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Zusammenfassung 

Die oberflächenexponierten Rezeptoren der CEACAM-Familie sind an grundlegenden Prozessen 

in der Zelle wie Zell-Zell-Adhäsion, Homöostase und der Regulation des Immunsystems beteiligt. 

Die CEACAMs werden bevorzugt von Viren und Bakterien genutzt, um über deren Bindung die 

Wirtszellen zu infizieren. CEACAM1, 5 und 6, die typischerweise auf Epithelzellen vorkommen, 

und CEACAM3, das nur auf Granulozyten zu finden ist, werden von den für Menschen 

gefährlichen Krankheitserregern der Spezies Neisseria, sowie von Haemophilus influenzae und 

Moraxella catarrhalis spezifisch erkannt. 

In dieser Arbeit wurde das spiralförmige, Gram-negative Bakterium Helicobacter pylori auf 

Bindung an die CEACAM-Rezeptorfamilie untersucht. H. pylori ist ebenfalls ein für Menschen 

gefährlicher Krankheitserreger, der sich im menschlichen Magenepithel ansiedeln kann. Es 

konnte gezeigt werden, dass das Bakterium an die Rezeptoren CEACAM1 und CEACAM5 bindet, 

nicht aber an die anderen beschriebenen Familienmitglieder CEACAM3, 4, 6, 7 und 8. Daneben 

wurden auch Bakterien auf Bindung untersucht, die zur Gattung Helicobacter zählen, jedoch zu 

einer anderen Art als pylori gehören. Diese Bakterien konnten nicht mit CEACAMs interagieren. 

Die Bindung scheint sich zudem auf die im Menschen vorkommenden CEACAMs zu beschränken, 

da keine CEACAM-orthologen Strukturen in anderen Arten als dem Menschen von H. pylori 

erkannt werden konnten. Dies legt nahe, dass die Fähigkeit an CEACAMs zu binden eine 

Anpassung der Spezies H. pylori an ihren menschlichen Wirt darstellt. 

In dem Versuch, die bakteriellen Adhäsine zu identifizieren, die an CEACAMs binden, wurden 

Deletionsmutanten hergestellt. Damit konnte gezeigt werden, dass ausschließlich das äußere 

Membranprotein HopQ für die Interaktion mit CEACAM1 und CEACAM5 verantwortlich ist. Von 

HopQ existieren zwei Genvarianten, die in mehr (HopQI) oder weniger (HopQII) virulenten 

H. pylori-Stämmen vorkommen. Beide HopQ-Genvarianten waren in der Lage, mit CEACAMs zu 

interagieren, aber die CEACAM-Bindung war für HopQI deutlich stärker als für HopQII. 

Die H. pylori-Stämme PMSS1 und SS1 unterscheiden sich lediglich dadurch, dass der Stamm SS1 

durch die Maus passagiert wurde. Als die Stämme auf ihre CEACAM- Bindefähigkeit untersucht 

wurden, zeigte sich, dass der Tier-passagierte Stamm SS1 seine CEACAM-Bindefähigkeit 

weitgehend verloren hatte. Der Grund hierfür war, dass die Genvariante HopQI nicht mehr 

produziert wurde, während in dem Stamm PMSS1 sowohl ein funktionales HopQI als auch ein 

HopQII gebildet wurde. Dies deutet darauf hin, dass H. pylori-Stämme ihre CEACAM-

Bindefähigkeit durch die Mauspassage verlieren, vermutlich weil die Bakterien CEACAM-

orthologe Strukturen nicht binden können. 
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Eukaryotische Zelllinien wurden auf die Synthese von CEACAMs untersucht und es zeigte sich, 

dass in CEACAM-positiven Zelllinien die epithelialen CEACAMs 1, 5 und 6 immer zusammen 

produziert werden. Die Adhäsion spielt eine wichtige Rolle bei der Translokation des 

Effektorproteins CagA in die Wirtszellen durch H. pylori, um zelluläre Prozesse zu beeinflussen. 

In-vitro-Infektionen von CEACAM- transfizierten HEK293-Zellen mit Wildtypbakterien und einer 

Adhäsionsdefekten Bakterienmutante zeigten, dass die CagA-Translokationsfähigkeit vollständig 

von der Gegenwart des Adhäsins HopQ abhängig ist. 

Kurz zusammengefasst konnte das Adhäsin HopQ als neuartiger bakterieller Virulenzfaktor 

identifiziert werden, der mit einigen zellulären Rezeptoren der CEACAM-Familie interagiert. Die 

in dieser Studie gewonnenen Ergebnisse zeigen interessante neue Einblicke in die Pathogenese 

des Bakteriums H. pylori und in das Zusammenspiel dieses pathogenen Bakteriums mit seinem 

menschlichen Wirt. 
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Summary 

Being involved in main cellular processes like cell-cell adhesion, homoeostasis and regulation of 

the immune system, the surface exposed receptor family of CEACAMs has been discovered to be 

a favorable target for viruses and many bacteria and used as entry site into the host. The 

epithelial members CEACAM1, CEACAM5 and CEACAM6 together with the granulocyte receptor 

CEACAM3 are recognized by human-specific pathogens like Neisseria species, Haemophilus 

influenzae and Moraxella catarrhalis.  

In this work, Helicobacter pylori, the spiral shaped Gram-negative and pathogenic bacterium 

residing in the gastric epithelium of the human stomach was examined for CEACAM binding 

capability. H. pylori was found to interact with the CEACAM family members CEACAM1 and 

CEACAM5. The bacterium did not show adhesion to CEACAM3, 4, 6, 7 and 8. Moreover, it was 

discovered that non-pylori Helicobacter species were not able to adhere to the CEACAM 

receptors and that the recognition is species-specific, since H. pylori was unable to adhere to 

CEACAMs found in other species than humans. This suggests that the CEACAM binding capability 

is a specific adaptation of the species H. pylori to its human host. 

In the attempt to identify the bacterial adhesin adhering to CEACAMs, the Hop family was 

targeted for deletion and HopQ was identified as the sole adhesin targeting CEACAM1 and 

CEACAM5. HopQ exists in two allelic forms which are produced in more (HopQI) or less 

(HopQII) virulent H. pylori strains. In this work, it was found that both allelic forms of HopQ 

were generally recognizing CEACAMs, but the CEACAM binding capability was markedly 

enhanced for the HopQI variant.  

The two H. pylori strains PMSS1 and SS1 differed only by animal passage of SS1. It was 

discovered that the strain SS1 had lost its binding ability to a large extent. The sequencing 

results showed a downregulation of the hopQI genes in the animal-passaged strain, whereas the 

non-mouse-passaged strain was still producing both a functional HopQI and HopQII. This 

suggests that H. pylori strains may lose their CEACAM-binding capability by mouse passage, 

likely due to a possible failure in recognizing CEACAM orthologues present in animals. 

When eukaryotic cell lines were examined for CEACAM production, in CEACAM-positive cell 

lines, the epithelial CEACAMs 1, 5 and 6 were always co-produced. One major role of the H. pylori 

adhesion to the gastric epithelium is the translocation of the effector protein CagA into the host 

cells to modulate cellular processes. Interestingly, the CEACAM production on cell lines was 

supporting the CagA translocation capability. In vitro infections of CEACAM transfected HEK293 

cells with wildtype and adhesion-defective mutant H. pylori strains showed a complete 

dependency of the CagA translocation on the presence of the adhesin HopQ. 
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Taken together, the results obtained from this study identified the adhesin HopQ as a novel 

bacterial virulence factor interacting with the cellular CEACAM receptor family which might 

bring interesting new insights into H. pylori pathogenesis and the interplay between the 

pathogenic bacterium and its human host. 
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Introduction 

 1 Immunoglobulin superfamily 

 1.1  COMPOSITION AND STRUCTURE 

The Immunoglobulin superfamily (IgSF) has been one of the first superfamilies to be discovered 

and now represents one of the largest in vertebrate genomes. The IgSF members 

characteristically share the structural unit of Immunoglobulin-like (Ig-like) domains which are 

named due to their strong resemblance to antibodies (immunoglobulins), mostly in sequence, 

but also in function 1. The domain consists of about 110 amino acids (aa) and forms a sandwich 

of two antiparallel ß-sheets linked by disulfide bonds between cysteine residues of the B and F 

strands (Figure 1 A). 

 

 

 

Figure 1: Typical Ig domain of 

two ß-sheets.  

(A) ß-strands and loops that 

form the two antiparallel ß-

sheets. The strands were 

numbered from A to G. One β-

sheet consists of strands A, B, E 

and D, while the other contains 

strands C, F, G and possibly C′ 

and C’’. 

(B) The topology of the Ig 

domain is depicted. SS 

represents the conserved 

disulfide bonds between 

cysteine residues of the B and F 

strands (Barclay, 2003). 

 

 

Ig domains are divided into four main types regarding their function and size: v, c, h and s type 2. 

The v type (v for variable) or V-set is considerably similar to the variable, antigen binding region 

of antibodies. The v type comprises all strands of the two ß-sheets including the C’ and C’’ 

strands (Figure 1 B) and presents the longest of Ig-like domains. The c type (c for constant) or 

C1-set is closely related to the constant region of antibodies which mediates effector functions. It 

lacks the C’ and C’’ strands in contrast to the v type 3. The h type (h for hybrid) or C2-set is in 
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sequence pattern more similar to the v type, although it has a shortened domain length 

comparable to the c-type by lacking strand C’’ 4. Besides these three types, the s type (s for 

switched) or I-set (intermediate) is devoid of strand D or C’’ and typical for IgSF members that 

belong to the group of cell adhesion molecules (CAM) and surface receptors 5. 

 

 

 1.2 FUNCTION 

Members of the IgSF are found in a wide variety of proteins that differ largely in their function. 

Their ability to build rod-like structures and to interact specifically with other proteins makes 

them excellent candidates for CAMs or surface receptors 6. IgSF domains are found in the 

nervous system (e.g. the neural cell adhesion molecule NCAM) 7, but also in immune cells or cells 

that are involved in reproduction 1. They are typically occurring in antigen receptors (T-cell 

receptor and antibodies 8 9), in antigen presenting molecules (e.g. MHC class I and II) 10, in 

coreceptors and costimulatory molecules of the immune system (e.g. CD28) 11 and even in 

muscle cells (e.g. Titin) 12. 

Proteins belonging to the IgSF are mostly multi-domain structures in which the domains are 

arranged like beads on a string. They can be divided into three groups regarding their Ig domain 

percentage: The first group containing members of the CEA gene family consists exclusively of Ig 

domains. The second group of IgSF proteins is characterized by one to four Ig domains and 

additional extracellular domains that show similarities to fibronectin type III (FNIII domains), 

such as NCAM. In a third group proteins possess other domains than FNIII domains besides Ig 

domains 13.  
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 2 Carcinoembryonic antigen gene family 

One subgroup of the IgSF is represented by the carcinoembryonic antigen gene family (CGF) that 

is further divided into the carcinoembryonic antigen related cell adhesion molecules (CEACAMs) 

and the pregnancy-specific glycoproteins (PSG) 14. 

The human CGF is organized on chromosome 19 in contiguous clusters and consists of 35 genes. 

Only 21 of these genes are coding for proteins 15. All family members are well conserved in their 

structure. One N-terminal IgV-like domain (V-set) is followed by several IgC-like domains (C2-

set) on the extracellular part of the protein. The IgC-like domains can again be distinguished in 

subset A and B that are alternating in the organization of the CGF members 16. The IgV-like 

domain is devoid of disulfide bonds between cysteine residues in the B and F strands which 

makes the domain more flexible and facilitates the adhesion to the domain 17. 

The family members are highly glycosylated proteins (up to 60 – 70% by weight). Glycosylation 

occurs as posttranslational modification 18 being beneficial for the interaction with binding 

partners by reduction of movement as well as for the binding specificity by protection of the 

binding site against non-specific binding 19. 

Members of the CGF are involved in various processes as cell-cell adhesion, pregnancy, 

immunity, neovascularization, regulation of insulin homeostasis and carcinogenesis 20. 

 

 

 2.1 CEACAM FAMILY 

The CEACAM subgroup of the CGF comprises 12 proteins. The well-studied members are 

CEACAM1, CEACAM3, CEACAM4, CEACAM5, CEACAM6, CEACAM7 and CEACAM8 (Figure 2 A). 

The family members from CEACAM16 to CEACAM20 have been identified more recently and not 

been characterized so well (Figure 2 B). 

The number of IgC-like domains varies largely in the CEACAM group. Zero (e.g. CEACAM3) to six 

(e.g. CEACAM5) constant IgC-like domains are found on the extracellular part of CEACAM 

members. CEACAM5, CEACAM6, CEACAM7 and CEACAM8 are linked to the membrane by a 

glycosylphosphatidylinositol- (GPI-) anchor 21, whereas the other members are type I membrane 

proteins containing a single transmembrane domain. The cytoplasmic domain of the 

transmembrane passing CEACAMs can contain either an immunoreceptor tyrosine-based 

activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM).  

 



Introduction 

8 

 
 

 

Figure 2: CEACACM family members. 

The N-termed loops indicate IgV-like domains, the other spheres represent IgC-like domains which 

are stabilized by disulfide bonds (S-S). The spirals show the transmembrane domains which are 

followed by a cytoplasmic region. GPI-anchored proteins are depicted in the form of an arrow 

ending in the lipid bilayer. (A) CEACAM family members from CEACAM1 to CEACAM8 are depicted. 

The extracellular part of CEACAM3 and 4 consists of a single IgV-like domain. (B) CEACAM family 

members from CEACAM16 to CEACAM21 are depicted. CEACAM16 is not membrane bound, but 

secreted. CEACAM19 consists of a single IgV-like domain. CEACAM20 only encodes for a partial IgV-

like domain (N*). 

(modified from http://www.carcinoembryonic-antigen.de) 
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During the last decades, multiple nomenclatures have been introduced for CEACAMs. For 

example, clearly characterized monoclonal antibodies (mAB) of the CD66 cluster recognize 

diverse members of the CEACAM family and the antibodies’ designations were used as a 

nomenclature for the corresponding CEACAM members. Thus, CEACAM1, CEACAM8, CEACAM6, 

CEACAM3 and CEACAM5 are also known as CD66a, CD66b, CD66c, CD66d and CD66e, 

respectively 22. In 1999, a standardized nomenclature was introduced to facilitate the research 

on CEACAMs 23. 

The cell distribution of CEACAMs is diverse. Whereas CEACAM1 is produced on virtually every 

cell type like epithelial, endothelial, lymphoid and myeloid cells, the other members are more 

cell-specific. CEACAM3, 4, 6 and 8 are predominantly found on granulocytes. CEACAM5, 6 and 7 

are the main CEACAMs present on epithelial cells. Little is known about the cell distribution of 

CEACAM16 to CEACAM21 24. 

Various functions have been described for CEACAM members. They are involved in main cellular 

processes like homoeostasis, intercellular adhesion and the regulation of immune cells. Given 

the central role of CEACAMs in cells, pathogenic bacteria have been discovered to exploit 

CEACAM1, CEACAM3, CEACAM5 and CEACAM6 as entry site into the host 25. The structural and 

functional characteristics of these CEACAMs are discussed in more detail in the following 

section. 

 

CEACAM1 

CEACAM1, formerly known as biliary glycoprotein (BGP), C-CAM and CD66a, was first identified 

in adult rat hepatocytes 26. A total of 12 splice variants of CEACAM1 have been identified so far in 

humans (Figure 3). The CEACAM1 isoforms differ both in the number of extracellular IgC-like 

domains and in their binding activity. The number after CEACAM1 indicates the number of Ig-

like domains, whereas the letter that follows indicates the presence of either a long (L, 75 aa) or 

a short (S, 14 aa) cytoplasmic tail generated by alternative splicing of exon 7 27. The L-isoform 

contains two ITIM motifs and generally transmits inhibitory signals in cells. Isoforms with a 

short cytoplasmic tail lack both ITIM sequences, but, like the L-isoform, have binding sites for 

effector proteins such as calmodulin, tropomyosin and globular actin, indicating an interaction 

with the cytoskeleton 28 29. Furthermore, CEACAM1 affects T-cell cytokine production, 

proliferation and cytotoxic activity in an inhibitory way 30. CEACAM1 is involved in angiogenesis 

31, in the regulation of B-cells 32 and natural killer (NK) cell function 33. CEACAM1 is also 

important for the maturation of dendritic cells (DC) 34. 
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In most cases both the L- and S-isoform are present on cells 35, but the ratio between the 

isoforms differ. In mouse B-cells, it has been shown that the isoforms are produced with 

approximately equal ratios, whereas in mouse T-cells, the S-isoform presents only a minor part 

compared to the L-isoform 27. This strongly outbalanced ratio between the two isoforms might 

influence the T-cell signaling outcome suggesting an ability of the coproduced S-isoform to fine 

tune the inhibitory properties of CEACAM1-L on T-cells 36. 

The formation of homodimers and heterodimers is essential for the functioning of CEACAM1. It 

can either form oligomers by trans (antiparallel) or cis (parallel) interactions. Homodimeric 

 

 

 

Figure 3: CEACAM1 isoforms by alternative splicing. 

The N-termed loops indicate IgV-like domains, the A- and B-termed spheres represents IgC-like 

domains which are stabilized by disulfide bonds (S-S). Except for the soluble CEACAM1-4C1, 

CEACAM1-3C2 and CEACAM1-3, the CEACAM1 isoforms are membrane bound. The number after 

CEACAM1 indicates the number of extracellular Ig-like domains, whereas the letter that follows 

this indicates the presence of either a long (L) or a short (S) cytoplasmic tail.  

(modified from http://www.carcinoembryonic-antigen.de) 
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trans-oligomerization is achieved by interaction of CEACAM1 IgV-like domains between cells 

which regulates cell-cell adhesion 37. CEACAM1 can also build heterodimeric trans-interactions 

with selectins and other CEACAM family members, e.g. CEACAM5 and CEACAM8, respectively 38. 

Cis dimerization of CEACAM1 leads to changes in the cells signaling outcome. Heterodimeric cis-

interactions have been recently reported for CEACAM1 and TIM-3 (T-cell immunoglobulin 

domain and mucin domain-3). TIM-3 is an activation-induced inhibitory protein on T-cells that 

is involved in tolerance and induces T-cell exhaustion in chronic viral infection and cancer 39. 

Furthermore, CEACAM1 interacts with β3 integrin. This depends on phosphorylation of Tyr488 

in the ITIM motif of the CEACAM1 cytoplasmic domain 40. 

Homodimeric cis dimerization leads to the formation of clusters which allow the recruitment of 

Src family kinases and the SRC homology 2-domain (SH2) containing protein tyrosine 

phosphatase 1 and 2 (SHP1 and SHP2). By the phosphorylation of both ITIM motifs, CEACAM1 is 

accessible for the SH2 domains of SHP1 as docking sites 27. 

Several factors have influence on the state of CEACAM1 and can shift the balance between the 

monomeric and dimeric form. An elevated Ca2+-level leads to the formation of Ca2+-calmodulin 

complexes and the subsequent dissociation of dimeric CEACAM1 in vitro 41. In contrast, the 

transmembrane domain of CEACAM1 promotes the transition towards oligomerization of 

CEACAM1 with its (432)GxxxG(436) motif supporting helix-helix interactions. This basal state is 

overcome by calmodulin binding to CEACAM1, since the binding overlaps other possible binding 

sites 42. The IgC-like domains may also contribute to binding and/or signaling events of 

CEACAM1, since the domains stabilize the dimerization of CEACAM1 43. 

 

CEACAM3 

CEACAM3 is known as CD66d and CEA gene family member 1 (CGM1). Its single IgV-like domain 

is closely related to CEACAM1. The 76 aa long cytoplasmic tail contains an ITAM motif which, in 

contrast to CEACAM1, transmits activation signals 44. CEACAM3 is exclusively present on human 

granulocytes and takes part in the phagocytosis of human-specific pathogens by the innate 

immune system. CEACAM3-bound bacteria are efficiently recognized in an opsonin-independent 

manner and internalized. CEACAM3 stimulates the small GTPase Rac 45 and activates protein 

tyrosine kinases (PTKs) of the Src family upon bacterial engagement 46. Together with its 

downstream effector, the WAVE complex, Rac promotes the formation of actin-based 

lamellipodia which leads to a rapid internalization of CEACAM3-bound Neisseria 47 48. By the 

binding of phosphatidylinositol 3'-kinase (PI3K) to the cytoplasmic domain of CEACAM3 on 

Neisseria-infected phagocytes the production of reactive oxygen species is stimulated leading to 

the subsequent intracellular degradation of CEACAM-bound bacteria 49. No endogenous ligand 

has yet been identified and no homologue has been found in other mammalian species. 
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CEACAM3 is regarded as an evolutionarily new and optimized receptor to operate against the 

exploitation of epithelial CEACAMs by bacteria 50. 

 

CEACAM5 

CEACAM5 or CEA has formerly been described as CD66e and was identified as tumor associated 

antigen in human colon cancer 51. CEACAM5 contains the highest number of extracellular IgC-

like domains and is attached to the membrane by a GPI-anchor 50. The CEACAM members 

comprising a semi-penetrating anchorage to the membrane have only been discovered in the 

group of primates, and an orthologue of CEACAM5 exists in the rhesus monkey 52. CEACAM5 is 

exclusively produced on epithelial cells in the gastrointestinal tract, the nasopharynx, the lung, 

the urogenital tract and sweat glands and takes part in signal transduction processes 53. Given 

the fact that CEACAM5 is GPI-anchored, it has not completely been resolved how it exhibits its 

signaling function without a membrane spanning and cytoplasmic domain. There is first 

evidence that CEACAM5 needs a distinct lipid composition to be capable of signaling events 54. 

The GPI-anchor leads to the constitutive localization in detergent-resistant membrane 

microdomains which function as platforms for protein trafficking and intracellular signaling 55. 

Without stimulation, CEACAM5 exists as a monomer or as nanoclusters of 5 – 10 nm diameters. 

After stimulation, clusters of 40 – 300 nm might form dependent on the composition of 

sphingolipids, cholesterol and actin. This leads to temporary immobilizations in the clusters and 

subsequent activation of signaling cascades by recruited Gα proteins, Src family kinases and 

PLCγ 56. CEACAM5 also functions as mediator of metastasis and inhibits anoikis, a specific type of 

apoptosis triggered by the absence of ECM-cell contacts. By binding of heterogeneous nuclear 

ribonucleoprotein M (hnRNP M) on liver Kupffer cells, CEACAM5 leads to the activation and 

production of pro- and anti-inflammatory cytokines including IL-1, IL-10, IL-6 and TNF-alpha 57. 

In addition to that, CEACAM5 inhibits NK cell cytotoxicity in a MHC class I independent way by 

heterodimeric interactions with CEACAM1 on NK cells 58. By this, tumor cells are protected 

against the recognition and elimination by the immune system 55. 

 

CEACAM6 

CEACAM6 is known as CD66c and non-specific cross reacting antigen (NCA) and, like CEACAM5, 

is attached to the membrane by a GPI-anchor. It belongs to the epithelial CEACAM members that 

are recognized by pathogens, but is also found on human granulocytes as well as on B- and T-

lymphocytes. It is involved in many crucial cellular events such as migration, invasion and 

tumorigenicity 59. 
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Other CEACAMs 

Other CEACAM members have not been found to interact with pathogens. CEACAM4 (or CGM7) 

has originally been identified from human peripheral leukocytes as a CEACAM6-related 

molecule on human granulocytes 60. Recently, CEACAM4 has been identified as an orphan 

receptor regarding the lack of identified ligands for the IgV-like domain. Its cytoplasmic domain 

contributes to phagocytosis and elimination of pathogens 61. CEACAM7 (or CGM2) is attached to 

the membrane by a GPI-anchor and typically found on epithelial cells. CEACAM8, also known as 

CD66b, is produced on human granulocytes as well as on T- and B-lymphocytes and linked to the 

membrane by a GPI-anchor. Recent studies reported the release of soluble CEACAM8 as a 

mechanism to inhibit the toll-like receptor 2 (TLR2)-triggered immune response 62. The secreted 

CEACAM16 is the only CEACAM member with two IgV-like domains flanking two IgC-like 

domains and is associated with hearing in the inner ear 63. The IgV-like domain of CEACAM18 is 

followed by two IgC-like domains. CEACAM19 has been found to be overexpressed in breast 

cancer tissue 64. CEACAM20 lacks a complete IgV-like domain and contains an ITAM motif. 

CEACAM20 was found to be co-expressed with CEACAM1 in adult prostate tissue 65. CEACAM21 

consists of one IgV-like domain and one IgC-like domain that are followed by a transmembrane 

domain and cytoplasmic tail.  



Introduction 

14 

 2.2 PREGNANCY-SPECIFIC GLYCOPROTEINS 

PSGs are expressed during pregnancy and exclusively found in the placental trophoblasts 14. A 

group of 10 members named PSG1-9 and PSG11 has been identified for humans (Figure 4). PSGs 

have been also discovered in non-human primates, rodents and bats, although the orthologous 

proteins differ strongly in their structural composition. Human family members are 

homogeneous consisting of one IgV-like domain and two to three IgC-like domains. The family 

members are secreted due to their carboxy-terminal tail 15. 

The synthesis of single PSG family members varies throughout pregnancy, but especially during 

late pregnancy, they are the most abundant fetal proteins found in maternal blood. Low levels of 

PSGs in blood have been related to complications in pregnancy. PSGs are assumed to protect the 

semi-allogeneic fetus against the maternal immune system and to access maternal resources 

during pregnancy 66 67. 

 

 

 
 

 

Figure 4: PSGs. 

The human subgroup of the CGF is very homogenic in its composition. One IgV-like domain is 

followed by two to three IgC-like domains that can be further distinguished in an A and B subset. 

All PSGs are secreted and only found during pregnancy in the placental trophoblast. 

(modified from http://www.carcinoembryonic-antigen.de) 

 

 

Most PSG members share the common tripeptide sequence Arg-Gly-Asp (RGD) in the N domain. 

The RGD motif is recognized by integrins which led to the hypothesis that integrins interact with 

PSG family members. Similar to the effect of snake venom disintegrins, which block the 

association of integrins with other partners, a binding between integrins and PSGs may lead to 

the disruption of cell - ECM interactions and the blocking of integrin-mediated cellular functions 

68. 
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PSG1, the highest expressed PSG family member, is also known as CD66f. Recent studies 

identified for PSG1 a KGD motif instead of the RGD motif. The KGD motif is also found in the 

snake venom disintegrin barbourin which specifically inhibits fibrinogen binding to the αIIbβ3 

integrin on platelets. Studies showed that, analogous to barbourin, PSG1 binds αIIbβ3 and 

antagonizes the platelet – fibrinogen interaction 69. PSG1 is vital for the development of the fetus. 

Low levels have been associated with proinflammatory and anti-angiogenic phenotypes, like 

‘small-for-gestational age’-fetus. PSG1 induces the production of anti-inflammatory cytokines 

such as interleukin-10 (IL-10) and transforming growth factor beta-1 (TGFβ1) 70 71. TGFβ2 is 

also assumed to be regulated by PSG1. TGFβs regulate many biological processes essential for 

pregnancy success including trophoblast invasion and proliferation, angiogenesis, extracellular 

matrix formation and tolerance to the fetal semi-allograft 66. 

PSG1 was found to bind cell surface heparan sulfate (HS) and chondroitin sulfate (CS) 

proteoglycans, as well as the four members of the Syndecan family (Syndecan1-4). 

Proteoglycans consist of a protein core and covalently attached glycosaminoglycan (GAG) chains. 

During pregnancy, the growth and survival of the fetus depends on the access to increased 

placental blood flow. Syndecans are essential in angiogenesis and have been shown to regulate 

TGFβ activity. They are involved in suppressing the production of proinflammatory cytokines 72. 

Through binding to Syndecans and other cell surface proteoglycans on endothelial cells, PSG1 

induces the subsequent TGFβ-mediated induction of tube formation 73. 

Taken together, PSGs regulate diverse cellular processes like angiogenesis and modulate the 

maternal immune system which is essential for pregnancy success. 
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 2.3 CEACAMS IN OTHER SPECIES AND EVOLUTION 

The CGF has developed from one common ancestor gene. During time, gene duplications have 

led to a considerable diversification in protein structure, expression and function of CEACAMs 

and PSGs. Orthologues of CEACAMs have been identified in a variety of vertebrate species. CGF 

members are not conserved in their whole gene sequence, but the IgV-like domain is found to be 

highly conserved between species and is sufficient to identify orthologous structures 74. 

CEACAM1 and the recently identified CEACAM16, CEACAM18, CEACAM19 and CEACAM20 have 

been classified as primordial CEACAMs, since they have been discovered in all analyzed species. 

They might represent the basic set of CGF members before the occurrence of a rapid expansion 

in species-specific members. Monotremes show the only exception to this with merely a 

CEACAM16 orthologue identified 75. Figure 5 shows the distribution of CGF members in selected 

mammals 76. 

Orthologues for GPI-anchored CEACAMs are exclusively found in primates. Studies could show 

that, by few mutational modifications, the GPI-anchor is generated of the transmembrane 

domain exon and, therefore, might have easily evolved in a CEACAM1-like ancestor. The 

development of CEACAMs equipped with a GPI-anchorage out of former membrane-bound 

members allows the secretion of the proteins in the extracellular milieu which might lead to a 

radical change or the expansion in molecular function of CEACAMs 77. 

So far, CEACAM3 and CEACAM4 have been identified merely in humans. The IgV-like domain of 

CEACAM3 is highly similar to the CEACAM1 domain (88% aa identity). Closely related molecules 

to the N-terminal domain of CEACAM1 like CEACAM3, CEACAM5 and CEACAM6 might act as 

granulocyte specific or decoy receptors for the uptake of invading pathogens and to regulate 

immune responses more precisely 78. 



Introduction 

17 

 
 

 

Figure 5: CGF members in mammals. 

The diagram shows the distribution of the CGF in mammals. CEACAMs shaded in light green 

represent the basic set of primordial members. Orthologues have been detected in all of the 

analyzed genomes, except for monotremes which show only an orthologous structure for 

CEACAM16. Due to rapid diversification, species-specific CEACAMs have evolved from a CEACAM1 

ancestor protein (CEACAM1-related CEACAMs). PSGs are shaded in light grey and have only been 

found in primates and rodents. CEACAMs linked to the membrane by a GPI-anchor occur merely in 

primates. IgV-like domains (red) and IgC-like domains (light blue) are depicted by circles. 

(Kammerer and Zimmermann, 2010) 

 

 

Most of the species possess only one CEACAM1 gene, whereas species like mouse, cattle and rat 

carry two gene copies. In mouse, the translated CEACAM1 proteins named murine CEACAM1a 

and CEACAM1b differ in their IgV-like domain. The murine CEACAM1a isoform is bound by the 

mouse hepatitis virus with high affinity, whereas the CEACAM1b isoform is only recognized to a 

minor degree. The sequence identity between the IgV-like domains of human CEACAM1 and the 

murine CEACAM1a is low with an aa similarity of about 45%, whereas the CEACAM1b isoform 

shows a conservation of approximately 55% to the human variant 79. The cytoplasmic tail of the 

murine CEACAM1 isoforms does not contain two ITIM motifs, but one ITIM and an 

immunoreceptor tyrosine-based switch motif (ITSM). The ITSM motif can send both stimulatory 

and inhibitory signals, while ITIM motifs transmit only inhibitory signals 76. 
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The CEACAM1 isoforms found in cattle consist of one IgV-like and two IgC-like domains (A1, A2) 

and lack the B subtype of IgC-like domains found in humans and mouse. The sequence encoding 

for the B domain is missing in the bovine CEACAM1 locus. Besides that, the bovine CEACAM1 has 

the typical structural composition described for the murine CEACAM1: It is membrane bound 

and has a cytoplasmic tail with an N-terminal ITIM and a C-terminal ITSM motif. The bovine IgV-

like domain exhibits an aa sequence similarity of 54% to the human variant and 38% compared 

to the murine variant 80. 

The CEACAM1 orthologue found in the dog is composed like the human version (N, A1, B, A2). 

The cytoplasmic tail contains an N-terminal ITIM and a C-terminal ITSM motif like in mouse, rat 

and cattle. The canine IgV-like domain shows a similarity in aa sequence of 56% to the human 

CEACAM1 and 42% to the murine CEACAM1 isoform. The IgV-like domain of the canine 

CEACAM1 and CEACAM28 differ merely in two aa and, therefore, might interact with the same 

ligands and pathogens. The canine CEACAM28 is found on canine granulocytes and assumed to 

have evolutionary coevolved with CEACAM1 as inhibitory and activation receptors for the 

regulation of T-cell responses similar to the human CEACAM1/CEACAM3 receptors 75. 
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 2.4 CEACAM AND CANCER 

In 1965, CEACAM5 was identified as a 180 kDa, tumor-associated antigen in colon carcinoma 51 

and, since then, became an important marker for the recognition of colorectal and other tumors. 

In addition to that, the preoperative CEACAM5 serum level is analyzed as a measure for the 

estimated overall survival rate of patients with colon cancers and to stage cancer patients 81. 

CEACAM5 protects tumorigenic cells from the immune system and promotes metastasis by 

inhibition of NK cell-mediated killing 58 and anoikis 57. 

Tumor-promoting effects have also been reported for other members of the CEACAM family. 

Especially well studied are CEACAM1 and CEACAM6. Besides CEACAM5, CEACAM6 is 

overexpressed in about 70% of all human tumors 82, involved in the maintenance of the 

gastrointestinal tissue architecture and contributes, when overexpressed, to tumor formation in 

the colon by inhibition of differentiation and anoikis 83. 

Since mice do not have genes for CEACAM5 and CEACAM6, transgenic mouse models were 

established to analyze the effect of CEACAMs on tumor growth in vivo. Since transgenic 

CEACAM5 mice did not show an influence on tumorigenesis at all 84, more promising results 

were obtained by another mouse model, the CEABAC model. A 187 kDa bacterial artificial 

chromosome (BAC) transgene was introduced into mice which codes for human CEACAM3, 

CEACAM5, CEACAM6 and CEACAM7 and, additionally, comprises the regulatory elements of the 

CEACAMs 85. The CEABAC transgenic mice were treated with azoxymethane (AOM) in order to 

induce colon tumor formation and showed more than a two fold increase in mean tumor load 

relative to their wildtype littermates. The level of CEACAM5 and CEACAM6 increased by two- 

and 20-fold, respectively, and mimicked very closely the situation in human colon tumorigenesis 

86. 

In contrast to CEACAM5 and CEACAM6, CEACAM1 is predominantly downregulated in early 

phases of cancers 87. The increased synthesis of CEACAM1 in cancer cells was reported to reduce 

the tumorigenic phenotype both in vitro and in vivo in an ITIM-dependent manner 88 89. In 

aggressive and more progressed cancers, CEACAM1 is found to be overexpressed and high levels 

of the L-isoform were correlated with metastatic spread 90. 

Therapeutic strategies have been evaluated to target CEACAMs in cancer patients. Both, the 

siRNA mediated silencing and monoclonal antibodies (mABs) directed against CEACAM1, 

CEACAM5 and/or CEACAM6, are promising approaches for immunotherapies to increase the 

overall survival rate of cancer patients 91. 
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 2.5 CEACAM RECOGNITION BY PATHOGENS 

Surface exposed structures like CEACAMs are target structures of many pathogenic viruses and 

bacteria. From all the CEACAM family members, the N-terminal IgV-like domain of the epithelial 

CEACAM1, CEACAM5 and CEACAM6 together with the granulocyte receptor CEACAM3 have 

been found to be recognized by human-specific pathogens (Figure 6).  

 

 

 

 

 

Figure 6: Bacterial species examined to bind CEACAM receptors.  

Gram-negative bacteria have been characterized for their capability to interact with CEACAM 

family members. The corresponding adhesin is binding either to the protein or to the carbohydrate 

part of the CEACAMs.  

ND (Not defined): The CEACAM-binding capability of the bacteria has not been analyzed;  

Yes: Bacteria bind to the CEACAM family member; No: Bacteria have been examined for an 

interaction with the distinct CEACAM member, but do not show binding capability. 

(modified from Gray-Owen et al., 2006) 

 

 

For pathogens, it is highly advantageous to target CEACAM1, since the receptor is produced on 

nearly every cell type and occurs in a variety of different species. This means that the evading 

organisms could easily access the host and also switch to new hosts 76. Pathogens binding to 

CEACAM1 can influence both the innate and the adaptive immune response: Neisserial binding 

to CEACAM1 led to the inhibition of CD4+ T-cells via ITIM signaling which further suppressed B-
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cell responses 92. In bronchial epithelial cells, it was shown that CEACAM1-binding provoked the 

downregulation of the innate immune system by suppression of TLR2 signaling 93. In mice, 

CEACAM1 is the cellular receptor which is targeted by the mouse hepatitis virus (MHV). 

Interestingly, the host has reacted to the exploitation of CEACAMs by the development of diverse 

counterstrategies against pathogens: 

In humans, the N-terminal domain of CEACAM3 is nearly identical to CEACAM1, but mediates 

the opsonin-independent elimination of a restricted set of Gram-negative bacterial pathogens, 

including Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and 

Moraxella catarrhalis. The cytoplasmic ITAM motif is essential in this process 44. 

The GPI-anchored CEACAM5 and CEACAM6 have also been suggested to be a defense 

mechanism of the host. By vesiculation of the microvilli formed by intestinal epithelial cells or 

hydrolysis of the GPI-anchor from the membrane, CEACAM-bound pathogens might be shedded 

from the cells to fend off pathogens 94. 

The IgV-like domain exon of CEACAM1 is the least conserved nucleotide sequence, when 

compared to different CEACAM members. Due to low conservation pressure, the N-terminal 

region of CEACAM1 is highly divergent between species and susceptible to genetic modifications 

which might have led to additional host strategies against invasion. The murine CEACAM1 aa 

sequence varies from other species in the first half of the CC’ loop (aa 37 – 41) which was 

identified as part of the binding region for the mouse hepatitis virus. From the two distinct 

CEACAM1 alleles in mice that have occurred due to gene duplication only CEACAM1a represents 

a high affinity receptor for the mouse hepatitis virus compared to CEACAM1b 80. 

It is also proposed that soluble decoy receptors exist (for example CEACAM10 in rodents) which 

might allow pathogen binding due to the identical binding sequence, but which lead to no 

signaling outcome 76. 
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 3 Helicobacter pylori 

 3.1 DISCOVERY OF H. PYLORI 

H. pylori is a Gram-negative, spiral shaped bacteria colonizing the gastric epithelium. It was 

postulated for a long time that microorganisms are not able to survive the acidic environment in 

the stomach. Despite this common opinion, Walter Krienitz and others had already observed 

spirochete bacteria in the human stomach of patients with gastric cancer 95. However, the 

bacteria could neither be isolated from the tissue nor were they connected to any disease 

outcome. In 1984, Barry Marshall and John Robin Warren finally succeeded in culturing the 

bacteria which were named “Helicobacter pylori” due to their helical shape 96 97. A few years 

later, Marshall and Warren were able to prove that H. pylori is associated with chronic gastritis 

and peptic ulcers 98. In 2005, they received together the Nobel Prize in medicine for their 

achievement in the field of gastrointestinal pathogens. 

 

 

 3.2 H. PYLORI TRANSMISSION AND PREVALENCE 

Usually, the acquisition of H. pylori occurs early in childhood and the transmission is assumed to 

be by close personal contact. Oral–oral and fecal–oral transmission are the most probable 

mechanisms for an infection with H. pylori, since the microaerophilic bacterium is not surviving 

outside the human body for long. When exposed to atmospheric oxygen and UV-light, the 

bacteria switch from actively dividing and swimming bacilli to the inactive form of cocci. Studies 

showed that H. pylori is not traceable in feces of healthy, but H. pylori-positive individuals. In 

contrast, the feces of H. pylori-positive individuals suffering from diarrhea were containing 

infectious bacilli as was the vomit of these people 99. 

About 50% of the world’s population is colonized by H. pylori, but only a small percentage of 

colonized individuals develop an H. pylori-related disease. The distribution of H. pylori between 

developed countries and developing countries varies strongly. Whilst in Western countries only 

10% to 60% of the individuals are infected with H. pylori, in developing countries up to 100% of 

the population is positive for the bacteria. Risk factors for the bacterial occurrence are low socio-

economic conditions like large family size 100. 
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 3.3 H. PYLORI AND DISEASE 

H. pylori colonizes the antrum and the corpus of the gastric mucosa and its presence can be 

associated with severe pathologies. Three main phenotypes are caused by the bacteria. The most 

common phenotype is a mild pangastritis with little disturbance in gastric acid secretion which 

remains mostly asymptomatic. Secondly, the duodenal ulcer phenotype of about 15% of infected 

individuals has a more serious outcome. Patients show a severe antral predominant pattern of 

gastritis with elevated acid output and defective inhibitory control of gastric acid secretion 

which results in the development of peptic ulcers. The third phenotype that occurs in about 1% 

of infected individuals is characterized by a corpus predominant pattern of gastritis, gastric 

atrophy and hypo- and achlorhydria. Additionally, the risk for the development of gastric cancer 

(mucosa-associated lymphoid tissues (MALT) lymphoma and antral adenocarcinoma) is 

increased. The infection with H. pylori is the main risk factor for 92% of gastric cancers which 

causes 740 000 deaths per year. In 1994, the International Agency for Research on Cancer 

(World Health Organization) declared H. pylori as a type I carcinogen 101. H. pylori eradication 

treatment comprises the combined intake of a proton pump inhibitor with the antibiotics 

amoxicillin and clarithromycin (French triple) or clarithromycin and metronidazole (Italian 

triple). When the therapy is not working, the quadruple therapy is used for the eradication, 

consisting of a proton pump inhibitor combined with tetracyclin, metronidazole and bismuth. 

The gastric cancer phenotype is especially prevalent in Asia 99. The different disease 

manifestations are assumed to be caused by multiple factors like the virulence factors present in 

the H. pylori strains, host genetic characteristics, the environment as well as dietary factors 102. 

 

 

 3.4 MAJOR VIRULENCE FACTORS 

Many factors account for the virulence of H. pylori (Figure 7). The helical shape and the 

lophotrichous flagella help the bacteria to relocate from the acidic stomach lumen (pH~2.0) to 

the moderate mucosal surface (pH~7.0) through the viscous mucus layer 103. Motility of H. pylori 

is an essential factor to survive in the acidic environment. Directed motility is achieved by 

chemotactic receptors which enable the bacteria to swim towards the more favorable gastric 

epithelium 104.  
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Figure 7: Major virulence factors of H. pylori.  

Directed motility by the lophotrichous flagella and chemotactic sensors help the bacteria to 

relocate from the acidic stomach lumen to the moderate mucosal surface. By the production of 

urease and acid stress responses, H. pylori is capable of neutralizing the acidic environment in the 

stomach for a short time. The cytotoxin CagA is injected into the host cells by the cagPAI type IV 

secretion system (T4SS) and leads to significant modifications regarding the cytoskeleton and 

signaling events in host cells. The exotoxin VacA is secreted in its active form to host cell 

membranes where it forms hexameric anion selective channels which cause the leakage of ions 

and nutrients. Adherence to the mucosal surface is critical to escape the mechanical clearance 

from the human stomach and to establish bacterial persistence. 

(modified after Amieva and El-Omar, 2008) 

 

 

Additionally, the bacteria produce large amounts of cytosolic and cell surface-associated urease. 

The enzyme is capable of neutralizing the acid for a short time by the breakdown of urea to 

ammonia and carbon dioxide so that the bacteria survive these conditions and are able to 

relocate to less acidic areas. Furthermore, several acid-stress responses enable as urease-

independent mechanisms the transient toleration of mild acidic conditions 99. 

H. pylori strains can be distinguished into two main groups regarding their virulence: type I and 

type II. The more virulent type I strains are positive for the cag pathogenicity island (cagPAI) 

and correlate with a s1 type of the vacuolating cytotoxin A (VacA) and a HopQ of the type I 

(HopQI), whereas the less pathogenic type II strains lack cagPAI and produce a s2 type of VacA 

and a HopQ of the type II (HopQII) 105. The cagPAI encodes for the cytotoxin-associated gene A 
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(CagA) and a type IV secretion system (T4SS) which injects the effector protein CagA into the 

cytoplasm of host cells. CagA is present in approximately 60% of Western clinical isolates and 95 

– 100% of East Asian H. pylori strains 106. The carboxy-terminal region of CagA varies among 

strains in its numbers of Glu-Pro-Ile-Tyr-Ala repeats (EPIYA) 107. After translocation of CagA into 

host cells, the EPIYA motifs undergo tyrosine phosphorylation by cellular Src and c-Abl family 

kinases 108. By this, intense cytoskeletal rearrangements are promoted which cause cell 

elongation (hummingbird phenotype) and increase cellular motility. Furthermore, the function 

of tight and adherens junctions is perturbed and signaling cascades of the host cells are 

influenced 109. More EPIYA copies were associated with a higher virulence of the strain, since the 

strains show a stronger CagA tyrosine phosphorylation which results in a higher impact on the 

signaling and rearrangement events in host cells 110. Additionally, CagA also interferes with host 

cells independent of phosphorylation. It was reported that the dimerization of non-

phosphorylated CagA leads to the loss of cell polarity and cell shape 111. 

Besides CagA, the exotoxin VacA contributes to the virulence of H. pylori strains. It integrates in 

its active form into host cell membranes where it forms hexameric anion selective channels and 

causes the leakage of anions and other small molecules and subsequent osmotic swelling 106. The 

cytotoxin is internalized into the host cell, targets mitochondria and leads to apoptosis of 

epithelial cells 112. Furthermore, VacA inhibits T-cell activation and proliferation 113. Unlike CagA, 

VacA is present in all H. pylori strains, but it shows allelic variations in the signal sequence of the 

amino terminal region (genotype s1 and s2) as well as in the middle region (genotype m1 and 

m2), which results in different virulence outcome. The more virulent VacA s1 genotype is 

associated with the secretion of active VacA and higher rates of ulcers and gastric cancer 

development compared to the s2 genotype. Most CagA-positive strains have a s1m1-genotype 99. 

Increasing evidence suggests that there is a functional relation between CagA and VacA in the 

infection of the gastric epithelium by CagA interfering with VacA’s cytotoxicity 114 115. 

The survival of the bacteria is also dependent on adherence, another important virulence factor. 

Due to the constant turnover in the stomach, the steady exocytosis of mucopolysaccharides and 

the secretion of gastric juices, the bacteria are always endangered to be cleared from the human 

stomach. Adherence to the mucosal surface is therefore critical for the persistence of the 

bacteria in the stomach and the colonization of the host 116. 
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 3.5 H. PYLORI ADHESINS 

The adherence of H. pylori might serve multiple purposes. One major role of adhesion is 

assumed to be the delivery of the cytotoxin CagA into host cells. Besides this, it is also beneficial 

for bacteria to escape the mechanical clearance from the human stomach by the attachment to 

the gastric epithelium. In the long term, adherence also affects the establishment of bacterial 

persistence. The currently identified adhesins all belong to the group of the outer membrane 

proteins (OMP). The OMPs of H. pylori are divided into five paralogous families and all adhesins 

have been assigned to the first family containing the Hop (Helicobacter pylori outer membrane 

protein) (Figure 8, red) and Hor (Helicobacter pylori outer membrane protein related) proteins 

(Figure 8, blue) 99. 

 

 

 

 

 

Figure 8: Hop and Hor family tree of OMPs.  

The OMPs can be distinguished in five families. The first family of OMPs is depicted comprising the 

Hop (red) and Hor proteins (blue). The putative adhesin branch of the Hop proteins (branch on the 

left) consists of 11 Hop proteins which share a strong sequence identity and contain the so far 

identified H. pylori adhesins like BabA, SabA, HopD and HopZ: (W. Fischer, unpublished) 
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The putative adhesin branch of the Hop family consists of 11 Hop proteins which share a strong 

sequence identity and most of the identified adhesins like BabA, SabA, HopD and HopZ are found 

in this group 117. The expression level of the OMPs is regulated by several mechanisms like gene 

conversion, gene duplication, phase variation and allelic variation 100. 

The blood group antigen binding protein A (BabA, HopS) is the best characterized H. pylori 

adhesin and binds to fucosylated blood group antigen Lewis b 118 present in the normal gastric 

mucosa. Additionally, BabA adheres to the salivary mucin MUC5B, but also recognizes related 

terminal fucose residues found on blood group antigens on the surface of mucins like MUC5B 119. 

BabA-mediated adherence on the epithelial surface is a potentiator of the H. pylori T4SS 

secretion system activity, thus triggering the transcription of genes enhancing inflammation, 

development of intestinal metaplasia and associated precancerous transformations 120. BabA 

binding is also important for the induction of DNA double-strand breaks and the DNA damage 

response in host cells 121. The expression of the babA gene is strictly regulated. By RecA-

dependent intragenomic recombination, gene conversion between the babA and the paralogous 

babB gene occurs and leads to the generation of chimeric genes (babB/A and babA/B) that may 

have lost or gained Lewis b binding ability. Furthermore, phase variation may generate mixed 

genotypes of BabA positive and negative bacteria through varying numbers of cytidine-

thymidine (CT) repeats in the 5’ region of the gene and slipped strand mispairing (SSM) 122. 

Upon colonization, persistent infection induces an inflammatory response with concomitant 

expression of sialylated antigens which are recognized by the sialic acid binding adhesin A 

(SabA, HopP). In persistent infection and chronically inflamed tissue, SabA has been shown to 

adhere to sialyl-Lewis x and a antigens 123, the salivary mucins MUC7 and MUC5B and sialylated 

structures found on the extracellular matrix protein laminin as well as on erythrocytes and 

neutrophils 119 124 125. Like BabA, SabA is strongly regulated by gene conversion between sabA 

and the paralogous genes sabB and hopQ 126 and phase variation by SSM both in the 5’ region of 

the gene and in the sabA promoter 127. 

Since not all H. pylori strains produce BabA and SabA, further bacterial proteins must be 

involved in adhesion of bacteria to gastric mucins and cells. HopD (N,N’-diacetyllactosediamine 

(lacdiNAc)-binding adhesin (LabA)), a further member of the putative adhesin branch of the Hop 

family, was recently found to recognize lacdiNAc carried by gastric mucins 128. The adherence 

associated lipoproteins AlpA (HopC) and AlpB (HopB) have been discovered to bind to laminin 

and to be involved in gastric colonization 129. The receptors for the adhesins HopZ, OipA (outer 

inflammatory protein A) and HopQ, have not been discovered yet. Besides these OMPs already 

characterized as adhesins, further proteins may be involved in the attachment to host cells 

suggesting multiple or variable modes of host-pathogen interactions adapted to the unique 

gastric environment. Most of the bacteria are motile at the surface of the mucus layer and only a 
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small percentage is actually adhering to the gastric epithelium. The adherent state is favored due 

to the constant release of nutrients of the H. pylori infected and damaged host cells. The motile 

state reduces the risk of elimination by the host’s immune responses 100. 
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 4 Aims of this thesis 

It has already been reported for a set of pathogens like N. gonorrhoeae and N. meningitidis, 

M. catarrhalis and E. coli that they exploit members of the CEACAM family as entry site in their 

host. CEACAMs are involved in main cellular functions like cell-cell adhesion, homoeostasis and 

regulation of the immune system which makes them a favorable target regarding their central 

role in cells. Especially CEACAM1 is reported to modulate both, the innate and the adaptive 

immunity. In addition to that, CEACAM1, CEACAM5 and CEACAM6 are involved in 

tumorigenesis.  

The epithelial members CEACAM1, 5 and 6 together with the granulocyte receptor CEACAM3 are 

exploited by Gram-negative and human restricted pathogens. The basic aim of this thesis was to 

find out, weather H. pylori interferes with members of the CEACAM family. A bacterial pull-down 

assay already used for M. catarrhalis, N. gonorrhoeae and N. meningitidis should be established 

to analyze the capability of H. pylori to bind to the N-terminal domain of CEACAMs.  

In the attempt to identify the bacterial adhesin interacting with CEACAMs, several proteins of 

the Hop family should be targeted, since members of this family have already been identified 

before as adhesins, but the corresponding ligands were not discovered yet. Deletion mutants of 

BabA, BabB, SabB, HopZ and HopQ were generated and analyzed for a loss or impairment in 

CEACAM-binding. 

Since one of the main reasons for adherence of H. pylori to the gastric epithelium is the 

translocation of the effector protein CagA into host cells to modulate cellular processes, the 

bacterial binding to CEACAMs was also analyzed for its impact on CagA translocation. It was also 

planed to evaluate the effect of the generated OMP mutants on the CagA translocation capability. 

Therefore, CagA translocation was studied by in vitro infections of gastric cancer cells with 

wildtype and adhesion-defective mutant H. pylori strains.  
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Results 

 1 H. pylori binds to CEACAM-N-GFP constructs 

 1.1 ESTABLISHMENT OF A BACTERIAL PULL-DOWN ASSAY 

M. catarrhalis, N. meningitidis, N. gonorrhoeae and other Gram-negative bacteria are known to 

bind to members of the CEACAM family. It could be demonstrated for CEACAM1, 5 and 6 that 

pathogenic bacteria use these epithelial CEACAMs as entry receptors for their host cells 130. 

Additionally, the granulocyte receptor CEACAM3 was discovered as pathogen receptor. Human 

CEACAM3 is part of the host defense mechanism of the innate immune system against 

pathogens. Receptor-bound bacteria are internalized and phagocytosed 44. The four pathogen 

interacting receptors CEACAM1, 3, 5 and 6 represent therefore the most probable CEACAM 

candidates to examine for a possible interaction with H. pylori (Figure 9). 

To test whether H. pylori can bind members of the CEACAM family, a bacterial pull-down assay 

was established that has already been used for M. catarrhalis and Neisseria species. Using this 

bacterial pull-down assay, it was clearly shown that the N-terminal, IgV-like domain of CEACAMs 

was sufficient for binding 131. 

Constructs for CEACAM1, 3, 4, 5, 6, 7 and 8 for testing the interaction with H. pylori strains were 

obtained from Christof Hauck (Konstanz). The N-terminal domain of the distinct CEACAMs was 

fused to GFP (further described as CEA-N-GFP constructs) and transfected into HEK293 cells. 

After 48 h, the supernatant, that contained the soluble CEA-N-GFP constructs, was harvested and 

used in the pull-down assay. A sample of bacteria alone and supernatant of HEK293 cells 

transfected with GFP alone served as negative controls. 
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Figure 9: Human CEACAMs 1, 3, 5 and 6. 

Four members of the CEACAM family 

are depicted. Each member has a 

distinct variable IgV-like domain (red) 

and different numbers of IgC-like 

domains that can be distinguished in A 

and B subsets (black). 

The cytoplasmic domain of the 

CEACAM1-4L-isoform has two ITIM 

motifs, whereas the cytoplasmic domain 

of CEACAM3 contains an ITAM motif. 

CEACAM5 and 6 are linked to the 

cytoplasmic membrane by a GPI-anchor. 

For the soluble CEA-N-GFP fusion 

proteins the N-terminal IgV-like binding 

domain was fused to GFP. The 

constructs were transfected into 

HEK293 cells and after 48h the 

supernatant was harvested and used in 

the bacterial pull-down assay. 

 

 

Soluble CEA1-N-GFP – CEA8-N-GFP and the negative control GFP were analyzed on a SDS gel to 

check the constructs. The molecular weight of the fusion proteins was around 55 kDa, except for 

GFP which had a molecular weight of 29 kDa. The actual size of the constructs correlated with 

the expected size (Figure 10 A) 131. In each pull-down assay, equal amounts of fusion proteins 

were used to make sure that the binding capability of bacteria to each construct was 

comparable. 

The GFP fluorescence signal of the bacteria was detected by flow cytometry as mean 

fluorescence intensity (MFI) value. If the bacterium had bound the construct, the flow cytometer 

detected in the FITC channel a fluorescence signal shift to the right, which correlated with higher 

MFI values compared to bacterial controls. No shift would be observed if the bacterium has not 

been binding to the construct. The MFI values of the constructs were normalized to the mock 

control, which consisted of a sample with only bacteria and was set to the value of 1. The graphs 

show the fold binding of bacteria to CEA-N-GFP constructs compared to the negative control. 

M. catarrhalis and N. gonorrhoeae strains were used as controls for bacterial binding 43. 

M. catarrhalis strain ATCC 43617 was described to be negative for binding to CEACAM members. 

M. catarrhalis strain ATCC 25238 was used in the experiments as positive control, which showed 

significant binding for CEA1-N-GFP (3.9 fold), CEA3-N-GFP (1.7 fold) and CEA5-N-GFP (38.8 

fold) compared to the mock control, but not for other constructs (Figure 10 B). N. gonorrhoeae 

strain N302 was negative for CEACAM-binding and N. gonorrhoeae strain N309 showed 
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significant binding for CEA1-N-GFP (28.9 fold), CEA3-N-GFP (6.3 fold) and CEA5-N-GFP (11.7 

fold), respectively (Figure 10 C). 

 

 

 

 

 

Figure 10: Controls for the bacterial pull-down assay. 

(A) Equal amounts of CEA-N-GFP constructs were used in the bacterial pull-down assay. All 

constructs were put on a SDS gel and checked for the specified size. (B) M. catarrhalis strains ATCC 

43617 and ATCC 25238 as well as (C) N. gonorrhoeae strains N302 and N309 were tested for the 

interaction with CEA-N-GFP constructs to establish the bacterial pull-down assay. The GFP 

fluorescence signal of the bacteria was detected by flow cytometry as MFI value. If the bacterium 

had bound the construct, the flow cytometer detected a fluorescence signal shift to the right, 

which correlated with higher MFI values compared to the negative control. The fold binding was 

determined compared to the sample containing only bacteria which was set to the value of 1. The 

strains ATCC 43617 and N302 served as negative controls for CEACAM-binding and the strains ATCC 

25238 and N309 as positive controls.  

Student’s T-test; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Values are means +/- SD, n = 3 
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 1.2 H. PYLORI STRAIN P12 BINDS CEA1-N-GFP AND CEA5-N-GFP 

To address the question whether H. pylori can attach to CEACAMs, the H. pylori strain P12 was 

tested in the pull-down assay. P12 showed significant binding to CEA1-N-GFP and CEA5-N-GFP, 

but to none of the other tested constructs. The binding to CEA1-N-GFP was 24.5 fold higher than 

the binding to the mock control. The interaction with CEA5-N-GFP was even stronger with a 

mean value of 50.8 fold binding compared to the mock control (Figure 11 A). 

Interestingly, the complete bacterial population was able to interact with CEA1-N-GFP (91% of 

P12 population) and CEA5-N-GFP (95% of P12 population). The constructs CEA3-N-GFP, CEA4-

N-GFP, CEA6-N-GFP, CEA7-N-GFP and CEA8-N-GFP showed identical MFI values as the negative 

controls, mock and GFP, thus no significant interaction could be found between P12 and these 

constructs (Figure 11 B). 

The analysis of pull-down samples by western blotting using an α-GFP antibody is an even more 

sensitive method than analysis by flow cytometry, since weak interactions between bacteria and 

constructs can be traced 131. Therefore, all samples have been analyzed again using the western 

blot method to test the negative constructs. 

The western blot results demonstrated that P12 did not bind to CEA3-N-GFP, CEA4-N-GFP, 

CEA6-N-GFP, CEA7-N-GFP and CEA8-N-GFP in the bacterial pull-down assay (Figure 11 C), thus 

confirming the results obtained by flow cytometry. 

P12 was found in the assays to bind CEA1-N-GFP considerably weaker than CEA5-N-GFP. By 

western blot analysis, the exact ratio was determined. The detected band intensities of CEA1-N-

GFP and CEA5-N-GFP, respectively, were normalized against the detected band intensities for 

the bacterial protein RecA, to compare the affinity of P12 for the two constructs. The 

densitometric evaluation of three independent pull-down assay experiments in the western blot 

showed for P12 and CEA5-N-GFP a 4.4 times higher affinity in binding as compared to P12 and 

CEA1-N-GFP that was set to the value of 1 (Figure 11 D). 
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Figure 11: H. pylori strain P12 is binding to CEA1-N-GFP and CEA5-N-GFP. 

(A) The flow cytometer analysis of P12 binding to CEA1-N-GFP, CEA3-N-GFP, CEA5-N-GFP and CEA6-

N-GFP constructs is depicted. The MFI values were determined and compared to the mock control. 

(B) The flow cytometer readout of the P12 pull-down assay with CEA1-N-GFP, CEA3-N-GFP, CEA5-

N-GFP and CEA6-N-GFP (top) as well as CEA4-N-GFP, CEA5-N-GFP, CEA7-N-GFP and CEA8-N-GFP 

(bottom) is shown. The P12 population that was negative for the interaction with constructs did 

not shift to the right (grey area). Bacteria that bound to the constructs shifted to the right. (B, top) 

The numbers represents the percentage of the P12 population that attached to the CEA-N-GFP 

constructs. (C) The pull-down assay samples were evaluated by western blot analysis. The samples 

were loaded on a gel and blotted against an α-GFP antibody. The detected band intensities were 

compared to the bacterial protein RecA. (D) The detected band intensities of CEA1-N-GFP and 

CEA5-N-GFP, respectively, were normalized against the band intensities for the bacterial protein 

RecA to compare the affinity of P12 for the two constructs (three independent pull-down assay 

experiments). 

Student’s T-test; *p ≤ 0.05, ***p ≤ 0.001. Values are means +/- SD, n = 3 
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 1.3 CEACAM-BINDING OF H. PYLORI STRAINS 

Since bacterial pull-down assay experiments revealed a clear binding capability of H. pylori 

strain P12 for CEA-N-GFP constructs, additional strains were evaluated to determine the extent 

of the binding in the highly diverse H. pylori group. Besides P12, the strains 26695, B8, X47 and 

SS1 were analyzed for CEACAM-binding. Like P12, strain 26695 also belongs to the hpEurope 

group and its genome is fully sequenced and published. The hpEurope strain B8 was analyzed, 

since it was interesting to characterize a H. pylori strain adapted to the animal model of 

Mongolian gerbils (Meriones unguiculatus). Although the genome of SS1 (Sydney strain 1) and 

X47 is only known partially, the strains were chosen, due to the fact that they are adapted to the 

mouse model. A further characteristic is that they are negative for cagPAI in contrast to P12, 

26695 and B8. 

The experimental setting of P12 was used in the pull-down assays and the samples were 

analyzed by flow cytometry. The results of the four strains showed a binding capability to 

CEACAM1 and CEACAM5, which nicely confirmed the results obtained for P12. Furthermore, the 

strains were negative for binding to the constructs CEA3-N-GFP, CEA4-N-GFP, CEA6-N-GFP, 

CEA7-N-GFP and CEA8-N-GFP, as seen for P12. 

A closer look at the results revealed that the fold binding for the single strains varied in its 

degree. The strain 26695 was binding to CEACAM1 and CEACAM5 with 12.2 and 19.5 fold the 

mock control, respectively, which was about half the binding capability of P12. The gerbil 

adapted strain B8 had mean values of 19.3 fold binding to CEACAM1 and 40.9 fold binding to 

CEACAM5 similar to P12. The mouse adapted strain SS1 showed similar binding to CEACAM5 

(39.8 fold) as P12 and B8, but the CEACAM1 interaction was considerably lowered to 8.5 fold 

binding of the negative control. The mouse strain X47 was the strain that bound both constructs 

the least. The interaction with CEACAM1 was at 4.0 fold binding of the mock control, CEACAM5 

matched strain 26695 with a mean of 18.0 fold binding (Figure 12 A). 

All strains were able to generally bind to CEACAM1 and 5 in the pull-down assay. Nearly the 

whole population of strains P12, 26695, B8 and SS1 bound to CEA5-N-GFP (91%– 95% of the 

respective population) with similar binding intensity. For the strain X47, the binding intensity 

was slightly reduced, but represented still the main part of the bacterial population (86%). The 

results for CEA1-N-GFP were completely different to the obtained results for CEA5-N-GFP. 

Although P12 and 26695 showed still binding of 91% of the respective population, the 

interaction with the CEA1-N-GFP construct was significantly reduced in the binding intensity for 

both the gerbil and mouse adapted strains. Especially the mouse adapted strains had the 

weakest binding intensity to CEACAM1. A shift of only 10% and 13% of the examined 

populations was registered for CEA1-N-GFP (Figure 12 B). 
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Figure 12: Test of further H. pylori strains for their capability to bind CEACAM1 and CEACAM5. 

(A) The strains 26695, B8, SS1 and X47 were analyzed for their binding to CEACAMs in the bacterial 

pull-down assay and compared to P12. (B) The flow cytometer readout of the single strains is 

depicted. Bacteria that bound to the constructs shifted to the right. The percentage of the single 

strains’ population that shifted to the right is revealed by the numbers on the top right in each 

flow cytometer readout. (C) PMSS1 is the original clinical isolate that was passaged through the 

mouse which resulted in the reisolated mouse strain SS1. The two strains that differed by animal 

passage of SS1 were compared in the bacterial pull-down assay and analyzed for a change in the 

CEACAM receptor interaction. 

Student’s T-test; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Values are means +/- SD, n = 3 
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Additionally to the five strains that were analyzed so far for CEACAM-binding, a further strain 

was tested in the pull-down assay. H. pylori strain PMSS1 (pre-mouse Sydney strain 1, also called 

10700) was analyzed to compare the binding to CEACAMs directly to the closely related strain 

SS1. PMSS1 is the original clinical isolate that was passaged through the mouse which resulted in 

the reisolated mouse strain SS1 132. The two strains that differed only by animal passages of SS1 

were compared in the bacterial pull-down assay and analyzed for any change in CEACAM 

receptor interaction. Interestingly, the binding to CEACAMs differed significantly in the two 

strains. PMSS1 bound both constructs about three times better than SS1. Compared to the mock 

control, PMSS1 showed 22.9 fold binding for CEA1-N-GFP, whereas the fold binding of SS1 was 

reduced to the mean value of 6.4. For the CEA5-N-GFP construct, PMSS1 was interacting with 

79.9 fold binding even stronger than the P12 strain that showed so far the highest binding to 

CEA5-N-GFP. In contrast to PMSS1, SS1 strain was significantly impaired at a level of 34.7 fold 

binding to CEA5-N-GFP (Figure 12 C). 
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 1.4 SPECIFICITY OF CEACAM-BINDING 

All tested H. pylori strains were able to bind to CEA1-N-GFP and CEA5-N-GFP in the bacterial 

pull-down assay. Next, it was examined, if this binding ability to CEACAM receptors was 

restricted to human-specific Helicobacter only. Since there are orthologous CEACAMs found in 

various animal species, it was promising to test binding of H. pylori to these as well. 

So far, only Helicobacter of the species pylori were tested. Therefore, non-pylori Helicobacter 

species, Helicobacter nemestrinae and Helicobacter mustelae, were examined for their ability to 

bind to CEACAMs. H. nemestrinae was isolated from the gastric mucosa of pigtailed macaque and 

is the closest related species to H. pylori 133. H. mustelae colonizes ferrets and, besides H. pylori, is 

the only known Helicobacter species that can cause gastric ulceration and cancer in its host 134. 

The non-pylori Helicobacter were tested in the standardized pull-down assay and the evaluation 

of the CEACAM-binding ability was done by flow cytometry. Both H. nemestrinae and H. mustelae 

could not interact with CEA1-N-GFP and CEA5-N-GFP in the bacterial pull-down compared to 

P12 (Figure 13 A). 

Orthologues of CEACAM1, the primordial member of the CEACAM family, are found in numerous 

species such as mouse, rat or cattle 80 75. In contrast to that, CEACAM5 is rarely described in 

other species than humans. The only orthologue has been discovered in the rhesus macaque 52. 

Since there are also strains of H. pylori that were isolated from mice or rhesus macaques, the 

question was whether H. pylori can bind to the orthologous CEACAMs found in these species. To 

address this, CEA1-N-GFP constructs of mouse (CEACAM1a isoform), cattle and dog and the 

CEA5-N-GFP construct of the rhesus macaque along with human constructs of CEACAM1 and 

CEACAM5 were tested for binding with the H. pylori strains P12, 26695, B8, SS1 and X47 in the 

standardized pull-down assay. Compared to the human CEA1-N-GFP and CEA5-N-GFP 

constructs, the tested strains showed neither binding to the orthologous CEACAM1 variants nor 

the macaque construct of CEACAM5 in the pull-down assay. Furthermore, the hypothesis that 

the mouse adapted strains SS1 or X47 might be able to bind to the murine CEA1-N-GFP construct 

could not be confirmed (Figure 13 B). 

Taken together, the results suggest that only the genus H. pylori binds CEACAMs, but not the 

closely related other genera H. nemestrinae and H. mustelae. Furthermore, H. pylori interaction 

with CEACAMs was restricted to the human receptor constructs in the pull-down assay. 
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Figure 13: Exclusive and specific binding of the genus H. pylori to human CEACAMs. 

(A) The non-pylori Helicobacter species, H. nemestrinae and H. mustelae, were tested in the pull-

down assay for binding to human CEA-N-GFP constructs 1, 3, 5 and 6. 

(B) H. pylori strains P12, 26695, B8, SS1 and X47 were tested in the pulldown assay for interaction 

with orthologous constructs of CEA1-N-GFP from mouse, cattle and dog or CEA5-N-GFP from 

rhesus macaque. 

Student’s T-test; *p ≤ 0.05, **p ≤ 0.01, *** p≤ 0.001. Values are means +/- SD, n = 3 
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 2 HopQ is the adhesin binding to CEACAM1 and CEACAM5 

 2.1 GENERATION OF MARKERFREE H. PYLORI OMP MUTANTS 

The bacterial pull-down assay revealed that H. pylori binds significantly to the human receptors 

CEACAM1 and CEACAM5. To find out which adhesin is interacting with the receptors, several 

promising H. pylori outer membrane proteins were deleted by the streptomycin contraselection 

strategy and the resulting mutants were then analyzed for a loss or impairment in CEACAM-

binding. 

The streptomycin contraselection strategy is based on the fact that the streptomycin-sensitive 

(rpsLS) allele is dominant over the resistance-conferring mutant allele (rpsLR) 135. In the first 

step, a plasmid consisting of a two-gene cassette with an ermR resistance gene, the dominant 

streptomycin susceptibility gene rpsLS of Campylobacter jejuni and the flanking up- and 

downstream regions of the gene of interest was transformed into a streptomycin-resistant 

H. pylori strain. By homologous recombination and selection for erythromycin, the gene to be 

deleted was replaced by the rpsLS-ermR -cassette. In a second step, a plasmid containing only the 

flanking up- and downstream regions of the gene of interest was introduced into the H. pylori 

transformants with the rpsLS-ermR -cassette. The rpsLS-ermR -cassette is replaced by homologous 

recombination and selection for streptomycin. The strain had now a deleted gene of interest 

without a resistance marker in the locus of the gene of interest. Additionally, the strain is again 

streptomycin-resistant, which allows the repeated use of this method for the deletion of further 

genes (Figure 14 A). 

A variation of this method represents the “Xer-cise” method, a one-step transformation 

technique 136 that makes use of the H. pylori Xer recombinase which cuts DNA at difH sites in the 

genome. Instead of the rpsLS-ermR -cassette cloned between the up- and downstream regions of 

the gene of interest, a plasmid containing a difH - rpsLS-catR – difH -cassette was transformed 

into a streptomycin-resistant wildtype strain. By homologous recombination and selection for 

chloramphenicol, transformants had the gene of interest replaced by the difH - rpsLS-catR – difH -

cassette. Immediately after appearance of the first colonies, the positive transformants were 

passaged onto a streptomycin-resistant plate. The clones growing on the plate were 

transformants that had cut out the resistance cassette by the Xer-recombinase. This method 

generates a markerfree deletion mutant with one transformation. 

Mutants were verified for the successful deletion of the gene of interest by polymerase chain 

reaction (PCR): primers were designed that bound in the up- and downstream region close to 

the gene of interest. The genomic DNA was amplified with the primers and the product was 

correlated in size to three different stages. Figure 14 B shows exemplarily the results for the 
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deletion of the gene hopZ with the obtained three different fragments (1, 2, 3) corresponding to 

three stages: 1. The wildtype strain: the gene of interest is still in the original locus which gives 

the largest fragment; 2. The transformants with the resistance cassette: the gene of interest is 

replaced by the rpsLS-ermR -cassette; 3. The markerfree deletion mutant: the rpsLS-ermR -cassette 

has been cut out which leads to a markerfree mutant. 

The OMPs to be deleted belonged to the putative adhesin branch of the Hop family 137. The 

branch consists of 11 proteins that share a strong sequence homology with each other and 

include already known adhesins like BabA 118, SabA 123 and HopZ 138 (Figure 14 C). The OMPs 

were examined for interaction with CEACAM1 and/or CEACAM5. 

For the generation of OMP mutants, the strain P12 was chosen, since the complete genome 

sequence is published 139 and the strain showed strong binding to CEACAMs. In the special case 

of P12, instead of one sabA and one sabB gene, two identical copies of sabB are found in the sabA 

and sabB gene locus. Furthermore, the strain has no babC, but two identical copies of babB. In 

order to create a SabB and a BabB deletion mutant, respectively, two genes had to be deleted 

instead of one. The OMP deletion mutants generated for P12 were P12ΔbabA, P12ΔbabB, 

P12ΔsabB, P12ΔhopZ and P12ΔhopQ. 
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Figure 14: Generation of markerfree outer membrane protein mutants of H. pylori. 

(A) Step1a: The markerfree gene deletion mutants are generated by streptomycin contraselection. 

A streptomycin-resistant wildtype strain was transformed with a plasmid consisting of a two-gene 

cassette with an erm
R
 resistance gene, the dominant streptomycin susceptibility gene rpsL

S
 of 

C. jejuni and the flanking up- and downstream regions of the gene of interest was transformed into 

a streptomycin-resistant H. pylori strain. Step1b: By homologous recombination, the gene of 

interest was replaced by the rpsL
S
-erm

R
 -cassette. Step1c: A screen for positive transformants was 

performed by selection for erythromycin. Step2a: Erythromycin resistant and streptomycin 

sensitive clones were transformed with a plasmid containing only the flanking up- and 

downstream regions of the gene of interest. Step2b: By homologous recombination, the rpsL
S
-erm

R
 

-cassette was cut out. Step2c: By screening for streptomycin-resistant transformants, clones were 

selected with a deletion for the gene of interest and a removed selection marker. (B) The 

markerfree deletion of a gene of interest was verified by PCR reaction and the amplified samples 

loaded onto an agarose gel: primers binding in the up-and downstream region close to the gene of 

interest were amplifying distinct fragments in size. By the size of the amplified fragment, it was 

determined, if the gene was still in the genome (1), if the rpsL
S
-erm

R
 -cassette had replaced the 

gene of interest (2) or if the rpsL
S
-erm

R
 -cassette was cut out and the gene deleted without 

remaining markers (3). (C) The putative adhesin branch of the Hop family of proteins. The OMP 

deletion mutants generated in this work for P12 were P12ΔbabA, P12ΔbabB, P12ΔsabB, P12ΔhopZ 

and P12ΔhopQ and are depicted in black. 
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 2.2 H. PYLORI BINDING IS HOPQ DEPENDENT 

The generated OMP mutants P12ΔbabA, P12ΔbabB, P12ΔsabB, P12ΔhopZ and P12ΔhopQ were 

examined in the bacterial pull-down assay for a loss or a reduced interaction with CEACAM1 and 

CEACAM5, respectively. Although it has been established that BabA binds Lewis b antigens 118 

and SabA is interacting with sialyl-Lewis x and a antigens 124, they might have a potential 

influence on CEACAM-binding. So far, no receptor is described for the three generated deletion 

mutants SabB, HopZ and HopQ. HopQ was recently identified as novel T4SS virulence factor 140. 

The deletion mutants were compared to the binding of P12 wildtype to CEACAM1 and 

CEACAM5. The deletion mutants P12ΔbabA, P12ΔbabB, P12ΔsabB and P12ΔhopZ showed no 

significant difference in binding to CEA1-N-GFP and CEA5-N-GFP compared to the P12 wildtype 

(Figure 15 A). In strong contrast to P12ΔbabA, P12ΔbabB, P12ΔsabB and P12ΔhopZ, the 

P12ΔhopQ deletion mutant lost the binding ability to both CEA1-N-GFP and to CEA5-N-GFP 

completely (Figure 15 B). The level of interaction with CEACAMs was for both constructs 

reduced to the level of the mock control. To validate the loss of binding to CEACAMs in the 

P12ΔhopQ deletion strain, a second ΔhopQ deletion strain was analyzed for binding ability. 

26695ΔhopQ was already generated and described in Odenbreit et al., 2002 141. The results of 

the bacterial pull-down assay showed for the 26695ΔhopQ deletion mutant also a complete loss 

of binding to CEA1-N-GFP and to CEA5-N-GFP compared to the 26695 wildtype. 

To prove that HopQ is the adhesin interacting with CEACAM1 and CEACAM5, the P12ΔhopQ 

deletion mutant was genetically complemented. The pHel3 shuttle system was chosen as method 

for complementation, which represents a highly efficient method to transform plasmids into 

H. pylori strains 142. The hopQI gene of P12 and the hopQII gene of Tx30a, respectively, were 

cloned behind an alpA promoter and the resulting pHel3 shuttle plasmid was introduced into the 

P12ΔhopQ deletion mutant by electroporation 143. The P12 wildtype, the P12ΔhopQ deletion 

mutant, the hopQI complemented P12ΔhopQ deletion mutant (P12ΔhopQ::hopQI) and the hopQII 

complemented P12ΔhopQ deletion mutant (P12ΔhopQ::hopQII) were compared in the 

standardized bacterial pull-down assay. The results showed that the binding was completely 

reconstituted for both CEACAM1 and CEACAM5 in the genetically complemented strains 

compared to the P12ΔhopQ deletion mutant. Moreover, compared to P12 wildtype, a significant 

increase in binding could be detected for strain P12ΔhopQ::hopQI (Figure 15 C). The strain 

P12ΔhopQ::hopQII was also capable of interacting with CEACAM1 and CEACAM5, but the fold 

binding was significantly decreased in comparison to the P12 wildtype (Figure 15 D). 
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Figure 15: HopQ is the adhesin interacting with CEACAM1 and CEACAM5. 

(A) The generated OMP mutants P12ΔbabA, P12ΔbabB, P12ΔsabB and P12ΔhopZ were examined 

for binding to CEA1-N-GFP and to CEA5-N-GFP and compared to the P12 wildtype strain. 

(B) The ΔhopQ deletion mutants of strain P12 and 26695 are depicted. The binding to the CEACAM 

constructs of the deletion mutants is compared to the respective wildtype strains. 

The genetically complemented strains (C) P12ΔhopQ::hopQI and (D) P12ΔhopQ::hopQII were 

compared to the P12 wildtype and the P12ΔhopQ deletion mutant for the capability to bind to 

CEA1-N-GFP and to CEA5-N-GFP. 

Student’s T-test; **p ≤ 0.01, ***p ≤ 0.001. Values are means +/- SD, n = 3 
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 2.3 HOPQ VARIATIONS IN DIFFERENT H. PYLORI STRAINS 

2.3.1 SEQUENCE ANALYSIS OF HOPQI  AND HOPQII  

The bacterial pull-down assay established that HopQ is the adhesin binding to human CEACAM1 

and CEACAM5. Without HopQ no binding was registered. When the strains P12, 26695, B8, SS1 

and X47 were compared to each other, the fold binding effect was different for every single 

strain, although equal amounts of bacteria and constructs were used in the pull-down assay 

(Figure 12). HopQ was studied in more detail to find out, if the variations in binding were due to 

differences in the aa sequence of the adhesin. 

HopQ exists in two allelic forms, type I and type II, which are associated with H. pylori type I or 

type II strains, respectively. The more virulent type I class of strains is defined as positive for 

CagPAI and the s1 type of VacA and produces a HopQ type I (HopQI). The less virulent type II 

class of H. pylori strains is negative for CagPAI and most likely possesses a s2 type of VacA and a 

HopQ type II (HopQII) 105. P12, 26695 and B8 are type I strains, whereas the mouse adapted 

strains belong to the group of type II strains. The HopQ aa sequences of the strains P12, 26695, 

B8, X47 and SS1 were aligned with the program ClustalW. The aa consent with P12 is shaded in 

black, the differences are depicted in white (Figure 16 A). 

All strains were nearly identical for the N-terminal 50 aa and the 180 aa of the C-terminal part of 

HopQ. The hpEurope strains P12, 26695 and B8 were mostly conserved throughout the HopQ 

sequence as were the aligned HopQII strains (SS1 and X47), respectively. When the HopQI and 

HopQII sequences were compared to each other, they varied largely, especially between aa 60 – 

100, aa 130 – 250 and aa 378 – 418, where the HopQ sequences were completely different. 

The percentage of sequence identity was very high. Between P12 and 26695 the sequence 

identity was at 96.6%, P12 and B8 had a value of 94.8%. The HopQII containing strains X47 and 

SS1 were also closely related in sequence with 96.7% identity. Between HopQI and HopQII 

strains the percentage of sequence identity decreased significantly. Only 72% of sequence 

identity were found between the HopQI of P12 and the HopQII of X47 and SS1 (Figure 16 B). 

Interestingly, B8 as HopQI strain showed between aa 429 – 471 a nearly 100% identical 

sequence to the mouse adapted HopQII strains X47 and SS1, but differed from the HopQI strains 

P12 and 26695. 

 



Results 

47 



Results 

48 

  

 

 

 

Figure 16: ClustalW alignment of HopQI and HopQII. 

(A) HopQI aa sequences of P12, 26695 and B8 were aligned to the HopQII sequences of SS1 and 

X47. The consent of every strain to the P12 sequence was depicted in black shades, differences 

were shown in white. (B) The percentage of sequence identity between the single strains is 

depicted. 
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2.3.2 HOPQI  PRODUCTION IN STRAINS 

The more virulent HopQI strains were analyzed in more detail. To study the production level of 

HopQI in the strains, a peptide antibody was generated (Genosphere Biotechnologies). The 

specificity of the antibody was designed against HopQI of strain P12, which was the reference 

strain in the experiments and showed binding to CEACAM1 and CEACAM5. 

To generate an antibody specific for HopQI, but not recognizing HopQII, aligned HopQI and 

HopQII strains were compared. A peptide of 17 aa was finally chosen in P12 that was conserved 

in sequence for most HopQI strains and distinctly different to and not found in the aligned 

HopQII sequences (Figure 17 A, red box). The sequence chosen for the antibody was between aa 

211 and 227 of the P12 HopQI aa sequence (SKGEKLEAHVTTSKYQQ) (Figure 17 A, grey). The 

peptide antibody AK298 was made in rabbit and recognized HopQI very efficiently (70 kDa) 

(Figure 17 B). 

Bacterial lysate of the strains P12, 26695, B8, SS1, X47 and PMSS1 was loaded onto a SDS gel and 

blotted against the antibody AK298. The HopQI signal was compared to the bacterial protein 

RecA (40 kDa) that was used as control for equal amounts of bacteria loaded onto the SDS gel.  

HopQI of P12 and B8 were recognized from the antibody AK298 with an equal signal in strength.  

In the strain 26695, only the first 14 aa out of 17 were identical to the sequence of P12 and 

recognized by the antibody. Only a weak signal is produced for HopQI in the blot. Both HopQII 

strains X47 and SS1 did not show a signal for the antibody against HopQI, which confirmed the 

specificity of the antibody. Surprisingly, PMSS1 was positive for HopQI in the blot (Figure 17 B). 

PMSS1 is the original clinical isolate that was passaged through mouse and resulted in the 

isolation of SS1. After sequencing the strains PMSS1 and SS1, it was confirmed that PMSS1 

possessed a functional HopQI in both the sabA and sabB locus as well as a HopQII in the hopQ 

locus, whereas SS1 produced only a functional HopQII in the hopQ locus (supplementary data). 

The HopQI protein of both the sabA and sabB locus in the SS1 strain is not synthesized due to 

phase variation. HopQ is described to be able to switch loci between hopQ, sabA and sabB 126.  

P12 wildtype, P12ΔhopQ and P12ΔhopQ::hopQI were also examined for HopQI production. The 

western blot analysis for the HopQI production confirmed the results obtained for the binding to 

CEACAMs in the bacterial pull-down assays (Figure 15 B). AK298 did not recognize a signal for 

the P12ΔhopQ deletion mutant in the western blot. The genetically complemented strain 

P12ΔhopQ::hopQI was synthesizing HopQI and produced an even stronger signal when 

compared to the P12 wildtype strain (Figure 17 C) which is consistent with the significantly 

stronger CEACAM-binding in the bacterial pull-down (Figure 15 C). 

To examine, if this was also true for other strains, B8 was deleted of HopQ and afterwards 

complemented with the pHel3 shuttle plasmid pCE39. The strain B8 had two identical hopQI 

gene copies in the loci of hopQ and sabB. In B8, one hopQI gene present in the hopQ gene locus 
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was deleted (B8ΔhopQ1). The second copy of hopQI still remained in the sabB gene locus 144. 

B8ΔhopQ1 was complemented with the plasmid pCE39 as was the P12ΔhopQ deletion mutant 

(Figure 17 D) resulting in a hopQI (P12) complemented B8ΔhopQ1 strain (B8ΔhopQ1::hopQI 

(P12)). 

The examination of the HopQI in the western blot revealed for the B8ΔhopQ1 deletion mutant a 

weak band at the size of HopQI (Figure 17 C). Since the second gene copy in the sabB gene locus 

is still intact, HopQI was synthesized, but the level was clearly reduced compared to the B8 

wildtype level. The B8ΔhopQ1::hopQI (P12) strain produced a significantly stronger HopQI signal 

than the B8 wildtype strain which is consistent with the results obtained for P12ΔhopQ::hopQI 

and P12 wildtype.  
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Figure 17: Generation and characterization of the antibody AK298 against HopQI. 

(A) An excerpt of the HopQ alignment of strains P12, 26695, B8, SS1 and X47 is depicted. The 

sequence between aa 211 and 227 of strain P12 (grey) shows the peptide the HopQI antibody 

AK298 is made against (red box). (B) The strains P12, 26695, B8, SS1, X47 and PMSS1 were tested 

for HopQI production by western blot analysis. Furthermore, the specificity of the antibody for 

HopQI was analyzed by examination of HopQI negative strains. The HopQI production is compared 

to the production of the bacterial protein RecA (40 kDa). (C) The production of HopQI in the P12 

wildtype, P12ΔhopQ deletion mutant and the genetically complemented P12ΔhopQ::hopQI is 

examined. (D) The results for HopQI production of strain B8 complemented with plasmid pCE39 

(B8ΔhopQ1::hopQI (P12)) is compared to the B8 wildtype strain and the deletion mutant 

B8ΔhopQ1. 
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 3 CEACAM producing cell lines and CagA translocation 

 3.1 TEST FOR CEACAM PRODUCTION ON CELL LINES 

It was shown that H. pylori interacts with the human receptors CEACAM1 and CEACAM5. 

CEACAM5 is exclusively synthesized on epithelial cells, whereas CEACAM1 is found in various 

cell types like epithelial and immune cells 50. To study the impact of CEACAMs on the bacteria-

host interactions, different cell lines were examined for the production of CEACAMs on the cell 

surface. The focus was placed on epithelial cell lines, since both CEACAM1 and CEACAM5 were 

characteristic for this cell type and H. pylori is known to target these cells 145. 

The AGS cell line, a gastric cancer cell line, was first evaluated for CEACAM production. Besides, 

the gastric cancer cell lines Kato III, MKN28 and MKN45 were tested which represent cell lines 

originating from tissue being targeted by H. pylori. In contrast, the cervix carcinoma cell line 

HeLa and the embryonic kidney cell line HEK293 were originating from tissue that H. pylori is 

not described to address. 

CEACAM1, CEACAM5 and CEACAM6 are typically found on epithelial cells and represent the 

receptor members known to be targeted by pathogenic bacteria 25. Moreover, these three 

CEACAM family members are mostly coproduced on these cells 130. Although CEACAM6 did not 

show an interaction with H. pylori in the bacterial pull-down assay, the CEACAM6 production 

was analyzed. The cell lines were stained with specific antibodies against CEACAM1, CEACAM5 

and CEACAM6 to analyze the fold production of CEACAMs on the cell surface by flow cytometry 

and to compare it to the negative control. The flow cytometer readout showed that AGS, Kato III 

and MKN45 cells were significantly producing CEACAMs. In contrast, MKN28, HeLa and HEK293 

cells were negative for the tested CEACAMs (Figure 18). 

The study of AGS cells revealed for CEACAM1 2.1 fold and for CEACAM5 3.7 fold the level of the 

negative control, whereas CEACAM6 was more pronounced on the cell surface with a level of 

17.7 fold the negative control. 

Kato III cells showed a different pattern than AGS cells. The synthesis level for CEACAM1, 

CEACAM5 and CEACAM6 was about equally high with mean values of 4.9 fold, 3.6 fold and 3.5 

fold compared to the negative control. Thus, Kato III cells exhibited the highest CEACAM1 level 

of the tested cell lines. CEACAM6 synthesis in Kato III cells was clearly reduced compared to the 

synthesis in AGS cells (20% of the level in AGS cells). 

When having a closer look on MKN45 cells, the similarity of the CEACAM production pattern to 

AGS cells became apparent, but the values for CEACAM5 and CEACAM6 were significantly higher 

in MKN45 cells. CEACAM1 was produced with 2.3 fold, CEACAM5 had a production level of 124.9 

fold and CEACAM6 of 221.7 fold the negative control. 
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Since HopQ is the adhesin interacting with CEACAM1 and CEACAM5, respectively, and has 

recently been described as T4SS-associated virulence factor 140, it was interesting to look at a 

possible correlation between in vitro infection by H. pylori and CEACAM synthesis on the cell 

surface. 

Cells positive and negative for CEACAMs were examined for the capability of H. pylori to infect 

these cells in vitro. The success of the in vitro infection was determined by the CagA 

translocation capability into the host cells, e.g. the amount of CagA that was tyrosine 

phosphorylated by the host cell kinases using the already established method of CagA 

 

 

Figure 18: Synthesis of CEACAM1, 5 and 6 on epithelial cell lines. 

Six epithelial cell lines standardly used to analyze host-pathogen interactions were examined for 

the production of CEACAM1, CEACAM5 and CEACAM6. AGS, Kato III, MKN28, MKN45, HeLa and 

HEK293 cells were stained with specific antibodies against CEACAM1, CEACAM5 and CEACAM6, 

respectively. The fold production of CEACAMs was detected by flow cytometry as MFI values and 

compared to the value of the negative control which was a sample incubated only with the 

secondary antibody and set to the value of 1. 

On top, the evaluation of the in vitro infection for each cell line is depicted by western blot 

analysis. Each cell line was infected with H. pylori strain P12 (2) and the CagA translocation 

deficient strain P12ΔcagI (3). The mock control consisted of a sample of cells alone (1) that was not 

infected with bacteria. 

Tubulin was used as control that equal amounts of cells were analyzed during the infection with 

H. pylori. AK268 was directed against the N-terminal part of CagA and stained bacterial CagA. 

Antibody 4G10 showed the level of CagA phosphorylation (red box) e.g. the amount of 

translocated CagA tyrosine phosphorylated by cellular kinases.  

Student’s T-test; *p ≤ 0.05, **p ≤ 0.01. Values are means +/- SD, n = 3 
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phosphorylation assay 108. The tested cell lines that were capable of CEACAM synthesis were also 

positive for CagA translocation. The cells that were negative for CEACAM production did not 

show a phosphorylation of CagA. Figure 18 shows on top the in vitro infection test of six different 

cell lines. Antibody 4G10 shows the level of tyrosine phosphorylated CagA (red box). The six cell 

lines were infected with strain P12 (2) and the CagA translocation deficient strain P12ΔcagI (3) 

that served as negative control, since CagI was described to be necessary for CagA translocation 

146. The negative control consisted of a sample of cells alone (1) that was not infected with 

bacteria. The strongest CagA translocation was found for MKN45 cells that were also producing 

the highest amounts of CEACAM5 and CEACAM6 on the cell surface. Kato III cells showed a 

similar CagA phosphorylation efficiency to AGS cells.  
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 3.2 CEACAM PRODUCING HEK293 CELLS AND CAGA TRANSLOCATION 

Cell lines positive for the synthesis of CEACAM1, CEACAM5 and CEACAM6 correlated with their 

respective CagA translocation efficiency. Cell lines lacking CEACAMs on the cell surface did not 

show CagA translocation. To address the question if there is a functional dependency between 

CEACAM production and CagA translocation, a cell line that was negative for CEACAMs on the 

cell surface was equipped with a CEACAM member and checked for CagA translocation 

capability. 

HEK293 cells stably transfected with CEACAM1 and CEACAM5, respectively, were obtained from 

the lab of Jürgen Heesemann (LMU, Munich) 147. The stably transfected cells were first tested for 

the production level of CEACAMs by flow cytometry. HEK293/CEACAM1 cells were lacking 

CEACAM5 or CEACAM6, but were significantly positive for CEACAM1 with a 6.6 fold production 

compared to the mock control. Nontransfected HEK293 cells were negative for all three tested 

CEACAMs (Figure 19 A). The evaluation of the flow cytometry data showed for the transfected 

HEK293/CEACAM1 cells the highest level of CEACAM1 production of the tested cell lines. 

Nontransfected control- and HEK293/CEACAM1 cells were infected with H. pylori strains P12 

(Figure 19 A, lane 2) and the CagA translocation deficient strain P12ΔcagI (Figure 19 A, lane 3). 

The mock control consisted of a sample with cells alone (Figure 19 A, lane 1) that was not 

infected with bacteria. The CagA phosphorylation assay showed a clear reconstitution of the 

CagA translocation in HEK293/CEACAM1 cells with a distinct band for the phosphorylation of 

CagA (Figure 19 A, red box). 

For the transfected HEK293/CEACAM5 cells, the flow cytometry readout showed a considerable 

rise of the CEACAM5 production level to 116.8 fold compared to the negative control, which is 

about the CEACAM5 level of normal MKN45 cells (Figure 18). No synthesis of CEACAM1 or 

CEACAM6 was registered in these cells as anticipated (Figure 19 B). 

The test for CagA translocation into HEK293/CEACAM5 cells was also positive as it was for 

HEK293/CEACAM1 cells, but HEK293/CEACAM5 cells had a significantly stronger CagA 

phosphorylation signal than HEK293/CEACAM1 cells (Figure 19 B, red box). 
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Figure 19: HEK293 cells producing human CEACAM1 and CEACAM5, respectively.  

HEK293/CEACAM1 (A) and HEK293/CEACAM5 cells (B) were tested by flow cytometry for the 

production of CEACAM1, CEACAM5 and CEACAM6 and compared to nontransfected HEK293 

control cells.  

HEK293/CEACAM1 and HEK293/CEACAM5 cells were infected with H. pylori strain P12 (lane 2) and 

the CagA translocation deficient strain P12ΔcagI (lane 3) and compared to the nontransfected 

control cells. The mock control (lane 1) was a sample of cells alone that was not infected with 

bacteria. The infection was analyzed using the CagA phosphorylation assay. The translocated CagA 

was phosphorylated by cellular kinases. Tubulin was used as control for equal amounts of cells. 

AK268 stained bacterial CagA. Antibody 4G10 showed the level of CagA phosphorylation (red box). 

Student’s T-test; ***p ≤ 0.001. Values are means +/- SD, n = 3 
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 3.3 IN VITRO INFECTIONS WITH P12ΔHOPQ MUTANT AND THE HOPQI AND 

HOPQII COMPLEMENTED STRAIN 

The OMP HopQ is binding to the cellular receptors CEACAM1 and CEACAM5 which are typically 

produced on epithelial cells. There is also proof of a direct correlation between CEACAM1 and 

CEACAM5 synthesis on cell lines and CagA translocation capability. HEK293/CEACAM1 and 

HEK293/CEACAM5 cells showed a reconstituted and strong signal for CagA translocation 

compared to nontransfected HEK293 control cells. To study the HopQ influence on CagA 

translocation, HEK293/CEACAM5 and AGS cells were infected with P12 wildtype, the deletion 

mutant P12ΔhopQ and the genetically complemented mutant strain P12ΔhopQ::hopQI. A sample 

of uninfected HEK293/CEACAM5 cells served as negative control. The in vitro infections were 

evaluated by CagA phosphorylation assay and western blot analysis. 

HEK293/CEACAM5 cells infected with the P12 wildtype revealed a clear band for CagA 

phosphorylation, while the signal was completely gone in the P12ΔhopQ deletion mutant. The 

CagA phosphorylation was reconstituted in the strain P12ΔhopQ::hopQI. The phosphorylation 

band between P12 wildtype and P12ΔhopQ::hopQI infected cells was about the same strength, 

although HopQI was significantly stronger produced in P12ΔhopQ::hopQI compared to P12 

wildtype strain as it was seen in the blot (Figure 20 A). The results suggested for the CagA 

translocation in HEK293/CEACAM5 cells an absolute dependency on the outer membrane 

protein HopQ. 

Since HEK293/CEACAM5 cells were generated by transfection, the effect was also studied in 

human gastric AGS cells infected with P12 wildtype, the deletion mutant P12ΔhopQ or the 

genetically complemented mutant strains P12ΔhopQ::hopQI and P12ΔhopQ::hopQII. The strain 

P12ΔcagI served as negative control. The cells were treated as described for HEK293/CEACAM5 

cells in the in vitro infection and the results are shown in Figure 20 B and C. In accordance to the 

HEK293/CEACAM5 cells, the AGS cells showed the same pattern for the P12 wildtype, P12ΔhopQ 

and P12ΔhopQ::hopQI in the in vitro infection. In contrast to the HEK293/CEACAM5 cells, the 

phosphorylation signal for CagA in the P12ΔhopQ deletion mutant was considerably reduced in 

AGS cells, but not completely lost. The hopQI complemented strain P12ΔhopQ::hopQI had a 

significantly stronger CagA phosphorylation signal compared to P12 wildtype. This was 

consistent with the increase of HopQI synthesis observed in the western blot for 

P12ΔhopQ::hopQI. The hopQII complemented strain P12ΔhopQ::hopQII was also capable of CagA 

phosphorylation and the signal was equal in intensity to the P12 wildtype. Taken together, the 

results suggested that the CagA translocation in AGS cells is only partially dependent upon 

HopQ. 
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Figure 20: In vitro infection of HEK293/CEACAM5 

and AGS cells. 

(A) HEK293/CEACAM5 cells were infected with 

P12 wildtype, the P12ΔhopQ deletion mutant or 

the genetically complemented strain 

P12ΔhopQ::hopQI and compared in their 

capability to translocate CagA into the cells. A 

sample of uninfected HEK293/CEACAM5 cells 

served as negative control. 

(B) The in vitro infection of AGS cells is depicted. 

P12 wildtype, P12ΔhopQ and P12ΔhopQ::hopQI 

were analyzed for CagA translocation efficiency. 

AGS cells infected with the mutant strain 

P12ΔcagI served as negative control. 

(C) The in vitro infection capability of AGS cells for 

the P12 wildtype, P12ΔhopQ and 

P12ΔhopQ::hopQII was compared and evaluated 

by CagA translocation efficiency. A sample of 

uninfected AGS cells served as negative control.  

Tubulin was used as control for equal amounts of 

cells. AK268 stained bacterial CagA. Antibody 

4G10 showed the level of tyrosine 

phosphorylated CagA (red box). AK298 

recognized HopQI. 
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 3.4 KNOCKDOWN OF CEACAM1, 5 AND 6 IN AGS CELLS 

Previous experiments showed for AGS cells infected with P12ΔhopQ only a significant reduction 

of the CagA tyrosine phosphorylation, but not a lost signal. In P12ΔhopQ::hopQI, the CagA 

translocation was not only fully restored when compared to the P12ΔhopQ deletion mutant, but 

even stronger than in the P12 wildtype. To further add evidence to the impact of HopQ on the 

CagA translocation, siRNA against CEACAMs was used to downregulate the receptor molecules 

in AGS cells. The Allstars Hs Cell Death Control siRNA served as transfection control which 

targets essential genes for cell survival. The successful siRNA transfection is reflected by dead 

cells in the wells and with the Allstars Hs Cell Death Control siRNA a transfection efficiency of 

about 95% was achieved. The Allstars Negative control siRNA was used as negative control for 

the siRNA transfection consisting of a scrambled sequence that is not complementary to any 

known mammalian gene and thus, could not downregulate genes. 

Hs_CEACAM1_11 siRNA was used for the knockdown of CEACAM1, CEACAM5 and CEACAM6, 

since the siRNA had a knockdown effect on CEACAM1, CEACAM5 and CEACAM6 (Figure 21). 

 

 

 

 

AGS cells were transfected with the siRNAs for 48 h and then incubated with specific antibodies 

against CEACAM1, CEACAM5 and CEACAM6. The knockdown effect was analyzed by flow 

cytometry and the siRNA transfected AGS cells were compared to nontransfected AGS control 

cells.  

The Allstars Negative control siRNA transfected AGS cells did not show a change in the 

production of CEACAM1, CEACAM5 or CEACAM6. Hs_CEACAM1_11 siRNA transfected AGS cells 

 

Figure 21: Knockdown of CEACAM1, 

CEACAM5 and CEACAM6 in AGS cells.  

Hs_CEACAM1_11 siRNA was transfected in 

AGS cells to downregulate CEACAM1, 

CEACAM5 and CEACAM6. The CEACAM 

knockdown AGS cells were analyzed for CagA 

translocation efficiency in the in vitro 

infection with P12 wildtype. Nontransfected 

AGS cells, nontransfected AGS cells infected 

with P12ΔhopQ and AGS cells transfected 

with Allstars Negative control siRNA served as 

controls. 
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had a knockdown efficiency of 100% for CEACAM1. For CEACAM5 and CEACAM6, the 

knockdown effect was prominent, but not complete. A downregulation of 70% for the CEACAM5 

and 83% for the CEACAM6 production was achieved. 

The CEACAM1, CEACAM5 and CEACAM6 knockdown AGS cells were infected with P12 wildtype 

and compared to scrambled siRNA transfected and nontransfected AGS cells. The CEACAM 

knockdown AGS cells showed a clear reduction of the CagA tyrosine phosphorylation signal 

compared to the control cells. The intensity of the tyrosine phosphorylation in CEACAM 

knockdown AGS cells matched the band intensity of nontransfected AGS cells infected with the 

P12ΔhopQ deletion mutant. This experiment further confirmed that the CagA translocation in 

AGS cells is not completely dependent on the interaction of CEACAM1/5 and the adhesin HopQ, 

but additional factors have to contribute to the CagA translocation. 
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Discussion 

 1 The capacity of bacteria for CEACAM-binding 

 1.1 THE BACTERIAL PULL-DOWN ASSAY – STRENGTH AND WEAKNESS 

Many pathogenic bacteria have been identified to interact with members of the CEACAM family 

of cell surface receptors. Phase variable opacity-associated (Opa) outer membrane proteins of 

N. gonorrhoeae have been reported to bind to epithelial CEACAM1, CEACAM5 and CEACAM6 and 

the granulocyte receptor CEACAM3 in CEACAM transfected HeLa cells 148. In contrast, no 

interaction occurred between bacteria and CEACAM4, CEACAM7 and CEACAM8, respectively, 

which indicates a highly specific binding mode 149. The ubiquitous surface protein A1 (UspA1) 

adhesin of M. catarrhalis showed a similar binding ability regarding CEACAM1, 3, 5 and 6 78 150. 

The group of Christof Hauck applied a bacterial pull-down assay instead of CEACAM transfected 

cell lines to test for CEACAM-binding. This proved to be a sensitive and sufficient method to test 

the binding behavior of N. gonorrhoeae. The distinct N-terminal IgV-like domain was analyzed 

for CEACAM-binding. The results were consistent with the already existing data of CEACAM-

transfected cell lines 131. In this work, the bacterial pull-down assay was successfully applied to 

analyze the capability of H. pylori to adhere to CEACAMs. H. pylori is, like N. gonorrhoeae and 

M. catarrhalis, a Gram-negative and human-restricted, pathogenic bacterium. 

The reliability of the bacterial pull-down assay established in this work was tested by published 

positive and negative controls for CEACAM-binding. The constitutively synthesized Opa 52 

protein (Opa52) produced by N. gonorrhoeae strain MS11 (N309) and the UspA1-producing 

M. catarrhalis strain ATCC 25238 were tested for adherence to CEACAM1, 3, 5 and 6, 

respectively. Both, N. gonorrhoeae strain N302 and M. catarrhalis strain ATCC 423517, were not 

able to bind to any CEACAMs and were used as negative controls 130 43. As anticipated, the 

adhesin-negative strains did not show an association with CEACAMs. In contrast, N. gonorrhoeae 

N309 and M. catarrhalis strain ATCC 25238 were interacting with CEACAM1, 3 and 5, 

respectively, however, the binding to CEACAM6 could not be confirmed in this work (Figure 

10 B and C). A comparison of the published data of Kuespert et al., 2007 and Roth et al., 2013 

revealed discrepancies regarding the intensity of CEACAM6-binding (Figure 22). In Kuespert et 

al., 2007, the interaction between the adhesin Opa52 and CEACAM6 was found to be the strongest 

of all CEACAMs, whilst, in Roth et al., 2013, the binding intensity of Opa52 has significantly 

decreased for CEACAM6 to a background level when compared to the binding intensity of 
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CEACAM1, 3 and 5, respectively. The results obtained in this work for the Neisserial binding of 

CEACAM1, 3, 5 and 6 by Opa52 are mostly consistent with the recently published data of 

Roth et al., 2013. Possible explanations for this behavior might be that the CEACAM6 construct 

tends to misfolding or posttranslational processing. 

 

 

 

Figure 22: Excerpt from Kuespert 

et al., 2007 and Roth et al., 

2013.  

The western blot analysis shows 

the binding capability of distinct 

Opa proteins to CEA-N-GFP 

constructs tested by bacterial 

pull-down assay. In both 

experiments equal amounts of 

constructs were used in the 

assay (below). 

(A) Published in Kuespert et al., 

2007: N. gonorrhoeae (Ngo) 

strain MS11 constitutively 

expressing distinct phase 

variable Opa proteins and 

N. meningitidis (Nme) are 

depicted. 

(B) Published in Roth et al., 

2013: The Opa proteins 

constitutively expressed in 

N. gonorrhoeae strain MS11 and 

the binding to CEA1-, CEA3-, 

CEA5- and CEA6-N-GFP 

(CEACAM-N) is shown.  

 

 

The binding epitope directly involved in Neisserial Opa52 binding has already been identified. 

The residues 31 – 41 which form the conserved C-strand of the IgV-like domain together with 

the CC’ loop correlate with strong bacterial binding and are crucial for the Neisserial interaction 

with CEACAMs. In addition, it is interesting that an exchange of residues 27 – 29 in CEACAM6 by 

the corresponding sequences from either CEACAM1 or CEACAM5 resulted in a binding of Opa 

proteins that formerly had failed to interact with CEACAM6 149. Thus, these slight changes in the 

CEACAM6 sequence already had a major influence on the binding properties of N. gonorrhoeae.  

 

N. gonorrhoeae N309 bound with the highest intensity to CEACAM1, whereas M. catarrhalis 

strain ATCC 25238 was adhering best to CEACAM5 in the bacterial pull-down assay (Figure 10 B 

and C). The reason for this might be that the adhesins Opa52 of N. gonorrhoeae and UspA1 of 
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M. catarrhalis are phylogenetically completely unrelated and may vary in their binding epitopes 

recognized on the targeted CEACAM receptors. 

Taken together, the bacterial pull-down assay was tested by the CEACAM-associating bacteria 

N. gonorrhoeae and M. catarrhalis which recognized the constructs CEA1-N-GFP, CEA3-N-GFP 

and CEA5-N-GFP. The established assay was used to examine the CEACAM-binding capability in 

H. pylori. 
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 1.2 CEACAM-BINDING OF H. PYLORI STRAINS AND THE EFFECT OF ANIMAL 

PASSAGE 

The data obtained for H. pylori strain P12 by flow cytometry and western blot analysis were 

consistent and revealed a clear binding capability for CEACAM1 and CEACAM5, but not for any 

other CEACAM construct (Figure 11 A, B and C). Other H. pylori strains (26695, B8, PMSS1, SS1 

and X47) tested in the bacterial pull-down assay also attached to CEACAM1 and CEACAM5 

(Figure 12 A and C), however, the intensity of CEACAM-binding varied for each strain. The 

highest binding capacitiy was observed in PMSS1, whereas the weakest interaction, especially 

for CEACAM1, was found in strain X47 adapted to the mouse stomach.  

In contrast to N. gonorrhoeae and M. catarrhalis, no H. pylori strain was able to significantly bind 

the granulocyte receptor CEACAM3 or the epithelial receptor CEACAM6. CEACAM3 does not 

support cell-cell adhesion, but triggers opsonin-independent phagocytosis and subsequent 

elimination of bacteria, as it was shown for N. gonorrhoeae 44. The missing CEACAM3 recognition 

of H. pylori strains might be the result of an evolutionary new adaptation to the host. In 

Berger et al., 2004, the pathogen E. coli shows an interaction with CEACAM1, 5 and 6, but not 

with CEACAM3 151. In avoiding CEACAM3, bacteria might escape the recognition by the innate 

immune system and therefore reduce the risk of being eliminated. In N. gonorrhoeae only strains 

that produce Opa52, Opa57 and Opa58 are binding to CEACAM3, other Opa proteins recognize 

CEACAM1 and/or CEACAM5 only 130. This suggests that bacterial adhesins have evolved to 

differentiate between the granulocyte receptor and epithelial CEACAM members.  

Data obtained in our working group for CEACAM3-transfected HEK293 cells support the 

capability of H. pylori strains to bind to CEACAM3. The strain was able to translocate CagA as 

compared to nontransfected HEK293 control cells (Lea Holsten, unpublished data). The lack of 

CEACAM3 binding observed for H. pylori strains in the bacterial pull-down assay performed in 

this work might be explained by sensitivity limitation, or differences in the structure between 

the soluble and the membrane associated forms of CEACAM3. Since the CEA3-N-GFP construct 

showed a binding for N. gonorrhoeae and M. catarrhalis, this might suggest that only a minor 

amount of the H. pylori population interacts with CEA3-N-GFP, which is not detected by the 

bacterial pull-down assay. 

Opposite to CEACAM3, the failure in recognition of CEACAM6 might be merely false negative. 

The CEA6-N-GFP construct was not bound by N. gonorrhoeae and M. catarrhalis which have 

already been described to do so. This leads to the assumption that most likely the soluble 

construct is defective. The capability of H. pylori strains to interact with CEACAM6 should be 

analyzed by the established method of CEACAM transfected cell lines 25. 
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All examined H. pylori strains, except for B8, were consistent in the distinctly stronger binding 

ability for CEACAM5 as compared to CEACAM1. For P12, the evaluation of three independent 

bacterial pull-down assays showed a 4.4 fold stronger intensity in interacting with CEACAM5 as 

compared to CEACAM1 (Figure 11 D). This was consistent with the data found for M. catarrhalis 

which also adhered with higher intensity to CEACAM5, as compared to CEACAM1. Since the 

CEACAM1 and 5 binding pattern for N. gonorrhoeae was vice versa, the observed preference in 

adhering to CEACAM5 suggests an adaptation of the Neisserial adhesins to the CEACAM5 binding 

epitope with a possible direct advantage for the bacteria. 

In N. gonorrhoeae and M. catarrhalis, the CEACAM-binding adhesins are phase variable and, 

therefore, the bacterial population is in general heterogeneous in its ability to recognize 

CEACAMs 152 153. The flow cytometry results for the tested H. pylori strains showed that the 

whole bacterial population interacts with CEACAM5 (Figure 12 B). This would suggest that the 

adhesin(s) responsible for CEACAM5 interaction in H. pylori are permanently produced and that 

the bacterial population is homogeneous regarding the adhesin(s), which is in contrast to 

N. gonorrhoeae and M. catarrhalis.  

Regarding CEACAM1, a homogeneous population was observed for the strains P12 and 26695. 

The strains SS1 and X47 adapted to the mouse model were significantly impaired regarding the 

association with CEACAM1. Only about 10% of the P12 binding intensity was detected when 

adhering to CEACAM1 (Figure 12 B). This suggests a reduced adhesin(s) production or bacteria 

that express adhesin(s) with a weaker CEACAM1-binding capability. The allele for the murine 

CEACAM1 orthologue was duplicated resulting in the two proteins CEACAM1a and CEACAM1b 

which differ significantly in aa sequence from the human CEACAM1 (45% and 55% aa sequence 

identity, respectively) 79. Thus, an interaction between H. pylori and the murine CEACAM1 was 

not likely leading to a reduced HopQ production due to missing selective pressure. CEACAM5 

orthologues have not been identified in rodents, but nevertheless the CEACAM5-binding 

intensity did not change in any H. pylori strain. 

To analyze the effect of mouse passage on the distinct CEACAM-interaction capability in more 

detail, strain PMSS1 was examined and compared to strain SS1. The H. pylori strain PMSS1 had 

been passaged through mouse resulting in the strain SS1 132. In the bacterial pull-down assay, 

PMSS1 and SS1 were both able to adhere to CEACAM1 and CEACAM5, respectively, but to 

varying degrees. SS1 had a three fold decreased CEACAM-binding intensity when compared to 

the non-mouse-passaged strain PMSS1 (Figure 12 C). This means that after animal passage the 

bacteria had lost their CEACAM-binding ability to a large extent. The CEACAM-binding intensity 

obtained for X47, another strain adapted to the mouse model, is even lower than that of SS1. 

This suggests that H. pylori strains may lose their CEACAM-binding capability by mouse passage. 
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The reason for this might be low selective pressure and the downregulation of the 

corresponding adhesin(s) due to a failure of adherence to murine CEACAM1. 

In the gerbil adapted strain B8, the CEACAM1-binding intensity was decreased to about 80% of 

the P12 strain. When it is assumed that the adhesin(s) responsible for CEACAM1-binding ability 

is impaired in strains after animal passage, the adhesin(s) in B8 is only slightly reduced after 

gerbil passage as compared to the mouse passaged strains. CEACAM1 and CEACAM5 

orthologues in gerbils have not been addressed yet. Since CEACAM1 has been predicted to be the 

primordial CEACAM member from which a diverse group of other CEACAMs was generated by 

gene conversion and duplication 76, a CEACAM1 protein is most likely also present in gerbils. The 

comparison of strains PMSS1 and SS1 reveals that, though the bacterial population is 

homogeneous, the intensity of CEACAM5-binding is significantly lowered after animal passage to 

30%, as it was occurring for CEACAM1-binding. 

Taken together, these findings suggest regarding the colonization of H. pylori strains in mice, a 

loss of CEACAM-binding ability due to a possible failure in interaction with the CEACAM 

orthologues in the animals. 

  



Discussion 

67 

 1.3 CEACAM-BINDING SPECIFICITY 

H. pylori is able to adhere to human CEACAM1 and 5 in the bacterial pull-down assay. It has to be 

considered that there is a correlation between the bacterial capability to adhere to CEACAMs 

and the long term persistence of H. pylori in the host. Therefore, three requirements are 

postulated: (I) establishment of colonization, (II) evasion of the host immunity and (III) invasion 

of the gastric mucosa 116. The exploitation of CEACAMs might be favorable, since the receptor 

family is involved in major cellular processes, like cell-cell adhesion and regulation of the 

immune system 27. H. pylori strains can colonize animals like gerbils, rhesus monkeys or mice 

and theoretically may also be capable to exploit CEACAM members present in these animals to 

establish a bacterial infection in the host. CEACAM1 orthologues have been identified in all 

analyzed species, whereas CEACAM5 is exclusively present in primates 76. Recent studies 

showed for the human-restricted pathogens N. gonorrhoeae and M. catarrhalis that they do not 

recognize CEACAM1 orthologues from mouse (CEACAM1a), cattle (CEACAM1a and CEACAM1b) 

and dog 43. Since the CEACAM-binding ability after the animal passage was clearly decreased in 

strain SS1 as compared to PMSS1 (Figure 12 C), the assumption was made that H. pylori strains 

might not be able to interact with orthologous CEACAMs in the murine stomach.  

In this work, the examined H. pylori strains failed to interact with CEACAM1 and CEACAM5 of 

other species than humans (Figure 13 B). Although SS1 and X47 were able to colonize mice, the 

strains do not seem to exploit the murine CEACAM1 receptor, but probably use other adhesion 

factors. Since there is no positive control existing for the orthologous CEACAM1 and CEACAM5 

constructs which would confirm the functionality of the constructs, the incapability in binding is 

not absolutely confirmed. Moreover, it has to be considered that the CEACAM1 IgV-like domain 

in different species is not highly conserved. Due to a lacking selection pressure, the domains 

differ largely. Compared to the human CEACAM1, the murine variant shows an aa sequence 

conservation of 45% 79, the bovine variant of 54% 80 and the canine variant of 56% 75. This might 

explain the specific restriction of H. pylori to its host. Such CEACAM-dependent host specificity 

has also been found for the murine hepatitis virus. Data obtained from the murine hepatitis 

virus-infection in mice confirmed the exclusive and specific binding of the virus to the murine 

CEACAM1a IgV-like domain with a binding site that has not been found in the CEACAM1 

sequence of any other species 80. 

Non-pylori Helicobacter species are also found to colonize animals like rhesus monkeys. In many 

cases, the bacteria can colonize the gastric epithelium of animals and cause an inflammatory 

response resembling that seen with H. pylori in humans 154. Despite this similarity in 

inflammatory response, the non-pylori species, H. nemestrinae and H. mustelae, were not able to 

establish a binding to the human receptor in the bacterial pull-down assay (Figure 13 A). This 
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suggests that the binding capability to CEACAMs is a specific adaptation of the species H. pylori 

to its human host. 

Taken together, exclusively H. pylori strains are able to adhere to the human CEACAM receptor 

family. Moreover, H. pylori is species-specific in the recognition of CEACAMs and is unable to 

adhere to CEACAMs found in other species than humans. 
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 2 The CEACAM-binding adhesin HopQ 

 2.1 HOPQ IS THE ADHESIN INTERACTING WITH CEACAM1 AND CEACAM5 

BabA is the bacterial adhesin binding to fucosylated Lewis b antigens and SabA adheres in 

inflamed tissue to sialyl-Lewis x and a antigens. Both belong to the adhesin branch of the Hop 

family of OMPs. The adhesin(s) interacting with CEACAM1 and CEACACM5 were assumed to also 

belong to this family (Figure 14 C), since several proteins in this branch have not been assigned a 

function yet. Distinct single OMP gene deletion mutants of H. pylori strain P12 were generated by 

the streptomycin contraselection system and analyzed in the bacterial pull-down assay for a loss 

or reduction in CEACAM-binding compared to the P12 wildtype. The generated deletion mutants 

for BabA, BabB, SabB and HopZ were not involved in the CEACAM-binding ability, since each of 

the mutants recognized both CEACAM1 and CEACAM5 with a binding intensity most similar to 

the one observed in P12 wildtype. In contrast, deletion mutants generated for HopQ in different 

strain backgrounds completely failed to interact with CEACAM1 and CEACAM5. The complete 

loss of binding to CEACAMs identified HopQ as the sole adhesin interacting with CEACAM1 and 

CEACAM5, respectively. When the hopQ deletion mutant was genetically complemented with the 

hopQ gene, the adherence to CEACAM1 and CEACAM5 was fully reconstituted.  

It was reported that H. pylori strains vary in their virulence outcome depending on the allelic 

form of the hopQ gene 105. H. pylori type II strains with a HopQII sequence lack the CagPAI and 

are less pathogenic than HopQI producing, CagPAI positive type I strains. When comparing 

hopQI and hopQII complemented strains, strain P12ΔhopQ::hopQII was significantly weaker in 

binding to CEACAM1 and CEACAM5 compared to strain P12ΔhopQ::hopQI (Figure 15 D). Type I 

strains of H. pylori seem to adhere stronger to CEACAMs due to the HopQI aa sequence. 

The ClustalW alignment of the HopQ aa sequence showed for P12, 26695 and B8 a HopQI and for 

the mouse adapted strains SS1 and X47 a HopQII sequence (Figure 16 A). The HopQI and HopQII 

sequences revealed a strong conservation of 50 aa in the N-terminal region and of 200 aa in the 

C-terminal region of the aa sequence leaving a variable middle region to distinguish between 

HopQI and HopQII. The HopQI sequences of P12 and 26695 were highly conserved with 96.6% 

identity, although 26695 showed less binding capability to CEACAMs compared to P12 in the 

bacterial pull-down assay (Figure 12 A). The HopQI sequence of the gerbil adapted strain B8 

differed from the one found in P12 merely in the region between the aa 429 and 478. 

Interestingly, exactly this region was almost identical to the HopQII sequence found in the 

mouse adapted strains SS1 and X47 and, therefore, might be advantageous for the colonization 

in animals. The HopQII sequences of SS1 and X47 differed from the P12 sequence, with an aa 

identity of about 72% (Figure 16 B), but differed from each other in merely 21 aa (aa sequence 
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identity of 96.7%). The SS1 capability to bind to CEACAM1 and X47 adhering to CEACAM1 and 5 

was significantly reduced compared to the binding found for P12 (Figure 12 A). X47 had the 

same CEACAM-interaction capability like P12ΔhopQ::hopQII. This phenotype observed in the 

tested strains together with the findings for the genetically complemented strains 

P12ΔhopQ::hopQI and P12ΔhopQ::hopQII suggest that, dependent on the HopQ allelic form 

expressed in the strain, the CEACAM-recognition capability is significantly varying. The strains 

SS1, X47 and P12ΔhopQ::hopQII share a HopQII aa sequence and show a reduced CEACAM1-

binding intensity compared to the HopQI producing strains P12, 26695 and B8. The CEACAM5-

binding intensity does not seem to be influenced by the allelic form of HopQ to the same degree 

than the CEACAM1-binding capability. 

Taken together, both forms of the adhesin HopQ are able to interact with CEACAM1 and 

CEACAM5, but the HopQII form seems to recognize it weaker. The specific interaction represents 

a further way of H. pylori to adhere to different cell types and tissues of its human host. 
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 2.2 MODE OF HOPQ BINDING TO CEACAM5 

The adhesins BabA and SabA are reported to bind to carbohydrate structures present on their 

receptors 124. In this work, the question has not been addressed whether HopQ binds to 

carbohydrate structures on the CEACAMs or to the protein backbone of the glycosylated 

receptors. The CEACAM family members are highly glycosylated proteins with a possible 

carbohydrate content of up to 60 – 70% in weight, which makes glycosylation a major factor in 

these proteins 1. The AGFCC’C’’-β sheet is predicted to be devoid of carbohydrate structures, 

whereas the ABDE face is most likely covered by them 155. In N. gonorrhoeae and M. catarrhalis, 

the binding site for the Opa proteins and UspA1, respectively, was identified to be the AGFCC’C’’-

β sheet of CEACAMs and not carbohydrate structures 149 152. 

The respective HopQ binding site on CEACAMs was examined by isothermal titration 

caloritmetry (ITC) (performed in collaboration with the lab of Eric Sundberg, University of 

Maryland, Baltimore) (unpublished data). The N-terminal domain of CEACAM5 (CEA-N) from 

E. coli was purified, resulting in a CEA-N domain devoid of glycosylation (MW = 11.88 kDa). In 

addition to that, HopQ was produced as fusion protein with maltose binding protein (MBP) and 

purified. The non-glycosylated CEA-N was titrated against MBP-HopQ. CEA-N titrated against 

MBP alone served as negative control. MBP-HopQ showed a high affinity binding for the non-

glycosylated CEA-N (KD = 61 +/- 3 nM) with a stoichiometry of one MBP-HopQ to half of a CEA-N 

dimer (1:0.62), similar to other adhesin-CEA interactions 156. MBP alone showed no affinity for 

the non-glycosylated CEA-N. These findings confirm the high affinity binding observed for 

CEACAM5 and HopQ in the bacterial pull-down assay. Furthermore, these data show for the first 

time a direct binding of H. pylori to the receptor protein and not to any glycosylated structure 

found on the receptor. This makes the adhesion of HopQ to CEACAM5 the first protein-protein 

binding interaction found for H. pylori. 

It is speculated that the CEACAM-binding site for HopQ is most likely the AGFCC’C’’ face of the 

IgV-like domain (Figure 1) which has already been identified as the binding site for 

N. gonorrhoeae and M. catarrhalis. The ß-sheet is predicted to be devoid of carbohydrate 

structures which would match the result of HopQ binding to the protein backbone of CEACAM5.  

The AGFCC’C’’ face of CEACAM1 alone was shown to be less conserved between species as 

compared to the complete IgV-like domain. Compared to the human variant, the aa sequence 

conservation of the AGFCC’C’’ face of murine and canine CEACAM1 is less than 40% and the 

bovine one is less than 50% 157. This would strengthen the hypothesis that the observed lack of 

interaction between H. pylori strains and the orthologous CEACAM1 constructs is due to the high 

sequence variations in the binding domain.   
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 2.3 HOPQ PRODUCTION IN H. PYLORI STRAINS 

In addition to the allelic type of HopQ, also the amount of HopQ produced in H. pylori strains 

might differ, which can further explain the observed differences in CEACAM-binding. By the 

generation of a HopQI-specific antibody, the protein production was analyzed in the strains. 

HopQI was detected in the strains P12 and B8 at relatively equal levels, but weak for strain 

26695, whereas the HopQII of strains SS1 and X47 is not recognized by the antibody due to 

epitope variation (Figure 17 A). When the HopQI sequence of strain 26695 was examined for the 

specific epitope against which the antibody was generated, it was evident that the last three aa 

of the peptide sequence were divergent and, therefore, the HopQI protein of strain 26695 might 

not be fully recognized by the HopQI antibody (Figure 17 B). 

In contrast, PMSS1 showing a strong signal for HopQI was discovered to have a duplication in 

the hopQI gene. PMSS1 is the original clinical isolate of SS1 that has been passaged through 

mouse. When the hopQ sequence in the hopQ locus of PMSS1 and SS1, the sequences were 

identical and showed for both a functional hopQII gene. Due to the positive western blot result of 

PMSS1 for HopQI (Figure 17 B), the strain was examined again and the hopQI gene sequence was 

identified both in the sabA and sabB locus. Interestingly, the hopQ gene as well as the closely 

related sabA and sabB genes are variable in copy number and locus 126 which can be switched in 

their loci due to gene conversion. A hopQI gene was also identified in strain SS1 in the sabA and 

sabB gene loci, but the genes are not expressed. The hopQI genes are phase variable due to SSM 

and HopQI is not detected by western blot analysis. This means that the strain SS1 has lost the 

HopQI production after it has been passaged and isolated from the mouse indicating that the 

colonization of mice by this strain was not dependent on the production of HopQI. This matches 

the observations from the bacterial pull-down assay. The depletion of the HopQI production in 

SS1 resulted in a CEACAM-binding ability of only 30% of the PMSS1 level which produces a 

functional HopQI as well as a functional HopQII and showed a significantly stronger CEACAM1 

and CEACAM5 interaction (Figure 12 C). 

In Talarico et al., 2012, 51 clinical strains were examined for gene conversion, which involved 

the duplication of the sabA or hopQ gene and the loss of the sabB gene (Figure 24). Eight clinical 

isolates were positive for the hopQ gene duplication. Six comprised one hopQI and one hopQII 

gene, whereas two isolates had two copies of a hopQI gene that appeared to be the result of a 

recent intra-strain gene conversion event 126. It was found that by sabA duplication, SabA protein 

production was two-fold higher and resulted in an increase in adherence to immobilized sialyl-

Lewis x. This gain of protein production and the resulting enhancement of receptor binding 

occurred in strain PMSS1. The duplication of the hopQI gene additional to the hopQII gene led to 

a stronger interaction with CEACAMs and from the analyzed strains in this work, PMSS1 had by 



Discussion 

73 

far the highest adherence to CEACAMs. It was most interesting to observe that after animal 

passage the reisolated strain SS1 had lost its HopQI production and the CEACAM-binding 

intensity was directly correlating with the produced HopQ type. By the loss of HopQI production, 

only one third of the CEACAM-binding ability remained in strain SS1 compared to the original 

isolate PMSS1. 

A second strain besides PMSS1 showed a duplication of the hopQI gene: PMSS1 comprises two 

identical hopQI alleles in the sabA and the sabB gene locus, whereas B8 contains two identical 

hopQI genes in the sabB and hopQ gene locus 158. Although two copies of HopQI are produced in 

the B8 wildtype and merely one HopQI is produced in P12, the amount of the HopQI protein of 

B8 and P12 wildtype in the western blot were identical (Figure 17 B). However, the CEACAM-

binding capability is lower for the B8 wildtype (Figure 12 A). This difference in CEACAM 

adherence is most likely explained by variations in the HopQ aa sequence between P12 and B8. 

The region responsible for the CEACAM-binding might be located between the aa 429 and 477, 

since in this region, P12 and 26695 are completely identical in sequence. However, B8 and all 

HopQII producing strains, which show a reduced CEACAM-binding capability, differ from the 

P12 sequence in this region, but are are nearly identical between each other. Further strains and 

HopQ sequences have to be analyzed to verify this correlation. 

The hopQI gene located in the hopQ locus was deleted in strain B8 by homologous 

recombination. The HopQI production loss resulting from the hopQI gene deletion led to a 

reduced HopQI production of about 30% in strain B8ΔhopQ1 compared to the B8 wildtype 

(Figure 17 D). Therefore, the deleted hopQI gene was responsible for the main HopQI production 

in the B8 wildtype. The minor hopQI gene expression in the sabB locus is possibly explained by a 

weaker activity of the promoter in the sabB locus as compared to the promoter in the hopQ 

locus. 

Furthermore, the P12 wildtype, the deletion mutant P12ΔhopQ and the hopQI complemented 

strain P12ΔhopQ::hopQI were analyzed for HopQI production. The deletion mutant did not 

produce a HopQI which matches the loss of CEACAM-binding. In contrast, P12ΔhopQ::hopQI was 

significantly overproducing HopQI compared to the production in the P12 wildtype (Figure 

12 C). Interestingly, the amount of HopQI in the distinct P12 strain correlated directly with the 

CEACAM-binding capability in the bacterial pull-down assay (Figure 15 C). The strong increase 

in HopQI production in P12ΔhopQ::hopQI was explained by the promoter in front of the hopQ 

gene on the complementation plasmid pCE39. When strain B8ΔhopQ1 was transformed with the 

same plasmid, the newly generated strain B8ΔhopQ1::hopQI (P12) showed the same increase in 

HopQI production (Figure 17 D). The amount of HopQII produced in P12ΔhopQ::hopQII was not 

recognized by the α-HopQI antibody due to its specificity for HopQI, but might also be elevated 

compared to the respective wildtype. Since the plasmids for the complementation of HopQI and 
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HopQII are identical in the backbone except for the type of hopQ gene that was inserted, the 

plasmids have most likely the same properties in gene expression. 

Taken together, gene conversion events regarding the hopQ gene can lead in different strains to 

a gain (B8) or a loss of function (PMSS1 to SS1), concerning the adhesion properties of H. pylori. 
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 3 Impact of the bacterial CEACAM interaction on 

CagA translocation 

 3.1 CEACAM PRODUCTION AND CAGA TRANSLOCATION CAPABILITY 

In this work, an interaction between H. pylori strains and human CEACAM1 and CEACAM5 has 

been discovered in the bacterial pull-down assay. Members of the CEACAM family were found on 

various cell types with CEACAM1 being the most wide-spread member amongst them 27. The 

expression of CEACAM1, CEACAM5 and CEACAM6 was found to be upregulated in cancerous 

tissue, for example in colon and gastric cancer 159. In order to gain access to host cells, 

pathogenic bacteria were found to adhere to CEACAM1, 5 and 6 and the granulocyte receptor 

CEACAM3 which is closely related to the IgV-like domain of CEACAM1 and involved in bacterial 

uptake and elimination 50. H. pylori persistently colonizes the human gastric epithelium and is in 

vitro capable of adhering to CEACAM1, 5 and 6 which are known to be produced on epithelial 

cells in the gastrointestinal tract 53.  

To gain more knowledge about the interaction between bacteria and CEACAMs, cultured 

epithelial cell lines were examined for their amount of CEACAMs produced on the cell surface. 

Moreover, the cell lines were analyzed for the potential of H. pylori to infect them. H. pylori 

adheres to cells and translocates the effector protein CagA into the host cell cytoplasm, where 

the protein is turned into its active form by tyrosine phosphorylation executed by cellular 

kinases 145. In an earlier work, HopQ was found to be essential for CagA translocation and for 

CagA-mediated host cell responses, such as formation of the hummingbird phenotype and cell 

scattering, but the adhesin did not affect motility or the quantity of bacteria attached to the host 

cells 140. 

The success of the bacterial infection was determined in this work by the amount of 

phosphorylated CagA. Three gastric cancer cell lines AGS, Kato III and MKN45, showed a 

significant production of CEACAM1, 5 and 6, whereas the gastric cancer cell line MKN28, the 

kidney epithelial cell line HEK293 and the cervix carcinoma cell line HeLa were not synthesizing 

CEACAMs on the cell surface (Figure 18). Except for Kato III cells, the CEACAM1 level found in 

the cell lines was lower compared to the level of CEACAM5 and CEACAM6. Furthermore, AGS, 

Kato III and MKN45 cells were positive for CagA translocation (Figure 18, red box). MKN45 cells 

were particularly outstanding; MKN45 cells had the highest production of CEACAM5 and 6 on 

the cell surface and the strongest CagA phosphorylation signal in in vitro infections. When the 

findings for the CEACAM production were compared to the data obtained for the bacterial pull-

down assay, it was evident that the bacteria adhered better to CEACAM5 as compared to 
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CEACAM1 (Figure 12 C) and, furthermore, CEACAM5 was produced at higher or in equal 

amounts compared to CEACAM1 in all examined epithelial cell lines (Figure 18). This might 

indicate that bacteria are better adapted to CEACAM5 or prefer the binding to CEACAM5. The 

reason for this might concern the CagA translocation efficiency. 

To determine whether the CagA translocation capability of H. pylori was dependent on the 

CEACAM synthesis, CEACAM negative HEK293 cells were transfected with human CEACAM1 and 

5, respectively. The in vitro infection of H. pylori strain P12 in the transfected HEK293/CEACAM1 

and HEK293/CEACAM5 cells revealed a clearly reconstituted CagA phosphorylation signal 

compared to the nontransfected control cells. This indicates that the CagA translocation is 

dependent on the interaction of H. pylori with CEACAMs. H. pylori might exploit the cellular 

receptors to regulate cellular functions most important for the survival in the gastric epithelium.  

When HEK293/CEACAM1 cells (Figure 19 A) were compared to HEK293/CEACAM5 cells (Figure 

19 B), the CagA phosphorylation intensity was considerably stronger in the CEACAM5 

transfected cells. HEK293/CEACAM1 cells might synthesize significantly lesser amounts of 

CEACAM1 than HEK293/CEACAM5 cells produce CEACAM5, although the cells transfected were 

originating from the same HEK293 cells (143). The stronger CEACAM5 synthesis might 

contribute to the pronounced CagA phosphorylation in HEK293/CEACAM5 cells. When the ratio 

of the CEACAM1 production level was compared to the CEACAM5 production level, CEACAM1 

might be the one of the two receptor members that affects the CagA phosphorylation signal the 

most.  
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 3.2 HOPQ DEPENDENCY OF CAGA TRANSLOCATION 

BabA has been identified as the adhesin responsible for the adherence of H. pylori to Lewis b 

antigens in gastric epithelium. In inflamed tissue, the synthesis of sialyl-Lewis x and a antigens 

on the cell surface is increased and these antigens are selectively recognized by the bacterial 

adhesin SabA 116. The binding of adhesins to the stomach epithelium reduces the constant 

danger of bacterial clearance by the stomach peristaltic. Furthermore, the BabA interaction is 

also beneficial in triggering the production of proinflammatory cytokines and precancer-related 

factors in a T4SS-dependent way 120. The binding of adhesins might contribute to important 

signaling pathways in host cells in addition to bacterial adherence as such.  

In this work, HopQ was identified as the adhesin interacting with the CEACAM family. Both 

CEACAM1 and 5 contribute directly to the capability of the bacteria to translocate CagA into 

epithelial cells in vitro. HEK293/CEACAM5 cells showed a complete HopQ dependency for CagA 

translocation (Figure 20 A). The data obtained for the gastric cancer cell line AGS were 

consistent with the findings for HEK293/CEACAM5 cells, although the CagA phosphorylation in 

AGS cells is not fully HopQ dependent. In infected AGS cells, the strain P12ΔhopQ had not 

completely lost the capability of CagA translocation, but showed a reduced signal for CagA 

phosphorylation compared to the P12 wildtype (Figure 20 B). The remaining CagA 

phosphorylation might be due to a further still unidentified interaction of a second bacterial 

adhesin with another cellular receptor. The results obtained for the knockdown experiment in 

AGS cells strengthen this hypothesis. The downregulation of the epithelial CEACAMs 1, 5 and 6 in 

AGS cells led to a reduced CagA phosphorylation signal identical to the level of nontransfected 

AGS cells infected with strain P12ΔhopQ (Figure 21). 

Since no signal was detected in HEK293/CEACAM5 cells infected with P12ΔhopQ, 

HEK293/CEACAM5 cells might lack the additional cellular receptor. The hopQI complemented 

strain P12ΔhopQ::hopQI showed a significant increase in HopQI production compared to the P12 

wildtype and consequently produced a significantly stronger CagA phosphorylation signal. Due 

to two allelic forms of hopQ associated with more or less virulent H. pylori strains, 

P12ΔhopQ::hopQII was also examined in AGS cells. The exact amount of HopQII production in 

P12ΔhopQ::hopQII could not be identified, since no antibody was available recognizing HopQII. 

Nevertheless, AGS cells that were infected with the hopQII complemented strain showed a 

significant CagA phosphorylation signal. When the intensity of the signals in AGS cells was 

compared, P12ΔhopQ::hopQII had a weaker CagA phosphorylation than the P12 wildtype (Figure 

20 C). In accordance with that, the CEACAM-binding capability obtained for P12ΔhopQ::hopQII in 

the bacterial pull-down assay was considerably weaker than the P12 wildtype (Figure 15 D). The 

CEACAM5 interaction was about 50% reduced, whereas the CEACAM1-binding of 



Discussion 

78 

P12ΔhopQ::hopQII was only 10% the level of the P12 wildtype. The significant drop in the 

CEACAM1-interaction capability of P12ΔhopQ::hopQII was not reflected in the CagA 

phosphorylation signal of the AGS infection. This might be due to the remaining CEACAM5 

binding capability of 50%. The HopQII production in H. pylori strain P12ΔhopQ::hopQII is most 

likely influencing the CEACAM-binding to a higher degree than the CagA phosphorylation 

capability in in vitro infections. In contrast, the higher HopQI production in H. pylori strain 

P12ΔhopQ::hopQI matches the higher fold binding to CEACAMs in the bacterial pull-down assay 

(Figure 15 C) as well as the elevated CagA phosphorylation signal in in vitro infections (Figure 

20 B).  

In Belogolova et al., 2013, the P12ΔhopQ deletion mutant did not reveal a CagA phosphorylation 

signal in AGS cells. The results for the P12ΔhopQ strains complemented with hopQI and hopQII, 

respectively, were consistent with the findings in this work. Both complemented strains were 

capable to trigger a CagA phosphorylation signal in infected AGS cells 140. 

Experiments which address the question how the HopQ production in bacteria influences the 

phosphorylation signal of CagA in host cells have not been performed yet. The lack of HopQ 

synthesis might impair the translocation of the effector protein CagA into host cells, but it is also 

possible that the adhesin influences the processing of the effector molecule inside the host cells. 
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 4 Outlook 

This thesis concentrated on the H. pylori adhesin HopQ and the CEACAM protein family acting as 

receptor for H. pylori. The impact of this interaction on the CagA translocation in vitro suggested 

a major role for HopQ as bacterial virulence factor. In the bacterial pull-down assay, the 

interaction of H. pylori with CEACAM1 and CEACAM5, respectively, has been confirmed. 

Regarding CEACAM6, no interaction has been detected, but the results might be false negative 

due to a non-functional construct. It is necessary to reassess with another experimental model 

the interaction between H. pylori and CEACAM3 and CEACAM6. Furthermore, the N-terminal 

binding domain of these CEACAMs is closely related to the N-domain of CEACAM1 and CEACAM5 

and the CEACAM-binding bacteria N. gonorrhoeae and M. catarrhalis are already known to bind 

to the four CEACAM members. 

Since the CagA phosphorylation signal was found to be at least partly dependent on the HopQ 

binding in in vitro experiments of AGS cells, an interesting question to address is why there is a 

remaining CagA phosphorylation signal in the AGS cell infection with the P12 hopQ deletion 

mutant. To date, several proteins of the putative adhesin branch of the hop gene family have not 

been assigned a function yet. The remaining CagA phosphorylation signal observed in the AGS 

cell infection might result from the interaction of a second adhesin with a yet unknown cellular 

receptor. The identification of the origin of the remaining signal may also help to discover why 

HEK293/CEACAM5 cells show a complete HopQ dependency for CagA translocation in contrast 

to AGS cells. Furthermore, how the HopQ-binding exactly influences the phosphorylation of 

CagA, is not known yet. HopQ might impair the translocation of the effector protein CagA into 

cells, but the adhesin interaction might also influence the processing/phosphorylation of the 

effector molecule inside host cells. Besides the processing of CagA, questions concerning the 

impact of HopQ on the inflammatory response of the host cells have not been addressed yet. The 

adherence of HopQ to the host cells may also trigger changes in the bacterial signaling pathways. 

The influence of HopQ on other bacterial virulence factors besides CagA, e.g. VacA, has not been 

tested and might also represent an interesting topic. 

As identified in this work, HopQI and HopQII proteins behaved different. The CEACAM-binding 

capability was weaker for strains carrying the hopQII alleles and there were also differences 

regarding the reduced CagA phosphorylation signal in in vitro infection experiments. The hopQII 

gene is typically expressed in H. pylori type II strains which are reported as less pathogenic 

strains in in vivo studies. This gives rise to questions about the role of HopQ in vivo in general 

and about the effects the two allelic versions have in animal studies. The obtained data for 

strains PMSS1 and SS1 have already shown interesting details about the HopQ status. After the 

animal passage, a loss of HopQI production was registered in strain SS1 compared to the original 
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the non-mouse-passaged strain PMSS1. In contrast to that, HopQI producing strain B8 is 

colonizing in Mongolian gerbils with an acute pathology. Therefore, CEACAMs might contribute 

to the observed differences regarding the pathology and colonization in animals. At least the 

primordial members of the CEACAM receptor family are present in relatively simple species as 

well as in highly developed ones, such as mammals and, for this reason, most likely are also 

present in Mongolian gerbils. They execute main cellular functions like cell-cell-adhesion and are 

involved in signaling of the innate and adaptive immunity. Although H. pylori did not adhere to 

several orthologues of CEACAM1, it is not utterly impossible that H. pylori is able to cross species 

barriers by binding to CEACAMs found in other species. The N-terminal binding domain of 

CEACAMs is exposed to low selective pressure and, therefore, highly variable in aa sequence 

between the species, but a proof for the impotence in binding is still missing. 

Taken together, the results obtained so far from this study concerning the identification of HopQ 

as a novel bacterial adhesin and its interaction with CEACAM molecules have brought interesting 

new insights into H. pylori pathogenesis and might be the basis for a more precise understanding 

of the interplay between this pathogenic bacterium and its human host. 
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Material 

 1 Cell lines 

Cell line Properties Reference 

AGS human adenocarcinoma cell line, ATCC CRL-1739 Barranco et al., 1983 

HEK293 human embryonic kidney cell line, ATCC CRL-1573 Graham et al., 1977 

HEK293/CEACAM1 human CEACAM1 transfected HEK293 Nägele, Dissertation 

2010 

HEK293/CEACAM5 human CEACAM5 transfected HEK293 Nägele, Dissertation 

2010 

HeLa human cervix carcinoma cell line, ATCC CCL-2 Scherer et al., 1953 

Kato III human gastric carcinoma cell line, ATCC HTB-103 Sekiguchi et al., 1978 

MKN28 human adenocarcinoma cell line Motoyama et al., 1986 

MKN45 human adenocarcinoma cell line Motoyama et al., 1986 
 

Table 1: List of cell lines. 

 

 

 2 Bacterial strains 

 2.1 E. COLI 

Strain Description Reference 

DH5α F-Φ80d lacZ ΔM15 Δ(lacZYA-argF) U169 deoR recA1 endA1 

hsdR17 (rK-, mK+) phoA supE44 λ- thi-l gyr A96 relA1 (Invitrogen, 

Karlsruhe) 

Hanahan, 1983 

Top10 F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacO74 recA1 

araΔ139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG 

(Invitrogen, Karlsruhe) 

Grant et al., 1990 

 

Table 2: E. coli that were used in this work. 
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 2.2 H. PYLORI 

 

 

 2.3 OTHER BACTERIA 

Strain Properties Reference 

Moraxella catarrhalis ATCC 43617 CEACAM-binding negative Voges et al., 2010 

Moraxella catarrhalis ATCC 25238 CEACAM-binding positive Voges et al., 2010 

Neisseria gonorrhoeae N302 CEACAM-binding negative Kuespert et al., 2007 

Neisseria gonorrhoeae N309 MS11 strain constitutively producing 

Opa52, CEACAM-binding positive 

Kuespert et al., 2007 

 

Table 4: M. catarrhalis and N. gonorrhoeae. 

 

 

Strain Properties Reference 

P12 strep clinical isolate 888-0, streptomycin resistant Schmitt and Haas, 1994 

26695 wildtype strain Tomb et al., 1997 

B8 gerbil adapted  Farnbacher et al., 2010 

J99 strep streptomycin resistant wildtype strain R. A. Alm et al., 1999 

Tx30a ATCC 51932 Tummuru MK et al., 1993 

X47  mouse adapted H. Kleanthous et al., 2001 

SS1 murine passaged isolate of 10700 A. Lee et al., 1997 

PMSS1 clinical isolate 10700 A. Lee et al., 1997 

P8 strep clinical isolate 196A, streptomycin resistant Hofreuter et al., 1998 

ATCC 43526 wildtype strain Melchers K, et al., 1996 

VK H76 P12ΔcagI Fischer et al., 2001 

VK H77 P12ΔbabA this work 

VK H78 P12ΔbabB1+2 this work 

VK H86 P12ΔsabB1+2 this work 

VK H26 P12ΔhopZ this work 

VK H80 P12ΔhopQ this work 

SOP306 26695ΔhopQ Odenbreit et al., 2002 

VK H114 B8ΔhopQ this work 

VK H109 P12ΔhopQ::hopQI this work 

VK H90 P12ΔhopQ::hopQII this work 

H. mustelae Helicobacter species Solnick JV et al., 2001 

H. nemestrinae Helicobacter species Solnick JV et al., 2001 
 

Table 3: H. pylori strains that were used in this work. 
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 3 Plasmids 

Name Properties Reference 

pBluescript  II SK (+)  Agilent Technologies 

pUC19  Life Technologies 

pSR11 pBluescript II SK (+) + rpsL-erm-cassette lab collection,  

Stefanie Rohrer 

pVK1+rpsLerm pSR11 + flanking regions of hopZ (P12) this work 

pVK1-rpsLerm pBluescript II SK (+)+ flanking regions of hopZ 

(P12) 

this work 

pVK5+rpsLerm pSR11 + flanking regions of sabB1 (P12) this work 

pVK5-rpsLerm pBluescript II SK (+)+ flanking regions of 

sabB1 (P12) 

this work 

pVK6+rpsLerm pSR11 + flanking regions of sabB2 (P12) this work 

pVK6-rpsLerm pBluescript II SK (+)+ flanking regions of 

sabB2 (P12) 

this work 

pVK13+rpsLcat pUC19 + dif-rpsL-cat-dif-cassette + flanking 

regions of hopZ (P12) 

this work 

pIB6 E. coli - H. pylori pHel3 shuttle plasmid lab collection,  

Iris Barwig 

pCE39 pIB6 + hopQI (P12) lab collection,  

Claudia Ertl 

pCE42 pIB6 + hopQII (Tx30a) lab collection,  

Claudia Ertl 
 

Table 5: List of plasmids generated or used in this work 
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 4 Oligonucleotides and siRNA 

All oligonucleotides were ordered from the company biomers.net. The table lists all primers 

used in this work. Restriction sites are underlined and tags are in bold. 

 

Primer Sequence 5' → 3'  Comment 

VK1 GATCCTCGAGCCAGGCTTTTAGATAATTTG fwd hopZ (P12) upstream, XhoI 

VK2 GATCATCGATGTTAAAACCCTTTGTGAAAC rev hopZ (P12) upstream, ClaI 

VK3 GATCGCGGCCGCCTTTGAAATTAAATTGAGTG fwd hopZ (P12) downstream, NotI 

VK4 GATCCCGCGGGGCTTGAGTCTAGAAAAC rev hopZ (P12) downstream, SacII 

VK9 GATCCTCGAGTTTAGACAACAAGGAATTGG fwd sabB1 (P12) upstream, XhoI 

VK10 GATCATCGATTTGTAAACATGAATAGAAATG rev sabB1 (P12) upstream, ClaI 

VK11 GATCGCGGCCGCGCTTCATCAAATCTATTTTG fwd sabB1 (P12) downstream, NotI 

VK12 GATCCCGCGGAAGGTGGTCCATAATGAG rev sabB1 (P12) downstream, SacII 

VK13 GATCCTCGAGTATAGTATAGTAAAACATCG fwd sabB2 (P12) upstream, XhoI 

VK14 GATCATCGATGAGTGATTCAAGCTCTC rev sabB2 (P12) upstream, ClaI 

VK15 GATCGCGGCCGCTAACTATTTATCTTTAGAGTG fwd sabB2 (P12) downstream, NotI 

VK16 GATCCCGCGGCAAGAAATGTTGCAAAGTG rev sabB2 (P12) downstream, SacII 

VK23 GATCCTCGAGTTAACGGGCTTAAGAATTGG fwd babB2 (P12) upstream, XhoI 

VK24 GATCATCGATCTTAAATCCCTTTGTGGAAC rev babB2 (P12) upstream, ClaI 

VK25 GATCGCGGCCGCCCTTTTTGGATTAAATTAGG fwd babB2 (P12) downstream, NotI 

VK26 GATCCCGCGGTTGAAACTAAGGAGAATGC rev babB2 (P12) downstream, SacII 

VK32 GTAACATGGAAGACATGGATG fwd sabB1 (P12) flanking 

VK33 TTGTCAGCTACGCGTTCTTG fwd sabB2 (P12) flanking 

VK35 GATCTAACAAATCTTATTAGG fwd hopZ (P12) flanking 

VK36 AGTGGGCTATGAAATCATC rev hopZ (P12) flanking 

VK47 GGGTGCTTTTGCAACTCGC rev sabB1 (P12) flanking 

VK48 TTTTGCGAGCGTTTCGGCG rev sabB2 (P12) flanking 

VK57 GATAGTCGACAGGCGAGAATGGAAGTGATTAAG fwd hopQI (P12) upstream, SalI 

VK58 TGATTGAACGCGGATCCTTTAAGGTATAATGTT

TCCGCCAC 

rev hopQI (P12) upstream, BamHI 

VK59 TATACCTTAAAGGATCCGCGTTCAATCAAGCTT

GTAAGAG 

fwd hopQI (P12) downstream, 

BamHI 

VK60 GATCGAATTCTCCTTTAAGGGTGAGCTACATTG rev hopQI (P12) downstream, 

EcoRI 

VK63 TAATACGACTCACTATAGGG T7 forward primer 

VK64 TAGAAGGCACAGTCGAGG BGH poly A reverse primer 

VK69 GATCGAATTCAGACTACAATCAATTGCGGTG Sequencing hopQI (PMSS1), EcoRI 

VK70 GATCGGTACCCATGTATTGGGTTTTTTTGC fwd oipA (P12) upstream, KpnI 

VK71 GATCCCCGGGCATGCATCAAAACAATAAAAC rev oipA (P12) upstream, SmaI 

VK72 GATCGCGGCCGCCGCTCTTTGATTGCTTGTC fwd oipA (P12) downstream, NotI 

VK73 GATCCCGCGGAAGCGTTTGAGGTTAAATCG rev oipA (P12) downstream, SacII 

VK74 CTTCTTCTATAGGCACATTCG fwd oipA (P12) flanking 
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VK75 ATTTAGGCTCAAACACGGCG rev oipA (P12) flanking 

VK82 TTAAAACTAGCCAATCAAGTG Sequencing hopQ (PMSS1, SS1) 

CE61 CAATCAATTGCGGTGGGAG Sequencing hopQI (P12) allele 

CE62 ACTTTTTACAACCAGCCAG Sequencing hopQII (Tx30a) allele 

CE67 GATCGTCGACATGTACCCATACGATGTTCCAGA

TTACGCTATGAAAAAAACGAAAAAAAC 

fwd hopQI (P12) and II (Tx30a), 

SalI, HA-tag 

CE68 GATCGTCGACATGAAAAAAACGAAAAAAAC fwd hopQI (P12) and II (Tx30a), 

SalI 

CE69 GATCAGATCTTTTAATACGCGAACACATAA rev, hopQI (P12), BglII 

CE70 GATCAGATCTTTTAATAGGCAAACACATAA rev, hopQII (Tx30a), BglII 

CE82 TGGTGATAAAGGTCGTTAAACCCGC fwd hopQI (P12) flanking 

CE83 CGGCGATGGAACTAAACTCTAAGGC rev hopQI (P12) flanking 

LH3 GATCCTCGAGGTAGTTGGTTTAAGCGGTTG fwd babA upstream, XhoI 

LH4 GATCATCGATCTTAAATCCCTTTGTGGAAC rev babA upstream, ClaI 

LH5 GATCGCGGCCGCATTAGTATTAGGGATTTCAC fwd babA downstream, NotI 

LH6 GATCCCGCGGTATCGTTACAAGCGCATTTG rev babA downstream, SacII 

LH7 GATCCTCGAGATGCCGGCATTAGTAAAAAG fwd babB1 upstream, XhoI 

LH8 GATCATCGATCTTAAATCCCTTTGTGGAAC rev babB1 upstream, ClaI 

LH9 GATCCGCGGCCGCGAGAGAGTAAAAGGGTTTTC fwd babB1 downstream, NotI 

LH10 GATCCCGCGGCAAACGCTATGCAAGATGG rev babB1 downstream, SacII 

SR21 CCGGATCCGTGATGCGGTGCG RAPD PCR, D9355 

SR42 CAGCATCGATATGCTTTATAACTATGGATT fwd rpsLS-ermR -cassette, ClaI 

SR43 GCGGTACCTTACTTATTAAATAATTTATAG rev rpsLS-ermR-cassette, KpnI 

WS614 CAGGGTTATACGCCACGGCGATG rev hopQI (P12) flanking 
 

Table 6: List of oligonucleotides.  
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The siRNA was obtained from Qiagen and used in the final concentration of 10µM: 

 

siRNA Catalog number Target sequence 5' → 3' Gene 

Hs_CEACAM1_11 SI05459846 CTGCACAGTACTCCTGGCTTA CEACAM1, 5 and 6 

Allstars 

Hs Cell Death Control 

SI04381048 not specified plk (polo-like 

kinase) 

Allstars Negative 

Control 

SI03650318 not specified -- 

 

Table 7: List of siRNA. 

 

 

 5 Commercially available kits 

Name Description Supplier 

QIAprep Spin Miniprep Kit Isolation of plasmid DNA Qiagen 

QIAamp Tissue Kit 

Isolation of genomic DNA Qiagen 

illustra GFX PCR DNA and Gel 

Band Purification Kit 

Purification of DNA from agarose 

gels or PCR reactions 

GE Healthcare 

Wizard® Plus SV Minipreps DNA 

Purification System 

Isolation of plasmid DNA from H. 

pylori 

Promega 

 

Table 8: List of commercially available kits.  

 



Material 

87 

 6 Antibodies 

Name Description Supplier 

α-CagA (AK268)  polyclonal antibody against N-terminal part of CagA 

(H. pylori 185-44), rabbit 

W. Fischer 

α-GFP (JL-8)  living colors A.v. monoclonal antibody, clone JL-8, 

mouse 

Clontech 

α-HopQI  polyclonal peptide antibody 

(SKGEKLEAHVTTSKYQC) of H. pylori P12 

Genosphere Biotech, 

this work 

α-OipA (AK282)  polyclonal antibody, rabbit S. Odenbreit 

α-P-Tyr (4G10)  monoclonal antibody against tyrosine 

phosphorylation, clone 4G10, mouse 

Upstate Millipore 

α-RecA (AK263)  polyclonal antibody against RecA of H. pylori P1, 

rabbit 

Schmitt et al., 1995 

α-tubulin monoclonal, mouse Abcam 

pan-CEACAM monoclonal, clone D14HD11, recognizes CEACAM1, 3, 

4, 5 and 6, mouse 

Aldevron Freiburg 

α-CEACAM1 monoclonal, clone GM-8G5, mouse Aldevron Freiburg 

α-CEACAM5 monoclonal, clone 26/3/13, mouse Aldevron Freiburg 

α-CEACAM6 monoclonal, clone 9A6, mouse Aldevron Freiburg 

α-rabbit IgG-HRP horse radish peroxidase polyclonal antibody against 

rabbit IgG, goat 

Santa Cruz 

Protein A-AP alkaline phosphatase polyclonal antibody IgG Sigma-Aldrich 

Alexa Fluor®488 

goat α-mouse IgG 

monoclonal antibody, α-mouse, labelled with Alexa 

Fluor® 488 dye 

Life Technologies 

Alexa Fluor®488 

goat α-rabbit IgG 

monoclonal antibody, α-rabbit, labelled with Alexa 

Fluor® 488 dye 

Life Technologies 

Interleukin-8 - 

biotin- IL-8 (human) 

ELISA, mouse IgG2b, coating BD PharMingen 

Interleukin-8 - IL-8 

(human) 

ELISA, mouse IgG2b, detection antibody BD PharMingen 

 

Table 9: List of antibodies. 
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 7 Bacterial culture medium 

Name Composition Supplier 

LB liquid media 20 g/l Lennox-L-medium  Gibco/Invitrogen 

LB agar plates 32 g/l Lennox-L-Agar  Gibco/Invitrogen 

BB liquid media 28 g/l Brucella Broth  Falcon BD 

GC agar plates 36 g/l GC-Agar-Base Oxoid 

Serum plates GC agar base, supplemented with 8% horse 

serum, 5 µg/ml trimethoprim, 1% 

vitaminmix and 1 µg/ml nystatin after 

sterilization by autoclave 

 
 

Table 10: List of culture medium for bacterial growth. 

 

 

 8 Buffers and solutions 

Name Composition Application 

GEBS 20% (v/v) glycerol, 50 mM EDTA, 0.05% (w/v) 

Bromophenol blue, 0.5% (w/v) N-laurylsarcosyl 

Agarose gels 

TAE-buffer 40 mM Tris, 20 mM acetic acid, 1 mM EDTA Agarose gels 

SOC medium 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM 

KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose 

E. coli 

transformation, 

cloning 

Electroporation 

buffer 

272 mM sucrose, 15% (v/v) glycerol; 2.43 mM K2HPO4; 

0.57 mM KH2PO4 

Electroporation 

TfbI buffer 30 mM potassium acetate, 100 mM RbCl, 10 mM CaCl2, 

50 mM MnCl2, 15% (v/v) glycerol; pH 5.2 by titration 

with 0.2 M acetic acid; sterile filtrated and kept on ice 

Generation of 

competent cells 

TfbII buffer 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl; 15% (v/v) 

glycerol; pH 6.5 by titration with KOH; sterile filtrated 

and kept on ice 

Generation of 

competent cells 

Coating buffer 100 mM Na2HPO4 pH 9.6 IL-8 ELISA 

Washing buffer 0.05% (v/v) Tween-20 in PBS IL-8 ELISA 

Blocking buffer 10% FCS in PBS IL-8 ELISA 

PBS*  PBS, 1 mM EDTA, 1 mM sodium vanadate, 1 mM PMSF, 

1 μM leupeptin, 1 μM pepstatin 

In vitro infection 
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2xSDS loading 

buffer 

50 mM Tris/HCl, pH 6.8; 100 mM DTT; 2% (w/v) SDS; 

10% (w/v) glycerol; 5% (v/v) β-mercaptoethanol; 

0.1% (w/v) Bromophenol blue 

SDS PAGE 

Coomassie 

solution 

0.275% (w/v Coomassie Brilliant Blue R 250 in 50% 

methanol, 10% (v/v) acetic acid 

SDS PAGE 

Coomassie 

destaining 

10% (v/v) methanol, 10% (v/v) ethanol, 7.5% (v/v) 

acetic acid 

SDS PAGE 

Electrophoresis 

buffer 

250 mM glycine, 0.1% (w/v) SDS, 25 mM Tris/HCl pH 

8.3 

SDS PAGE 

2x single-gel 

system buffer 

152 mM Tris/HCl, 0.2 M serine, 0.2 M glycerol, 0.2 M 

asparagine, pH 7.4; sterile filtrated 

SDS PAGE 

Alkaline 

phosphatase 

development 

solution 

0.1 M Tris/HCl pH 9.6, 0.1 g/l NBT, 7 mM MgCl2, 50 

mg/l BCIP 

Western Blot 

Stripping solution 25 mM glycine-HCl, pH = 2, 1% (w/v) SDS Western Blot 

Western transfer 

buffer 

192 mM glycine, 25 mM Tris, 20% (v/v) methanol, 

0.1% (w/v) SDS, pH = 8.3 

Western Blot 

Blocking solution 3% (w/v) BSA in TBS Western Blot 

Washing buffer 

TBST 

0.075% (v/v) Tween-20 in TBS Western Blot 

Vitamin mix 100 g⁄l d-glucose, 10 g⁄l l-glutamine, 26 g⁄l l-cystein, 

0.1 g⁄l cocarboxylase, 20 g⁄l FE(III) nitrate, 3 g⁄l 

thiamin, 13 mg⁄l p-aminobenzoic acid, 250 mg⁄l 

nicotinamide-adenine dinucleotide, 10 mg⁄l guanine, 

0.15 g⁄l l-arginine, 0.5% uracil 

agar plates  

(H. pylori) 

PBS+ 0.9 mM CaCl2, 0.5 mM MgCl2 in PBS Bacterial pull-

down Assay 

FACS buffer 2% FCS in PBS Bacterial pull-

down assay,  

Cell staining 
 

Table 11: List of buffers and solutions. 
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 9 Chemicals and enzymes  

All chemicals were ordered in the purity level pro analysis mainly from the companies Merck, 

Roth and Sigma-Aldrich. Restriction enzymes were obtained from Roche and Fisher Scientific. 

The supplying company of any other used enzymes and chemicals is mentioned directly in the 

text at the appropriate passage.  

 

 

 10Consumables 

Adhesive Plate Seals (ABgene), cover slips (Menzel), cryogenic vials (Nalgene), Omnifix® 

syringes 5 ml and 50 ml (Braun), electroporation cuvettes (Peqlab), Eppendorf reaction cups 1.5 

ml and 2ml (Eppendorf), x-ray film cassettes (Kodak), Falcon vials 15ml and 50ml (Falcon), 

Whatman paper (Whatman), Gas permeable adhesive seals (ABgene), Spectrophotometry 

cuvettes (Brand), pipettes and tips (Gilson), Petri dishes (Greiner), PVDF membrane (Bio-Rad), 

Nitrocellulose membrane filter (Millipore), slide (Langenbrinck), x-ray films Super RX (Fuji 

Film), Quick-Seal™ vials (Beckmann Coulter Inc.), cell culture flasks (Falcon), 0,2 μm syringe 

filter (Josef Peske GmbH), Nunc cell culture flasks (Thermo scientific) cell scraper (Falcon), 6, 12, 

24, 48 and 96-well plates (Thermo scientific), Nunc™ 96-Well Polystyrene Round Bottom 

Microwell Plates (Thermo scientific) 

 

 

 11Equipment and devices 

Agarose gel chambers Wide Mini-Sub® cell (Bio-Rad), anaerobic jars (Fritz Gössner GmbH) 

Anaerobic bacteria microincubator MI22C (Scholzen), incubator FED (Binder), Flow Cytometer 

Canto II (BD), Gene Pulser Xcell™ Electroporation System (Bio-Rad), -80°C freezer (Heraeus), Gel 

Doc 2000 System Quantity One 4.4.0 (Bio-Rad), Electrophoresis system Mini-Protean III™ (Bio-

Rad), heat block (Techne), fridge (Liebherr), magnetic stirrer with heating system MR 3001 

(Heidolph), microwave (AEG), pH meter ProfiLine pH 197i (WTW), photometer Libra S12 

(Biochrom), rotating mixers (Assistent), shaker (Eppendorf), power supply Power Pac 300 (Bio-

Rad), working bench (BDK Luft-und Reinraumtechnik GmbH,), thermocycler Microcycler 

Personal (Perkin Elmer), ultrasound device Sonifier II 450 (G. Heinemann), table centrifuges 
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(Megafuge 1.0R, Biofuge 15R, Biofuge 15) (Heraeus), Vortex Gene 2 (Scientific Industries), scales 

(Biotech Fischer), water bath 1012 (GFL), semi-dry western blotting system (Biotech Fischer), 

centrifuge RC5C Plus (Sorvall), cycler peqSTAR 96 universal gradient (Isogen Life Science) 
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Methods 

 1 Working with eukaryotic cells 

 1.1 MAINTENANCE OF CELL LINES 

Eucaryotic cell lines were grown at 37°C, 5% CO2 and subcultured every three to four days. AGS 

and HeLa cells were grown in RPMI/10% FCS, MKN45 cells in RPMI/20% FCS and Kato III cells 

in DMEM/20% FCS. For MKN28 RPMI medium was supplemented with 10% FCS, 10mM Hepes, 

1 mM sodium pyruvate and 0.1 mM nonessential aa. HEK293 cells were cultured in DMEM/15% 

FCS and supplemented with 1 mg/ml G418, when they were transfected with CEACAM 

constructs. 

 

 

 1.2 CRYOCONSERVATION 

1·106 cells were detached from the cell culture flask by incubating with 2 mM EDTA/PBS for 10 

min and resuspended in medium/10% FCS. After centrifugation at 900 g for 5 min, the 

supernatant was discarded and the cells were dissolved in 1 ml FCS/10% DMSO, transferred 

into a cryogenic vial and stored in liquid nitrogen. 

 

 

 1.3 CELL STAINING 

All centrifugation steps were carried out at 4°C and 900 g for 5 min.  

Adherent cells were first detached from the cell culture flasks by adding 2 mM EDTA/PBS for 15 

min at 37°C, resuspended in PBS/10% FCS and seeded in 96-well plates. Suspension cell lines 

were centrifuged at 900 g for 5 min, resuspended in PBS and then seeded in 96-well plates.  

Cells were washed three times with ice cold PBS and then incubated with primary antibody for 1 

hour at 4°C. After three further washing steps with ice cold PBS, cells were incubated with the 

secondary antibody Alexa Fluor®488 goat α-mouse IgG for 1 hour at 4°C. The cells were washed 

again and resuspended in PBS/2% FCS and analyzed by flow cytometry.  

The obtained MFI values were normalized against the negative control that was a sample of cells 

only incubated with the secondary antibody and set to the value of 1. The fold production level 
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was determined by comparing the MFI values of each sample to the MFI value of the negative 

control. 

 

 

 1.4 KNOCKDOWN BY RNA INTERFERENCE  

AGS cells were transfected in 12-well plates with a final siRNA concentration of 10 µM. 

Lipofectamine RNAiMAX (Invitrogen) was used as transfection reagent according to the 

manufacturer’s recommendations. The siRNA effect on synthesis of CEACAM1, 5 and 6 was 

evaluated after 48 hours against AGS control cells by flow cytometry analysis. 
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 2 Working with bacteria 

 2.1 CULTIVATION OF BACTERIA 

2.1.1 E. COLI  

E. coli were cultured on LB0-agar plates or in LB liquid media under aerobic conditions at 37°C. 

For the selection of positively transformed bacteria, LB plates were supplemented with 

ampicillin (100 µg/ml), chloramphenicol (30 µg/ml), kanamycin (50 µg/ml), erythromycin (250 

µg/ml) or streptomycin (250 µg/ml). 

For cryoconservation, bacteria were resuspended in 1 ml of LB medium/20% glycerol in 

cryogenic vials and stored at -80°C. 

 

 

2.1.2 H. PYLORI  

H. pylori strains were grown at 37% under microaerophilic conditions on GC agar plates 

supplemented with horse serum (8%), trimethoprim (5 µg/ml), vitaminmix (1%) and nystatin 

(1 µg/ml) (serum plates). Chloramphenicol (6 µg/ml), kanamycin (8 µg/ml), erythromycin (10 

µg/ml) or streptomycin (250 µg/ml) was added to select for transformants or screen colonies 

for resistance to either drug. Plates were incubated for 24 h under microaerobic conditions 

(85% N2, 10% CO2, 5% O2) at 37°C.  

Bacteria were passaged 2 to 3 times before the first experiments were performed.  

For cryoconservation, bacteria were resuspended in 1 ml of Brucella Broth (BB) medium 

supplemented with 20% glycerol and 10% FCS in cryogenic vials and stored at -80°C. 

 

 

2.1.3 OTHER BACTERIA  

M. catarrhalis strains ATCC 43617 and ATCC 25238 were incubated at 37°C for 24 h using 

Columbia blood agar plates.  

N. gonorrhoeae strains N302 and N309 were cultured at 37°C and 10% CO2 on GC plates 

supplemented with horse serum (8%), and vitamin mix (1%).  

Bacteria were passaged 2 to 3 times before the first experiments were performed.  

For cryoconservation, bacteria were resuspended in 1 ml of LB medium/20% glycerol in 

cryogenic vials and stored at -80°C. 
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 2.2 GENERATION OF CHEMICALLY COMPETENT E. COLI (TOP 10) 

A frozen stock of chemically competent Top 10 cells was used for over night inoculation of a 10 

ml LB-liquid culture at 26°C and 180 rpm. At an OD550 of 0.6, the cells were transferred into a 

200 ml liquid culture and incubated at 37°C, until they reached the optimal OD550 of 0.56. In the 

meantime, the buffers TfbI and TfbII were freshly prepared and kept cold. The lids of 1.5 ml 

tubes were closed in advance and the tubes prefrozen at -20°C. 

When the OD550 was reached, the culture was chilled down for 5 min on ice and centrifuged at 

3000 rpm for 15 min at 4°C. The supernatant was discarded and the cells were carefully 

resuspended in 80 ml of TfbI buffer. Cells were again incubated for 5 min on ice, centrifuged at 

3000 rpm for 15 min at 4°C and resuspended in 8 ml of TfbII buffer. Immediately after, aliquots 

of 50 µl were filled into the cold 1.5 ml tubes and shock-frozen with liquid nitrogen. 

 

 

 2.3 GENERATION OF H. PYLORI KNOCKOUT MUTANTS 

For the generation of markerfree outer membrane protein mutants in H. pylori, the method of 

contra-selectable streptomycin susceptibility was used 135. For this, a streptomycin resistant 

strain (rpsLR) as starting point was essential. If the wildtype strain was not streptomycin 

resistant from the beginning, the strain was made by transformation with the plasmid pEG21.  

About 1000 bp of the up and downstream regions of the gene to be deleted were cloned in a 

pBluescript II SK (+) vector with a resistance cassette, referred to as rpsLS-ermR-cassette 

(Deletion plasmid A) and a pBluescript II SK (+) vector without the resistance cassette, 

respectively (Deletion plasmid B). Primers used for the amplification of the up and downstream 

regions of the distinct outer membrane proteins are listed in Table 6. 

In the first step, the generated deletion plasmid A with the rpsLS-ermR-cassette was used for 

transformation of the streptomycin resistant wildtype strain. By homologous recombination of 

the adjacent gene regions, the resistance marker replaced the gene to be deleted and the distinct 

omp mutant was now erythromycin resistant and streptomycin sensitive.  

In the second step, the resistance cassette was completely removed by transformation with the 

deletion plasmid B resulting in a markerfree mutant strain that was resistant for streptomycin 

again. 
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 2.4 TRANSFORMATION OF H. PYLORI 

Bacteria of an over night culture were solved in 1 ml PBS and the OD550 was measured. 6·107 

bacteria (OD550 = 0.2) were centrifuged for 5 min at 4000 rpm and the supernatant was 

discarded. The bacteria were resuspended in 1 ml BB/10% FCS and incubated for 1 or 2 hours at 

37°C, 10% CO2. Next, 500 to 1000 ng plasmid DNA (isolated from E. coli) or half the amount for 

DNA isolated from H. pylori was added to the transformation. The DNA-bacteria mixture was 

then incubated for further 4 to 6 hours at 37°C, until it was centrifuged for 5 min at 4000 rpm, 

resuspended in 100 µl BB medium and plated onto a selective agar plate. After incubation for 3 

to 4 days under micro aerobic conditions at 37°C, the transformation was screened for positive 

colonies. 

 

 

 2.5 ELECTROPORATION OF H. PYLORI 

Bacteria of an over night culture were dissolved in 1 ml PBS and the OD550 was measured. 3·108 

bacteria (OD550 = 1) were centrifuged for 5 min at 4000 rpm and the supernatant was discarded. 

All steps from here on were carried out at 4°C or on ice and all reagents were kept cool. The 

bacteria were resuspended in 500 µl ice cold electroporation buffer and centrifuged for 5 min at 

4000 rpm. This step was repeated twice. The bacteria were then solved in 55 µl of 

electroporation buffer and 200 to 500 ng plasmid DNA (isolated from E. coli) was added to the 

mix. If the plasmid was isolated from H. pylori or genomic DNA was used, less amounts of DNA 

were sufficient for an efficient electroporation. The DNA-bacteria mixture was then transferred 

to a precooled electroporation cuvette (Peqlab) and the electroporation was performed at 2.5 

kV, 200 Ω, 25 µF. Immediately after the pulse, 1 ml BB/10%FCS was added to the cuvette. After 

passaging the mixture carefully back and forth between the cuvette and a 1.5 ml reaction cup, 

the mixture was transferred to a 24-well plate and incubated over night at 37°C, 10% CO2. The 

next day, the mixture was transferred into a 1.5 ml reaction cup and centrifuged for 5 min at 

4000 rpm. The pellet was solved in 100 µl BB medium and plated onto a selective agar plate. 

After incubation for 3 to 4 days under micro aerobic conditions at 37°C, the electroporation was 

screened for positive colonies. 
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 2.6 BACTERIAL PULL-DOWN ASSAY 

The bacterial pull-down was performed as described before (4). Bacteria of an overnight culture 

were resuspended in 1 ml PBS and the OD550 was measured. 4·106 bacteria, as calculated by 

the OD550 measurement, were incubated with cell culture supernatants containing CEACAM-N-

GFP. After an incubation time of 30 min at room temperature with head-over-head rotation, the 

bacteria were washed twice with PBS containing 0.9 mM CaCl2 and 0.5 mM MgCl2 and 

resuspended in SDS loading buffer. After heat denaturation the samples were analyzed by 

western blotting. Alternatively, bacteria were resuspended in PBS/2% FCS and analyzed by flow 

cytometry (FACS Canto II, BD Biosciences). 

The obtained MFI values were normalized against the negative control that was a sample of 

bacteria alone set to the value of 1. The fold binding was determined by comparing the MFI 

values of each sample to the MFI value of the mock control. 

 

 

 2.7 IN VITRO INFECTION EXPERIMENTS WITH H. PYLORI 

The day before infection, eukaryotic cell lines were seeded in 6-well plates so they would reach a 

confluency of 80 to 90% the next day and serum-starved over night using cell culture medium 

without FCS. Two hours prior to infection, the medium was changed to 1 ml PBS/10% FCS per 6-

well. 

Bacteria of an overnight culture were resuspended in 1 ml PBS and the OD550 was measured. In 

all experiments, a MOI (multiplicity of infection) of 60 was used and the infection was stopped 

after 4 hours on ice. The supernatant was stored at -20°C and analyzed later for production of 

IL-8. Cells were harvested in ice cold PBS containing 1 mM sodium vanadate, 1 μM leupeptin, 1 

μM pepstatin and 1 mM PMSF (PBS*) and resuspended in 2xSDS loading buffer. Equal amounts 

of samples were loaded on a gel and analyzed by western blotting. 

Tubulin was used as control that equal amounts of cells were analyzed during the infection with 

H. pylori. AK268 was directed against the N-terminal part of CagA and stained bacterial CagA. 

Antibody 4G10 showed the level of CagA phosphorylation e.g. the amount of CagA translocated 

into the host cells and tyrosine phosphorylated by cellular kinases.  
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 3 DNA methods 

 3.1 ISOLATION OF DNA 

3.1.1  PLASMIDS 

For the screening of positive clones, plasmid DNA from an overnight culture of E. coli was 

isolated using the QIAprep Spin Miniprep Kit (Qiagen) and finally eluted in 25 µl of TE-buffer. 

Plasmid DNA from H. pylori was gained by using the WizardTM Plus SV Miniprep Kit (Promega) 

according to the manufacturer’s recommendations and eluted in 20 µl of DNase free water. 

Plasmid DNA was stored at -20°C. 

 

 

3.1.2  GENOMIC DNA 

Genomic DNA of H. pylori was isolated from bacterial overnight cultures. About ¼ of an agar 

plate was resuspended in PBS and centrifuged for 5 min at 6000 g. After discarding the 

supernatant, the DNA was isolated by following the instructions of the QIAamp Tissue Kit 

(Qiagen), eluted in 100 µl of AE-buffer and stored at -20°C. 

 

 

 3.2 DNA CONCENTRATION AND QUALITY 

The concentration of plasmid and genomic DNA was evaluated by using a Nanodrop (Peqlab). 

1 µl of DNA was pipetted on the petals of the machine. The software measured the OD at 230, 

260 and 280nm and helped to determine protein and salt contaminations. 

A DNA sample of 200 µg was loaded on a 1% (w/v) agarose gel and run for 30 min at 110 V in 

TAE-buffer to test for DNA degradation. GeneRulerTM 1 kb DNA Ladder (Fermentas) was loaded 

on the gel to estimate the fragment size of the DNA. 

The gel was incubated for 15 min in a bath with ethidium bromide (1mg/l) and analyzed under 

UV light at 260 nm (Molecular Imager Gel Doc XR System, Bio-Rad). 
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 3.3 DNA EXTRACTION FROM AGAROSE GELS AND ENZYMATIC REACTIONS 

DNA of the correct size was cut out from agarose gels under UV light and incubated at 60°C. The 

dissolved DNA of agarose gels was then extracted the same way as DNA from enzymatic 

reactions with the illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) following 

the manufacturer’s instructions. The DNA was eluted in 12 to 15 µl of Elution buffer type 4 (10 

mM Tris-HCI, pH 8.0) and stored at -20°C. 

 

 

 3.4 AMPLIFICATION OF DNA FRAGMENTS 

The method of polymerase chain reaction (PCR) was used to amplify DNA fragments from 

template DNA. For this, specific oligonucleotides were designed that bound to short 

complementary sequences on the plus and minus strand of the template DNA, respectively. By 

repeating the three steps of PCR, - DNA double strand denaturation, oligonucleotide annealing to 

the two single DNA strands and elongation of oligonucleotides -, in each cycle two new double 

strands of DNA were produced.  

 

 

3.4.1 PCR  UNDER STANDARD CONDITIONS 

All PCR reactions were performed in the cycler peqSTAR 96 universal gradient (Isogen Life 

Science). Either plasmid DNA (100-250 ng) or genomic DNA (1-10 ng) was used as template 

DNA for the reaction mixture. 

The Taq Polymerase from PAN Biotech GmbH was used for analytical purposes only. The 

polymerase had a 5’-3’ exonuclease activity. The protocol for a standard 25 µl reaction mix is 

shown in Table 12. 
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Volume Reagents 

2.5 µl 10x PCR buffer without MgCl2 

2.5 µl 10 mM dNTP mix 

1.5 µl 50 mM MgCl2 

1 µl 10 μM forward oligonucleotide 

1 µl 10 μM reverse oligonucleotide 

0.1 µl Taq Polymerase PAN 

ad 25 µl H20 bidest/DNA template 
 

Table 12: Standard reaction conditions Taq polymerase (PAN Biotech GmbH). 

 

 

The Ex Taq DNA Polymerase from TaKaRa was applied to reactions, if the DNA fragments were 

later used in cloning experiments or for sequencing. The Ex Taq DNA Polymerase has a 3’-5’ 

exonuclease activity that reduces the amount of wrongly inserted bases in the newly synthesized 

DNA fragment. The polymerase is suitable for DNA amplifications of sizes up to 20 kbp. The 

protocol for a 50 µl reaction mix is shown in Table 13. 

 

 

Volume Reagents 

5 µl 10X Ex Taq Buffer 

4 µl 2.5 mM dNTP mix 

4 µl 25 mM MgCl2 

1 µl 10 μM forward oligonucleotide 

1 µl 10 μM reverse oligonucleotide 

0.1 µl Ex Taq DNA Polymerase 

ad 50 µl H20 bidest/DNA template 
 

Table 13: Standard reaction conditions Ex Taq DNA polymerase (TaKaRa). 

 

 

The standard PCR program used for either Ex Taq DNA polymerase (TaKaRa) or Taq polymerase 

(PAN Biotech GmbH) is shown in Table 14. The annealing temperature for the oligonucleotides 

was calculated by the software DNAman (Version 6). The elongation time for each PCR reaction 

was modified in regard to the length of the DNA fragment to be amplified. For every 1000 bp 

DNA fragment one minute elongation time was used. The result of the PCR was analyzed by 

agarose gel electrophoresis. 
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PCR steps Temperature Time Repeats 

First denaturation 94°C 4 min  

Denaturation  94°C 30 s  

30x Annealing 48 – 65°C 45 s 

Elongation TaKaRa 68°C 

PAN 72°C 

1 min/1000 bp 

Endelongation TaKaRa 68°C 

PAN 72°C 

10 min  

 16°C ∞  
 

Table 14: Standard PCR program used for the DNA polymerases (TaKaRa/PAN). 

 

 

3.4.2 COLONY PCR  (SAMBROOK ET AL ,  1989) 

For the screening of E. coli clones after transformation, a colony PCR was performed. That 

method gave rapid information about clones that had the correct insert or plasmid. 

The Taq Polymerase (PAN Biotech GmbH) was used by default.  

Clones on selective agar plates were picked with a tip and transferred to another selective plate. 

The same tip was further transferred into a labelled PCR reaction cup filled with 17 µl H20 

bidest. After incubation of about 10 min, the tip was discarded and the water-clone-solution 

filled with the PAN PCR reagents. The standard PCR program for the PAN Taq polymerase was 

run. The result of the PCR was analyzed by agarose gel electrophoresis. 

 

 

3.4.3 RAPD  PCR 

RAPD (randomly amplified polymorphic DNA) is a method for DNA fingerprinting. Genomic DNA 

can be assigned to strains of H. pylori regarding to a distinct band pattern that is produced by 

RAPD PCR and looks repeatedly the same for the same template DNA. The different DNA band 

patterns could be compared and identical patterns were used to ascertain the belonging to a 

specific strain. The conditions of the PCR varied from the standard conditions. Instead of two 

specific oligonucleotides, only one primer was added to the PCR mix (D9355). The amounts of 

genomic DNA, salt, dNTPs, oligonucleotide and polymerase were higher compared to the amount 

of a standard PCR mix (Table 15). 
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Volume Reagents 

2.5 µl 10X Ex Taq Buffer 

3 µl 2.5 mM dNTP mix 

3 µl 25 mM MgCl2 

1 µl 30 μM D9355 

0.25 µl Ex Taq DNA Polymerase 

 50 – 100 ng gDNA 

ad 25 µl H20 bidest 
 

Table 15: Standard reaction conditions RAPD PCR 

 

 

The PCR program was also different to the standard program. The annealing temperature was 

set to only 40°C in the first PCR cycles to allow the primer annealing to only partial 

complementary sequences. The DNA fragments generated by the oligonucleotide in the first 

cycles with low rigor were then amplified at a higher annealing temperature (Table 16). The 

result of the PCR was analyzed on a 2% agarose gel by agarose gel electrophoresis. 

 

 

PCR steps Temperature Time Repeats 

Denaturation 94°C 5 min  

4x Annealing 40°C 5 min 

Elongation 72°C 5 min 

Denaturation 94°C 1 min  

30x Annealing 55°C 1 min 

Elongation 72°C 2 min 

Endelongation 72°C 10 min  

 16°C ∞  
 

Table 16: RAPD PCR program 
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 3.5 CLONING 

3.5.1 RESTRICTION OF DNA 

All restriction enzymes were obtained from Roche or Thermo Fisher Scientific and used in 

analytical and preparative digestions as recommended by the manufacturer.  

For analytical purposes, 100 to 300 ng plasmid DNA was digested by restriction endonucleases 

and incubated 1 to 2 hours, before the digestion with one or more enzymes was analyzed by 

agarose gel electrophoresis.  

Preparative restrictions of plasmids were used for cloning experiments. About 700 to 800 ng 

plasmid DNA was digested and incubated for 3 to 4 hours or over night. The digestion was then 

purified using the illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) as 

described before (3.3).  

If the buffers of two restriction endonucleases recommended by the manufacturer were not 

compatible, the restriction was done sequentially with a purification step in between the two 

reactions to make sure that both enzymes had a high activity and the DNA was digested 

properly. In this case, the loss of DNA during the purification step was compensated by using 

more plasmid DNA. 

The amount of DNA after digestion was measurement by Nanodrop calculation (Peqlab). 

To inactivate the restriction enzymes before ligation, the finished digestion mix was incubated 

for 20 min at 65°C. 

 

 

3.5.2 LIGATION 

The optimal amount of insert compared to vector is crucial for an efficient ligation. At best, the 

molar ratio between vector and insert DNA should be 1 to 5. Best results were achieved by using 

25 ng of vector DNA and 5 times the amount of insert DNA. Since the molar ratio is important, 

the amount of insert DNA was calculated by the following formula: 

 

 

 

Since the concentration of both insert and vector DNA were calculated after digestion by 

Nanodrop measurement, the needed volumes for the ligation reaction could be easily 

determined.  
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For sticky ends ligations, 1 µl 10x ligation buffer and 1 µl T4 DNA Ligase (Roche) was added to 

the insert and vector DNA-mix and incubated for 1 hour at 26°C. For difficult and blunt end 

ligations, more ligase (1 – 5 U) was added to the reaction mix and ligation was usually 

performed overnight in an ice bath. Also PEG (polyethylene glycol) was added to the blunt end 

mix according to the manufacturer’s recommendations to increase the likelihood of the 

compatible ends being ligated. 

 

 

3.5.3 TRANSFORMATION OF CHEMICALLY COMPETENT E. COLI  

5 to 10 µl of the ligation mix was used for the transformation of chemically competent E. coli Top 

10. 50 µl of bacteria were thawed on ice for 30 min, before the ligation mix was added to the 

bacteria. After 20 min incubation on ice, a heat shock was performed at 42°C for 45 s in a 

waterbath. The Top 10 were immediately after the heat shock put back on ice. After a few 

minutes incubation on ice, 500 to 1000 µl of SOC-medium were added to the transformation and 

the mix was shaken with 180 rpm for 1 to 2 hours at 37°C.  

 

 

 3.6 SEQUENCING 

Sequencing was done by the company GATC Biotech AG (Kempten, Germany). Samples were 

prepared according to the company’s instructions and the readout was evaluated by using the 

software CLC DNA Workbench version 6.0.2. 
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 4 Protein methods 

 4.1 BACTERIAL LYSATES 

Bacteria of an over night culture were solved in 1ml PBS and the OD550 was measured. For an 

OD550 of 0.1, the bacteria were centrifuged at 6000 g for 5 min and resuspended in 10 µl of PBS 

and 10µl of 2x SDS Loading Dye. The bacteria were then boiled for 10 min at 98°C to denaturate 

proteins by heat. For bacterial lysates 4 to 5 µl were used to load on gels.  

 

 

 4.2 SDS PAGE 

Polyacrylamide gel electrophoresis separates proteins in an electrical field according to their 

molecular weight by sodium dodecylsulfat (SDS) which linearizes proteins and gives the 

proteins a negative charge. The negatively charged proteins can now migrate with different 

speed through the electrical field only depending on their molecular weight. The higher the 

molecular weight, the slower proteins migrate. Gels in this work were prepared using the single 

gel system where only one polyacrylamide gel without stacking layer is used. This method gives 

a resolution of proteins comparable to the conventional two-gel Laemmli’s standard method, but 

only one gel is used with a rapidly occurring polymerization 160. 6 to 8% gels were used for this 

work and had the standard thickness of 0.75 mm. For electrophoresis, the mini protean system 

III ™ from Bio-Rad was used. Lysates were loaded onto a gel together with 4 µl of PageRuler 

Prestained Protein Ladder (Thermo Scientific) and run at 80 V for 30 to 120 min depending on 

the molecular weight of the proteins to be analyzed. The gel was further used for blotting or 

coomassie staining. 

 

 

 4.3 COOMASSIE STAINING 

By staining the single gel with coomassie, the by SDS PAGE separated proteins in the samples are 

made visible. The gels were stained for 20 min with coomassie staining solution and afterwards 

destained until the protein bands could easily be detected. 
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 4.4 WESTERN BLOTTING 

After SDS PAGE, the separated proteins are transferred from the gel onto the carrier structure, a 

PVDF membrane. An electrical field runs rectangular to the gel and the negatively charged 

proteins are migrating through the field to the membrane. The pattern of separated proteins 

stays the same by the transfer. When the proteins reach the surface of the PVDF membrane, it 

comes to hydrophobic and polar interactions which bind the proteins to the membrane. 

The set-up of the blot was as follows: two thick and two thin layers of Whatman gel blot paper 

were soaked in western transfer buffer and put on the cathode half of the blotting apparatus. 

The PVDF membrane was first activated in methanol, then put in western transfer buffer and 

positioned on top of the Whatman gel blot papers. Next, the gel was put onto the membrane. 

Last, two thin and two thick layers of Whatman gel blot papers were put on top of the gel and the 

anode half of the blotting apparatus was set onto the whole blot. The blotting was performed for 

75 min at the current density of 0.8 mA/cm2. 

 

 

 4.5 DETECTION OF PROTEINS 

After blotting, the membrane was dried for 20 min at 37°C and then reactivated in methanol. To 

exclude nonspecific antibody binding, the PVDF membrane was blocked for 2 h in 5 ml TBS/3% 

BSA at room temperature. 

The primary antibodies were diluted from 1:1 000 to 1:10 000 in TBS/3%BSA according to the 

specific antibody information and incubated for 1 h at room temperature. The blot was washed 

afterwards 3 times with 10 ml TBST and then incubated with the secondary antibody (1:2 500 to 

1:10 000) for 1 h at room temperature. After 3 further washing steps with 10 ml TBST, the blot 

was developed either colorimetric or by using chemiluminescence. In the colorimetric 

development, alkaline phosphatase (AP) catalyzes the generation of a colored product of 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and nitroblue tetrazolium (NBT) that doesn’t fade 

on the blot. 5 ml of a colorimetric developing solution were applied to the blot and incubated till 

the bands were seen properly on the blot. The reaction was stopped with H2O bidest. More 

sensitive was the chemiluminescence development with horse radish peroxidase (HRP). Light 

emission is generated as a by-product of the activity of the HRP and can be detected as dark 

bands on x-ray films. For this, the Immobilon Western HRP Substrate (Merck Millipore) was 

used. 1 ml of the luminol reagent and 1 ml peroxide solution were pipetted together, incubated 

for 5 min on the blot and the chemiluminescence was detected using x-ray films. 
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 4.6 PVDF MEMBRANE STRIPPING 

The PVDF membrane was stripped of all former used antibodies, but not the separated proteins, 

to use further antibodies on the same blot. The membrane was first washed with 5 ml H2O 

bidest, then with 5 ml stripping solution for 40 min. After another washing step with 5 ml H2O 

bidest, the blot was blocked again as described in 4.5. 
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Appendix 

 1 Supplementary data 

 1.1 STRAIN PMSS1 

1.1.1 SEQUENCING OF THE SABA  AND  SABB  LOCUS  (HOPQI  GENE) 

ATGAAAAAACGATTTTTACTTTCTCTATCCCTTGCATCGTCATTACTTTATGCTGAAGACAACGGCTTT

TTTGTGAGCGCGGGCTATCAAATCGGCGAAGCGGTGCAAAAAGTGAAAAACGCCGACAAGGTGCAAAA

ACTTTCAGACGCTTATGAACAATTAAGCCGGCTTTTAACTAACGATAGTGGCACAAACTCAAAGACAA

GCGCACAAGCGATCAACCAAGCGGTTAATAATTTGAACGAACGCACAAAAACTTTAGCCGGTGGGACA

ACCAATTCCCCTGCCTATCAAGCCACGCTTTTAGCGTTGAGATCGGTGTTAGGGCTATGGAATAGCATG

GGTTATGCAGTCATATGCGGAGGTTATACCAAAAGTCCAGGCGAAAACAATCAAAAAAATTTCCACTA

CACCGATGAGAATGGCAACGGCACTACAATCAATTGCGGTGGGAGCACAAATAGTAATGGCACTCATA

GTTCTAGTGGCACAAATACATTAAAAGCAGACAAAAATGTTTCTCTATCTATTGACCAATACGAAGCC

ATCCATGAAGCCTATCAAATCCTTTCAAAAGCTTTAAAACAAGCCGGGCTTGCTCCTTTAAATAGCAA

AGGGGAAAAATTAGAAGCGCATGTAACCACATCAAAGTATCAATCAGATAATCAAACTAAAACGACAA

CTTCTGTTATTGATACGACTAATGATGCGCAAAATCTTTTGACTCAAGCGCAAACGATTGTCAATACC

CTTAAAGATTATTGCCCCATGTTGATAGCGAAATCTAGTAGTGGAAGTAGTGGCGGAGCTGCTACAAA

CACCCCTTCATGGCAAACAGCCGGTGGCGGCAAGAATTCATGCGCGACTTTTGGTGCGGAGTTTAGTGC

CGCTTCAGACATGATTAATAATGCGCAAAAAATCGTTCAAGAAACCCAACAACTCAGCGCCAACCAAC

CAAAAAATATCACACAACCCCATAATCTCAACCTTAACACCCCTAGCAGTCTTACGGCTTTAGCTCAAA

AAATGCTCAAAAACGCGCAATCTCAAGCAGAAATTTTAAAACTAGCCAATCAAGTGGAGAGCGATTTT

AACAAACTTTCTTCAGGCCATCTTAAAGACTACATAGGGAAATGCGATGCGAGCGCTATAAGCAGCGC

GAATATGACAATGCAAAATCAAAAGAACAATTGGGGGAATGGGTGTGCTAGCGTGGAAGAAACTCAG

TCTTTGTTAAAAACAAGCGCCGCTGATTTTAACAACCAAACGCCTCAAATCAATCAAGCGCAAAACCT

AGCCAACACCCTTATTCAAGAACTTGGCAACAACCCTTTTAGGAATATGGGCATGATCGCTTCTTCAAC

CACGAATAACGGGGCGATGAATGGCCTTGGGGTGCAAGTGGGTTATAAACAATTTTTTGGGGAAAAGA

AAAGATGGGGGTTAAGGTATTATGGTTTCTTTGATTACAACCACGCCTACATCAAATCAAGCTTCTTT

AATTCGGCTTCTGATGTGTGGACTTATGGGGTGGGCAGCGATTTATTGTTTAATTTCATCAATGATAA

AAACACCAACTTTTTAGGTAAAAATAACCAGATTTCTTTTGGGCTTTTTGGAGGCATCGCCTTAGCAG

GGACTTCATGGCTTAATTCTCAATTCGTGAATTTAAAAACCATCAGCAATGTCTATAGCGCTAAAGTG

AATACCGCTAACTTCCAATTTTTATTCAATTTGGGCTTGAGAACCAATCTCGCTAGACCTAAGAAAAA
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AGATAGCCATCATGCGGCTCAACATGGCATGGAATTGGGCGTGAAAATCCCTACCATTAACACGAATT

ACTATTCTTTTCTAGACACTAAACTAGAATATAGGAGGCTTTATAGCGTGTATCTCAATTATGTGTTT

GCTTACTGA 

 

 

1.1.2 SEQUENCING OF THE HOPQ  LOCUS (HOPQII  GENE) 

ATGAAAAAAACGAAAAAAACGATTCTACTTTCTCTAACTCTTGCGTCATCATTGCTCCATGCTGAAGA

CAACGGCGTTTTTTTAAGCGTGGGCTATCAAATCGGTGAAGCGGTTCAAAAAGTGAAAAACGCCGACA

AGGTGCAAAAACTTTCAGACGCTTATGAAAACTTGAACAAGATTTTAGCTAATCATGACCACTCCAAT

CCAGAAGCGATTAATACAAACAGCGCCACAGCGATCAATCAAGCGATTGGTAATTTAAACGCAAACAC

GCAAAATTTAATTGATAAAACAGACAATTCCCCTGCCTATCAAGCCACGCTTTTAGCGCTAAAATCCAC

GGTGGGGTTATGGAATAGCATAGCTTATGCCGTCATATGCGGAGGCTATACGGATAAACCCAACCACA

ACATCACAGAAACTTTTTACAACCAGCCAGGACAAAATTCAAATTCGATTACTTGCGGTAGTAATGGT

TTAGGGACTCTTCCAGCGGGCAAAAATTCTCATCTGTCCATTGAACAATTTGCAACGCTCAACAAAGCG

TATCAAATTATCCAAGCCGCTTTGAAACAAGGTCTCCCTGCTTTAAGCGATACAAAAAAAACGGTGGA

AGTAACCATTAAAACAGCAACCAACGCTCAAAACATTAATGTCAATAATAACAACAACAATGCTGCTG

ATGCTACAATTGAAACAAAGAATACTTATATTAACGATGCGCAAAATCTTTTAACCCAAGCGCAAACC

ATCATCAACACCCTTCAAGACAATTGCCCGATGTTGAAAGGGAAGTCTAGTAGTGGAACTAATGGCGC

AAACACCCCTTCATGGCAAACAAGCGCTAACCAAAATTCGTGCAGCGTTTTTGGCACGGAATTTAGCGC

TATTTCAGACATGATCAGTAACGCTCAAAACATCGTTCAAGAAACCCAACAGCTTAATACTACCCCACT

AAAAAGCATCGCACAACCCCACAATTTCAACCTTAACTCCCCTAATAGTGTCGCTTTGGCTCAAAGCAT

GCTCAAAAACGCTCAATCTCAAGCAGCGGTTTTAAAACTAGCCAATCAAGTGGGGAACGATTTCAATA

GAATTTCTACAGGAGTTCTTAAAAATTATATAGAAGAATGCAATGCGAATGCTTCAAGTGAAAGCGTT

TCTAATAACACTTGGGGGAAAGGTTGCGCGGGCGTGAAACAAACTCTAACTTCGCTAGAAAGTAGCAA

CGCTTCTTTTTCTAGCCAAACGCCTCAAATCAATCAAGCTGAAACCATCGCTAACACTATTGTTCAAGA

ACTCGGTCATAACCCTTTCAAACGGGTGGGCATCATTAGCTCTCAAACCAATAACGGGGCGATGAACG

GCCTTGGGGTGCAAGTGGGTTATAAACAATTTTTTGGGGAAAAGAAAAGATGGGGGTTAAGGTATTA

TGGTTTCTTTGATTACAACCACGCCTACATCAAATCAAGCTTCTTTAATTCGGCTTCTGATGTGTGGAC

TTATGGGGTGGGCAGCGATTTATTGTTTAATTTCATCAATGATAAAAACACCAACTTTTTAGGTAAAA

ATAACCAGATTTCTTTTGGGCTTTTTGGAGGCATCGCCTTAGCAGGGACTTCATGGCTTAATTCTCAAT

TCGTGAATTTAAAAACCATCAGCAATGTCTATAGCGCTAAAGTGAATACCGCTAACTTCCAATTTTTA

TTCAATTTGGGCTTGAGAACCAATCTCGCTAGACCTAAGAAAAAAGATAGCCATCATGCGGCTCAACA

TGGCATGGAATTGGGCGTGAAAATCCCTACCATTAACACGAATTATTATTCTTTTCTAGACACTAAAC

TAGAATATAGGAGGCTTTATAGCGTGTATCTCAATTATGTGTTTGCCTATTAA 
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 1.2 STRAIN SS1 

1.2.1 SEQUENCING OF THE SABA  AND  SABB  LOCUS  (HOPQI  GENE) 

ATGAAAAAACGATTTTTACTTTCTCTATCCCTTGCATCGTCATTACTTTATGCTGAAGACAACGGCTTT

TTTGTGAGCGCGGGCTATCAAATCGGCGAAGCGGTGCAAAAAGTGAAAAACGCCGACAAGGTGCAAAA

ACTTTCAGACGCTTATGAACAATTAAGCCGGCTTTTAACTAACGATAGTGGCACAAACTCAAAGACAA

GCGCACAAGCGATCAACCAAGCGGTTAATAATTTGAACGAACGCACAAAAACTTTAGCCGGTGGGACA

ACCAATTCCCCTGCCTATCAAGCCACGCTTTTAGCGTTGAGATCGGTGTTAGGGCTATGGAATAGCATG

GGTTATGCAGTCATATGCGGAGGTTATACCAAAAGTCCAGGCGAAAACAATCAAAAAAATTTCCACTA

CACCGATGAGAATGGCAACGGCACTACAATCAATTGCGGTGGGAGCACAAATAGTAATGGCACTCATA

GTTCTAGTGGCACAAATACATTAAAAGCAGACAAAAATGTTTCTCTATCTATTGACCAATACGAAGCC

ATCCATGAAGCCTATCAAATCCTTTCAAAAGCTTTAAAACAAGCCGGGCTTGCTCCTTTAAATAGCAA

AGGGGAAAAATTAGAAGCGCATGTAACCACATCAAAGTATCAATCAGATAATCAAACTAAAACGACAA

CTTCTGTTATTGATACGACTAATGATGCGCAAAATCTTTTGACTCAAGCGCAAACGATTGTCAATACC

CTTAAAGATTATTGCCCCATGTTGATAGCGAAATCTAGTAGTGGAAGTAGTGGCGGAGCTGCTACAAA

CACCCCTTCATGGCAAACAGCCGGTGGCGGCAAGAATTCATGCGCGACTTTTGGTGCGGAGTTTAGTGC

CGCTTCAGACATGATTAATAATGCGCAAAAAATCGTTCAAGAAACCCAACAACTCAGCGCCAACCAAC

CAAAAAATATCACACAACCCCATAATCTCAACCTTAACACCCCTAGCAGTCTTACGGCTTTAGCTCAAA

AAATGCTCAAAAACGCGCAATCTCAAGCAGAAATTTTAAAACTAGCCAATCAAGTGGAGAGCGATTTT

AACAAACTTTCTTCAGGCCATCTTAAAGACTACATAGGGAAATGCGATGCGAGCGCTATAAGCAGCGC

GAATATGACAATGCAAAATCAAAAGAACAATTGGGGGAATGGGTGTGCTAGCGTGGAAGAAACTCAG

TCTTTGTTAAAAACAAGCGCCGCTGATTTTAACAACCAAACGCCTCAAATCAATCAAGCGCAAAACCT

AGCCAACACCCTTATTCAAGAACTTGGCAACAACCCTTTTAGGAATATGGGCATGATCGCTTCTTCAAC

CACGAATAACGGGGCGATGAATGGCCTTGGGGTGCAAGTGGGTTATAAACAATTTTTTGGGGAAAAGA

AAAGATGGGGGTTAAGGTATTATGGTTTCTTTGATTACAACCACGCCTACATCAAATCAAGCTTCTTT

AATTCGGCTTCTGATGTGTGGACTTATGGGGTGGGCAGCGATTTATTGTTTAATTTCATCAATGATAA

AAACACCAACTTTTTAGGTAAAAATAACCAGATTTCTTTTGGGCTTTTTGGAGGCATCGCCTTAGCAG

GGACTTCATGGCTTAATTCTCAATTCGTGAATTTAAAAACCATCAGCAATGTCTATAGCGCTAAAGTG

AATACCGCTAACTTCCAATTTTTATTCAATTTGGGCTTGAGAACCAATCTCGCTAGACCTAAGAAAAA

AGATAGCCATCATGCGGCTCAACATGGCATGGAATTGGGCGTGAAAATCCCTACCATTAACACGAATT

ACTATTCTTTTCTAGACACTAAACTAGAATATAGGAGGCTTTATAGCGTGTATCTCAATTATGTGTTT

GCTTACTGA 
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1.2.2 SEQUENCING OF THE HOPQ  LOCUS  (HOPQII  GENE) 

ATGAAAAAAACGAAAAAAACGATTCTACTTTCTCTAACTCTTGCGTCATCATTGCTCCATGCTGAAGA

CAACGGCGTTTTTTTAAGCGTGGGCTATCAAATCGGTGAAGCGGTTCAAAAAGTGAAAAACGCCGACA

AGGTGCAAAAACTTTCAGACGCTTATGAAAACTTGAACAAGATTTTAGCTAATCATGACCACTCCAAT

CCAGAAGCGATTAATACAAACAGCGCCACAGCGATCAATCAAGCGATTGGTAATTTAAACGCAAACAC

GCAAAATTTAATTGATAAAACAGACAATTCCCCTGCCTATCAAGCCACGCTTTTAGCGCTAAAATCCAC

GGTGGGGTTATGGAATAGCATAGCTTATGCCGTCATATGCGGAGGCTATACGGATAAACCCAACCACA

ACATCACAGAAACTTTTTACAACCAGCCAGGACAAAATTCAAATTCGATTACTTGCGGTAGTAATGGT

TTAGGGACTCTTCCAGCGGGCAAAAATTCTCATCTGTCCATTGAACAATTTGCAACGCTCAACAAAGCG

TATCAAATTATCCAAGCCGCTTTGAAACAAGGTCTCCCTGCTTTAAGCGATACAAAAAAAACGGTGGA

AGTAACCATTAAAACAGCAACCAACGCTCAAAACATTAATGTCAATAATAACAACAACAATGCTGCTG

ATGCTACAATTGAAACAAAGAATACTTATATTAACGATGCGCAAAATCTTTTAACCCAAGCGCAAACC

ATCATCAACACCCTTCAAGACAATTGCCCGATGTTGAAAGGGAAGTCTAGTAGTGGAACTAATGGCGC

AAACACCCCTTCATGGCAAACAAGCGCTAACCAAAATTCGTGCAGCGTTTTTGGCACGGAATTTAGCGC

TATTTCAGACATGATCAGTAACGCTCAAAACATCGTTCAAGAAACCCAACAGCTTAATACTACCCCACT

AAAAAGCATCGCACAACCCCACAATTTCAACCTTAACTCCCCTAATAGTGTCGCTTTGGCTCAAAGCAT

GCTCAAAAACGCTCAATCTCAAGCAGCGGTTTTAAAACTAGCCAATCAAGTGGGGAACGATTTCAATA

GAATTTCTACAGGAGTTCTTAAAAATTATATAGAAGAATGCAATGCGAATGCTTCAAGTGAAAGCGTT

TCTAATAACACTTGGGGGAAAGGTTGCGCGGGCGTGAAACAAACTCTAACTTCGCTAGAAAGTAGCAA

CGCTTCTTTTTCTAGCCAAACGCCTCAAATCAATCAAGCTGAAACCATCGCTAACACTATTGTTCAAGA

ACTCGGTCATAACCCTTTCAAACGGGTGGGCATCATTAGCTCTCAAACCAATAACGGGGCGATGAACG

GCCTTGGGGTGCAAGTGGGTTATAAACAATTTTTTGGGGAAAAGAAAAGATGGGGGTTAAGGTATTA

TGGTTTCTTTGATTACAACCACGCCTACATCAAATCAAGCTTCTTTAATTCGGCTTCTGATGTGTGGAC

TTATGGGGTGGGCAGCGATTTATTGTTTAATTTCATCAATGATAAAAACACCAACTTTTTAGGTAAAA

ATAACCAGATTTCTTTTGGGCTTTTTGGAGGCATCGCCTTAGCAGGGACTTCATGGCTTAATTCTCAAT

TCGTGAATTTAAAAACCATCAGCAATGTCTATAGCGCTAAAGTGAATACCGCTAACTTCCAATTTTTA

TTCAATTTGGGCTTGAGAACCAATCTCGCTAGACCTAAGAAAAAAGATAGCCATCATGCGGCTCAACA

TGGCATGGAATTGGGCGTGAAAATCCCTACCATTAACACGAATTATTATTCTTTTCTAGACACTAAAC

TAGAATATAGGAGGCTTTATAGCGTGTATCTCAATTATGTGTTTGCCTATTAA 
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 1.3 PROTEIN SEQUENCE HOPQI (PMSS1/SS1) 

MKKRFLLSLSLASSLLYAEDNGFFVSAGYQIGEAVQKVKNADKVQKLSDAYEQLSRLLTNDSGTNSKTSA

QAINQAVNNLNERTKTLAGGTTNSPAYQATLLALRSVLGLWNSMGYAVICGGYTKSPGENNQKNFHYT

DENGNGTTINCGGSTNSNGTHSSSGTNTLKADKNVSLSIDQYEAIHEAYQILSKALKQAGLAPLNSKGEK

LEAHVTTSKYQSDNQTKTTTSVIDTTNDAQNLLTQAQTIVNTLKDYCPMLIAKSSSGSSGGAATNTPSW

QTAGGGKNSCATFGAEFSAASDMINNAQKIVQETQQLSANQPKNITQPHNLNLNTPSSLTALAQKMLK

NAQSQAEILKLANQVESDFNKLSSGHLKDYIGKCDASAISSANMTMQNQKNNWGNGCASVEETQSLLK

TSAADFNNQTPQINQAQNLANTLIQELGNNPFRNMGMIASSTTNNGAMNGLGVQVGYKQFFGEKKRW

GLRYYGFFDYNHAYIKSSFFNSASDVWTYGVGSDLLFNFINDKNTNFLGKNNQISFGLFGGIALAGTSWL

NSQFVNLKTISNVYSAKVNTANFQFLFNLGLRTNLARPKKKDSHHAAQHGMELGVKIPTINTNYYSFLD

TKLEYRRLYSVYLNYVFAY 

 

 

 1.4 PROTEIN SEQUENCE HOPQII (PMSS1/SS1) 

MKKTKKTILLSLTLASSLLHAEDNGVFLSVGYQIGEAVQKVKNADKVQKLSDAYENLNKILANHDHSNP

EAINTNSATAINQAIGNLNANTQNLIDKTDNSPAYQATLLALKSTVGLWNSIAYAVICGGYTDKPNHNIT

ETFYNQPGQNSNSITCGSNGLGTLPAGKNSHLSIEQFATLNKAYQIIQAALKQGLPALSDTKKTVEVTIKT

ATNAQNINVNNNNNNAADATIETKNTYINDAQNLLTQAQTIINTLQDNCPMLKGKSSSGTNGANTPSW

QTSANQNSCSVFGTEFSAISDMISNAQNIVQETQQLNTTPLKSIAQPHNFNLNSPNSVALAQSMLKNAQS

QAAVLKLANQVGNDFNRISTGVLKNYIEECNANASSESVSNNTWGKGCAGVKQTLTSLESSNASFSSQT

PQINQAETIANTIVQELGHNPFKRVGIISSQTNNGAMNGLGVQVGYKQFFGEKKRWGLRYYGFFDYNHA

YIKSSFFNSASDVWTYGVGSDLLFNFINDKNTNFLGKNNQISFGLFGGIALAGTSWLNSQFVNLKTISNV

YSAKVNTANFQFLFNLGLRTNLARPKKKDSHHAAQHGMELGVKIPTINTNYYSFLDTKLEYRRLYSVYL

NYVFAY 
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 4 Abbreviations 

aa amino acid 

AOM azoxymethane 

BabA blood group antigen binding protein A 

BB Brucella broth 

c-Abl Abelson murine leukemia viral oncogene homolog, tyrosine-protein 

kinase 
CagA cytotoxin associated gene A 

cagPAI cag pathogenicity island 

CAM cell adhesion molecules 

cat chloramphenicol 

CD cluster of differenciation 

CEACAM carcinoembryonic antigen related cell adhesion molecules 

CEA-N N-terminal domain of CEACAM5 

CGF CEA gene family 

CS chondroitin sulfate 

Da Dalton 

ECM extracellular matrix 

erm erythromycin 

FCS fetal calf serum 

FN fibronectin 

GAGs glycosaminoglycans 

GPI-anchor Glycosylphosphatidylinositol-anchor 

hnRNP M heterogeneous nuclear ribonucleoprotein M  

Hop Helicobacter pylori outer membrane protein 

Hor Helicobacter pylori outer membrane protein related 

HS heparan sulfate 

IgC like domain Immunoglobulin like constant domain 

IgSF Immunoglobulin superfamily 

IgV like domain Immunoglobulin like variable domain 

ITAM immunoreceptor tyrosine-based activation motif 

ITIM immunoreceptor tyrosine-based inhibitory motif 

LabA lacdiNAc-binding adhesin 

lacdiNAc N,N’-diacetyllactosediamine 

LB Luria Bertani 

MBP Maltose binding protein 

MFI mean fluorescence intensity 

MHC major histocompatibility complex 

MOI multiplicity of infection 

MW molecular weight 

NCA non-specific cross reacting antigen 

OD optical density 

OipA outer inflammatory protein A 

OMP outer membrane protein 

OpaCEA opacity-associated proteins binding to CEACAMs 

PAGE polyacrylamide gel electrophoresis 

PAI pathogenicity island 
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PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEG polyethylene glycol 

PI3K phosphatidylinositol 3'-kinase 

PIP phosphatidylinositol phosphate 

PSG pregnancy specific glycoproteins 

P-Tyr tyrosine phosphorylation 

PVDF Polyvinylidenfluorid 

RAPD randomly amplified polymorphic DNA 

RNAi RNA interference 

rpsL ribosomal protein S12 

SabA sialic acid binding adhesin A 

sCEACAM1 secreted forms of CEACAM1 

SDS sodium dodecylsulfat 

SH2 SRC homology 2-domain 

SHP1 SH2-domain containing protein tyrosine phosphatase 1 

src kinase (sarcoma), cellular tyrosine-protein kinase 

SSM slipped strand mispairing 

T4SS type IV secretion system 

TAE-buffer Tris-acetate-EDTA buffer 

TCR T-cell receptor 

TGFβ1 transforming growth factor beta-1 

TIM-3 T-cell immunoglobulin domain and mucin domain-3 

TLR toll-like receptor 

UspA1 ubiquitous surface protein A1 

VacA vacuolating cytotoxin A 
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