-protein cross-links (blue) between the MRN subunits. (C) Distribution of the 

measured lengths of the cross-links in the ATP-bound CtMRNBD model. Data from protein samples 

with and without ATP S are depicted. (D) SAXS scattering curve (left) and P(r) distribution curve 

(right) of MRhc with (blue) and without (red) ATP S:Mg2+. 
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Figure 4: CtRad50NBD-DNA crystal structure. (A) 2mFo-DFc density (blue) contoured at 1  for 

dsDNA in the Rad50 dimer (light and dark orange) groove is depicted. (B) Modeled dsDNA (teal) in 

complex with the ATP S:Mg2+-bound Rad50NBD dimer (light and dark orange). 
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Figure 5: Detailed view on the Rad50-DNA interaction. (A) DNA-binding motifs and important 

interacting residues are indicated. (B) Scheme of the dsDNA and the interacting residues on one side 

of the Rad50 dimer. The structure was analyzed with PDBsum (http://www.ebi.ac.uk/pdbsum) (de 

Beer et al. 2014) and the scheme was optimized manually. (C) Detailed view onto the Rad50-DNA 

interaction. (D) Plate survival assay with wild-type, rad50  and rad50 mutant strains on YPD and 

DNA damage inducing camptothecin (CPT). 

 

 

 
Figure 6: DNA binding analysis by fluorescence anisotropy measurements. Curves of the different 

DNA substrates are colored according to the color code.  
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Figure 7: Model of the MR complex in DNA tethering. (A) Model of the ATP-bound MR complex 

(Rad50 dimer in light and dark orange; Mre11 dimer in light and dark blue) bound to dsDNA (teal). 

(B) Scheme of the Rad50 DNA binding motifs I–IV explains how additional DNA contacts are formed 

in the presence of continuous dsDNA or dsDNA with complementary 3´ overhangs. DNAs are 

highlighted in brown, blue or red. DNA binding motifs of each Rad50 protomer are highlighted in 

light or dark orange.  
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Supplementary Information 

 
Figure S1: Constructs of the MR(N) (A) Domain models of full-length and truncated MR/N 

complexes are depicted. Nuclease domain (Nuclease), capping domain (Cap) and the Rad50-binding 

domain (RBD) of Mre11 are shown (blue). N- and C-terminal ATPase domains and the Mre11-

binding domain of Rad50 (orange) as well as the Mre11-interacting module of Nbs1 (MIM, red) were 

used for purification. For structural analysis predicted flexible regions of the full-length complex 

(gray) were truncated. Glycine alanine linker (GGAGGAGG) is highlighted in white. CTD: C-

terminal domain; NTD: N-terminal domain; Zn Hook: Zinc hook. (B) Table of MRN constructs used 

in this study.  
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Figure S2: (A) Multiple sequence alignment of the nucleotide-binding domain of C. thermophilum 

Rad50 (CtRad50) with Homo sapiens (HsRad50), S. cerevisiae (ScRad50), M. jannaschii (MjRad50), 
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P. furiosus (PfRad50) and T. maritima (TmRad50). (B) Multiple sequence alignment of the Rad50-

binding domain of C. thermophilum Mre11 (CtMre11) with H. sapiens (HsMre11), S. cerevisiae 

(ScMre11), M. jannaschii (MjMre11), P. furiosus (PfMre11) and T. maritima (TmMre11). In both (A) 

and (B) the sequences were aligned with Clustal Omega (Goujon et al. 2010, Sievers et al. 2011) and 

further optimized manually by comparison of the superimposed structures using PyMOL 

(Schrodinger 2010). Highly conserved residues are highlighted with black background and residues 

with conserved properties are depicted in gray. (C) Detailed view onto the sulfur rich cluster in 

CtRad50. Residues M166, M1194, M1201, M1203, C1207 and ATP S are depicted as sticks. 

Anomalous difference density map of the selenomethionines (gray) is contoured at 8.0  and C1207 is 

highlighted with yellow dots. The magnesium ion is shown as green sphere.  

 

 
Figure S3: (A) Silver-stained SDS-polyacrylamide gel of cross-linked MRNhc complex in presence and 

absence of ATP S. The samples were cross-linked with 0.5 or 0.75 molar ratio DSS cross-linker 

compared to the protein amount. (B) Coomassie-stained SDS polyacrylamide gel of the purified 

MRNhc complex.  
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Figure S4: (A) Positive density (green) in the mFO-DFC difference electron density map corresponding 

to dsDNA is contoured at 2.8 . The 2mFO-DFC map (blue) for the CtRad50NBD dimer is contoured at 

1 . (B) The final 2mFO-DFC map (blue) of the dsDNA contoured at 1 . (C) Electrostatic surface 

potential of CtRad50NBD from the DNA-bound crystal structure. (D) Electrostatic surface potential of 

the DNA-free CtRad50NBD structure. (E) CtRad50NBD-DNA structure with electrostatic surface 

potential of CtRad50NBD. (F) Superimposition of DNA-free and DNA-bound CtRad50NBD crystal 

structures (gray and orange, respectively) reveal a different orientation of the coiled-coil domain. 
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Figure S5: S. cerevisiae Rad50 expression levels of wild-type, rad50  and rad50 mutant strains by 

western blot analysis. Comparable levels of Rad50 were detected in wild-type and the mutant strains. 

 
Figure S6: Fluorescence anisotropy measurements for DNA binding analysis of the MRBDRNBD 

complex. Different DNA substrates are depicted. 
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Figure S7: Comparison between CtRad50NBD-DNA and TmRad50NBD-DNA crystal structures. (A) 

Superimposition of TmRad50NBD-DNA structure onto the Rad50NBD-DNA structure of C. 

thermophilum (CtRad50NBD-DNA). (B) Close-up view of the DNA interaction in lobe I.  
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Supplementary Table S1: Data collection and refinement statistics of the CtMre11RBD-

Rad50NBD and the CtRad50NBD-DNA crystal structures. Values in parentheses are for 

highest resolution shell. 
 CtRad50NBD-Mre11RBD

SeMet 
CtRad50NBD-DNA 

Data collection   
Space group I222 P212121 
Cell dimensions   
    a, b, c (Å) 116.51, 125.09, 168.30 92.31, 97.08, 115,01 

 ( )  90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Wavelength (Å) 0.97973 0.97155 
Resolution (Å) 50.00–3.00 (3.18–3.00) 50.00–2.50 (2.65–2.50) 
Rmeas 0.08 (1.23) 0.21 (1.92) 
I/ I 14.83 (1.58) 11.96 (1.33) 
CC1/2 99.9 (70.0) 99.8 (49.6) 
Completeness (%) 99.2 (95.2) 99.5 (97.0) 
Redundancy 6.9 (6.7) 12.8 (12.6) 
   
Refinement   
Resolution (Å) 47.9–3.0 49.48–2.5 
No. reflections 47386 34300 
Rwork/ Rfree 21.5/25.8 21.2/24.6 
No. atoms   
    Protein 7736 6831 
    DNA - 615 
    Ligand/ion 64 111 
    Water 14 103 
B-factors   
    Protein 114.0 62.0 
    DNA - 159.0 
    Ligand/ion 77.0 53.6 
    Water 90.3 54.4 
R.m.s deviations   
    Bond lengths (Å)  0.005 0.008 
    Bond angles (º) 1.0 1.2 
Ramachandran plot   
    Favoured regions (%) 98.3 98.6 
    Additionally allowed (%) 1.7 1.3 
    Outliers (%) 0 0.1 
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Supplementary Table S2: Dissociation constants (Kd) between dimeric CtMRBDRNBD 

and different DNA substrates.  

  Kd [μM] Std. Error number of 
experiments 

35bp dsDNA (1) 0.45 0.03 3 
35bp Phosphate (1P) 0.56 0.04 3 

17bp dsDNA (2.I) 3.1 0.4 3 
5´ overhang compl. (3) 2.2 0.3 3 

5´ overhang (3.I) 2.7 0.3 3 
3´ overhang compl. (4) 0.44 0.04 3 

3´ overhang (4.I) 0.99 0.1 3 
3´ flap compl. (5) 0.4 0.03 3 

3´ flap (5.I) 0.34 0.02 3 
5´ flap compl. (6) 0.67 0.05 3 

5´ flap (6.I) 0.54 0.04 3 
3´ flap 35bp dsDNA (7) 0.60 0.04 3 
5´ flap 35bp dsDNA (8) 0.25 0.02 3 

20bp nick (9) 0.47 0.04 3 
15bp nick (10) 0.62 0.04 3 

35bp ssDNA (13) 1.9 0.3 3 
35 bp dsDNA no ATP ~ 320.2 ~ 922.4 1 
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Supplementary Table S4: List of DNA oligonucleotides used for fluorescence 

anisotropy measurements 

Used for DNA Sequence (5´-3´) Length 5' label 

  [nt]   

1; 1P; 7; 8; 9;10; 13  CATTGCTTAGGTAGTGGGGGCGACAAACGCCGACG 35 Fluorescein 

1 CGTCGGCGTTTGTCGCCCCCACTACCTAAGCAATG 35   

2.1 CATTGCTTAGGTAGTGG 17 Fluorescein 

2.1 CCACTACCTAAGCAATG 17   

2 GGGCGACAAACGCCGACG 18   

2 CGTCGGCGTTTGTCGCCC 18   

1P ACTACCTAAGCAATG 15 Phosphate 

1P CGTCGGCGTTTGTCGCCCCC 20   

3.I; 3; 6.1; 6 CATTGCTTAGGTAGT 15 Fluorescein 

3.1; 3; 9 CCCCCACTACCTAAGCAATG 20   

3 GGGGGCGACAAACGCCGACG 20   

3; 6; 9 CGTCGGCGTTTGTCG 15   

4.1; 4;  CATTGCTTAGGTAGTGGGGG 20 Fluorescein 

4.1; 4; 5.1; 5; 7 ACTACCTAAGCAATG 15   

4; 5 CGACAAACGCCGACG 15   

4; 10 CGTCGGCGTTTGTCGCCCCC 20   

5.1; 5 CATTGCTTAGGTAGTGGGGGTTTTTTTTTTTTTTT 35 Fluorescein 

5; 7 CGTCGGCGTTTGTCGCCCCCTTTTTTTTTTTTTTT 35   

6.1; 6; 8 TTTTTTTTTTTTTTTCCCCCACTACCTAAGCAATG 35   

6 TTTTTTTTTTTTTTTGGGGGCGACAAACGCCGACG 35   
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Abstract

The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved
multifunctional DNA double-strand break (DSB) repair factor.
Mre11–Rad50’s mechanism in the processing, tethering, and
signaling of DSBs is unclear, in part because we lack a structural
framework for its interaction with DNA in different functional
states. We determined the crystal structure of Thermotoga
maritima Rad50NBD (nucleotide-binding domain) in complex with
Mre11HLH (helix-loop-helix domain), AMPPNP, and double-stranded
DNA. DNA binds between both coiled-coil domains of the Rad50
dimer with main interactions to a strand-loop-helix motif on the
NBD. Our analysis suggests that this motif on Rad50 does not
directly recognize DNA ends and binds internal sites on DNA. Func-
tional studies reveal that DNA binding to Rad50 is not critical for
DNA double-strand break repair but is important for telomere
maintenance. In summary, we provide a structural framework for
DNA binding to Rad50 in the ATP-bound state.
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Introduction

DNA double-strand breaks (DSBs) are highly genotoxic DNA lesions

and result in cell death, genome instability, and gross chromosomal

aberrations (Chen & Kolodner, 1999; Rothkamm & Lobrich, 2002).

DSBs can be formed by ionizing radiation, genotoxic agents, or repli-

cative stress, but are also introduced into the genome in a

programmed manner during V(D)J recombination, meiosis, or yeast

mating type switching (Costanzo et al, 2001; Longhese et al, 2009;

Haber, 2012; Alt et al, 2013). Due to their highly genotoxic nature,

DSBs require sensitive detection and repair. Eukaryotic cells react to

DSBs through a very complex DNA damage response (DDR) that

includes activation of DNA damage checkpoint kinases, chromatin

modifications, cell cycle delay, and repair by non-homologous end

joining (NHEJ) or homology-directed repair (HDR) (Harper & Elledge,

2007; Lee et al, 2008; Jackson & Bartek, 2009; Stracker et al, 2013).

The evolutionarily conserved Mre11–Rad50 (MR) complex consists

of the endo/exonuclease Mre11 and the ATP-binding cassette (ABC)-

type ATPase Rad50. In eukaryotes, the complex is a critical factor in

the early stages of DNA double-strand break repair and involved in

the initial recognition and nucleolytic processing of DSBs (Williams

et al, 2007; Stracker & Petrini, 2011). It contains the third component

Xrs2 and is referred to as Mre11–Rad50–Xrs2 (MRX) in Saccharomyces

cerevisiae and Mre11–Rad50–NBS1 (MRN) in mammals (Dolganov

et al, 1996; Carney et al, 1998; Varon et al, 1998). MRN plays a deci-

sive role in HDR (Bressan et al, 1999; Yamaguchi-Iwai et al, 1999)

and NHEJ (Moore & Haber, 1996; Xie et al, 2009), meiosis (Moreau

et al, 1999), in addition to telomere maintenance (Wilson et al, 1999;

Tsukamoto et al, 2001; Reis et al, 2012), and the recruitment of DDR

factors such as ATM/Tel1 (D’Amours & Jackson, 2001; Usui et al,

2001; Lee & Paull, 2005). MRN subunits are essential for embryonic

viability, while hypomorphic mutations are implicated in severe

human genetic disorders that are characterized by genome instability,

cancer, and neurological aberration (Petrini, 2000). The bacterial

Mre11 and Rad50 homologs are named SbcD and SbcC, respectively.

The SbcCD complex helps to prevent gross chromosomal aberrations

through degradation of hairpins at inverted repeats facilitating

replication restart by recombination (Darmon et al, 2010).

The nuclease activities of MRN are required for DNA end

processing and involve endonucleolytic cleavage as well as 30–50

exonucleolytic processing in the vicinity of DNA ends (Hopkins &

Paull, 2008; Mimitou & Symington, 2008; Zhu et al, 2008; Cejka

et al, 2010; Garcia et al, 2011; Shibata et al, 2013). The endonucleo-

lytic cut made by MRN near DSBs, possibly in conjunction with

30–50 exonucleolytic degradation towards the DNA end (Garcia et al,

2011; Shibata et al, 2013), liberates covalently attached proteins,

such as Spo11, at meiotic breaks and enables subsequent repair by

HDR (Neale et al, 2005). A similar ability to remove proteins from

DNA ends by introducing endonucleolytic cuts has been demon-

strated for the bacterial MR (SbcCD) in vitro (Connelly et al, 2003).
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The MR complex consists of a central Mre11 dimer and two

Rad50 subunits. These assemble into a large elongated tetrameric

complex with an ATP-regulated catalytic head, which binds and

processes DNA, and long protruding Rad50 coiled-coil tails, which

are able to tether DNA (Hopfner et al, 2000, 2001, 2002; de Jager

et al, 2001). The Mre11 helix-loop-helix (HLH) motif C-terminal to

the nuclease domain interacts with the base of Rad50’s coiled-coil

near its nucleotide-binding domain (NBD) and flexibly connects

Rad50 to the nuclease dimer (Williams et al, 2011). In the absence

of ATP, the two Rad50 NBDs in the MR complex are positioned

on the outside of the Mre11 nuclease dimer and both the dsDNA-

and metal-binding sites of Mre11 are accessible for DNA (Lammens

et al, 2011). In the presence of ATP, however, the two Rad50

NBDs engage through sandwiching two ATP molecules (Hopfner

et al, 2000). The engaged Rad50 NBD dimer binds into the Mre11

nuclease and DNA-binding cleft, thereby temporarily blocking the

active site of Mre11 (Lim et al, 2011; Mockel et al, 2012).

While the ATP-free open conformation exhibits exonuclease

activity, the ATP-bound closed conformation lacks, or has reduced,

processive exonuclease activity (Herdendorf et al, 2011; Lim et al,

2011; Majka et al, 2012). The ATP-bound closed conformation still

possesses endonuclease activity against ssDNA (archaeal system)

(Majka et al, 2012), can clip off the terminal nucleotide on dsDNA

in vitro (bacteriophage T4 system) (Herdendorf et al, 2011), or

introduce an endonucleolytic cut near the DNA end (Connelly

et al, 2003). Finally, eukaryotic MRN requires ATP binding to

activate ATM and tether DNA (Lee et al, 2013; Deshpande et al,

2014).

Taken together, the available information suggests that ATP

binding and hydrolysis switches MR/MRN between functional

states: an open state in which Mre11 DNA binding at the nuclease

active sites are accessible, and a closed state in which they are

occluded. These different states provide the structural scaffold for

the various functions of MR and are correlated to DSB processing on

one hand and tethering as well as signaling on the other hand

(Deshpande et al, 2014). To correlate the diverse functions with a

structural mechanism, it is essential to understand how MR interacts

with DNA in each functional state. While structural insights into

dsDNA binding by the Mre11 dimer (Williams et al, 2008) may

explain the interaction of DNA with the ATP-free open complex, no

information is available about DNA binding to Rad50 in the ATP-

bound closed conformation. This information is necessary to explain

the structural basis for DNA tethering and—in the case of eukaryotic

MRN—DSB signaling functions.

We report here the crystal structure of the Thermotoga maritima

Rad50 nucleotide-binding domain (tmRad50NBD) in complex with

the Rad50-interacting helix-loop-helix motif of Mre11

(tmMre11HLH), Mg2+, AMPPNP, and a dsDNA 15mer. The structural

analysis reveals that DNA binds mainly to the N-terminal part of the

Rad50 NBD (denoted ‘lobe I’) but forms additional contacts with the

coiled-coil region (Fig 1). An in vitro DNA-binding analysis vali-

dates the observed contacts, but also indicates that positively

charged flanking residues contribute to DNA binding. In summary,

our results provide a framework for the interaction of MR with DNA

in different functional states and establish at the structural level that

MR has at least two distinct DNA-binding sites, one on Rad50 in the

ATP-bound form and one on Mre11 that is accessible after Rad50

ATP hydrolysis (Fig 5C).

Results

Structure of the Rad50NBD–Mre11HLH–DNA complex

We crystallized tmRad50NBD (residues 1–190 and 686–852

connected by GGAGGAGG linker) in complex with the C-terminal

helix-loop-helix motif of tmMre11 (Mre11HLH residues 347–383),

AMPPNP, Mg2+, and a 15mer dsDNA oligonucleotide in space

group P1. The crystals diffracted to a limiting resolution of 2.7 Å

and contained two (Rad50NBD)2–(Mre11HLH)2–(Mg2+-AMPPNP)2–

DNA complexes in the asymmetric unit. Model building and refine-

ment resulted in a final model with good R-factors and stereochem-

istry (Supplementary Table S1). Both complexes in the asymmetric

unit are structurally very similar (Supplementary Fig S1C) (r.m.s.d.

values for Ca atoms: 0.25 Å; r.m.s.d. values for DNA backbone

phosphates: 0.35 Å) and the following description will be limited to

one of these complexes.

Rad50NBD displays the dimer characteristic of ABC ATPases: the

two Mg2+ ions and AMPPNP reside in the dimer interface and are

sandwiched between the opposing Walker A/B and signature motifs

(Hopfner & Tainer, 2003) (Fig 1; Supplementary Fig S1). The coordi-

nation of Mg2+ and AMPPNP in the Rad50NBD dimer interface is

similar to that in several Rad50/SMC dimer structures in complex

with ATP or non-hydrolysable analogs, indicating that the complex

represents the typical ATP-bound form of Rad50/SMC proteins

(Hopfner et al, 2000; Lammens et al, 2004; Williams et al, 2009,

2011; Lim et al, 2011; Mockel et al, 2012) (Supplementary Fig S1A).

Proper ATP coordination is important in the context of the DNA

complex reported here, because biochemical studies have shown

that the ATP- or analogue-bound form of Rad50 is necessary for

interaction with dsDNA (Raymond & Kleckner, 1993; Hopfner et al,

2000; Mockel et al, 2012).

The 15mer dsDNA binds in an orientation in which it is posi-

tioned between both coiled-coil arms of the Rad50 NBD dimer

(Fig 1) and interacts with both the NBD and the coiled-coil

domain. On the basis of the number and distance of protein–DNA

contacts, the main interaction site is located at the tip of the

N-terminal part of Rad50 near the dimer interface (lobe I of the

NBD fold). DNA binding is sequence independent and mediated

by interactions between the protein main chain and side chain

atoms and the sugar–phosphate backbone of the DNA. The DNA

does not display significant deviations from the B-form. It

protrudes at an approximately 45° angle relative to the Rad50

dimer axis and does not follow the twofold symmetry of the

protein.

In lobe I, residues K115 and S118 bind to two consecutive

phosphate moieties and additional interactions are made by the

b7-strand main chain atoms of A111 and A114 (Fig 2A). Amino

acids K99, K108, and K109 are located on the top and outer face of

the lobe I b-sheets 6 and 7, respectively, and are positioned so that

they may form additional interactions. These latter side chains are

in close vicinity to a symmetry-related DNA molecule (DNA 2) that

forms a quasi-continuous DNA helix with the directly bound DNA

molecule (Fig 2A; Supplementary Fig S1B).

We also observe a second, minor contact site for DNA in helix a7
of the Rad50 coiled-coil domain (Fig 2B). This second interaction

site is mediated by three lysine–phosphate interactions that are

approximately 3 Å distant between residues K175, K178, and K182
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and the DNA. While residues K109 and K115 of the strand-loop-

helix (SLH) motif are conserved across species (Fig 2C), residues

K175 and K182 of the coiled-coil domain are less conserved. Despite

these two sites of interaction, the DNA molecule has considerably

higher B-factor values compared with the neighboring protein

regions, suggesting that the DNA is quite flexibly bound in the

crystal lattice (Supplementary Table S1).

Comparison of tmRad50NBD–Mre11HLH structures with and with-

out DNA reveals that the globular NBDs and their complexes are

largely identical. Nevertheless, the coiled-coil domains and the

Mre11 HLH motifs are repositioned by 2–3 Å relative to the apo

structure (Supplementary Fig S2).

In summary, we identify here a SLH motif as the main DNA

interaction site of Rad50 NBDs, with additional DNA contacts

contributed by the coiled-coil region. Remarkably, the interactions

are limited to internal sites within dsDNA and are apparently not

directed toward the ends of DNA.

Biochemical analysis validates the positively charged
DNA-binding groove

In order to validate the structurally identified DNA-binding sites on

Rad50, we performed electrophoretic mobility shift assays (EMSAs)

of several site-specific mutants of tmRad50NBD–Mre11HLH (Fig 3). In

parallel, we analyzed the ATP- or AMPPNP-dependent dimer forma-

tion properties of wild-type and all examined mutant tmRad50NBD–

Mre11HLH constructs through size-exclusion chromatography

(Supplementary Fig S3).

Consistent with previous observations, we find that tmRad50NBD–

Mre11HLH is a ‘monomeric’ complex in the absence of ATP/AMPNP

but forms a ‘dimeric’ complex (i.e. two tmRad50NBD–Mre11HLH

protomers) in the presence of ATP/AMPPNP. The wild-type

construct failed to form a stable dimer in the presence of ATP, likely

because of ATP hydrolysis. Residue E798 in the Walker B motif

positions and polarizes the attacking water molecule in the ATP

hydrolysis site and the E-to-Q mutant can be used to ‘trap’ the ATP-

bound state (see e.g. Lammens et al, 2004). In agreement with this,

mutation of E798 to Q resulted in efficient dimer formation in the

presence of ATP. Another notable mutation in this context is the

signature motif mutation S768R that was previously shown to

prevent ATP-induced engagement of the NBDs of Rad50 (Hopfner

et al, 2000; Moncalian et al, 2004). Consistent with this observation,

we observed no tmRad50NBD–Mre11HLH dimers even in the presence

of AMPPNP. With the exception of S768R, all other mutants exam-

ined displayed wild-type-like dimer formation in size-exclusion

chromatography, suggesting that the effects of these mutations on

DNA binding are not due to aberrant AMPPNP-induced

tmRad50NBD–Mre11HLH dimerization.

A

B

Figure 1. Structure of the tmRad50NBD–Mre11HLH–DNA complex.

A Domain structure of wild-type Rad50 (WT, left) and the crystallized Rad50NBD construct (right). RAD50 contains a bipartite ATP-binding cassette-type nucleotide-
binding domain (NBD, orange) consisting of N-terminal (NBD-N) and C-terminal (NBD-C) segments. The N-terminal segment harbors the Walker A motif (A); the
C-terminal segment harbors the Walker B (B) and signature motifs (S). M: Mre11 binding sites. NBD-N and NBD-C are at the ends of a heptad-repeat segment that
forms an antiparallel coiled-coil. The center of the heptad-repeat segment contains the Zn-hook dimerization motif.

B Ribbon representation with highlighted secondary structure of the nucleotide-binding domain (NBD) dimer of Rad50 (yellow and orange) in complex with the Mre11
C-terminal helix-loop-helix (HLH) motif, Mg2+-AMPPNP (Mg2+: green sphere, AMPNP: gray-color-coded sticks), and double-strand DNA (cyan ribbon and sticks) shown
in two orientations. Rad50 dimerizes in the typical head-to-tail arrangement, sandwiching two Mg2+-AMPPNP moieties in the dimer interface. The DNA binds to a
strand-loop-helix motif on one NBD of Rad50 and additional contacts are observed to the adjacent coiled-coil.
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EMSAs performed with the ΦX174 RF II closed double-stranded

DNA plasmid revealed that tmRad50NBD–Mre11HLH possesses

robust DNA-binding activity only in the presence of AMPPNP

(Fig 3; Supplementary Fig S4). Mutation of any of the three lysine

residues (K115E, K175E, and K182E) involved in direct protein–

DNA contacts affected DNA binding in vitro. Mutation of the

coiled-coil residues K175E and K182E substantially reduced DNA

binding, whereas the mutation K115E almost abolished DNA

interactions in vitro. In agreement with our structural results,

these data indicate that K115 on the tip of lobe I is the principal

interaction site for DNA. Since its high B-factor indicates that the

DNA is flexibly bound, we also mutated a number of conserved

residues that flank these lysine residues. R94E and K95E are

evidently also important for DNA binding, suggesting that the

DNA-binding surface likely involves a more extended positively

charged surface area than the direct contacts observed in the

crystal structure. We also mutated the residue R765 in the center

of the Rad50 dimer cavity to check whether the DNA may reach

the symmetry-related binding site within the Rad50 dimer by

traversing the positively charged Rad50 groove. The R765E muta-

tion significantly diminished DNA binding without affecting dimer

formation in vitro, lending support to the aforementioned hypo-

thesis.

Finally, the Walker B motif ‘ATP trapping’ mutation E798Q

showed robust DNA-binding ability in the presence of ATP. The

slight reduction in affinity for DNA, compared to the wild-type

protein in the presence of AMPPNP, could result from residual ATP

hydrolysis of the E-to-Q mutant. The signature motif mutation

S768R, however, substantially reduced DNA-binding activity in the

presence of AMPPNP, suggesting that formation of an ATP/

AMPPNP-bound NBD dimer of Rad50 is essential for robust DNA

interaction (Fig 3).

A

C

B

Figure 2. Details of the Rad50NBD–Mre11HLH:DNA interface.

A Detailed view of the DNA interactions with the Rad50 NBD (orange) shown in ribbon representation with the contacting residues highlighted as sticks. DNA contacts
involve interactions of the strand-loop-helix motif of the Rad50 dimer (residues K99, K108, K109, A111, A114, K115, and S118) with the sugar–phosphate backbone of
the two DNA molecules (cyan and gray). The second DNA molecule, depicted in gray, belongs to the symmetry-related molecule and forms a quasi-continuous DNA
strand in the crystal structure. Residues R94 and K95 are in close proximity of the DNA-binding region and evidently involved in DNA binding.

B Details of the DNA–protein contacts at the Rad50 coiled-coil region mediated by interactions of lysine residues K175, K178, and K182 with the DNA–phosphate
backbone.

C Sequence alignment showing the conservation of residues involved in DNA binding.
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K175E

R94E+K115E

S768R

K99E

K175

K182

K108
K109

R94 K95
K115

tmRad50NBD-Mre11HLH

WT, no AMPPNP

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

K108E K109E

K182E

R94E K95E K115E

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

K95E+K115E R765E

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

0    0.07  0.35  0.7    1.4   3.6     7.2  14.3  28.6  57.2
protein conc. [μM] 

WT, AMPPNP

E798Q, ATP

HLHtmRad50NBD-Mre11 tmRad50NBD-Mre11HLH

Figure 3. DNA-binding activity of the wild-type and mutant tmRad50NBD–Mre11HLH.
Shown are electrophoretic mobility shift assays of theΦX174 RF II plasmid in the absence or presence of AMPPNP (or ATP if indicated) with increasing protein concentrations
as indicated. For clarity, the positions of the mutations are marked in the structural cartoons left of the agarose gel images. The red lines mark the protein concentrations at
which approximately half of the free DNA is shifted (see Supplementary Fig S4). K99E, K108E, K109E, K175E, K182E, and R765E mutants exhibit impaired DNA binding,
whereas R94E, K95E, and K115E fail to bind DNA in these assays. ATP-induced structural changes and NBD dimer formation are important for the interaction with DNA
as shown by the lack of DNA-binding activity in the absence of AMPPNP and of the non-dimerizing signature motif mutant S768R. In contrast, the Walker B mutation (E798Q)
is proficient in DNA binding.
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While these studies were performed with ΦX174 RF II plasmid

DNA, binding of the wild-type protein was also analyzed with short

dsDNA oligonucleotides. We observe that increasing the length of

dsDNA from 30mer to 60mer substantially enhanced the affinity of

tmRad50NBD–Mre11HLH for the DNA (Supplementary Fig S5A). This

length-dependent increase in affinity is consistent with the structural

finding that tmRad50NBD–Mre11HLH does not directly bind DNA

ends but rather at internal sites of DNA. Taken together, the

biochemical DNA-binding analysis confirms the importance of the

structurally identified contact residues of Rad50 to the tip of NBD

lobe I and suggests that the groove between the two coiled-coil

domains, formed following ATP-dependent NBD engagement,

provides a positively charged surface for DNA interaction (Fig 5;

Supplementary Fig S6).

Analysis of the Rad50 DNA-binding site for DSB repair in
Saccharomyces cerevisiae

To further investigate the significance of the structurally observed

DNA-binding site in the context of the eukaryotic MRN complex, we

performed a mutational analysis of the equivalent residues in the

S. cerevisiae Rad50 and determined the functional consequences

with in vivo assays (Fig 4A and B). Western blot analysis of the

mutants confirmed that all mutant proteins were expressed to wild-

type levels (Supplementary Fig S6A). We first analyzed the viability

and growth of S. cerevisiae transformants on topoisomerase I inhibi-

tor camptothecin (CPT), ribonucleotide reductase inhibitor hydroxy-

urea (HU), and bleomycin-supplemented medium (Fig 4A), as the

Drad50 strain grows poorly on media containing these DNA-damaging

agents (D’Amours & Jackson, 2001). While plasmid-expressed wild-

type Rad50 rescues the impaired DNA damage response of the

Drad50 strain, Rad50 carrying mutations in the signature motif

(S1205ScR) and the Walker B motif E1235ScQ failed to rescue

Drad50, consistent with previous studies (Moncalian et al, 2004;

Bhaskara et al, 2007). These mutations show the functional

importance of ATP-binding-induced NBD engagement and ATP

hydrolysis-induced NBD disengagement in the DSB repair activity of

the MRN complex.

We also mutated the residues corresponding to R94, K95, and

K115 in tmRad50NBD–Mre11HLH since these residues strongly

affected DNA binding in vitro (Fig 3). The equivalent mutations

K103ScE, K104ScE, and R131ScE had little influence on the DSB

repair function of S. cerevisiae Rad50 (Fig 4; Supplementary Fig

S5B).

In the crystal structure, amino acids K99, K108, and K109

interact with a second DNA molecule forming a quasi-continuous

DNA helix in the crystal lattice (Supplementary Fig S1B). This

raised the question whether these residues are involved in the

end-joining function of the MR complex. Indeed, two of these resi-

dues, K99 and K109, seem to be conserved in S. cerevisiae

(Fig 2C) and the equivalent residues K110Sc and R125Sc have been

mutated to glutamic acid to test the influence of these amino

acids in a plasmid transformation assay in vivo (Supplementary

Fig S6B). Whereas the Drad50 strain showed substantially reduced

transformant yields for NcoI-linearized pRS315-Kan plasmids rela-

tive to supercoiled plasmid transformation, the Rad50 point

mutants K110ESc and R125ESc led to only insignificant reduction

in plasmid recovery (Supplementary Fig S6B). This result argues

against an involvement of these residues in end-

joining processes in S. cerevisiae.

Rad50–DNA interactions are important for telomere length
maintenance in Saccharomyces cerevisiae

MRN plays an important function in telomere maintenance, for

example through activation or recruitment of the Tel1 kinase. We

performed telomere maintenance assays to analyze the importance

of the DNA-binding site on the Rad50 NBDs in this context. Interest-

ingly, we observed a moderate reduction in telomere length in the

case of K103ScE, K104ScE, and R131ScE, while the double mutant

K103ScE+R131ScE at the SLH motif and the R1201ScE mutant at the

center of the positive cleft substantially reduced the length of telo-

meres, almost equal to Drad50 levels. This suggests that DNA bind-

ing by Rad50 at the SLH motif and possibly in the groove is critical

for telomere length maintenance (Fig 4B). Notably, while the signa-

ture motif mutant S1205ScR also substantially reduced telomere

lengths, the Walker B mutant E1235ScQ is fully proficient in telo-

mere maintenance. Together, this analysis suggests that MRN func-

tions in telomere length maintenance in engaged conformation with

DNA and ATP-bound NBDs.

Discussion

We report the first structural analysis of DNA binding to an SMC/

Rad50/RecN family member of chromosome-associated ABC

enzymes. Rad50 is the ATP-binding subunit of the Mre11–Rad50

(prokaryotes and phages) and Mre11–Rad50–Nbs1/Xrs2 (eukary-

otes) complexes that are key genome maintenance factors in all

kingdoms of life. Although considerable knowledge regarding the

architecture of MR and MRN complexes has been acquired

(reviewed in e.g. Schiller et al, 2014), the molecular mechanisms of

MR/MRN complexes in replication-associated hairpin degradation,

telomere maintenance, or DSB repair are still unclear.

Within MR/MRN, Rad50 is suggested to undergo a large struc-

tural change that is controlled by ATP binding and hydrolysis

(Lammens et al, 2011). In the presence of ATP, the engaged Rad50

dimer sterically blocks the nuclease active site of Mre11 (Lim et al,

2011; Mockel et al, 2012), while following ATP hydrolysis and

Rad50 disengagement, the Mre11 nuclease active sites become

exposed (Lammens et al, 2011). Whereas Rad50 in its ATP-bound

form apparently blocks the Mre11 DNA-binding and nuclease active

sites, it becomes proficient for DNA binding in the presence of ATP.

Therefore, ATP appears to switch MR/MRN between Mre11 and

Rad50 DNA-binding modes.

Our structural analysis reveals how DNA interacts with MR in

the Rad50 DNA-binding mode and, together with earlier studies on

DNA binding by Mre11 (Williams et al, 2008), provides now a

framework to understand DNA interaction of MR in different func-

tional states. DNA predominantly binds to the strand-loop-helix

(SLH) motif on the Rad50 NBD. This motif is located on the

N-terminal lobe I of the conserved NBD fold. Lobe I harbors also

the ATP-binding P-loop, while lobe II carries the signature motif

and the coiled-coil protrusion. Besides the SLH motif, additional

interactions are found between DNA and two lysine residues of the

coiled-coil domain. These contacts of the coiled-coil domains to
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DNA are interesting in the context of DNA-induced mesoscale

conformational changes between the two coiled-coil domains of

MRN (Moreno-Herrero et al, 2005). Such a repositioning could be

a direct consequence of DNA binding because of, for example,

binding of K175 and K182 in the coiled-coil domain to DNA. On the

other hand, the coiled-coil domains are notoriously flexible and the

amount of their repositioning between apo- and DNA-bound

Rad50NBD–Mre11HLH structures is also in the range of crystal lattice-

induced differences, so further analysis is necessary to directly link

DNA binding and coiled-coil movements. Nevertheless, binding of

DNA to the coiled-coil domains is not unexpected and may proceed

even further than the observed site in our truncated construct,

A

B C

Figure 4. In vivo analysis of Rad50 mutations in Saccharomyces cerevisiae.

A Effects of rad50 mutants on S. cerevisiae survival in the presence of DNA-damaging agents. Plate survival assays show that R1201ScE, S1205ScR, and E1235ScQ mutants
are deficient in the DNA damage response, comparable to the Drad50 strain. K103ScE + R131ScE double mutant shows partially inhibited DNA damage response.

B Telomere maintenance assays show altered telomere metabolism for mutations or double mutations at the proposed Rad50 DNA-binding groove (K103ScE, K104ScE,
K104ScE + R131ScE, R1201ScE) and the signature motif mutant S1205ScR. A notable exception is the Walker B mutant E1235ScQ, which is not proficient in ATP
hydrolysis, suggesting that the ATP-bound, engaged Rad50 dimer is essential for the role of MRN at telomeres.

C Summary of S. cerevisiae phenotypic behavior in DNA repair and telomere maintenance compared with the effect of the corresponding tmRad50 mutations on DNA
binding in vitro.
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because the coiled-coil domains are important for high-affinity DNA

binding by human MRN (Lee et al, 2013).

The in vitro DNA-binding data indicate that although both inter-

action sites contribute to DNA binding, the residues within the SLH

motif have a considerably larger impact in vitro (Fig 3), suggesting

this as the main DNA-binding motif in Rad50. Furthermore, we

found that positively charged residues flanking the SLH motif R94

and R95 are also required for robust DNA binding, even though they

do not directly contact the DNA in our crystal form. These observa-

tions suggest that DNA is recognized by lobe I on both sides of the

Rad50 dimer, presumably through the extensive positive electro-

static surface potential across both NBDs (Fig 5). Importantly, a

comparison of the DNA-bound structure with the DNA-free struc-

ture of the bacterial MR complex (containing the nuclease domain

of Mre11) confirms that there is no steric hindrance between Mre11

and DNA binding on Rad50 and shows that DNA binds to Rad50 on

the opposite side of the Mre11 nuclease domain (Fig 5B).

It was unexpected that DNA is bound only to one of the two

NBDs, considering the internal symmetry of the Rad50 dimer and

the biochemical data that clearly show that ATP-induced NBD dimer

formation is important for DNA binding (Fig 3) (Hopfner et al,

2000; Mockel et al, 2012). How is ATP binding to Rad50 linked to

DNA binding? One possibility is that we visualize an intermediate

where DNA is bound to only one of the two SLH motifs of the NBD

dimer. A shift of the DNA, taking the lobe I interaction with the SLH

motif on one NBD as anchor point, would bring the DNA backbone

into a suitable position to also bind the second SLH motif on the

other NBD. Such a dual recognition on both SLH motifs requires at

least 22-base-pair-long DNA consistent with the length dependence

of the DNA binding (Supplementary Fig S5). Such a binding mode

would also explain the strong effect of the R1201E mutant, which

resides right at the surface of the NBD:NBD interface cleft. In vitro,

this mutation still forms NBD dimers in the presence of ATP

(tmRad50NBD R765E), so the effect of the mutation might proceed via

A C

B

Figure 5. Framework for the interaction of DNA with Mre11–Rad50 functional states.

A Surface representation of tmRad50NBD–Mre11HLH with mapped electrostatic potential (blue: positive; red: negative). DNA is shown as cartoon. The SLH motifs and the
surface in the groove between the coiled-coil domains carry a strong positively charged surface potential. A moderate shift of the bound DNA would enable additional
contacts to the second SLH motif (see text).

B Superposition of the tmRad50NBD–Mre11HLH–DNA (color code of Fig 1) and tmRad50NBD–Mre11FL (gray; PDB code 3THO) models. DNA binds to Rad50 on the opposite
side of the Mre11 nuclease dimer and does not sterically compete with Mre11 binding.

C Model of DNA binding and its implication for the functions of the MRN complex. Top: the ATP-bound ‘closed’ conformation with DNA bound to Rad50 is implicated
for DNA binding, tethering, and telomere maintenance functions. Upon ATP hydrolysis, Rad50 NBDs move away from each other, exposing the Mre11 active sites to
allow for DNA processing.
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perturbation of the electrostatics in the groove, but it could also

affect the dimer structure in a way that DNA binding is compro-

mised. ATP-dependent NBD dimer formation also leads to a strong

positive electrostatic surface potential along the groove between the

coiled-coils as previously noted (Hopfner et al, 2000; Lim et al,

2011; Mockel et al, 2012) (Fig 5; Supplementary Fig S7). Thus, NBD

dimerization can contribute to robust DNA binding directly by form-

ing a positively charged surface potential. Such a mechanism is

consistent with our observation that robust in vitro binding of DNA

to the NBDs is affected not only by mutations in directly interacting

residues but also by mutations of basic side chains in the vicinity of

the DNA in the structure. Finally, ATP binding induces structural

changes between both lobes of a single NBD and repositions the

SLH domain and the coiled-coil with respect to each other. Since

both elements interact with DNA, ATP-triggered positioning of

coiled-coil and SLH within a single NBD could be an important step

for DNA recognition.

The SLH motif and its flanking residues turned out to play

significant but divergent roles in the DNA damage response and

telomere maintenance in S. cerevisiae. Single point mutations in

the SLH motif had only minor effects on DNA repair functions in

response to damaging agents as demonstrated by yeast survival

assays. This suggests that the DNA repair pathway can still oper-

ate near wild-type physiological level, even if Rad50–DNA inter-

actions are substantially weakened. It is also unlikely, given

these minor consequences, that the nuclease activity of MRN is

influenced by mutations in the Rad50 DNA-binding site. On the

other hand, the strong negative effect of the signature motif

mutant S2105ScR clearly argues against a role in which Rad50

merely blocks Mre11 nuclease prior to DNA processing, otherwise

this mutation would not have such a strong effect. Likewise,

imposing an ATP-bound dimer state through the Walker B motif

E1235ScQ mutant abolishes DNA repair activities. We conclude

that while DNA interactions to Rad50 appear to be less critical

for the DNA repair activities of MRN, the ability to engage and

disengage the NBDs in response to ATP binding and hydrolysis

remains critical. We do not want to rule out, however, that

mutating more than two residues in the identified DNA-binding

surface, or combining these mutations with mutations in the

coiled-coil domain will more substantially affect DNA repair

activities. The coiled-coil domain is necessary for high-affinity

DNA interactions—either directly or by promoting higher-order

conglomerates—and might be sufficient to promote repair activi-

ties even when the DNA-binding site of the NBD is compromised

(Lee et al, 2013).

This situation changes in a remarkable way in the context of telo-

mere maintenance. The function of MRN in telomere maintenance

includes the recruitment and activation of Tel1ATM (Hector et al,

2007), but also involves DNA-tethering activities (Reis et al, 2012).

Here, the SLH mutations had much more severe effects, with the

double mutant at the Rad50 DNA-binding site affecting telomere

length nearly as much as a Rad50 deletion. Most notably, our analy-

ses revealed that the SLH (K103E and K104E) and Walker B

(E1235Q) motif mutations lead to a separation of function pheno-

type: while mutation of the SLH motif strongly impaired telomere

maintenance but had little effect on repair activities, mutation of the

Walker B motif resulted in the opposite behavior. Prohibiting, or at

least severely delaying, ATP hydrolysis in Rad50 and consequently

promoting formation of the closed complex do not influence telo-

mere maintenance, while preventing ATP-induced NBD dimer

formation through mutation of the signature motif has detrimental

effects on telomere maintenance. Together, our analysis suggests

that the Rad50 dimer with bound ATP and DNA is the functional

state of MRN in the context of telomere maintenance. These data

are consistent with findings that ATP binding but not hydrolysis is

important for ATM activation by MRN (Lee et al, 2013; Deshpande

et al, 2014).

We do not observe a direct molecular preference for a DNA end

by Rad50 in our structural analysis. In general, it has been difficult

to demonstrate a strong preference of MR/MRN for DNA ends,

except in the case of scanning force microscopy studies, where the

clustering of MRN complexes occurred preferentially at DNA ends

(Chen et al, 2001; de Jager et al, 2001, 2002). Even in this case, one

complex could bind to the end, while others may bind internal sites

of DNA. In this regard, we analyzed the Rad50–Rad50 crystal lattice

contacts on the quasi-continuous DNA as they might show how

MR/MRN clusters on DNA. However, the lattice interactions would

clash with the interfaces between Rad50 and Mre11 nuclease dimer

in the Mre11–Rad50 complexes (Lim et al, 2011; Mockel et al,

2012), so it is unlikely that they represent interaction sites of MRN

clusters on DNA.

With respect to DSB recognition, our results suggest that the

affinity for DNA ends might reside in the Mre11 dimer, which can

interact with one or two DNA ends or hairpins (Williams et al,

2008), or possibly in an yet to be characterized interplay between

Mre11 and Rad50. It is also possible that binding of two DNA mole-

cules via both SLH motifs in the Rad50 dimer and additional DNA:

DNA contacts via DNA end stacking or overhangs with microhomol-

ogies can lead to DNA end recognition and tethering. These models

will be addressed now in future studies. Nevertheless, DNA binding

by Rad50 at internal sites could function in initial loading of the

complex at or near DNA ends that are blocked by proteins such as

Spo11 or Ku (Wasko et al, 2009; Bonetti et al, 2010; Mimitou &

Symington, 2010; Garcia et al, 2011; Langerak et al, 2011; Sun et al,

2012), or at sites remote from breaks (Neale et al, 2005; Shibata

et al, 2013).

Our data lead to a mechanistic model for MRN activity in which

the ATP-bound ‘closed’ conformation of the complex recognizes

internal sites of DNA via Rad50, yet also allows for the scaffolding

and presumably ATM/Tel1 activation functions of the complex

(Fig 5C). Hereby, DNA binds between the coiled-coil domains and

is suitably positioned to access the Mre11 dimer after ATP hydroly-

sis, which is suggested to switch MRN from the tethering and signal-

ing mode to the ‘open’ DNA processing mode (Deshpande et al,

2014). In the open mode, MRN might also preferentially interact

with DNA ends. It yet needs to be explained how these ATP-driven

conformations communicate with the Rad50 coiled-coil structures

and zinc hook, since heterozygous mutation of the zinc hook dimer-

ization domains lead to increased ATM activation (Roset et al,

2014).

In general, the structure of the Rad50-DNA complex allows for a

better understanding of the mechanism of Rad50/SMC/RecN/RecF-

type chromosome-associated ABC ATPases as all these proteins

contain an SLH-like secondary structure motif. SMC ATPases form

dimers in the context of the cohesin, condensin, and SMC5/6

complexes (Hirano, 2006). For instance, a loop near the SLH motif
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is critical for DNA-stimulated ATPase activity in archaeal SMC NBDs

(Lammens et al, 2004). Likewise, a lysine in the equivalent region is

acetylated in eukaryotic SMC3 (part of the condensin complex) and

results in the stable establishment of chromosome cohesion (Lee

et al, 2008; Rolef Ben-Shahar et al, 2008; Unal et al, 2008), although

the mechanistic role of this lysine acetylation still needs to be deter-

mined. On the basis of surface electrostatics, it was suggested that

also the bacterial RecF and archaeal SMC proteins bind DNA at the

NBD surface that contains the SLH motif (Lammens et al, 2004;

Koroleva et al, 2007). Although the DNA binding mechanisms of

these related chromosome-associated ABC ATPases each need to be

determined experimentally, it is conceivable that DNA interacts with

the ATP-bound NBD dimers in these complexes in a similar way as

with the Rad50 NBDs.

Materials and Methods

Protein expression and purification

Rad50NBD–Mre11HLH from T. maritima was engineered and purified

as described before (Lammens et al, 2011).

Crystallization and data collection

Crystals of tmRad50NBD–Mre11HLH–DNA were grown by hanging

drop vapor diffusion method. 1 ll of protein–AMPPNP–DNA solu-

tion (12 mg/ml protein, 5 mM AMPPNP, 1.275 mM DNA) was

mixed with 1 ll reservoir solution (150 mM D-maleic acid pH 6.5,

21% (v/v) PEG3350) and incubated over 400 ll reservoir solution

at 20°C. DNA used for crystallization was prepared by annealing

oligonucleotides 50-GGTCGGTGACCGACC-30 and 50-GGTCGGTCACC
GACC-30. To this end, oligonucleotides were mixed at 1:1 molar

ratio in annealing buffer (40 mM Tris pH 7.5, 100 mM NaCl, 10 mM

MgCl2), preheated to 94°C, and cooled down to 4°C at the rate of

0.1°C/s. Prior to flash-freezing, crystals were transferred to cryopro-

tective condition containing 20% (v/v) glycerol. Native dataset

collected at �170°C at wavelength 1.000020 Å at PXI beamline at

Swiss Light Source (SLS, Villigen, Switzerland) was indexed and

integrated with XDS (Kabsch, 1993). Crystals grew in the P1 space

group with cell dimensions: a = 50.2 Å, b = 97.1 Å, c = 107.6 Å,

a = 90.6°, b = 89.4°, c = 98.3° and contained two dimer molecules

per asymmetric unit.

Structure determination and refinement

The structure of tmRad50NBD–Mre11HLH–DNA was determined by

molecular replacement phasing with PHASER (McCoy et al, 2007),

using the AMPPNP–tmRad50NBD–Mre11HLH structure, determined

in the absence of DNA, as a search model (PDB entry: 3QF7). The

initial model was rebuilt manually in COOT (Emsley & Cowtan,

2004) and refined in PHENIX (Adams et al, 2002). At an early

stage of manual building and refinement, a 15-bp DNA molecule

was manually build into the Fo-Fc difference density. Further

refinements included interactive cycles of bulk solvent corrections,

overall B-value refinement, positional and individual B-value

refinement, TLS refinement, and manual building. Prior to refine-

ment, 5% of the reflections were randomly omitted to monitor the

Rfree value. The Ramachandran statistics, calculated using Procheck

(Lovell et al, 2003), of the final model are outliers (%): 0.5,

allowed (%): 5.0, and favored (%): 94.5. The outliers are N713,

which interacts with the Mre11 HLH motif and the DNA

interacting residue K115. Statistics of data collection and model

refinement are summarized in Supplementary Table S1. All figures

of structural models were prepared with PyMOL (DeLano

Scientific).

Electrophoretic mobility shift analyses

DNA-binding activity of tmRad50NBD–Mre11HLH (wild-type and

mutants) was analyzed in electrophoretic mobility shift assay.

Increasing amounts of dimerised protein (0, 71.5 nM, 357.5 nM,

715 nM, 1.43 lM, 3.57 lM, 7.15 lM, 14.3 lM, 28.6 lM and

57.2 lM) were incubated with 7.15 nM ΦX174 RF II plasmid DNA

and 1 mM AMPPNP (ATP in case of E798Q mutant) in 5 mM Tris

pH 7.8, 100 mM NaCl, 5 mM MgCl2 in a total volume of 20 ll for
15 min on ice. Reaction samples were then mixed with a loading

buffer and separated in 0.5% agarose gel in TA buffer (40 mM Tris,

20 mM acetic acid) for 3.5 h at 80 V and 8°C. Protein–DNA

complexes were stained with DNA-intercalating agent GelRed and

visualized by UV Imaging System (Intas).

DNA-binding activity of wild-type tmRad50NBD–Mre11HLH was

compared with 30mer and 60mer dsDNA. To this end, increasing

amounts of dimerised tmRad50NBD–Mre11HLH (0, 125 nM, 250 nM,

375 nM, 625 nM, 1.25 lM, 2.5 lM, 5 lM and 12.5 lM) were incu-

bated with 1 mM AMPPNP and 25 nM 30mer or 60mer fluorescently

labeled dsDNA in 5 mM Tris pH 7.8, 100 mM NaCl, 5 mM MgCl2 in

a total volume of 10 ll for 15 min on ice. Reaction samples were

then mixed with a loading buffer and separated on 8% polyacryl-

amide native gels in TA buffer for 1–1.5 h at 100 V and 8°C.

Protein–DNA complexes were visualized with a Typhoon System

(Amersham Biosciences) using the green-excited (488 nm) fluores-

cence mode.

30mer and 60mer dsDNA were prepared by annealing oligonu-

cleotides 6-FAM-50-CCGGAAAGCATCTAGCATCCTGTCAGCTGC-30

with 50-GCAGCTGACAGGATGCTAGATGCTTTCCGG-30 and 6-FAM-

50-GCTAATGCCGCGTGCCTTGTCTCACCTTCGATTTAGCATGGTAT
CAGCAGAGCAAGCCTC-30 with 50-GAGGCTTGCTCTGCTGATACC
ATGCTAAATCGAAGGTGAGACAAGGCACGCGGCATTAC-30, respec-
tively. To this end, oligonucleotides were mixed with 1.2 molar

excess of fluorescently labeled oligonucleotide in annealing buffer

(40 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2), preheated to

94°C, and cooled down to 4°C at the rate of 0.1°C/s.

Yeast complementation assay

Overnight cultures of S. cerevisiae transformed with empty pRS313

plasmid (W303-1a wild-type and W303-1a Drad50 strains, kind gifts

of Katja Strässer and Steve Jackson, respectively) or pRS313 carry-

ing wild-type or mutated alleles of Rad50 (W303-1a Drad50 strain)

were diluted in deionised water to OD600 of 1. Serial tenfold

dilutions were prepared, and 4 ll of each dilution was plated on

SDC(-His)-agar or YPD medium supplemented with DNA-damaging

agents: 1 lg/ml camptothecin (CPT), 50 mM hydroxyurea (HU), or

1.5 lg/ml bleomycin (Bleo). Cells were incubated for 72 h at 30°C.

All experiments were performed in triplicates.
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Western blot analysis

Trichloroacetate (TCA)-precipitated S. cerevisiae lysates were

prepared as described before (Yaffe & Schatz, 1984) with modifica-

tions: Cells from 20 OD units of overnight culture were pelleted and

lysed with 1.5 ml 0.2 M NaOH, 1% b-ME. Total protein was precipi-

tated by addition of 150 ll 0.1% TCA. Protein pellet was resus-

pended in 25 ll twofold SDS–PAGE sample buffer. For analysis,

protein extract corresponding to 5 OD units was resolved in 8%

SDS–polyacrylamide gel, transferred onto nitrocellulose membrane,

and immunodetected using standard Western blotting technique.

Antibodies against S. cerevisiae Rad50 were a kind gift of John

Petrini.

Analysis of telomere lengths

Telomere length in S. cerevisiae carrying wild-type and mutated

Rad50 allele was analyzed as described before (Schiller et al, 2012).

Dimerization analysis by gel filtration chromatography

Dimerization of the monomeric tmRad50NBD–Mre11HLH complex

was initiated by addition of AMPPNP (ATP in case of E798Q

mutant). Protein was mixed to a final concentration of 20 mg/ml

protein and 5 mM AMPPNP (or ATP) in dimerization buffer (5 mM

Tris pH 7.8, 100 mM NaCl, 5 mM MgCl2) and incubated at 8°C.

Dimerization was monitored by analytical gel filtration after 1, 5,

24, and 72 h after reaction start. Maximal dimerization was usually

achieved after 1–5 h and not longer that 24 h. For practical reasons,

protein was always dimerized for 24 h prior to in vitro activity

assays.

Saccharomyces cerevisiae plasmid repair assay

The yeast strain used in this experiment was W303-1A Drad50
transformed with empty pRS313 or pRS313 containing wild-type or

mutated Rad50. Competent cells for yeast strains of the respective

genotype were transformed with 5 lg of either supercoiled pRS315-

Kan or NcoI-linearized pRS315-Kan plasmids by the method of Gietz

and Schiestl (2007). Transformation reactions were then plated as

serial dilutions onto selective media, and colonies were counted

after plates had been incubated for 3–4 days. The relative transfor-

mation recovery after plasmid cleavage has been calculated by

dividing the number of obtained transformants with the linearized

plasmid by the number of transformants with intact plasmids.

Accession codes

Coordinates and structure factors have been deposited in the Protein

Data Bank under accession code 4W9M.

Supplementary information for this article is available online:

http://emboj.embopress.org
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Supplementary Table S1 Data collection and refinement statistics (Molecular replacement)
 tmRad50NBD-Mre11HLH

Data collection 
Space group P1 
Cell dimensions
    a, b, c (Å) 50.2, 107.6, 97.1 

 ( ) 90.6, 98.3, 89.4 
Resolution (Å) 50.2-2.7 
Rsym or Rmerge 13.5 (68.6)* 
I/ I 9.3(1.9) 
Completeness (%) 93.8(80.5) 
Redundancy 3.4(3.1) 

Refinement 
Resolution (Å) 47.7-2.7 
No. reflections 51439 
Rwork/ Rfree 21.5/27.0 
No. atoms 14169 
    Protein 12556 
    DNA/AMPPNP/Mg2+ 1218/124/4 
    Water 267 
B-factors 43.4 (overall) 
    Protein 35.1 
    DNA/AMPPNP/Mg2+ 146.1/19.3/14.9 
    Water 30.8 
R.m.s deviations  
    Bond lengths (Å)  0.010 
    Bond angles (º) 1.3 
*Highest resolution shells (2.8- 2.7 Å) are shown in parenthesis.

Ramachandran statistics 
outliers (%): 0.5 
allowed (%): 5.0 
favoured (%): 94.5 
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Supplementary Legends: 

Figure S1. A: Close up view of AMPPNP and Mg2+ coordination within the Rad50 ATPase 

active site. AMPPNP is marked as color coded sticks; the final 2Fo-Fc density around AMPPNP 

is contoured at 1.0  and colored in dark blue. Walker A and signature motifs coordinate the 

phosphate moieties in the AMPPNP molecule. Mg2+ is coordinated by two water molecules, 

oxygen of phosphate moieties in AMPPNP and side chains of the Walker A motif and Q-loop 

(Q142).  

B: Depicted are two adjacent symmetry related molecules indicating the quasi-continuous DNA 

double strand in the crystal lattice. The final 2Fo-Fc density around DNA is contoured at 0.8 

and marked in dark blue. 

Figure S2. Structural comparison of the tmRad50NBD-Mre11HLH apo (PDB code: 3QF7) and 

DNA-bound structures. Both models show almost identical architecture. The most pronounced 

repositioning is visible at the coil-coil domains and the HLH motifs. 

Figure S3. AMPPNP-induced tmRad50NBD-Mre11HLH dimerization.  

A Left panel: wild-type tmRad50NBD-Mre11HLH complex remains in a monomeric form in the 

absence of AMPPNP and Mg2+ (dotted line) and forms a stable dimer upon AMPPNP addition 

(solid line); A right panel: ATP fails to form a stable tmRad50NBD-Mre11HLH dimer.  

B: Point mutations do not impair tmRad50NBD-Mre11HLH dimerization and dimer stability except 

from the signature motif mutant S768R.  

Figure S4: Quantitation (bar graphs) of the residual unbound DNA for different tmRad50NBD-

Mre11HLH mutants (see Fig. 3). The estimated half-maximal value is depicted in Fig. 3 to assess 

the approximate binding strength of different mutant proteins. 

Figure S5. A: DNA binding activity of the wild-type tmRad50NBD-Mre11HLH complex with 

30mer or 60mer dsDNA. Binding efficiency is significantly increased with the longer DNA 

species.  
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B: Table of mutations analysed in yeast in vivo assays and the corresponding residue in 

Thermotoga maritima shown together with the position of the relevant residues in the tmRad50 

DNA structure.

Figure S6. A Rad50 expression levels in S. cerevisiae Rad50 mutants. Western blot analysis 

performed on yeast lysate show comparable levels of Rad50 in wild-type and mutated S.

cerevisiae.   

B: In vivo plasmid repair assay of the yeast mutant strains Rad50 K110E, R125E and Rad50. 

Whereas the Rad50 strain lead to dramatically reduced transformant yields for NcoI-linearized 

pRS315-Kan plasmids, the Rad50 point mutants showed only minor changes in plasmid rescue 

efficiency which are negligible considering the standard error of the experiment. For this 

experiment competent cells for yeast strains of the indicated genotype were transformed with 

either supercoiled pRS315-Kan or NcoI linearized pRS315-Kan plasmids. For each strain the 

value plotted is the number of transformants obtained with NcoI linearized vector relative to the 

number obtained with supercoiled vector. Thereby the number of transformants obtained with 

the Rad50 strain rescued with the pRS313 Rad50 wild type plasmid has been normalized to 1.  
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DNA double-strand breaks are repaired by twomajor pathways, homologous recombination
or nonhomologous end joining. The commitment to one or the other pathway proceeds via
different steps of resection of the DNA ends, which is controlled and executed by a set of
DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage
response factors. The molecular choreography of the underlying protein machinery is begin-
ning to emerge. In this review, we discuss the early steps of genetic recombination and
double-strand break sensing with an emphasis on structural and molecular studies.

All domains of life maintain genomes and
ensure genetic diversity through homolo-

gous recombination (HR) or homology direct-
ed repair. HR is initiated by single unprotected
DNA ends, which arise at collapsed replica-
tion forks and unprotected telomeres, or by
DNA double-strand breaks (DSBs), which are
products of ionizing radiation, reactive oxygen
species, genotoxic chemicals, or abortive to-
poisomerase reactions (Sutherland et al. 2000;
Aguilera andGomez-Gonzalez 2008;Cadet et al.
2012; Mehta and Haber 2014). In special cellu-
lar states, programmed DSBs are introduced by
endonucleases to initiate the generation of ge-
netic variability by processes such as meiotic
recombination of homologous chromosomes
(Lam and Keeney 2014; Zickler and Kleckner
2014), V(D)J and class switch recombination

to generate antibody diversity and yeast-mat-
ing-type switching (Gapud and Sleckman 2011;
Haber 2012; Xu et al. 2012b). Failure to repair
DSBs can lead to cell death or gross chromo-
somal aberrations, which in humans are a hall-
mark of cancer (Myung et al. 2001a,b; Hanahan
and Weinberg 2011).

Beside HR, DSBs can also be repaired by
nonhomologous end joining (NHEJ). Although
HR requires a template such as a sister chroma-
tid or a homologous chromosome and is limited
to S and G2 phases of the cell cycle, NHEJ is
template-independent and can occur in all cell
cycle states. Indeed, the choice of pathways is
to a significant extent not stochastic but a func-
tion of the cell cycle (Ferretti et al. 2013), with
NHEJ being the predominant pathway inmam-
mals outside of S phase. NHEJ is basically a
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ligation reaction of two DNA ends that are only
minimally processed. Derivatives of NHEJ
such as microhomology-mediated end joining
(MMEJ) or alternative NHEJ (alt-NHEJ) re-
quire more substantial processing and may
lead to the loss of genetic information. For re-
cent reviews of NHEJ, which is not covered in
detail here, please refer to, for example, Thomp-
son (2012) and Chiruvella et al. (2013).

HRhasmultiple steps and requires extensive
processing of DNA ends (Symington 2014).
First, the free DNA ends are recognized by DSB
sensors, followed by 50-30 resection of the DNA
ends. In eukaryotes andarchaea, this stepmaybe
divided into initial short-range resection, after
whichMMEJ/alt-NHEJ can still occur, followed
by processive long-range resection that commits
the pathway to HR. The 30 single-stranded DNA
(ssDNA) filament, bound by the DNA strand
exchange protein RecA/Rad51, pairs with the
homologous sequence on the template and
thus forms aD-loop. The 30 tail serves as a prim-
er for a repair polymerase and is extended by
using the homologous strand as template, a pro-
cess that “restores” the disrupted genetic infor-
mation. Various pathways involve the displace-
ment of the free strand, the capture of the second
strand to form Holliday junctions, or the cleav-
age of the D-loop (Mehta and Haber 2014).

In this review, we focus on structural as-
pects of the early steps in homologous recom-
bination. Of particular interest is the Mre11-
Rad50-Nbs1 (MRN) complex, which recognizes
DSBs, performs initial resection, and sets off a
DNA damage response (DDR) signaling net-
work. We further discuss the nucleases and hel-
icases that are involved in long-range resection.
Recent reviews of later steps in HR, which are
not covered here, have been published elsewhere
(Amunugama and Fishel 2012; Chiruvella et al.
2013; Jasin and Rothstein 2013).

DSB END RECOGNITION

The Mre11-Rad50-Nbs1 Complex

Among the early and central players in DNA
end metabolism are Ku and the Mre11-Rad50-
Nbs1 (MRN) complex, which are considered

“sensors” for DSBs. Ku binds to DNA ends as
a ring-shaped heterodimer (Fig. 1) consisting of
Ku70/Ku80 and initiates NHEJ (Walker et al.
2001; Chiruvella et al. 2013). The Saccharomyces
cerevisiae MRN homolog, Mre11-Rad50-Xrs2
(MRX), has been shown to be one of the first
complexes that are recruited toDSBs (Lisbyet al.
2004). MRN is involved in the selection of DSB
repair pathways that require end resection (HR,
MMEJ, alt-NHEJ) as opposed toNHEJ (Truong
et al. 2013). Homologs of Mre11 and Rad50
(MR) are present in all domains of life and
may be fused into a single peptide chain (Yo-
shida et al. 2011).

MRN is a multifunctional ATP-regulated
nuclease with endo- and exonuclease activity
and long structural tails. In vitro, the MR(N)
complex is able to partially melt and unwind
DNA and displays both 30 to 50 exonuclease
and ssDNA endonuclease activity to process
DSBs (Connelly et al. 1997, 1999; Furuse et al.
1998; Paull and Gellert 1998; Trujillo et al. 1998;
Hopfner et al. 2000a, 2001; Trujillo and Sung
2001; Lobachev et al. 2002; Hopkins and Paull
2008; Cannon et al. 2013). Bacteriophage T4
also possesses homologs of Mre11 and Rad50
(gp46/gp47), which play an essential role in
initiation of recombination-dependent replica-
tion at later stages of infection (Kreuzer and
Brister 2010; Almond et al. 2013). In bacteria,
MR (denoted SbcCD) degrades hairpin struc-
tures in the wake of replication forks and pro-
tects the cell against inverted chromosome du-
plication together with RecA (Zahra et al. 2007;
Eykelenboom et al. 2008; Darmon et al. 2010).
In archaea, like in eukaryotes, MR(N) is recruit-
ed to and repairs DSBs that are induced using
ionizing radiation or genotoxic agents and that
arise at stalled replication forks (Costanzo et al.
2001; Neale et al. 2005; Trenz et al. 2006; Frols
et al. 2007; Quaiser et al. 2008; Delmas et al.
2009, 2013). In eukaryotes, MRN also processes
newly replicated telomeres and DSBs that are
blocked by DNA hairpin structures or by pro-
teins, such as Ku and themeiotic recombination
factor Spo11 (Lobachev et al. 2002; Connelly
et al. 2003; Neale et al. 2005; Bonetti et al.
2010; Mimitou and Symington 2010; Langerak
et al. 2011).
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How MR(N) functions as a DNA end sen-
sor and processing factor is still poorly under-
stood. Although Ku forms a ring structure with
DSB-binding affinity in the nanomolar range
(Fig. 1) (Blier et al. 1993; Walker et al. 2001),
readily explaining how it acts as a DSB sensor,
we have not yet arrived at a model that explains
the mechanism of DSB detection by MR(N).
Many bulk biochemistry experiments on MRN
or MR homologs show a relatively moderate
DNA-binding affinity in the high nanomolar
to micromolar range and, in general, no clear
binding specificity for DNA ends (e.g., Lee et al.

2003; Möckel et al. 2012). However, recent sin-
gle-molecule fluorescence resonance energy
transfer (FRET) analysis of humanMRN deter-
mined an extraordinarily high DNA-binding
affinity in the picomolar range (Cannon et al.
2013). This discrepancy may be caused by dif-
fering experimental conditions. MR(N) is in-
trinsically able to form large macromolecular
assemblies in vitro (de Jager et al. 2001), and
the ratio of higher-order to lower-order mul-
timers of MR(N) might influence its affinity
to DNA. This relationship may partly explain
the apparent involvement of the Rad50 coiled-
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Figure 1. TheMre11-Rad50-Nbs1 complex and phylogenetic orthologs. Structural model of MR(N) complexes
together with a nucleosome, the Ku-DNA complex and RecN. Nbs1 interaction partners are indicated. The
eukaryotic MRN model was built from Schizosaccharomyces pombe MN and Nbs1 (PDB code 4FBW, Schiller
et al. 2012), Methanocaldococcus jannaschii MR, Pyrococcus furiosus Zn-hook and a coiled-coil model. The
archaeal model is based on the M. jannaschii MR structure and the P. furiosus Zn-hook. Bacteriophage MR is
modeled on the Thermotoga maritima MR complex together with the P. furiosus Zn-hook and a coiled-coil
model. PDB codes are 1AOI (nucleosome, Luger et al. 1997), 1JEY (Ku-DNAcomplex,Walker et al. 2001), 4AD8
and 4ABX (RecN, Pellegrino et al. 2012), 4FBW (MN complex, Schiller et al. 2012), 3HUE (Nbs1,Williams et al.
2009), 3AVO (MR complex, Lim et al. 2011), and 1L8D (Zn-hook, Hopfner et al. 2002).
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coil domain in high affinity DNA binding, as
this domain mediates MR(N) multimerization
(Lee et al. 2013).

During the last decade, a substantial num-
ber of high- and low-resolution structural stud-
ies of MR and MRN components have led to
plausible models for MR and MRN complexes
from different domains of life (Fig. 1). MR or
MRN form large bipolar complexes with glob-
ular heads that harbor the nucleotide-binding
domains (NBDs) of Rad50 and the nuclease
domain of Mre11 (Connelly et al. 1998; Ander-
son et al. 2001; de Jager et al. 2001;Hopfner et al.
2001). TheMre11 nuclease dimerizes and forms
the center of the head module (Hopfner et al.
2001; Williams et al. 2008; Das et al. 2010; Park
et al. 2011). Each Mre11 protomer binds one
Rad50 coiled-coil domain near the Rad50
NBD, generating a conservedM2R2 architecture
(Hopfner et al. 2001; Lammens et al. 2011; Lim
et al. 2011; Limbo et al. 2012). Prokaryotic
Mre11 binds to Rad50 through a carboxy-ter-
minal helix-loop-helix motif (Fig. 2A) (Lam-
mens et al. 2011; Lim et al. 2011; Möckel et al.
2012). The interaction of eukaryotic Mre11 and
Rad50 has not been described on a structural
level yet. However, structural information is
available for the interaction of S. pombe Mre11
with Nbs1, which binds to the Mre11 nuclease
dimer through a conserved motif near the car-
boxyl terminus of Nbs1 (Schiller et al. 2012).

The Mre11 Nuclease

Mre11 interacts with both Rad50 and Nbs1 and
can be envisioned as the core of the MRN com-
plex. Crystal structures of Mre11 homologs
from all three domains of life emphasize the
high structural conservation of the amino-ter-
minal Mre11 domain and a universally con-
served dimer architecture (Fig. 2B,C) (Hopfner
et al. 2001; Arthur et al. 2004; Williams et al.
2008; Das et al. 2010; Lammens et al. 2011; Lim
et al. 2011; Limbo et al. 2012;Möckel et al. 2012;
Schiller et al. 2012; Liu et al. 2014). The func-
tional importance of Mre11 dimerization is
highlighted by findings that mutations of the
yeast Mre11 dimer interface phenocopy an
mre11 knockout (Williams et al. 2008; Schiller

et al. 2012). The conserved amino-terminal do-
main of Mre11 consists of a phosphoesterase
domain and an adjacent capping domain (Fig.
2B). The phosphoesterase active site coordi-
nates two manganese ions, which are essential
for exonuclease and ssDNA endonuclease activ-
ities (Trujillo et al. 1998; Hopfner et al. 2001).

The Mre11 dimer can directly bind and
bridge two DNA ends in vitro (Fig. 2B) (Chen
et al. 2001; Williams et al. 2008; Ghodke and
Muniyappa 2013), a function that could be im-
portant in the context of HR and end-joining
reactions (Reis et al. 2012). It is also known that
the carboxyl terminus of eukaryoticMre11 con-
tains additional DNA-binding sites. One site
maps to a region adjacent to the capping do-
main and is crucial for DSB-repair functions. A
second DNA-binding motif at the carboxyl ter-
minus of Mre11 was shown to be essential for
DSB formation and spore viability in meiosis in
S. cerevisiae (Furuse et al. 1998; Usui et al. 1998).
Metazoan Mre11 homologs contain, in addi-
tion, a glycine/arginine-rich (GAR) motif,
which is important for DNA binding and nu-
clease activity in vitro and localization to DSBs
in vivo (Dery et al. 2008).

Comparison of all published structures re-
veals that theMre11 dimer angle is not fixed, but
it shows a large pivot angle range of one proto-
mer with respect to the other (Fig. 2C). The
observed variation of the dimer angle is not nec-
essarily species specific, as S. pombe Mre11, for
instance, was crystallized in very different dimer
angles in the presence and absence of Nbs1
(Schiller et al. 2012). There might be a correla-
tion between the Mre11 dimer angle and differ-
ent binding states of Rad50, DNA, and Nbs1.
Thus, the observed conformational flexibility
might be an important functional aspect that
should be addressed in future studies. An ex-
ceptional and somewhat surprising case is that
of human Mre11, which was crystallized as a
dimer cross-linked by an unexpected disulfide
bond that leads to an unusual dimer interface
and abolishes flexibility (Park et al. 2011).

At present, we have some basic understand-
ing of the interaction of Mre11 with DNA, but
important questions remain open. The metal-
binding site with its conserved dimetal coordi-

C.B. Schiller et al.

4 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a017962

 on November 26, 2014 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 



A

D

Zinc hook

Zinc hook

DNA tethering
ATM activation

End recognition
DNA processing

?

?

+ATP

Phospho-
diesterase

Nuclease
active site

Helix-loop-
helix domain

(HLH) Capping
domain

Rad50
monomer

Coiled-
coils

Rad50
dimer

Mre11 dimer
ATP

hydrolysis

B Capping
domain

Capping
domain

Nuclease
domain

Nuclease
domain

Capping
domain

Capping
domain

Nuclease
domain

Nuclease
domain

Active
site

C

Figure 2. The Mre11 nuclease and its regulation by Rad50. (A) Structure of the ATP-bound and ATP-free
T. maritima MR complex. The PDB codes are 3QG5 and 3THO (Lammens et al. 2011; Möckel et al. 2012).
(B) Comparison ofMre11-DNA structures: the surface of theMre11 dimer (blue) bound to synaptic DNA (left)
and branched DNA (right). In the right structure, the active site (magenta) coordinates two manganese ions
(yellow). The PDB codes are 3DSC (synapticDNA) and 3DSD (branchedDNA,Williams et al. 2008). (C)Mre11
structure comparison: dimeric crystal structures are aligned onto the leftmonomer of P. furiosusMre11 (blue)
(PDB code is 1S8E, Arthur et al. 2004). For clarity, the overlaid monomers are not depicted, the rightmonomers
are transparent, and the first a-helix from the capping domain is marked from blue to red to highlight the
differences. DNA (sand) indicates the accessible nuclease active site. The PDB codes are 1II7 (Hopfner et al.
2001), 3DSD, 3DSC (Williams et al. 2008), 4HD0 (Limbo et al. 2012), 3AUZ, 3AV0 (Lim et al. 2011), 3THO,
3THN (Möckel et al. 2012), 3QG5 (Lammens et al. 2011), 2Q8U (Das et al. 2010), 4FBQ, 4FBW, 4FBK, and
4FCX (Schiller et al. 2012). (D) MR model for DNA tethering and processing: Mre11 (blue) in complex with
Rad50 (orange) forms intercomplex (left) and intracomplex (right) interactions through the zinc hook (zinc ion,
red).
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nating histidines readily explains the preference
for manganese over magnesium for the 30 exo-
nuclease. However, P. furiosus Mre11 was also
shown to possess magnesium-dependent endo-
nuclease activity that promotes 50 strand resec-
tion, the structural features of which remain
elusive so far (Hopkins and Paull 2008). More-
over, our understanding of themolecularmech-
anism of DNA processing by Mre11 is still lim-
ited by the lackof a structure ofMre11 bound to
a transition state DNA substrate.

The Rad50 Coiled-Coils

Arguably, themost distinguished yetmost poor-
ly understood structural feature of the MRN
complex is the long coiled-coil extensions of
Rad50. They emerge from the NBDs of Rad50
and carry the universally conserved “zinc-
hook” dimerization motif at their apices (Fig.
1) (Hopfner et al. 2002). Two zinc hooks can
dimerize by jointly coordinating a zinc ion via
four invariant cysteines, two from each zinc
hook (Fig. 2D) (Hopfner et al. 2002). In vitro,
this dimerization can tether different MRN
complexes or help to form supramolecular as-
semblies to cross-link DNA (de Jager et al. 2001;
Hopfner et al. 2002), a feature that may explain
the abilityofMRN to aggregateDNA inXenopus
cell extracts (Costanzo et al. 2004).

Although the lengths of the coiled-coils are
rather conserved between more closely related
phylogenetic taxa, they can considerably vary
between the different domains of life (Fig. 1).
Studies in yeast have shown that the zinc hooks
are critical for the function of the complex, but
can be partly substituted by dimerization do-
mains of a different type (Wiltzius et al. 2005)
or can be compensated for by higher concentra-
tions of MRN in the context of ATM activation
(Lee et al. 2013). However, reduction of the
length of the coiled-coil dramatically impairs
functionality of the MRN complex (Hohl et al.
2011; Deshpande et al. 2014). It is interesting to
note that yeast MRN is impaired when the
length of the Rad50 coiled-coils is reduced to
that of the bacteriophage protein. These results
suggest that the dimensions of theRad50 coiled-
coil regions seem to be functionally relevant, but

the mechanistic requirements differ strongly
between phylogenetic kingdoms and phages.
However, care should be taken in the interpreta-
tion of these results and the design of such stud-
ies, as it is difficult to alter the length of coiled-
coil domains without affecting their proper
assembly or the orientation of the zinc hooks
because of the helical nature of coiled-coils.

Scanning force microscopy (SFM) shows
that the coiled-coil domains of Rad50 are orga-
nized into segments with flexible hinges that
seem to coincide with regions of lower coiled-
coil propensity (van Noort et al. 2003; de Jager
et al. 2004). Because of this flexibility, two
coiled-coil domains can form both inter- and
intracomplex interactions, mediated by the di-
merization of two zinc-hook motifs (Fig. 2D)
(de Jager et al. 2001; Hopfner et al. 2001, 2002;
Moreno-Herrero et al. 2005). Importantly, the
recent structure of a small, Rad50-like prokary-
otic DSB repair factor, RecN, described, for the
first time, an atomic model for a full Rad50/
SMC/RecN-type structure, assembled from
overlapping, crystallographically resolved frag-
ments (Fig. 1) (Pellegrino et al. 2012). This
RecN dimer model illustrates the segmental na-
ture of the coiled-coils, but at the same time, it
suggests that the coiled-coil domain is overall
rather stiff (Fig. 1).

Integrative Model for MR Mechanism

The ATP-binding and hydrolysis motifs of
Rad50 are functionally critical elements of
MRN. TheNBDs of Rad50 dimerize in response
to ATP binding, and studies with isolated NBDs
show that Rad50 binds DNA in this ATP-en-
gaged conformation (Hopfner et al. 2000b).
ATP binding to the NBDs is also important
for other functions of the complex such as ac-
tivation of DNA damage checkpoint regulator
ATM (Lee et al. 2013; Deshpande et al. 2014).
Recent structural analysis on Mre11-Rad50NBD

head complexes revealed that the NBDs of
Rad50 are far apart in the absence of ATP, allow-
ing DNA to access the Mre11 nuclease active
sites (Fig. 2A) (Lammens et al. 2011). In the
presence of ATP, however, the two NBDs dimer-
ize and bind into the DNA-binding/nuclease
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cleft of theMre11dimer (Limet al. 2011;Möckel
et al. 2012; Deshpande et al. 2014). In this con-
formation, the two active sites of the Mre11
dimer are blocked, at least for binding of dou-
ble-stranded DNA (dsDNA). These structural
studies are consistent with reports that ATP
binding to Rad50 negatively regulates the proc-
essive 30 dsDNA exonuclease and dsDNA endo-
nuclease activity (but not the ssDNA endonu-
clease activity)ofMre11(Herdendorf et al. 2011;
Lim et al. 2011; Majka et al. 2012; Deshpande
et al. 2014). The closed, ATP-bound conforma-
tion is also the conformation that activates ATM
(Lee et al. 2013; Deshpande et al. 2014). Thus, a
modelmay be formulated that was confirmed in
a very recent study (Deshpande et al. 2014): The
closed MR(N) complex is involved in ATM acti-
vation andDSB recognitionor tethering,where-
as the open complex after ATP hydrolysis is
involved in DNA processing (Fig. 2D). It is yet
unclear, however, how MRN binds DNA in
the closed conformation, in which the Mre11
dsDNA-binding sites are blocked. We also do
not know how Rad50 interacts with DNA.

The nature of supramolecular structures of
MR and MRN that involve additional interac-
tions mediated by the coiled-coils still needs to
be resolved. Several different architectures are
conceivable and may play roles in recombina-
tion and end joining. Using scanning force mi-
croscopic analysis of human MRN, DNA bind-
ing was shown to cause a shift from intra-MRN
to inter-MRNhook–hook interactions through
a mesoscale conformational change (Fig. 2D)
(Moreno-Herrero et al. 2005). Therefore, the
formation of higher-order structures could be
directly coupled to DNA binding. The situation
may be different for the rather short coiled-coil
structures of the bacteriophage Rad50 ortho-
logs, which leave little room for intramolecular
coiled-coil interactions; thus, more work is
needed to functionally dissect and validate dif-
ferent superstructures.

Nbs1

The eukaryote-specific subunit of the MRN
complex, Nbs1 (or Xrs2 in S. cerevisiae), has
multiple functions. It was found to stimulate

DNA binding and unwinding of MRN (Paull
and Gellert 1999; Trujillo et al. 2003) and is
necessary for the nuclear localization of Mre11
and Rad50 (Carney et al. 1998; Desai-Mehta et
al. 2001; Tsukamoto et al. 2005). Nbs1 recruits
and helps to activate the DNA damage check-
point regulator ATM/Tel1p (Nakada et al. 2003;
Falck et al. 2005; You et al. 2005; Berkovich et al.
2007). Although MR alone seems to be able to
interact with ATM in vitro (Costanzo et al. 2004;
Lee and Paull 2004; Lee and Paull 2005), the
Nbs1 carboxyl terminus was shown to interact
with and activate ATM through an acidic patch
and a FXF/Y motif (Falck et al. 2005; You et
al. 2005). A carboxy-terminal 147-amino-acid
fragment of Nbs1 carrying these twomotifs was
sufficient to restore ATM activation in an Nbs1-
depleted Xenopus egg extract (You et al. 2005).
In addition, the carboxyl terminus of Nbs1 was
found to be necessary for control of cell cycle
arrest and apoptosis signals in a mouse model
(Stracker et al. 2007).

Nbs1 comprises a folded amino-terminal
region and a carboxy-terminal part predicted
to be of low structural order (Williams et al.
2009). Crystal structures of the amino-terminal
folded region revealed a rigid structure that con-
sists of a fork-head-associated (FHA) domain
and tandem BRCA1 carboxy-terminal (BRCT)
domains (Lloyd et al. 2009; Williams et al.
2009). FHA and BRCT domains have been
shown to recognize phosphoproteins (Du-
rocher and Jackson 2002; Yu et al. 2003). In
Nbs1, these domains serve as a recruitment plat-
form for various DSB repair factors such as me-
diator of DNA damage checkpoint protein 1
(MDC1), Bloom syndrome mutated (BLM),
breast cancer 1 (BRCA1), CtBP-interacting pro-
tein (CtIP), and phosphorylated histone H2AX
(via MDC1) (Fig. 1) (Wang et al. 2000; Burma
et al. 2001; Kobayashi et al. 2002; Chapman and
Jackson 2008; Chen et al. 2008; Melander et al.
2008; Spycher et al. 2008; Wu et al. 2008). At
least in the case of MDC1, both FHA and BRCT
domains participate in an interdependent fash-
ion (Lloyd et al. 2009; Hari et al. 2010).

Because of its flexible nature, only limited
structural information is available for the car-
boxy-terminal region of Nbs1. Nbs1 binds to
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Mre11 through a conserved NFKxFxK motif
in this carboxy-terminal region (Desai-Mehta
et al. 2001; Tauchi et al. 2001; You et al. 2005;
Schiller et al. 2012). Significantly, the crystal
structure of S. pombe Mre11 in complex with
a carboxy-terminal fragment of Nbs1 showed
that this peptide binds across the Mre11 dimer
and breaks its symmetry (Schiller et al. 2012).
Whether this binding has only the function to
tether Mre11 to Nbs1 or—as the peculiar inter-
action at the Mre11 dimer axis may indicate—
is functionally linked to Mre11-Rad50 confor-
mations should be subject of future studies. It
also remains to be clarified how this apparently
asymmetric binding translates into the stoichi-
ometry of the MRN complex (2:2:2 or 2:2:1).

Mutations in Mre11-Rad50-Nbs1 in Human
Disease

Although knockouts of MRE11, RAD50, and
NBS1 are lethal in mice (Luo et al. 1999; Zhu
et al. 2001; Buis et al. 2008), there are hypomor-
phicmutations of these genes that are associated
with a set of related but phenotypically dis-
tinct syndromes such as ataxia-telangiectasia-
like disease (ATLD), Nijmegen breakage syn-
drome (NBS), andNBS-like disorder (NBSLD).
These diseases are related to ataxia telangiec-
tasia (A-T), which is caused by mutations in
ATM (Savitsky et al. 1995). All three MRN-as-
sociated syndromes and A-T share phenotypes
on a cellular level, but patients differ with re-
spect to the extent of neurological, immunolog-
ical,andcancerpredispositiondisorders.Whereas
NBS and NBSLD lead to microcephaly, A-Tand
ATLD are associated with neurodegeneration
(Carney et al. 1998; Varon et al. 1998; Stewart
et al. 1999; Maser et al. 2001; Waltes et al. 2009;
Matsumoto et al. 2011).

Presently, the literature describes 18 cases of
ATLD and one case of NBSLD that were all
linked to mutations in the MRE11 gene and
one NBSLD patient with two RAD50mutations
(Hernandez et al. 1993; Stewart et al. 1999; Pitts
et al. 2001; Delia et al. 2004; Fernet et al. 2005;
Uchisaka et al. 2009; Matsumoto et al. 2011;
Palmeri et al. 2013). The availability of atomic
structures of eukaryotic Mre11 and Nbs1 and

prokaryotic Rad50 and the high degree of con-
servation of MRN allow us to map the under-
lying mutations onto a structural model of the
MRN complex (Fig. 3). Most mutations de-
scribed so far, apart from truncation mutants,
map to the interface between Nbs1 and Mre11.
As this interface is quite extended, point muta-
tions reduce, but do not abolish, the interaction
between Nbs1 and Mre11, explaining their hy-
pomorphic nature. Functional analysis of some
mutations by mutating corresponding con-
served residues in S. cerevisiae MRX showed
that an ATLD-mimicking mutation did impair
mitotic repair functions solely by lowering the
nuclear concentration of MRX (Schiller et al.
2012). In addition, telomere maintenance was
affected, suggesting a defect in Tel1/ATM acti-
vation. For another ATLD-mimicking muta-
tion, a study in S. pombe showed thatDSB repair
was affected, but not Tel1/ATM activation
(Limbo et al. 2012). This situation is somewhat
surprising because ATLD is similar to A-T,
which is caused by inactivation of ATM. Very
recently, progressive myoclonic ataxia (PMA)
was also linked to an MRE11 mutation that
maps to the surroundings of the Nbs1–Mre11
interface (Miyamoto et al. 2013).

Further work is thus necessary to correlate
the molecular defects in MRN with the ob-
served disease phenotypes. However, the struc-
tural studies on the conformational and func-
tional states of MRN will now allow a more
detailed structure–function correlation. The
mutations may affect these distinct states of
MRN and may lead to partial separation of
function, which may explain how different dis-
ease phenotypes such as NBS and ATLD can
result from mutations in a single complex.

RESECTION

Once a DNA DSB has been recognized, 50-30

resection of the DNA ends may proceed, which
requires a 50-30 nuclease and, in most path-
ways, a helicase. Although this principle holds
true for all three domains of life, resection and
the initiation thereof are governed by different
machineries with conservation limited to sin-
gle domains. In bacteria, themultisubunit com-
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plexes RecBCD and AddAB are stand-alonema-
chineries that recognize DSBs, initiate resection,
and perform long-range resection in a highly
processive way (for an excellent recent review,
see Wigley 2013). Under certain circumstances,
an alternative resection pathway may take over
that involves the nuclease RecJ and the helicase
RecQ (Handa et al. 2009). In archaea, the MR
complex identifies DSBs and initiates resection,
but a complex comprising the nuclease NurA
and the helicase HerA executes long-range re-
section (Hopkins and Paull 2008; Blackwood
et al. 2012). There is evidence, however, that
NurA-HerA may form a larger resection com-
plex together with MR (Quaiser et al. 2008). In
eukaryotes, the MRN complex initiates resec-
tion together with the protein CtIP (Limbo
et al. 2007; Mimitou and Symington 2008). Eu-
karyotic long-range resection has been found to
follow partly redundant pathways that involve
either the processive nuclease Exo1 or the com-
plex of the nuclease/helicase DNA2 and the
RecQ-like helicase Bloom syndrome mutated
(BLM, Sgs1 in yeast) (Gravel et al. 2008; Mi-
mitou and Symington 2008; Nimonkar et al.
2008; Zhu et al. 2008). In the following section,
we will describe the initiation of resection in
eukaryotes, followed by a discussion of the re-

cent advances of our structural understanding
of the Exo1, DNA2/BLM, and NurA/HerA
pathways.

Initiation of Resection in Eukaryotes

In eukaryotes, initial resection of DSBs requires
the MRN complex and CtIP. The precise bio-
chemical function of CtIP is still controversial.
CtIP was first characterized as an interaction
factor of the transcriptional repressor CtBP,
RB1, and the DNA repair and checkpoint pro-
tein BRCA1 (Fusco et al. 1998; Schaeper et al.
1998; Wong et al. 1998; Yu et al. 1998). Putative
orthologs of CtIP are found in most eukaryot-
ic species, although sequence identity is limited
to small regions at the amino and carboxyl
termini. CtIP orthologs (Sae2 in S. cerevisiae
and Ctp1 in S. pombe) also vary considerably
in length and may have diverged in their exact
function, for example, with regard to the in-
teraction with other proteins. Nonetheless,
both Sae2 and Ctp1 were reported to play roles
in initial DNA end resection similar to verte-
brate CtIP (McKee and Kleckner 1997; Prinz
et al. 1997; Lengsfeld et al. 2007; Limbo et al.
2007; Akamatsu et al. 2008; Nicolette et al.
2010).

D113G
(NBSLD)

N117S
(ATLD3/4)

W210C
(ATLD7/8)

W243R
(ATLD17)

del (340-366)
(ATLD18)

R633X
(ATLD1/2)

X1313YextX*66
(NBSLD)

R1093X
(NBSLD)

657del5
(NBS)

T481K
(ATLD5/6)

R571X
(ATLD3/4)
(ATLD5/6)

A47V
(PMA)

Figure 3. MRN and human disease. Mapping of MRN mutations found in human disorders onto a model of
MRN (model and color code from Fig. 1). ATLD, NBS/-LD, and PMAmutations are indicated in green, yellow,
and lilac, respectively.
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Two sequence motifs are conserved between
CtIP orthologs from most species. One motif is
a predicted coiled-coil region at the amino ter-
minus, which appears to mediate dimerization
of CtIP and Sae2, a prerequisite to its function-
ality (Dubin et al. 2004; Kim et al. 2008; Wang
et al. 2012). The second conserved region maps
to the carboxyl terminus. It harbors a phos-
phorylation site (T847 in human and S267 in
S. cerevisiae, but absent in S. pombe Ctp1 and
some other fungi) that is phosphorylated by
CDK to initiate resection (Huertas et al. 2008;
Huertas and Jackson 2009). The carboxyl ter-
minus also contains a functionally important
CxxC motif (absent in S. cerevisiae Sae2) (Lim-
bo et al. 2007; Akamatsu et al. 2008), mutations
of which lead to defects in fission yeast DSB
repair almost as severe as a ctp1 knockout. How-
ever, the biochemical function of this motif re-
mains to be characterized.

Mammalian CtIP was shown in several
studies to physically interact withMRN (Sartori
et al. 2007; Chen et al. 2008; Yuan and Chen
2009). In the case of S. pombe Ctp1, two crystal
structures illustrate how the amino-terminal
FHA domain of Nbs1 binds to a phosphorylat-
ed Thr-Asp motif in Ctp1 (Fig. 4A) (Lloyd et al.
2009;Williams et al. 2009). Thismotif in Ctp1 is
phosphorylated in a cell cycle–dependent man-
ner by kinase CK2 (Dodson et al. 2010). Recent-
ly, a direct interaction was also reported for re-
combinant S. cerevisiaeMRXand Sae2 (Ghodke
and Muniyappa 2013).

On the basis of studies in budding yeast,
Sae2/Ctp1/CtIP has been suggested to initiate
resection at DSB ends together with MRN by
removing a short stretch of 50 to 100 bp from
the 50 strand. Then, processive nucleases and
nuclease–helicase complexes like Exo1 and
Sgs1-Dna2 take over to resect the 50 strand up
to the level of several kilobases (Mimitou and
Symington 2008; Zhu et al. 2008). It is unclear,
however, what defines the number of nucleo-
tides to be removed by MRN and CtIP.

Priming endonucleolytic cleavage by MRN
andCtIPmayhelp to processDNAends blocked
by chemical modifications or by proteins and
also offers a way to prevent uncontrolled resec-
tion and hyperrecombination. Blocked DNA

ends occur in meiosis or during abortive topo-
isomerase reactions (Hartsuiker et al. 2009;
Longhese et al. 2009). The MRN(X) complex
and Sae2/CtIP may indeed be dispensable for
the resection of “clean” DNA ends, as shown for
HO-endonuclease and I-SceI-induced DSBs in
yeast (Llorente and Symington 2004; West-
moreland and Resnick 2013). In contrast to a
model, in which MRN(X) and Sae2/CtIP start
resection directly at a DNA end, newer studies
provide an alternativemodel, inwhichMRN(X)
incises DNA away from the DNA end (Fig. 4B).
For yeastmeioticDNAbreaks that are covalently
bound by Spo11 (Keeney et al. 1997), it was
shown that the MRX complex and Sae2 incise
this blocked DNA up to 300 bases downstream
from the DSB and resect the DNA strand in a 30-
50 direction toward the break (Fig. 4B) (Garcia
et al. 2011). This model reconciles the discrep-
ancy between the 30-50 exonuclease activity of
Mre11 observed in vitro and the 50-30 resection
observed in vivo. DNA incision away from the
DSB was found for HR also in mitotic mamma-
lian cells (Shibata et al. 2014), suggesting that
this mode of action is not limited to meiosis.
However, some issues remain unclear. What de-
fines the distance between themeiotic ormitotic
break and the endonucleolytic incision? The ob-
served distance could be particular to the exper-
iment, but may also reflect the influence of nu-
cleosomes or the tethering function of the
Rad50 coiled-coils. Another open question is
how MRN distinguishes the two DNA strands
during the endonucleolytic cut so that it pro-
cesses toward and not away from the break.

The biochemical mechanisms by which
Sae2/Ctp1/CtIP promote DSB resection are
not understood andmay differ between species.
Although S. cerevisiae Sae2 shows in vitro en-
donuclease activity on ssDNA and degrades
hairpin DNA structures cooperatively with
MRN (Lengsfeld et al. 2007), human CtIP
seems to lack nuclease activity, but stimulates
the ssDNA endonuclease activity ofMre11 (Sar-
tori et al. 2007). Structural data for Sae2/Ctp1/
CtIP or its interaction with MRN(X) so far
remain elusive. Thus, many questions are still
unanswered: (1) Where is the active site in
S. cerevisiae Sae2 located? (2) Does it represent

C.B. Schiller et al.

10 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a017962

 on November 26, 2014 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 



BRCT1

FHA

BRCT2

Ctp1 with
pT-79

3′
5′

Spo11

Spo11

Spo11

Release of Spo11-DNA adducts
and processive 5′ resection

Exo1/DNA2

Hydrophobic
wedge

H2TH

C term.

C

A B

D

Exo1

IIe233

IIe238

IIe241

Ser229
Ser237

Ser222

K+
K+

Gly232 Gly240H2O

H2O

H2O

DNA DNA

FEN-1

v v

Mre11
+ Sae2

Mre11

3′
5′

3′
5′

5′
3′

5′
3′

5′
3′

Figure 4. Resection initiation and the Exo1 resection pathway. (A) Structure of an Nbs1-Ctp1 complex from
S. pombe (PDB code is 3HUF,Williams et al. 2009). Nbs1 surfacewith highlighted FHA (salmon), BRCT1 (red),
and BRCT2 (dark red) domains. Peptide fromCtp1 (blue) with phosphorylated T79 bound to the FHAdomain.
(B) Model for bidirectional resection at meiotic DSBs by Mre11 and Exo1/Sgs1-Dna2. A study of meiotic
resection in S. cerevisiae suggests an endonucleotic cleavage of the 50 strand byMre11/Sae2 at a distance of up to
300 bp away from the Spo11-blockedDNAend. The nickedDNAcan then be processed bidirectionally byMre11
in the 30-50 direction and by Exo1 or Sgs1-Dna2 in the 50-30 direction (Garcia et al. 2011). (C) Comparison of
human Exo1 and FEN-1. Features discussed in the text are highlighted and labeled for Exo1. The PDB codes are
3QEA (Exo1, Orans et al. 2011) and 3Q8K (FEN-1, Tsutakawa et al. 2011). (D) The helix-two-turn-helix
(H2TH)-Kþ motif in Exo1 (left) and FEN-1 (right). Straight lines indicate metal coordination, and dashed
lines indicate hydrogen bonds. Only residues involved in Kþ-coordination and binding of the Kþ-coordinating
DNA base are shown. The schemewas drawn using LIGPLOT (Laskowski and Swindells 2011). C term., carboxy
terminal.
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a new class of nuclease domains that is absent
in vertebrate CtIP? (3) How can this protein
stimulate and regulate the nuclease activities
of Mre11 in pathways such as mitotic and mei-
otic HR, telomere maintenance, and MMEJ?

Exonuclease 1 Resection Pathway

The long-range resection nuclease exonuclease
1 (Exo1, in humans, also Hex1) was first de-
scribed as a 50-30 exonuclease from S. pombe
(Szankasi and Smith 1992) and then found in
S. cerevisiae (Fiorentini et al. 1997; Tishkoff
et al. 1997) and humans (Schmutte et al.
1998; Tishkoff et al. 1998; Wilson et al. 1998).
Besides its involvement in resection (Tsubouchi
and Ogawa 2000; Mimitou and Symington
2008; Zhu et al. 2008; Nicolette et al. 2010),
Exo1 has major roles in mismatch repair (Szan-
kasi and Smith 1995; Genschel et al. 2002) and
telomere maintenance (Wu et al. 2012). During
resection, human Exo1 is stimulated by BLM,
MRN, and the replication protein A (RPA), as
shown by experiments using purified proteins
(Nimonkar et al. 2008, 2011). However, this sit-
uation may be different in yeast (Cannavo et al.
2013).

Exo1 belongs to the XPG/Rad2 and FEN-1
family of structure-specific nucleases, a class of
metalloenzymes (Shen et al. 1997; Lee and Wil-
son 1999;Orans et al. 2011). Allmembers of this
family share a conserved amino-terminal nucle-
ase domain (amino acids 1–350 in human
Exo1), whereas the carboxyl terminus (the re-
maining 500 amino acids) is divergent. Human
Exo1 is dependent on Mg2þ, and significantly
less active in the presence of Mn2þ (Lee and
Wilson 1999). For many years, structural infor-
mation was limited to crystal structures of the
paralog flap endonuclease 1 (FEN-1) (Hosfield
et al. 1998; Hwang et al. 1998;Matsui et al. 2002;
Chapados et al. 2004; Feng et al. 2004; Sakurai
et al. 2005; Doré et al. 2006; Devos et al. 2007),
which, among other roles, removes Okazaki
fragments during replication (reviewed in Ba-
lakrishnan and Bambara 2013). However, these
structures were incomplete with regard to the
metal center or DNA complexation. Only re-
cently, the crystal structures of human Exo1

and FEN-1, each in complex with a DNA sub-
strate, were reported (Fig. 4C) (Orans et al.
2011; Tsutakawa et al. 2011).

The Exo1 fold comprises a central, twisted
b-sheet surrounded by a-helices and is struc-
turally very similar to FEN-1 and related endo-
nucleases (Orans et al. 2011). In the crystal
structure, a bound DNA substrate is simulated
using a short DNA duplex with a 30 single-
strand extension. The double-stranded part of
the DNA interacts with Exo1 only at two points
that are set one turn apart. A helix-two-turn-
helix (H2TH) motif binding a Kþ makes non-
specific bonds with the nonsubstrate strand
(Fig. 4C,D). At the active site, two structurally
conserved helices form a hydrophobic wedge
that drives the nonsubstrate strand into a sharp
bend away from the nuclease. The 50 end of the
substrate strand is led to the active site, which
consists of two divalent cations that are coordi-
nated by five conserved acidic residues and a
conserved lysine and arginine. A remarkable
feature is the fraying of the duplex DNA. As a
consequence, the substrate strand becomes a
single strand that exposes its scissile bond to
the metal center. It was proposed that one of
the metals activates a water molecule that can
attack the scissile bond, whereas the other metal
stabilizes the leaving group (Beese and Steitz
1991; Steitz and Steitz 1993; Orans et al. 2011).

Many of these structural features are con-
served between the paralogs Exo1 and FEN-1
despite different substrate specificities (Fig.
4C) (Orans et al. 2011; Tsutakawa et al. 2011).
Exo1 is primarily an exonuclease at DNA nicks,
FEN-1 removes DNA flaps, and other family
members such as XPG or GEN cut at DNAbub-
bles or Holliday junctions, respectively (Tsuta-
kawa and Tainer 2012). Common to all these
DNA structures is a nick or gap, and the insights
gained from the Exo1 and FEN-1 structures al-
low the formulation of a single, commonmech-
anism for their processing by FEN-1 family
members (for an in-depth discussion of the
two crystal structures and their implications,
see Grasby et al. 2012; Tsutakawa and Tainer
2012). The presence of a DNA nick or gap is
required by the hydrophobic wedge that induces
a sharp bend into the template DNA strand and
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thus prevents the processing of dsDNA. Togeth-
er with the wedge, the H2TH/Kþ motif (Fig.
4D) orientates the substrate strands toward the
active site metal center. This potassium ion is
absent in FEN-1 crystal structures that lack
DNA (e.g., Chapados et al. 2004). A similar con-
figuration was observed in the DNApolymerase
b, where a Kþ is involved in binding of a helix-
hairpin-helix motif to DNA and was suggested
to support processivity (Pelletier et al. 1996).
Access to the active site is restricted to ssDNA,
again excluding a continuous dsDNA. The
ssDNA is generated by melting of two residues
of the substrate strand.

Still under discussion is the interaction be-
tween FEN-1 paralogs and the substrate ssDNA
upstream of the incision. A threading mecha-
nism has been postulated that requires the
threading of the ssDNA through a helical arch
that is disordered in the absence of bound DNA
(Ceska et al. 1996; Tsutakawa et al. 2011; Tsuta-
kawa and Tainer 2012; Balakrishnan and Bam-
bara 2013). Threading has to be ruled out for
a DNA bubble in the case of XPG. Some argue
that XPG probably does not have a helical arch
(Tsutakawa et al. 2011; Tsutakawa and Tainer
2012), whereas others posit that the ssDNA
may circumvent the helical arch and bind on
surface grooves, which may extend to all FEN-
1-related nucleases, including XPG and GEN
(Orans et al. 2011).

The Sgs1/BLM-DNA2 Resection Pathway

The second main pathway for processive 50-re-
section in HR, beside Exo1-mediated resection,
depends on the cooperative action of the nucle-
ase DNA2 and the helicase activity of Sgs1 in
S. cerevisiae or its functional homolog BLM in
vertebrates (Gravel et al. 2008; Mimitou and
Symington 2008; Nimonkar et al. 2008; Zhu et
al. 2008). Sgs1 or BLM unwind duplex DNA by
their 30-50 helicase activity. The ssDNA-binding
protein, replication protein-A (RPA), then coats
ssDNA unwound by Sgs1 and promotes 50-30

degradation by Dna2 while inhibiting 30 to 50

degradation (Cejka et al. 2010a; Niu et al. 2010;
Nimonkar et al. 2011). Recombinant Dna2 and
Sgs1 physically interact even in the absence of a

DNA substrate, and a similar interaction was
also reported for humanDNA2 andBLM(Cejka
et al. 2010a; Nimonkar et al. 2011). In addition,
Sgs1 is part of the Sgs1-Top3-Rmi1 (STR) com-
plex, together with the topoisomerase class I
enzyme Topoisomerase III and the regulatory
protein Rmi1 (Gangloff et al. 1994; Chang et
al. 2005; Mullen et al. 2005). This complex is
responsible for dissolution of double Holliday
junctions in the late stage of homologous re-
combination (Cejka et al. 2010b). Top3 and
Rmi1 are also important for the resection func-
tion of Sgs1. Deletion mutants of all three pro-
teins share similar resection defects in vivo (Zhu
et al. 2008), and Top3-Rmi1 also stimulates the
50-resection capacity of Sgs1-Dna2 in vitro
(Cejka et al. 2010a; Niu et al. 2010). A very re-
cent crystal structure of the conserved core of the
human TopIIIa-RMI1 complex illustrates how
RMI1might regulate TopIIIa through a long in-
sertion loop that invades the central gate of the
toroidal topoisomerase (Bocquet et al. 2014).

Sgs1 and BLM both belong to the RecQ
family of helicases. Most prokaryotes and yeasts
possess only one or two RecQ homologs (like
Sgs1 in S. cerevisiae), whereas in vertebrates
multiple homologs are found. For Homo sapi-
ens, five RecQ-like helicases have been de-
scribed: BLM, WRN, RECQ1, RECQ4, and
RECQ5b. All of these helicases play important
roles in different pathways of genome mainte-
nance (Chu and Hickson 2009).

The RecQ-like helicases belong to the SF-2
helicase family and share a conserved core,
which consists of two RecA-like domains and
a carboxy-terminally adjacent RQC (RecQ car-
boxy-terminal) region (lacking in RecQ4) (Vin-
digni et al. 2010; Manthei and Keck 2013). The
RQC region is needed for strand separation of
DNA substrates (Hu et al. 2005; Pike et al. 2009;
Kitano et al. 2010). Many RecQ-like helicases,
including bacterial RecQ, yeast Sgs1, and verte-
brate BLM also possess a helicase and RNaseD
carboxy-terminal (HDRC) domain that is im-
portant for DNA substrate recognition and
translocation (Liu et al. 1999; Bernstein and
Keck 2005; Kocsis et al. 2014).

Several atomic resolution structures are now
available and yield insights into the functional
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architecture of these helicases. The crystal struc-
ture of Escherichia coli RecQ revealed the prin-
cipal architecture of the catalytic core (Fig. 5A)
(Bernstein et al. 2003). The RecA-like domains
and the RQC region, consisting of a zinc-bind-
ing motif and a winged helix domain, compose
a compact modular arrangement, which is also

found in the structure of human RecQ1 (Pike
et al. 2009). The HRDC domains from E. coli
RecQ, SGS1, and BLM possess a very similar
fold. However, they exhibit different DNA sub-
strate specificities. This is reflected in their dif-
fering composition of DNA-interacting resi-
dues and distinct surface charge distributions

C

BLM/SGS1

D

NurA protomer RNase H NurA-HerA complex model

P. furiosus NurA dimer

E. coli RecQ Human BLM-DNA complex

A

E F

B

DNA2

3′
5′

3′

Figure 5. Structures of nuclease–helicase complexes involved in resection. (A) Structure of the helicase catalytic
core of E. coli RecQ bound to ATPgS. The structure consists of the RecA-like helicase domains (dark and light
blue) bound to ATPgS (orange) and the RecQ carboxy-terminal region, consisting of the zinc-binding domain
(yellow) and a winged-helix domain (green). The PDB code is 10YY (Bernstein et al. 2003). (B) Structure of
human BLM helicase in complex with DNA. The color coding is similar to that in A. The HRDC domain and
ADPare drawn in orange, and the DNA in brown. The PDB code is 4CGZ. (C) The RecQ-like helicases BLM in
vertebrates or Sgs1 in yeast are both cooperating with DNA2 in DSB resection. Sgs1 or BLMunwind dsDNA by
their 30-50 helicase activity. The ssDNA-binding protein RPA then coats ssDNAunwound by Sgs1 and promotes
50-30 degradation by Dna2 (Cejka et al. 2010a; Niu et al. 2010; Nimonkar et al. 2011). The potential of BLM and
Sgs1 to form multimers is indicated using dashed lines. (D) Structure of the P. furiosus NurA dimer. The PDB
code is 3TAL (Chae et al. 2012). (E) RNase H fold of NurA. AComparison of a P. furiosusNurA protomer with
E. coliRNaseH (PDB code 1RNH, Yang et al. 1990). Homologous elements are highlighted using the same color.
(F) Model of the NurA-HerA complex. The crystal structure of Sulfolobus solfataricus NurA (PDB code 2YGK,
Blackwood et al. 2012) is fitted to aHerAhomolog, the conjugation protein TrwB (PDB code 1E9R,Gomis-Ruth
et al. 2001).
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(Liu et al. 1999; Bernstein and Keck 2005; Kim
and Choi 2010; Sato et al. 2010).

Very recently, structures of human BLM in
complex with partially unwound DNAwere de-
termined (PDB code 4CGZ, Fig. 5B) (Swan et
al. 2014; OGileadi, pers. comm.). This structure
reveals extensive interactions of the winged he-
lix domain with the upstream dsDNA “sub-
strate” and shows that the b-hairpin wing acts
as a DNA-splitting element. The zinc-binding
insertion domain functions as single-stranded
DNA ratchet, whereas the RecA-like domains
binds to the ssDNA “product.” The HRDC do-
main does not make any DNA contacts but is
positioned on top of the nucleotide-binding
cleft of the RecA-like domains. It will be inter-
esting to see whether the observed position of
the HRDC domain is important for the regula-
tion of BLM helicase activity. Bacterial RecQ
and BLM structures share high fold conserva-
tion, although the winged-helix domain is po-
sitioned differently in both structures, indicat-
ing flexibility for this element (Fig 5A,B).

Many RecQ-like helicases including BLM
are known to form oligomers, at least in vitro
(Fig. 5C) (Karow et al. 1999; Xue et al. 2002;
Perry et al. 2006; Vindigni and Hickson 2009).
However, a more recent study describes that
BLM oligomers dissociate into monomers
upon ATP hydrolysis and that only monomeric
but not oligomeric BLMdisplays DNAunwind-
ing activity (Xu et al. 2012a). Thus, it remains
an open question which functional role oligo-
merization of Sgs1 or BLM plays in the context
of 50-strand resection in HR.

Homologs of the nuclease-helicase protein
DNA2 are found both in archaea and eukarya
but are absent in bacteria, although the bacterial
AddAB system bears some structural similarity.
Although archaeal Dna2 is only poorly charac-
terized (Higashibata et al. 2003), the eukaryotic
protein was found to play crucial roles in sev-
eral genome maintenance processes beside ho-
mologous recombination, including Okazaki
fragment processing (Kang et al. 2010) and telo-
mere stabilization (Lin et al. 2013). Initial ge-
netic studies in S. cerevisiae revealed that the
nuclease activity of Dna2 is essential in vivo,
whereas a helicase-dead mutant strain is via-

ble at lower growth temperatures (Budd et al.
2000). A later study then clarified that the nu-
clease of Dna2 is responsible for processive 50

strand resection in DSB repair by HR where it
is the second important processive nuclease
beside Exo1 (Zhu et al. 2008). Both Exo1 and
Dna2 function independently of each other and
seem to play redundant roles (Zhu et al. 2008;
Cannavo et al. 2013). The nuclease module of
Dna2 belongs to the RecB family and maps to
the amino terminus of the protein. Remarkably,
it was shown to contain an iron–sulfur cluster,
which is crucial for both nuclease and ATPase
activity (Yeeles et al. 2009; Pokharel and Camp-
bell 2012). This situation is reminiscent of the
bacterial DSB resection protein AddB, which
possesses a nuclease domain with a 4Fe–4S
cluster (Yeeles et al. 2009).

In contrast to its nuclease activity, the heli-
case activity of Dna2 is dispensable for 50-strand
resection, which was a rather surprising find-
ing. Instead, the unwinding activity of RecQ-
like helicases such as Sgs1 or BLM provides
the 50-ssDNA for resection by Dna2 (Cejka
et al. 2010a; Niu et al. 2010). The Dna2 helicase
exhibits only aweak 50-30 unwinding activity on
dsDNA and depends on the binding to free
DNA ends before acting as a helicase (Bae et
al. 2002). However, recently, it was shown that
Dna2 is a vigorous 50-30 helicase in an S. cerevi-
siae nuclease dead mutant (Levikova et al.
2013). Apparently, Dna2 depends on the bind-
ing to 50-ssDNA flaps for processive helicase
activity, and these flaps are degraded by the
Dna2 nuclease domain of the wild-type protein
(Levikova et al. 2013). Theremay be a structural
switch in Dna2 that regulates the balance be-
tween its nuclease and helicase activities. Atom-
ic resolution structures of Dna2, Sgs1, and their
DNA substrates, which are still lacking at the
moment, could provide important information
to better understand how these key enzymes
cooperate to specifically resect 50-DNA at DSBs.

Resection in Archaea

Archaea, like eukaryotes, use homologs of
Mre11-Rad50 for resection. However, for long-
range resection,Mre11-Rad50 are joined by two
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proteins unique to archaea, the helicase HerA
and the nuclease NurA (Manzan et al. 2004;
Hopkins and Paull 2008; Blackwood et al.
2012; Chae et al. 2012). Archaeal resection is
thus similar to the eukaryotic process with re-
gard to common players such as Mre11-Rad50
and the overall principle. In contrast, the ar-
chaeal resection machinery is completely dis-
tinct from bacterial proteins such as RecBCD,
AddAB, or AdnAB, although some archaeal spe-
cies may have taken up AddAB-like proteins by
horizontal gene transfer (Cromie 2009).

The genes nurA and herA are encoded in one
operon together with mre11 and rad50 in al-
most all archaea (Constantinesco et al. 2002,
2004; Manzan et al. 2004). NurA is a dimer
and has been described as both a 50 and 30 exo-
nuclease for dsDNA and ssDNA and an endo-
nuclease for ssDNA (Constantinesco et al. 2002;
Hopkins and Paull 2008; Wei et al. 2008, 2011;
Blackwood et al. 2012; Chae et al. 2012). HerA is
a hexameric, ATP-dependent DNA helicase that
is activated by and unwinds dsDNA in both the
50 and 30 direction (Constantinesco et al. 2004;
Manzan et al. 2004; Zhang et al. 2008).

For full activity, NurA and HerA have to
form a complex, which is stable in vitro, at least
for species such as P. furiosus and S. solfataricus
(Hopkins and Paull 2008; Blackwood et al.
2012; Chae et al. 2012). However, this physical
interaction may be less stable or absent in Sul-
folobus acidocaldarius (Quaiser et al. 2008). The
stoichiometry of the complex (if formed) seems
to be 2:6, that is, a NurA dimer and a HerA
hexamer (Hopkins and Paull 2008; Blackwood
et al. 2012; Chae et al. 2012).

The HerA monomers assemble into a hex-
americ ring, as visualized by electron microsco-
py analysis (Manzan et al. 2004). Thus, HerA is
a typical member of the FtsK class of P-loop
ATPases and is likely to have a similar fold (Con-
stantinesco et al. 2004; Iyer et al. 2004). The
HerA amino terminus is predicted to comprise
a distinct domain that folds into a b-barrel and
was called the HAS (HerA-ATP synthase) do-
main (Iyer et al. 2004).

The crystal structures of two NurA ortho-
logs from P. furiosus and S. solfataricus were re-
cently reported (Fig. 5D) (Blackwood et al.

2012; Chae et al. 2012). The conserved, active
domain is of the RNaseH-like fold (Fig. 5E)
with nonconserved extensions that make exten-
sive dimer interactions. The overall shape of the
NurA dimer is ring-like, with the active sites
of each monomer facing each other within the
ring pore (Fig. 5D). Conserved acidic residues
bind one or two Mn2þ cations in the active site
of P. furiosus NurA, depending on the crystalli-
zation conditions (Chae et al. 2012). Mutation
of these manganese-binding residues complete-
ly inactivates NurA (Hopkins and Paull 2008;
Wei et al. 2011; Blackwood et al. 2012; Chae
et al. 2012). Also, Mg2þ is known to be essential
for NurA activity (Constantinesco et al. 2002;
Hopkins and Paull 2008; Chae et al. 2012).
Thus, the catalytic mechanism of NurA could
be similar to that postulated for the RNaseH-
like nuclease Argonaute (Wang et al. 2009) or
RNase H itself (Nowotny et al. 2005). Structures
of these proteins bound to divalent cations
and DNA have led to a model in which one
cation activates a water for nucleophilic attack
on the DNA backbone and the second cation
stabilizes the leaving group (Beese and Steitz
1991; Steitz and Steitz 1993; Nowotny et al.
2005; Wang et al. 2009).

The structures of NurA also yielded insight
into the cooperative DNA processing of NurA
and HerA. The cavity of the NurA ring is pos-
itively charged, as expected for a DNA-process-
ing enzyme. However, it holds space only for
one or two ssDNA strands, but not for B-form
dsDNA (Blackwood et al. 2012; Chae et al.
2012). The interaction interface of NurA and
HerA could be mapped to residues on the flat
surface of the NurA ring close to the active site,
which are bound by the HerA HAS domain
(Fig. 5F) (Blackwood et al. 2012). These data
imply that the helicase HerA unwinds dsDNA
and passes one or both single strands directly on
to the NurA dimer.

The NurA structure does not answer the
question of whether, in vivo, the NurA/HerA
complex digests one or both strands of dsDNA.
However, it has been observed that the rate of
ATP hydrolysis by NurA/HerA varies with the
nature of the DNA substrate. This rate is higher
for dsDNAwith blunt ends or short overhangs
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and lower in the presence of longer overhangs
(Blackwood et al. 2012). In consequence, the
nature of the DNA end may trigger complete
digestion of the DNA double strand or the 50-
30 resection necessary to produce a DNA tail.
Blackwood et al. (2012) suggest that the for-
mer could be an archaeal defense mechanism
against foreign DNA, whereas the latter might
rely on the preparation of the DNA by the MR
complex. Experimental evidence indeed sup-
ports a model in which the MR complex and
the NurA/HerA complex cooperate to produce
a 30 overhang that is then bound by RadA (ar-
chaeal RecA) for homologous recombination
(Hopkins and Paull 2008).

OPEN QUESTIONS AND CONCLUDING
REMARKS

The past decade has brought a plethora of new
insights into the composition, biochemistry,
and regulation of the DSB detection and resec-
tion machineries. We now have an inventory of
enzymatic activities at DSBs in all three do-
mains of life. Nonetheless, from a mechanistic
and also an evolutionary point of view, we are
far from understanding the molecular choreog-
raphy of DSB detection, repair, and resection.
Although the bacterial resection machineries,
RecBCD and AddAB, are well characterized,
the structural nature of the resection machiner-
ies in eukaryotes and archaea requires further
attention. New developments in electron mi-
croscopy and hybrid methods in structural bi-
ology may help to better understand the inter-
action architectures of these complexes and the
interplay of different nuclease, helicase, and
topoisomerase activities. Likewise, despite
progress over the last years, the mechanism of
the MR(N) complex in DNA end processing is
still unclear. Several fundamental issues remain
unsolved, in particular, the mechanism of DSB
detection by MRN, the nature of its cryptic en-
donuclease activity, and the role and mecha-
nism of the cofactor CtIP/Ctp1/Sae2. Other
issues such as identifying the site of the initial
endonucleolytic cleavage of DNA ends will re-
quire the reconstitution of more complete bio-
chemical systems. It will also be important to

mechanistically address the resection in chro-
matin templates and integrate the activities of
chromatin modifying enzymes with resection
enzymes. Recent studies have begun to look at
exactly that and showed in vitro that Sgs1-Dna2
resection requires some nucleosome-free DNA
but can then proceed through nucleosomes.
In contrast, nucleosomes provide an obstacle
for Exo1-based resection that may be lifted by
chromatin-remodeling activities (Adkins et al.
2013).
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Doré AS, Kilkenny ML, Jones SA, Oliver AW, Roe SM, Bell
SD, Pearl LH. 2006. Structure of an archaeal PCNA1-
PCNA2-FEN1 complex: Elucidating PCNA subunit and
client enzyme specificity. Nucleic Acids Res 34: 4515–
4526.

Dubin MJ, Stokes PH, Sum EY, Williams RS, Valova VA,
Robinson PJ, Lindeman GJ, Glover JN, Visvader JE, Mat-
thews JM. 2004. Dimerization of CtIP, a BRCA1- and
CtBP-interacting protein, is mediated by an N-terminal
coiled-coil motif. J Biol Chem 279: 26932–26938.

Durocher D, Jackson SP. 2002. The FHA domain. FEBS Lett
513: 58–66.

Eykelenboom JK, Blackwood JK, Okely E, Leach DR. 2008.
SbcCD causes a double-strand break at a DNA palin-
drome in the Escherichia coli chromosome. Mol Cell 29:
644–651.

Falck J, Coates J, Jackson SP. 2005. Conserved modes of
recruitment of ATM, ATR and DNA-PKcs to sites of
DNA damage. Nature 434: 605–611.

Feng M, Patel D, Dervan JJ, Ceska T, Suck D, Haq I, Sayers
JR. 2004. Roles of divalent metal ions in flap endonucle-
ase-substrate interactions. Nat Struct Mol Biol 11: 450–
456.

Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hall J,
Koenig M. 2005. Identification and functional conse-
quences of a novel MRE11 mutation affecting 10 Saudi
Arabian patients with the ataxia telangiectasia-like disor-
der. Hum Mol Genet 14: 307–318.

Ferretti LP, Lafranchi L, Sartori AA. 2013. Controlling DNA-
end resection: A new task for CDKs. Front Genet 4: 99.

Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD, Sy-
mington LS. 1997. Exonuclease I of Saccharomyces cere-
visiae functions in mitotic recombination in vivo and in
vitro. Mol Cell Biol 17: 2764–2773.

Frols S, Gordon PM, Panlilio MA, Duggin IG, Bell SD,
Sensen CW, Schleper C. 2007. Response of the hyperther-
mophilic archaeon Sulfolobus solfataricus to UV damage.
J Bacteriol 189: 8708–8718.

FuruseM, Nagase Y, Tsubouchi H,Murakami-Murofushi K,
Shibata T, Ohta K. 1998. Distinct roles of two separable
in vitro activities of yeast Mre11 in mitotic and meiotic
recombination. EMBO J 17: 6412–6425.

Fusco C, Reymond A, Zervos AS. 1998. Molecular cloning
and characterization of a novel retinoblastoma-binding
protein. Genomics 51: 351–358.

Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein
R. 1994. The yeast type I topoisomerase Top3 interacts
with Sgs1, a DNA helicase homolog: A potential eukary-
otic reverse gyrase. Mol Cell Biol 14: 8391–8398.

Gapud EJ, Sleckman BP. 2011. Unique and redundant func-
tions of ATM and DNA-PKcs during V(D)J recombina-
tion. Cell Cycle 10: 1928–1935.

Garcia V, Phelps SEL, Gray S, Neale MJ. 2011. Bidirectional
resection of DNA double-strand breaks by Mre11 and
Exo1. Nature 479: 241–244.

Structural Mechanisms of Recombination

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a017962 19

 on November 26, 2014 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 



Genschel J, Bazemore LR, Modrich P. 2002. Human exonu-
clease I is required for 50 and 30 mismatch repair. J Biol
Chem 277: 13302–13311.

Ghodke I, Muniyappa K. 2013. Processing of DNA double-
stranded breaks and intermediates of recombination and
repair by Saccharomyces cerevisiae Mre11 and its stimu-
lation by Rad50, Xrs2, and Sae2 proteins. J Biol Chem
288: 11273–11286.

Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A,
Cabezon E, de la Cruz F, Coll M. 2001. The bacterial
conjugation protein TrwB resembles ring helicases and
F1-ATPase. Nature 409: 637–641.

Grasby JA, Finger LD, Tsutakawa SE, Atack JM, Tainer JA.
2012. Unpairing and gating: Sequence-independent sub-
strate recognition by FEN superfamily nucleases. Trends
Biochem Sci 37: 74–84.

Gravel S, Chapman JR, Magill C, Jackson SP. 2008. DNA
helicases Sgs1 and BLM promote DNA double-strand
break resection. Genes Dev 22: 2767–2772.

Haber JE. 2012. Mating-type genes and MAT switching in
Saccharomyces cerevisiae. Genetics 191: 33–64.

Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: The
next generation. Cell 144: 646–674.

Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC.
2009. Reconstitution of initial steps of dsDNA break re-
pair by the RecF pathway of E. coli. Genes Dev 23: 1234–
1245.

Hari FJ, Spycher C, Jungmichel S, Pavic L, StuckiM. 2010. A
divalent FHA/BRCT-binding mechanism couples the
MRE11-RAD50-NBS1 complex to damaged chromatin.
EMBO Rep 11: 387–392.

Hartsuiker E, Neale MJ, Carr AM. 2009. Distinct require-
ments for the Rad32Mre11 nuclease and Ctp1CtIP in the
removal of covalently bound topoisomerase I and II from
DNA. Mol Cell 33: 117–123.

Herdendorf TJ, Albrecht DW, Benkovic SJ, Nelson SW. 2011.
Biochemical characterization of bacteriophage T4
Mre11-Rad50 complex. J Biol Chem 286: 2382–2392.

Hernandez D, McConville CM, Stacey M, Woods CG,
Brown MM, Shutt P, Rysiecki G, Taylor AM. 1993. A
family showing no evidence of linkage between the ataxia
telangiectasia gene and chromosome 11q22-23. J Med
Genet 30: 135–140.

Higashibata H, Kikuchi H, Kawarabayasi Y, Matsui I. 2003.
Helicase and nuclease activities of hyperthermophile Py-
rococcus horikoshii Dna2 inhibited by substrates with
RNA segments at 50-end. J Biol Chem 278: 15983–15990.

Hohl M, Kwon Y, Galvan SM, Xue X, Tous C, Aguilera A,
Sung P, Petrini JH. 2011. The Rad50 coiled-coil domain is
indispensable for Mre11 complex functions. Nat Struct
Mol Biol 18: 1124–1131.

Hopfner KP, Karcher A, Shin D, Fairley C, Tainer JA, Carney
JP. 2000a. Mre11 and Rad50 from Pyrococcus furiosus:
Cloning and biochemical characterization reveal an evo-
lutionarily conserved multiprotein machine. J Bacteriol
182: 6036–6041.

Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Car-
ney JP, Tainer JA. 2000b. Structural biology of Rad50
ATPase: ATP-driven conformational control in DNA
double-strand break repair and the ABC-ATPase super-
family. Cell 101: 789–800.

Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer
JA. 2001. Structural biochemistry and interaction archi-
tecture of the DNA double-strand break repair Mre11
nuclease and Rad50-ATPase. Cell 105: 473–485.

Hopfner KP, Craig L,MoncalianG, Zinkel RA, Usui T, Owen
BA, Karcher A, Henderson B, Bodmer JL, McMurray CT,
et al. 2002. The Rad50 zinc-hook is a structure joining
Mre11 complexes in DNA recombination and repair.Na-
ture 418: 562–566.

Hopkins BB, Paull TT. 2008. The P. furiosus mre11/rad50
complex promotes 50 strand resection at a DNA double-
strand break. Cell 135: 250–260.

Hosfield DJ, Mol CD, Shen B, Tainer JA. 1998. Structure of
the DNA repair and replication endonuclease and exo-
nuclease FEN-1: Coupling DNA and PCNA binding to
FEN-1 activity. Cell 95: 135–146.

Hu JS, Feng H, Zeng W, Lin GX, Xi XG. 2005. Solution
structure of a multifunctional DNA- and protein-bind-
ing motif of human Werner syndrome protein. Proc Natl
Acad Sci 102: 18379–18384.

Huertas P, Jackson SP. 2009. Human CtIPmediates cell cycle
control of DNA end resection and double strand break
repair. J Biol Chem 284: 9558–9565.

Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jack-
son SP. 2008. CDK targets Sae2 to control DNA-end re-
section and homologous recombination. Nature 455:
689–692.

Hwang KY, Baek K, Kim HY, Cho Y. 1998. The crystal struc-
ture of flap endonuclease-1 from Methanococcus janna-
schii. Nat Struct Biol 5: 707–713.

Iyer LM, Makarova KS, Koonin EV, Aravind L. 2004. Com-
parative genomics of the FtsK-HerA superfamily of
pumping ATPases: Implications for the origins of chro-
mosome segregation, cell division and viral capsid pack-
aging. Nucleic Acids Res 32: 5260–5279.

Jasin M, Rothstein R. 2013. Repair of strand breaks by
homologous recombination. Cold Spring Harb Perspect
Biol 5: a012740.

Kang YH, Lee CH, Seo YS. 2010. Dna2 on the road to Oka-
zaki fragment processing and genome stability in eukary-
otes. Crit Rev Biochem Mol Biol 45: 71–96.

Karow JK, Newman RH, Freemont PS, Hickson ID. 1999.
Oligomeric ring structure of the Bloom’s syndrome heli-
case. Curr Biol 9: 597–600.

Keeney S, Giroux CN, Kleckner N. 1997. Meiosis-specific
DNA double-strand breaks are catalyzed by Spo11, a
member of a widely conserved protein family. Cell 88:
375–384.

Kim YM, Choi BS. 2010. Structure and function of the
regulatoryHRDCdomain fromhumanBloom syndrome
protein. Nucleic Acids Res 38: 7764–7777.

Kim HS, Vijayakumar S, Reger M, Harrison JC, Haber JE,
Weil C, Petrini JH. 2008. Functional interactions between
Sae2 and the Mre11 complex. Genetics 178: 711–723.

Kitano K, Kim SY, Hakoshima T. 2010. Structural basis for
DNA strand separation by the unconventional winged-
helix domain of RecQ helicase WRN. Structure 18: 177–
187.

Kobayashi J, Tauchi H, Sakamoto S, Nakamura A, Mori-
shima K, Matsuura S, Kobayashi T, Tamai K, Tanimoto
K, Komatsu K. 2002. NBS1 localizes to g-H2AX foci

C.B. Schiller et al.

20 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a017962

 on November 26, 2014 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 



through interaction with the FHA/BRCT domain. Curr
Biol 12: 1846–1851.

Kocsis ZS, Sarlos K, Harami GM, Martina M, Kovacs M.
2014. A nucleotide- and HRDC-domain-dependent
structural transition in DNA-bound RecQ helicase. J
Biol Chem 289: 5938–5949.

Kreuzer KN, Brister JR. 2010. Initiation of bacteriophage T4
DNA replication and replication fork dynamics: A review
in the Virology Journal series on bacteriophage T4 and its
relatives. Virol J 7: 358.

� Lam I, Keeney S. 2014. Mechanism and regulation of mei-
otic recombination initiation. Cold Spring Harb Perspect
Biol doi: 10.1101/cshperspect.a016634.
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3. Discussion 

All living organisms have developed mechanisms to protect their genome from DNA 

damage. During these repair pathways DNA lesions are recognized and repaired to ensure 

genome integrity. DNA double strand breaks (DSBs) are the most threatening DNA 

lesions by disrupting the whole DNA duplex. Un- or misrepaired DSBs can induce cell 

death, chromosomal rearrangements or mutations, which cause carcinogenesis in humans 

(Myung et al. 2001a, Myung et al. 2001b, Hanahan and Weinberg 2011). The major 

pathways to repair DSBs are canonical non-homologous end joining (c-NHEJ), 

alternative NHEJ (alt-NHEJ) or microhomology-mediated end joining (MMEJ) and 

homologous recombination (HR). The eukaryotic Mre11-Rad50-Nbs1 (MRN) complex 

plays an important role during these repair pathways. In MMEJ and HR, MRN senses 

DSBs and initiates the resection of the DNA end (Chiruvella et al. 2013). Further, MRN 

recruits other repair factors to DSB sites and stimulates the cell cycle checkpoint 

(Assenmacher and Hopfner 2004, Williams et al. 2010). When this work was started no 

crystal structure of eukaryotic Rad50 was available and little was known about its 

interaction with Mre11 or DNA. The aim of this project was to analyze the architecture 

and the function of the eukaryotic MR(N) complex on DNA binding. 

In this work, different MRN subcomplexes from the eukaryotic organism Chaetomium 

thermophilum (Ct) were recombinantly expressed and purified. After crystallization, the 

structure of the dimeric CtMre11 catalytic domain (CtMre11CD) and the dimerized 

CtRad50 nucleotide-binding domain (CtRad50NBD) in complex with the C-terminal 

Rad50-binding domain of CtMre11 (CtMre11RBD) were solved. Subsequently, the 

structure of dimeric CtRad50NBD in complex with double stranded DNA (dsDNA) was 

determined. Based on these structural information biochemical experiments were 

performed. To investigate the function of MRN in vivo, the effects of buddying yeast 

Rad50 mutations were analyzed by plate survival assays under DNA damaging 

conditions. 
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3.1 Eukaryotic CtMre11CD and CtMre11RBD-CtRad50NBD crystal structures 

The presented results give new insights into the architecture of the eukaryotic MR(N) 

complex. The crystal structures of CtMre11CD and CtMre11RBD-CtRad50NBD 

(CtMRBDRNBD) from C. thermophilum reveal new features of the eukaryotic MR(N) 

complex and explain the mode of binding between Mre11 and Rad50. 

 

3.1.1 Crystal structure of the catalytic domain of CtMre11 

For structural information about the C. thermophilum MR(N) complex, the structure of 

the catalytic domain of CtMre11 was determined. In the CtMre11CD structure the 

complete eukaryotic insertion loops were modeled into the electron density (Chapter 2.1, 

Figure 1). The overall architecture is similar to the Nbs1-bound Schizosaccharomyces 

pombe Mre11CD (SpMre11CD-Nbs1) crystal structure. However, the CtMre11CD structure 

is even more compact due to a slight movement of the capping domain towards the 

nuclease active site. Interestingly, the eukaryotic specific insertion loops are ordered in a 

similar fashion like in SpMre11CD-Nbs1 (Seifert et al. 2015). In the SpMre11CD-Nbs1 

structure the Nbs1 peptide interacts with and stabilizes the eukaryotic insertion loops 

(Schiller et al. 2012). In the CtMre11CD the Nbs1-binding site of the SpMre11CD-Nbs1 

structure is occupied by symmetry related molecules and the ordering of these insertion 

loops could additionally be stabilized by crystal packing. The dimer interface is 

characterized by mainly hydrophobic interactions between helices 2 and 3 of each 

protomer, hydrogen bonds with Arg66 as well as interactions between the eukaryotic 

insertion loops. The larger dimer interface, compared to archaeal Mre11, indicates a 

stronger interaction between the CtMre11 protomers (Seifert et al. 2015). The recently 

found MRE11 mutation in a PMA (progressive myoclonic ataxia) patient leads to a 

substitution of Ala for Val at position 47, which could disturb the interaction between 

Nbs1 and Mre11 (Miyamoto et al. 2014). The amino acid (aa) substitution is located in 

helix 1 where in the SpMre11CD-Nbs1 crystal structure an interaction between this helix 

and the Nbs1 fragment has been identified (PDB code 4FBK) (Schiller et al. 2012). 

However, the interacting Arg518 is replaced by Leu in human Nbs1. Additionally, cells 

from this PMA patient show decreased MRN expression levels (Miyamoto et al. 2014).  
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Interestingly, the human Mre11CD crystal structure represents a different conformation of 

the dimer interface. Thereby, the helices 2 and 3 do not form the characteristic 

hydrophobic dimerization domain, but the dimer is stabilized by a disulfide bond between 

Cys146 of each protomer (Park et al. 2011). Further, the interaction between the 

eukaryotic insertion loops from each protomer is disturbed compared to the CtMre11CD 

structure (Seifert et al. 2015). It is also unclear how Nbs1 is able to bridge the dimer 

interface in the conformation of the human Mre11CD structure. 

Very recently, it was reported that mutations in the MRE11 yeast gene suppress the effect 

of CtIP (Sae2) deletion on DNA damage repair in vivo. One mutation is located in the 

eukaryotic specific insertion loop and probably decreases the interaction between Mre11 

and Nbs1 (Xrs2) (Chen et al. 2015). Thereby, the mutated Pro110 corresponds to Pro110 

in CtMre11 and Pro119 in SpMre11, which forms a hydrogen bond with Lys526 from 

SpNbs1 (Schiller et al. 2012). Since Nbs1 stimulates DNA unwinding and DNA binding 

of MRN, the reported mutation might suppress these effects (Paull and Gellert 1999, 

Trujillo et al. 2003). Interestingly, the mutation and the resulting suppression of the sae2  

phenotype are independent of the Mre11 nuclease activity. Additional experiments 

indicate that independent of the Mre11 nuclease, CtIP is important for the removal of 

MRN (MRX) from DSBs (Chen et al. 2015). However, in vitro experiments showed that 

CtIP (Sae2) promotes the endonucleolytic cut by MRN (Cannavo and Cejka 2014). 

Together, these studies reveal two functions of the CtIP(Sae2)-MRN interaction. One is 

the initiation of resection and the other function is the removal of MRN from DSBs. 

Considering the fact that yeast CtIP (Sae2) itself shows endonuclease activity in vitro, 

more detailed research is needed to unravel this MRN-CtIP pathway (Lengsfeld et al. 

2007). 

 

3.1.2 Crystal structure of dimeric CtMre11RBD-CtRad50NBD 

The crystal structure of ATP S bound CtMre11RBD-CtRad50NBD (CtMRBDRNBD) reveals 

interesting features of the eukaryotic MR(N) complex. The CtRad50NBD structure 

represents the characteristic overall shape of Rad50NBD known from other prokaryotic 

crystal structures (Hopfner et al. 2000b, Lammens et al. 2011, Williams et al. 2011). It is 

characterized by the globular domain, which consists of interacting Rad50 N- and C-

terminus, and the truncated coiled-coil (CC) domain. The non-hydrolysable ATP analog 
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ATP S and the magnesium ion are bound between the conserved Walker A, Walker B 

and signature motifs (Chapter 2.2, Figure 1). Based on the crystal structure of the 

CtRad50NBD dimer, six eukaryotic insertions are recognized in comparison to prokaryotic 

Rad50NBD (Chapter 2.2, Figure 2). 

Another interesting characteristic of the CtRad50NBD structure is a very sulfur rich cluster 

in close proximity to the ATPase domain. This cluster contains four methionines 

(Met166, Met1194, Met1201 and Met1203) and one cysteine (Cys1207). Whether the 

oxidation state of these residues plays an important role for the DNA repair under 

oxidative stress conditions has to be investigated intensively. Since ATM gets activated 

by oxidative stress, the same could be true for the MRN complex (Paull 2015). From 

these five residues the Met1194, Met1203, Cys1207 are conserved in eukaryotes and in 

some eukaryotes Met166 and Met1201 are replaced by other hydrophobic amino acids. 

Thus, the cluster forms a very hydrophobic area, which also could play a more structural 

than a regulatory role. 

 

 
Figure 10: Crystal structure of CtMRBD-RNBD protomer (MRBD: blue; RNBD: light orange) with 
highlighted rad50S mutations (red). ATP S (magenta/gray) and the magnesium ion (green) are 
depicted. 

 

Previously, the description of rad50S (separation-of-function) mutations in yeast revealed 

an impaired meiotic recombination phenotype but show no survival effect under DNA 

damaging conditions. The rad50S mutations are located in lobe I and are mostly found in 
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the surface exposed -sheets 1, 2, 4 and 5. These mutations consist of Lys6Glu, 

Ser14Pro, Arg20Met, Glu21Lys, Val63Glu, Gln79Lys, Lys81Ile, Asn97Asp and 

Gln99Lys in yeast which correspond to residues Lys6, Ser14, P20, Glu21, Ala64, Gln80, 

Lys82, Asn98 and Gln100 in CtRad50 (Figure 10) (Alani et al. 1990). Whether the 

mutated residues are necessary for the interaction with meiotic recombination factors or 

whether they play a regulatory function in MRN, has to be investigated in future studies. 

Also the partly substitution of hydrophobic residues by polar or charged amino acids and 

vice versa, makes it more difficult to predict a structural function of the rad50S 

mutations. 

 

3.1.3 Comparison between CtRad50NBD and prokaryotic Rad50NBD structures 

Comparison with dimerized prokaryotic Rad50NBD crystal structures reveals six insertions 

in the eukaryotic CtRad50NBD. These insertions and the elongated C-terminus of 

CtRad50NBD enlarge the surface exposed area of the protein. Insertion I is located in -

sheet 1 and consists of amino acids 17–19. Insertion II is located near the CtRad50NBD 

dimer interface. It is close to the ATP binding Walker A domain and its conformation 

might be regulated by the nucleotide state. Previous results from archaeal MR show that 

this region (Leu51–Arg67 in Pyrococcus furiosus Rad50; corresponding to Leu55–Lys75 

in CtRad50) undergoes structural rearrangements upon ATP binding (Williams et al. 

2011). Insertion III enlarges -sheet 6 and thereby especially residues Arg105, Lys108, 

Arg109 increase the positively charged area in the dimer groove. Insertion IV is the 

largest eukaryotic insertion. It forms a large hairpin structure that consists of -sheets 8 

and 9. It is located adjacent to the Rad50 CCs and contains a relatively conserved 

YNYR motif afterwards. Whether insertion IV plays a role in the CC orientation or the 

YNYR motif is functionally important, has to be analyzed. Additionally, insertion V 

elongates helix J by five residues and is located in the same area like Insertion VI and 

the elongated Rad50 C-terminus.  

 

3.1.4 The C-terminal CtMre11 Rad50-binding domain 

At the beginning of this work the eukaryotic mode of binding between Mre11 and Rad50 

was unclear. Prokaryotic structures of the Rad50NBD bound to the Mre11RBD reported an 
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interaction between the base of the Rad50 CCs and two or three helices in the Mre11 C-

terminal region. The structure of CtMRBDRNBD revealed a large C-terminal Mre11RBD 

consisting of five -helices. This domain interacts with the CtRad50 CCs and the 

interactions are facilitated by mainly hydrophobic residues. The C-terminus of Mre11RBD 

points towards the globular domain of the dimerized CtRad50NBD (Chapter 2.2, Figure 1). 

Interestingly, a mutation in this Mre11RBD has been found in an ATLD patient, which 

indicates functional importance of the RBD (Delia et al. 2004). The conformation of the 

Mre11RBD might also be important for the function of MRN, since the Mre11 C-terminus 

is able to interact with DNA and is playing an important role in meiotic recombination 

(Furuse et al. 1998, Usui et al. 1998, Bhattacharyya et al. 2008). A sequence alignment of 

the Mre11RBD reveals less conservation among eukaryotes, which makes it more difficult 

to predict functional important residues (Chapter 2.2, supplementary Figure S2). 

According to the Mre11RBD-Rad50NBD (MRBDRNBD) crystal structures from P. furiosus 

and Methanocaldococcus jannaschii, the first -helix in the RBD is not present in P. 

furiosus MRBDRNBD. Additionally, in the Thermotoga maritima (Tm) and M. jannaschii 

(Mj) MRNBD crystal structures the CCs are disturbed at the position where Mre11 

interacts with Rad50 (Lim et al. 2011, Möckel et al. 2012). However, the C. 

thermophilum and P. furiosus MRBDRNBD structures reveal continuous -helices in this 

region (Williams et al. 2011) (Chapter 2.2, Figure 2).  

 

3.2 Eukaryotic MR(N) and ATP-dependent conformational changes 

The presented results enable the modeling of a eukaryotic MR(N) complex in ATP-bound 

and ATP-free state. 

 

3.2.1 Eukaryotic MR(N) model 

The CtMRBDRNBD structure and the CtMre11CD structure can be aligned onto the ATP S 

bound MRNBD structure from M. jannaschii (Lim et al. 2011). In this model the 

CtRad50NBD fits into the CtMre11CD dimer active site. Also the close proximity of the 

capping domain C-terminus and the N-terminus of the CtMre11RBD support this model 

and there is enough space for the 25 amino acid (aa) linker between the two domains. 

However, structural information about the very C-terminus of Mre11, which follows the 
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RBD, is missing so far. In the ATP-bound CtMre11CD;RBD-Rad50NBD (CtMCD;RBDRNBD) 

model the eukaryotic insertions V, VI and the elongated C-terminus are located close to 

the Mre11 subunit (Chapter 2.2, Figure 2, 3A). The functional importance of this enlarged 

interface has to be analyzed. In the ATP-bound CtMCD;RBDRNBD model, the C-terminus of 

the Mre11RBD points towards the catalytic domain of CtMre11 (Figure 11). Since the C-

terminal part of budding yeast Mre11 is important for meiotic recombination and DNA 

binding (Furuse et al. 1998, Usui et al. 1998, Bhattacharyya et al. 2008), the Mre11 C-

terminus could be localized in the globular head module of MR(N). Thereby, the very C-

terminus of Mre11 might play a structural as well as a functional role. 

 

 
Figure 11: Docking model of MRN head complex in ATP-bound state. SpMre11CD-Nbs1 (PDB: 
4FBW) was aligned onto CtMre11 in the CtMre11CD;RBD-Rad50NBD model. CtMre11-Rad50NBD 
(Mre11: light and dark blue; Rad50: light and dark orange) and SpNbs1 (red and light red) are 
depicted.  

 

With the results from the SpMre11CD-Nbs1 crystal structure we are able to predict the 

Nbs1 peptide in this ATP-bound conformation (Figure 11). However, since Rad50 is 
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absent in the SpMre11CD-Nbs1 structure, it is unclear if the ATP state and the Rad50 

conformation influence the binding of Nbs1 to Mre11. 

3.2.2 ATP-dependent conformational changes of eukaryotic MR(N) 

Based on studies with bacterial MR, it is possible to align the CtMre11CD and 

CtRad50NBD structures onto the “closed” ATP-bound MjMre11-Rad50NBD and the “open” 

ATP-free TmMre11-Rad50NBD structures (Figure 12) (Lammens et al. 2011, Lim et al. 

2011).  

SAXS (small angle X-ray scattering) data reveal that in the purified CtMRhc (Mre11 aa 1–

567; Rad50 aa 1–224-GGAGGAGG-1099–1315) complex, the maximum distance 

between the particles in the protein (Dmax) decreases upon addition of ATP S. The shape 

of the scattering curve and the particle distance (P(r)) distribution curve indicate a more 

globular protein, induced by ATP S. Without ATP analog the shape of the curve is 

probably influenced by elongated and more globular complexes in the sample because for 

Rad50 dimerization and ATP binding the protomers have to be in close proximity as well.  

Chemical cross-linking of the MRN head complex (Mre11 aa 1–567; Rad50 aa 1–214-

GGAGGAGG-1109–1315; Nbs1 aa Met-565–714) with the lysine specific cross-linker 

DSS (disuccinimidyl suberate) in the presence of ATP S resulted in one cross-linked 

protein band with the approximate molecular weight of the MRN head complex. Due to 

the specific length of DSS, identification of the cross-linked lysine residues by mass 

spectrometry enabled the localization of domains in close proximity. The Nbs1 peptide 

could not be localized in respect to the MR complex because of missing structural 

information but probably also because of high flexibility. However, from the data it could 

be concluded that the ATP-bound Rad50NBD dimer is localized in the Mre11 nuclease 

active site (Chapter 2.2, Figure 3 and supplementary Figure S3).  

The ATP-free state of TmMRNBD (Lammens et al. 2011) indicates an extreme 

conformation of the complex and various flexible intermediate conformations are 

expected in solution (Figure 12). This ATP-dependent conformational rearrangement was 

shown for the bacterial and archaeal MR complex (Lammens et al. 2011, Williams et al. 

2011, Möckel et al. 2012). Since the Mre11 binding domain of Nbs1 is accessible in the 

“open” and “closed” conformation, it is unclear how Nbs1 is able to stimulate the DNA 
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binding affinity as well as DNA unwinding on a structural level (Paull and Gellert 1999, 

Trujillo et al. 2003).  

 

 
Figure 12: Models of the ATP-free “open” and ATP-bound “closed” CtMRNBD complex. CtMre11CD 
dimer was aligned onto the TmMre11 or MjMre11 crystal structures for the open and closed MR 
model, respectively. CtRadNBD protomers were aligned onto each TmRad50 protomer in the open 
conformation and the dimeric CtRad50NBD was aligned onto the archaela MjRad50NBD dimer in the 
ATP S-bound MjMRNBD structure (Lammens et al. 2011, Lim et al. 2011). 

 

3.3 Structure of CtRad50NBD-DNA and comparison with DNA-free CtRad50NBD 

and TmRad50NBD-DNA crystal structures 

During this work the crystal structures of dimeric TmRad50NBD-DNA and dimeric 

CtRad50NBD with and without bound dsDNA were solved. 

 

3.3.1 The CtRad50NBD-DNA crystal structure 

The presented crystal structure explains the mode of binding of dsDNA to CtRad50NBD 

(CtRad50NBD-DNA). In the crystal the dsDNA density builds a pseudo-continuous DNA 

helix, in which no clear DNA end is detectable. The DNA is located in the positively 

charged Rad50 dimer groove between the two CCs. The Rad50 dimer binds 

symmetrically to a DNA duplex with a length of approximately 18 base pairs (Chapter 

2.2, Figure 4 and supplementary Figure S4). This structure explains the importance of 

ATP for the positioning of lobe I and II, the dimer conformation and the assembly of the 

four DNA binding motifs on each side of the Rad50 dimer (Chapter 2.2, Figure 5). 
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In the past, it was reported that in the presence of a non-hydrolysable ATP analog the 

human MR complex preferentially binds to DNA with a 3´ overhang (de Jager et al. 

2002). Under these conditions the Mre11 DNA binding groove is probably blocked by the 

dimerized Rad50NBD and thus the DNA interacts with Rad50. The here presented results 

from in vitro DNA binding assays further confirm the preferred binding to 3´ DNA 

overhangs by Rad50 (Chapter 2.2). With the CtRad50NBD-DNA crystal structure it is now 

able to explain this interesting characteristic. By denoting the strand polarity as the 

direction from the center towards the outside, the protein interacts and stabilizes the 

3´ 5´ DNA strand close to the center of the Rad50 dimer. But the 5´ 3´ strand makes 

only protein contacts with the -sheet 6 on the outer side of the Rad50 dimer. This DNA 

interaction in the center of the Rad50 dimer probably explains the increased affinity to 

DNA with 3´ overhangs than for 5´ overhangs. Using DNA with complementary 3´ 

overhangs the stabilized overhangs are able to anneal in the center of the Rad50 dimer. 

This fact seems to result in a dissociation constant similar to continuous 35bp dsDNA, 

which bridges the whole Rad50 dimer. Consistent with this observation, it was reported 

that Rad50 facilitates DNA bridging to enable DNA end-joining in vitro. Thereby, DNA 

with complementary 3´ overhangs was incubated with MR and the ligation efficiency was 

ATP-dependent (Deshpande et al. 2014).  

Altogether, these experiments indicate an important function of Rad50 for DNA tethering 

and end-joining, but the role of Rad50 DNA binding during c-NHEJ or MMEJ in vivo has 

to be analyzed further. 

 

3.3.2 Comparison between CtRad50NBD-DNA and DNA-free CtRad50NBD 

Comparison of the DNA-free and DNA-bound CtRad50NBD structures reveal minor 

changes in the protein conformation. The positively charged dimer groove between the 

CCs is also present when DNA is absent. This explains why ATP or non-hydrolysable 

ATP analogs increase the DNA affinity of Rad50 dramatically (Rojowska et al. 2014). 

Comparison of the CtRad50NBD and the CtRad50NBD-DNA structures reveals a structural 

rearrangement of the CCs (Chapter 2.2, supplementary Figure S4). Nevertheless, with P. 

furiosus Rad50 it has been shown that dependent on the crystal packing, the CCs can 

adopt different conformations within the same organism (Williams et al. 2011). In the 

DNA-free CtRad50NBD structure the Mre11RBD is bound to the CCs. However, it is 
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unclear whether the DNA or the absence of the Mre11RBD in the CtRad50NBD-DNA 

crystal structure influences the CC orientation. 

 

3.3.3 Comparison with the TmRad50NBD-DNA structure 

In T. maritima Rad50NBD (TmRad50NBD), dsDNA also binds to the dimer groove. The 

crystal structure of DNA-bound TmRad50NBD explains the binding mode of dsDNA to 

some parts of Rad50. Although in vitro experiments showed that ATP or non-

hydrolysable ATP analogs increase the affinity to DNA and the positively charged groove 

spans the whole dimer, the DNA interacts with only one Rad50 protomer in the crystal 

structure. The DNA binding domain in the second protomer is occupied by symmetry 

related TmRad50NBD-DNA molecules (Chapter 2.3) (Rojowska et al. 2014). The DNA 

conformation also might represent a transient state, in which DNA first binds to one lobe 

and then is guided towards the dimer groove to interact with the second protomer. 

Thereby, the CtRad50NBD-DNA structure represents the state, in which both protomers 

interact with the DNA. 

 

3.4 Plate survival assay with Saccharomyces cerevisiae Rad50 mutants 

Different S. cerevisae Rad50 mutants resulted in growth defects on genotoxic agents like 

the topoisomerase I inhibitor camptothecin (CPT), the ribonucleotide reductase inhibitor 

hydroxyurea (HU) or the DNA strand break inducer bleomycin (Bleo).  

According to the crystal structure of CtRad50NBD-DNA, the mutated residues K103ScE, 

K104ScE and N190ScD (corresponding to Q104Ct, R105Ct and N191Ct, respectively) do not 

make direct contacts with the DNA and show a similar growth phenotype like wild-type 

Rad50. These residues together with the major groove located R132Sc (R131Ct), which 

forms the DNA binding motif II, seem to play a minor role in DNA damage response 

(Chapter 2.2 and 2.3) (Rojowska et al. 2014). Additionally, the major DNA contacts in 

the DNA binding motif I are characterized by interactions with the protein main chain of 

-sheet 6 in CtRad50NBD-DNA (Chapter 2.2, Figure 5). The mutations K60ScE (R61Ct) in 

the DNA binding motifs III and R1205ScE (R1208Ct) result in growth defects in the 

presence of camptothecin. Interestingly, inhibition of Rad50 dimerization by the 
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S1205ScR (S1208Ct) mutation shows the same growth defect on genotoxic agents like the 

E1235ScQ (E1238Ct) mutation, which inhibits ATP hydrolysis. These results highlight the 

importance of the properly assembled Rad50 dimer groove for DNA binding and damage 

repair. 

Since newly replicated chromosome ends represent a blunt DNA end on the leading 

strand, this has to be processed to prevent genome instability. The presented telomere 

maintenance experiment reveals the effect of Rad50 mutants in buddying yeast. By 

mutating residues, which are important for DNA binding in the TmRad50 dimer groove 

in vitro, the mutations K103ScE, K104ScE, R131ScE, K103ScE+R131ScE, 

K104ScE+R131ScE and R1201ScE reduce telomere lengths. Also the S1205ScR mutation, 

which disturbs Rad50 dimerization and thus decreases DNA binding, results in shorter 

telomeres. Interestingly, inhibition of ATP hydrolysis by the E1235ScQ mutation, which 

stabilizes the Rad50 dimer conformation, leads to the same telomere length like the wild-

type strain. In contrast, this E1235ScQ mutant shows severe effects on DNA repair 

(Chapter 2.3, Figure 4) (Rojowska et al. 2014).  

Taken together, these in vivo experiments with S. cerevisiae rad50 mutants show that the 

ATPase activity of MR(N) is essential for DNA repair. Thereby, binding of DNA to the 

Rad50 dimer groove but also ATP hydrolysis, which enables access to the Mre11 active 

site or DNA unwinding, are important. In contrast, the closed ATP-bound MR(N) 

conformation seems to be sufficient for telomere maintenance. 

 

3.5 Model of the ATP-dependent conformations of the eukaryotic MRN complex  

Using the presented MR crystal structures from C. thermophilum together with previous 

structural information about MR(N), it is possible to generate a DNA binding model for 

the eukaryotic MR(N) complex in ATP-bound and ATP-free state. In the closed ATP-

bound conformation the dimerized Rad50NBD interacts with dsDNA and blocks the Mre11 

active site (Figure 13A). Biochemical experiments showed that in the ATP-bound 

conformation MR is able to tether two DNA ends (Deshpande et al. 2014) with higher 

affinity towards 3´ overhangs (de Jager et al. 2002) (Figure 13A). These results are 

consistent with the structural and biochemical results from this work. However, it is 

unclear, whether in the closed conformation, ssDNA reaches into the active site of Mre11 
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to be processed or whether ATP has to be hydrolyzed to make the nuclease accessible 

(Figure 13B). Upon ATP hydrolyses the nuclease active site of Mre11 becomes 

accessible for dsDNA to be processed. Interestingly, the ATP-bound conformation seems 

to be sufficient for ATM activation, DNA tethering and telomere maintenance, but ATP-

dependent Rad50 dimerization and ATP hydrolysis are important for DNA repair (Lee et 

al. 2013, Deshpande et al. 2014, Rojowska et al. 2014). 

 
Figure 13: DNA binding models of MRN in ATP-bound and ATP-free conformation. (A) Model for 
the closed MRN complex during DNA tethering. MRN binds internal DNA (left) and DNA with 
cohesive end (right). (B) Models of the closed (left) and open (right) MRN complex during nucleolytic 
DNA processing.  

 

3.6 Outlook 

The presented work gives new insights into the structural architecture of the eukaryotic 

MRN complex. Since DNA can bind to the Mre11 as well as the Rad50 subunit, more 

research is needed to answer the interplay between these two DNA binding modes. 

Further, the regulation of these two modes has to be studied in future experiments. On a 
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structural level, it has to be analyzed how a DNA DSB is recognized by MRN and how 

the resection is initiated. Therefore, crystal or electron microscopy structures of MR(N) in 

different states and in complex with other DNA repair factors are required, and more 

structural information about the Nbs1 interaction will be useful. Based on the presented 

and future structural results more detailed biochemical and cell biology experiments can 

be performed to investigate the MRN functions on DNA DSB repair, meiosis or telomere 

maintenance. Thereby, so far structurally uncharacterized parts of the whole MRN 

complex have to be analyzed and the MRN functions in context of other genome 

maintenance factors have to be investigated intensively.  

Recent publications revealed that CtIP (Sae2) plays an important role in DSB resection 

initiation and the removal of MRN from DSBs (Cannavo and Cejka 2014, Chen et al. 

2015). It would be interesting how the MRN-CtIP interaction regulates this mechanism 

on a structural level. Structural studies showed the interaction between CtIP and Nbs1 via 

the FHA domain (Williams et al. 2009). But it is unclear, if this is the interaction that 

regulates the MRN endonuclease activity. Also the signal transduction onto ATM and the 

mode of binding to this kinase have to be investigated on a structural level. In general, to 

further understand the multiple functions of MRN, more intensive studies will be needed. 
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4.2 Abbreviations 

5/4 PO/OH Pentaerythritol propoxylate 
6-FAM 6-carboxyfluorescein 
8-OxoG 8-oxo-7,8dihydroguanine 
Å Angstrom 
A-T ataxia-telangiectasia 
aa amino acid (residue) 
ABC ATP-binding cassette 
ADP adenosine diphosphate 
AFM atomic force microscopy 
alt-NHEJ alternative NHEJ 
AMPPNP Adenosine 5 -( , -imido)triphosphate 
ATLD ataxia-telangiectasia like disorder 
ATM ataxia-telangiectasia mutated 
ATP adenosine triphosphate 
ATP S Adenosine 5'-( -thio)triphosphate 
BER base excision repair  
BLM Bloom syndrome mutated 
BIR break-induced replication 
Bleo bleomycin 
bp base pair 
BRCA1 breast cancer 1 
BRCT domain BRCA1 C-terminal domain 
°C degree Celsius 
CC coiled-coil 
c-NHEJ canonical NHEJ 
C. thermophilum; Ct Chaetomium thermophilum  
CD catalytic domain 
CPT camptothecin 
CtIP CtBP-interacting protein 
CtMre11 Mre11 from C. thermophilum 
CtMR MR from C. thermophilum 
CtMRN MRN from C. thermophilum 
CtMRBDRNBD CtMre11RBD-CtRad50NBD 
CtRad50 Rad50 from C. thermophilum 
CV column volumes 
CXMS chemical cross-linking and mass spectrometry 
DDR DNA damage reversal (Chapter 1.1) 
DDR DNA damage response (Chapter 2.3, 2.4) 
DMF dimethylformamide 
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DNA deoxyribonucleic acid 
DSB double-strand break 
DSBR double-strand break repair 
dsDNA double-stranded DNA 
DSS disuccinimidyl suberate 
E. coli Escherichia coli 
EMSA electrophoretic mobility shift assay 
FEN-1 flap endonuclease 1 
FHA forkhead associated 
FRET Förster/fluorescence resonance energy transfer 
g gram 
GAR glycine/arginine-rich 
GG-NER global genomic NER 
h hour 
H2TH helix-two-turn-helix 
HAS HerA-ATP synthase 
hc; HC head complex 
HR homologous recombination 
HDR homology directed repair 
HDRC helicase and RNaseD carboxy-terminal 
HLH helix-loop-helix 
HsMre11 Mre11 from Homo sapiens 
HU hydroxyurea 
IPTG Isopropyl- -D-thiogalactopyranosid 
IR ionizing radiation 
K Kelvin 
Kd dissociation constant 
kDa kilo Dalton 
L liter 
LB Luria-Bertani 
LC-MS/MS liquid chromatography coupled to tandem mass spectrometry 
M. jannaschii; Mj Methanocaldococcus jannaschii 
M molar 
MDC1 mediator of DNA damage checkpoint protein 1 
Mg magnesium 
min minute 
MIM Mre11-interacting module 
MMEJ microhomology-mediated end joining 
MMR mismatch repair 
Mn manganese 
MN Mre11-Nbs1 
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MR Mre11-Rad50 
MRN Mre11-Rad50-Nbs1 
MRX Mre11-Rad50-Xrs2 (S. cerevisiae complex) 
n nano 
NBD nucleotide-binding domain 
NBS Nijmegen breakage syndrome 
Nbs1 Nijmegen breakage syndrome 1 
NBSLD NBS-like disorder 
NER nucleotide excision repair 
NHEJ non-homologous end joining 
NLS nuclear localization signal 
nt nucleotide 
OD600 optical density at 600 nm 
P. furiosus; Pf Pyrococcus furiosus 
PAGE polyacrylamide gel electrophoresis 
PARP poly (ADP-ribose) polymerase 
PDB protein data bank 
PEG polyethylene glycol 
PfMre11 Mre11 from P. furiosus 
pH potential of hydrogen 
PMA progressive myoclonic ataxia 
rad50S rad50 separation-of-function 
RBD Rad50-binding domain 
rCID rapid collision-induced dissociation 
RNA ribonucleic acid 
ROS reactive oxygen species 
RPA replication protein A 
rpm rotation per minute 
RQC RecQ carboxy-terminal 
RT room temperature 
S. cerevisiae; Sc Saccharomyces cerevisiae 
S. pombe; Sp Schizosaccharomyces pombe 
SAD single-wavelength anomalous dispersion 
SAXS small angle X-ray scattering 
ScMre11 Mre11 from S. cerevisiae 
SDS sodium dodecyl-sulphate 
SDSA synthesis-dependent strand annealing 
sec; s second 
SFM scanning force microscopy 
SLH strand-loop-helix 
SpMre11 Mre11 from S. pombe 
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SSA single-strand annealing 
SSB single-strand break 
ssDNA single-stranded DNA 
STR Sgs1-Top3-Rmi1 
TC-NER transcription-coupled NER 
TCEP tris(2-carboxyethyl)phosphine 
T. maritima; Tm; tm Thermotoga maritima 
TopI topoisomerase I 
UV ultraviolet 
V(D)J variable(-diversity)-joining 
wt wild-type 
Zn zinc 
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