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Abstract

The translation of complex statistical results into clinical practice on the roles of con-
tinuous biomarkers in patient-treatment interactions is greatly aided by clear graphical
presentation. To combat the current lack of comprehensive reviews or adequate guides on
graphical presentation within this topic, our study formulates guiding principles for con-
tinuous biomarker in patient treatment interaction (CBPTI) plots. In order to understand
current practice, we review the development of CBPTI methodology and how CBPTI plots
are currently used in clinical research.

Several criteria for a good CBPTI plot are derived in this study, including general prin-
ciples of visual display, appropriate quantification of statistical uncertainty, use of units
presenting absolute outcome measures, correct display of benchmarks, and information
content for medical decision-making. We examined a representative sample of biostatistics
and clinical reports on randomized controlled trials with parallel-group design, based on
papers published in four major biostatistics journals and two clinical trial methodology
journals from the years 2000-2014, and six major clinical journals from 2013-2014. Each
CBPTI plot found was assessed for appropriateness of its presentation and clinical utility.

In the systematic review, a total of seven methodological papers and five clinical reports
used CBPTI plots which we categorized into four types: distinguishing the outcome e↵ect
for each treatment group, showing outcome di↵erence among treatment groups (by either
partitioning all individuals into subpopulations or modelling the functional form of the in-
teraction), evaluating the proportion of population impact of the biomarker, and showing
the classification accuracy of the biomarker. The current practice of utilizing CBPTI plots
in clinical reports su↵ers from several poor practices: confusing or unclear labelling in the
plot, the lack of presentation of statistical uncertainty, the outcome measure scaled by rel-
ative unit instead of absolute unit, incorrect use of benchmarks, and being non-informative
for medical decision-making.

There is considerable scope for improvement in the graphical representation of CBPTI
in clinical reports. The existing statistical toolbox is not fully translated into clinical re-
search and also needs improvement. The current challenge is to develop instruments for
high-quality graphical plots which can not only convey quantitative concepts to readers
with limited statistical knowledge when sophisticated statistical algorithms are undertaken,
but also facilitate medical decision-making.
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Chapter 1

Introduction

Consider a trial in which individuals are randomized to either standard or experimental
treatment. The primary aim of conducting such a trial is usually the estimation of the
overall treatment e↵ect. Given a weak overall e↵ect and the e↵ort and cost involved in
this trial, the investigators are frequently motivated to search for a subgroup of patients
with a reasonable response to the new treatment, often through the use of distinguish-
ing (predictive) biomarkers. Biomarkers are thus a common tool for exploring population
heterogeneity with respect to treatment response. For example, a clinically established
treatment-selection biomarker is presence of the K-RAS wild type gene for selecting cetux-
imab as the treatment for metastatic colorectal cancer patients [38].

To represent treatment-biomarker interaction, graphical presentations are often used.
For a set of dichotomous/categorical treatment-selection biomarkers, a modified forest plot
can present heterogeneity of treatment e↵ects within subpopulations [10]. In the case of
continuous biomarkers, this tool cannot be applied, except if the continuous biomarker
is categorized. But categorization destroys information [3] and creates several statistical
problems: (1) the question of whether categorization of a continuous biomarker preserves
randomization [11], (2) statistical multiplicity issues due to selecting an optimal cut-o↵
value [2], and (3) instability of the statistical significance of the treatment-biomarker in-
teraction depending on the number and positions of cut-o↵ values [27]. Therefore, a first
approach should involve analyzing the continuous biomarker without categorization. One
must make careful specification of the functional form of the relationship between the
continuous biomarker and the treatment e↵ect (either linear or nonlinear), since misspeci-
fication of the relationship can lead to loss of power and faulty interpretation [27].

Tools to graphically present di↵erential e↵ects between a continuous biomarker and
specific treatments exist in the literature, but have not been developed systematically [28].
The most popular approaches are treatment-e↵ect plots [27] and subpopulation treatment-
e↵ect pattern plots (STEPP) [8]. A treatment-e↵ect plot describes how the treatment
e↵ect changes continuously with a biomarker by using varying coe�cient models based on
fractional polynomials [27]. For survival outcomes the hazard ratio (HR) is displayed on the
y-axis and the range of the continuous biomarker on the x-axis. Alternatively, Bonetti et
al [8] proposed STEPP, which uses pseudo-spline functions for exploring treatment-e↵ect
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heterogeneity across the range of a continuous biomarker (in terms of hazard ratios or
di↵erences in survival probabilities). Their approach is based on splitting the individuals
into subgroups with respect to the biomarker of interest, and calculating the e↵ect measures
separately for each subpopulation. Subpopulations are allowed to overlap in order to
increase the number of subjects contributing to each point estimate, hence increasing the
precision of the individual estimates. A heterogeneous treatment e↵ect is apparent if the
e↵ect estimates do not form a horizontal line across the continuous biomarker value.

For example, Figure 1.1 is an example of STEPP and presents a heterogeneous treat-
ment e↵ect for breast cancer patients undergoing tamoxifen plus chemotherapy vs tamox-
ifen alone [8]. It is of interest to identify patients who have an advantage under the
combination treatment by using the biomarker estrogen receptor expression. Estrogen re-
ceptor expression is on the x-axis, ranging from 1 fmol/mg to 660 fmol/mg. The y-axis
presents the hazard ratio of the combination therapy vs the monotherapy. A value below
one indicates longer disease-free survival under the combination, a value above 1 indicates
longer survival under the monotherapy. Therefore, a benchmark line parallel to the x-axis
at y=1 is introduced. Additionally, a second dashed line parallel to the x-axis is introduced,
representing the treatment e↵ect for the overall sample in the trial. The dotted black line
represents the hazard ratio for individuals with various values of the biomarker. In addition
to the dotted black line, broken lines above and below indicate confidence bands.

Figure 1.1: STEPP (sliding-window analysis) for International Breast Cancer Study Group
Trial VII data according to estrogen receptor expression values (n1 = 55, n2 = 60). (Bonetti
et al. Stat Med Oct 15, 2000 p2601) [8].

How helpful is this plot for the clinician? Is there convincing evidence for biomarker-
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treatment interaction or treatment e↵ect heterogeneity in the trial population? Can the
clinician determine a subgroup of patients who profit from the combination therapy by
measuring the ER expression? Can the graph help to derive individual therapeutic deci-
sions? What are the guiding principles for constructing a continuous biomarker in patient
treatment interaction (CBPTI) plot which is helpful in answering these questions?

CBPTI results are often derived using complicated statistical algorithms. Therefore,
a good graphical presentation is crucial for the communication of these complex medical
research findings. Many authors have discussed strategies for graphical displays in clinical
trial reports, regarding the choice of figures, styles of presentation, labelling, and their
specific content [23, 24, 37]. However, although general principles are available on what
constitutes good practice in representing figures, there is relatively little guidance on us-
ing graphical methods to aid in the presentation of treatment-biomarker interaction in
trial reports, despite a massive amount of e↵ort being devoted to discovering treatment-
selection biomarkers. Previous papers have proposed several important aspects for good
plots: absolute versus relative unit for expressing the results of trials [25, 36], the types of
confidence intervals/bands to quantify statistical uncertainty [9], improving direct inter-
pretation by adding a benchmark line [10], using the same scale to facilitate comparison
of candidate biomarkers [16, 33], and focusing on answering key clinical questions about
the proportion of impacted patients given the use of various biomarker measures to select
treatment [33, 18]. Thus, a good graphical presentation of treatment-selection biomarkers
must incorporate the above elements and serve as a tool for clinical treatment decisions.
The example presented in Figure 1.1 fulfills most of these criteria. But can it help to
answer the above-mentioned key clinical questions?

The aim of our study is to formulate guiding principles for CBPTI plots. In order to
understand the current practice, we review how CBPTI plots are used in clinical research
(it remains unclear the extent to which the plots are used in clinical practice). We critically
appraise each CBPTI plot and provide objective evidence as to the quality of CPBTI plots
in current practice. We also add two new types of CBPTI plots and provide an R vignette
which applies our ideas in a very simple setting.



4 1. Introduction



Chapter 2

Methods

2.1 Criteria for a good CBPTI plot

Previous literature has discussed several aspects relating to the quality of the figure which
also apply to CBPTI plots:

2.1.1 Statistical uncertainty

Statistical uncertainty about the treatment e↵ect across subgroups can almost never be
ignored. Such information reflects imprecise knowledge about true treatment outcomes
and implies the possibility of making a wrong decision about which treatment is expected
to benefit for a subgroup of patients. A confidence interval/band is often used as part of
the graphical presentation to quantify the uncertainty of treatment e↵ects. There are two
types commonly displayed in a CBPTI plot, pointwise confidence intervals and simulta-
neous confidence bands. For a CBPTI plot, Cai et al point out the choice of confidence
intervals or bands depends on the clinical purpose [9]. For example, if an author aims to
identify a region in which a biomarker is above or below a certain threshold value, pointwise
confidence intervals are suggested. If the aim of the study is to evaluate the heterogeneity of
the treatment e↵ect, it is important to provide information on the uncertainty of the entire
function describing the biomarker treatment interaction. For this purpose, simultaneous
confidence bands are recommended.

2.1.2 Absolute versus relative scale

The type of unit of outcome measures selected will influence the interpretation of CBPTI
plots. Take as an example the BIG 1-98 trial [39]. The authors were trying to evaluate
whether the Ki-67 protein could be used as a biomarker in selecting letrozole treatment in
postmenopausal women with early invasive breast cancer. The results show that there is
a heterogeneous treatment e↵ect measure detected on the absolute scale (e.g., di↵erence
in 4-year disease-free survival rate) but not on the relative scale (e.g., HR). Based on the
findings, how do we form a clear conclusion?
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Whether absolute scale or relative scale should be used in clinical reports is still un-
decided. For a CPBTI plot, Rothwell et al suggested using absolute scales to detect het-
erogeneity of treatment among subgroups [25]. Their formation of subgroups is based on
baseline risk scores estimated by specific prognostic factors in risk models. The heterogene-
ity of treatment e↵ect is determined using individuals with similar risk. In contrast, Sun
et al proposed the use of relative scales in subgroup analyses since relative treatment e↵ect
is constant across individuals with varying baseline risk [36]. An example of statin therapy
reducing the risk of major coronary events is given in their report [36]. A meta-analysis
shows that statin therapy could reduce the relative risk of major coronary events by 29.2%.
If we consider using absolute risk reduction among patients with varying baseline risk, an
evident heterogeneous treatment e↵ect would exist when comparing a low baseline risk
patient (1.5%, from 5% to 3.5%) with a high baseline risk patient (14.6%, from 50% to
35.4%). Therefore, given the known prognostic factors that allow the definition of sub-
groups, if there is no heterogeneous treatment e↵ect associated with varying baseline risk
for the relative scale, a heterogeneous treatment e↵ect for the absolute scale must exist.

For a CBPTI plot, absolute scale is preferred because it provides useful information
for clinical settings. An absolute scale gives the actual risk for an individual receiving
experimental or standard treatment, but a relative scale gives no information on individual
risk. For example, a relative risk reduction of 29.2% corresponds to an absolute risk
reduction of 5% vs. 3.5%, and 50% vs. 35.4%. These two scenarios may have di↵erent
clinical implications if a risk below 5% is considered low and a risk above 5% high.

2.1.3 Benchmarks

The issue of benchmarking is of particular interest. Benchmarking in a CBPTI plot involves
the presentation of a criterion to decide which treatment is better for a specific subgroup.
In general, this benchmark is defined by a value which implies no treatment-biomarker
interaction, i.e the value at which the di↵erence between two treatment e↵ects is equal
to 0 (� = 0, log(HR) = 0, log(OR) = 0, log(RR) = 0). Cuzick [10] suggests instead
that the value of the overall treatment e↵ect for the trial population should be used as the
benchmark. The first option (no di↵erence benchmark) is in the light of counterfactual
thinking: which individuals would be better o↵ with the experimental treatment instead
of the standard treatment. The second option (mean e↵ect benchmark) stresses the point
that the presence of heterogeneity of treatment e↵ect between subgroups is irrelevant to
the comparison between experimental treatment and standard treatment within particular
subgroups. For a CBPTI plot, benchmarking at overall treatment e↵ect answers the key
question of assessing heterogeneity between subgroups.

2.1.4 Informative for medical decision-making

A good CBPTI plot should provide informative content for medical decision-making. What
kind of information in a CBPTI plot is clinically helpful? Often authors present CBPTI
plots by calculating the treatment e↵ect across the range of the biomarker, and may add the



2.2 Literature review 7

p-value of an interaction test to tell readers whether there is heterogeneity of treatment
e↵ect across the biomarker values. However, this approach is inadequate since the plot
cannot help physicians select treatments. Janes et al propose several key functions of a
good CBPTI plot [18]: to help clinicians choose one treatment over others for patients on
the basis of a biomarker, to tell what proportion of a population would have a good response
due to the treatment selection strategy, what proportion of patients would have treatment
changes after biomarker measurement, or which biomarker is best if several candidates
exist. Nevertheless, there are still many clinical questions needing to be answered. For
example, we may be interested in the conditional probability given a biomarker range that
the experimental treatment is better than the standard treatment. The outcome measures
should be modelled as a function of the biomarker instead of the outcome measure itself
since of interest is prediction of treatment selection for individuals, conditioned on the
biomarker value. A good CBPTI plot should guide clinicians, their patients, and health
policy makers to make good decisions in practice.

2.1.5 Summary

The above aspects are particularly focusing on assessing CBPTI plots. When presenting
graphics in clinical research, authors should follow the principles for good plots as sug-
gested by experts [23, 24, 37]. Here, we list critical guiding principles for CBPTI plots, in
particular for future practice.

• To ensure the high quality of the plot, one needs to carefully take into consideration
the principles of visual display suggested by the experts.

• Display appropriate measures of statistical uncertainty, either a pointwise confidence
interval or simultaneous confidence band.

• Use absolute units for presenting outcome measures.

• For detecting heterogeneous treatment e↵ect across a biomarker’s value or making
comparisons between biomarkers, a benchmark line should be added for improving
direct interpretation.

• A good plot should be intrinsically informative for medical decision-making in a
clinical setting.

2.2 Literature review

The literature review in our study was conducted using biostatistics journals, medical
journals and journals for clinical trials methodology. Since the plots of interest do not
have a specific name (as opposed to funnel plot, forest plot, and ROC curve), the search
could not be done using specific MeSH terms or key words. Potential papers of interest
were not limited to specific diseases or study designs. The formulation of inclusion and
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exclusion criteria was not feasible. Therefore, the standard searching strategy typically
used to limit the retrieval of irrelevant studies from PubMed/MEDLINE was not used [4].
The selection of studies based on important criteria relevant for our systematic review –
how they present CBPTI plots and whether or not biomarkers are on a continuous scale –
is not readily support by PubMed/MEDLINE. Therefore, we did a hand search in selected
journals to include eligible reports.

The literature review in our study consisted of two parts: a review of methodologies
in biostatistics and clinical trial journals, and a review of clinical applications in medical
journals. For the former, four biostatistics and two clinical trial journals were selected: Bio-
metrics, Biostatistics, Statistics in Medicine, BMC Medical Research Methodology, Clinical
Trials, and Trials. The first four journals are the main biostatistics sources for topics rel-
evant to the application of statistics to clinical trials and aim to enhance communication
between statisticians and medical researchers. The last two journals publish articles mainly
on general trial methodology. The systematic review extended back to papers published
beginning in the year 2000, as the first paper (that we are aware of) relevant to this topic
was Gadbury et al [12] and Bonetti et al [8] in 2000. To avoid missing new proposed
methodologies, the survey was extended to search for publications being cited by existing
reports and developed by the research groups previously publishing CBPTI methods.

For the second part we limited our search to six major medical journals: The New
England Journal of Medicine, The Lancet, The Journal of the American Medical Associa-
tion, Annuals of Internal Medicine, The Lancet Oncology and Journal of Clinical Oncology.
The first four are flagships for reporting general clinical innovations; the last two are flag-
ships for innovation in clinical oncology, a very active field of personalized medicine and
biomarker-driven treatment decisions. A previous report indicated that articles concerning
treatment-selection biomarkers are far more likely to appear in high impact journals (24.7%
of all such articles) than low impact journals (11.6%) [35]. A large proportion of exist-
ing CBPTI graphics would thus be found in these high impact journals. A review of the
years 2013-2014 for the medical journals was considered su�cient to display representative
findings of how researchers use CBPTI plots.

Our survey of clinical and methodological papers was limited to parallel group ran-
domized controlled two armed trials in which an interaction between treatment and a
continuous biomarker was discussed. In the survey, for each article we firstly checked the
study design. If the design was appropriate, we then restricted attention to CBPTI plots
and methods of how they were estimated. Publications providing information on CBPTI
without a graphical display were not of interest in our study.

One reviewer (YMS) trained in clinical research methodology extracted the CBPTI
plots. If the purpose of a plot was unclear, the doubt was resolved by another senior statis-
tician (UM). All included CBPTI plots were discussed and confirmed by both reviewers
(YMS, UM). We critically appraised every CBPTI plot included in our survey regarding
the appropriateness of its presentation and clinical utility.
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Results

In the biostatistics and clinical trial methodology journals, there were five reports relevant
to CBPTI plots during 2000-2014, including two in Biometrics [16, 33], two in Statistics in
Medicine [27, 8], one in Biostatistics [9], and none in BMC Medical Research Methodology,
Clinical Trials or Trials. In addition to these five reports, two newly developed CBPTI plots
were found through cross-referencing: marker-by-treatment predictiveness curves [18] and
risk curves [17]. In the medical journals, a total of 767 parallel group RCTs were reported
from January 2013 to December 2014: 179 in the New England Journal of Medicine, 108
in The Lancet, 108 in The Journal of the American Medical Association, 26 in Annuals
of Internal Medicine, 122 in The Lancet Oncology, and 224 in the Journal of Clinical
Oncology. We found five papers [5, 41, 22, 21, 40] covering four types of CBPTI plots (two
papers presented STEPP. One was selected for our study). Examples of these four types
of CBTPI plots will be discussed [5, 41, 22, 21]. One plot presented the clinical outcome
on a continuous scale, for the remaining three plots the outcome was event data (survival).
We categorized the graphical presentations of these 11 reports into four types of CBPTI
plot:

3.1 Evaluation for a CBPTI plot

3.1.1 Distinguishing the outcome e↵ect for each treatment group

The classical approach of looking for evidence of an interaction visually is through pre-
senting a so-called interaction plot. This type of plot displays the di↵erent treatment
e↵ects among the groups using separate curves, with treatment e↵ect on the y-axis and
biomarker value on the x-axis. The relationship between outcome measure and biomarker
can be modelled as a linear or nonlinear function. Figure 3.1 [5] and Figure 3.2 [41] are
examples of interaction plots found in medical journals.

The aim of Figure 3.1 is to explore the influence of age on the treatment e↵ect, which
is measured as the change in symptom Distress Score (SDS)-15 during the study [5]. The
methodology behind the plot was based on nonparametric smoothing techniques. For
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details see Berry et al. [5]. Figure 3.1 illustrates the basic aesthetic principles of CBPTI
plots. The contrast colors were used to visually di↵erentiate the control group (yellow)
and intervention group (blue). The axes are clearly labelled and properly scaled. A legend
within the plot helps readers distinguish the colors of treatment groups. The absolute
score is used to present the outcome measure. The plot does not show evidence for a
striking relationship between age and SDS-15 change under treatment. It is visible that
for age above 50 years the curve corresponding to the intervention is about 2 points in
SDS-15 below the curve corresponding to the control. Both curves are nearly identical for
age below 50. Figure 3.1 is not informative for clinicians in therapeutic decision-making.
Although the authors present individual outcomes by dots, the distributions are identical.
The dots provide no information on population impact when using age as a biomarker. For
prediction of individual treatment selection, outcome should be specified as a function of
the biomarker. The use of change score as an outcome measure is also problematic since
change score is a↵ected by regression to the mean. A Bland-Altman plot is recommended
for this example [7]. The lack of uncertainty is a major limitation of Figure 3.1.

Figure 3.1: E↵ect of age on Symptom Distress Scale-15 (SDS-15) score change between
baseline and end of study. (Berry et al. JCO Jan 20, 2014 p204) [5]

Figure 3.2 is another example of an interaction plot but extends to evaluate treatment-
biomarker interaction under multi-subsets [41]. The authors study potential treatment
heterogeneity (fluorouracil (FU) versus FU+oxiliplatin) with respect to the CCRS (colon
cancer recurrence score) stratified with respect to cancer stage. The relationship between
5-year risk of recurrence and CCRS is modelled as a linear function. Each curve is easily
estimated by adding interaction terms to the Cox proportional hazards model. On the
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Figure 3.2: Relationship between the continuous Recurrence Score (RS) and 5-year recur-
rence risk by stage and treatment in the National Surgical Adjuvant Breast and Bowel
Project C-07. Thick lines represent fluorouracil (FU)-treated patients, thin lines represent
FU + oxaliplatin-treated patients. Blue, gold, and gray colors represent stages II, IIIA/B,
and IIIC, respectively. A rug plot depicting the distribution of RS is included at the bot-
tom of the figure, and an estimated normal distribution of scores is provided below. The
proportional hazards assumption held (P = .20 for the test of nonzero slope of Schoenfeld
residuals v time). The relationship between continuous RS and the log hazard of recurrence
was linear (P = .84 for the test of nonlinearity). (Yothers et al. JCO Dec 20, 2013 p4515)
[41]

basis of the principles of visual display, Figure 3.2 shows two limitations. The readers have
to read the legend to check which thickness of line belongs to which treatment group. It
would be possible to add labels directly to the six lines in a blank area. However, a total of
six lines in a plot make it di�cult for the eyes to spot any potentially deviant subgroups.
To be less complex, the authors could have presented the three stage specific interaction
terms of the Cox regression. This way it may have been more obvious if treatment e↵ect
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heterogeneity is present in each of the three stages. There is essentially no treatment
heterogeneity within each stage with respect to the CCRS since the treatment curve and
the control curve are parallel for each stage. There is no information to help clinicians
select treatment. The plot also presents the distribution of the recurrence score for the
entire population as a rug plot alongside the horizontal axis and an estimated normal
distribution of scores below the interaction plot. It would have been more informative to
have the distribution of the CCRS within each stage (assuming a randomization of the
treatment). Again there are no confidence intervals to quantify uncertainty.

3.1.2 Showing outcome di↵erence between treatment groups

Partitioning all individuals into subpopulations

Bonetti et al were the first to propose the idea of partitioning all individuals into sub-
populations on the basis of biomarker value and estimating the treatment di↵erences in
each subpopulation [8]. If the line connecting all estimates is not horizontal, there is a
heterogeneous treatment e↵ect across the range of the biomarker value. The methodology
was briefly explained in the introduction part. In Figure 1.1 for graphical display, there
are the lack of the names and scales of axes. The tick intervals should be properly labelled.
With absolute outcome measures on y axis, the authors can help readers to indicate what
a value above zero or below zero (a ratio above one or below one if presenting hazard ratio
on y axis) means by labeling the regions as ”Favors tamoxifen plus chemotherapy” and
”Favors tamoxifen alone”. In the plot, two benchmark lines at the points of no e↵ect and
overall e↵ect are displayed. However, it is not clear for readers which benchmark line is
used to detect heterogeneity of treatment e↵ect, even though the authors demonstrated in
the original paper that there is no advantage in 5-years DFS for lower values of ER expres-
sion when treatment is cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) plus
tamoxifen versus tamoxifen alone. The purpose of a benchmark line at overall treatment
e↵ect is to allow visual verification of a subgroup’s confidence band di↵ering significantly
from the overall treatment e↵ect. Further weaknesses of the plot include the outcome unit
failing to scale by absolute unit, and that a HR gives no information on individual risk.
For therapeutic decision-making, it would be useful to draw a vertical line as a threshold.
The threshold could be at the point where the bold line reaches treatment e↵ect for the
complete sample. That tells clinicians CMF + tamoxifen is recommended for the patients
with the certain range of estrogen receptor expression. Subpopulation sizes for values of
the biomarker are added alongside the x-axis. However, this is not very informative for
medical-decision making since subpopulations are allowed to overlap in order to increase
the number of subjects who contribute to each point estimate. Figure 3.3 is a clinical
application of STEPP from a medical journal [22] and has similar limitations to those of
Figure 1.1.
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Figure 3.3: Sliding-window subpopulation treatment e↵ect pattern plot analysis of the
treatment e↵ect of adding cetuximab to chemotherapy in patients with KRAS wild-type
as measured by hazard ratios (HRs) for progression-free survival (chemotherapy plus ce-
tuximab v chemotherapy alone. HR values < 1 suggest benefit of adding cetuximab, with
95% CIs in dashed lines. The x-axes indicate median tumor shrinkage at 8 weeks for pa-
tients in each of the overlapping subpopulations. (Piessevaux et al. JCO Oct 20, 2013
p3770) [22]

Figure 3.4: Estimated treatment di↵erences (thick curve), 3-drug combo minus 2-drug
combo, with respect to week 24 CD4 changes over the score and the corresponding 95%
pointwise (dashed curve) and simultaneous (shaded region) confidence intervals. (Cai et
al. Biostatistics Apr, 2011 p277) [9]
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Cai et al proposed a more advanced and formally precise approach to presenting out-
come di↵erence between treatment groups [9]. They created a score index to group individ-
uals by incorporating subject baseline characteristics and then estimating the treatment
di↵erence on a potential outcome framework. Given each score, a spline-based average
treatment di↵erence is estimated using a local fitting approach. Figure 3.4 displays a
shaded region and dashed curves to identify two types of uncertainty estimates [9]. The
aim of the plot is to detect if a patient’s change in CD4 count from the baseline level to
week 24 di↵ers across the individual’s score index when comparing a 3-drug combination
with a 2-drug combination. The authors demonstrate that the change in CD4 count from
baseline to week 24 is consistent at lower scores but increases significantly for scores above
50. A horizontal benchmark line would be recommended for the plot to improve direct
interpretation. The plot adds no crucial information which would influence a therapeutic
decision, since the 3-drug combination always performs better than the 2-drug combination
over the scores.

Modelling the functional form of the interaction

With the advance of the use of regression models, methodological studies relevant to CBPTI
plots are focused on modelling the functional form of the interaction between a continuous
biomarker and treatment in a multivariable regression setting. Take the simple example
from Figure 3.1. One could portray a contrast plot which simply presents the interaction
component of the linear regression model. In terms of the functional form of the interaction
between a continuous biomarker and treatment, one fits �(score) = ↵+� ·age+� · treat+
� · treat · age, and presents the contrast line as f(age) = � + � · age. For general cases,
the straight line function is simple and may be adequate. However, it may lead to loss of
power and give faulty interpretation if a non-linear relationship is incorrectly assumed to be
linear [27]. Normally, a contrast plot cannot display individual data because it presents a
mean di↵erence between the treatment groups. The parallel-group design does not provide
the outcome of both treatments for the same individual: Since an individual patient only
belongs to one group, there is no natural counterpart for calculating a di↵erence. The
di↵erence could only be given if for single patient their counterfactual outcomes under the
second treatment could be known. Recent approaches have tried to estimate individual
treatment e↵ects within a counterfactual framework [16, 19]. This could be presented in a
corresponding contrast plot.

There are a variety of approaches to modelling the interaction between a continuous
biomarker and treatment as a non-linear function [27, 6, 14]. Royston and Sauerbrei pro-
posed the use of a power transformation, termed ”fractional polynomial”, in modeling the
functional form of a continuous biomarker [27]. The powers S = (�2,�1,�0.5, 0, 0.5, 1, 2, 3)
are suggested. The functional form of continuous biomarker can be formalized by either
first-degree or second-degree fractional polynomial function. For each treatment group,
interaction between a continuous biomarker and treatment is modelled by a fractional
polynomial with the same powers but di↵erent regression coe�cients. Then the di↵erence
between two functions for each treatment group is calculated and tests for significance.
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Figure 3.5: Prostate cancer data: treatment ⇥ age interaction: the e↵ect of treatment by
age, with 95% pointwise confidence interval. Functions were estimated in multivariable
adjustment models and fitted using FP2 functions with powers (3; 3). (Royston et al. Stat
Med Aug 30, 2004 p2516) [27]

Figure 3.5 is an example of a CBPTI plot based on their approach, named ”treatment-
e↵ect plot” [27]. The outcome measure is given as the log hazard ratio, which is not easily
understandable in clinical settings and hazard ratio provides no information on the like-
lihood that an individual would benefit. In the original paper, the authors revealed that
treatment E is favorable for the 50-75 age group, but may be harmful for ages over 80. It
would be suggested to show a benchmark line for correct and fast interpretation.

Harrell proposed an approach of employing restricted cubic splines in modelling the
functional form of a continuous covariate [14] which is also helpful to model the inter-
action between a continuous biomarker and treatment: A functional form of continuous
biomarker is fitted by restricted cube spline with knot k = 0, 3, 4, 5, 6 and includes them
as main e↵ect terms and as treatment interaction terms. Akaike’s information criterion is
used for the selection of k. With this model fit plots simultaneous confidence bands for
the treatment di↵erence. Other proposed existing spline methods could be employed in
modelling interaction between a continuous biomarker and treatment as well. Figure 3.6 is
a clinical example from a medical review [21]. The approach behind the plot is the relation
between imputed anti-circumsporozoite antibodies and protection against malaria in a Cox
proportional hazards model with cubic spline function. The ”upside down” J-curve beyond
the no-e↵ect point clearly shows that there is heterogeneity of protection e↵ect across the
range of anti-circumsporozoite antibodies titer. However, the benchmark line at the no-
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e↵ect point (i.e., a hazard ratio of 1) leads to false interpretation. The interpretation of
the heterogeneous protection e↵ect would be correct if this benchmark line were moved to
a horizontal line at the overall treatment e↵ect level. Although the authors indicate that
there is reduced risk of clinical malaria with increasing antibody titers at values above 1000
enzyme-linked immunosorbent assay unit (EU) per milliliter in the legend, a visual display
of the threshold of protection change would be very useful for clinicians. However, one may
be more optimistic regarding the decision for the placement of the threshold by positioning
it where the fitted regression curve reaches the no-e↵ect point (around 105 EU/ml).

Figure 3.6: The association between imputed anti-circumsporozoite antibody titers and the
hazard ratio for clinical malaria episodes among children who received the RTS,S/AS01E
vaccine, according to a Cox regression model with cubic splines and with a baseline titer
of 1.0 enzyme-linked immunosorbent assay unit (EU) per milliliter as the reference. The
dotted lines indicate the 95% confidence interval. There was no significant variation in
risk between 1 EU per milliliter and 1000 EU per milliliter (i.e., the confidence intervals
include a hazard ratio of 1.0); at values above 1000 EU per milliliter, however, there was a
reduced risk of clinical malaria with increasing antibody titers. (Olotu et al. NEJM March
21, 2013 p1119) [21]

In a majority of studies, the assumption of a linear function of continuous biomarker
may be satisfied. However, in some cases continuous biomarker may represent a non-linear
relationship with outcome. For clinical practice, the use of a spline function is helpful to
explore the heterogeneity of treatment e↵ect; however, fractional polynomials should be
used in the final model [29, 30].

Hazard ratios are presented in Figure 1.1,3.3, 3.5, 3.6, and may be not good way to
interpret quantity. We can transform a hazard ratio into risk probability [34].
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Pr(T
experimental

< T
standard

) =
e�+�·biomarker

1 + e�+�·biomarker

where T denotes survival time, and � and � are the regression coe�cients for treatment
e↵ect and interaction term, respectively. The risk probability can be interpreted in a coun-
terfactual way as a patient under the experimental treatment experiencing the event before
a patient under the control treatment. The idea is also corresponding to concordance prob-
ability [13], defined as the risk of event that a pair is concordant if one with experimental
treatment has the first event. An example is presented in Figure 3.7. The plot shows that
the proportion of unfavorable treatment e↵ect due to interferon-alpha treatment increases
with increasing white blood cell count. Detailed information on the dataset was docu-
mented Royston et al in 2004 [31]. A horizontal line for a benchmark can be drawn for the
decision of the threshold. A threshold where the solid curve reaches the point of 50% of
the population is recommended.

Figure 3.7: Risk probability for a subject with interferon-alpha treatment experiencing
the event before a patient with medroxyprogesterone acetate treatment. (The dataset was
obtained from a Medical Research Council RE01 phase III randomized controlled trial [31])

3.1.3 Evaluating the proportion of population impact of the biomarker

The major limitation of interaction plots and contrast plots is its lack of information for
medical decision-making since the predictive capacity of a biomarker should be concerned
with the population impact of treatment selection [33, 18]. The methodologies relevant to
the proportion of population impact of the biomarker include the selection impact curve
[33], the marker-by-treatment predictiveness curve [18], and the risk curve [17].
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Figure 3.8: A schematic diagram of the selection impact (SI) curve, ✓(v) = the population
response rate P{D = 1|(Y > c, T = 1)or(Y < c, T > 0)}. (Song et al. Biometrics Dec,
2004 p875) [33]

The selection impact curve was proposed to display the response rate (the proportion
of population who benefit from experimental treatment if their biomarker value exceed
cuto↵ but to assign them to standard treatment otherwise) as a function of treatment
assignment based on the biomarker, as shown in Figure 3.8 [33]. For health-decision makers,
it is helpful to identify the proportion of population that are more likely to beneift from
assigned treatments. On the other hand, the selection impact curve has similar property as
ROC curve since both axes are scaled as percentile and there is a tradeo↵ between them.
The plot allows making comparison between candidate biomarkers. The best biomarker
for treatment-selection is the concave downward curve that is the closest to the point of
(1,max{response rate}). There are several improvements could be made to these plots
to increase their clinical suitability. The axes are poorly labelled for clinical settings and
di�cult to understand for most clinicians, due to a result of the paper being published in
a biostatistics journal and the readers of which being primarily statisticians. Confidence
bands displaying statistical uncertainty are encouraged to ease comparability.

The other innovative CBPTI plots proposed by the same research group, the marker-
by-treatment predictiveness curve (Figure 3.9) [18] and the risk curve (Figure 3.10) [17],
have similar properties. The principle is to illustrate the expected treatment benefit or
probability of a certain outcome given a specific biomarker value that is presented in a
corresponding interaction plot. The advantage of both graphic presentations is the x-axes
are also scaled as percentiles and additional information can be derived if the population
distribution of the biomarker is known. Both plots are clearly labelled and the outcome
measures are scaled as absolute units. The vertical lines for the threshold of treatment
change allow seeing which treatment delivers the best outcome given the biomarker mea-
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Figure 3.9: The 5-year disease-free survival (DFS) rate plotted as a function of marker
percentile, with raw marker values shown in parentheses. The overall DFS rate with use of
the marker for guiding treatment is shown, as well as the percentage of women who have
higher DFS rates with tamoxifen alone (marker-negative). (Janes et al. Ann Intern Med
Feb 15, 2011 p255) [18]

Figure 3.10: Risk of 5-year breast cancer recurrence or death as a function of treatment
assignment and marker percentile, for the Oncotype-DX-like marker. Horizontal pointwise
95% confidence intervals (CIs) are shown. Forty-six percent of women have negative treat-
ment e↵ects according to the Oncotype-DX-like marker; these women can avoid adjuvant
chemotherapy. (Janes et al. Int J Biostat 2014 p102) [17]
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surement. For Figure 3.9, the confidence intervals for statistical uncertainty are missing.
Note there is no need for a benchmark line in this type of CPBTI plot because we are
interested in how the two curves deviate from each other. A larger variation implies a
better performance of the biomarker in di↵erentiating the treatment e↵ect.

3.1.4 Showing classification accuracy of biomarker

The ROC curve can be used as a graphical method of distinguishing poor or good respon-
ders to a new treatment. This approach is motivated by the fact that the former CBPTI
plots are highly dependent on the scales which the continuous biomarkers are set. When
comparing multiple biomarkers with di↵erence scales, there is insu�cient evidence to assess
the performance of biomarkers. Huang et al proposed a new approach, ROC curve, which
puts candidate biomarkers on the same scale to facilitate comparisons [16]. Their ROC
curve is constructed under strict assumptions on the basis of a potential outcome frame-
work. We propose an approach for normal distributed endpoints which can be applied to
parallel group RCTs. Although there are some similarities to the selection impact curve,
a ROC curve provides the sensitivity and 1-specificity for the performance of biomarker in
distinguishing good or poor responders.

Given a particular cut-o↵ value z0 of the biomarker Z, an individual can be classified as
a good responder under a new treatment (� < 0) if Z is above the threshold z0. Here, �
may be the log(HR) expressing the event risk of the new treatment relative to the standard
treatment for the chosen individual. The classification accuracy of the treatment-selection
biomarker is characterized in two ways: the true positive fraction (TPF), defined as the
probability of correctly identifying a good responder (treatment-e↵ective individual), and
the false positive fraction, (FPF) defined as the probability of incorrectly classifying a bad
responder (treatment-ine↵ective individual) as a good responder. Formally, TPF (z0) =
P [Z > z0|� < 0] and FPF (z0) = P [Z > z0|� � 0]. A ROC curve for varying cuto↵
values is drawn with the TPF on the vertical axis and the FPF on the horizontal axis:
ROC(x) = TPF (FPF�1(x)), 0 < x < 1. Figure 3.11 comes from Huang’s approach
but similar to our idea for two candidate treatment-selection biomarkers [16]. Ad5 is
a better biomarker than age for treatment selection because it deviates more from the
diagonal. This plot is intrinsically informative for comparing candidate biomarkers in a
clinical setting. Methodological limitations include lack of confidence bands elucidating
uncertainty estimates, and the lack of the diagonal line which can serve as a benchmark.

The ROC curve describes how well the good responders can be di↵erentiated from
the bad responders based on some biomarker measurement (high marker values indicating
good response). However, sensitivity and specificity are of no practical use when it comes
to helping clinicians estimate the probability of good response in individual patients since
both quantities elucidate the distributions of the biomarker in responder groups and do not
directly provide information on individual prediction. Providing positive predictive value
(PPV) and negative predictive value (NPV) is of highest interest: PPV (z0) = P [� <
0|Z > z0] and NPV (z0) = P [� � 0|Z  z0]. The calculation of both values is a function
of the constitution of the entire sample. The interpretation of PPV and NPV are the
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Figure 3.11: Plot of ROC curves for classifying a subject into treatment-e↵ective or
treatment-ine↵ective groups. (Huang et al. Biometrics Sept, 2012 p694) [16]

proportions of good responders and bad responders in biomarker measurement that are
above cut-o↵ value or below cut-o↵ value, respectively. However, any approach that uses
the conditional probability of outcome given biomarker cuto↵ is defective for individual
prediction. Therefore, to understand the implications, on the basis of our ROC approach,
we calculate the proportions of good responders and bad responders given the biomarker
value. The prediction curve is helpful for predicting the probabilities of good response and
bad response given an individual’s biomarker value. The plot is displayed in the section
3.2.5 Prediction curve.

3.2 R cbpti vignette

R ”cbpti” vignette was developed to explore the interaction between a linear or nonlinear
(fractional polynomial) biomarker and treatment group. The package can be implemented
in linear, logistic, and Cox regression. In the following we will describe main parts of the
R comments for cbpti by using an example from Medical Research Council RE01 phase III
randomized controlled trial [31].

In the dataset, 347 patients with metastatic renal carcinoma were randomized to either
to interferon-alpha treatment (IFA, n = 172) or medroxyprogesterone acetate treatment
(MPA, n = 175) at 31 centers in the UK between 1992 and 1997. The data consists of ID,
treatment group (0=MPA, IFA=1), patient’s age at baseline, patient’s white blood cell
count, censoring indicator (0=censored and 1=event), and overall survival time (days).
Of these patients, 25 patients were censored and their survival times were imputed [26].
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Therefore, the censoring indicators for all patients were recorded as ”1”. The data can be
loaded from the package by applying the function data(), specifying the package ”cbpti”
to be chosen.

R> data(MRC,package="cbpti")

The users can use the function str() to display the internal structure of dataset MRC. Here,
the treatment outcome is overall survival and survival time was converted from days to
months. The patient’s white blood cell count (109/L) was used as a biomarker.

R> str(MRC)

’data.frame’: 347 obs. of 6 variables:

$ ID : num 1037 1074 1149 1324 1046 ...

$ trt : num 1 1 1 1 1 0 1 1 1 1 ...

$ age : num 67.3 42.1 65.4 60.5 67.8 ...

$ wcc : num 6.4 5.1 9.2 7.3 6.6 ...

$ censdead: num 1 1 1 1 1 1 1 1 1 1 ...

$ survtime: int 1419 2254 271 843 611 473 1098 1057 1051 233 ...

R> MRC$censtime <- round(MRC$survtime/30, digits=2)

First, the users can use the function bm.form to find the best fitted fractional polynomial
object for a continuous biomarker and use the function print() to display the results.

R> form <- bm.form(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, arm="trt", family=cox, method="efron")

R> print(form)

Call:

bm.form(formula = Surv(censtime, censdead) ~ fp(wcc, df = 4, select = NA, scale =

TRUE), data = MRC, arm = "trt", family = cox, method = "efron")

Arm = 0

$coef.0

coef exp(coef) se(coef) z Pr(>|z|)

I((wcc/10)^1) 0.7289966 2.072999 0.2186012 3.334824 0.0008535354

Concordance: 0.576 Standard error: 0.026

Arm = 1

$coef.1

coef exp(coef) se(coef) z Pr(>|z|)

I((wcc/10)^3) 0.8999309 2.4594331 0.12853702 7.001336 2.535305e-12

I((wcc/10)^3 * log((wcc/10))) -0.6538387 0.5200456 0.09892509 -6.609433 3.857947e-11

Concordance: 0.647 Standard error: 0.026

where fp denotes a special term for fitting fractional polynomial. There are several argu-
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ments in ’fp’. The ’df’ is degrees of freedom of the fractional polynomial model. The df=4
and df=2 denote the maximum permitted degree m=2 (default) and m=1 in fractional
polynomial model, respectively. The df=1 is linear fractional polynomial model. The
argument select sets the variable selection level for the input variable. The argument
alpha sets the fractional polynomial selection level for the input variable. The argument
scale specify whether to use pre-transformation scaling to avoid numerical problems (de-
fault=TRUE). The argument arm is treatment group assignments. Error occurs if not
equal to two treatment arms are found in this variable.
The results show that the functions of white blood cell count for MPA treatment and IFA
treatment are

�1 ⇥
⇣wcc
10

⌘

and

�1 ⇥
⇣wcc
10

⌘3
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⇣wcc
10
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⇥ log

⇣wcc
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⌘
,

respectively.
In the following, (1) interaction plot, (2) contrast plot, (3) proportion of unfavorable

treatment e↵ect plot, (4) ROC curve, and (5) prediction curve were produced presenting
the relationship between treatment group and white blood cell count. In the R vignette,
pointwise confidence intervals was calculated instead of simultaneous confidence bands
since it is much easier to calculate than simultaneous confidence bands and commonly
used in clinical reports. Moreover, previous study has shown that pointwise confidence
intervals work well in practice [15]. For the sake of simplicity, here assumes that the
outcome measurements of the two treatment groups are not correlated and the covariance
is thus assumed to be zero. We give the functions written in R accompanied by the
produced plots. Note that the functions were written and tested and the plots produced
with R version 3.2.2.

3.2.1 Interaction plot

The users can produce the interaction plots with 95% pointwise confidence intervals by
applying the function bmplot.interaction(). The function draws fitted a regression line
for each treatment arm. The dots show the risk of death of population distribution relative
to white blood cell count. The argument obs.time specifies the length of observation for
survival data. The following example is interaction plot for the white blood cell count.
The function autoplot() and print() are generic functions for plotting an object and
printing the results, respectively.

R> p1 <- bmplot.interaction(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, family=cox, arm="trt", obs.time=6,

+ conf.level=0.95)
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R> print(p1)

*.0 indicates arm = 0

*.1 indicates arm = 1

wcc.interval lwr.0 fit.0 upr.0 lwr.1 fit.1 upr.1

1 3.100000 0.6369106 0.5302407 0.4235708 0.3955423 3.434533e-01 0.29136437

2 3.250578 0.6388644 0.5341418 0.4294193 0.3972799 3.452587e-01 0.29323743

3 3.401156 0.6408590 0.5380531 0.4352473 0.3991536 3.472049e-01 0.29525635

4 3.551734 0.6428947 0.5419742 0.4410537 0.4011672 3.492962e-01 0.29742520

5 3.702312 0.6449716 0.5459047 0.4468378 0.4033248 3.515364e-01 0.29974806

6 3.852890 0.6470901 0.5498443 0.4525986 0.4056302 3.539296e-01 0.30222898

7 4.003468 0.6492502 0.5537927 0.4583351 0.4080875 3.564797e-01 0.30487199

8 4.154046 0.6514523 0.5577494 0.4640464 0.4107006 3.591908e-01 0.30768113

9 4.304624 0.6536968 0.5617141 0.4697314 0.4134734 3.620669e-01 0.31066045

10 4.455202 0.6559838 0.5656864 0.4753891 0.4164100 3.651120e-01 0.31381399

:

(Omit)

R> autoplot(p1, xlim=c(0,20), ylim=c(0,1.25), xlab=expression(paste("White blood

+ cell count ", "("*10^{9})*"/L)"), ylab="Risk of death by 6 months", title="",

+ background=theme_classic()

Figure 3.12: R cbpti vignette: Interaction plot

The interaction plot shows that the IFA treatment is only favorable for the subjects
whose white blood cell counts below 11 (109/L).
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3.2.2 Contrast plot

The contrast plot showing the di↵erence of treatment e↵ects between treatment arms with
95% pointwise confidence interval is given by the function bmplot.constrast(). The hor-
izontal benchmark line is calculated by the mean of predicted di↵erence between treatment
arms and displayed as a solid line in the contrast plot. The argument ref specifies the
reference group. The following R codes are the contrast plots for the white blood cell count:

R> p2 <- bmplot.contrast(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, family=cox, arm="trt", ref="0", obs.time=6,

+ conf.level=0.95)

> print(p2)

wcc.interval diff diff.se diff.lwr diff.upr

1 3.100000 -0.1867873517 0.06056546 -0.305493469 -0.068081234

2 3.250578 -0.1888831745 0.05965886 -0.305812399 -0.071953950

3 3.401156 -0.1908481767 0.05876798 -0.306031300 -0.075665053

4 3.551734 -0.1926780005 0.05789296 -0.306146116 -0.079209885

5 3.702312 -0.1943682980 0.05703396 -0.306152812 -0.082583784

6 3.852890 -0.1959147224 0.05619116 -0.306047368 -0.085782077

7 4.003468 -0.1973129215 0.05536472 -0.305825770 -0.088800074

8 4.154046 -0.1985585314 0.05455481 -0.305484003 -0.091633060

9 4.304624 -0.1996471720 0.05376164 -0.305018049 -0.094276295

10 4.455202 -0.2005744438 0.05298538 -0.304423882 -0.096725006

11 4.605781 -0.2013359256 0.05222623 -0.303697462 -0.098974389

12 4.756359 -0.2019271745 0.05148440 -0.302834738 -0.101019611

13 4.906937 -0.2023437257 0.05076008 -0.301831646 -0.102855805

14 5.057515 -0.2025810953 0.05005348 -0.300684109 -0.104478082

15 5.208093 -0.2026347836 0.04936481 -0.299388041 -0.105881527

16 5.358671 -0.2025002803 0.04869430 -0.297939348 -0.107061212

17 5.509249 -0.2021730711 0.04804214 -0.296333940 -0.108012203

18 5.659827 -0.2016486465 0.04740857 -0.294567727 -0.108729566

19 5.810405 -0.2009225117 0.04679378 -0.292636638 -0.109208386

20 5.960983 -0.1999901991 0.04619800 -0.290536623 -0.109443776

21 6.111561 -0.1988472824 0.04562144 -0.288263670 -0.109430895

22 6.262139 -0.1974893927 0.04506431 -0.285813818 -0.109164968

23 6.412717 -0.1959122374 0.04452680 -0.283183170 -0.108641305

24 6.563295 -0.1941116209 0.04400912 -0.280367914 -0.107855328

25 6.713873 -0.1920834680 0.04351145 -0.277364344 -0.106802592

:

(Omit)

R> autoplot(p2, xlab=expression(paste("White blood cell count ",

+ "("*10^{9})*"/L)"), ylab="Difference in Risk of death by 6 months",

+ xlim=c(0,20), ylim=c(-1,1), title="", background=theme_classic())
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Figure 3.13: R cbpti vignette: Contrast plot

The contrast plot shows that the di↵erence (IFA vs MPA) in risk of death by 6 months
becomes higher with the increase of the white blood cell count.

3.2.3 Proportion of unfavorable treatment e↵ect plot

The proportion of unfavorable treatment e↵ect plot shows the estimated proportion of pa-
tients who would possibly su↵er an unfavorable outcome from treatment and is given by
the function bmplot.proportion(). A 95% pointwise confidence interval is also presented
in the proportion of unfavorable treatment e↵ect plot. The argument ncoef is the number
of produced regression coe�cients from the specified multivariate normal distribution and
used for the estimation of confidence intervals. The following R codes are the proportion
of unfavorable treatment e↵ect plots for the white blood cell count:

R> p3 <- bmplot.proportion(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, family=cox, arm="trt", ref="0", obs.time=6,

+ conf.level=0.95, ncoef=1000)

R> print(p3)
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wcc.interval pfit lwr upr

1 3.100000 0.39771477 0.37002992 0.42216171

2 3.250578 0.39663251 0.36756882 0.42231511

3 3.401156 0.39562186 0.36518035 0.42254460

4 3.551734 0.39468502 0.36286721 0.42285242

5 3.702312 0.39382418 0.36063208 0.42324080

6 3.852890 0.39304154 0.35847764 0.42371200

7 4.003468 0.39233931 0.35640656 0.42426829

8 4.154046 0.39171970 0.35442152 0.42491192

9 4.304624 0.39118495 0.35252520 0.42564521

10 4.455202 0.39073733 0.35072029 0.42647046

:

(Omit)

R> autoplot(p3, xlab=expression(paste("White blood cell count ",

+ " ("*10^{9})*"/L)"),ylab="Risk Probability in 6 months", xlim=c(0,20),

+ title="", background=theme_classic())

Figure 3.14: R cbpti vignette: Proportion of unfavorable treatment e↵ect plot

In the package, there is no function to add a vertical line displaying the choice of
threshold automatically. It is recommended to add a vertical line as a threshold where the
curve reaches 0.5 in the proportion of unfavorable treatment e↵ect plot; the implication is
that the IFA treatment is suggested for the subjects whose white blood cell counts falls
below 11 (109/L).
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3.2.4 ROC curve

In regard to the ROC curve in the cbpti package, we do not employ Huang’s methodology
[16] since their approach uses ROC curves in the potential outcome framework under severe
restriction. We generalize this idea to the standard two parallel armed RCT setting with
continuous outcome and use a simple algorithm for estimation of the ROC.

The ROC displays true positive fractions and false positive fractions and can be plotted
using the function bmplot.ROC(). The ROC analysis is constructed on a basis of contrast
plot. For the treatment di↵erences (�) between two groups given each biomarker value,
a randomly generated sample of deltas from a normal distribution is created. A certain
biomarker value is then specified as a cut-o↵ point. If an individual’s biomarker value is
above this cut-o↵, this individual is considered a good responder, otherwise the individual
is considered a bad responder. In this randomly generated population, we can categorize
all individuals into four types: true positive, false positive, true negative and false negative
individuals. The true positive fraction (TPF) is defined as the probability of correctly
identifying a good responder. The false positive fraction (FPF) is defined as the probabil-
ity of incorrectly classifying a bad responder as a good responder. Given di↵erent cut-o↵
points, a ROC curve can be created and the area under the curve can be estimated. The
argument nperm is the size of the generated random sample from the normal distribution
and used for the improved estimation of true positive fraction and false positive fraction.
The calculation of these estimates was done by applying the package ROCR [32].

R> p4 <- bmplot.roc(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, family=cox, arm="trt", ref="1", obs.time=6,

+ conf.level=0.95, ncoef=100, nperm=10)

R> print(p4)

cutoff fpr tpr

1 Inf 0.000000000 0.0000000000

2 55.200001 0.004713523 0.0006094029

3 37.099998 0.007299490 0.0038566062

4 22.100002 0.009831081 0.0071930109

5 21.699999 0.012410257 0.0103854988

6 19.700001 0.014564900 0.0142053850

7 18.400000 0.016612600 0.0181093863

8 17.399998 0.018706023 0.0219886475

9 17.200001 0.022929961 0.0299341393

10 15.399998 0.025287961 0.0334842560

11 15.300000 0.027027027 0.0376485179

12 15.000001 0.029285347 0.0414412898

13 14.299999 0.034057587 0.0489707607

14 14.199999 0.038281015 0.0564895763

15 14.100001 0.040182064 0.0604088539

:

(Omit)
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[1] "AUC=0.5525 (95% CI=0.5355-0.568)"

R> autoplot(p4, title="")

Figure 3.15: R cbpti vignette: ROC curve

The ROC curve may lie below the chance diagonal (implying the area under the curve
(AUC) of the ROC curve < 0.5) depending on the direction of treatment e↵ect across
the range of biomarker value. In this case, we reversed the classifier by setting the other
treatment group as reference and recalculate the AUC for the corrected classifier (cor-
rected AUC=1-AUC), for easy interpretation. The interpretation of AUC for the white
blood cell count is that a bad responder will have a higher white blood cell count than
55.2% (95%CI=53.5%-56.7%) of good responders. However, the result seems not to be
so promising and points out that the white blood cell count does not discriminate be-
tween good responders and bad responders although we found a significant heterogeneity
of treatment e↵ect in interaction plot and contrast plot. For reporting CBPTI in clinical
research, interaction plot and contrast plot are not su�cient for a good biomarker perfor-
mance. ROC curve can be thought of good appraoch of presenting an intrinsic property
of a biomarker.

3.2.5 Prediction curve

Since the true positive fraction and the false positive fraction are of no practical use in
helping clinicians estimate the probability of good response in individual patients, here
calculate the proportion of good responders and bad responders based on ROC analy-
sis. Given each biomarker value, a randomly generated sample of deltas from a normal
distribution is created. The proportion of good responders (� < 0) and bad responders
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(� � 0) can be estimated given each randomly generated sample for each biomarker value.
The following R codes create the plot for the white blood cell count by using function
bmplot.prediction() :

R> p5 <- bmplot.prediction(Surv(censtime, censdead) ~ fp(wcc, df=4, select=NA,

+ scale=TRUE), data=MRC, family=cox, arm="trt", ref="0", obs.time=6,

+ conf.level=0.95, ncoef=100, nperm=100)

R> print(p5)

marker bad.lwr bad.p bad.upr good.lwr good.p good.upr

1 3.100000 0.3147500 0.3850000 0.4700000 0.5300000 0.6150000 0.6852500

2 3.800000 0.3415833 0.3966667 0.4601667 0.5398333 0.6033333 0.6584167

3 3.900000 0.2842500 0.3800000 0.4752500 0.5247500 0.6200000 0.7157500

4 4.300000 0.2947500 0.3800000 0.5052500 0.4947500 0.6200000 0.7052500

5 4.400000 0.3123750 0.3925000 0.4526250 0.5473750 0.6075000 0.6876250

6 4.500000 0.2895000 0.3900000 0.4852500 0.5147500 0.6100000 0.7105000

7 4.700000 0.3315833 0.3916667 0.4566667 0.5433333 0.6083333 0.6684167

8 4.800000 0.3348750 0.3887500 0.4601250 0.5398750 0.6112500 0.6651250

9 4.900000 0.3023750 0.3800000 0.4683750 0.5316250 0.6200000 0.6976250

10 5.000000 0.3286875 0.3825000 0.4501250 0.5498750 0.6175000 0.6713125

:

(Omit)

R> autoplot(p5, xlab=expression(paste("White blood cell count ",

+ "("*10^{9})*"/L)"), xlim=c(0,20), ylim=c(0,1), title="", background=

+ theme_classic())

Figure 3.16: R cbpti vignette: Prediction curve
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The blue and red colors denote the proportion of good responders and the proportion of
bad responders under the IFA treatment, respectively. The proportion of good responders
under the IFA treatment is higher than bad responders for the subjects whose white blood
cell counts falls below 11 (109/L).
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Chapter 4

Discussion

4.1 Summary and outlook

We propose a set of criteria which help to create clear and informative CBPTI plots, such
as general principles of visual display, appropriate quantification of statistical uncertainty,
use of units presenting absolute outcome measures, correct display of a benchmark, and
information content for medical decision-making. They are in consonance with ideas for-
mulated previously by various authors and are compiled for the first time in the proposed
list. Table 4.1 summarizes our assessment for each CBPTI plot based on our guiding
principles. The proposal is open for discussion.

In order to assess the usefulness and completeness of the criteria list, we performed two
literature reviews, one oriented toward methodology and biostatistics, the other focused
on the present practice documented in medical journals. We found that newly devel-
oped methodological and biostatical approaches to CBPTI plots are an attempt to answer
clinical questions relevant to medical decision-making but are not commonly employed in
clinical research reporting practice. Although it may take time for the translation of the
innovative methodologies from biostatistics journals to medical journals, the main reason
for their lack of use may be the complex algorithms and the unavailability of the statisti-
cal software necessary for their implementation. Moreover, we found that the utilization
of CBPTI plots in medical journals is burdened by poor debatable practice: the lack of
presentation of statistical uncertainty, the outcome measure being given as relative unit
instead of absolute unit, incorrect benchmarking, and being non-informative for medical
decision-making. We encourage researchers to follow the guidelines specified in our study
for improved presentation of graphics in future trial reports.

In 2014, European Medicines Agency (EMA) proposed the new guidelines focused on
the investigation of subgroups in clinical research [1]. The Section 4.3 addressed the basic
considerations for evaluation of heterogeneous treatment e↵ect and associated data presen-
tations. However, the principles ignore some key issues relevant to interpretation of results
and medical decision making in data presentation. Their guidelines need to be further
discussed and improved. First, it is recommended by EMA to show statistical uncertainty
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by confidence intervals. The confidence intervals for binary or categorical biomarkers are
straightforward. While in a complicated setting such as continuous biomarker, the ap-
proaches of showing uncertainty of treatment e↵ect over the range of the biomarker, either
pointwise confidence intervals or simultaneous confidence bands, depend on the purpose
of study and should addressed at the pre-specified statistical plan. If the authors apply
inappropriately, it may lead to erroneous medical decision since simultaneous confidence
bands are wider than pointwise confidence intervals.

Second, EMA states that a forest plot is a useful tool in investigation of treatment-
covariate interaction. However, one crucial issue relevant to direct interpretation of hetero-
geneous treatment e↵ect is missing. Drawing a benchmark line for direct interpretation,
either at the point of overall treatment level or at the point of no treatment level, is critical
important. EMA should clearly indicate the benchmark line should be at the overall treat-
ment e↵ect since we are not interested in the comparison between experimental treatment
and standard treatment but the heterogeneity of treatment e↵ect among subgroups. Incor-
rect benchmarking will a↵ect the readers to make the faulty medical decision. The same
idea also fits to graphical presentation in treatment-continuous biomarker interaction.

Third, both ICH E9 and the new guidelines on the investigation of subgroups proposed
by EMA indicate heterogeneity of treatment e↵ect should detect first through the addition
of interaction terms to the regression models. The new guidelines further point out the
sole reporting of interaction term is inadequate. It is recommended to show di↵erences in
treatment e↵ects among subgroups. However, the guidelines for investigation of heteroge-
neous treatment e↵ect are still insu�cient since Huang et al [16] have demonstrated the
two scenarios with the same regression coe�cient of interaction term but very di↵erent
biomarker performance because it depends on the scale and functional form of biomarker.
Interaction plot or contrast plot fail to lead medical decision making. Huang [16] proposed
a ROC curve to overcome this limitation snice it provides a natural common scale for com-
paring true positive fraction and false positive fraction achieved with treatment selection
policies based on candidate biomarkers. However, Huang’s approach is used for binary
outcome and is constructed under potential outcomes framework with severe restrictions.
They assume the experimental treatment will not be harmful or will have not any benefit.
The limitation on the use of their approach in general settings can be anticipated. There-
fore, we proposed a new ROC curve which is used for continuous outcome or survival time.
Under randomization assumption, we assume biomarker distributions among treatment
groups are equal. Thus, treatment di↵erence given biomarker value can be estimated. The
approach is straightforward and can be applied in any randomized controlled trial with
parallel group design.

There are some limitations and strengths of this study. First, we provide a list of
criteria which is based on our personal experience and knowledge of the methodological
literature. Further aspects may be added. Second, we performed a formal search strategy
neither in the biostatistical/methodological journals nor in the medical journals. Instead a
hand search was performed. Our survey was an attempt to review how researchers present
CBPTI plots, which are used to combine findings in clinical papers. The current search
engines fail to conduct a sensible search for our purposes. However, we made great e↵orts
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to locate the existing CPBTI plots. We know there are papers which provide CBPTI
plots in journals which were not searched. For example, the reference [20] provides two
plots presenting the functional form of the interaction between biomarker and treatment.
We believe that the report can provide a comprehensive and representative result on how
CBPTI plots are used in the reporting practice of major medical journals. Third, the
search was limited to randomized controlled trials with parallel group design. In principle,
the concepts of CBPTI cannot be employed in observational or registry studies. The
randomization is crucial in ensuring adequate distributions of the biomarker values in
the control and experimental groups. Since clinical practice is not randomized, it is an
open problem of how these plots actually support practical clinical decision-making (a
question of internal/external validity). In spite of the limitations, our systematic review
provides not only comprehensive methodologies on assessing CBPTI plots but also critical
guiding principles of reporting CBPTI for improved future study. This work promotes the
development of personalized medicine in the clinical setting. We have developed a first
version of an R vignette called cbpti, which implements interaction plots, contrast plots,
proportion of unfavorable treatment e↵ect plots, ROC curve, and prediction curve. The
main limitation of our R vignette for nonlinear function of biomarker is only employed in
fractional polynomial function instead of spline function.

4.2 Conclusions

Evaluating the interaction between treatment and a continuous biomarker requires ad-
vanced statistical methodology, which makes formal communication of the results for the
clinical setting di�cult. Graphical presentation may be particularly informative for a re-
searcher who is not an expert in biomarker statistics. Although interaction plots and
contrast plots are commonly used in medical literature, we would encourage researchers
to employ new methods such as the selection impact curve, the marker-by-treatment pre-
dictiveness curve, risk curve, proportion of unfavorable treatment e↵ect plot, ROC curve,
and prediction curve, as such approaches answer key clinical questions relevant to medical
decision-making. The proposed guiding principles in our report would be helpful for the
improved presentation of CBPTI plots in future practice.
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