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I. Abstract 
 

Recently, we showed that the E3 ubiquitin ligase Parkin, which is associated with Parkinson’s 

Disease (PD), influences NF-κB signaling via increased activation of the linear ubiquitin 

assembly complex (LUBAC). Huntington’s Disease (HD) shares pathologic features such as 

mitochondrial alterations and augmented neuronal cell death with PD. Therefore, we were 

interested in the question if similar signaling pathways might be affected in HD and PD. To 

address this issue, we examined whether and how Huntingtin aggregates might alter the pro-

survival NF-κB pathway. 

Using HD cell culture models we discovered that Huntingtin aggregates sequester and trap 

components of the LUBAC, thereby blocking one of the first steps of the TNF-α-induced NF-

κB pathway. As a consequence, nuclear translocation of the transcription factor NF-κB is 

decreased leading to reduced expression of NF-κB responsive target genes. OPA1, a key 

regulator of mitochondrial fusion, belongs to the group of NF-κB responsive target genes, 

which can explain why increased mitochondrial fragmentation is found in HD. Due to the 

impairment of the pro-survival NF-κB pathway, two other TNF-α-induced pro-apoptotic 

pathways that are usually suppressed by a subset of NF-κB targets, are up-regulated in cells 

with Huntingtin aggregates: the JNK signaling pathway and the caspase cascade. This switch 

from pro-survival NF-κB signaling to programmed cell death caused by an expansion of the 

polyQ stretch in Huntingtin can explain the increased vulnerability to stress-induced cell 

death. Interestingly, overexpression of Parkin as well as HOIP, which is the catalytic subunit 

of the LUBAC, can restore defective NF-κB signaling and thereby rescue from mitochondrial 

fragmentation and increased JNK activation induced by polyQ aggregates. Moreover, 

knockdown of the two proteins Parkin or HOIP results in increased toxicity of Huntingtin 

aggregates.  

Having demonstrated that the NF-κB pathway is not only affected in PD, but also in HD, it is 

tempting to speculate that also other neurodegenerative diseases might share an impairment in 

this common pathway. 



 

II. Zusammenfassung 

 

Vor kurzem konnten wir zeigen, dass die E3 Ubiquitin-Ligase Parkin, die mit der Parkinson-

Krankheit (Parkinson’s Disease, PD) in Verbindung steht, den NF-κB-Signalweg durch eine 

erhöhte Aktivierung des linearen Ubiquitin-Assemblierungskomplexes (Linear Ubiquitin 

Assembly Complex, LUBAC) beeinflusst. Die Huntington-Krankheit (Huntington’s Disease, 

HD) weist gemeinsame pathologische Eigenschaften wie mitochondriale Veränderungen und 

vermehrten neuronalen Zelltod mit der Parkinson-Krankheit auf. Deshalb waren wir an der 

Frage interessiert, ob ähnliche Signalwege bei HD und PD betroffen sind. Um diese 

Hypothese zu addressieren, untersuchten wir, ob und wie Huntingtin-Aggregate den 

überlebensfördernden NF-κB-Signalweg beeinflussen können. 

Wir entdeckten mittels HD Zellkulturmodellen, dass Huntingtin-Aggregate Komponenten des 

LUBAC binden und abfangen, wodurch sie einen der ersten Schritte des TNF-α-induzierten 

NF-κB-Wegs blockieren. Folglich tritt eine verminderte nukleäre Translokation des 

Transkriptionsfaktors NF-κB auf, die zu reduzierter Expression von NF-κB-responsiven 

Zielgenen führt. OPA1, ein wichtiger Regulator von mitochondrialer Fusion, gehört zur 

Gruppe der NF-κB-responsiven Zielgene, was die erhöhte mitochondriale Fragmentierung bei 

HD erklären kann. Wegen der Beeinträchtigung des überlebensfördernden NF-κB-Signalwegs 

sind zwei andere TNF-α-induzierte apoptosefördernde Signalwege, die normalerweise durch 

einen kleinen Teil der NF-κB Zielgene unterdrückt werden, in Zellen mit Huntingtin-

Aggregaten hochreguliert: der JNK-Signalweg und die Caspase-Kaskade. 

Dieses Umschalten von überlebensfördernder NF-κB Wirkung hin zu programmiertem 

Zelltod aufgrund des expandierten polyQ-Strangs in Huntingtin kann die gesteigerte Stress-

induzierte Zelltod-Rate erklären. Interessanterweise kann Überexpression von Parkin oder 

HOIP, der katalytischen Untereinheit des LUBAC, eine gestörte NF-κB-Aktivierung 

wiederherstellen und dadurch vor mitochondrialer Fragmentierung und erhöhter JNK-

Aktivierung schützen, die durch polyQ-Aggregate induziert werden. Zudem führt eine 

verminderte Expression von Parkin oder HOIP zu einer erhöhten Toxizität der Huntingtin-

Aggregate. 

Nachdem gezeigt wurde, dass der NF-κB Signalweg nicht nur bei PD, sondern auch bei HD 

betroffen ist, könnte man mutmaßen, dass sogar noch weitere neurodegenerative 

Erkrankungen eine Beeinträchtung dieses Stoffwechselwegs gemeinsam haben könnten. 
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1. Introduction 

1.1 Parkin 

1.1.1 Parkinson’s Disease 

a) History 

Parkinson’s Disease (PD) is the most common movement disorder and after Alzheimer’s 

Disease the second most common neurodegenerative disease [Winklhofer and Haass, 2010]. 

It is estimated that PD affects four to six million people worldwide and 1.2 million people in 

Europe [http://www.epda.eu.com]. The disease was first documented by the English physician 

James Parkinson, who described the symptomes of idiopathic PD in his famous “Essay on the 

Shaking Palsy” in 1817. Another notable contribution to the understanding of the disease was 

made by the French neurologist Jean-Martin Charcot with his studies differentiating between 

rigidity, weakness and bradykinesia. He also pleaded for renaming the disease in honor of 

James Parkinson [Lees 2007]. In 1912, Friedrich Heinrich (Frederic) Lewy discovered 

microscopic particles in affected PD brains, which were later named “Lewy bodies” [Holdorff 

2002]. It took almost a whole century, until α-Synuclein was identified as the main 

component of the Lewy bodies in 1997 [Spillantini 1997, Schulz-Schaeffer 2010]. 

 

    

Fig. 1: (left) James Parkinson (1755 - 1824) and (right) Frederic Lewy (1885 - 1950). 

[http://www.biography.com/people/james-parkinson-21226395; http://lewybody.org/science] 

 

b) Etiology 

So far, little is known about the etiology of Parkinson’s Disease. A number of environmental 

factors have been associated with an increased risk of sporadic PD including insecticides, 

pesticides, such as rotenone or paraquat, and herbicides, such as Agent Orange [de Lau and 

Breteler 2006]. Besides that, the most important risk factor for the development and 

progression of PD seems to be aging. With increasing age, the prevalence of PD increases as 
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well and this age-specific prevalence is remarkably similar in the majority of countries in 

Europe [Hindle 2010]. The mean age of onset is typically around 60 years, although in 5 to 

10% of cases, classified as young onset, patients are affected between the age of 20 and 50 

[Samii 2004]. The process of aging is thought to be a stochastic combination of predictable 

and random effects that lead to the accumulation of unrepaired cellular damage, weakened 

cellular repair and compensatory mechanisms. Aging is associated with mitochondrial 

dysfunction, increased free radical production and oxidative stress, which may lead to 

genomic instability and DNA mutations, with shortening of telomeres promoting reduced 

survival [Kirkwood 2003, Migliore and Coppedè 2009]. Another characteristic feature is the 

age-related decline in proteasomal activity leading to a lack in the degradation of damaged or 

ubiquitinated proteins and an increase in abnormal deposition of cellular brain proteins [Tai 

and Schuman 2008]. All of these age-related changes are relevant to the etiology and 

pathogenesis of PD, although it is not clear yet, if PD reflects a failure of the normal cellular 

compensatory mechanisms in vulnerable brain regions, and if this vulnerability is increased 

by aging [Hindle 2010].  

Furthermore, several genetic mutations could be identified, which are responsible for 

monogenic familial PD forms (up to 10% of all PD cases). Genetic studies revealed mutations 

in 13 genes, which are mostly associated with rare forms of PD with early onset. However, 

only six of these genes have conclusively been linked to PD so far (Table 1).  

 

gene gene product inheritance putative function 

PARK1/4 α-Synuclein (SNCA) AD 
vesicle trafficking/  

synaptic plasticity 

PARK2 Parkin AR E3 ubiquitin ligase 

PARK6 PINK1 AR mitochondrial kinase 

PARK7 DJ-1 AR cytosolic redox-sensitive protein 

PARK8 LRRK2 AD MAPKK kinase 

PARK9 ATP13A2 AR lysosomal ATPase 
 

Table 1: Only genes with compelling evidence for association with PD are listed. 

AD = autosomal dominant, AR = autosomal recessive 

 

c) Genetics 

Through the identification of genes responsible for the rare familial forms of PD, our 

understanding of the molecular mechanisms underlying the pathogenesis of PD was 

tremendously improved.  
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PARK1/PARK4 (α-Synuclein) 

In 1997, the first discovered risk gene for familial PD was PARK1/PARK4 [Polymeropoulos 

1997]. The corresponding protein is localized in the cytoplasm of neurons, where it is closely 

associated with synaptic vesicles [Maroteaux 1988]. As mentioned in the previous chapter, α-

Synuclein is a major component of Lewy bodies, which provides an interesting link between 

sporadic and familial PD. Pathogenic mutations in this protein lead to increased self-assembly 

and fibrillization [Greenbaum 2005]. Moreover, genomic multiplication of the α-Synuclein 

locus enhances insoluble α-Synuclein aggregation. An ongoing debate discusses which 

species of the protein implicates the highest toxicity for the cell - oligomers, protofibrils or 

fibrils.  

 

PARK2 (Parkin) 

Parkin was the first recessive gene which was found to be connected to PD. Mutations in this 

E3 ubiquitin ligase were described in 1998 by Kitada and co-workers, who identified it as the 

cause of recessive PD with juvenile onset in a Japanese family [Kitada 1998]. Mutations in 

PARK2 account for the majority of autosomal recessive Parkinsonism. Interestingly, patients 

with Parkin mutations tend to develop symptoms at a much younger age, such as below 30 

years [Mata 2004]. A more detailed description of Parkin will be given in chapter 1.1.2.  

 

PARK6 (PINK1) 

PTEN-induced putative kinase 1 (PINK1) is a ubiquitously expressed protein, which is highly 

conserved between species. It contains an N-terminal mitochondrial targeting sequence, a 

transmembrane domain and a C-terminal serine-threonine kinase domain. Mutations in the 

PINK1 gene are the second most common cause of autosomal recessive Parkinsonism. 

Pathogenic PINK1 mutations cluster in the kinase domain leading to an effect on either kinase 

activity or protein stability supporting a loss-of-function mechanism. 

In contrast to Drosophila PINK1 mutants showing reduced life span, male sterility and 

apoptotic flight muscle degeneration, PINK1 knockout (KO) mice do not display an overt 

phenotype. Impaired mitochondrial respiration in the striatum of PINK1 KO mice and 

decreased complex I activity were observed in PINK1-deficient mice and flies pointing to a 

bioenergetic deficit when PINK1 is missing [Pilsl and Winklhofer 2011]. 

First evidence for a genetic interaction of PINK1 and Parkin came from studies in fruit flies, 

which indicated that Parkin-deficient flies show a similar phenotype as PINK1-deficient flies. 
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Importantly, the PINK1 mutant phenotype could be restored by overexpression of Parkin, but 

not vice versa. These observations suggest a function of PINK1 and Parkin in the same 

pathway with Parkin acting dowstream of PINK1.  

 

 

 

Fig. 2: Concept of mitophagy. Mitochondrial depolarization leads to stabilization of PINK1 on the surface of 

mitochondria. PINK1 then recruits and activates Parkin, which in turn fosters ubiquitination and remodeling of 

the outer mitochondrial membrane to attract the autophagic machinery. These damaged mitochondria become 

engulfed by autophagosomes fusing with lysosomes resulting in formation of autophagolysosomes [Winklhofer 

2014]. 

 

Additional evidence for such a linear pathway was provided by cell-culture studies 

demonstrating that Parkin promotes autophagic degradation of depolarized mitochondria in a 
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PINK1-dependent manner. When HeLa cells overexpressing Parkin are treated with carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP) or carbonyl cyanide 4-trifluoromethoxy-

phenylhydrazone (FCCP), mitochondrial depolarization leads to stabilization of PINK1 at the 

outer mitochondrial membrane. Then, PINK1 recruits and activates Parkin at the outer 

mitochondrial membrane resulting in Parkin-dependent ubiquitination and remodeling of the 

outer mitochondrial membrane, which attracts the autophagic machinery. Next, 

autophagosomes engulf damaged mitochondria and finally fuse with lysosomes to form 

autophagolysosomes. This process is termed mitophagy (Fig. 2). At present, it is a great 

challenge to transfer this artificial setting with harsh treatment of cells to more physiological 

conditions in order to examine the relevance of the mitophagy concept to the observed 

phenotypes from PINK1- or Parkin-deficient animal models and, what is even more 

important, to pathogenic mechanisms in patients [Winklhofer 2014]. 

 

PARK7 (DJ-1) 

In 2003, Bonifati et al. discovered a large deletion and missense mutation in the DJ-1 gene in 

Italian and Dutch PD patients, leading to the identification of the DJ-1 gene as a causative 

gene for familial PD with recessive inheritance [Bonifati 2003]. Compared to Parkin and 

PINK1, the number of mutations in the DJ-1 gene is relatively small. Diverse functions 

including transcriptional regulation, antioxidative stress reaction as well as chaperone, 

protease, and mitochondrial regulation have been described for DJ-1. Its activity is regulated 

by the oxidative status, especially that of cysteine 106 [Ariga 2013]. 

 

PARK8 (LRKK2) 

Discovered in 2004, Leucine-rich repeat kinase 2 (LRRK2)/Dardarin encodes a protein 

consisting of multiple domains: an N-terminal ankyrin domain, a leucin-rich repeat, a 

GTPase/ROC (ras of complex proteins) domain, a COR (C-terminal of ROC domain) a kinase 

and a WD40 domain [Taylor 2006]. In 2008, LRKK2 was also linked to Crohn’s disease by 

genome-wide association studies (GWAS) [Barrett 2008]. 

Among the six clearly PD-associated gene loci, only α-Synuclein and LRRK2 mutations 

cause autosomal dominant forms of the disease. So far, LRRK2 has been found to be the most 

frequent cause of late-onset PD. The mutations are found in 5-6 % of patients with familial 

PD and have also been implicated in sporadic PD [Ho 2014]. 
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Currently, LRRK2 is considered to be a potential therapeutic target for the treatment of PD. 

Several pathogenic mutations were found and the majority of them is located in the dual 

catalytic domains of LRRK2. The most common mutation G2019S results in increased kinase 

activity of LRRK2 and therefore, much effort is put into the development of potent and 

specific inhibitors of LRRK2 kinase activity [Dzamko 2013].  

 

PARK9 (ATP13A2) 

Mutations in the ATP13A2 (PARK9) gene lead to the Kufor-Rakeb syndrome (KRS), a 

severe early-onset autosomal recessive form of PD with dementia [Ramirez 2006]. ATP13A2 

is a lysosomal transmembrane protein belonging to the P5-type ATPase family and seems to 

be a critical regulator of lysosomal functions. As overexpression of ATP13A2 suppresses α-

Synuclein toxicity, two genetic risk factors of PD are connected, highlighting the central role 

of ATP13A2 in PD. Loss of ATP13A2 function was also linked to neuronal ceroid 

lipofuscinosis (NCL), a lysosomal storage disorder, implicating an impairment of the 

lysosomal pathway in KRS and PD [van Veen 2014]. 

 

d) Symptoms 

The primary symptoms of Parkinson's Disease are all related to voluntary and involuntary 

motor function. Moreover, they usually start on one side of the body. Being mild at first, the 

symptoms will progress over time. Studies have shown that by the time when primary 

symptoms appear, individuals with PD have already lost 60 to 80% of the dopaminergic 

neurons.  The four primary motor symptoms include tremor, rigidity, bradykinesia or 

hypokinesia and postural instability (Fig. 3), while additional non-motor symptoms like sleep 

abnormalities, depression and cognitive impairment occur [Lang and Lonzano 1998, Pilsl and 

Winklhofer 2011]. 



Introduction 

7 

 

 

Fig. 3: Primary motor symptoms of Parkinson’s Disease: 

Tremor (involuntary, rhythmic shaking of a limb, head, or 

entire body) – The most recognised symptom of Parkinson's 

Disease, tremor often starts with an occasional tremor in one 

finger that eventually spreads to the whole arm. The tremor 

may affect only one part or side of the body, especially in the 

early stages of the disease. Not everyone with Parkinson's 

Disease has tremor. 

Rigidity (stiffness or inflexibility of the limbs or joints) – The 

muscle rigidity experienced with Parkinson's Disease often 

begins in the legs and neck. Rigidity affects most people. The 

muscles become tense and contracted, and some people may 

feel pain or stiffness. 

Bradykinesia or akinesia (slowness of movement or absence 

of movement) – Bradykinesia is one of the classic symptoms of 

Parkinson's Disease. After a number of years, people suffering 

from PD may experience akinesia, or "freezing," and not be 

able to move at all. 

Postural Instability (impaired balance and coordination) – A 

person with postural instability may have a stooped position, 

with head bowed and shoulders drooped.  

 

[https://bootheels33.wordpress.com/2013/04/03/when-p-was-for-parkinsons-disease; 

http://www.medtronic.co.uk/your-health/parkinsons-disease] 

 

e) Diagnosis  

Making an accurate diagnosis of PD is difficult, as there is no standard diagnostic test 

available. Because PD symptoms occur due to decreased dopamine levels, one possible test is 

to administer the drug Levodopa (L-Dopa/L-3,4-dihydroxyphenylalanine) to the patient and 

monitor the response to the treatment. Significant improvement with this medication often 

confirms the diagnosis of PD.  

However, there are additional imaging techniques to analyze brain activity, which can be 

applied to support diagnostics. At present, either PET (Positron Emission Tomography) or 

DaT (Dopamine Transporter) scans help to distinguish between the different diseases linked 

to Parkinsonian symptoms. First, the patient receives an injection of an imaging agent, which 

can be visualized by a special detector. Then, the scan measures either glucose metabolism or 

dopamine transporter activity in the brain. If the measured activity is reduced in the patient 

compared to a control brain and can be elevated by a drug like L-Dopa, the diagnosis of PD is 

likely (Fig. 4) [www.parkinson.org].  

Moreover, there is evidence from numerous studies that impairment of olfaction is a 

characteristic and early feature of PD. Deficits in the sense of smell may precede clinical 

motor symptoms by years and can be used to assess the risk for developing PD in otherwise 

asymptomatic individuals. It was observed that over 95% of patients with PD displayed 
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significant olfactory loss. Thus, olfactory dysfunction should be considered as a reliable 

diagnostic marker of the disease [Haehner 2009]. 

 

Fig. 4: PET scans from a healthy and a PD-affected individual. Top panel: normal scan, middle panel: 

abnormalities in the putamen (red uptake in the figure) in a patient with Parkinson’s Disease, lower panel: a 

return to an almost normal scan following the introduction of levodopa. [parkinson.org]. 

 

f) Therapy 

Currently, no treatment is available to cure Parkinson’s Disease. However, there are drugs to 

treat both motor and non-motor symptoms associated with PD. Most of the therapeutic 

approaches focus on the compensation of the dopaminergic deficit, thereby alleviating the 

cardinal symptoms of the disease. Soon after the discovery of the nigral dopamine loss 

occurring in PD, treatment with the dopamine precursor Levodopa revolutionized the therapy. 

For the last five decades, Levodopa has been seen as the gold-standard to treat the motor 

symptoms. In addition to L-Dopa, an inhibitor of the peripheral Dopamine decarboxylase 

(DDC), like Carbidopa, is administered (Fig. 5). This blocks peripheral conversion of L-Dopa 

and allows a high amount of applied L-Dopa to reach and pass the blood-brain barrier. Within 

the central nervous system, L-Dopa is then converted into dopamine in neurons. Besides this 

precursor molecule, dopaminergic agonists can be utilized to stimulate dopamine receptors or 

the dopamine catabolism can be blocked by monoamine oxidase B (MAO-B) inhibitors. 

MAO-B inhibitors intervene at the conversion of dopamine to 3,4-Dihydroxyphenylacetic 

acid (DOPAC) and are mostly used to treat mild symptoms of PD. Another possibility is to 

use catechol-O-methyl-transferase (COMT) inhibitors which reduce the methylation of L-

Dopa and dopamine and thereby increase the bioavailability of these substances. One critical 
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aspect regarding the application of the mentioned drugs is the appearance of severe non-motor 

side effects like psychiatric disorders and fatigue. Severe side effects also occur when 

anticholinergic drugs are administered for some tremor cases. 

 

Fig. 5: Dopamine metabolism.   
The neurotransmitter Dopamine originates from the amino acid tyrosine and the precursor L-Dopa. Dopamine is 

either processed by the enzymes MAO/COMT via oxidation/methylation or by the Dopamine-B-hydroxylase. 

[http://www.smartdraw.com/examples/view/neurology+of+dopamine+metabolism] 

 

For treatment of non-motor symptoms, Clozapine is the most efficient antipsychotic agent in 

PD patients, but due to the possible development of agranulocytosis, Quetiapine is the first-

line antipsychotic drug being used. 

Besides medication, another option for some PD patients is deep brain stimulation (DBS). 

Medical surgery and introduction of microelectrodes in specific regions of the basal ganglia 

can only be offered to few patients who fulfill several criteria [Smith 2012]. 

Unfortunately, the goal to provide neuroprotective interventions, which would be able to 

modify the progression of Parkinson's Disease, has not been met over the last decades, despite 

potentially encouraging results with compounds, such as Rasagiline [Rascol 2011]. 

 

g) Neuropathology 

One characteristic feature of PD is the preferential loss of dopaminergic neurons in the 

substantia nigra pars compacta (SNc) projecting to the striatum. The hormone and 

neurotransmitter dopamine, which belongs to the family of catecholamines, is involved in the 
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regulation of voluntary movements. As a consequence, high dopamine levels lead to high 

levels of motor activity, while low levels of dopamine lead to slowed movement. 

Cell death of dopaminergic neurons, which convert dopamine to a dark-pigmented product 

called Neuromelanin, leads to depigmentation of the substantia nigra. This phenomenon can 

be investigated in post mortem brains of PD patients. PD symptoms occur when 

approximately 80% of striatal dopamine are depleted [Winklhofer 2007]. 

It should be noted that the neurodegenerative process is not limited to dopaminergic neurons. 

In addition, noradrenergic, serotonergic and cholinergic systems, the cerebral cortex, brain 

stem, spinal cord and the peripheral autonomic nervous system are also affected [Pilsl and 

Winklhofer 2011]. 

A further pathologic hallmark of PD is the presence of Lewy bodies and Lewy neurites 

containing aggregated α-Synuclein as a main component [Spillantini 1997]. On the one hand, 

Lewy bodies could implicate a protective function via sequestration of toxic misfolded protein 

species. On the other hand, they could provide a reservoir for toxic protein species. 

Importantly, Lewy bodies are not present in all Parkinsonian syndromes, leading to the 

conclusion that PD comprises diverse disease forms [Pilsl and Winklhofer 2011]. 

 

1.1.2 Features of the E3 ubiquitin ligase Parkin 

a) Modular structure of Parkin 

The Parkin gene encodes a protein consisting of 465 amino acids and a molecular weight of 

52 kDa [Kitada 1998]. The gene shares a bidirectional promoter with the Parkin-coregulated 

gene (PACRG), which is transcribed on the opposite strand in the opposite direction 

[Lockhart 2004]. Similarly to PINK1, Parkin is ubiquitously expressed and high expression 

levels were found in the brain, heart, skeletal muscle and testis. Surprisingly, Parkin shows 

only low expression in the substantia nigra pars compacta [Kitada 1998]. Within cells, 

Parkin is localized in the cytoplasm [Shimura 1999].  

The modular structure of Parkin contains several structural elements: a ubiqutin-like (UBL) 

domain at the N-terminus and a RING-between-RING (RBR) domain at the C-terminus (Fig. 

6). This RBR domain consists of two different RING (Really Interesting New Gene) domains 

- RING1 and RING2 - and an IBR (in-between RING) domain. An additional, atypical RING 

domain - RING0 - was identified lying N-terminal to the RBR domain. As Parkin contains an 

RBR motif, it belongs to the RBR class of E3 ubiquitin ligases [Wenzel and Klevit 2012]. 
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Fig. 6: Domain architecture of Parkin. UBL: ubiquitin-like, RING: really interesting new gene, IBR: in-

between RING, REP: repressor element of Parkin. Numbers indicate amino acid residues [Winklhofer 2014]. 

 

Altogether, the structure of Parkin is formed in a relatively compact manner with two 

occluded regions: the active site cysteine in RING2 (C431) and the E2-binding site in RING1 

are not accessible, indicating an autoinhibited state (Fig. 7). The phemomenon of 

autoinhibition was also reported for other E3 ubiquitin ligases, such as HHARI (Human 

Homolog of Drosophila Ariadne-1), HOIP (HOIL-1-interacting protein) and HOIL-1L (haem-

oxidized IRP2 ubiquitin ligase 1), which points to autoinhibition as a general feature of RBR 

ligases. However, the inhibitory mechanisms differ between these RBR ligases [Winklhofer 

2014]. 

 

Fig. 7: Schematic structure of Parkin. The compact structure of Parkin represents an autoinhibited state with 

an inaccessible E2-binding site in RING1 and occluded C431 in RING2 [Winklhofer 2014]. 

 

b) RBR E3 ligase mechanism 

Ubiquitination is carried out by a trio of enzymes: an E1 ubiquitin-activating enzyme, an E2 

ubiquitin-conjugating enzyme and an E3 ubiquitin ligase. In humans, the number of E3 

ligases with over 600 greatly exceeds the number of E2 enzymes with less than 40, which 

underscores their role in substrate selection [Wenzel and Klevit 2012]. 
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E3 ligases are divided into three groups: RING, HECT (homologous with E6-associated 

protein C-terminus) and RBR (RING-between-RING) ligases. Parkin belongs to the RBR 

class of E3 ubiquitin ligases (Fig. 8), which consists of 14 complex multidomain enzymes 

[Smit and Sixma 2014]. Other well-known candidates of RBR E3 ubiquitin ligases are HOIP 

and HOIL-1L, which are components of the multiprotein complex LUBAC [Spratt 2014]. 

 

 

Fig. 8: Domain organisation of the RBR E3 ligases Parkin, HHARI, TRIAD1, HOIP and HOIL-1L. UBL: 

ubiquitin-like, acidic, Gly: glycine-rich, ZF: zinc finger, UBA: ubiquitin-associated, R1: Ring 1, IBR : in-

between RING, R2: Ring 2. Only HHARI, TRIAD1 and HOIP contain an Ariadne or linear ubiquitin 

determining domain (LDD) [Smit 2014]. 

 

The RBR E3 ubiquitin ligases use a hybrid mechanism combining features of RING and 

HECT ligases to transfer ubiquitin to substrate proteins (Fig. 9). RING ligases are known to 

facilitate the direct transfer of ubiquitin from a ubiquitin-charged E2 to the substrate, whereas 

HECT ligases form a thioester intermediate with ubiquitin via a catalytic cysteine residue. In 

a following step, the ubiquitin moiety is transferred to the lysine residue of a target protein by 

generation of an isopeptide bond. The RING/HECT hybrid mechanism of RBR E3 ligases 

comprises the binding of an E2 ubiquitin-conjugating enzyme via RING1 as seen in RING 

ligases and the transfer of the ubiquitin from E2 to a catalytic cysteine residue in RING2 

forming a transient thioester intermediate like described for HECT ligases [Wenzel and Klevit 

2012, Winklhofer 2014]. 

This hybrid mechanism of RBR ligases was first identified in HHARI [Wenzel 2011]. In 

contrast to Parkin and HOIP, HHARI contains an additional Ariadne domain at its C-

terminus, which blocks access to the catalytic cysteine residue in the RBR domain and is 

thereby responsible for an intramolecular autoinhibition mechanism. 

Showing structural and functional similarities to Parkin, HHARI is suggested as a possible 

candidate to compensate for the loss of Parkin function in other neurons than dopaminergic 
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ones. Furthermore, endogenous HHARI was found in Lewy bodies of both PD and diffuse 

Lewy body disorder patients [Parelkar 2012]. 

 

 

Fig. 9: Mechanism of ubiquitin transfer mediated by RING, HECT or RBR ligases. Three enzymes 

cooperate to accomplish ubiquitination: E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and 

E3 ubiquitin ligase. RBR ligases combine features of the RING and HECT ligases by binding of an E2 ubiquitin-

conjugating enzyme via RING1 like seen in RING ligases and the transfer of the ubiquitin from E2 to a catalytic 

cysteine residue in RING2 forming a transient thioester intermediate like reported for HECT ligases. 

[Winklhofer 2014] 
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c) Pathogenic mutations 

So far, more than 120 different pathogenic Parkin mutations have been described, which 

account for most cases of autosomal-recessive Parkinsonism. Various types of mutations were 

identified: missense mutations, nonsense mutations and exonic rearrangements like 

duplications or deletions [www.molgen.ua.ac.be/PDmutDB]. 

Although the mutations are distributed over almost the whole gene, clusters of mutations can 

be found in the functional domains pointing to the significance of these regions. A loss-of-

function mechanism was suggested for pathogenic Parkin mutations by genetic and 

biochemical studies, whereby the mutations are thought to impact either intramolecular or 

interactions with E2, substrate or adaptor proteins. Parkin folding and stability or catalytic 

activity could also be affected by the mutations [Winklhofer 2014].  

 

d) Parkin-deficient animal models 

Parkin-deficient mice do not develop nigrostriatal neurodegeneration, but evidence for 

mitochondrial alterations was described in several reports. Parkin knock-out (KO) mice show 

decreased levels of proteins which are involved in mitochondrial function or oxidative stress 

response in the ventral midbrain [Dawson and Dawson 2010, Palacino 2004]. Parkin KO mice 

do not recapitulate the human phenotype of PD, which could be explained by compensatory 

mechanisms through other E3 ubiquitin ligases. 

In contrast, Parkin- as well as PINK1-deficient flies show a clear phenotype with reduced life 

span, male infertility, locomotor deficits and flight muscle degeneration [Pilsl and Winklhofer 

2011]. Intriguingly, genetic interaction studies revealed that Parkin was able to rescue the 

PINK1 loss-of-function phenotype but not vice versa. This observation suggests a position of 

PINK1 upstream of Parkin within the same pathway [Clark 2006, Park 2006, Yang 2006, 

Exner 2007]. 

 

e) Function and putative substrates of Parkin 

With its characteristic RBR domain, Parkin is assigned to the RBR E3 ubiquitin ligases and 

supposed to play a crucial role in ubiquitination. Ubiquitination is a post-translational 

modification that determines the fate of many proteins in the cell, as this process is involved 

in cell-cycle progression, transcriptional regulation, DNA repair, signal transduction and 

protein turnover by the proteasome [Wenzel and Klevit 2012, Spratt 2014]. 
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Ubiquitin molecules are linked via their C-terminal glycine residue to the ε-amino group of a 

lysine residue belonging to the target protein or another ubiquitin molecule. Different modes 

of ubiquitination exist to target the proteins for different purposes. Monoubiquitination 

(attachment of a single ubiquitin molecule), multi- (attachment of several single ubiquitin 

molecules) and polyubiquitination (attachment of ubiquitin chains) can be discriminated (Fig. 

10) [Sadowski 2012].  

 

 

Fig. 10: Proteins may be ubiquitinated in diverse ways: mono-, mulit-, poly- and linear ubiquitination as 

well as combinations thereof.  [http://sysimg.ifrec.osaka-u.ac.jp/udb/about.html] 

 

Furthermore, ubiquitin has seven lysine residues, opening the possibility of forming seven 

different linkage types, namely K6, K11, K27, K29, K33, K48 and K63. Besides, a donor 

ubiquitin can also be attached to an acceptor ubiquitin via the amino terminal methionine 

(M1) resulting in the formation of M1- or linear linkages, making a total of eight different 

inter-ubiquitin linkage types [Zinngrebe 2014]. Each linkage type fulfills a different 

physiological function (Fig. 11): K48-linkage targets proteins for proteasomal degradation, 

while K63-linkage is required for cell signaling in DNA damage response, endocytosis and 

kinase activation and preferentially involved in the lysosomal pathway. The roles of the other 

atypical linkag types are not yet fully understood. K11-linkage, for instance, was connected to 

proteasomal degradation. Linear ubiquitination is catalyzed by a complex called linear 

ubiquitin chain assembly complex (LUBAC) and associated with NF-κB signaling [Sadowski 

2012, Zinngrebe 2014]. 
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Fig. 11: Different modes of ubiquitination lead to different substrate fates. 

[http://cshperspectives.cshlp.org/content/2/12/a006734/F5.expansion.html] 

 

Although Parkin is known to be an E3 ubiquitin ligase, the intriguing question of key 

substrates is still unanswered. The long list of putative substrates includes α-Synuclein, Pael-

R and CDCrel-1, all of which accumulate in patients with heritable Parkinson’s Disease. They 

point to a role for Parkin in the clearance of misfolded or aggregated proteins. But none of 

them could so far serve as an explanation for the selective death of dopaminergic neurons. 

Mitofusin-1 and -2, being regulators of mitochondrial dynamics, are two other reported 

substrates for ubiquitination by Parkin [Wenzel and Klevit 2012]. 

In 2011, PARIS (Parkin-interacting substrate) was identified as a new Parkin substrate. It was 

reported that Parkin regulates the expression levels of PARIS through the ubiquitin-

proteasome system. PARIS in turn binds to the promoter of the mitochondrial regulator PGC-

1α (peroxisome proliferator-activated receptor gamma-coactivator 1-alpha) to inhibit its 

expression. Consequently, degradation of PARIS by Parkin leads to increased gene 

expression of PGC-1α and mitochondrial biogenesis, whereas loss of Parkin leads to 

accumulation of PARIS and thereby repressed PGC-1α expression [Shin 2011, Winklhofer 

2014]. 

 

f) Parkin as tumor suppressor gene 

Studies from PD resesarch demonstrate an antiapoptotic effect of Parkin under stress 

conditions [Henn 2007, Bouman 2011]. In contrast, cancer studies suggest a role of Parkin as 

a tumor suppressor gene (TSG) [Cesari 2003]. During the last few years, Parkin has been 
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linked to cancer, as mutations in this gene were found in several different cancer types. One 

study underpinning the role of Parkin as a TSG demonstrated that Parkin mutations in cancer 

cells decrease its E3 ubiquitin ligase activity. The authors argued that the ability of Parkin to 

ubiquitinate and degrade Cyclin E was compromised in cancer cells leading to mitotic 

instability of the cells [Veeriah 2010]. 

A general link between neurodegenerative diseases and cancer was assumed because some of 

the genes involved in neurodegenerative disorders play a central role in cell cycle control, 

DNA repair and kinase signaling. Furthermore, genetic studies have shown a reduced 

incidence of some cancer types, such as lung cancer, but an increased incidence of other 

cancer types, such as breast and skin cancer, in people suffering from Parkinson’s Disease 

[Plun-Favreau 2010, Olsen 2005]. As NF-κB and the signaling pathways that are involved in 

its activation are also important for tumor development, the NF-κB network might represent a 

an additional link between neurodegeneration and cancer [Karin 2002]. Furthermore, the 

cytokine TNF-α, which can induce activation of the NF-κB pathway, is known to be a multi-

functional regulator of diverse pathways, which can induce pro-apoptotic as well as anti-

apoptotic cell responses [Park and Bowers 2010]. 

 

g) Neuroprotective potential of Parkin 

The neuroprotective activity of Parkin has been observed in several cellular and animal 

models, which proved that Parkin protects from cell death in stress paradigms like 

mitochondrial, ER (endoplasmatic reticulum) or proteotoxic stress. Parkin is transcriptionally 

upregulated when cells are exposed to various stress conditions, indicating its neuroprotective 

function. In addition, Parkin deficiency leads to an increased vulnerability under stress 

conditions [Henn 2007, Bouman 2010, Müller-Rischart 2013]. 

In principal, there are at least three hypotheses how Parkin could mediate its neuroprotective 

activity: I) promoting the removal of damaged mitochondria via mitophagy; II) increasing 

proteasomal degradation of toxic substrates; and III) modulating nondegradative ubiquitin 

signaling within cell death or cell viability pathways. These alternatives require either the 

interaction of Parkin and PINK1 to induce autophagic clearance of depolarized mitochondria, 

ubiquitination and proteasomal degradation of Parkin substrates or the influence of a general 

prosurvival pathway like NF-κB and a proapoptotic pathway like caspase signaling 

[Winklhofer 2014]. 
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1.1.3 Parkin, PINK1 and mitochondria 

Mitochondria are extremely dynamic organelles whose morphology is determined by fusion 

and fission events. Mitochondrial fusion is controled by Mitofusin 1 and 2 (Mfn1 and 2) 

located in the outer mitochondrial membrane and OPA1 (Optic atrophy 1) located in the inner 

mitochondrial membrane. OPA1 is regulated by alternative splicing and proteolysis, which 

produce several long and short OPA1 isoforms. The cytosolic protein Drp1 (Dynamin-related 

protein 1) and the mitochondrial-anchored protein Fis1 (Mitochondrial fission 1) are GTPases 

and regulate fission events.  

Well-balanced mitochondrial dynamics lead to tubular mitochondrial network, whereas 

increased fission produces small rod-like or spherical mitochondria and increased fusion 

generates elongated, strongly interconnected mitochondria. An imbalance of the fusion and 

fission machinery implicates severe effects on mitochondrial bioenergetics, transport and 

clearance [Pilsl and Winklhofer 2011]. 

In the last decade, PD-associated genes have been linked to effects on mitochondrial 

dynamics. Transient silencing of PINK1 as well as Parkin expression in cell culture models 

results in increased mitochondrial fragmentation and decreased mitochondrial ATP 

production. This phenotype can be rescued by overexpression of the fusion proteins Mfn2 or 

OPA1. Moreover, Parkin and PINK1 protect cells from mitochondrial fragmentation caused 

by overexpression of the fission factor Drp1 [Lutz 2009]. These findings provide a link of the 

PD-associated genes Parkin and PINK1 with factors controling mitochondrial fusion and 

fission events. 

Parkin and PINK1 also have a different effect on mitochondria by assisting in their 

autophagic clearance. Upon treatment of cells with CCCP and disruption of the mitochondrial 

membrane potential, Parkin and PINK1 collaborate to attract the autophagosomal machinery 

for clearance of damaged mitochondria (mitophagy). However, the role of mitophagy has to 

be addressed in future in vivo models to prove its relevance for disease progression. 

The detailed mechanism how Parkin executes its protective effects on mitochondria is still not 

fully understood. A convincing concept is the context- and tissue-specificity of Parkin 

function: Under mild stress conditions, Parkin could prevent mitochondrial fragmentation. 

When the stress level exceeds a certain limit and severe damage of mitochondria has taken 

place, Parkin could promote the elimination of these defective organelles via mitophagy 

[Winklhofer 2014]. 
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1.2 Huntingtin 

1.2.1 Huntington’s Disease 

a) History 

Huntington’s Disease (HD) is a rare neurodegenerative disease with a prevalence of 5-7 in 

100,000 in Europe [Huntington Study Group 2011]. It is the most common genetic cause of 

abnormal involuntary writhing movements called chorea. The term “chorea” is derived from 

the Greek word for “dance”, as the movements of the feet or hands are comparable to dancing 

movements. George Huntington was the first one to provide a thorough description of this 

disease in 1872 (Fig. 12). He examined the combined medical history of several generations 

of a family exhibiting similar symptoms and realized that their conditions must be linked 

[Huntington 1872]. In 1993, the disease-associated gene Huntingtin was identified [The 

Huntington’s Disease Collaborative Research Group, 1993]. 

 

 

 

Fig. 12: George Huntington (1850 - 1916) and the first description of Huntington’s Disease „On Chorea“. 

[http://en.wikipedia.org/wiki/File:On_Chorea_with_photo.jpg] 

 

b) Etiology 

HD is caused by a single genetic factor: an autosomal dominant mutation in the Huntingtin 

gene. An abnormal expansion of a CAG triplet repeat (>36) in this gene leads to the formation 

of a mutant protein with an expanded polyglutamine (polyQ) tract (Fig. 13) [Rubinsztein 

1996]. Due to this elongation of the polyQ stretch, the mutant protein is prone for 

aggregation. Interestingly, there is an inverse correlation between the length of the polyQ tract 
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and the age of onset for HD symptoms, while the length of the polyQ stretch directly 

correlates with the severity of the symptoms [Andrew 1993]. In contrast to other 

neurodegenerative diseases, polyQ diseases are always inherited and do not occur 

sporadically.  

   

Fig. 13: Comparison of normal and mutant Huntingtin protein. Individuals expressing a normal Huntingtin 

protein with a repeat length of 10-36 (left) are not affected by Huntington's disease, whereas individuals 

expressing a mutated form of the protein with repeat lengths larger than 36 (right) are affected. 

[https://embryology.med.unsw.edu.au/embryology/index.php?title=File:Healthy_Huntingtin_protein_and_Hunti

ngtin_gene_mutated_by_Huntington%27s_Disease.jpg] 

 

c) Symptoms 

The first symptoms of HD are uncontrollable movements (choreic movements). When the 

disorder progresses, more severe physical symptoms like rigidity, writhing motions or 

abnormal posturing appear. Non-motor symptoms such as cognitive impairment, memory 

deficits and depression accompany the progression of the disease. 

 

d) Diagnosis  

Medical diagnosis of the onset of HD is often made by following the appearance of physical 

symptoms specific to the disease. Futhermore, genetic testing can also be used to confirm a 

physical diagnosis if there is no family history of HD. The genetic test for HD consists of a 

blood test determining the numbers of CAG repeats in each of the Huntingtin alleles. 

 

e) Therapy 

Similar to PD, there is no cure for HD, but there are treatments available to reduce the 

severity of some of its symptoms. In 2008, Tetrabenazine was approved in the US for 

treatment of chorea in Huntington's disease [Hayden 2009]. Additionally, rigidity can be 

treated with antiparkinsonian drugs. 

 

f) Neuropathology 

In parallel to PD, HD is also characterized by the loss of specific neurons. However, the most 

affected region in HD is the striatum (with 50-60% loss in the Nucleus caudatus and the 
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Putamen in advanced disease, Fig. 14). Besides, cerebellar atrophy is most frequently 

reported in cases with a juvenile onset of the disease [Rubinsztein and Carmichael 2003]. The 

loss of striatal neurons leads to decreased levels of the neurotransmitter GABA (γ-

aminobutyric acid), which serves as an inhibitory signal and influences Dopamine levels. A 

drop in GABA levels causes an imbalance in the regulation of movements. 

 

 

Fig. 14: Huntington’s Disease is characterized by a specific loss of neurons in the striatum (Nucleus 

caudatus and Putamen). The left panel shows a normal brain with clearly visible Nucleus caudatus and 

Putamen, whereas the right panel shows one hemisphere of a HD patient brain with mild atrophy of the Nucleus 

caudatus. [http://tidsskriftet.no/article/1730507; Thomas Arzberger]  

 

An additional pathological feature of HD is the presence of protein aggregates. In post 

mortem brains, neuronal intranuclear inclusions (NIIs) are found, which contain an N-

terminal fragment of Huntingtin [DiFiglia 1997]. Besides, extranuclear aggregates like 

neuropil aggregates and cytoplasmic aggregates were also observed [Gutekunst 1999, 

Hackam 1999]. 

 

1.2.2 Features of Huntingtin 

a) Modular structure of Huntingtin 

The Huntingtin (Htt) gene contains 67 Exons with a polyQ region located in Exon1 [Ambrose 

1994]. In healthy individuals, the polyQ region consists of up to 36 repeats. Additionally, 

Huntingtin features a high number of HEAT repeats (Huntington, Elongation Factor 3, 

PR65/A, TOR) and a putative nuclear export signal (NES) near the C-terminus (Fig. 15). The 
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multiple cleavage sites for caspases and other proteases lead to the formation of several N-

terminal fragments [Ross and Tabrizi 2011]. 

 

 

Fig. 15: Domain structure of Huntingtin. Human Huntingtin predominantly consists of HEAT repeats. A 

polyglutamine stretch (polyQ) is located at the N-terminus and a nuclear export signal (NES) in proximity to the 

C-terminus. Furthermore, proteolytic cleavage by caspases and other proteases forms N-terminal fragments 

[Ross and Tabrizi 2011]. 

 

b) Huntingtin-deficient and -overexpressing animal models 

As Huntingtin KO mice die already at the embryonic stage before day 8.5 [Duyao 1995], this 

points to a putative role of Htt in embryonic development. Besides that, mice with less than 

50% of wild-type (WT) Huntingtin display defects in neurogenesis and formation of the 

cortex and striatum [White 1997]. 

The best characterized mouse model for HD is the R6/2 mouse line, which expresses an N-

terminal fragment of Huntingtin with an extended polyQ stretch and shows motoric 

impairment and reduction of brain size and weight after two months. After 12 months, these 

transgenic mice develop first signs of neurodegeneration [Mangiarini 1996, Turmaine 2000]. 

Both intranuclear inclusions as well as neuropil aggregates were observed in this mouse line 

[Davies 1997, Li 1999]. 

Moreover, HD mouse models expressing the full-length Htt gene carried by either a yeast or a 

bacterial artificial chromosome (YAC or BAC) exist. However, these full-length transgenic 

models show relatively normal survival rates and a gradual development of the disease over 

many months in contrast to N-terminal transgenic models with shortended life spans and early 

development of the disease. 

Another group of HD models consists of knock-in (KI) models, which are generated by 

homologous recombination using mouse embryonic stem cells. Similar to HD patients, these 

KI mice are heterozygous for one wild-type Huntingtin allele and one CAG-expanded allele. 

In summary, the KI models display milder initial behavioral abnormalities than transgenic 

lines and normal life spans [CHDI Foundation, Jackson Laboratory 2014]. 
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c) Putative function of wild-type and malfunction of mutant Huntingtin 

To date, the cellular function of Huntingtin is still unclear. Whether neuronal degeneration in 

HD is due to the loss of normal Htt function or due to a toxic gain of function, or both, is not 

fully understood [Roze 2011]. 

Wild-type Htt is a ubiquitously expressed protein present in most cells of the organism [Sharp 

1995]. It is mostly located in the cytoplasm and was reported to shuttle into the nucleus. 

Multiple interaction partners like HAP1 (Huntingtin-associated protein 1), HIP-1 (Huntingtin-

interacting protein 1) or PGC-1α were described for Huntingtin [Li 1995, Kalchman 1997, 

Ross and Tabrizi 2011]. Several transcription factors such as CREB (cAMP response 

element-binding protein) were also reported as binding partners of Htt. The Htt protein is 

considered to be a scaffold protein, which orchestrates intracellular trafficking, signaling 

pathways and transcriptional activity being requirements for neuronal homeostasis [Roze 

2011]. 

Due to the extended polyQ stretch, mutant Huntingtin shows increased formation of β-sheets 

and aggregates. One possibility is that these aggregates sequester either wild-type Htt or 

interaction partners and thereby influence the fate of neuronal cells. Another important aspect 

of Huntingtin aggregates is their effect on the ubiquitin-proteasome system (UPS). On the one 

hand, UPS components were found in polyQ aggregates of HD transgenic mice and HD post 

mortem brains suggesting a sequestration of these components. On the other hand, polyQ 

containing aggregates cannot be cleared by the UPS machinery and may block the proteasome 

resulting in insufficient degradation of other proteins [Davies 2007, Roze 2011]. 

 

d) Neuroprotective potential of Huntingtin 

Interestingly, Huntingtin exhibits a neuroprotective potential like Parkin. Rigamonti and co-

workers showed that WT Htt protects CNS cells from a variety of apoptotic stimuli 

[Rigamonti 2000]. In vivo experiments with overexpression of WT Htt confirmed a 

significant protection against NMDAR (N-methyl-D-aspartate receptor)-mediated apoptotic 

neurodegeneration. Therefore, Huntingtin may regulate the balance between neuronal survival 

and death following acute stress conditions and the levels of Huntingtin may modulate 

neuronal sensitivity to excitotoxic neurodegeneration [Leavitt 2006]. 

A couple of mechanisms were proposed how this neuroprotective potential might be carried 

out. First, WT Htt was reported to interfere with the activity of the apoptosome and thereby 

inhibiting neuronal cell death. Cells overexpressing WT Htt showed continuous cytochrome c 
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release, but no processing of Procaspase-9 upon exposure to apoptotic stimuli [Rigamonti 

2001]. 

Second, the production of the neurotrophic factor BDNF (brain derived neurotrophic factor) 

was found to be regulated by WT, but not mutant Huntingtin. BDNF is involved in synaptic 

glutamate release and excitotoxicity [Zuccato 2001, Zuccato 2003]. Moreover, WT Htt 

promotes the axonal transport of BDNF from cortical neurons and the release of BDNF into 

the striatum [Gauthier 2004].  

Third, data focusing on the proapoptotic molecule HIP-1 suggest that sequestration of HIP-1 

underlies the antiapoptotic effect of Htt. Normally, HIP-1 is associated with Huntingtin, 

whereas an expansion of the polyglutamine stretch in Huntingtin leads to reduced binding of 

HIP-1. Free HIP-1 can then bind to the protein HIPPI (Hip-1 protein interactor) and together 

they form a heterodimer. In the following step, this heterodimer is thought to recruit 

Procaspase-8 and thereby induce apoptosis, which might explain the death of neuronal cells in 

HD [Gervais 2002]. 

 

1.2.3 Huntingtin and mitochondria 

Mitochondrial dysfunction and energy deficits have been found in multiple analyses of post 

mortem HD patient brains as well as mouse and cell culture models. These analyses comprise 

altered mitochondrial morphology (Fig. 16), Ca
2+

 buffering capacity, enzymatic activity 

(complex II/III/IV), membrane potential, ATP levels and transport processes [Damiano 2010, 

Reddy and Shirendeb U.P. 2012, Costa and Scorrano 2012]. 

 

Mitochondria play an essential role during apoptosis, as these organelles sense cell damage 

and release cytochrome c accompanied by mitochondrial fragmentation and christae 

remodeling [Danial and Korsmeyer 2004, Frank 2001]. Furthermore, neurons rely mainly on 

ATP production of mitochondria, as they cannot switch to glycolysis, which makes them 

extremely susceptible to mitochondrial dysfunction. Due to their extensive physiological 

functions including a fluctuating plasma membrane potential, release and uptake of 

neurotransmitters as well as trafficking of organelles, neurons also exhibit especially high-

energy demands [Mitchell 1999, Pickrell 2011]. A large number of neurodegenerative 

disorders share similar mitochondrial alterations [Bossy-Wetzel 2003], implying the 

importance of mitochondrial integrity to the development of HD.  
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Fig. 16: HD lymphoblasts and striatal precursors show mitochondrial fragmentation (left) and cristae 

derangement (right).  Left: Lymphoblasts from HD patients carrying extendended polyQ tracts of 48, 70 or 

45+47 reveal fragmentation and clustering of mitochondria compared to wt controls. Right: Electron 

micrographs of Q111 striatal neurons from Htt knockin mice show altered mitochondrial cristae structure 

compared to wt neurons. [Costa 2010] 

 

Specific interactions of mitochondrial proteins or regulators with Htt have been described in 

the last decade (Fig. 17). Several investigations imply a link between transcriptional 

dysregulation and defects in energy metabolism demonstrated in patient’s brain tissue and HD 

transgenic mice. PGC-1α is a master regulator of mitochondrial biogenesis and oxidative 

phosphorylation. First evidence for a role of PGC-1α in the pathogenesis of HD came from 

observations of PGC-1α null mice revealing selective striatal lesions. Moreover, PGC-1α 

levels and activity are reduced in different models of HD. In neuronal cells, a direct link 

between CREB phosphorylation and transcriptional regulation of the PGC-1α promoter was 

established. For instance, stimulation of extracellular NMDA receptors in HD neuronal cells 

with impaired CREB/ PGC-1α signaling increases cell vulnerability [Lin 2004, Cui 2006, 

Okamoto 2009]. The transcriptional coactivator PGC-1α displays an interesting overlap 

between HD and PD, as both Htt as well as Parkin have been connected to this mitochondrial 

regulator in the past years. 

In addition to PGC-1α, Drp1 was identified as an interactor of mutant Htt. This interaction 

between the fission-promoting factor and the polyQ protein stimulates the GTPase activity of 

Drp1. A dominant-negative Drp1 mutant with reduced GTPase activity rescues mitochondrial 
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fragmentation, transport defects and neuronal cell death caused by mutant Htt [Costa 2010, 

Song 2011].  

Recently, the group around Robert Friedlander discovered an interaction between mutant Htt 

and TIM23 (translocase of the inner membrane, subunit 23). Mitochondrial protein import 

was impaired by mutant Htt in a presymptomatic HD stage and the import defect and 

neuronal cell death could be rescued by overexpression of TIM23 complex subunits [Yano 

2014]. 

 

Fig. 17: Functional alterations in HD mitochondria.  The cartoon depicts the functional alterations occurring 

at the level of mitochondrial function, opening of the permeability transition pore (PTP) and morphology in the 

context of HD. Mutated Huntingtin can act at the transcriptional level through inhibiton of PGC-1α, directly at 

the mitochondrial level, by increasing the opening probability of the PTP and affecting mitochondrial respiratory 

chain. Moreover, mutant Htt can also influence DRP1 causing fragmentation and remodeling of the 

mitochondrial cristae. [Costa and Scorrano 2012] 

 

1.2.4 Huntingtin and Parkin 

With Parkin being involved in ubiquitination and degradation of substrate proteins and Htt 

showing high resistance to degradation processes, the question arised, if Parkin deficiency 

would deteriorate the HD phenotype in mouse models. To address this question in a first 

attempt, Parkin null mice were crossed with an HD mouse model (R6/1) and the results 

indicated a slightly more severe HD phenotype, when Parkin expression was partially 

suppressed [Rubio 2009]. It had already been observed before that Parkin is able to facilitate 

the elimination of expanded polyglutamine proteins. Experiments with a polyQ Ataxin-3 

fragment suggested a role for Parkin in the preservation of proteasomal function [Tsai 2003]. 

These findings hint at a possible protective role of Parkin in HD. 
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1.3 TNF-α stimulated pathways 

In 1984, Aggarwal and coworkers isolated and identified the two cytotoxic factors TNF-α and 

β (TNF: tumor necrosis factor) in macrophages and lymphocytes. Until now, 19 members of 

the TNF superfamily and 29 TNF receptors (TNF-R) have been identified. The TNF 

superfamily members participate in inflammation, apoptosis, proliferation, invasion, 

angiogenesis, metastasis and morphogenesis with apparent roles in different diseases. 

Furthermore, these molecules represent attractive drug targets and TNF blockers are used for 

treatment of, amongst others, rheumatoid arthritis and osteoporosis. 

The disproportionate number of TNF ligands and receptors implies that some of the ligands 

interact with more than one receptor. For instance, TNF-α was reported to bind to two 

different receptors: TNF-R1 and TNF-R2. While TNF-R1 containing an intracellular death 

domain (DD) is expressed universally, the expression of TNF-R2 is only found in cells of the 

immune system, endothelial cells and nerve cells [Aggarwal 2003, Aggarwal2012].  

Being a type-II transmembrane protein, TNF-α is processed by proteolytic cleavage through 

TACE (TNF-α cleaving enzyme) resulting in a soluble form of TNF-α. Both exogenous 

signals including exposure to bacterial or viral proteins like LPS (lipopolysaccharide) as well 

as cell-intrinsic stimuli lead to increased TNF-α expression. The cytokine TNF-α is a multi-

functional regulator of diverse pathways, which can induce pro-apoptotic as well as anti-

apoptotic cell responses [Park and Bowers 2010]. In the following chapters, the three major 

underlying pathways of these opposing activites will be illuminated in more detail: NF-κB, 

JNK (c-Jun N-terminal kinase) and caspase signaling. 

 

1.3.1 NF-κB pathways 

Since the identification of the transcription factor NF-κB (nuclear factor κB) in 1986, 

intensive research revealed NF-κB as the central orchestrator of inflammation and immune 

responses by maintenance of prosurvival gene expression [Sen and 

Baltimore 1986]. To celebrate the tremendous progress made in 25 

years for understanding the role and regulation of NF-κB, Nature 

Immunology published a special edition with focus on NF-κB in 

2011 (Fig. 18). 

 

Fig. 18: Special edition of Nature Immunology featuring a series of specially 

commissioned review articles to mark the 25th anniversary of the discovery 

of NF-κB. [http://www.nature.com/ni/journal/v12/n8/covers/index.html] 
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The NF-κB family consists of five members: RelA (p65), RelB and c-Rel as well as the 

precursor proteins NF-κB1 (p105) and NF-κB2 (p100) being processed into p50 and p52, 

respectively. The different NF-κB transcription factors form homo- or heterodimers, which 

bind to NF-κB binding sites in gene promoters and enhancers to either induce or suppress 

transcription. A common feature of all NF-κB proteins is their Rel homology domain (RHD) 

located at the N-terminus for DNA binding, interaction with inhibitory proteins and 

dimerization [Oeckinghaus 2011, Hayden and Ghosh 2004].  

As a wide range of stimuli mediated by receptors like TNF-R, TLR(Toll-like receptor) or IL-

1R (interleukin 1 receptor) can induce NF-κB activation and dysregulation of this 

transcription factor is not only linked to inflammatory, autoimmune and metabolic diseases, 

but also cancer, NF-κB activity has to be tightly regulated by multiple elements. Therefore, 

one regulatory mechanism includes that NF-κB dimers are present in an inactive state in the 

cytoplasm by binding to IκB (inhibitor of κB) proteins [Hayden and Ghosh, 2012]. 

 

a) Canonical and noncanonical NF-κB signaling 

In general, there exist two main NF-κB-activating pathways in cells (Fig. 19). First, the more 

prominent canonical or classical pathway, which is activated via cytokine receptors like TNF-

R or IL-1R and pattern-recognition receptors like TLR, and dependent on IKKβ (IκB kinase) 

and the regulatory subunit NEMO (NF-κB essential modifier/IKKγ). This pathway mainly 

results in phosphorylation and degradation of IκB-α followed by nuclear translocation of p65-

containing dimers and activation of target gene transcription. Second, the noncanonical or 

alternative pathway, which is induced by specific TNF family members like CD40R (CD40 

receptor) or LTβR (lymphotoxin-β receptor). The noncanonical pathway depends on 

activation of IKKα and phosphorylation of p100 being associated with RelB. Processing of 

p100 by the proteasome generates a heterodimeric complex of p52 and RelB translocating to 

the nucleus. Next, down-regulation of NF-κB activation is achieved by a well-characterized 

feedback loop: newly synthesized IκB-α protein binds to nuclear NF-κB, which is exported to 

the cytosol. In both pathways, the proteasome plays an essential role. However, within the 

classical pathway it is responsible for degradation of IκB-α and in the alternative pathway for 

constitutive processing of p100 [Oeckinghaus 2011, Hayden and Ghosh 2012].  
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Fig. 19: The canonical and noncanonical pathway for activation of NF-κB. 

The canonical pathway (left) is induced by most physiological NF-κB stimuli such as TNF-R1 signaling. 

Stimulation of TNF-R1 leads to binding of TRADD (Tumor necrosis factor receptor type 1-associated death 

domain), FADD (FAS-associated death domain) and TRAF2 (TNF receptor-associated factor 2). TRAF2 

associates with RIP1 for IKK activation. In the following, IκBα is phosphorylated in an IKKβ- and NEMO-

dependent manner, which results in nuclear translocation of mostly p65-containing heterodimers and initiation of 

gene transcription. In contrast, the noncanonical pathway (right), induced by certain TNF family cytokines, such 

as CD40L and lymphotoxin-β (LT-β), involves IKKα-mediated phosphorylation of p100 associated with RelB, 

which leads to partial processing of p100 and the generation of transcriptionally active p52-RelB complexes. 

IKKα activation and phosphorylation of p100 depend on NIK, which is regulated by TRAF3, TRAF2 and 

additional ubiquitin ligases. [Oeckinghaus 2011] 
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Besides targeting of proteins for proteasomal degradation, ubiquitination also fulfills several 

tasks within the NF-κB signaling pathways. On the one hand, phosphorylation of IkB-α by the 

IKK complex is followed by rapid K48-linked ubiquitination and targeting for 26S 

proteasome mediated degradation. On the other hand, a more untypical mode of ubiquitiation 

- linear ubiquitination - was shown to be involved in activation of NEMO and the IKK 

complex. Additionally, ubiquitination can be reversed by a large family of proteins termed 

deubiquitination enzymes (DUBs). These DUBs represent an emerging focus in current 

research [Liu and Chen 2011, Harhaj and Dixit 2012]. Some other still remaining questions 

concerning the variety of NF-κB family members include what the contribution of specific 

NF-κB dimers to the physiological outcome is or which genes are regulated by which dimers.  

 

b) Parkin and NF-κB signaling 

In 2007, our research group linked the E3 ubiquitin ligase Parkin for the first time to 

increased NF-κB signaling. Blocking NF-κB activation by an IκB-α repressor or inactivation 

of IKKβ was shown to impair the neuroprotective activity of Parkin. Moreover, analysis of 

Parkin mutants revealed decreased stimulation of NF-κB-dependent transcription. Thus, this 

work connected the PD-associated protein Parkin with the NF-κB pathway playing a key role 

in inflammation and immune responses [Henn 2007]. 

A few years later, we were able to deliver a more detailed insight into the role of Parkin in 

NF-κB activation. We demonstrated that Parkin is recruited to the LUBAC under stress 

conditions, which leads to enhanced linear ubiquitination of NEMO and increased canonical 

NF-κB signaling (Fig. 20). Furthermore, the regulator of mitochondrial dynamics OPA1 could 

be identified as a new target gene, whose transcription is activated by the transcription factor 

NF-κB. These findings were confirmed in Parkin-deficient models to verify the physiological 

relevance of Parkin’s antiapoptotic and neuroprotective function [Müller-Rischart 2013]. 

Before knowing the molecular mechanism how Parkin influences NF-κB signaling, this 

pathway was already discussed as a therapeutic strategy for PD, which is characterized by 

chronic inflammation. To test the relevance of drugs targeting the NF-κB pathway, specific 

inhibitors for IKKβ or IKKγ were used, which showed that degeneration of dopamine 

producing neurons was reduced by these inhibitors in several models of PD. In short, 

targeting the NF-κB pathway might serve as a useful approach for future PD treatment [Flood 

2011]. However, it has to be considered that this fundamental transcription factor targets a 
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large number of genes and physiological responses, which might lead to unwanted side 

effects.  

 

Fig. 20: Parkin confers stress protection via NEMO, NF-κB and OPA1.  Under cellular stress conditions, 

Parkin can increase the activity of LUBAC to mediate linear ubiquitination of NEMO, which in turn activates 

the IkB kinase complex. This results in activation of NF-κB, which regulates transcription of NF-κB -responsive 

genes. OPA1 as an NF-kB target links Parkin, linear ubiquitination, and NF-κB signaling to mitochondrial 

integrity. [Müller-Rischart 2013] 

 

c) Huntingtin and NF-κB signaling 

In 2010, two publications reported different effects of mutant Htt on the transcription factor 

NF-κB. In the first paper, the Finnish researchers around Korhonen found that extended 

polyQ repeats induced ER stress, which triggers the unfolded protein response (UPR) via the 

inositol-requiring enzyme-1 (IRE1). Furthermore, decreased p65 levels together with 

increased JNK signaling, cell death and calpain activation were observed in cells expressing 

mutant Huntingtin. Calpain was suggested to promote p65 degradation [Reijonen 2010]. In 

summary, the findings demonstrated a link between mutant Huntingtin and decreased NF-κB 

signaling, although the underlying mechanism and the contribution of calpain were not 

illustrated in a satisfying profoundness. 

The second publication focused on the function of wild-type Huntingtin in neuronal cells. 

Beside its neuroprotective role, the function of wild-type Htt is still poorly understood, as 

already mentioned before. Using biochemical and imaging approaches, wild-type Htt was 

found to foster the transport of activated NF-κB from dendritic spines into the nucleus, where 

the transcription factor activates gene transcription. Next, the group of Kennedy analyzed if 
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the transport of NF-κB was impaired by polyQ expansions, which was the case. To 

recapitulate the results, an inhibitory effect of mutant Huntingtin on NF-κB signaling was 

demonstrated [Marcora and Kennedy 2010]. 

Recently, a contradicting publication argued that expression of mutant Htt influences the NF-

κB pathway by an interaction with IKKγ. This interaction led to enhanced degradation of IκB 

and enhanced nuclear translocation of p65, which was supported by transcriptional 

upregulation of intracellular immune factors. Application of glucan-encapsulated small 

interfering RNA particles to lower endogenous Huntingtin levels in human HD macrophages 

decreased cytokine production and induced transcriptional alterations [Träger 2014]. Similar 

findings were reported on analyses of HD cell culture models and R6/2 HD mice: expression 

of mutant Htt exon1 resulted in activation of the NF-κB pathway via direct interaction with 

IKKγ [Khoshnan 2004, Hsiao 2013]. 

These publications on Htt and NF-κB provided first evidence suggesting a connection of HD 

and this major transcription factor of the immune response, although they do not agree in the 

manner how mutant Htt is affecting the NF-κB pathway (increase or decrease). The activation 

status of NF-κB might be one possible explanation why neurons are especially vulnerable to 

the presence of mutant Htt in comparison to non-neuronal cells: NF-κB is mostly kept in an 

inactive state in non-neuronal cells, whereas it is constitutively activated in neuronal cells by 

basal glutamergic transmission [Meffert 2003]. 

 

d) Other neurodegenerative diseases and NF-κB signaling 

In addition to HD and PD, also other neurodegenerative diseases were connected to NF-κB 

dysfunction. Researchers concentrating on amyotrophic lateral sclerosis (ALS), which is 

characterized by TDP-43 (TAR DNA-binding protein 43) inclusions, identified TDP-43 as a 

co-activator of the NF-κB subunit p65. Using an inhibitor of NF-κB activity, ALS disease 

symptoms could be deminished in TDP-43 transgenic mice. Moreover, enhanced NF-κB 

activation in familial and sporadic ALS patients was confirmed [Swarup 2011]. A subsequent 

work discovered that only NF-κB inhibition in microglia, but not in astrocytes was able to 

rescue motor neurons from cell death and extend survival of ALS mice [Frakes 2014]. 

Moreover, Progranulin (PGRN) being involved in frontotemporal lobar degeneration (FTLD) 

was found to attenuate NF-κB signaling and thereby execute its protective role [Hwang 2013, 

Zhao 2013]. 
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Very recently, a mechanistic explanation was published deciphering the possible role of NF-

κB in Alzheimer’s Disease (AD). Besides the identification of the complement protein C3 as 

a target of the transcription factor NF-κB, exposure to Aβ (Amyloid beta) was shown to 

activate NF-κB and increase the astroglial release of C3. As brain tissues from AD patients 

and APP (Amyloid precursor protein) transgenic mice also exhibit high C3 levels, the 

application of C3 receptor agonists might be therapeutically beneficial [Lian 2015]. 

The growing number of neurodegenerative diseases linked to NF-κB signaling implies that 

this pathway could display a unifying feature of the different facets of neurodegeneration. 

 

1.3.2 JNK pathway 

JNK signaling also termed SAPK (stress-activated protein kinase) pathway is another 

pathway, which is stimulated by cytokines like TNF-α. JNKs are master protein kinases that 

regulate many physiological processes including inflammatory responses, morphogenesis, cell 

proliferation, differentiation, survival and death (Fig. 21) [Bubici and Papa 2014]. These 

various cellular responses can even be antagonistic demonstrated by data showing that JNK 

activation can on the one hand lead to apoptosis and on the other hand promote proliferation. 

Important factors to determine the direction of the response comprise cell type, context of 

other regulatory factors as well as intensity and duration of the signal. For instance, transient 

JNK activation was supposed to promote cell survival, while prolonged JNK activation is 

thought to mediate apoptosis [Leppä and Bohmann 1999, Wicovsky 2007, Davies and 

Tournier 2012]. 

So far, three different JNKs have been identified: JNK1, 2 and 3. JNK1 and 2 are ubiquitously 

expressed, whereas JNK3 was mainly found in brain, testis and heart tissue. JNK belongs to 

the MAPK (mitogen-activated protein kinase) family with the two other members ERK 

(extracellular-signal-regulated kinases) and p38. The activation of JNK is achieved by dual 

phosphorylation executed by MKKs (MAPK kinase/MAPKK), which in turn are also 

activated by phosphorylation through MAPKKKs. MKK4 and MKK7 were discovered as 

activators of JNK, which were suggested to work synergistically to phosphorylate JNK 

[Davies and Tournier 2012].  
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Fig. 21: Schematic representation of JNK signaling. The JNK signaling cascade consists of a three-

component module: upstream, MAP3Ks couple signals from the cell surface to intracellular protein effectors. 

MAP3Ks phosphorylate and activate components of the MAP2K module, such as MKK4 and MKK7. These two 

kinases in turn phosphorylate and stimulate the activity of different JNK isoforms belonging to the MAPK 

module.Upon its activation, each JNK protein itself can phosphorylate specific substrates to target different 

cellular responses. [Bubici 2014] 

 

A major target of the JNK signaling pathway is the activation of the transcription factor AP-1 

(Activator protein-1). The dimeric complex AP-1 consists of subunits from the Jun, Fos or 

ATF families and its activation is achieved by phosphorylation. JNK obtained its name due to 

its ability of phosphorylating c-Jun at two sites within its N-terminal transactivation domain 

[Liu and Lin 2005]. C-Jun can form homo- or heterodimers with Fos or ATF proteins [Vogt 

2001]. Upon activation by phosphorylation, JNK translocates from the cytosol to the nucleus 

in order to phosphorylate and activate the nuclear protein c-Jun (Fig. 22). Phosphorylation 

enables c-Jun to bind to DNA and initiate target gene transcription [Nadruz 2004]. 

In addition to c-Jun, JNK can phosphorylate transcription factors like c-Fos or ATF. All of 

these transcription factors regulate the expression of several stress-responsive genes. 

Furthermore, JNK is not only able to mediate its effects by influencing gene transcription, but 
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also by direct phosphorylation of pro- and anti-apoptotic proteins like Bim or Bcl-2 [Weston 

and Davis 2002]. 

 

Fig. 22: Schematic model of acute JNK and c-Jun activation induced by various stimuli including TNF-α 

or pressure overload in the heart. Upon activation of JNK, phosphorylated JNK translocates to the nucleus and 

activates c-Jun by phosphorylation. Activated c-Jun contributes to the dimeric transcription factor AP-1 and 

results in gene transcription. [Nadruz 2004] 

 

Increased levels of JNK activation in brain homogenates of patients with different tauopathies 

provide evidence that the JNK pathway plays a critical role in the pathogenesis of various 

neurological disorders [Cui 2007]. 

It becomes also more and more apparent that persistent activation of JNKs is involved in 

cancer development and progression. Therefore, JNKs represent attractive targets for 

therapeutic intervention. However, a deeper understanding of the molecular mechanisms 

determining a pro- or anti-apoptotic outcome and the crosstalk with other pathways has to be 

gained, before new drugs can be developed into successful therapies [Bubici and Papa 2014, 

Davies and Tournier 2012]. 

 

1.3.3 Caspase pathways 

a) Apoptosis and caspases 

The TNF receptor belongs to the family of death receptors (DR) and can also initiate an 

apoptotic pathway besides NF-κB and JNK signaling. Apoptosis or programmed cell death 

(PCD) consists of a well-regulated process including activation of an enzyme cascade 
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resulting in cell death. PCD can occur as apoptosis (type I), autophagy (type II) or necrosis 

(type III) [Ouyang 2012]. 

Apoptosis includes two major pathways: the extrinsic or death receptor pathway and the 

intrinsic or mitochondrial pathway. These two pathways, mediated by different death stimuli, 

were found to influence each other and to converge on the same execution reaction [Elmore 

2007]. The central components of the apoptotic response are conserved enzymes termed 

caspases (cysteine proteases cleaving after an aspartate residue), which irreversibly commit a 

cell to die. Two categories of caspases are involved in the apoptotic process: initiator caspases 

including Caspase-2, -8, -9 and -10 versus effector caspases including Caspases-3, -6 and -7. 

To protect the cell from constant apoptotic signaling, caspases are present as catalytically 

inactive zymogens and have to undergo proteolytic activation when apoptosis is initiated 

[Riedl and Shi 2004]. 

 

b) Extrinsic and intrinsic apoptotic signaling 

The intrinsic apoptotic pathway is triggered by stress-inducing stimuli like DNA damage or 

oncogene activation. Stress-induced apoptosis results in formation of pores in the outer 

mitochondrial membrane, which is followed by the release of proteins such as cytochrome c, 

SMAC (second mitochondria-derived activator of caspase)/ DIABLO (direct inhibitor of 

apoptosis-binding protein with low pI) from the intermembrane space of mitochondria into 

the cytoplasm (Fig. 23). Mitochondrial cytochrome c release is regulated by anti-apoptotic 

(Bcl-2, Bcl-xL) and pro-apoptotic (Bax, Bak, tBid) Bcl-2 family members and activates 

Apaf1 (apoptotic protease-activating factor 1) in the cytoplasm allowing formation of the 

apoptosome, which mediates activation of the initiator Caspase-9. Finally, activation of 

Caspase-9 triggers a caspase cascade. 

Within the extrinsic pathway, death receptors like TNF-R or Fas containing an extracellular 

region and a cytoplasmic death domain (DD) bind to homotrimeric ligands like TNF-α or 

FasL. This leads to binding of FADD and Procaspase-8 forming the death-inducing signaling 

complex (DISC). This complex drives the auto-catalytic activation of Procaspase-8. Upon 

activation of Caspase-8, the execution phase of apoptosis is triggered [Riedl and Shi 2004]. 

The caspase cascade or execution phase, which unifies both the intrinsic and extrinsic 

pathway, consists of the activation of effector caspases (mainly Caspase-3 and -7), which 

cleave important cellular substrates like PARP (Poly ADP-ribose polymerase) resulting in 

biochemical and morphological changes characteristic for the apoptotic phenotype.  
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The protein Bid (BH3 interacting-domain death agonist), which is converted by Caspase-8 to 

tBid (truncated Bid), additionally connects the extrinsic to the intrinsic pathway. Interaction 

of tBid with Bax, a Bcl-2 family protein, results in cytochrome c release [Elmore 2007, 

MacFarlane and Williams 2004]. 

 

Fig. 23: The intrinsic and extrinsic pathway. The intrinsic pathway (left) is activated by stress-inducing 

stimuli resulting in mitochondrial release of proteins, such as cytochrome c. Released cytochrome c binds to 

apoptotic protease-activating factor 1 (Apaf1), which promotes formation of the apoptosome complex and 

activation of Caspase-9. The extrinsic pathway (right) is triggered by activation of death receptors such as the 

TNF receptor and results in rapid activation of Caspase-8. Both the intrinsic and extrinsic pathway share the last 

part, where the activated initiator Caspases-8 or -9 activate the effector Caspases-3, -6 and -7. These effector 

caspases are responsible for apoptosis of the cell. [MacFarlane and Williams 2004]  

 

One important regulatory mechanism of programmed cell death is the presence of IAPs 

(inhibitors of apoptosis proteins). XIAP, c-IAP, Livin and Survivin are some members, which 

belong to this protein family. So far, the best characterized one is XIAP (X-chromosome-

linked inhibitor of apoptosis), which binds Caspase-3 and -7, thereby inhibiting their 

activation and preventing apoptosis [Scott 2005]. For instance, binding of DIABLO, which is 

released from mitochondria upon induction of apoptosis, blocks XIAP activity. How the 

different IAPs inhibit apoptosis mechanistically at the molecular level is to date not 

completely understood.  
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1.3.4 Crosstalk between NF-κB, JNK and caspase pathways 

For an organism, the balancing act between cell survival and cell death is a key function. The 

elimination of dysfunctional cells like cancer cells is crucial for surviving, but too excessive 

cell death results in diseases, such as neurodegenerative diseases [Papa 2004]. One 

mechanism to regulate this decision is the crosstalk between the NF-κB, the JNK and the 

caspase signaling pathways.  

An example to illustrate the crosstalk between prosurvival NF-κB and proapoptotic caspase 

signaling can be given by RIP1 (receptor-interacting protein 1). RIPs are kinases important 

for sensing cellular stress and controlling cell death. RIP1 features a death domain, which 

mediates binding to other DD-containing receptors like the TNF receptor. It was observed that 

NF-κB activation by RIP1 can on the one hand lead to induction of antiapoptotic genes, 

whereas RIP1 overexpression can on the other hand lead to apoptosis. These seemingly 

opposing effects can be elegantly explained by formation of two distinct TNF-induced 

signaling complexes (Fig. 24): Complex I, including TRADD, RIP1 and TRAF2 promotes 

rapid NF-κB activation and gene expression of antiapoptotic factors, whereas complex II, 

composed of TRADD, RIP1, TRAF2 and additionally FADD as well as caspase-8 and -10, 

has a proapoptotic effect. In contrast to the membrane-bound complex I, complex II is located 

in the cytosol. Upon TNF-α stimulation, complex I is formed at the TNF receptor and triggers 

NF-κB activation. Within one hour, the components of complex I (TRADD, RIP1, TRAF2) 

have already been released from the receptor and bind to FADD and caspases in the cytosol 

for activation of apoptosis. This highlights the transformation of complex I to complex II as a 

central point in the decision of whether to live or to die. It remains unclear, how this 

dissociation of the complex I factors is regulated. Complex II migth only be able to trigger 

apoptosis when NF-κB is defective or inhibited [Oeckinghaus 2011]. 

Within the last decade, the Yuan lab discovered a novel regulated necrotic cell death pathway 

termed necroptosis, which also requires RIP1 and was added to the already known pathways 

via complex I and II [Degterev 2008, Degterev 2005]. Hence, complex II can exist in two 

forms: complex IIa (former complex II) and complex IIb (the newly discovered necroptotic 

complex). Complex IIb is characterized by the two additional members RIP3 and MLKL 

(mixed lineage kinase domain-like). Furthermore, necroptosis is suppressed by Caspase-

8/FADD-mediated apoptosis [Zhou and Yuan 2014]. 
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Fig. 24: TNF-R1-mediated pathways of cell survival, apoptosis and necroptosis.  Stimulation of the TNF 

receptor leads to the formation of complex I consisting of TRADD, TRAF2, RIP1, and cIAP1 located at the 

cellular membrane. Polyubiquitination of RIP1 by cIAP1, fosters the recruitment of the IKK complex activating 

the NF-κB survival pathway. In the absence of cIAP1 or cFLIP, a switch takes place and RIP1, FADD and 

Caspase-8 form the cytosolic complex IIa to activate the caspase cascade and induce apoptosis. When Caspase-8 

activity is inhibited, RIP1 interacts with RIP3 and MLKL to form complex IIb which is involved in mediation of 

necroptosis. RIP3 and MLKL are phosphorylated in complex IIb and translocate to the plasma membrane, where 

the complex mediates membrane permeabilization. [Zhou and Yuan 2014] 

 

Recently, a connection of TNF signaling and the LUBAC was described. Several groups 

demonstrated that deficiency in one of the LUBAC components HOIP or Sharpin results in 

increased TNF-R1-mediated cell death. As HOIP is the catalytically important component of 

the LUBAC, HOIP deficiency leads to aberrant complex-IIa formation upon TNF stimulation 

mediating apoptosis instead of survival. These findings confirm the importance of the 

LUBAC to prevent cells from TNF-induced cell death by maintenance of complex I action 

[Peltzer 2014, Kumari 2014, Rickard 2014]. 

An additional interplay occurs between the NF-κB and JNK pathway. NF-κB provides its 

survival signals via inhibiton of JNK. Experiments in NF-κB-deficient cells showed an 
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impaired downregulation of JNK signaling [Papa 2009]. Moreover, analysis of these NF-κB-

deficient cells treated with JNK inhibitors or silenced for MKK7 expression revealed a rescue 

from TNF-α induced cell death, which points to a proapoptotic role of JNK. Another 

paradigm for the crosstalk of NF-κB and JNK signaling has been discussed during the 

inflammatory response. There, TNF-α activates NF-κB signaling and JNK signaling can be 

suppressed by either upregulation of Gadd45β (Growth arrest DNA damage-inducible gene 

45 β), XIAP or other factors, which hinder JNK activation. Gadd45β binds to the JNK kinase 

MKK7 and thereby blocks its activity (Fig. 25) [Papa 2004]. 

 

 

 

Fig. 25: Crosstalk between TNF-R-induced pathways. Formation of complex I leads to NF-kB activation, 

Gadd45b induction, JNK inhibition and cell survival (left). Alternatively, formation of complex II leads to 

Caspase-8/10-mediated cleavage of Bid, which then induces cytochrome c release from mitochondria and cell 

death (right). The scheme also depicts JNK activation, which promotes programmed cell death by triggering 

release of Smac/Diablo into the cytosol, inhibiting the TRAF2-IAP1 complex and consequently activating 

Caspase-8. Moreover, the Gadd45b-MKK7 interaction linking the JNK and NF-kB pathways is shown. [Papa 

2004]  
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Interestingly, a JNK substrate, which fosters TNF-α induced apoptosis, was missing for a long 

time. In 2006, it was reported that JNK activation by TNF-α leads to reduced levels of an NF-

κB-induced antiapoptotic protein termed c-FLIP inhibiting Caspase-8. The underlying 

mechanism involves phosphorylation and activation of the E3 ligase Itch by JNK; Itch in turn 

ubiquitinates c-FLIP to promote its degradation via the proteasome [Chang 2006]. In 

conclusion, several players participating in the crosstalk of NF-κB and JNK signaling could 

be identified so far underpinning the importance of this counterregulation. 

 

 

2. Aim of the thesis 

Recently, our group demonstrated that the PD-associated protein Parkin can influence the 

NF-κB pathway through increased activation of the LUBAC [Müller-Rischart 2013]. In the 

past few years, mutant Huntingtin and HD were also linked to NF-κB signaling by a few 

publications [Reijonen 2010, Marcora 2010, Hsiao 2013, Träger 2014]. However, these 

reports were inconsistent and argued either for decreased or increased activation of the NF-κB 

pathway caused by mutant Huntingtin. In addition, a common convincing molecular 

mechanism how mutant Huntingtin leads to the monitored effects on this TNF-α mediated 

pathway was missing. Furthermore, it is still unclear, how such an interference in NF-κB 

signaling or its consequences can serve as an explanation for the observed mitochondrial 

alterations and the death of neurons in HD. 

 

To minimize or clear these ambiguities, I focused on the following questions within the 

project: 

 

 Confirm and clarify effect of Huntingtin on NF-κB signaling (up- or downregulation) 

 Identify step of the NF-κB pathway, which is affected by mutant Huntingtin 

 Investigate if other TNF-mediated pathways (JNK and caspase signaling) are also 

influenced by the presence of polyQ aggregates 

 Analyze if dysregulation of pathways can explain impact of mutant Huntingtin on 

mitochondrial function and apoptotis 

 Investigate if Parkin or HOIP can rescue from altered TNF signaling caused by mutant 

Huntingtin 



Results 

42 

 

3. Results 

NF-κB is a key transcription factor that regulates expression of genes involved in cell 

survival, differentiation and proliferation [Hayden 2012]. After having discovered a 

connection between the PD-associated protein Parkin and the NF-κB signaling pathway 

[Müller-Rischart 2013], we were interested in identifying a possible link between the HD-

associated protein Huntingtin and the transcription factor NF-κB. 

For Parkin, we had observed that it can increase the activity of the LUBAC in response to 

cellular stress (Fig. 26). The LUBAC mediates linear ubiquitination of NEMO resulting in 

activation of the IKK complex. The IKK complex in turn activates NF-κB by phosphorylation 

and subsequent degradation of the inhibitory protein IκB-α, so that the NF-κB heterodimer 

(p50-p65) can translocate to the nucleus and regulate transcription of NF-κB responsive genes 

like OPA1.  

 

Fig. 26: Parkin exerts its stress protective function via activation of LUBAC, NEMO, NF-κB and OPA1.  
[Graphical abstract, Müller-Rischart 2013].  
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In the following, the knockdown of Parkin in human neuroblastoma SH-SY5Y cells serves as 

an example to demonstrate the effect of Parkin expression levels on NF-κB activation. To 

monitor NF-κB activation, we focused on one of the last steps of the NF-κB signaling 

pathway – the translocation of the activated NF-κB-heterodimer from the cytosol to the 

nucleus. For analysis via indirect immunofluorescence, we concentrated on the subunit p65. 

Upon stimulation with TNF-α, p65 is normally imported into the nucleus in control cells, 

whereas p65 is still mainly localized in the cytosol of Parkin-deficient cells (Fig. 27). This 

finding supports the functional relevance of endogenous Parkin within the NF-κB pathway. 

 

Fig. 27: Nuclear translocation of p65 is decreased in SH-SY5Y cells silenced for Parkin expression.  
Left: p65 translocation was analyzed by indirect immunofluorescence of cells transfected with control or Parkin 

siRNA and treated with TNF-α (15 min, 20 ng/ml). Right: Quantifications are based on four independent 

experiments performed in duplicate (n ≥ 2,500). Data represent the mean ± SEM. *p ≤0.05; **p ≤0.01; ***p 

≤0.001. [Müller-Rischart 2013] 

 

3.1 NF-κB signaling is impaired by mutant Huntingtin 

3.1.1 Nuclear translocation of p65 is impaired in cells with polyQ aggregates 

Having seen that nuclear translocation of p65 is a convenient tool for monitoring NF-κB 

activation, we also applied it to study a possible effect of Huntingtin aggregates on the NF-κB 

signaling pathway. SH-SY5Y cells were transfected with myc-tagged Htt-Q20 and -Q96 for 

transient expression of wild-type and mutant Huntingtin. After treatment with TNF-α to 

induce NF-κB activation, the cells were fixed and stained against p65. 

For quantification, the following three categories were defined: full p65 translocation (p65 is 

mostly localized in the nucleus and hardly detected in the cytosol), partial p65 translocation 
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(staining intensity for p65 in the nucleus is equal to the cytosol), no p65 translocation (p65 is 

mainly located in the cytosol and hardly detected in the nucleus). Full p65 translocation was 

observed in 100% of the cells expressing Q20, while only 7 % of the cells expressing Q96 

showed full translocation (Fig. 28). Approximately 50 % of transfected cells with aggregates 

showed no p65 translocation at all. 

  

Fig. 28: Nuclear translocation of p65 is decreased in SH-SY5Y cells expressing polyQ aggregates.  Left: 

p65 translocation was analyzed by indirect immunofluorescence of cells transfected with control (Q20) or 

mutant (Q96) myc-tagged Huntingtin treated with TNF-α (15 min, 20 ng/ml). Right: Quantifications are based 

on three independent experiments performed in triplicates (n ≥ 1,000). Data represent the mean ± SEM. 

Statistical analysis was first performed separately for each subgroup and the total p-value was determined by the 

mean value of the single statistical results. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 
 

   

Fig. 29: Nuclear translocation of p65 is decreased in inducible N2a cells expressing polyQ aggregates. Left: 

p65 translocation was analyzed in induced N2a-cells expressing polyQ aggregates upon TNF-α treatment (30 

min, 20 ng/ml) and induction with Muristerone A for 72 h. Induced cells express GFP. Right: Quantifications are 

based on three independent experiments performed in triplicates (n ≥ 1,000). Data represent the mean ± SEM. *p 

≤0.05; **p ≤0.01; ***p ≤0.001. 
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Similarly, inducible murine neuroblastoma N2a cells were analyzed (Fig. 29). Upon induction 

with Muristerone A, these inducible cell lines express a fusion protein consisting of N-

terminal Huntingtin fragments with different polyQ stretches (Q16, Q150) and EGFP as a 

reporter protein. 59 % of the Q16-expressing cells showed full translocation in comparison to 

none of the Q150-expressing cells. Overall, the lowered p65 translocation in the N2a cells 

confirmed the previous finding in SY-SY5Y cells that NF-κB activation is impaired in cells 

displaying cytosolic Huntingtin aggregates. 

 

3.1.2 Phosphorylation and degradation of IκB-α is reduced in cells with polyQ 

aggregates 

It was not clear from the obtained data, whether polyQ aggregates directly block NF-κB 

translocation or an impairment of the NF-κB pathway occurs already at an earlier step 

upstream of the translocation. Therefore, we next investigated the phosphorylation and 

degradation of IκB-α located upstream of NF-κB translocation. Within the NF-κB pathway, 

binding of TNF-α to its receptor leads to activation of the IKK complex, which is followed by 

phosphorylation and degradation of the inhibitory protein IκB-α. Thereby, the transcription 

factor NF-κB is liberated and can translocate to the nucleus to activate gene transcription.  

 
 

Fig. 30: N2a-Q150 cells show reduced phosphorylation (upper panel) and impaired degradation of IκB-α 

(lower panel) in comparison to control N2a-Q16 cells upon TNF-α treatment. Cells were treated with TNF-α 

for 0-240 min (upper panel) and 0-30 min (lower panel). p-IκB-α, IκB-α and GAPDH as control were analyzed 

by western blotting. 

 

Analysis of phospho- IκB-α and IκB-α protein levels after treatment of induced N2a cells with 

TNF-α revealed that both steps – phosphorylation and degradation of IκB-α – were 

significantly impaired in cells expressing Q150 (Fig. 30). Furthermore, it should be noted that 
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the IκB-α protein seems to be expressed at higher levels even in untreated cells, which points 

to the possibility that the defect in NF-κB signaling caused by polyQ aggregates occurs 

already upstream of the IκB-α degradation.  

 

3.2 Impaired NF-κB signaling occurs due to sequestration of LUBAC E3 ligases 

3.2.1 LUBAC components show increased aggregation upon co-expression of 

polyQ aggregates  

The higher basal IκB-α levels in N2a-Q150 cells supported the assumption that the 

impairment in NF-κB signaling occurs at an early step of the pathway. Knowing from recent 

studies that the PD-associated protein Parkin intervenes at one of the top steps of NF-κB 

signaling to increase activity of the LUBAC and thereby NF-κB activation, we were 

wondering if the Huntingtin aggregates might also interfere with LUBAC activation [Müller-

Rischart 2013]. One possibility would be that polyQ aggregates sequester and trap 

components of the LUBAC. To test this hypothesis, we first performed filter trap assays to 

analyze protein aggregation. For filter trap assays, the cell lysate is soaked through a cellulose 

acetate membrane (pore size 0.2 µm), which cannot be passed by large protein aggregates. 

The aggregates are trapped at the membrane and can be detected via Western Blotting. In our 

assays, HEK293T cells were transfected with myc-tagged Htt-Q20, -Q96 or in combination 

with either Parkin, HOIP or HHARI-HA as control.  

  

 

Fig. 31: Aggregation of Parkin and HOIP but not HHARI is increased when Htt-Q96 is co-expressed. 
Filter trap assays of HEK293T cells transfected with Htt-Q20 or Q96 and Parkin, HOIP or HHARI-HA.  

 

Analysis of the different Htt constructs produced only detectable aggregates, when Htt-Q96 

was expressed and not -Q20 (Fig. 31). For Parkin (both endogenous as well as 

overexpressed), aggregation was significantly increased in the presence of Q96 and a strong 
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increase of HOIP aggregation was also detected when Q96 was co-expressed (only seen for 

overexpressed HOIP). HHARI was analyzed as control protein, as it is an RBR E3 ubiquitin 

ligase similar to Parkin and HOIP that was so far not associated with the LUBAC. 

Aggregation of HHARI was not altered by Q96 co-expression. 

To confirm the co-aggregation of mutant Huntingtin with other LUBAC components, HOIL-

1L and SHARPIN were also examined. These filter trap assays showed similar findings as an 

increased signal for HOIL-1 L or SHARPIN was only detected when Q96 was co-expressed 

(Fig. 32). 

 

Fig. 32: Aggregation of HOIL-1L and SHARPIN is increased when Htt-Q96 is co-expressed. Filter trap 

assays of HEK293T cells transfected with Htt-Q20 or Q96 and HOIL-1l or SHARPIN. 

 

3.2.2 LUBAC components co-localize with polyQ aggregates 

For further clarification of the implied sequestration caused by the presence of polyQ 

aggregates, confocal microscopy was performed. In SH-SY5Y cells overexpressing mutant 

Htt, Parkin and HOIP were clearly enriched at the region of the aggregates (Fig. 33). In 

contrast, the RBR E3 ubiquitin ligase HHARI was equally distributed within the cytosol. 

Similarly to HOIP and Parkin, HOIL-1L was co-localizing with polyQ aggregates, whereas 

co-localization between SHARPIN and the aggregates was weaker and did not result in 

cytosolic depletion. These findings confirmed the data from the filter trap assays and the 

hypothesis that mutant Huntingtin sequesters LUBAC components. As a consequence, the 

LUBAC E3 ligases might not be able anymore to fulfill their functions including promotion 

of NF-κB signaling. 
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Fig. 33: Parkin, HOIP, HOIL-1L and SHARPIN co-localize with polyQ aggregates, while HHARI is still 

distributed equally within the cytosol. SH-SY5Y cells were co-transfected with the indicated constructs and 

analyzed via indirect immunofluorescence. 
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3.3 Wild-type Parkin or HOIP can rescue from impaired NF-κB signaling 

3.3.1 Impaired p65 translocation in SH-SY5Y cells can be rescued by wild-type 

Parkin or HOIP 

If sequestration of Parkin and other LUBAC components by Huntingtin aggregates is the 

reason for impaired NF-κB signaling, overexpression of these proteins should result in a 

rescue of the defective pathway. To test this hypothesis, p65 translocation was used as a first 

read-out. SH-SY5Y cells were transfected with Htt-Q96 in combination with wild-type or 

mutant Parkin or HOIP. Co-expression of both wild-type Parkin and HOIP significantly 

decreased the number of cells impaired in p65 translocation (Fig. 34). Besides this, neither the 

catalytically inactive mutants of Parkin (C431F) or HOIP (C885A, C885S) nor the pathogenic 

loss-of-function Parkin mutants (∆UBL, G430D) could revert the impairment in p65 

translocation. 

 

 

 

Fig. 34: Impaired p65 translocation in SH-SY5Y cells expressing mutant Huntingtin can be rescued by 

overexpression of wild-type but not mutant Parkin or HOIP  TNF-α treatment was conducted for 15 min 

with a concentration of 20 ng/ml. Data represent the mean ± SEM of at least three independent experiments, 

each performed in triplicate. n ≥ 1,000 induced or transfected cells were assessed per condition. Statistical 

analysis was first performed separately for each subgroup and the total p-value was determined by the mean 

value of the single statistical results. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 
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3.3.2 Impaired p65 translocation in neurons can be rescued by wild-type Parkin 

or HOIP 

Moreover, the confirmation of this observation in a more disease-relevant model was of 

interest. Therefore, nuclear p65 translocation was additionally analyzed in primary 

hippocampal neurons, which were transfected with Htt-Q20 or -Q96 in combination with 

wild-type Parkin or HOIP. Both TNF-α as well as IL-1β, another NF-κB activator, were used 

as stimulators for p65 translocation. As the translocation efficiency of p65 was slightly higher 

with IL-1β, this stimulus was applied in the rescue experiments with co-expression of Parkin 

or HOIP (Fig. 35). While approximately 84 % of the Q96-expressing neurons showed no p65 

translocation, co-expression of Parkin or HOIP reduced this number to 44 and 50 %, 

respectively. However, this rescue was only partial as no cells with full p65 translocation 

could be discovered like in cells expressing the control construct Htt-Q20. Taken together, co-

expression of wild-type Parkin or HOIP was able to rescue p65 translocation in immortalized 

cells as well as in primary neurons.  
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Fig. 35: Nuclear translocation of p65 is decreased in hippocampal neurons expressing polyQ aggregates, 

which can be increased by co-expression of wild-type Parkin or HOIP.  

Neurons were transfected with Q20 or Q96 together with Parkin or HOIP and treated with TNF-α (60 min, 20 

ng/ml) or IL-1β (30 min, 10 ng/ml) before fixation. Data represent the mean ± SEM of at least three independent 

experiments, each performed in triplicate. n ≥ 100 cells were assessed per condition. Statistical analysis was first 

performed separately for each subgroup and the total p-value was determined by the mean value of the single 

statistical results. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 
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3.3.3 Impaired NF-κB activity in inducible N2a cells can be rescued by wild-

type Parkin or HOIP 

NF-κB luciferase reporter assays with the inducible N2a cells (Q16, Q150) and stimulation 

with TNF-α provided further evidence for the rescue properties of Parkin or HOIP regarding 

defective NF-κB signaling due to the presence of mutant Huntingtin (Fig. 36). TNF-α 

treatment induced an almost 3-fold increase of NF-κB activity in Q16 control cells. In Q150 

N2a cells expressing polyQ aggregates, this increase was dramatically reduced to 1.3-fold. 

However, transient expression of wild-type Parkin or HOIP increased NF-κB-dependent 

transcription to approximately 3-fold, which was comparable to control cells. The two 

catalytically inactive mutants Parkin C431F and HOIP C885S did not significantly increase 

the levels of induction in Q150 cells. In conclusion, several experiments have so far supported 

the potential of wild-type Parkin or HOIP to overcome the NF-κB impairment caused by 

polyQ aggregates.  

 
 

Fig. 36: Wild-type Parkin or HOIP can restore impaired NF-κB activity.  Induced N2a cells (Q16 and 

Q150) were transfected with an NF-κB luciferase reporter and control, Parkin or HOIP construct. After TNF-α 

treatment for 16 h (10 ng/ml) luciferase activity in cell lysates was determined. Data represent the mean ± SEM 

of at least three independent experiments, each performed in triplicate. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 

 

3.4 Mutant Huntingtin causes mitochondrial alterations 

3.4.1 Mutant Huntingtin provokes increased mitochondrial fragmentation in 

inducible N2a cells 

As mitochondrial alterations have already been described in several models of polyQ diseases 

[Scorrano 2012], we next investigated mitochondrial morphology upon overexpression of Htt 
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aggregates. As we could not observe any severe effects of transient overexpression of Htt-

Q96 on the mitochondrial fragmentation in SH-SY5Y cells (data not shown), we moved on to 

the inducible N2a cells, which are stably overexpressing Htt with different polyQ lengths. 

Indeed, we found that Htt-Q16 control cells showed less than 5 % of cells with fragmented 

mitochondria in comparison to 56 % of the Htt-Q150 cells (Fig. 37).  

 

 
 

Fig. 37: Induced Q150-N2a cells show increased mitochondrial fragmentation.  Upper panel: The cells were 

stained with TOM20 to visualize mitochondria. Cells displaying an intact network of mitochondria were 

classified as non-fragmented, while cells with a disrupted mitochondrial network were classified as fragmented. 

Lower panel: Quantifications are based on three independent experiments performed in triplicates (n ≥ 1,000). 

Data represent the mean ± SEM. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 

 

3.4.2 Increased mitochondrial fragmentation in neurons can be rescued by 

Parkin or HOIP 

A similar increase in mitochondrial fragmentation was seen in primary hippocampal neurons 

(from 12 % in Q20- to 62 % in Q96-expressing neurons). Here, we tested if overexpression of 

wild-type Parkin or HOIP influences the mitochondrial phenotype in Q96-expressing cells. 

Strikingly, mitochondrial fragmentation observed upon Q96-overexpression was in fact 

significantly alleviated in neurons co-expressing either Parkin or HOIP (Fig. 38).  
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Fig. 38: Hippocampal neurons expressing polyQ aggregates show an impaired mitochondrial network. A 

tubular mitochondrial network can be restored by co-expression of Parkin or HOIP. The neurons were 

transfected with Q20 or Q96 together with wild-type Parkin or HOIP. Cells displaying an intact network of 

tubular mitochondria were classified as non-fragmented. When this network was disrupted and mitochondria 

appeared predominantly spherical or rod-like the cells were classified as fragmented. Quantifications are based 

on three independent experiments performed in triplicates (n ≥ 100). Data represent the mean ± SEM. *p ≤0.05; 

**p ≤0.01; ***p ≤0.001.  
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3.4.3 Cells expressing mutant Huntingtin lack OPA1 upregulation 

In our recent work focusing on Parkin and its effect on NF-κB signaling, we identified OPA1 

as an NF-κB target gene [Müller-Rischart 2013]. OPA1 is a mitochondrial GTPase and an 

essential regulator of structural and functional mitochondrial integrity. For this reason, we 

were asking the question if NF-κB-mediated expression of OPA1 is altered in cells expressing 

mutant Huntingtin, as we have already observed changes in mitochondrial morphology in 

these cells. To answer this question, we analyzed expression levels of mitochondrial proteins 

in induced N2a cells after stimulation with TNF-α.  

      

 

 

Fig. 39: Defective OPA1 protein upregulation is observed in Q150 cells upon TNF-α treatment (upper 

panel, left). OPA1 upregulation can be reconstituted by viral overexpression of wild-type Parkin in Q150 

cells (upper panel, right). Other mitochondrial marker proteins such as TIM44 are also slightly decreased in 

Q150 cells. Upon TNF-α treatment (10 ng/ml) for the indicated hours, expression levels of mitochondrial 

proteins and the loading control GAPDH were analyzed by western blotting. Lower panel: Quantification of 

mitochondrial protein levels in Q16 and Q150 cells upon TNF-α treatment. Protein levels are normalized to 

GAPDH and quantification is based on three independent experiments. Quantification of protein levels upon 

viral overexpression of Parkin was not possible due to insufficient repetitions of the experiment. Data represent 

the mean ± SEM. *p ≤0.05; **p ≤0.01; ***p ≤0.001.  
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Similar to previous observations in other cell lines such as SH-SY5Y or MEF cells [Müller-

Rischart 2013], OPA1 was upregulated in control Htt-Q16 N2a cells upon treatment with 

TNF-α, while another mitochondrial protein, TIM44, was not changed significantly in its 

expression pattern (Fig. 39). Interestingly, in cells expressing mutant Htt, this upregulation of 

OPA1 was completely abolished and even a slight decrease of OPA1 protein levels was 

observed. Furthermore, the expression level of the other mitochondrial marker protein was 

also decreased in these cells expressing aggregates suggesting a decrease in mitochondrial 

biogenesis in polyQ-expressing cells, as has been reported previously [Scorrano EMBO 

2012].  

Through viral transduction and overexpression of wild-type Parkin, OPA1 protein levels 

could be elevated in Q150 cells, which were treated with TNF-α (Fig. 39, upper panel, right).  

 

3.5 PolyQ aggregates induce increased JNK and caspase signaling 

3.5.1 Phosphorylation of c-Jun is increased in hippocampal neurons expressing 

polyQ aggregates 

TNF-α is a proinflammatory cytokine signaling both cell survival as well as cell death 

(Wajant 2003). The biological outcome of TNFα treatment is determined by the balance 

between NF-κB and Jun kinase (JNK) signaling: NF-κB promotes survival, whereas JNK can 

enhance cell death (Chang 2006). Typically, activation of NF-κB results in inhibition of 

Caspase-8 and suppresses pro-apoptotic signaling via JNK. As our data show that TNF-α 

induced pro-survival NF-κB activation is blocked in cells expressing mutant Huntingtin, the 

balance might be shifted towards pro-apoptotic signaling in these cells. To test this 

hypothesis, we focused on the phosphorylation of c-Jun, which was identified as the essential 

substrate of JNK signaling to regulate stress-induced apoptosis [Behrens 1999].  

Primary hippocampal neurons were transfected with polyQ constructs and nuclear 

phosphorylated c-Jun was analyzed by indirect immunofluorescence. Surprisingly, we found a 

significant increase in c-Jun phosphorylation in Q96-expressing neurons (67 % compared to 

8 % in Q20-expressing neurons) even without TNFα-stimulation (Fig. 40). Beyond that, co-

expression of wild-type Parkin or HOIP was able to reduce the number of phospho-c-Jun-

positive cells significantly to 29 % and 13 % when Huntingtin aggregates were present. 
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Fig. 40: Phosphorylation of c-Jun is increased in hippocampal neurons expressing Q96 aggregates. Upper 

panel: Overexpression of Htt-Q96 results in increased phosphorylation of c-Jun, while co-expression of Parkin 

or HOIP decreases the number of phospho-c-Jun positive cells. Cells displaying strong nuclear p-cJun staining 

were classified as phosphorylation-positive, while cells with no or weak staining in the nucleus were classified as 

phosphorylation-negative. Lower panel: Quantifications are based on three independent experiments performed 

in triplicates (n ≥ 100). Data represent the mean ± SEM. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 
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3.5.2 Parkin reduces increased phosphorylation of c-Jun in N2a cells with polyQ 

aggregates 

When the analog experiment was performed in inducible N2a cells (Fig. 41), similar numbers 

were obtained for cells showing phosphorylated c-Jun in control Htt-Q16 cells (17 %) versus 

mutant Htt-Q150 cells (72 %).  
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Fig. 41: In induced N2a cells with Q150 aggregates phosphorylation of c-Jun is increased. Overexpression 

of Parkin decreases the number of phospho-c-Jun positive cells. Quantifications are based on three 

independent experiments performed in triplicates (n ≥ 300). Data represent the mean ± SEM. *p ≤0.05; **p 

≤0.01; ***p ≤0.001. 

 

It should be noted that overexpression of Parkin or HOIP in these induced cells had to be 

verified by additional immunofluorescence staining of the transfected cells and visualizing 

them in a third channel (Fig. 41, lower panels, blue). Unexpectedly, only overexpression of 

Parkin could lower the level of c-Jun-phosphorylation. The failure of the HOIP rescue in this 

case might be explained by the quantitative sequestration of most HOIP molecules through 

the aggregates at this expression level. As seen in the immunofluorescence images, 

overexpressed Parkin shows mostly equal distribution within the cytosol, while HOIP seems 

to be enriched around the aggregates. Overall, the DNA amount used for transfection is 

supposed to determine if there is still free Parkin or HOIP available, which is not sequestered 

by mutant Huntingtin and can still activate NF-κB and block JNK signaling.  

 

3.5.3 JNK and caspase signaling are elevated in N2a cells expressing polyQ 

aggregates 

In addition to indirect immunofluorescence analysis of phosphorylated c-Jun, we examined 

expression levels of different markers for JNK and caspase activation by western blotting to 

prove the increased apoptotic signaling in cells overexpressing Htt aggregates (Fig. 42).  
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Fig. 42: Induced Q150-N2a cells show elevated levels of JNK and caspase activation upon TNF-α 

treatment. For JNK activation, phosphorylated c-Jun and phosphorylated JNK were analyzed; for caspase 

activation, cleaved Caspase-3 and cleaved PARP were investigated.  

 

After the phosporylation of JNK, p-JNK translocates to the nucleus and phosporylates c-Jun 

which then serves as transcription factor. Both, p-JNK and p-c-Jun were found to be increased 

in Q150-N2a cells upon TNF-α treatment. Besides this, elevated caspase activation in cells 

expressing mutant Huntingtin could be demonstrated by increased levels of cleaved Caspase-

3 and cleaved PARP. 

 

3.6 Toxicity of polyQ aggregates is amplified in Parkin- or HOIP-deficient cells 

As overexpression of Parkin or HOIP was able to reverse the impairment induced by polyQ 

aggregates on NF-κB signaling (e.g. nuclear translocation of p65), we wanted to test if 

silencing of Parkin or HOIP in cells expressing mutant Huntingtin would lead to a further 

increase in polyQ toxicity. SH-SY5Y cells expressing Htt-Q96 showed a marked increase in 

phosphorylation of c-Jun, which was used as an indicator for JNK signaling, and additional 

silencing of Parkin or HOIP expression in these cells by RNA interference led to an additional 

increase in c-Jun phosphorylation (Fig. 43). When Parkin or HOIP was reintroduced in the 

silenced cells, the level of phosphorylated c-Jun could be significantly lowered.  
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In conclusion, these data confirm that both endogenous Parkin as well as HOIP reduce polyQ-

mediated toxicity, while silencing of these two E3 ubiquitin ligases leads to intensified JNK 

signaling in cells with Huntingtin aggregates. 
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Fig. 43: Phosphorylation of c-Jun is increased in SH-SY5Y cells expressing Htt-Q96 aggregates. 

Moreover, knockdown of Parkin or HOIP leads to an additional increase in the number of phospho-c-Jun 

positive cells, whereas reintroduction of Parkin or HOIP decreases the number of phospho-c-Jun positive 

cells. 24 h after knockdown, cells were transfected with the indicated constructs and fixed 72 h after transfection. 

Data represent the mean ± SEM of at least three independent experiments, each performed in triplicate. n ≥ 300 

transfected cells were assessed per condition. *p ≤0.05; **p ≤0.01; ***p ≤0.001. 

 

 

3.7 Sequestration of LUBAC components in brain sections from a HD patient 

3.7.1 Huntingtin antibody 1HU-4C8 detects cytosolic Huntingtin aggregates 

To validate if our data from immortalized and primary cells pointing to a sequestration of 

LUBAC components by Htt aggregates, can also be seen in human patient brains, we 

collaborated with the two neuropathologists Dr. Thomas Arzberger and Dr. Kohji Mori.  

First, we had to establish the staining of Huntingtin aggregates in brain sections. In the 

beginning, the well-established antibody mEM48 was used for detection. However, as this 

antibody stains only nuclear aggregates (Fig. 44) and our focus lies on cytosolic ones, another 

antibody had to be selected. Surprisingly, the main focus of HD research is concentrated on 

nuclear aggregates although wild-type Htt is known to be localized in the cytosol and it is 

rarely studied how wild-type cytosolic Htt can develop into a nuclear aggregate.  
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After intensive search in the long list of available Huntingtin antibodies, 1HU-4C8 was 

identified as a potential candidate for staining of cytosolic aggregates in paraffin-embedded 

sections, as this antibody was raised against an immunogen containing a bigger C-terminal 

part than the mEM48 antibody (Table 2). 

 

 

Fig. 44: DAB (Diaminobenzidine) staining of Huntingtin aggregates in control (left) and HD patient brains 

(right) with the antibodies mEM48 (above) and 1HU-4C8 (below). While the mEM48 antibody detects 

mostly nuclear aggregates, the 1HU-4C8 antibody shows mainly cytosolic aggregates on HD patient tissue. Both 

antibodies show cytoplasmic staining in the control tissue. 

 

 

mEM48 
GST fusion protein from the first 256 amino acids from human Htt with the 

deletion of the polyglutamine tract 

1HU-4C8 Htt fragment from amino acids 181 to 810 as a fusion protein 

 

Table 2: Immunogen species of Huntingtin antibodies mEM48 and 1HU-4C8. (www.emdmillipore.com)  

 

DAB staining with 1HU-4C8 showed normal cytosolic distribution of wild-type Htt in control 

cases and indeed enabled us to detect cytosolic aggregates in HD patient brain tissue (Fig. 

44). These rare cytosolic aggregates found in HD brain were mostly located in close 

proximity to the nucleus and an additional thin ring structure could sometimes be observed 

around the nucleus. Interestingly, we detected cytosolic aggregates with this antibody only in 

brain sections from patient 1, while staining of patient 2 brain did not result in any positive 

signal for cytosolic Huntingtin aggregates. As patient 1 was characterized with pronounced 

atrophy of the Nucleus caudatus (late stage) and patient 2 showed almost no atrophy of the 
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Nucleus caudatus (early stage), this was a surprising finding (Table 3). Initially, we had 

assumed that cytosolic aggregates might appear with higher frequency only in earlier and not 

advanced HD cases. This question will be adressed with further experiments on different HD 

cases representing different stages of the disease and different brain regions including the 

striatum. 

 

HD patient 1 male, 57 years, pronounced atrophy of the Nucleus caudatus (late stage) 

HD patient 2 male, 74 years, little atrophy of the Nucleus caudatus (early stage) 

 

Table 3: Clinical data of HD patients 1 and 2. 

 

3.7.2 Cytosolic Huntingtin aggregates co-localize with LUBAC element HOIP 

Next, another important question was addressed: Do cytosolic aggregates in HD patient brains 

co-localize with LUBAC components? For answering this crucial question, immuno-

histochemistry staining with antibodies against Parkin and HOIP was established first (Fig. 

45).  

 
 

Fig. 45: DAB staining of PRK8/ Parkin (left) and HOIP (right) antibody in control brains. 

 

Co-staining of Htt and HOIP revealing a co-localization of these two proteins supports the 

notion that LUBAC components are sequestered by Huntingtin aggregates in HD patient brain 

(Fig. 46). 

Unfortunately, a convincing co-staining of Parkin (PRK8) and the 1HU-4C8 could not be 

performed as the antibodies 1HU-4C8 and PRK8 are derived from the same species (mouse) 

and therefore did not yield a suitable signal in co-staining experiments.  
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Fig. 46: Immunofluorescence staining of Huntingtin aggregates and HOIP in HD patient brain indicates 

co-localization. 

 

Nuclear Htt aggregates are reported to be positive for the ubiquitin-binding scaffold protein 

p62, which colocalizes with ubiquitinated protein aggregates. Therefore, we also tested if the 

cytosolic aggregates we detected with the 1HU-4C8 antibody, co-localize with this 

degradation marker. Indeed, we found that the cytosolic Htt aggregates observed in HD 

patient brain were positive for p62 (Fig. 47). 

 

 

Fig. 47: Immunofluorescence staining of Huntingtin aggregates and p62 in HD patient brain shows co-

localization. 
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To summarize, the obtained results give insight into the impact of mutant Htt on the NF-κB 

signaling pathway. Cytosolic polyQ aggregates sequester and trap several LUBAC 

components involved in the activation of the IKK complex. Without activation of the IKK 

complex, phosphorylation and degradation of the inhibitor protein IκB-α are blocked. Further 

downstream, nuclear translocation of p65 and activation of gene transcription are also 

lowered leading to defective OPA1 upregulation and increased mitochondrial fragmentation. 

TNF-α stimulation causes either a pro-survival response via NF-κB or a pro-apoptotic 

response via long-lasting JNK signaling and the caspase cascade. As the cell-protective 

pathway is blocked by the Huntingtin aggregates, destructive JNK and caspase signaling are 

activated instead (Fig. 48). Importantly, overexpression of wild-type E3 ubiquitin ligases 

Parkin and HOIP can at least partially restore impaired NF-κB signaling and protect cells 

from programmed cell death, as demonstrated by several approaches. This switch from NF-

κB-mediated survival to apoptosis signaling might be of special relevance to neurons and 

thereby explain the increased vulnerability of this cell population to an impairment in NF-κB 

signaling by polyQ aggregates.  

 

Fig. 48: When the pro-survival NF-κB pathway is blocked by sequestration of LUBAC components 

through Huntingtin aggregates, JNK and complex IIa-mediated apoptotic signaling are activated instead 

and promote programmed cell death [modified from graphical abstract, Müller-Rischart 2013]. 
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4. Discussion 

4.1 Role of LUBAC in prevention of programmed cell death 

Expansion of the polyQ stretch in the Huntingtin gene leads to severe impairments in 

mitochondrial integrity and neuronal survival. In this work, an interplay of cytosolic 

Huntingtin aggregates with components of the LUBAC was identified resulting in a switch 

from pro-survival NF-κB signaling to pro-apoptotic JNK and caspase signaling within a cell. 

Previously, the E3 ubiquitin ligase Parkin was shown to increase LUBAC activation, whereas 

HOIP was found to be the catalytic subunit of the LUBAC [Müller-Rischart 2013, Smit 

2012]. Therefore, we addressed the question, if Parkin and HOIP can rescue from defective 

NF-κB signaling in cells expressing Huntingtin aggregates. Our experiments demonstrate that 

overexpression of either Parkin or HOIP was able to alleviate the impact of mutant Huntingtin 

not only on NF-κB activation measured by p65 translocation or luciferase reporter assays but 

also on mitochondrial morphology and on JNK activation. But it is still unclear, how this 

rescue effect of Parkin or HOIP on impaired NF-κB signaling caused by Huntingtin 

aggregates can be explained on a mechanistic level. One possible explanation would be that 

these components of the LUBAC might be able to revert aggregate formation and could be 

involved in dissolving of polyQ aggregates. However, we could not confirm this hypothesis 

by any experimental evidence, as the number and size of Htt aggregates was not altered by co-

expression of Parkin or HOIP - at least not at the time points and in the cell types we looked 

at. 

The more plausible explanation is that overexpression of these mediators of the NF-κB 

pathway restores cytosolic protein levels, which can perpetuate the signaling and lead to a 

prosurvival response. Most of the endogenously available Parkin and HOIP is probably 

sequestered by mutant Huntingtin aggregates and therefore not sufficient unbound protein is 

available anymore for downstream signaling to activate NF-κB and protect the cell from 

apoptosis. This idea is supported by the observation that experiments with low levels of 

overexpressed HOIP, for instance, show mainly a ring-like staining around the aggregates and 

cytosolic depletion for HOIP when co-expressed with Htt-Q150. Expression of higher 

amounts of HOIP results in a mostly equal cytosolic distribution of the LUBAC component 

and only a slightly increased staining intensity around the aggregates compared to the cytosol. 

During the last few years, the LUBAC and its different components have increasingly gained 

importance, as their contribution to the NF-κB pathway was shown to be crucial. Despite the 
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remaining uncertainty regarding the exact complex composition and the detailed role of 

Parkin or Sharpin, it is beyond all question that this complex plays a major part in cell 

protection. Therefore, its functional efficiency and capability are essential for inhibition of 

programmed cell death. Very recently, three publications focusing on HOIP and Sharpin 

reported that HOIP- or Sharpin-deficient cells show increased TNF-R1 mediated cell death. 

Furthermore, it was demonstrated that Sharpin can prevent TNF-R1 mediated cell death 

[Kumari 2014, Peltzer 2014, Rickard 2014]. Taken together, these findings underline the 

significance of the LUBAC in the context of complex I mediated survival signals versus 

complex II mediated death signals, as the LUBAC maintains complex I mediated signaling to 

prevent switching to the cell death program via complex IIa. 

 

4.2 Huntingtin aggregates 

Huntingtin aggregates were found to be present in brains of R6/2 mice as well as human HD 

brains and, in addition, showed positive for ubiquitin staining [Davies 1997, DiFiglia 1997]. 

Both, the length of the polyQ stretch and the length and amount of Huntingtin fragments 

determine the aggregation process of mutant Huntingtin. It was demonstrated by biochemical 

analyses that nuclear and cytosolic aggregates are made of different components: While 

nuclear aggregates consist mainly of N-terminal Huntingtin fragments, extranuclear 

inclusions are composed of full-length and fragmented Huntingtin. A model termed the toxic 

fragment hypothesis, argues that toxic Huntingtin fragments are liberated by proteolytic 

cleavage. These fragments contain the expanded polyQ stretch and their accumulation might 

promote activation of caspases and programmed cell death. Experiments on cleavage 

processes and existence of N-terminal Huntingtin fragments evidenced that both normal and 

mutant Huntingtin undergo cleavages. However, it was shown that mutant Huntingtin is more 

susceptible to proteolysis [Zuccato 2010]. 

It is still an issue of intensive debate, which of the species is the most toxic form within these 

aggregation pathways. Are small monomers or oligomers more toxic than large fibers or 

aggregates themselves or is it the other way around? And, is toxicity of the aggregates 

dependent on the cellular compartment? Previously, it was assumed that nuclear Huntingtin 

aggregates are particularly toxic and that they sequester and block transcription factors and 

regulators in the nucleus [Yang 2002]. However, current views favor the hypothesis that 

Huntingtin inclusions are a protective mechanism of cells by sequestering toxic factors 

[Bennett 2007]. Preliminary data from our group on the translocation of p65 in cells 
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expressing mutant Htt showed that impaired NF-κB activation was already seen at time 

points, when Htt was not yet in an aggregated state. However, the impairment was not as 

pronounced as in cells where the aggregates had already formed. These findings point to toxic 

features of both soluble and insoluble cytosolic mutant Huntingtin species, which could be 

prevented by inclusion of these species together with their removal and transport into the 

nucleus. In this work, we focused on cytosolic aggregates as wild-type Huntingtin is known to 

be localized in the cytoplasm and our aim was to investigate early cellular changes occurring 

due to aggregate formation. At present, mainly nuclear Huntingtin aggregates are examined, 

because of their numerous appearance in post mortem HD brains. Although it is a great 

challenge to find less abundant cytosolic aggregates in advanced stages of the disease, it will 

be essential to tackle this problem for a better understanding of HD. In the future, it would 

therefore be important to concentrate also on early cytosolic aggregation steps within 

Huntingtin research and clarify the identity of the pathogenic species as well as the 

mechanism of how cytosolic soluble Huntingtin can turn into a nuclear insoluble aggregate. 

 

4.3 Selectivity of neurodegeneration 

Our observations demonstrate that the presence of mutant Huntingtin results in a clear switch 

from prosurvival signaling via NF-κB to proapoptotic cellular signaling, which explains the 

caspase-induced death of affected cells. However, this finding of increased cell death upon 

exposure to polyQ aggregates cannot explain why a selective degeneration of a particular 

neuronal population occurs. It is known that affected brain regions in Alzheimer’s Disease are 

involved in memory, while affected brain regions in PD and HD are responsible for motor 

function. Furthermore, degeneration in PD is mainly seen in dopaminergic neurons of the 

substantia nigra, whereas degeneration in HD hits mostly striatal GABAergic neurons.  

Several possibilities are discussed how specific neuronal loss could be explained. Proteostasis 

is one of the major factors suggested to play a role in this context. As neurons are postmitotic 

cells, they require consistent maintenance of their protein quality and rely on a functional 

proteostasis machinery [Margulis and Finkbeiner 2014, Saxena and Caroni 2011]. Formerly, 

Huntingtin aggregates were thought to block the proteasome in HD [Bence 2001]. This was 

emended by findings implying that mutant Huntingtin indirectly affects the proteasome by 

impairment of the chaperone system leading to increased load of misfolded proteins that 

finally overburden the ubiquitin proteasome system (UPS) [Hipp 2012]. Lower activity of the 

UPS in the striatum was recently reported, suggesting the necessity of functional capability of 
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the striatal UPS [Tsvetkov 2013]. Another argument supporting this hypothesis is based on 

the regional selectivity of inclusion body (IB) formation. IBs are only detected in particular 

brain regions although mutant Huntingtin is ubiquitously expressed [Margulis and Finkbeiner 

2014].  

The activation status of NF-κB might be another feasible explanation why neurons are 

especially vulnerable to the presence of mutant Huntingtin in comparison to non-neuronal 

cells: In non-neuronal cells, NF-κB is mostly kept in an inactive state, while being 

constitutively activated by basal glutamatergic transmission in neuronal cells [Meffert 2003]. 

This permanent activation of the NF-κB pathway, which is blocked by Huntingtin aggregates 

according to our results, would followingly be converted into permanent apoptotic signaling 

finally leading to programmed cell death.  

In 2009, the protein Rhes (Ras homolog enriched in striatum), which is selectively enriched in 

the striatum, was identified as an interaction partner of mutant Huntingtin. It was reported that 

Rhes induces sumoylation of mutant Huntingtin and thereby causing cytotoxicity. For this 

reason, Rhes and its interaction with Huntingtin was used as further possible explanation for 

the specific striatal neurodegeneration seen in HD [Subramaniam 2009]. Though, in vivo data 

confirming this interaction are still missing. 

Despite all attempts of explanation, the selective vulnerability of specific brain regions 

remains one of the most intruiging mysteries in neurodegenerative disease research and a 

better understanding of the underlying mechanisms is necessary for the development of 

targeted therapeutic interventions [Jackson 2014]. 

 

4.4 Cellular defects caused by mutant Huntingtin 

Apparently, the cellular effects of mutant Huntingtin are complex and comprise impaired 

gene transcription, cytoplasmic sequestration of important factors, insufficient protein folding, 

impairment of the UPS as well as increased cell death and mitochondrial dysfunction (Fig. 

49). Mutant Huntingtin could either inhibit transcription factors by aggregate formation in the 

nucleus or sequester transcription factors in the cytoplasm and block their translocation into 

the nucleus. For instance, CBP (CREB binding protein) and TBP (TATA box binding protein) 

were detected in intranuclear polyQ aggregates. Furthermore, chaperones, ubiquitin and 

proteasome subunits accumulate in Huntingtin aggregates, which points to an involvement of 

the UPS machinery [Landles and Bates 2004, Costa and Scorrano 2012].  
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Fig. 49: Model for cellular pathogenesis in HD. (1, 2, 4) An HD mutation causes abnormal folding of 

Huntingtin, which should be corrected by chaperones or cleared by proteasomal degradation. (3) Alternatively, 

mutant Huntingtin might also undergo proteolytic cleavage producing N-terminal fragments. In the cytoplasm, 

mutant Huntingtin might impair the proteasomal function directly or indirectly, which leads to accumulation of 

misfolded proteins. (5) Aggregation and sequestration of other proteins in the cytoplasm could lead to 

mitochondrial damage. (6) To protect itself, the cell presumably incorporates toxic proteins into cytoplasmic 

perinuclear aggregates. (7) An additional protection mechanism is assumed to comprehend the translocation of 

mutant Huntingtin into the nucleus, where nuclear inclusions may block gene transcription. [Landles and Bates 

2004] 

 

Our data especially emphasize both mitochondrial fragmentation and dysregulation as well as 

increased cell death signaling caused by the presence of Htt aggregates. Decreased p65 

translocation, reduced OPA1 protein levels and increased levels of JNK signaling 

(phosphorylated c-Jun and JNK) and the caspase pathway (Caspase-3 and PARP) in cells 

containing polyQ aggregates are clear indicators for a switch from NF-κB-mediated signaling 

to complex IIa-induced apoptosis. How the other observed cellular defects such as hindered 

protein degradation by the proteasome can be integrated into the dysregulation of these 

pathways, has to be adressed in future projects. In addition, it should be investigated and 

distinguished what the primary and what the secondary effects of aggregated Huntingtin are. 
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4.5 Balanced crosstalk of pathways 

In general, an essential function of a cell is the decision about living or dying. Therefore, the 

underlying signaling pathways have to be well-regulated and adjusted to the respective 

circumstances. While the prosurvival pathway via the transcription factor NF-κB should 

predominantly be active in cells, the proapoptotic pathways including JNK and caspase 

signaling should be repressed to ensure a proper immune response to inflammatory stimuli. 

Only when cells are irreparably damaged, the program should be switched from the pro-

survival to the pro-apoptotic channel through suppression of canonical NF-κB signal 

transduction and activation of the JNK and the caspase cascade. 

As described before, mutant Htt was found to influence the NF-κB pathway directly by 

sequestration of LUBAC components and thereby to affect the JNK and the caspase pathways 

indirectly, as suppression of NF-κB signaling is accompanied by elevated cell death signaling. 

Our findings focusing on Huntingtin and HD, taken together with earlier reports on other 

diseases such as liver diseases indicate that the balance between activation and repression of 

the investigated pathways as well as the functional crosstalk between these pathways is 

crucial for the cellular fate.  

Few mediators and mechanisms of the crosstalk could be discovered so far: On the one hand, 

NF-κB activation blunts JNK activation by inducing JNK inhibitory proteins such as XIAP 

and controling the levels of reactive oxygen species (ROS). [Papa 2009, Wullaert 2006]. On 

the other hand, Siva was found to interact with XIAP thereby shifting the balance from NF-

κB-mediated prosurvival signaling to proapoptotic JNK and Caspase-3 signaling [Resch 

2009]. These mediators between the pathways might be interesting targets for therapeutic 

interventions.  

One of the main future challenges will be the identification of further balance regulating 

mechanisms within this pathway network. In particular, targeting and tackling of these 

regulators to overcome deficient signaling caused by multiple factors including protein 

aggregates like in HD will be important. In the end, the interplay of NF-κB, JNK and caspase 

signaling determines the cellular response to TNF-α stimulation (Fig. 50). 

The most fascinating current question is whether the imbalanced pathway network observed 

in HD models might also be involved in other neurodegenerative diseases and serve as a 

general concept to explain the mitochondrial alterations as well as effects on viability seen in 

most neurodegenerative diseases. For Parkin and PD, the link to the LUBAC and NF-κB 

signaling was already demonstrated. This indicates the importance of common pathways for 
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the development of at least HD and PD and tempts one to speculate that other cytosolic 

aggregates occurring in different diseases could also sequester and trap components of the 

NF-κB pathway such as the LUBAC. Thereby, the increased vulnerability of neurons under 

stress conditions might be explained, as the aggregates induce a switch from an anti- to a pro-

apoptotic cellular response. 

 

 

 

Fig. 50: Sensitive balance between pro-survival and pro-apoptotic signaling.  Activation of the NF-κB 

pathway and suppression of JNK and caspase signaling lead to a pro-survival outcome, while inhibition of NF-

κB signaling connected with increased activation of the JNK and caspase pathway promotes programmed cell 

death [modified from Resch 2009]. 
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5. Methods 

5.1 Cell culture 

5.1.1 Cultivation 

Both immortal as well as primary cell lines were cultivated as adherent monolayers in either 

25 cm
2
 or 75 cm

2
 tissue culture flasks at 37°C and 5% CO2. Every 3 – 4 days, the cells were 

splitted by washing once with PBS (Phosphate Buffered Saline), trypsination at 37°C, 

inhibition of trypsin by fresh FCS-containing medium and transfer of a cell aliquot into a new 

flask with fresh medium for further cultivation. All cell lines, the appropriate media and 

splitting ratios are listed in the following table (table 3). 

 

Cell line type medium splitting ratio 

SH-SY5Y Human neuroblastoma DMEM F-12 + 15% FCS 

+ 1% NEAA (+1% PS) 
1:6 – 1:12 

HEK 293T Human embryonic kidney DMEM GlutaMax  

+ 10% FCS (+1% PS) 
1:10 – 1:20 

N2a Htt-Q16/  

N2a Htt-Q150 
Murine neuroblastoma 

DMEM + 10% FCS  

+ 2 mM L-Glutamine  

+ 0.1 mg/ml G418  

+ 0.1 mg/ml Zeocin  

(+1% PS) 

1:5 – 1:20 

 

Table 4: Cell lines and cultivation details. 

 

5.1.2 Plating 

For transfections or treatments, cells were counted and plated in the desired confluency in 

different cell culture dish types (table 4). 

 

Cell line experiment dish density 

SH-SY5Y WB 6-well plate 3-5 x 10
5
 

 IF 6-well plate 1-1,75 x 10
5
 

HEK 293T WB 6-well plate 1 x 10
6
 

HEK 293T LUC 12-well plate 4 x 10
5
 

HEK 293T Filter trap 12-well plate 1,5 x 10
5
 

HEK 293T Lin Ubi assay 10 cm culture dish 2 x 10
6
 

N2a  IF 12-well plate 1 x 10
5
 

N2a WB 6-well 5 x 10
5
 

 

Table 5: Plating details of cell lines for different experiments. WB = Western Blot, IF = 

immunofluorescence, LUC = Luciferase assay, Lin Ubi Assay = Linear ubiquitination assay. 
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5.1.3 Preparation and cultivation of mouse or rat primary neurons 

Cortices of mouse embryos (E14 - 15) were isolated and treated with Papain for 15 – 20 

minutes (min) at 37°C to digest the tissue. After removing the Papain solution, cells were 

dissociated by mild trituration with a 2 ml pipette and plated onto Poly-L-Lysine-coated 

dishes. For immunofluorescene experiments, 4 x 10
5 

cells were seeded on coverslips in 12-

well-plates (DMEM + 10% FCS + 1% PS). The medium was switched to neuronal medium 

(Neurobasal + 5 mM HEPES + 0.5 mM L-Glutamine + 2% B27 supplement + 1% PS) after 3 

to 4 hours. One week after preparation, fresh medium was added to the cultured neuronal 

cells. 

Further rat cortical and hippocampal neurons were kindly provided by Dieter Edbauer’s 

group. These neurons were prepared at stage E19 and cultivated in Neuronal Basal Medium 

supplemented with SM1 Neuronal Supplement, L-Glutamine and PS.  

 

5.1.4 Transient transfection 

First, transient transfection for overexpression of genes was mainly performed 24 h after 

plating or 24 to 48 hours after a knockdown. DNA (0.2 - 1 µg per 6-well) was mixed with 

Plus reagent in Opti-MEM, while Lipofectamine reagent was added to Opti-MEM in a 

separate tube (for details see table 5). The separate mixes were incubated for 15 min at room 

temperature (RT), merged and incubated for another 15 min at RT. Before the transfection 

mix was dripped onto the cells, the medium was switched to Opti-MEM. After 3 to 5 hours of 

incubation, normal growth medium was added. Cells were harvested 24 to 72 hours after 

transfection for analysis. 

 

Cell line ratio Plus: Lipo 

SH-SY5Y 8:6 

HEK 293T, N2a 6:8 

 

Table 6: Ratio of transfection reagents for different cell lines. Specifications are valid for cells plated in 6-

well-format. Lipo = Lipofectamine. 

 

Second, transfection of small interfering RNA (siRNA) was used to silence the expression of 

specific genes. These transfections were performed as reverse transfections together with the 

plating of the cells. For this purpose, siRNA for the specific gene was incubated together with 

5 µl of the transfection reagent RNAimax and Opti-MEM in 6-well plates for15 min at RT 
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(for details see table 6). A negative control duplex siRNA with medium GC-content served as 

control. In the meantime, cells were trypsinated and counted, before they were plated in an 

appropriate density in the 6-well plates containing the siRNA transfection mix. After 5 to 24 

hours, normal growth medium was added to the cells. 

 

Gene volume siRNA 

Parkin 5 µl (stock solution 20 µM) si1 or si2 

HOIP 6 ul (stock solutions 20 µM) si1+2+3 (1:1:1) 

 

Table 7: Optimized siRNA composition for specific genes. Specifications are valid for SY-SY5Y and HEK 

293T cells. 

 

Third, transfection of neurons was mostly performed on day 12 post preparation and the cells 

were harvested on day 3 or 4 post transfection. Neuronal experiments were mainly conducted 

in 12-well plates with neurons seeded on glass coverslips for immunofluorescence analyses. 

For the transfection, 2 separate mixes (1.8 µg DNA in Neurobasal and 3.3 µl Lipofectamine 

2000 in Neurobasal per 12-well) were made separately, mixed and incubated at RT for 30 

min. Meanwhile, a new 12-well plate was prepared with incubation medium (Neurobasal + 

PS + Glutamine), the neurons on coverslips were washed with warm Neurobasal medium and 

transfered to the new 12-well plate for transfection. The old plate was kept warm in the 

incubator. Then, transfection followed by dripping the transfection mix onto the cells and 

incubation at 37°C for 45 min. Afterwards, the coverslips were washed twice with Neurobasal 

medium and transfered back into the original plate, where they stayed for 72 to 96 hours until 

their harvest. 

 

5.1.5 Lentiviral transduction 

N2a cells were transduced with lentiviruses for stable overexpression of either wild-type 

Parkin or a control vector as lentiviral transduction allows higher transfection efficiencies 

compared to transient transfection of plasmid DNA with Lipofectamine and Plus. Generation 

of the lentiviral expression vector Fu-∆Zeo-ParkinWT and purification of the lentiviruses was 

kindly performed by Anna Pilsl [Müller-Rischart 2013].  

 

5.1.6 Induction of stable N2a cell lines 

The ecdysone-inducible mammalian expression system from Invitrogen was used for stable 

expression of a Huntingtin fragment (90 amino acids from exon1 of a HD patient) combined 
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with different polyQ lengths and the reporter protein GFP (green fluorescent protein). We 

tested the N2a cell lines expressing a polyQ stretch of 16 or 150. Different ecdysone analogs 

can be used to induce this expression system, among them the herbal steroids Muristerone A 

and Ponasterone A. For induction, we used 1 µM Muristerone A and for differentiation of the 

N2a cells, 2.5 - 5 mM dbcAMP (Dibutyryl cyclic adenosine monophosphate, (N6,2'-O-

dibutyryl)-adenosine-3',5'-mono-phosphate) were applied in differentiation and induction 

medium (DMEM + 1%FCS + 2mM L-Glutamine + 0.1 mg/ml G418 + 0.1 mg/ml Zeocin +1% 

PS). The cells were mainly treated for 72 to 96 hours, as sufficient aggregate production was 

observed at these time points in the case of N2a Htt-Q150 cells. 

 

5.1.7 Treatment of cells 

To stimulate TNF receptor-mediated signaling pathways, the cytokines TNF-α or IL-1β were 

utilized. TNF-α was applied at a concentration of 10 - 20 ng/ml, while IL-1β was applied at a 

concentration of 10 ng/ml.  

 

5.2 Protein biochemistry 

5.2.1 Cell harvest and lysate preparation 

For harvesting, cells were washed twice with PBS on ice and scraped off the plates with a cell 

scraper. Next, they were transfered to an Eppendorf tube and centrifuged for 5 min at 5000 

rpm and 4°C. The cell pellet was either stored at -20°/ -80°C or subsequently lysed. 

Lysis conditions depended on the carried out experiment, but a detergent buffer containing 

0.5 - 1 % Triton X-100 in PBS (+ protease inhibitor cocktail) was mainly used for cell lysis. 

The lysate was incubated for 5 min on ice. For some experiments such as a Parkin 

knockdown, the complete lysate was used and needled, while for most other experiments an 

additional centrifugation step of 15 min at 13000 rpm and 4°C followed to pellet the cell 

debris. The supernatant was then transfered to a new tube and only this soluble fraction was 

used for analysis. 

To prepare samples for Western Blot analysis, protein concentration of the cell lysates was 

measured by BCA protein assay, Laemmli sample buffer (+β Mercaptoethanol) was added to 

the lysate and the samples were incubated for 10 min at 95°C. Then, the samples were either 

analyzed after the boiling step or stored at -20°C until further usage. 
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5.2.2 SDS PAGE 

Sodium dodecylsulphate polyacrylamide gelelectrophoresis (SDS-PAGE) under denaturing 

conditions was used for separation of proteins according to their molecular weight. Equal 

amounts of protein (5 - 20 ug per sample) were loaded onto 10 - 15% separation gels 

depending on the size of the considered proteins. The electrophoresis gels ran on the minigel 

system from BIORAD at a constant current of 25 mA per gel for 90 to 120 min. 

 

5.2.3 Western Blot 

After the electrophoresis step, the separated proteins were transfered from the gel onto a 

PVDF (polyvinylidene difluoride) membrane by applicaton of the same minigel system from 

BIORAD and 400 mA for 1 hour. To block unspecific binding, the membranes were 

incubated in 5% milk in TBS-T at RT after the protein blotting, before the membrane was 

transfered to a tube containing the respective primary antibody in milk solution. Incubation at 

4°C overnight or for 1 hour at RT followed. Next, three washing steps with TBS-T were 

performed and the second antibody, which was conjugated to the enzyme HRP (horseradish 

peroxidase), was added to the membrane. Finally, three washing steps and detection of the 

antigen via an enhanced chemoluminescence (ECL) reaction and exposure to an X-ray film 

was conducted.  

 

5.2.4 Filter trap assay 

To analyze protein aggregates, filter trap assays were performed. As aggregates are bigger in 

size and cannot pass through a membrane with a pore size of 0.2 µm, they are retained when 

the cell lysate is soaked through the membrane, while non-aggregated proteins can easily slip 

through the membrane. Afterwards, the retained aggregates can be detected via antibodies and 

chemoluminescence similar to the last part of Western Blotting. 

For this assay, a different lysis buffer was used, which additionally contained DNase (lysis 

buffer: 1% Triton X-100 + 15 mM MgCl2 + 0.2 mg/ml DNase in PBS). Cells were lysed and 

ultracentrifuged at 55 000 rpm and 4°C for 30 min. Next, the pellet was resuspended in SDS-

buffer (2% SDS in100 mM Tris pH 7) and incubated for 1hour at RT. When the incubation 

was finished and the pellet dissolved, the slot-blot equipment containing the activated 

cellulose acetate membrane was assembled. The samples were diluted 1:5 in three steps, 

loaded in four lanes (undiluted, 1:5, 1:25, 1:125) into the slots and soaked through the 

membrane by application of a vacuum. After three washing steps with PBS, the membrane 
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was removed from the slot blot chamber and blocked with milk solution. The antibody 

detection worked as described in the previous chapter (see “Western Blot”). 

 

5.2.5 Linear ubiquitination assay 

The linear ubiquination assay served to detect proteins, which were pulled down by 

recombinant Strep-tagged UBAN domain from the cell lysate and visualized with a ubiquitin 

antibody. As the UBAN domain, which is part of the IKK subunit NEMO, binds to linear 

ubiquitin chains, it can be used to pull down proteins with linear ubiquitin chains. 

Transfections of large quantities for linear ubiquitination assays were performed with calcium 

phosphate, because this method is more cost-saving than transfection with Lipofectamine and 

Plus reagent. For this purpose, DNA was mixed with CaCl2 and HeBs buffer (50 mM HEPES, 

280 mM NaCl, 1.5 mM Na2HPO4) and incubated for 15 min at RT. In the following step, the 

transfection mix was dripped onto the cells in 10 cm dishes. After 16 h of incubation, fresh 

medium was added to the cells. 

Upon harvest, lysis of the cells included resuspension in a denaturing buffer (1% SDS in 

PBS), incubation for 10 min at 95°C and needling for sufficient dissolving. Then, the lysate 

was diluted 1:10 with 1% Triton X-100 in PBS and centrifuged for 15 min at 4600 rpm and 

4°C. The supernatant was transfered to a new tube for subsequent co-immunoprecipitation 

(Co-IP) and a small aliquot was taken as input control. 

For the Co-IP, recombinant UBAN protein was added to the cleared lysate and the samples 

were incubated with mild swinging overnight at 4°C. On the following day, Strep Tactin 

Sepharose beads were used to bind the Strep-tag attached to the UBAN domain. After 3 to 4 

hours of incubation at mild swinging and 4°C, a centrifugation step for 5 min at 1500 rpm and 

4°C pelleted the beads together with the bound complexes of the UBAN domain and linear 

ubiquitinated proteins. Several washing steps of the beads followed. Finally, addition of 

Laemmli sample buffer (+β Mercaptoethanol) and an incubation step for 10 min at 95°C led 

to the dissociation of the bound protein complexes from the beads. Input controls and 

supernatants of the pulldown samples were loaded onto SDS gels and Western Blot analysis 

was conducted. For the detection of ubiquitinated proteins, a nitrocellulose membrane was 

used and boiled after the blotting step for 5 min, before the first antibody was added.  

This linear ubiquitination assay was performed both with HEK cells transiently expressing 

polyQ aggregates as well as inducible Htt-expressing N2a cells, but all experiments revealed 

indefinite results regarding a possible effect of Htt aggregates on linear ubiquitination levels. 
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5.2.6 Luciferase reporter assay 

Luciferase reporter assays are based on the expression of the reporter gene luciferase, which is 

combined with promoter sequences or transcription factor binding sites to be considered. In 

our case, several NF-κB binding sites were put in front of the luciferase gene. Upon binding 

of NF-κB to the respective responsive elements, transcription of the reporter gene is activated 

and luciferase protein is produced. The resulting protein converts the substrate luciferin into 

oxyluciferin accompanied with the production of light, which can be measured by a 

luminometer. 

 

Fig. 51: Bioluminescent reaction catalyzed by firefly luciferase. [Promega] 

 

Cells were co-transfected with the NF-κB reporter construct and other plasmids to be 

analyzed. Transfected cells were harvested and resuspended in reporter lysis buffer (provided 

by the Luciferase Assay System, Promega). After incubation for 5 min on ice and vortexing, 

the samples were centrifuged for 15 min at 13000 rpm and 4°C. The supernatant was used for 

luminometric measurements and the obtained raw values were normalized to protein 

concentration. 

 

5.2.7 ATP assay 

To determine the ATP content of cells, the same principle as described for luciferase reporter 

assays was applied: the luciferase reaction produces light, which can be quantified.  

24 hours prior to the cell harvest, the culture medium was replaced with low Glucose medium 

(3 mM Glucose) to induce a metabolic shift from glycolysis to mitochondrial respiration for 

ATP production. Furthermore, control cells were treated with 10 µM CCCP three hours 

before the harvest. For the measurement, cells were scraped off the plates, resuspended 

carefully in PBS and lysed in the cell lysis buffer of the ATP Bioluminescence Assay Kit HS 

II (Roche). After 5 min of incubation at RT, the lysates were centrifuged for 1 min at 10000 

rpm and 4°C. The supernatant was used for luminometric measurement and the obtained raw 

values were normalized to protein concentration. 

ATP assays were performed with inducible Htt-expressing N2a cells. However, the obtained 

results did not yield a clear effect of Huntingtin aggregates on ATP levels. 
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5.2.8 Immunofluorescence of cultured cells 

Immunofluorescence stainings of cultured cells can be used for different assays such as 

nuclear translocation of p65, assessment of mitochondrial morphology via staining of 

mitochondrial proteins such as TOM20, phosphorylation of c-Jun or activation of Caspase-3. 

The cells were washed with PBS and fixed with 3.7% Formaldehyde in PBS for 15 min at 

RT. Then, 0.1% Triton X-100 in PBS was applied for 10 min to permeabilize the cell 

membranes. For blocking of unspecific binding, the coverslips were transfered to a humid 

chamber and covered with blocking buffer (5% horse serum, 0.1% Tween20 in PBS). There, 

the coverslips were incubated for 2 hours at RT. In the following, the first antibody was added 

to the samples and incubation of 1 hour at RT was sufficient, before several washing steps 

with PBS and PBS-T were performed. Further incubation with the secondary antibody was 

conducted for 1 hour at RT and the coverslips were finally mounted with DAPI-containing 

mounting medium onto slides.  

Quantification of cells and capturing of the images was done either at the fluorescence 

microscope Axio Imager A2 or the confocal microscope LSM 710. 

 

5.2.9 Immunofluorescence of human sections 

Immunofluorescence as well as immunohistochemistry experiments with paraffin-embeded 

sections were kindly performed by Dr. Kohji Mori. All patient materials were generously 

provided by Dr. Thomas Arzberger from the Neurobiobank Munich, Ludwig-Maximilians-

University (LMU) Munich and were collected and distributed according to the guidelines of 

the local ethical committee. 

First, the sections were deparaffinized with xylene and ethanol treatment and briefly washed 

with deionized water. After antigen retrieval through microwaving in 100 mM citrate buffer 

pH 6.0 and blocking with 2% FBS, the primary antibody was added and incubation at 4°C 

overnight followed. Washing with 0.02 % Brij35 or 0.05% Tween20 in PBS and incubation 

with the secondary Alexa-conjugated antibody were the next steps. For staining of the 

nucleus, either TO-PRO-3 or DAPI were used. Confocal images were taken with the confocal 

microscopes LSM510 or LSM710. 

 

5.2.10 Immunohistochemistry of human sections 

Similar to immunofluorescence experiments with patient sections, the sections were first 

deparaffinized with xylene and ethanol treatment and briefly washed with deionized water. 
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Upon antigen retrieval through microwaving in 100 mM citrate buffer pH 6.0 and blocking of 

endogenous peroxidase with 5% H2O2 in methanol, sections were put in PBS with 0.02% 

Brij35. Blocking with 2% FBS in PBS for 5 min followed and the respective primary 

antibody was applied for 1.5 h at RT or overnight at 4°C. Next, the secondary antibody was 

applied for 1 h. After rinsing with 0.02 % Brij35 in PBS, antibody binding was detected and 

enhanced by DCS Super Vision 2 HRP-Polymer-Kit or NovoLink DS Polymer Detection 

Systems using the chromogen DAB. Counterstaining for cellular structures was performed 

with haematoxylin. Microscopic images were obtained with a BX50 microscope and Cell-D 

software (Olympus). 

 

5.2.11 Statistics 

Data represent the mean ± SEM (standard error of the mean). The student’s t-test or ANOVA 

were applied to calculate p-values for statistical analysis. P-values were assigned as listed in 

the following: *p ≤0.05; **p ≤0.01; ***p ≤0.001. 
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6. Material 

6.1 Cell culture 

6.1.1 Material 

a) Cell lines 

Cell line Type Origin 

SH-SY5Y Human neuroblastoma DMSZ, ACC-209 

HEK 293T Human embryonic kidney ATCC, CRL-1573 

N2a Htt-Q16/  

N2a Htt-Q150 
Murine neuroblastoma Ulrich Hartl 

 

b) Media 

Medium Company 

DMEM Biochrom 

DMEM GlutaMax Invitrogen 

DMEM F12 Invitrogen 

HBSS Invitrogen 

Neurobasal Invitrogen 

Neuronal basal medium Stemcell technologies 

Opti-MEM Invitrogen 

 

c) Supplements 

Supplement Company 

B27 supplement Invitrogen 

FCS (fetal calf serum) Invitrogen 

G418/ Geneticin Invitrogen 

Glucose Invitrogen 

L-Glutamine Invitrogen 

NEAA (non-essential amino acids) Invitrogen 

PS (Penicillin/ Streptomycin) Invitrogen 

SM1 Neuronal supplement Stemcell technologies 

Zeocin Invitrogen 
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d) Transfection reagents 

Tranfection reagent Company 

Lipofectamine Invitrogen 

Plus Invitrogen 

Lipofectamine 2000 Invitrogen 

RNAiMAX Invitrogen 

 

e) siRNAs 

Target Product number Company 

Parkin 
HSS107593 (si1), 

HSS107594 (si2) 
Invitrogen 

HOIP 

HSS123836 (si1), 

HSS123837 (si2), 

HSS182838 (si3) 

Invitrogen 

Negative control 45-2001 Invitrogen 

 

f) Plasmids 

Plasmid Features Origin 

GFP pcDNA3.1 Anna Pilsl 

HOIP wt pcDNA3.1 Kathrin Müller-Rischart 

HA-HOIP pcDNA3.1 Kathrin Müller-Rischart 

HOIP C885A pcDNA3.1 Maria Patra 

HOIP C885S pcDNA3.1 Maria Patra 

HOIL-1L pcDNA3.1 Kathrin Müller-Rischart 

HOIL-1L-HA pcDNA3.1 Kathrin Müller-Rischart 

HA-HHARI pCMV Julia Schlehe 

Myc-Htt-Q20 pcDNA3.1 Ulrich Hartl 

Myc-Htt-Q96 pcDNA3.1 Ulrich Hartl 

NF-κB LUC pGL3-LUC Daniel Krappmann 

LUC pGL3-LUC Promega 

Parkin wt pcDNA3.1 Winklhofer et al, 2003 

Parkin ∆UBL pcDNA3.1 Julia Schlehe 
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Parkin C431F pcDNA Richard Youle 

Parkin G430D pcDNA3.1 Iris Henn 

Parkin W453X pcDNA3.1 Iris Henn 

Sharpin-HA pcDNA3 Anna Pilsl 

 

g) Chemicals and enzymes 

Reagents Company 

CCCP Sigma Aldrich 

dbcAMP Sigma Aldrich 

IL-1β R&D Systems 

Muristerone A Sigma Aldrich 

Papain Sigma Aldrich 

Poly-L-Lysine Sigma Aldrich 

TNF-α Biomol 

Trypsin-EDTA Sigma Aldrich 

 

h) Equipment 

Product Company 

Cell counter chamber Neubauer Labor Optik 

Cell culture dishes Nunc 

Cell culture flasks Nunc 

Cell scraper Corning Inc. 

Centrifuge Multifuge 3 S-R Heraeus 

Centrifuge for Eppendorf tubes Eppendorf 

Incubator Heraeus 

 

6.1.2 Solutions and buffers 

PBS (Phosphate buffered saline): 

3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl pH 7.4 
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6.2 Protein biochemistry 

6.2.1 Material 

a) Antibodies 

Primary antibody Company Product nr. Applic. Dilution Species 

Active Caspase 3 Cell Signaling 9664L IF 

WB 

1:250 

1:1000 

rabbit 

β-Actin Sigma Aldrich A5316 WB 1:5000 mouse 

GAPDH Life Technolog. AM4300 WB 1:4000 mouse 

GFP Roche 11814460001 WB  mouse 

HA 1.1 Covance MMS-101P IF 

WB 

1:100 

1:2000 

mouse 

HHARI/ ARIH1 (B-2) Santa Cruz Biot.  Sc-390763 IHC 1:50 mouse 

HOIL-1L (E2) Santa Cruz Biot. Sc-365523 WB 1:1000 mouse 

HOIP Acris AP16062PU-N IF 1:500 goat 

HOIP Sigma Aldrich Sab2102031 IF 

WB 

IHC 

1:500 

1:1000 

1:50-200 

rabbit 

Hsp60 Santa Cruz Biot. Sc-1052 WB 1:2000 goat 

Hsp75/ Trap1 Santa Cruz Biot. Sc-135944 WB 1:2000 mouse 

Huntingtin mEM48  Millipore MAB5374 IHC 1:20-100 mouse 

Huntingtin 1HU-4C8 Millipore MAB2166 IHC 1:50-200 mouse 

IκBα Cell Signaling 9242 WB 1:1000 rabbit 

IκBα Cell Signaling 4814 WB 1:1000 mouse 

Myc (9E10) Santa Cruz Biot. Sc-40 IF 

WB 

1:500 

1:1000 

mouse 

Myc (A14) Santa Cruz Biot. Sc-789 IF 1:500 rabbit 

NF-κB p65 (C-20) Santa Cruz Biot. Sc-372 IF 

WB 

1:500 

1:1000 

rabbit, 

goat 

OPA1 BD Biosciences 612607 WB 1:1000 mouse 

PRK8 (Parkin) Santa Cruz Biot. Sc-32282 IF 

WB 

IHC 

1:1000 

1:2000 

1:10-20 

mouse 
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PARP Cell Signaling 9542S WB 1:1000 rabbit 

Phospho-IκBα Cell Signaling 9246 WB 1:1000 mouse 

Phospho-JNK (E11) Cell Signaling 4668 WB 1:1000 rabbit 

Phospho-c-Jun Cell Signaling 3270S IF 

WB 

1:1000 

1:1000 

rabbit 

P62 MBL PM045 IHC 1:10000 rabbit 

Sharpin Cell Signaling 4444S WB 1:1000 rabbit 

TIM44 BD Biosciences 612583 WB 1:4000 mouse 

TOM20 Santa Cruz Biot. Sc-11415 IF 

WB 

1:1000 

1:2000 

rabbit 

Tubulin Sigma Aldrich T5168 WB 1:5000 mouse 

Ubiquitin (P4D1) Santa Cruz Biot. 3270S WB 1:1000 mouse 

 

Secondary antibody Company Product nr. Applic. Dilution 

mouse-HRP Promega W4021 WB 1:10000 

rabbit-HRP Promega W4011 WB 1:10000 

goat-HRP Santa Cruz Biot. Sc-2020 WB 1:10000 

mouse-Alexa488 Invitrogen A-11029 IF 1:500 

mouse-Alexa555 Invitrogen A-21424 IF 1:500 

mouse-Alexa647 Invitrogen A-21236 IF 1:500 

rabbit-Alexa488 Invitrogen A-21245 IF 1:500 

rabbit-Alexa555 Invitrogen A-11034 IF 1:500 

rabbit-Alexa647 Invitrogen A-21429 IF 1:500 

 

b) Beads 

Beads Company 

Strep-Tactin Sepharose IBA 

 

c) Kits 

Kit Company 

ATP Bioluminescence Assay Kit HS II Roche 

Luciferase Assay System Promega 
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d) Chemicals and enzymes 

Reagents Company 

Amersham ECL Western Blotting Detection Reagent GE Healthcare 

BSA (Bovine serum albumine) New England Biolabs 

DAPI (4’,6’-Diamidino-2-phenylindole) Sigma Aldrich 

DNAse Sigma Aldrich 

Horse serum Sigma Aldrich 

Mowiol 4-88 Millipore 

PFA (Paraformaldehyde) Sigma Aldrich 

PI (complete protease inhibitor) Roche 

 

e) Equipment 

Product Company 

Cellulose acetate membrane, 0.2 µm GE Healthcare 

Centrifuge Multifuge 3 S-R Heraeus 

Centrifuge for Eppendorf tubes Eppendorf 

Freezer -20°C Elektrolux, Liebherr 

Freezer -80°C Heraeus, Kendro 

Fridge 4°C Elektrolux, Siemens 

Gel chamber Mini Trans-Blot Cell Bio-Rad 

Thermomixer comfort Eppendorf 

Luminometer LB96V Berthold Technologies 

Microscope Axio Imager A2 Zeiss 

Microscope Confocal LSM710 Zeiss 

Microscope cover glasses Marienfeld 

Microscope slide Thermo Scientific 

Milli-Q academic Millipore 

Nitrocellulose membrane, 0.2 µm Invitrogen 

pH-Meter WTW 

Power supply Bio-Rad 

PVDF membrane Millipore 

See Blue Plus2 (pre-stained protein standard) Invitrogen 
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Slot Blot PR 648 Hoefer Scientific 

Instruments 

Super RX (medical x-ray film) FUJIFILM 

Thermomixer compact Eppendorf 

Ultracentrifuge Optima MAX-XP Beckman Coulter 

Whatman paper Schleicher & Schüll 

 

f) Software 

Sotware Company 

Adobe Illustrator CS5 Adobe 

Adobe Photoshop CS5 Adobe 

Axiovision 4.7 Zeiss 

Microsoft Excel 2010 Microsoft 

Multi-Gauge V3.0 FUJIFILM 

WinGlow Berthold Technologies 

ZEN 2011 Zeiss 

 

 

6.2.2 Solutions and buffers 

a) General buffers 

PBS: 3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl pH 7.4 

 

b) Lysis buffers 

Detergent buffer:  0.5 - 1% Triton X-100 in PBS, protease inhibitor 

 

c) SDS gels and Western Blot buffers 

PBS-T:  PBS containing 0.1% Tween-20 

TBS:   25 mM Tris / HCl, 150 mM NaCl pH 7.2 

TBS-T:  TBS containing 0.1% Tween-20 

Laemmli sample buffer (4x): 

240 mM Tris / HCl pH 6.8, 4% SDS, 40 % glycerol, 2% bromophenol blue,  

4% β-mercaptoethanol 
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APS:      10% ammoniumperoxodisulfate in PBS 

Lower Tris Buffer for SDS-PAGE:  0.5 M Tris/HCl pH 6.8, 0.4% SDS 

Upper Tris Buffer for SDS-PAGE:  1.5M Tris/HCl pH 8.8, 0.4% SDS 

Running Buffer for SDS-PAGE:  25 mM Tris/HCl, 190 mM glycine, 0.1% SDS 

Blotting buffer:    25 mM Tris, 20 mM glycine 

Blocking buffer:    5% milk powder in TBS-T 

 

d) Immunofluorescence buffers 

Fixing solution:  3.7% Formaldehyde in PBS 

Permeabilization buffer: 0.1-0.2% Triton X-100 in PBS 

Blocking solution: 5% horse serum, 0.1% Tween20 in PBS (or 2.5% BSA in PBS) 

Mounting medium:  3.26 M glycerine, 2.72 M Mowiol 4-88, 0.12 M Tris pH8.5 in H2O 

 

e) Filter Trap buffers 

Lysis buffer:   1% Triton X-100, 15 mM MgCl2, 0.2 mg/ml DNAse in PBS 

SDS buffer:   2% SDS in 100 mM Tris pH 7 

 

f) Ubiquitination assay buffers 

HeBs buffer (2x):   50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4 

CaCl2 solution:  2.5 M CaCl2 

Denaturing lysis buffer: 1% SDS in PBS 

Dilution buffer:  1% Triton X-100 in PBS 
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