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1. Abbreviations 

4-NQO   4-nitroquinoline-N-oxide 

17-AAG  17-N-allylamino-17-demethoxygeldanamycin 

53BP1   p53 binding protein 1 

AICAR   5-Aminoimidazole-4-carboxamide ribonucleotide 

AIF   Apoptosis-inducing factor 

AMPK   5' adenosine monophosphate-activated protein kinase 

APP   Amyloid beta precursor protein 

ATM   Ataxia telangiectasia mutated  

ATP   Adenosine triphosphate 

CDC6   Cell Division Cycle 6 

CDC37   Cell Division Cycle 37 

CDK2   Cyclin-dependent kinase 2 

CDK4   Cyclin-dependent kinase 4 

CDK6   Cyclin-dependent kinase 6 

CENP-E  Centromere-associated protein E 

CIN   Chromosomal instability 

DDR   DNA damage response 

DNA   Deoxyribonucleic acid 

DS   Down's syndrome 

DSB   Double strand break 

DSCR   Down syndrome critical region 

DSCR1   Down syndrome critical region gene 1 

EGF   Epidermal growth factor 
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EOAD   Early onset Alzheimer's disease  

ESC   Embryonic stem cell 

ESR   Environmental stress response 

FANCA   Fanconi anemia, complementation group A 

FANCD1/BRCA2 breast cancer 2/Fanconi anemia, complementation group D 

FISH   Fluorescence in situ hybridization 

GDBH   Gene dosage balance hypothesis 

HSF1   Heat Shock Factor 1 

Hsp104  Heat Shock Protein 104 

HSP27   Heat Shock Protein 27 

HSP70   Heat Shock Protein 70 

HSP90   Heat Shock Protein 90 

HSR   Heat Shock Response 

iPSC   Induced pluripotent stem cell 

LC3   Microtubule-associated proteins 1A/1B light chain 3A 

MCAK   Mitotic centromere-associated kinesin 

MCM   Minichromosome maintenance protein complex 

MEF   Mouse embryonic fibroblast 

MM   Multiple myeloma 

MVA   Mosaic variegated aneuploidy 

MYC   V-Myc Avian Myelocytomatosis Viral Oncogene Homolog 

ORC1   Origin Recognition Complex, Subunit 1 

ORC2   Origin Recognition Complex, Subunit 2 

Pol ζ   DNA polymerase ζ 
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PN   Proteostasis network 

RNA   Ribonucleic acid 

RNA Pol II  RNA polymerase II 

ROS   Reactive oxygen species 

RPA1   Replication Protein A1, 70kDa 

RPE-1   Retinal pigment epithelium cells 

SAC   Spindle assembly checkpoint 

SNP   Single nucleotide polymorphism 

TKNEO   thymidine kinase with neomycin phosphotransferase reporter gene 

Ubp6   Ubiquitin carboxyl-terminal hydrolase 6  

UPR   Unfolded protein response 

v-Src   Proto-oncogene tyrosine-protein kinase Src 

XIST   X-inactive specific transcript 

XRCC1   X-ray repair cross-complementing protein 1 

YAC   Yeast artificial chromosome 
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4. Summary 

Aneuploidy or imbalanced chromosome content is the cause of pathological conditions such as 

Down's syndrome and is also a hallmark of cancer where it is linked with malignancy and poor 

prognosis.  

A growing body of evidence has demonstrated that aneuploidy exerts a large number of effects 

at the cellular level. These effects include an impairment of proliferation, distinct changes to the 

transcriptome and proteome, as well as a disturbance of cellular proteostasis. However, the 

molecular mechanisms underlying the impairment of proteostasis and the changes in gene 

expression are not well understood. Further, the consequences of the altered gene expression in 

aneuploid cells also remain incompletely characterised. The work described herein was 

performed to gain insights into the consequences of aneuploidy in human cells.   

We have found that human aneuploid cells are impaired in HSP90-mediated protein folding. 

Further, we demonstrate that aneuploidy hampers induction of the heat shock response 

suggesting that the activity of the transcription factor HSF1 is compromised in human aneuploid 

cells. Increasing the levels of HSF1, either by endogenous or exogenous means, counteracts the 

effects of aneuploidy on HSP90 function, indicating that the defective HSP90 function of 

aneuploid cells is due to insufficient HSF1 capacity. We also demonstrate that the deficient 

protein folding capacity is at least partly responsible for the complex changes in gene 

expression observed in aneuploid cells.  

One of the most striking characteristics of the gene expression changes elicited by aneuploidy is 

the consistent downregulation of factors related to DNA transactions. Thus, the second study 

described here was undertaken to determine the effects of aneuploidy on DNA replication and 

genome stability. Our analysis showed that DNA replication is indeed impaired in human 

aneuploid cells, leading to higher levels of anaphase bridges, ultrafine bridges, chromosome 

breaks, as well as ultimately, complex chromosomal rearrangements. These defects were shown 

to stem from lower expression of the MCM2-7 helicase and could be rescued by MCM2-7 

overexpression.     

The results described here provide mechanistic insight into the causes of the disturbed 

proteostasis in aneuploids as well as revealing the consequences of impaired protein folding 

capacity for aneuploid cells. Further, they demonstrate that aneuploidy is by itself capable of 

destabilising the genome and delineate a molecular mechanism by which this can occur. Taken 

together, the gleaned insights may have important implications for the role of aneuploidy in 

pathological conditions. 
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5. Zusammenfassung 

Aneuploidie ist eine numerische Chromosomenaberration, ein Ungleichgewicht der 

Chromosomenzahl, die Down Syndrom verursacht und zu den Hauptcharakteristiken von Krebs 

zählt. Bei Tumoren ist Aneuploidie mit Malignität und schlechter Prognose verbunden. 

Eine stetig wachsende Evidenzlage zeigt, dass Aneuploidie eine Vielzahl von Effekten auf 

zellulärer Ebene hat. Unter anderem führt Aneuploidie zu einer Beeinträchtigung der 

Zellproliferation, zu bestimmten Veränderungen des Transkriptoms und des Proteoms, sowie 

zu Störungen der zellulären Proteostase. Es ist allerdings unklar, welche Mechanismen die 

Proteostase und die Genexpression beeinträchtigen. Auch sind die genauen Konsequenzen der 

veränderten Genexpression noch nicht geklärt. Die in dieser Dissertation beschriebene 

Forschungsarbeit setzte sich zum Ziel, neue Erkenntnisse zur Beantwortung dieser Fragen 

beizutragen.  

Wir haben herausgefunden, dass menschliche aneuploide Zellen eine Beeinträchtigung in der 

HSP90-abhängigen Proteinfaltung aufweisen. Darüber hinaus zeigen wir, dass Aneuploidie die 

Induktion der zellulären Hitzeschockantwort hemmt, was auf eine Störung des 

Transkriptionsfaktors HSF1 hindeuten könnte. Tatsächlich führt eine Erhöhung der zellulären 

HSF1 Konzentration, entweder auf endogene oder auf exogene Weise, zu einer Umkehrung des 

Effekts von Aneuploidie auf die Funktion von HSP90, was die Hypothese stützt, dass die gestörte 

HSP90 Funktion in aneuploiden Zellen auf eine unzureichende Kapazität von HSF1 

zurückzuführen ist. Wir zeigen außerdem, dass die geminderte Proteinfaltungskapazität 

zumindest teilweise für die komplexen Veränderungen in der Genexpression in aneuploiden 

Zellen verantwortlich ist. 

Eine der auffälligsten Veränderungen der Genexpression in aneuploiden Zellen ist die konstante 

Repression von Faktoren, die in die DNS-Transaktionen verwickelt sind. Aus diesem Grund 

setzten wir uns mit der zweiten in dieser Arbeit beschriebenen Studie zum Ziel, die 

Auswirkungen von Aneuploidie auf DNS-Replikation und auf die genomische Stabilität zu 

ermitteln. Unsere Analysen beweisen, dass in aneuploiden menschlichen Zellen die DNS-

Replikation tatsächlich beeinträchtigt ist, was zu erhöhten Mengen von Anaphase-Brücken, 

fadenförmigen DNS-Brücken, Chromosombrüchen und letztendlich zu komplexen 

Umordnungen der Chromosomen führt. Wir zeigen, dass diese Schäden auf eine verringerte 

Expression der MCM2-7 Helikase zurückzuführen sind und durch Überexpression von MCM2-7 

revidierten werden können. 
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Die hier beschriebenen Ergebnisse liefern neue mechanistische Erkenntnisse zu den Ursachen 

der gestörten Proteostase in Aneuploidie und der Auswirkungen von beeinträchtigter 

Proteinfaltungskapazität auf aneuploide Zellen. Sie beweisen, dass Aneuploidie selbst imstande 

ist, das Genom zu destabilisieren und beschreiben den molekularen Mechanismus, der dazu 

führt. Zusammengefasst könnten die gewonnen Erkenntnisse wichtige Implikationen für die 

Rolle von Aneuploidie in Krankheitszuständen haben. 
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6. Aims of the thesis 

The effects of an imbalanced karyotype or aneuploidy on cellular physiology are mediated by 

the expression of genes encoded on aneuploid chromosomes. While the functions of the specific 

gene products on these chromosomes are responsible for some of these effects, recent work has 

shown that many of the consequences of aneuploidy are independent of the exact karyotype. 

The work described in this thesis was undertaken to gain cellular and molecular insights into 

the karyotype-independent consequences of aneuploidy in humans. 

The starting point for the first study comprising this cumulative thesis was the growing body of 

evidence that suggests that aneuploidy exerts detrimental effects on proteostasis. Earlier work 

had shown that aneuploid cells are hypersensitive to conditions that interfere with protein 

production, folding and degradation (Torres et al. 2007; Tang et al. 2011; Oromendia et al. 

2012); that they accumulate protein aggregates (Oromendia et al. 2012; Stingele et al. 2012); 

and that aneuploidy leads to an upregulation of autophagic degradation (Tang et al. 2011; 

Stingele et al. 2012). I hypothesised that all these observations may have a common root: 

compromised protein folding capacity. Further, the general sensitivity of aneuploid cells to 

chemical inhibition of the HSP90 molecular chaperone (Torres et al. 2007; Tang et al. 2011), 

indicated that HSP90-dependent protein folding might be particularly affected. Thus, together 

with my colleagues, I set out to directly determine if protein folding capacity is impaired in 

human aneuploid cells, if this impairment specifically concerns HSP90, the underlying 

mechanism for these effects, as well as to determine the consequences of the protein folding 

defect for aneuploid cells. 

The second study was undertaken to determine the effects of aneuploidy on genome stability. 

Previous work in yeast had shown that aneuploid cells exhibit a higher mutation rate, accrue 

DNA damage and lose chromosomes at an elevated frequency compared to euploid cells 

(Sheltzer et al. 2011; Zhu et al. 2012; Blank et al. 2015). Whether aneuploidy also compromised 

genome stability in metazoan cells was largely unknown. Previous analysis from our laboratory 

had demonstrated that pathways and proteins associated with DNA transactions are generally 

downregulated in human aneuploid cells, and revealed a particularly striking reduction in 

expression of factors involved in DNA replication (Stingele et al. 2012; Durrbaum et al. 2014). 

Thus, we hypothesised that aneuploid cells may experience problems during DNA replication, 

an idea which is also supported by the observation that S phase is prolonged in most human 

aneuploid cells (Stingele et al. 2012). This work aimed to directly establish whether DNA 

replication is impaired in response to aneuploidy, and to determine the molecular mechanisms 

as well as the consequences of such impairment for genome stability in aneuploid cells.  
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7. Introduction 

Changes to DNA quantity and thus, gene copy number can be beneficial from an evolutionary 

perspective as they allow divergence of gene function and the evolution of novel traits (Ohno 

1970). However, the immediate consequences of changes to DNA amount are often deleterious 

for the organism concerned and generally result in decreased fitness. Paradoxically, such 

changes are also likely to play an important role in the development of cancer. However, while 

often deleterious, large-scale changes to DNA copy number do occur relatively often in nature, 

indicating that control mechanisms that function to maintain genome integrity frequently fail. 

Moreover, the fact that they can also be frequently detected in viable, healthy organisms is a 

strong indication that under certain conditions changes in DNA copy number can play 

important direct roles. Taken together, these observations illustrate the importance of 

understanding how changes in chromosome copy number occur and how they affect organismal 

and cellular physiology.  

Broadly, changes to DNA that affect chromosome number are of two types: polyploidy, which 

describes a state in which cells possess two or more entire genomes; and aneuploidy, which 

denotes unbalanced changes to chromosome number that result in increased or decreased 

numbers of one or more individual chromosomes. While aneuploidy can thus by definition refer 

to a state of overall chromosome loss, in humans this is only frequently observed in cancer cells 

with complex karyotypic changes. Although monosomy, a state that describes the loss of one 

homologue of a chromosome pair, is observed in yeasts where it represents an adaptation to 

stress (Berman 2016), the condition is very rare in man and is usually not compatible with live 

birth (Pai et al. 2003).  

Although polyploidy and aneuploidy describe distinct states, with very different consequences 

for cellular physiology, the phenomena are intimately linked. In eukaryotes the inherent 

instability of the polyploid state (Mayer and Aguilera 1990; Fujiwara et al. 2005; Storchová et al. 

2006), means that such cells often rapidly become aneuploid. Indeed, aneuploidy itself is often 

not a static state of imbalance, but rather a manifestation of a chronic predicament in which 

chromosomes are continually gained and lost. This ongoing gain and loss of chromosomes is 

known as chromosomal instability (CIN) ((Vogelstein et al. 1989; Lengauer et al. 1997; 

Lengauer et al. 1998), and reviewed in (Vogelstein et al. 1989; Lengauer et al. 1997; Lengauer et 

al. 1998; Potapova et al. 2013; Giam and Rancati 2015; Nicholson and Cimini 2015)). Also, 

aneuploidy can be whole-chromosomal, or can extend only to portions of chromosomes, in 

which case it is known as structural aneuploidy (Gordon et al. 2012). At an organismal level, two 

types of aneuploidy can generally be distinguished: constitutional aneuploidy, which arises 
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during meiosis, and thus affects the whole organism, and somatic aneuploidy, which is a 

consequence of errors during mitosis.  Delineating the links between CIN, whole-chromosomal 

and structural aneuploidy will facilitate a better understanding of the role of aneuploidy, and is 

particularly crucial for apprehending the consequences of aneuploidy in disease conditions 

(Janssen et al. 2011; Burrell et al. 2013; Russo et al. 2015). With the research presented here I 

aimed to gain new insights into the consequences of aneuploidy for the physiology of human 

cells. 

7.1 Causes of aneuploidy 

Aneuploidy nearly always arises as a result of defective distribution of duplicated chromosomes 

to daughter cells during cell division (Figure 1), whereas tetraploidy is usually a consequence of 

a failure in the physical separation of dividing cells, a process known as cytokinesis, or due to 

mitotic slippage, a phenomenon by which cells escape from a prolonged mitotic arrest and re-

enter the cell cycle (Ganem et al. 2007). However, there are important exceptions to this general 

rule. Tetraploidy can also be an outcome of programmed reduplication of the genome in the 

absence of cell division, a phenomenon known as endoreplication, and plays important 

specialised functions in a range of different organisms (Lee et al. 2009). Further, tetraploidy also 

arises as a consequence of cell fusion, which can be induced in response to viral infection 

(reviewed in (Duelli and Lazebnik 2007)). 

The proper segregation of chromosomes during mitosis and meiosis is governed by the activity 

of a system known as the spindle assembly checkpoint (SAC), which functions as the major 

gatekeeper to cell division (Musacchio 2015). The SAC acts as a brake on chromosome 

segregation by sensing the proper attachment of chromosomes to microtubules emanating from 

centrosomes on opposing sides of a mitotic cell. At a molecular level, the SAC's sensing of proper 

chromosome attachment is facilitated by the physical recruitment of SAC proteins to unattached 

kinetochores during prometaphase, which then signal to inhibit further progression through 

mitosis (Howell et al. 2004).  

Consistent with its critical role in ensuring proper chromosome segregation (Kops et al. 2005), 

defects in SAC function, and specifically, deleting or reducing the expression of several SAC 

genes leads to improper chromosome segregation, chromosomal instability and aneuploidy in 

vitro and in vivo (e.g., (Dobles et al. 2000; Michel et al. 2001; Baker et al. 2004). 

The occurrence of aneuploid embryos that arise from chromosome missegregation in meiosis  

represents the single biggest cause of spontaneous miscarriages in human pregnancies, and the 
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individuals that survive experience an array of severe developmental defects (Hassold and Hunt 

2001). Thus, there is great interest in understanding the causes of constitutional  

 

Figure 1: In both germ cells as well as somatic cells aneuploidy arises as a result of circumstances that lead to 

chromosome mis-segregation, such as spindle multipolarity, defective recombination, compromised sister chromatid 

cohesion or impaired function of the Spindle Assembly Checkpoint (SAC). An example of chromosome gain is 

depicted, as this situation is well studied. 

 

aneuploidy in humans. Strikingly, the female's oocytes are almost always the source of 

aneuploidy in such cases and increasing maternal age is a clear risk factor (Hassold and Hunt 
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2001). In fact, meiosis in human oocytes appears to be inherently error-prone (Pacchierotti et 

al. 2007; Templado et al. 2011; Nagaoka et al. 2012; Danylevska et al. 2014). Multiple factors are 

likely to contribute to these phenomena, including faulty recombination (Hassold et al. 1995; 

Lamb et al. 1996; Lamb et al. 1997), an elevated tolerance to failures in synapsis (Celeste et al. 

2002; Bannister et al. 2007; Kuznetsov et al. 2007), and error-prone spindle assembly 

(Holubcová et al. 2015). Several mechanisms have also been proposed to be involved in 

determining the causes of the age-dependent rise in chromosome non-disjunction in oocytes. 

One hypothesis which has garnered particular attention is the premature loss of sister 

chromatid cohesion (reviewed in (Jessberger 2012)). In support of this model, in mouse oocytes 

it has been demonstrated that cohesion is lost from chromosomes as mice age (Chiang et al. 

2010; Lister et al. 2010; Tachibana-Konwalski et al. 2010). Sister chromatid cohesion is 

maintained by a protein complex named cohesin that encircles sister chromatids during both 

meiosis and mitosis to prevent their premature separation (Brooker and Berkowitz 2014). In 

meiotic cells it prevents premature disjunction by promoting the proper resolution of cross-

overs between pairs of homologous chromosomes and by ensuring that sister chromatids 

within each pair are kept together until anaphase II (Rankin 2015). A recent study has shown 

that an additional reason for the maternal age effect in human oocytes might lie in the 

observation that sister kinetochores are very often split, and behave as separate functional units 

in the oocytes of women over 30 years of age (Zielinska et al. 2015). 

Impairments in sister chromatid cohesion can also lead to aneuploidy in yeast (Guacci et al. 

1997; Michaelis et al. 1997), as well as to somatic aneuploidy in human cells (e.g. (Solomon et al. 

2011). In fact, mutations in cohesin may partially underlie the chromosomal instability 

observed in certain forms of cancer (Barber et al. 2008; Solomon et al. 2011; Welch et al. 2012).  

A second set of defects responsible for the generation of aneuploidy in somatic cells relates to 

erroneous microtubule-kinetochore attachments and their consequences (reviewed in (Bastians 

2015)). Those which pose the greatest danger for proper chromosome segregation are 

merotelic attachments (Cimini et al. 2001), a state in which the two kinetochores are attached to 

microtubules from opposite spindle poles, but where, in addition, one of the kinetochores is 

bound by further microtubules emanating from one of the two poles. Merotelic attachments are 

particularly challenging for the cell to resolve as under these conditions, i.e. when both 

kinetochores are attached to microtubules which emanate from opposite poles, the activity of 

the SAC is not triggered. Progression into anaphase leads to the generation of lagging sister 

chromatids, which are not segregated towards either pole and thus remain separate from both 

chromosome masses (Gregan et al. 2011). Lagging chromatids are strongly associated with 

chromosome mis-segregation (Cimini 2008; Thompson and Compton 2008). Merotelic 
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attachments and consequently, lagging chromosomes can arise in response to a number of 

defects, including those that result in the hyper-stabilization of microtubule-kinetochore 

attachments (Bakhoum et al. 2009a; Bakhoum et al. 2009b; Kabeche and Compton 2012), and 

those that affect microtubule dynamics (Ertych et al. 2014). The presence of a supernumerary 

number of centrosomes is another mechanism that can result in merotely and the generation of 

aneuploid cells (Ganem et al. 2009; Silkworth et al. 2009), by promoting the formation of 

transient multipolar spindles during mitosis. Centrosome duplication can arise in a number of 

ways. For instance, centrosomes themselves can be overduplicated in the absence of p53 

(Fukasawa et al. 1996), in response to DNA replication stress (Balczon et al. 1995), or upon DNA 

damage (Sato et al. 2000). Tetraploidization represents an additional route to centrosome 

duplication (Fujiwara et al. 2005). This not only establishes a molecular link between 

tetraploidy and aneuploidy, but is also important for understanding the source of aneuploidy in 

cancer, as analysis indicates that over 1/3 of cancers undergo tetraploidization (Zack et al. 

2013). 

Thus, maintaining a correct karyotype is a highly complex undertaking that is sensitive to a 

wide range of perturbations affecting the machinery that governs chromosome segregation and 

cell division. Moreover, although it is severely detrimental in humans at the organismal level, 

constitutional aneuploidy is relatively common in man, due in large part to the error-proneness 

of chromosome segregation in oocytes. Further, chromosome segregation errors that give rise 

to somatic aneuploidy, such as is found in cancer, can arise either as a result of defective 

distribution of duplicated chromosomes to daughter cells or via an unstable tetraploid 

intermediate. 

 

7.2 Models to study aneuploidy 

Theodor Boveri first proposed more than 100 years ago that aneuploidy may play a causative 

role in cancer development (Boveri 2008). Further, it has been known for more than 50 years 

that Down’s Syndrome (DS) is caused by the presence of a third copy of chromosome 21 

(LEJEUNE and TURPIN 1961). However, despite these strong links between aneuploidy and 

pathology, ascribing specific roles to aneuploidy in cancer has been difficult and similarly, we 

still lack a complete understanding of how aneuploidy underlies the plethora of developmental 

defects observed in individuals with trisomy syndromes. One reason for these deficits in 

understanding was the dearth of suitable model systems in which to study the effects of 

aneuploidy. Further, as the effects of aneuploidy on cellular physiology are often subtle, there 
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was also a lack of methods which could detect these effects with sufficient sensitivity. The 

intimate link between aneuploidy and chromosomal instability represents another challenge to 

studying aneuploidy, as cells that are aneuploid are often rapidly changing, hampering efforts to 

separate the effects of aneuploidy per se from those of chronic chromosome mis-segregation. In 

addition, cancers, which represent the best source of aneuploid cells, are characterised by a 

myriad of other genetic and epigenetic changes that mean that disentangling the effects of 

aneuploidy from those elicited by other factors is fraught with difficulty. Finally, research on 

aneuploidy has broadly been hampered by the lack of suitable control cell lines with the correct 

number of chromosomes. 

Despite these challenges, progress has been made in the last decade and two developments 

have been particularly important in allowing the generation and study of suitable aneuploid 

model systems. The first is the establishment or application of techniques that allow de novo 

formation of aneuploid cells with diverse karyotypes, which can then be directly compared with 

the cells from which they were generated (summarised in Table 1). For example, chromosome 

transfer has been used to generate a range of disomic Saccharomyces cerevisiae strains in a 

haploid genetic background (Torres et al. 2007). The second key innovation is the use of 

systematic global approaches, namely high-resolution analyses of DNA, RNA and protein levels, 

which has facilitated quantitative investigation of changes in DNA copy number and the 

corresponding effects on the transcriptome and proteome. 

One way in which aneuploid yeast can be generated is by chromosome transfer. In this 

technique a wild-type haploid yeast strain is crossed with a donor strain, which is defective in 

nuclear fusion (Conde and Fink 1976). In addition, both strains carry selection markers on 

homologous chromosomes. Even though mating is not possible, chromosomes can occasionally 

be transferred from one nucleus to the other. An aneuploid cell can then be selected for using 

the selection markers present on each of the homologous chromosomes. 

Generation of aneuploid yeast from triploid or pentaploid cells (Pavelka et al. 2010b; St Charles 

et al. 2010), takes advantage of the fact that during meiosis I of these cells homologous 

chromosomes are segregated randomly giving rise to two aneuploid progenies. Meiosis II then 

gives rise to four spores, with those that survive exhibiting highly aneuploid karyotypes.  

Conditional centromere inactivation, which is achieved by incorporation of a construct that can 

be induced to elicit high levels of transcription over the centromeric region, can also be used to 

induce chromosome mis-segregation in yeast (Reid et al. 2008; Anders et al. 2009). This method 

can be utilised when the aim is either targeted chromosomal removal or the generation of a 

specific aneuploid yeast strain.  
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Finally, low concentrations of the HSP90 inhibitor radicicol have been described to inhibit 

kinetochore function and in this way to induce variable levels of aneuploidy (Chen et al. 2012). 

However, it should be noted that not all cells will become aneuploid under these conditions. 

A number of techniques have also been developed to study aneuploidy in mammals. One which 

has been used to generate mouse embryos with different trisomic karyotypes (Gropp et al. 

1975; Williams et al. 2008), involves the breeding of mice with different Robertsonian 

translocations, chromosomal aberrations that are generated by the breakage and subsequent 

re-joining of non-homologous acrocentric chromosomes (Pai et al. 2003). The techniques relies 

upon the fact that the segregation of Robertsonian translocations is error-prone during meiosis, 

and is thus likely to result in the generation of aneuploid progeny in a significant number of 

cases. Even though the majority of these trisomic embryos die in utero, they survive long 

enough to allow the establishment of mouse embryonic fibroblast (MEF) cell lines (Gropp et al. 

1983; Dyban and Baranov 1987; Williams et al. 2008). 

Mice have also been used to model DS. The most commonly used model is the Ts65Dn mouse, 

which phenocopies many of the behavioural and cognitive defects found in human individuals 

with trisomy 21, although it should be noted that the overlap with genes found on human 

chromosome 21 is far from complete (reviewed in (Rueda et al. 2012). Further, a large number 

of mouse models, with over 30 different genes involved in chromosome segregation being 

targeted thus far, have been established to study the in vivo effects of CIN in metazoans 

(reviewed in (Simon et al. 2015) and (Giam and Rancati 2015)).  

 

Table 1: Different models to study aneuploidy in yeast, mice and humans 

 

Yeast Description Advantages Disadvantages References 

Chromosome transfer Abortive mating of 
haploid yeast followed by 
inter-nucleus 
chromosome transfer  

Allows generation 
of yeast disomic 
for nearly all 16 
chromosomes 

Not all potential 
yeast disomies 
possible 

(Torres et al. 
2007) 

Meiosis of triploid or 
pentaploid cells 

Random segregation of 
yeast chromosomes 
during meiosis 

Allows generation 
of cells with 
complex, highly 
aneuploid 
karyotypes 

Only some of the 
resulting spores 
are viable; those 
that are, often 
unstable 

(Pavelka et al. 
2010b); (St 
Charles et al. 
2010) 

Centromere 
inactivation 

Elicited by high levels of 
transcription over 
centromeres 

Allows targeted 
chromosome 
removal 

- (Anders et al. 
2009); (Reid et 
al. 2008) 

HSP90 inhibition Chemical or genetic 
inhibition of HSP90 
leading to CIN 

Ease of use Not all treated cells 
become aneuploid; 
potential bias in 
karyotypes 

(Chen et al. 
2012) 
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Mouse     

Robertsonian 
translocations 

Relies on inherently error-
prone segregation of these 
translocations  

Reveals 
consequences of 
aneuploidy in 
higher eukaryotes 

- (Gropp et al. 
1975); (Gropp 
et al. 1983); 
(Williams et al. 
2008) 

DS models Diverse mouse strains 
with chromosomes 
containing mouse 
homologues of Hsa21-
encoded genes  

Facilitate an 
understanding of 
the pathology of 
DS and of the 
consequences of 
aneuploidy at the 
organismal level 

Hsa21- 
homologous genes 
are spread across 
different mouse 
chromosomes  

Reviewed in 
(Rueda et al. 
2012) 

Diverse CIN models Mice generated to harbour 
mutations or deletions in 
genes involved in 
chromosome segregation 

Shed light on the 
consequences of 
aneuploidy in vivo 

- Reviewed in 
(Giam and 
Rancati 2015) 
and (Simon et 
al. 2015) 

Human     

Embryo-derived ESCs ESCs derived from 
embryos discovered to be 
aneuploid during PGD 

Reveal the 
consequences of 
aneuploidy in 
humans at the 
cellular level 

Lack of 
appropriate 
control cell lines 

(Lavon et al. 
2008) 

Patient-derived cell 
lines 

Cell lines established from 
tissue of human trisomic 
individuals 

Reveal the 
consequences of 
aneuploidy in 
humans at the 
cellular level 

Lack of 
appropriate 
control cell lines 

Available from 
e.g. Coriell 
Biorepository 

Microcell-mediated 
chromosome transfer 

Transfer of individual 
chromosomes into control 
diploid cells 

Karyotypically 
stable; comparison 
with control 
reveals 
aneuploidy-
dependent 
phenotypes  

Not suitable for 
analysis of the 
immediate effects 
of aneuploidy 

(Upender et al. 
2004); (Stingele 
et al. 2012) 

Targeted chromosome 
removal or silencing 

Diverse methods 
employed to remove or 
silence chromosome 21  

Easy 
determination of 
direct effects of 
aneuploidy   

Technically 
challenging 

(Li et al. 2012); 
(Jiang et al. 
2013) 

Drug-induced 
chromosome mis-
segregation 

Use of mitotic spindle 
poisons such as 
nocodazole and monastrol  

Allows study of 
immediate effects 
of chromosome 
mis-segregation 

Not all cells 
become aneuploid; 
no control over 
identity of mis-
segregating 
chromosomes 

(Thompson and 
Compton 
2008); 
(Elhajouji et al. 
1997) 

Transient 
tetraploidization 

Block of cytokinesis 
generating tetraploid cells 
which rapidly becomes 
aneuploid 

Generates complex 
aneuploid 
karyotypes such as 
those found in 
cancer 

Largely random 
karyotypes; cells 
often have high 
levels of CIN 

(Ho et al. 2010); 
(Vitale et al. 
2010); 
(Kuznetsova et 
al. 2015) 

Chemical or genetic 
inhibition of the SAC 

Knockdown or inhibition 
of key SAC effectors 
leading to chromosome 
mis-segregation 

Allows study of 
immediate effects 
of chromosome 
mis-segregation 

Not all cells 
become aneuploid; 
no control over the 
identity of the mis-
segregating 
chromosomes 

(Hewitt et al. 
2010); 
(Santaguida et 
al. 2010); 
(Michel et al. 
2001); (Meraldi 
and Sorger 
2005) 

Table 1: Different models to study aneuploidy in yeast, mice and humans (cont.) 
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In humans, embryonic stem cells (ESCs) have been derived from embryos that were diagnosed 

to be aneuploid during pre-implantation genetic screening (Lavon et al. 2008). Further, primary 

cell lines from individuals with trisomy syndromes have also been established and are 

commercially available, e.g, from the Coriell Biorepository (Camden, USA). Although the 

advantage of using these cells to understand the pathology of trisomy syndromes is obvious, 

one significant disadvantage is the lack of isogenic controls to which these cell lines can be 

compared. A few recent studies took advantage of a very rare condition in which twins were 

simultaneously monozygotic yet discordant for trisomy 21 (Dahoun et al. 2008; Hibaoui et al. 

2014; Letourneau et al. 2014).     

Targeted chromosome removal or silencing has also been successfully carried out in human 

cells. In one study, the authors generated induced pluripotent stem cells (iPSCs) from the 

fibroblasts of individuals with DS and subsequently used gene targeting to introduce a TKNEO 

fusion gene, which encodes thymidine kinase as well as neomycin resistance, into one of the 

three copies of chromosome 21. This approach allowed the authors to then select against 

TKNEO and thus for loss of chromosome 21 (Li et al. 2012). In another study, again targeting 

chromosome 21, an approach utilising an adapted version of the endogenous silencing of the 

inactive X chromosome was utilised. Using zinc finger nucleases, one copy of chromosome 21 

was engineered to encode XIST long non-coding RNA. This resulted in the coating of the 

chromosome with XIST and to heterochromatinization and the silencing of gene expression 

(Jiang et al. 2013). 

Less specific approaches to produce mammalian aneuploid cells include strategies to induce 

chromosome mis-segregation. Drugs such as nocodazole, which perturbs microtubule 

polymerisation (De Brabander et al. 1976), and monastrol, which inhibits the mitotic kinesin 

Eg5 (Mayer et al. 1999), interfere with the organisation of the mitotic spindle and lead to 

elevated levels of merotelic attachments, lagging chromosomes and ultimately, chromosome 

missegregation (Elhajouji et al. 1997; Thompson and Compton 2008). Chemical or genetic 

inhibition of SAC function in human cells using drugs like reversine and AZ3146, which both 

inhibit the crucial SAC effector kinase, Mps1 (Hewitt et al. 2010; Santaguida et al. 2010), and 

reduced expression of the mitotic checkpoint complex member Mad2 (Michel et al. 2001), or of 

the kinase Bub1 (Bernard et al. 1998; Meraldi and Sorger 2005), also leads to the generation of 

aneuploid cells and, similarly to spindle poisons are suitable for studying the immediate 

consequences of aneuploidization (recently, for example in (Santaguida and Amon 2015)). 

Transient tetraploidization, which can be achieved by inhibition of cytokinesis, rapidly leads to 

gross defects in chromosome segregation and to the generation of cells with near-tetraploid 
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karyotypes (Ho et al. 2010; Vitale et al. 2010; Kuznetsova et al. 2015). Aneuploid cells generated 

in this way are often highly chromosomally instable (Ho et al. 2010; Vitale et al. 2010; 

Kuznetsova et al. 2015).  

A more targeted method for generating aneuploid mammalian cells is known as microcell-

mediated chromosome transfer (Fournier and Frelinger 1982; Saxon and Stanbridge 1987; 

Killary and Lott 1996). In this technique, a donor cell line (usually MEFs) are engineered to 

carry an extra human chromosome that harbours an antibiotic selection marker. Prolonged 

mitotic arrest of these donor cells leads to breakdown of the nuclear envelope and to the 

formation of micronuclei which engulf single or small collections of chromosomes. These 

micronuclei can then be selectively isolated and introduced to cultures of recipient cells in the 

presence of polyethylene glycol to induce membrane fusion. The subsequent application of the 

antibiotic ensures that only those cells that have taken up the extra chromosome survive and 

continue to proliferate. Because of the selection period, this method is not suitable for studying 

the acute effects of aneuploidization. However, it holds two important advantages: first, the 

effects of aneuploidy per se can be easily deduced from comparison with the control cell line 

that did not receive any chromosomes. Secondly, the aneuploid cells that are generated in this 

way are relatively chromosomally stable (depending of course on the identity of the recipient 

cell line), allowing analysis of the long-term effects of an aneuploid karyotype. In the work 

presented here, my colleagues and I utilised this method to study the effects of the gain of one or 

two chromosomes in two near-diploid human cell lines: the colorectal cancer cell line HCT116 

and the immortalised but untransformed retinal pigment epithelium cell line RPE-1. 

The above-described techniques, developed to generate and study aneuploid cells, have greatly 

facilitated research into the consequences of aneuploidy in different eukaryotic organisms. 

These techniques have accelerated research in a number of ways: firstly; the possibility, 

especially in haploid budding yeast, of generating disomic strains carrying an extra copy of each 

(or most) of the organism's 16 chromosomes has enabled researchers to distinguish 

chromosome-specific effects of aneuploidy from those that are shared by aneuploid cells of 

diverse karyotypes; secondly, the fact that these methods are now being applied to unicellular 

yeast as well as to mammalian cells means that the evolutionarily conserved effects of 

aneuploidy can be discerned. Finally, as well as generally facilitating research into the effects of 

imbalanced karyotypes, the ability to easily generate aneuploid cells de novo means that the 

consequences of chromosome mis-segregation, i.e. acute aneuploidization, can be distinguished 

from sustained aneuploidy. This is important as it is now clear that these phenomena differ in 

their effects, both qualitatively and quantitatively. 
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7.3 Consequences of aneuploidy 

7.3.1 Immediate effects of chromosome mis-segregation 

The immediate effects of chromosome mis-segregation are often drastic and, as first reported in 

three independent studies, converge on the guardian of the genome, the tumour suppressor p53 

(Li et al. 2010; Thompson and Compton 2010; Janssen et al. 2011). 

In two of these studies, p53 activation was found to arrest the proliferation of the mis-

segregating cells (Thompson and Compton 2010; Janssen et al. 2011), whereas in the other, p53 

activation led to apoptosis (Li et al. 2010). This discrepancy may be due to the fact that the 

degree of p53 activation seems to correlate with the degree of mis-segregation (Li et al. 2010). 

Interestingly, however, no clear picture has emerged for how exactly p53 is activated under 

these circumstances at the molecular level. In the first study, cells were induced to mis-

segregate their chromosomes by either monastrol washout treatment or by depletion of the 

centromere-associated kinesin-13 protein MCAK. In both cases, total levels of p53 and its target 

p21 were elevated in the treated cells and a nuclear accumulation of both proteins could be 

observed. Based on the lack of any staining for γ-H2AX, a marker of DNA double-strand breaks, 

the authors concluded that the p53 activation observed in response to chromosome mis-

segregation is not due to DNA damage. Instead, the authors found that the stress-activated p38 

MAK kinase is involved (Thompson and Compton 2010).  

In the second study, in which MEFs were rendered aneuploid by depletion of several SAC 

components, it was found, through direct measurements of reactive oxygen species (ROS) as 

well as quantification of oxidative damage to DNA, that aneuploidization leads to oxidative 

stress. Based on knockdown experiments and the use of ROS scavengers the authors proposed 

that the p53 activation was due to the generation of these ROS, which then activated the ATM 

kinase (Li et al. 2010).  

In the third study, it was revealed that lagging chromosomes that are mis-segregated in mitosis 

are often damaged during cytokinesis as a result of forces generated by the cleavage furrow, 

leading to the activation of ATM, Chk2 and p53 and cell cycle arrest in G1 (Janssen et al. 2011). 

In addition, the incorporation of lagging chromosomes into micronuclei, an environment in 

which chromosomes experience problems in properly replicating their DNA and therefore 

accrue high levels of DNA damage (Crasta et al. 2012), might also contribute to activating p53 

upon defective chromosome segregation. Further, a recently published study reported high 

levels of replication stress and DNA damage upon centromere-associated protein-E (CENP-E) 
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knockdown-induced chromosome-mis-segregation in SAC-deficient cells concomitant with the 

activation of p53 (Ohashi et al. 2015). 

It seems possible, therefore, that different types of DNA damage might converge on activation of 

p53 in response to chromosome mis-segregation. In fact, cells that lose chromosomes were 

described to activate p53 to the same extent as cells that gained an extra chromosome, 

suggesting that the DNA damage suffered by lagging chromosomes is not required for p53 

activation in aneuploid cells (Thompson and Compton 2010). Further, a very recent study has 

now shown that p53 activation in response to chromosome mis-segregation can occur without 

any detectable DNA damage (Hinchcliffe et al. 2016). The authors of this study found that during 

anaphase, misaligned chromosomes undergo phosphorylation at position Ser31 on the histone 

variant H3.3, which persists into the subsequent G1 phase of the cell cycle. This phosphorylation 

along the arms of mis-segregated chromosomes signals to activate p53, by a mechanism which 

remains to be defined (Hinchcliffe et al. 2016). In conclusion, several mechanisms may be 

responsible for activating p53, and thus blocking the proliferation of cells that have undergone 

chromosome mis-segregation. Perhaps the key issue to be resolved is the relative importance of 

these different mechanisms for eliciting cell-cycle arrest upon aneuploidization.      

What are the other immediate effects of chromosome mis-segregation? Altered activity of the 

protein homeostasis (proteostasis) network appears to be a general and evolutionarily 

conserved feature of aneuploid cells (discussed in detail below). Interestingly, recent studies 

indicate that proteostasis is affected very soon after chromosome mis-segregation in aneuploid 

cells (Oromendia et al. 2012; Santaguida and Amon 2015). In yeast, cells that underwent 

chromosome mis-segregation during mitosis as well as the viable products of triploid meiosis 

were described to rapidly accumulate foci positive for the heat shock protein Hsp104, a 

disaggregase and a marker of protein aggregates (Oromendia et al. 2012). Further, it has been 

reported that a defect in autophagic degradation represents a striking early feature of human 

cells that have undergone chromosome mis-segregation and become aneuploid (Santaguida and 

Amon 2015). Using inhibitors of Mps1 as well as siRNA against Bub1 or Mad2 to generate 

aneuploid human cells, the authors observed a decrease in autophagic degradation and an 

accumulation of proteins within lysosomes in aneuploid cells two to three cell divisions after 

the chromosome mis-segregation event. The exact reasons for this are unclear, but seem to stem 

from an inability to proper upregulate the degradative capacity of the lysosome to match an 

increased requirement for protein degradation (Santaguida and Amon 2015).  

Taken together, the findings discussed above suggest that wild-type cells that undergo 

chromosome mis-segregation must find a way to both bypass the p53-mediated block in 
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proliferation, as well as to dampen the detrimental effects of aneuploidy on proteostasis, in 

order to survive and to continue to divide. What is the fate of aneuploid cells that succeed in 

overcoming the immediate detrimental effects of an imbalanced karyotype?  

7.3.2 Chronic consequences of aneuploidy 

While the immediate consequences of aneuploidization are likely to be determined in part by 

the chromosome mis-segregation event itself, in the long term the effects of aneuploidy on 

cellular physiology are mediated solely by the expression of genes encoded on aneuploid 

chromosomes. As a general rule, mRNA and protein levels both scale with DNA copy number in 

aneuploid cells from various species (e.g., (Torres et al. 2007; Torres et al. 2010; Stingele et al. 

2012) exceptions will be discussed below). That, in fact, the gene expression is responsible, has 

been demonstrated in several studies in yeast harbouring artificial aneuploid chromosomes that 

do not encode any yeast proteins. Crucially, such chromosomes have only mild effects on cell 

function (Torres et al. 2007; Sheltzer et al. 2011; Oromendia et al. 2012). 

Why is the expression of genes from aneuploid chromosomes detrimental to cellular fitness? A 

highly influential framework in which to tackle this question has been the gene dosage balance 

hypothesis (GDBH (Veitia and Potier 2015)). This explanation for the adverse effects of altered 

gene dosage was first developed by Birchler and Newton (Birchler 1979; Birchler and Newton 

1981), and postulates that disturbing the balanced expression of subunits of macromolecular 

complexes or of proteins involved in signalling networks is harmful, as it can affect the amount 

of functional product that is synthesised, or in the case of signalling pathways, because of 

altered activity of the pathway (Birchler and Veitia 2012). 

Several lines of evidence support the idea that the imbalanced gene expression of aneuploid 

cells is the factor that disrupts cellular function. On the most fundamental level, this notion 

gains credence from the fact that polyploidy is often better tolerated in nature than aneuploidy 

(Comai 2005). Further, in humans, only three trisomic karyotypes (13, 18 and 21) are 

compatible with survival and post-embryonic development and only one (trisomy 21) allows 

individuals to survive past a few months of age (Pai et al. 2003). Strikingly, according to the 

annotated reference human genome published by the European Bioinformatics Institute (EBI) 

and Wellcome Trust Sanger Institute, chromosomes 13, 18 and 21 are the most gene-poor 

autosomal chromosomes in humans, with chromosome 21 the most gene-poor of all. Indeed, in 

many studies the severity of aneuploid phenotypes tends to scale with the degree of 

chromosomal imbalance in a given aneuploid cell. This fact is exemplified in two evolutionarily 

distant species. In aneuploid yeast, the addition of an extra chromosome to a haploid yeast 

strain (resulting in 100% more of the affected genes) has much stronger effects than addition of 
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a chromosome to a diploid background (which results in only 50% more of the genes) (Torres 

et al. 2007; Sheltzer et al. 2011; Oromendia et al. 2012). Similarly, in maize, the addition of an 

extra chromosome to a diploid plant has much less severe effects on growth than adding a 

chromosome to a haploid (described in (Birchler and Veitia 2012).  

The most obvious effects of aneuploidy stem directly from the increased expression of the 

specific genes encoded on aneuploid chromosomes, i.e. the identities of the specific gene 

products present in excess determine the phenotype. Indeed, global analyses of gene expression 

have revealed that protein as well as RNA levels tend to scale with DNA copy number in 

aneuploid cells (Upender et al. 2004; Pavelka et al. 2010b; Torres et al. 2010; Stingele et al. 

2012; Dephoure et al. 2014; Durrbaum et al. 2014). For instance, the resistance of yeast that are 

disomic for chromosome XIII to the pro-tumourigenic compound 4-nitroquinoline-N-oxide (4-

NQO) could be narrowed down to the enhanced expression of the ATR1 gene (Pavelka et al. 

2010b), which is encoded on chromosome XIII and is a protein transporter whose 

overexpression is described to confer resistance to 4-NQO (Mack et al. 1988). Humans with DS 

are significantly protected from developing solid tumours (Hasle 2001), while at the same time 

exhibit a markedly elevated risk of succumbing to Alzheimer's disease (Wiseman et al. 2015). 

Evidence suggests that the former may be partly because of the enhanced expression of the 

DSCR1 gene (Baek et al. 2009), which is encoded on chromosome 21 and which is a factor which 

potently suppresses angiogenesis by inhibiting the calcineurin pathway (Ryeom et al. 2008); the 

latter is likely to be at least partly because DS individuals harbour an extra copy of the 

chromosome 21-encoded amyloid precursor gene, APP (Goate et al. 1991). 

While genes encoded on supernumerary chromosomes are generally expressed at levels that 

correspond to their copy number, it appears that the expression of certain classes of genes, 

namely, members of macromolecular complexes (Torres et al. 2010; Stingele et al. 2012; 

Dephoure et al. 2014), as well as kinases (Stingele et al. 2012), is adjusted towards diploid levels 

at the protein level. While experiments performed in aneuploid yeast indicate that these 

proteins are degraded shortly after synthesis in a proteasome- and autophagy-dependent 

manner (Dephoure et al. 2014), the underlying reasons for these observations are not clear. We 

have previously proposed that the impaired proteostasis of aneuploid cells (discussed in detail 

below), may play a role in this phenomenon (Donnelly and Storchova 2014), but this hypothesis 

has yet to be rigorously tested.   

The direct effects that can be exerted by gene products encoded on supernumerary 

chromosomes also illustrate that aneuploidy is not always detrimental. Aneuploidy may be 

selectively neutral, as suggested by the fact that many naturally occurring yeast strains are 
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aneuploid (Kvitek et al. 2008), and can indeed be highly beneficial under specific circumstances. 

Most examples for the advantageous effects of aneuploidy come from yeasts, where a change in 

karyotype has been described to mediate resistance to anti-fungal agents (Selmecki et al. 2006; 

Sionov et al. 2010), a range of cytotoxic drugs (Pavelka et al. 2010b; Chen et al. 2012), as well as 

hostile environmental conditions (Yona et al. 2012). In many of these instances the beneficial 

effects of aneuploidy appear to be directly mediated by the altered expression of specific gene 

products encoded on supernumerary chromosomes (Selmecki et al. 2006; Pavelka et al. 2010b; 

Sionov et al. 2010). Further, it should be noted that the beneficial effects are generally only 

evident in response to harsh conditions and do not confer any advantage in the absence of 

stress. A notable example from other species concerns hepatocytes in both mice and humans 

(Duncan et al. 2010; Duncan et al. 2012b). Intriguingly, a large proportion of mature 

hepatocytes in both species have been described to be polyploid or aneuploid and there is 

evidence to suggest that the altered karyotypes of hepatocytes might play a role in protection 

against liver injury or the toxic effects of metabolites (Duncan et al. 2012a). The healthy human 

brain has also been described to harbour appreciable numbers of aneuploid cells (Rehen et al. 

2001; Rehen et al. 2005), raising the question of aneuploidy's role during normal development 

and metabolism (Iourov et al. 2006). It should be noted, however, that the presence of 

aneuploid cells in healthy human tissue remains controversial (Knouse et al. 2014). 

The identity of the gene products encoded on aneuploid chromosomes evidently plays a role in 

determining the phenotypes of aneuploid cells. However, research on aneuploidy has, over the 

last decade, demonstrated that many of the important characteristics of aneuploid cells are 

independent of the exact karyotypic changes found in a given aneuploid cell. The remarkable 

implication of this discovery is that while the phenotypes of aneuploid cells depend on the 

expression of genes encoded on aneuploid chromosomes, they are independent of the identity 

and function of the genes themselves. 

What are these changes evoked by aneuploidy? Perhaps the most common feature of aneuploid 

cells, and one that is conserved in aneuploidy models from yeast to man, is an impairment in 

proliferation, a defect which appears to stem from problems in progression through both the G1 

and S phases of the cell cycle (Torres et al. 2007; Williams et al. 2008; Pavelka et al. 2010b; 

Stingele et al. 2012). Remarkably, while this defect was one of the first cellular phenotypes to be 

attributed to aneuploidy (Segal and McCoy 1974), at the molecular level it still remains largely 

unclear why aneuploid cells proliferate poorly (Thorburn et al. 2013). What appears clear, at 

least in yeast, is that aneuploidy-induced defects in proliferation are not due to the altered 

expression of any particular dosage-sensitive genes, but rather reflect the combined action of 
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many genes together (Bonney et al. 2015). Whether and how this impaired proliferation is 

linked with other phenotypes of aneuploid cells are questions that await definitive answers. 

In recent years, several ground-breaking studies, performed in different species and analysing 

different aneuploid karyotypes, have demonstrated that aneuploidy affects mRNA and protein 

expression globally, and not only at the level of those genes whose copy number is altered 

(Upender et al. 2004; Torres et al. 2007; Pavelka et al. 2010b; Torres et al. 2010; Sheltzer et al. 

2012; Stingele et al. 2012; Durrbaum et al. 2014). It should be noted, of course, that a proportion 

of the gene expression changes occurring in trans in aneuploid cells is a direct result of changes 

that occur in cis, e.g., the presence of a transcriptional regulator on an aneuploid chromosome 

driving the expression of target genes located on other chromosomes (e.g., (Rancati et al. 

2008)).  

While earlier studies had reported that gene expression was altered genome-wide in response 

to aneuploidy (Upender et al. 2004), the first systematic analysis of global expression changes in 

aneuploid cells was undertaken by Torres et al. in 2007 (Torres et al. 2007). They discovered a 

transcriptional response common to aneuploid yeast of different karyotypes which bore a 

similarity to the environmental stress response (ESR), a transcriptional response mounted by 

yeast in response to a range of different stressful conditions (Gasch et al. 2000). Intriguingly, 

this response was determined in part by the impaired proliferation of aneuploid cells because 

when disomic yeast were grown in a chemostat under phosphate-limiting conditions to control 

their rate of division, the ESR was no longer evident (Torres et al. 2007). Since then, a number of 

other global studies performed in yeast, murine and human aneuploid cells have further 

characterised the transcriptome and proteome of aneuploid cells and a clearer picture of the 

effects of aneuploidy on gene expression has now emerged (Pavelka et al. 2010b; Torres et al. 

2010; Sheltzer et al. 2012; Stingele et al. 2012; Dephoure et al. 2014; Durrbaum et al. 2014). 

Strikingly, a broad conservation of the gene expression changes observed in aneuploid cells 

from yeast to man can be discerned. This conservation is particularly evident in the 

downregulated pathways at both the transcriptional and proteomic levels and manifests as a 

downregulation of DNA and RNA metabolism as well as ribosome-related and cell cycle-related 

pathways (Sheltzer et al. 2012; Stingele et al. 2012; Durrbaum et al. 2014). More variation is 

evident in the pathways that are commonly found to be upregulated in aneuploid cells. As 

mentioned above, aneuploid S. cerevisiae activate the ESR (Torres et al. 2007), while at the 

protein level the response is characterised by a prominent enrichment in factors related to the 

cellular response to oxidative stress (Dephoure et al. 2014). Variation between the response of 

mouse and human aneuploid cells is also evident. Pathways related to the extracellular region 

as well as inflammatory and stress responses are upregulated in model aneuploid cells from 
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both species (Sheltzer et al. 2012; Stingele et al. 2012; Durrbaum et al. 2014), whereas factors 

related to lysosomes, vacuoles and membrane metabolism have been described to be enriched 

only in human aneuploids until now (Stingele et al. 2012; Durrbaum et al. 2014).  

As mentioned above, impaired proliferation plays a role in determining the transcriptional 

response to aneuploidy in yeast (Torres et al. 2007; Sheltzer et al. 2012). However, complex 

human aneuploid cells recovered after transient tetraploidization exhibit no gross defects in 

proliferation, yet display the same transcriptional signature as slowly-proliferating trisomic and 

tetrasomic aneuploid cell lines (Durrbaum et al. 2014). Thus, there must be additional triggers 

for the changes in gene expression in human aneuploid cells. The observation that in human 

cells aneuploidy elicits upregulation of factors related to lysosomal degradation coupled with 

the fact that the transcriptional response of aneuploid cells bears a strong resemblance to cells 

in which autophagy has been inhibited indicates that the effects of aneuploidy on proteostasis 

may be partially responsible for the gene expression changes in aneuploid cells (Stingele et al. 

2012; Durrbaum et al. 2014). 

An additional as yet poorly understood effect of aneuploidy on cellular physiology relates to 

changes in cellular metabolism, in particular those that concern mitochondrial respiration. As in 

the case of proliferation, the first indications that aneuploidy may affect metabolism came from 

studies on DS fibroblasts (Kedziora and Bartosz 1988). Many studies have now documented 

increased levels of reactive oxygen species (ROS) in these cells (reviewed in (Pagano and 

Castello 2012)), and recent evidence suggests that this observation is not restricted to trisomy 

of human chromosome 21, as other human aneuploid cells as well as aneuploid yeast also 

harbour elevated levels of ROS (Li et al. 2010; Dephoure et al. 2014). However, the source of 

these ROS is not well understood. Further evidence for altered metabolism in aneuploid cells 

comes from global expression profiling. Aneuploid yeast exhibit up-regulation of pathways 

related to carbohydrate metabolism (Torres et al. 2007), and analysis of human aneuploid cells 

revealed a uniform up-regulation of pathways involved in energy metabolism, in particular 

those related to mitochondrial respiration and carbohydrate metabolism (Stingele et al. 2012). 

Aneuploid yeast cells exhibit a decreased efficiency of glucose utilisation (Torres et al. 2007), 

whereas in trisomic MEFs glutamine consumption as well as the production of its breakdown 

product, ammonium, is increased. Lactate production seems to be also increased in these 

trisomic cells (Williams et al. 2008). The underlying reason and significance of these effects is 

unclear. Finally, the fact that these same trisomic MEFs are sensitive to the AMPK inhibitor 

AICAR represents additional indirect evidence for changes to metabolism in aneuploid cells 

(Tang et al. 2011). 
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Thus, while our understanding of the consequences of aneuploidy remains far from complete, 

some important principles can already be discerned. Firstly, it is clear that aneuploidy, while 

generally detrimental can, under stressful conditions, play an important cytoprotective role. 

Secondly, it has become obvious that aneuploidy exerts karyotype-dependent as well as 

karyotype-independent effects. These karyotype-independent effects include an evolutionarily 

conserved expression pattern of up- and downregulated pathways in which the most prominent 

features are a lower expression of factors involved in nucleic acid metabolism and protein 

synthesis and heightened levels of gene products related to stress responses and protein 

degradation. In addition, aneuploidy has profound effects on cellular metabolism. The 

underlying reasons for the karyotype-independent effects of aneuploidy remain poorly 

understood at the cellular and molecular levels; therefore, elucidating the molecular 

mechanisms that determine these phenotypes of aneuploid cells must be regarded as one of the 

main tasks of research on aneuploidy. The research presented here was undertaken with the 

aim of better understanding the karyotype-independent effects of aneuploidy in human cells.     

 

7.4 Role of aneuploidy in human disease 

7.4.1 Trisomy syndromes 

The proof that aneuploidy is directly linked to human disease came with the discoveries almost 

60 years ago that DS, Edward's syndrome and Patau syndrome are due to third copies of 

chromosomes 21, 18 and 13, respectively (EDWARDS et al. 1960; PATAU et al. 1960; LEJEUNE 

and TURPIN 1961). It is now clear that aneuploidy represents the main cause of spontaneous 

abortions in humans. Further, complete or mosaic trisomy of chromosomes 21, 13 and 18 and 

aneuploidy of sex chromosomes, are the only aneuploid karyotypes that are compatible with 

live birth. Individuals with any of three autosomal trisomies suffer from profound 

developmental defects, which include intellectual deficits as well as a wide range of physical 

abnormalities (Pai et al. 2003). Research on trisomy syndromes has focused on two broad 

questions: firstly, scientists have striven towards an understanding of the meiotic defects that 

lead to aneuploidy in humans, with a particular focus on elucidating the basis for the age-related 

increase in these errors (reviewed in (Hassold and Hunt 2001; Nagaoka et al. 2012)); secondly, 

researchers have attempted to understand the pathology of trisomy syndromes, mostly by 

linking specific aspects of the pathology of trisomy syndromes with the elevated expression of 

specific genes or chromosome regions (Antonarakis et al. 2004; Lana-Elola et al. 2011).  
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The majority of efforts with respect to the second question have been concerned with DS as it is 

the most common human trisomy and the only one which, generally speaking, permits survival 

beyond the first weeks and months of life. The chromosome 21-centric approach has utilised 

both rare cases of partial human trisomies as well as several mouse models of DS to identify 

"dosage-sensitive" genes on chromosome 21 that are likely to make critical contributions to DS 

phenotypes ((reviewed in (Lana-Elola et al. 2011)), and a DS Critical Region (DSCR), a region on 

chromosome 21 spanning approximately 5.4 Mb and encompassing 33 genes, has been 

proposed to account for most, if not all, of the major symptoms in DS individuals (Korenberg et 

al. 1990; Delabar et al. 1993; Belichenko et al. 2009). However, recent studies have called into 

question the pre-eminent role of the DSCR in determining the majority of DS phenotypes (Olson 

et al. 2004; Korbel et al. 2009; Lyle et al. 2009). More generally, it is far from clear whether 

approaches focused purely on chromosome 21 will allow us to reveal the basis for all of the 

many symptoms in DS individuals and the reasons for the large variation in DS phenotypes.    

7.4.2 Role of aneuploidy in other conditions 

As individuals with DS now have much greater life expectancies than previously (e.g., (Englund 

et al. 2013; Wu and Morris 2013), it has become increasingly apparent that trisomy of 21 is 

associated with a significantly elevated risk of developing further health complications, in an 

age-dependent manner (Glasson et al. 2014).   

Foremost among the age-associated conditions linked to DS is Alzheimer's disease: individuals 

with DS exhibit a significantly elevated risk of developing Alzheimer's disease and dementia 

(Wiseman et al. 2015). In fact, the development of characteristic amyloid plaques appears to 

exhibit universal penetrance by the age of 40 and two-thirds of DS individuals that live until the 

age of 60 develop dementia (Zigman et al. 2002; McCarron et al. 2014). These striking 

phenotypes are likely to be, in large part, due to the fact that chromosome 21 harbours the 

amyloid precursor gene APP (Goate et al. 1991), and, by itself, three copies of APP seems to be 

sufficient to lead to early-onset Alzheimer's disease (e.g., (Rovelet-Lecrux et al. 2006; Sleegers et 

al. 2006)). However, whether the extra copy of APP is the only underlying reason for the 

increased AD in DS individuals, remains to be elucidated (Oromendia and Amon 2014), as 

mouse models of DS which lack an extra copy of APP also exhibit cognitive defects, as well as 

hyperphosphorylation of tau, a key characteristic of AD pathology (Shukkur et al. 2006; 

Roubertoux and Carlier 2010). 

 

7.4.3 Aneuploidy and aging 
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The short lifespans of individuals with DS together with the fact that aneuploidy causes 

decreased fitness at the cellular level suggests that aneuploidy may also play a more general 

role in aging. A growing body of work carried out in cell culture systems as well as in mice 

indicates that aneuploidy may indeed accelerate the aging process and/or be a hallmark of 

natural aging. For instance, a recent study has shown that replicative lifespan is decreased in 

aneuploid baker's yeast (Sunshine et al. 2016). Evidence from mouse models with hypomorphic 

alleles of the critical SAC proteins Bub3, Rae1 and BubR1 has shown that such mice develop a 

range of age-associated phenotypes, including short lifespan, cataracts and impaired wound 

healing (Baker et al. 2004; Baker et al. 2006). Further studies have indicated that aneuploidy-

induced aging may particularly affect skin cells in mice (Foijer et al. 2013; Tanaka et al. 2015). 

Mosaic variegated aneuploidy (MVA) syndrome in humans is a condition, which is often 

associated with cancer but which also presents with aging-associated phenotypes (Jacquemont 

et al. 2002; García-Castillo et al. 2008). In addition, aneuploidy may be a hallmark of aging in the 

mouse (Faggioli et al. 2012; Baker et al. 2013), a phenomenon which is accompanied by a drop 

in BubR1 levels and which can be blocked by BubR1 overexpression (Baker et al. 2013). Finally, 

a number of works also report an increase in aneuploidy in the brains of aged humans 

(reviewed in (Andriani et al. 2016)).  

Thus, the research performed up to now appears to implicate aneuploidy in the aging process 

and suggests that CIN leading to whole chromosomal aneuploidy can contribute to aging. A key 

open question concerns the exact nature of the relationship between aneuploidy and aging in 

healthy individuals: is aneuploidy merely a consequence of normal aging or does it actively 

accelerate the aging process? It is noteworthy that two of the most prominent detrimental 

effects of aneuploidy, namely impaired abilities to maintain the integrity of the genome and 

proteome, have been proposed to be hallmarks of aging (Lopez-Otin et al. 2013). Taken 

together, it seems likely that impaired fidelity of chromosome segregation, due for example, to 

decreased expression of BubR1, is not only a consequence of the aging process, but may also, 

through the effects of aneuploidy on cellular physiology, be a mechanism underlying normal 

aging.   

 7.4.4 Aneuploidy and cancer - friend or foe? 

The relationship between CIN, aneuploidy and carcinogenesis is complex and conflicting. On the 

one hand, CIN and aneuploidy are very frequent in cancer; many cancers show defects in 

chromosome segregation and up to 90% of solid tumours and 50% of haematological 

malignancies exhibit imbalanced karyotypes (Mitelman et al., 2016)(Storchova and Pellman 

2004). On the other hand, CIN, as well as the aneuploid state itself, almost always results in 
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decreased fitness in model systems. It is worth stressing here again that CIN and aneuploidy are 

not synonymous. While aneuploidy in cancer is generally a result of CIN, not all aneuploid cells 

are karyotypically instable. Further, as discussed above, the effects of CIN, i.e., the ongoing gain 

and loss of chromosomes are distinct from those of aneuploidy, which are due to altered gene 

dosage.   

One scenario in which the seemingly contradictory roles of CIN and aneuploidy in cancer could 

be reconciled would be one in which they exerted differing effects on tumour initiation and 

progression. This seems to be true to some extent. On the one hand, CIN leading to aneuploidy 

can contribute to initiation of tumorigenesis in vivo (Weaver et al. 2007); on the other hand, 

chromosome mis-segregation in tumours that are induced by other means, such as loss of 

tumour suppressors or by chemicals, appears to rather exert suppressive effects (Weaver et al. 

2007). The rate of chromosome mis-segregation also appears to be an important determinant. 

Further exacerbating CIN in cancer-prone mice that are heterozygous for CENP-E results in 

reduced tumour formation (Silk et al. 2013). In several types of cancer, an intermediate rather 

than extreme level of CIN results in the poorest prognosis for cancer patients (Birkbak et al. 

2011). In addition, high rates of chromosome mis-segregation may suppress cancers in certain 

tissues while promoting them in others. For example, mice prone to chromosome mis-

segregation because of CENP-E heterozygosity are predisposed to develop tumours in the 

spleen and lungs. However, these same mice develop liver tumours at a reduced rate compared 

to wild-type mice (Weaver et al. 2007). Further, mice with mutations that compromise the 

fidelity of chromosome segregation are generally prone to cancers, but not in all organs 

(reviewed in (Giam and Rancati 2015; Simon et al. 2015). Additional support for this idea comes 

from individuals with DS.  The incidence of solid tumours is greatly reduced in people with DS, 

while the occurrence of haematological cancers is increased (Nižetić and Groet 2012). Taken 

together, these observations suggest that there is an optimal timing as well as level of CIN and 

aneuploidy that promote the initiation and development of cancer. Beyond a certain threshold 

or in cells that are already malignant, the negative effects of acute chromosome mis-segregation 

as well as the longer-term detrimental effects of an imbalanced karyotype combine to effectively 

inhibit tumour progression.    

While these considerations can potentially reconcile the detrimental effects of CIN and 

aneuploidy with their pervasiveness in cancer, they still do not answer the question of how CIN 

and aneuploidy themselves may actually promote tumourigenesis. The most likely explanation 

for the role of CIN in promoting cancer is that the aneuploid karyotypes generated as a result of 

mis-segregation will, on rare occasions, lead to improved proliferative potential as well as the 

variation necessary for adaptation to hostile micro-environmental conditions and 
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chemotherapy.  But how can aneuploidy per se promote malignancy? Indeed, it should be noted 

that the theory that aneuploidy can contribute to cancer does not enjoy universal acceptance, 

and it has been argued that aneuploidy is either irrelevant or simply a bystander in 

tumourigenesis (Hahn et al. 1999; Marx 2002). As discussed above aneuploidy exerts both 

karyotype-dependent and karyotype-independent effects on cellular physiology. Applying this 

framework, it is likely that there are two broad ways in which aneuploidy could contribute to 

carcinogenesis. In the first instance, it is probable that, because of the precise set of genes 

present, certain karyotypes are more likely to promote tumourigenesis whilst others rather 

exert tumour-suppressive effects. For instance, gain of chromosome 8, or its long arm is one of 

the most frequent karyotypic abnormalities in cancer and is thought to be driven by the 

presence of the MYC oncogene on 8q24.3 (Sato et al. 1999; Mahdy et al. 2001; Beroukhim et al. 

2010; Jones et al. 2010). Further, specific types of cancer are often characterised by specific 

recurrent karyotypic abnormalities (Mitelman 2000), and, the loss or gain of specific 

chromosome pairs is found to exhibit a significant co-occurrence (Ozery-Flato et al. 2011). 

Moreover, compelling evidence suggests that the distribution of tumour suppressors, oncogenes 

and essential genes on a given chromosome is a strong predictor of whether that chromosome 

is likely to be gained or lost in cancer (Davoli et al. 2013). It is also possible that aneuploidy can 

promote tumourigenesis in a manner which is independent of the exact karyotype. Given that 

these karyotype-independent effects are largely detrimental, this might seem paradoxical. The 

most likely scenario in which aneuploidy is likely to contribute to carcinogenesis in this way, is 

through the effects that it exerts in further destabilizing the genome (discussed in detail below).  

While such effects on genome stability are detrimental in the majority of cases, the chronically 

elevated rate of mutations and also additional large-scale structural changes in aneuploid cells 

are likely, in rare cases, to lead to the emergence of cells with proliferative advantages and other 

requisites for tumour initiation. While such a route leading from aneuploidy to tumorigenesis 

has long been postulated (Duesberg et al. 2004; Duesberg et al. 2006), a precise delineation of 

this path has been hampered by the lack of molecular understanding of how aneuploidy affects 

genome stability. 

 

7.5 The effects of aneuploidy on the proteostasis network 

As mentioned briefly above, aneuploidy exerts profound effects on the maintenance of 

proteostasis. In fact, it is becoming clear that the detrimental effects of aneuploidy are mediated, 

in part, by the altered function of proteins and pathways that serve to keep the balance between 
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protein production and folding, on the one hand, and protein degradation, on the other 

(Oromendia and Amon 2014). 

7.5.1 The proteostasis network  

The proteostasis network (PN) regulates all stages of the protein life-cycle from production to 

proteolysis and thus encompasses all factors involved in protein synthesis, trafficking, stability 

and degradation (Balch et al. 2008). In eukaryotes, highly elaborate signalling networks respond 

to and cater for the specialised needs of the proteome across the different compartments of the 

cell and function to ensure that PN capacity matches cellular requirements (Anckar and 

Sistonen 2011; Walter and Ron 2011; Haynes et al. 2013). Molecular chaperones are proteins 

that function to promote the proper folding, stability and function, as well as timely and efficient 

degradation of other cellular proteins. Thus, they represent key players in the PN and 

accompany proteins "from the cradle to the grave", i.e., immediately upon exit from the 

ribosome (Preissler and Deuerling 2012), to degradation (Kettern et al. 2010). Eukaryotic cells 

have evolved a highly sophisticated battery of chaperones that function in different cellular 

organelles and that are specialised in the folding of different classes of client proteins. The 

cytosolic HSP90 molecular chaperones (comprising inducible HSP90α and constitutively 

expressed HSP90β) are among the most important: they are essential for viability and are 

among the most abundant proteins in eukaryotic cells (Borkovich et al. 1989). In contrast to the 

HSP70 chaperones, which are rather promiscuous in their interactions and which interact with 

proteins immediately upon exit from the ribosome tunnel (Rüdiger et al. 1997; Hundley et al. 

2005; Vos et al. 2008; Jaiswal et al. 2011), the HSP90 chaperones are more specialised protein 

folding machines that, together with over 20 co-chaperones, function later in the folding cycle 

and act on partially folded substrates received from HSP70 (Jakob et al. 1995; Nathan et al. 

1997). Intriguingly, aneuploid cells appear to be critically dependent on the HSP90 machinery. 

HSP90 proteins are composed of 3 domains, an N-terminal region that binds ATP, a C-terminal 

domain that mediates homodimerisation of HSP90 and binding to co-chaperones, and an M-

domain between these two that assists in ATP hydrolysis (Ali et al. 2006). The chaperone 

function of HSP90 homodimers is characterised by widespread conformational dynamics, which 

are determined by ATP binding and hydrolysis, binding to different co-chaperones as well as 

client proteins themselves (Shiau et al. 2006; Graf et al. 2009; Hessling et al. 2009; Retzlaff et al. 

2010; Street et al. 2011). In the absence of ATP binding, HSP90 dimers exist in an "open" or "V-

shaped" conformation. The binding of client proteins, often facilitated by chaperones of the 

HSP70 family together with co-chaperones and subsequently, ATP binding, leads to a series of 

conformational changes. These result finally, in a closed conformation of the HSP90 dimer, ATP 
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hydrolysis and client protein release, and the return to the open state (Ali et al. 2006; Shiau et al. 

2006). Post-translational modifications (PTMs; to date, phosphorylation, acetylation, 

ubiquitination, oxidation and S-nitrosylation of HSP90 have been described) also regulate 

HSP90 function by affecting binding to co-chaperones and substrates, as well as influencing the 

HSP90 ATPase cycle (reviewed in (Mollapour and Neckers 2012)).  

Early studies on HSP90, based on small-scale co-purification experiments, revealed kinases and 

steroid hormone receptors as two important classes of clients (e.g., (Brugge et al. 1981; Schuh et 

al. 1985)). In recent years a number of genome-wide studies have revealed that HSP90 has 

evolved a large but specific clientele of substrates (Millson et al. 2005; Zhao et al. 2005; Taipale 

et al. 2012). Most prominently, it chaperones a large number of protein kinases, a specificity 

which is largely determined by the co-chaperone CDC37, which presents kinase clients to 

HSP90 (Caplan et al. 2007). It also appears to play an important role in the folding of steroid 

hormone receptors and ubiquitin ligases (Pratt and Toft 1997; Taipale et al. 2012). HSP90 has 

also been implicated in the assembly and stability of several multi-subunit protein complexes, 

such as RNA polymerase II, the 26S proteasome, as well as kinetochores, telomeres and 

transport-related complexes, indicating that the chaperone might play a broad role in regulating 

protein complex assembly ((McClellan et al. 2007) and reviewed in (Makhnevych and Houry 

2012)). 

A consequence of the specialised clientele of HSP90 is that HSP90 chaperoning activity is not 

randomly required for different processes inside the cell but is rather implicated in a number of 

specific cellular pathways. Notable examples include protein trafficking, progression through 

the cell cycle, innate immunity and the DNA damage response (DDR) (McClellan et al. 2007; 

Sharma et al. 2012). The number of HSP90 clients that function in a given pathway is likely to 

determine why some processes, such as protein secretion are more sensitive to inhibition of 

HSP90 than others. A further salient feature of HSP90 function, is that, at least in yeast, under 

conditions of stress the function of HSP90 undergoes a dramatic shift, from playing a prominent 

role in protein transport and the secretory pathway, to facilitating progression through the cell 

cycle and cell division (McClellan et al. 2007).    

The transcription factor Heat Shock Factor 1 (HSF1) is the master regulator of inducible 

chaperone expression in the cytoplasm and functions to ensure that cells can regulate protein 

folding capacity to match fluctuating requirements. Although HSF1 is best recognised for 

inducing the transcription of molecular chaperones such as members of the HSP70 and HSP90 

chaperone families (Anckar and Sistonen 2011), it should be noted that, particularly in cancer 
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cells, it also regulates the expression of a large number of other genes, including those with no 

direct involvement in proteostasis (Mendillo et al. 2012). 

An elegant mechanism has evolved to couple HSF1 activation to the cellular protein folding 

status. Under conditions where the chaperone armamentarium matches or exceeds cellular 

needs, HSF1 is kept in an inactive state by being bound by HSP70 and HSP90. Misfolded or 

unfolded proteins are thought to titrate away chaperones from HSF1, which allows HSF1 to be 

converted into an active homotrimer with high affinity for DNA (Baler et al. 1993; Rabindran et 

al. 1993; Shi et al. 1998; Zou et al. 1998). Homotrimerization and DNA binding are accompanied 

by hyperphosphorylation (Guettouche et al. 2005; Batista-Nascimento et al. 2011), which 

regulates the subcellular localization of HSF1 and its affinity for DNA (Xu et al. 2012). 

Sumoylation and acetylation confer additional layers of regulation by repressing HSF1 activity 

in the absence of stress (Hietakangas et al. 2003) and by regulating the duration of HSF1 

signalling and HSF1 stability, respectively (Westerheide et al. 2009; Raychaudhuri et al. 2014). 

HSF1 activates or represses the expression of hundreds of genes, among them many molecular 

chaperones, which serves to ensure that HSF1 signalling is then curtailed once proteostasis has 

been re-established. 

7.5.2 The role of the PN in aging and disease    

HSF1 and the Heat Shock Proteins were so named because of their indispensable roles in 

protecting cells from the adverse effects of heat stress, which results in widespread protein 

unfolding, misfolding and aggregation. However, as a large range of factors compromise proper 

protein folding or lead to an enhanced need for Heat Shock Proteins, the PN is involved in 

shielding cells from the effects of a wide array of toxic insults that lead to proteotoxic stress. 

Given the fundamental task that the PN fulfils in cellular physiology, and the central role that 

cellular stress plays in a large number of pathologies, it is no surprise that the activity of the PN 

is altered in many disease conditions (Hipp et al. 2014; Dai and Sampson 2016). Two groups of 

diseases are worthy of particular mention in this regard: the first are cancers, which are 

generally characterised by a heightened activity of proteostasis factors and by an increased 

reliance on these factors to sustain carcinogenesis (Dai and Sampson 2016); the second group 

are neurodegenerative conditions, the hallmark of which is the accumulation of protein 

aggregates and a marked decline in the function of the PN (Hipp et al. 2014).   

Why do cancers rely so heavily on the PN? Alongside the classic hallmarks of cancer, a series of 

prerequisites, which are critical for the initiation and progression of tumorigenesis (Hanahan 

and Weinberg 2000), a common characteristic of many established cancer cells is high levels of 
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cell stress (Solimini et al. 2007; Luo et al. 2009). These stress phenotypes include high levels of 

DNA damage and chromosomal instability, metabolic stress and proteotoxic stress, and lead to 

the phenomenon of "non-oncogene addiction" (Luo et al. 2009). Non-oncogenes describe those 

genes which are not mutated or otherwise activated to promote tumour progression, but rather 

represent an essential supporting cast critical for maintaining tumourigenesis (Solimini et al. 

2007; Luo et al. 2009). Thus, on a fundamental level the increased requirement for PN function 

in cancer is likely to stem from the role of PN components in mitigating the effects of cell stress.  

Growth in environments with fluctuating levels of oxygen and nutrients imposes a severe stress 

on solid cancers and it has been demonstrated that chaperones play an important cyto-

protective role under such conditions. In addition, tumours often depend, for their proliferation 

and survival, on oncogenes, which are frequently mutated and unstable and thus critically rely 

on chaperones such as HSP90 (Neckers 2006). Notable examples include HSP90's chaperoning 

of the v-Src tyrosine kinase and the mutated EGF receptor (Xu and Lindquist 1993; Shimamura 

et al. 2005). Chaperones also directly contribute to one of the acknowledged hallmarks of 

malignant cells: their ability to evade apoptosis (Lanneau et al. 2008). For instance, HSP70 and 

HSP27 impede programmed cell death by blocking the nuclear import of apoptosis-inducing 

factor (AIF) and through sequestration of cytochrome c, respectively (Bruey et al. 2000; 

Ravagnan et al. 2001).  

Additionally, cancer cells are often critically dependent on processes of protein degradation, 

which can be clearly discerned from the fact that a large number of tumour cell lines are 

sensitive to drugs that inhibit proteasomal or autophagic degradation (Adams 2004) 

(Amaravadi et al. 2011). What underlies this sensitivity? Intriguingly, although the use of 

proteasome inhibitors in cancer treatment has been touted for approximately 20 years now, 

there is still no definitive answer to this question. It is likely that many factors are at play. Most 

generally, the sensitivity of cancer cells to proteasome inhibition appears to be determined by 

the fact that cells that proliferating cancer cells are more susceptible to a block in proteasomal 

degradation than post-mitotic cells (Drexler 1997; Masdehors et al. 1999; Drexler et al. 2000). 

This is probably partly due to the fact that progression through the cell cycle relies on the timely 

degradation of many critical factors (Glotzer et al. 1991; Pagano et al. 1995). A further reason is 

related to the general tendency for pro-apoptotic proteins, such as p53, to be short-lived 

compared to anti-apoptotic ones (Maki et al. 1996; Haupt et al. 1997; Kubbutat et al. 1997). The 

specific characteristics of certain cancers also play a role in determining sensitivity to 

proteasome inhibitors. The most prominent example in this respect is multiple myeloma (MM), 

a cancer of the blood characterised by the aberrant activation and proliferation of antibody-

secreting plasma cells. The high levels of protein production and secretion in these activated 
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cells leads to a heavy reliance on the endoplasmic reticulum stress-activated Unfolded Protein 

Response (UPR) (Vincenz et al. 2013). Proteasome inhibition in these cells leads to maladaptive 

hyperactivation of the UPR and subsequently, apoptosis (Obeng et al. 2006), likely contributing 

to their exquisite sensitivity to proteasome inhibitors (Hideshima et al. 2001; LeBlanc et al. 

2002).  

The reliance of tumour cells on autophagic degradation stems partly, as for proteasome activity, 

from the role of autophagy in protecting solid tumours against inhospitable microenvironments 

(Degenhardt et al. 2006; Rabinowitz and White 2010). Dependence on autophagy has also been 

strongly linked to cancers driven by the RAS and BRAF oncogenes (Guo et al. 2011; Lock et al. 

2011; Strohecker et al. 2013). Autophagy in these contexts appears to be responsible for 

disposing of defective mitochondria, and for limiting activation of the p53 pathway (Guo et al. 

2011; Lock et al. 2011; Strohecker et al. 2013). 

A large number of studies have described proteostasis function and HSF1 activity, in particular, 

to be reduced with age (Labbadia and Morimoto 2015b). Intriguingly, recent studies carried out 

in the nematode C. elegans have demonstrated that proteostasis decline appears to be a 

precipitous programmed event which occurs suddenly when organisms reach reproductive 

maturity (Ben-Zvi et al. 2009; Labbadia and Morimoto 2015a). The impaired HSF1 function in 

aging cells and tissues seems to be caused by a reduced ability of HSF1 to contact DNA (Fawcett 

et al. 1994; Locke and Tanguay 1996; Jurivich et al. 1997; Kregel 2002); intriguingly, in C. 

elegans this appears to be due to a remodelling of the chromatin landscape to prevent HSF1 

binding (Labbadia and Morimoto 2015a).    

Diminished capacity of the PN is also a hallmark of one of the main groups of disorders 

associated with aging, neurodegenerative diseases (Hipp et al. 2014). These conditions are 

characterised by the accumulation of protein aggregates within affected neurons, leading to 

their eventual demise. These protein aggregates place a severe strain on cellular proteostasis, 

by sequestering molecular chaperones and other PN factors (Yamanaka et al. 2008; Olzscha et 

al. 2011; Xu et al. 2013; Yu et al. 2014), overwhelming the capacity of degradation pathways 

(Lam et al. 2000; Holmberg et al. 2004; Hipp et al. 2012), and hindering the activation of stress-

responsive transcription factors (Labbadia et al. 2011; Olzscha et al. 2011; Riva et al. 2012). 

Diminished proteostasis function can also be a cause of the protein misfolding and aggregation 

in such conditions, meaning that affected cells are locked in a vicious cycle of misfolding, 

aggregation, and progressive worsening of proteostasis capacity (Hipp et al. 2014).    

Thus, in cancer, the activity of the PN is stretched to its limits and inhibition of PN function 

represents a rational therapeutic strategy (Whitesell and Lindquist 2009; Hetz et al. 2013). In 
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aging and neurodegenerative conditions, conversely, PN capacity is often severely curtailed, and 

much effort has been directed at augmenting proteostasis in these conditions (Baranczak and 

Kelly 2016). In conclusion, alterations in PN capacity and activity can be viewed as a defining 

feature of many pathological states and play critical roles in disease progression. 

7.5.3 Effects of aneuploidy on proteostasis 

The first hints that aneuploidy might generally affect the maintenance of proteostasis came 

from the observed general sensitivity of aneuploid yeast to drugs that interfere with protein 

synthesis, namely, cycloheximide and rapamycin (Torres et al. 2007; Pavelka et al. 2010b). 

Further, a general sensitivity to heat stress as well as to HSP90 and proteasome inhibition was 

also observed, indicating that aneuploid yeast are preferentially affected by conditions that lead 

to high levels of protein unfolding and misfolding and by treatments that block protein 

degradation (Torres et al. 2007). 

More detailed analyses of the effects of aneuploidy on proteostasis in yeast revealed that 

aneuploid yeast harbour endogenous protein aggregates and are compromised in their ability to 

deal with the ectopic expression of toxic aggregation-prone proteins. Intriguingly, this study 

also showed that the function of the HSP90 molecular chaperone seemed to be impaired in 

aneuploid yeast (Oromendia et al. 2012).   

Initial results from trisomic MEFs indicated the generality of these phenomena in mammalian 

cells by demonstrating that both the HSP90 inhibitor 17-AAG as well as the inhibitor of 

autophagic degradation, chloroquine, were preferentially toxic to aneuploid mouse cells (Tang 

et al. 2011). Further, these cells were found to harbour increased levels of the inducible HSP72 

chaperone (but not HSP90) and of LC3 II (the lipidated form of LC3 that is inserted into 

autophagosomes), indicating protein folding stress and altered levels of autophagy, respectively 

(Tang et al. 2011). Global analysis of gene expression in human aneuploid cells revealed the 

elevated expression of pathways related to autophagy and the lysosome. Further, higher levels 

of p62- and ubiquitin-marked foci were observed in trisomic and tetrasomic cells, which were 

found to co-localize with autophagosomes, indicating that aneuploid human cells upregulate the 

p62-dependent degradation of ubiquitinated proteins (Stingele et al. 2012; Stingele et al. 2013).  

It should be noted here that autophagic degradation has in fact been described to be inhibited in 

human aneuploid cells immediately after chromosome mis-segregation and to a lesser extent 

also in trisomic MEFs (Santaguida and Amon 2015). Putting the data together, it can be 

supposed that in the acute response to aneuploidy, the high levels of protein misfolding and 

general stress experienced by cells mean that lysosomal capacity initially fails to keep pace with 
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demand. However, aneuploid human cells eventually do upregulate lysosomal function to match 

their needs (Stingele et al. 2012). 

Taken together, these results indicate that the imbalanced proteomes of aneuploid cells may 

elicit widespread protein misfolding and aggregation and lead to the (eventual) upregulation of 

proteasomal and autophagic activity in order to dispose of the misfolded proteins. However, 

some important questions remain. Firstly, direct evidence that protein folding is impaired in 

aneuploid cells is still lacking. Further, the molecular pathways involved in upregulating 

autophagic and proteasomal degradation in aneuploid cells remain unknown. In the work 

presented here I aimed to better characterise the effects of aneuploidy on proteostasis by 

focusing on three main questions: Does aneuploidy generally impair protein folding? If so, what 

underlies this deficient protein folding capacity? How is the impaired protein folding of 

aneuploid cells linked with the other characteristic hallmarks of aneuploid cells? 

 

7.6 The effects of aneuploidy on the maintenance of genome stability 

A number of studies have documented high levels of DNA damage in cells from DS individuals, 

implying that aneuploidy may exert detrimental effects on genome stability (Zana et al. 2006; 

Morawiec et al. 2008; Necchi et al. 2015). Indeed, while it is obvious that aneuploidy may arise 

as a consequence of CIN, a growing body of work from aneuploidy model systems shows that 

aneuploidy can itself promote further changes to the genome, although the mechanisms 

involved remain largely unclear. Elucidating the link between aneuploidy and further genomic 

instability will be an important step towards understanding the role of aneuploidy in 

pathological conditions.  

7.6.1 Aneuploidy and numerical CIN - a two-way street? 

The question of whether or not aneuploidy can be a cause as well as a consequence of numerical 

chromosomal instability is a controversial one and one which is awaiting a definitive answer. It 

has been argued, most forcibly by Duesberg and colleagues, that aneuploidy is itself the main 

cause of the high levels of CIN in cancer cells (Duesberg et al. 1998; Duesberg et al. 2004). This 

assertion is primarily based on the observation that in human cancer cells the degree of 

chromosomal instability correlates with the deviation from normal ploidy, i.e., the more 

aneuploid a cell is, the more prone it is to exhibit further chromosomal instability (Duesberg et 

al. 1998). Analysis of cancer genomes has also shown that tumours with non-diploid karyotypes 

are more likely to exhibit numerical CIN than diploid tumours (Storchova and Kuffer 2008). This 

hypothesis is further supported by experiments in yeast that demonstrated that the closer the 
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karyotype of an aneuploid cell is to the haploid state, the more chromosomally stable it is. It 

should be noted, however, that the authors also found that the specific aneuploid karyotype also 

played a role in determining these effects (Zhu et al. 2012). In addition, a study on disomic 

haploid yeast reported higher levels of chromosome loss in the majority of strains (Sheltzer et 

al. 2011). The data from mammalian systems is contradictory. A couple of studies have reported 

that chromosome mis-segregation rates are elevated in trisomic human cells (Reish et al. 2006; 

Reish et al. 2011), while other reports have found no evidence of this (Upender et al. 2004; 

Williams et al. 2008). A recent study tackled this question by utilising the precise method of 

dual-colour fluorescence in situ hybridization (FISH) to examine the chromosomal instability of 

human cells from patients with trisomies. The authors unambiguously concluded that 

aneuploidy was insufficient to lead to levels of chromosomal instability comparable to those 

seen in chromosomally unstable human cancer cell lines (Valind et al. 2013), although it should 

be noted that it would be expected that in these experiments cells positive for p53 would arrest 

upon chromosome mis-segregation and thus might be missed from the analysis. Further, a very 

recent report revealed that while chromosome mis-segregation rates do appear to be elevated 

in trisomic cancer as well as primary human cell lines, these still lag behind those observed in 

CIN cancer cells (Nicholson et al. 2015). In accordance with observations from yeast (Zhu et al. 

2012), this study suggested that aneuploidy affects chromosome mis-segregation in a 

karyotype-specific manner (Nicholson et al. 2015).  

Taken together, the available data suggest that aneuploidy probably does exert a certain effect 

in promoting errors in chromosome segregation in a manner, which is likely to depend on the 

species, on the degree of aneuploidy, as well as on the exact karyotype. 

7.6.2 Structural and whole-chromosomal aneuploidy 

Whether whole-chromosomal aneuploidy is also connected with the occurrence of structural 

aneuploidy is even more of an open question. As in the case of whole chromosomal aneuploidy 

and CIN, structural and whole-chromosomal aneuploidy are often found side-by-side in 

tumourigenesis, raising the possibility that the phenomena might be linked (Mitelman et al., 

2016). The most direct way in which these occurrences might be related would be through the 

process of chromosome mis-segregation itself. As discussed above, during mitosis the lagging 

chromosome is thought to be often subject to DNA damage, either as a result of being caught in 

the cleavage furrow during cytokinesis or because it is trapped in micronuclei (Janssen et al. 

2011; Crasta et al. 2012). The accruing damage, either breaks to DNA or in rare cases, complete 

shattering and subsequent rejoining of an entire chromosome (chromotripsis; (Zhang et al. 

2015)) would then give rise to structural aneuploidy on the mis-segregated chromosome.  A 
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recent study found that replication stress, defined as a slowing or stalling of DNA replication 

fork progression, might be a unifying mechanism linking structural and whole-chromosomal 

aneuploidy, at least in certain types of cancer (Burrell et al. 2013). Specifically, the authors 

identified 3 genes on the long arm of chromosome 18 whose deletion precipitated replication 

stress, structural aneuploidy and finally, chromosome mis-segregation in colorectal cancer cell 

lines (Burrell et al. 2013). A couple of small-scale studies have also reported elevated levels of 

structural aberrations in response to trisomy of chromosome 3 or 8 in cultured cells, 

respectively (Kost-Alimova et al. 2004; Nawata et al. 2011). Intriguingly, in the former case this 

was hypothesised to be due to defects in DNA replication and specifically, to incomplete 

replication within pericentromeric regions leading to a higher level of DNA breaks (Kost-

Alimova et al. 2004).   

Thus, even though recent reports indicate the existence of a link between structural and whole-

chromosomal aneuploidy, the nature of this link is far from being fully characterised. Most 

pointedly, it remains unclear whether aneuploidy per se can affect the accrual of further 

structural changes to the genome and what the underlying molecular mechanisms might be. 

7.6.3 Aneuploidy and single-nucleotide genetic aberrations 

There is also strong evidence from yeast aneuploids to suggest that aneuploidy can enhance 

mutation rates, most likely in part by increasing levels of DNA damage. Disomic yeasts are 

sensitive to drugs which cause DNA damage and were found to harbour a higher load of 

complex mutational events, which could be suppressed by deletion of the catalytic subunit of 

the translesion polymerase, Pol ζ (Sheltzer et al. 2011). Consistent with these observations, a 

majority of aneuploid yeast are impaired in DNA replication and accumulate DNA double-strand 

breaks (DSB) in S phase, which then persist into the subsequent mitosis (Blank et al. 2015). The 

DNA damage in aneuploid yeast also appears to be due to defects in DNA repair as well as DNA 

recombination. Notably, these phenotypes are not simply due to the fact that aneuploid cells 

have more DNA to replicate: yeasts harbouring YACs with human DNA do not exhibit elevated 

levels of genomic instability (Sheltzer et al. 2011; Blank et al. 2015). 

Whether or not aneuploid cells in higher eukaryotes also exhibit problems with DNA replication 

and higher levels of DNA damage is not yet clear, but a recent study described that inducing 

chromosome mis-segregation in SAC-impaired human cells by inhibiting CENP-E resulted in 

higher levels of DSBs as well as an apparent gross impairment in progression through the S 

phase of the cell cycle (Ohashi et al. 2015). Moreover, it is striking that pathways related to DNA 

transactions are consistently downregulated both at the protein as well as the RNA level in 

human aneuploid cells (Stingele et al. 2012; Durrbaum et al. 2014). 
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Although scant, the available data suggest that the imbalanced proteomes of aneuploid cells lead 

to errors during DNA replication and to the generation of DNA lesions. However, the molecular 

mechanisms underlying these phenomena, particularly in human cells, remain largely 

uncharacterised. 

In the second paper contributing to this thesis my colleagues and I set to determine the effects 

of aneuploidy on the stability of the genome, and in particular, to answer the questions of 

whether aneuploidy per se may lead to further changes to the genetic material, and if so, by 

what means. 
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8. Results 

8.1 HSF1 deficiency and impaired HSP90-dependent protein folding are 

hallmarks of aneuploid human cells 

EMBO J. 2014 Oct 16;33(20):2374-87 

http://emboj.embopress.org/content/33/20/2374 

 

Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. 

In this study we used luciferase-based protein folding sensors to test the hypothesis that 

protein folding capacity is reduced in trisomic and tetrasomic aneuploid human cells. Our 

results revealed striking defects in the ability of aneuploid cells to re-fold these sensors after 

heat shock or to fold them in the presence of a chemical inhibitor of HSP90, indicating that 

HSP90 activity is limiting in human aneuploid cells. This hypothesis was further supported by 

our finding that the proliferation of aneuploid cells is specifically sensitive to HSP90 inhibition, 

but not to inhibitors of other chaperones or other inducers of protein misfolding. We observed a 

general reduction in the levels of HSP90 protein in aneuploid cells as well as those of other 

molecular chaperones, suggesting that a systematic problem in regulating chaperone expression 

might be an underlying reason for the impaired protein folding capacity of aneuploids. 

Consistent with this, expression of HSF1, the master regulator of inducible chaperone 

expression was also generally reduced in aneuploid cells. Overexpression of HSF1, both in an 

endogenous manner, by transfer of chromosome 8, which harbours the HSF1 locus, or 

exogenously, by transient plasmid transfection, rescued the levels of HSP90, improved protein 

folding capacity and protected aneuploid cells from the anti-proliferative effects of HSP90 

inhibition. Our analysis strongly suggests that the impaired HSP90 and HSF1 function of 

aneuploid cells affects their physiology. As a first step we analysed the HSP90-dependent 

proteome, taking advantage of a recent study that characterised HSP90 clients in a systematic-

genome wide manner (Taipale et al. 2012), as well of the database of HSP90 interactors curated 

by the Picard laboratory (www.picard.ch). We hypothesised that if HSP90 function is indeed 

limiting in aneuploid cells then we should see effects on the levels of protein that rely on HSP90 

for their stability. Indeed, in two out of four aneuploid cell lines tested we observed a significant 

trend for clients described to interact strongly with HSP90 to be expressed at lower levels at the 

protein but not mRNA level. When analysing HSP90 interactors we also observed significantly 

http://emboj.embopress.org/content/33/20/2374
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lower protein levels in two out of the four aneuploid cell lines tested, with a non-significant 

trend towards lower expression in the other two. We also employed pathway analysis to 

determine if pathways and processes described to be altered in response to chemical inhibition 

of HSP90 in HeLa cells (Sharma et al. 2012), were similarly deregulated in aneuploid cells. We 

observed a pronounced overlap between pathways downregulated in response to HSP90 

inhibition and those downregulated in aneuploid cells. In addition, transcriptome analysis 

revealed a striking similarity between transcriptional changes observed in aneuploid cells and 

those elicited upon HSF1 depletion. 

Taken together, our results show that protein folding is impaired in human aneuploid cells and 

that this impairment is characterised by specific defects in HSF1 and HSP90 function, which can 

be rescued by overexpression of HSF1. Further, our results show that the diminished function of 

HSF1 and HSP90 partially underlies the complex, genome-wide expression changes in mRNA 

and protein observed in aneuploid cells. 
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8.2 The presence of extra chromosomes leads to genomic instability 

Nat Commun. 2016 Feb 15;7:10754 

http://www.nature.com/articles/ncomms10754 

 

Passerini V, Ozeri-Galai E, de Pagter M, Donnelly N, Schmalbrock S, 

Kloosterman WP, Kerem B, Storchová Z. 

In this study we addressed the question of whether aneuploidy, specifically gain of one or two 

chromosomes, is sufficient to increase genomic instability.  

Using high-resolution microscopy, we observed that trisomic and tetrasomic cells showed 

increased levels of markers of DNA damage as well as anaphase bridges and ultrafine bridges 

during mitosis. Further, a combination of next-generation sequencing and SNP-array analysis 

revealed that aneuploid cells accumulated chromosomal rearrangements with break point 

junction patterns that suggested that the rearrangements arose as a result of defects in 

replication. Indeed, direct analysis of replication dynamics revealed slower replication of DNA 

in aneuploid cells and a heightened sensitivity to exogenous replication stress. We found that 

the impaired DNA replication and higher levels of genomic instability in human aneuploid cells 

can be explained by a general reduction in the expression of replicative factors. Aneuploid cells 

exhibited a strikingly consistent downregulation of the subunits of the replicative helicase 

MCM2-7, suggesting that lower levels of this complex may be a critical factor contributing to the 

genomic instability of aneuploid cells. In fact, boosting levels of chromatin-bound MCM helicase 

partially rescued the genomic instability phenotypes.  

In conclusion, this paper shows that the gain of one or two extra chromosomes causes 

replication stress, which in turn leads to genomic instability, and provides a molecular link 

between numerical and structural changes to the genome. 

 

http://www.nature.com/articles/ncomms10754
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9. Discussion 

The work described in this thesis was undertaken to gain insights into the consequences of an 

aberrant karyotype in human cells, and in particular, to study the effects of aneuploidy on 

proteostasis and genome stability. Our findings that aneuploidy disturbs protein folding and 

promotes genomic instability enhance our understanding of how aneuploidy can be detrimental 

at the cellular and molecular levels. Further, they may have important ramifications for the role 

of aneuploidy in pathological conditions and for the treatment of conditions characterised by 

the presence of aneuploid karyotypes.   

 

9.1 Aneuploidy undermines cellular proteostasis by impairing protein 

folding 

Accumulating evidence has suggested that aneuploidy exerts negative effects on cellular 

proteostasis. However, the molecular mechanisms underlying these effects as well as the 

consequences for aneuploid cells have remained unclear. The investigations described in this 

thesis have provided insights into both of these questions. 

Aneuploid cells from yeast and mice exhibit sensitivity to a range of conditions and drugs that 

inhibit protein production and folding (Torres et al. 2007; Pavelka et al. 2010b; Tang et al. 

2011). Further, aneuploid cells in yeast and humans accumulate protein aggregates and are 

sensitive to exogenous expression of aggregation-prone and difficult-to-fold proteins 

(Oromendia et al. 2012; Stingele et al. 2012). In addition, aneuploidy appears to lead to an 

enhanced requirement for proteasomal and autophagic degradation (Torres et al. 2007; Tang et 

al. 2011; Stingele et al. 2012; Santaguida and Amon 2015).  

We hypothesised that a common denominator underlying all of these previous observations 

might be a defect in protein folding. Based on earlier indications from aneuploid yeast 

(Oromendia et al. 2012), and on the seemingly general sensitivity of aneuploid cells to chemical 

inhibition of the HSP90 molecular chaperone (Torres et al. 2007; Tang et al. 2011), we 

hypothesised that this defect might specifically concern HSP90-dependent protein folding. 

Indeed, the significant impairment in the ability of aneuploid cells to fold and re-fold luciferase-

based HSP90 folding sensors (Figure 1 in (Donnelly et al. 2014)), together with the observed 

general sensitivity of human aneuploid cells to chemical inhibition of HSP90, but not to other 

chaperone inhibitors or other inducers of protein misfolding (Figure 2 in (Donnelly et al. 
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2014)), suggest that human aneuploid cells experience a specific defect in HSP90-dependent 

protein folding.  

What underlies the impaired HSP90 function of aneuploid cells? The general downregulation of 

molecular chaperones in aneuploid cells, as well as their pronounced impairment in Heat Shock 

Response (HSR) induction was suggestive of a defect in HSF1, the master regulator of inducible 

chaperone expression (Figure 3 in (Donnelly et al. 2014)). Strikingly, overexpression of HSF1, 

either endogenously by transfer of chromosome 8 where HSF1 is located, or exogenously, by 

plasmid transfection, was sufficient to correct the HSP90-dependent protein folding defect of 

aneuploid cells (Figure 4 in (Donnelly et al. 2014)). Thus, our data suggest that impaired HSF1 

function in human aneuploid cells leads to a specific defect in HSP90 (Figure 2).  

Our analysis also revealed that the impaired HSF1 and HSP90 function of human aneuploid cells 

partly determines the complex changes in gene expression observed in response to aneuploidy 

(Figure 2): the transcriptional response of cells in which HSF1 was knocked down bore a 

striking resemblance to the transcriptional pattern of aneuploid cells; further, HSP90 clients and 

HSP90-dependent pathways tend to exhibit lower levels and activity in aneuploid cells (Figure 5 

in (Donnelly et al. 2014)). 

It remains unclear precisely why HSF1 activity is diminished in human aneuploid cells (Figure 

2). While it was claimed that aneuploid yeast cells exhibit no impairment in activation of the 

HSR, careful perusal of the data reveal a slight delay in the induction and repression of Heat 

Shock Response-associated genes in the majority of disomes (Oromendia et al. 2012). The fact 

that the levels of HSF1 are reduced by approximately 20-25% in the aneuploid cells analysed in 

this study, taken together with the rescue of HSF1 function observed upon overexpression, 

might suggest that the lower levels of HSF1 are the main cause of this impairment. However, 

experiments using the promoter of the HSP70 gene fused to luciferase revealed that induction in 

diploid cells was up to 4-fold higher than in aneuploid cells in response to acute proteotoxic 

stress. These observations raise the possibility that lower expression of HSF1 might not be the 

only cause of the defective HSR in human aneuploid cells.  
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Figure 2: Model depicting the main findings described in this thesis and the potential link between them. The 

imbalanced proteome of aneuploid cells inhibits HSF1 function by an as yet undefined mechanism leading to a 

characteristic transcriptional profile as well as lower levels of the HSP90 chaperone. The lower levels of HSF1 

together with the imbalanced production of cellular proteins, particularly members of multi-subunit complexes, lead 

to an exhaustion of HSP90 capacity and to misfolding of HSP90 client proteins. This in turn leads to the impaired 

function of HSP90-dependent processes and to sensitivity to HSP90 inhibition. Aneuploidy also elicits lower 

expression of the MCM2-7 complex, resulting in impaired DNA replication, increased levels of DNA damage, and 

ultimately to structural rearrangements of the genome. I propose that the impaired HSP90 function of aneuploid cells 

may contribute to the lower levels of MCM2-7. ori; origin of replication.    
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To determine what else may underlie the reduced activity of HSF1, I have systematically 

interrogated the different steps in the HSF1 activation cycle. My so far unpublished 

investigations suggest that there is no defect in nuclear import of the HSF1 protein or in the 

ability of HSF1 to be converted into a DNA binding-competent, hyperphosphorylated trimer. 

Further, it appears that there is no obvious impairment of HSF1's ability to contact its binding 

sites in vivo or to recruit RNA polymerase II. Finally, polymerase processivity also appears to be 

grossly unaffected. Remaining possibilities include a reduced stability of HSF1 target mRNAs 

and/or proteins or a decreased translation of HSF1 targets. Indeed, the observation that 

transcriptional downregulation of ribosomal genes is a recurrent feature of human aneuploid 

cells (Durrbaum et al. 2014), is an indirect indication that translation may be diminished in 

response to aneuploidy. It also remains possible that multiple minor defects in the HSF1 

pathway, not easily discernible by themselves, might combine to result in a profound defect in 

HSF1 activity.    

There is also no definitive answer to the question of why HSP90-dependent protein folding 

appears to be particularly affected in response to aneuploidy. Our observations that levels of 

HSP90 as well as other chaperones are generally reduced in aneuploid cells, coupled with the 

rescue in both HSP90 levels and protein folding that is observed upon HSF1 overexpression, 

seem to offer a relatively straightforward solution to this problem. However, unanswered 

questions remain. Firstly, earlier work performed in MEFs had shown that the levels of the 

inducible HSP72 chaperone were actually elevated in trisomic cells, although the mechanism 

was not elucidated (Tang et al. 2011). Secondly, it is not clear why a defect in HSF1 function will 

preferentially affect HSP90. It is conceivable that this may be due to differences in the relative 

affinity of HSF1 for the promoters of its target genes. In fact, in experiments where a 

constitutively active HSF1 was transiently overexpressed from a plasmid in aneuploid cells, I 

observed that the induction of Heat Shock Protein 27 (HSP27) expression was greatest, 

followed by that of HSP70, and finally HSP90. This is an interesting observation that warrants 

further investigation. Finally, it is widely accepted that HSP90, as one of the most abundant 

proteins in eukaryotes (Borkovich et al. 1989), is present in the cell in sizeable excess. Indeed, 

under normal conditions yeast cells can survive and grow with only 5% of their normal levels of 

HSP90 (Borkovich et al. 1989). Therefore, I suggest that the aneuploid state imposes a strict 

requirement for HSP90 function and that aneuploid cells can even be said to be "addicted" to 

this chaperone.  

Aneuploidy in general is detrimental because of the expression of genes from aneuploid 

chromosomes. This expression leads to an imbalanced proteome, a state which has particularly 

pronounced repercussions for the members of multi-subunit complexes. According to the GDBH 
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explanation for the detrimental effects of aneuploidy, such an imbalanced expression of multi-

subunit complex members will be harmful for the cell, because it will affect the amount of 

functional complexes that are finally synthesised (Birchler and Veitia 2012; Veitia and Potier 

2015).  

Our results suggest that an imbalanced proteome is not only harmful because of the effects that 

it has on the proteins that are directly affected by this unevenness. Uneven expression of 

proteins likely leads to an enhanced engagement of chaperones, which try to ensure that 

proteins remained folded and soluble. Such conditions of imbalanced stoichiometry might be 

particularly taxing for HSP90, a chaperone that acts late in the folding cycle and which has an 

emerging role in the assembly of multi-subunit protein complexes (McClellan et al. 2007; 

Makhnevych and Houry 2012). Imbalanced expression of protein complex members is likely to 

complicate and prolong the time needed for the proper assembly of protein complexes, which is 

likely to increase the requirement for chaperone surveillance. This in turn would titrate HSP90 

from other important cellular functions, leading to a global impairment in HSP90-dependent 

processes (Figure 2).    

9.1.1 Consequences of the protein folding defect in aneuploid cells 

Owing to its specialised clientele and to the specific set of critical cellular pathways that depend 

on it, HSP90 is regarded as a hub of cellular physiology (Taipale et al. 2010). Our findings that 

the HSP90-dependent proteome and HSP90-dependent pathways and processes tend to exhibit 

lower levels and activity strongly suggest that the HSP90 defect of aneuploid cells has far-

reaching general consequences for cell function. In addition, although primarily recognised for 

its role in regulating proteostasis-related genes, in recent years it has become clear that HSF1 

also targets a large number of other genes with roles in diverse cellular processes (Page et al. 

2006; Mendillo et al. 2012), which also indicates that the impaired HSF1 function in aneuploid 

cells may have pleiotropic effects on a range of different cellular processes (Figure 2).   

It is particularly tempting to speculate about how the impaired proteostasis of aneuploid cells 

may be linked with some of their other cardinal features. A potentially link would be with the 

dosage compensation in aneuploid cells. Intriguingly, as mentioned in the introduction, proteins 

that are dosage-compensated in aneuploid cells are enriched for protein complex members and 

kinases, two classes of proteins that may be particularly reliant on HSP90 function (Caplan et al. 

2007; McClellan et al. 2007; Makhnevych and Houry 2012). I suggest that the enhanced and/or 

specific chaperone requirements of these classes of proteins may be a cause of the limiting 

protein folding capacity in aneuploid cells. On the other hand, however, the lower levels of 

proteins of these classes in aneuploid cells may be a consequence of the impaired protein 
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folding capacity that they themselves elicit. It will be important to determine if aneuploid cells 

that have no apparent protein folding defects, e.g., those harbouring an extra copy of 

chromosome 8 with HSF1, also exhibit dosage compensation of proteins encoded on their extra 

chromosomes. 

I also hypothesise that the impaired protein folding capacity of aneuploid cells may contribute 

to their impaired proliferation. HSF1 and HSP90 play important roles in promoting cellular 

proliferation and progression through the cell cycle, particularly in cancer cells. In fact, levels of 

HSP90 are elevated at the border between the G1 and S phases of the cell cycle in a HSF1-

dependent manner (Nakai and Ishikawa 2001), suggesting that both proteins are involved in 

regulating G1 to S transition. Furthermore, HSP90 regulates either directly or indirectly a large 

number of proteins with important roles in promoting G1 to S progression, most prominently 

the cyclin-dependent kinases (CDKs), CDK2 (Prince et al. 2005), CDK4 (Stepanova et al. 1996), 

and CDK6 (Mahony et al. 1998), as well as Cyclin D (Münster et al. 2001), and Cyclin E (Bedin et 

al. 2004). Consistent with these observations, chemical inhibition of HSP90 often causes a cell 

cycle arrest at G1/S (Burrows et al. 2004). My observation that cells that gained chromosome 8 

with an extra copy of HSF1 proliferated faster than cells that gained chromosome 8 without 

HSF1 suggest that, indeed, protein folding capacity may also be an important determinant of 

proliferative capacity in human aneuploid cells.  

HSP90 plays a critical role in buffering phenotypic change by masking the effects of genetic 

polymorphisms (Jarosz et al. 2010). It is well described that the altered expression of genes on 

aneuploid chromosomes plays an important role in promoting adaptive evolution (e.g., (Rancati 

et al. 2008; Kaya et al. 2015), and reviewed in (Pavelka et al. 2010a)). My findings suggest the 

possibility that aneuploidy may, through its inhibitory effects on HSP90 function, also promote 

phenotypic diversity in a less overt manner, by exhausting HSP90's buffering capacity. While 

intriguing, testing this idea will be far from trivial.  

The detrimental effects that aneuploidy frequently has on cellular physiology imply that 

aneuploid cells require additional mutations or non-genetic changes in order to overcome the 

negative effects of an imbalanced karyotype. It was previously shown that in yeast, deletion of 

the deubiquitinating enzyme Ubp6 enhanced the proteasomal degradation of proteins encoded 

on aneuploid chromosomes, provided protection against the deleterious effects of aneuploidy 

on proteostasis and alleviated the proliferative defects of aneuploid cells (Torres et al. 2010; 

Oromendia et al. 2012). My results delineate an alternative route to coping with an imbalanced 

karyotype: blocking aneuploidy's detrimental effect on HSP90-dependent protein folding 

through overexpression of HSF1. It is noteworthy in this regard that the 8q24 chromosomal 
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region, where the HSF1 gene is located, is frequently amplified in cancer (Beroukhim et al. 2010; 

Davoli et al. 2013). Further, chromosome 8 is the most common genetic abnormality in the 

myeloid leukaemias developed by DS individuals (Ganmore et al. 2009), suggesting that genes 

on this chromosome may be important for overcoming the intrinsic tumour-suppressive effects 

of aneuploidy in DS individuals.  

More generally, my results, when taken together with earlier observations (Torres et al. 2010; 

Oromendia et al. 2012), suggest that cells have two options when confronted with the impaired 

PN elicited by aneuploidy: on the one hand, either an upregulation of protein folding capacity to 

prevent protein degradation and aggregation, or, perhaps, to deal with the consequences of 

increased levels of proteolysis; or, on the other hand, to further elevate levels of protein 

degradation to ensure that misfolded proteins are efficiently disposed of and do not accumulate 

within the cell (Figure 3). 

 

 

Figure 3: Mechanisms that allow cells to cope with the detrimental effects of aneuploidy on proteostasis. The 

impaired protein folding capacity of aneuploid cells is a barrier to tumourigenesis and may contribute to cellular 

aging. Cells can overcome these detrimental effects either by augmenting their protein folding capacity or by 

enhancing protein degradation, thereby elevating their proliferative capacity and potentially giving rise to malignant 

aneuploid tumours. 

9.1.2 Implications of impaired proteostasis for cancer and trisomy syndromes 

The results described herein have further implications for our understanding of aneuploidy in 

disease. Proteotoxic stress is a recurring feature of cancer cells and leads to a heavy reliance on 
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proteostasis factors in general, and on HSF1 and HSP90, in particular. Previously, several 

underlying mechanisms were proposed to explain the proteotoxic stress of cancer cells and 

their "addiction" to chaperones. Increased levels of protein synthesis and of ribosomes are key 

facets of the pro-tumorigenic programme and chaperones play critical roles in ensuring 

proteome integrity under these conditions (Silvera et al. 2010; Dai et al. 2012). In addition, the 

oncogenes which drive cancer progression are frequently mutated and unstable and thus 

critically rely on chaperones such as HSP90 (Neckers 2006).  

It has also been proposed that the proteotoxic stress of cancer cells stems from their aneuploid 

karyotypes and their resulting imbalanced proteomes (Luo et al. 2009). However, this 

hypothesis was lacking experimental proof in human cells as well as a molecular explanation. 

The results presented here strongly support the idea that the proteotoxic stress experienced by 

cancer cells is partly due to the fact that they are frequently aneuploid. The stress phenotypes of 

malignant cells have been identified as constituting an important therapeutic window for the 

treatment of cancer (Solimini et al. 2007; Luo et al. 2009). The data presented here proffer a 

novel additional explanation for why cancer cells are so reliant on both HSF1 and HSP90 activity 

and suggest the existence of a further rationale for the efficacy of drugs that target proteostasis 

in cancer cells. 

My finding that impaired protein folding capacity is a hallmark of human aneuploid cells may 

also have important implications for our understanding of underlying pathological mechanisms 

in trisomy syndromes. As discussed in the introduction, the current approach to understanding 

the aetiology of DS and its associated complications is almost exclusively focused on the role of 

specific genes encoded on chromosome 21. Our evolving understanding of the karyotype-

independent phenotypes of aneuploid cells, however, indicates that the detrimental effects of 

trisomy in humans are not necessarily mediated solely by chromosome 21-encoded genes. 

Rather, it is possible that the general features shared by aneuploid cells regardless of karyotype 

also play a role.  

The generally diminished protein folding capacity identified in model human aneuploid cells 

raises the possibility that the symptoms and complications characteristic of DS individuals may 

be partially due to an inability to maintain the integrity of their proteomes. Conversely, my 

observations also suggest that the reason that certain trisomies are compatible with life in 

humans is because the effects that they exert on PN function are comparatively mild. Indeed, all 

viable human trisomies, i.e. chromosomes 13, 18, 21, are of chromosomes that are relatively 

gene-poor and thus likely to encode fewer genes that are members of protein complexes. In any 

case, in the future it will be important to determine whether the function of molecular 
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chaperones is also compromised in cells from human trisomies. It is already tempting to 

speculate that this could contribute to the early onset Alzheimer's disease (EOAD) in DS 

individuals, a disease characterised by a severe curtailment in proteostasis function and high 

levels of protein aggregation. In fact, while the extra copy of APP seems to be required for the 

EOAD in DS, it is not by itself sufficient to lead to manifestation of all the phenotypes (Lana-Elola 

et al. 2011). Thus, my findings raise interesting possibilities regarding potential links between 

impaired proteostasis and the detrimental effects of aneuploidy in humans. It is to be hoped that 

future work will integrate findings from general aneuploidy models as well as from specific 

trisomies in an effort to better elucidate the effects of constitutional aneuploidy in humans.       

 

9.2 Effects of aneuploidy on genome stability 

Reports from yeast have demonstrated that aneuploidy can promote genomic instability 

(Sheltzer et al. 2011; Zhu et al. 2012; Blank et al. 2015). However, it has been unclear whether 

or not aneuploidy per se can also promote further alterations to the genome in metazoans. The 

data described in this thesis not only demonstrate that aneuploidy can lead to genomic 

instability in human cells, but also delineate a molecular mechanism by which this can occur. 

A previous report on chromosomally unstable colon cancer cells reported that DNA replication 

stress can lead to chromosome mis-segregation via structural aneuploidy (Burrell et al. 2013). 

Further, analysis of human cancer cells had suggested that genomic instability increases in 

proportion to the degree of aneuploidy (Duesberg et al. 1998; Storchova and Kuffer 2008). Our 

data now show that whole chromosomal aneuploidy leads to replication stress and 

subsequently, to DNA damage and chromosomal rearrangements in human cells. Taken 

together, the data illustrate how perturbations to the genome can set off complex chains of 

events that serve to further exacerbate genomic instability. 

The general downregulation of DNA replication-related factors in human aneuploid cells led us 

to hypothesise that aneuploidy might interfere with replication (Dürrbaum et al. 2014). Indeed, 

direct measurement of replication dynamics in human aneuploid cells demonstrated that DNA 

replication was slower in aneuploids than in isogenic controls and that treatment with the 

replication inhibitor aphidicolin arrested aneuploid cells earlier in the cell cycle than diploids 

(Figure 3 in (Passerini et al. 2016)). This impairment in DNA replication has severe 

consequences for genome stability in aneuploid cells (Figure 2). Human aneuploid cells showed 

enhanced levels of anaphase and ultrafine bridges (Figure 1 in (Passerini et al. 2016)), and 

exhibited higher levels of DNA damage as well as chromosome breaks (Figure 2 in (Passerini et 
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al. 2016)). Finally, aneuploid human cells accumulated complex genomic rearrangements, the 

nature of which are strongly indicative of errors during DNA replication (Figure 4 in (Passerini 

et al. 2016)).     

The broad reduction in replication-associated factors in aneuploid cells means that it is 

reasonable to assume that aneuploidy interferes with replication at several distinct steps 

(Figure 5 in (Passerini et al. 2016)). However, the data from this study as well as observations 

from other researchers, suggest that the downregulation of MCM2-7 helicase is particularly 

critical for human aneuploid cells. Firstly, for reasons that are unknown (potential explanations 

are discussed below) components of the MCM complex exhibit the most consistent 

downregulation in aneuploid cells (Figure 5 in (Passerini et al. 2016)). Further, depletion of 

MCM levels in control diploid cells to levels comparable to what is observed in aneuploids 

recapitulates two of the main phenotypes of aneuploid cells, i.e., an accumulation of 53BP1 foci 

and elevated levels of anaphase bridges. Depletion of the pre-replicative factors CDC6 and ORC2, 

as well as the single-stranded DNA binding protein, RPA1, did not phenocopy the DNA damage 

of aneuploid cells (Figure 6 in (Passerini et al. 2016)). Similarly, disrupting MCM function by 

overexpression of a mutant phospho-resistant MCM2 allele, which compromises origin firing, 

was toxic to aneuploid cells, but not to controls, whereas overexpression of mutant versions of 

ORC1 and RPA1 did not reveal any sensitivity (Figure 6 in (Passerini et al. 2016)). Indeed, 

several earlier studies have documented that decreasing the levels of functional MCM complex 

leads to impaired DNA replication and genomic instability (Pruitt et al. 2007; Shima et al. 2007; 

Chuang et al. 2010). The final line of evidence that reduced levels of MCM2-7 are responsible for 

the replication stress and genomic instability in aneuploid cells comes from the rescue 

experiments in which exogenous overexpression was found to mitigate the effects of aneuploidy 

on DNA damage and mitotic errors (Figure 6 in (Passerini et al. 2016)).     

Conceivably, the observed phenotypes could be simply due to the presence of extra DNA. 

However, it should be noted that the trisomic and tetrasomic cell lines analysed in our study 

harbour only roughly 1.5% (1 extra copy of chromosome 21) - 12% (two extra copies of 

chromosome 5) more DNA than the diploid controls, while the levels of errors and DNA damage 

were often two-fold higher. Of course, this does not completely rule out the possibility that 

additional DNA might be responsible and that extra DNA might lead to disproportionately 

higher levels of DNA damage. However, previous analysis in yeast aneuploids (Sheltzer et al. 

2011), which indicated that the higher levels of DNA damage observed in these cells was 

dependent on the gene expression from aneuploid chromosomes argues against this possibility.  
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It is also improbable that the phenotypes are due to chromosome- or cell line-specific effects, as 

we observe them in both HCT116 and RPE-1 cell lines with different aneuploid karyotypes. 

Instead, our data strongly suggest that the genome-wide changes in gene expression elicited by 

aneuploidy are to blame, specifically the observed lower expression of factors involved in DNA 

homeostasis.  

What could underlie the downregulation of DNA-related factors in human aneuploid cells? One 

potential explanation would be if this was linked with their slower rate of cell division, which is 

characterised by a seeming impairment in progressing from the G1 to S phases of the cell cycle 

(Stingele et al. 2012). The protracted G1 phase of human aneuploid cells might indicate a 

diminished activity of the gene expression program that governs the G1/S transition. This 

program is largely dependent on the E2F family of transcription factors, which upregulate a 

large battery of genes involved in DNA replication (Ishida et al. 2001; Polager et al. 2002; 

Stanelle et al. 2002). Further, in yeast, the transcriptional response to aneuploidy is at least 

partially determined by their impaired proliferation (Torres et al. 2007). However, complex 

human aneuploid cells that arise upon cytokinesis block-mediated tetraploidization, and which 

display no gross impairment in proliferation exhibit the same transcriptional pattern as 

trisomic cells, including the characteristic downregulation of DNA-associated pathways 

(Durrbaum et al. 2014). Thus, other mechanisms are likely to contribute to the downregulation 

of DNA-related factors in human aneuploid cells. 

 

9.3 A link between impaired proteostasis and genomic instability in 

aneuploid cells?    

A further possible explanation for the downregulation of DNA-related pathways in human 

aneuploid cells would be if this was linked to their impaired proteostasis (Figure 2). Several 

studies have demonstrated that chemical inhibition of HSP90 leads to a downregulation of 

genes involved in DNA transactions at both the transcriptome and proteome levels (Proia et al. 

2011; Sharma et al. 2012; Che et al. 2013). Indeed, HSP90 counts among its direct clients a 

significant number of proteins with critical roles in maintaining genome integrity (Kaplan and Li 

2012). HSP90 is a crucial regulator of DNA polymerase ζ during error-free translesion synthesis 

(Sekimoto et al. 2010), as well as of XRCC1 during base-excision repair (Fang et al. 2014), 

promotes the stability and proper localization of the repair factors Fanconi anemia, 

complementation group A (FANCA) and breast cancer 2/Fanconi anemia, complementation 

group D (FANCD1/BRCA2) (Stecklein et al. 2012), and is required for stabilisation of Mis12 
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complexes at kinetochores, thus contributing to proper microtubule-kinetochore attachments 

(Davies and Kaplan 2010). Consistent with these observations, inhibition of HSP90 itself leads 

to increased sensitivity to agents which cause DNA damage and causes aneuploidy in yeast 

(Chen et al. 2012).  

Interestingly, MCM proteins have also been identified to be among those genes targeted by 

HSP90 inhibitors (Proia et al. 2011; Sharma et al. 2012; Che et al. 2013). Why MCM proteins are 

particularly affected in aneuploid cells, however, remains an open question. Intriguingly, 

expression analysis reveals that MCM genes are downregulated modestly at the transcriptional 

level and more strikingly at the protein level in aneuploid cells. These observations indicate that 

at least two distinct mechanisms might be responsible for the lower levels of MCM proteins in 

aneuploids, one acting at the level of mRNA and another at the protein level. The best 

characterised regulators of MCM expression are the E2F transcription factors, which upregulate 

the MCM complex members among of a large number of other genes involved in the progression 

from G1 to S phase (Ishida et al. 2001; Polager et al. 2002; Stanelle et al. 2002). However, as 

mentioned above, complex aneuploids with no apparent proliferative defect also exhibit a 

downregulation of DNA replication-associated genes. Thus, this explanation appears unlikely. 

It is tempting to speculate that HSP90 may play a direct role in assembling the MCM2-7 

complex, but there are, as yet, no indications that this is the case. Nevertheless, it is possible that 

aneuploid cells are compromised in their ability to properly assemble MCM2-7, leading to 

instability of the individual complex members. In fact, the MCM2-7 complex appears to be 

extremely sensitive to improper stoichiometry as documented by the frequent observation that 

downregulation of individual complex members leads to corresponding decreases in the 

remaining subunits ( e.g., (Ge et al. 2007; Pruitt et al. 2007; Shima et al. 2007; Ibarra et al. 

2008)). Additional possibilities include an impaired loading of MCM2-7 hexamers onto DNA or a 

reduced stability after they are loaded. Both scenarios could potentially lead to the lower levels 

of MCM complex members in aneuploid cells. Future work will determine the underlying 

mechanism(s) for the reduced expression of MCM2-7 in human aneuploid cells. 

 

 9.4 Implications of aneuploidy-induced genomic instability for 

disease 

Replication stress is emerging as a hallmark of cancer and as a major source of genomic 

instability in malignant cells (Macheret and Halazonetis 2015; Boyer et al. 2016). So far, several 

mechanisms have been described to account for the heightened levels of replication stress in 
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cancer, such as the activation of oncogenes leading to hyper-replication of the genome (Di Micco 

et al. 2006), a deficiency in nucleotides early during tumourigenesis (Bester et al. 2011), as well 

as the recurring loss of specific CIN-inhibiting genes (Burrell et al. 2013). Therefore, as well as 

demonstrating the potential of aneuploidy to cause further changes to the genome, the results 

described here identify another mechanism whereby replication stress can arise during cancer 

development. 

Our results also contribute to our understanding of how aneuploidy may both inhibit and 

promote carcinogenesis. Through its effects in promoting DNA damage and activating the DNA 

damage response (DDR), leading to cell cycle arrest, replication stress is widely seen as a barrier 

to tumourigenesis and could even be said to constitute one of the stress phenotypes of cancer 

cells. On the other hand, replication stress and genomic instability can also be powerful drivers 

of tumourigenesis, in particular, when DDR activity is dampened (Bartkova et al. 2006; Di Micco 

et al. 2006).  

The finding that aneuploidy can promote DNA damage through increasing levels of replication 

stress may also have important implications for trisomy syndromes. Several studies have 

documented higher levels of DNA damage in DS cells (Zana et al. 2006; Morawiec et al. 2008; 

Necchi et al. 2015). The higher levels of oxidative stress in DS cells (Busciglio and Yankner 

1995), have been described to be one reason for these observations (Zana et al. 2006; Valenti et 

al. 2011). Defects in DNA repair appear to also play a role (Athanasiou et al. 1980; Druzhyna et 

al. 1998; Raji and Rao 1998). Our results suggest that impaired DNA replication may represent 

another source of DNA damage in human trisomies. 

 

9.5 Conclusions and perspectives 

Aneuploidy is extremely common in cancer and there is sufficient evidence to warrant the 

assertion that aneuploidy can play important roles in tumorigenesis. Thus, theories of cancer 

development and progression must take aneuploidy into account. What general implications do 

the results described herein have for the role of aneuploidy in cancer? Perhaps the most basic 

conclusion to be drawn is that aneuploidy, by itself, is highly unlikely to give rise to cancer, 

inasmuch as the impaired protein folding capacity and decreased genome stability of aneuploid 

cells are likely to represent strong barriers to malignancy. Thus, additional changes, such as 

mutations that would lead to elevated levels of HSF1, those that curtail the activity of the DDR, 

or those that accelerate progression through G1 and S phases of the cell cycle, are likely to be 

required to allow carcinogenesis of aneuploid cells. It is noteworthy that such changes are 
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indeed characteristic of established tumours. Moreover, our finding that aneuploidy destabilises 

the genome suggests that the paths leading to these changes might be shorter in aneuploid cells 

than in isogenic diploids. Thus, on the one hand aneuploidy has detrimental effects on cellular 

fitness and thereby imposes a strong selection pressure on cells to overcome these detrimental 

effects; on the other hand, it also increases the possibility that cells can evolve genetic changes 

that allow them to surmount these barriers.    

With respect to fundamental research on aneuploidy, it is to be anticipated that yet additional 

karyotype-independent effects of aneuploidy will come to light as researchers attempt to 

further our understanding of how aneuploidy affects cell function. One major future challenge 

will be to gain more detailed molecular insights into the phenotypes of aneuploid cells, e.g. why 

exactly is protein folding capacity diminished in response to aneuploidy? What is the 

mechanism responsible for the downregulation of the MCM complex in aneuploid cells? In 

parallel to this, it is to be hoped that the growing body of research into aneuploidy will soon 

allow the formulation of overarching theories for how the different phenotypes of aneuploid 

cells are linked together. For example, is the impaired proteostasis of aneuploid cells really 

responsible for their increased levels of genomic instability? How is the impaired proliferative 

potential of aneuploid cells linked to their other phenotypes? 

From the translational aspect, two major questions await answers. Firstly, to what extent can 

findings from model aneuploid cells be extrapolated to human trisomy conditions? Secondly, 

and following on from the first question, can insights from aneuploidy models be exploited for 

the treatment of these conditions? The resolution of these questions will require a bridging of 

the gap between two research areas that are present quite separate, the field of research on 

aneuploidy models and the field of research into human trisomies, particularly DS. 
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