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1 Summary 

In response to protein conformational stress, eukaryotic cells turn on a specific 

cellular response program, termed the heat shock response. The major 

coordinator of this stress response in the cytosol is heat shock transcription factor 

1 (Hsf1). Hsf1 binds to the promoters of stress protective genes such as those 

encoding heat shock proteins (Hsp), thereby selectively inducing their expression. 

Under non-stress conditions Hsf1 populates a latent, inactive conformation. Stress 

induces activation of Hsf1 via oligomerization and a variety of post-translational 

modifications. Considering the role of Hsf1 in safeguarding protein homeostasis, 

and its potency in supporting tumor growth, there is high interest in targeting Hsf1 

with either activating or inhibiting small molecule compounds, respectively. 

Despite being intensively studied for decades, structural data on Hsf1 remained 

sparse.  

In this study, we applied a variety of techniques to analyze both the overall domain 

organization and atomic structure of Hsf1. We analyzed the oligomeric state of 

human Hsf1 using chemical crosslinking, native mass spectrometry and multi-

angle light scattering, and propose a model of its three dimensional domain 

arrangement based on chemical crosslinking coupled to mass spectrometry. We 

obtained insight into the atomic details of DNA-recognition by human Hsf1 using 

X-ray crystallography. Crystal structures of the Hsf1 paralog Skn7 from the 

thermophilic fungus Chaetomium thermophilum (Ct) provided insights into the 

sequence specificity of DNA-binding. We solved crystal structures of the DNA-

binding domain (DBD) of human Hsf1 both in complex with a heat shock element 

(HSE) motif found in promoters of Hsp, and in complex with the motif found in 

nuclear stress bodies (SatIII). The crystal structures of CtSkn7 were solved in 

complex with its cognate binding element Sln1 responsive element (SSRE) as well 

as the alternative binding motif HSE. 

In addition to the Hsf-type DBD, crystal structures of the coiled-coil domain of the 

Chaetomium protein were solved, and provided the basis for a homology model 

of the human oligomerization domain. 
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By combining the structural data with mutational analysis, we are able to propose 

a structural model for the human Hsf1-DNA complex in which the Hsf1 trimer 

embraces the DNA double helix, with the DBDs on the opposite side of the DNA 

relative to the coiled-coil domain. Furthermore, our model suggests how adjacent 

DBDs interact at the DNA, and how the DNA-distal surface and loop region can 

interact with Hsf1 binding proteins such as factors of the transcription associated 

machinery. 
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2 Introduction 

All living cells, the basic structural and functional units of life, need to adapt to their 

specific habitat in order to survive. Cells have to cope with a variety of adverse 

environmental conditions which challenge the integrity of their cellular protein 

machinery. It is essential that protein homeostasis (proteostasis) - a balanced 

state of all protein components - is carefully maintained in the face of acute and 

chronic proteotoxic stress thereby preventing disintegration of the cellular 

proteome. Imbalance in the complex quality control network of proteostasis results 

in the activation of universal and highly conserved stress response pathways such 

as the cytosolic stress response (Morimoto 2008; Anckar & Sistonen 2011; Kim et 

al. 2013). This signaling pathway transiently upregulates so-called heat shock 

proteins (Hsps), including many molecular chaperones, in an attempt to restore 

proteostasis.  

2.1 Proteostasis 

The term proteostasis refers to a balanced and healthy state of the cellular 

proteome (Balch et al. 2008). To achieve and maintain proteostasis in the crowded 

cellular environment, a complex, integrated quality control network has evolved 

(Zimmerman & Trach 1991; Powers et al. 2009). Organisms invest a large amount 

of resources into this network comprising several hundreds of proteins (~1300 

proteins in human cells) to perform protein biogenesis (~400 proteins), 

conformational maintenance (~300 proteins) and degradation (~700 proteins) 

(Hipp et al. 2014). 

While molecular chaperones and their respective co-chaperones assist in the de 

novo folding, refolding, or disaggregation of proteins, the ubiquitin-proteasome 

system (UPS) and the autophagy machinery perform the proteolytic degradation 

of irreversible misfolded proteins and protein aggregates (Kim et al. 2013). Multiple 

interconnected stress-inducible signaling pathways adjust the proteostasis 

network in response to specific forms of cellular stress, including the cytosolic heat 

shock response (HSR) (Morimoto 2008), the unfolded protein response (UPR) 

(Ron & Walter 2007) in the endoplasmic reticulum, and the mitochondrial UPR 

(Haynes & Ron 2010). The network is connected to signaling pathways in 
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response to oxidative stress, starvation and longevity and is coupled to the 

translational capacity of the ribosomes (Hartl et al. 2011). 

 

Figure 1 Cellular proteostasis network. Genomic information is transcribed into mRNA and 

subsequently translated into a polypeptide chain. This polypeptide chain folds with or without the 

help of molecular chaperones to its native state (green). Remodeling of misfolded states of a 

protein fold is performed by molecular chaperones (blue). Degradation of proteins is performed via 

several pathways (red). Adapted by permission from Elsevier: Trends Cell Biol. (Hipp et al. 2014), 

copyright 2014 

2.2 Protein folding in the cell 

2.2.1 Protein folding – and aggregation 

Proteins are synthesized as linear chains of amino acids connected by peptide 

bonds. To function, however, most proteins must fold into a specific three 

dimensional topology. The fold of a small protein or single domain (<~100 amino 

acids) is typically encoded alone by its  amino acid sequence, as observed by 

Anfinsen in seminal in vitro refolding experiments (Anfinsen 1973). During folding, 
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hydrophobic amino acids collapse to a hydrophobic core, thereby limiting the 

accessible conformations for the remaining parts of the domain (Dinner et al. 

2000). Subsequently, the search for the native conformation is aided by additional 

energetically favorable interactions such as hydrogen bonds, ionic and Van der 

Waals interactions. It is currently imagined that each protein explores a unique 

funnel-shaped potential energy landscape during its folding process (Figure 2) 

(Dill & Chan 1997). 

However, larger domains (>~100 amino acids) and proteins with more complex 

topologies often fold slowly or inefficiently (Hartl et al. 2011; Balchin et al. 2016). 

Furthermore, proteins are only marginally stable in their native state and are prone 

to unfolding, and - in more severe cases - aggregation (Pace et al. 1981), (Figure 

2). Protein aggregates are nonfunctional interactions between protein molecules, 

which typically result from the exposure of hydrophobic patches on non-native 

proteins (Dobson 2003). Aggregates sequester functional proteins, and can also 

induce “gain of function” toxic effects (described in more detail in paragraph 2.6) 

(Kim et al. 2013).  
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Figure 2 Funnel shaped free-energy landscape of pro tein folding and aggregation. Scheme 

of the multiple conformations of polypeptide chains on their conformational search towards their 

native state (green). Molecular chaperones may assist polypeptide chains at crossing free-energy 

barriers to reach their native conformations. The formation of amorphous aggregates, toxic 

oligomers and highly ordered amyloid fibrils (red) results from intermolecular contacts between 

folding intermediates or misfolded proteins, which are normally prevented by molecular 

chaperones. Reprinted by permission from Macmillan Publishers Ltd: Nature (Hartl et al. 2011), 

copyright 2011 

2.2.2 The concept of molecular chaperones 

To facilitate folding and prevent aggregation, cells express a specific subset of 

folding helper proteins – the molecular chaperones (Figure 1).The molecular 

chaperone concept was generally proposed for the first time in 1987 (Ellis 1987), 
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and chaperones have since been defined as “proteins that interact with or aid the 

folding or assembly of other proteins without being part of the target protein final 

structure” (Ostermann et al. 1989; Kim et al. 2013).  

An increasing number of studies has shown that the chaperone machinery not 

only contributes to the initial folding of proteins, but is involved in maintaining a 

protein’s functional fold, as well as facilitating the disaggregation and degradation 

of misfolded proteins (Balch et al. 2008; Labbadia & R. Morimoto 2015; Hartl & 

Hayer-Hartl 2009). 

2.2.3  Classes of molecular chaperones 

Molecular chaperones cover a variety of functions and interact with proteins 

through their entire life time – from synthesis at the ribosome until their 

degradation at the proteasome or other pathways (Figure 1 and Figure 3) (Hartl et 

al. 2011). Because their expression is increased in challenging situations such as 

heat stress – which also lead to their discovery (paragraph 2.4.2) - chaperones 

are often referred to as heat shock proteins (Hsps) (Tissières et al. 1974). 

Historically, molecular chaperones have been classified according to their 

monomeric molecular weight in kDa. Several classes have been discovered: small 

Hsp (<30 kDa), Hsp40, Hsp70, Hsp90, Hsp100. Additionally, chaperonins 

(Hsp60s) which are large, cylindrical molecular complexes (800-1000 kDa) 

forming an internal folding chamber, and ribosome associated chaperones have 

been described (Kim et al. 2013).  

In all three kingdoms of life the chaperone pathways contributing to protein 

biogenesis and the de novo folding of proteins are organized according to the 

same principle (Balchin et al. 2016), (Figure 3). As the growing peptide chain 

emerges from the ribosome, it interacts with ribosome-associated chaperones for 

stabilization and co-translational initialization of the folding process. In case de 

novo folding requires the help of additional chaperones, the peptide chain is 

transferred to downstream chaperones such as the cytosolic Hsp70/Hsp40 and 

Hsp60 or Hsp90 protein families in an attempt to complete the folding process in 

a posttranslational manner (Hartl et al. 2011; Langer et al. 1992). In the following 
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section different classes of chaperones are described in brief, in the order they 

would interact with a nascent chain emerging from the ribosome.  

 

Figure 3 De novo protein folding pathways in eubact eria and eukaryotes. Molecular 

chaperones interact with folding substrates in a conserved, hierarchical manner: The emerging 

peptide chain is initially bound by ribosome-associated chaperones for stabilization and folding 

initialization, and can be transferred to downstream chaperone subsets (Hsp70, Hsp60 (GroEL or 

TRIC), Hsp90) for completion of the folding process if required. Reprinted by permission from 

Macmillan Publishers Ltd: Nature (Hartl et al. 2011), copyright 2011 

2.2.3.1 Ribosome associated chaperones 

Proteins are synthesized as linear polypeptides on ribosomes, where they are 

already able to form α-helices or small domains (e.g. zinc finger domains) in the 

ribosome exit tunnel (Nilsson et al. 2015; Holtkamp et al. 2015). During translation, 

the nascent polypeptide exposes hydrophobic segments to the surrounding 

environment. In order to avoid aggregation at this point, several ribosome-

associated chaperones have evolved in prokaryotes and eukaryotes (Figure 3). At 

the bacterial ribosome exit tunnel a single chaperone termed trigger factor (~48 

kDa, three domains) binds to highly hydrophobic and positively charged stretches, 

whereas a subset of specialized chaperones associates with translating 

ribosomes in eukaryotes (Ferbitz et al. 2004). In mammals, the protruding nascent 

chain is bound by the nascent polypeptide-associated complex (NAC) and the 
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(mammalian) ribosome-associated complex ((m)RAC) when exposing 

hydrophobic stretches and disordered fragments. mRAC is a specialized Hsp70-

Hsp40 complex (Hsp70L1 and MPP11) which binds directly to the ribosome (Otto 

et al. 2005). NAC is a heterodimer comprising an α-subunit and a β-subunit and 

also binds directly to the 60S ribosome via the β-subunit (Wang et al. 1995; 

Preissler & Deuerling 2012). Thus, a fraction of proteins and emerging domains in 

multi-domain proteins completes folding on the ribosome. The ribosome 

associated machinery hands over the remaining substrates to downstream 

chaperone pathways involving Hsp70s, Hsp90 and the chaperonins (Hartl et al. 

2011; Scior & Deuerling 2014).  

2.2.3.2   The Hsp70 system 

Hsp70s are probably the most versatile chaperone subset (Calloni et al. 2012). 

They are involved in protein folding, refolding, protein transport and protein 

degradation pathways. The human Hsp70 family comprises 13 proteins which can 

be expressed constitutively (e.g. Hsc70) or inducibly (e.g. Hsp70-1) in response 

to environmental stimuli (Radons 2016). 

Hsp70 proteins (DnaK in bacteria) consist of two domains: a nucleotide binding 

domain (NBD) and a substrate binding domain (SBD) which are connected via a 

conserved linker (Kim et al. 2013). The substrate binding and release cycle is 

allosterically regulated (Zuiderweg et al. 2013). The SBD binds substrate peptides 

in the open state, which is maintained by ATP binding to the NBD. As soon as 

ATP is hydrolyzed to ADP (accelerated by Hsp40s (bacteria: DnaJ)) in the NBD, 

allosteric rearrangement forces the SBD into its closed state, whereby the bound 

peptide is clamped between the β-sandwich domain and an α-helical lid domain 

(Kampinga & Craig 2010). Subsequently, nucleotide exchange factors (NEF) 

stimulate the release of ADP from the NBD, resetting the SBD to the open state 

and releasing the bound substrate (Figure 3) (Mayer & Bukau 2005). 

Substrate proteins which cannot acquire their native conformation spontaneously, 

or with the help of ribosome associated chaperones or the Hsp70/Hsp40 system, 

are transferred to downstream chaperone machineries like Hsp90 or the 

chaperonin (Langer et al. 1992; Hartl et al. 2011). 
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2.2.3.3 Chaperonins in Pro- and Eukaryotes 

Chaperonins are large homo- or hetero oligomeric double ring complexes (7-9 

subunits per ring) which form a cavity within each ring for the encapsulation of 

substrate proteins (Hartl & Hayer-Hartl 2009). Chaperonins are classified as either 

group I or group II. Chaperonins of bacterial origin belong to class I, and archaeal 

and eukaryotic cytosolic chaperonins to group II (Lopez et al. 2015). Chaperonin 

group I subunits have a molecular weight of 60 kDa, and form heptameric rings 

(~800 kDa). GroEL, the chaperonin of bacteria, is the best studied homolog. Non-

native substrates are thought to be delivered to GroEL mainly by the Hsp70/Hsp40 

system (Figure 3) (Langer et al. 1992). Substrates bind to the apical domains of 

GroEL in the apo state. ATP binding triggers conformational rearrangements 

enabling binding of GroES, the heptameric lid-shaped co-chaperone of GroEL 

(Hayer-Hartl et al. 2016). GroES binding displaces the substrate into the GroEL-

GroES cavity, which is then free to fold for the time required by the chaperonin to 

hydrolyze bound ATP. The release of GroES, ADP and substrate is allosterically 

triggered by ATP binding to the opposite ring. GroEL does not only act as passive 

cage that prevents aggregation, but actively accelerates folding of several model 

substrate proteins (Gupta et al. 2014; Georgescauld et al. 2014). Group II 

chaperonins include the thermosome in archaea and TRiC/CCT (tailless complex 

polypeptide-1 (TCP-1) ring complex/ chaperonin-containing TCP-1) in eukaryotes. 

TRiC is responsible for folding approximately 10% of the eukaryotic proteome, 

including the abundant cytoskeletal proteins, actin and tubulin (Hartl et al. 2011). 

TRiC is a hetero-oligomeric ~1 MDa double-ring complex made up of 8 different 

subunits per ring. Each ring has a built-in, iris-like lid which closes upon ATP 

hydrolysis to encapsulate the substrate. Despite its physiological significance, how 

TRiC recognizes and folds its substrates remains poorly understood (Lopez et al. 

2015; Hayer-Hartl et al. 2016). 

2.2.3.4   The Hsp90 system 

Hsp90 chaperones play an important role in the maturation and conformational 

maintenance of many signaling proteins in the cell (Figure 3). The human Hsp90 

family comprises 17 proteins which can be expressed constitutively (e.g. 

HSP90AB1) or inducibly (e.g. HSP90AA1) upon environmental stimuli (Chen et 
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al. 2005). Hsp90 is a flexible dimer whereby each subunit is comprised of an N-

terminal ATPase domain, a substrate-binding middle domain and C-terminal 

dimerization domain. Hsp90 undergoes an ATP dependent cycle which is 

characterized by an open, nucleotide-free state and a closed, ATP bound 

conformation (Rehn & Buchner 2015). Hsp90 and its reaction cycle are tightly 

regulated by various co-chaperones. HOP and Cdc37 stabilize the open, substrate 

binding conformation of Hsp90, whereas Aha1 stimulates ATP hydrolysis and 

formation of the closed state (Li et al. 2012). The closed state is stabilized by the 

co-chaperone p23. Substrate folding presumably occurs in the closed state of 

Hsp90, however the detailed mechanism of substrate binding and folding is not 

clear yet (Kim et al. 2013). 

2.3 Protein degradation systems in the cell 

2.3.1  UPS and autophagy in protein degradation 

Proteins that cannot be folded or refolded by the machinery of molecular 

chaperones have to be removed from the cellular proteome in order to avoid 

interference with functionally intact proteins. Three major pathways have been 

discovered to do so: the ubiquitin-proteasome system, chaperone mediated 

autophagy and macroautophagy (Figure 4), (Ciechanover & Kwon 2015). 
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Figure 4 Protein degradation pathways. Proteins can be degraded via the ubiquitin proteasome 

pathway (UPS), chaperone mediated autophagy (CMA) and macroautophagy depending on their 

nature. In CMA, substrates exposing the KFERQ motif are bound by Hsc70. The substrates are 

subsequently delivered to the lysosomal membrane, translocated to the lumen, and degraded by 

lysosomal hydrolases. Aggregates are directed to macroautophagy. Misfolded protein substrates 

of macroautophagy are recognized by molecular chaperones such as Hsc70, ubiquitinated, and 

delivered to the autophagic adaptor p62, and subsequently delivered to autophagic membranes 

for lysosomal degradation. Reprinted from (Ciechanover & Kwon 2015) 

Monomeric unfolded proteins with a high turnover are usually degraded by the 

ubiquitin-proteasome system (UPS). The terminally misfolded substrate is 

recognized by chaperones (e.g. Hsc70, Bcl-2–associated athanogene (BAG1)) 

and ubiquitin ligases (e.g. C-terminus of HSC70-Interacting Protein (CHIP)) if 

hydrophobic residues are exposed or abnormal folds (e.g. mislinked side chains) 

are detected (McDonough & Patterson 2003). Subsequently, a cascade of 

ubiquitin ligases (from E1 to E3) transfers ubiquitin molecules to the substrate 
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protein, which encode a signal for degradation if the ubiquitins are linked via Lys48 

and the chain is at least four units long. The poly-ubiquitinated substrate is 

subsequently recognized by the regulatory subunit of the proteasome, the 19S 

particle, and finally shredded in the 20S core particle into short peptides 

(Ciechanover & Kwon 2015). 

A second pathway, chaperone mediated autophagy, is a selective proteolytic 

pathway which recognizes misfolded proteins carrying a target sequence (Kaushik 

& Cuervo 2012). The constitutive version of Hsp70 (Hsc70) recognizes the target 

sequence KFERQ, which is only surface exposed in the non-native state (~30 % 

of cytosolic proteins carry the sequence motif). Next, Hsc70 delivers the misfolded 

substrate to the lysosome for import via LAMP-2A (lysosomal membrane-

associated protein 2A) and subsequent lysosomal degradation by hydrolases. 

An alternative autophagy pathway, termed macroautophagy, describes a process 

whereby larger aggregates and whole organelles are targeted to 

autophagosomes, which later fuse with lysosomes for degradation (Ciechanover 

& Kwon 2015). Targeting of ubiquitinated and aggregated proteins to 

phagophores, the precursors of autophagosomes, is achieved via the 

autophagosomal adaptor p62 which binds ubiquitin chains and aggregates via 

different domains. 

2.4 Stress-responsive pathways 

2.4.1  Challenges to proteostasis 

Under steady state conditions, the proteostasis machinery ensures correct folding 

and timely degradation of cellular proteins. However, if the cell experiences 

proteotoxic stress – like the presence of heavy metals, heat stress, aging, non-

functional mutant proteins or oxidative stress – the proteostasis machinery has to 

have the capacity to buffer the effects (Figure 5), (Balchin et al. 2016).  
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Figure 5 Challenges to the proteostatic equilibrium . A variety of stresses challenges the 

capacity of the proteostasis network by formation of an increasing amount of non-native proteins. 

Stress inducing conditions are grouped into four major categories: Three classes of environmental 

and physiological stresses (environmental stress, pathophysiological state, protein conformation 

disease) and a fourth class that summarizes intrinsic stimuli during cell growth and development. 

Adapted from (Morimoto 2008). 

To conserve cellular resources, the proteostasis machinery is not adjusted to its 

highest functional capacity under normal conditions (Morimoto 2008). However, 

cells must be able to react and adapt rapidly to the changing environment. Cells 

have therefore evolved several stress response pathways which are 

compartment-specific (Kourtis & Tavernarakis 2011): the cytosolic stress 

response, and the unfolded protein response of the endoplasmic reticulum and 

mitochondria. Since not only proteins can be damaged by different stressors, a 

nuclear DNA damage response has also evolved. 

2.4.2  Cytosolic stress response and Hsf1 

Upon proteotoxic stress, every living cell of all three kingdoms of life responds with 

an evolutionarily conserved defense program to protect itself (Lindquist 1986). 

This transcriptional response was first described in the 1960s when the geneticist 

Ritossa discovered that polytene chromosomes in salvary glands of Drosophila 

melanogaster showed a different puffing pattern (corresponding to transcriptional 

activity) after he had accidently shifted the larvae to higher temperature (Ritossa 

1962). 
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In the following decades the genes which are activated during the heat shock 

response were identified and termed heat shock protein (Hsp) genes (Tissières et 

al. 1974). As described above, many of these proteins function as molecular 

chaperones and are also constitutively expressed as abundant proteins to 

maintain proteostasis during both stress and normal conditions (paragraph 2.2.2.). 

Since proteins are the cell’s primary molecular machines, their maintenance is of 

high importance and therefore it is not surprising that the expression of Hsp genes 

is tightly regulated. 

In eukaryotes, the genes encoding components of the cytosolic heat-shock 

response are under the control of promoters  containing characteristic conserved 

heat shock elements (HSE), consisting of inverted nGAAn sequence motifs 

(Pelham 1982). The multidomain transcription factors which bind to these 

promoters harboring HSEs were termed heat-shock transcription factors (Hsf) 

(Parker & Topol 1984; Wu 1984; Wu 1995). 

Prokaryotes such as E. coli developed an alternative mechanism for the inducible 

expression of Hsp, involving a RNA polymerase II subunit termed σ32 (Neidhardt 

& VanBogelen 1981). σ32 is increasingly translated during heat stress and directs 

Pol II to its target genes (Nonaka et al. 2006). 

Whereas in yeast, invertebrates, nematodes and fruit flies a single Hsf (Hsf1) is 

responsible for inducing the heat shock stress response, vertebrates possess a 

whole family of homologous Hsfs (Akerfelt et al. 2010). Humans express at least 

three different Hsf - Hsf1, Hsf2 and Hsf4 – which fulfill different tasks. Hsf2 has 

shown to play a critical role in brain development, spermatogenesis and basal 

chaperone transcription, but similar to Hsf4 – which has been shown to contribute 

to development and basal chaperone transcription – is much less well 

characterized than Hsf1, the master regulator of the heat-shock response (HSR). 

Hsf1 is the vertebrate functional counterpart to the single Hsf in invertebrates. It is 

the only stress inducible regulator in the family and its function cannot be 

compensated by Hsf2 or Hsf4 (Anckar & Sistonen 2011). 

Hsf1 is the best-characterized member of the vertebrate Hsf family and is 

ubiquitously expressed in human body tissues (Uhlén et al. 2015). It has been 

reported to be primarily located in the nucleus, with the ability to shuttle between 
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nucleus and cytoplasm (Mercier et al. 1999). During non-stress conditions, Hsf1 

assumes a monomeric state, which is inactive and does not bind to HSEs. Hsf1 

shifts to its active, oligomeric (probably trimeric) form upon proteotoxic stress 

(Figure 6) (Sarge et al. 1993). 

 

Figure 6 Current Hsf1 activation model. Hsf1’s monomeric state is stabilized by molecular 

chaperones in the monomeric state. Upon proteotoxic stress, Hsf1 trimerizes, accumulates in the 

nucleus and binds to HSE in promoters of target genes and activates transcription. Activity is 

additionally regulated by PTMs. Hsf1 is deactivated by further PTMs and dissociates or is 

degraded. Adapted by permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Bio.(Akerfelt 

et al. 2010), copyright 2010 

A variety of chaperones such as TRiC, Hsp70 and Hsp90 bind Hsf1 during non-

stress conditions and thereby stabilize the monomeric state (Neef et al. 2014). 

Upon stress, Hsf1 is thought to be displaced from its stabilizing chaperones by 

increasing amounts of unfolded or misfolded proteins, and is able to adopt its 

active, oligomeric form (Zou et al. 1998; Neef et al. 2014). The Hsf1 oligomer binds 

cooperatively and with high affinity to HSE-containing promoters of target genes 

(Xiao et al. 1991). Although initially thought to be only involved in regulating the 
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heat shock response, recent studies have discovered that Hsf1 is involved in a 

diverse signaling network of ~1500 genes ranging from protein folding to cell cycle 

regulation (Trinklein et al. 2004; Page et al. 2006). 

Hsf1 undergoes extensive post-translational modification such as 

phosphorylation, acetylation and phosphorylation-dependent sumoylation (Xu et 

al. 2012). Whereas the role of phosphorylation in Hsf1 function has largely 

remained enigmatic, differential acetylation appears to regulate Hsf1  stability and 

promoter binding (Budzyński et al. 2015; Raychaudhuri et al. 2014). 

Besides HSEs, Hsf1 binds to repeats of Satellite III DNA upon heat shock, giving 

rise to nuclear stress bodies (Grady et al. 1992). These Satellite III repeats are 

found in the central region on chromosome 9. This region has been shown to form 

“satellite” bands when human DNA is separated in a density gradient, indicating a 

different base composition compared to normal DNA. It has been found that this 

region is comprised of long repeats of a 5 bp motif, GGAAT – similar to those 

found in HSEs. These sites have been shown to be the origin of non-coding RNA 

transcripts of unknown function (Biamonti & Vourc’h 2010). 

2.4.3  Organelle-specific stress response of the en doplasmic 

reticulum 

Prokaryotes do not possess membrane-enclosed organelles and therefore have 

only one type of stress response to protect the proteins of their cytoplasm. 

Eukaryotic cells are subdivided into different, membrane-enclosed organelles 

such as the nucleus, endoplasmic reticulum, Golgi apparatus and mitochondria - 

each harboring a different set of proteins. Therefore eukaryotes do not only have 

the cytosolic stress response (as described above) but have also developed 

organelle-specific stress responsive pathways (Kourtis & Tavernarakis 2011). The 

endoplasmic reticulum (ER) is an important compartment in which secretory 

proteins are folded, post-translationally modified and undergo quality control 

before their delivery to other membrane compartments. Eukaryotic cells have 

developed three branches of a response to unfolded and misfolded proteins in the 

ER – termed the unfolded protein response (UPR). The UPR comprises the IRE1 

(inositol requiring enzyme 1), the PERK (double-stranded RNA-activated protein 
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kinase-like ER kinase) and the ATF6 (activating transcription factor 6) mediated 

pathway (Walter & Ron 2011). The three branches are partially redundant, and 

are activated upon distinct stress signals. 

IRE1 mediates the best-studied branch of the UPR (Walter & Ron 2011). IRE1 is 

a bifunctional transmembrane kinase/endoribonuclease which contains an ER 

luminal domain that is able to detect unfolded proteins. Upon an increase in the 

amounts of unfolded proteins in the ER, IRE1 oligomerizes and the cytoplasmic 

domain phosphorylates itself, activating IRE1. Active IRE1 splices the mRNA of 

the UPR-specific transcription factor XBP1 into the alternative product XBP1s 

(Yoshida et al. 2001). XBP1s acts as transcription factor for proteins involved in 

translation, protein folding and degradation as well as lipid synthesis. ER-

associated protein degradation (ERAD) is executed by retro-translocation into the 

cytosol followed by proteasomal degradation (Vembar & Brodsky 2008). 

The second branch of the system involves PERK, an ER-resident transmembrane 

kinase which oligomerizes upon exposure to unfolded proteins in the ER (Ron & 

Walter 2007). Oligomeric PERK phosphorylates itself and elF2α, which induces 

the translation of the transcription factor ATF4. ATF4’s target genes include genes 

for protein folding, antioxidant response proteins, apoptosis regulating genes and 

transcription factors. 

The third branch of the UPR is mediated via ATF6. ATF6 is a transcription factor, 

which harbors a transmembrane domain (Ron & Walter 2007). It is inserted into 

the ER membrane and has an ER luminal part, which is able to sense unfolded 

proteins in the ER. Upon activation, ATF6 is transported to the Golgi apparatus, 

where it is cleaved by two proteases. The N-terminus of ATF6 (ATF6(N)) is 

released as a transcription factor, which activates protective target genes in the 

nucleus. 

2.5 Gene regulation mediated by transcription facto rs 

When the atomic structure of the DNA-double helix was solved and the short-lived 

messenger was discovered to be RNA (Watson & Crick 1953; Weiss & Gladstone 

1959), an intriguing question remained: how is gene activity regulated? How do 

proteins interact with DNA and the genome? Today, substantial progress has 
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been made on the details of these interactions. Large groups of proteins interact 

with DNA for genome maintenance, replication and transcription. Thousands of 

proteins – in humans around 10% of the proteome - have been identified to be 

DNA interacting proteins, which act as transcription factors (Vaquerizas et al. 

2009). Transcription factors (TF) are proteins which bind DNA in a sequence-

specific manner and direct transcription initiation to specific promoters, but do not 

have enzymatic function or belong to the RNA polymerase II (Pol II) initiation 

complex (Vaquerizas et al. 2009). TF carry out a great variety of functions in many 

cellular processes such as metabolism, response to stimuli and development. 

2.5.1 Role of transcription factors in transcriptio n initiation 

2.5.1.1 Initiation of transcription requires format ion of the 

preinitiation complex 

To initiate the transcription of genomic DNA to mRNA, a specific TF binds to a 

DNA-sequence motif upstream (e.g. 150 bp) of the transcription start site (TSS) of 

its target genes (Dynan & Tjian 1983). Accessibility of these upstream regions – 

termed promoters – is regulated by the chromatin structure (Guertin & Lis 2010). 

After binding to DNA, the TF trans-activation domain recruits other proteins such 

as general coactivators and adaptor proteins, which facilitate the recruitment of 

general transcription factors for the assembly of the preinitiation complex of 

transcription (PIC) for RNA Polymerase II (Pol II) (Sainsbury et al. 2015). Gene 

regulation is highly complex and tightly regulated by a great variety of proteins and 

processes. Not only specific TF, general TF and co-activators and the Pol II play 

an important role, but also chromatin structure and histone exchange (Venkatesh 

& Workman 2015). An additional layer of complexity is added by a myriad of post-

translational modifications on proteins directly involved in transcription and 

chromatin structure. Therefore only an outline of transcription regulation is 

described in the following. 

In the first step leading to the PIC, TATA-box binding protein (TBP) which is part 

of the general transcription factor TFIID complex (several TBP-associated factors 

(TAF)) binds the TATA-box within in the promoter (Figure 7), (Sainsbury et al. 

2015).  
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Figure 7 Eukaryotic promoter architecture. a) General architecture of eukaryotic promoters with 

binding sites for general transcription factors. Details can be found in the text. b) Architecture of 

the human hsp70.1 promoter with distal and proximal HSE motifs. These are followed by the 

generic elements of eukaryotic promoters such as TATA-box and the transcription start site (+1). 

Adapted from (Decker & Hinton 2013; Hietakangas & Sistonen 2006) 

TBP inserts into the minor groove of the DNA causing a bend of ~90 degrees 

(Figure 8). Subsequently, TFIIA and TFIIB are recruited to the complex. TFIIA 

stabilizes the TBP-DNA complex and can stimulate transcription. TFIIB binds to 

the complex and to TFIIB recognition elements (BRE) which are up- and 

downstream of the TATA-box. TFIIB is required to recruit and activate Pol II. 

Subsequently, Pol II bound to TFIIF binds to the preinitiation complex. Upon 

binding of TFIIE and TFIIH, which has an ATP-dependent helicase activity, the 

preinitiation complex is complete and transcription can initiate under consumption 

of ATP and nucleotide triphosphates (NTP) (Sainsbury et al. 2015). 
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Figure 8 Transcription initiation by general transc ription factors, the PIC and RNA 

Polymerase II. Shown is the canonical model for stepwise pre-initiation complex (PIC) assembly 

from general transcription factors (various colors) and RNA polymerase II (Pol II; grey) on promoter 

DNA. The intermediate complexes are labelled. Details can be found in the text. Adapted by 

permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Bio. (Sainsbury et al. 2015), 

copyright 2015 

2.5.1.2 Productive elongation is dependent on elong ation factors 

Transcription elongation requires another set of proteins, elongation factors, to 

avoid pausing of Pol II in promoter-proximal regions (Jonkers & Lis 2015). In most 

cases, Pol II pauses immediately after initiation after transcribing ~25-50 bp, due 

to the influence of DRB sensitivity-inducing factor (DSIF) and negative elongation 

factor (NELF). For elongation, positive transcription elongation factor b (P-TEFb 

(which has a Cdk9 subunit)) has to be recruited (e.g. by a TF such as Hsf1) which 



2 Introduction 

22 
  

phosphorylates DSIF, NELF and the Pol II C-terminal domain. Thus, DSIF and 

NELF dissociate from Pol II and the Pol II continues transcription (Figure 9).  

 

Figure 9 Pol II pausing and release in transcriptio n. Pol II requires elongation factors for 

continued transcription. Pol II pausing is caused by negative elongation factor (NELF) and DRB-

sensitivity-inducing factor (DSIF), with contribution from core promoter elements and the +1 

nucleosome. Positive transcription elongation factor-b (P-TEFb) releases paused Pol II by 

phosphorylating NELF, DSIF and the carboxy-terminal domain (CTD) of Pol II. Adapted by 

permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Bio. (Jonkers & Lis 2015), copyright 

2015 

2.5.1.3 Trans-activation domains of TFs act as recr uitment agents for 

general transcription factors 

Specific transcription factors have been shown to directly recruit TFIID and other 

general transcription or elongation factors (Sainsbury et al. 2015). A specific type 

of TF trans-activation domain defined by a pattern of nine amino acids (9aaTAD), 

which is also present in Hsf1 (amino acid 412-420), was shown to interact with the 

general transcriptional coactivator TAF9, the acetyltransferase and adaptor family 

p300-CBP and MED15, a subunit of the mediator complex (Piskacek 2009). The 

“mediator of transcription” complex is a large, ~20 subunit protein complex that 

interacts with activators/repressors of transcription and regulates the assembly of 

the preinitiation complex (Allen & Taatjes 2015). Furthermore, successful binding 

of general co-factors can only occur if the promoter is not tightly wrapped around 

the histones on a nucleosome. Therefore the histone acetyltransferase function of 

e.g. CBP or p300 can be essential to acetylate histones and therefore make the 
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promoter accessible to co-factors of the preinitiation complex (Jonkers & Lis 

2015). 

2.5.2 Common structural motifs for specific transcription factors 

TF do not only read out the base sequence of the major groove of B-DNA, which 

offers a sequence specific hydrogen bond donor/acceptor or other group for 

interaction with the TF, but also utilize the base readout of the minor groove or 

global or local DNA shape (Figure 10) (Rohs et al. 2010). 

 

Figure 10 Transcription factors read base compositi on and/or shape of DNA double helix. 

a) The viral protein HPV-18 E2 causes the DNA helix to bend, b) Lac repressor causes a kink in 

the DNA, Phage 434 repressor probes conformations (c)) and electrostatic potential (d)) of the 

DNA minor groove. Adapted from (Rohs et al. 2010). 

The database of Structural Classification of Proteins (SCOP) reports about ~70 

SCOP super families for DNA-binding proteins based on atomic structures solved 

so far (Andreeva et al. 2007; Fox et al. 2014). Amongst these, Cys2-His2-

Zincfinger and Helix-turn-helix DNA-binding domains (DBD) are the most common 

three dimensional classes (Figure 11). Together with Helix-loop-helix DNA-binding 

domains, they comprise about 80 % of the determined repertoire (Rohs et al. 2010; 

Vaquerizas et al. 2009). 
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Figure 11 The three most common folds of DNA-bindin g domains. a) Zinc finger (1AAY), b) 

Homeodomain (Helix-turn-helix) (1FJL), c) Helix-loop-helix (1AM9). Adapted from (Luscombe et 

al. 2000) 

The Zinc finger DNA-binding domain consists of a short α-helix which is inserted 

into the major groove of the DNA and reads out the base composition, and a two-

stranded antiparallel β-sheet (Luscombe et al. 2000). The name derives from a 

Zn2+ ion which is coordinated by Histidine and Cysteine residues between the α-

helix and the β-sheets. The Zinc finger is defined by its Cys-His motif (e.g. Cys2-

His2, Cys4, Cys6). 

Helix-loop-helix domains consist of a short α-helix which reads out the base 

sequence in the major groove of the DNA, and a longer α-helix which is able to 

form a dimeric leucine zipper. The two helices are connected via a loop. 

Helix-turn-helix (HTH) structures are of the most frequently observed structural 

motifs for DNA-binding domains (Rohs et al. 2010). The helix-turn-helix fold can 

be subclassified depending on the number of helices present (2-4) and other 

structural features such as a large incorporated wing-loop (paragraph 2.5.3.1). 

The main feature of this particular fold is two helices which are orientated 

perpendicular to each other, whereby the first α-helix is inserted into the major 

groove of B-DNA for a base specific read out (recognition helix), and the second 

exhibits generic contacts to the DNA stabilizing the orientation of the first helix 

(Brennan & Matthews 1989). The two helices are connected via a short turn. The 

best-studied example for HTH domains are homeodomain DNA-binding domains 

which consist of three α-helices. 
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2.5.3 Structural details of the Heat shock transcription factor 

family and Hsf1 

Human Hsf1 is a 57 kDa multidomain protein (Rabindran et al. 1991). It comprises 

a DNA-binding domain (DBD), a coiled-coil oligomerization domain, a trans-

activation regulator domain (RD) and a transactivation domain (TAD) (Figure 12).  

 

Figure 12 Domain architecture of human Hsf1 and the  fungal paralog C. thermophilum Skn7. 

2.5.3.1 The Hsf DNA-binding domain 

The DNA-binding domain of heat-shock factors belongs to the family of HTH 

domains (Harrison et al. 1994). It comprises three major α-helices and a short, 

four-stranded β-sheet whereby the connector between β-sheet 3 and β-sheet 4 is 

a long loop termed “wing” (Figure 13).  

Hsf HTH domains therefore belong into the subfamily of winged helix-turn-helix 

(wHTH) motifs (Harrison et al. 1994). In many wHTH domains, the wing contacts 

the DNA and reads out the base composition of the minor groove, whereas Hsf-

type wHTH domains do not use the wing for protein-DNA contacts, but rather 

protein-protein contacts (Littlefield & Nelson 1999). 
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Figure 13 Domain topology of Hsf-type DBDs. a) First published Hsf1 DBD crystal structure 

from Kluveromyces lactis (including residues 194-282, PDB 2HTS).(Harrison et al. 1994) α-helix 3 

inserts into the major groove of the DNA double helix. b) Domain topology diagram of K. lactis Hsf1 

DBD (2HTS).(de Beer et al. 2014) Hsf DBD C-terminus is missing (aa 282-299). 

Structural details of Hsf1 DBDs have been resolved using nuclear magnetic 

resonance spectroscopy (NMR) and macromolecular protein X-ray 

crystallography. Structures for isolated Hsf DBDs have been published from the 

fungus Kluveromyces lactis (Figure 13), Drosophila melanogaster and Homo 

sapiens (Liu et al. 2011; Harrison et al. 1994; Vuister et al. 1994). Furthermore the 

structure of a complex between a two times nGAAn repeat with a part of the DBD 

of K. lactis is known (Littlefield & Nelson 1999). The DBD of Hsf1 binds specifically 

to the sequence motif nGAAn (or its inverted repeat nTTCn), to which the 

recognition helix (α-helix 3 in Hsf DBDs) forms contacts in the major groove of the 

DNA double helix. Heat-shock elements (HSE) typically consist of 2-6 such 

repeats. The affinity of a monomer binding to one repeat is therefore several 

orders of magnitude lower than oligomer binding to the an array in a cooperative 

manner (affinity monomer: ~0.6 µM vs oligomer: 12 nM) (Xiao et al. 1991; Jaeger 

et al. 2014). Furthermore, it has been shown that the wing-loop plays a role in 
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DBD-DBD interactions with adjacent inverted repeats and is required for full 

activity in yeast Hsf1 (Cicero et al. 2001). So far the role of the DBD C-terminal 

region in DNA-binding was not clear, although it was shown to be essential in 

yeast (Flick et al. 1994). None of the previously published Hsf DBD crystal 

structures included the DBD C-terminus (aa 282-299 in K. lactis Hsf1). The DBD 

is connected to the adjacent coiled-coil heptad repeat domain (HR) by a ~15 

amino acid linker (Flick et al. 1994). 

2.5.3.2 Heptad repeat domains regulate Hsf1 oligome rization 

Oligomerization of Hsf family proteins is thought to be achieved by assembly of an 

α-helical coiled-coil domain consisting of several arrays of heptad repeats (HR) 

(Sorger & Nelson 1989; Peteranderl & Nelson 1992). These HR are composed of 

seven amino acids usually denoted a-b-c-d-e-f-g - whereby amino acids a and d 

are hydrophobic (such as Leucine), forming the core of the helix bundle. They do 

so via a “knobs-into-holes” pattern and therefore the resulting structures have 

been alternatively termed “leucine zipper”. Amino acids in positions e and g point 

into the solvent and interact with e and g from their opposing strand, which 

determines the specificity of oligomer formation (Mason & Arndt 2004; Krylov & 

Vinson 2001). The HR domain of human Hsf1 stretches out over ~75 amino acids 

and is divided into the subdomains HR-A (133-175) and HR-B (180-207) (Neef et 

al. 2013). Whereas the Hsf1’s from lower eukaryotes such as yeast and 

mammalian Hsf4 only contain HR-A/B, Hsf1’s from metazoan organisms 

additionally include a C-terminal leucine zipper domain termed HR-C which 

suppresses spontaneous oligomer formation (Rabindran et al. 1993). Mutational 

studies have shown that in human Hsf1 all three HR domains are required to keep 

Hsf1 in a monomeric state (Zuo et al. 1994). 

2.5.3.3 Regulation of Hsf1’s trans-activating activ ity  

Upon binding to the promoters of its target genes, oligomeric HSF1 facilitates 

transcription via its C-terminal trans-activation domain. As described above, TADs 

of TF are thought to recruit general transcription factors, adaptors and 

acetyltransferases to enable the formation of the preinitiation complex of 

transcription (PIC) for RNA-polymerase II. Alternatively, TF (such as Hsf1) can 

trigger the of release paused Pol II (Rougvie & Lis 1988). The TAD of mouse Hsf1 
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has been described as intrinsically unstructured domain which adopts limited 

structure upon temperature shift, acidic pH and other stimuli (Pattaramanon et al. 

2007). 

The TAD of Hsf1 is under the control of the regulatory domain (RD), an 

unstructured segment. The RD forms the central region of the Hsf1 protein 

sequence and has been described to have the capacity to sense stress intrinsically 

as well as being controlled by differential post-translational modifications (PTM) 

(Anckar & Sistonen 2011). However, the code by which these PTMS regulate Hsf1 

function is not yet clear (Xu et al. 2012; Knauf et al. 1996; Budzyński et al. 2015). 

2.5.4 Oxidative and cell wall stress response in fu ngi 

Fungi contain a paralog of Hsf1, Skn7, which is involved in the response to cell 

wall stress (Raitt et al. 2000). In contrast to Hsf1, Skn7 contains a phosphor 

receiver domain, an element of a phosphorelay signaling system (Figure 12). 

Bacteria, protozoa and fungi often employ histidine kinase-based phosphorelays 

in response to certain stimuli (Figure 14). One of the best studied systems is the 

Sln1 phosphorelay, in which the membrane associated fungal kinase Sln1 senses 

cell wall stress and transmits the signal to the response regulator Skn7 (Fassler & 

West 2011). However, the Hsf paralog Skn7 contributes as a transcription factor 

not only to the response to cell wall stress but also to oxidative stress. Skn7 

interacts with the transcription factor Yap1 to coordinate the oxidative stress 

response in budding yeast (Morgan et al. 1997; Lee et al. 1999). 



2 Introduction  

29 
 

 

Figure 14 Cell wall and oxidative stress response i n fungi mediated by Sln1 and Skn7. Cell 

wall stress is sensed by the membrane associated kinase Sln1 and the response mediated via a 

phosphorelay to the transcription factor Skn7. In addition Skn7 can contribute to respond to 

oxidative stress. (Ssk1, response regulator, Hog1 pathway is involved in osmoregulation). 

Reproduced from (Fassler & West 2011) 

Via Skn7, oxidative stress induces expression of molecular chaperones such as 

Ssa1p (Hsp70) and Hsp82p (Hsp90) (Lee et al. 1999; Raitt et al. 2000). The 

primary sequence specificity of Skn7 is towards Sln1-responsive elements 

(SSRE) which are clearly distinct from HSEs, as shown using the model promotor 

of OCH1, encoding a α-1,6 mannosyl transferase, which has two such motifs 

divided by a 11 bp spacer (Li et al. 2002).  In addition, Skn7 binding to HSE on the 

TRX2 (thioredoxin) promotor of S. cerevisiae has been reported (Morgan et al. 

1997). 
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2.5.4.1 Function of the receiver domain of Skn7 

The DBD and coiled-coil regions of Skn7 are close in sequence to those of 

metazoan Hsf1. However, the regulatory segment of Skn7 comprises a receiver 

domain which resembles a specific fold found in phospho-relay pathways (Figure 

12), (Raitt et al. 2000). The receiver domain is phosphorylated at the conserved 

Asp427 residue in response to cell wall stress, thereby activating Skn7 (Li et al. 

1998). Modification of Asp427 does not seem to play a role in the oxidative stress 

response (Morgan et al. 1997).  PTMs in form of Serine-phosphorylation and 

acetylation of Skn7 have also been reported (He et al. 2009; Gómez-Pastor et al. 

2013). Furthermore, a direct interaction betweenSkn7 and Hsf1 has been reported 

in yeast (Raitt et al. 2000). 

2.6 Role of Hsf1 in proteostasis in aging and disea se 

Cellular life as we know it is strictly dependent on a functional protein network. 

Each eukaryotic cell produces ~10000 different proteins, which are present in high 

total concentrations up to 400 mg/ml in the cytosol (Hartl et al. 2011). Therefore, 

each cell invests a great amount of metabolic energy to maintain its molecular 

machinery in a functional state. As described above, the functional network 

maintaining proteins is the proteostasis network, comprising the machineries for 

translation, protein folding and protein degradation (Figure 1). This machinery is 

tuned to work efficiently under normal conditions, but has to be adjusted under 

conditions which increase the amount of misfolded proteins in the cell (Morimoto 

2008). 

Several human disease states have been described in which protein deposits are 

found in the intra or extra cellular space, consisting of amorphous protein 

aggregates or highly ordered fibrils (Ross & Poirier 2004; Labbadia & R. Morimoto 

2015). These diseases were also termed proteopathies (Carrell & Lomas 1997; 

Walker & LeVine 2000). Some are loss-of-function diseases, such as cystic 

fibrosis, in which a specific mutation causes misfolding and inefficient trafficking 

of the membrane protein Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR). Gain of toxic function diseases have been described, whereby proteins 

with increased aggregation propensity cause proteotoxicity and induce 
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malfunction of the proteostasis network. The latter diseases include Alzheimer’s 

disease (extracellular plaques of Aβ-peptides and intracellular tangles of Tau 

protein), Parkinson’s disease (intracellular α-synuclein aggregates (Lewy 

Bodies)), Huntington’s disease (intracellular aggregates of huntingtin with polyQ 

expansion) and Amyotrophic lateral sclerosis (ALS) (including intracellular 

aggregates of superoxide dismutase 1 (SOD1) and TAR DNA-binding protein 43 

kDa (TDP-43)) (Ross & Poirier 2004). 

Intriguingly, most of the gain-of-toxic function disorders manifest later in life and 

sometimes the disease onset can be clearly correlated to the level of underlying 

proteostasis challenge (Hipp et al. 2014). A classic example for this relation is 

Huntington’s disease. Huntington’s disease is caused by a mutationally expanded 

poly-glutamine region in exon 1 of huntingtin, a protein of unknown function. When 

the polyQ region exceeds the length of 37 glutamines, the individual will likely 

show the disease phenotype at some point in its life. The length of the polyQ 

repeat determines the age of onset of the disease. Long repeats cause early onset 

whereas shorter repeats shift the age of onset to higher age. In vitro experiments 

showed that longer polyQ repeats also show increased aggregation propensity 

(Scherzinger et al. 1999). Therefore it was concluded that expansion of the polyQ 

tract increases the aggregate load in the cell and is inversely correlated with the 

age of onset of the disease (Gusella & MacDonald 2006). Proteostasis network 

capacity seems to decline with sexual maturity and aging (Labbadia & R. I. 

Morimoto 2015; Ben-Zvi et al. 2009). 

Several approaches to pharmacologically target disease states by influencing the 

proteostasis network have been proposed. First, one could try to stabilize 

aggregation-prone variants of proteins with small molecule drugs, tailored to the 

specific disease-causing protein. Therefore the proteostasis network’s load 

decreases. This has been proved to work for the retinol-binding serum protein 

transthyretin (TTR) which causes familial amyloid polyneuropathy – a disease 

state in which mutations in TTR cause its aggregation, leading to 

neurodegeneration and cardiomyopathy (Bulawa et al. 2012). Second, adjusting 

the proteostasis network and boosting its capacities by so-called “proteostasis 

regulators” could be of use for a variety of protein proteopathies (Balch et al. 

2008). Since the proteostasis network is built around synthesis, maintenance and 
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degradation of proteins, each branch could be addressed in isolation or 

combination. 

Boosting the folding and refolding capacity of the proteostasis network by 

overexpression of molecular chaperones has been shown to be protective for cells 

in the case of α-synuclein aggregation and polyQ aggregation (Auluck et al. 2002; 

Warrick et al. 1999). Therefore activation of Hsf1, the master regulator of the 

cytosolic stress response and main inducer of molecular chaperones, is 

considered a promising strategy (Neef et al. 2010). 

Moreover, several studies observed interaction of Hsf1 with the insulin signaling 

pathway in C. elegans (Hsu et al. 2003; Anckar & Sistonen 2011). In these studies, 

overexpression of Hsf1 increased lifespan of the nematode about 40 %. However, 

daf16, the FOXO transcription factor homologue of C. elegans, is required for the 

insulin pathway as well.  

On the other hand, overexpression of Hsf1 has been linked to cancer progression 

and poor prognosis in cancer patients (Santagata et al. 2011; Fang et al. 2012). 

Consistent with these findings, a landmark study found a remarkable resistance 

to carcinogenesis in Hsf1 knock-out mice (Dai et al. 2007). Recent studies also 

observed a multifaceted transcription program linked to Hsf1 (Mendillo et al. 2012). 

Tumor tissues are characterized by a high protein metabolism, which requires an 

up-regulated translation and protein folding machinery (Dai & Sampson 2015). 

However, not only proteins involved in proteostasis, but also other cellular 

processes such as cell cycle and signaling pathways are differentially regulated. 

It is therefore not surprising that Hsf1 has the capacity to reprogram not only tumor 

cells but also the tumor surrounding fibroblasts to an increased malignant 

phenotype of the tumor (Scherz-Shouval et al. 2014). 

Considering the protective role of Hsf1 in proteostasis failure and its tumor-driving 

role in cancer, there is substantial interest in targeting Hsf1 with either activating 

or inhibiting small molecule compounds (Au et al. 2009; Whitesell & Lindquist 

2009; Neef et al. 2010; Calamini et al. 2011). 
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3 Aim of the study 

Although discovered more than 30 years ago and functionally well characterized, 

structural details of heat shock transcription factors have largely remained 

enigmatic (Wu 1995). Only structural data for isolated DBDs of the Hsf homologs 

from Kluveromyces lactis, Drosophila melanogaster and Homo sapiens (Liu et al. 

2011; Harrison et al. 1994; Vuister et al. 1994) and of a protein-DNA complex of a 

two-foldnGAAn repeat with a part of the DBD of K. lactis had been published 

(Littlefield & Nelson 1999). The aim of this study was therefore to elucidate the 

structures of functional complexes of human Hsf1 using X-ray crystallography as 

the core technique. Furthermore, domain topology and dynamics of Hsf1 were of 

interest, with the focus on the intramolecular interaction of the heptad repeat 

domains. Structural details of Hsf1 at atomic resolution might facilitate structure-

guided drug design for cancer and proteopathies. 
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4 Materials and Methods 

4.1 Enzymes and Chemicals 

4.1.1 Enzymes 

Supplier       Enzyme or chemical 

New England Biolabs (Frankfurt am Main, Germany) Restriction enzymes 

Promega (Mannheim, Germany)    Pfu polymerase 

        T4 ligase 

Roche  (Basel, Switzerland)    Proteinase K (Enzyme)  

4.1.2 Chemicals 

Supplier       Enzyme or chemical 

Biomol (Hamburg, Germany)     HEPES  

Biozym (Hessisch Oldendorf, Germany)   Biozym LE Agarose  

Creative Molecules Inc.     H12/D12-DSS 

Difco (Heidelberg, Germany)     Bacto Agar  

Bacto Tryptone  

Bacto peptone  

Bacto Yeast Extract  

Fermentas (St. Leon-Rot, Germany)    GeneRuler 1kb 

PageRuler Prestained 

Protein Ladder  

Fluka (Deisenhofen, Germany)  Polyethylene glycols of 

different molecular weights  

Sodium cacodylate  

GE Healthcare (München, Germany)    Chloramphenicol  



4 Materials and Methods  

35 
 

MES  

Invitrogen (Karlsruhe, Germany)     pProEx-HtA, pProEx-HtB  

SYBR Safe DNA gel strain  

Metabion (Martinsried, Germany)    dNTP  

Oligonucleotides  

Primers 

Promega (Mannheim, Germany)   Wizard Plus SV Miniprep 

DNA Purification System  

Wizard SV Gel and PCR 

Clean-Up System  

Qiagen (Hilden, Germany)     Qiagen Plasmid Midi Kit  

Roche (Basel, Switzerland)     DTT  

EDTA-free Complete 

protease inhibitor cocktail  

Roth (Karlsruhe, Germany)     Ampicillin  

IPTG  

Serva (Heidelberg, Germany)     Acrylamide-Bis  

Coomassie Blue R250  

PMSF  

SDS 

Sigma Aldrich (Steinheim, Germany)   Poly(dI-dC) 

        DMTMM 

Thermo Fisher Scientific (Waltham, USA)  EGS 

4.2 Strains 

Supplier      Strain 

Novagen (Darmstadt, Germany)   E. coli DH5α 
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Stratagene (Heidelberg, Germany)   E. coli BL21(DE3) CodonPlus-RIL 

E. coli BL21 Rosetta (DE3) 

4.3 Instruments 

Supplier      Product 

Avestin (Ottawa, Canada)    Emulsiflex EF-C5/C502290 

Beckman Coulter (Krefeld, Germany)           Centrifuges (GS-6R, Allegra-6R, 

Avanti J-25 with rotors JKA 10.500 

and JA 25.50, J6-MI with rotor JS 

4.2) 

Biometra (Göttingen, Germany)    PCR thermocycler  

Bio-Rad (München, Germany)    ChemiDoc XRS  

Horizontal agarose gel 

electrophoresis  

Mini Protean II electrophoresis cell  

Power Pac 300   

Micro Bio-Spin 6 columns 

Eppendorf (Hamburg, Germany)      Centrifuges (5415D and 5417R)  

Pipettes (2, 10, 20, 100, 200, 1000 

μl)  

Thermomixer comfort 

Fisher Scientific (Schwerte, Germany)   Accumet Basic pH meter  

Fujifilm (Minato, Japan)     Image reader FLA-2000 

GE-Healthcare (München, Germany)   Äkta FPLC  

Äkta Purifier/Explorer  

Ettan LC  

Pre-packed chromatography 

columns as following: HiPrep 
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26/10 Desalting, HiLoad 26/60 

Superdex 200, Mono S HR 10/10 

Hampton Research (Aliso Viejo, USA)   Mounted cryo loops  

Siliconized glass square cover 

slides (22 mm)  

VDX Plate with sealant  

Mascom (Bremen, Germany)   nano-ESI pipettes 

Mettler Toledo (Gießen, Germany)   Balances (AG285, PB602)  

Millipore (Schwalbach, Germany)   Centriprep concentrators (3000, 

10.000, 30.000 and 50.000 Da 

MWCO)  

New Brunswick Scientific (now Eppendorf) Innova 44 incubator / shaker  

PEQLAB (Erlangen, Germany)    Nanodrop 1000  

Roth (Karlsruhe, Germany)    ZelluTrans dialysis membrane  

Scientific Industries, Inc. (Bohemia/NY, USA)  Vortex-Genie 2  

Tecan (Männedorf, Schweiz)   GENios Pro plate reader 

Thermo Fisher Scientific (Waltham, USA) Easy-nLC 1000 UPLC system 

Q-Exactive Orbitrap mass 

spectrometer 

Novex NuPAGE SDS-PA Gels 

Waters Corporation (Manchester, UK)  Synapt G2-Si Q-TOF Mass 

spectrometer   

4.4 Media and Buffers 

2YT-Medium    80 g Bacto peptone  
50 g Bacto yeast extract  
25 g NaCl  
7.5 mL 5 M NaOH 
Add water to 5 L volume, stir vigorously and 
steam-autoclave bottles 
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LB-Medium:     50 g Bacto peptone  
25 g Bacto yeast extract  
50 g NaCl  
Add water to 5 L volume, stir vigorously and 
steam-autoclave bottles 
 

Buffers were filtered through a 0.22 µm pore size filter and degassed. Milli-Q water 

was used. 

Buffer A  25 mM MES-NaOH pH 6.5  
300 mM NaCl  
10% glycerol  
3 mM betaME 

 
Buffer B  25 mM MES-NaOH pH 6.5  

30 mM NaCl  
10% glycerol  
3 mM betaME 

 
Buffer C    10 mM MES-KOH pH 6.5  

100 mM KCl 
 

Buffer D 25 mM HEPES-NaOH pH 7.4  
300 mM NaCl  
10% glycerol  
3 mM betaME 
 

Buffer E     25 mM HEPES-NaOH pH 7.4  
150 mM NaCl  
10% glycerol  
1 mM DTT 
 

Buffer F 25 mM Tris-HCl pH 8.5  
300 mM NaCl  
10% glycerol  
3 mM betaME 
 

Buffer G    25 mM HEPES-NaOH pH 7.4  
150 mM NaCl 
10% glycerol  
3 mM betaME 

 
Coomassie destaining solution:  10 % (v/v) ethanol 

10 % (v/v) acetic acid 
 
Coomassie staining solution:  0.1 % (w/v) Serva Coomassie Blue R250 

40 % (v/v) ethanol 
10 % (v/v) acetic acid  
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DNA annealing buffer 10 mM HEPES-NaOH pH 7.0 
100 mM NaCl 
2.5 mM MgCl2 

 
DNA-loading buffer (6x):   0.25 % (w/v) bromophenol blue 

0.25 % (w/v) xylene cyanol FF 
40 % (w/v) sucrose in H2O 
 

SDS-loading buffer (2x)   100 mM Tris-HCl pH 6.8 
4 % (w/v) SDS 
200 mM DTT 
20 % (v/v) glycerol 
0.2 % (w/v) bromphenolblue 

 
SDS-running buffer (10x)   250 mM Tris 

2.5 M glycine 
1 % (w/v) SDS 

 
Native running buffer (10x) 250 mM Tris-HCl pH 7.5 
     2.5 M glycine 
     5 % glycerol 
 
TAE Buffer    40 mM Tris 

20 mM acetic acid 
1 mM EDTA 

 

4.5 Molecular Biology Methods 

4.5.1 Agarose gel electrophoresis 

DNA was analyzed using agarose gel electrophoresis with gels containing 0.8 % 

(w/v) agarose dissolved in 1x TAE buffer and mixed with SYBR-Safe DNA gel 

stain (Life-technologies; 0.1 µL/mL agarose gel). Samples containing 1X DNA-

loading buffer (NEB) were loaded into the gel and separated in 1x TAE buffer at a 

constant voltage of 80 V for 15 – 20 min. 

4.5.2 Preparation of double stranded DNA oligonucle otides 

DNA-oligonucleotides for EMSA and fluorescence polarization measurements 

were obtained at HPLC-purified grade from Metabion. Single stranded unlabeled 

DNA was dissolved in DNA-annealing buffer to a concentration of 5 mM. Solutions 



4 Materials and Methods 

40 
  

of complimentary strands were mixed to a final concentration of 2.5 mM and 

annealed by slow-cooling in a metal heating block (~40 °C h-1) from 95 °C to RT.  

Fluorescently labeled DNA-oligonucleotides were synthesized with a 6-

carboxyfluorescein (6-FAM) fluorescence label at the 5’ end (Metabion). Single 

stranded DNA was dissolved at 100 µM concentration in DNA-annealing buffer 

and annealed as described above. Double stranded DNA oligonucleotides were 

stored at -20 °C. 

4.5.3 Polymerase chain reaction (PCR) 

Amplification of DNA constructs were performed using Pfu polymerase 

(Promega). Each reaction was set up as follows: 

Component  Amount  
Template  1 µL Miniprep 
Primer 1 and 2  0.5 µM each 
dNTPs 200 µM 
Pfu-Buffer  1x 
Pfu-Polymerase  3 U 
Total volume:  50 µL 

PCR annealing temperatures were chosen according to the melting temperatures 

of the primers (in most cases approximately 60 °C). PCR extension times varied 

based on target length and the elongation speed of the Pfu-polymerase. The 

program was started with an initial 5 min denaturation step at 98 °C. The first step 

of the cycle was 30 sec at 96 °C for denaturation of elongated DNA. This was 

followed by 30 sec at 53 °C for primer annealing. An optimal extension 

temperature of 72 °C was set for elongation using Pfu-polymerase, assuming 

approximately 1000 bp per 1 min as elongation velocity. This cycle was repeated 

for 30-35 times followed by a final elongation step of 5 min at 72 °C and 

subsequent cooling to 4 °C till further processing. 

4.5.4 Cloning strategies and molecular cloning 

Synthetic DNA for CtSkn7(35-652+685-765) and the HsHsf1-CtSkn7 chimera 

(HsHsf1(1-132)-CtSkn7(160-220)-HsHsf1(194-529)) was purchased at GeneArt 

(Life technologies). The missing CtSkn7 sequences in CtSkn7(35-652+685-765) 

were highly repetitive and not accessible to the DNA synthesis protocol of the 

company. The DNA sequence of CtSkn7 was codon-optimized for expression in 
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E. coli whereas the DNA sequence of the HsHsf1-CtSkn7 chimera was codon-

optimized for expression in human cell lines. Domain borders were determined by 

multiple sequence alignment using Clustal Omega and secondary structure 

prediction with Jpred (Drozdetskiy et al. 2015). 

The HsHsf1 DBD construct, residues 1-120, was PCR-amplified from pCMV-

HsfHsf1-Flag (Plasmid#1932, Addgene), and cloned into pProEx-HtB (Life 

technologies) using EcoRI and HindIII restriction sites. The resulting construct can 

be expressed as a TEV protease-cleavable, N-terminal His6-tagged fusion protein 

in Escherichia coli. As a consequence of the cloning strategy, HsHsf1(1-120) 

contained the additional N-terminal sequence GAMGSGILRGG after His6-tag 

cleavage. The expression constructs CtSkn7(40-143), CtSkn7(40-220), 

CtSkn7(160-209), CtSkn7(160-220), HsHsf1-CtSkn7 chimera and HsHsf1 point 

mutants were PCR-amplified and cloned into the pHUE plasmid for expression as 

N-terminally His6-tagged ubiquitin (Ub) fusion proteins using SacII and HindIII 

restriction sites. This tag is readily cleavable using the de-ubiquitinating enzyme 

Usp2 to produce pure untagged protein (Catanzariti et al. 2004). The His6-SUMO-

HsHsf1 expression strain was a generous gift of Dr. N. Hentze and Dr. M. P. Mayer 

(Heidelberg). 

For the generation of complementary ends for DNA recombination, DNA was 

digested with the respective restriction enzymes. Digests were performed in the 

recommended reaction buffers and in presence of BSA for 1 h at 37°C. For 

plasmid backbone preparation, plasmid were digested for up to 24 h at 37°C to 

avoid traces of uncut vector. 

Component  Amount  
H20 10.5 µL 
DNA 15 µL 
Restriction enzyme 1 and 2  0.5 – 1 µL each 
10x Reaction buffer  3 µL 
BSA 0.5 µL 
Total volume  30 µL 

Ligations were performed using 100 ng plasmid backbone and 50 fmol (~33 ng for 

1 kb) insert in 20 µL total volume with 1 µL T4 ligase, and supplemented with 2 µL 

10x T4 reaction buffer (Promega). The reaction was incubated at 16°C for at least 

1.5 h before transformation. 
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4.5.5 Site-directed mutagenesis 

Overlapping primers were designed to include the mutated DNA base triplet within 

approximately 30 bp of complementary sequence to the target DNA. 

Subsequently, a standard PCR with an annealing temperature of 50-53 °C and an 

elongation time to allow whole plasmid amplification (e.b. for pHUE with 500 bp 

insert: 10 min) was performed. Source plasmid DNA background was digested by 

addition of DpnI for 1.5 h at 37ºC. Sequencing data was aligned and analyzed with 

Multalign (Corpet 1988). 

4.5.6 Competent E. coli cells 

For the preparation of CaCl-chemically competent E. coli cells, a culture of the 

respective strain was grown to mid-log phase (A600 = 0.5) at 37 ºC in 1 L of LB 

medium. The flask was subsequently chilled on ice for 10 minutes before pelleting 

the cells for 30 min, 4000 rpm, at 4 ºC. In the final step, cells were resuspended 

gently in 20 mL ice-cold 0.1 M CaCl2, 15 % glycerol and incubated on ice for 20 

min. Finally, the cells were aliquoted as 100 µL fractions into chilled (-20 ºC) sterile 

Eppendorf tubes and frozen in liquid nitrogen. Cells were stored at -80 ºC. 

4.5.7 E. coli cell transformation 

For transformation 100 µL CaCl-competent E. coli cells were thawed on ice and 

mixed with 1 μL plasmid DNA (approximately 100 ng) or 10 µL of a ligation 

reaction. After incubation on ice for 30 minutes, cells were heat-shocked for 5 

minutes at 37°C and then cooled on ice. Next, 900 μL LB-Medium was added and 

cells were incubated 1-2h at 37°C, 450 rpm in a shaker. Finally, 50 µL of pelleted 

cells (4000 rpm, 2 min) were re-suspended in 50 µL LB and plated on LB agar 

plates containing the respective selective antibiotic. 
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4.6 Protein biochemistry 

4.6.1 Protein analytical methods 

4.6.1.1 Determination of protein concentration 

Measurement of protein concentration at 280 nm was performed using a 

Nanodrop device (Thermo Scientific). Protein solution (2 µL) was applied to the 

Nanodrop to obtain the absorbance and the concentration calculated using the 

molecular weight and calculated extinction coefficient (calculated from the 

sequence using ExPASy ProtParam). DNA contaminations in purifications of Hsf 

family proteins containing a DBD could be estimated by monitoring the absorption 

at 260 nm and 280 nm. 

4.6.1.2 Protein quantification and SDS-PAGE 

Components for 10 mL  
(2 gels)  

Resolving gel:  
15% acrylamide  

Stacking gel:  
5% acrylamide  

H2O 2.3 mL 6.8 mL 
30% acrylamide / 0.8% bis -AA 5.0 mL 1.7 mL 
1.5 M Tris (pH 8.8)  2.5 mL - 
1.0 M Tris (pH 6.8)  - 1.25 mL 
10% SDS 100 µL 100 µL 
10% ammonium persulfate  100 µL 100 µL 
TEMED 4 µL 10 µL 

 

Protein content and purified proteins were analyzed by discontinuous SDS-PAGE 

(Tris-glycine sodium dodecylsulfate polyacrylamide gel electrophoresis). This 

method separates proteins primarily according to their molecular weight (Laemmli 

1970). For a perfectly even resolving-to-stacking gel boundary, the resolving gel 

casts were covered with a layer of isopropanol immediately after casting. Protein 

samples were mixed with 2x or 4x SDS-loading dye, boiled at 95°C for 5 minutes 

for SDS-PAGE analysis. Electrophoresis was performed for 40 min in SDS-

running buffer at a constant voltage of 220 V. After electrophoresis, gels were 

stained with Coomassie staining solution and destained with Coomassie 

destaining solution on a shaker. Images of the gels were taken with a V750 Pro 

gel documentation system (Epson). As molecular weight marker, PageRuler 

(prestained protein ladder) (Thermo Scientific) was used. 
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4.6.1.3 Protein production and purification 

All protein purification steps were performed at 4 °C and lysis buffer was 

supplemented with 1 mM Phenylmethylsulfonylfluorid (PMSF) unless noted 

otherwise. Protein concentrations in the final preparations were determined as 

described in 4.6.1.1. The protein mass of the final product was estimated by SDS-

PAGE and confirmed by mass spectrometry. 

HsHsf1(1-120) – E. coli Bl21-CodonPlus-RIL cells were transformed with pProEx-

HtB-HsHsf1(1-120), for expression as a N-terminal His6-tagged fusion protein, 

His6-HsHsf1(1-120). The resulting strain was grown at 37 °C using flasks of LB 

medium containing 0.1 mg mL-1 ampicillin and 0.034 mg mL-1 chloramphenicol. 

After reaching an OD600nm of 0.6, the cultures were shifted to 18 °C. After 45 min, 

isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to a final concentration 

of 0.2 mM, and the culture continued for 16-20 h. Cells were harvested by 

centrifugation at 4200 rpm (5020 x g) for 25 min using a JS4.2 rotor (Beckman). 

The cell pellet from 1 L of culture was resuspended in 25 mL ice-cold buffer A (25 

mM MES-NaOH pH 6.5, 300 mM NaCl, 10 % (v/v) glycerol, 3 mM β-

mercaptoethanol (β-ME))) supplemented with 1 mg mL-1 lysozyme, and the cell 

suspension passed three times through an ice-cooled Emulsoflex C5 French 

press (Avestin). Cell debris was removed by centrifugation at 20,000 rpm (48,400 

x g) for 30 min using a JA25.50 rotor (Beckman). The clear supernatant was 

applied to a Ni2+-nitrilotriacetic acid (NTA) Superflow (Qiagen) column (3 mL for 

protein from 1 L culture) using a FPLC. The eluate fractions were analyzed by 

SDS-PAGE, followed by Coomassie staining. The fractions containing the His6-

tagged protein were combined and His6-TEV protease was added at a protein 

mass ratio of 1:100 together with 3 mM β-ME and 0.5 mM EDTA (final 

concentrations), followed by incubation overnight at 4 °C. Subsequently the buffer 

was exchanged against buffer B (25 mM MES-NaOH pH 6.5, 30 mM NaCl, 10 % 

(v/v) glycerol, 3 mM β-mercaptoethanol (β-ME)),) using a HiPrep-desalting column 

(GE Healthcare). In the following step, HsHsf1(1-120) was applied to cation 

exchange chromatography on Source-S (GE Healthcare) equilibrated in buffer B. 

The protein was eluted with a linear salt gradient to 500 mM NaCl. Size-exclusion 

chromatography on a Superdex-200 (GE Healthcare) column equilibrated with 

buffer C (10 mM MES pH 6.5, 100 mM KCl) was used as the final purification step. 
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HsHsf1(1-120) was subsequently concentrated to 18 mg mL-1 concentration by 

ultrafiltration using a Vivaspin (3 kDa cut-off) centrifugal device (Vivascience, 

Hannover). After snap-freezing in liquid nitrogen, protein aliquots were stored at -

80 °C. 

HsHsf1-GCN4 – E. coli Rosetta 2 (DE3) cells were transformed with the respective 

pHUE plasmid for expression as N-terminal His6-ubiquitin-tagged fusion protein. 

The resulting strain was grown in shaking flask culture at 37 °C using 2YT medium 

containing 0.1 mg mL-1 ampicillin and 0.034 mg mL-1 chloramphenicol. At an 

OD600nm of 0.6, the cultures were shifted to 18 °C. After 45 min, IPTG was added 

to a final concentration of 0.2 mM, and the culture continued for 16-20 h. Cells 

were harvested by centrifugation at 4200 rpm (5020 x g) for 25 min using a JS4.2 

rotor (Beckman). The cell pellet from 1 L culture was resuspended in 25 mL ice-

cold buffer A containing 1 mg mL-1 lysozyme and 0.05 % Triton X-100. The cell 

suspension was then passed three times through an ice-cooled Emulsoflex C5 

French press. Cell debris was removed by centrifugation at 20,000 rpm (48,400 x 

g) for 30 min using a JA25.50 rotor. The supernatant was applied to Ni2+- NTA 

beads (~5 mL CV for protein from 1 L culture). The eluate fractions were analyzed 

by SDS-PAGE, followed by Coomassie staining. The fractions containing the His6-

Ub-fusion protein were combined, His6-Usp2 protease added at a protein mass 

ratio of 1:100 together with 3 mM β-ME (final concentration) and incubated over 

night at 4°C. Subsequently the buffer was exchanged against buffer B using a 

HiPrep-Desalting column (GE Healthcare). In the following step, the constructs 

were applied to cation exchange chromatography on Source-S (GE Healthcare) 

equilibrated with buffer B. Subsequently, the proteins were eluted by a linear salt 

gradient to 500 mM NaCl. Size-exclusion chromatography on Superdex-200 (GE 

Healthcare) equilibrated with buffer D was used as the final purification step. The 

purified proteins were subsequently concentrated up to ~44 mg mL-1 by 

ultrafiltration using a 10 kDa cut-off. After snap-freezing in liquid nitrogen, protein 

aliquots were stored at -80 °C. 

Human Hsf1 - This protocol was adapted from the Mayer lab procedure.(Hentze 

et al. 2016). E. coli Bl21 CodonPlus-RIL cells were transformed with the respective 

plasmids for expression as N-terminal His6-Sumo-tagged fusion protein or N-

terminal His6-Ubiquitin-tagged fusion protein in case of HsHsf1 K80Q, K116Q and 
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K118Q.  The resulting strains were grown in flask cultures at 37 °C using 2YT 

medium containing 0.1 mg ml-1 ampicillin and 0.034 mg ml-1 chloramphenicol.  At 

an OD600nm of 0.6, the cultures were shifted to 20 °C.  After 45 min, IPTG was 

added to a final concentration of 0.2 mM, and the culture continued for 2 h.  Cells 

were harvested by centrifugation at 4200 rpm (5020 g) for 25 min using a JS4.2 

rotor.  Cells from 1 L culture were resuspended in 25 mL buffer G, 1 mg mL-1 

lysozyme and Complete protease inhibitor cocktail (Roche) was added, 

subsequently the cell suspension passed three times through an ice-chilled french 

press. Cell debris was removed by centrifugation as above.  The clear supernatant 

was applied to a Ni2+-TED gravity flow column (Macherey Nagel) containing 0.125 

g dry material per pellet of 1 L expression culture.  The column was washed with 

100 CV buffer G supplied with 1 M NaCl.  Bound His6-Sumo tagged protein was 

eluted with 10 CV 250 mM imidazole in buffer G. The eluate fractions were 

analyzed by the Bradford assay. Protein-containing fractions were merged and 

His6-Ulp1 protease added at a protein mass ratio of 1:20, together with 3 mM β-

ME (final concentration) and incubated at 4 °C for 2–3 h. The final purification step 

was performed with a Superdex 200 26/60 column equilibrated with buffer E.  

Protein-containing fractions were pooled and concentrated to 10 µM using a 

Vivaspin (30 kDa cut-off) centrifugal device (Vivascience). 

CtSkn7 truncation constructs CtSkn7(40-143), CtSkn7 (40-209) and CtSkn7(40-

220) – E. coli Rosetta 2 (DE3) cells were transformed with the respective pHUE 

plasmids for expression as N-terminal His6-ubiquitin-tagged fusion proteins. The 

resulting strain was grown in shaking flask culture at 37 °C using 2YT medium 

containing 0.1 mg mL-1 ampicillin and 0.034 mg mL-1 chloramphenicol. At an 

OD600nm of 0.6, the cultures were shifted to 18 °C. After 45 min, IPTG was added 

to a final concentration of 0.2 mM, and  continued incubation for 16-20 h. Cells 

were harvested by centrifugation at 4200 rpm (5020 x g) for 25 min using a JS4.2 

rotor (Beckman). The cell pellet from 1 L of culture was resuspended in 25 mL ice-

cold buffer A supplied with 1 mg mL-1 lysozyme, and the cell suspension passed 

three times through an ice-cooled Emulsoflex C5 French press. Cell debris was 

removed by centrifugation at 20,000 rpm (48,400 x g) for 30 min using a JA25.50 

rotor. The clear supernatant was applied to a Ni2+- NTA Superflow column (~3 mL 

CV for cells from 1 L culture). The eluate fractions were analyzed by SDS-PAGE, 
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followed by Coomassie staining. The fractions containing the His6-Ub-fusion 

protein were combined, and His6-Usp2 protease added at a protein mass ratio of 

1:100 together with 3 mM β-ME (final concentration) and incubated over night at 

4°C. Subsequently the buffer was exchanged against buffer B using a HiPrep-

Desalting column (GE Healthcare). In the following step, the constructs were 

applied to cation exchange chromatography on Source-S (GE Healthcare) 

equilibrated with buffer B. Subsequently, the proteins were eluted by a linear salt 

gradient to 500 mM NaCl. Size-exclusion chromatography on Superdex-200 (GE 

Healthcare) equilibrated with buffer C (and 5-10 % glycerol in case of CtSkn7(40-

209) and CtSkn7(40-220)) was used as the final purification step. The purified 

proteins were concentrated to 20 mg mL-1, 32 mg mL-1 and 33 mg mL-1 

concentration, respectively, by ultrafiltration using a 3 kDa cut-off. After snap-

freezing in liquid nitrogen, protein aliquots were stored at -80 °C. 

CtSkn7(35-652+685-765) – Expression and purification were as described for the 

other CtSkn7 truncation constructs, except that size-exclusion chromatography on 

Superdex-200 (GE Healthcare) equilibrated with 25 mM HEPES-NaOH, 150 mM 

NaCl, 10 % glycerol was used as final purification step. The purified protein was 

concentrated to 1.84 mg mL-1 by ultrafiltration using a 10 kDa cut-off. 

CtSkn7 truncation constructs CtSkn7(160-209) and CtSkn7(160-220) – 

Expression and purification were performed as described for the other CtSkn7 

truncation constructs up to the cleavage of the expression tag. However, instead 

of buffer A, buffer F supplied with imidazole was used to develop the Ni2+-NTA 

resin. After cleavage, residual His6-tagged protein and His6-Usp2 protease were 

removed by affinity chromatography on Ni2+-NTA resin. Size-exclusion 

chromatography on a Superdex-200 (GE Healthcare) column equilibrated with 10 

mM Tris-HCl pH 8.5, 100 mM KCl was used as final purification step. The final 

protein concentrations were 24 and 11 mg mL-1, respectively. 

Hsf1-CtSkn7-chimera – This protocol was adapted from the procedure of the 

Thiele lab. (Jaeger et al. 2014) E. coli Bl21 CodonPlus-RIL cells were transformed 

with the respective pHUE plasmid for expression as N-terminal His6-Ub-tagged 

fusion protein. The resulting strain was grown in a shaking flask culture at 37°C 

using 2YT medium containing 0.1 mg mL-1 ampicillin and 0.034 mg mL-1 

chloramphenicol. At an OD600nm of 0.6, the cultures were shifted to 20°C. After 45 
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min, IPTG was added to a final concentration of 0.2 mM, and the culture continued 

for 2 h. Cells were harvested by centrifugation at 4200 rpm (5000 x g) for 25 min 

using a JS4.2 rotor. Cells from 1 L culture were resuspended in 25 mL buffer D 

(25 mM Hepes-NaOH pH 7.4, 300 mM NaCl, 10 % glycerol and 3 mM β-ME), 

supplied with 20 mM imidazole, 1 mg mL-1 lysozyme and Complete protease 

inhibitor cocktail, and the cell suspension passed three times through an ice-

cooled french press. Cell debris was removed by centrifugation as above. The 

clear supernatant was applied to a Ni2+-NTA FPLC column of 1 mL CV. The 

column was washed with 5 CV of buffer D containing 40 mM imidazole, and 2 CV 

of buffer D containing 40 mM imidazole, 5 mM ATP, 20 mM MgCl2. Bound His6-

Ub tagged protein was eluted with 10 CV buffer D containing 250 mM imidazole. 

Protein-containing fractions were merged and His6-Usp2 protease added at a 

protein mass ratio of 1:50 together with 3 mM β-ME (final concentration) and 

incubated at 4°C for 2–3 h. The final purification step was performed on a 

Superdex-200 column equilibrated with buffer E (25 mM HEPES pH 7.4, 150 mM 

NaCl, 10 % glycerol, 1 mM DTT). Protein-containing fractions were pooled and 

concentrated to ~10 µM using a Vivaspin (30 kDa cut-off) centrifugal device 

(Vivascience). 

4.6.1.4 Circular dichroism spectroscopy (CD) 

Secondary structure content and thermal stability of purified protein constructs 

were assessed by CD-spectroscopy. Proteins were desalted into DTT-free buffer 

or buffer freshly supplemented with DTT using the Bio-Spin6 chromatography 

column (Bio-Rad) according to manufacturer’s instructions. Protein content was 

adjusted to a final concentration of 0.1-0.2 mg/ml and the CD spectra were 

recorded on a JASCO 715 CD-spectrometer (average of 4 passes, 250 nm to 195 

nm, 0.1 nm data pitch, 4-90 °C). CD-spectra were fitted with the CONTIN algorithm 

on the SMP56 base dataset to estimate the secondary structure content  

(Greenfield 2006). 

4.6.1.5 Small angle X-ray scattering (SAXS) 

SAXS measurements were performed at beamline BM29 of the European 

Synchrotron Radiation Source (ESRF), Grenoble, France.  Protein samples in the 

respective storage buffer were exposed for 1 s to the X-ray beam at three different 
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concentrations.  Scattering data from ten repeats were averaged and buffer 

background signal was subtracted.  The protein scattering data were processed 

with Primus and the radii of gyration were determined using the Guinier 

approximation.  For calculating the density distribution function scattering curves 

were fitted with Gnom (Petoukhov et al. 2012). 

4.6.1.6 Multi-angle light scattering (MALS) 

Protein samples (~60 to 120 µg) were analyzed using static and dynamic light 

scattering by MALS coupled to size exclusion chromatography. This was 

performed in buffer E at 20 °C. The SEC column was connected to an UV 

absorbance detector, a MALS detector and a refractive index detector on a system 

from Wyatt Technology. Bovine serum albumin (Thermo) was used as the 

calibration standard. 

The SEC-MALS experiments were performed by Dr. Manajit Hayer-Hartl (MPI of 

Biochemistry, Martinsried, Germany). 

4.6.1.7 Limited proteolysis with Proteinase K 

Limited proteolysis was performed to probe the purified protein construct for 

unstructured regions. A concentration series of the unspecific protease Proteinase 

K was prepared and added to the sample (final concentrations: 0 – 50 µg/ml 

Proteinase K, target protein at 11 µM). The reactions were incubated for 1 h on 

ice and stopped by addition of PMSF to a final concentration of 2 mM. Samples 

were analyzed by SDS-PAGE and mass spectrometry, or frozen in liquid nitrogen 

and stored at -80 °C until further use. The mass spectrometry measurements were 

performed by Dr. Roman Körner (MPI of Biochemistry, Martinsried, Germany). 

4.6.1.8 Native mass spectrometry 

Purified CtSkn7(40-220) and CtSkn7(160-220) at a concentration of ~30 µM were 

transferred into 100 mM ammonium acetate pH 7.5-8, using Micro Bio-Spin 6 

chromatography columns (BioRad). HsHsf1 at a concentration of 45 µM was 

transferred directly, or heat shocked for 5 min at 36 or 42 °C and subsequently 

transferred into 100 mM ammonium acetate pH 7.5-8 as above. Native MS 

analysis was performed on quadrupole IM time-of-flight hybrid mass spectrometer 
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with a Z-spray nano-ESI source (Synapt G2-Si, Waters) in positive ion mode, 

using gold-platted 10 µm nano-ESI pipettes as capillaries. Capillary and sample 

cone voltages were optimized to 1-1.6 kV and 100-150 V, respectively. Cesium 

iodide (30 mg/ml) in 1:1 acetonitrile:water was used for spectra calibration. 

The native MS experiments were performed by Dr. Javaid Y. Bhat (MPI of 

Biochemistry, Martinsried, Germany). 

4.6.1.9 EGS crosslinking 

Protein samples were diluted into buffer E to a final concentration of 9.4 µM. 

Ethylene glycol bis(succinimidyl succinate) (EGS) was added to the desired final 

concentration (0, 0.1, 0.2, 0.5, 1 mM), using a 10 mM EGS stock solution in 

dimethyl sulfoxide (DMSO), and incubated for 45 min at 15 °C. Reactions were 

quenched with 30 mM glycine for 15 min and analyzed by SDS-PAGE on a 4–12 

% polyacrylamide gradient gel followed by Coomassie-staining.  

4.6.1.10 Crosslinking coupled to mass spectrometry 

Latent HsHsf1 or HsHsf1 heat shocked at 42 ºC for 10 min was incubated at 10 

µM in 25 mM HEPES pH 7.4, 150 mM NaCl, 10 % glycerol and 1 mM DTT with 1 

or 2 mM of a 1:1 isotropic mixture of [H12]- and [D12]-disuccinimidylsuberate 

(H12/D12-DSS), for 30 min at RT.  Reactions were quenched using NH4HCO3 (150 

mM final concentration). Crosslinking with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholinium chloride (DMTMM) was performed using 10 µM HsHsf1 and 

20 mM crosslinker in 25 mM HEPES pH 7.4, 150 mM NaCl, 10% glycerol,1 mM 

DTT and 20 mM residual DMSO for 15 or 45 min at RT. The reactions were 

quenched by buffer exchange using Micro Bio-Spin 6 chromatography columns. 

Both crosslinkers were solubilized in 100% DMSO. Crosslinked complexes were 

separated on 4-12% Bis-Tris Novex NuPAGE SDS-PAGE and visualized by 

Coomassie staining. Excision of gel bands followed by reduction, alkylation and 

in-gel digestion and desalting was performed using standard protocols. Desalted 

peptides were dissolved in 5% formic acid and analyzed on an Easy-nLC 1000 

UPLC system (Thermo) connected to a Q-Exactive Orbitrap mass spectrometer 

(Thermo). Peptides were separated on home-made nano spray-columns (ID 75 

μm, 20 cm long with 8 μm tip opening, New Objective) containing 1.9 μm C18 
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beads (Reprosil-Pur C18-AQ, Dr. Maisch GmbH) on a 60 min gradient using 0.2% 

formic acid in water and 0.2% formic acid in acetonitrile. The column was loaded 

with sample by the Thermo Easy-nLC 1000 autosampler without a trap column, at 

a flow rate of 0.5 μl per min. The UPLC flow rate during sample analysis was 0.2 

μL per min. MS/MS analysis was performed using standard data-dependent mode 

settings of alternate 1 high resolution (resolution =70,000) MS1 scan (m/z of 400-

1750) followed by 10 MS2 scans (resolution =17,500) of 10 most intense ions, of 

charge states 3 or above, run on Xcalibur software (Thermo). 

For data analysis, Thermo Xcalibur.raw files were converted to .mfg (Mascot 

generic file) format, using Proteome Discoverer 1.4 (Thermo). To identify 

crosslinked peptides, the .mgf files were analyzed on StavroX 3.1.19 (Götze et al. 

2015) with following parameters: MS1 tolerance = 3 ppm, MS2 tolerance = 0.8 Da, 

missed cleavages for K and R = 3 and 1, respectively, signal to noise ratio ≥2, 

fixed and variable modifications = Cys-carbamidomethylation and Met-oxidation, 

respectively. The potential crosslinking sites considered for DSS were lysine and 

N-termini. All the identified linked peptides were validated manually for b- and y-

ion assignment and were only included in the final list if precursors of the 

respective peptides contained doublets with a mass difference of 12.0753 Da 

(mass difference between DSS-H12 and DSS-D12).  

The mass spectrometry measurements and majority of crosslink identifications 

were performed by Dr. Javaid Y. Bhat (MPI of Biochemistry, Martinsried, 

Germany). 

Crosslinks were visualized for analysis with XVis and Xlink Analyzer (Grimm et al. 

2015; Kosinski et al. 2015). 

4.6.1.11 Electrophoretic mobility shift assay (EMSA ) 

EMSAs with CtSkn7 were performed with 15–20 µM protein and 200 nM 

fluorescently labelled DNA-oligonucleotides in buffer E supplemented with 250 µg 

mL-1 Poly(dI-dC) (Sigma) in a total volume of 20 µL. Prior to electrophoresis, 

samples were incubated at RT for 20-30 min.  

EMSAs with HsHsf1 were performed with 4 µM protein and 200 nM fluorescently 

labelled DNA-oligonucleotides in buffer E supplemented with 250 µg mL-1 Poly(dI-
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dC) (Sigma) in a total volume of 20 µL. Samples were incubated at 42 ºC (heat 

shock) or on ice for 20 min. 

After adding 0.75 µL DNA-loading dye, all samples were separated for 2 h on 3 % 

agarose gels in Tris-Acetate-EDTA buffer at 50 V in the same apparatus as used 

for DNA gels (or on 5 % polyacrylamide native gel supplied with 5 % glycerol in 

native running buffer at 150 V for ~90 min). The electrophoresis chamber was ice-

cooled and protected from light with aluminum foil. The gels were recorded with 

an Image reader FLA-2000 (Fujifilm, Minato) and analyzed with the Aida Image 

analyzer software package (Raytest). 

For dissociation constant determination, the band intensity of the protein-DNA 

complex and the free DNA was quantified and plotted. The resulting graph was 

fitted using the Hill equation in Origin (OriginLab) whereby n was fixed (n=1) to 

avoid over interpretation regarding cooperativity since the exact stoichiometry of 

the complex is unknown. 

� = ����� + �	
� − �����
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��
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Equation 1 

4.6.1.12 Fluoresence polarization measurement 

For fluorescence polarization measurements, 5 nM of fluorescently labled DNA-

oligonucleotides were incubated with a concentration series of HsHsf1-CtSkn7-

Chimera in buffer E supplied with 1 mM MgCl2. The total volume per sample was 

50 µL. The titration series was performed in FIA plates (F-Form, non-binding; 

Greiner bio-one), incubated for 20 min and fluorescence polarization was read out 

by a GENios Pro plate reader (Tecan) with a wavelength of 485 nm for excitation 

and 535 nm for emission. Values were corrected for blank measurement and fit 

will the Equation 1. 

4.6.2 Protein crystallization and structure determi nation 

4.6.2.1 Crystallization 

HsHsf1(1-120)–HSE complex – Formation of the HsHsf1(1-120)–HSE complex 

was initiated by mixing the protein solution at 24 mg mL-1 with ds-DNA at a volume 
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ratio of 2.34:1, resulting in final concentrations of 1.25 mM protein and 0.75 mM 

DNA-duplex, respectively. After adding DTT to a final concentration of 20 mM, the 

mixture was incubated for 30 min on ice. Initial crystals in space group P22121 

were obtained by the sitting drop vapor diffusion method using the PEGs Suite 

(Qiagen, Hilden) crystallization screen at 4°C. Crystallization drops were set up by 

mixing 100 nL sample with 100 nL reservoir using the robotics setup of the MPIB 

Crystallization Facility. The final crystals grew in a hanging-drop vapor diffusion 

setup at 20°C after equilibrating a mixture of 1 µL HsHsf1(1-120)–HSE complex 

and 1 µL reservoir containing 0.2 M Ammonium sulfate and 21 % PEG-3350 as 

precipitant. For cryoprotection, crystals were dipped for 20 s into 25 % PEG-3350 

containing 10 % glycerol and flash-frozen in liquid nitrogen. 

HsHsf1(1-120)–SatIII complex – The HsHsf1(1-120)–SatIII complex was formed 

by mixing the protein solution of 24 mg mL-1 with ds-DNA, as described above. 

After adding DTT to a final concentration of 20 mM, the mixture was incubated for 

30 min on ice. Crystals in space group C2 were obtained by the sitting drop vapor 

diffusion method using the PEGs Suite (Qiagen) crystallization screen at 4°C by 

mixing 100 nL sample with 100 nL reservoir using the robotics setup of the MPIB 

Crystallization Facility. The best crystals grew using a reservoir containing 0.09 M 

MgAc and 31 % PEG-4000 as precipitant. For cryoprotection, crystals were dipped 

for 20 s into 34 % PEG-4000 containing 5 % glycerol and flash-cooled in liquid 

nitrogen. 

CtSkn7(40-143)–HSE complex – The complex was formed by mixing a 20.15 mg 

mL-1 protein solution with ds-DNA in a volume ratio of 2.60:1 resulting in final 

concentrations of 1.16 mM CtSkn7(40-143) and 0.69 mM HSE duplex. The 

solution was then incubated on ice for 30 min. Crystals of CtSkn7(40-143)–HSE 

in space group C2221 were obtained using the PEGs Suite (Qiagen) crystallization 

screen at 18°C using the previously mentioned robotics setup. The final crystals 

grew in hanging-drop vapor diffusion setup at 20°C after equilibrating a mixture of 

1 µL CtSkn7(40-143)–HSE complex and 1 µL reservoir containing 0.18 M tri-

ammonium citrate and 11 % PEG-3350 as precipitant. The crystals were 

transferred stepwise into cryosolution containing 17 % PEG-3350 and 15 % 

glycerol. 
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CtSkn7(40-143)–SSRE complex – The complex was formed using the same 

protocol as for CtSkn7(40-143)–HSE. Initial crystals of the CtSkn7(40-143)–SSRE 

complex in space group C2 were obtained using the PEGs Suite (Qiagen) 

crystallization screen at 18°C at the 100+100 nL scale. The final crystal grew in 

hanging-drop vapor diffusion setup at 20°C by mixing 1 µL CtSkn7(40-143)–SSRE 

complex with 1 µL precipitant containing 0.1 M Hepes-NaOH pH 7.5 and 25 % 

PEG-2000 MME. For cryoprotection, crystals were soaked in 30 % PEG-2000 

MME containing 5 % glycerol. 

CtSkn7(160-209) – Initial crystals of CtSkn7(160-209) were obtained using the pH 

Clear I Suite (Qiagen) crystallization screen at 18°C at 200 nL scale. The final 

crystals in space groups C2221 and P212121 grew in hanging-drop setup at a 

protein concentration of 37 mg mL-1 using 0.1 M Hepes-NaOH pH 7.0 and 20 % 

PEG-6000 or 21 % PEG-6000 as precipitant, respectively. For cryoprotection, the 

crystals were transferred stepwise into cryosolution containing 25 % PEG -6000 

and 10 % glycerol. 

CtSkn7(160-220) – Crystals of CtSkn7(160-220) in space group P21 were 

obtained using the Index crystallization screen (Hampton Research) at 20°C at 

200 nL scale at a protein concentration of 82 mg mL-1. The conditions were 0.1 M 

Bis-Tris pH 5.5, 0.2 M MgCl2 and 25 % PEG-3350 as precipitant. The crystals 

were directly transferred into liquid nitrogen. 

4.6.2.2 Structure solution, refinement and analysis  

X-ray diffraction data were collected at the Macromolecular Crystallography (MX) 

beamlines ID23-2, ID29 and ID30A at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble, France. All data were integrated and scaled with XDS 

(Kabsch 2010). Pointless and Scala (Evans 2006), Aimless (Evans & Murshudov 

2013) and Truncate (French & Wilson 1978) were applied to convert the data to 

CCP4 format (Collaborative Computational Project 1994). 

CtSkn7(160-209) crystal form I – Phases for this dataset were obtained by sulfur-

single-wavelength anomalous diffraction (SAD) using SHELX-CDE, as 

implemented in HKL2MAP (Sheldrick 2010). Subsequently, the model was almost 

entirely auto-built using ARP/wARP (Langer et al. 2008) due the resolution of the 
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native dataset of 1.03 Å. The model of the coiled-coil domain CtSkn7(160-209) 

contains a half-tetramer. 

CtSkn7(160-209) crystal form II – A CtSkn7(160-209) half-tetramer was found in 

the asymmetric unit by molecular replacement using Molrep (Vagin & Isupov 

2001). Electron density for an additional CtSkn7(160-209) trimer could be 

observed in the resulting map of this partial structure solution and the missing 

model was built manually (Emsley & Cowtan 2004). 

CtSkn7(160-220) – This structure was solved by molecular replacement using the 

CtSkn7(160-209) half-tetramer structure as search model in Molrep (Vagin & 

Isupov 2001). The asymmetric unit contains a CtSkn7(160-220) tetramer. 

DBD-DNA co-crystal structures – The dataset of the CtSkn7(40-143)–HSE co-

crystal was solved using molecular replacement with Molrep (Vagin & Isupov 

2001). A search template using the Kluyveromyces lactis Hsf1-HSE crystal 

structure (PDB code 3HTS) was applied. The refined model of the CtSkn7(40-

143)–HSE complex was used as search template for the other DBD-DNA complex 

structures. The asymmetric units of HsHsf1(1-120)–HSE and CtSkn7(40-143)–

HSE contain one DBD and a single strand of DNA. The unit cells of CtSkn7(40-

143)–SSRE and HsHsf1(1-120)–SatIII contain the entire biological assembly. 

All models were refined with Refmac5 (Murshudov et al. 1997). Coot was 

employed for manual model building in alternating building-refinement cycles with 

Refmac5. Residues facing solvent channels with disordered side chains were 

modeled as alanines. 

Coordinates were aligned with Lsqkab, Lsqman or the alignment algorithm of 

Pymol (Kleywegt 1999). Homology models were calculated with Modeller (Eswar 

et al. 2007). Modeller, using the ModLoop server or the Chimera interface to 

Modeller, was used to calculate the Linker regions between DBD and HR-A/B of 

HsHsf1 (Fiser & Sali 2003; Pettersen et al. 2004; Eswar et al. 2007). Energy 

minimization was done using the algorithm implemented in Chimera. Figures were 

generated and rendered with Pymol (http://www.pymol.org) and ESPript (Robert 

& Gouet 2014). 
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5 Results 

5.1 Characterization of human Hsf1 

In order to explore structural features of human Hsf1 (HsHsf1), we expressed full-

length HsHsf1 in E. coli. Purified HsHsf1 protein was analyzed regarding its 

oligomerization state and three dimensional domain topology. Furthermore, its 

DNA-binding properties were verified. 

5.1.1 Purification of HsHsf1  

Structural analysis of proteins requires a highly pure and homogenous sample. 

Therefore we established a purification procedure harnessing HsHsf1 expressed 

as His6-SUMO fusion protein in E. coli. The protein was purified using a protocol 

with only two chromatographic steps to shorten the purification process since large 

unfolded regions in the protein render it sensitive to degradation by proteolysis. 

Human Hsf1 was captured from lysate on a Ni2+-Tris(carboxymethyl)ethylene 

diamine (TED) column and washed extensively with a high-salt buffer to remove 

contaminating proteins and bound bacterial DNA. The His6-SUMO tag of the 

protein was cleaved off after elution for 2-3 hours, and the mixture was directly 

loaded onto a gel filtration Superdex 200 column. The peak fractions were 

concentrated up to 10 µM HsHsf1 and stored at -80 ºC. The yield was 0.3 mg 

HsHsf1 per 1 L of bacterial culture. The protocol mainly yields the monomeric form 

as indicated by the retention volume in SEC (Figure 15). In order to prevent 

oligomerization of human Hsf1, several parameters were carefully controlled 

during purification. The temperature of expression was critically required to be 20 

ºC or lower, to slow down the protein synthesis rate. Furthermore, the protein 

showed a strong tendency to oligomerize, if the concentration of the purified 

protein exceeded 10 µM or the glycerol concentration of the buffer solution was 

below 10 % (v/v). Apart from its large content of unstructured parts, oligomeric 

heterogeneity render full-length HsHsf1 not amenable for standard protein 

crystallography. 
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Figure 15 Purification of HsHsf1 expressed in E. coli. a) Elution profile of HsHsf1 during 

Superdex 200 26/60 SEC. Absorbance of light at a wavelength of 280 nm is shown. Peak 1 

corresponds to high molecular weight impurities, Peak 2 to monomeric HsHsf1, Peak 3 to Ulp1 

protease and cleaved His6-SUMO tag. b) SDS-PAGE analysis of the protein content in the elution 

fractions corresponding to in the major absorbance peaks of the Superdex 200 column separation 

in a). Coomassie-stained 12 % polyacrylamide gel; I, Input; MW, Molecular weight marker in kDa.  

5.1.2 Purified HsHsf1 forms trimers upon heat shock 

Because the retention volume in SEC only provides a rough estimate of the 

oligomeric state, we applied native mass spectrometry (native MS) to receive 

additional information about the oligomeric state in solution. This technique can 

provide information about native protein complexes such as stoichiometry and 

composition. Analysis of the preparation of human Hsf1 revealed only ionization 

states of monomeric HsHsf1 (Figure 16). However, when the sample was heated 

to 36 ºC for 5 minutes prior injection, a trimeric species was also detected. This 

result is consistent with the current model of Hsf1 (Anckar & Sistonen 2011). 



5 Results 

58 
  

Interestingly when the sample was heated to 42 ºC for 5 minutes prior to 

measurement, trimeric as well as a low amount of pentameric species were 

detected (Figure 16). Occurrence of a pentameric species is intriguing since the 

proximal promoter of HSP70.1 contains 5 inverted nGAAn repeats (Figure 7). The 

residual HsHsf1 monomer signal may be explained by dissociation in the gas 

phase. 
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Figure 16 Native mass spectrometry analysis of HsHs f1 in the latent (a) and activated (b) 

state after 5 min incubation at 42 ºC. Symbols indicate charge-state distributions; charge states 

are shown for some peaks. Analysis reveals a temperature-dependent intrinsic oligomerization 

capacity of HsHsf1. Different oligomeric species are indicated by different colors (– Monomer, – 

Trimer, * Pentamer). The calculated mass around the m/z values of the respective protein 

complexes and the accuracy of mass values calculated from the different m/z peaks were 57260±7 

Da for the monomer in the latent state, 57263±6 Da for the monomer and 171822±22 Da for the 

trimer in the activated state. MS analysis was performed by Dr. Javaid Y. Bhat. 
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5.1.3 Analysis of intra- and inter-molecular interactions in the 

domain topology of HsHsf1  

Next, we were curious to understand how the monomeric and oligomeric state are 

maintained and which domains interact with each other in order to do so. Previous 

studies revealed that the trimerization of metazoan Hsf1 is suppressed by the C-

terminal leucine zipper domain HR-C (Rabindran et al. 1993; Farkas et al. 1998). 

It was hypothesized that HR-C binds back to HR-A/B by formation of a coiled-coil 

structure by careful analysis of different mutant and truncation constructs. Zou and 

colleagues were able to show that all three coiled-coil domains (HR-A, HR-B and 

HR-C) are required to stabilize the monomeric state (Zuo et al. 1995). Their results 

were consistent with a working model of the HR-A, B and C forming an 

intramolecular antiparallel triple-stranded coiled-coil. Nevertheless biochemical 

data showing a direct interaction between HR-A/B and HR-C had been missing.  

Chemical crosslinking combined with mass spectrometry (CXMS) has the 

potential to reveal the molecular architecture of proteins and protein complexes. 

We applied this technique to purified HsHsf1 using the bifunctional compound 

disuccinimidylsuberate (DSS) and the heterobifunctional compound DMTMM (4-

(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride) as crosslinking 

agents. DSS crosslinks primary amines (lysine sidechains, amino terminals) that 

are less than 30 Å apart, as shown by the Cα positions of DSS-crosslinked lysine 

residues in model proteins with a known structure (Leitner et al. 2013). 

 

Figure 17 SDS-PAGE analysis of HsHsf1 crosslinking experiment . Both crosslinkers were 

applied under two different conditions (15 min or 45 min for DMTMM and, 1 mM or 2 mM for DSS). 
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Samples were analyzed by SDS-PAGE followed by Coomassie staining. MW, Molecular weight 

marker; C, non-crosslinked HsHsf1 control. For the no heat-shock condition (-HS), only bands at 

the height of monomeric HsHsf1 were analyzed. For the heat-shock condition (+HS), only shifted 

bands corresponding to intermolecular crosslinked HsHsf1 (HsHsf1*) were analyzed. The mass 

spectrometry measurement and majority of crosslink identification were performed by Dr. Javaid 

Y. Bhat. 

For identification of crosslinked peptides using mass spectrometry (MS) a 1:1 

isotopic mixture of light (H12) and heavy (D12) DSS was used. These peptides 

show a MS-MS doublet with a mass difference of 12.0753 Da in the spectra 

(Leitner et al. 2013). The compound DMTMM activates carboxyl groups (Asp and 

Glu) for the reaction with a primary amine (Leitner et al. 2014). The spacer 

distance is thus zero.  

Purified latent or heat-shocked HsHsf1 was incubated in the presence of each 

compound in order to chemically crosslink interacting segments. After quenching, 

the samples were applied to SDS-PAGE in order to separate crosslinked products 

by size (Figure 17). For the analysis of monomeric HsHsf1, only gel bands which 

had not shifted in size were cut out and analyzed by trypsin digestion followed by 

MS analysis of peptide fragments. Thus, only intramolecular crosslinks were 

included in the analysis. Spurious gel bands corresponding to intermolecular 

crosslinked HsHsf1 were not analyzed. Crosslinks were assigned as robust if 

found in two experimental conditions and in at least 60 % of analyzed gel bands 

(Figure 17, Table 1, Table 2, and all identified crosslinks in Table 5). The MS-

based identification procedure for crosslinked peptides was adjusted to a false 

discovery rate of ~5%.  

We found crosslinks between Lys80-Lys206, Lys80-Lys126 and Lys126-Lys139 

residues which are within the region of DBD and HR-A/B, respectively. These 

crosslinks are consistent with HR-A forming an anti-parallel arrangement with HR-

B in monomeric Hsf1. Otherwise Lys80 and Lys206 would be far apart. Other 

crosslinks (Met1-Lys184, Lys80-Lys206, Lys80-Lys298, Lys118-Lys524) 

suggested that the DBD folds back towards the coiled-coil domains and contacts 

the regulatory domain. Nevertheless, our crosslink data did not indicate a direct 

interaction between HR-A/B and HR-C, but reproducibly revealed crosslinks which 



5 Results 

62 
  

are consistent with the previously suggested compact state of monomeric Hsf1 

(Figure 18). 

Next, we analyzed HsHsf1 activated by a 10 min heat shock at 42 ºC using DSS-

crosslinking. For heat-shocked HsHsf1, only shifted gel bands, corresponding to 

oligomeric HsHsf1, were analyzed. Identified crosslinks were classified as 

intermolecular, if the crosslinked peptides showed overlapping sequences. 

Analysis of these gel bands revealed robust intermolecular DSS crosslinks 

(Lys131-Lys131, Lys178-Lys184, Lys206-Lys206, Lys298-Lys298), which are 

consistent with formation of a parallel coiled-coil helix bundle involving the HR-A/B 

domains of individual Hsf1 proteins. The crosslink between Lys298-Lys524 

suggested that the TAD is positioned towards the RD and DBD.  

 

Figure 18 Probing intra and intermolecular contacts  of HsHsf1 by chemical crosslinking 

coupled to mass spectrometry for the latent (a) and  activated state (b). Identified crosslinks 

are depicted by dotted lines between different sections/domains of HsHsf1. Residues involved in 

particular crosslink are indicated by their respective residue number. Only a selection of robust 

DSS crosslinks are depicted for clarity. Crosslinks were assigned as robust if found in two 

experimental conditions and in at least 60% of analyzed gel bands (for gel see Figure 17).  

DMTMM crosslinking was less efficient (Figure 17) and the majority of crosslinks 

were found within the DBD (e.g. Met1 to Glu55/Glu109/Glu113) (Figure 17, Table 

2 and Table 6 (all identified crosslinks)).  
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Table 1 Robust DSS crosslinks 

No heat shock  Heat shock 
Pos1 Pos2  Pos1 Pos2 Inter SU 

1 118  1 59 - 

1 184  1 62 - 

80 118  1 91 - 

80 126  1 116 - 

80 139  1 118 - 

80 184  1 126 - 

80 206  1 131 - 

80 298  1 148 - 

116 298  1 206 - 

118 139  1 298 - 

118 188  59 91 - 

118 298  80 118 - 

118 524  116 118 - 

126 139  116 131 - 

188 298  118 126 Y 

   118 131 - 

   126 126 Y 

   126 131 Y 

   178 184 Y 

   184 298 - 

   188 206 - 

   206 206 Y 

   206 208 - 

   206 298 - 

   208 298 - 

   298 298 Y 

   298 524 - 

 

Table 2 Robust DMTMM crosslinks 

No heat shock  Heat shock 

Pos1 Pos2  Pos1 Pos2 Inter SU 

1 55  1 55 - 

1 109  1 109 - 

1 113  1 113 - 

131 135  1 128 - 

206 339  55 91 - 

   126 128 Y 
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5.1.4 HsHsf1 binding to HSE DNA 

Next, we tested whether the purified recombinant HsHsf1 had the same DNA-

binding characteristics as authentic HsHSf1. Monomeric HsHsf1 does not exhibit 

stable binding to a trimeric HSE, whereas trimers do. Therefore electrophoretic 

mobility shift assays were performed (Figure 19). The purified, mostly monomeric 

HsHsf1 exhibited a smear, suggesting the formation of transient complexes. Upon 

heating to 42 ºC, a time-dependent development of a sharp band with decreased 

electrophoretic mobility was observed, while the band for unbound DNA 

diminished. Incubation of HsHsf1 at 42 °C for 5 min resulted in maximal activation 

of the protein as measured by EMSA and was consistent with our findings in native 

MS. HsHsf1 is a temperature and concentration sensitive protein which likely 

predisposes the protein to spontaneous trimerization. This was displayed, to some 

extent, by HsHsf1 through the formation of DNA-binding oligomers in the non-heat 

shock condition.  

The observed temperature dependent binding of HSE-DNA is consistent with 

previous findings for endogenous HsHsf1 (Sarge et al. 1993). 

 

Figure 19 HsHsf1 binds strongly to HSE DNA-oligonuc leotides upon heat shock induced 

oligomerization in EMSA. A 5% polyacrylamide gel shows the electrophoretic migration pattern 

of HsHsf1-DNA complexes, measured by fluorescence detection of fluorescein labeled HSE-DNA. 

HsHsf1 was activated by heat shock (HS) at 42 ºC (30 s, 2 min, 5 min, 10 min, 20 min). Control 

lanes (Ctrl’) represent the migration of labelled DNA in absence of HsHsf1. Free DNA and DNA 

bound by protein complexes are indicated, * putative HsHsf1 degradation product associated with 

DNA. 
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5.2 Strategies for structural characterization of human 

Hsf1 using X-ray crystallography 

Studying protein structure by X-ray crystallography critically depends on the ability 

of the target proteins to form a highly ordered protein crystal lattice. Hsf1 proteins, 

especially its human homolog HsHsf1 contain high amounts of unstructured 

regions (60 %), which are incompatible with forming an ordered crystal lattice 

(Anckar & Sistonen 2011; Pattaramanon et al. 2007; Drozdetskiy et al. 2015). 

Therefore a series of fusion, truncation and mutant proteins which excluded poorly 

structured parts of the protein was generated in the precursor study (Neudegger 

2012). However, this strategy has not led to successful crystallization, since all 

constructs comprising the HR-A/B domain showed an uncontrollable 

oligomerization behavior resulting in heterogeneous preparations. In order to 

achieve a homogenous preparation, subsequently several strategies were tested, 

which are described below.  

5.2.1 Stabilization of truncated HsHsf1 by an engineered GCN4 

zipper 

Because the studied truncation constructs of human Hsf1 showed inevitable 

oligomerization behavior, we fused HsHsf1 amino acids 1-192 with an engineered 

trimeric GCN4 (triGCN4) leucine zipper for purification and analysis (Figure 20) 

(Hernandez Alvarez et al. 2008). The GCN4 fusion partner was designed to 

facilitate structure determination of coiled-coil proteins. 

 

Figure 20 Multidomain protein constructs of HsHsf1 for functional and structural analysis. 

Fusion of unstable coiled-coil constructs to engineered GCN4 zipper has proven to increase the 

stability of purified proteins for structural studies (Hernandez Alvarez et al. 2008). 
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This construct (HsHsf1-GCN4) was expressed as a soluble protein in E. coli that 

could be purified to homogeneity using IMAC, cation exchange chromatography 

and SEC (Figure 21). The protein was in a likely oligomeric state as judged by 

retention volume and could be concentrated beyond 10 µM. Interestingly, an 

HsHsf1 coiled-coil construct triGCN4 fusion (GCN4-HsHsf1(145-192)-GCN4) was 

insoluble when expressed in E. coli and refolding attempts failed (data not shown). 

The truncation construct HsHsf1(133-193) was partly soluble in E. coil lysate, but 

precipitated quantitatively upon IMAC elution. 

 

Figure 21 Purification of a HsHsf1-GCN4 fusion prot ein. a) SDS-PAGE analysis of the total 

lysate (L), the soluble fraction (S), and fractions from IMAC. Flow through (FT), wash fractions 

(W1, W2) and elution fractions 1-6; MW, Molecular weight marker in kDa. b) The protein content 

in the major peak of the size exclusion chromatography step on Superdex 200 column was 

analyzed by SDS-PAGE followed by Coomassie staining.  

5.2.1.1 Oligomeric state of HsHsf1-GCN4 

In order to characterize the oligomerization state of the purified HsHsf1-GCN4 

fusion protein in more detail, we probed it initially by Ethylene glycol 

bis[succinimidylsuccinate] (EGS) crosslinking. EGS is a homobifunctional 

crosslinker which reacts with the N-termini of proteins and the ε-amino group of 
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lysine and covalently links them via a 16.1 Å spacer arm. Thus the crosslinking 

product shifts to higher molecular weight in denaturing polyacrylamide gels. 

Depending on the EGS concentration, multiple bands for cross-linked HsHsf1-

GCN4 were observed. The band patterns suggest the existence of a trimer or 

tetramer, with a propensity to associate to larger oligomers (Figure 22).  

 

Figure 22 EGS crosslinking of HsHsf1-GCN4. SDS-PAGE analysis of EGS crosslinking 

experiments of HsHsf1 1-192-GCN4. The purified protein was incubated with increasing amounts 

of the cross-linker EGS, quenched and subsequently analyzed by SDS-PAGE. Stoichiometry of 

crosslinked oligomers is indicated by the number of dots ●. Molecular weight marker in kDa is 

indicated on the left. 

Whereas EGS crosslinking depends on the accessibility of lysine residues, size 

exclusion chromatography (SEC) coupled to multi-angle light scattering (MALS) 

offers absolute determination of the average molecular mass in solution. SEC-

MALS revealed that HsHsf1-GCN4 was homogeneous and probably tetrameric 

(~110 kDa, theoretical mass monomer: 25.4 kDa) (Figure 23). 
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Figure 23 MALS coupled to SEC of purified HsHsf1-GC N4. A chromatogram with UV 

absorbance and MW is shown. Horizontal lines across the peaks indicate molar mass and 

homogeneity. Calculated molar masses are indicated. Construct shows homogenous behavior and 

the approximate MW of a tetramer. Experiment was performed by Dr. Manajit Hayer-Hartl. 

5.2.1.2 Crystallization of HsHsf1-GCN4  

Since the biochemical characterization of the fusion construct revealed a defined 

oligomeric state and a homogenous sample preparation, we set up crystallization 

trials with the purified protein to gain insights into HsHsf1 structural organization. 

Needle-shaped micro-crystals were obtained, which diffracted at ESRF beamline 

ID23-2 to a maximum of 9 Å resolution. Attempts to grow larger, better diffracting 

crystals failed (in absence and presence of HSE DNA-oligonucleotides). Thus 

experiments with HsHsf1-GCN4 were stopped (Figure 24). 
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Figure 24 Crystallization and diffraction of crysta ls of HsHsf1-GCN4. Crystals showed needle 

shape (a, b) and exhibited low X-ray diffraction (c). For size estimation: crystal drop in a) is 

composed of 200 nL liquid. b) shows mounted crystals, the blue circle indicates X-ray beam size 

and position. 

5.2.2 Characterization of HsHsf1 DBD 

Since all HsHsf1 constructs involving the HR-A/B coiled-coil domain proved to be 

highly heterogeneous, we focused our structural studies on the isolated DBD from 

HsHsf1. As second, independent approach we structurally characterized an Hsf 

homolog from a thermophilic eukaryote. For structural characterization of the HR-

A/B domain, we used an Hsf family protein from a thermophilic eukaryote as 

described below (paragraph 5.3). 

5.2.2.1 Purification of HsHsf1 DBD 

Sequence alignments of Hsf family proteins showed a conserved region of ~110 

residues at the N-termini of the proteins. Thus as a putative DBD construct, 

HsHsf1 residues 1-120 were cloned into the vector pProEx-HtB and expressed as 

a TEV protease-cleavable, N-terminal His6-tagged fusion protein in E. coli. As a 

consequence of the cloning strategy, HsHsf1(1-120) contained the additional N-

terminal sequence GAMGSGILRGG after TEV protease treatment. In a first 

purification step, the fusion protein was enriched by immobilized metal affinity 

chromatography (IMAC) using a Ni2+ chelating agarose. After cleavage of the 

affinity capture tag by TEV protease, the construct was further purified by cation 

exchange chromatography on a SourceS column. As for HsHsf1-GCN4 and other 

DBD containing constructs, this step removed bound bacterial DNA and enhanced 

purity (paragraphs 5.2.1). Finally, size exclusion chromatography on a Superdex 
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200 column was applied as a polishing step. The resultant material was of 

apparent homogeneity (Figure 25). 

 

Figure 25 Coomassie-stained SDS-PAGE gel with conce ntrated sample of HsHsf1 DBD 

(HsHsf1(1-120)) purification. MW, Molecular weight marker; S, Sample. 

5.2.2.2 Crystallization of HsHsf1 DNA-binding domai n complexes 

Transcription factors are frequently amenable to structural characterization by X-

ray crystallography only when bound to their cognate DNA. Therefore we focused 

our crystallization efforts on complexes between the HsHsf1 DBD and DNA 

constructs. We obtained crystals of the HsHsf1 DBD in complex with a DNA 

oligonucleotide resembling the binding motifs within promoters of Hsf1 target 

genes (HSE ggTTCtaGAAcc (2x nGAAn in tail-to-tail orientation)). Crystal 

screening was performed using 200 nL droplets with the PEGs Suite (Qiagen) and 

an automated robotics setup. Subsequently the reservoir composition of the initial 

condition was refined to 0.2 M Ammonium sulfate and 21 % PEG-3350 (Figure 26 

a). In addition we were able to co-crystallize HsHsf1 with a DNA oligonucleotide 

resembling the binding motif in nuclear stress bodies (SatIII (cGGAATGGAATg)). 

The initial crystals of the DBD-SatIII complex were found using the same 

commercial screen. The composition of the precipitant was 0.09 M MgAc and 31 

% PEG-4000 (Figure 26 b). 
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Figure 26 Crystals of HsHsf1 DBD in complex with HS E and SatIII containing DNA-

oligonucleotides, respectively. Shown are the mounted crystals which were used to obtain the 

datasets of the HsHsf1 DBD-HSE (a) and SatIII (b) complex structures. The blue circles have 10 

µm diameter and indicate X-ray beam size and position. 

5.2.2.3 Structural analysis of human Hsf1 DBD 

5.2.2.3.1 Features of HsHsf1 DBD and HsHsf1 DBD-DNA  contacts 

The co-crystals diffracted X-rays to 2.91 Å and 2.55 Å resolution (Table 3), 

respectively. We were able to solve the structures of HsHsf1 DBD-HSE and DBD-

SatIII by molecular replacement. While in the DBD-HSE structure the asymmetric 

unit (a.u.) contained one DBD chain and one strand of the DNA molecule and the 

biological assembly is completed by two-fold crystal symmetry, the HsHsf1 DBD-

SatIII a.u. contained the complete biological assembly.  
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Table 3 Data collection and refinement statistics f or HsHsf1 DBD-DNA complexes 

 HsDBD–HSE HsDBD–SatIII 

Data collection   

Space group P22121 C2 

Cell dimensions   

   a, b, c (Å) 37.44, 39.82, 94.38 104.81, 112.68, 39.87 

   α, β, γ (°) 90, 90, 90 90, 92.56, 90 

   

Wavelength (Å)   

Resolution (Å) 47.19 – 2.91 (3.09 – 2.91)a 39.83 – 2.55 (2.66 – 2.55) 

Rmerge 0.138 (0.821) 0.130 (0.669) 

I/σI 9.0 (2.1) 9.3 (2.2) 

Completeness (%) 96.9 (82.7) 99.6 (97.2) 

Redundancy 4.9 (4.8) 4.4 (4.1) 

Refinement   

Resolution (Å) 30 – 2.91 30 – 2.55 

No. reflections 3137 14354 

Rwork / Rfree 0.223 / 0.267 0.190 / 0.234 

Number of atoms   

   Protein 810 1669 

   DNA/Mg2+ 243 488 

   Water 2 108 

B-factors   

   Protein 65.38 34.69 

   DNA/Mg2+ 51.37 24.39 

   Water 35.84 27.75 

R.m.s. deviations   

   Bond length (Å) 0.005 0.011 

   Bond angles (°) 0.883 1.397 

 

The three crystallographically independent copies of the HsHsf1 DBD showed little 

deviation from each other and were essentially identical (Cα residual mean square 

deviation (r.m.s.d.) of 0.570-0.658 Å). The comparison to previously solved Hsf1 

DBD structures showed similar results (r.m.s.d. of 1.488-1.952Å for 2LDU, the apo 

HsHsf1 DBD NMR structure, and r.m.s.d. of 1.223 Å for 3HTS, the DBD of K. lactis 

in complex with HSE DNA (Littlefield & Nelson 1999)). The fold of the DBD had a 

winged-helix-turn-helix topology (Figure 27 a). Previous crystal structures of Hsf1 

DBDs in isolation or in complex with DNA were determined using constructs which 

were ~20 residues shorter at the C-terminus. These residues have been shown to 
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be critical for DNA binding in yeast (Flick et al. 1994). The construct we used for 

our structural studies additionally included this part (aa 101-120) (Figure 27 a, b). 

 

Figure 27 Crystal structures of HsHsf1 DBD-HSE comp lexes reveal the structural basis for 

HSE recognition and role of C-terminus. a) Crystal structures of the HsHsf1 DBD (HsDBD)-HSE 

complex, and b), the HsHsf1 DBD-SatIII complex. Protein is depicted in ribbon representation; the 

copies in the DBD-HSE complex are symmetry related. DNA is shown in stick representation with 

the phosphate backbone and the GAA motifs highlighted. Peptide chain termini are indicated. DNA 

sequence is shown below the models. c) and d) Detailed view of the DNA-contacts of the 

recognition helix 3 and the DBD C-terminus. Side chains of critical residues are shown in stick 

representation with hydrogen bonds represented by dotted lines. The C-terminal tail of the DBD is 

omitted for clarity in c).  



5 Results 

74 
  

This additional part formed a short 310 helix and continued into the linker to the 

coiled-coil domain. The structure of this C-terminal part is stabilized by 

hydrophobic interactions of Phe104, Leu113 and Ile115 with the hydrophobic core 

of the domain. In addition, the backbone amide of Lys118 probably forms a 

hydrogen bond with the carbonyl group in the backbone of Met75. The wing of the 

DBD does not make any contacts with the DNA, but reaches out to adjacent DBD 

units. In the crystal structures, the wing loops were only partially structured, 

showing a similar behavior to the wing of KlHsf1 in the DNA complex structure 

(Littlefield & Nelson 1999). α-Helix 3, which serves as so called recognition helix 

of the helix-turn-helix fold is inserted into the major groove of the DNA double 

strand (Figure 27 c). An array of side chains of the highly conserved residues 

Ser68, Gln72, Asn74, Met75 and Tyr76 position α-helix 3 in the groove by 

formation of hydrogen bonds with the phosphate backbone of the DNA double 

helix. A pair of positively charged side chains in the N- and C-terminal connectors 

of the recognition helix (Lys62, His63 and Arg79, Lys80) intensify the interaction 

by hydrogen bonding and electrostatic interactions. When the domain is correctly 

positioned above the HSE element GAA, Arg71 reads out the Hoogsteen face of 

the guanine group by hydrogen bonding with its guanidine group. Both adenine 

groups do not form contacts with the DBD, but the complementary thymines do. 

Furthermore an essential ionic DBD-DNA contact is found at β-sheet 3 where the 

amine group of Lys80 forms a salt bridge to the phosphate backbone of the DNA 

adjacent to the previous HSE binding motif in the strand. In the C-terminal part of 

the domain, basic residues enhance the DBD-DNA affinity (Figure 27 d). Arg117 

probably makes contacts in the major groove or towards the phosphate backbone, 

whereas Lys118 forms a salt bridge with the negatively charged DNA backbone.  

Cys36 and Cys103 have also been implied to regulate Hsf1 function by disulfide 

bond formation (Ahn 2003). In our structures these Cysteine residues point into 

the solvent and thus are, in principle, accessible to covalent bond formation.  

5.2.2.3.2 HsHsf1 exhibits DBD-DBD contacts 

The two HsHsf1 DBDs bound to a two times nGAAn repeat motif in tail-to-tail 

orientation showed an intermolecular contact involving α-helix 2 of each subunit. 

However, in our crystal structure the closest distance between the helices (4.95 
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Å) is beyond van der Waals distance (4.6 Å), which points towards a small bend 

of the DNA under physiological conditions to realize better packing (Figure 28 a, 

b). Electrostatic interactions between Lys54 and Asp95 might be the driving force 

for the contact. Additional several polar, but uncharged, side chains are involved 

in stabilizing the interface - probably via van der Waals contacts. At the closest 

point of approach, Gly50 might contact its opposing Gly50 in a way that water 

molecules are excluded from the interface.  

 

Figure 28 HsHsf1 DBD inter subunit contacts are med iated via two different interfaces. a) 

and b) Interface between two adjacent HsHsf1 DBDs bound to the tail-to-tail HSE motif. c) The 

wing in the HsHsf1-SatIII complex structure points towards a hydrophobic groove between helix 1 

and 2 in the crystal lattice. Protein is shown in ribbon representation, DNA is shown in surface 

representation or stick representation with the phosphate backbone highlighted. d) Surface 

representation with indication of hydrophobic and charged side chains of HsHsf1 DBD reveals 

hydrophobic groove between helix 1 and 2. 
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In the crystal lattices of the DBD-HSE and DBD-SatIII complexes the DNA 

duplexes formed linear stacks stabilized by π-staking of Watson-Crick base pairs 

resembling a continuous DNA duplex (Figure 28 c). This arrangement potentially 

reveals insights into other DBD-DBD interactions along the DNA duplex. Contacts 

between DBDs which are bound to every second nGAAn motif on the DNA double 

helix have previously been proposed to be mediated by the wing-loop (Littlefield 

& Nelson 1999). In the crystal lattice of the DBD-HSE complex no contacts 

between DBDs in head-to-head orientation were observed.  

As mentioned above, the wing loop tips were disordered. The least disorder in this 

region was observed in the DBD-SatIII complex. The complex structure of HsHsf1 

DBD-SatIII therefore might provide a model for the orientation of the loop between 

two adjacent DBDs (Figure 28 c, d). However, the interface is separated by two 

additional base pairs and turned out of register in the crystal lattice. The wing loop 

(which is almost fully structured in this crystal structure) appears to reach out 

towards a hydrophobic groove located between α-helix 1 and α-helix 2 of the 

adjacent DBD. This shallow groove is defined by Leu34 and Val56 and framed by 

several charged and polar residues (Asp28, Asp30, Thr31, Gln51, and Lys59). 

However, Tyr60 seems to sterically block access to the hydrophobic groove 

(Figure 28 d). 

5.2.2.3.3 Role of PTMs in DBD-DNA interactions 

Previous studies have shown that Hsf1 undergoes extensive post-translational 

modifications (PTM) to fine-tune its regulation (Xu et al. 2012). These PTMs 

comprise phosphorylations, acetylations, and sumoylations. It was observed that 

specific lysines of HsHsf1 in the DBD are acetylated upon attenuation and that 

these acetylations contribute to the regulation of Hsf1’s DNA-binding capabilities 

(Westerheide et al. 2009). A previous study conducted in our lab found that K80, 

K116 and K118 are acetylation sites, and that K80 and K118 are increasingly 

acetylated with enduring stress, leading to Hsf1 deactivation (Raychaudhuri et al. 

2014). Nuclear stress body (nSB) formation is abolished in HeLa cells expressing 

acetylation mimicking mutants (K80Q, K118Q) of HsHsf1. With the help of our 

HsHsf1 DBD-DNA complex structures we are able to explain these findings 

(Figure 27). As discussed above, the ionic interactions of positively charged Lys80 
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and Lys118 with the negatively charged phosphate backbone of the DNA are 

predicted to be abolished by charge neutralization upon acetylation. We tested 

this hypothesis using HsHsf1 with the site-specific mutation K80Q, K116Q and 

K118Q, respectively. When the purified HsHsf1 mutant proteins were assayed by 

EMSA using a DNA oligonucleotide containing three inverted nGAAn repeats, 

K116Q and K118Q showed a slight decrease in DNA-binding affinity, whereas 

K80Q showed virtually no capacity for DNA-binding under non-heat shock 

conditions (Figure 29). 

 

Figure 29 Acetylation of conserved lysines in the H sHsf1 DBD contributes to DNA-binding 

regulation. Mixtures of protein and fluorescent HSE-DNA were incubated with or without heat 

treatment and analyzed by agarose gel electrophoresis. The fluorescence signal in the gel is 

shown. Relative DNA-binding behavior of HsHsf1 WT and the acetylation mimicking mutants 

K80Q, K116Q and K118Q HsHsf1 were monitored by EMSA. Free DNA and DNA bound to protein 

complexes are indicated. 

5.3 Characterization of the Hsf1 paralog Skn7 from C. 

thermophilum 

Working with homologous proteins and protein complexes from thermophilic 

organisms is a popular strategy to elucidate the structure of molecular machines 

(Amlacher et al. 2011). These homologs often appear virtually “frozen” under the 

conditions of structure determination, whereas their dynamics is key to function 

under physiological conditions. The protein machinery of the thermophilic fungus 

Chaetomium thermophilum is adapted to a growth temperature range of 26-61 ºC, 

and thus expected to be less dynamic than mesophilic counterparts at room 

temperature (Amlacher et al. 2011; la Touche 1948). The genome of C. 
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thermophilum contains two sequence homologs of Hsf1: CTHT_0005280 (Uniprot 

ID: G0RY37) and CTHT_0048700 (Uniprot ID: G0SB31). By comparison with the 

respective S. cerevisiae sequences we concluded that CTHT_0005280 

represents the ortholog of yeast Hsf1, whereas CTHT_0048700 represents the 

paralog Skn7 (Figure 12). However, C. thermophilum Skn7 (CtSkn7) shows a 

higher sequence homology to human Hsf1 in the conserved N-terminal region 

(DBD and HR-A/B) than the functional homolog. The predicted putative linker 

region between the DBD and the putative coiled-coil domain of CtSkn7 has 

approximately the same length as in HsHsf1 (linker between DBD and HR: 

CtSkn7: ~13 residues, HsHsf1: ~15 residues, CtHsf1: ~45 residues) (see 

Appendix, Figure 64). Therefore we focused on CtSkn7 to elucidate structural 

features of Hsf proteins which were not accessible in HsHsf1. 

 

Figure 30 Multidomain protein constructs of CtSkn7 for functional and structural analysis. 

Protein domain graphs for multidomain constructs which were analyzed. 

5.3.1 Purification of CtSkn7 for in vitro analysis 

We began our analysis with a synthetic, nearly full-length construct of CtSkn7 

(CtSkn7∆QA; residues 35-765, excluding residues 1-34 and 653-684 which 

included low complexity glutamine and alanine stretches, respectively) and 

truncation constructs containing only the DBD and HR as judged by computational 

secondary structure prediction and multiple sequence alignment (CtSkn7(40-209) 

and CtSkn7(40-220)) (Figure 30).  

All CtSkn7 constructs were cloned into the bacterial expression vector pHUE for 

expression as N-terminal His6-ubiquitin fusion proteins in E. coli (Catanzariti et al. 
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2004). Expression as ubiquitin-fusion proteins in E. coli proved to enhance 

solubility in previous projects (Neudegger 2012; Hauser et al. 2015). 

For CtSkn7 constructs containing the DBD, the purification was carried out in the 

same way as for HsHsf1(1-120) (paragraph 5.2.2.1). IMAC, followed by 

expression tag cleavage and cation exchange chromatography was used. As a 

further purification step, size exclusion chromatography was performed using a 

Superdex 200 column (Figure 31). The final yield of the purifications showed great 

variation between the constructs. Per L culture up to 10 mg for CtSkn7(40-220) 

and CtSkn7∆QA, and up to 60 mg for CtSkn7(40-209) were obtained. The applied 

procedures resulted in apparent homogeneous products as visualized on 

Coomassie-stained SDS polyacrylamide electrophoresis gels. Proteins were 

concentrated and stored at -80 ºC.  

 

Figure 31 SDS-PAGE analysis of a representative CtS kn7(40-209) purification. a) SDS-PAGE 

analysis of the total lysate (L), the soluble fraction (S), and fractions from IMAC. FT, Flow through; 

W1, W2, wash fractions and elution fractions 1-6. MW, Molecular weight marker in kDa. b) SDS-

PAGE analysis of the protein content in the major peaks of the ion exchange step on Source S 

column and on size exclusion Superdex 200 column. 
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5.3.2 CtSkn7 binds HSE and SSRE DNA sequence motifs 

The Skn7 homolog of S. cerevisiae has been reported to interact both with HSEs 

(inverted repeats of the nGAAn motifs) as well as SSREs of the consensus 

sequence nGGCnnGSCn (S designates G or C) (Badis et al. 2008). In order to 

functionally characterize CtSkn7, we went on to study the DNA sequence motif 

preference of our constructs by EMSA analysis (Figure 32). Both, CtSkn7∆QA and 

also the C-terminal truncated construct CtSkn7(40-220) formed complexes with 

HSE as well as SSRE motifs, whereas the control DNA oligonucleotide showed 

no retention by either protein. 

Thus, our CtSkn7 constructs showed the expected DNA sequence preferences. 

The minimal constructs (CtSkn7(40-209) and CtSkn7(40-220) exhibited no 

difference in their DNA-binding properties when compared to CtSkn7∆QA (Figure 

32). 

 

Figure 32 CtSkn7 ΔQA and CtSkn7(40-220) bind to HSE and SSRE DNA sequ ence motifs in 

EMSA. Purified protein constructs were incubated with fluorescently tagged DNA-oligonucleotides. 

Complexes and free DNA were then separated from each other using agarose gel electrophoresis. 

The fluorescence signal in the gel is shown and free DNA and DNA bound by protein complexes 

are indicated. A representative gel of 3 independent experiments is shown. Ctrl, control DNA. 

Next we strived to get information on whether CtSkn7 had any preference for 

either of the two sequence motifs. In order to determine the dissociation constants 

(KD), we titrated protein against fluorescently labelled DNA and monitored the 

fluorescent band pattern by EMSA (Figure 33). DNA oligonucleotides containing 
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four nGAAn or four nGGCn continuous repeats showed a KD of 3.27±0.93 µM and 

1.23±0.22 µM, respectively. The discontinuous SSRE found in the promoter of 

OCH1, which contains two double nGGCn repeats separated by an 11 bp spacer, 

showed a KD of 3.24±0.96 µM. Control DNA showed a dissociation constant of 

20.47±6.42 µM. This is surprising since most transcription factors show affinities 

to their cognate recognition motif in the nano and pico molar range (Strauch 2001). 

Therefore the measured values indicate, that CtSkn7 possibly requires another 

interaction partner at the DNA for joint DNA-binding to increase its affinity (see 

paragraph 2.5.4). Nevertheless, CtSkn7 seems to slightly prefer SSREs over 

HSEs in our assay. 



5 Results 

82 
  

 

Figure 33 Quantitative analysis of DNA-binding affi nities of CtSkn7 in EMSA reveal high 

dissociation constant of CtSkn7 to HSE and SSRE mot ifs . CtSkn7(40-220) titration series 

against a) HSEx4, b) OCH1, c) SSREx4 and d) Ctrl DNA-oligonucleotide with fluorescein label. 

The fluorescence signal in the gel is shown. The band intensity of the protein-DNA complex and 

the free DNA was quantified (e). Error bars represent s.d. values from three independent 

experiments. 

5.3.3 Flexible connection between DBD and HR in CtSkn7 

Flexible joint regions in proteins are thought to impair three dimensional ordering 

of proteins in crystal lattices. Such flexible regions are typically more accessible 

to proteolytic degradation compared to stably structured parts (Koth et al. 2003). 

Therefore, we subjected CtSkn7(40-220) in presence and absence of HSE DNA 



5 Results  

83 
 

to limited Proteinase K digest to identify unstructured regions. Separation of the 

digestion reaction on SDS-PAGE revealed three major fragment bands (Figure 

34). Mass spec identified these bands as residues 40-132, 40-150 and 40-209. 

According to these values the predicted linker (aa 144-160) as well as the HR C-

terminus (aa 209-220) seemed to be highly protease-sensitive, indicating that the 

DBD and HR domain are connected via a highly flexible linker. This finding is 

corroborated by secondary structure prediction using JPred, and earlier work on 

Hsf proteins (Drozdetskiy et al. 2015; Flick et al. 1994). 

 

 

Figure 34 Probing CtSkn7(40-220) for unstructured p arts by limited Proteinase K proteolysis 

in the presence (top) or absence (bottom) of cognat e DNA. CtSkn7(40-220) was incubated in 

absence or presence of HSE DNA with Proteinase K concentration series (0 – 50 µg/ml Proteinase 

K). The resulting digestion products were analyzed on Coomassie-stained SDS-PAGE gels. MW, 

Molecular weight marker. 

5.3.3.1 SAXS analysis of CtSkn7 

Information about the size, domain organization, and shape of macromolecules 

and macromolecular complexes can be obtained by small-angle X-ray scattering 
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(SAXS), which gives low-resolution information about their shape in solution 

(Figure 35). Radial scattering intensity distributions were recorded for a 

concentration series of CtSkn7(40-209). 

Linear fit of the Guinier region of the scattering curve suggested a radius of 

gyration (Rg) for CtSkn7(40-209) of ~4 nm (Figure 35 a). Fitting the X-ray 

scattering curve with the indirect Fourier transformation program GNOM provided 

us with a density distribution function with a maximum diameter of ~14 nm. An 

approximate molecular weight between a dimeric and trimeric species (39.88 - 

53.18 kDa (theoretical MW monomer: 20.0 kDa)) was estimated from the decay 

of scattering intensity at high angles with the program POROD, suggesting a dimer 

or trimer. The density distribution graph suggested a dumbbell-shape for the 

particles, suggestive of two domains (Figure 35 c). Consistently, the Kratky plot 

suggests a flexible linkage, as indicated by the steady increase of q² with q (Figure 

35 b).  

Therefore we concluded the presence of two stably folded domains (DBD and HR) 

which are connected by a flexible linker, consistent with the limited proteolysis 

experiment. 

 

Figure 35 Small angle X-ray scattering analysis of CtSkn7(40-209). Exemplary scattering 

curve. a) X-ray scattering curve shows absence of aggregation at low scattering angles, b) Kratky 

plot, c) Density distribution graph of GNOM suggests two domain architecture and reveals 

maximum extension of 14 nm. 

5.3.4 Analysis of isolated CtSkn7 domains 

Thus we decided to create single-domain constructs, the DBD (CtSkn7(40-143)) 

and the HR (CtSkn7(160-209) and CtSkn7(160-220)). The proteins were soluble 

after expression in E. coli. The purification of the DBD followed the generic 
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protocol for HsHsf1(1-120), and was slightly modified for the purification of the HR 

constructs (paragraph 4.6.1.3). Interestingly, a coiled-coil construct similar to 

CtSkn7(160-220) including residues 240-310 from CtHsf1 was insoluble when 

expressed in E. coli (data not shown). 

The applied procedures resulted in protein of high purity and apparent 

homogeneity as visualized on Coomassie-stained SDS-PAGE gels (Figure 36). 

Proteins were concentrated and stored at -80 ºC.  

 

Figure 36 Coomassie-stained SDS-PAGE gel with conce ntrated samples of purifications of 

CtSkn7 domains (DBD (40-143) and HR (160-209)). Molecular weight marker (MW), Sample 1 

(CtSkn7(40-143)) and 2 (CtSkn7(160-209)) (S1 and S2). 

5.3.5 CtSkn7 forms oligomers via coiled-coil domain 

Subsequently, our initial insights into the oligomeric nature of CtSkn7 using SAXS 

(paragraph 5.3.3.1) were complemented by multiple experimental approaches. 

First, we used Ethylene glycol bis[succinimidylsuccinate] (EGS) crosslinking 

followed by SDS-PAGE analysis. EGS covalently crosslinks primary amines, 

resulting in complexes which run at a higher molecular weight in denaturing 

polyacrylamide gels. SDS-PAGE analysis showed, dependent on the amount of 

added EGS, a ladder of bands, indicative of crosslinked dimers, trimers and few 

tetramers of CtSkn7(40-220) (Figure 37 a). A very similar banding pattern was 

found for the HR domain construct of CtSkn7(160-220) (Figure 37 b). 
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Figure 37 EGS crosslinking of CtSkn7(40-220) and Ct Skn7(160-220). SDS-PAGE analysis of 

EGS crosslinking experiments of CtSkn7(40-220) (a) and CtSkn7(160-220) (b). Purified protein 

was incubated with increasing amounts of EGS. After quenching the crosslinking reaction, samples 

were analyzed by SDS-PAGE and Coomassie staining. Molecular weight marker in kDa is 

indicated on the left. Crosslinked oligomers are indicated by arrow heads. 

To get independent information on the oligomeric state of the CtSkn7 truncation 

constructs, we applied native mass spectrometry (native MS). The spectra for 

construct CtSkn7(160-220) showed m/z ratios consistent with monomers and 

dimers (Figure 38 a). For CtSkn7(40-220), native MS indicated the presence of 

monomers, dimers, trimers and tetramers in solution, whereby monomers and 

lower oligomeric states seemed to be more abundant (Figure 38 b). The 

monomeric peaks in both analyses might derive from dissociation of oligomers in 

the gas phase. Nevertheless, native MS strictly depends on the solubility and 

ionization properties of the measured protein in an ammonium acetate buffer and 

thus is not quantitative. Therefore, some in-solution complex states might not have 

been detected by this method. Native MS analyses were performed by Dr. Javaid 

Y. Bhat. 
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Figure 38 Native mass spectrometry analysis of CtSk n7(160-220) (a) and CtSkn7(40-220) (b). 

Native mass spectra are shown. Insert in b) shows magnification of the high m/z area. Different 

oligomeric species are indicated by different color labels. Charge states are shown for selected 

peaks. The calculated mass around the m/z values of the respective protein complexes and the 

accuracy of mass values calculated from the different m/z peaks are indicated. MS analysis was 

performed by Dr. Javaid Y. Bhat. 

Size exclusion chromatography coupled to multi-angle light scattering (SEC-

MALS) offers an alternative approach to determine the molecular mass of particles 

in solution.  

CtSkn7(40-220) formed a symmetrical narrow peak in the SEC chromatogram 

indicating a homogenous behavior (Figure 39 a). CtSkn7(40-220) (theoretical 

mass = 21.3 kDa) showed a molecular mass of ~63 kDa, which corresponds to a 

trimer. The coiled-coil domain CtSkn7(160-209) showed a molecular weight of 

14.5 kDa indicating a mixture of probably dimers and trimers in solution 

(CtSkn7(160-209), theoretical subunit mass = 5.7 kDa) (Figure 39 a). As expected, 

the Hsf-type DBD in CtSkn7(40-143) (theoretical mass = 12.6 kDa), showed 

monomeric behavior (~13.7 kDa) and thus probably does not contribute to 

oligomerization (Figure 39 b). SEC-MALS experiments were performed by Dr. 

Manajit Hayer-Hartl. 

Together, the results from SAXS (paragraph 5.3.3.1), EGS crosslinking, native MS 

and SEC-MALS suggested that CtSkn7 adopts an oligomeric state defined by an 

equilibrium between a dimeric, trimeric and tetrameric species. 
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Figure 39 Multi-angle light scattering analysis of CtSkn7 truncation constructs reveals 

oligomerization via the coiled-coil domain. Horizontal lines across the peaks indicate molar 

mass and homogeneity. Calculated molar masses are indicated. a) SEC-MALS analysis of 

CtSkn7(40-220) and CtSkn7(40-143). CtSkn7(40-143) shows the apparent MW of a monomer. 

CtSkn7(40-220) reveals MW corresponding to a trimer. b) Coiled-coil construct CtSkn7(160-209) 

reveals MW corresponding to a dimer - trimer mixture. RI, refractive index. Experiments were 

performed by Dr. Manajit Hayer-Hartl. 

5.3.6 Thermal stability of CtSkn7 constructs 

To assess the secondary structure content of CtSkn7 we performed CD 

spectroscopy. CD spectroscopy provides information about the secondary 

structure and folding properties of proteins by differential absorption of circularly 

polarized light (Greenfield 2006). The spectra of all three constructs (CtSkn7(40-

220), CtSkn7(160-220) and CtSkn7(160-209)) showed strong minima at 208 nm 

and 222 nm and a maximum at 195 nm, indicative of a high amount of α-helical 

secondary structure content. The spectrum for CtSkn7(40-220) deviated only 

slightly from those of the HR-only constructs, indicating a minor influence of other 

secondary structure elements. 

The high α-helical secondary structure content and the absence of other 

secondary structure elements shown by the Skn7 HR domain is consistent with 

the formation of a putative coiled-coil structure. 
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Figure 40 CD spectroscopic analysis of CtSkn7 trunc ation constructs. CD spectra of CtSkn7 

constructs a) CtSkn7(40-220), b) CtSkn7(160-220) and c) CtSkn7(160-209) are shown. Molar 

ellipticity versus wavelength is shown. A strong maximum at 195 nm and two strong minima at 208 

and 222 nm are indicative of α-helical structures. A minimum at 218 nm and maximum at 195 nm 

suggest ß-sheet structures. 

In order to probe the thermal stability of the Skn7 constructs we used CD 

spectroscopy at a wavelength of 222 nm, indicative of α-helix content. The melting 

curves of the constructs CtSkn7(40-209), CtSkn7(160-220) and CtSkn7(160-209) 

were sigmoidal, indicative of a cooperative unfolding mechanism (Figure 41). We 

found melting points of 47.0±0.04 ºC for CtSkn7(40-220), 63.4±0.03 ºC for 

CtSkn7(160-220) and 61.9±0.06 ºC for CtSkn7(160-209). The melting point for the 

coiled-coil domains is not considerably higher than the melting point for the GCN4 

zipper (61 ºC, (Ciani et al. 2010)) from the mesophilic organism S. cerevisiae, but 

still consistent with C. thermophilum’s adaptation to optimal growth temperature 

of 45 ºC (la Touche 1948). Therefore, our findings suggest that CtSkn7 is 

constitutively oligomeric at this temperature. Whereas unfolding of the coiled-coil 

constructs was reversible, the CD signal of the native state was not recovered 

upon slow cooling with the construct involving DBD, Linker and coiled-coil.  

 

Figure 41 Thermal unfolding of of CtSkn7 protein co nstructs as monitored by CD 

spectroscopy. Thermal melting curves of a) CtSkn7(40-220), b) CtSkn7(160-220), c) 

CtSkn7(160-209) are shown. The molar ellipticity at 222 nm wavelength during slow heating is 

shown. The red dots represent the signal during heating, the white circles during cooling. The line 

represent the fit of the melting curve for melting point determination using Jasco Software. 
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5.3.7 Crystallization of Chaetomium thermophilum Skn7 

Having highly pure, well-characterized CtSkn7 protein constructs in hand we 

continued with crystallization trials. The experiments were set up in the MPI 

Crystallization Facility. First, we studied the crystallization of a construct of CtSkn7 

which included the DBD and the HR connected by its linker, CtSkn7(40-209), in 

the absence and presence of HSE DNA-oligonucleotides. Crystals in the shape of 

~100 µm long needles grew in presence of HSE DNA. Representative pictures of 

crystals are shown in Figure 42. Attempts to grow larger crystals failed. The 

crystals however exhibited poor X-ray diffraction to a resolution of ~10 Å similar to 

HsHsf1-GCN4.  

Following this, we decided to continue with the separate structural analysis of the 

DBD (CtSkn7 residues 40-143) and the HR domain constructs (CtSkn7 residues 

160-209, and 160-220). 

 

Figure 42 Crystallization of CtSkn7(40-209) in comp lex with HSE DNA-oligonucleotide. 

Representative crystals of constructs of CtSkn7 including the DBD, the linker and the coiled-coil 

domain resulted in needle shaped crystals. 

We anticipated that complexation of the DBD of CtSkn7 with cognate DNA would 

rigidify the protein. For cognate DNA, we tested the sequences of HSE (HSEx2 

(ggTTCtaGAAcc)) and SSRE (SSRE (ATTTGGCTGGGCC)). Initial crystals of the 

CtSkn7 DBD in complex with HSE (ggTTCtaGAAcc) were obtained using the 

commercial crystallization screen PEGS suite (Qiagen) and a robotic setup 

producing 200 nL droplets (Figure 43 a, b). The precipitant composition was 

subsequently refined to 0.18 M tri-ammonium citrate and 11 % PEG-3350.  

The initial conditions for the CtSkn7 DBD-SSRE (ATTTGGCTGGGCC, (Badis et 

al. 2008)) complex crystals were also obtained using the PEGS suite and were 
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refined to 0.1 M HEPES-NaOH pH 7.5 and 25 % PEG-2000 MME as precipitant 

(Figure 43 c).  

 

Figure 43 Crystallization of CtSkn7 DBD with HSE an d SSRE containing DNA-

oligonucleotides. a) and b) showing representative crystals of CtSkn7 DBD in complex with HSE 

DNA, c) shows representative crystals of CtSkn7 DBD-SSRE complex. The crystals grew in large 

clusters. Each rectangle represents an individual plate-shaped crystal. b) shows a cryo-cooled 

crystal mounted for the X-ray diffraction experiment at the ESRF. 

To determine CtSkn7’s coiled-coil oligomerization domain, two slightly different 

constructs comprising the amino acid range 160-209 and 160-220 (Figure 44) 

were used. The construct borders were assigned in accordance with sequence 

conservation to human HR-A/B, secondary structure predictions using JPRED, 

and limited proteolysis experiments (paragraph 5.3.3). Initial crystallization 

conditions for CtSkn7(160-209) were obtained using the pH Clear I Suite (Qiagen). 

Subsequent analysis showed the presence of two distinct crystal forms. Both 

crystal forms grew with 0.1 M HEPES-NaOH pH 7.0 and PEG-6000 (20 or 21 %) 

as precipitant (Figure 44). Crystallization of the construct CtSkn7(160-220) was 

initially achieved using the Index crystallization screen (Hampton Research). The 

final condition was refined to 0.1 M Bis-Tris pH 5.5, 0.2 M MgCl2 and 25 % PEG-

3350 as precipitant. 
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Figure 44 Crystallization of CtSkn7(160-209). a) and b) show the crystals which led to the 

structure of CtSkn7(160-209) crystal form II. c) shows crystals of CtSkn7(160-209) of crystal form 

I. 

5.3.7.1 Structure solution and refinement of CtSkn7  

The structures of the CtSkn7 DBD-DNA complexes were solved by molecular 

replacement with the existing K. lactis Hsf-DBD-HSE complex structure as search 

model. In contrast, we used single-wavelength anomalous diffraction from the 

sulfur atoms (S-SAD) in Cysteine and Methionine residues for the phasing of the 

initial CtSkn7(160-209) structure.   
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Table 4 provides an overview of the data collection and model refinement statistics 

of the CtSkn7 domain construct crystal forms. 

As an initial search model for the CtSkn7(40-143)-HSE complex we used the 

Kluyveromyces lactis Hsf1-HSE crystal structure (PDB code 3HTS (Littlefield & 

Nelson 1999)) and solved the structure with the program Molrep. After refinement 

of the CtSkn7 DBD-HSE complex structure, we used this model as search 

template for our other DBD-DNA complexes using Molrep. Whereas the 

asymmetric unit in the DBD-HSE structure contained one DBD chain and one 

strand of the DNA molecule, the CtSkn7 DBD-SSRE contained the complete 

biological assembly featuring two DBD molecules bound to one DNA duplex. 

The first crystal form of CtSkn7(160-209) (crystal form I) was solved by sulfur-

single-wavelength anomalous diffraction (S-SAD), using a wavelength of ~1.7 Å 

to maximize the anomalous signal. The positions of the sulfur atoms were 

identified by direct methods using SHELXD, and after several cycles of density 

modification SHELXE was able to build an initial molecular model. Subsequently, 

an almost complete model was auto-built by ARP/wARP using native data up to a 

resolution of 1.03 Å. The asymmetric unit contained two chains of a 

crystallographic tetramer. This asymmetric unit was used as search model in 

Molrep for solving CtSkn7(160-209) crystal form II and the CtSkn7(160-220) 

crystal structure. CtSkn7(160-209) crystal form II contained a half-tetramer and a 

trimer. The trimer found in crystal form II was manually built using Coot. The 

asymmetric unit of CtSkn7(160-220) crystals contained a full tetramer. All models 

were refined by iterative cycles of model building using Coot and refinement using 

Refmac 5.  

  



5 Results 

94 
  

Table 4 Data collection and refinement statistics f or CtSkn7 domain structures 

 CtDBD–HSE CtDBD–
SSRE 

S-SAD CtSkn7(160–
209)-I 

CtSkn7(160–
209)-II 

CtSkn7(160–
220) 

Data 
collection 

      

Space group C2221 C2 C2221 C2221 P21212 P21 

Cell 
dimensions 

      

   a, b, c (Å) 39.77, 78.40, 
90.08 

73.73, 43.33, 
88.78 

24.81, 
151.47, 47.74 

24.82, 
151.54, 47.75 

47.00, 61.03, 
75.79 

50.73, 40.20, 
52.78 

   α, β, γ (°) 90, 90, 90 90, 92.78, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 118.6, 90 

   Remote    

Wavelength 
(Å) 

  1.70074    

Resolution (Å) 45.04 – 2.35 
(2.48 – 2.35) 

44.34 – 2.39 
(2.48 – 2.39) 

47.74 – 1.95 
(2.0 – 1.95) 

40.39 – 1.03 
(1.05 – 1.03) 

47.53 – 1.7 
(1.79 – 1.7) 

44.55 – 1.9 
(1.94 – 1.9) 

Rmerge 0.045 (0.958) 0.092 (0.793) 0.047 (0.769) 0.066 (1.103) 0.104 (0.808) 0.069 (0.599) 

I/σI 17.4 (1.8) 10.5 (1.7) 44.0 (2.9) 17.1 (1.5) 10.5 (2.2) 7.2 (1.7) 

Completeness 
(%) 

98.9 (99.2) 99.3 (94.0) 99.4 (94.5) 98.7 (74.1) 99.7 (98.3) 97.8 (96.6) 

Redundancy 4.7 (4.8) 5.1 (4.5) 44.8 (22.7) 11.4 (5.4) 8.8 (9.1) 2.8 (2.8) 

Refinement       

Resolution (Å) 30 – 2.35 30 – 2.4 – 30 – 1.03 30 – 1.7 30 – 1.9 

No. reflections 5791 10639 – 42643 23400 13834 

Rwork / Rfree 0.215 / 0.250 0.228 / 0.289 – 0.165 / 0.199 0.209 / 0.285 0.241 / 0.295 

Number of 
atoms 

      

   Protein 816 1671 – 849 1967 1850 

   DNA/Mg2+ 243 527 – – – – 

   Water 22 39 – 127 121 77 

B-factors       

   Protein 76.73 51.55 – 21.18 34.89 46.95 

   DNA/Mg2+ 56.12 51.82 – – – – 

   Water 61.42 41.28 – 32.49 38.00 44.47 

R.m.s. 
deviations 

      

   Bond length 
(Å) 

0.006 0.006 – 0.022 0.020 0.019 

   Bond angles 
(°) 

1.044 1.101 – 1.853 1.981 1.757 

a  Values in parenthesis for highest-resolution shell
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5.3.8 Structural analysis of CtSkn7 

5.3.8.1 Analysis of the CtSkn7 DBD-HSE complex stru cture 

5.3.8.1.1 DBD-DNA and DBD-DBD contacts of CtSkn7 DB D 

The crystal structure of the DBD of CtSkn7 in complex with the HSE DNA revealed 

a topology very similar to the corresponding HsHsf1 DBD complex (r.m.s.d. 0.798 

HsHsf1 DBD-HSE versus CtSkn7 DBD-HSE) (Figure 45 a). The C-terminal part 

of CtSkn7, residues 125-143, is structured as in HsHsf1, demonstrating that this 

conserved region constitutes an integral part of the Hsf family DBD. The 

recognition helix α3 is inserted into the major groove of the DNA double helix and 

held in position by a mostly invariant array of polar and charged residues (Ser93, 

Gln97, Asn99, Tyr101; Lys87 and His88, His104 and K105) (Figure 45 c). Arg96 

corresponds to the key residue Arg71 in HsHsf1, forming identical contacts to the 

guanine group in the nGAAn motif. C-terminally located positively charged 

residues (Arg142 and Lys143) contact the DNA backbone, as seen for HsHsf1 

DBD (Figure 45 d).  
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Figure 45 CtSkn7 DBD-DNA complexes reveal structura l basis of HSE/SSRE recognition. a) 

Crystal structure of CtSkn7 DBD (CtDBD)-HSE complex. Crystal structure of CtSkn7 DBD-HSE 

complex reveals a tail-to-tail orientation of bound DBDs. b) Crystal structure of CtSkn7 DBD-SSRE 

complex. CtSkn7 DBD-SSRE head-to-tail complex shows a tail-to-tail orientation of bound DBDs. 

c), d) Detailed views on CtSkn7 DBD SSRE DNA interactions. c) and d) reveal contacts of the 

recognition helix α3 and the DBD C-terminus which are similar to the ones found for HsHsf1. DNA 

double helix is shown in stick representation with the phosphate backbone, and the GAA, GGC 

and GCC sequence motifs highlighted. K100 plays important role in not distinguishing SSRE from 

HSE. The C-terminal tail of the DBD is omitted for clarity in c). 

5.3.8.1.2 Functional role of DBD C-terminus is cons erved 

Our crystal structures of the DBD of HsHsf1 and CtSkn7 in complex with DNA 

revealed that positively charged amino acids at the DBD C-terminus interact with 

the DNA phosphate backbone. In HsHsf1, Lys118 is critical for DNA-binding 

(Raychaudhuri et al. 2014). To test if this dependence is conserved, Lys143, which 

corresponds to Lys118 in HsHsf1 was mutated in CtSkn7 to Glutamine for charge 
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removal. Substitution of the positive charged Lys143 of CtSkn7 with neutral 

Glutamine resulted in reduced DNA-binding affinity (Figure 46).  

 

Figure 46 Relative DNA-binding of CtSkn7 WT and cha rge inverting mutant K143Q 

(corresponds to K118 in HsHsf1). Shown is a fluorogram of an EMSA assay. Purified CtSkn7(40-

220) protein was incubated with fluorescently tagged DNA-oligonucleotides. Complexes and free 

DNA were then separated on an agarose gel. Free DNA and DNA bound by protein complexes 

are indicated. Ctrl, control DNA. 

5.3.8.2 Analysis of the CtSkn7 DBD-SSRE complex str ucture 

Surprisingly, the complex of the CtSkn7 DBD with the asymmetric SSRE motif 

exhibited the same topology as that of the CtSkn7 DBD-HSE structure (Figure 45 

a, b). We had expected a linear arrangement of the CtSkn7 DBDs, similar to the 

HsHsf1 DBD-SatIII complex (Figure 27 b). The forward contacts to the nGCCn 

motif are realized by Lys100 contacting the guanine bases in the complimentary 

strand (nGGCn) (Figure 45 c). In the reverse contact to the nGGCn motif, Lys100 

contacts the second guanine. These structural findings are consistent with the 

observation that the second base of the second motif can be G or C such as 

nGGCnnGSCn which inverts the second motif (S representing C or G ambiguity, 

(Badis et al. 2008)).  

5.3.8.2.1 Single amino acid change determines seque nce specificity of 

CtSkn7 

Lys100 is conserved in Skn7 sequences, whereas Hsf1 sequences have 

methionine in the corresponding position, as an amino acid sequence alignment 

of Hsf1 sequences against Skn7 sequences showed (Figure 47 a). Other residues 

in helix α3 are highly conserved. We therefore tested for the effect of substituting 

K100 in CtSkn7 with methionine. We were able to observe a switch in the binding 
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specificity of CtSkn7, as the mutant K100M lost its ability to bind to the SSRE motif 

but gained specificity for HSE (Figure 47 b).  

 

Figure 47 A single amino acid change shifts DNA seq uence specificity of Hsf-type DBDs. a) 

Excerpt from a multiple sequence alignment of Skn7 and Hsf1 from different species. The 

systematic amino acid substitution is indicated by a green arrow. b) EMSA of WT and K100M 

mutant of CtSkn7(40-220) shows different binding preferences. The fluorescence signal in the 

agarose gel is shown. A representative gel of 3 independent experiments is shown. WT, wild type; 

Ctrl, control DNA. 

5.3.8.3 Coiled-coil domain of CtSkn7 shows classic leucine zipper 

We were able to solve the first structures of a heat shock factor family protein 

coiled-coil domain (Figure 48). The constructs CtSkn7(160-209) and CtSkn7(160-

220) crystallized primarily as a tetramer, presumably due to the high protein 

concentrations present in the crystallization drop. The protein chains in crystal 

form I of CtSkn7(160-209) formed a tetrameric arrangement, whereby the 

asymmetric subunit contained two adjacent chains which were linked by a 

disulfide bond formed by Cys185. Of note, no reducing agent was present during 

the crystallization process. Crystal form II contained a tetrameric coiled-coil with 

disulfide bridges as well as a trimeric arrangement with reduced Cysteines. 

CtSkn7(160-220) crystallized as tetramer with reduced cysteines. The 

hydrophobic residues arranged in the hydrophobic heptad repeat pattern (a and 

d) were engaged in typical coiled-coil interactions with “knobs-into-holes” packing, 

forming the hydrophobic core of the coiled-coil topology. Additionally, the residues 

peripheral to the interaction interface (e and g) were engaged in stabilizing 
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interactions - e.g. hydrogen bonds between Glu198 and Gln203 from adjacent 

chains. 

 

Figure 48 Crystals of CtSkn7 coiled-coil domains re veal trimeric and tetrameric structures. 

a) Crystal structure of CtSkn7(160-220) tetramer. b) Crystal structure of CtSkn7(160-209) 

tetramer. c) Crystal structure of CtSkn7(160-209) trimer. Side chains of hydrophobic-layer residues 

are shown in stick representation. Residues engage in typical coiled-coil interactions. d) Multiple 

sequence alignment of HsHsf1, CtHsf1 and CtSkn7 heptad repeat sequences. Hydrophobic 

heptad repeat pattern is indicated with pink dots below. Arrow indicates a disulfide bridge in 

CtSkn7(160-209). 

Despite excellent resolution limits (1.03 Å, 1.7 Å and 1.9 Å), the R-factors of the 

crystallographic models stayed behind the average values for these particular 

resolution ranges (Table 4, (Read et al. 2011)). This might be explained by thermal 

movement of the chain ends, which are difficult to model, or by partial 

misorientation of coiled-coil bundles by 180 degrees in the crystal lattice. 
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5.3.9 Structure based functional analysis of CtSkn7 

5.3.9.1 HsHsf1-CtSkn7 chimera shows constitutively active 

phenotype 

To check whether the CtSkn7 heptad repeat domain is functional within human 

Hsf1, we replaced HsHsf1 HR (aa 133-194) with the CtSkn7 HR (160-220), which 

has a sequence identity of ~20% (Figure 49). Interestingly, the resulting chimera 

HsHsf1(CtHR) showed constitutive DNA-binding and trimerization in vitro (Figure 

50).  

 

Figure 49 Schematic of the domain organization of H sHsf1 and the HsHsf1–CtSkn7 chimera, 

HsHsf1(CtHR-A/B). HsHsf1 HR is replaced with the respective sequence of CtSkn7 HR. 

 

Figure 50 HsHsf1(CtHR) chimera shows constitutive a ctivation in EMSA and constitutive 

trimerization in MALS. a) Purified HsHsf1-CtSkn7HR chimera shows constitutive DNA-binding in 

EMSA. The fluorescence signal in the gel is shown. b) HsHsf1(CtHR) is a constitutive trimer. 

Horizontal lines across the peaks indicate molar mass and homogeneity. Calculated molar masses 

are indicated. MALS was performed by Dr. Manajit Hayer-Hartl. 

In vivo data confirmed that the Chimera is able to functionally substitute wild type 

Hsf1 in HeLa cells, showing a constitutively activated phenotype (Neudegger et 

al. 2016). 
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Figure 51 Induction of firefly luciferase (Fluc) ex pression under control of the Hsp70 

promoter by different Hsf1 constructs. Shown is the relative to constitutive expression of Renilla 

luciferase under the CMV promoter in HeLa cells transfected with Venus (V) fusion proteins 

HsHsf1-V, HsHsf1(CtHR-A/B)-V or Venus alone as a control as described in (Neudegger et al. 

2016). Luciferase activities were monitored with and without heat shock (±HS). Induction levels 

were normalized to Venus alone without heat shock. Error bars represent s.d. values from three 

independent experiments. Experiment was performed by Dr. Jacob Verghese. 

The dissociation constants measured for the constitutively oligomeric chimera 

were values in the nano molar range (34.5±1.9 nM for HSEx3, 45.7±2.3 nM for 

HSEx4)  and closely matched the literature value for a constitutively oligomerized 

Hsf1 mutant and HSEx3 (35±7.1 nM (Jaeger et al. 2014)) (Figure 52). The binding 

data was fitted with the Hill equation model (Equation 1), n was not fixed to 1 and 

suggested a cooperative effect with 1.48±0.13 for n (Reduced Chi-Sqr if n=1: 2.98, 

for n=1.48±0.13: 0.79). 
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Figure 52 HsHsf1(CtHR) Chimera binds to fluorescent ly labeled HSE DNA-oligonucleotides 

with nanomolar affinity. Fluorescence anisotropy measurement is shown. Purified HsHsf1-

CtSkn7HR chimera was titrated to fluorescein labeled DNA and the data fitted with the Hill equation 

model (Equation 1). The analysis resulted in a KD in the nanomolar range (34.5±1.9 nM for HSEx3, 

45.7±2.3 nM for HSEx4). 
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6 Discussion 

Hsf1 was discovered more than thirty years ago, yet the structural organization 

and functional features underlying its molecular functions have remained unclear 

(Parker & Topol 1984; Wu 1984; Anckar & Sistonen 2011). In this study we used 

numerous approaches to gain insight into the mechanism of activation and 

oligomerization of human Hsf1. Our crystal structures demonstrate that previous 

Hsf family protein DBD structures missed a constitutive C-terminal region, which 

forms vital contacts with the phosphate backbone in DNA complexes. In addition, 

we solved the first structure of an Hsf coiled-coil oligomerization domain. 

6.1 Comparison of the atomic structures of the DBDs  in 

human and fungal Hsf1 

Prior to our study, the only Hsf1 family protein-DNA complex structure available 

was from the yeast K. lactis (KlHsf1) (Littlefield & Nelson 1999). A comparison of 

the crystal structures of the DBD fragment of KlHsf1 with HsHsf1 showed only 

slight deviations (r.m.s.d. of 1.223 Å for PDB 3HTS) of the peptide backbone 

conformation (Figure 53). However, the protein-protein interface of the DBDs 

bound to the tail-to-tail motif revealed substantial differences (Figure 53).  

KlHsf1 DBDs interact with each other in a manner similar to that found in β-sheets, 

with the carbonyl and amide groups stabilizing an antiparallel interaction of the 

wing loop and the linker between α-helix 2 and 3. In contrast, HsHsf1 DBDs do 

not engage in β-sheet contacts but exclude water molecules from the contact site 

on α-helix 2 – a feature that is often found in functional protein interfaces (Nero et 

al. 2014). Sequence conservation of the residues in helix α2 suggests that similar 

protein-protein contacts are present in all Hsf1 orthologs of animals. 
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Figure 53 Differences of the DBD-DBD interface of a djacent DBDs on double stranded DNA 

between KlHsf1 and HsHsf1. a) and b) DBD-DBD interface of HsHsf1 DBDs on tail-to-tail HSE 

motif. c) and d) show the same region of KlHsf1 DBD-DBD interface on tail-to-tail HSE motif. 

Protein is shown in ribbon representation, DNA is shown in surface representation.  

6.2 Comparison of the crystal structures of the DBDs from 

human Hsf1 and Hsf2  

The recent HsHsf2 DBD-DNA complex structures by Jaeger and colleagues 

provided evidence that Hsf1 and Hsf2 have the same DNA motif preference based 

on the high level of conservation of the DNA-proximal residues, but are regulated 

differently via their divergent distal surface and wing-loops (Figure 54) (Jaeger et 

al. 2016). Using in vitro sumoylation experiments with chimeric DBDs, which had 

the wing-loops swapped between Hsf1 and Hsf2, they showed that the wing-loop 
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sequence origin dictates the regulatory modification of the wing tip lysine of the 

protein. 

 

Figure 54 HsHsf1 and HsHsf2 differ in their DBD dis tal surface and wing-loop. Conservation 

of surface residues from HsHsf1 to HsHsf2 DBD mapped onto the HsHsf2 crystal structure. HsHsf2 

Arg63 corresponds to Arg71 in HsHsf1 which reads out the Hoogsteen face of the guanine group 

of the DNA sequence nGAAn. Adapted by permission from Macmillan Publishers Ltd: Nat. Struct. 

Mol. Biol. (Jaeger et al. 2016), copyright 2016 

When we compared the crystal structures of the DBD of HsHsf2 with HsHsf1 minor 

deviations were found in terms of the peptide backbone conformation (r.m.s.d. of 

2.213 Å for PDB datasets 5D5U and 5D8K)  (Figure 55).  

 

Figure 55 HsHsf1 and HsHsf2 differ slightly in thei r peptide backbone conformation. 

Superposition of the DBD structure in the HsHsf1 DBD-HSE complex and the DBD in the HsHsf2 

DBD-HSE complex is shown. Displayed are Cα traces of the PDB datasets 5D5U and 5D8K 

(Jaeger et al. 2016). 

The residues of the recognition helix α3 are highly conserved between HsHsf1 

and HsHsf2 (Figure 27 and Figure 56). The sidechains of the conserved HsHsf2 

residues Asn66, Gln64, Tyr68 and Ser60 (corresponding to Asn74, Gln72, Tyr76 
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and Ser68 in HsHsf1) position α-helix 3 in the major groove of the DNA double 

helix by hydrogen bond formation with the phosphate backbone of the DNA. Two 

pairs of positively charged side chains (Lys54, His55 and Arg71, Lys72) in the N- 

and C-terminal connectors of the recognition helix stabilize the interaction by 

hydrogen bonding and electrostatic interactions with the DNA phosphate 

backbone. If helix α3 is correctly positioned, HsHsf2 Arg63 (Arg71 in HsHsf1) 

reads out the Hoogsteen face of the guanine base of the nGAAn motif. At the C-

terminal tail of the HsHsf2 DBD, Arg109 is positioned to contact the major groove 

or the phosphate backbone, whereas Lys110 forms a salt bridge with the 

negatively charged DNA backbone.  

These conserved residues generally adopt identical conformations in HsHsf1 and 

HsHsf2. However, Arg71 in HsHsf2 showed a different sidechain conformation 

compared to its homologous residue, Arg79, in HsHsf1. The conformation of 

Arg71 in HsHsf2 allows contact to the phosphate backbone of the DNA with its ε-

amino group (2.6 Å) whereas the closest backbone contact of HsHsf1 Arg79 is 

made by a η-amino group (3.1 Å). However, the function of both residues as 

mediators of generic DNA contacts is conserved. 

These observations are consistent with the finding that the DNA-sequence 

preferences of HsHsf1 and HsHsf2 are indistinguishable (Vihervaara et al. 2013). 

 

Figure 56 Crystal structure of HsHsf2 DBD-HSE compl ex reveals structural basis for HSE 

recognition and role of C-terminus.  Detailed view of the DNA-contacts of the recognition helix 

α3 (a) and the DBD C-terminus (b). Protein is shown in ribbon representation, DNA is shown in 

stick representation with the phosphate backbone highlighted. Side chains of conserved residues 
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are shown in stick representation with hydrogen bonds represented by dotted lines. The C-terminal 

tail of the DBD is omitted for clarity in a) (see also Figure 27  for comparison to HsHsf1). HsHsf2 

residue Lys54 is depicted in two alternative conformations. 

However, the protein-protein interface of DBDs bound to the tail-to-tail motifs 

revealed distinct modes of interaction (Figure 57 b, d). HsHsf2 DBDs interact with 

each other via the sidechain of Gln42 (corresponding to Gly50 in HsHsf1) in α-

helix 2, which contacts the backbone carbonyl group of Gln42 (distance 3.0 Å) on 

the adjacent DBD. Furthermore, hydrogen bond formation between the sidechains 

of Asn56 and Asp86 (distance 2.8 Å) stabilizes the intermolecular interaction 

between the wing-loop and the linker between α-helix 2 and 3. Whereas the 

Glycine at position 50 in the HsHsf1 DBD allows a minimal backbone distance of 

4.95 Å, Gln42 at the same position keeps the DBD backbones of HsHsf2 at a 

distance of 7.0 Å. As a consequence, each HsHsf2 DBD is shifted ~1.3 Å away 

from the interface when compared to HsHsf1. Interestingly, all secondary structure 

elements are shifted with the exception of the recognition helix α3 – its position 

relative to the DNA double helix matches in the HsHsf1- and HsHsf2-DNA complex 

structures. 
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Figure 57 Comparison of the DBD-DBD interfaces betw een adjacent DBDs in the DNA 

complexes of HsHsf1 and HsHsf2. a) and b) Interface between HsHsf1 DBDs along a tail-to-tail 

HSE motif. c) and d) Same view of the HsHsf2 DBD-DBD interface along a tail-to-tail HSE motif 

(PDB 5D8K). HsHsf2 Asp86 is depicted in two alternative conformations. Protein is shown in ribbon 

representation, DNA is shown in surface representation. Side chains of residues within Van-der-

Waals distance of the opposing monomer are shown in stick representation. 

6.3 HsHsf1 and HsHsf2 in the formation of an Hsf1-Hsf2 

hetero-trimer  

Jaeger and colleagues also observed an interaction between Hsf1 and Hsf2 

mediated by their coiled-coil domain in co-purification experiments (Figure 58) 

(Jaeger et al. 2016). These findings confirmed the model for hetero-oligomer 

formation (Sandqvist et al. 2009). 
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Figure 58 HsHsf1 and HsHsf2 form mixed complexes vi a their coiled-coil domain. HsHsf1 

and HsHsf2 co-purify and form hetero complexes as monitored by SDS-PAGE analysis and size 

exclusion chromatography, respectively. Adapted by permission from Macmillan Publishers Ltd: 

Nat. Struct. Mol. Biol. (Jaeger et al. 2016), copyright 2016 

In a hetero-trimer, two different kinds of protein-protein contacts along a three 

times nGAAn HSE motif could be mixed – tail-to-tail and head-to-tail (Figure 7 b). 

Conservation in the putative contact areas of a head-to-tail orientation – the wing 

tip and surface cleft between α-helix 1 and α-helix 2 – is high. Interestingly, the 

systematic sequence deviation is more pronounced in the tail-to-tail contact 

between HsHsf1 and HsHsf2. 

Using the crystal structures, we created a model of the proposed interface 

between the DBD of HsHsf1 and the DBD of HsHsf2 in a hetero-trimer at the DNA 

in a tail-to-tail orientation (Figure 59).  
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Figure 59 A model of a putative DBD-DBD interface i n an HsHsf1 and HsHsf2 heterodimer 

on DNA double strand.  HsHsf1 and HsHsf2 were aligned at HSE tail-to-tail DNA according to 

their crystal structures. Protein is shown in ribbon representation, DNA is shown in surface 

representation. Residues within a 5 Å distance are shown in stick representation. HsHsf2 Asp86 

is depicted in two alternative conformations. 

The interface does not bear obvious steric clashes or charge mismatches. Based 

on this model one might propose that the interaction is stabilized by hydrogen 

bonds and Van der Waals interactions between charged and polar amino acids in 

the wing-loops and α-helix 2 of the respective HsHsf1 and HsHsf2 DBDs. The 

following residues have the potential to be involved in these types of interactions 

and are within 5 Å of the neighboring DBD: HsHsf1 Asp48, Gln49, Gly50, Gln51, 

Lys54, Asn64, and Asp95; HsHsf2 Gln42, Lys46, Asn56, Gln83 and Asp86. 

Furthermore, ionic interactions between HsHsf1 Lys54 and HsHsf2 Asp86, as well 

as HsHsf2 Lys46 and HsHsf1 Asp95 could strongly stabilize this interaction. While 

these interactions may also stabilize a homomeric complex, these findings are 

consistent with a heterotrimeric model, in which such a Hsf1-Hsf2 interface was 

depicted in tail-to-tail orientation (Jaeger et al. 2016). 
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6.4 Specificity of helix-turn-helix DNA-binding dom ains 

Systematic methionine (Hsf1) versus lysine (Skn7) substitution at the distal α-helix 

3 relaxes the sequence selectivity to both HSE and SSRE motifs in the closely 

related Skn7 paralogs of Hsf1 (Figure 45). The sidechain flexibility of Lys100 in 

Skn7 allows for the recognition of both HSE and SSRE, where SSRE can be 

bound in two orientations, GGC and GCC (Figure 43 and (Neudegger et al. 2016)). 

This phenomenon has been previously observed for helix-turn-helix folds in 

homeodomains (Fraenkel et al. 1998; Treisman et al. 1989; Tucker-Kellogg et al. 

1997). In the case of Engrailed, a homeodomain transcription factor involved in 

development, a single amino acid substitution to a lysine (Q50K in D. 

melanogaster) switches specificity towards guanine instead of thymine or adenine. 

Similar to Lys100 in CtSkn7, Lys50 of Engrailed makes contacts with the C6 

oxygen of the guanine base via hydrogen bonding, driving specific binding to the 

motif TAATCC instead of TAATTA. Therefore, the systematic sequence deviation 

between Skn7 and Hsf1 represents another example of how a single amino acid 

substitution can determine sequence specificity for DNA-binding motifs. 

6.5 Model of the active human Hsf1 on HSE DNA 

Until a HsHsf1 coiled-coil domain structure becomes available, the structure of the 

coiled-coil domain of its paralog, Skn7, may serve as an informed model for the 

HsHsf1 HR-A/B domain structure. Based on the ~20% amino acid sequence 

identity between HsHsf1 and CtSkn7, we created a homology model of HsHsf1 

HR-A using Modeller (Eswar et al. 2007). The model with the lowest Discrete 

Optimized Protein Energy (DOPE) of the 20 calculated was selected as a working 

model. Using this as a base, we were able to assemble a model for the conserved 

N-terminal (1-182) sequence of trimeric HsHsf1 on a 3-site HSE DNA double-

strand consistent with our CXMS data (Figure 18 and Figure 60 a). For the linkers 

between the DBD and HR, several conformations were calculated using Modeller 

before manual selection of the final model. For the DBD-DNA contacts, a model 

of ideal B-DNA with three HSE sites was first created using Coot. This was then 

aligned with the HsHsf1 DBD - HSE crystal structures to position the three DBDs 

on their binding sites (Emsley & Cowtan 2004). The interaction of the wing-loop 
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with the adjacent DBD (head-to-tail interaction) was regularized by energy 

optimization of the whole model by Chimera for two rounds (Pettersen et al. 2004). 

 

Figure 60 Model of N-terminal HsHsf1 in complex wit h HSE DNA-oligonucleotide.  Model of 

N-terminal HsHsf1 with modelled linkers and homology model of HsHsf1 HR-A based on the crystal 

structure of CtSkn7(160-209). Protein is shown in ribbon representation, DNA is shown in stick 

representation. 

Past models of trimeric Hsf1 placed the DBDs, coiled-coil domains and the 

remaining part of the protein on the same side of the DNA, due to the assumption 

that the DBD terminates ~20 residues earlier (Wu 1995; Anckar & Sistonen 2011). 

The crystal structures we obtained for the complete DBDs of HsHsf1 and CtSkn7 

suggest a different mode: the DBD with the linker embraces the DNA and therefore 

sits on the opposite side of the DNA double helix. The basic residues at the C-

terminal end of the DBD contribute to DNA affinity. This is consistent with the 

finding for the regulatory role for Lys118, which can be acetylated during post-

translational modification. Mutants which mimic the PTM by inverting the charge 

(K1118Q) have been found to lose their DNA-binding capacity when monitored via 

the proxy of nuclear stress body formation (Raychaudhuri et al. 2014). 
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6.6 Binding of HsHsf1 to Satellite III repeats  

The development of a model for trimeric HsHsf1 on Satellite III repeats proved to 

be more difficult. In Sat III repeats (GGAAT) the order and direction of individual 

nGAAn motifs is different from those found in HSEs. They consist of head-to-tail 

unidirectional arrays of nGAAn for long stretches. This abolishes the extended tail-

to-tail contacts between adjacent DBDs since all DBDs have the same orientation 

along the DNA helix. Only the head-to-tail contacts with every second DBD C-

terminus remain apart from the coiled-coil to support the contacts to DNA (Figure 

61). 

 

Figure 61 Binding of HsHsf1 to SatIII repeats requi res fully extended linker conformation or 

partial unzipping of the coiled-coil. a) Model of N-terminal HsHsf1 bound to 6 motifs of SatIII 

repeats. Coiled-coil is homology model based on the crystal structure of CtSkn7 HR. b) 

Hydrogen/Deuterium exchange levels in oligomeric HsHsf1 mapped onto the model showing 

partial unprotection of the N-terminal coiled-coil domain consistent with partial unzipping. Figure 

b) adapted from (Hentze et al. 2016). 

This linear arrangement would force two of the three linkers to adopt a fully 

extended conformation unless there is support from concave DNA bending, which 

would strain an opposing Hsf1 trimer. Another possibility would be that the N-

terminus of the triple stranded coiled-coil partially unzips. Indeed, a study by 
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Hentze and colleagues found that the N-terminus (residues 130-140) of the coiled-

coil domain is still partially unprotected in trimeric HsHsf1 against 

Hydrogen/Deuterium exchange (Hentze et al. 2016) (Figure 61). 

Hydrogen/Deuterium exchange (H/D exchange) coupled to mass spectrometry 

makes use of changes in the exchange rate of peptide backbone amide hydrogen 

atoms. The rate of exchange is influenced by solvent accessibility and hydrogen 

bonding of the respective hydrogen. Based on currently available data, the partial 

unzipping model therefore seems to be more plausible than the former. Partial 

unzipping might also enable pentameric HsHsf1 to bind to all five binding sites in 

the promoter of Hsp70.1 (see paragraph 5.1.2 and Figure 7). 

6.7 Role of the wing-loop in protein-protein interf aces 

The interaction between DBDs in head-to-tail motifs has been suggested to be 

mediated by the wing-loop (Littlefield & Nelson 1999). In previous studies, the 

Nelson group observed that yeast Hsf1 requires the wing-loop to exhibit its full 

activity and mutation of a conserved Glycine (Gly87 in HsHsf1) at the tip of the 

wing is detrimental to its function (Cicero et al. 2001; Hubl et al. 1994). 

 

Figure 62 Excerpt of a sequence alignment of Hsf1 D BD amino acid sequences. Wing tip 

glycine (Gly87 in HsHsf1) is a conserved residue. 

Based on our results and published observations, the wing loop might be involved 

in two modes of interaction. First, Replication protein A 1 (RPA1) of the hetero 

trimeric RPA complex requires the wing-loop of HsHsf1 for interaction (Fujimoto 

et al. 2012). RPA is a single-stranded DNA-binding complex (consistent of 

subunits RPA1-3) involved in DNA metabolism, recombination, repair and gene 

transcription (Wold 1997). Gly87 in the wing-loop of HsHsf1 proved to be essential 

for the physical interaction with RPA1. The DNA-bound Hsf1-RPA complex was 

shown to contribute to the opening of chromatin structure and transcription of 
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target genes by facilitating Pol II preloading and recruitment of the histone 

chaperone FACT (facilitates chromatin transcription) (Fujimoto et al. 2012). 

Second, we observed the wing-loop reaching out to a hydrophobic surface patch 

at the groove between α-helix 1 and α-helix 2 of the adjacent DBD in in our crystal 

structure of the HsHsf1 DBD-SatIII complex (Figure 28 c). Our trimer model based 

on our crystal structure suggests a potential alternative mechanism in the DBD-

DBD contacts, in which the extended wing-loop of DBD1 might be inserted into 

the groove between α-helix 1 and α-helix 2 of DBD3 (Figure 60). Either way, the 

wing-loop might moderately stabilize the interaction of adjacent DBDs on the DNA. 

Presumably, this effect only plays a role when at physiological HsHsf1 levels and 

not when over-expressed (Fujimoto et al. 2012). 

The wing-loop of Hsf2 has been shown to contribute to HsHsf2 regulation via 

sumoylation at Lys82 but Hsf2 does not interact with RPA. Lysine sumoylation 

was not observed at HsHsf1 wing-loop residue Lys91 (Jaeger et al. 2016; Fujimoto 

et al. 2012; Hietakangas et al. 2003). 

Inhibition or activation of Hsf1 has been proposed to be a promising approach for 

the treatment of cancer or proteopathies, respectively (Neef et al. 2011; Whitesell 

& Lindquist 2009). Several compounds which activate or inhibit the function of 

Hsf1 have been reported (e.g. Triptolide as inhibitor and Celastrol as inducer of 

the HSR). However, all compounds acting on the HSR have been discovered in 

cell-based assays and the mode of action has not been tested on isolated Hsf1 in 

vitro (Calamini et al. 2011; Au et al. 2009). Therefore most, if not all, discovered 

small molecules activating or inhibiting the HSR presumably act up- or 

downstream of Hsf1 and do not interact with Hsf1 itself. Thus, the binding of all 

compounds found to be active must be confirmed in in vitro experiments using 

purified HsHsf1 in future studies to rule out off target effects. 

However, the putative protein-protein interfaces (PPI) mediated by the wing-loop 

in inter-HsHsf1 contacts or HsHsf1-RPA interactions might be an interesting target 

site for future drug development. Also, it is known that protein flexibility (as 

provided by a Gly backbone), such as induced fit mechanisms, enhance the drug 

ability of a given PPI (Teague 2003; Mangani 2013). Once candidate compounds 

are identified, rational drug design involving crystal structures of the respective 
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protein complexes with and without the compound might promote the 

development of a direct Hsf1 inhibitor. 

6.8 An activation model for Hsf1 

The overall topology of metazoan Hsf1 is still debated – e.g. which domains 

interact and how they interact. Of particular interest was the arrangement of the 

coiled-coil domains in the latent and active states (Wu 1995; Anckar & Sistonen 

2011). Early studies had indicated, that the N-terminal coiled-coil domain 

comprises two subdomains – HR-A and HR-B. It was found that HR-A of yeast 

Hsf1 favors a trimeric state when studied in isolation, whereas HR-B showed the 

propensity to form higher oligomers (Peteranderl et al. 1999; Peteranderl & Nelson 

1992). However, it was generally accepted that the regulatory C-terminal coiled-

coil domain (HR-C) folds back onto the N-terminal heptad repeats to stabilize the 

monomeric state of the protein, whereas deletion of HR-C leads to constitutive 

oligomeric Hsf1 (Rabindran et al. 1993; Wu 1995). The Voellmy group introduced 

mutations in all three HR domains (HR-A, B and C) of HsHsf1, revealing that all 

three heptad repeat domains are required to maintain the monomeric state (Zuo 

et al. 1994; Zuo et al. 1995). Using GAL4-Hsf1 chimeric proteins, it was also 

shown that the regulatory domain (RD residues ~220-310), situated between the 

HR domains, was both able to repress and enhance the activity of HsHsf1 (Green 

et al. 1995). 

The molecular events which happen during the transition from monomeric Hsf1 to 

oligomeric Hsf1, however, mainly remained an enigma. A study by Hentze and 

colleagues have recently provided insight into the mechanism (Hentze et al. 

2016). With the help of H/D exchange coupled to MS, they were able to determine 

which regions are folded or unfolded at specific time points during the heat 

activated oligomerization process. Further, Hentze and colleagues proposed that 

HsHsf1 might exist in a monomer-dimer equilibrium in its latent state. However, 

the dimeric species was absent in our native MS analysis (paragraph 5.1.2, 

(Hentze et al. 2016)). 

In light of our findings, we propose that HsHsf1 exists predominantly as monomer 

in its inactive state. The following domain topology for the HsHsf1 monomer is 

consistent with the data from CXMS (paragraph 5.1.3) and data from mutational 
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studies (Zuo et al. 1995; Zuo et al. 1994): The coiled-coil domains of Hsf1 are 

folded in a triple stranded, antiparallel coiled-coil involving HR-A, HR-B and HR-C 

(Figure 63). This arrangement also explains our experiments detecting crosslinks 

between the DBD and the end of HR-B such as Lys80-Lys206. The DBD is folded 

back onto the triple stranded coiled-coil, where it interacts with the RD and the 

TAD, which is orientated towards the DBD. This orientation is supported by 

additional crosslinks between Met1-Lys184, Lys80-Lys206, Lys80-Lys298, and 

Lys118-Lys524.  

Transition of HsHsf1 to its active oligomeric state might be induced by a coupled 

process, dependent on concentration and temperature (Hentze et al. 2016). The 

nature of the oligomeric state was described as trimeric early on and received 

continuous support by many studies (Peteranderl & Nelson 1992; Sistonen et al. 

1994; Wu 1995). However, the tendency of HsHsf1 to form higher oligomers had 

caused doubt towards the exclusive presence of a trimer (Raychaudhuri et al. 

2014). By reviewing the data supportive for the trimeric state in combination with 

our new native MS data (suggesting the presence of HsHsf1 trimers and 

pentamers after heat activation), it seems plausible that the majority of oligomeric 

HsHsf1 is trimeric upon activation (paragraph 5.1.2). Upon HsHsf1’s transition to 

its predominantly trimeric state, HsHsf1 subunits arrange in a parallel, elongated 

state from residues ~130 to ~300. This arrangement is consistent with our inter-

subunit crosslinks Lys131-Lys131, Lys178-Lys184, Lys206-Lys206, and Lys298-

Lys 298. The TAD remains orientated towards the RD (Lys298-Lys524) (Figure 

63) (paragraphs 5.1.2, 5.1.3, (Sistonen et al. 1994)). 

The crosslinks we identified within the HsHsf1 DBD connect residues with Cα-Cα 

distances of 6-37 Å for DSS and 7-31 Å for DMTMM crosslinks (paragraph 9.5). 

These values are consistent with previous studies which found that more than 

90% of DSS crosslinks were within Cα-Cα distances 30 Å and more than 85% of 

DMTMM crosslinks were within 25 Å (Table 5, Table 6) (Leitner et al. 2014; Leitner 

et al. 2012). 
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Figure 63 Activation model for human Hsf1. HsHsf1 adopts a compact conformation in its 

monomeric state, which unfolds into an elongated, parallel coiled-coil topology upon activation. 

Activation occurs under the influence of temperature, concentration and molecular chaperones. 

6.9 The role of molecular chaperones in Hsf1 regulation 

However, it should be noted that the results obtained in this study and the one of 

Hentze and colleagues were derived from HsHsf1 heterologously expressed in E. 

coli and thus lacking PTMs. Furthermore, a role of interacting proteins (e. g. 

molecular chaperones) within the cellular environment should be taken into 

consideration. To date, molecular chaperones have been mainly described as 

inhibitors in a feedback regulation pathway (Björk & Sistonen 2010). 

Intriguingly, there are two studies, which suggest that molecular chaperones 

render HsHsf1 more activation-prone (Ahn et al. 2005; Hentze et al. 2016). Ahn 

and colleagues found that knockdown of Hsc70 expression decreased the ability 

of Hsf1 to induce expression of target genes, whereas overexpression of Hsc70 

increased activation of Hsf1 – including the formation of higher amounts of 

oligomeric Hsf1. Hentze and colleagues found that the presence of Hsp90 seems 

to lower the midpoint of the activation temperature. Hsp90 also caused a change 

in the temperature-dependent activation curve towards a shallower slope, 

apparently lowering the cooperativity of the transition. According to their model, 

Hsp90 might act through destabilization and unfolding of HR-C while stabilizing 
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the dimeric state. Therefore, Hsp90 might facilitate Hsf1 oligomerization at lower 

concentrations in the coupled process – consistent with the low endogenous 

expression level of HsHsf1 (~100 nM) in human cells. Thus, the exact role of 

chaperones in the Hsf1 activation cycle awaits further exploration (Figure 63). 
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7 Abbreviations 

Δ    Deletion 

µL    Microliter 

µM    Micromolar 

CD    Circular dichroism 

CtSkn7   Chaetomium thermophilum Skn7 

DBD    DNA-binding domain 

DNA    Desoxyribonucleic acid 

EM    Electron microscopy 

Fab    Fragment antigen binding 

FACT     Facilitates chromatin transcription 

FPLC    Fast protein liquid chromatography 

H/D exchange  Hydrogen/Deuterium exchange (coupled to MS) 

HeLa cells   Cervical cancer cell line derived from Henrietta Lacks 

HEPES   N-(2-hydroxyethyl)piperacin-N’-2-ethanesulfonic acid 

HIP    Hsc70-interacting protein 

HOP    Hsp70/Hsp90-organizing protein 

HR    Heptad repeat 

Hsc70    Heat shock cognate protein 70 

HSE    Heat shock element 

HsHsf1   Homo sapiens Hsf1  

HsHsf2   Homo sapiens Hsf2 

Hsp    Heat shock protein 

IMAC    Immobilized metal affinity chromatography 

kDa    Kilodalton 

mL    Milliliter 
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mM    Millimolar 

Ni    Nickel 

PAGE    Poly acrylamide gel electrophoresis 

PCR    Polymerase chain reaction 

RD    Regulatory domain 

Rg    Radius of gyration 

Rs    Stokes radius 

SDS    Sodium dodecyl sulfate 

SAT III   Satellite III (repeats) 

SEC    Size exclusion chromatography 

S-SAD   Sulfur-Single wavelength anomalous dispersion 

TAD    Trans-activation domain 

TAE    Tris-acetate EDTA 

Tris    Tris(hydroxymethyl)aminomethane 

UV    Ultraviolet light 
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9 Appendix 

9.1 Sequence alignment of the conserved region in Hsf 

proteins 

 

Figure 64 Multiple sequence alignment of N-terminal  HsHsf1, CtHsf1, CtSkn7. Similar 

residues are shown in red, identical residues are shown in white using bold lettering on red 

background. Blue frames indicate homologous regions. Green arrowhead systematic Hsf1/Skn7 

substitution. Asterisks denote acetylation sites in HsHSF1; pink ovals indicate hydrophobic layer 

residues in HsHSF1 coiled-coil. 

9.2 Accession codes for coordinates in PDB 

HsHsf1 DBD–HSE complex 5D5U 

HsHsf1 DBD–SatIII complex 5D5V 

CtSkn7 DBD–HSE complex 5D5W 

CtSkn7 DBD–SSRE complex 5D5X 
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CtSkn7(160–209) crystal form I 5D5Y 

CtSkn7(160–209) crystal form II 5D5Z 

CtSkn7(160–220)  5D60 

9.3 Primer for PCR 

Alias Sequence 

pHUE_pProEXHtb_Combi
_prefix_fwd 

cgcGAATTCtCCGCGGtgga 

pHUE_pProEXHtb_Combi
_suffix_rev 

CCCaagcttA 

Hsf1_1-fwd cgcGAATTCtCCGCGGtggaATGGATCTGCCCGTGGGCCC 

Hsf1-529-rev CCCaagcttAGGAGACAGTGGGGTCCTTGGC 

Hsf1-120-rev CCCaagcttAGGTCACTTTCCTCTTGATGTTCTCAAGGAGC 

1-192-GCN4-rev 
CCCaagcttAAAGCTTATTAAATCAGTTTTTTAATACGCGCAATT
TCGTTTTC 

Hsf1_133-fwd cgcGAATTCtCCGCGGtggaCGCCAGGACAGCGTCACCAAG 

Hsf1-182-rev CCCaagcttATTGCTGGGCATGCTTCTGCCGAAG 

CtSkn7_fwd_40- 
cgcGAATTCtCCGCGGtggaAGCAGCGATTTTGTTCGTAAACTGT
ATAAAATGCT 

CtSkn7-209-rev CCCaagcttACTGTGCTTTAACCATTTTCTGCAGGGTCA 

CtSkn7_160-fwd 
cgcGAATTCtCCGCGGtggaAGCCAGCAGCAAATTGCAGCACTG
A 

CtSkn7-143-rev CCCaagcttATTTACGACGAATGTTATCCAGATTATCTTTGCGAT 

CtSkn7-209_elong-220-
rev 

CCCaagcttACAGATGGTTAATAATTTCGTTGCTCGCCTGGTTCT
GTGCTTTAACCATTTTCTGCAGGGTCA 

CtSkn7_35-fwd cgcGAATTCtCCGCGGtggaGGTGGTAGCGGTAGCAGCGATTTT 

CtSkn7-765-rev CCCaagcttACTGAACAAAACCTGCAACGCCAACAC 

HsHsf1_Chimera_1-fwd cgcGAATTCtCCGCGGtggaATGGATCTGCCTGTGGGACCTGG 

HsHsf1_Chimera_529-rev CCCaagcttAGGACACGGTAGGATCTTTGGCCTTG 

triGCN4-rev 
CCCaagcttAAAGCTTATTAAATCAGTTTTTTAATACGCGCAATT
TCGTTTTC 

CtSkn7_K100M-fwd 
AGCTTTGTTCGCCAGCTGAACatgTATGATTTTCATAAAGTGCG
C 

CtSkn7_K100M-rev 
GCGCACTTTATGAAAATCATAcatGTTCAGCTGGCGAACAAAG
CT 

CtSkn7_K143Q-fwd GATAACATTCGTCGTcagGCACCGGCACCGCGT 

CtSkn7_K143Q-rev ACGCGGTGCCGGTGCctgACGACGAATGTTATC 
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9.4 DNA-oligonucleotides for protein binding experi ments 

Alias Sequence 

SSREx2 cgacagGGCtaGCCacagacg 

SSRE ATTTGGCTGGGCC 

SSREx4 cgacGGCagGCCtaGGCgaGCCgacg 

OCH1pr ccactATTTGGCCGGCCCaccgcgaaaagATTTGGCTGGGCCtcacc 

SatIII cGGAATGGAATg 

HSE ggTTCtaGAAcc 

HSEx2 cgacagTTCtaGAAacagacg 

HSEx3 cgacGAAagTTCtaGAAgacg 

HSEx4 cgacGAAagTTCtaGAAgaTTCgacg 

Ctrl cgacagatacagatacagacg 

Ctrl’ cgacagataggcatacagacg 

  

DNA-oligonucleotides depicted in bold  were used for crystallization and ordered 

without fluorescein tag. 

9.5 Crosslinks identified by mass spectrometry 

Crosslinks were assigned as robust if found in two experimental conditions and in 

at least 60% of analyzed gel bands (Figure 17). 

 

 

9.5.1 DSS crosslinks in HsHsf1 identified by mass s pectrometry 

Table 5 DSS crosslinks identified in HsHsf1 by mass  spectrometry. 

No heat shock  Heat shock 

          

Pos1 Pos2 

Occurance 
2/2 

analyzed 
bands 

Distance 
in crystal 
structure 

(Å) 

 Pos1 Pos2 
Inter 

subunit 

Occurance 
in 3/5 

analyzed 
bands 

Distance 
in crystal 
structure 

(Å) 

1 59 -    1 59 - Y   

1 62 -    1 62 - Y   

1 118 Y    1 91 - Y   

1 126 -    1 116 - Y   

1 131 -    1 118 - Y   

1 184 Y    1 126 - Y   

1 206 -    1 131 - Y   
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80 118 Y 20  1 148 - Y   

80 126 Y    1 206 - Y   

80 131 -    1 208 - -   

80 139 Y    1 298 - Y   

80 150 -    1 524 - -   

80 184 Y    59 91 - Y 29 

80 206 Y    62 91 - - 37 

80 298 Y    80 116 - - 17 

91 184 -    80 118 - Y 20 

116 118 - 6  80 206 - -   

116 126 -    80 524 - -   

116 139 -    116 118 - Y 6 

116 184 -    116 126 - -   

116 298 Y    116 131 - Y   

118 131 -    118 118 Y -   

118 139 Y    118 126 Y Y   

118 150 -    118 131 - Y   

118 184 -    126 126 Y Y   

118 188 Y    126 131 Y Y   

118 298 Y    126 139 - -   

118 524 Y    131 131 Y -   

126 139 Y    131 148 - -   

126 188 -    131 139 - -   

131 206 -    131 206 - -   

139 206 -    162 298 - -   

150 298 -    178 184 Y Y   

162 298 -    184 298 - Y   

184 298 -    184 524 - -   

188 298 Y    188 206 - Y   

206 298 -    188 208 - -   

     188 298 - -   

     206 206 Y Y   

     206 208 - Y   

     206 224 - -   

     206 298 - Y   

     208 208 Y -   

     208 298 - Y   

     224 298 - -   

     298 298 Y Y   

     298 524 - Y   
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9.5.2 DMTMM crosslinks in HsHsf1 identified by mass  

spectrometry 

Table 6 DMTMM crosslinks identified in HsHsf1 by ma ss spectrometry 

No heat shock  Heat shock 

          

Pos1 Pos2 

Occurance 
in 2/2 

analyzed 
bands 

Distance 
in crystal 
structure 

(Å) 
 

Pos1 Pos2 
Inter 

subunit 

Occurance 
in 3/4 

analyzed 
bands 

Distance 
in crystal 
structure 

(Å) 

1 55 Y    1 2 Y -   

1 109 Y    1 55 - Y   

1 113 Y    1 85 - -   

1 311 -    1 109 - Y   

2 116 -    1 113 - Y   

59 85 - 29  1 128 - Y   

62 85 - 31  2 91 - -   

113 118 - 12  55 62 - - 11 

113 126 -    55 91 - Y 25 

131 135 Y    91 93 - - 7 

148 339 -    118 128 - -   

162 337 -    126 128 Y Y   

171 178 -    126 129 Y -   

171 188 -    128 131 Y -   

184 339 -    129 131 Y -   

188 337 -    162 164 Y -   

188 339 -    162 166 Y -   

206 339 Y    162 525 - -   

208 339 -    178 337 - -   

     178 339 - -   

     184 311 - -   

     184 312 - -   

     184 339 - -   

     188 339 - -   

     206 311 - -   

     206 322 - -   

     206 337 - -   

     206 339 - -   

     208 337 - -   

     208 339 - -   

     224 322 - -   

     298 322 - -   

     298 339 - -   
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