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Summary

A central question pertinent to our understanding of volcanic eruptions is: how
long can magma remain permeable during shallow ascent? The answer to this
complex question has implications for whether or not volcanic plugs can form at
the top of silicic conduits and for the longevity of overpressure in magma, which
is key to understanding the likelihood that a magma will fragment explosively
in eruption. In this thesis a conceptual, and then mathematical framework for
addressing this problem is established before experimental data is presented. The
mathematical treatment of the problem progresses from processes that affect single
droplets and that can be explicitly constrained, such as heat and mass transfer
and shape changes in volcanic droplets, before applying these concepts to arrays
of many droplets and porous liquids in general. In testing experimental data, a
step-by-step approach is taken in which (1) a controlled analogue dataset is used
to differentiate the model that best describes the data; (2) the chosen model is
extended to more volcanically relevant conditions by testing it against experiments
performed using natural materials; and (3) the consequences of the densification
process for the time dependence of permeability are assessed. A universal scaling
is found between the porosity and the permeability of densifying systems and this
is used to calibrate a numerical model for the kinetics of permeability decay in
volcanic plugs. Finally, a densification map is provided on which the dominant
timescales and lengthscales are compared such that specific volcanic conditions
or observations can be plotted to assess whether or not they are consistent with
the densification process. In conclusion, it is noted that permeable magmas and
viscous liquids in general will densify until an equilibrium volume is reached.
This densification is driven by either the surface tension stresses internal to the
permeable pore network or by additional external stresses and is limited by the
liquid viscosity and the lengthscale of the pores.

All volcanic eruptions are driven by exsolved gas and the buoyancy and pressure
they contribute to the system and must be outgassed in either explosive or passive
events. While the explosive contribution of magma outgassing has received much
attention, the physical process by which passive outgassing, and the resultant
densification, occur remains poorly understood. Future work could constrain the
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regime in which explosive and passive degassing are coincident and compete to
release the gas-pressure built up during the shallowest portions of magma ascent
to the Earth’s surface.
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Zusammenfassung

Eine wichtige Schlüsselfrage für unser Verständnis von Vulkanausbrüchen lautet:
wie lange bleibt Magma während des Aufstiegs permeabel? Die Antwort auf diese
Frage beeinflusst, ob der Vulkanschlot von einem vulkanischen Plug verschlossen
wird und hat Auswirkungen auf die Langlebigkeit des magmatischen Überdrucks,
welcher wegweisend für die Explosivität eines Ausbruches ist. Zur Behandlung
dieses Problems werden in dieser Arbeit zunächst ein konzeptioneller, sowie ein
mathematischer Rahmen aufgespannt, anschließend werden experimentelle Daten
gezeigt. Die mathematische Behandlung der Fragestellung führt über verein-
fachte Prozesse, die nur einzelne Tropfen betreffen und exakt begrenzt werden
können – wie etwa Wärmeübertragung, Stoffübertragung und Formveränderung
– zur Anwendung auf eine Anordnung von mehreren Tropen bis hin zu porösen
flüssigen Phasen im Allgemeinen. Die schrittweise Vorgehensweise besteht aus
(1) der Herausbildung eines Models, welches die Ergebnisse von Experimenten
mit Analog Materialien am besten beschreibt, (2) der Erweiterung dieses Mod-
els auf vulkanisch relevantere Bedingungen, indem es mit natürlichen Materialien
getestet wird und (3) der Auswertung der Auswirkung des Verdichtungsprozesses
auf Permeabilität in Abhängigkeit der Zeit. Der durchgängige Zusammenhang
zwischen Porosität und Permeabilität während des Verdichtungsprozesses dient
zur Kalibrierung eines numerischen Models, welches die Kinetik der Permeabil-
itätsabnahme in einem vulkanischen Plug berechnet. Eine finale Graphik zeigt die
dominanten Zeit- und Längenskalen, auf welcher individuelle vulkanische Bedin-
gungen abgebildet werden können, um zu beurteilen, ob sie mit dem Verdich-
tungsprozess übereinstimmen. Abschließend wird angemerkt, dass permeable
Magmen und viskose Flüssigkeiten im Allgemeinen verdichten bis sich ein Vol-
umen Gleichgewicht einstellt. Angetrieben wird diese Verdichtung entweder von
der internen Oberflächenspannung im permeablen Porennetzwerk oder von zusät-
zlicher externer Belastung. Limitierend auf den Prozess wirken die Viskosität der
Flüssigkeit und die Größe der Poren.

Vulkanausbrüche werden von der ausgeschiedenen Gasphase und deren Auftrieb-
skraft und Druck angetrieben, was zur explosiven oder passiven Entgasung führt.
Obgleich der explosiven Komponente der Magmenentgasung viel Beachtung geschenkt
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wird, bleibt der physikalische Prozess, der zu passiver Entgasung und resultieren-
der Verdichtung führt, unzulänglich verstanden. Zukünftige Forschungsarbeit
könnte das Regime untersuchen, in dem explosive und passive Entgasung überlap-
pen und im Wettstreit stehen um den Abbau des Gasüberdrucks, der sich während
des Magmen Aufstiegs zur Erdoberfläche aufbaut.
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Nomenclature

α Arrhenius constant [K−1].
ᾱ Dimensionless Arrhenius con-

stant.
ϕ̄ Normalized porosity.
C̄e Dimensionless water solubility.
C̄w Dimensionless water concentra-

tion.
D̄T Dimensionless thermal diffusiv-

ity.
D̄w Dimensionless water diffusivity.
ē Dimensionless water diffusion

coefficient.
k̄ Normalized permeability.
q̄ Dimensionless temperature

rate.
r̄ Dimensionless radial position.
t̄b Dimensionless bubble relax-

ation time.
t̄n Dimensionless neck formation

time.
T̄ Dimensionless temperature.
t̄ Dimensionless time.
χ Concentration of a diffusing

species.

ηr Relative viscosity.
Γ Surface tension [N m−1].
ô Empirical constant.
κ Thermal conductivity [W m−1 K−1].
κ0 Pore-free thermal conductivity

[W m−1 K−1].
λb Bubble relaxation time [s].
λb Characteristic capillary time [s].
λn Neck formation time [s].
λDa Darcy compaction timescale [s].
⟨ξn⟩ nth moment of the probability

density function of ξ.
µ Liquid viscosity [Pa s].
µg Gas viscosity [Pa s].
Φ Connected porosity.
ϕ Porosity.
ϕf Final sample porosity.
ϕi Initial porosity.
ϕm Maximum packing fraction of

crystals.
ϕx Volume fraction crystals.
ϕm∗ Maximum packing fraction of

spherical crystals.
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ψ A constant in pressure-
sintering.

ρ Liquid density [kg m−3].
ρf Pore-fluid density [kg m−3].
Eo Eötvös number.
Oh Ohnesorge number.
Fo Fourier number.
Θ Cylindrical radius [m].
Υ VFT parameter [Pa s].
Υi VFT parameter [Pa s].
Υii VFT parameter.
ξ a/R.
A Sample area in the Θ : L plane

[m2].
Ai Initial sample area in the Θ : L

plane [m2].
ai Initial bubble radius [m].
b VFT parameter [K].
bi VFT parameter [K].
bii VFT parameter [K].
c VFT parameter [K].
Ce Water solubility [wt%].
ci VFT parameter [K].
Cp Specific heat capacity

[J kg−1 K−1].
Ce0 Solubility parameter [K−1].
Cei Water solubility at an initial

temperature [wt%].
cii VFT parameter [K].

Cpf Specific heat capacity of pore
fluid [J kg−1 K−1].

Cwi Initial water concentration
[wt%].

Cw Water concentration [wt%].
D Diffusivity (species not speci-

fied) [m2 s−1].
d Empirical constant.
di Empirical constant.
DT Thermal diffusivity [m2 s−1].
Dw Diffusivity of bulk water

[m2 s−1].
dii Empirical constant.
DT 0 Extrapolated thermal diffusiv-

ity at zero temperature [m2 s−1].
DT i Initial thermal diffusivity

[m2 s−1].
Dwi Initial diffusivity of water

[m2 s−1].
e Empirical constant.
ei Empirical constant.
EV (ξ) Pore nearest neighbour exclu-

sion probability function.
eV (ξ) Polydisperse form of EV (ξ).
eii Empirical constant.
F (ξ) Cumulative probability density

function.
g Acceleration due to gravity

[m s−2].
hn Radius of curvature of a neck

[m].
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k Permeability [m2].
ki Initial permeability [m2].
Li An initial length [m].
Lq Length of a series of droplets

[m].
LDa Darcy compaction lengthscale

[m].
m Crystal roughness factor.
m′ The Schultz factor.
mi Initial sample mass [kg].
Nb Bubble number density [m−3].
P External pressure in a sintering

system [Pa].
p Hydrostatic pressure [Pa].
pn A set of constants for mi-

crostructure constraint.
q Temperature rate [K s−1].
qn A set of constants for mi-

crostructure constraint.
R Particle or droplet radius [m].

r Radial position [m].
Ri Initial particle radius [m].
Rn Inter-particle neck radius [m].
rp Aspect ratio of crystals.
Rw Characteristic length for water

diffusion [m].
RF o Charateristic Fourier length

[m].
S Specific surface area ratio.
s Specific surface area [m−3].
T Temperature [K].
t time [s].
Tf Final temperature [K.
Ti Initial temperature [K.
V Sample volume [m3].
Vf Final sample volume [m3].
Vi Initial sample volume [m3].
y The vertical position in a cylin-

drical sample.
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Happy were those who dwelt within the eye

Of the volcanos, and their mountain-torch

Lord Byron

1
Introduction

This thesis is concerned with a problem central to volcano-science; namely,

how do magmas lose volatile gas? All explosive eruptions on Earth are driven

by gas exsolution, which confers buoyancy, drives ascent, builds overpressure and

can lead to explosive fragmentation of viscous magma [e.g. Gonnermann, 2014;

1



Gonnermann & Manga, 2007; Alidibirov & Dingwell, 1996; Spieler et al., 2004].

However, it is only recently that the complexities of the final shallowest portion

of the magmatic journey to the surface have been appreciated. Most prominently,

the realization that magma becomes highly permeable at some point during its

ascent [e.g. Klug & Cashman, 1996; Mueller et al., 2005], and that volatile phases

outgassing from magma conduits contain components that likely come from sig-

nificant depths [Schipper et al., 2013], implying that, once established, magma

permeability may extend over huge lengthscales in magma-filled conduits. The

conceptual underpinning of this thesis is that if a hot viscous liquid is highly per-

meable and connected to the ambient atmosphere, it is unstable and can densify.

Speaking broadly, it is this problem which is central to understanding outgassing

cycles at the most-dangerous silicic volcanoes because the longevity of perme-

ability dictates the time interval between catastrophic pressure-building events

leading to explosions.

1.1 Outgassing: The state of the art

In all models of magma ascent-driven degassing, the traditional view was that

bubbles nucleate at a depth at which the magma is sufficiently supersaturated

in a volatile phase [Gonnermann & Manga, 2007]. The conceptual model then

requires that these bubbles grow during continued ascent and depressurization

[Llewellin & Manga, 2005]. For most volcanic scenarios, the viscosity of the bub-

ble walls is sufficient to inhibit equilibrium bubble volumes being attained and the

consequence is that the gas pressure rises inside the bubble, exerting high stresses

2



on the surrounding liquid [Prousevitch et al., 1993]. Based on a variety of criteria

for the failure of liquids under shear stresses, this can be converted to a critical

ascent rate at which bubbles will rupture and fail, which is a fragmentation event

thought to be analogous to the mechanisms driving large eruptions [Alidibirov &

Dingwell, 1996; Spieler et al., 2004; Gonnermann & Manga, 2007; Mungall et al.,

1996]. This scenario of bubbles growing until a critical stress is achieved at the

bubble wall when eruption occurs is certainly highly relevant. However, I start

from the observation that silicic magmas and the rocks they produce rarely show

a textural record of simple bubble growth dynamics. Rather, they typically dis-

play complex porous network geometries [e.g. Mueller et al., 2005; Shea et al.,

2010; Giachetti et al., 2011]. This may be due to the non-zero crystallinity or the

high viscosity of the liquid phase preventing simple-geometry gas bubble forma-

tion [Oppenheimer et al., 2015]. Whatever the mechanism, these more complex

geometries favour the development of permeability compared with a scenario in

which spherical growing bubbles coalesce at a critical point that depends on their

initial nucleation number density [Blower, 2001]. The state of the art is, therefore,

contradictory in that numerical models have focused on the case where bubbles

are growing spheres of gas in shells of liquid, while experimental and natural

observations have highlighted the shortcomings of such a model.

Permeable magmas for which the liquid phase is viscous are unstable if the

gas pressure is not balancing the hydrostatic liquid pressure. For the majority of

volcanic scenarios in which large quantities of gas are emitted without coincident

magmatic eruption [see Edmonds & Herd, 2007], this is likely to be the case.
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Then the magma volume may decrease until such a point as the pressures are in

equilibrium. There are many observations that are complementary to the view

that magma volumes change significantly with time. The best example of this

is the concept of shallow plug formation at the top of silicic conduits. This is

summarized below.

1.2 Plug formation: There and back again

A key step toward incorporating the fact that permeable magmas must change

volume if their gas phase is connected to the low pressure ambient environment,

was the concept of densification-driven shallow plug formation [e.g. Giachetti

et al., 2010; Diller et al., 2006; Clarke et al., 2007; Kennedy et al., 2016]. It is

thought that if the shallowest part of a magma-filled conduit can densify in a time-

dependent manner, then the plug permeability would decrease and pressure would

build beneath such a plug [Diller et al., 2006]. The plug-formation timescale pro-

vides a tantalizing candidate for understanding inter-eruptive times. While alter-

native explanations have been provided for inter-eruptive times [e.g. Mason et al.,

2006; Costa et al., 2007], plug-formation timescales remain an under-explored

constraint ripe for further investigation [Melnik et al., 2005]. The conceptual link

between processes that lead to increases in porosity (e.g. bubble nucleation and

growth) and permeability (e.g. bubble coalescence and crack formation), and

competing processes which decrease these properties (e.g. densification by com-

paction and sintering), leads to a view of permeability as a dynamic and transient

phenomenon that can undergo hysteresis loops during magma ascent [Michaut
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et al., 2009; Rust et al., 2004].

1.3 A novel concept: Granular liquids and magmas and the origin

of obsidian

The final motivating observation is that fragmentation can occur within magma

itself and does not necessarily require catastophic failure of the whole magma-

filled conduit [Gonnermann & Manga, 2003]. This is congruent with extensive

textural work in silicic obsidian showing that discrete veins of often fine-grained

pyroclastic material can be preserved in otherwise dense obsidian [Tuffen & Ding-

well, 2005]. The veins – often called ”tuffisites” – contain the textural record

of magma fragmentation, fluidized transport of the resultant particle mixture

through hot cracks, deposition and subsequent sintering and densification [Tuffen

et al., 2003]. Diffusion of water into these cracks can be used to model timescales

of crack closure that show that this occurs rapidly [Castro et al., 2012] and cross-

cutting relationships in such veins suggest the process is repetitive during ascent

[Tuffen et al., 2003]. Castro et al. [2014] and Cabrera et al. [2011] suggest that

this fracturing and localized explosivity is a dominant mechanism for degassing

of high-viscosity rhyolitic obsidian. Presumably densification then must be suf-

ficiently efficient to completely heal the fractured and clastic mixture back to a

dense glass, obliterating the textural evidence for the fragmentation event alto-

gether. In this framework the tuffisite veins found in surficial deposits of obsidian

and in pyroclastic bombs [Tuffen & Dingwell, 2005; Schipper et al., 2013; Castro

et al., 2012] are then the final examples that did not reside at high temperature
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for long enough to completely heal.

A novel concept in this thesis is then that it is a scenario special to magmas

in Earth’s silicate crust that after fragmentation a particulate granular mixture is

produced [Kueppers et al., 2006] and that, if the magma remains hot, this granular

material is indeed droplets of high viscosity liquid. The viscosity of these magmas

is typically high and in the glass-transition region. The consequence is that the

granular material can behave like a particulate mixture or like a viscous densifying

array of droplets; a concept that is embodied in the kinetic nature of the glass

transition [Dingwell, 1996; Dingwell & Webb, 1990]. In this thesis in many places

the definition of volcanic ash as particles or droplets is used interchangeably and

the reader should be aware that these terms refer often to the same material.

However, this is only done where it is appropriate, such as when referring to

scenarios in which the volcanic ash is in fact hot enough to be relaxed on the

timescale of observation. Almost all the densification processes discussed herein

are for the densification of these granular magmas or array of granular droplets

and attention is focused on the regime where the densification is viscous and not

elastic or visco-elastic.

The proposal that all obsidian is formed by fragmentation followed by den-

sification in repetitive cycles has consequences for the cyclicity or hysteresis of

permeability in those events. Although they are different in detail, it is another

central theme of this work that, in essence, the granular (fragmentation of stiff

magma) and the vesicular (bubble growth in viscous magma) cases will, once

permeable, densify under similar physical processes [Kennedy et al., 2016]. This
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hypothesis is explicitly tested herein.

1.4 Structure of this thesis

I will outline the methods used, the materials selected and the quantities that

are central to the constraints herein but which were not necessarily measured or

defined as part of this work (Chapter 2). In doing so I will briefly review work that

provides constraint of magma viscosity, diffusivity, surface tension, component

solubility, and density. These surveys are not exhaustive as each of these fields is

vast, however, these constraints are necessary later in the thesis.

Next, I will guide the reader through the theory that underpins the treatment

of experimental data (Chapter 3). The theoretical work is a central part of this

wider thesis because previous experimental work on densification has focused on

a few foundations, some of which are faulty and corrected here. Where this is the

case, I have provided quantification of the errors associated with these faults and

advise future investigators as to the limits of applicability of each model.

In Chapter 4, I will present the results of the experimental work that forms the

core of this thesis. I will compare these results with the models presented in the

previous chapter. Using an analogue dataset, I will determine which model best

describes the process of densification before then extending this analysis to a few

datasets using natural materials from explosive volcanoes. In doing so, I hope

to build a case for the favoured model and where necessary, provide adaptations

that boulster its applicability to the widest range of scenarios. I finally present a

novel dataset from experiments at a synchrotron facility in which the densification
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is imaged in situ. This final step provides invaluable additional insight into the

microstructural evolution of densifying magmas.

Finally, I provide a quantitative discussion in Chapter 5 in which I will review

the consequences of densification for permeable outgassing. To do this I first

construct an argument for the best relationship between porosity and permeability

for rock-forming materials using a large catalogue of published data. In conclusion

I provide a densification map that may be of wide utility to volcano-scientists to

estimate the timescale involved in the densification of magma at a particular case-

locality and I work through what information would be required to use this tool

to maximum effect.
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...half a mountain shakes off dust

the other half is throwing up.

...on the slopes of Santiaguito volcano,

Guatemala, by Adrian Hornby

2
Materials, Methods and Fundamental

Quantities

This chapter is concerned with the experimental methodology em-

ployed in this thesis, the experimental materials that have been selected, and
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Figure 2.1: Photographs of the experimental materials that are used to explore den-
sification processes in this thesis. (A) Soda-lime silica glass beads. (B) Angular glass
powder from either the Deutsche Glastechnische Gesellschaft (DGG) or the National
Institute of Standards and Technology (NIST). Here pictured as an example is DGG.
(C) A scanning electron microscope image of natural volcanic ash from Volcán de
Colima, Mexico.

constraint of parameters that were not measured as part of this thesis but which

are essential to understanding the processes here explored. In this constraint of

quantities, such as viscosity of a volcanic liquid, I briefly explore and select mod-

els that are experimentally validated over the range of conditions used in the

experiments in this thesis.

2.1 Experimental materials

This thesis is concerned with the densification of packed volcanic ash and per-

meable magma. In order to approach this problem, I begin with simple analogue

materials before incorporating the complexities associated with using natural, het-

erogeneous materials. I show example photographs and photomicrographs of the

initial sample materials in Figure 2.1.
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2.1.1 Glass beads and angular glass fragments

Synthetic silicate glass has advantages over natural glass and volcanic ash particles

in that the geometry, chemistry and properties can all be designed to suit the

physical process of interest, while maintaining the high viscosity range appropriate

to magmatic conditions. To this end, I start with spherical glass beads of a soda-

lime-silica composition (from Potters Industries LLC) that have a particle size

range 1-250 µm, which can be sieved to discrete fractions if necessary. These

beads have a defined geometry which simplifies the comparison with a model

derived for a specific geometry (see Chapter 3).

Following experimental validation of the models derived herein using the ideal-

ized glass bead materials, the problem is extended to angular particles using syn-

thetic, standard glasses from the Deutsche Glastechnicsche Gesellschaft (DGG)

and the National Institute of Standards and Technology (NIST). These glasses

are provided as blocks or sheets which I then crush carefully by hand using an

agate pestle-and-mortar. As with the glass beads, particle sizes can be sieved to

desired fractions. The DGG glass (DGG 1) is a soda-lime-silica with a similar

composition to the glass beads, and the NIST glass (NIST 717a) is a borosilicate.

As will be shown below in Chapter 2.2.1, these synthetic glass materials do not

exhibit evidence for volatile degassing, liquid-liquid immiscibility or crystallization

at the temperatures or on the timescales used in this work.
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2.1.2 Volcanic ash

Following an exploration of the effects of viscosity, particle size, and particle shape

using the standard glasses and the glass beads, natural volcanic ash can be used.

In this work volcanic ash from Volcán de Colima, Mexico, was used as a case

example. This sample came from an AD 2012 eruption and was collected shortly

after eruption. While material properties for the synthetic materials discussed

above are measured and repeated here, I rely on the published constraints of the

Volcán de Colima found in Kendrick et al. [2013]. Namely, the multi-component

viscosity model by Giordano et al. [2008] is used to constrain the temperature

dependence of the liquid viscosity and to give an approximate temperature for

the glass transition, which matches measurements on the same material made at

a nominal heating rate of 10 K min−1. The initial dissolved water content of this

sample is negligible [Kendrick et al., 2013]

2.1.3 Permeable volcanic pumice

The final material tested is pumice from the 2350 BP Pebble Creek formation

of Mt Meager volcano, Canada. This sample was collected from a vent-proximal

deposit with characteristic coarse meter-sized pyroclasts. This sample represents

an opportunity to test how the models for granular sintering can be extended to

initially non-granular, highly porous and permeable materials. As I will show in

Chapter 3, the physics involved in the densification process is similar and only

distinguished by pore-geometric differences. The initialy dissolved water content

of this sample is negligible [Kennedy et al., 2016].
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Figure 2.2: Differential scanning calorimetric measurements using a soda-lime-silica
glass bead experimental material (Chapter 2.1). (A) The heat flow signal (here re-
ported in arbitrary units) associated with repeat heating and cooling cycles at 10
K min−1. On first heating (from an unknown cooling rate of material manufacture)
there is an endothermic peak marking the glass transition interval after which the
material has relaxed to high viscosity liquid droplets and on subsequent heating the
glass transition occurs at higher temperature (inset) and is reproducible as long as the
thermal history remains the same (repetitively cooled at 10 K min−1 before reheating).
(B) The shift of the glass transition on first heating at different rates when a fresh
sample of glass beads is used for each run.

2.2 Experimental methods

2.2.1 Differential scanning calorimetry & thermogravimetric anal-

ysis

For each sample material used (see Chapter 2.1), 30-60 mg were loaded into lidded

Pt crucibles and heated at a given rate to a desired high temperature. During

heating, the heat flow and mass were recorded at high resolution (100-200 pts K−1).

This method is appropriate for measuring the temperature or temperature range
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Figure 2.3: The evolution of mass as a function of temperature during linear heating
and cooling cycles to high temperature.

over which phase transitions occur (e.g. Wadsworth et al. [2015] measure the

phase transition from α-quartz to β-quartz by this technique) or over which the

structure of an amorphous material relaxes to a liquid configuration [Dingwell &

Webb, 1990; Gottsmann et al., 2002]. The valence (endothermic or exothermic)

and enthalpy of a transition can be measured by this technique (by using a ratio

technique after measuring the heat flow in a sapphire standard crystal under the

same imparted thermal history).

Here I report the example of a measurement of the glass beads that were used

throughout this thesis as an experimental material (Figure 2.2) where the mea-

surement of the heat flow is not converted to a specific heat capacity as herein the

interest is only in knowing the temperature, and not the enthalpy, of a transition.
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In Chapter 3 it will become apparent that the glass transition, is a fundamental

quantity that is essential to constrain. This is because it represents the temper-

ature range above which a glassy particle, such as a glassy volcanic ash particle,

transitions to a viscous droplet that may stick and undergo coalescence with other

droplets.

In Figure 2.2 I show how the onset of the glass transition interval, through which

the glass particles relax to viscous droplets, is stable when the cooling history of

glass-formation is repeated, but shifts when the cooling history is changed. This is

the expected finding consistent with a huge body of previous work [e.g. Gottsmann

et al., 2002; Dingwell & Webb, 1990; Stevenson et al., 1995]. Because the cooling

history that was imparted upon material manufacture is consistent, but unknown,

when the glass beads are heated at different rates directly from manufacture, their

glass transition onset temperature also shifts.

Additional to differential scanning calorimetry, the other thermal analysis tech-

nique employed is thermogravimetry, in which samples are similarly prepared but

where a mass-balance measures the evolution of sample mass. This is useful to

constrain whether a sample contains volatile elements that are released on heating,

or whether during a particular phase transition (such as a crystallisation event),

mass is gained or liberated. For the glass bead materials the mass is stable over

multiple heating cycles to high temperature (Figure 2.3).
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Figure 2.4: A photograph of the optical dilatometer used in this thesis with the main
components labelled. Photograph by Jenny Schauroth.

2.2.2 Optical dilatometry: A new method for the measurement of

sample volume

An optical dilatometer consists of a halogen lamp, a furnace, and a camera in series

such that the camera captures an image through the tube-furnace. In the tube

furnace a sample is loaded on a carriage (see Figure 2.4). The sample image(s) is

converted to binary. The camera captures images at 1 Hz and can do so during

dynamic heating, or during isothermal holds. The resultant images can then be

processed using techniques outlined in this thesis. The temperature is recorded

in the furnace casing and also in the sample carriage by S-type thermocouples.

The binary images are processed using a Canny edge detection algorithm, in

which the edge of the sample and the basal sample plate surface are detected (see

Figure 2.5 for an example). In this thesis I am most interested in changes in the

geometry of the sample and, most importantly, the sample volume. To extract

a volume from the sample edge position data, two techniques can be compared.
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Figure 2.5: (A) A raw binary image of the cross section of a sample (see also
Figure 4.1. (B) The result of applying the Canny edge detection algorithm to isolate
a 1-pixel wide edge position for processing by the solid-of-rotation (Chapter 2.2.2).

In the first method, the sample geometry is assumed to remain unchanged dur-

ing volume changes. Herein, initially cylindrical samples are used such that this

method would assume that any volume changes do not result in deviations from

a cylindrical sample shape, and rather the sample cylinder is simply shrinking or

growing. The second method is one in which the only assumption made is that

the sample maintains a vertical axis of rotational symmetry but that otherwise,

the geometry is free to change. Both will be explained and the results from both

methods will be compared in Chapter 4.

The cylindrical approximation

Herein the samples are always initially cylindrical and change size or shape with

time and temperature. If we assume that the shape changes are minimal, and

therefore that the sample maintains approximately cylindrical shape, then we can

derive the change in sample volume with time. The cylinder height is L, and the

radius is Θ, so that the volume is V = πΘ2L. When the cylinder shrinks by a

factor β from an initial volume, radius and height, Vi, Θi and Li, respectively,
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then the new volume is V = β3πΘ2
iLi. The cross sectional area in the R : L plane

is A = 2β2ΘiLi. The parameter A can be measured continuously and directly

from the images and the volume Vi can be found prior to experimentation. Thus

we can find a solution for V as a function of Vi and Ai only

V = Vi

(
A

Ai

) 3
2

(2.1)

Sample V in Eq. 2.1 can be then converted to bulk sample porosity ϕ by

ϕ = 1 − mi

ρV
(2.2)

where mi is the initial sample mass and ρ is the density of the liquid or the solid

component (not the pore-fluid). This approach explicitly assumes that the pore

fluid is of negligible mass compared with the liquid (or solid) component, which is

the case here where air or argon is exclusively used. In practice, A is measured in

squared pixels, not in m2. Therefore, a conversion is required which will be dealt

with when I present experimental results in Chapter 4.

The solid of rotation

While the cylindrical approximation may be useful for the majority of cases, it is

not general. Therefore, I here provide a solid-of-rotation method for integrating

the detected edges around an axis of symmetry to recover volumes of samples.

To do this the radial distance from the axis of symmetry must be integrated as a
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function of vertical position to give

V =
∫ L

0
πΘ2dy (2.3)

where y is the vertical position. V can be converted to ϕ as described above. It

is sometimes challenging to measure the initial volume for some samples and can

be easier to measure the final porosity ϕf . This is the case for initially granular,

fragile samples. Where this is the case, the porosity at any point can be found

knowing the final volume Vf

ϕ = 1 −
(
Vf

V

)
(1 − ϕf ) (2.4)

Results using Eq. 2.1 and those using Eq. 2.3 will be compared in Chapter 4.

2.2.3 X-ray computed tomography

X-ray computed tomography can be used to calibrate the measurements of A by

measuring ϕf in post-experimental samples. To do this post-experimental samples

are mounted onto alumina rods and clamped to a rotation rig. Image radiographs

were captured using a Phoenix Nanotom E system operating at 80 kV using a

0.1 mm Cu filter to reduce beam-hardening. 3D data sets were reconstructed

from 1440 projections using standard proprietary filtered back projection algo-

rithms and voxel resolutions were 1.42–1.59 µm. Image visualization and analysis

were performed using AvizoTM in which pore volumes were segmented from central

regions of each sample to avoid edge effects. Segmentation was performed using
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a standard gradient-based algorithm using the moments of the intensity distri-

bution. All pores with volumes <125 voxels were discarded from the anaylsis as

below this value the error on absolute volume exceeded 5%. Objects of these size

classes only comprised 0.06–0.18 vol % of the samples. Pore volumes were then

calculated using the remaining segmented pore objects. X-ray tomography forms

a volume-calibration in the context of this thesis and does not play a central role,

therefore, rendered 3D volumes are not reported.

2.2.4 The TOMCAT beamline at the Swiss Light Source

While X-ray tomography can yield important information about the volume dis-

tribution of phases in post-experimental samples, there are potential problems

associated with quenching samples. For example, because the methodology de-

scribed above in Chapter 2.2.2 involves the measurement of A at high temperature

and then calibrating these volumes on post-experimental quenched samples, the

opportunity to measure the same process in situ, recording 3D data sets dur-

ing densification, is paramount. To address this problem and to gather in situ

data during rapid volume changes in arrays of liquid droplets (see Chapter 5), I

also used the TOMCAT beamline at the Swiss Light Source synchrotron. This

comprised identical sample preparation as for the optical dilatometry, but on the

rotation stage at the Swiss Light Source directly. An alumina sleeve was gently

placed over the samples to homogenise the temperature. An in-house designed

laser system served to heat the samples and a description of the set up can be

found in Fife et al. [2012]; Baker et al. [2012].
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2.3 Fundamental quantities

It will become clear in Chapter 3 that in order to understand how the dynamics

involved in densification of magmas can be extended from isothermal to non-

isothermal conditions, I must first establish how the fundamental properties of

magmas vary with temperature. In this section, I’ll briefly summarize the most

widely-used models for viscosity, thermal diffusivity, the diffusivity of water, den-

sity and surface tension in silicate magmas. Where possible, I emphasize that

this is not an exhaustive summary and it is not a critical review. Rather these

parametrizations are documented for use with the theoretical underpinning that

follows in subsequent chapters.

2.3.1 Viscosity

The liquid viscosity µ of silicates is a function of temperature T , composition

(most significantly on the dissolved water content Cw) and is a weak function of

the hydrostatic pressure P , for low pressures relevant in the upper crust [Hess &

Dingwell, 1996].

For synthetic silicate liquids of industrial interest, the generalized composition-

dependent Fluegel [2007] model is widely applied. When the composition of the

soda-lime-silica glass used in this thesis is input, the Fluegel [2007] model viscosity

agrees well with measurements made using an identical composition (Figure 2.6).

The most widely-used models for natural silicate liquids are the Hess & Dingwell

[1996] and Giordano et al. [2008] models for calc-alkaline (metaluminous and

peraluminous) rhyolitic liquids, such as those implicated in the AD 2008 Chaitén
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Figure 2.6: The temperature dependence of the liquid viscosity for synthetic com-
positions used in this thesis. The model lines are from a model for industrial silicate
liquids [Fluegel, 2007] and is compared with experimental data for the glass bead sam-
ples of soda-lime-silica composition. For the standard glasses (NIST and DGG) the
viscosity curves are calibrated by the manufacturing institutions and compared with
data from Hess [1996]. In all cases the liquids are nominally anhydrous

eruption Castro & Dingwell [2009], and for general volcanic liquids, respectively.

In all cases, the model takes the form of an experimentally calibrated Vogel-

Fulcher-Tammann expression

µ = Υ exp
(

b

T − c

)
(2.5)

for which Υ, b, and c are empirical parameters that are compositionally-dependent
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Table 2.1: Examples of the empirical parameters for use with the Vogel-Fulcher-
Tammann expression (Eq. 2.5).

Liquid composition CH2O Υ b c viscosity model
– wt% Pa s K K –

rhyolite 0.01 4.16 × 10−8 47216.91 47.18 Hess & Dingwell [1996]
rhyolite 0.1 3.44 × 10−6 34662.01 121.44 Hess & Dingwell [1996]
rhyolite 1 2.85 × 10−4 22107.12 195.7 Hess & Dingwell [1996]
basalt∗ 0 2.82 × 10−5 11031.45 645.2 Giordano et al. [2008]
basalt∗ 0.1 2.82 × 10−5 11109.97 617.8 Giordano et al. [2008]
basalt∗ 1 2.82 × 10−5 11337.01 520.1 Giordano et al. [2008]

soda-lime-silica 0 2.3 × 10−3 9908.85 530.75 Fluegel [2007]
DGG-glass 0 1.52 × 10−3 10479.06 510.07 Fluegel [2007]
NIST-glass 0 2.75 × 10−3 11172.6 465.76 Fluegel [2007]

∗Composition from [Zhang et al., 1991]

(defined for calc-alkaline rhyolitic liquids below), and T is in units of kelvin. Hess

& Dingwell [1996] showed that for calc-alkaline rhyolitic liquids Υ, b, and c are

dependent on Cw only, thus, for this class of composition, they rendered Eq. 2.5

independent of cationic composition



Υ = ΥiC
Υii
w

b = bi + bii ln (Cw)

c = ci + cii ln (Cw)

(2.6)

where the empirical constants were defined as Υi = −2.851 × 10−4 Pa s, Υii =

1.918, bi = 22 107.12 K, bii = 5452.52 K, ci = 195.7 K, and cii = 32.25 K [adapted

from Hess & Dingwell, 1996].

A similar approach to the compositional dependence of viscosity is used in the

model of Giordano et al. [2008] but where the empirical constants in Eq. 2.5 are
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Figure 2.7: The temperature dependence of the liquid viscosity for natural compo-
sitions. Results for typical volcanic liquids are shown, including a metaluminous to
peraluminous rhyolite with 0.01–1 wt% [Hess & Dingwell, 1996] and typical basalt
composition [Zhang et al., 1991] calculated using a more general viscosity model
[Giordano et al., 2008]

decomposed into parameters that depend on the partial molar contributions of

each cation to the bulk viscosity. The result is more involved than that found in

Eq. 2.6 for rhyolites [Hess & Dingwell, 1996] and so is not repeated here. However,

the example of the coefficients to be used in Eq. 2.5 for the type-example basalt

used in Figure 2.7 is given in Table 2.1.

In Figure 2.7 there are shown the results of Eqs 2.5 & 2.6 for rhyolitic liquid

with Cw of 0.01–1 wt% [Hess & Dingwell, 1996] and for a type-example basaltic
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liquid (from the Juan de Fuca Ridge [Zhang et al., 1991]) for which the normative

composition has been recalculated to 100 wt% after incorporation of 0–1 wt% Cw.

This composition has then been converted to a temperature-dependent viscosity

via the Giordano et al. [2008] model. While other basaltic compositions could be

used, this is an illustrative example and I highlight that the degree to which the

viscosity is temperature dependent and is strongly dependent on the composition

of the liquid. This phenomenon is known as the fragility of the liquid and is

discussed later in Chapter 4.

2.3.2 Diffusivity

It is beyond the scope of this thesis to go into detail about the measurement and

conceptual complications involved in diffusivity in silicate liquids. However, as

this parameter is used in this thesis, I provide the parametrization for both ther-

mal diffusivity DT and the diffusivity of water Dw. An example of a complexity

that is not addressed but which is certainly worth mentioning, is that the diffu-

sivity of water in silicate melts involves as yet unresolved issues. Namely, there

remains a lack of consensus surrounding the relative role of different species of

water, most prominently the hydroxyl OH− and molecular H2O water species, in

the measurements of bulk diffusivities [McIntosh et al., 2014]. This complexity is

glossed over here as general solutions for the diffusivity of bulk water are given,

rather than a decomposed diffusivity for each species. This is done for simplicity

because in order to treat diffusivities of OH− and H2O separately, one would have

to know the inter-conversion reaction rate as a function of temperature, which
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is very poorly understood, although attempts have been made to find solutions

thereof [Zhang & Ni, 2010]. In both cases of DT and Dw, the diffusivity is depen-

dent on the absolute concentration of the diffusing species, T and Cw, and Dw is

additionally temperature dependent.

Thermal diffusivity

The thermal diffusivity of rhyolites has been measured and parametrized using Lit-

tle Glass Mountain obsidian (U.S.) [Bagdassarov et al., 1994]. The parametriza-

tion of DT found by Bagdassarov et al. [1994] is in the form of a second-order

polynomial dependence on T

DT = 9.14 × 10−7 − 1.4 × 10−9(T − 273) + 1.9 × 10−12(T − 273)2 (2.7)

In Chapter 3, it will be shown that this form of DT is less easy to use than an

Arrhenius approximation. Therefore, over the temperature range 300–1200 K, I

fit Eq. 2.7 to the following simpler form

DT = DT 0 exp (αT ) (2.8)

for whichDT 0 is the extrapolated thermal diffusivity at zero temperature and α is a

fitted constant. Over the stated temperature range, I find good agreement between

Eq. 2.7 and Eq. 2.8 for values DT 0 = 2.61 × 10−7 m2 s−1 and α = 1.24 × 10−3 K−1.

Although this exponential form for DT diverges from Eq. 2.7 below T = 900 K
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(Figure 2.8), the experimental data for which it was originally calibrated do not

extend below this temperature either. Therefore it is not possible to tell which

expression, Eq. 2.7 or Eq. 2.8, is favoured.

Additionally, the thermal diffusivity is a function of the porosity ϕ. While

this is a complex topic, simple scaling arguments can be used to decompose DT

into the solid or liquid and the pore components. When using a simple scaling

approach such as this, it is implicitly assumed that DT is a negative function of

ϕ. This is most likely the case when the pores are isolated such that the porous

liquid or porous solid can be treated as an effective medium through which heat

must be conducted. This would not be such a simple case were the pore phase

thoroughly interconnected. In the case of interconnected pores, the advection of

pore fluid may be sufficient to increase a measured DT , rather than decrease it,

depending on the absolute temperature. This complexity would require knowledge

of the pore geometry because the advection is most likely to be convection-driven.

For simplicity I show a simple scaling with explicit statement of the limitations

thereof. This scaling has been used in thermal problems associated with cooling

of large basaltic sills [Connor et al., 1997]

DT = κ

ρCp(1 − ϕ) + ρfCpfϕ
(2.9)

where κ is the thermal conductivity, ρ is the solid or liquid matrix density, ϕ is the

porosity and Cp is the specific heat capacity. A subscript f denotes a parameter

for the pore-fluid rather that the matrix solid or liquid. Parametrization of ρ will

be given below. We can take an approximately temperature-independent value of
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Figure 2.8: The temperature dependence of the thermal diffusivity for rhyolite liquids
using the parametrization of Bagdassarov et al. [1994] and the exponential approxi-
mation thereof via Eq. 2.7 & 2.8. Additional incorporation of the insulating effect of
pores is achieved by using the simple scaling of Connor et al. [1997] via Eq. 2.9 & 2.10.

ρf = 1.275 kg m−3 and Cpf = 1007 J kg−1 K−1 for air as the pore fluid.

Use of Eq. 2.9 directly with Eq. 2.8 would imply that κ is not dependent on ϕ

directly. However, Bagdassarov et al. [1994] found that κ was indeed dependent

on ϕ in the following way

κ = κ0

(
1 − ϕ

1 + ϕ

)
(2.10)

where κ0 is the pore-free thermal conductivity (i.e. that of the volcanic liquid or

28



1200 1000 900 800 700 650 600 550 500
Temperature, T [K]

10−22

10−20

10−18

10−16

10−14

10−12

10−10

W
at

er
d
iff

u
si

vi
ty

,
D

w
[m

.s
−

2
]

10 12 14 16 18 20

104/T [K−1]

0.01 wt% H
2O

0.1 wt% H
2O

1 wt% H
2O

0.01 wt%
H

2O

0.1 wt%
H

2O

1 wt%
H

2O

Rhyolite; Zhang & Ni, 2010
Basalt; Zhang & Ni, 2010
Soda-lime silica glass; Shelby, 2008

Figure 2.9: The temperature dependence of the diffusivity of bulk water in rhyolite
liquids using the parametrization of Zhang & Ni [2010] via Eq. 2.11 & 3.17. Addition-
ally shown are the solutions for variably hydrous basaltic liquids Zhang & Ni [2010]
and the soda-lime-silica glass additionally used in this thesis [Shelby, 2008].

solid matrix). This provides the tool kit necessary to find the DT as a function of

T and ϕ, which is provided in Figure 2.8 for this rhyolitic composition (additional

parameterization would be possible for other compositions but is not summarized

here).

Diffusivity of water in rhyolites

In all silicate liquids, the diffusivity of water is highly dependent on the water

concentration Cw and the hydrostatic pressure P as well as T . Using the work
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of Zhang et al. [2010] and Zhang & Ni [2010] we can cast Dw for the case of

rhyolites, which are the best-investigated composition, and find that it is a simple

form similar to that of DT

Dw = Cw exp
(
d− e

T

)
(2.11)

for which


d = di + diip

e = ei + eiip

(2.12)

where, for rhyolites, d and e can be decomposed into di = −18.1, dii = 1.888,

ei = 9699 and eii = 3626 [Zhang & Ni, 2010]. While solutions exist for Dw

in other liquid systems, it is beyond the scope of this thesis to compile all of

them and rhyolites are the most applicable to the processes considered here. In

Chapter 3 I will apply Eq. 2.11 to scenarios in which single droplets are hydrated

or dehydrated.

2.3.3 Solubility of water

Water is soluble in silicate liquids and bulk water solubility depends on T and

P . There are many models for this parameter, however, herein I reproduce one

such model that is calibrated for moderate crustal pressures across a wide range

of water contents [Lowenstern et al., 2012]. This model is as follows
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Figure 2.10: The solubility of water in rhyolitic liquids at two example pressures P
chosen to represent end member values for the shallowest crustal magmas. These
curves are drawn after the model of Lowenstern et al. [2012].

Ce = Ce0T
ô (2.13)

where Ce is related to Ce0 and to the exponent ô. For 0.1 MPa, Ce0 and ô are

353.32 K−1 and -1.16, respectively. Similarly at 20 MPa, Ce0 and ô are 6156.92 K−1

and -1.18, respectively. I note that the negative sign of ô indicates that the solu-

bility is a negative function of temperature. This is the origin of the observation

that exsolved water can be dissolved into silicate melts on cooling, causing the

shrinking of isolated bubbles [McIntosh et al., 2014] and the hydration of vol-

31



1200 1000 900 800 700 650 600 550 500
Temperature, T [K]

2200

2300

2400

2500

2600

2700

2800

2900

3000

D
en

si
ty

,
ρ

[k
g.

m
−

3
]

10 12 14 16 18 20

104/T [K−1]

0.1 wt% H2O
1 wt% H2O

0.1 wt% H2O

1 wt% H2O

Rhyolite
Basalt
Soda-lime silica glass

Figure 2.11: The density of type-compositions of silicate liquids of volcanic relevance
at 0.1 MPa. The composition of rhyolite is that of Castro & Dingwell [2009], the basalt
is that of Zhang et al. [1991] and the soda-lime-silica glass is the experimental material
used herein. The density curves are dashed below a temperature at which the material
is a glass as these values are for liquid densities only.

canic surfaces [Castro et al., 2012]. This retrograde solubility is also a feature

of soda-lime-silica liquids [Shelby, 2008]. This will be discussed further later in

Chapter 3.

2.3.4 Liquid density

The density of magmatic liquids has been a topic of prodigious investigation [e.g.

Lange & Carmichael, 1987; Knoche et al., 1995]. In the context of density, the
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simplest method to treat these silicate liquids has been to decompose the mea-

sured liquid volume into the partial molar volume contributions of each oxide

component. This is typically done by systematically varying the liquid composi-

tion such that a single value of the partial molar volume can be found from a fitted

expression [Dingwell et al., 1988]. As with both the viscosity and the diffusivities

discussed above, within a single class of compositions, e.g. rhyolites, the role of

the dissolved water content is the most significant in changing the liquid density

at magmatic conditions. This model comes in the form of a sum of the partial

molar volumes of each oxide component. This is not repeated here in detail as

this is not a central parameter, but an example is given for the composition of

basalt, rhyolite and soda-lime-silica that correspond to the other Figures in this

chapter (Figure 2.11).

2.3.5 Surface tension

The interfacial tension Γ between pore fluid and volcanic liquid is a central param-

eter in this thesis. This has been measured for the case when the pore fluid is air

and when the liquid is a silicate. Specifically, values have been reported where the

liquid is soda-lime-silica [Wiederhorn, 1969], borosilicate [Kraxner et al., 2009],

basalt, andesite, dacite and rhyolite (see Table 2.2 for references). These values

are summarized in Table 2.2. Furthermore, these values have been found to be

broadly temperature independent between Tg and magmatic temperatures [Gard-

ner & Ketcham, 2011].
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Table 2.2: Liquid-vapour interfacial tension values for which the vapour composition
is air.

Liquid composition T Cw Γ SiO2 reference
– K wt% N m−1 wt% –

basalt 1773 0̃ 0.355 50.28 Walker & Mullins Jr [1981]
basalt 1770 0̃ 0.354 21.29 Walker & Mullins Jr [1981]
basalt 1569 0̃ 0.371 49.66 Walker & Mullins Jr [1981]
andesite 1783 0̃ 0.352 61.79 Walker & Mullins Jr [1981]
limburgite 1772 0̃ 0.348 43.31 Walker & Mullins Jr [1981]

haplogranite 1073 9.26 0.073 78.6 Bagdassarov et al. [2000]
haplogranite 1173 8.9 0.084 78.6 Bagdassarov et al. [2000]
haplogranite 1273 8.9 0.09 78.6 Bagdassarov et al. [2000]
haplogranite 1373 8.91 0.097 78.6 Bagdassarov et al. [2000]
haplogranite 1473 8.92 0.103 78.6 Bagdassarov et al. [2000]
haplogranite 1423 0̃ 0.351 78.6 Bagdassarov et al. [2000]

rhyolite 1423 0̃ 0.282 75.6 Bagdassarov et al. [2000]

rhyolite 1358 4.98 0.088 76.53 Gardner & Ketcham [2011]
rhyolite 1248 4.98 0.087 76.53 Gardner & Ketcham [2011]
rhyolite 1148 4.98 0.078 76.53 Gardner & Ketcham [2011]
rhyolite 1098 4.98 0.078 76.53 Gardner & Ketcham [2011]
rhyolite 1048 4.98 0.088 76.53 Gardner & Ketcham [2011]
dacite 1423 3.51 0.083 66.93 Gardner & Ketcham [2011]

phonolite 1148 5.37 0.061 61.47 Gardner [2012]
phonolite 1423 5.37 0.052 61.47 Gardner [2012]

trachyte 1423 4.5 0.073 62.57 Gardner et al. [2013]
dacite 1423 4.72 0.072 69.85 Gardner et al. [2013]
rhyolite 1423 5.05 0.066 76.53 Gardner et al. [2013]

phonotephrite 1423 4.44 0.072 51.13 Gardner et al. [2013]
basaltic andesite 1423 4.63 0.067 54.12 Gardner et al. [2013]

dacite 1423 3.51 0.065 66.93 Gardner et al. [2013]
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Computation is merely the last useful stage of a

scientist’s activity.

in a letter from C.S. Smith

3
Theoretical framework and numerical

predictions

In this chapter I explore the theories underpinning heat and mass

transfer in spherical droplets, sintering and densification under surface tension
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or additional external pressures, and microstructural indicators that can be de-

rived for packings of particles. I show how these principles can be extended to

non-isothermal conditions and how the problem can be rendered dimensionless,

providing a versatile system of computational tools to compare with experimental

data in subsequent chapters. Finally, I provide a case-example of how the prin-

ciples outlined herein can be used to explore rapid changes in temperature and

shape of particles subjected to changes in thermal environment. In all cases simple

examples of volcanic relevance are given. As outlined in Chapter 1, throughout

this chapter the term ”particle” and ”droplet” are only distinguishable by whether

the material state of the volcanic pyroclast is solid and glassy, or viscous and de-

formable, respectively.

3.1 Heat and mass transfer in spherical particles

In this section I’ll deal with a single particle before, in Chapter 3.3, extending

these concepts to arrays of many droplets. Heat and mass transfer are first dealt

with using Fourier’s and Fick’s general laws for diffusion. Additional radiative

components of heat transfer relevant to high temperature volcanic particles and

droplets are then briefly considered. Finally, additional viscous mass transport

processes are considered where these are driven by droplet-scale surface tension

stresses.

The simplest case of heat or mass transfer is given by Fick’s second law, which is

a generalization of Fourier’s laws for heat conduction. Throughout this thesis I’ll

assume that in volcanic ash particles and volcanic droplets, the concentration of

36



diffusing species is spherically symmetrical. This means that the problem reduces

to 1D, for which in spherical coordinates [Crank, 1975], the diffusion equation is

∂χ

∂t
= 1
r2

∂

∂r

(
r2D

∂χ

∂r

)
(3.1)

and this can be used to predict the concentration of a diffusing species χ as a

function of time t, radial position r in a spherical particle or droplet, and the

diffusivity of the species D. Chapter 2.3.2 gives values of D for the specific case

of heat DT and water Dw diffusion. Here the kinetics of the transfer of these two

species will be dealt with in turn.

3.1.1 Heat transfer

In the most simple cases, heat transfer is conductive, and this is captured well

by Fourier’s law (a special case of Fick’s second law; Eq. 3.1). For heat diffusion,

Eq. 3.1 can be recast such that χ = T and D = DT and, as originally shown by

Fourier, can be decomposed into the contributions of the thermal conductivity

κ, the droplet or particle density ρ and the specific heat capacity Cp (see Chap-

ter 2.3.2 for details of how these parameters scale when the particle is porous).

Cp and ρ can then be extracted from the derivative if we assume that they are

much less temperature dependent than κ, which appears to be the case for silicate

liquids [Bagdassarov et al., 1994].

∂T

∂t
= 1
r2

∂

∂r

(
r2DT

∂T

∂r

)
(3.2)
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and equivalently, if we decompose DT into κ, ρ and Cp,

ρCp
∂T

∂t
= 1
r2

∂

∂r

(
r2κ

∂T

∂r

)
(3.3)

If we now make the following substitutions, we can render Eq. 3.2 dimensionless

(here a bar above a parameter denotes that it is in dimensionless form)

T̄ = T/Ti

r̄ = r/R

D̄T = DT/DT i

t̄ = DT it/R
2

ᾱ = αTi

DT i = DT 0 exp(αTi)

(3.4)

where Ti and DT i are initial values of temperature and diffusivity, respectively,

and Tf is the final temperature after the temperature change outside the particle

is complete. Using Eq. 3.4 we can give Eq. 3.2 in non-dimensional form

∂T̄

∂t̄
= 1
r̄2

∂

∂r̄

(
r̄2D̄T

∂T̄

∂r̄

)
(3.5)

and Eq. 2.8 (Chapter 2) becomes

D̄T = exp (ᾱ(T̄ − 1)) (3.6)

For each individual case of heat transfer processes, the boundary conditions should

be posed. A simple, relevant example would be the case in which a volcanic droplet
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Figure 3.1: Dimensional results for the evolution of temperature internal to rhyolitic
volcanic ash particles of two radii; (A) 60 µm and (B) 120 µm. The initial temperature
was 1100 K, corresponding to the predicted eruptive temperature the AD 2008 Chaitén
eruption [Castro & Dingwell, 2009], and the simulation is designed to replicate the
case when a particle is immediately transferred to an environment in which the ambient
temperature is 290 K.

is cooling from high temperature toward an ambient value by conduction alone.

As a worked example, I’ll show this result for a range of particle sizes. For this

case, we might consider that the boundary condition at the particle rim (r̄ = 1)

is instantaneously at the ambient value such that T̄ = 0 at t̄ > 0. The condition

for the centre of the particle must be symmetric and the initial condition might

be that of thermal equilibrium in the particle at the initial temperature such that


∂T̄ /∂r̄ = 0 at r̄ = 0 for t̄ > 0

T̄ = T̄i = 1 for all r̄ at t̄ = 0
(3.7)

In Figure 3.1 I give a case example of a spherical rhyolitic volcanic droplet cooling

from 1100 K, which was the eruptive temperature for Chaitén volcano in the AD
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2008 eruption [Castro & Dingwell, 2009], and I show the thermal profile for a

range of times. Eq. 3.4 is used to convert parameters back to the dimensional

values, such as t. The most prominent finding of such simple models is that the

temperature evolution is strongly dependent on the particle size. This will be

summarized below.

Other boundary conditions of interest might be useful to explore. The two

addressed here are (1) those often applied in experimental work in which the

boundary matches a controlled furnace temperature that is cooling; and (2) those

for which the boundary cools dominantly by radiation, rather than by conduction.

In the former case, I define a constant cooling rate as q = dT/dt. This can be

made non-dimensional as follows

q̄ = R2

DT iTi

q (3.8)

The other case of a boundary condition in which radiation controls the flux at the

particle rim can be assessed by applying Stefan’s law to the boundary; q = σϵT 4.

Here σ is Stefan’s constant and ϵ is the emmissivity. For any value of ϵ we choose

at 0.6-0.9, the result is similar.

These two cases for which the particle boundary condition is constant flux,

rather than constant temperature, allows us to plot the dependence of the heat

transfer problem on the particle size R because we can assess the results at a

relevant t. This reference-t is chosen to be the time when the particle rim (r̄ = 1)

reaches a temperature at which the droplet viscosity is sufficiently high that the

particle can be considered to be glassy (no longer viscous). This is done via Eq. 2.5
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Figure 3.2: A measure of the thermal disequilibrium in a cooling rhyolite droplet as
it crosses the glass transtion at its rim r = R under controlled cooling in a furnace
environment or during coupled conductive-radiative cooling in an ambient atmosphere.
(A) The dependence of the thermal disequilibrium on the particle radius where the
small particles are very close to equilibrium temperature throughout whereas large
particles preserve a large temperature gradient. (B) The same results for which the
particle radius R is normalized to the characteristic Fourier length RF o showing that
the results collapse to a common description of thermal disequilibrium.

and the definition of no longer viscous is taken to be µ = 1012 Pa s. This value

is a crude approximation of the glass transition that is appropriate here but not

strictly true in detail [Hess & Dingwell, 1996; Gottsmann et al., 2002; Stevenson

et al., 1995]. From Eq. 2.6 [Hess & Dingwell, 1996], we have the dependence of

this critical µ on T , and also on Cw when assessed at the glass transition for

cooling particles. The effect of Cw is to depress the glass transition to lower

temperatures, effectively permitting more time for heat transfer to occur before

we assess equilibrium or disequilibrium in the particle or droplet.

In Figure 3.2 I show the result of this snapshot in time. This effectively shows us

that the temperature difference between the particle rim and the particle centre,
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captured after cooling to the glass transition region of temperature, is a strong

function of the particle size. If this ratio is near to 0, then the particles are

in thermal equilibrium throughout the heat transfer process, and if this ratio is

near to 1 then the heat transfer process has not penetrated to the centre of the

particle. In this latter case, strong thermal gradients are expected in the particle

(Figure 3.1). The transitional behaviour, where the ratio is between 0 and 1,

means that the heat transfer has penetrated to the particle centre but that there

was insufficient time to equilibrate the temperature at that depth in the particle.

It’s critical when modelling processes such as heat transfer, that an analytical

scaling argument is also posed, as this is more readily useful. So I define a Fourier

number as

Fo = DT t

R2
F o

(3.9)

where RF o is a characteristic length. If Fo ≫ 1 then t is insufficient for heat

transfer in a particle of RF o size, while if Fo ≪ 1 then t is sufficient for equilibrium

temperature to be achieved. If we set Eq. 3.9 to 1 and rearrange for RF o, we find a

Fourier length, which is used in Figure 3.2 as a normalization for the particle radius

R. For particles in thermal disequilibrium, we must integrate the temperature over

the spatial position in the particle to account for the distribution of temperature

dependent parameters; which in this case is DT . This means that Eq. 3.9 becomes

Fo = 3t
R2

F o

∫ 1

0
DT r̄

2dr̄ (3.10)
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and rearranged to get RF o,

RF o =
√

3t
∫ 1

0
DT r̄2dr̄ (3.11)

The collapse of all curves in Figure 3.2 by use of RF o demonstrates that Eq. 3.9-

3.11 are good scaling methods for heat transfer in spherical particles regardless

of the boundary conditions when the temperature change is of volcanic relevance.

Additionally, the approach outlined here shows versatility of application in that it

is adaptable to lab-environments or natural cases using the boundary conditions

discussed (Figure 3.2).

3.1.2 Mass transfer: The example of water diffusion

As I did with for the heat transfer problem, Eq. 3.1 can be recast to be appropriate

for the diffusion of water in a volcanic droplet or particle assuming that Dw is

known (see Chapter 2.3.2) and where the diffusing species χ is Cw. Then Eq. 3.1

becomes

∂Cw

∂t
= 1
r2

∂

∂r

(
r2Dw

∂Cw

∂r

)
(3.12)

The parameters r, Dw and t can be cast in non-dimensional form as in Eq. 3.4

but were D = Dw instead of D = DT (for the heat transfer case). The following
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substitutions are made

C̄w = Cw/Cwi

r̄ = r/R

C̄e = Ce/Cei

t̄ = Dwit/R
2

D̄w = Dw/Dwi

T̄ = T/Ti

ē = e/Ti

Dwi = Cwi exp(d− e/Ti)

(3.13)

In which Ce is the equilibrium solubility of water, and Cei, Dwi are the water

solubility and diffusivity at the initial temperature Ti, and the initial water con-

centration Cwi, respectively. This leads to a new dimensionless form of Eq. 3.12

∂C̄w

∂t̄
= 1
r̄2

∂

∂r̄

(
r̄2D̄w

∂C̄w

∂r̄

)
(3.14)

As with the heat transfer problem, I can use Eq. 3.14 to assess many scenarios of

hydration or dehydration of volcanic droplets or particles. In Figure 3.3 I show

an illustrative example designed to capture the dehydration of a spherical parti-

cle that is instantaneously erupted in a hot plume that is poor in water vapour

such that the particle is over-saturated in water with respect to the ambient

atmosphere. Here I exploit the intriguing experimental observation that the equi-

librium solubility of water in silicate melts is a negative function of temperature in

the region of the glass transition (Figure 2.10). This means that when a constant
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flux of temperature is applied to the boundary of the particle or droplet such

that the environment is cooling, water moves into the particle or droplet. This

cooling-induced hydration then moves toward equilibrium in the particle and the

extent to which equilibrium is achieved by the point when the glass transition is

reached at the particle rim is highly dependent on the particle size.

While any temperature profile may be employed, it is most simple to consider

an imposed boundary condition at the particle rim such that the temperature flux

is constant, via q = dT/dt. This can be made non-dimensional as follows

q̄ = R2

DwiTi

q (3.15)

and Eq. 3.15 can be used to find dimensionless solution solubility law (after

Eq. 2.13) such that

C̄e = T̄ ô = (1 + q̄t̄)ô (3.16)

and Dw (after Eq. 2.11)

D̄w = C̄w exp
[
ē

(
1 − 1

1 + q̄t̄

)]
(3.17)

Now the system of equations presented in this section can be used to track water

movement by diffusion in spherical particles or droplets that are changing tem-

perature. If Eq. 2.13 were cast to include the effect of pressure, which can be done

via the model of Lowenstern et al. [2012], then the problem can also be solved for

changing pressure environments.
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Figure 3.3: Rhyolitic droplets that cool can hydrate due to the negative dependence
of water solubility on temperature (here shown for 0.1 MPa but different pressures
could be used). (A) The dependence of the final water distribution recorded at the
glass transition depending on the cooling rate imposed. Note that all the particle sizes
considered here maintain thermal equilibrium during cooling at these rates. (B) The
model from (A) where the particle size is normalized by the diffusion length for water.

The boundary and initial conditions are


∂C̄w/∂r̄ = 0 at r̄ = 0 for t̄ > 0

C̄w = C̄wi = 1 for all r̄ at t̄ = 0
(3.18)

and, as stated in Eq. 3.15, the boundary at r = R is given by a constant temper-

ature change.

As with the heat-transfer problem, a characteristic time at which we can assess

the distribution of water in the droplets or particles is the time at which the rim

of reaches the glass transition. In reality, the droplet or particle may continue to

redistribute water and to exchange water with the ambient environment beyond

this point, however below the glass transition it remains unclear if the solutions
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for Dw(T ) are valid [McIntosh et al., 2014]. I show the results of solving Eq. 3.14

with Eq. 3.15-3.17 for a range of cooling rates in Figure 3.3. These results are

found when the temperature cools to a point where the particle or droplet rim

reaches a viscosity of 1012 Pa s (again, via Eq. 2.5-2.6). And as before, I find that

the right lengthscale by which to normalize the particle radius by

Rw =
√

3t
∫ 1

0
Dwr̄2dr̄ (3.19)

As a final step, which is pertinent to the problems that are addressed below, the

water distribution inside a cooling particle can be converted to a distribution of

viscosity via Eq. 2.5-2.6. The spatial integral of the water concentration and

the temperature leads to a maximum average viscosity increase that can be ex-

pected in the scenario where a cooling particle or droplet is hydrating due to the

temperature-controlled increase in solubility. The effect of water concentration on

viscosity will be critical in later analysis of vicously limited processes in densifica-

tion, such as sintering. For now it is sufficient to note that these large gradients

of water that can develop in cooling particles and droplets will drastically change

the distribution of viscosity in the liquid.

3.2 Scaling shape changes in single particles under surface tension

Volcanic ash particles that contain a prodigious liquid phase and are above the

glass transition of that liquid are droplets and can change shape by viscous pro-

cesses. This can occur by deformation of the droplet, for example during flight, or,

if the droplet is already deformed or angular, this shape change can occur under
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Figure 3.4: The particle size-dependence surface tension-dependent capillary
timescale. (A) A case example of rhyolitic droplets based on the example of the AD
2008 eruption of Chaitén volcano. (B) Comparing the capillary timescale in droplets
of different size and composition. Inset: the Laplace pressure in droplets.

the action of surface tension which rounds the droplet (a relaxation process). I will

focus on this relaxation process, which acts on small particles (size-dependence is

discussed later) and is characterized by the Capillary timescale λb

λb = µR

Γ
(3.20)

where Γ is the liquid-vapour interfacial tension. Rounding is then driven by the

Laplace surface pressure PL that acts to minimize the surface area of the droplet.

The minimal surface area for a droplet is a sphere. Exact solutions for rounding of

an initially arbitrary shaped particle are elusive [Rallison, 1984], however, Eq. 3.20

serves for scaling the time involved in the process. As we are interested here in

scaling arguments, we can take PL for a sphere, for which the principle radii of

curvature are equal and so PL = Γ/2R [e.g. Prado et al., 2001].
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As Γ has been shown to be nominally temperature independent (see Table 2.2

and references therein), I can plot the radius-dependence of λb as a function of R,

showing different results for Cw, assuming again a volcanic liquid relevant to the

AD 2008 eruption of Chaitén volcano [Castro & Dingwell, 2009] (rhyolite liquid at

T = 1100 K; Figure 3.4). I note that for Cw = 1 wt% I took the nominally hydrous

value of Γ = 0.07 N m−1 while for the lower values of Cw I took the anhydrous Γ

= 0.3 N m−1 (Table 2.2). The differences between these end-member values of Γ

are small compared with the large effect of Cw on µ. I also show λb normalized

by the relaxation timescale of the liquid λr, rendering the result independent of

any temperature-dependent parameter. Here λr = µ/G∞ where G∞ is the shear

modulus at high frequency and is approximately 1010 Pa for all silicate liquids

[Dingwell & Webb, 1989]. This plot additionally reminds us that relaxation of

surfaces of volcanic ash droplets by surface tension is slower than relaxation of

the liquid structure, as expected for viscous processes.

The relaxation time for droplets λb has been used to scale most surface ten-

sion driven processes where the relaxation of shape is to spherical, such that the

characteristic length is indeed R. Examples are bubble-relaxation in shear flows

[Llewellin et al., 2002; Rust et al., 2003], deformation of viscous droplets in shear

flow [Rallison, 1984], and sintering of many viscous droplets in arrays and pack-

ings [e.g. Prado et al., 2001; Soares et al., 2012]. So far, in this chapter I have

shown how temperature and water equilibrium is transient in typical volcanic en-

vironments, because both T and Cw affect µ, which is a key parameter in Eq. 3.4.

Therefore, if the considerations presented thus far are combined, one can see how
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λb can be scaled to disequilibrium processes. However, it remains poorly under-

stood how gradients in viscosity affect the stress distribution imparted by surface

tension in small droplets [Rallison, 1984] and as such, I limit my argumentation to

scaling arguments. In the below Chapter 3.3, I will expand this scaling to prove

that it is effective in non-dimensionalizing surface-tension driven sintering on any

scale for which the stresses driving particle surface relaxation do indeed arise from

Γ.

3.3 Sintering of many viscous droplets

Now that we have the single-particle case for heat and mass transfer and shape

relaxation, it’s important to extend these analyses to a system in which many vis-

cous liquid droplets are in contact and can interact. In such a case, mass transfer

by diffusion or heat transfer by conduction may have to be approximated over the

array of droplets, rather than explicitly solved for in each single droplet. Further-

more, in arrays of droplets, mass transfer is dominantly by viscous processes rather

than by diffusive processes. This more complex example is the case when volcanic

ash particles are deposited in ignimbrites, or in cracks within magma itself [Tuffen

et al., 2003; Tuffen & Dingwell, 2005]. The sintering of high viscosity droplets to

form a denser, connected mass is important in a range of industrial and natural

scenarios, including the fabrication of ceramics [Soares et al., 2012], metals and

glass [Prado et al., 2001], the welding of volcanic ash [Lavallée et al., 2015], and

the vitrification of Iron Age fortification walls [Wadsworth et al., 2015]. In each

case the dynamics may differ because the physical origins of the stresses that drive
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and oppose sintering may vary, and the materials may be variably heterogeneous.

Here I focus on what is commonly called ‘viscous sintering’ – the sintering of two

or more viscous droplets in the regime where interfacial tension drives fluid flow

– which constitutes a viscous end-member of droplet coalescence problems. The

viscous sintering problem has been studied extensively since the early theoretical

works of Frenkel [1945] and Mackenzie & Shuttleworth [1949]. More recent studies

have built on those works using both experimental [Vasseur et al., 2013; Quane

& Russell, 2005; Russell & Quane, 2005] and theoretical constraints [Prado et al.,

2001]. Implicit in models of surface-tension driven viscous sintering is that the

liquid droplets are in the low Eötvös number and high Ohnesorge number regimes.

The Eötvös Eo number is given by

Eo = ρgR2

Γ
(3.21)

where g is the acceleration due to gravity and R is the radius of the droplet. For

Eo ≪ 1, the surface-tension stresses dominate the gravitational stresses acting on

the droplet. The Ohnesorge number Oh is given by

Oh = µ√
ρRΓ

(3.22)

and for Oh ≫ 1, µ is sufficiently high that inertial effects resulting from surface-

tension driven motion can be neglected.

In liquid-phase sintering, droplets that share contacts undergo time-dependent

coalescence driven by the interfacial tension between the liquid and the ambient
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fluid in the interstitial pore space. In the high Oh regime Eq. 3.22, this process is

dominated by the viscosity of the liquid droplets, and in the low Eötvös number

regime Eq. 3.21 the stress driving flow arises from the excess surface pressure PL,

which is proportional to the local radii of curvature. As stated in Chapter 3.2,

for spherical liquid droplets, the two principle radii of curvature are equal to

one another and to the radius of the droplet so this excess pressure is given by

the Laplace general spherical solution PL = 2Γ/R. The characteristic timescale

associated with viscous flow, driven by interfacial tension, and neglecting inertia

and buoyancy, is the general capillary time, given in Eq. 3.20. Normalizing the

time of observation t by Eq. 3.20 provides a non-dimensional timescale useful in

the characterization of sintering. Frenkel [1945] proposes a model for the growth of

necks between particles that share an initial contact, in which the initial radius of

the droplet Ri is the characteristic lengthscale in Eq. 3.20, yielding a dimensionless

neck formation time (denoted by subscript n)

t̄n = t

λn

= Γ
µRi

t (3.23)

Another model by Mackenzie & Shuttleworth [1949] was derived for the shrinking

of pores interstitial to liquid droplets, in which it is the pore or bubble radius ai

that is the characteristic lengthscale, yielding a dimensionless bubble relaxation

time (denoted by subscript b)

t̄b = t

λb

= Γ
µai

t (3.24)
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In many scenarios of practical interest, temperature is not constant, but is a

function of time. Viscosity is a function of temperature, hence from Eq. 3.20, we

see that the capillary relaxation timescale is also a function of temperature, hence

also time. Expressing Eq. 3.23 in differential form, we can find the expression for

the instantaneous variation in the dimensionless neck formation time as a function

of time

dt̄n
dt

= 1
λn(t)

= Γ
µ(T )Ri

(3.25)

Integrating, we obtain an expression for the dimensionless neck formation time

for non-isothermal conditions

t̄n =
∫ t

0

1
λn(t)

dt = Γ
Ri

∫ t

0

1
µ(T )

dt (3.26)

and similarly for the dimensionless bubble relaxation time

t̄b =
∫ t

0

1
λb(t)

dt = Γ
ai

∫ t

0

1
µ(T )

dt (3.27)

These integrals can be evaluated if µ(T ) and T (t) are known. For isothermal

conditions Eqs 3.26-3.27 reduce to Eqs 3.23-3.24. These considerations permit

me to extend the neck-formation model [Frenkel, 1945] and the bubble relaxation

model [Mackenzie & Shuttleworth, 1949] to non-isothermal conditions in non-

dimensional form, for the first time.

In what follows I will present the model for neck-formation [Frenkel, 1945] and

then vented bubble shrinking [Mackenzie & Shuttleworth, 1949]. A schematic of
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Figure 3.5: A schematic representation of the geometries invoked in the models
for sintering end-members of densification described here. (A) A 3D representation
of spherical particles or droplets of radius R with interstitial pore spaces which are
approximated as equivalent spheres with radius a. (B) The model geometry proposed
by Frenkel [1945] in which necks form between droplets. (C) The model geometry
proposed by Mackenzie & Shuttleworth [1949] in which a bubble is permeably vented
and shrinks. (D) A 2D view of how sintering of droplets evolves with time t.

the geometries used in the model fomulation is provided in Figure 3.5.

3.3.1 The neck-formation model

Frenkel [1945] derives a solution for the growth of the radius of a neck Rn forming

between two liquid droplets of equal radius, as a function of time.

R2
n = 3RiΓ

2µ
t (3.28)
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Kang [2004] proposes that the external radius of the neck region, hn can be related

to Rn and Ri via hn ≈ R2
n/(4Ri). Combining this approximation with Eq. 3.28

derives a linear shrinkage equation for spheres in series, cast as the length of the

system Lq relative to the initial length Li

∆Lq

Li

= 1 − Lq

Li

≈ hn

Ri

= 3Γ
8µRi

t (3.29)

Prado et al. [2001] extends this analysis to the volumetric isotropic strain in an

array of cubically packed monodisperse spheres, deriving a model for the porosity

ϕ as a function of time

ϕ = 1 + (ϕi − 1)
(

1 − 3Γ
8µRi

t

)−3

(3.30)

where ϕi is the initial porosity at t = 0. Introducing the normalization ϕ̄ = ϕ/ϕi

and using Eq. 3.23, I obtain a dimensionless form of Eq. 3.30

ϕ̄ = 1
ϕi

+
(

1 − 1
ϕi

)(
1 − 3

8
t̄n

)−3
(3.31)

If the non-isothermal definition of t̄n is used (Eq. 3.26) then Eq. 3.31 can be

applied to sintering under arbitrary thermal history.

In Figure 4.4 I show the solution to Eq. 3.31. It’s clear that the form of this

model is such that ϕ̄ goes to 0 t a finite t̄n.

3.3.2 The vented bubble model

Mackenzie & Shuttleworth [1949] present an idealized model of sintering in which
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Figure 3.6: The result of the neck-formation model proposed by Frenkel [1945] cast
here non-dimensionally and for arbitrary thermal history using Eq. 3.31. Note that
this model predicts that ϕ̄ is a decreasing function of t̄n and the characteristic length
is the initial particle radius Ri.

the interstitial, gas-filled pore-space surrounding the droplets is represented as an

array of spherical bubbles, evenly distributed throughout the liquid. Each bubble

of radius a sits in a spherical liquid shell of radius as, and shrinks under the action

of the surface tension between bubble and liquid. They derive an expression for

the evolution of the bulk density of the bubble–shell unit as a function of time.

In this scenario the gas is assumed to be able to escape freely (despite the lack of

physical escape routes) so we term this the ‘vented bubble’ model. Conceptually,

the formulation is very similar to that used in studies of the growth of bubbles in

magma [Proussevitch et al., 1993]. The Mackenzie & Shuttleworth [1949] solution
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can be cast as a rate of change of porosity to give

dϕ

dt
= −3Γ

2µ

(
Nb

4π
3

) 1
3
ϕ

2
3 (1 − ϕ)

1
3 (3.32)

where Nb is the bubble number density in the system. I find it convenient to recast

Nb in terms of the initial porosity ϕi via the equivalence Nb4πa3
i /3 = ϕi/(1 − ϕi),

to give

dϕ

dt
= − 3Γ

2µai

(
ϕi

1 − ϕi

) 1
3

ϕ
2
3 (1 − ϕ)

1
3 (3.33)

which carries the implicit assumption that Nb is constant throughout the sintering

process. As with the Frenkel [1945] model, I normalize ϕ by ϕi and here I use

Eq. 3.24 to obtain a dimensionless form of Eq. 3.8

dϕ̄

dt̄b
= −3

2

(
1 − ϕiϕ̄

1 − ϕi

) 1
3

ϕ̄
2
3 (3.34)

As before, if the non-isothermal definition of t̄b is used (Eq. 3.27) then Eq. 3.47 is

applicable to sintering under arbitrary thermal history.

The differential equations above cannot be cast as simple, analytical functions

of time or temperature. However, if I make the simplifying assumption that ϕ ≪ 1

so that Eq. 3.47 becomes

dϕ̄

dt̄b
= −3

2
ϕ̄

2
3

(1 − ϕi)
1
3

(3.35)

and this simplified form can be integrated subject to the initial condition that
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Figure 3.7: The result of the bubble relaxation models for viscous sintering propsed by
Mackenzie & Shuttleworth [1949] and cast here in non-dimensional form by Eq. 3.47.
Additionally shown are the approximations for when ϕ̄ is small (Eq. 3.36) and when
the commonly-used exponential solution is used (Eq. 3.40).

ϕ̄ = 1 at t̄b = 0 to give

ϕ̄ =
(

1 − 1
2(1 − ϕi)

1
3
t̄b

)3

(3.36)

which I will call the ”small-ϕ approximation”. In Figure 3.7 solutions to the vented

bubble model and the small-ϕ approximation are shown.

3.3.3 An exponential approximation

Chiang et al. [1997] make the observation that the relationship Nb4πa3/3 =
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ϕ/(1 − ϕ) allows the Mackenzie & Shuttleworth [1949] vented bubble model to

be simplified to give

dϕ

dt
= − 3Γ

2µa
ϕ (3.37)

Note that this formulation uses the time-dependent bubble radius and porosity a

& ϕ rather than the initial radius and porosity ai & ϕi that are used in Eq. 3.8.

Consequently, non-dimensionalization requires the use of a modified bubble re-

laxation time in which the radius is a function of time. Following the approach

outlined earlier, I couch t̄b(t) in differential form, then integrate to find

dt̄∗b
dt

=
∫ t

0

1
λb(t)

dt = Γ
∫ t

0

1
µa(t)

dt (3.38)

where superscript * indicates that a is a function of time. Again, if µ is taken to

be a function of time, then this can account for non-isothermal conditions. The

dimensionless form of Eq. 3.38 then reduces to

dϕ̄

dt̄∗b
= −3

2
ϕ̄ (3.39)

permitting an analytical solution with an exponential dependence of ϕ̄ on t̄∗b

ϕ̄ = exp
(

−3
2
t̄∗b

)
(3.40)

Eq. 3.40 is of little practical use as a(t) is not known apriori. Nonetheless, it is

the most widely-used model for viscous sintering [Prado et al., 2001; Soares et al.,

59



log10
(
t̄b
)

−1.5−1.0−0.5 0.0 0.5 1.0
φ i

0.2
0.4

0.6
0.8

∣ ∣ ∣ ∣φ̄
E
x
p
−
φ̄
V
B
M

∣ ∣ ∣ ∣

0.00
0.05
0.10
0.15
0.20

Figure 3.8: The mismatch between the vented bubble model [Eq. 3.47 Mackenzie
& Shuttleworth, 1949] and the exponential model [Chiang et al., 1997; Prado et al.,
2001]. This plot serves to demonstrate that while the mismatch is small at low initial
porosities, if samples of permeable bubbly liquid were used with ϕi near to 1, then
the exponential model would not be a good approximation, despite its ubiquitous
application [e.g. Prado et al., 2001; Soares et al., 2012]. The black line indicates the
initial porosity typically used in sintering experiments. I note that much larger initial
porosities are expected for volcanic pumice, for example.

2012; Prado et al., 2003a]. This model also appears in Figure 3.7 for reference.

In Figure 3.8 I show that while the exponential approximation (Eq. 3.40) may

provide good agreement with the vented bubble model (Eq. 3.47) at low initial

porosities typical of packed granular media, for higher porosities the discrepancy

is much larger and thus the exponential approximation is inappropriate.
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3.3.4 Non-zero final porosity

It is a common observation that the porosity of a sintered mass does not reach zero,

but instead approaches a final porosity ϕf [Prado et al., 2001; Soares et al., 2012;

Prado et al., 2003a; Eberstein et al., 2009]. This will be discussed in Chapter 4,

but I provide here a semi-empirical extension of the sintering models that have

gone before in light of this expectation by substituting ϕ − ϕf for ϕ and ϕi − ϕf

for ϕi in the system of equations. The normalisation of ϕ then becomes ϕ̄∗ =

(ϕ− ϕf )/(ϕi − ϕf ), and Eqs 3.47, 3.36 & 3.40 become

dϕ̄∗

dt̄b
= −3

2

(
1 − (ϕi − ϕf )ϕ̄∗

1 − (ϕi − ϕf )

) 1
3

ϕ̄∗
2
3 (3.41)

ϕ̄∗ =
(

1 − 1
2(1 − (ϕi − ϕf )) 1

3
t̄b

)3

(3.42)

ϕ̄∗ = exp
(

−3
2
t̄∗b

)
(3.43)

This empirical adjustment is not strictly consistent with the derivation of the

models; nonetheless, I expect that any loss of fidelity will be inconsequential for

the small ϕf values expected. This will be tested in Chapter 4.
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3.3.5 The case when the pore-fluid pressure is not equal to the

liquid pressure

The derivation provided by Mackenzie & Shuttleworth [1949] for the vented bubble

model starts from the valid and necessary assumption that the pore fluid pressure

is in equilibrium with the pressure of the sintering liquid droplets. However, in

many scenarios of practical, volcanic interest, the pressures of the liquid phase

(the droplets) and the pore-phase (exsolved gases) are not equal. In this scenario,

surface tension may not be the dominant force acting to change the bulk volume

of the system. This would include scenarios where Eo (Eq. 3.21) is much larger

than unity. For example, the pore phase may be overpressured relative to the

liquid phase and in this scenario volume of the system may increase, not decrease.

Conversely, if the pores are underpressured, such that the liquid pressure is under

an external hydrostatic load, then the pore shrinking and bulk volume decreases

may be faster than in the case where surface tension is dominant. To address

these two additional scenarios, I explore the incorporation of pressure in the sin-

tering theory. However, I note that these propositions will not be experimentally

tested in this thesis and therefore, while they are posed rigorously, they remain

unvalidated thus far. In lieu of validation, I will discuss caveats to this approach

and state the bounds of applicability of this part of my theory of sintering.

Pressure can be incorporated by defining the following ratio of an external

62



10−3 10−2 10−1 100 101

Dimensionless time, t̄b

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

p
or

os
it

y,
φ̄

P̄
=

0

P̄
=

1

P̄
=

1
0

Figure 3.9: Densification of silicate droplets under pressure. Here I show how the
pressure significantly decreases the sintering time. I note that this result is highly
applicable to volcanic interiors.

pressure on the liquid P to the Laplace pressure PL which will be termed P̄

dϕ

dt
= −3Γ

2µ

(
Nb

4π
3

) 1
3
ϕ

2
3 (1 − ϕ)

1
3

1 + ψ

(
ϕ

1 − ϕ

) 1
3
 (3.44)

where

ψ = P

2Γ

( 3
4πNb

) 1
3

(3.45)

such that if ψ = 0, then we recover the case where sintering is driven only by

surface tension Eq. 3.7. Now following the steps outlined in the manipulation of
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the vented bubble model, I can convert Nb to ai and ϕi leading to

dϕ

dt
= − 3Γ

2µai

(
ϕi

1 − ϕi

) 1
3

ϕ
2
3 (1 − ϕ)

1
3
(
1 + P̄

)
(3.46)

where P̄ = P/PL. This is non-dimensionalized as before using ϕ̄ = ϕ/ϕi and

Eq. 3.24 so that

dϕ̄

dt̄b
= −3

2

(
1 − ϕiϕ̄

1 − ϕi

) 1
3

ϕ̄
2
3
(
1 + P̄

)
(3.47)

In Figure 3.9 I show the predictions for when P̄ ≫ 0, which implies that the ex-

ternal pressure is greater than the pressure in the pore phase, thus the sintering is

more rapid than the case where the sintering is only driven by surface tension. If

P̄ ≪ 0 then the system would expand rather than shrink due to pore overpressure

and ϕ would increase. As mentioned, this will not be experimentally tested and

is rather a hypothesis that I leave to future work to test. However, this prediction

is likely to be volcanically relevant. A caveat rests on the derivation of the vented

bubble model [Mackenzie & Shuttleworth, 1949] such that at elevated liquid pres-

sures, the analogy of the sintering units as bubbles with concentric shells may no

longer be sufficient, especially if deformation of the particles from spherical is to

be expected [Quane & Russell, 2005, 2003].

3.3.6 The effect of crystals

Another complexity that has received less attention is the case where crystals are

involved in the system. Crystals can be thought of as purely rigid bodies that are
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not subject to internal flow when stresses are applied. In volcanic systems, crystals

can be abundant. Here I first explore two likely end-member scenarios before

showing how crystal content could be incorporated into the sintering models.

If the size of a crystal is Rx, then the two end-member cases are defined as

Rx ≪ R and Rx ≫ R. The former case, where the crystals are smaller than

the sintering glass particles (droplets at high temperature) is a case where it is

reasonable to consider the crystals as suspended in the liquid. In this case, the

value of µ is modified by the fraction of crystals ϕx, which will be dealt with

here. The other case is for when the crystals are much larger than the sintering

particles (droplets). In this case, the crystals are obstacles that demark clusters of

sintering droplets. Here it’s less clear how this might be treated and is therefore

left as another consideration and I do not provide an explicit hypothesis to test.

For the former case (Rx ≪ R), the system can be thought of as an effective

medium where the droplets that are sintering are suspensions, rather than being

pure liquids. To cast this quantitatively, we can decompose the suspension vis-

cosity η into the liquid viscosity µ, which is remains dependent on temperature,

composition and water content (see Chapter 2.3.1), and the relative viscosity con-

tribution of the crystals ηr. Once achieved, η should replace µ in the solutions for

the sintering time in Chapter 3.3.

There are many models for the ηr [Costa et al., 2007; Mueller et al., 2010;

Cimarelli et al., 2011]. However, the model that is most well-validated is that of
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Mueller et al. [2010] in which ηr follows a Maron-Pierce form such that

ηr =
(

1 − ϕx

ϕm

)−2

(3.48)

where ϕm is the maximum packing fraction of crystals and ηr is related to η by

µ so that η = µηr. The term ϕm is further related to the particle aspect ratio

[Mueller et al., 2010; Mader et al., 2013; Truby et al., 2015]

ϕm = ϕm∗ exp
(

−(log10 rp)2

2m2

)
(3.49)

where ϕm∗ is the maximum packing fraction for crystals that are spherical, taken

as a reference value, rp is the aspect ratio and m is a dimensionless factor. In

Mader et al. [2013], m is calibrated to be 1.08 or 1, depending if the particles are

smooth or rough, respectively, and ϕm∗ is 0.656 or 0.55, also for smooth or rough

particles respectively.

Now to incorporate this effect into the models for sintering, we can modify

Eq. 3.47 as follows

dϕ̄

dt̄b
= − 3

2ηr

(
1 − ϕiϕ̄

1 − ϕi

) 1
3

ϕ̄
2
3 (3.50)

In Figure 3.10 I show the results of varying ϕx from zero, which represents the

sintering behaviour given by the vented bubble model (Chapter 3.3), to a value

close to the maximum packing fraction. I leave this as the ratio of ϕx/ϕm to

avoid contouring for individual cases of particle aspect ratios. But it’s clear that

by increasing the suspended particle volume fraction, the sintering is retarded
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Figure 3.10: The effect of suspended crystals on sintering of viscous droplets pre-
dicted by the vented bubble model, Eq. 3.47 adapted in Eq. 3.50. Here ϕ̄x is ϕx/ϕm

and is used to modify µ via Eq. 3.48. Suspended crystal loads retard sintering rates
significantly.

relative to the zero-crystallinity case. This theoretical incorporation of crystal-

content in sintering theory would need experimental validation, which is beyond

the scope of this thesis. However, in the Chapter 6 I provide examples of how this

might be done in the future.

3.4 Microstructural geometry in densifying heterogeneous media

The radii of initially spherical glass spheres are trivial to constrain using a variety

of techniques providing constraint of the lengthscale Ri for use with the neck-
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formation model [Frenkel, 1945]. However, the lengthscale ai that appears in the

vented bubble model [Mackenzie & Shuttleworth, 1949] and my extensions thereof

is a less easy-to-constrain parameter. However, Torquato [2013] and Torquato &

Avellaneda [1991] provide a rigorous expression for a mean pore size ⟨ai⟩ occurring

between particles in arbitrary packing. Their scheme can be cast for a packing

of completely impenetrable ‘hard’ spheres: an arrangement identical to the initial

case of packed glass beads. This is given in the form of a cumulative probability

density F (ξ) of the pore size distribution for which ξ = a/R

F (ξ) = EV (ξ)
ϕ

(3.51)

where EV (ξ) is a pore nearest-neighbour exclusion probability function. In the

granular systems described herein, this is a conceptual tool akin to finding the

expected fraction of space available to a pore of radius a. To solve for EV (ξ) is a

non-trivial problem that has received significant attention [Torquato & Avellaneda,

1991; Torquato, 2013]. A validated expression for EV (ξ) as a function of R is given

by Torquato [2013] based on Torquato & Avellaneda [1991] and reproduced here

for completeness, where we cast it in terms of the porosity ϕ

EV (ξ) = ϕ exp
(
(ϕ− 1)[q0(1 + ξ)3 + 3q1(1 + ξ)2 + 12q2(1 + ξ) + q3]

)
(3.52)
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Eq. 3.52 is valid for ξ ≥ 0 and contains coefficients qn that are given by



q0 = (2 − ϕ+ (1 − ϕ)2 − (1 − ϕ)3)/ϕ3

q1 = (1 − ϕ)(3(1 − ϕ)2 + 4ϕ− 7)/2ϕ3

q2 = (1 − ϕ)2(1 + ϕ)/2ϕ3

q3 = −(q0 + 3q1 + 12q2)

(3.53)

The nth moment of the probability density function of ξ, termed ⟨ξn⟩, is then

related to the cumulative probability density function F (ξ) in Eq. 3.51 by inte-

grating as follows

⟨ξn⟩ = n
∫ ∞

0
ξn−1F (ξ)dξ (3.54)

hence the mean (i.e. n = 1) value of a is ⟨a⟩ = ⟨ξ⟩⟨R⟩. Eqs 3.51-3.54 can be used

to find a in the monodisperse limit of R.

Torquato [2013] additionally describes a polydisperse solution from Lu & Torquato

[1992] which, as with the monodisperse limit, is validated by those authors against

data or simulations and so I repeat it here for completeness. In this model, the

pore nearest-neighbour exclusion probability function is the polydisperse eV (ξ)

instead of EV (ξ) and is

eV (ξ) = ϕ exp
(

2S(ϕ− 1)
[
p0

8
(1 + ξ)3 + p1

4
(1 + ξ)2 + p2

2
(1 + ξ)

])
(3.55)
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for which S is the ratio of the specific surface area of the polydisperse system to

that of the monodisperse system at the same ϕ. S is given by

S = ⟨R2⟩
⟨R3⟩

⟨R⟩ (3.56)

where again, ⟨Rn⟩ is the nth moment of the distribution of R. As before, coeffi-

cients, pn appear in eV (ξ), and are defined here



p0 =
[
4ϕ⟨R⟩2 (ϕ+ 3S(1 − ϕ)) /⟨R2⟩ + 8 (S(1 − ϕ))2

]
/ϕ3

p1 = [6ϕ⟨R⟩2/⟨R2⟩ + 9S(1 − ϕ)] /ϕ2

p2 = 3/ϕ

(3.57)

Finally, to recover the value of ⟨a⟩ that represents the polydispersivity of R, the

same method is employed as before, via Eq. 3.51 where Eq. 3.55 is used in place

of Eq. 3.52 and then Eq. 3.54 is solved numerically.

An example of polydispersivity is the Schulz distribution [Schultz, 1939]. If we

introduce a polydispersivity factor m′, the the Schultz expression related this to

⟨Rn⟩ by

⟨Rn⟩ = ⟨R⟩n(m′ + n)!
m′!(m′ + 1)n

(3.58)

so that at m = 0 the polydisperse limit is reached where particle sizes are skewed

heavily toward smaller classes and the tail to large sizes is broad. In Figure 3.11 I

show how the Schulz distribution, Eq. 3.58, with the solutions given by Eqs 3.51-

3.57, can be used to solve for pore sizes when particle sizes are known. This is
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Figure 3.11: The prediction of the mean pore size ⟨a⟩ that can nestle between
monodisperse or polydisperse particles of mean radius ⟨R⟩ and which are packed to a
given porosity ϕ using the models presented in Torquato [2013].

critical to the theory given in Chapter 3.3 where the pore size a is a fundamental

parameter controlling the rate of sintering throughout the process.
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But the pressure was too great. He would have to

find something to make good the equilibrium...

...For day by day he felt more and more like a

bubble.

D. H. Lawrence [from Women in Love.]

4
Results: The densification of viscous

liquids and magmas

Here I apply the theory from Chapter 3 to experimental data.

Herein I use experimental data from the optical dilatometry method, which offers
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better spatial resolution on sample geometry than previously achieved, and so

I can differentiate the efficacy of competing models for densification of viscous

droplets. In this chapter I will take a step-by-step approach. In each step I will

compare data, which I will render dimensionless, against models. First, I will

test the densification of initially spherical and compositionally homogeneous glass

beads (droplets at high temperature). This is designed to represent a calibration

dataset which best represents the model geometry and so should be a true test of

efficacy. Then in a second step, I will test the best model against systems which

contain increasing complexity. The sample geometries I will test are

• Arrays of initially spherical droplets (using spherical glass beads as a starting

geometry). In this system, the droplet composition is stable.

• Arrays of initially angular droplets (using angular glass shards as a starting

material). In this system, the droplet composition is stable.

• Arrays of initially angular droplets that contain crystals and spatial distri-

bution of liquid composition (by using natural volcanic ash).

• A porous magma (using high porosity pumice as a starting material). In

this system, the liquid composition may be evolving during densification.

By testing three granular systems, followed by a highly porous system, I am

testing a central hypothesis of this thesis: namely that densification models can

be unified across two largely different geometries. To do this I will comment on

the differences in the lengthscales involved in effect normalization of each system.
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Figure 4.1: The time-dependent changes in sample volume as recorded by the camera
in the optical dilatometer. Shown here are images for the densification of free-standing
cylinders of glass beads. (A-D) Porosities are labelled for each cross-section. The initial
diameter of each cylinder was 3 mm.
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Figure 4.2: (A) Calibrating optical dilatometry volume data using the cylindrical
approximation and the solid-of-rotation. Note that the cylindrical approximation con-
sistently overestimates the volume by ∼5%. (B) The time dependent porosity during
densification. Here, and throughout this chapter, the densification mechanism is by
sintering under surface tension. The experimental data presented here will be the same
data repeated in this section. The coloured symbols are from the solid-of-rotation vol-
ume while the grey lines are the cylindrical approximation. The latter method will not
be used from here on.

I restate here that these models implicitly assume that the pore-fluid is highly

permeable, such that the fluid can be evacuated from the sample as densification

progresses and that outflow of the pore fluid does not hinder the densification
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Figure 4.3: The geometry of the spherical glass beads. (A) The particle size distri-
bution measured with the mean particle size labelled as a vertical dashed line. (B)
The calculation of the mean pore radius from the polydisperse measurement of the
particle sizes shown in (A). For the method used see Chapter 3.4.

at all. This is likely true for the high permeability systems here tested until the

percolation threshold is approached. The implication of such a universality in

densification models is that the most important difference between porous and

granular materials is the porosity at which the percolation threshold is met. And

it is well documented that the percolation threshold for granular materials is

significantly lower than for most porous materials in the abscence of anisotropic

deformation [e.g. Rintoul, 2000; Torquato, 2013; Klug & Cashman, 1996; Mueller

et al., 2005]. The implications of this discussion are explored in Chapter 5.
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4.1 Sintering of initially spherical viscous droplets under surface

tension

After applying the solid of rotation to obtain time-dependent volumes of high

temperature experimental samples in situ in voxels by the optical dilatometry

method (see Figure 4.1 for the evolution of raw binary images), and subsequently

converting these to ϕ(t) (see Chapter 2), I obtain the data presented in Figure 4.2.

The curves all show a rapid onset of ϕ decay followed by a long tail at high values

of t. While the shape of the curves is similar across all isothermal temperature,

termed T0, the absolute rate of this process is systematically dependent on T0. I

use these experimental results to test the theoretical models presented in Chap-

ter 3. In all cases, the models are tested in dimensionless form, which necessitates

transforming the raw datasets – i.e. ϕ(t) for each experimental run – into ϕ̄(t̄n),

ϕ̄(t̄b) or ϕ̄(t̄∗b) depending on the model to be tested. Porosity is trivially normalized

as ϕ̄ = ϕ/ϕi or ϕ̄∗ = (ϕ− ϕf )/(ϕi − ϕf ). Where non-isothermal behaviour can be

ignored, Eq. 3.23 & 3.24 are used to non-dimensionalize t as t̄n or t̄b, respectively.

In either case, viscosity is calculated after Chapter 2.3.1 and surface tension is

constant at 0.3 N m−1 for the glass beads that are used as calibration data set

herein. If Eq. 3.23 is used, the initial droplet radius Ri is either taken from the

measured particle size distribution (Figure 4.3), or treated as a fitting parameter.

If Eq. 3.24 is used, the initial pore radius ai is either calculated from Ri following

the approach outlined in Chapter 3, or treated as a fitting parameter.

Where non-isothermal behaviour is important, non-dimensionalizing t is slightly
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Figure 4.4: Experimental data for glass beads normalised by λn and compared with
the neck-formation model proposed by Frenkel [1945] and adapted herein. (A) The
comparison of the time-dependent porosities. (B) The best-fit lengthscale in λn across
all experimental temperatures compared with the measured mean particle size ⟨R⟩.

more complex. The temperature-time data for the run is used to calculate t̄n or t̄b

via Eq. 3.26 or 3.27, as required. As before, µ is calculated from the relationship

given in Chapter 3, and surface tension is constant. If Eq. 3.26 is used, the initial

droplet radius Ri is either taken from the measured particle size distribution, or

treated as a fitting parameter. If Eq. 3.27 is used, the initial pore radius ai is

either calculated from Ri following the approach outlined in Chapter 3, or treated

as a fitting parameter.

In Chapters 4.1.1-4.1.2, I allow the initial droplet radius Ri and initial pore

radius ai to vary freely, as fitting parameters; in Chapter 4.1.3 I constrain these

radii based on measured particle size distributions (Figure 4.3). This two-step

analysis allows me to assess the consistency of each model across the large range

of liquid viscosities investigated before generalising the models without any fitting
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Figure 4.5: Testing the validity of the neck-formation model as different portions of
the process are included in the fit proceedure.

procedure. First I will test the neck formation model [Frenkel, 1945], for which

the characteristic lengthscale associated with sintering is R, before moving onto

the family of models for which this lengthscale is rather a.

4.1.1 Testing the neck-formation model

For each dataset, the best fit of the neck formation model (Eq. 3.31) is found with

Ri as a free fitting parameter using a least squares regression procedure. When

the experimental time t is normalised using the best-fit value of Ri obtained, the

data collapse to close to a single curve. Compared with the model itself (Eq. 3.31),

this produces a moderate fit for all temperatures (Figure 4.4). Using Eq. 3.23 and

78



10−8 10−6 10−4 10−2 100 102

Dimensionless time, t̄b

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
p
or

os
it

y,
φ̄

φ → 0

Vented bubble model

A

T0 = 1164 K

T0 = 1098 K

T0 = 994 K

T0 = 942 K

T0 = 917 K

T0 = 891 K

T0 = 867 K

T0 = 841 K

10−8 10−6 10−4 10−2 100 102

Dimensionless time, t̄b

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

p
or

os
it

y,
φ̄

∗

φ → φf

B

Figure 4.6: Experimental data for glass beads normalized using λb and compared with
the vented bubble model proposed by Mackenzie & Shuttleworth [1949] and adapted
herein. (A) The case when I let ϕ̄ decay to 0; (B) The case when I let ϕ̄ go to the
observed ϕf .

the definitions of the isothermal viscosity µ and the surface tension Γ discussed, a

linear regression in Figure 4.4 relates to the best-fit radius Ri and for all values of

µ yields an estimated average Ri = 11.4±1.2 µm. This compares favourably with

the mean radius from the measured particle size distribution of ⟨R⟩ = 24.7 µm

and a coefficient of determination of 0.984. The model of Frenkel [1945] tested

here is based on the formation of necks between liquid droplets and as-such is

expected to describe the early part of the sintering process better than the later

part. This is confirmed by Figure 4.4, in which the model curve decays to ϕ̄ = 0

prior to the observed tail of the process. Therefore, if this model has validity, it

is likely only for the initial part of the sintering process, when mass transport of

liquid is dominantly in necks between particles.

In order to explore this further, I repeat the fitting process multiple times for
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Figure 4.7: The best-fit lengthscale ai in λb across all experimental temperatures
compared with the measured mean bubble size ⟨ai⟩ computed in Chapter 3.4 and
shown in Figure 4.3 tested using the vented bubble model.

all datasets, each time fitting a slightly greater fraction of the data. In each case,

I start the fit at ϕ̄ = 1 (i.e at t = 0) and fit to a porosity ϕ̄′, deriving a best fit

value for Ri for that fraction of the data. Figure 4.5 plots Ri against ϕ̄′, with Ri

normalized by ⟨R⟩, such that a value of Ri/⟨R⟩ closer to 1 indicates a good fit

between computed and measured particle radius. The plot demonstrates that the

model and data are in closest agreement when we fit only the early sintering data,

and that the fit worsens as more data are included in the fit. The data presented

in Figure 4.4 were calculated using ϕ̄′ = 0.44, which, for our ϕi, corresponds to

ϕ = 0.2, which is the value above which Prado et al. [2001] claim the Frenkel
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Figure 4.8: Experimental data for glass beads normalized using λb and compared
with the small-ϕ approximation of the vented bubble model proposed herein. (A) The
case when I let ϕ̄ decay to 0; (B) The case when I let ϕ̄ go to the observed ϕf .

model is applicable. However, here ϕ̄′ = 0.44 is intended to be illustrative rather

than diagnostic of the efficacy of this model.

4.1.2 Testing the vented bubble model

Next, I test the vented bubble model, which was modified after Mackenzie &

Shuttleworth [1949] in Chapter 3. This model uses the dimensionless time t̄b in

which time t is normalised to the bubble capillary timescale λb. The model, which

is solved numerically, can either go to ϕ̄ = 0 (Eq. 3.47) or to ϕ̄ = ϕf (Eq. 3.41;

Figure 4.6). In the former case the best-fit timescale λb for all experiments yields

a best-fit bubble radius ai of 11.0±1.2 µm and in the latter case a best-fit ai

of 9.6±0.9 µm, both of which compare favourably with the ⟨a⟩ value of 5.9 µm

computed following the approach described in Chapter 3.4 (Figure 4.7).

Additionally the agreement across all experiments is excellent, with a coefficient
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Figure 4.9: The best-fit lengthscale ai in λb across all experimental temperatures
compared with the measured mean bubble size ⟨ai⟩ computed in Chapter 3.4 and
shown in Figure 4.3 tested using the small-ϕ approximation.

of determination of 0.993 (Figure 4.7) which is manifest in the success of the

collapse to a single curve of ϕ̄ with t̄b (Figure 4.6). The final gas volume fraction ϕf

refers to the minimum observed value that is confirmed by X-ray micro computed

tomography and is measured to be ∼0.03.

The Mackenzie & Shuttleworth [1949] model yields an analytical approximation

when ϕ ≪ 1 by Eq. 3.36. I test this against the experimental data in Figure 4.8.

Whether ϕ̄ goes to zero or to the empirically observed ϕf , the best-fit ai is within

error of the estimated ⟨ai⟩ for all experimental values of µ (Figure 4.9). For

our samples, for which the average ϕi = 0.45 ± 0.02, the small-ϕ approximation
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Figure 4.10: Experimental data for glass beads normalized using λb and compared
with the exponential approximation of the vented bubble model proposed herein. (A)
The case when I let ϕ̄ decay to 0; (B) The case when I let ϕ̄ go to the observed ϕf .

provides an excellent collapse of the data to a single curve, and the agreement

across all T0 yields a coefficient of determination of 0.994 (Figure 4.8).

Finally, I test the commonly used [Prado et al., 2001, 2003a,b; Soares et al.,

2012; Eberstein et al., 2009; Lara et al., 2004; Vasseur et al., 2013] exponential

approximation of the vented bubble model (Eq. 3.38) in Figure 4.10, where I

note the implicit assumption that bubble radius is independent of time. Despite

this assumption, which must, in reality, be violated, the results of fitting for

the timescale λb for both the ϕ → 0 and ϕ → ϕf conditions are very close to

each other (Figure 4.11) and almost indistinguishable from those of the small-ϕ

approximation, resulting in average best-fit radii in excellent agreement with ⟨ai⟩

and a coefficient of determination of 0.995.
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Figure 4.11: The best-fit lengthscale ai in λb across all experimental temperatures
compared with the measured mean bubble size ⟨ai⟩ computed in Chapter 3.4 and
shown in Figure 4.3 tested using the exponential approimation.

4.1.3 The vented bubble model without fitting

In Figure 4.12 I show all data from Figure 4.2 normalized by the capillary timescale

λb in which the lengthscale is the radius of the bubbles interstitial to the mean of

the particles ⟨ai⟩ estimated as shown in Figure 4.3, which I have shown provides

a reasonable approximation to the lengthscale controlling the best-fit timescales

across all experiments (Figure 4.7). This permits all data to be collapsed to a

single description of ϕ̄ as a function of dimensionless time t̄b without any fitting

parameters. Furthermore it permits me to directly compare the three models

that are based on interfacial tension around bubbles interstitial to the particles:
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Figure 4.12: Experimental data for glass beads normalized using λb and compared
with the (i) the vented bubble model; (ii) the small-ϕ approximation; and (iii) the
exponential approximation. (A) The case when I let ϕ̄ decay to 0; (B) The case when
I let ϕ̄ go to the observed ϕf .

(i) the vented bubble model modified from Mackenzie & Shuttleworth [1949]; (ii)

the small-ϕ approximation of the vented bubble model; and (iii) the exponential

approximation. I show both the solutions when ϕ̄ → 0 at t̄b → ∞ and when

ϕ̄ → ϕf at t̄b → ∞ (Figure 4.12). The vented bubble model modified from

Mackenzie & Shuttleworth [1949] and the small-ϕ approximation thereof are al-

most indistinguishable from one another for the values of ϕi represented by our

samples, and both provide a good agreement with the data. However, we note

that there is a systematic deviation from the predicted behaviour at values of t̄b

approaching unity. This phenomenon is discussed in Chapter 5. Nevertheless, the

vented bubble model well captures the data across a huge range of experimental

temperatures and thus, material viscosities. The agreement between the exponen-

tial approximation and data is slightly closer than for the vented bubble models,
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particularly as t̄b approaches unity.

4.1.4 4D experiments at the TOMCAT beamline

The mismatch between the experimental data for glass beads and the vented

bubble model (Figure 4.12) requires explanation. There are a few candidate causes

to test:

• The value of ⟨ai⟩ reported in Figure 4.3 is not a good description and, in

fact, ai is smaller, which would be consistent with a best-fit value shown in

Figure 4.6.

• The system permeability is decaying with ϕ to a value where outgassing of

the sample inhibits sintering and slows the rate of densification relative to

the predictions of the vented bubble model.

• Some of the porosity is isolating as ϕ → ϕf such that ϕ̄ is overestimated.

These hypotheses can be tested by using in situ experiments described briefly in

Chapter 2.

Herein I use only the vented bubble model and the exponential approxima-

tion thereof and neglect the neck-formation model. This is justified as the neck-

formation model did not provide a superior fit to the data, while the vented bubble

model, and variations thereof did. Using the same procedure of normalization of

t by λb to yield t̄b, I present the collapsed data over 5 temperatures using ⟨ai⟩

reported in Figure 4.3. As in Figure 4.6, the collapse is excellent. Moreover, the

agreement between the vented bubble model and the data is out-competed by the
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Figure 4.13: The results of densification of glass beads performed in situ at the
TOMCAT beamline at the Swiss Light Source heated by a customized laser-heating
system [Fife et al., 2012]. Here I show the evolution of (A) ϕ̄ (inset: the dimensional
result prior to normalization); (B) the isolated porosity; and (C) the normalized pore
cluster number density (or the equivalent bubble number density) N̄b.
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exponential approximation. However, the cause of this mismatch, despite the in-

valid assumptions on which the exponential solution is founded, can be tested by

the additional information I have from the computed tomographic reconstructions

yielded by 4D experiments.

First, the isolated porosity increases from zero toward ϕf as t̄b → ∞. This

tells me that in fact, the porosity recorded during bulk volume changes is not

all connected. Some clusters of pores become isolated at discrete times until ϕf

when all porosity is isolated and thus volume equilibrium is achieved. This is

further confirmed by the non-linear increase in the cluster number density (or

pore number density) normalized by the initial value N̄b (Figure 4.13). These

results are the first of their kind and provide the explanation for why there has

been a bias in published literature toward an exponential description of sintering

[e.g. Prado et al., 2001, 2003a; Soares et al., 2012] without acknowledgment of

its faulty underpinning. The onset of the deviation of the data from the vented

bubble model indeed occurs at the onset of a non-zero isolated porosity.

If I use the above observations to recast ϕ̄(t̄b) as Φ̄(t̄b), which is now shown

in Figure 4.14, we see that the hypothesis that pore-isolation is the cause of any

discrepancy between observed and predicted ϕ is indeed correct. This new dataset

permits the unequivocal validation of the vented bubble model and implicated

pore-isolation as a continuous, rather than a discrete [Rintoul, 2000] event as

ϕ → ϕf . Future work might explore this in terms of the concept of a second-order

phase transition.
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Figure 4.14: Validation that the vented bubble model is an effective description of
sintering of viscous droplets when pore-isolation is considered and bulk techniques for
determining ϕ are supplemented with in situ 4D observations.

4.2 Extension to initially angular particles

If the particles used for these sintering densification experiments are angular, as

opposed to spherical in the case of the glass beads, then the dynamics must be

different. However, the question of relevance to magma-densification is whether

or not this difference is a first-order effect or not within the range of angularities

that are exhibited by volcanic ash. The DGG- and NIST-glasses used herein,

which are angular fragments when crushed to powders, have angularities that are

captured by sphericity values much less than 1 (Figure 2.1). These are therefore

good shape analogues for a mid-range angularity of volcanic ash.
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Figure 4.15: The results of sintering initially angular droplets (from angular glass
shards of DGG glass; see Chapter 2). These data are all non-isothermal and q was
constant such that T was a linear function of t. (A) The normalized data using ⟨ai⟩
reported in Figure 4.3. (B) The data from (A) but for which T has been shifted after
the thermal model presented in Chapter 3 to correct for thermal equilibrium arising
from the high q used. Inset: The shift-value in T , labelled ∆T , for each q, showing
the expected result that high heating rates induce a larger thermal gradient in the
sample than low heating rates.

In Figure 4.15 I show the results of sintering a DGG-glass powder at 5 < q <

34K min−1. At low heating rates (q = 5 K min−1), I show that the normalized

densification follows a similar evolution as the glass beads (Figure 4.12), albeit

retarded moderately. The moderately slower sintering at high t̄b must be due to

the angularity of these particles. Another effect highlighted here is that at high q,

thermal disequilibrium can be induced in these samples. When this is corrected

for using the heat transfer models posed in Chapters 3 based on the scaling of DT

with ϕ presented in Chapter 2, the data again collapse to a single description. Here

it is again highlighted that, while the glass bead data matched the exponential

approximation, these angular particles do not at high t̄b. Therefore, while the
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Figure 4.16: Experimental data using volcanic ash from Volcán de Colima, Mexico.
This material is an extension of the analysis using angular particles in that the magma
contains crystals and minor spatial distributions of composition on the particle length-
scale R. These data are compared with Eq. 3.31, the neck-formation model of Frenkel
[1945].

vented bubble model captures the order-of-magnitude of sintering of droplets with

natural shapes, in detail it under predicts the total time required for densification.

As before, I highlight how this effect is not stated in published work on sintering

[Prado et al., 2001, 2003a; Vasseur et al., 2013; Soares et al., 2012; Lara et al.,

2004; Eberstein et al., 2009].
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4.3 A volcanic example of the neck-formation model

As a specific volcanic example, I additionally show results in which the neck-

formation model is tentatively applied to sintering of natural volcanic ash from

Volcán de Colima, Mexico (Figure 4.16). Here the particles are partially crys-

talline. The high crystallinity (ϕx ≈ 0.61) retards the sintering process such that

these data were collected over hours to hundreds of hours. The first implication is

that the non-isothermal heating portion of the sample is negligible compared with

the long isothermal segments applied. In this case there is a more striking differ-

ence in the form of the neck-formation model as compared with the vented bubble

model; so as a first observation, these data do not have the correct kinetics to be

eligible for analysis with vented bubble model. The next observation is that the

temperature dependence disappears upon normalization. In this normalization,

the crystal content correction is used via Eq. 3.48 using measured crystal volume

fractions ϕx. These measured values of ϕx were converted to ϕ̄x by estimating rp

from 2D images as being 2 (Figure 2.1) before using Eq. 3.49 to convert these to

ϕm. I recover ϕm ≈ 0.62, showing that ϕ̄x is close to 1 for these samples.

The agreement between these data and the neck-formation model is striking.

However, as we saw in the analysis using the glass bead calibration data com-

pared with the neck formation model, there tends to be good agreement at low

values of t̄n. Were this data set continued to lower ϕ̄, it may prove less convinc-

ing. Certainly, future work is needed to constrain the sintering process for highly

crystalline materials. Details, such as microstructural work, are not shown as this
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Figure 4.17: The densification kinetics in pumiceous magmas using data from
Kennedy et al. [2016] here normalized as ϕ̄ and t̄b. As with granular viscous me-
dia, the collapse across a large range of T is excellent. A primary difference here is
that the empirically observed ϕf is much higher than for granular samples. Inset the
evolution of connected porosity Φ as a function of t̄b for these same samples where
these data are measured ex situ using helium pycnometry.

is not a core dataset of this thesis.

4.4 Densification of pumice under surface tension: Beyond the

granular model

While there is huge potential for the application of a granular model to many

problems of volcanic relevance [Castro et al., 2012; Tuffen et al., 2003], it would

be a useful extension of this work to show that the same physical concepts can

93



be used to predict collapse of pumice. Indeed, the first densification experiments

in volcanology were performed on pumice in an effort to produce dense obsidian

[Westrich & Eichelberger, 1994].

The derivation of the vented bubble model is such that the densification is

controlled by a bubble that shrinks under surface tension. I have shown that

by approximating the space between particles in an initially granular medium as

small spherical pores, this model approach works with excellent effect when the

particles are both spherical (Chapter 4.1.2) and angular (Chapter 4.2). But this

model is even more relevant to a pore network that is a convolute collection of

partially coalesced bubbles, such as in pumice. In this way, no approximation is

necessary, and the application is direct. There are two primary differences between

this pumice case and the granular case.

The first is that while with granular media, ϕi may only be as high as the

maximum packing porosity ϕm, which is typically ϕm ≈ 0.4, pumices can com-

monly have up to ϕi ≈ 0.8. At this end member, some authors have thought

that this means that pumices are analagous to foams [Westrich & Eichelberger,

1994], however, they are also inherently permeable, where foams are not. This is

a critical distinction to make when considering the dynamics that may dominate

in the densification of the pumice, as compared with expectations for a foam.

Whereas foams contain closed cells of gas in a liquid framework continuum that

can drain through plateau borders [Koehler et al., 2000], pumices contain open

cells of gas that are permeable, or ”vented”, and are more likely to collapse in a

manner predicted by the vented bubble model [Kennedy et al., 2016].
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Figure 4.18: The relative enrichment of crystal phases during densification of pumice.
Explicit here is the assumption that ϕx is not a function of t such that the apparent
increase in ϕx arises from the decrease in ϕ only. The match to the vented bubble
model with ϕf is good.

The second difference is that while the systems constrained thus far have been

crystal poor or, in the case of the Volcán de Colima material, the experimental

t was short compared with either λn or λb, in these pumices I will show that

the measured equilibrium ϕf is much larger than for granular media. Moreover,

while ϕf can be large (∼0.3-0.7) for a non-granular materials [Mueller et al., 2005;

Blower, 2001], the prediction is still always that the connected porosity Φ falls

to zero as ϕ → ϕf . In the case of pumice samples in which there are often large

phenocrysts, Φ does not fall to zero.

To test this, I re-analyze data from Kennedy et al. [2016] in which pumice
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samples from Mt. Meager volcano, Canada, are heated. In a similar way to the

data in Figure 4.1.2, there is an equilibrium ϕf (Figure 4.17). The vented bubble

model adapted for the case ϕ → ϕf provides good agreement using a bubble radius

predicted.

To explain why the connected porosity does not fall to zero, I also show the

evolution of ϕx with t̄b. This is computed knowing an initial ϕx constrained via X-

ray computed tomography and propagating this value knowing that the change in

volume is wholly due to a change in porosity. Using the same λb as in Figure 4.17,

the data are fit with agreement by the vented bubble model when ϕ → ϕf . The

relative increase in crystal content toward some critical value at which a crystal

framework is established may be the cause of the cessation of further densification

prior to ϕ → 0 and the preservation of Φ.

Further work would be required to establish this hypothesis. However, what

is certainly clear is that a far more effective method of forming a low porosity

material is by densification of the granular geometry and not the porous geometry,

which is in agreement with the conclusions from diffusion timescales in obsidian

by Castro et al. [2012].

4.5 Microstructural evolution during densification

When interpreting the goodness of agreement between a model and experimental

data, it is critical to test this against an independent prediction of the model if

possible. Here, an easy qualitative observation is that the microstructure evolves

from dominantly connected pores to isolated pores and from large to small pores,
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Figure 4.19: The evolution of the internal texture during isotropic densification under
surface tension imaged using scanning electron microscopy. (A-D) The evolution of
microstructure during densification of initially angular glass particles (Chapter 4.2).
(E-H) The evolution of microstructure during densification of initially spherical glass
particles (Chapter 4.1). These images also appear in Vasseur et al. [2016].
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Figure 4.20: (A-B) 3D rendering of computed tomography data for (A) the seg-
mented pore phase, and (B) the segmented crystal phase. Not shown in (A-B) is
therefore the glass phase (liquid at high temperature). The edge length of the 3D ren-
dering is 2 mm. (C-D) 2D rendering of the computed tomography data the Θ-plane
(see Chapter 2) for which the scale bar marks 1 mm and the black colour represents the
pore phase while the white colour represents the glass and the crystals (solid phases).
(C) The pre-experimental sample, and (D) the same sample after experimentation at
1253 K for 4 hours.

regardless of geometry (Figure 4.19). The vented bubble model explicitly predicts

a decrease of the pore size with time such that it is this parameter a(t) that is

scaled to account for the observable ϕ(t). The microstructural observations are

consistent with the model. Furthermore, it is a decrease of pore size a that is

thought to correlate with changes in other physical properties such as strength of
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the material [Vasseur et al., 2013, 2015]. These consequences will be discussed in

Chapter 6.

The data presented in Figure 4.17 represent a proposed extension of the vented

bubble model to porous magmas. This would represent a generalization of the

model to all magmatic systems that are initially permeable to pore fluids. In

Figure 4.20 I show the internal structure of these same pumice samples prior to

and after experimentation. While the crystal phase remains unchanged, the pore

phase has diminished, as predicted. Pore walls have thickened and the complex

pore structure more resembles isolated bubbles by the time volume equilibrium is

reached at ϕf .
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They think they know those regions of the Earth

which never can be seen...

from having kindled a fire...

and looked into the bottom of a little crucible.

James Hutton

5
Discussion: Permeable outgassing

As porosity decreases during densification, so must the system perme-

ability. This assertion is implicit in any of the wide range of solutions for the

relationship between ϕ and the fluid permeability k. In this chapter I will first

discuss how to scale ϕ with k across any densifying system of viscous droplets.
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Then I will provide arguments for how the kinetics in Chapter 4 can be coupled

with this scaling in order to explore, for the first time, the kinetics of changes in k

as a function of time t. It is this extension of densification models that opens a new

field of competing physical processes; namely, the outgassing process, which must

inevitably become impossible as the system becomes impermeable, and the sinter-

ing viscous process, which acts to move liquid mass into the pore spaces. These

kinetics are of direct importance in many areas of research; not least, volcano-

science. This is because it is the gas-permeability which has a first-order role

to play in modulating the explosive potential of magma. This implication will

be discussed at length in this chapter. Finally, I will provide a scaling between

buoyancy-driven outgassing, termed compaction, and viscous sintering under sur-

face tension which may serve as a full densification map for magmas at shallow

depths. This map could be used to predict the timescale over which magmas can

remain permeable in the shallow crust.

5.1 Scaling the permeability of densifying systems

The first step is to find a scaling between the system porosity ϕ and the system

permeability k. Many such scaling laws have been suggested and, in their most

simple form, these are power laws such that k ∝ kr(ϕ/ϕr)ζ where r and ϕr are

reference values which need to be calibrated, and ζ is an unknown exponent [e.g.

Fowler & Yang, 1998]. However, such simple scaling attempts rely on empirical

experimental work to provide a functional relationship between kr, ϕr and n. The

dominant parameter ζ has been constrained to be between 2 and 30 [Connolly
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Figure 5.1: Bulk porosity and permeability of samples that underwent the granular
to non-granular transition during volcanic welding or sedimentary diagenesis. Data in
black are associated with sufficient information for subsequent analysis. Data are from
a range of sources [Bourbie & Zinszner, 1985; Wright & Cashman, 2014; Blair et al.,
1993; Heap et al., 2015; Dobson et al., 2003; Flint, 1998; Moyer et al., 1996]

et al., 2009], which is a huge range.

Contrastingly, the Kozeny-Carman relation k = ϕ3/(2s2) relates k to the specific

surface area of the pore phase, which is the surface area relative to the entire

system volume. This scaling has proved to be useful but not universal across all

values of ϕ for any system [Martys et al., 1994].

The most promising scaling that has been proposed has been that of Martys

et al. [1994] which, again, relates k to ϕ via s. Here, additionally, ϕ is reduced to

an approximate value of connected porosity Φ by removing the final isolated per-
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colation porosity, which is here termed ϕc (identical to the ϕf that was discussed

when the kinetic component of densification was constrained). The Martys et al.

[1994] relation is

k = 2ϕ∗

s2 (ϕ− ϕc)ζ (5.1)

for which

ϕ∗ = 1 − (ϕ− ϕc) (5.2)

To test the validity of this relationship, I collate literature data for k and ϕ for

any rocks where I can show that the initial material state was granular. That is,

rocks that are formed through deposition of particles followed by varying degrees

of subsequent densification. Examples are sandstones [Bourbie & Zinszner, 1985],

variably welded ignimbrites [Wright & Cashman, 2014], sintered glasses [Blair

et al., 1993] and sintered volcanic ash [Okumura & Sasaki, 2014]. These are

presented in raw form in Figure 5.1.

For the data from Blair et al. [1993], the value of s is measured. However, for

all other data, this parameter is unknown. For the least densified samples – those

which approximate a deposit of particles at or above some maximum packing

porosity – the relationship for s as a function of the particle size R is simply

geometrical as follows

s(R) = 3(1 − ϕ)
R

(5.3)
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However, to relate s to the pore size a, which is more likely to be valid when

densification has proceeded to some degree beyond the initial case, this is more

involved. Here I can rely again on the microstructural indicators defined in detail

in Chapter 3.4 to constrain this. Once a(R) is defined following Chapter 3.4 and

Figure 3.11, I must decide if the particles and the pores are overlapping or if they

are approximately hard spheres. In the former case, the relationship is given by

[Torquato, 2013]

s(a) = 3(1 − ϕ) ln(1 − ϕ)
a

(5.4)

and in the latter case, Eq. 5.3 can be used but for which R is replaced by a and

(1 − ϕ) is replaced by ϕ. Finally, if we rather think the system is described by

overlapping particles, rather than by overlapping pores, then the relationship is

s(R) = 3ϕ lnϕ
R

(5.5)

which is the same as in Eq. 5.4 but where (1 − ϕ) and a are replaced by ϕ and R,

respectively.

Using the above constraints on s, and the constraints on ϕc and a described in

Chapters 4 & 3.4, respectively, the data can be normalized as in Figure 5.2. The

parameters are summarized in Table 5.1. The curve through the data is for Eq. 5.2

for which I follow exactly the constraint of Martys et al. [1994] in defining ζ as

4.2. Therefore, these data are not fit whatsoever and the collapse and agreement

with Martys et al. [1994] is promising.
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Figure 5.2: The universal scaling of fluid permeability in rocks across the granular to
non-granular transition (via Eq. 5.2) using either the measured s or, if unknown, the
calculated evolution of s during densification showing good agreement without any
fitting parameters (r2 = 0.96) over a large range of normalized permeability. Inset:
The data from Blair et al. [1993] for which s was measured directly by image analysis.
See Table 5.1 for the samples and parameters used and the references cited.

Alternative scaling arguments can be tested with the same datasets. First, a

Stokes scaling (for a Stokes permeability ks) in which

ks = 2R2

9(1 − ϕ)
(ϕ− ϕc) (5.6)

derived for dispersions of particles in a gas phase, yields the scaling shown in

Figure 5.3. I note that this is far less effective in describing the full range of data

than the scaling from Martys et al. [1994].
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Figure 5.3: The data from Figure 5.1 but scaled using Eq. 5.6.

Finally, variations on the definition of s based on whether the pores or parti-

cles are selected and whether those elements are overlapping or not are tested in

Figure 5.4. I conclude that the result presented in Figure 5.2 is the most effective.

5.2 Simulating permeable flow in 3D

Using the 4D datasets collected at the TOMCAT X-ray beamline of the Swiss

Light Source, and using the numerical lattice-Boltzmann fluid flow simulation

tool LBflow [Llewellin, 2010], I can predict the evolution of k with t̄b. To do this,

I run simulations following the method outlined in Llewellin [2010] for each 3D

dataset. In essence, this procedure populated the gas phase between the sintering
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Figure 5.4: The same scaling as presented in Figure 5.2, but for where the definition
of s is varied. (A) The case where s is computed from R and where the particles are
overlapping. (B) The case where s is computed from a and where both the particles
and the pores are considered as hard non-overlapping spheres. (C) The case where s
is calculated from a and where both the particles and the pores are overlapping. (D)
The case where s is calculated from a and the particles are overlapping but the pores
are not.

glass beads with fluid nodes. Each simulation iteration involves the computation

of the local gas velocity by the lattice Bolzmann method and the full methodology

is described in detail in Llewellin [2010]. This method has the implication that the
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Figure 5.5: The results of using LBflow [Llewellin, 2010] to simulate the fluid flow
through sintering glass bead packs that have densified to variable porosities (labelled
as ϕ̄). The driving pressure gradient in this case was ∼ 0.1 Pa m−1.

permeable flow is decoupled from the sintering because the simulation is performed

ex situ after the sintering has occurred. The pressure driving the simulated fluid is

exerted at one edge of the box subvolume of the full 3D dataset. Then the average

fluid velocity in the direction in which the driving pressure is applied is recorded.

This is noted as ⟨uxx⟩, ⟨uyy⟩, ⟨uzz⟩ in a Cartesian coordinate system such as that

used here. This is also useful for determining isotropy during sintering because,

for a given driving fluid pressure, I would expect the same average fluid velocity in

each direction. Permeability is then calculated from the length of the sub-volume,

the fluid velocity term and the driving pressure using Darcy’s law. Computations
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Figure 5.6: The scaling found by Martys et al. [1994] applied to the glass bead packs
sintered at the TOMCAT beamline in situ.

are always independent of the fluid driving pressure such that creeping flow is

maintained and a steady-flow criterion is applied which requires that the average

fluid-speed does not vary by a critical value over 50 iterations (assessed two times

consecutively; 100 iterations total) for the simulation to be rendered complete.

The results for the example of ⟨uxx⟩ are presented in Figure 5.5 for which the final

data point is that which is used in the computation of the permeability.

The resultant permeability, a vector quantity that I present in each principle

direction as kxx, kyy, and kzz can then be normalized following Eq. 5.2 as was done

with natural data above. To do this the surface area internal to the sample is mea-

sured using an algorithm similar to that available in the software AvizoT M . The

109



10−3 10−2 10−1 100 101

Dimensionless time, t̄b using 〈ai〉

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

p
er

m
ea

b
il
it

y,
k̄

Exponential
Vented bubble model

kxx

kyy

kzz

Figure 5.7: The evolution of normalized permeability k̄ with time t̄b for the data
for glass beads sintering in situ at the TOMCAT beamline of the Swiss Light Source
synchrotron. The adapted vented bubble model is shown for comparison.

scaling achieved is shown in Figure 5.6. This again demonstrates that the scaling

proposed by Martys et al. [1994] is a good description for these isotropic materials.

It further implies that the sintering process does indeed maintain isotropy of the

pore network even down to low permeabilities.

5.3 The kinetics of permeability changes

I have shown how porosity evolves with time (Chapter 4) and how porosity is

used to scale to permeability. Combining these two concepts yields a model by

which permeability is a function of time. To do this I normalize k by the initial
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ki, to give k̄ and then I convert this to a function of ϕ̄ using Eq. 5.2. This gives

k̄ = ϕ̄ζ and again, the calibrated value ζ = 4.2 [Martys et al., 1994] permits me

to plot k̄ as a function of t̄b. Figure 5.7 shows the results of this conversion. Here

the simulated permeability is converted to k̄ by its initial value. Independently,

the vented bubble model is plotted and shows excellent agreement without fitting.

This also shows that permeability collapses toward zero at a finite t̄b at which ϕf

is achieved. This is in agreement with Figure 4.13. Finally, I note that isotropy

of permeability is indeed maintained down to the percolation threshold.

5.4 Summary of this chapter: Volcanic implications and a volcano-

densification map

In this chapter I have extended densification models to account for permeability.

This provides a versatile tool when considering a volcano in which porosity is only

transient in the permeable upper parts of a silicic volcanic conduit. The collapse of

all densification data by a single timescale λb, is a powerful tool for volcanologists

to scale processes that might be controlled by the time-dependent reduction in

permeability. For example, in the uppermost conduit of Soufriere Hills volcano,

degassing is thought to occur through permeable magma itself [Edmonds & Herd,

2007]. Degassing cycles in recorded SO2 flux would be a good observable to

normalize by λb to see if a universal description can be achieved. To do this, one

would need to know the viscosity and the pore network lengthscale involved in

the densification, both of which can be predicted for a particular magma.

A key consideration is the permeability-limit on densification when pressure is
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magmatic densification process when the material properties are known.

involved. This is called compaction and occurs on a timescale λDa and a length-

scale LDa that can be predicted by Darcy’s law. The implication is that if the

timescale or lengthscale of observation are greater than these critical time and

lengthscales, then compaction effects may dominate over the high-permeability

end member of densification processes. These critical values are

LDa =
√
ki
µ

µg

(5.7)
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and

λDa = 1
ρg

√
µgµ

ki

(5.8)

If I take a range of values for magma permeabilities of 10−14 < k < 10−10 m2

Mueller et al. [2005] and a range of magma viscosities 108 < µ < 1012 Pa s, I

can map out a region of LDa and λDa in which magmas most commonly reside.

Furthermore, I can plot the region for the surface-tension driven densification

end-member process for the same range of viscosities. In Figure 5.8 I show these

windows of densification which may prove useful to volcano scientists who wish

to predict the timescale involved in a densification process based on a few simple

material constraints.
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The promise is kept. The masterwork is made.

John Tams, in review of The Wrong Sunshine by

Ray Hearne

6
Conclusions and outlook

In this thesis, I have explored densification processes in viscous liquids

that are initially permeable, with special focus on volcanically-relevant examples.

In the introduction I summarized some motivating problems that remain uncon-

strained about how magmas can outgas volatiles and what timescales might be
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involved in this process. In the following chapters I focus on constraining exactly

these timescales, showing how pressure, water content and crystal content – key

parameters in the magmatic system – can modify this timescale. It is this densi-

fication timescale that might prove key in assessing the propensity of magmas to

build gas pressure and to fracture in the most catastophic eruptions. Here, by way

of conclusion, I provide additional consequences of the work in this thesis which

may prove to be fruitful future lines of investigation. Where possible, I lay out

how experimental work could be conducted to test these ideas or which natural

phenomena might be pertinent to interrogate further.

6.1 Volcanic implications

First and foremost, densification of magma has a large effect on the material

strength, regardless of the loading conditions [Vasseur et al., 2013, 2015; Heap

et al., 2015]. This means that as magma outgases and densifies, the stress required

to fracture it in catastrophic explosive events becomes large compared with the

pre-densification strength. Simultaneously, the pressure in the gas phase is likely

to drop during outgassing [see Edmonds & Herd, 2007], which means that the

stress available to drive fracturing drops. We can see conceptually that there will

be scenarios in which highly porous magma will repetitively fracture without time

sufficient for densification; and other scenarios in which densification can occur

sufficiently fast such that both the strength increases and the pressure drops,

yielding a stable system that will not break until the next pressure-building cycle

occurs. Heap et al. [2015] explored this explicitly by comparing the evolution of
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strength with the evolution of permeability. However, it remains to be constrained

how these two parameters compete to result in explosive fragmentation or not.

The ideal experimental investigation would be to deform high viscosity permeable

liquids in a triaxial deformation apparatus [such as that used in Benson et al.,

2008] during dynamic fluid flow conditions through the porous network. The

result would be a phase diagram in which large fluid flow timescales compared

with densification timescales would result in stability, whereas small fluid flow

timescales compared with densification would result in explosions.

Another consequence of the work provided herein is that diffusive mass transfer,

in particular that of water (Chapter 2) can compete with densification. Work on

the diffusive hydration of volcanic liquids during cooling [McIntosh et al., 2014]

shows that this can result in large volume changes in the gas phase. It’s clear

that whether hydration or dehydration is occurring coincident with densification,

the kinetics of bulk system-volume changes will be either enhanced or retarded.

The complexity arises when we consider the fluxing effect of water hydration on

the liquid viscosity [Hess & Dingwell, 1996]. As with the strength scenario, there

will be hydration rates that lead to run-away densification rates as there will

be dehydration scenarios that can thrust the liquid through the glass transition

kinetic boundary, halting viscous flow altogether, and preserve higher porosities

than anticipated. In concert these complexities yield a dynamic picture of upper-

conduit conditions in volcanoes and serve to remind us how unconstrained the

problem remains.

Both of the above processes – strength recovery and diffusion – compete with
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densification. The textural record discussed in Chapter 1 in which particulate

volcanic ash is partially sintered in tuffisite cracks in otherwise dense volcanic

rock [Tuffen et al., 2003; Tuffen & Dingwell, 2005; Berlo et al., 2013] have complex

diffusion-driven gradients of water toward the bounding crack interfaces and are

variably strong. And the evidence that these fracutre-degassing processes occur

repeatedly [Tuffen et al., 2003; Castro et al., 2012] clearly demonstrates that

conditions for explosive fracturing are met multiple times during ascent to the

surface. Future work could constrain the minimum inter-fracture time required

for diffusion of water and densification to render further fracturing impossible for

the conditions tested.

6.2 Sintering and densification in antiquity and the Iron Age en-

gineers

An altogether different application of the results presented in this thesis is one

that relates to a phenomenon prevalent in the European Iron Age. Namely, that

of vitrified forts in which prodigious evidence suggests that human-made fort walls

were burned at high temperature for prolonged periods (up to ∼ 48 hours) until

partial melting of the stonework occurred and fluidal behaviour of parts of the

walls was induced [Friend et al., 2007, 2008; Childe & Thorneycroft, 1938b,a;

Ralston, 1986; Nisbet, 1974]. Concensus has converged on a destructive motive

for these processes in which it is envisioned that fort-attackers burned the walls

to weaken them [MacKie, 1969]. However, based on the evidence for sintering-

induced strength-recovery in molten and partially molten particulate materials
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[Vasseur et al., 2013; Heap et al., 2015], it’s more likely that the walls became

much stronger as a function of the kinetics of densification. This is more consistent

with the observations that the large blocks in these walls remain much less affected

than the small granular material in the wall interstices, which is sintered, glassy

and dense [Youngblood et al., 1978]. If true, this would mean that it is more

likely that the fort-wall was burned intentionally and may provide support for an

alternative hypothesis: that Iron Age fort vitrification was an engineering solution

to the problem of building large walls before mortar-technology. This would be

another application of densification theory that would be ripe for further study. I

do not present my work which contributes to this field [see Wadsworth et al., 2015;

?] in this thesis, but mention of the extension to other realms of investigation of

the densification models proposed is warranted.

6.3 Outlook and future directions

Future experimental work that would be essential to further the constraints pro-

vided herein can be summarized as follows

• It remains an outstanding question how particle shape and polydispersivity

affect sintering rates. Herein I test some values and find moderate differences

from the spherical case. But natural volcanic ash straddles a much wider

geometric range which could be tested systematically.

• Sintering under variable loading conditions to test the proposed effect of

pressure on sintering. Most important would be the hydrostatic case, fol-
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lowed by sintering under differential stresses such that anisotropy develop-

ment would be increasingly a component of the shear-enhanced compaction.

This could be done in high temperature triaxial conditions [Benson et al.,

2008] and in a rotary shear device [Lavallée et al., 2012].

• Densification of hydrous materials in regimes in which they either nucle-

ate additional gas phases during the densification (particles larger than a

diffusion length) or in which they diffusively degas (particles small than a

diffusion length). This would couple several physical processes each of which

has volcanic relevance.
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