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Summary 
 

Diabetes mellitus is one of the most widespread diseases worldwide. About 381.8 

million people have the disease, and it is estimated that just as many have 

undetected diabetes or are at high risk (pre-diabetes). In order to better understand 

the disease and its associated burden it is important to understand the molecular 

disease mechanisms. The genetic aspects of type 2 diabetes (T2D), which impact 

the majority of diabetes cases, has been comprehensively studied in genome-wide 

genetic variation studies. Thus, today we know about a large number of genes 

involved in disease development. However, to my knowledge, there are no 

systematic genome-wide studies on epigenetic regulation mechanisms in whole 

blood and participants with European ancestry. Therefore, the objectives of this 

thesis are to identify an association between DNA methylation and i) incident T2D, 

and ii) measures of glucose metabolism in whole blood using samples from the 

Cooperative Health Research in the Region of Augsburg (KORA) study.  

In the first part of this thesis the methylation degrees of six CpG sites were  

genome-wide significantly associated with incident T2D [annotated to CASZ1, 

TMEM57, VIM, C14orf182, AKT2, and one unknown (adjusted p-values= 6.2x10-3 to 

1.9x10-2)]. Three CpG sites flanking the leading CpG site annotated to AKT2 and 

one to C14orf182 were found to be significantly associated with the phenotype in 

the replication. These associations seem to be driven by body mass index (BMI). 

Furthermore, performing pathway analysis with DNA methylation, data pathways 

such as “Nerve Growth Factor Signaling”, “Integrin Signaling” or “G-protein 

gamma/beta Signaling” were detected, each of which can be linked to diabetes. 

Using data from KORA for replication of the results from the London Life Science 

Prospective Population (LOLIPOP) study, which consists of Indian Asians and 

European individuals, it was possible to replicate five of the seven significant CpG 

sites (annotated to TXNIP, PHOSPHO1, SOCS3, SREBF1, and ABCG1). The 

difference in findings can be explained by differing study designs, especially 

concerning different ethnicities, matching criteria for cases and controls, and sample 

sizes. In the second part of this thesis associations between the methylation 

degrees of 15 CpG sites and measures of glucose metabolism were detected [four 
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for fasting glucose, seven for fasting insulin, ten for homeostasis model 

assessment-insulin resistance (HOMA-IR); adjusted p-values = 6.8x10-5 to 0.043]. In 

addition, DNA methylation at cg06500161 (ABCG1) was significantly associated 

with fasting insulin, fasting glucose, 2-hour glucose, and HOMA-IR (adjusted p-

values = 8.1x10-4, 6.8x10-5, 1.3x10-3, and 7.5x10-5, respectively). BMI explains 

around 30% of these associations. Furthermore, a significant association between 

the CpG sites found for the phenotypes named above and 2-hour insulin was 

observed in a subset of samples. These were also in part significant after additional 

adjustment for BMI. Analyzing associations between DNA methylation and gene 

expression in another subset, CpG site cg06500161 (ABCG1) showed an 

association with ABCG1 gene expression level (adjusted p-value = 1.1x10-9). 

Additionally, an accumulation of the top 1,000 CpG sites in pathways such as 

“Leptin Signaling in Obesity”, “Ephrin A/B Signaling”, “Netrin Signaling”, and 

“Phospholipase C Signaling”, which can be linked to diabetes, was found. 

In conclusion, this thesis indicates an association between DNA methylation, 

incident T2D/measures of glucose metabolism in whole blood which seems to be 

BMI mediated. These results can help to better understand the underlying 

pathogenesis of T2D and measures of glucose metabolism and can thus be used to 

potentially develop biomarkers and new therapies for T2D.   
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Zusammenfassung 

Diabetes mellitus ist eine der meist verbreiteten Krankheiten weltweit. Etwa 381,8 

Millionen Menschen haben diese Krankheit und es wird geschätzt, dass noch 

einmal genau so viele einen undiagnostizierten Diabetes bzw. ein hohes Risiko für 

Diabetes (Prädiabetes) haben. Um Diabetes und somit auch dessen Bürde besser 

zu verstehen ist es wichtig die molekularen Mechanismen der Krankheit zu klären. 

Der genetische Part von Typ 2 Diabetes (T2D), welcher fast den ganzen Anteil der 

Diabetiker ausmacht, wurde umfassend durch genomweite genetische 

Variationsstudien untersucht. Aufgrund dieser ist bisher eine große Anzahl an 

Genen bekannt, die bei der Entstehung der Krankheit involviert sind. Jedoch wurde 

bisher, nach meinem Kenntnistand, von keiner systematischen genomweiten 

Studien zu epigenetischen Regulationsmechanismen in Vollblut von Europäern 

berichtet. Daher war das Ziel dieser Arbeit eine Assoziation zwischen der DNA 

Methylierung und i) inzidenten T2D sowie ii) Maßen des Glukosemetabolismus zu 

identifizieren. Dies wurde in Vollblutproben von Probanden der Kooperativen 

Gesundheitsforschung in der Region Augsburg (KORA)-Studie durchgeführt.  

Im ersten Projekt dieser Doktorarbeit wurden sechs genomweit signifikant 

assoziierte CpG Stellen mit inzidenten T2D gefunden [annotiert zu CASZ1, 

TMEM57, VIM, C14orf182, AKT2 und eine nicht annotierte (adjustierte p-Werte = 

6.2x10-3 bis 1.9x10-2]. Für drei CpG Stellen, welche die zu replizierende CpG Stelle 

annotiert zu AKT2 flankieren, sowie für eine für C14orf182, konnte eine signifikante 

Assoziation mit dem Phänotypen gefunden werden. Diese Assoziationen sind 

vorwiegend durch den „body mass index“ (BMI) vermittelt. Ebenso konnten durch 

Pathwayanalysen Signalwege wie „Nerve Growth Factor Signaling“, „Integrin 

Siganling“ oder „G-protein gamma/beta Signaling“ gefunden, welche mit Diabetes 

verbunden werden können. In der London Life Science Prospective Population 

(LOLIPOP), welche aus Indischen Asiaten und Europäern besteht, konnten unter 

der Verwendung der KORA-Daten fünf der sieben signifikanten CpG Stellen 

(annotiert zu TXNIP, PHOSPHO1, SOCS3, SREBF1 und ABCG1) repliziert werden. 

Die unterschiedlichen Ergebnisse könnten aufgrund des unterschiedlichen 

Studiendesigns, im speziellen die verschiedenen Ethnizitäten, Matchingkriterien für 

die Fälle und Kontrollen oder die Probandenanzahl, erklärt werden. Im zweiten 
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Projekt dieser Doktorarbeit wurden für insgesamt 15 CpG Stellen, eine signifikante 

Assoziation zwischen dem Methylierungsgrad und Maßen des 

Glukosemetabolismus gefunden [vier für Nüchternglukose, sieben für Insulin, zehn 

für „homeostasis model assessment-insulin resistance“ (HOMA-IR), adjustierte p-

Werte = 6.8x10-5 bis 0.043]. Zusätzlich konnte eine signifikante Assoziation der 

DNA Methylierung für cg06500161 (ABCG1) und Nüchterninsulin, Nüchternglukose, 

2h-Glukose und HOMA-IR aufgezeigt werden (adjustierte p-Werte = 8.1x10-4, 

6.8x10-5, 1.3x10-3 und 7.5x10-5). Der BMI erklärt ungefähr 30% dieser 

Assoziationen. Des Weiteren konnte bei der Analyse der CpG Stellen, welche bei 

den zuvor erwähnten Phänotypen gefunden wurde, in einer Teilgruppe von 

Probanden eine signifikante Assoziation mit 2h-Insulin aufgezeigt werden. Diese 

sind zum Teil ebenso nach der Adjustierung für den BMI signifikant. Bei der Analyse 

der Assoziation zwischen der DNA Methylierung und der Genexpression in einer 

weiteren Teilgruppe, zeigte cg06500161 (ABCG1) eine Assoziation mit dem ABCG1 

Genexpressionslevel (adjustierter p-Wert = 1.1x10-9). Zusätzlich wurde eine 

Anhäufung der Top 1000 CpG Stellen in Signalwegen wie „Leptin Signaling in 

Obesity”, „Ephrin A/B Signaling”, „Netrin signaling” oder „Phospholipase C 

Signaling” gezeigt, welche mit Diabetes in Verbindung gebracht werden können.  

Schlussfolgernd weisen die Ergebnisse dieser Doktorarbeit auf eine Assoziation von 

der DNA Methylierung und inzidentem T2D sowie Maßen der Glukosemetabolismus 

in Vollblut hin, welche zum größten Teil durch den BMI vermittelt ist. Diese 

Erkenntnisse können bei dem besseren Verständnis der T2D und Maßen des 

Glukosemetabolismus zugrunde liegenden Pathogenese helfen und daher für die 

Verwendung von potentiellen Biomarkern sowie der Entwicklung von neuen 

Therapien für T2D verwendet werden. 
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1. Introduction 

The prevalence of type 2 diabetes (T2D) has increased substantially over the last 

decades and is expected to increase from 381.8 million in 2013 to 591.9 million 

people in 2035 worldwide. These numbers include an estimate of 175 million 

unreported diabetics, mainly T2D patients. T2D poses a heavy burden on health 

systems. In 2013, 548 billion US dollars were spent on treating diabetes and 

managing of complications worldwide. It is estimated that this number will exceed 

627 billion US dollars in 2035 [1]. In 2013, it was estimated that 56 million people 

are diabetic in Europe with an overall estimated prevalence of 8.5% [2]. 80% of the 

people affected by diabetes are living in low- and middle-income countries [1]. The 

reported numbers underscore the importance of investigating this disease to gain a 

better understanding of pathogenic mechanisms and to develop new strategies for 

therapies and prevention.  

 

1.1. Pathogenesis and diagnosis of type 2 diabetes 

T2D is a metabolic dysfunction with multifactorial causes of disease. Hallmarks of 

the pathogenesis are impaired insulin secretion or reduced insulin sensitivity or a 

combination of both, eventually leading to chronic hyperglycemia. Previously, T2D 

was also called “non-insulin dependent diabetes” or “adult onset diabetes” [3, 4]. 

Reduced insulin sensitivity can lead to insulin resistance in insulin responsive 

tissues (liver, muscle, adipose tissue) [3-5]. Initially, this can be compensated by an 

increased release of insulin by -cells. In the later course of the disease, glucose 

uptake is decreased in insulin sensitive tissues, which finally leads to increased 

blood glucose levels [4, 6]. Ultimately, this results in hyperinsulinemia, impairment of 

-cell function, and eventually manifestation of diabetes (figure 1) [4, 7, 8]. T2D can 

be predicted by low-grade systemic inflammation [9] and it often remains 

undiagnosed over years as hyperglycemia develops gradually and typical symptoms 

are not recognized by patients in the early phase of the disease [3, 4, 10].  
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Figure 1: Pathogenesis of T2D. (modified by [11])  

 

At present, the criteria for T2D diagnosis are as follows:  

Fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl) and/or 

2-hour plasma glucose ≥ 11.1 mmol/l (200 mg/dl) and/or 

Random plasma glucose ≥ 11.1 mmol/l (200 mg/dl) [4, 12, 13]  

 

In addition, glycated hemoglobin (HbA1c) has also been recently used as a criterion 

for diagnosis [4, 12, 14]. After a repeated value of 6.5% T2D can be diagnosed. A 

value between 5.7-6.4% indicates an increased risk for T2D, but lower values do not 

fully exclude the disease [4, 12]. The use of HbA1c is controversial, and the World 

Health Organization (WHO) recommends that a standardized assay be used for 

quality control [15]. Recently, the American Diabetes Association (ADA) 

recommends the use of National Glycohemoglobin Standardization Program 

(NGSP) certified methods or that are identifiable to the Diabetes Control and 

Complications Trial (DCCT), whereas point-of-care (POC) HbA1c assays should not 
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be used. Furthermore, they delimit that age, race, and diseases like anemia have to 

be considered using the HbA1c as a diagnosis criterion for diabetes [12]. It was 

found that a HbA1c cut of ≥ 6.5% detects one-third fewer undiagnosed people with 

diabetes than with the fasting glucose cut point [16]. The German Diabetes 

Association recommends a combination of glucose- and HbA1c values, so as to 

benefit from both, besides self-administered questionnaires [17].  

 

1.2. Genetic and environmental contributions to the development of diabetes 

T2D is influenced by genetic as well as environmental factors (figure 1) [2, 4, 7, 18, 

19]. The latter, which is only touched on in this thesis as it is not the main focus, 

include increased food intake, physical inactivity, aging, and smoking [2, 20]. As 

obesity is one of the major risk factors for T2D [5, 21], it is plausible that most T2D 

patients are obese, and this in turn can lead to insulin resistance. Glucose 

homeostasis in obese persons can be improved by reducing body weight, 

increasing physical activity, and/or by medical treatment. However normal 

conditions cannot be re-established [4]. Furthermore, other factors like microbiota 

composition [22], ethnicity [23] or circadian rhythm [24] can have an influence on the 

development of T2D. 

In addition to environmental factors, genetic factors play an important role in the 

development of T2D [8, 19, 25]. However, the numbers of T2D patients have been 

increasing in the last decades, a time window too short for genetic drift, and it is 

likely that most of the increased prevalence is due to environmental changes [5, 26]. 

This is in line with the increasing prevalence of diabetes in times of economic 

change and urbanization, as these in turn lead to lifestyle change. 

There are substantial differences in prevalence of T2D between ethnicities. For 

example it is 2-fold higher for Asians or Pima Indians residing in Western countries 

compared to Europeans [19]. The gene with the strongest association to T2D in the 

European population is TCF7L2, whereas for the Asian population this is KCNQ1 

[19, 27-30]. Furthermore, genes such as UBE2E2 and C2CD4A/4B have been 
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identified as risk factors only in the Asian population [31], whereas THADA or 

MNRT1B seems to play a more important role in Europeans [30, 32]. 

The investigation of T2D susceptibility genes can be subdivided in three major 

historical phases [5, 19, 30], which will be described in detail in the following 

subchapters. 

 

1.2.1. Family based linking analysis 

In family based linkage analysis chromosomal regions associated with T2D are 

identified by genetic markers in family pedigree. This approach was most useful for 

the identification of genetic variants for extreme, monogenic forms of early 

manifestation of the disease [19]. Due to these analyses, new insights into 

processes responsible for normal glucose homeostasis, energy balance, function of 

pancreatic -cells, and hypothalamus were obtained [30]. However, family based 

linkage analyses are inappropriate for investigating polygenetic diseases. 

Nevertheless, in this area the high-risk regions could not be consistently associated 

with T2D in a study population study [19, 32].  

 

1.2.2. Candidate gene studies 

The second phase was driven by hypothesis based approaches focusing on 

candidate genes. Genes with a plausible involvement due to their function were 

analyzed in case-control association analyses [7, 19]. On one hand these studies 

were more effective than linkage analysis, despite their lower power due to smaller 

sample size. On the other hand they were restricted to specific causal variants [30]. 

Grant et al. had shown an association of TCF7L2 with T2D analyzing 228 

microsatellite markers in an Icelandic as well as Danish population [27]. Although 

more than 100 candidate genes were investigated, only variants in PPAR, 

KCNJ11, and TCF7L2 showed consistent and reproducible associations with T2D 

[7, 8, 19, 27, 30, 33].  
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1.2.3. Genome-wide association studies 

The breakthrough for the detection of T2D susceptibility variants started in 2007 

with the era of genome-wide association studies (GWAS). In these studies 

systematic, large scale analyses are performed to evaluate the association between 

common single nucleotide polymorphism (SNPs) and diseases [26, 30], thus 

constituting a hypothesis free approach to detect genetic determinants of disease 

across the whole genome [19, 26]. Technological advances, such as the 

development of DNA Chips, enabled a cost-effective approach to analyze many 

samples genome-wide in a short period of time [7, 19]. Furthermore, analysis of the 

human genome sequence by the HapMap project, enabled the detection of common 

SNPs and patterns of linkage disequilibrium (LD) [5, 8, 20, 32]. These features 

together with the progress in biostatistics were the basis for GWAS [19]. The 1000 

Genome project extended the human genome sequence by whole-genome and 

exon-targeted sequencing [8, 20, 32].  

Beside newly identified genes, known T2D genes such as TCF7L2, KCNJ11, and 

PPAR were confirmed by these studies [19]. To date, TCF7L2 is the gene with the 

strongest association with T2D in the European population [odds ratio (OR) =1.46 

per allele, p=5.4 x 10-140] [34].  

Using the local LD patterns from HapMap, new imputation methods have been 

developed to determine genotypes at untyped SNPs due to directly typed SNPs. 

About 2.2 million SNPs can be analyzed genome-wide combining different 

genotyping platforms [8]. A statistical p-value of 5 x 10-8 is adopted for genome-wide 

significance level, reflecting the standard p-value of 0.05 assuming a Bonferroni 

correction with 1 million statistical tests [32]. 

Soon it became obvious that the effect sizes for additional loci were only modest 

and therefore larger study populations were needed to detect them [8, 32]. For this 

reason the diabetes genetics replication and meta-analysis consortium (DIAGRAM) 

were built to perform meta-analysis on T2D and related traits [meta-analysis of 

glucose- and insulin- related traits consortium (MAGIC)] [8, 26]. Not only meta-

analysis for T2D reveal T2D susceptible genes, but also meta-analysis for related 

traits in healthy individuals identified associated loci [8].  
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Consistently defined phenotypes across cohorts as well as well-structured, and 

obligatory analysis plans are elementary for successful meta-analysis [8]. 

Furthermore, the findings of KCNQ1 in East-Asians point out that multiethnic studies 

might help to discover further T2D associated variants [8, 35], which was confirmed 

by DIAGRAM in 2014 [36].  

So far, 88 genetic susceptible loci are identified for T2D mostly by GWAS 

summarized in figure 2 [33, 36-38]. The majority of these loci are associated with -

cell function, whereas only few are related to insulin sensitivity [5, 32, 39, 40].  

Figure 2: Identified T2D susceptible loci divided into year of discovery. (modified [33, 36-38] 

 

1.2.4. Missing heritability and different approaches to overcome the gap 

Heritability estimates for T2D and related traits differ largely because of variety of 

population or type of study with estimates ranging between 15-85% [5, 41-43]. All 

88 genetic susceptible loci identified for T2D identified so far [33, 36-38] can only 

explain 5-10% of the estimated heritability [25, 32, 39, 44]. All studies on T2D and 
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related traits of heritability are consistent in reporting a substantial gap between 

estimated and explained heritability, the so-called “missing heritability” (figure 3) [26, 

32]. However, it has become almost impossible to increase the power of GWAS on 

the basis of sample size and thus, GWAS seem to have reached their limitations in 

analyzing T2D as well as other diseases. Therefore, it is necessary to develop new 

approaches.  

Groop and colleagues postulate that the missing heritability is overestimated in the 

present studies based on the observation that it is often derive from twin or family 

studies. Often the GWAS didn`t take family clustering into account [26].  

 
Figure 3: Contribution of genetic and environmental factors to development of T2D and 
related traits and missing heritability. The number of percentage represents the proportion of 
genetic and environmental contribution as well as the explained heritability so far. 
 

Potential solutions to elucidate “missing heritability” can be the evaluation of genetic 

variants in multiethnic studies [25, 32, 35]. Efforts in this direction were recently 

demonstrated by the DIAGRAM consortium that detected seven novel T2D 

susceptibility loci by performing a trans-ancestry approach. Further, a study by 

Saxena et al. demonstrated an association between BCL2 and T2D using a 

multiethnic approach [36, 45]. Furthermore, large-scale analysis in multiethnic 

studies could also support the detection of genes with borderline association, i.e. 

those that could not be found with the commonly used threshold of p < 5 x 10-8 for 

GWAS [32] as well as low-frequency risk variants (minor allele frequency 0.3-5.0%) 

with relatively large effects can also help to clarify missing heritability [32, 35, 46].  

Furthermore, rare variants can help to explain missing heritability and studies have 

started to detect these variants using next generation sequencing (for example 

whole-exome and whole-genome sequencing) [5, 25, 26, 32, 33, 35, 46, 47]. For 
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example, Albrechtsen et al. show an association of COBLL1 and MACF1 and T2D 

performing whole-exome sequencing in Danish individuals [48]. Until today, rare as 

well as low-frequency variants are not studied systematically in GWAS, mostly 

because of power limitations due to small sample size [20].  

It is also possible that genes do not only influence the risk of diabetes by modifying 

insulin sensitivity directly, but also by influencing the interaction of a person with the 

environment [5]. This so called gene-environment interaction may play a role in 

disease pathogenesis [10, 47]. A different perception of unhealthy diet or the 

comparison of the microbiome may serve as examples for gene-environment 

interaction [5]. For the analysis of gene-environment interaction large studies with 

well-defined phenotypes are necessary [26], to investigate how specific loci, that 

play a role in the disease, change with exposure to different environmental factors 

like diet or exercise [10]. 

Gene-gene interaction is postulated to generate “phantom heritability” and therefore 

contribute to missing heritability by building a wrong number in the denominator 

[49]. Gene-gene interaction may be an explanation for the small success of 

replication of genetic associations of complex diseases [49-52]. The standard 

statistical analysis, which is generally applied, often didn`t take the interaction 

between different loci into account. It is suggested to analyze significant SNPs 

against each other or all other SNPs included in the study, but often the sample size 

is a limitation factor [26].  

Furthermore, there is the assumption that genetic variants associated with traits are 

hidden by epistatic processes, which means that these variants can affect 

heritability by changing or influencing other processes [25]. Another potential 

approach to clarify the missing heritability is the analysis of the differences between 

maternal or paternal transmission of the risk allele (parent-of origin transmission of 

risk allele). For instance, it was observed that risk alleles of the KCNQ1 and KLF14 

genes influence the risk of T2D stronger if they are transmitted from the mother 

compared to the father [53, 54]. On the other hand the paternal allele can have a 

protective influence and therefore making it impossible to detect in recent case-

control studies [26]. 
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Furthermore, additional processes by which a protein can be changed can help to 

identify the missing heritability. At present GWAS are mainly based on the 

assumption that genes are transcribed and then translated into the protein [26, 55]. 

In addition, it is important to build networks, pathways or interaction with metabolites 

or other omics-data [55-57]. In this context studies on epigenetic modifications, 

which can result in a modified gene expression [5, 26, 47], alike in a tissue-specific 

context [25], are promising approaches to elucidate part of the missing heritability.  

 

1.3. Epigenetics 

All healthy cells in an organism share the same genotype, however they differ in a 

broad spectrum of functions and phenotypes. Recent studies point out that besides 

the DNA sequence other mechanisms are involved in defining phenotypes, without 

changing the genetic.  

This is known as “epigenetics”, which comprises DNA methylation, histone 

modification and RNA interference (figure 4). Epigenetic mechanisms influence the 

gene expression and therefore influence the development of diseases [5, 26, 47].  

 
Figure 4: Overview of epigenetic mechanisms. Possible chemical modifications like acetylation or 

methylation are presented as     at histones (modified after [58]).  
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1.3.1. Background on epigenetics 

The word epigenetic includes the Greek prefix “epi” which can be translated with 

over, before, upon [59] and can therefore be seen as a second instance of 

information in addition to genetics. Conrad Waddington, one of the pioneers in this 

field, realized that genetic and developmental biology are more related than 

previously accepted and created the word epigenetic in the middle of the 20th 

century. For him, epigenetic and embryology are not really two different fields [59]. 

Epigenetics is defined as “The study by mitotically and/or meiotically heritable 

changes in the gene function that cannot be explained by changes in DNA 

sequence” [60].  

Epigenetic modifications like DNA methylation, histone modification, and non-coding 

RNAs alter gene expression and can persist for the whole lifespan [20, 26, 61]. 

Furthermore, it has been assumed that DNA methylation and imprinting are involved 

in unique parent-of-origin transmission of risk alleles [26, 61]. 

Epigenetic characteristics differ in some aspects from genetics. For example 

epigenetic modifications are often tissue specific [25, 59, 62], whereas the same 

genetic code can be found in every tissue. Furthermore, genetic changes are stable, 

whereas epigenetic changes are often reversible. Most common environmental 

factors don`t change genetic status, but impact epigenetic status [59].  

Epigenetic inheritance is a controversial topic. It can be divided into mitotic 

inheritance (from one cell generation to another) [63] and meiotic inheritance 

(inheritance between generations). Furthermore, epigenetic inheritance can be 

divided into two parts: inter- and transgenerational (figure 5) [63, 64]. In plants it was 

shown that epigenetic modifications are meiotically inherited [65]. Dunn and 

colleagues show an influence of maternal high-fat diet on body weight and insulin 

sensitivity in offspring of the F3 generation [66]. One further example is the agouti 

mouse. The agouti gene is one of the genes coding for the coat color and various 

versions of this gene lead to different coat colors. For the agouti viable yellow (Avy) 

gene it was shown that the degree of methylation influences the coat color [63, 67]. 

The disposition of the offspring phenotype is influenced by the maternal phenotype. 

This maternal epigenetic effect is more common in the case of incomplete deletion 
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of the modification than inhibition [67]. In humans inheritance is still a subject of 

ongoing discussions in the field. Different studies demonstrate an intergenerational 

effect. For example Heijmans et al. show that prenatally exposed to famine 

individuals from the Dutch Hunger Winter had a reduced DNA methylation of the 

imprinted IGF2 gene compared to their siblings not exposed to famine [68]. 

Furthermore, it was shown a higher neonatal adiposity in individuals where the 

grandmother was malnourished during pregnancy [69, 70]. There is evidence that 

epigenetic changes induced by the environment can be inherited 

transgenerationally [61]. In their review, Heard and Martienssen discussed different 

studies and aspects dealing with inheritance in plants, animals, and humans. They 

conclude that there is plenty of evidence of transgenerational epigenetic inheritance 

in plants and animals like nematodes, but for humans there is still only little support. 

The discussion also concerned papers where it is shown that it has a different 

influence if the female or male line is exposed to an environmental factor [64].  

 
Figure 5: Overview of different inheritance possibilities. The different colors of germ lines 

represent the cells which are passed on to the next generation.  
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1.3.2. Epigenetic mechanisms  

1.3.2.1. RNA interference and histone modification 

RNA interference 

In RNA interference non-coding, single stranded RNA fragments like miRNAs bind 

mRNAs at the “RNA induced silencing complex”, and thereby inhibit the translation 

and influence gene expression [20, 26, 71]. Binding of miRNAs to transcripts 

depend on the sequence, intra-molecular structure as well as SNPs that can 

prevent binding [26]. This mechanism can be observed during cell proliferation, 

apoptosis or tumor metastasis. Furthermore, non-coding RNAs can modify 

chromatin structure and therefore genome stability [71]. Recently, miRNAs have 

been of interest as potential therapeutic target due to the involvement of miRNAs in 

human disease development. Furthermore, other non-coding RNAs like piRNAs 

(PIWI-interacting RNAs), snoRNAs (small nucleolar RNAs), lincRNAs (long 

intergenic non coding RNAs), and lncRNA (long non-coding RNAs) influence the 

gene expression and the development of diseases [26].  

Histone modification 

The kind of packing of chromatin, consisting of histone-DNA complex, influences 

DNA transcription, replication, and repair mechanisms [71]. Histones can be 

modified by acetylation, methylation, ubiquination, phosphorylation, glycosylation, 

sumoylation, and adenosine diphosphate ribosylation leading to changes of 

chromatin structure and thereby gene expression [63, 71]. Most histone acetylation 

results in a more open chromatin structure, whereas deacetylation is generally 

associated with a compacted chromatin structure and therefore transcriptional 

repression [72]. But no generalization can be done, as it depends on the position 

and which histone or amino acid is modified [63, 73].  
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1.3.2.2. DNA methylation 

At the moment, the most prominent and best studied epigenetic mechanisms is 

DNA methylation. A broad range of well-established methods for analyzing it is 

commercial available. Due to this and the fact that DNA methylation is the focus of 

this thesis, this epigenetic modification is described in more detail below. 

Background 

In 1969, Griffith and Mahler postulate that DNA methylation is an important 

foundation for long-term memory in the brain [74]. In 1975, Riggs as well as Holliday 

and Push hypothesized that DNA methylation has strong effects on gene 

expression. Changes in gene expression were explained by switch-on/switch-off 

mechanisms of genes during development [75, 76].  

DNA methylation is involved in different key processes like gene imprinting, 

embryonic development, X-chromosome gene silencing, genome stability, and 

regulation of gene expression [59, 77-82]. In past studies changes in DNA 

methylation in promotor cytosine phosphorylated guanosine (CpG) sites was under 

extensive investigation, but now the focus is shifting to CpG island shores [71]. 

CpG sites are often clustered in so called CpG-islands and are located in promoter 

regions, 1st exons of genes or in upstream CpG island shores (less than 2 kb 

distance to CpG islands) or upstream shelves (more than 2 kb distance to CpG 

islands) [83, 84]. CpG islands can be found within the 5`promoter region of around 

60% of expressed genes [62]. DNA methylation modifies the regulation and 

expression of genes and thus the stability of the genome [59, 63, 71]. Gene 

promoter hypermethylation is mostly associated with reduced gene expression [85, 

86]. But there are studies published showing that this dogma is not generally 

adaptive. Recent studies also show that DNA methylation within shores is also 

associated with reduced gene expression [87, 88], whereas methylation in the gene 

body can lead to increased gene transcription [89, 90]. 

Mechanisms  

DNA methylation mainly occurs at the cytosine, where a methyl group binds to the 

5`carbon of the cytosine in CpG dinucleotides, resulting in 5`-methylcytosine [71]. 
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This process is catalyzed by DNA-methyltransferases, binding methylgroups 

donated from S-adenosyl methionine [77] and can be reversed by DNA methylases 

[91]. Three functional forms of DNA-methyltransferases (DNMT1, DNMT3A, 

DNTM3B) are shown be involved in de novo DNA methylation [92]. Additionally, it 

was observed that ten-eleven translocation proteins can oxidize 5`-methylcytosine 

to 5`-hydroxymethylationcytosine and further to 5`-formylcytosine and subsequently 

to 5`-carboxycytosine [93-96]. Also, it was demonstrated that 5-

hydroxymethylcytosine and 5`-formylcytosine are implicated in Alzheimer`s disease 

or Huntington`s disease [93, 97]. 5`-methylcytosine tend to spontaneously hydrolytic 

deaminate to thymine [98, 99] and therefore it seems obvious that 5`-methylcytosine 

is underrepresented. DNA methylation is also known in non-CG context, showing 

enrichment in gene bodies, and it is suggested that around one-quarter of all 

methylation in embryonic stem cells are linked to this phenomena [100].  

The degree of DNA methylation can be affected by genetic as well as environmental 

factors [71, 101] and therefore impact the development of diseases. Figure 6 

illustrates how genetic as well as epigenetic factors might influence the 

development of diabetes and how the genetic can influence the epigenetic status 

and thereby gene expression.  

 
Figure 6: Interaction of genetic and epigenetic factors. A) Influence of genetic and epigenetic 

factors on the development of diabetes. B) Interaction of genetic and epigenetic status on gene 

expression.  
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Many environmental factors contribute to diseases by changes in DNA methylation 

[71]. Also, it was shown that smoking influences the degree of DNA methylation 

[102]. Furthermore, it was demonstrated that prenatal maternal stress induced DNA 

methylation in offspring’s [103] or that exposure with air pollutions like black carbon 

and sulfate were associated with methylation pattern in the asthma pathway [104]. 

Further examples in context of diabetes are described in chapter 1.3.3.  

 

1.3.3. Epigenetics and diabetes 

Small born offspring’s due to nutrient manipulation have an increased risk to 

develop diabetes or obesity in later life. It is assumed that these can be explained 

by epigenetic changes [105]. Furthermore, human studies suggest that epigenetic 

mechanisms can explain the influence of intrauterine nutrition and birth weight for 

later diabetes, obesity, and metabolic syndrome [106]. Because of this observation 

it might be that heritability of T2D is more likely due to these modifications resulting 

from maternal environmental exposure as for inherited DNA sequence changes [5]. 

Different non coding RNA classes like snoRNAs and piRNAs are shown to influence 

the development of T2D [26]. In cell culture experiments it was shown that glucose 

transporter-4, which is important for the glucose uptake in adipose tissue and 

muscle, seems be increased expressed during adipocyte differentiation through 

demethylation as well as PPAR gene region [107, 108]. 

A number of human studies give first evidence for associations between DNA 

methylation and T2D. Kuroda et al. demonstrate in mouse and human studies using 

pancreatic -cells a uniquely demethylation of the mouse Ins2 and human INS 

promotor and insulin promotor-driven reporter gene activity inhibited by methylation 

of these CpG sites [109]. Barrès et al. showed a hypermethylation of PGC-1 in 

skeletal muscle from T2D patients comparing 17 individuals with normal glucose 

tolerance, 8 with impaired glucose tolerance, and 17 with T2D [110]. Ling et al. 

could detect a two-fold increased DNA methylation of PPARGC1A gene promoter 

comparing pancreatic islets of ten T2D patients and nine controls that is associated 

with a reduced PPARGC1A mRNA expression [111]. Also, an intra-pair variation in 

DNA methylation was increased in repetitive regions compared to gene promotor 
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regions. An increased variation of LINE1 sequence methylation was associated with 

different BMIs and 2-hour glucose, whereas there was no association of promoter 

methylation and phenotype changes. Also methylation changes in promoters of 

genes related to T2D were observed including PPARGC1A in muscle and HNF4A in 

adipose tissue [112]. Furthermore, increased DNA methylation of the FTO obesity 

susceptibility haplotype was found in human whole blood comparing 30 diabetic 

females and 30 females without diabetes [113] as well as an enrichment of 

differentially methylated sites in genomic regions that are associated with T2D 

comparing 710 T2D cases and 459 controls from different studies [114]. Yang et al. 

demonstrates that DNA methylation at ten CpG sites in the distal PDX-1 promotor 

and enhancer regions are significantly increased comparing islets from nine T2D 

patients and 55 non-diabetics. DNA methylation of this gene is negatively correlated 

with gene expression. Additionally, they show that hyperglycemia decreases gene 

expression and increased DNA methylation of PDX-1 as HbA1c correlates 

negatively with mRNA expression and positively with DNA methylation [115]. 

Furthermore, Dayeh and colleagues found that regions near to the transcription start 

site (TSS) are low methylated and regions further away of TSS show higher degree 

of methylation, comparing the methylome-wide pattern of pancreatic islets from 15 

T2D patients and 34 non-diabetics. They also demonstrate that CpG islands were 

hypomethylated, whereas shelves and open regions are hypermethylated. They 

found 853 differentially methylated genes, including TCF7L2, FTO, KCNQ1, and 

102 of them (including CDKN1A, PDE7B, SEPT9) were differentially expressed 

[116]. Hall et al. compared the methylome of pancreatic islets from 13 donors 

treated with palmitate vs non-treated cells as well as gene expression and detect 

that the treatment influence the DNA methylation level over the whole genome and 

290 genes showing an altered gene expression had also a changing in DNA 

methylation level, including TCF7L2 and GLIS3 [117]. Furthermore, it was found 

that 19 of 40 known T2D associated SNPs introduce or remove CpG sites analyzing 

pancreatic islets from 84 donors and all CpG-SNPs are associated with different 

DNA methylation of the CpG-SNP site. CpG-SNPs of TCF7L2, KCNQ1, CDKN2A, 

ADCY5, WFS1, and HMGA2 are also associated with DNA methylation at 

surrounding CpG sites [118]. Furthermore, Volkmar et al. compared in their study 

pancreatic islets obtained from five male T2D patients and eleven male non-
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diabetics and detected significantly differential DNA methylation of 276 CpG sites 

annotated to promoters of 254 genes. These findings could not be found in whole 

blood samples. For some of these CpG sites changes in gene expression were 

additionally observed. In functional annotation of differentially methylated genes and 

RNAi experiments point out pathways involved in -cell survival and function [119]. 

Heijmans et al. demonstrated that people who lived during the Dutch hunger winter 

(1944/1945), compared to their same-gender siblings, who were not exposed to 

dearth, show reduced DNA methylation in the IGF2 gene region after 60 years and 

were therefore coined [68]. Furthermore, it was shown that alterations in DNA 

methylation patterns of the muscle are dependent on a positive family history with 

T2D after a six month sport program [120]. 

 

1.4. Aim of the study 

Determination of epigenetic patterns can potentially identify new genes that are 

involved in the pathogenesis of T2D and therefore highlight approaches for 

prevention strategies and treatment. This includes for example the identification of 

potential targets for medical treatment or the identification of biomarkers for early 

diagnosis or risk determination.  

Recent literature indicates an involvement of DNA methylation in the development 

of diabetes or influencing related traits. DNA methylation studies on whole blood in 

a population-based setting analyzing the association with incident T2D or measures 

of glucose metabolism are lacking at the moment. Therefore two studies were 

conducted:  

1. The first aim of the present thesis was to generate a methylome-wide profile 

in whole blood using the Infinium HumanMethylation450 BeadChip to identify 

loci where the methylation degree is associated with incident T2D. Thus, 

potential biomarkers can be found which can be used to predict an increased 

risk for T2D. Furthermore, an accumulation of the relevant loci in pathways 

underlying the pathogenesis of T2D should be found to functionally integrate 

the results. Additionally, these methylation data were included in the 
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replication stage of the LOLIPOP study, which investigates the association of 

DNA methylation and incident T2D in Indian Asians as well as Europeans.  

2. The second aim was to determine loci whose methylation degree is 

associated with measures of glucose metabolism, including fasting glucose, 

2-hour glucose from an oral glucose tolerance test (OGTT), HbA1c, fasting 

insulin, 2-hour insulin, and HOMA-IR (homeostasis model assessment- 

insulin resistance) and therefore epigenetic markers which are involved in 

regulation of glucose metabolism and thus T2D. Furthermore, an involvement 

of the methylation degree of these loci on gene regulation should be 

detected. Additionally, for the functional integration of the found genes an 

accumulation of these in pathways underlying the pathogenesis of T2D 

should be able to be found.  
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2. Material and Methods 

2.1. Ethics statement 

The study has been conducted according to the principles expressed in the 

Declaration of Helsinki. Written informed consent has been given for all participants. 

The study, including the protocol for subject recruitment and assessment and the 

informed consent for participants, was reviewed and approved by the local ethical 

committee (Bayerische Landesärztekammer). 

 

2.2. Study population 

The Cooperative Health Research in the Region of Augsburg (KORA) study 

comprises of a series of independent population-based epidemiological surveys and 

follow-up studies of individuals living in the region of Augsburg, Southern Germany 

and has been described in detail elsewhere [121]. No evidence for population 

stratification in the KORA study was found [122]. 

 

2.2.1. Nested case-control study  

The participants in the discovery study with incident T2D were selected in a nested 

case-control design from the baseline studies S3 (1994/95) and S4 (1999-2001) and 

for replication K12 (1984/85), S2 (1989/90) in combination with data from 

corresponding follow-up studies F3 (2004/05), F4 (2006-2008), follow up from K12 

(1987/88), and S2. All studies were followed up 2009. Cases were defined as 

participants without diabetes (no self-reported diabetes and no diabetes treatment) 

at the time-point of the baseline study, but with self-reported diabetes at the follow-

up. Self-reports were validated by contacting the physician or additionally with oral 

glucose tolerance test (OGTT) in S4/F4. In contrast controls were without diabetes 

at both time-points (figure 7). For each case, one control was drawn randomly using 

1:1 matching with replacement [123, 124], stratified for age ± 2 years, sex, survey, 

and observation time till diagnosis of diabetes. Some of the study participants were 



  Material and Methods 

- 20 - 

 

selected both as a case as well as control, in case a participant who develops 

diabetes at an earlier time point.  

 
Figure 7: Definition of cases and controls for nested case-control study. 

 

Isolation of DNA was performed with whole blood samples from the baseline 

studies, which ensured that the samples had no diabetes at the time-point of DNA 

methylation measurement. Other exclusion criteria were besides no DNA material or 

DNA degradation, DNA concentration < 30 ng/µl.  

From 4,856 participants in S3 and 4,261, 4,022, and 4,940 in S4, K12 and S2, 

respectively, 330 and 172, 450, 447 had incident T2D, respectively. At the end, 400 

participants (200 cases and matched controls; duplicates for control were included) 

for the discovery study and 802 (401 cases and matched controls, duplicates for 

controls are included) for the replication study were available for the methylome-

wide association as well as fine-mapping analysis for the laboratory process (figure 

8). The methylation data of the discovery study were also included in the replication 

stage of the LOLIPOP study. 
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Figure 8: Flow diagram for study population of nested case-control study. The number of 
controls included for laboratory analysis is slightly smaller than for the statistical analysis, as controls 
were drawn with replacement. Furthermore, some participants are selected as a case as well as a 
control, where another case developed T2D at an earlier date. 
 

2.2.2. Cross-sectional study 

DNA methylation data for 1,814 participants in the KORA follow-up study by S4 

(2006-2008), comprising of 3,080 participants aged between 32 and 81, were 

randomly selected to generate a DNA-methylation profile [102]. Fifteen samples 

were excluded due to failed quality control resulting in 1,799 participants available 

for this study.  

Patients with diabetes were excluded based on at least one of the following criteria:  

- non fasting (less than 8 hours) 

- diabetic patients (fasting glucose ≥ 7mmol/l and/or 2-hour glucose ≥ 11.1 

mmol/l and/or HbA1c ≥ 6.5% and/or undetected/known diabetes and/or 

diabetes treatment) 
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- unclear or unknown diabetes status 

- missing values in at least one of the outcome parameters and/or covariates  

- hs-C-reactive protein > 10 mg/l (as an indicator for an acute infection) 

- participants with fasting insulin ≥ 55.718 µlU/ml (corresponding to the 99th 

percentile) as they clearly represented outliers in the dataset for this variable 

The present study includes data from 1,448 non-diabetic individuals with available 

methylation data for fasting glucose, 2-hour glucose, fasting insulin, and HbA1c as 

well as 617 and 1,440 for 2-hour insulin and HOMA-IR, respectively (figure 9). Gene 

expression analyses were conducted on 533 subjects, where gene expression data 

as well as methylation data were available. 

 
Figure 9: Flow diagram for study population of cross-sectional study. 

 

2.2.3. Assessment of glucose and insulin level as well as diabetes status 

Fasting venous blood as well as blood samples after OGTT were collected with 

minimal stasis, centrifuged, refrigerated at 4 to 8°C, and analyzed in the central 

laboratory within a maximum of 6 h. Fasting and 2-hour glucose was measured 

using a hexokinase method (Glucoquant) [125-127]. For glucose the interassay 

coefficient of variant was 2.5% at 98 mg/dl and 2.1% at 235 mg/dl [125, 126]. 

HbA1c values in blood were determined using high performance liquid 
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chromatography (HPLC) (Menarini HA-8160). The coefficient of variation was 1.2% 

for lower and higher values [126]. Fasting insulin was measured using 

amicroparticle enzyme immunoassay. HOMA-IR was calculated [fasting plasma 

glucose (mmol/l) x fasting serum insulin (mU/l) / 22.5] [127].  

The OGTT was performed among all non-diabetic participants during the morning 

hours (07.00-11.00). They were asked to fast for at least 10 h, have no heavy 

physical activity on the day before, and not to smoke before or during the test. 

Participants with self-reported diabetes, diabetes treatment, or acute illnesses were 

excluded. Venous blood samples were taken during the fasting state and afterward 

75 g anhydrous glucose was given (Dextro OGT) [126].  

Diabetes status was determined in all surveys via self-declaration. Self-reports were 

validated by contacting the physician or additionally performing the OGTT in S4/F4 

[126]. 

 

2.3. Quality control of samples for bisulfite conversion 

To ensure a good quality for the bisulfite conversion and the following process, DNA 

quality was detected after the selection of the samples via agarose gel 

electrophoresis, DNA concentration determination as well as amelogenin 

polymerase chain reaction (PCR). Samples were used for upstream analysis 

wherever all quality controls worked well.  

 

2.3.1. Agarose gel electrophoresis 

Agarose gel electrophoresis was performed, because long storage time, incorrect 

storage or many freezing/thawing cycles can lead to DNA degradation. In this 

method DNA fragments were separated by their size and therefore, the results can 

be used to determine fragmentation and therefore evaluate the quality of DNA. The 

size of these fragments can be determined by comparing them with commercial 

available standards with known fragment sizes. The separation of DNA fragments is 

based on the migration of nucleic acids to the anode. That effect is due to the 
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natural negative charge carried on their phosphodiester backbone. Based on the 

properties of the agarose gel shorter fragments move faster than longer ones.  

Determination of the degree of DNA sample degradation was performed with 0.8% 

agarose gel solved in 1x tris-borate-EDTA (TBE) buffer in the microwave containing 

2 µl/100 ml Midori Green, which intercalates with the DNA and can be visualized 

under UV light.  

10x TBE buffer:   108 g Tris 
55 g Boric acid 
9.3 g EDTA pH 8.0 
H2Obidest up to 1 l 

8 µl 6x Loading Dye were added to 2 µl of DNA to sediment them in the gel-well and 

loaded on the agarose gel. Additionally, 2 µl Lambda DNA/EcoRI + HindIII Marker 3 

or GeneRuler 1 kb DNA ladder were loaded. The DNA fragments were separated 

under a constant electrical field of 60 V for 120 min. After separation, the DNA 

fragments were visualized and photographed using the Felix 2000. Samples with 

high degradation were excluded.  

 

2.3.2. Determination of DNA concentration 

For determination of DNA concentration the Nanodrop system was used, which is 

based on spectrophotometry measuring reflection or transmission of material. DNA 

has a maximum absorption of UV light at 260 nm, whereas proteins have their 

maximum at 280 nm. Therefore, protein contamination in DNA samples can be 

estimated due to the A260 nm/A280 nm ratio. For values between 1.7 and 2.0 

protein contamination is excluded to the greatest possible extent and with values > 

1.5 salts and phenol contamination. DNA concentration and potential contamination 

were measured with the 8-channel Nanodrop system following manufacturer`s 

instruction.  
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2.3.3. Amelogenin test for sex determination 

The gender was determined using a PCR amplifying the amelogenin gene, which 

encodes for a gene responsible for biomineralization during tooth enamel 

development [128]. Two different forms exist on X and Y-chromosomes, so that 

women have two copies on the X-chromosome and therefore, one fragment 

appears on the agarose gel, while men have one copy on the X and Y-chromosome 

each and therefore, two fragments with different sizes appear on the gel.  

Primer        Length of fragment 
5’-CTGATGGTTGGCCTCAAGCCTGTG-3’  X = 977 bp 
5’-TAAAGAGATTCATTAACTTGACTG-3’ Y = 788 bp 
 

Pipetting scheme for master mix for one 96-well plate (20 µl reaction) 

Puffer      200 µl 
dNTP (25 mM)    16 µl 
Primer rev (100 pmol)   5 µl 
Primer for (100 pmol)   5 µl 
MgCl2      120 µl 
Taq-Polymerase    20 µl 
H2O      1534 µl 
 

19 µl PCR master mix were added to 1 µl DNA (1:30 diluted), vortexed, and shortly 

centrifuged. The following PCR program was used:  

Table 1: Cycling protocol for amelogenin PCR. 

 Amelogenin PCR 

Temperature Duration 
Number of 

cycles 

95°C 15 min 1 

95°C 30 sec 

40 62°C 30 sec 

72°C 1 min 

72°C 10 min 1 

20°C 1 min 1 

 
Afterwards the PCR product was loaded on a 1.5% agarose gel, diluted at 1 x TBE 

puffer, to check the bands and furthermore the gender. The gel runs at 90 V for 90 

min (for more details see also chapter 2.3.1.).  
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2.4. Bisulfite conversion 

For bisulfite conversion EZ-96 DNA MethylationTM Kit (Shallow-Well Format) was 

used provided by Zymo Research.  

 

2.4.1. Principle 

Bisulfite treatment was developed by Shapiro and Hayatsu 1970 and it is based on 

the fact that bisulfites attack cytosines rapidly, but 5-methylcytosine is attacked 

slowly [129]. After treating denatured single-stranded DNA with bisulfite, 

unmethylated cytosines will be converted into uracil and afterwards into thymine 

during whole genome amplification. Methylated cytosines are protected against the 

changes. Thus C/T variations were produced based on methylation state and can 

be determined with methylation analysis tools (figure 10). Chemical basis of bisulfite 

conversion including sulphonation, hydrolytic deamination, and desulphonation is 

shown in figure 11.  

 
Figure 10: Principle of bisulfite conversion.  

 

 

Figure 11: Chemical basis of conversion of cytosine to uracil. The blue box presents the 

hydrolytic deamination in detail.  
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2.4.2. Laboratory procedure 

As the results for upstream analysis, where 750 ng DNA was used, were 

comparable to 1,000 ng DNA used for the cross-sectional study (appendix figure 1) 

for nested case-control study, lower quantities of DNA were used to save DNA 

material.  

Initially, bisulfite conversion reagent was diluted in 7.5 ml water and 2.1 ml dilution 

buffer and vortexed thoroughly for 10 min at room temperature (RT) till it was 

completely solved. As the reagent is light sensitive all the steps up till clean-up 

should be performed in the dark. Furthermore, 144 ml 100% ethanol were added to 

the wash buffer concentrate.  

For bisulfite conversion, 750 ng and 1,000 ng DNA for nested case-control and 

cross-sectional study respectively were suspended in 45 µl water. 5 µl dilution buffer 

were added and mixed by pipetting up and down. For upstream EpiTYPER® 

analysis the amount of DNA used depended on the number of investigated regions. 

The conversion plate was incubated at 37°C for 15 min and afterwards centrifuged. 

100 µl of conversion reagent were added to each sample, mixed, centrifuged, and 

incubated at 50°C for 16-20 h for the following genome-wide DNA methylation 

analysis using Infinium HumanMethylation450 BeadChip. For analysis via 

EpiTYPER®, samples were incubated for 5.5 h. After 1 h at 50°C the samples were 

heated up to 95°C for 30 sec to ensure that the DNA is single stranded. The correct 

duration of bisulfite conversion reaction time is important due to different reasons: 

Bisulfite conversion efficiency depends on denaturation of DNA, as the reaction only 

takes place with single stranded DNA. Therefore, complete denaturation before and 

during bisulfite conversion is essential to avoid false-positive signals. On the other 

hand, overtreatment with bisulfite can lead to degradation of DNA resulting in 

elevated rates of methylated cytosine to thymine conversion and therefore, possible 

underestimating DNA methylation. Additionally, it is important to keep the reaction 

time as brief as possible as it leads to DNA fragmentation and therefore the longer 

the reaction duration the more fragmentation is likely. Even if larger fragments are 

needed for the EpiTYPER® analysis the reaction time is much shorter compared to 

Infinium HumanMethylation450 BeadChip. 
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Table 2: Cycling protocol for Infinium HumanMethylation450 BeadChip respectively 

EpiTYPER
®
 process. 

 

Infinium 

HumanMethylation450 

BeadChip 

EpiTYPER® 

Temperature Duration 
Number of 

cycles 
Duration 

Number of 

cycles 

95°C 30 sec 
16 

30 sec 
20 

50°C 1 h 15 min 

4°C ∞  ∞  

 

After (overnight) incubation the samples were immediately incubated for 10 min on 

ice to stop bisulfite conversion. 400 µl binding buffer were pipetted in the binding 

plate placed on the collection plate. The converted samples were loaded completely 

in the well and mixed by pipetting up and down till no smears remained visible. 

Afterwards the plates were centrifuged for 3 min at 4,500 RCF (≥ 3,000 x g), turned 

around 180°C, and centrifuged again for 3 min, to ensure that the wells of the 

binding plate are dry. The flow-through was discarded, 500 µl wash buffer were 

added and centrifuged again as described before. 200 µl desulphonation buffer 

were pipetted to the samples and incubated for 15-20 min at RT. Afterwards the 

plate was again centrifuged as described above, 500 µl wash buffer were added, 

centrifuged, and another 500 µl wash buffer were added. Samples were centrifuged 

now for 6 min as described previously. The binding plate was placed onto an elution 

plate and 15 µl elution buffer were added directly on the filter without touching it. In 

the subsequent analysis using Infinium HumanMethylation450 BeadChip, elution 

took place using elution buffer, whereas for EpiTYPER® analysis water was used for 

elution depending on the amount of DNA used (for example for 500 ng inserted 

DNA, 45 µl water for elution would be used to obtain a final concentration of around 

10 ng/µl. Elution was performed in two steps). The samples were incubated for 3 

min at RT and afterwards centrifuged for 3 min and finally an additional 2 min after 

turning the plate. Water as well as elution buffer were warmed to 50°C in the heat 

oven during the desulphonation to ensure an optimum elution rate as DNA solves 

better in warm solutions. Converted DNA should be used immediately for upstream 

analysis, but it can also be stored on a short term basis at -20°C. Converted DNA 

should not get older than 6 months.  
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2.5. Genome-wide DNA Methylation analysis 

2.5.1. Principle 

With regards to the research question, different methods are available to study DNA 

methylation. These can mainly be divided into genome-wide and fine-mapping 

analysis. The basis of nearly all of them is bisulfite conversion, which generates a 

C/T SNP depending on the methylation status of the CpG site (see chapter 2.4.1.). 

The methods can also be separated into locus-specific analysis (e.g. EpiTYPER®), 

gel-based analysis (e.g. restriction landmark genomic scanning), array-based 

analysis (e.g. methylated DNA immunoprecipitation), and next generation 

sequencing-based analysis (e.g. reduced representation bisulfite sequencing) [63, 

130]. 

Genome-wide DNA methylation analyses allow a hypothesis free approach and can 

be carried out using the Infinium HumanMethylation450 BeadChip, for example. 

These findings can be than fine-mapped using e.g. EpiTYPER® or pyrosequencing. 

Both methods are described more in detail in chapters 2.6.1.1. and 2.6.2.1.  

In the presented study, the Infinium HumanMethylation450 BeadChip was used, as 

a well-established method for generating genome-wide DNA methylation profiles in 

high throughput analyses. Furthermore, it is cost effective in comparison to whole-

genome bisulfite sequencing for example and allows a hypothesis free approach as 

well. The Infinium HumanMethylation450 BeadChip enables the determination of 

the methylation degree of more than 485,000 CpG sites subdivided into 482,421 

CpG sites, 3,091 non-CpG sites and 65 SNPs, covering 99% of genes in Reference 

Sequence. 17 CpG sites per gene were detected on average [84]. Probes were 

distributed over the whole gene including, promoter region, gene body, 3`UTR, and 

intergenic region. The promoter region, where around 41% of CpG sites are located, 

can be subdivided in TSS200 (meaning that the probe is 200 upstream from TSS), 

TSS1500 (200 till 1,500 bases upstream from TSS), 5`UTR, and 1st exon. Around 

31% of the probes are located in CpG island, whereas the remaining CpG sites are 

located in shores (2 kb flanking CpG island), shelfes (2 kb flanking shores) or 

“others”, meaning island independent [83, 84]. 96% of overall CpG sites are covered 

by the Infinium HumanMethylation450 BeadChip. 
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Determination of the methylation status in the included samples is based on 

genotyping the C/T SNP as a result of bisulfite conversion. A single Infinium 

HumanMethylation450 BeadChip enables the generation of a methylome-wide 

profile from up to 12 samples in parallel using less than 1,000 ng DNA for bisulfite 

conversion in the automated Infinium Assay.  

Bisulfite converted DNA was whole-genome amplified, fragmented, precipitated, 

resuspendated, and hybridized on the BeadChip. Afterwards the chip was stained 

and imaged using iScan. One chip needs around 1 h to scan. An overview of the 

whole process is presented in figure 12. 

 
Figure 12: Overview of Illumina laboratory process. BCD: bisulfite converted DNA (adapted after 

Illumina HD Methylation Assay Guide) 

 

During the hybridization step, the DNA molecules anneal to locus-specific oligomers 

linked to specific bead types. To measure the methylation at CpG sites two different 

chemistry technologies were used at the BeadChip namely Infinium I and Infinium II 

to enable the detection of the huge amount of CpG sites compared to the precursor 

version, which detected only around 27,000 CpG sites (figure 13).  
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Figure 13: Schematic presentation of the two different chemistry technologies used at the 

Infinium HumanMethylation450 BeadChip. a) Infinium I assay design including one bead type per 

CpG locus for unmethylated (thymine) and methylated (cytosine) status each, using allele-specific 

primer extension. b) Infinium II assay design including only one bead type for determination of both 

methylated as well as unmethylated status by a single base extension step (modified after [84]. 

 

Infinium I uses two bead types per CpG site, one for the methylated status detecting 

a cytosine and one for the unmethylated locus detecting a thymine. Allele-specific 

primer binding takes place followed by a single based extension step with 

dinitrophenyl labeled nucleotides for adenine/thymine and biotin labeled nucleotides 

for cytosine/guanosine. The methylated as well as unmethylated bead type for the 

same CpG locus will incorporate the same type of labeled nucleotide. This will be 

determined by the base before the interrogated “C” in the CpG locus, and thus will 

be detected in the same color channel [84]. Signals measured with Infinium I are 

more stable and have a smaller between-sample variation of -values than Infinium 

II. In addition, Infinium II signals are less accurate and reproducible [131]. Infinium II 

uses only one bead type with a unique type of probe, detecting the methylated as 

well as the unmethylated locus. The status of CpG locus will be determined directly 

by a single based extension step. Due to the different labeled nucleotides the 

signals for the methylated and the unmethylated locus will be measured in the green 

or red channel [84]. The degree of methylation of a given CpG site will be specified 
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as a -value, a continuous number between 0 and 1 calculated as the ratio of 

methylated probe intensity to overall intensity.  

 

2.5.2. Laboratory procedure for Infinium HumanMethylation450 BeadChip,  

following Infinium HD Methylation protocol  

Day 1 and 2  

Generating bisulfite converted DNA 

Bisulfite converted DNA was generated as described in chapter 2.4.2. converting 

unmethylated cytosine over uracil to thymine, creating the C/T SNP, which was 

measured during the following process.  

Day 2  

Amplification of bisulfite converted DNA 

MSA1 (multi sample amplification 1 mix), RPM (random primer mix) and MSM 

(multiple sample amplification master mix) were completely thawed at RT. The 

hybridization oven was preheated at 37°C.  

Starting with 4 µl bisulfite converted DNA in a half-deep well plate, 20 µl MSA1 were 

added as well as 4 µl 0.1 N NaOH. Afterwards the plate was closed with a cap mat, 

vortexed for 1 min with 1,600 rpm, and centrifuged at 280 x g for 1 min at RT. 

Samples were incubated for 10 min at RT. This step is time crucial to prevent DNA 

degradation by NaOH. 68 µl RPM and 75 µl MSM was added, closed with a cap 

mat, and mixed 10 times by inverting. The plate was centrifuged at 280 x g for 1 

min, and incubated for 20-24 h at 37°C in the hybridization oven.  

Day 3 

Fragmentation 

FMS (fragmentation solution) was completely thawed at RT and the heat block was 

preheated at 37°C.  
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The plate was removed from the hybridization oven and centrifuged at 280 x g for 1 

min. 50 µl FMS were added to the samples and closed with a cap mat. The plate 

was vortexed at 1,600 rpm for 1 min and centrifuged at 280 x g for 1 min, followed 

by incubation for 1 h in the heat block at 37°C.  

Precipitation with isopropanol 

PM1 (precipitation solution) was brought to RT.  

100 µl PM1 were added to the plates followed by a vortexing step at 1,600 rpm for 1 

min. Substances of PM1 intercalate with the DNA and enables a visualization of the 

pellet after precipitation. Samples were incubated for 5 min at 37°C and centrifuged 

afterwards at 280 x g. 300 µl isopropanol were added to the plate. It was closed with 

a new cap mat and mixed by inverting 10 times. Afterwards the plate was incubated 

for 30 min at 4°C, centrifuged at 3,000 x g for 30 min at 4°C. The supernatant was 

decanted (after checking for blue pellet) by quickly inverting the plate. It was tapped 

several times for 1 min on an absorbent pad until all wells were completely drained. 

The plate was dried upside down on a tube rack for 1 h at RT.  

Resuspension  

RA1 (resuspension, hybridization, and wash solution) was thawed completely 

(solution has to re-dissolved). The hybridization oven was preheated at 48°C and 

the heat sealer was switched on. The centrifuge was cooled down to 4°C. 

46 µl RA1 was added to the plate and sealed with an aluminum seal using a heat 

sealer and incubated for 1 h at 48°C in the hybridization oven, followed by vortexing 

at 1,800 rpm for 1 min and centrifugation at 280 x g for 1 min. 

Hybridization 

The heat block was preheated at 95°C. 12 resuspended samples can be hybridized 

on one BeadChip and therefore up to 8 BeadChips are used for one plate.  

Samples were denatured for 20 min at 95°C using a heat block, to enable the 

annealing of single-stranded samples to locus-specific 50mers, which are linked to 

one of the around 485,000 CpG sites detectable with the Infinium 
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HumanMethylation450 BeadChip. During this incubation step the Hyb Chambers 

were prepared. BeadChip Hyb Chamber gaskets were placed into the Hyb 

Chambers. 400 µl PB2 (humidifying buffer used during hybridization) were 

dispended into the humidifying buffer reservoirs in the Hyb Chamber. Right away 

the lid was placed on the Hyb Chambers to prevent evaporation. After 20 min 

incubation the plate was cooled down to RT in 30 min and centrifuged at 280 x g. 

BeadChips were removed from the zipblock bags and mylar packages and were 

placed on the Robot BeadChip Alignments Fixtures with the barcode end aligned to 

the ridges on the fixture. At the robot PC MSA4 tasks | hyb-multi BC2 was selected 

and the right kind and number of BeadChips were chosen. Robot BeadChip 

Alignments Fixtures with Robot Tip Alignment Guide were placed onto the robot as 

well as the sample-plate. 15 µl sample volume were pipetted automatically on the 

BeadChips. Afterwards the BeadChips were removed from the robot and placed in a 

Hyb Chamber insert, orienting the barcode at the end (it has to match the barcode 

symbol to the Hyb Chamber insert). Hyb Chamber inserts were placed together with 

the BeadChip inside the Hyb Chambers. The closed Hyb chambers were incubated 

for 16-20 h at 48°C in the hybridization oven using the rocker. 

To avoid biases matched cases and controls for nested case-control study were 

placed next to each other on the BeadChip and therefore, on the same bisulfite 

conversion plate. 

Day 4 

Washing, Extension and Staining of the BeadChip 

XC4 (Xstain BeadChip solution 4) was prepared by adding 330 ml 100% ethanol. 

XC1, XC2 (Xstain BeadChip solution 1 and 2), STM (superior two-color master mix), 

ATM (anti-stain two-color master mix) and TEM (two-color extension master mix) 

were thawed completely. Formamide was prepared by mixing 1.2 ml water, 23.75 

ml formamide, and 50 µl EDTA).  

XC1, XC2, STM, ATM, 25 ml formamide, 30 ml RA1, and 145 ml XC3 (Xstain 

BeadChip solution 3) were loaded at the robot. Last three were placed in a bowl. 

The program Xstain Task was selected and the thermo block was preheated at 
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32°C. 150 ml PB1 (reagent used to prepare BeadChip for hybridization) were filled 

in two washing dishes with washing racks. The cover seal was removed from each 

BeadChip and they were immediately placed in the washing rack submerged with 

PB1. Afterwards the full washing rack was moved up and down for 1 min. It was 

moved into the second washing dish with clean PB1 and the washing step was 

repeated.  

BeadChips were loaded on the multi-sample BeadChip alignment fixture with 150 ml 

PB1 and black frames. The barcode has to align its barcode with the ridges 

stamped onto the alignment fixture. Afterwards a clear spacer was placed on top of 

each BeadChip and the alignment bar was placed onto the alignment fixture. A 

clean glass back plate was put on top of the clear spacer on each BeadChip. The 

plate reservoir should be at the barcode end of the BeadChip. Metal clamps were 

attached to the flow-through chambers and end of clear spacers were trimmed 

using scissors. Final flow-through chambers were loaded on the robot. When the 

thermo block reached 44°C, the robot was started using the program Xstain Tasks | 

Xstain HD Bead Chip. 

A plastic shell was filled with PB1 and BeadChips (without metal clamps, glass back 

plate, clear spacer and black frames) were placed on a staining rack. BeadChips 

were moved up and down 10 times and afterwards soaked for 5 min. XC4 was filled 

in a second plastic shell and the washing rack was put into it. It was moved up and 

down 10 times and soaked for 5 min. The staining rack was removed in a smooth, 

rapid motion and placed directly on a tube rack with the barcodes faced up. Each 

chip was placed on a rack with the barcode facing up, which was placed in a 

vacuum desiccator applying vacuum pressure. BeadChips were dried for around 1 h 

and afterwards the bottom side was cleaned with ethanol to remove any XC4 

excess.  

Image BeadChip 

BeadChips were scanned using the Illumina iScan, which is a two-channel high-

resolution laser imager, scanning BeadChips at two wavelengths creating an image 

file for each channel. Afterwards the intensity values for each bead type were 

determined via GenomeScan software and a data file was created.  
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2.5.3. GenomeStudio 

GenomeStudio Methylation Module was used to analyze the methylome-wide data 

from the data files obtained by the BeadArray Reader in combination with the 

Infinium HumanMethylation450 manifestfile, including information of annotation of 

CpG sites. Furthermore, samples were first quality checked and methylation data 

exported for subsequent statistical analysis.  

In the nested case-control study GenomeStudio (version 2011.1) with methylation 

module (1.9.0) was used to process the raw image data. For the cross-sectional 

study GenomeStudio (version 2010.3) with methylation module (version 1.8.5) was 

used. Initial quality control of assay performance was undertaken using the “Control 

Dashboard” provided by GenomeStudio Software, including the assessment of 

staining, extension, hybridization, target removal, bisulfite conversion I and II, 

specifity, and negative as well as non-polymorphic control (appendix figure 2). If 

samples failed the quality control step, the Infinium HD Methylation protocol was 

repeated. If they failed this quality control step again, they were excluded from 

downstream analysis. 

-values, a continuous variable between 0 and 1 representing the methylation 

degree, were exported and used for statistical analysis since methylation in this 

study is considered to be the independent variable. 

 

2.6. Replication and Fine mapping 

To confirm and replicate results of methylome-wide significant associations in the 

nested case-control study another two methods were used for this project, namely 

EpiTYPER® and pyrosequencing. With both methods a fine-mapping of selected 

regions can be performed. TCF7L2 and CDKAL1 were included as candidate 

genes. Pyrosequencing was used as a complementary method as it was not 

possible to design a primer for CpG sites annotated to CASZ1 and TMEM57 due to 

technical reasons.  
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2.6.1. EpiTYPER® 

2.6.1.1. Principle 

Besides EpiTYPER® analysis other fine-mapping methods are available which can 

be used, such as pyrosequencing or methyl light methyl sensitive PCR. However, 

EpiTYPER® also allows a data analysis in a high through put manner as it is 

performed in a 384-well format whereas pyrosequencing, for examples, is only 

available in a 24- or 96-well format. The EpiTYPER® uses base-specific enzymatic 

cleavage in combination with Matrix-Assisted Laser Desorption/Ionization Time-of-

Flight Mass Spectrometry (MALDI-TOF MS). This speed and accuracy is used in 

the MassARRAY® to determine methylation status and to identify differentially 

methylated sites through this quantitative analysis. Two base-specific cleavage 

reactions (T reverse and C reverse) can be selected to generate specific products. 

During the C cleavage reaction methylated regions are cleaved at every cytosine to 

create fragments containing at least one CpG site. T cleavage reaction, which was 

selected in the presented study, cleaved at every thymine at both methylated as 

well as non-methylated regions. The resulting products from methylated and non-

methylated sites have the same length and differ only in their nucleotide 

composition.  

The method is also based on determination of C/T SNPs created by bisulfite 

conversion, followed by PCR amplification with T7-promoter tagged primers of 

selected regions. C/T SNPs of the bisulfite treated DNA appears as G/A changes. 

Afterwards, unincorporated dNTP leftovers from amplification will be neutralized 

using shrimp alkaline phosphatase (SAP). Then in vitro transcription a base-specific 

enzymatic cleavage on the reverse strand is performed. The resulting fragments 

differ in size and mass depending on the sequence changes generated by bisulfite 

treatment. The methylated and non-methylated status of CpG sites is determined by 

MALDI-TOF MS and EpiTYPER® software (figure 14).  
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Figure 14: Overview of EpiTYPER

® 
workflow. 

 

In MALTI-TOF MS, a laser irradiates the samples on the microchip. Ionized 

biomolecules are accelerated in an electric field and enter the flight tube. Different 

ions are separated according to their mass to charge ratio value. Therefore, smaller 

molecules are faster than larger molecules. Due to the time of flight the mass of 

every analyt is calculated and will be translated into an allele. Mass difference for 

non-methylated (adenosine) against methylated (guanosine) fragments for one CpG 

site is 16 Da.  

Three different kinds of mass signal patterns due to methylation can be created:  

- methylation generates new cleavage sites resulting in shorter fragments 

- methylation generates a replacement of cleavage site into non-cleavage site 

resulting in a longer fragment 

- methylation generates a sequence change in an existing cleavage fragment 

that doesn`t change the cleavage product but results in a mass shift [132].  
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The SpectroCHIP® matrix contains 3-hydroxypicolinic acid, which absorbs the laser 

energy and generates the ionization of the samples. The matrix inhibits photolytic 

damage to the fragments, interaction between them or with the sample carrier [133].  

Multiple CpG sites in an amplicon of up to 600 bp and changes down to 5% in DNA 

methylation can be measured. The usage of a 384 microplate format enables a 

cost-effective high-throughput measurement.  

 

2.6.1.2. Laboratory procedure 

Primer design 

To design primers for the selected regions EpiDesigner (beta) was used. The 

following default settings were selected:  

Primer temp:    56/62/64 (min/opt/max) 
Primer size:     20/25/30 (min/opt/max) 
Product size:    100/300/400 (min/opt/max)  
Product CpGs:    4 
Primer non-CpG C`s:  4 
Primer Poly X:    5 
Primer Poly T:   8 
Selected strand:    both 
Mass window:    1500/7000 (low/high) 
Analyze CpGs in T reaction:  select 
Analyze CpGs in C reaction:  deselect 

Sequence of interest (CpG site ± 300 bp) was passed into EpiDesigner and primer 

with T7 promoter tags were selected for EpiTYPER® analysis. This is carried out 

according to the number of detected CpG sites at the amplicon and if the CpG sites 

to be replicated are covered (list of primer- and target sequence attached in 

appendix table 1 and 2, ordered by Metabion). 

Gradient PCR was performed with available bisulfite converted DNA to determine 

the optimum PCR temperature and therefore to ensure an optimum amplification of 

regions of interest. These PCR temperatures were used for the following PCR 

amplification.  
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Bisulfite treatment 

Bisulfite converted DNA was generated as described in chapter 2.4.2. 500 ng 

genomic DNA was used for bisulfite conversion and at the end diluted with 45 µl 

water to get an approximately concentration of 10 ng/µl. Matched cases and 

controls were placed next to each other on the 384 microplate format to avoid 

biases.  

Polymerase Chain Reaction (PCR) 

For PCR amplification a master mix with following components was prepared (per 

sample and amplicon). 

H2O       1.42 µl 
10x PCR buffer     0.50 µl 
dNTP mix (25 mM each)    0.04 µl 
Polymerase (5 U/µl)     0.04 µl 
Primer Mix (1 µM reverse and forward)  2.00 µl 
 
1 µl bisulfite converted DNA was pipetted on a 384 microplate format and 4 µl PCR 

master mix added. Then it was amplified using the cycling protocol presented in 

table 3.  

Table 3: Cycling protocol for PCR amplification for EpiTYPER
®
 process. 

 PCR amplification 

Temperature Duration 
Number of 

cycles 

94°C 4 min 1 

94°C 20 sec 

45 56°C* 30 sec 

72°C 1 min 

72°C 3 min 1 

4°C ∞  

* may be adapted based on amplicon temperature 

 

PCR performance was controlled for each sample via gel electrophoresis using a 

3% agarose gel solved in 1xTBE. 0.5 µl volume of selected sample and 4.5 µl 

loading dye were loaded on the gel and run for 30 min at 120 V. PCR product can 

be stored at -20°C. 
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SAP Reaction and Transcription Cleavage 

Unincorporated dNTP leftovers from PCR amplification were neutralized using SAP 

enzyme. For each sample, 1.7 µl RNAse free water and 0.3 µl SAP enzyme were 

added to the PCR product and incubated for 20 min at 37°C and 5 min at 85°C 

using a thermo cycler (at the end 4°C forever).  

Next, in vitro RNA transcription on the reverse strand was performed, followed by T 

cleavage transcription to generate fragmented RNA molecules. As this reaction was 

carried out with RNA molecules the cleavage in fact occurred at a U (uracile). The 

master mix includes the following components per sample:  

RNAse free water   3.15 µl 
5 x T7 polymerase buffer  0.89 µl 
T cleavage Mix   0.24 µl 
DTT (100 mM)   0.22 µl 
T7 RNA/DNA polymerase  0.44 µl 
RNAse A    0.06 µl 

5 µl master mix and 2 µl SAP product were mixed in a new 384 microplate and 

incubated for 3 h at 37°C using a thermo cycler (at the end 4°C forever). T cleavage 

product can be stored at -20°C.  

Resin Addition, Chip Dispensing and Detection 

Finally, clean resin was performed to catch ions in the solution, which could disturb 

measurement of MALDI-TOF MS. Therefore, T cleavage product was centrifuged 

and 20 µl nanopure H2O pipetted into each well. Furthermore, 6 mg CleanResin 

was added to the samples. Plates were sealed and twisted for ≥ 30 min. Afterwards 

20 to 25 nl of the samples were dispenses onto the SpectroChip® and additionally a 

4-point calibrant was put on position F0, containing four oligonucleotides with known 

masses. This calibrant includes standardized spectra mass signals from 1,479.0, 

3,004.0, 5,044.4, and 8,486.6 Da, which should not differ more than two to three 

Daltons. Afterwards the chips were loaded in the vacuum lock of the MassARRAY 

mass spectrometer and ran on a MassARRAY Workstation compact with 

MassCLEAVE settings. Prior to measuring samples the calibrant was manually 

controlled.   
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Analysis of methylation degree 

EpiTYPER® software was used for editing plates (before MALDI-TOF MS process) 

and analyzing them. Mass spectra generated by the MassARRAY mass 

spectrometer were processed and analyzed by the software performing baseline 

correction, peak identification, and quality assessments. Samples were quality 

checked using the added controls on the plate. In this project, a negative control 

(water control), a positive control (bisulfite converted DNA which works already in 

another analysis) as well as calibration controls (25%, 75% and 100% methylated 

DNA) were added two times per amplicon on the plate. Furthermore, as the 

samples were distributed over more than one plate, the performance and 

reproducibility of each plate was checked by adding plate effect controls (one 

unique sample) three to four times on the plate. Additionally, one unique sample 

was placed at the end of each bisulfite conversion plate and analyzed at the end 

with the last amplicon to control potential differences between bisulfite conversion 

plates. Samples which failed quality control were repeated and excluded if the 

replication was not successful. After successful quality control methylation values 

were exported for statistical analysis.  

 

2.6.2. Pyrosequencing 

2.6.2.1. Principle 

Pyrosequencing is based on the principle of sequencing by synthesis and provides 

quantitative data, for example for methylation analysis, by determining released 

pyrophosphate (PPi) during amplification. Intensity of PPi is equivalent to the 

amount of incorporated nucleotide. Methylation status of selected regions was 

determined using pyrosequencing bases of C/T variation generated during bisulfite 

conversion, using the method described above.  

Region of interest is amplified and the strand serving as the template for 

pyrosequencing will be biotinylated. After denaturation this biotinylated single-

stranded DNA is isolated (immobilized on streptavidin-coated beads) and hybridized 

with a sequencing primer for region of interest. The first dNTP, for example dATP, is 
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added to the reaction and DNA polymerase catalyzes the insertion of dNTP at the 

sequence, if it is complementary to the nucleotide in the template strand. If the 

dNTP is incorporated, PPi will be released. Afterwards ATP sulfurylase converts PPi 

to ATP in the presence of APS. ATP drives the luciferase-mediated conversion of 

luciferin to oxyluciferin that generates a visible light signal equivalent to the amount 

of ATP. Afterwards, unincorporated nucleotides and ATP will be degraded by 

apyrase followed by adding another nucleotide and starting a new cycle of the 

reaction (figure 15).  

 
Figure 15: Overview of pyrosequencing workflow. 

 

The light signal will be detected by CCD sensors and can be seen as a peak in the 

raw data output. The height of each peak is proportional to the number of 

nucleotides incorporated. A target region of up to 350 bp can be analyzed. For this 

project the pyrosequencing method provided by Qiagen was used.  
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2.6.2.2. Laboratory procedure  

Primer for PCR amplification and pyrosequencing were synthesized by Biotez. 600 

ng of genomic DNA were treated with sodium bisulfite using the EpiTect® 96 

Bisulfite according to the manufacturer’s instructions. Regions of interest were 

amplified using 25 ng of bisulfite treated human genomic DNA and 5 pmol of 

forward and reverse primer, one of them was biotinylated.  

PCR primer mix included the following additional reagents in a total volume of 25 µl:  

1x HotStar Taq buffer  

1.6 mM MgCl2  

100 µM dNTPs  

4 U HotStar Taq polymerase 

 

Afterwards the DNA was amplified using the following PCR protocol (table 4).  

Table 4: Cycling protocol for PCR amplification for pyrosequencing process. 

 PCR amplification 

Temperature Duration 
Number of 

cycles 

95°C 15 min 1 

95°C 30 sec 

50 56* 30 sec 

72°C 20 sec 

72°C 5 min 1 

4°C ∞  

* may be adapted based on amplicon temperature 

 

After verification by gel electrophoresis on 2% agarose gel, 5 µl of PCR product with 

40 µl binding buffer were incubated for 10 min at RT with shaking.  

Binding buffer included the following components:  

10 mM Tris 

2 M NaCl 

1 mM EDTA 

0.1 % Tween 20; pH 7.6; adjusted with 1 M HCl 

 

4 µl of streptavidin coated sepharose beads and 33 µL of ddH20 were added. The 

binding mix was purified and rendered single-stranded using the Pyrosequencing 
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Vacuum Prep Workstation according to the manufacturer’s instructions. Beads were 

released into 12 µl annealing buffer with the following components:  

20 mM Tris 

4 mM Mg-Acetate; pH 7.6; adjusted with 4 M acetic acid 

4 pmol of the respective sequencing primer  

Primers were annealed to the target by incubating at 80°C for 2 min. Quantitative 

DNA methylation analysis was carried out on a PSQ 96MD system with the 

PyroGold SQA Reagent Kit and results were analyzed using the Q-CpG software 

(V.1.0.9, Pyrosequencing). 

 

2.7. Statistical analysis 

2.7.1. Preprocessing and QC 

2.7.1.1. Genome-wide DNA Methylation analysis 

The two different chemistry technologies Infinium I and Infinium II used on the 

Infinium HumanMethylation450 BeadChip show a shift in the density curves 

between the probes detected by both chemistries [131, 134]. Therefore, it is 

recommended to normalize data prior to analysis so that the methylation values 

detected by the two chemistries are comparable. Different normalizations have been 

developed to this end. In the presented projects two methods, i.e. subset quantile 

normalization (SQN) [134] and beta mixture quantile normalization (BMIQ) [135] 

were applied to the data from the nested case-control study and the cross-sectional 

study, respectively.  

After a first quality check raw methylation data were extracted with Illumina® 

GenomeStudio Version 2011.1 (respectively 2010.3; see chapter 2.5.3.), 

Methylation Module 1.9.0 (respectively 1.8.5; see chapter 2.5.3.) and preprocessed 

using SQN and BMIQ for normalization, and the packages lumi (version 2.8.0) and 

methylumi (version 2.2.0) using R (version 2.15.1 [136]). The pipelines cover the 

following preprocessing steps: First, probes with signals being summarized from 

less than three functional beads, and probes associated with a detection p-value 

larger than 0.01 were defined as low-confidence probes. Samples with more than 
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5% low-confidence probes were removed from the analysis. Second, probes 

representing or being located in 50 bp proximity to SNPs with minor allele frequency 

at least 5% were excluded from the data set to avoid confounding of the methylation 

level by genetic variation. Third, color bias adjustment using smooth quantile 

normalization, separately for the two color channels, and background correction 

based on the negative control probes present on the Infinium HumanMethylation450 

BeadChip were conducted using the R package lumi. Finally, the pipeline provides a 

SQN and BMIQ normalization step, respectively. Following normalization, 

methylation values of low-confidence probes associated were set to missing, and 

probes with more than 5% low-confidence signals were removed from the analysis. 

Potential technical bias due to plate and chip assignment of the samples can be 

neglected for nested case-control study as the matched cases and controls were 

located next to another on the Infinium HumanMethylation450 BeadChip as well as 

on the same bisulfite conversion plate.  

Due to missing values for covariables, four matched pairs had to be excluded for the 

nested case-control discovery study. Finally, 196 case and controls each were 

included in the statistical analysis (table 5). These data are also included in the 

replication stage of the LOLIPOP study.  

Table 5: Number of probes and samples excluded during preprocessing. 

 SQN 

(nested case-control study) 

BMIQ 

(cross-sectional study) 

 Matched pairs 

(number) 

Probes 

(number) 

Samples 

(number) 

Probes 

(number) 

total 
200 matched 

pairs 
485,577 1,814 485,577 

excluded 4 29,664 15 44,025 

final 196 455,913 1,799 441,552 

 

After finishing the analysis, it was found out that not all probes including a SNP are 

excluded based on the list provided by Touleimat and Tost [134] during the 

normalization method. Therefore, for the top hits, for potential SNPs using lists 

provided by Chen et al. [137] as well as Price et al. [138] were referred to and the 

minor allele frequency (MAF) including the European population [Utah Residents 
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(CEPH) with Northern and Western European ancestry (CEU) (n=99), Finnish in 

Finland (FIN) (n=99), Toscani in Italia (TSI) (n=107), British in England and Scotland 

(GBR) (n=91), Iberian population in Spain (IBS) (n=107)], via 1000 genomes 

(http://browser.1000genomes.org/Homo_sapiens/UserData/Allele?db=core; phase 

3) was calculated. All SNPs included in both lists for the found CpG sites have a 

MAF ≤ 0.05, therefore the CpG sites were not excluded. 

 

2.7.1.2. Replication and Fine Mapping 

Plate respectively SpectroChip effects were not investigated as matched cases and 

controls were localized next to another on each plate, and can therefore be 

neglected. Five matched pairs were excluded as the cases’ time to diabetes 

diagnosis was less than 1 year after the baseline time point, and therefore, it cannot 

be excluded that they were already diabetic at this time point. A further matched pair 

has to be excluded due to missing covariable values. Finally, 790 samples (395 

matched cases and controls) were included in the replication study (figure 8). 

 

2.7.1.3. Comparison SQN vs BMIQ 

As mentioned previously, normalization of raw methylation data is strongly needed 

to make the signals detected via Infinium I and Infinium II comparable. In the 

following section, the two normalization methods used for this doctoral thesis, SQN 

and BMIQ, are described in more detail. Furthermore, it will be pointed out why a 

new normalization method was used for the second part of this project.  

SQN normalized Infinium II signals using Infinium I as anchors, conducted 

separately for six probe categories, defined by their relative position to the CpG 

islands. Therefore, the Infinium I/Infinium II bias was corrected, while keeping the 

relative distribution across CpG islands as well as shores, shelves, and distant 

related probes of Infinium II signal. SQN computes reference quantiles from Infinium 

I probes and uses them to normalize Infinium II probes [134].  
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The BMIQ pipeline uses the statistical distribution characteristics of type 1 probes 

and uses them to adjust the-values of type 2 probes. 3-state beta-mixture models 

were used to assign probes to methylation states followed by transformation of 

probabilities into quantiles and last – to preserve the monotonicity and continuity of 

data – a methylation dependent dilation transformation [135]. 

At the time when the nested case-control study was processed, SQN appeared to 

be the best publically available strategy to normalize methylation data. During 

subsequent months, studies were published comparing the normalization methods. 

Marabita and colleagues compared different published normalization pipelines and 

found that BMIQ reduced the Infinium I/Infinium II probe type biases effectively. In 

addition, technical variability of almost all investigated pairs was reduced. 

Furthermore, they show that while SQN reduced the bias between probe types, 

technical variability was amplified when this method was used [139]. Due to the 

advanced process of the project and started replication it was decided to use the 

SQN pipeline for the studies of association of DNA methylation and incident T2D 

and switch to the BMIQ pipeline for the other project.  

 

2.7.2. Statistical analysis 

2.7.2.1. Nested case-control study 

392 matched samples (196 cases and controls each) and 790 matched samples 

(395 cases and controls each) were included in the discovery and replication 

studies, respectively (figure 8).  

Associations between DNA methylation at baseline (methylation -values) and T2D 

development during follow-up were determined using conditional logistic regression 

models with the R package survival, version 2.37.4 [140]. Conditional logistic 

regression was used to account for the matched design of nested case-control 

studies, thereby allowing for unbiased effect estimation. Different models were fitted 

(table 6).  
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Table 6: Regression models for methylome-wide association study by incident T2D. 

Model Adjustment variables 

M1 
no adjustment (note that age and sex is accounted for by 1:1 

matching already) 

M2 BMI 

 

CpG sites showing genome-wide association with incident T2D in model 1 (p < 0.05 

after Benjamini-Hochberg (B-H) correction for multiple testing) were selected for 

replication. cg22800477 (annotated to CASZ1) and cg09154213 (annotated to 

TMEM57) could not be included in analysis via EpiTYPER® as no primer could be 

designed due to technical issues. Additionally, two candidate CpG sites annotated 

to TCF7L2 and CDKAL1 [37] were embedded, that were among the 1,000 best hits 

for different adjustment models. CpG sites annotated to TMEM57 and CASZ1 were 

replicated using pyrosequencing. Data were analyzed in analogy to the discovery 

study. In the replication study, p-values were corrected for multiple testing using the 

conservative Bonferroni method, accounting for eight independent CpG sites. 

 

2.7.2.2. Replication for LOLIPOP study 

Data from the nested case-control study were inquired for replication of methylome-

wide significant hits from the LOLIPOP study which investigated the prediction of 

incident T2D through DNA methylation markers in peripheral blood amongst Indian 

Asians and Europeans. The discovery study comprises 1,074 incident T2D patients 

and 1,590 controls with Indian Asian ancestry. The replication panel included 377 

incident cases and 764 matched controls with European ancestry and 647 incident 

cases and 1,073 controls with Indian Asian ancestry. In the following section only 

the statistical part for the KORA study is described. For this study BMIQ-normalized 

methylation -values of 196 matched cases and controls from the nested case-

control study were used. The different adjustment models are presented in table 7. 

For the calculation of a methylation score, the discovered methylation markers were 

standardized (z-transformed) and weighted by their discovery effect sizes. 
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Statistical analysis was done as described under 2.7.2.1. In addition, mean and 

standard deviation of methylation markers and methylation score were determined 

for T2D cases and controls. 

Table 7: Regression models for replication of the methylome-wide association study by 

incident T2D (LOLIPOP study). 

Model Adjustment variables 

M1 no adjustment  

M2 age  

M3 M2 + waist hip ratio + BMI 

 

2.7.2.3. Cross-sectional study 

1,448 non-diabetic participants from the follow-up study F4 (see chapter 2.2.2; 

figure 9) were included in the methylome-wide association study for fasting glucose, 

2-hour glucose, fasting insulin, and HbA1c as well as 617 for 2-hour insulin, 

respectively and 1,440 for HOMA-IR. Quantitative traits, excluding HbA1c and 2-

hour insulin, were log transformed to obtain an approximate normal distribution. The 

association between DNA methylation and T2D-related quantitative traits (fasting 

glucose, 2-hour glucose, fasting insulin, HOMA-IR, and HbA1c) were assessed 

using linear mixed effect models (R package nlme [141]) with trait as response 

variable and methylation -value as independent variable, including additional 

covariates as described in table 8 and accounting for plate effects. 

Table 8: Regression models for methylome-wide association study by measures of glucose 

metabolism. 

Model Adjustment variables 

M1 Age, sex + estimated white blood cell proportions [142] 

M2 M1 + BMI 

 

Furthermore, 2-hour insulin (cube root transformed) was analyzed similarly including 

the CpG sites which showed genome-wide significance in model 1 with phenotypes 

named above due to the small number of samples with available 2-hour insulin data. 

Covariates described in table 8 were included for statistical analysis. All results were 

corrected for multiple testing using the Benjamini-Hochberg (B-H) method. Results 

were defined as significant where B-H-adjusted p < 0.05. Results are presented with 
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coefficient (expressing how many SD a dependent variable will change, per SD 

increase in the predictor variable), p-value and B-H adjusted p-value. 

Due to the fact that not all probes including a SNP, which could be problematic as 

they can influence the binding of probes on the beads labeled at the array, were 

excluded via a list provided by Touleimat and Tost [134] during the normalization 

method, significant CpG sites were checked for potential existence of SNPs. The 

lists provided by Chen et al. [137] as well as Price et al. [138] were used and the 

MAF based on the data from the five European populations [CEU (n=99), FIN 

(n=99), TSI (n=107), GBR (n=91), IBS (n=107)] included in the 1000 genome 

project (http://browser.1000genomes.org/Homo_sapiens/UserData/Allele?db=core; 

phase 3) was calculated. All SNPs included in the lists of the detected CpG sites 

have a MAF ≤ 0.05, therefore they were not excluded. 

For sensitivity analyses, samples were stratified according to DNA methylation 

quintiles at the significant CpG sites. Mean ± SD was calculated. P-values were 

determined using a linear regression, determining the regression between the 

phenotype and the median of the methylation-quintile, for continuous and Χ2 test for 

categorical variables.  

Statistical analysis were performed using R (version 2.15.3 or higher). 

 

2.7.2.4. Gene expression analysis 

Total RNA was extracted from whole blood under fasting conditions according to the 

manufacturer’s instructions using the PAXgene Blood miRNA Kit (Qiagen). Gene 

expression profiling was carried out as described elsewhere using the Illumina 

Human HT-12 v3 Expression BeadChip [143].  

The samples for gene expression analysis were preprocessed as described 

elsewhere [143]. For a subset of 533 participants, both methylation and gene 

expression data were available (see also chapter 2.2.2.). In this subset the 

associations between gene expression and DNA methylation and the associations 

between gene expression and phenotype were analyzed using linear regression 
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models. Transcript probes that mapped in a ± 500 kb window around the CpG site 

were included. Analyses were adjusted for technical variables [sample storage time, 

RNA integrity number (RIN), RNA amplification batch] [143], age, sex, BMI, and 

estimated white blood cell proportions [142] and plates. Multiple testing was 

accounted for using the B-H procedure. Results were defined as significant where 

B-H-adjusted p ≤ 0.05. 

All statistical analyses were performed using R (version 2.15.3 or higher). 

 

2.8. Ingenuity Pathway analysis 

The Ingenuity Pathway Analysis (IPA) software was used to detect potential 

pathways and networks in the DNA methylation data relevant in the nested case-

control study and cross-sectional study in an unbiased way. The 1,000 CpG sites 

with the smallest p-values assessed in the different analyses were included.  

In the case that two or more genes were annotated to one CpG site, the CpG was 

set for each annotated gene alone. CpG name, gene name, p-value, and beta were 

uploaded to IPA and each identifier was mapped to the corresponding term (ID: 

gene name; others: beta; p-value: p.value). Ingenuity Knowledge Base (Gene only) 

and Ingenuity Knowledge Base (Gene + Endogenous Chemicals) were used for 

nested case-control study and cross-sectional study, respectively. Canonical 

pathways were investigated and pathways with a p-value < 0.05 after B-H correction 

were defined as statistically significant. 
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2.9. Material 

2.9.1. Laboratory equipment 

384-well plate Thermo Fisher Scientific (Waltham, MA, USA) 

96-well plate Thermo Fisher Scientific (Waltham, MA, USA) 

Aluminium seal Thermo Fisher Scientific (Waltham, MA, USA) 

Cap Mat  Thermo Fisher Scientific (Waltham, MA, USA) 

Centrifuge  Sigma 4K15C 

(Sigma Laborzentrifugen, Osterode, 

Germany) 

Rotanta 46 RS 

(Hettich, Tuttlingen, Germany) 

Mikrozentrifuge 

(NeoLab, Heidelberg, Germany) 

Centrifuge 5417R 

(Eppendorf AG, Hamburg, Germany) 

Clear Spacer Tecan AG (Crailsheim, Germany) 

Falcons 15 ml/ 50 ml  BD (Heidelberg, Germany) 

Falcons 15 ml/ 50 ml  Sarstedt (Nuernbrecht, Germany) 

Felix 2000 Biostep (Wolferstadt, Germany) 

Flow-Through Chambers Tecan AG (Crailsheim, Germany) 

Gel electrophoreses chamber Biozym (Oldendarf, Germany) 

Gel electrophoresis device: Bio-

Rad Power Pac 300/3000 

BIO-RAD Laboratories (Munich, Germany) 

Glass back plate  Illumina (San Diego, CA, USA) 

Heat block  SciGene (Sunnyval, CA, USA) 

Heat oven Memmert (Schwabach, Germany) 

Heat Sealer Thermo Fisher Scientific (Waltham, MA, USA) 

Hyb Chamber including 

  BeadChip Hyb Chamber gasket 

  Hyb Chamber insert 

Illumina (San Diego, CA, USA) 

Hybridization oven Illumina (San Diego, CA, USA) 

iScan Illumina (San Diego, CA, USA) 

Kimwipes  Kimberly-Clark (Koblenz-Reinh., Germany) 

MALDI-TOF MS Agena Bioscience formerly Sequenom 

(Hamburg, Germany) 

Mass Array™ Nanodispenser Agena Bioscience formerly Sequenom 

(Hamburg, Germany) 

Multi-sample BeadChip 

alignment fixture including 

  Black frames 

Illumina (San Diego, CA, USA) 
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  Metal clamps 

NanoDrop (8-Sample 

Spectrophotometer) 

PeqLab (Erlangen, Germany) 

PCR cycler Thermal Cycler C1000™ 

(BIO-RAD Laboratories, Munich, Germany) 

DNA Engine Tetrad 

(MJ Research, South San Francisco, USA) 

Single pipettors (Rainin) 

1–10 μl, 5–50 μl, 50–300 μl,  

100 – 1,000 μl 

Mettler Toledo (Gießen, Germany) 

Multi-channel pipettes (Rainin) 

1–10 μl, 5–50 μl, 50–300 μl,  

100 – 1200 μl 

Mettler Toledo (Gießen, Germany) 

Pipettes tips  Mettler Toledo (Gießen, Germany) 

PSQ 96MD system Qiagen (Hilden, Germany) 

PyroMark Q96 HS Nucleotide 

Tip 

Qiagen (Hilden, Germany) 

PyroMark Q96 HS Q96 Reagent 

Tip 

Qiagen (Hilden, Germany) 

Pyrosequencing Vacuum Prep 

Workstation 

Pyrosequencing AB (Uppsala, Sweden) 

Robot BeadChip Alignments 

Fixtures 

Illumina (San Diego, CA, USA) 

Robot Tecan Genesis RSP 150 Tecan AG (Crailsheim, Germany) 

Robot Tip Alignment Guide Illumina (San Diego, CA, USA) 

Thermo Seal slide Thermo Fisher Scientific (Waltham, MA, USA) 

Seal slide  Qiagen (Hilden, Germany) 

Taq polymerase Qiagen (Hilden, Germany) 

Tube racks for vacuum 

desiccator  

VWR (Darmstadt, Germany) 

Vacuum desiccator + exhauster 

(Nalgene) 

Thermo Fisher Scientific (Waltham, MA, USA) 

KNF Laborport (Freiburg, Germany) 

High Speed microplate shaker Illumina (San Diego, CA, USA) 

Vortex mixer  Velp Scientifica (Bohemia, NY, USA) 

Rotilabo® Liquid reservoir PVC  Carl Roth (Karlsruhe, Germany) 

Water circulator  VWR (Darmstadt, Germany) 
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2.9.2. Chemicals, reagents, enzymes and assays 

0.1N NaOH (Sodium hydroxide) Sigma Aldrich (Taufkrichen, Germany) 

0.5M EDTA  Merck (Darmstadt, Germany) 

100% Ethanol  Merck (Darmstadt, Germany) 

100% Isopropanol  Merck (Darmstadt, Germany) 

4-point calibrant for EpiTYPER® Agena Bioscience formerly Sequenom 

(Hamburg, Germany) 

6x Loading buffer  VWR (Darmstadt, Germany) 

95% formamide/1mM EDTA Carl Roth (Karlsruhe, Germany) 

Agarose powder Biozym (Oldendarf, Germany) 

Amicroparticle enzyme 

immunoassay 

Abbott Labratories (Ludwigshafen, 

Germany) 

Boric Acid Carl Roth (Karlsruhe, Germany) 

Buffer and MgCl2 for PCR Qiagen (Hilden, Germany) 

Deionized water Merck (Darmstadt, Germany) 

Dextro OGT Boehringer (Mannheim, Germany) 

DNA Ladder 

Lamda DNA/EcoRI + HindIII Marker 

GeneRuler 1kb DNA Ladder 

Thermo Fisher Scientific (Waltham, 

MA, USA) 

dNTP Thermo Fisher Scientific (Waltham, 

MA, USA) 

EDTA Merck (Darmstadt, Germany) 

Glucoquant  Roche (Diagnostics, Mannheim, 

Germany) 

HotStarTaq DNA Polymerase Qiagen (Hilden, Germany) 

Human Methylation Controls - Mix EpigenDX (Hopkinton, MA, USA) 

Midori Green  Nippon Genetics (Dueren, Germany) 

Nanopure H2O Carl Roth (Karlsruhe, Germany) 

Primer for PCR and EpiTYPER® Metabion (Planegg, Germany) 

Primer for pyrosequencing  Biotez (Berlin, Germany) 

PyroMark Gold Q96 SQA Reagents Qiagen (Hilden, Germany) 

Streptavidin coated sepharose beads  GE Healthcare (Uppsala, Sweden) 

Taq-Polymerase + buffer for PCR Qiagen (Hilden, Germany) 

Tris AppliChem, Inc. (St. Louis, MI, USA) 
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2.9.3. Kits 

EpiTect® 96 Bisulfite Kit including 

  Bisulfite Solution 

  DNA Protect Buffer 

  Carrier RNA 

  Buffers 

  EpiTect 96-well plates 

Qiagen (Hilden, Germany)  

EpiTYPER® T Reagent Set (10x384) 

including 

  Complete PCR Reagent Set  

  MassCLEAVE T7 Kit (T Cleavage) 

  Clean Resin Kit 

  SpectroCHIP II Arrays  

Agena Bioscience formerly 

Sequenom (Hamburg, 

Germany) 

EZ-96 DNA MethylationTM Kit (Shallow-Well 

Format) including 

  Bisulfite conversion plate 

  Collection plate 

  Binding plate 

  Elution plate 

  Bisulfite conversion reagent 

  Wash buffer 

  Dilution buffer 

  Binding buffer 

  Desulphonation buffer 

  Elution buffer 

Zymo Research (Irvine, CA, 

USA) 

Infinium HumanMethylation450 BeadChip 

including 

  MSA1(multi sample amplification 1 mix) 

  RPM (random primer mix) 

  MSM (multiple sample amplification master mix) 

..FMS (fragmentation solution) 

  PM1 (precipitation solution) 

  RA1 (resuspension, hybridization, and wash  

            solution) 

  PB2 (humidifying buffer used during  

           hybridization) 

  XC1 (XStain BeadChip solution 1) 

  XC2 (XStain BeadChip solution 2) 

  XC3 (XStain BeadChip solution 3) 

  XC4 (XStain BeadChip solution 4) 

  STM (superior two-color master mix) 

Illumina, Inc. (San Diego, CA, 

USA) 
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  ATM (anti-stain two-color master mix)  

  TEM (two-color extension master mix) 

  PB1 (reagent used to prepare BeadChip for  

          hybridization) 

  HumanMethylation450 BeadChip 

 

2.9.4. Computer software and programs 

Illumina GenomeStudio  

(Methylation Module)  

Illumina Inc. (San Diego, CA, USA) 

MassARRAY EpiTyper 1.2 

   EpiDesigner.com 

   Plate Editor 

   Analyzer 

Agena Bioscience formerly Sequenom, Hamburg, 

Germany 

MassArray package 

 

Thompson and Greally (2009). MassArray: Analytical 

Tools for MassArray Data. R package version 1.10.0. 

Q-CpG software (V.1.0.9, 

Pyrosequencing) 

Qiagen (Hilden, Germany) 

R software 2.15.3 www.r-project.org 

RT Workstation 3.4: 

   Chip Linker 

   Caller 

   Acquire 

Agena Bioscience formerly Sequenom, Hamburg, 

Germany 

 

2.9.5. Online databases and programs 

1000 Genome  http://browser.1000genomes.org/ 

Ingenuity pathway analyses (Qiagen) http://www.ingenuity.com/products/i

pa 

National Center of Biotechnology 

Information 

http://www.ncbi.nlm.nih.gov/ 

R http://www.r-project.org/ 

Sequenom`s Primer Design www.epidesigner.com 

UCSC Genome Browser https://genome.ucsc.edu/index.html 

 



  Results 

- 58 - 

 

3. Results 

3.1. Association with incident T2D 

For the analysis of methylome-wide association with incident T2D a nested case-

control study was designed using samples from the baseline studies S3 and S4 in a 

discovery and K12 and S2 in a replication panel.  

 

3.1.1. Study characteristics 

Study characteristics for the discovery and the replication study are shown in table 9 

and table 10, respectively. 54.1% of cases and controls were male and the mean 

ages of all cases and controls included were 57.8 and 57.6, respectively. There 

were no statistically significant differences between the two groups with respect to 

age and sex. However the BMI was significantly increased in cases compared to 

controls. At the same time white blood cell count, C-reactive protein (CRP), HbA1c, 

and systolic blood pressure were also significantly increased. HDL cholesterol was 

significantly decreased in cases compared to controls. Furthermore, cases were 

significantly more inactive and had a higher tendency to get a myocardial infarct. In 

addition the positive family history and smoking status was significantly different in 

people with incident T2D (table 9). 

The mean age of the samples included in the replication study was 56.8 years for 

cases and 56.7 for controls and thus comparable to the discovery study. BMI, 

systolic blood pressure and total cholesterol were significantly increased in cases, 

whereas HDL cholesterol was significantly decreased. The study population 

included slightly more males than females. Cases were significantly more inactive, 

had a higher T2D family history, and a distinct smoking behavior. CRP, white blood 

cell count, and HbA1c were not available in the replication study (table 10). 
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Table 9: Study characteristics of the discovery study – a total of 196 matched case-controls 

pairs.  

 
Cases Controls 

 

 
Mean (SD)/% Mean (SD)/% p-value 

Sex [% male] # 54.1 54.1  1 

Age [years] * 57.8 (8.9) 57.6 (8.8) 0.20 

BMI [kg/m2] * 30.9 (4.8) 27.5 (4.0) 1.1 x 10-14 

    

HbA1c [%] * 5.8 (0.8) 5.3 (0.4) 3.1 x 10-14 

    

C-reactive protein [mg/l] * 3.8 (5.5) 2.2 (3.7) 1.4 x 10-4 

White blood cell count [/nl] * 7.5 (2.7) 6.6 (1.7) 2.0 x 10-5 

Total cholesterol [mg/dl] * 237.9 (41.9) 242.9 (42.9) 0.25 

HDL cholesterol [mg/dl] * 47.0 (13.2) 55.4 (16.9) 1.2 x 10-8 

Systolic blood pressure [mm Hg] * 140.3 (19.3) 135.0 (20.2) 7.4 x 10-3 

    

Alcohol consumption [g/d] * 17.3 (25.4) 19.2 (26.3) 0.40 

Smoking status [%] # 

current 

ex 

never smoker 

 

25.0  

34.7 

40.3 

 

14.3 

35.2 

50.5 

1.3 x 10-2 

Physically active [%] # 

(combination of activity during summer 

and winter) 

37.8  50.0  1.1 x 10-2 

Myocardial infarction [%] # 4.6 1.5 5.0 x 10-2 

Parental T2D history [%] # 

yes 

no 

don't know 

 

34.2 

41.3 

24.5 

 

20.4 

53.6 

26.0 

7.6 x 10-3 

p-values were determined through likelihood-ratio tests. 

* Data are presented as medians for the continuous variables.  

# Data are presented as the number in percentage for categorical variables 
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Table 10: Study characteristics of the replication study - a total of 395 matched case-controls 

pairs.  

 
Cases Controls 

 

 
Mean (SD)/% Mean (SD)/% p-value 

Sex [% male] # 60.3 60.3 1 

Age [years] * 56.8 (9.7) 56.7 (9.8) 0.42 

BMI [kg/m2] * 29.7 (4.2) 27.1 (3.5) 5.7x10-20 

    

C-reactive protein [mg/l] * 3.8 (6.5) 2.9 (4.6) 0.19 

Total cholesterol [mg/dl] * 252.8 (45.4) 246.6 (42.3) 4.1 x 10-2 

HDL cholesterol [mg/dl] * 50.5 (15.0) 57.9 (16.7) 2.4 x 10-11 

Systolic blood pressure [mm Hg] * 140.8 (18.9) 134.3 (18.6) 1.0 x 10-6 

    

Alcohol consumption [g/d] * 21.0 (27.2) 19.1 (24.4) 0.22 

Smoking state [%] # 

current 

ex 

never smoker 

 

25.3 

33.7 

41.0 

 

17.7 

35.7 

46.6 

 

2.4 x 10-2 

Physically active [%] ‘ 

(combination of activity during 

summer and winter) 

 

27.9 

 

34.7 

 

3.4 x 10-2 

Myocardial infarct [%] #  2.5 2.8 0.81 

Parental T2D history [%] # 

yes 

no 

don't know 

 

26.3 

47.3 

25.8 

 

20.3 

60.0 

19.2 

 

1.9 x 10-3 

p-values were determined through likelihood-ratio tests. 

* Data are presented as medians for the continuous variables.  

# Data are presented as the number in percentage for categorical variables 

 

3.1.2. Genome-wide DNA methylation analysis 

Results for the methylome-wide association analysis with incident T2D are 

displayed in table 11. In the first adjustment model (without adjustment) the 

methylation degrees of six CpG sites [cg11057824 (C140rf182), cg18514820 (VIM), 

cg20587409 (CDKAL1), cg22876894 (not annotated), cg23951816 (TCF7L2), 

cg25333225 (AKT2)] reached genome-wide significance after correction for multiple 

testing (B-H adjusted p-values 2.1 x 10-2 - 6.8 x 10-3). After additional adjustment for 

BMI (adjustment model 2) as a high risk factor for T2D, no genome-wide significant 

CpG sites could be detected. Results of the methylome-wide analysis are shown as 
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Manhattan plots for models 1 and 2 (figure 16). Annotation information of detected 

CpG sites is summarized in appendix table 3. Furthermore, a slight, but significant, 

difference for the methylation degree for the aforementioned CpG sites between 

cases and controls was found (p-values 10-7-10-8). Except cg11057824, the 

methylation degrees of the cases were increased at the CpG sites compared to 

controls (figure 17).  

 
Figure 16: Results of methylome-wide association analysis with incident T2D. a) Results 

without adjustment. b) Results after adjustment for BMI; B-H: Benjamini-Hochberg  
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Table 11: Results of methylome-wide association analysis with incident T2D for the discovery study.  

   Without adjustment Adjusted for BMI 

CpG Gene Chrom. OR  

(95% CI) 

p-value B-H adjusted 

p-value 

OR  

(95% CI) 

p-value B-H adjusted 

p-value 

cg09154213 TMEM57 1 3.18 (2.09, 4.85) 7.8 x 10-8 1.1 x 10-2 2.66 (1.75, 4.06) 5.2 x 10-6 0.43 

cg22800477 CASZ1 1 1.49 (1.30, 1.71) 1.5 x 10-8 6.2 x 10-3 1.45 (1.24, 1.70) 3.2 x 10-6 0.43 

cg18514820 VIM 10 2.54 (1.78, 3.61) 2.4 x 10-7 1.9 x 10-2 2.58 (1.73, 3.84) 3.3 x 10-6 0.43 

cg11057824 C14orf182 14 0.92 (0.89, 0.95) 4.9 x 10-8 1.0 x 10-2 0.92 (0.89, 0.96) 6.2 x 10-6 0.43 

cg25333225 AKT2 19 2.86 (1.91, 4.26) 2.7 x 10-7 1.9 x 10-2 2.90 (1.84, 4.59) 4.9 x 10-6 0.43 

cg22876894 unannotated 20 2.57 (1.80, 3.69) 2.7 x 10-7 1.9 x 10-2 2.29 (1.54, 3.41) 3.9 x 10-5 0.93 

Chrom.=chromosome; OR: odds ratio; CI: confidence interval; B-H: Benjamini-Hochberg 

 



Results 

- 63 - 

 

 
Figure 17: Differences for methylation degree of methylome-wide CpG sites between cases 

and controls.  

 

3.1.3. Replication and fine mapping 

To assess and validate the reliability of the CpG sites identified as associated with 

incident T2D in the discovery study, hits were replicated in an independent study 

using EpiTYPER® and pyrosequencing. Results for the replication study are shown 

in table 12. As it was not possible to analyze CASZ1 and TMEM57 using 

EpiTYPER® due to technical problems they were replicated using pyrosequencing. 

Additionally, two candidate CpG sites annotated to TCF7L2 and CDKAL1 [37] were 

embedded in analysis using EpiTYPER®. CpG sites cg20587409 (CDKAL1) and 
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cg23951816 (TCF7L2) were included as TCF7L2 is one of the genes most strongly 

associated with T2D to date and CDKAL1 is a well-established locus as well. Both 

CpG sites can also be found within the top 1,000 CpG sites associated with incident 

T2D in the discovery study. 

The methylation degree of none of the leading CpG sites was significantly 

associated with incident T2D neither with nor without adjustment for BMI after 

correction for multiple testing using the Bonferroni method. However, the 

methylation at four CpG sites flanking the leading CpG site from the discovery study 

showed significant association with incident T2D in the replication study. Three of 

them belong to the AKT2 amplicon (CpG site 1, 2/3, 16) and one to C14orf182 (CpG 

site 10). CpG site 10 of the C14orf182 amplicon and CpG site 2/3 were still 

significant after adjustment for BMI (table 13). The fragments including CpG sites 1 

and 16 of the AKT2 amplicon contains the same mass. Therefore, it was not 

possible to distinguish between these two results, hence interpretation of results is 

limited.  

CpG site 10 of C14orf182 is located 151 bp downstream from the leading CpG site. 

CpG sites 1 and 2/3 of the AKT2 amplicon are 177 bp and 169/162 bp downstream 

from the leading CpG site, whereas CpG site 16 is 43 bp upstream (figure 18). 

Furthermore, CpG sites 1 and 16 of the AKT2 amplicon are also included on the 

Infinium HumanMethylation450 BeadChip, namely cg14260485 and cg03023952, 

having uncorrected p-values of 0.79 and 0.54 respectively in the discovery study 

without adjustment. The CpG sites have correlations between 0.089 and 0.231 with 

the leading CpG site.  
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Figure 18: Positions of CpG sites a) cg11057824 (annotated to C14orf182) and b) cg25333225 

(annotated to AKT2) within the amplicon, respectively. The number presents the number of 

bases within the amplicon.  
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Table 12: Results of methylome-wide analysis with T2D for the replication study showing the leading CpG sites from the discovery study.  

     Without adjustment Adjusted for BMI 

Amplicon Lead CpG Gene 
CpG in 

Amplicon 
Chrom. 

OR 

(95% CI) 
p-value 

Bonferroni 

adjusted 

p-value 

OR 

(95% CI) 
p-value 

Bonferroni 

adjusted 

p-value 

TMEM57 cg09154213 TMEM57 CpG_5 1 
1.00 

(0.90, 1.12) 
0.95 1 

1.00 

(0.88, 1.13) 
0.95 1 

CASZ1 cg22800477 CASZ1 CpG_3 1 
1.01 

(0.94, 1.08) 
0.83 1 

1.00 

(0.93, 1.08) 
0.97 1 

A5a_cg20587409_5 cg20587409 CDKAL1 CpG_1 6 
1.02 

(0.97, 1.07) 
0.52 1 

1.01 

(0.95, 1.07) 
0.74 1 

A2a_cg18514820_1 cg18514820 VIM CpG_17.18 10 
0.97 

(0.89, 1.04) 
0.37 1 

0.95 

(0.88, 1.04) 
0.30 1 

A6a_cg23951816_9 cg23951816 TCF7L2 CpG_1.2 10 
1.01 

(0.95, 1.07) 
0.69 1 

1.05 

(0.99, 1.13) 
0.13 1 

A1a_cg11057824_13 cg11057824 C14orf182 CpG_6 14 
0.98 

(0.96, 1.00) 
9.8 x 10

-3
 7.9 x 10

-2
 

0.98 

(0.96, 1.00) 
2.6 x 10

-2
 0.21 

A4b_cg25333225_4 cg25333225 AKT2 CpG_14 19 
1.03 

(0.89, 1.20) 
0.70 1 

1.04 

(0.88, 1.23) 
0.64 1 

A3b_cg22876894_5 cg22876894 unannotated CpG_7 20 
0.99 

(0.92, 1.06) 
0.69 1 

0.98 

(0.91, 1.06) 
0.59 1 

Chrom.: chromosome; OR: odds ratio; CI: confidence interval 
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Table 13: Results of methylome-wide analysis with incident T2D for the replication study showing the significant CpG sites.  

     Without adjustment Adjusted for BMI 

Amplicon Lead CpG Gene 
CpG in 

Amplicon 
Chrom. 

OR 

(95% CI) 
p-value 

Bonferroni 

adjusted 

p-value 

OR 

(95% CI) 
p-value 

Bonferroni 

adjusted 

p-value 

A1a_cg11057824_13 cg11057824 C14orf182 CpG_10 14 
1.26 

(1.08, 1.48) 
4.4 x 10

-3
 3.5 x 10

-2
 

1.28  

(1.07, 1.53) 
7.4 x 10

-3
 5.9 x 10

-2
 

A4b_cg25333225_4 cg25333225 AKT2 CpG_1 19 
0.70 

(0.57, 0.87) 
1.1 x 10

-3
 8.7 x 10

-3
 

0.76  

(0.60, 0.96) 
2.4 x 10

-2
 0.19 

A4b_cg25333225_4 cg25333225 AKT2 CpG_2.3 19 
0.60 

(0.44, 0.81) 
1.0 x 10

-3
 8.4 x 10

-3
 

0.61 

(0.43, 0.86) 
5.4 x 10

-3
 4.3 x 10

-2
 

A4b_cg25333225_4 cg25333225 AKT2 CpG_16 19 
0.70 

(0.57, 0.87) 
1.1 x 10

-3
 8.7 x 10

-3
 

0.76  

(0.60, 0.96) 
2.4 x 10

-2
 0.19 

Chrom.: chromosome; OR: odds ratio; CI: confidence interval 
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3.1.4. Pathway analysis 

To functionally integrate the aforementioned results, pathway analyses were 

conducted using Ingenuity Software. Results for the first ten canonical pathways are 

presented in table 14 and table 15 for the discovery study without and with 

adjustment for BMI, respectively.  

In total, two canonical pathways were found for incident T2D reaching the B-H 

corrected level of significance (p-values < 0.05) including the first ten pathways for 

the different adjustment models. For the first adjustment model no pathways were 

significantly enriched. In contrast, “G Beta Gamma Signaling” and “NGF Signaling” 

are the two top pathways for the adjustment model including BMI with B-H adjusted 

p-values 3.41 x 10-2 and 3.77 x 10-2. In these pathways, 14 from a total of 117 and 

15 from a total of 118 genes which were incorporated were amongst the top 1,000 

CpG sites. “Integrin Signaling” and “Macropinocytosis Signaling” were detected in 

both adjustment models.  

Table 14: Results of the pathway analyses for the discovery study without adjustment 

presenting the first ten canonical pathways.  

 p-value 

B-H 

adjusted 

p-value 

Ratio 

Virus Entry via Endocytic Pathways 3.23 x 10-4 ns 13/99 

Integrin Signaling 5.13 x 10-4 ns 21/207 

FAK Signaling 8.27 x 10-4 ns 12/101 

VEGF Family Ligand-Receptor Interactions 9.89 x 10-4 ns 11/84 

Neuregulin Signaling 1.02 x 10-4 ns 12/102 

Erythropoietin Signaling 1.31 x 10-4 ns 10/78 

Macropinocytosis Signaling 1.47 x 10-4 ns 10/76 

Glioma Signaling 1.99 x 10-4 ns 12/112 

Role of BRCA1 in DNA Damage Response 2.17 x 10-4 ns 9/65 

UCP-D-xylose and 

UDP-D-glucuronate Biosynthesis 
2.32 x 10-4 ns 2/7 

B-H: Benjamini-Hochberg; ns: not significant after correction. 
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Table 15: Results for pathway analysis for the discovery study after adjustment for BMI 

presenting the first ten canonical pathways.  

 p-value 

B-H 

adjusted 

p-value 

Ratio 

G Beta Gamma Signaling 8.67 x 10-5 3.41 x 10-2 14/117 

NGF Signaling 1.91 x 10-4 3.77 x 10-2 15/118 

Integrin Signaling 6.09 x 10-4 ns 21/207 

Relaxin Signaling 8.32 x 10-4 ns 16/159 

Synaptic Long Term Depression 1.23 x 10-3 ns 16/159 

Macropinocytosis Signaling 1.62 x 10-3 ns 10/76 

Cardiac-ß-adrenergic Signaling 1.83 x 10-3 ns 15/154 

AMPK Signaling 1.97 x 10-3 ns 15/167 

Phospholipase C Signaling 2.15 x 10-3 ns 22/260 

Gaq Signaling 2.22 x 10-3 ns 16/168 

B-H: Benjamini-Hochberg; ns: not significant 

 

3.1.5. Replication for LOLIPOP study 

Samples from the nested case-control study were included for replication in the 

investigation of the LOLIPOP study analyzing DNA methylation markers in 

peripheral blood and their prediction possibility of T2D amongst Indian Asians and 

Europeans. In the following chapter only the results are presented for which 

samples from the KORA study were included (see also chapter 10.1.).  

In the discovery study for this project the methylation degrees of seven CpG sites 

were genome-wide significantly associated with incident T2D in Indian Asians with 

p-values < 10-6 [cg19693031 (TXNIP), cg09152259 (PROC), cg04999691 

(C7orf29), cg11024682 (SREBF1), cg18181703 (SOCS3), cg02650017 

(PHOSPHO1), and cg06500161 (ABCG1)]. Five of these seven CpG sites were 

replicated combining data from Indian Asians as well as Europeans, namely 

cg19693031, cg11024682, cg18181703, cg02650017, cg06500161 with p-values < 

0.05 (figure 19, table 16).  
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Figure 19: Results of methylome-wide association analysis with incident T2D. Underlined CpG 

sites were replicated with Europeans [modified after Chambers et al., submitted (see chapter 10.1.)]. 

 

Table 16: Replication testing for association with incident T2D in Europeans.  

Relative risk per 1SD 

CpG Gene LOLIPOP KORA Combined p-value 

cg19693031 TXNIP 
0.80 

(0.63 to 1.00) 

0.61 

(0.48 to 0.78) 

0.70 

(0.59 to 0.83) 
2.5 x 10

-5
 

cg09152259 PROC 
0.93 

(0.78 to 1.11) 

0.94 

(0.77 to 1.15) 

0.94 

(0.82 to 1.07) 
0.32 

cg04999691 C7orf29 
1.01 

(0.88 to 1.16) 

0.90 

(0.73 to 1.12) 

0.98 

(0.87 to 1.10) 
0.71 

cg11024682 SREBF1 
1.12 

(0.97 to 1.29) 

1.38 

(1.10 to 1.73) 

1.19 

(1.05 to 1.34) 
5.4 x 10

-3
 

cg02650017 PHOSPHO1 
0.81 

(0.69 to 0.94) 

0.79  

(0.61 to 1.02) 

0.80 

(0.70 to 0.92) 
1.2 x 10

-3
 

cg18181703 SOCS3 
0.89 

(0.76 to 1.04) 

0.66 

(0.52 to 0.84) 

0.81 

(0.71 to 0.92) 
1.6 x 10

-3
 

cg06500161 ABCG1 
1.17 

(0.99 to 1.38) 

1.61  

(1.28 to 2.03) 

1.31  

(1.14 to 1.49) 
1.2 x 10

-4
 

Methylation 

Score 
- 

1.63 

(1.27 to 2.09) 

2.24 

(1.70 to 2.96) 

1.88 

(1.56 to 2.26) 
2.5 x 10

-11
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Relative risk Q4 vs Q1 

CpG Gene LOLIPOP KORA Combined p-value 

cg19693031 TXNIP 
1.32 

(0.83 to 2.11) 

5.75 

(1.99 to 16.63) 

1.68 

(1.09 to 2.58) 
1.8 x 10

-2
 

cg09152259 PROC 
1.19 

(0.73 to 1.95) 

1.50 

(0.72 to 3.11) 

1.28 

(0.85 to 1.93) 
0.23 

cg04999691 C7orf29 
1.00 

(0.60 to 1.66) 

1.25 

(0.49 to 3.17) 

1.05 

(0.68 to 1.64) 
0.82 

cg11024682 SREBF1 
1.54  

(0.92 to 2.56) 

1.57 

(0.61 to 4.05) 

1.54 

(0.99 to 2.42) 
5.8 x 10

-2
 

cg02650017 PHOSPHO1 
2.16 

(1.26 to 3.69) 

1.50 

(0.53 to 4.21) 

2.00 

(1.24 to 3.22) 
4.3 x 10

-3
 

cg18181703 SOCS3 
1.59 

(0.99 to 2.56) 

4.75 

(1.62 to 13.96) 

1.90 

(1.23 to 2.94) 
3.7 x 10

-3
 

cg06500161 ABCG1 
1.13 

(0.71 to 1.79) 

4.00 

(1.50 to 10.66) 

1.42 

(0.94 to 2.16) 
9.9 x 10

-2
 

Methylation 

Score 
 

2.16 

(1.27 to 3.66) 

20.00 

(2.68 to 149.0) 

2.49 

(1.50 to 4.15) 
4.6 x 10

-4
 

Results are presented as OR (95% CI) per 1 SD increase in methylation for Q4 compared to Q1, 

where Q1 is the quartile with the lowest T2D risk. P-value is shown for the combined analysis 

[modified after Chambers et al., submitted (see chapter 10.1.)]. 

 

Methylome-wide data of the discovery and the prospective replication studies were 

combined using inverse variance meta-analysis. All five markers in this study 

reached methylome-wide significance for association with T2D (p-values 1.4 x 10-9 

to 1.2 x 10-17). Between the top and bottom quartiles of DNA methylation the relative 

risk for incident T2D is 1.05 to 2.00 for the analysis of the Europeans (table 17). The 

population risk for T2D due to methylation score (above 25th centile) was 32% in 

Europeans and 44% in Indian Asians.  

Table 17: Relative risk for incident T2D for Europeans (replication).  

CpG Gene Europeans (replication) 

cg19693031 TXNIP 1.68 (1.09 to 2.58) 

cg09152259 PROC 1.28 (0.85 to 1.93) 

cg04999691 C7orf29 1.05 (0.68 to 1.64) 

cg11024682 SREBF1 1.54 (0.99 to 2.42) 

cg02650017 PHOSPHO1 2.00 (1.24 to 3.22) 

cg18181703 SOCS 1.90 (1.23 to 2.94) 

cg06500161 ABCG1 1.42 (0.94 to 2.16) 

Methylation Score - 2.49 (1.50 to 4.15) 

Results are expressed as OR for Q4 compared to Q1. Q1 is the quartile with the 

lowest T2D risk. [modified after Chambers et al., submitted (see chapter 10.1.)] 
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3.2. Association with measures of glucose metabolism 

For the analysis of methylome-wide association with measures of glucose 

metabolism a cross-sectional study was designed including samples from the KORA 

follow-up study F4. 

 

3.2.1. Study characteristics 

Study characteristics for fasting glucose, 2-hour glucose, fasting insulin, and HbA1c 

are shown in table 18 as well as appendix table 4 for 2-hour insulin and appendix 

table 5 for HOMA-IR. The median age in the study population was 59 years and 

47.1% were male. The individuals included in the study were tendentially overweight 

with a median BMI of 27.06 kg/m2. The glycemic parameters were in normal range 

concerning T2D. 77.28% are normal glucose tolerant, whereas impaired fasting 

glucose, impaired glucose tolerance, and a combination of both were assessed in 

4.97%, 14.36%, and 3.38% of the study population, respectively. 60.15% were 

physically active (table 18).  

Study characteristics of participants included in the methylome-wide association 

study with 2-hour insulin (appendix table 4) and HOMA-IR (appendix table 5) are 

comparable to those for fasting glucose, 2-hour glucose, fasting insulin, and HbA1c. 

For 2-hour insulin the median age, which is 68 years, differs slightly from the other 

study populations. Furthermore, it included more subjects with impaired glucose 

tolerance as well as current smokers (appendix table 4).  
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Table 18: Study characteristics of the study population for DNA methylation analysis 

(n=1,448) for fasting glucose, 2-hour glucose, fasting insulin, and HbA1c. 

 Median  
(25th; 75th percentile) 

% 

Sex [% male]  - 47.1 

Age [years]  59 (53; 67) - 

BMI [kg/m2]  27.06 (24.51; 30.05) - 

Waist circumference [cm]  93.50 (84.45; 102.33) - 

   

Fasting serum glucose [mmol/l]  5.28 (4.94; 5.61) - 

2-hour serum glucose [mmol/l]  6.00 (5.00; 7.17) - 

HbA1c [%] 5.50 (5.20; 5.70) - 

Glucose tolerance status [%] 
NGT 
IFG 
IGT 
Combined IFG and IGT 

 
- 
- 
- 
- 

 
77.28  
4.97  
14.36  
3.38 

Insulin [µlU/ml]  4.10 (2.80; 6.70) - 

2-hour insulin [µlU/ml] 50.20 (28.70; 412.00) - 

HOMA-IR  0.97 (0.64; 1.59) - 

   

C-reactive protein [mg/l]  1.15 (0.58; 2.23) - 

Leucocytes [/nl]  5.50 (4.70; 6.50) - 

Total cholesterol [mmol/l]  5.71 (5.11; 6.43) - 

Triglycerides [mmol/l]  1.22 (0.86; 1.71) - 

Systolic blood pressure [mmHg]  122.20 (111.00; 

134.50) 

- 

Diastolic blood pressure [mmHg]  75.50 (69.50; 82.50) - 

   

Alcohol consumption [g/day]  8.43 (0.00; 22.86) - 

Smoking status [%]  
never 
ex 
current 

 
- 
- 
- 

 
44.75  
40.12  
15.12 

Physically active [%]  
(combination of activity during 
summer and winter) 

 
- 

 
60.15 

CD8+ T cells [%]+ 0.09 (0.05; 0.14) - 

CD4+ T cells [%]+ 0.16 (0.12; 0.21) - 

Natural killer cells [%]+ 0.02 (0.00; 0.04) - 

B cells [%]+ 0.05 (0.03; 0.06) - 

Monocytes [%]+ 0.12 (0.10; 0.13) - 

Granulocytes [%]+ 0.63 (0.57; 0.69) - 

+ Data are presented for the estimated white blood cell proportions using a 

recently published method [142]  

NGT: normal glucose tolerance; IFG: impaired fasting glucose; IGT: impaired 

glucose tolerance 
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3.2.2. Genome-wide DNA methylation analysis 

Results of the association analyses between the degree of DNA methylation and 

parameters of glucose metabolism are displayed in table 19. Furthermore, results 

for fasting glucose, 2-hour glucose, fasting insulin, and HOMA-IR for model 1 are 

also shown as Manhattan plots in figure 20. Annotation information of detected CpG 

sites is summarized in appendix table 6.
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Table 19: Results for association of genome-wide DNA methylation levels and fasting glucose, 2-hour glucose, fasting insulin, and HOMA-IR as well as 2-hour 

insulin with reduced number of CpG sites after adjustment for different potential confounders. 

 
Age, sex, estimated white blood cell proportions 

(model 1) 
Age, sex, estimated white blood cell proportions, BMI 

(model 2) 

Phenotype CpG Gene Coefficient p-value B-H-adjusted p-value Coefficient p-value B-H-adjusted p-value 

Fasting glucose 

cg00574958 
cg06500161 
cg07504977 
cg11024682 
cg22040809

#
 

CPT1A 
ABCG1 

unannotated 
SREBF1 
HCG11 

-0.097 
0.043 
0.022 
0.056 
-0.021 

9.5x10
-8

 
3.1x10

-10
 

3.4x10
-7 

3.1x10
-10 

4.0x10
-7

 

0.014 
6.8x10

-5
 

0.035
 

6.8x10
-5

 
0.035 

-0.060 
0.026 
0.017 
0.041 
-0.017 

5.8x10
-4

 
1.3x10

-4 

5.9x10
-5

 
1.9x10

-6
 

9.9x10
-6

 

0.971 
0.852 
0.728 
0.592 
0.611 

2-hour glucose cg06500161 ABCG1 0.043 3.0x10
-9

 1.3x10
-3

 0.027 1.7x10
-4

 0.999 

Fasting insulin 

cg06500161 
cg07092212 
cg09613192 
cg09694782 
cg11376147 
cg17266233 
cg17971578 
cg22065733 

ABCG1 
DGKZ 

unannotated 
unannotated 

SLC43A1 
DGKZ 
STK40 

unannotated 

0.045 
-0.076 
0.022 
-0.037 
-0.075 
-0.099 
-0.038 
-0.065 

1.8x10
-9

 
7.4x10

-7
 

1.0x10
-7

 
5.5x10

-8
 

2.4x10
-7

 
2.9x10

-7
 

3.8x10
-7

 
1.6x10

-7
 

8.1x10
-4 

0.041 
0.015 
0.012 
0.021 
0.022 
0.024 
0.017 

0.019 
-0.062 
0.014 
-0.031 
-0.040 
-0.086 
-0.019 
-0.056 

0.007 
8.5x10

-6
 

2.8x10
-4

 
4.3x10

-7
 

0.002 
1.0x10

-6
 

0.006 
8.9x10

-7
 

0.385 
0.210 
0.360 
0.071 
0.364 
0.071 
0.381 
0.071 

2-hour insulin* 

cg00574958 
cg04161365 
cg06500161 
cg09694782 
cg11024682 
cg11376147 
cg13016916 
cg17971578 
cg20477259 

CPT1A 
DHRS13 
ABCG1 

unannotated 
SREBF1 
SLC43A1 
CREB3L2 

STK40 
TNF 

-0.103 
-0.029 
0.059 
-0.036 
0.043 
-0.074 
0.015 
-0.041 
-0.040 

7.1x10
-4

 
0.016 

1.6x10
-7

 
6.8x10

-4
 

2.5x10
-3

 
1.2x10

-3
 

3.1x10
-3

 
9.7x10

-3
 

0.021 

3.5x10
-3

 
0.030 

2.4x10
-6

 
3.5x10

-3
 

6.4x10
-3

 
3.6x10

-3
 

6.6x10
-3

 
3.6x10

-3
 

0.035 

-0.064 
-0.018 
0.040 
-0.031 
0.031 
-0.043 
0.013 
-0.020 
-0.013 

0.027 
0.125 

1.7x10
-4 

1.6x10
-3

 
0.021 
0.047 

4.2x10
-3

 
0.101 
0.441 

0.079 
0.181 

2.6x10
-3

 
0.012 
0.078 
0.118 
0.021 
0.181 
0.472 

HOMA-IR** 

cg04161365 
cg06500161 
cg07092212 
cg09613192 
cg09694782 

DHRS13 
ABCG1 
DGKZ 

unannotated 
unannotated 

-0.040 
0.047 
-0.082 
0.021 
-0.037 

9.9x10
-7

 
1.7x10

-10
 

7.8x10
-8

 
2.2x10

-7
 

6.4x10
-8

 

0.043 
7.5x10

-5
 

6.9x10
-3

 
0.014

 

6.9x10
-3

 

-0.028 
0.021 
-0.067 
0.013 
-0.031 

1.3x10
-4

 
2.6x10

-3
 

1.0x10
-6

 
5.8x10

-4
 

5.3x10
-7

 

0.266 
0.307 
0.051 
0.285 
0.051 
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cg11376147 
cg13016916 
cg17266233 
cg17971578 
cg20477259 
cg22065733 

SLC43A1 
CREB3L2 

DGKZ 
STK40 

TNF 
unannotated 

-0.078 
0.016 
-0.102 
-0.038 
-0.054 
-0.067 

6.3x10
-8

 
7.4x10

-7
 

1.5x10
-7

 
3.9x10

-7
 

1.1x10
-6

 
7.1x10

-8
 

6.9x10
-3

 
0.037 
0.011 
0.022 
0.043 

6.9x10
-3

 

-0.042 
0.015 
-0.087 
-0.018 
-0.030 
-0.057 

1.3x10
-3

 
2.9x10

-7
 

5.1x10
-7

 
7.7x10

-3
 

3.4x10
-3

 
4.0x10

-7
 

0.297 
0.051 
0.051 
0.338 
0.310 
0.051 

Genome-wide association of DNA methylation and T2D related traits were calculated with a linear mixed effects model. 

# CpG site has to be regard conditionally as it is listed as a cross reactive probe by Chen et al. [137] 

* Analyses for 2-hour insulin were performed with a reduced data set (n=617) and for only CpG sites (n=15) which were significantly associated with the other investigated 

phenotypes  

** Analyses for HOMA-IR were performed with a reduced data set (n=1,440) 

Bold marks CpG sites which are significant after correction for Benjamini-Hochberg in the different adjustment models. 
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In total, methylation levels of 15 CpG sites showed genome-wide significant 

associations with measures of glucose metabolism. Methylation at five CpG sites 

showed genome-wide significant associations with fasting glucose in model 1 (B-H-

adjusted p-values between 6.8x10-5 and 0.035). Additionally, methylation level at 

one CpG site was statistically significantly associated with 2-hour glucose after 

adjustment model 1 (B-H-adjusted p-value 1.3 x 10-3). The methylation degrees of 

eight CpG sites were significantly associated with fasting insulin in model 1 with B-

H-adjusted p-values between 8.1 x 10-4 and 0.041. For HOMA-IR, a genome-wide 

association (B-H adjusted p-values between 7.5 x 10-5 and 0.043) was detected 

after adjustment model 1 for methylation levels of eleven CpG sites. For HbA1c no 

methylome-wide significant association was found. Testing the association of all 

aforementioned CpG sites with 2-hour insulin, for nine CpG sites a significant 

association between DNA methylation and the phenotype was observed in model 1 

(B-H-adjusted p-values between 2.4 x 10-6 and 0.35). Methylation degree at three 

CpG sites was still significantly associated with 2-hour insulin in model 2. 

Furthermore, evidence suggests associations of some CpG sites with fasting as well 

as 2-hour insulin and HOMA-IR, as they are borderline non-significant (B-H-

adjusted p-values between 0.05 and 0.079). Comparing the beta-coefficients in 

model 1 vs model 2, on average 29.2% of the association with fasting glucose in 

model 1 could be explained by the BMI (range 19.0-39.5%). Furthermore, BMI 

explained 37.2% of the association between DNA methylation and 2-hour insulin, for 

fasting insulin on average 31.6% in model 1 (range 13.1-57.8%), for 2-hour insulin 

on average 35.9% in model 1 (range 13.3-67.5%), and for HOMA-IR on average 

30.6% in model 1 (range 6.3-55.3%). 
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Figure 20: Genome-wide associations between methylation and (a) fasting glucose level, (b) 

2-hour glucose level, (c) fasting insulin level, (d) HOMA-IR after adjustment for sex, age, and 

estimated white blood cell proportions (model 1). Results are plotted for each annotated 

chromosome (excluding the sex chromosomes) (x-axis) against the –log (p-value) (y-axis). The 

Benjamini-Hochberg method was used for correction for multiple testing. Red dots mark significant 

loci. The dotted line marks the significance threshold. 
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3.2.3. DNA methylation quintile analysis  

Trend analyses of methylation degree and selected phenotypes are preformed to 

see an association between them. Analyzing the association between DNA 

methylation in quintiles at the three CpG sites [cg06500161 (ABCG1), cg09694782 

(unannotated), and cg13016916 (CREB3L2)] which are still significant in model 2 for 

2-hour insulin and other phenotypes, significant associations between methylation 

degree and some variables were detected, mostly for cg06500161. Here for BMI, 

waist circumference, fasting glucose, 2-hour glucose, triglycerides, and sex the 

most significant associations were found. Furthermore, CD8+ T cells, monocytes, 

and granulocytes (which are estimated [142]) were significantly associated with the 

methylation degree at cg06500161. For cg09694782 significant associations of the 

methylation level were detected with age, fasting insulin, and HOMA-IR, as well as 

all estimated white blood cell proportions [142]. For cg13016916, it was not possible 

to detect a significant association of the investigated phenotypes and methylation 

degree (table 20, appendix table 7). Results for BMI, fasting insulin, 2-hour insulin, 

and HOMA-IR are also presented in figure 21. 
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Figure 21: Distribution of BMI (a), fasting insulin (b), 2-hour insulin (c), and HOMA-IR (d) (y-

axis) for the different degrees of methylation presented as quintiles (x-axis). * represents the 

corresponding CpG site, where the p for trend was significant after Bonferroni correction.  
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Table 20: Association between DNA methylation at cg06500161 and different phenotypes based on quintiles of methylation level. 

 

1.Quintile 

(n=290) 

2.Quintile 

(n=289) 

3. Quintile 

(n=290) 

4. Quintile 

(n=289) 

5.Quintile 

(n=290) 
 

Phenotype Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) p for trend (bonf. adjusted) 

Age [years] # 58.22 (8.77) 58.95 (8.44) 60.50 (8.46) 60.13 (8.53) 61.47 (9.10) 2.90x10
-5

 

BMI [kg/m
2
] # 26.01 (3.96) 27.09 (4.28) 27.13 (3.99) 28.10 (4.41) 29.29 (4.45) 1.13x10

-20
 

Waist circumference [cm] 87.39 (12.33) 92.04 (12.21) 92.29 (11.27) 95.93 (12.53) 100.60 (12.42) 1.64x10
-38

 

Fasting glucose [mmol/l] # 5.12 (0.47) 5.24 (0.48) 5.32 (0.53) 5.36 (0.52) 5.52 (0.55) 6.54x10
-21

 

2-hour glucose [mmol/l] # 5.71 (1.53) 6.16 (1.70) 6.15 (1.72) 6.28 (1.67) 6.80 (1.75) 7.94x10
-13

 

HbA1c [%] 5.41 (0.33) 5.45 (0.32) 5.45 (0.29) 5.46 (0.32) 5.57 (0.31) 2.31x10
-7

 

C-reactive protein [mg/l] # 1.68 (1.76) 1.61 (1.57) 1.70 (1.57) 1.80 (1.74) 1.84 (1.67) 1 

Fasting insulin [µlU/ml] # 5.02 (6.01) 6.15 (7.32) 5.76(5.58) 6.58 (6.52) 7.89 (7.83) 6.26x10
-6

 

2-hour insulin [µlU/ml] # 50.12 (40.46) 55.78 (43.08) 57.6 (41.29) 62.53 (48.11) 79.3 (64.67) 1.77x10
-5

 

HOMA-IR # 1.18 (1.56) 1.46 (0.91) 1.39 (1.44) 1.58 (1.63) 2.00 (2.16) 3.44x10
-7

 

Cholesterol [mmol/l] # 5.90 (0.97) 5.85 (0.97) 5.79 (0.99) 5.83 (1.02) 5.63 (1.06) 0.041 

Triglycerides [mmol/l] # 1.09 (0.67) 1.25 (0.64) 1.39 (1.22) 1.59 (0.89) 1.91 (1.23) 1.06x10
-26

 

Systolic blood pressure [mm Hg] 119.94 (19.09) 121.52 (16.38) 125.01 (18.58) 123.09 (17.78) 126.97 (18.53) 4.39x10
-5

 

Diastolic blood pressure [mm Hg] 75.14 (10.25) 75.81 (8.89) 76.77 (9.97) 75.84 (9.78) 77.5 (10.32) 0.113 

CD8
+
 T cells #+ 0.08 (0.05) 0.09 (0.06) 0.10 (0.07) 0.11 (0.07) 0.12 (0.07) 4.71x10

-13
 

CD4
+
 T cells + 0.16 (0.06) 0.17 (0.06) 0.16 (0.06) 0.17 (0.06) 0.16 (0.06) 1 

Natural killer cells #+ 0.02 (0.02) 0.02 (0.02) 0.03 (0.03) 0.03 (0.03) 0.03 (0.03) 0.082 

B cells #+ 0.05 (0.04) 0.05 (0.03) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 1 

Monocytes + 0.11 (0.02) 0.11 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.03) 1.28x10
-10

 

Granulocytes + 0.65 (0.09) 0.63 (0.09) 0.63 (0.09) 0.62 (0.09) 0.62 (0.09) 1.35x10
-5
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 Quintile 

(n=290) 

2. Quintile 

(n=289) 

3. Quintile 

(n=290) 

4. Quintile 

(n=289) 

5. Quintile 

(n=290) 

 number number p-value Number p-value number p-value number p-value 

Sex [male/female] 83/207 122/167 8.59x10
-4 

* 127/163 2.03x10
-4 

* 156/133 9.81x10
-10 

* 194/96 6.01x10
-20 

* 

Glucose status [combination of 

IFG and IGT / IFG / IGT / normal] 
3/8/21/258 8/6/46/229 1.99x10

-3 
* 11/13/40/226 3.50x10

-3
 6/23/46/214 5.00x10

-4
 * 21/22/55/192 5.00x10

-4 
* 

Means, standard deviations and p-values for trend (Bonferroni corrected) are presented for the different quintiles for the continuous phenotypes, and total numbers in 

the different quintiles and p-values (comparing the quintile vs 1
st
 quintile) for categorical variables. * p-value was significant after correction for multiple testing. # 

variables were log transformed for determination of p-values); + cell types were estimated using method developed by Houseman et al. [142], IFG: impaired fasting 

glucose, IGT: impaired glucose tolerance 
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3.2.4. Pathway analysis 

To put results into a functional context, pathway analysis was conducted using 

Ingenuity Software. “Phospholipase C Signaling” reached genome-wide significance 

after adjustment for age, sex, and estimated white blood cell proportions (model 1) 

for fasting glucose looking at the canonical pathways (B-H-adjusted p-value of 

0.039) (table 21). 21 of 231 genes included in the pathway are amongst the top 

1,000 hits from the genome-wide methylation analysis. This signaling pathway was 

also detected after additional adjustment for BMI (B-H-adjusted p-value 0.178). 

Besides this pathway, “PI3K Signaling in B Lymphocytes” and “Ephrin Receptor 

Signaling” belong to the top pathways for the adjustment model 1 for fasting glucose 

with B-H-adjusted p-values of 0.059 each. The former signaling pathway was also 

under the top pathway for the model after additional adjustment for BMI (B-H-

adjusted p-value 0.059). Results for the top ten canonical pathways for 2-hour 

glucose, fasting insulin, and HOMA-IR are shown in appendix table 8. For 2-hour 

glucose, a total of eleven canonical pathways reach the B-H-corrected level of 

significance (p-values < 0.05). “Thyroid Hormone Metabolism II (via Conjugation 

and/or Degradation)” was significant after adjustment for age, sex, and estimated 

white blood cell proportions, as well as after additional adjustment for BMI (B-H-

adjusted p-values = 0.035 and 0.018, respectively). 6 of 26 as well as 7 of 26 genes 

included in the pathway can be found amongst the top 1,000 hits. For fasting insulin 

and HOMA-IR, no significant canonical pathways were found after adjustment for B-

H.  
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Table 21: Pathway analysis based on the top 1,000 CpG sites associated with fasting glucose using Ingenuity.  

Adjusted for age, sex, and estimated white blood cell proportions 

(model 1) 

Adjusted for age, sex, estimated white blood cell proportions, and BMI 

(model 2) 

Ingenuity Canonical Pathways B-H-adjusted p-value Ratio Ingenuity Canonical Pathways B-H-adjusted p-value Ratio 

Phospholipase C Signaling 0.039 21/231 Ephrin Receptor Signaling 0.059 17/172 

Ephrin Receptor Signaling 0.059 16/172 AMPK Signaling 0.059 14/133 

PI3K Signaling in B Lymphocytes 0.059 13/123 Leptin Signaling in Obesity 0.085 9/73 

CCR3 Signaling in Eosinophils 0.069 12/113 Molecular Mechanisms of Cancer 0.085 25/359 

Ephrin B Signaling 0.079 9/73 RhoGDI Signaling 0.085 15/172 

Role of NFAT in Cardiac 

Hypertrophy 
0.079 15/176 Ephrin A Signaling 0.085 7/48 

Corticotropin Releasing Hormone 

Signaling 
0.079 11/108 Axonal Guidance Signaling 0.085 28/425 

Fcγ Receptor-mediated 

Phagocytosis in Macrophages and 

Monocytes 

0.079 10/93 PPARα/RXRα Activation 0.122 14/165 

Hepatic Fibrosis/Hepatic Stellate 

Cell Activation 
0.079 16/196 Phospholipase C Signaling 0.178 17/231 

Thrombin Signaling 0.106 15/187 Integrin Signaling 0.178 15/195 

The p-value corrected using the Benjamini-Hochberg method for multiple testing is presented for each pathway, besides the ratio (number of genes 

uploaded in the software/total number of genes included in the pathway). Underlined pathways are significant after correction for multiple testing using 

Benjamini-Hochberg. 
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3.2.5. Gene expression analysis 

In order to assess the functional impact of DNA methylation on the transcriptome, 

the association between the degree of methylation and transcript levels in 533 

subjects with overlapping methylation and expression data was investigated. The 

study characteristics of the samples are shown in table 22.  

Table 22: Characteristics of the study population for gene expression analysis (n=533).  

 Median 
(25th; 75th percentile) 

% 

Sex [% male] - 47.65 

Age [years] 68 (65; 72) - 

BMI [kg/m2] 27.80 (25.23; 30.49) - 

Waist circumference [cm] 95.80 (88.60; 103.70) - 

   

Fasting serum glucose [mmol/l] 5.39 (5.06; 5.72) - 

2-hour serum glucose [mmol/l] 6.44 (5.39; 7.72) - 

HbA1c [%] 5.50 (5.30; 5.70) - 

Glucose tolerance status [%] 
NGT 
IFG 
IGT 
Combined IFG and IGT 

 
- 
- 
- 
- 

 
70.17  
5.44 
18.57 
5.82 

Insulin [µlU/ml] 4.70 (3.30; 7.40) - 

2-hour insulin [µlU/ml] 49.80 (28.50; 77.30) - 

HOMA-IR 1.13 (0.77; 1.80) - 

   

C-reactive protein [mg/l] 1.34 (0.71; 2.48) - 

Leucocytes [/nl] 5.60 (4.70; 6.40) - 

Cholesterol [mmol/l] 5.81 (5.12; 6.51) - 

Triglycerides [mmol/l] 1.23 (0.90; 1.69) - 

Systolic blood pressure [mmHg] 126.5 (114.5; 138.5) - 

Diastolic blood pressure [mmHg] 74.50 (68.50; 81.50) - 

   

Alcohol consumption [g/day] 7.86 (0.00; 20.43) - 

Smoking status [%] 
never 
ex 
current 

 
- 
- 
- 

 
53.28 
39.77 
6.94 

Physically active [%] 
(combination of activity during 
summer and winter) 

 
- 

 
55.91 

CD8+ T cells [%]+ 0.09 (0.05; 0.15) - 

CD4+ T cells [%]+  0.15 (0.11; 0.19) - 

Natural killer cells [%]+  0.02 (0.00; 0.04) - 

B cells [%]+ 0.04 (0.03; 0.06) - 
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Monocytes [%]+  0.12 (0.10; 0.14) - 

Granulocytes [%]+ 0.64 (0.58; 0.70) - 

+ Data are presented for the estimated white blood cell proportion using a 

recently published method [142]  

NGT: normal glucose tolerance; IFG: impaired fasting glucose; IGT: impaired 

glucose tolerance 

 

The study population has a median age of 68. Gender distribution is nearly equal, 

as in other study populations. Also, other characteristics are quite comparable to the 

other study populations used for the cross-sectional study (table 18, appendix tables 

4 and 5).  

The methylation level of the CpG site cg06500161 (ABCG1) showed a significant 

association with ABCG1 gene expression level (B-H-adjusted p-value = 1.1 x 10-9) 

after adjustment for age, sex, BMI, estimated white blood cell proportions [142], 

technical variables, and plate (table 23). This association remained significant after 

additional adjustment for fasting glucose, 2-hour glucose, fasting insulin, 2-hour 

insulin, and HOMA-IR (B-H-adjusted p-values = 8.3 x 10-9, 7.5 x 10-9, 1.7 x 10-9, 4.4 

x 10-8, 2.4 x 10-9, respectively). The associations between gene expression levels 

and the degree of methylation at the other 14 significant CpG sites found for the 

methylation analysis were not significant (appendix table 9); the analyses of gene 

expression and phenotypes also revealed no significant associations (data not 

shown). 
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Table 23: Summary of the analysis for association between DNA methylation and gene expression, as well as between DNA methylation and phenotypes. 

 Association of methylation at cg06500161 (ABCG1) 

with different phenotypes 

Association of methylation at cg06500161 and gene expression level of a transcript 

annotated to ABCG1 (ILMN_2329927) 

 

fasting 

glucose 

2-hour 

glucose 

fasting 

insulin 

2-hour 

insulin 
HOMA-IR 

no adj. for 

phenotype 

adj. for fasting 

glucose 

adj. for 2-hour 

glucose 

adj. for fasting 

insulin 

adj. for 2-hour 

insulin 

adj. for 

HOMA-IR 

Coefficient 0.043 0.018 0.045 0.059 0.047 -3.623 -3.495 -3.507 -3.617 -3.398 -3.594 

p-value 3.1x10
-10

 3.0x10
-9

 1.8x10
-9

 1.6x10
-7

 1.7x10
-10

 2.5x10
-12

 1.8x10
-11

 1.7x10
-11

 3.8x10
-12

 9.7x10
-11

 5.4x10
-12

 

Adj.p-value 6.8x10
-5

 1.3x10
-3

 8.1x10
-4

 2.4x10
-6

 7.5x10
-5

 1.1x10
-9

 8.3x10
-9

 7.5x10
-9

 1.7x10
-9

 4.4x10
-8

 2.4x10
-9
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4. Discussion 

A number of studies have demonstrated an influence of the methylation degree at 

different genes (see chapter 1.3.3.) on the development of diabetes, but there is a 

lack of studies with whole blood samples from participants with European ancestry. 

Therefore the presented projects focus on the determination of genome-wide 

methylation degree pattern and incident T2D, as well as measures of glucose 

metabolism.  

 

4.1. Association with incident T2D 

4.1.1. Main findings 

To my knowledge this is the first study to analyze methylome-wide association with 

incident T2D using whole blood samples of participants of European ancestry alone. 

The methylation degrees of six CpG sites showed significant associations with 

incident T2D in the discovery study. However, the associations attenuated after 

additional adjustment for BMI, indicating an important impact of body weight on the 

association between DNA methylation and incident T2D at these loci. None of the 

leading CpG sites could be replicated using an independent method in the 

replication study. However, the methylation levels of three CpG sites flanking the 

leading CpG site annotated to AKT2 and one of the CpG sites annotated to 

C14orf182 were found to be significantly associated with incident T2D in the 

replication stage, even after adjustment for BMI for one CpG site per amplicon. The 

general functions of proteins encoded by genes annotated to the methylome-wide 

significant CpG sites are summarized in table 24. By analyzing a potential 

accumulation of DNA methylation data in pathways, several pathways were 

observed which can be linked to diabetes. None of the CpG sites annotated to 

genes for which a link between DNA methylation and diabetes has been reported 

(chapter 1.3.4.) are significant after B-H correction in this analysis. 
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Table 24: General function of proteins encoded by annotated genes of genome-wide 

significant CpG sites associated with incident T2D in humans.  

Gene Function 

CASZ1 castor zinc finger 1 
Encodes for a zinc finger transcription factor. The protein may 

function as a tumor suppressor. SNPs of this gene are associated 

with blood pressure variation.  

TMEM57 transmembrane protein 57 
The gene plays a major role in trafficking and lipid metabolism. 

SNPs near this gene are associated with serum lipid levels or total 

cholesterol [144, 145]. 

VIM Vimentin 

Encodes for a member of the intermediate filament family, which, 

together with microtubules and actin microfilaments, form the 

cytoskeleton. This protein is responsible for maintaining cell shape, 

integrity of the cytoplasm, and stabilizing cytoskeletal interactions. 

It is also involved in immune response, and controls the transport 

of low-density lipoprotein cholesterol from the lysosome to the site 

of esterification.  

C14orf182 chromosome 14 open reading frame 182 

no known function 

AKT2 v-akt murine thymoma viral oncogene homolog 2 

It is a putative oncogene and encodes a protein belonging to the 

subfamily of serine/threonine kinases containing SH2-like domains. 

It is overexpressed in some ovarian carcinoma cell lines and 

primary ovarian tumors. Furthermore, the overexpression 

contributes to the malignant phenotype of a subset of human ductal 

pancreatic cancers.  

Source: www.ncbi.nlm.nih.gov/gene/ on December 2014 unless stated otherwise. 
 

Furthermore, data from the nested case-control study were included for the 

replication investigating methylome-wide association with incident T2D in peripheral 

blood amongst Indian Asians and Europeans in the LOLIPOP study. Five of the 

seven genome-wide significant CpG sites from the discovery study were replicated 

combining data from Indian Asians and Europeans. These included the same CpG 

sites annotated to SREBF1 and ABCG1 which were found in the analysis of 

measures of glucose metabolism, discussed in more detail in chapter 4.3. The 

general functions of proteins encoded by genes annotated to the methylome-wide 

significant CpG sites (excluding ABCG1 and SREBF1) are summarized in table 25. 

The different findings can be explained by the different numbers of samples 
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included in the studies. In the KORA study, 196 matched case-control pairs with 

European ancestry were included, whereas the LOLIPOP-study included 1,074 

Indian Asians with incident T2D patients as cases and 1,590 controls from the same 

ancestry. Therefore, different ethnicities may explain the different findings. A further 

possible explanation could be the shorter follow-up time of 5.3 years in the KORA 

study compared to 7.6 years in the LOLIPOP study. Different matching criteria for 

the case-control pairs is another possibility. For the KORA study age ± 2 years, sex, 

and observation time to diabetes diagnosis were defined as matching criteria, 

whereas for the LOLIPOP study age a 5 year interval and sex were used.  

Table 25: General function of proteins encoded by annotated genes of replicated genome-

wide significant CpG sites associated with incident T2D in Indian Asians and Europeans.  

Gene Function 

TXNIP thioredoxin interacting protein 

This gene plays an important role in mammalian cells as it inhibits 

thioredoxin under oxidative stress conditions. Inhibition of it leads 

to increased reactive oxygen species in immune cells or 

hematopoietic cells [146].  

PHOSPHO1 phosphatase, orphan 1 

Encodes for an orphan phosphatase that belongs to the family of 

halo-acid dehalogenases. The gene is highly expressed in bone 

and matrix vesicles. Inhibition leads to a reduction in the ability of 

matrix vesicles to mineralize [147].  

SOCS3 suppressor of cytokine signaling 3 

Encodes for a member of the STAT-induced STAT inhibitor family, 

also known as suppressor of cytokine signaling. These members 

are cytokine-inducible negative regulators of cytokine signaling. Its 

expression is induced by different cytokines. The encoded protein 

can bind to JAK2 kinase, and inhibit JAK2 activity.  

ABCG1 and SREBF1 are discussed in chapter 4.3.1. Source: www.ncbi.nlm.nih.gov/gene/ on 

December 2014, unless stated otherwise.  
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4.1.2. Involvement of AKT2 in diabetes 

CpG sites annotated to the AKT2 (v-akt murine thymoma viral oncogene homolog 2) 

gene, other than C14o4f182, were confirmatively identified to be associated with 

T2D in this study. Surprisingly, the methylation level of one CpG site annotated to 

AKT2, which is also covered by the Infinium HumanMethylation450 BeadChip 

(cg030239529), showed significant association with incident T2D in the replication 

study in an unadjusted model. It seems unlikely that this finding is caused by a lack 

of power, because the number of included samples in the replication study is about 

2 times higher compared to the discovery study, where the uncorrected p-value was 

0.54 for this CpG site. The different findings may be more attributable to the 

different methylation degree analysis.  

From a biological point of view, AKT2 seems a plausible candidate for incident T2D, 

as animal as well as human studies demonstrate an association of this gene with 

diabetes and related traits. In cultured cells siRNA mediated knockdown of Akt2 

leads to a significantly reduced insulin-stimulated glucose transport and Glut4 

translocation [148]. This is in line with two recent studies. Takenaka et al. 

demonstrated that FLJ00068, a guanine nucleotide exchange factor, regulates Rac1 

downstream of Akt2, which is followed by stimulation of glucose uptake in skeletal 

muscle from mice and cultured myocytes. Therefore, the knockdown leads to 

significantly decreased Akt2 triggered Glut4 translocation [149]. Furthermore, Ng et 

al. showed that Akt2 is needed to introduce Glut4 translocation in 3T3-L1 

adipocytes (derived from mice) [150]. Also, studies on muscle tissue from wild type 

and Akt2-null mice allow us to assume that Akt2 is essential for the full effect of brief 

calorie restriction on insulin-stimulated glucose uptake using physiological insulin 

[151]. In Pten-haplodeficient (Pten+/-/Akt2+/+) and Pten+/+/Akt2+/+ mice, the activity of 

Akt2 in skeletal muscle influences lipid accumulation in the liver [152]. Furthermore, 

insulin resistance in Akt2 deficient mice was inhibited by an additional 

haplodeficiency of Pten [153]. This is in line with a study by Leavens et al. 

demonstrating that Akt2 is an important component of the insulin dependent 

regulation of the lipid metabolism during insulin resistance in mice [154]. In another 

mouse study, an influence of Akt2 on insulin resistance and elevated plasma 

triglycerides was detected, as Akt2 deficient mice showed these phenotypes as well 
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as fed and fasting hyperglycemia, hyperinsulinemia, and glucose tolerance [155]. 

Furthermore, it was demonstrated that Rac1 and Akt regulate insulin-stimulated 

glucose uptake via different parallel pathways which are dysfunctional in insulin 

resistant muscle in mice [156]. These findings are in line with a study by Lu et al. 

showing that deletion of Akt1 and Akt2 in livers from mice led to glucose intolerance 

and insulin resistance [157]. In mice liver, an immediate action of insulin on hepatic 

glucose production functions dependent on redirection of glucose-6-phosphate to 

glycogen due to Akt2 was shown [158]. In contrast, renal improvement due to zinc 

in diabetic mice is associated with glucose metabolism signaling mediated by 

metallothionen and Akt1, but not Akt2 [159]. Cho et al. observed a diabetes-like 

phenotype in Akt2 knockout mice [160]. In rats and 3T3-L1 adipocytes, an increased 

expression of Ser/Thr kinase Akt2 led to an improvement of insulin sensitivity [161]. 

For pigs, an association of SNPs of Akt2 on diabetes was observed [162].  

The literature also provides evidence linking AKT2 and diabetes in humans. The 

knockdown of AKT2 in human SGBS adipocytes leads to an almost complete 

inhibition of preadipocyte proliferation with effects on insulin-stimulated lipogenesis 

and anti-lipolytic effects of insulin [163]. In vitro, the AKT2 expression was impaired 

in obese adipose tissue. Furthermore, the expression was inversely correlated with 

BMI and HOMA-IR [164]. Tan et al. found that a heterozygous loss-of-function 

mutation in AKT2 can lead to severe insulin resistance and lipodystrophy in 

humans. However, they speculate that mutations in and close to AKT2 are unlikely 

to contribute significantly to the risk of T2D [165]. Human muscle shows a lower 

protein content of AKT2 in type I fibers compared to type II fibers. Furthermore, the 

phosphorylation-response to insulin was reduced for AKT and the insulin signaling 

was decreased in muscle in T2D patients compared to lean and obese subjects 

[166]. This is in line with a study by Vind et al. also demonstrating impaired insulin-

stimulated AKT2 activity [167]. Based on their study on skeletal muscle in lean and 

obese insulin-resistant humans Brozinick et al. assume that the ability of insulin to 

activate AKT2 and AKT3 may explain the reduced insulin-stimulated glucose 

transport in insulin resistance [168]. Furthermore, AKT2 phosphorylation due to 

acute induction of muscle insulin resistance in humans was demonstrated [169]. 

Analyzing muscle tissue in 184 non-diabetic twins with kinase assays and 
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phosphor-specific western blots, an association between AKT activity and in vivo 

insulin sensitivity was observed. Therefore, it is suggested that AKT may control in 

vivo insulin resistance and potentially T2D [170]. Analyzing adipose tissue of insulin-

resistant obese subjects showed that AKT2 was increased in glucose transport 

[171]. In addition, Georg et al. describe a family with severe insulin resistance and 

diabetes due to a mutation of the AKT2 gene [172]. In a study conducted in non-

diabetic twins, Friedrichsen et al. described that insulin-stimulated glycogen 

synthase activity was positively associated with AKT2 activity. Glycogen synthesis 

in muscle is reduced in T2D [173]. Furthermore, AKT2 was assumed to be causal 

for T2D [44]. In contrast, Sun et al. wrote that AKT2 is not a major cause of diabetes 

in a non-obese Chinese Han population characterized by insulin resistance [174]. 

The results of this study add to the enormous body of evidence regarding the 

implication of AKT2 in glucose metabolism and suggest that the association may at 

least partly be influenced by epigenetic modifications.  

 

4.1.3. Involvement of remaining associated CpG sites in diabetes 

For TMEM57 (transmembrane protein 57) an association with total cholesterol was 

found, which is a biomarker for diabetes [20], in a meta-analysis of 16 GWAS on 

lipid traits [145]. Furthermore, for VIM (vimentin) an up-regulation was found in 

Zucker fatty compared to Zucker lean rats. Also a significantly increased expression 

level of this gene was detected in Zucker fatty rats, afterwards returning to the level 

of Zucker lean rats, which is comparable to that of Zucker diabetic fatty rats [175]. 

For CASZ1 (castor zinc finger 1) and C14orf182 (chromosome 14 open reading 

frame 182) this study presents first evidence of their roles in glucose metabolism. 

Therefore, further studies are warranted to validate these findings.  
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4.1.4. Accumulation of DNA methylation data in different pathways and link to 

diabetes 

In order to functionally integrate the results, a pathway analysis based on the 1,000 

top hits for both adjustment models was conducted. For some of these pathways, a 

well-established link to diabetes can be found in the literature. For “NGF (nerve 

growth factor) Signaling” a study showed that electroacupuncture represents a 

supportive tool to control diabetic polyneuropathy development by modulating this 

pathway in diabetes-targeted neurons in rats [176]. Nakagaki et al. showed that 

epalrestat is a potential therapy for improving wound healing for diabetic people, 

involving the up regulation of NGF [177]. In studies in type 1 diabetes rats it was 

shown that NGF levels in serum and expression in the kidney were increased [178], 

and that neurotrophic and metabotrophic potential of Ngf and another protein may 

be involved in the molecular mechanisms of stress and diabetes [179]. In cell 

culture experiments Pierucci et al. show that -cell transcription and translation 

independent apoptosis are induced by NGF deletion [180]. Furthermore, “Integrin 

Signaling” could be linked to diabetes. Park et al. found that high glucose levels 

changed integrin expression patterns, which increases integrin 3 and 1 in 

pericytes in mice [181]. Additionally, it was observed in mice that 4 integrins are 

involved in the development of high fat diet induced insulin resistance. The authors 

conclude that blocking of 4 integrin signaling can prevent the development of 

obesity-induced insulin resistance [182]. Human embryonic stem cell gene 

expression studies show an involvement of integrins and catenins in -cell 

differentiation [183]. Furthermore, 3 and 1 integrin-extracellular matrix 

interactions are important for the regulation of -cell survival in human fetal or adult 

islet cells [184]. With respect to “G-protein gamma/beta Signaling”, based on their 

studies analyzing skeletal muscle of rats and mice, Osorio et al. speculate that ATP 

signals though the  subunit of the G-protein activate PI3K-, AKT, AS160/RAB8A 

and therefore promote GLUT4 exocytosis and reduce GLUT4 endocytosis [185].  
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4.1.5. Involvement of genes found in Indian Asians and Europeans in diabetes 

The methylation data of the nested case-control study were included in order to 

replicate findings in the analysis performed by the LOLIPOP study. TXNIP 

(thioredoxin interacting protein) expression is increased due to glucose [186]. 

Furthermore, in mice studies it was shown that -cell specific Txnip deletion 

improves -cell mass and protects against diabetes [187]. This is in line with 

findings by Xu et al. analyzing mice and primary human islets, demonstrating that -

cell Txnip is upregulated in diabetes, whereas Txnip deficiency protects against 

diabetes by preventing -cell apoptosis [188]. Also in a mice study it was shown that 

an overabundance of Txnip resulted in impaired glucose, insulin, and pyruvate 

tolerance by upregulating G6pc through interaction with small heterodimer partners 

[189]. In cell cultured experiments a decreased Txnip mRNA and protein expression 

due to metformin exposure was observed [190]. For SOCS3 (suppressor of cytokine 

signaling 3) an inactivation in leptin receptor-expressing cells of mice was shown to 

protect against diet-induced insulin resistance but not against obesity [191]. This 

was also demonstrated by other studies, for example one showing the importance 

of Socs3 for inhibiting insulin resistance in the skeletal muscle of mice [192], and 

another revealing that overexpression of this gene in adipose tissue of mice leads to 

local but not systematic insulin resistance [193]. Furthermore, it was shown that-

cell specific Socs3-deficient mice were protected against the development of 

diabetes induced by streptozotocin [194]. For humans, it was shown that there was 

no change in SOCS3 levels in muscle when exposing men with T2D to IL-6 

compared to the placebo group [195]. Li et al. found that SNPs annotated to SOCS3 

were significantly associated with BMI in humans [196]. In contrast, it was found that 

there is no strong effect of common SNPs within the SOCS3 gene on the 

development of T2D in humans [197]. For PHOSPHO1 (phosphatase, orphan 1) 

this study presents first evidence of its role in glucose metabolism. Therefore, 

further studies are warranted to validate these findings. 

ABCG1 and SREBF1, which were also detected in the analysis with measures of 

glucose metabolism, are discussed in more detail under chapter 4.3.1. These 
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findings are in line with results of the presented study and support the hypothesis 

that DNA methylation is involved in the regulation of incident T2D.  

 

4.2. Association with measures of glucose metabolism 

4.2.1. Main findings 

Until now no study has been published analyzing the associations between 

methylation patterns in whole blood samples and measures of glucose metabolism 

in a large population-based study on a genome-wide scale. Altogether, the degree 

of methylation at 441,552 CpG sites in 1,448 subjects (and 617 and 1,440 for 2-hour 

insulin and HOMA-IR, respectively) was investigated and 15 genome-wide 

significant associations with fasting glucose, 2-hour glucose, fasting insulin, and 

HOMA-IR was observed. Associations were independent of age, sex, and estimated 

white blood cell proportions. For three CpG sites in model 2 the association with for 

2-hour insulin was still significant after adjustment for BMI. Furthermore, evidence 

suggesting associations with other phenotypes after adjustment for BMI was found, 

which explained an average of around 30% of the association. cg06500161 

(annotated to ABCG1) was associated with all phenotypes investigated (except for 

HbA1c). The general functions of all proteins encoded by detected genes are 

summarized in table 26. Furthermore, by trend analysis associations between the 

degree of DNA methylation and different phenotypes were found, primarily for 

cg06500161, but also for cg06500161 and cg09694782 for estimated white blood 

cell proportions [142]. 

Table 26: General function of proteins encoded by annotated genes of genome-wide 

significant CpG sites associated with glycemic parameters in humans.  

Gene Function 

ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1  
Encodes for a protein belong to the superfamily of ATP-binding 
cassette (ABC) transporters. The proteins transport different molecules 
across extra- and intra-cellular membranes. It is involved in 
macrophage cholesterol and phospholipids transport and is assumed to 
regulate cellular lipid homeostasis on other cell types.  

CPT1A carnitine palmitoyltransferase 1a  
By the sequential action of carnitine palmitoyltransferase I and carnitine 
palmitoyltransferase II, together with a carnitine-acylcarnitine 
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translocase, the mitochondrial oxidation of long-chain fatty acids is 
initiated. CPT I is the key enzyme in carnitine-dependent transport 
across the mitochondrial inner membrane. Deficiency of CPT I leads to 
a reduced rate of fatty acid beta-oxidation.  

CREB3L2 cAMP responsive element binding protein 3-like 2 
Encodes for a member of the oasis bZIP transcription factor family. 
Members can dimerize but as homodimers only. The encoded protein is 
a transcriptional activator.  

DHRS13 dehydrogenase/reductase (SDR family) member 13 
no known function 

DKGZ diacylglycerol kinase zeta 
Encodes for proteins belonging to the eukaryotic diacylglycerol kinase 
family. It can reduce protein kinase C activity by regulating 
diacylglycerol levels in intracellular signaling cascade and signal 
transduction.  

 
HCG11 

 
HLA complex group 11 (non-protein coding) 
no known function 

SLC43A1 solute carrier family 43 (amino acid system L transporter) member 1 
It belongs to the system L family of plasma membrane carrier proteins 
that transport large neutral amino acids.  

SREBF1 sterol regulatory element binding transcription factor 1 
Encodes for a transcription factor binding to sterol regulatory element-1, 
a decamer flanking the low density lipoprotein receptor gene. Some 
genes are involved in sterol biosynthesis. It is synthesized as a 
precursor attached to the nuclear membrane and endoplasmic 
reticulum.  

STK40 serine/threonine kinase 40 
Belongs to the serine/threonine kinase family and is essential in diverse 
signaling pathways associated with a wide range of cellular activities, 
including proliferation, differentiation, survival, and apoptosis [198]. It 
was shown to induce extra-embryonic endoderm differentiation from 
mouse embryonic stem cells [199]. 

TNF tumor necrosis factor 
Encodes for a multifunctional proinflammatory cytokine belonging to the 
tumor necrosis factor superfamily. It is mainly secreted by 
macrophages. The cytokine is involved in the regulation of different 
biological processes including cell proliferation, differentiation, 
apoptosis, lipid metabolism, and coagulation. Further, it is implicated in 
diseases like autoimmune diseases, insulin resistance, and cancer.  

Source: www.ncbi.nlm.nih.gov/gene/ on December 2014 unless stated otherwise. 
  

By implementing a second step an association between DNA methylation and gene 

expression of the ABCG1 gene was demonstrated. ABCG1 is an important regulator 

of cholesterol efflux from macrophages to HDL with a potential additional role in 

inflammatory signaling via TLRs [200]. By analyzing a potential accumulation of 
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DNA methylation data, several pathways were observed which can be linked to 

diabetes. 

Finally, checking CpG sites annotated to the genes, an association between DNA 

methylation and diabetes were detected (chapter 1.3.4.); none of these are 

significant after B-H correction for the different adjustment models and phenotypes.  

 

4.2.2. Involvement of ABCG1 in diabetes 

The findings support previous evidence by Hidalgo et al. who found an association 

between cg06500161 [ABCG1 (ATP-binding cassette, sub-family G (WHITE), 

member 1)], fasting insulin and HOMA-IR in the Genetics of Lipid Lowering Drugs 

and Diet Network (GOLDN) study in CD4+ T cells [201]. Additionally, our study 

provides evidence of an association of cg06500161 with fasting glucose and 2-hour 

glucose (the latter was not analyzed in the study by Hidalgo et al.). Furthermore, 

new evidence of an implication of several other CpG sites in glucose homeostasis 

was presented. Reasons for the partly differing findings between the two studies 

can be (i) the DNA source (in this study, whole blood), (ii) the different normalization 

methods for methylation data, and (iii) different methods for adjustment or correction 

for multiple testing. Hidalgo and colleagues didn`t have an adjustment for BMI. 

Based on their findings they conclude for a potential role of lipid metabolism in 

insulin resistance mediated via the ABC transporter. Furthermore, they speculate 

that not only the variation in methylation of ABCG1 but also the underlying SNP 

variations mediate a part of the effects on insulin and HOMA-IR [201]. In the 

presented study, the associations for all investigated phenotypes, excluded 2-hour 

insulin, attenuated when adjusting for BMI. This is in line with well-established 

evidence of a close association between lipid levels and T2D, as for example shown 

in more than 5,000 men and women participating in the Framingham Heart Study 

[202]. In contrast to the Framing Heart Study, there has been no evidence that 

genetic variants of the ABCG1 gene are associated with T2D in the general 

population, a lack emphasized in a study combining the Copenhagen General 

Population and Copenhagen City Hearty study with more than 40,000 participants in 

total [203].  
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Low HDL (high density lipoprotein) is known as an independent risk factor for T2D 

[204]. However, the connection between ABCG1 and T2D as well as dyslipidemia is 

further supported by animal and gene expression studies. It has been shown in 

mice that a deficit in Abcg1 as well as Abca1 has a synergistic influence on -cell 

function [205]. In another study, loss of Abcg1 in pancreatic -cells was shown to 

result in impaired insulin secretion and glucose tolerance, but without affecting 

cellular cholesterol content or efflux. Furthermore, Abcg1 expression in -cells 

isolated from diabetic mice may be influenced by thiazolidineodiones [206]. These 

findings are in line with those derived from diabetic humans, as it was shown for 

patients with insulinomas that ABCG1 expression in the tumor tissue was 

significantly associated with fasting insulin and insulin release index [207]. In 

addition, Johansson et al. showed that ABCG1 is one of the most differentially 

expressed genes during weight loss and weight maintenance in adipose tissue from 

obese participants and at the three assessments (baseline, weight loss, and 

maintenance of reduced weight) these expression levels were correlated to 

predominant HDL concentrations [208]. Finally, Mauldin et al. found a 30% 

decrease in cholesterol efflux with a corresponding 60% improvement in cholesterol 

accumulation in macrophages of T2D patients in comparison to controls. 

Furthermore, ABCG1 was not detectable in macrophages from T2D patients 

whereas it was detected in controls. The expression of ABCG1 can be induced in 

both groups by treating them with liver x receptor agonist TO 901317 [209]. Taken 

together, the presented findings strongly support a role of the ABCG1 gene in 

glucose metabolism and suggest that the association may in fact be mediated by 

epigenetic mechanisms. 

Because it is known that DNA methylation can influence the expression of genes 

[59, 63, 71, 111, 115] the association of DNA methylation and gene expression was 

investigated in a next step. Here, an association between the degree of DNA 

methylation and gene expression level for cg06500161 (ABCG1) and ABCG1 was 

found. The association was independent of fasting glucose, 2-hour glucose, fasting 

insulin, 2-hour insulin, and HOMA-IR. Therefore, it can be concluded that DNA 

methylation and gene expression influence each other and therefore have an effect 
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on insulin and glucose levels. The presented results do not provide any clues 

regarding the direction of influence. 

 

4.2.3. Involvement of remaining associated CpG sites in diabetes 

For SREBF1 (sterol regulatory element binding transcription factor 1) a link can be 

found for diabetes or related traits. SREBF1 is activated by insulin and may also 

influence dyslipidaemia and hepatic steatosis found in obesity, insulin resistance, 

and T2D [210]. During states with lower insulin levels, like fasting, SREBF1 is 

decreased but, in contrast, during food uptake, obesity and insulin resistance, it 

rises [211]. Furthermore, Saxena et al. were able to demonstrate an association of a 

SNP annotated to SREBF1 with T2D when analyzing participants with European 

ancestry [45]. For CREB3L2 (cAMP responsive element binding protein 3-like 2), 

also significant in model 2 for 2-hour insulin, this study presents first evidence of its 

role in glucose metabolism. Therefore, further studies are warranted to validate 

these findings. 

BMI could explain on average around 30% of the association of investigated 

phenotypes and detected CpG sites. The literature hints that BMI influences the 

DNA methylation pattern. For example Na et al. showed a differential influence of 

BMI on global DNA methylation in healthy women. They found a u-shape 

association between BMI and Alu methylation, where the lowest methylation degree 

was found at a BMI between 23 and 30kg/m2. Due to these findings an involvement 

of BMI-related changes in Alu methylation in the etiology and pathogenesis of 

obesity is assumed [212]. Furthermore, an allele-specific, age-dependent, and BMI-

associated methylation at MCHR1 was shown in human blood samples [213]. 

Additionally, in this study, it was demonstrated by trend analysis that the degree of 

methylation at cg06500161 was rising with increasing measures of BMI. However, 

functional and/or time-series studies are warranted to elucidate potential cause and 

effect mechanisms in the association between those genes, adiposity, and glucose 

mechanisms. Due to the findings mentioned before, it can be assumed that BMI 

influences the methylation degree of CpG sites and therefore the association with 

measures of glucose metabolism is BMI-mediated. According to deductions, it is not 
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surprising that only some CpG sites are significant or rather borderline significantly 

associated with investigated phenotypes after adjustment for BMI. Some CpG sites 

where an association seems to be mediated by BMI are biologically plausible in the 

context of T2D or related traits. 

Furthermore, for CPT1A (carnitine palmitoyltransferase 1a), which influences the 

rate limiting step of fatty acid transport into mitochondria for -oxidation [214, 215], a 

link to diabetes or related traits can be found. For example Meng and colleagues 

could demonstrate in mouse pancreatic islets or rodent cell lines, that TO901317 

influenced the lipotoxicity through decreasing the gene expression of Cpt1a, in 

addition to other genes, and therefore reducing -cell function [215]. Nyman et al. 

could also show that a Cpt1a deficiency increases insulin sensitivity in mouse 

models exposed to either long term feeding or diet. Additionally, Cpt1a-deficient 

mice present different phenotypes depending on diet, demonstrating that diet, as 

well as genetics, influences the development of reduced glucose tolerance [216]. 

From a mice study, Orellana-Gavalda assumed that human-safe non-

immunoreactive adeno-associated virus mediated Cpt1a expression could be used 

as molecular therapy for obesity and diabetes [217]. In contrast, Hirota et al. 

analyzed SNPs at CPT1A locus in diabetic against non-diabetic individuals and 

found that none of them were associated with T2D, hepatic lipid content or insulin 

resistance in T2D [218].  

For TNF (tumor necrosis factor) a link to diabetes and related traits was found in the 

literature. This gene encodes a proinflammatory cytokine that is secreted mainly by 

macrophages and overexpressed in adipose tissue [219-221]. Besides others 

genes, it is involved in lipid metabolisms and implicated in insulin resistance [222-

224]. Xu et al. demonstrated that TNF concentration is significantly higher in 

patients with gestational diabetes compared to controls, independent of BMI [225]. 

This is in agreement with Chen et al. finding the same results in rats with T2D 

compared to non-diabetic controls [226] as well as Volpe et al. analyzing plasma 

from T2D patients and supernatant from palmitate-stimulated PBMNCs [227]. 

Neutralization of TNF signaling can improve insulin sensitivity [219, 222]. 
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For HCG11 [HLA complex group 11 (non-protein coding)], DGKZ (diacylglycerol 

kinase zeta), SLC43A1 [solute carrier family 43 (amino acid system L transporter) 

member 1], STK40 (serine/threonine kinase 40), and DHRS13 

[dehydrogenase/reductase (SDR family) member 13], this study presents first 

evidence of their roles in glucose metabolism. Therefore, further studies are 

warranted to validate these findings. Results for cg22040809 (HCG11), significant in 

adjustment model 1, have be regarded conditionally as it is listed by Chen et al. 

[137] as a cross reactive probe with other CpG sites. Therefore, the interference of 

another CpG site cannot be excluded. 

 

4.2.4. Accumulation of DNA methylation data in different pathways and link to     

diabetes 

In order to functionally integrate the results, a pathway analysis based on the 1,000 

top hits for each phenotype and adjustment models was conducted. Some of the 

identified pathways have a well-established link to diabetes or related traits. 

Examples are “Leptin Signaling in Obesity”, which is involved in the regulation of 

obesity, an important risk factor for T2D [228], and “Ephrin A/B Signaling”. For the 

latter it was shown that EphA and ephrin A regulate insulin secretion [229] and that 

the communication of EPH receptor and ephrin between exocrine and endocrine 

cells is involved in pancreatic function [230]. Ephs and ephrins are expressed in 

pancreatic -cells in humans and mice [231] and EphAs are tyrosine 

phosphorylated under low glucose concentrations and initiate forward signaling, 

which in turn reduces insulin secretion [232]. Furthermore, “Netrin Signaling” is a 

promising pathway in connection to diabetes, as in human and mice studies netrin 1 

was detected in obese but not lean adipose tissue. Also it was shown that a 

hematopoietic deletion of Ntn1 improves insulin sensitivity amongst other 

phenotypes [233]. Also Jayakumar and colleagues show that urinary netrin 1 is 

significantly increased in normoalbuminuric diabetes patients by comparing them 

with healthy patients and conclude that it can be a potential biomarker for predicting 

the development of chronic kidney disease in diabetes patients [234]. Additionally, 

for “Phospholipase C Signaling” a link to diabetes and related traits can be found. 

For phospholipase C 3, a strong down-regulation in diabetic peripheral neuropathy 
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of diabetic mice was shown [235]. Furthermore, phospholipase C 1 is involved in 

obesity by regulating thermogenesis and adipogenesis in mice [236] and has an 

effect on insulin secretion in a pancreatic -cell line [237]. 

 

4.3. General challenges 

Different challenges, such as for instance problems with the stability of induced 

changes, need to be faced for epigenetic analysis. Another point which has to be 

considered regards cell type-dependent epigenetic mechanisms. The degree of 

methylation is different across different cells and tissues [59, 62, 142]. This has to 

be kept in mind for both heterogeneous tissues and whole blood. Therefore, 

adjustment for the cell composition is necessary. Particularly, epigenetic patterns of 

disease-relevant tissues might further advance our understanding of disease 

pathophysiology. However, for ethical and practical reasons, DNA methylation 

analyses are often only feasible in whole blood rather than in disease-relevant 

tissues, particularly in large population-based observational studies. As no directly 

measured cell composition was available for the study samples of this thesis, 

estimated white blood cell proportions using the method developed by Houseman et 

al. [142] were used. In addition, it is often difficult to conclude if a change in DNA 

methylation status is the cause or result of a disease, leading to a discussion 

comparable to the chicken and egg dilemma [62, 101].  

Furthermore, bioinformatical as well as biostatistical methods have to be developed 

to analyze the high-throughput data. For example the shift of the two chemical 

technologies used (Infinium I and Infinium II) for the Infinium HumanMethylation450 

BeadChip has to be considered. Batch effects due to different protocols or handling 

have be solved as well.  

Another important point is the consideration of potential T2D risk factors/variables 

which could be potential confounders for the investigated phenotype. Besides age 

and sex, BMI is an important risk factor for T2D and related traits. In the presented 

studies many models were adjusted for BMI in light of this fact. Another possibility 
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could also be a stratification according BMI. This wasn`t conducted for reasons of 

limited power.  

Recent evidence showed that 5-hydroxymethylation is also an important regulator in 

the development of diseases. At present many available methods cannot distinguish 

between 5-methylcytosine and 5-hydroxymethylation [238, 239], but currently 

several approaches which will enable this discrimination are being developed [239, 

240]. Booth and colleagues for example used oxidative bisulfite sequencing in 

combination with representation bisulfite sequencing (RRBS) [241] to distinguish 

between the kinds of methylation. 

 

4.4. Strengths and limitations 

One of the strengths of this thesis is the genome-wide approach, and the 

combination of different methods, like DNA methylation and gene expression as well 

as pathway analysis, to obtain insight into potential mechanisms behind glucose 

and insulin regulation. The quality of the Infinium HumanMethylation450 BeadChip 

as well as EpiTYPER® data was controlled during the laboratory and statistical 

process. All statistical models were adjusted for different potential confounding 

factors. Due to the study design of the nested case-control study it can be assumed 

that aberrant DNA methylation of the identified CpG sites increases the risk for T2D. 

In contrast, a major caveat of the findings of the cross-sectional study is that it does 

not allow deductions on cause and effect. A further strength of the presented 

studies is the population-based design, which included also 2-hour glucose and     

2-hour insulin from OGTT. As it is known that DNA methylation patterns differ in 

different tissues [59, 62], the use of whole blood can be seen as a limitation for the 

presented studies, because it represents a mixture of cell types and may differ in 

methylation profiles from insulin-responsive tissues such as liver, skeletal muscle, 

and adipose tissue. Another limitation is the unavailability of direct measured cell 

proportions. However, an adjustment for estimated white blood cell proportions 

based on the methylation data for blood cells was performed to reduce potential 

confounding simply due to interindividual differences in blood cell proportions. In 

addition, whole blood is also a strength because it has the potential to be used for 
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biomarker studies. Further, peripheral blood is an important biological material in the 

context of prediction of diabetes as the samples are easily accessible in the clinical 

routine compared to tissue biopsies from the aforementioned organs. Other studies 

have also shown that it is a good surrogate for more disease-targeted tissues and 

cells in some cases. A further limitation of the two presented studies is that they did 

not distinguish between 5`methylcytosine and 5`hydroxymethylation, which was 

recently proven to have an effect on diseases. This is the largest study with 

participants of European ancestry so far and it had the potential to identify several 

epigenetic modifications related to T2D and glucose metabolism. Comparison of 

findings from the KORA- and LOLIPOP studies shows how study design and the 

number of samples can influence results. Due to small effect sizes, meta-analysis 

with large sample sizes seems promising to increase the statistical power. Last but 

not least, the biological relevance of many results of the presented studies were 

demonstrated.  

  

4.5. Conclusion 

At present there is no study published analyzing the association of DNA methylation 

patterns and T2D or measures of glucose metabolism in whole blood samples in a 

genome-wide approach. For the nested case-control study, analyzing the 

association with incident T2D, the methylation level of six CpG sites reach genome-

wide significance independent of age and sex, but they are mostly BMI mediated. Of 

those, three CpG sites flanking the leading CpG site annotated to AKT2 and one 

flanking the CpG site annotated to C14orf182 were significantly associated with 

incident T2D. One CpG site for AKT2 and one for C14orf182 were still significant 

after adjustment for BMI. Furthermore, the methylation levels of in total 15 CpG 

sites were genome-wide significantly associated with fasting glucose, 2-hour 

glucose, fasting insulin, and HOMA-IR, independent of age, sex, and estimated 

white blood cell proportions, but were widely BMI mediated. For each of these 

glycemic parameters, association with cg06500161 annotated to ABCG1 can be 

observed. Findings for methylation patterns at the ABCG1 gene are consistent with 

previous evidence that this gene is involved in HDL/LDL metabolism and diabetes in 
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a direct or indirect way. In both studies an accumulation of annotated genes in 

pathways that can be linked to diabetes can be found.  

From the findings presented in this study it can be concluded that DNA methylation 

markers are associated with incident T2D and measures of glucose metabolism 

which can be measured in whole blood. These results can help to better understand 

the pathogenesis of T2D and related traits and can be therefore used in the future to 

develop biomarkers, help to predict an increased risk for this disease or develop 

new strategies for prevention as well as treatment of T2D. 

 

4.6. Outlook 

The findings of systematic genome-wide studies on epigenetic regulation 

mechanisms for incident diabetes and measures of glucose metabolism in whole 

blood have provided a solid basis for functional analysis to better understand how 

DNA methylation of the identified genes is involved in diabetes. Furthermore, the 

replication of these findings in insulin-sensitive tissue like adipocytes, muscle or 

liver, as well as diabetes-related tissues like -cells, can be performed to investigate 

if whole blood reflects the epigenetic mechanism in these tissues and can therefore 

be used as a biomarker. Additionally, analyses between potential sequence variants 

and DNA methylation have to be confirmed, by for example looking for the known 

T2D-associated SNPs or within a defined area around significant CpG sites, to 

exclude that the findings are due to genetic modifications. Mendelian randomization 

or time-series studies should be performed to allow a conclusion of causality in the 

cross-sectional study. Also meta-analyses have to be performed to raise the sample 

size and thereby the power to detect further CpG sites which could not be detected 

in this study.  
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6. Appendix 

 
Figure 1: Line plots of results comparing 750 ng and 1,000 ng DNA. Line plots represent 

intensity of two different samples with 750ng and one unique sample with 1,000 ng DNA vs 

HumanMethylation450 BeadChip probe.  
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Figure 2: Screen shot from the control dashboard. x-axis represents the samples and y-axis the 

intensity of the samples for the corresponding control.  
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Table 1: Primer sequence for EpiTYPER
®
.  

Amplicon Name Genomic sequence for primer design 
Length of 

target 
Left primer Right primer 

A1a_cg11057824_13 TTGAACCAGTGTTGCCACCTTGCAAAGTCCCTTATGAAT

GAGTTACCTACCTCACCGATACATACTCACCATATCTTGT

CAAGGCTTCATATTCCTTTCCCTGTATAGTCCCCACAAAT

ATACACTGTCAGCTTTCAATGCACACCAAGCGCCCATTA

TTGATTCTTTGTCCCGAGTGGCTCCTCTGGAGCATATGC

GTAACATCAGGGGGACATAGGGCTTTTAATTGTCAAAAG

TATACAAACTCAGCACGTTATTCCAAATAATCTCTGCCCC

TGCTCCCTCACATTTTGATCATGCCGTATCTGTGATCTGG

GGCTGGGGACTCTGGCCCTCAAGATGCCTCCAATGCTC

TCGGCCCCTGCTAAGAGCCTCTGCCCACACACGGGGTC

ATGCGCATAACCTTAGAACTCTGGGCACGGCTAGATGAA

CTGTGGCACGCACCTGATCTAGGCAGCAGCCCACTTCC

CAGTTGGTCAGCCAGTGAAGGAAGGCTCAGCCCCACCA

GGCCAGTGAGATTCTCCGTCTTGGCAAATTGCTTAAAGA

CTTGATAGTAAAGGAGAAAGAGATAAAGCAGGCACCTGA

GGCCCCGAAGCAGCAG 

389 aggaagagagAGTGGGTT

GTTGTTTAGATTAGGTG 

cagtaatacgactcactat

agggagaaggctATCA

AAACTTCATATTCC

TTTCCCTA 

A2a_cg18514820_1 CCCGGGGTGCGGCTCCTGCAGGACTCGGTGGACTTCTC

GCTGGCCGACGCCATCAACACCGAGTTCAAGAACACCC

GCACCAACGAGAAGGTGGAGCTGCAGGAGCTGAATGAC

CGCTTCGCCAACTACATCGACAAGGTGCGCTTCCTGGA

GCAGCAGAATAAGATCCTGCTGGCCGAGCTCGAGCAGC

TCAAGGGCCAAGGCAAGTCGCGCCTGGGGGACCTCTAC

GAGGAGGAGATGCGGGAGCTGCGCCGGCAGGTGGACC

AGCTAACCAACGACAAAGCCCGCGTCGAGGTGGAGCGC

GACAACCTGGCCGAGGACATCATGCGCCTCCGGGAGAA

GTAAGGCTGCGCCCATGCAAGTAGCTGGGCCTCGGGAG

384 aggaagagagGGTGGAGT

TGTAGGAGTTGAATGAT 

cagtaatacgactcactat

agggagaaggctCTAT

CTCCCTAACAAAC

CTCCC 
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GGGGCTGGAGGGAGAGGGGAACGCCCCCCCGGCCCCC

GCGAGAGCTGCCACGCCCTTGGGGATGTGGCCGGGGG

GAGGCCTGCCAGGGAGACAGCGGAGAGCGGGGCTGTG

GCTGTGGTGGCGCAGCCCCGCCCAGAACCCAGACCTTG

CAGTTCGCATTTCCTCCTCTGTCCCCACACATTGCCCAA

GGACGCTCCGTTTCAAGTTACAGATTTCTTAAAA 

A3b_cg22876894_5 CAGGCAGTAGGTTCGCCAGCCATTGCTTGTGCGTCTTCG

CGGAGAGAGAGGGGGGAGATGCCCCGGCGCTCCTTAC

CCGGCTGGATAAGACCCTTTGGGGAACTTGCTGCTTCG

CAAGTCTTACTTGTGAGGACCCGGAGGGTTTGCCTTTGA

CCCCGCCTGTGACCTTAAGAAAACCCCTTTCTACCCTGC

GCCTGTCCCACAGCTGGAAGTGATAATTTTAAGAATGAA

TTAAGCACTCGGTGTGTGACACTGCGGCACTAAGCACTT

TCTGGACTGTGTTAGGCCCCATTTTACAGACGGGGAAGC

TGAGGCCTCCAGAGGCGGAGTAACCTGCTCATGGTTAC

AAAGCTGGTCAGCGGCGGGCAGGATTTGAATCCAGGGT

TCCCGGTTCCTAATCCTCTGCTTTTACCACTTAATTTATC

CTGCCTCCAAGGGCTGCTGGGAAAAAGGCGGATTTCAA

AGGAGAAGCAGCTAAGGAAAAGCTCTGGAAAGGGCCAA

CGGAGCGGATATTCCCGGAGCCCCTCTGCGAGCCACGC

GCCCCTCTGGGAAGCCCGCTTCCCCCTGCAGACAGGCG

CTGTGACACGCTTGCGCCCCGGTC 

303 aggaagagagATAAGATTT

TTTGGGGAATTTGTTG 

cagtaatacgactcactat

agggagaaggctAAAC

CCTAAATTCAAAT

CCTACCC 

A4b_cg25333225_4 GAGCCAGAGACGAACTCTGAGAGAGCGAGAGCGCAAGA

GCAGGGCAGAGAAGGAGGCGGGCTCACAGCAGGGCGC

CTGCGCACATTAGACAACTTTGGGCCTGTGTGGGTTAGA

GATGGGCCTCGCTAGGCCGTGGGGCGGAAAGGCGAGA

TGGGGCTACGCAGGCGCACTAGGACTCCGACGTCTGCT

TTCCCTAGGGCCTAGCCGTAGTGATTATTTCCCGGCAGC

CCCTAGTCCGTATTTACATACGCTTTGATCTTGTTTTACT

283 aggaagagagTAATTTTGG

GTTTGTGTGGGTTAG 

cagtaatacgactcactat

agggagaaggctAACT

TCAAAACCTAAAC

TCAACCAT 
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CAGTTCTGGGTTCTGACGCTCTTAAAGGACCCCGGAGC

GGGAGTTAGTTAGGAGGGGTTTCCTTTTCAGTGTGCTCG

TCATGGTTGAGCTCAGGCTCTGAAGCCACACAACCCCAG

ACTTGAATTTCCTCCTTTCTGGTGACTGTGGGCAGAAGG

CTTGACCGTTTTCTGTGCCTCAGTATCCACATCTGCTAAA

TGGAAACAATCATCGCTGTGTCGCTGGCTTTTGAACCAT

TTTAATGTAAACAAAACGGTTTTTACCAATTAGTTCATTAC

TGCAAGATATTAATGCCACCTGCTCTCATCGTACATATTC

CAGTGAATCTGGGATATA 

A5a_cg20587409_5 TTCCTGTTTTTTTAATATTAAAGAAGAGACCTCTTTTCACA

AATGATTGAGGAGGCTAGTAAAATGCAGTGAAAAGAGCA

AGTTCTTTGGGAGTCAGACAGCATCGGATCCAGCCCAGA

GCGCAGCACGACTAGTAGAGTAACTTAGATTAAGTCCTT

AAACTTCCAGTGTCCTCTTTTGTAAACTGGGAATAATAAT

AATAATAAATAAATAGTGAATAATATTTATGCAAAGTACTT

AGCACAGTGTCTAACACATAAAAGCTTAGGAGAAGTTGG

CTATTAAGCATTTCTAGGAACCCGAGGACTCAGGGTTGT

TATTTTAGTTCTTGGAATCAAAGGAACTTGAAGCGTAGTC

ATTCCTAAACTAAGTTAAACCAGAACTAGCGCTTTCAGCA

ATGATGTAATTTGATCTCTTCGGGCCACCGTCGCTGAGC

ATGCGCAAATAAACGTGGCGGGACGTATGTGTCATGGC

GCTCTCCATCTAAAGTCTGTGCAGCTTCCGGAGAGTGGC

GGGTTGATTTTCTCACTTTGGACTGGTTTTTACTTCCCGA

CTTCTGGGTAAGGGTGGCCGATGGGTCCATGTGGGGCA

GAGTGTGGCC 

338 aggaagagagTTTAGGAGA

AGTTGGTTATTAAGTAT

TTT 

cagtaatacgactcactat

agggagaaggctAACC

ACACTCTACCCCA

CATAAAC 

A6a_cg23951816_9 GAATAGAGGGAGAGAAGGCAATTAGGGGGCTGTGTGGT

TGGGGCTTTTTACTTGTCAAAGTGGAGGCTCATTGCTTTT

GTTACCACCATGTAAAGGGAATGGCAGGGTTTTGTTTTG

GTATTAAGGGCCTTAAAGATTGCTGCCTGACACTTACAC

344 aggaagagagTTTGTTTAG

TTTTTGTTTTTGTTGA 

cagtaatacgactcactat

agggagaaggctATCT

TTTCCCACCCCAA

ATATTAAA 
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AGGAAGGCCAGATAAGTCCAGAAAGAGAGGCCACGGAG

CAGTATTTTAAAAAAGAAGAAAAGAAGAAATGAAGAATTC

CCACTTTTTTGTTATTTTTAAGCCTGCCCAGCCCTTGTTT

TTGTTGATTTTTTTGGTGGGGAGCGGCGAGGGTGATTAA

CTTGTCCCGTGTCTTAACAGATTGTTTAAAGACCTACATC

GTGAAAACAGTCTTGTGGGCTTGGAGATAAACAGATGGG

CAATCAGTTCAGTAAATTAAAAACATCTCTACCTTAGGTG

TCCTGCCGCCAGAAGAAACCAAATCTTTGCCACTGGTCT

TGCTTCAAGCCACACAAGTCCAGGATCCCATGTGGCAGC

AGGGGTGTTTTCTTACCTGCATGCAAATCGGAGTTGTGT

GTTTGCTTTTGAAGAGGGTGAAATGGCTTAACACTTGGG

GTGGGAAAAGACC 

Amplicon name consist of the following parts: Laboratory number_CpG site to replicate included in target_primer number. Red marked sequence is the target 

sequence of amplification. Left and right primer include Taq.  

 

 

Table 2: Primer sequence for pyrosequencing. 

Gene Size PCR primer forward PCR primer reverse Pyrosequencing primer 

TMEM57 333 Biotine-GTGTGGGGTTTGTTTTGTTATT AAACCCTATAAATATAACATCCTATATTAC AAAAACATCCCAAAAAC 

CASZ1 116 Biotine-TTTTTAAGGTGGTTAATAAGAAGGG AAACTTCTCCTTTCCAAAAAATAAC CATCTCTATCCCCAAAAT 
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Table 3: Annotation information of detected CpG sites.  

CpG site Location on chromosome Annotated gene Location within gene Relation to CpG island 

cg09154213 1:25756855 TMEM57 TSS1500 CpG Island 

cg22800477 1:10853793 CASZ1 5'UTR N Shore 

cg18514820 10:17271944 VIM Body CpG Island 

cg11057824 14:50471938 C14orf182 Body S Shore 

cg25333225 19:40791658 AKT2 TSS1500 S Shore 

cg22876894 20:1783624 - - N Shore 

Chromosome information is based on Genome Build 37. TSS: Transcription start site; CpG island: site with an accumulation of 

CpG sites; shore: located next to the CpG island; shelf: located more than 2 kb away from the CpG island; S/N superior of 

shore or shelf: specifies the location in relation the CpG island 
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Table 4: Characteristics of the study population for DNA methylation analysis (n=617) for         

2-hour insulin. 

 Median 
(25th; 75th percentile) 

% 

Sex [% male]  - 48.30 

Age [years]  68 (65; 72) - 

BMI [kg/m2]  27.55 (25.16; 30.31) - 

Waist circumference [cm]  96.10 (88.40; 103.50) - 

   

Fasting serum glucose [mmol/l] 5.39 (5.06; 5.72) - 

2-hour serum glucose [mmol/l] 6.50 (5.39; 7.78) - 

HbA1c [%] 5.60 (5.30; 5.80) - 

Glucose tolerance status [%] 
NGT 
IFG 
IGT 
Combined IFG and IGT 

 
- 
- 
- 
- 

 
68.56 
5.67 
20.26 
5.51 

Insulin [µlU/ml]  4.70 (3.30; 7.50) - 

2-hour insulin [µlU/ml] 50.20 (28.70; 78.10) - 

HOMA-IR 1.12 (0.76; 1.82) - 

   

C-reactive protein [mg/l]  1.37 (0.71; 2.53) - 

Leucocytes [/nl]  5.60 (4.80; 6.40) - 

Cholesterol [mmol/l]  5.79 (5.12; 6.51) - 

Triglycerides [mmol/l]  1.25 (0.91; 1.71) - 

Systolic blood pressure [mmHg]  126.50 (114.50; 138.00) - 

Diastolic blood pressure [mmHg]  74.50 (68.50; 81.50) - 

   

Alcohol consumption [g/day]  7.64 (0.00; 20.00) - 

Smoking status [%] 
never 
ex 
current 

 
- 
- 
- 

 
52.84 
39.22 
7.95 

Physically active [%]  
(combination of activity during 
summer and winter) 

 
- 

 
56.89 

CD8+ T cells [%]+ 0.09 (0.05; 0.15) - 

CD4+ T cells [%]+  0.15 (0.11; 0.19) - 

Natural killer cells [%]+  0.02 (0.00; 0.04) - 

B cells [%]+ 0.04 (0.03; 0.06) - 

Monocytes [%]+  0.11 (0.10; 0.14) - 

Granulocytes [%]+ 0.64 (0.58; 0.70) - 
+ Data are presented for the estimated white blood cell proportion using a 

recently published method [142]  

NGT: normal glucose tolerance; IFG: impaired fasting glucose; IGT: impaired 

glucose tolerance 
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Table 5: Characteristics of the study population for DNA methylation analysis (n=1,440)  

HOMA-IR. 

 Median 
(25th; 75th percentile) 

% 

Sex [% male]  - 47.15 

Age [years]  59 (53; 67) - 

BMI [kg/m2]  27.06 (24.51; 30.05) - 

Waist circumference [cm]  93.55 (84.50; 102.33) - 

   

Fasting serum glucose [mmol/l] 5.28 (4.94; 5.61) - 

2-hour serum glucose [mmol/l]  6.00 (5.00; 7.17) - 

HbA1c [%] 5.50 (5.20; 5.70) - 

Glucose tolerance status [%] 
NGT 
IFG 
IGT 
Combined IFG and IGT 

 
- 
- 
- 
- 

 
77.29 
4.93 
14.37 
3.40 

Insulin [µlU/ml]  4.10 (2.80; 6.70) - 

2-hour Insulin [µlU/ml] 50.20 (28.70; 78.10) - 

HOMA-IR  0.97 (0.64; 1.59) - 

   

C-reactive protein [mg/l] 1.14 (0.58; 2.23) - 

Leucocytes [/nl] 5.50 (4.70; 6.50) - 

Cholesterol [mmol/l] 5.71 (5.11; 6.43) - 

Triglycerides [mmol/l] 1.22 (0.85; 1.70) - 

Systolic blood pressure [mmHg] 122.20 (111.00; 134.50) - 

Diastolic blood pressure [mmHg] 75.50 (69.50; 82.50) - 

   

Alcohol consumption [g/day] 8.57 (0.00; 22.86) - 

Smoking status [%] 
never 
ex 
current 

 
- 
- 
- 

 
44.93 
40.00 
15.07 

Physically active [%]  
(combination of activity during 
summer and winter) 

 
- 

 
60.12 

CD8+ T cells [%]+ 0.09 (0.05; 0.14) - 

CD4+ T cells [%]+  0.16 (0.12; 0.21) - 

Natural killer cells [%]+ 0.02 (0.002; 0.04) - 

B cells [%]+ 0.05 (0.03; 0.06) - 

Monocytes [%]+  0.12 (0.10; 0.13) - 

Granulocytes [%]+ 0.63 (0.57; 0.69) - 

+ Data are presented for the estimated white blood cell proportion using a 

recently published method [142]  

NGT: normal glucose tolerance; IFG: impaired fasting glucose; IGT: impaired 

glucose tolerance 

 

 



Appendix 

XXXVII 

 

Table 6: Annotation information of detected CpG sites.  

CpG site Location on chromosome Annotated gene Location within gene Relation to CpG island 

cg00574958 11:68607622 CPT1A 5'UTR N Shore 

cg06500161 21:43656587 ABCG1 gene body S Shore 

cg07504977 10:102131012 unannotated - N Shelf 

cg11024682 17:17730094 SREBF1 gene body S Shelf 

cg22040809 6:26522578 HCG11 gene body CpG Island 

cg07092212 11:46382544 DGKZ gene body - 

cg09613192 2:181388538 unannotated - - 

cg09694782 2:97408799 unannotated - S Shelf 

cg11376147 11:57261198 SLC43A1 gene body - 

cg17266233 11:46382725 DGKZ gene body, TSS1500 * - 

cg17971578 1:36852463 STK40 TSS1500 S Shore 

cg22065733 8:11801320 unannotated - - 

cg04161365 17:27230393 DHRS13 TSS1500 S Shore 

cg13016916 7:137660322 CREB3L2 gene body - 

cg20477259 6:31544960 TNF gene body N Shelf 

Chromosome information is based on Genome Build 37. TSS: Transcription start site; * depending and transcription variant; CpG 

island: site with an accumulation of CpG sites; shore: located next to the CpG island; shelf: located more than 2kb away from the 

CpG island; S/N superior of shore or shelf: specifies the location in relation the CpG island 
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Table 7: Association between DNA methylation at cg09694782/cg13016916 and different phenotypes based on quintiles of methylation level. 

a 

 1.Quintile 

(n=290) 

2.Quintile 

(n=289) 

3. Quintile 

(n=289) 

4. Quintile 

(n=289) 

5.Quintile 

(n=290) 
 

Phenotype Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) p for trend (bonf. adjusted) 

Age [years] # 61.29 (8.6) 59.54 (8.65) 59.69 (8.66) 59.81 (9.13) 58.92 (8.47) 0.044 

BMI [kg/m
2
] # 27.59 (4.49) 27.93 (4.6) 27.5 (4.41) 27.53 (4.26) 27.04 (3.96) 0.917 

Waist circumference [cm] 94.21 (13.29) 94.38 (13.4) 93.92 (13.32) 92.75 (12.07) 92.88 (12.34) 1 

Fasting glucose [mmol/l] # 5.38 (0.55) 5.28 (0.5) 5.35 (0.53) 5.24 (0.49) 5.29 (0.55) 0.301 

2-hour glucose [mmol/l] # 6.45 (1.77) 6.17 (1.73) 6.3 (1.72) 6.03 (1.63) 6.14 (1.67) 0.259 

HbA1c [%] 5.48 (0.32) 5.47 (0.35) 5.49 (0.32) 5.45 (0.31) 5.46 (0.3) 1 

C-reactive protein [mg/l] # 1.89 (1.88) 1.66 (1.52) 1.69 (1.54) 1.83 (1.73) 1.56 (1.61) 1 

Fasting insulin [µlU/ml] # 7.09 (6.96) 6.67 (6.86) 6.58 (7.46) 5.77 (6.41) 5.26 (5.88) 3.67x10
-3

 

2-hour insulin [µlU/ml] #  68.83 (54.4) 65.74 (49.27) 62.86 (47.83) 54.59 (37.43) 57.62 (59.59) 0.261 

HOMA-IR #  1.75 (1.84) 1.59 (1.71) 1.63 (1.99) 1.38 (1.61) 1.26 (1.53) 2.91x10
-3

 

Cholesterol [mmol/l] # 5.77 (1.08) 5.83 (1.03) 5.84 (1.01) 5.79 (0.98) 5.76 (0.91) 1 

Triglycerides [mmol/l] # 1.38 (0.81) 1.49 (0.92) 1.53 (1.29) 1.4 (0.97) 1.43 (0.97) 1 

Systolic blood pressure [mm Hg] 123.21 (20.53) 123.27 (17.43) 124.1 (18.22) 122.17 (18.17) 123.74 (16.73) 1 

Diastolic blood pressure [mm Hg] 76.14 (10.78) 76.5 (9.41) 76.67 (9.94) 75.4 (9.59) 76.38 (9.61) 1 

CD8
+
 T cells #+  0.11 (0.07) 0.1 (0.07) 0.1 (0.07) 0.1 (0.07) 0.11 (0.07) 2.92x10

-73
 

CD4
+
 T cells + 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 2.66x10

-11
 

Natural killer cells #+  0.02 (0.02) 0.02 (0.02) 0.03 (0.03) 0.02 (0.02) 0.02 (0.02) 1.54x10
-8

 

B cells #+  0.05 (0.03) 0.05 (0.02) 0.05 (0.02) 0.05 (0.04) 0.05 (0.02) 1.59x10
-5

 

Monocytes + 0.12 (0.02) 0.12 (0.03) 0.12 (0.02) 0.12 (0.03) 0.12 (0.03) 1.32x10
-6

 

Granulocytes + 0.63 (0.08) 0.63 (0.09) 0.64 (0.09) 0.64 (0.1) 0.63 (0.09) 1.74x10
-11
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 1. Quintile 

(n=290) 

2. Quintile 

(n=289) 

3. Quintile 

(n=289) 

4. Quintile 

(n=289) 

5. Quintile 

(n=290) 

 number number p-value number p-value number p-value number p-value 

Sex [male/female] 147/143 128/161 0.133 141/148 0.678 119/170 0.024 146/144 0.967 

Glucose status [combination of 

IFG and IGT / IFG / IGT / normal] 
14/21/52/203 8/13/39/229 

0.083 
12/12/47/218 

0.336 
5/10/31/243 

5.0x10
-4 

* 
10/16/39/225 

0.244 

 

b 

 1.Quintile 

(n=290) 

2.Quintile 

(n=289) 

3. Quintile 

(n=289) 

4. Quintile 

(n=289) 

5.Quintile 

(n=290) 
 

Phenotype Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) p for trend (bonf. adjusted) 

Age [years] # 59.59 (8.77) 60.08 (8.64) 60.13 (8.67) 59.34 (8.57) 60.29 (9.02) 1 

BMI [kg/m
2
] # 27.46 (4.19) 27.66 (4.4) 27.3 (4.31) 27.51 (4.47) 27.52 (4.39) 1 

Waist circumference [cm] 93.47 (12.53) 94.51 (13.35) 93.11 (12.6) 93.64 (13.76) 93.3 (12.4) 1 

Fasting glucose [mmol/l] # 5.28 (0.54) 5.29 (0.54) 5.32 (0.53) 5.35 (0.51) 5.32 (0.51) 1 

2-hour glucose [mmol/l] # 6.09 (1.63) 6.29 (1.77) 6.14 (1.65) 6.34 (1.84) 6.23 (1.65) 1 

HbA1c [%] 5.47 (0.31) 5.47 (0.33) 5.44 (0.31) 5.48 (0.34) 5.48 (0.32) 1 

C-reactive protein [mg/l] # 1.78 (1.74) 1.77 (1.6) 1.56 (1.62) 1.72 (1.69) 1.79 (1.7) 1 

Fasting insulin [µlU/ml] # 5.27 (5.75) 6.21 (6.26) 6.15 (6.55) 7.19 (8.12) 6.49 (6.77) 0.128 

2-hour insulin [µlU/ml] #  60.62 (56.55) 56.97 (38.65) 62.04 (45.97) 64.18 (53.26) 68.7 (56.18) 1 

HOMA-IR #  1.26 (1.57) 1.51 (1.6) 1.48 (1.65) 1.75 (2.04) 1.6 (1.82) 0.103 

Cholesterol [mmol/l] # 5.78 (0.98) 5.85 (1.08) 5.82 (1.05) 5.74 (0.94) 5.8 (0.98) 1 

Triglycerides [mmol/l] # 1.4 (0.87) 1.49 (1.01) 1.5 (1.33) 1.43 (0.9) 1.4 (0.85) 1 

Systolic blood pressure [mm Hg] 123.96 (17.7) 122.83 (18) 122.88 (17.71) 123.43 (18.1) 123.65 (19.75) 1 

Diastolic blood pressure [mm Hg] 76.28 (9.83) 76.06 (10.06) 75.93 (9.43) 76.74 (9.86) 76.15 (10.28) 1 
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CD8
+
 T cells #+  0.1 (0.07) 0.1 (0.07) 0.1 (0.06) 0.1 (0.06) 0.1 (0.07) 1 

CD4
+
 T cells + 0.16 (0.06) 0.16 (0.06) 0.17 (0.06) 0.17 (0.06) 0.17 (0.06) 1 

Natural killer cells #+  0.03 (0.03) 0.03 (0.03) 0.02 (0.02) 0.03 (0.03) 0.02 (0.02) 0.396 

B cells #+  0.05 (0.04) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.494 

Monocytes + 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.03) 1 

Granulocytes + 0.63 (0.1) 0.64 (0.08) 0.63 (0.09) 0.62 (0.08) 0.63 (0.08) 1 

 

 

1. Quintile 

(n=290) 

2. Quintile 

(n=289) 

3. Quintile 

(n=290) 

4. Quintile 

(n=289) 

5. Quintile 

(n=290) 

 number number p-value number p-value number p-value number p-value 

sex [male/female] 138/148 140/146 0.702 131/155 0.827 138/147 0.766 129/157 0.698 

glucose status [combination of 

IFG and IGT / IFG / IGT / normal] 
8/12/35/231 11/17/43/215 0.347 10/19/40/217 0.394 9/12/50/215 0.274 11/11/39/225 0.764 

Means, standard deviations and p-values for trend (Bonferroni corrected) are presented for the different quintiles for the continuous phenotypes, and total 

numbers in the different quintiles and p-values (comparing the quintile vs 1st quintile) for categorical variables. * p-value was significant after correction for 

multiple testing. # variables were log transformed for determination of p-values); + cell types were estimated using method developed by Houseman et al. 

[142], IFG: impaired fasting glucose, IGT: impaired glucose tolerance; (a) cg09694782 (one sample without methylation value for this CpG site) and (b) 

cg13016916 (18 samples without methylation value for this CpG site) 
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Table 8: Pathway analysis based on the top 1,000 CpG sites associated with 2-hour glucose (a), fasting insulin (b) and HOMA-IR (c) using Ingenuity. 

a 

Adjusted for age, sex, and estimated white blood cell proportions  
(model 1) 

Adjusted for age, sex, estimated white blood cell proportions, and BMI 
(model 2) 

Ingenuity Canonical Pathways B-H-adjusted p-value Ratio 
Ingenuity Canonical 

Pathways 
B-H-adjusted p-value Ratio 

Growth Hormone Signaling 0.022 11/69 

Thyroid Hormone Metabolism II 

(via Conjugation and/or 

Degradation) 

0.018 7/26 

Role of NFAT in Cardiac 

Hypertrophy 
0.028 18/176 Serotonin Degradation 0.163 8/52 

Thyroid Hormone Metabolism II 

(via Conjugation and/or 

Degradation) 

0.035 6/26 Nicotine Degradation III 0.186 7/44 

α-Adrenergic Signaling 0.035 11/85 Melatonin Degradation I 0.198 7/47 

Protein Kinase A Signaling 0.035 28/368 Ephrin Receptor Signaling 0.198 15/172 

CREB Signaling in Neurons 0.048 16/169 Nicotine Degradation II 0.198 7/50 

CCR5 Signaling in Macrophages 0.048 9/67 
Superpathway of Melatonin 

Degradation 
0.213 7/52 

G Protein Signaling Mediated by 

Tubby 
0.048 6/31 Growth Hormone Signaling 0.254 8/69 

Leukocyte Extravasation 

Signaling 
0.050 17/193 

G Protein Signaling Mediated 

by Tubby 
0.258 5/31 

Sperm Motility 0.050 12/113 
Factors Promoting 

Cardiogenesis in Vertebrates 
0.258 9/89 
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b 

Adjusted for age, sex, and estimated white blood cell proportions 
(model 1) 

Adjusted for age, sex, estimated white blood cell proportions, and BMI 
(model 2) 

Ingenuity Canonical Pathways B-H-adjusted p-value Ratio Ingenuity Canonical Pathways B-H-adjusted p-value Ratio 

cAMP-mediated signaling 0.511 16/216 Netrin Signaling 0.109 7/39 

Hypoxia Signaling in the 

Cardiovascular System 
0.511 7/63 Role of Tissue Factor in Cancer 0.109 12/107 

B Cell Receptor Signaling 0.511 13/171 Thrombin Signaling 0.136 16/187 

PAK Signaling 0.511 8/88 Huntington's Disease Signaling 0.136 18/226 

NGF Signaling 0.511 9/106 Tec Kinase Signaling 0.136 14/156 

Role of IL-17F in Allergic 

Inflammatory Airway Diseases 
0.511 5/41 SAPK/JNK Signaling 0.136 10/93 

Role of Tissue Factor in Cancer 0.511 9/107 Reelin Signaling in Neurons 0.136 9/79 

Superpathway of Inositol Phosphate 

Compounds 
0.511 13/183 Glutathione Redox Reactions I 0.149 4/17 

Intrinsic Prothrombin Activation 

Pathway 
0.511 4/28 Axonal Guidance Signaling 0.162 27/425 

Glioblastoma Multiforme Signaling 0.511 11/145 B Cell Receptor Signaling 0.162 14/171 
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c 

Adjusted for age, sex, and estimated white blood cell proportions 
(model 1) 

Adjusted for age, sex, estimated white blood cell proportions, and BMI 
(model 2) 

Ingenuity Canonical Pathways B-H-adjusted p-value Ratio Ingenuity Canonical Pathways B-H-adjusted p-value Ratio 

Hypoxia Signaling in the 

Cardiovascular System 
0.353 8/63 Ephrin Receptor Signaling 0.778 17/172 

Reelin Signaling in Neurons 0.353 9/79 Actin Cytoskeleton Signaling 0.964 18/210 

IL-15 Signaling 0.353 8/66 ILK Signaling 0.964 16/181 

TR/RXR Activation 0.353 9/85 ATM Signaling 0.964 8/59 

FAK Signaling 0.353 9/86 B Cell Receptor Signaling 0.964 15/171 

PAK Signaling 0.353 9/88 Role of Tissue Factor in Cancer 0.964 11/107 

Role of Tissue Factor in Cancer 0.366 10/107 
Hypoxia Signaling in the 

Cardiovascular System 
0.964 8/63 

Estrogen-Dependent Breast Cancer 

Signaling 
0.393 7/62 SAPK/JNK Signaling 0.964 10/93 

Axonal Guidance Signaling 0.398 25/425 Reelin Signaling in Neurons 0.964 9/79 

FLT3 Signaling in Hematopoietic 

Progenitor Cells 
0.398 7/71 

Agrin Interactions at Neuromuscular 

Junction 
0.964 8/67 

a) 2-hour glucose, b) fasting insulin, c) HOMA-IR 

The p-value corrected using the Benjamini-Hochberg method for multiple testing is presented for each pathway, besides the ratio (number of genes uploaded in the 

software/total number of genes included in the pathway). Underlined pathways are significant after correction for multiple testing using Benjamini-Hochberg. 
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Table 9: Summary of the analysis for association between DNA methylation and gene expression showing the top association per CpG sites as long as p-value 

< 0.05. 

CpG site Transcript Coefficient p-value Adj. p-value 
Annotated gene 

for CpG site 

Annotated gene 

for transcript 

cg06500161 ILMN_2329927 -3.623 2.5x10
-12

 1.1x10
-9

 ABCG1 ABCG1 

cg00574958 ILMN_1744835 -3.423 4.1x10
-3

 0.19 CPT1A MRPL21 

cg22040809 ILMN_1700067 -1.175 2.3x10
-3

 0.15 HCG11 BTN3A2 

cg09694782 ILMN_1769752 0.905 8.0x10
-4

 0.10 unannotated LOC90342 

cg11376147 ILMN_2233099 1.354 6.8x10
-3

 0.28 SLC43A1 SSRP1 

cg17266233 ILMN_1660882 -1.213 0.03 0.62 DGKZ CHRM4 

cg04161365 ILMN_1716441 0.938 0.03 0.59 DHRS13 SNORD4A 

cg20477259 ILMN_2150787 -1.958 9.1x10
-4

 0.10 TNF HLA-C 

cg11024682 ILMN_2060770 -1.021 7.9x10
-3

 0.30 SREBF1 RAI1 

cg09613192 ILMN_2390338 -0.658 1.5x10
-3

 0.11 unannotated UBE2E3 

cg22065733 ILMN_2144088 -3.103 1.4x10
-3

 0.11 unannotated FDFT1 
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9. Description of own contribution 

This doctoral thesis comprises of two different projects with different kinds of 

analysis, where some of the presented results are contributed by others. Therefore 

in the following chapter my own contribution to the project is described in more 

detail.  

I performed the analysis of association of DNA methylation and incident T2D the 

laboratory work for the HumanMethylation450 BeadChip on my own, as well as 

planning EpiTYPER® and pyrosequencing experiments. Further, I carried out the 

statistical analysis of the combined analysis of EpiTYPER® and pyrosequencing 

results as well as the interpretation of all results and writing of the manuscript.  

Morever, I carried out the analysis of the association between DNA methylation and 

measures of glucose metabolism, planning and performing all analysis, excluding 

the generation of DNA methylation data. Furthermore, I interpreted data and wrote 

the manuscript for the publications “Whole-blood DNA methylation patterns and 

measures of glucose metabolism in the KORA F4 study” and “Association of 
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study” (see chapter 10.1.).  
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