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Abstract

The Red Queen Hypothesis postulates that reciprocal selection arising from host-parasite interac-

tions should accelerate evolutionary rates through the need for continual adaptation and counter-ad-

aptation. A process driving such rapid reciprocal adaptation is referred to as negative frequency-de-

pendent selection, in which the most common genotypes decrease over time because they have a

higher probability of becoming infected by coevolving parasites. This proposed mechanism of host-

parasite coevolution was commonly tested in laboratory experiments under controlled conditions.

Regarding field investigations of natural populations, temporal changes in relative frequencies of

genotypes were mostly tested for host only, because tracking parasite dynamics over time remained

difficult. As parasite population dynamics are highly sensitive to environmental changes, studies un-

der natural conditions are essential to understand host-parasite coevolution.

The commonly explored model system to address coevolutionary questions are the water

fleas of the genus Daphnia and their microparasites.  In this PhD thesis, I analysed the population

structure of two major microparasites of  Daphnia:  Caullerya mesnili (Chapters 2 and 3) and mi-

crosporidia (Chapter 4). First, in Chapter 2, I developed a new bioinformatic pipeline to analyse

molecular data generated by next-generation-sequencing (NGS) platforms.  C. mesnili populations

from different water reservoirs in the Czech Republic were sequenced at  the first internal tran-

scribed spacer (ITS1) of the ribosomal gene cluster, analysed with this new pipeline and compared

with published results from the same populations but using cloning and Sanger sequencing method.

I detected that relative frequencies of C. mesnili ITS1 sequence types were similar when compared

to other sequencing methods, thereby validating the bioinformatic pipeline, and showing the suitab-

ility of 454 platform to perform population biology analyses. After this validation, in Chapter 3, I

analysed the population dynamics and host-genotype specificity of C. mesnili, in long-term samples

collected from a single lake, and based on the sequence variations in the ITS1 region. I found that

the most abundant  C. mesnili ITS1 sequence type decreased, while rare sequences increased over

the course of the study (4 years). The observed pattern is consistent with the negative frequency-de-

pendent selection. However, only a weak signal of host-genotype specificity between C. mesnili and

Daphnia genotypes was detected, which supports the lack of host-genotype specificity in this sys-

tem. Finally, in Chapter 4, I described the patterns of geographical population structure, intraspe-

cific  genetic  variation,  and  recombination  of  two  Daphnia-infecting  microsporidia:  Berwaldia

schaefernai and the unknown microsporidium MIC1. These patterns were used to predict the exist-

ence of secondary hosts in the life cycle of these microsporidia. I observed little variation among B.
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schaefernai parasite strains infecting different host populations; in contrast, there was significant

genetic variation among populations of MIC1. Additionally, ITS genetic diversity was lower in B.

schaefernai than in MIC1. These findings suggest that the presumed secondary host for B. schae-

fernai is expected to be mobile, while in MIC1 the secondary host (if exists) does not appear to fa-

cilitate dispersal to the same degree. Finally, recombination analyses indicated cryptic sex in  B.

schaefernai and pure asexuality in MIC1. All these findings enable a more comprehensive under-

standing of the biology of Daphnia-infecting microparasites and the genetic basis of Daphnia-mi-

croparasites coevolution in natural populations.

x



Zusammenfassung

Die “Red Queen”-Hypothese besagt, dass die wechselseitige Selektion in Wirt-Parasit-Interaktionen

und die hierdurch bedingte Notwendigkeit kontinuierlicher Anpassung zu einer Beschleunigung der

Evolution solcher Systeme führen sollte. Ein Prozess, der eine solch rapide wechselseitige Anpas-

sung antreibt, wird als negativ frequenzabhängige Selektion bezeichnet. In diesem Fall nimmt die

Frequenz der häufigsten Genotypen mit der Zeit ab, da sie mit höherer Wahrscheinlichkeit von koe-

volvierenden Parasiten infiziert werden.  Dieser angenommene Mechanismus für Wirt-Parasit-Koe-

volution wurde häufig in Laborexperimenten unter kontrollierten Bedingungen untersucht. Im Hin-

blick auf Freilandversuche mit natürlichen Populationen wurden zeitliche Veränderungen der relati-

ven  Genotypfrequenzen  überwiegend  für  Wirtsorganismen  untersucht,  da  die  Untersuchung  der

Parasitendynamik im Zeitverlauf  kompliziert  blieb.  Da die  Dynamik von Parasitenpopulationen

hochempfindlich auf Umweltveränderungen reagiert, sind Studien unter natürlichen Bedingungen

essentiell für das Verständnis von Wirt-Parasit-Koevolution.

Das für Fragen der Koevolution am häufigsten untersuchte Modellsystem sind die Wasser-

flöhe der Gattung Daphnia und ihre Mikroparasiten. In dieser Doktorarbeit untersuchte ich die Po-

pulationsstruktur zweier wichtiger Mikroparasiten von Daphnia:  Caullerya mesnili (Kapitel 2 und

3) und Microsporidia (Kapitel 4). Zuerst entwickelte ich eine neue bioinformatische Pipeline für die

Analyse von durch Next Generation Sequencing (NGS)-Plattformen generierte molekulare Daten

(Kapitel 2). Der erste interne transkribierte Spacer (ITS1) des ribosomalen Genclusters von C. mes-

nili–Populationen aus verschiedenen Wasserreservoiren in der Tschechischen Republik wurde se-

quenziert, mit der neuen Pipeline analysiert und mit auf Klonierung und Sanger-Sequenzierung be-

ruhenden publizierten Ergebnissen derselben Populationen verglichen. Die relativen Frequenzen der

C. mesnili ITS1-Sequenztypen waren mit den Ergebnissen der anderen Sequenziermethoden ver-

gleichbar,  wodurch die  bioinformatische  Pipeline  sowie  die  Eignung  der  454-Plattform für  die

Durchführung populationsbiologischer Analysen bestätigt wurden. Kapitel 3 beschreibt die Analyse

der Populationsdynamiken und  der Wirtsgenotyp-Spezifität von C. mesnili mithilfe von Langzeit-

proben eines einzelnen Sees auf der Basis von Sequenzvariationen in der ITS1-Region.  Ich konnte

zeigen, dass der häufigste C. mesnili ITS1-Sequenztyp im Verlauf der Studie (vier Jahre) abnahm,

während seltene Sequenzen zunahmen.  Das beobachtete Muster stimmt mit negativer frequenzab-

hängiger Selektion überein. Allerdings wurde nur ein schwaches Signal für Wirtsgenotyp-Spezifität

zwischen  C. mesnili- und  Daphnia-Genotypen nachgewiesen, was das Fehlen von Wirtsgenotyp-

Spezifität in diesem System unterstützt. Kapitel 4 beschreibt die geografische Populationsstruktur,
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intraspezifische genetische Variation und Rekombination zweier Daphnia-infizierender Mikrospori-

dien, Berwaldia schaefernai und der unbekannten Mikrosporidium-Art MIC1. Diese Muster wurden

verwendet, um die Existenz sekundärer Wirte im Lebenszyklus dieser Mikrosporidien vorherzusa-

gen. Ich beobachtete geringe Variation zwischen B. schaefernai-Parasitenstämmen, die verschiede-

ne Wirtspopulationen infizieren. Im Gegensatz dazu zeigte sich signifikante genetische Variation

zwischen MIC1-Populationen. Zusätzlich war die genetische Diversität von ITS in B. schaefernai

geringer als in MIC1. Diese Ergebnisse legen nahe, dass der angenommene sekundäre Wirt für B.

schaefernai mobil ist, während der sekundäre Wirt von MIC1 (falls vorhanden) anscheinend die

Verbreitung nicht  im selben Maß ermöglicht.  Abschließend deuten Rekombinationsanalysen auf

verborgene geschlechtliche Fortpflanzung in B. schaefernai und reine Asexualität in MIC1 hin. Alle

diese Ergebnisse verhelfen zu einem umfassenderen Verständnis der Biologie von Daphnia-infizie-

renden Mikroparasiten und der genetischen Basis von Daphnia-Mikroparasiten-Koevolution in na-

türlichen Populationen.
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Chapter 1 – Introduction

1.1. Introductory notions to the Red Queen Hypothesis

One of the most important questions in Evolutionary Biology is why sexual reproduction exists

even  when  it  usually  implies  a  50%  fitness  disadvantage  compared  to  asexual  reproduction

(Dawkins, 1989; Maynard Smith, 1978), assuming that there is no sex ratio distortion  (Hurst and

Pomiankowski, 1991; Werren, 1987). One of the widely accepted explanations for this is the Red

Queen Hypothesis  (RQH). This hypothesis  stemmed from the observation that most population

show constant extinction rates over time, which led to a proposal that extinction is more related to

biotic factors, rather than abiotic ones (Van Valen, 1973). However, RQH is now more associated

with debates related with the parasite-driven evolution of sex (reviewed in Brockhurst et al., 2014)

and host-parasite coevolution (reviewed in Lively, 2010). According to the RQH, reciprocal selec-

tion arising from host-parasite interactions should accelerate evolutionary rates through the need for

continual adaptation and counter-adaptation. Such rapid reciprocal adaptation can be driven by dir-

ectional selection or negative frequency-dependent selection, being called “arms race dynamics”

(ARD) and “fluctuating selection dynamics” (FSD) respectively  (Brockhurst and Koskella, 2013;

Gaba and Ebert, 2009; Gandon et al., 2008). In ARD, recurrent selective sweeps of novel host res-

istance and parasite infectivity alleles occur through time, leading to increases in the parasite's host

range and host resistance traits (Gandon et al., 2008). Alternatively, in FSD, common genotypes of a

given host have a higher probability of becoming infected by coevolving parasites than do rare gen-

otypes. In such case, rare uninfected host genotypes display a fitness advantage and eventually take

over the previously common host genotypes. At this point, parasite genotypes that are able to infect

those surviving host genotypes will be favoured over those that are still adapted to previously com-

mon host (Fig. 1.1) (Clarke, 1976; Hamilton, 1980; Jaenike, 1978). Since sex is efficient at generat-

ing genetic diversity, this parasite-driven negative frequency-dependent selection could explain the

long-term maintenance of sex in host and parasite populations  (Bell,  1982; reviewed in Lively,

2010). However, a prerequisite for the FSD is the existence of genetic specificity in host-parasite in-

teractions, where the outcome of infection depends on the genotypic identity of both host and para-

site (Dybdahl et al., 2014).
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Figure 1.1. Allele frequency dynamics during host-parasite coevolution according to the FSD.

Black lines indicate host genotypes and red lines indicate parasite genotypes. In this model, it is as-

sumed that every host genotype has a specific parasite genotype. This assumption is represented by

the type of line (continuous or discontinuous).

1.2. Fluctuating selection dynamics in natural populations

The strength and the response to parasite-mediated selection in nature vary across space and time.

Such variation can be caused by selection mosaics across the landscape (Forde et al., 2004) or can

result from temporal factors such as the seasonality of epidemics (Altizer et al., 2006). However, the

majority of the studies about host-parasite dynamics to date were performed in the laboratory under

controlled conditions (e.g. Decaestecker et al., 2007; Duffy and Sivars-Becker, 2007; Koskella and

Lively, 2009; Schulte et al., 2010). Although such experiments are necessary to reduce environ-

mental noise which can otherwise conceal important factors and processes, they tend to oversim-

plify natural conditions. Since parasite population dynamics are highly sensitive to environmental

changes  (reviewed in Wolinska and King, 2009), studies under natural conditions are essential to

understand host-parasite coevolution.

1.2.1. Spatial scale of parasite populations 

Most of the studies about parasites populations focus on the spatial genetic structure, which can af-

fect the outcome of host-parasite interactions such as the parasite specialisation (Tripet et al., 2002)

or the evolution of virulence  (Thrall and Burdon, 1997). These two questions are relevant in epi-
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demiological studies for disease control and prediction, as shown in clinical reports (e.g. Arnott et

al., 2012; Brownstein et al., 2003; Raso et al., 2006). Specifically, estimates of parasite gene flow

are fundamental to understand coevolutionary processes. Theoretical models show that the relative

rate of gene flow could change parasite adaptation to local hosts and, thus, influence host-parasite

dynamics (Frank, 1991). In fact, high parasite migration rates relative to those of their hosts are as-

sociated with parasite local adaptation by infectivity but not by virulence (Greischar and Koskella,

2007). For example, the introduction of novel alleles via gene flow among parasite populations may

counteract host evolutionary responses  (Slatkin, 1987). While in some cases limited parasite dis-

persal resulted in isolation-by-distance scenarios  (e.g. Koop et al., 2014; Tanabe et al., 2013) in

other cases parasite dispersal homogenised local patterns of population subdivision  (e.g. Ocaña-

Mayorga et al., 2010; Reuter et al., 2008).

1.2.2. Temporal changes in host populations

Field studies have demonstrated that host frequencies are tracked by parasites in a number of or-

ganismal systems,  like in plants – fungi (e.g.  Burdon and Thompson, 1995; Siemens and Roy,

2005), Potamopyrgus antipodarum (Gastropoda) – Microphallus sp. (Trematoda) (e.g. Jokela et al.,

2009; King et al., 2009), Cristatella mucedo (Bryozoa) – Tetracapsula bryozoides (Myxozoa) (Ver-

non et al., 1996), and  Daphnia spp. (Cladocera) – microparasites  (e.g. Decaestecker et al., 2007;

Little and Ebert, 1999; Wolinska and Spaak, 2009) systems. Below is a summary of the results in

the mentioned systems. 

Regarding the plant – fungi interactions, Linum spp. – Melapsora lini is one of the most well

studied systems in phytopathology. In fact, this system was used to demonstrate the gene-for-gene

relationship, in which the host resistance and parasite ability to cause disease in controlled by pairs

of matching genes  (Flor, 1971). Using this system, spatial differences between populations of  L.

marginale were found and such populations were described based on the proportion of resistant

phenotypes.  M. lini showed a similar spatial pattern based on the occurrence and frequency of its

four most common races (Jarosz and Burdon, 1991). In a field study performed between 1981 and

1991 in Kiandra, New South Wales (Australia), the most common host genotypes decreased over

time (Burdon and Thompson, 1995). These changes in frequencies of the most common host resist-

ance genotypes were explained by linkage between resistance genes and the presence of  M. lini

races which are virulent for specific host phenotypes (Burdon et al., 1999). In other plant – fungi

system (Boechera holboelli – Puccinia monoica) similar results were obtained. B. holboelli is a bi-
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ennial or short-lived perennial apomictic (asexual by seed) plant distributed over Greenland and

eastern Canada. Recently, its use for evolutionary and ecological genomics was proposed because it

is  phylogenetically related with  Arabidopsis thaliana (Rushworth et  al.,  2011).  This plant is  at-

tacked by a parasitic rust fungus, P. monoica, which inhibits flowering and transforms host morpho-

logy to facilitate its own sexual reproduction via pseudoflowers. In a ten-year field study, parasitism

was lower in population with higher host genetic diversity as well as the evidence of local host ad-

aptation in the fungus was detected. Although all these results supports the FSD, when herbivory by

weevils was also incorporated,  the parasitism decreased as host clone frequency and fitness in-

creased, indicating that FSD is affected also by other interactions such as predation (Siemens and

Roy, 2005).

P. antipodarum, the New Zealand mudsnail, is an ovoviviparous and parthenogenetic snail

which is an invasive species. Native populations in New Zealand consist of diploid (sexual) and

triploid parthenogenetically cloned females and sexually functional males  (Dybdahl  and Lively,

1995). These native populations of P. antipodarum are infected by Microphallus sp., a highly pre-

valent trematode which is able to completely sterilise infected snails (Jokela and Lively, 1995). In a

field study performed between 1994 and 2005, the most common clones of snails were almost com-

pletely replaced by initially rare clones in the shallow and mid-water habitats of Lake Alexandrina

(New Zealand), while sexual snails persisted in both habitats. The replacement of the most common

clones by the rare clones was due to the susceptibility of the common clones to being infected by

sympatric parasites (Jokela et al., 2009).

C.  mucedo is  a  colonial,  facultatively  sexual  freshwater  bryozoan  that  has  the  unusual

strategy of dispersing via asexually generated propagules. C. mucedo has a high genetic variability

within populations, even in asexual populations  (Freeland et al., 2000), and independently of the

geographic distances among sites (Hatton-Ellis et al., 1998). In these populations, there is a highly

prevalent parasitic myxozoa, T. bryozoides, that infects the body cavity and generates swelling, mal-

formations and colony degeneration (Okamura, 1996). In a field study performed in the Bear Park

Lake near Reading in Berkshire (United Kingdom) between 1992 and 1994, the two most common

host clones varied in abundance and the significantly more common clone in the first  year de-

creased its abundance in the third year. However, there was no evidence of high infection rate of the

most common clone by the parasites which could be due to the existence of time-lags between para-

site adaptations and the parasite-mediated decline of hosts (Vernon et al., 1996).

Finally, although the  Daphnia spp. – microparasites system will be introduced in detail in
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the section 1.4. of this thesis, here I focus on the evidences suggesting that Daphnia frequencies are

tracked by parasites. In a field work performed during the summer of 1996 and spring of 1997 in six

ponds between Northwest Switzerland and Northern Germany, temporal changes were observed in

the proportion of parasitised Daphnia based on the host clonal frequencies and the population ge-

netic characteristics. However, only three of these six ponds  showed clonal dynamics  consistent

with FSD (Little and Ebert, 1999). In another field study, performed in spring and autumn of 2003

and 2004, the most common clone in Daphnia populations across several North Italian and Swiss

lakes was often observed to decrease in frequency over time, supporting the FSD. In uninfected

populations, however, the decrease was not observed (Wolinska and Spaak, 2009). Finally, a time-

shift experiment using Daphnia magna and Pasteuria ramosa, a Gram-positive obligate intracellu-

lar bacteria showed that the parasite quickly adapts to its host. Also the observed temporal variation

in parasite infectivity and virulence supported the FSD (Decaestecker et al., 2007). 

1.2.3. Temporal changes in parasite populations 

The majority of field studies investigated temporal changes in relative frequencies of host geno-

types only, because tracking parasite dynamics over time often remained difficult in natural condi-

tions  (reviewed  in  Penczykowski  et  al.,  2015).  Surprisingly,  except  for  the  Linum  marginale-

Melampsora lini system (Thrall and Burdon, 2003), the Red Grouse-Trichonstrongylus tenuis sys-

tem  (Hudson and Dobson, 1997) and the St. Kilda Soay Sheep Project (Gulland and Fox, 1992;

Gulland, 1992; Wilson et al., 2004), the majority of the studies on temporal changes in parasite pop-

ulations and host-parasite specificity to date have been performed in the laboratory under controlled

environmental  conditions  (reviewed  in  Penczykowski  et  al.,  2015;  Sadd  and  Schmid-Hempel,

2009). Studies under natural conditions are essential to understand host-parasite coevolution and to

control diseases (Altizer et al., 2006).

1.2.4. Molecular identification of parasites 

Traditionally, parasites were identified according to mainly morphological traits, although the in-

formation from epidemiology, host distribution and parasite physiology were also used to classify

parasite strains (reviewed in McManus and Bowles, 1996). However, the existence of cryptic spe-

cies of parasites questions the use of these traditional identification methods  (e.g. Hanelt  et al.,

2015; Perkins, 2000; Vilas et al., 2005). Additionally, there are life stages such as eggs and larvae

that are morphologically indistinguishable between phylogenetically related parasite species  (re-
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viewed in Criscione et al.,  2005). For this reason, there is a trend to use molecular markers to

identify parasites, especially their presence or absence (e.g. Djimde et al., 2001; Fischer et al., 2002;

Knight et al., 1999). However, these molecular markers are often not able to differentiate among

strains of the same parasite species, which would otherwise be necessary to study the parasite popu-

lation dynamics at population level.

1.3. Internal transcribed spacer and its use as a molecular marker

The internal transcribed spacer (ITS) is the spacer DNA situated between the small and the large

subunit ribosomal RNA (rRNA) genes. While in prokaryotes and in several Microsporidia (Nosema

being an exception; see below) there is only one ITS region, in Eukaryotes there are two ITS re-

gions; the ITS1 is located between the small subunit and 5.8S rRNA genes, while ITS2 is between

5.8S and the large subunit rRNA genes. ITS1 seems to be related to the prokaryotic ITS, while ITS2

is considered to be originated as an insertion that interrupted the ancestral large subunit rRNA gene

(Lafontaine and Tollervey, 2001).

The rRNA gene structure is well preserved in all known phylogenetic groups, except in the

Nosema/Vairimorpha group of Microsporidia (see below). For this reason, the ITS region is often

used in molecular ecology and molecular systematics. In the former case, ITS region is mostly em-

ployed in Fungi, where it has been recommended as the universal fungal barcode sequence (Schoch

et al., 2012). However, the combination of ITS sequences with other molecular markers is highly re-

commendable in some clinical molds (Balajee et al., 2009). Alternatively, as published ITS primers

tend to amplify specific taxa to the detriment of other, the design of new primers for ITS sequences

was suggested (Anderson et al., 2003; Bellemain et al., 2010). In the case of molecular systematics,

ITS was employed at specific levels in bacteria (Boyer et al., 2001; Roth et al., 1998), and mainly in

plants  (e.g. Baldwin, 1992; Downie et al., 1998; Suh et al., 1993) and fungi  (Iwen et al., 2002;

Lloyd-MacGilp et al., 1996; Scorzetti et al., 2002). However, ITS substitution rate is highly variable

between lineages in plants, and for this reason it is recommended to calibrate the molecular clock

when ITS is used to study the evolution of a specific taxonomical group (Kay et al., 2006).

Although the rRNA gene structure is usually well preserved, such structure is highly vari-

able in the Nosema/Vairimorpha group inside the Microsporidia. In fact, the rearrangement between

small and large subunits and the presence of a 5S subunit at the end of the ribosomal RNA leads to

the existence of an ITS2 between the small and the 5S subunits, as described in N. bombycis, N. an-
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theraceae, N. plutellae and N. spodopterae (Huang et al., 2004; Tsai et al., 2005; Wang et al., 2006).

Moreover, as the ribosomal RNA repeat unit is present in multiple copies throughout the genome,

each copy has the potential for mutation, resulting in intragenomic variation. In fact, the presence of

transcriptionally active fragmented copies of rRNA genes that coexist with the intact rRNA copies

within the same genome was described in several isolates of N. bombycis (Iiyama et al., 2004). All

this structural variation of the rRNA genes is a potential source of confusion in rRNA phylogenies

(Ironside, 2007) and leads to a high variability in both ITS1 and ITS2 sequences in Nosema/Vairio-

morpha (Ironside, 2013). Such high variability could be due to recombination, which may be con-

sidered  as  evidence  of  “cryptic  sex”  in  Microsporidia  (Ironside,  2013;  Krebes  et  al.,  2014).

Moreover, transposition events in ribosomal markers (including the ITS) are another source of high

genetic variability (Iiyama et al., 2004; O’Mahony et al., 2007; Tsai et al., 2005). 

1.4. Daphnia-microparasites as a host-parasite system

One of commonly explored model systems to address coevolutionary questions are the water fleas

of  the  genus  Daphnia (Crustacea:  Cladocera)  and  their  microparasites  (Ebert,  2008;  Gaba and

Ebert, 2009; Stollewerk, 2010). Daphnia are small, largely transparent crustaceans that are found in

most still freshwater bodies around the world. Such genus is probably the best-studied subjects in

ecology, especially species  D. magna and  D. pulex (Ebert, 2005; Stollewerk, 2010). They can be

kept as laboratory cultures on a diet of unicellular green algae. In fact, most members of this genus

are able to reproduce both by parthenogenesis and sexually, switching a mode of reproduction de-

pending on external factors (Ebert, 2008, 2005). The parthenogenetic reproduction allows obtaining

clonal individuals that could be maintained in laboratory for years, with minimal genetic changes

(Ebert, 2008).

As  Daphnia spp. can be infected by several microparasites, such as fungi (including mi-

crosporidia), protozoa, oomycetes and bacteria (Ebert, 2008, 2005; Green, 1974), there is a need to

decide on few microparasites as a model parasites. The best choice would be considering the most

common microparasites infecting Daphnia. One of those is Caullerya mesnili (Ichthyosporea: Ich-

thyophonida; Bittner et al., 2002; Lohr et al., 2010a; Wolinska et al., 2007), which causes regular

epidemics in large permanent lakes in Central Europe, reaching prevalences up to 40% (Wolinska et

al., 2011a, 2007). C. mesnili is a highly virulent parasite that reduces the survival (from 36 days in

healthy host to 21 days in infected host) and reproduction rate (from 23 to 2 offspring per healthy

7



and infected host, respectively) of its host (Lohr et al., 2010b). In Daphnia populations where C.

mesnili is present, the existence of an acquired resistance to this parasite was described (Schoebel et

al., 2010). C. mesnili was shown to be involved in driving frequencies of host species' abundance

and genotypes (Wolinska et al., 2006) and its growth is mainly influenced by temperature (Schoebel

et al., 2011) and the cyanobacteria abundance (Tellenbach et al., submitted). In a recent study,  C.

mesnili populations from seven water reservoirs in Czech Republic were shown to be significantly

structured across space, and the frequency of C. mesnili genotypes varied significantly over time.

Both observations suggest a limited dispersal of C. mesnili and a rapid evolutionary turnover (Wol-

inska et al., 2014).

Another relevant group of Daphnia microparasites are microsporidia. These parasites belong

mainly to the Clade I or “Aquasporidia” class, which infect freshwater animals  (Vossbrinck and

Debrunner-Vossbrinck, 2005). Microsporidian parasites of Daphnia have received considerable at-

tention due to their  complex life cycles  (Refardt et  al.,  2008, 2002; Weigl et  al.,  2012).  In the

present thesis, the focus was put on two abundant microsporidia infecting Daphnia communities in-

habiting large lakes and reservoirs in Central Europe:  Berwaldia schaefernai and the microspor-

idium MIC1 (Wolinska et al., 2009). Both of these microsporidia species infect the body cavity of

their host, where a massive amount of spores then proliferate (Vávra and Larsson, 1994). They are

closely  related  to  Marssoniella  elegans (a  parasite  of  the  copepod  Cyclops  vicinus),  Senoma

globulifera (a parasite of the malaria mosquito Anopheles messeae), and other parasites of Daphnia,

including Larssonia obtusa, Gurleya vavrai and Binucleata daphniae (Weigl et al., 2012). Unlike S.

globulifera and B. daphniae, which are monoxenous parasites (Refardt et al., 2008; Simakova et al.,

2005), L. obtusa, G. vavrai and B. schaefernai cannot be maintained in the laboratory, which could

suggest the existence of an indirect life cycle with a secondary host (Refardt et al., 2002; Vávra and

Larsson, 1994). Moreover, their relative species M. elegans is a dixenous parasite, having copepods

as its main host and likely using mosquitoes or caddisflies as secondary hosts (Vávra et al., 2005;

Vossbrinck et al., 2004). Although abiotic factors such as temperature are important to the aquatic

microsporidian growth (Dunn et al., 2006; Grabner et al., 2014), it is assumed that the monoxenous

life cycles of S. globulifera and B. daphniae are due to the loss of the ancestral character (i.e. the

use of a secondary host) and it has been predicted that B. schaefernai and MIC1 may also have a

secondary insect host, which would confer  previously observed  substantial potential for dispersal

(Weigl et al., 2012; Wolinska et al., 2011b).
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1.5. Outline of the thesis

The main goal of this PhD project was to analyse the population structure of two major endopara-

sites of Daphnia: Caullerya mesnili and microsporidia. To perform this kind of study, a new bioin-

formatic pipeline needed to be developed in order to be able to analyse molecular data generated by

next-generation-sequencing (NGS) platform. NGS technologies provide a cheaper and faster altern-

ative to sequencing DNA than traditional methods like cloning and Sanger sequencing (reviewed in

Grada and Weinbrecht, 2013). However, the consideration of the number of taxon-specific reads as

an indicator for the abundance of different taxa (semi-quantitative analysis) is still debated because

NGS techniques produce several types of artefacts (e.g. Amend et al., 2010; Baldrian et al., 2013;

Deagle et  al.,  2013),  such as the presence of homopolymer and indel misinterpretations in 454

pyrosequencing platform (Margulies, 2005) and the increase of single-base errors and inverted re-

peats or GGC motifs in Illumina (Nakamura et al., 2011). In order to minimise these artefacts, the

most abundant sequences per sequence cluster could be considered as the presumed ancestral allelic

reference (Sommer et al., 2013). These sequences are called “representative sequences”.

First, in Chapter 2, a new bioinformatic pipeline based on the concept of representative se-

quences was developed and applied to data of C. mesnili populations from different water reservoirs

in the Czech Republic and compared with published results from the same populations but using

Sanger sequencing method. 

In Chapter 3, samples of infected  Daphnia population from lake Greifensee (Switzerland)

were collected during four consecutive years,  and analysed with 454 pyrosequencing. Our new

bioinformatic pipeline was then applied to analyse C. mesnili sequences and the population dynam-

ics and host-genotype specificity of this parasite were assessed based on the sequence variation in

the ITS1 region.

Finally, in Chapter 4, populations of B. schaefernai and the unknown microsporidium MIC1

sampled from seven water reservoirs in the Czech Republic, were sequenced on 454-platform and

further  analysed  to  describe  their  genetic  diversity and the  patterns  of  geographical  population

structure. All this information was useful to infer the biology of these parasite species. Also here,

our new bioinformatic pipeline was employed.

The thesis concludes with Chapter 5, providing a general discussion and suggestions for fu-

ture research.
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Chapter 5 – Discussion

5.1. General discussion

Using molecular techniques and bioinformatic analyses, this PhD project aimed to obtain a better

understanding of population structure of C. mesnili and microsporidian parasites from natural popu-

lations of Daphnia. Such information would allow a comprehensive understanding of the biology of

Daphnia-infecting microparasites  as  well  as population dynamics of host-parasite  under  natural

conditions.

5.1.1. The use of Next Generation Sequencing platforms in population biology

Before discussing the parasite population structure and its dynamics, accurate methods for identific-

ation of parasites' strains or variants are needed. As discussed in Chapter 2, there is a controversy

about the use of Next Generation Sequencing (NGS) platforms in ecological studies, especially con-

sidering the number of taxon-specific reads as an indicator for the abundance of the different taxa

(e.g. Amend et al., 2010; Baldrian et al., 2013; Deagle et al., 2013). Other pipelines such as SES-

AME Barcode (Piry et al., 2012) and the unnamed Bálint's automated metabarcoding pipeline for

Fungi (Bálint et al., 2014) were also developed to identify and (semi-)quantify variation within pop-

ulations using distance methods and neighbour-joining clustering. However, distance and neigh-

bour-joining methods are less robust and precise than network methods to identify representative

sequences (Giessler and Wolinska, 2013). For this reason, I developed the Quantification of Repres-

entative Sequences (QRS) pipeline as a modular pipeline to analyse variation within population us-

ing  network-based  approaches,  which  consider  the  existence  of  reticulations  and  polytomies

(Posada and Crandall, 2001). 

As provided in Chapter 2, QRS was validated by doing two different comparisons. First, the

frequencies of representative ITS1 sequences derived from 454 and Sanger datasets from C. mesnili

Czech Republic populations were compared with each other (see Chapter 2 for details). In this com-

parison, the frequencies were similar between the sequencing methods, indicating the suitability of

454 to perform population biology analyses.  Second, a subset  of a  published dataset from 18S

rDNA of intertidal meiofauna of Alabama (Brannock et al., 2014) was processed for metagenomics

applications using three different metabarcoding programs: QRS, mothur (Schloss et al., 2009) and
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UPARSE (Edgar, 2013). Obtained results were similar between the pipelines when all samples were

pooled (Data S3 from González-Tortuero et al., 2015). However, if we consider each sample separ-

ately, the results differ between the employed pipelines (Fig. 5.1). This finding is consistent with re-

cent publications  about the lack of reproducibility in metabarcoding studies,  which it  is  due to

mainly the use of greedy clustering algorithms to obtain the different operational taxonomic units

(OTUs; Chen et al., 2013; He et al., 2015; Koskinen et al., 2014). In fact, QRS was the only bioin-

formatic pipeline able to detect phyla that were not present in other datasets, which could be consi-
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dered as an indicator that the QRS pipeline is more sensitive in clustering sequences to OTUs than

other standard metabarcoding programs. These differences between results  obtained by different

pipelines could lead to biases in the interpretation of alpha and beta diversity due to the over- or un-

derestimation of the number of real OTUs in the samples (Chen et al., 2013; He et al., 2015). Sev-

eral solutions such as the implementation of the distribution of the sequences across samples in

clustering algorithms (Preheim et al., 2013) and the use of graph theory-based algorithms (Wang et

al.,  2013) were proposed as potential  alternatives to greedy clustering algorithms. Nevertheless,

there are also other potential biases that could lead a misrepresentation of OTUs such as the misid-

entification  of  chimeric  sequences  (Edgar,  2013) and  the  different  outputs  from de-noising  al-

gorithms (Koskinen et al., 2014).

5.1.2. C. mesnili population dynamics and host-genotype specificity

In Chapter 3, C. mesnili population dynamics were tracked in a natural Daphnia population, by ex-

ploring samples collected over four years, from a single study lake, Greifensee. I tested if the most

common parasite genotype decreased over time; this being expected according to the fluctuating se-

lection dynamics; see Chapter 1 for more information. Under the assumption of this theory, com-

mon parasites, which presumably are adapted to the most common host genotypes, are in disadvant-

age and must then decrease in frequency (Clarke, 1976; Hamilton, 1980; Jaenike, 1978). In the C.

mesnili population of lake Greifensee, I detected a decrease of the most common ITS1 representat-

ive sequence and an increase of the rare representative sequences. Although this observation may

suggest a fluctuating selection dynamics, there are other potential explanations that could explain

the decrease of the most common sequence, such as changes in the external environment and a

parasite yearly expansion after a bottleneck. Specifically, an alternative explanation for the parasite

genetic change in frequency over time could be that different parasite genotypes are being favoured

over time due to changes in the external environment (reviewed in Wolinska and King, 2009). Inter-

action between parasites and temperature was significant in the  C. mesnili-Daphnia system when

assessed experimentally (Schoebel et al., 2011). However, there is no indication that conditions in

Greifensee have changed in any particular direction within the four years examined. Another altern-

ative explanation is that a yearly expansion following a bottleneck might explain the parasite ge-

netic change in frequency seen in the lake Greifensee. This potential explanation will be discussed

in more detail in the Section 5.2.3.

In Chapter 3, only a weak signal in the host-parasite specificity between  C. mesnili and
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Daphnia genotypes was detected. This observation is supported by a previous study where the dis-

tribution  of  C. mesnili  ITS1 sequences did not differ between Daphnia hybrids and their parental

species (Wolinska et al., 2014). The lack of specificity between hosts and parasites could be attrib-

uted also to high levels of parasite gene flow (e.g. Olival et al., 2013) and the influence of sym-

bionts in host-parasite interactions (Bordenstein and Theis, 2015; Kwiatkowski et al., 2012). In the

latter case, the symbionts and hosts interact in a biological market, in which the symbionts are able

to outcompete parasites if the host bring resources to the symbionts (Noë and Hammerstein, 1995;

Sachs and Simms, 2006). Moreover, as discussed in Chapter 3, there are two other explanations to

clarify host  specificity and its related factors: the specialisation of parasites and the relationship

between host specificity and parasite transmission mode.

Parasites tend to infect specific hosts that are phylogenetically (e.g. Bellec et al., 2014; Ped-

ersen et  al.,  2005;  Sasal  et  al.,  1999) and/or  eco(physio)logically related  (Adamson and Caira,

1994). The phylogenetic relationship between hosts and parasites are used at a macroevolutionary

scale to study the divergence of each species and to test if this divergence in host and parasites is

mirrored, having a parallel speciation (Fahrenholz, 1912). However, this kind of studies cannot of-

fer direct insight into the coevolutionary process or rate at which change is occurring within popula-

tions  (de Vienne et al., 2013; Penczykowski et al., 2015). The physiological relationship between

both players results from the interaction between parasites' virulence factors and host's resistance

genes. Usually, genetic specificity is explained according to theoretical models such as the gene-for-

gene  (Flor, 1971; reviewed in Thompson and Burdon, 1992), the matching alleles  (e.g. Grosberg

and Hart, 2000), the inverse gene-for-gene (Fenton et al., 2009) and the hologenome (Bordenstein

and Theis, 2015) hypotheses. In most host-parasite systems, virulence factors and resistance loci are

unknown although their identification is necessary in order to reveal their interaction (reviewed in

Penczykowski et al., 2015). In clinical studies, virulence factors are often used to identify parasite

strains instead of neutral markers (e.g. Mooi et al., 1999; Ruiz et al., 2002; Xiang et al., 1995). Vir-

ulence factors are normally present in multiple copies and they could be recombined due to the

presence of hypervariable regions (e.g. Baldo et al., 2005; Bhat et al., 1991; Zhang et al., 1997). The

presence of different copies of virulence factors allows the parasite to infect more potential hosts,

increasing the parasite transmission rate (Frank, 1996). All these genes could evolve under balanced

selection to optimise parasite virulence because highly virulent parasites kill hosts too quickly to al-

low their transmission (Alizon et al., 2009). The same applies for host resistance genes, which are

hypervariable in order to protect against new potential parasites  (e.g. Barrangou et al., 2007; Par-
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niske et al., 1997; Schatz, 2004). However, the expression of resistance genes could imply a reduc-

tion  of  the  reproductive  traits  supporting  a  trade-off  between  the  immunity  and  reproduction

(French et al., 2007; Zuk and Stoehr, 2002). For this reason, the identification of virulence factors

and resistance genes is a proper approach to explain the genetic specificity between hosts and para-

sites, but not to identify parasite strains or variants. The latter must be conducted with neutral mark-

ers.

5.1.3. Existence of sexuality in Daphnia-infecting microsporidia

In Chapter 4, the patterns of geographic population structure, intraspecific genetic variation, and re-

combination events of the ITS sequence were compared between two microsporidia taxa: Berwal-

dia and MIC1. This was done in order to better understand the biology of these parasite species. The

lack of geographic variation in  Berwaldia suggested the existence of a mobile secondary host, as

well as the geographical differences between the two MIC1 populations could indicate that the sec-

ondary host (if exists) does not appear to facilitate dispersal to the same degree. Moreover, the re-

combination tests pointed out that there is cryptic sex in  Berwaldia and pure asexuality in MIC1.

Although gene recombination tests  have been used to demonstrate cryptic sex in Microsporidia

(Ironside, 2013; Wilkinson et al., 2011), such analyses may not be sufficient to unambiguously con-

firm the presence of sexual cycles in this  group, because multiple and heterogeneous copies of

rDNA could recombine nonhomologously (Lee et al., 2014). Thus, other evidence is needed, such

as confirmation of the existence of polyploid stages or the presence of meiosis-related genes. 

For a long time, microsporidia were presumed to be asexual organisms. However, if we con-

sider that they could have a fungi-like ancestor, it is reasonable that such ancestor could have sexual

reproduction (Dyer, 2008; Lee et al., 2008). Probably, sex has been eliminated in several microspor-

idian species as a consequence of the morphological miniaturisation and genomic compaction (Cor-

radi and Slamovits, 2011; Haag et al., 2014), which are considered adaptations to the parasitic life-

style (Poulin and Randhawa, 2015). Nevertheless, the existence of diplokaryotic cells (i.e. cells with

binucleated nucleus; e.g. Freeman and Sommerville, 2009; Ironside, 2007; Vávra et al., 2005) or

plurinucleated cells (e.g. Bylén and Larsson, 1994; Leiro et al., 1996; Lom et al., 1989; Vagelli et

al., 2005; Vávra and Larsson, 1994) indicated the existence of diploid stages in the life cycles of

several microsporidian species. Due to these observations, unusual meiotic processes in microspor-

idia were proposed (reviewed in Lee et al., 2014). In fact, if there is any sexual cycle present, the

different sets of chromosomes in polyploid species must be sorted during meiosis to produce bal-
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anced gametes.

Although microsporidian genomes are the most reduced ones across eukaryotes (Katinka et

al., 2001; Slamovits et al., 2004), the presence of genes related with meiosis was described in some

microsporidial  species  such as  Antonosema locustae,  Encephalitozoon cuniculi,  Enterocytozoon

bieneusi and Nematocida parisii. However, the majority of these genes are also related with DNA

reparation, questioning their relevance in microsporidian cryptic sexuality (reviewed in Lee et al.,

2014). Recently, the presence of a sex locus in Zygomycota was described in several microsporidia,

including Enc. cuniculi, Enc. intestinalis, Enc. hellem,  Ent. bieneusi, A. locustae and Nosema cer-

anae (Lee et al., 2010, 2008). The sex locus consists of a triose phosphate transporter, an unknown

additional ORF, a high-mobility-group (HMG) transcription factor and an RNA helicase gene. The

HMG genes are named sexP/M, and these genes are encoded in the positive and the negative strand

of the DNA, respectively. Both genes play a key role in the mating system, although the RNA hel-

icase gene is not necessarily linked to the sex-related locus (Lee et al., 2010). A similar sex locus

was recently detected in two microsporidian parasites of mosquitoes (Edhazardia aedis and Vavraia

culicis; Desjardins et al., 2015). This sex locus was only expressed in E. aedis, confirming the exist-

ence of sexuality in this species (Becnel et al., 1989) and providing an explanation for the lack of

sexual cycles in V. culicis (Diarra and Toguebaye, 1991). The presence of this gene cluster in Ber-

waldia and MIC1 should be tested using genomic and transcriptomic analyses to corroborate the ex-

istence of cryptic sexuality in Berwaldia and pure asexuality in MIC1.

5.2. Future directions

5.2.1. Implementing new algorithms and techniques in metabarcoding studies

In the present PhD thesis, I developed the QRS pipeline (as described in the Chapter 2) to identify

intraspecific variation in NGS datasets. Currently, this bioinformatic pipeline only uses Neighbour

Joining (Saitou and Nei, 1987) as a clustering algorithm, and Statistical Parsimony (Templeton et

al., 1992) as a network approach (as defined in Section 5.1.1). However, other network methods

such as reduced median networks  (Bandelt et al., 1995) and median-joining networks  (Bandelt et

al., 1999) are also being used to identify new variants or strains in population ecology and they

should be implemented in future versions of the QRS pipeline. 

Moreover, NGS platforms are evolving fast, and nowadays new molecular sequencing tech-

niques such as Illumina  (e.g. Brannock et al., 2014; Degnan and Ochman, 2012; Schmidt et al.,
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2013), Ion Torrent (e.g. Deagle et al., 2013; Jünemann et al., 2012), PacBIO (Fichot and Norman,

2013; Mosher et al., 2014, 2013) and MinION (Greninger et al., 2015; Mikheyev and Tin, 2014) are

used to perform metabarcoding or population biology studies. Therefore, although the QRS pipeline

is able to deal with Illumina datasets (as indicated in Chapter 2), it would be necessary to update

this bioinformatic software to deal with other emerging platforms. In the case of Ion Torrent, imple-

menting tools that are able to correct for the high number of erroneous sequences with high GC

content (Deagle et al., 2013; Quail et al., 2012) is needed. Another needed improvement for its ap-

plication in Ion Torrent datasets is the reduction of homopolymer errors. Although the homopoly-

mers correction in the QRS pipeline was originally based on low-complexity masking algorithms

(Morgulis et al., 2006), a new tool for minimising the effect of homopolymers (HECTOR; Wirawan

et  al.,  2014) was implemented in  a recent  version of  the mentioned pipeline (and was used in

Chapters 3 and 4 to correct such errors). Additionally, in future versions of the pipeline, a new al-

gorithm based on the Poisson binomial distribution (Puente-Sánchez et al., 2015) will be implemen-

ted to avoid the use of the de-noising step, because de-noising algorithms negatively influences in

taxonomic affiliation (Koskinen et al., 2014). In respect to the PacBIO sequencing platform, there is

very little work done in its application to metagenomics and the established protocols are simple ad-

aptations from 454 Pyrosequencing and Illumina (Fichot and Norman, 2013; Mosher et al., 2014).

Recently, a new bioinformatic protocol was developed to deal with PacBIO, but only a small frac-

tion of the sequences are really informative due to the high error rates (Schloss et al., 2016). This

suggests that this sequencing platform should be improved in order to be applied in metagenomics.

Finally, MinION was recently developed to shorten the time between specimen collection to first

sequence data without relying on PCR. However, this platform is currently unsuitable for genotyp-

ing due to their high error rates and, as in the case of PacBIO, improving MinION platform is

needed for its use in population biology (Mikheyev and Tin, 2014).

5.2.2. Testing the suitability of the internal transcribed spacers for parasites' 

strains identification

As indicated in the Chapter 1, there is a controversy about the suitability of the ITS1 sequences in

molecular ecology. In the present PhD thesis, ITS1 sequences were used to discriminate representat-

ive sequences in C. mesnili and in two microsporidia taxa—all common parasites of Daphnia. ITS1

sequences are the only known polymorphic sequences in C. mesnili, which could allow for the iden-
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tification of different microparasitic strains or variants (Giessler and Wolinska, 2013). In a similar

way, the use of ITS1 to discriminate strains or variants was successful in amoebozoa (Köhsler et al.,

2006) and trichomonads  (Gaspar da Silva et al., 2007; Ibáñez-Escribano et al., 2014). However,

such markers might not be suitable to identify parasite strains, as it happened in oomycetes  (Ro-

bideau et al., 2011), dinoflagellates (Stern et al., 2012) or in other protozoa like apicomplexa (Ho-

man et al., 1997) and parabasalids (Lollis et al., 2011). Moreover, as discussed in Chapter 4 and in

Wolinska et al. (2011b), ITS variability may not be a good estimator of the intraspecific variability

in Microsporidia. In fact, a low ITS variability was described in Encephalitozoon cuniculi (Selman

et  al.,  2013) whereas  these microsporidia  have a  high intraspecific  variability according to  the

whole genome analysis (Pombert et al., 2013). These differences are probably due to the sequence

length, as E. cuniculi presents a short ITS sequence (28-45 bp., Selman et al., 2013) while in other

microsporidia like  Enterocytozoon bieneusi  ITS sequence are 243 bp long. The ITS is the only

known polymorphic marker also in E. bieneusi (Henriques-Gil et al., 2010). Nevertheless, strains or

variants identified with the ITS1 marker should be confirmed with other neutral markers (see be-

low) which might enable the identification of strains with higher resolution.

Ribosomal DNA is present in multiple copies throughout the genome and each copy is a po-

tential target for mutations leading to intragenomic variation (as explained in Chapter 1). For long

time, it was considered that such regions (including the ITS1 sequences) evolved under concerted

evolution. Under this hypothesis, ribosomal genes become homogenised by unequal crossing over

and gene conversion (reviewed in Liao, 1999). As unequal crossing over is more common in homo-

logous recombination than in non-homologous end joining  (Goldman, 1996), concerted evolution

would be stronger for tandem arrays of genes than for dispersed repeated DNA regions. Thus, dif-

ferences in obtained sequences between strains could be due to the number of ITS1 copies found in

tandem in the same chromosomes, rather than because of the simple ITS1 sequence variability (as

detected in Nosema apis; Gatehouse and Malone, 1998). However, the high intragenomic ITS1 vari-

ability in several microorganisms such as the human intestinal protozoan parasite Dientamoeba fra-

gilis (Bart  et  al.,  2008) and the  foraminiferan  Elphidium macellum (Pillet  et  al.,  2012) argues

against the concerted evolution of ribosomal genes. In fact, the high intragenomic ITS1 variability

could suggest a birth-and-death process, where new genes originate from gene duplication and some

are maintained in the genomes while others are eliminated or become non-functional  (Nei et al.,

1997). Birth-and-death processes are expected to happen when the multi-copy DNA sequences are

dispersed  throughout  the  genome,  as  observed  in  the  microsporidian  Encephalitozoon cuniculi
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(Peyretaillade et al., 1998), Nosema bombi (O’Mahony et al., 2007; Tay et al., 2005) and N. bomby-

cis (Liu et al.,  2008). To elucidate ribosomal gene evolution according to the above hypotheses

(concerted evolution and birth-and-death process), the spatial distribution of the ITS1 in the chro-

mosomes would have to be evaluated by chromosomes mapping (Biderre et al., 1997; Peyretaillade

et al., 1998) and by de novo sequencing of the genomes of the microparasites (reviewed in Keeling

et al., 2014). 

The latter analysis brings also the opportunity to search for other neutral markers that could

be used for population genetic tests to study the evolution of parasite populations and to evaluate

their  genetic  diversity.  As  indicated  above,  ITS  might  evolve  under  birth-and-death  processes,

which could explain the high intragenomic variability of these sequences. To avoid this matter, it is

convenient to use single copy genes which are neutral markers such as the 70kDa heat shock protein

(hsp70; Haag et al., 2013a, 2013b).  The use of these alternative neutral markers will result in ob-

taining better predictions of the genetic diversity and the evolution of parasite populations (Gómez-

Moracho et al., 2015, 2014; Roudel et al., 2013). Other alternatives is the use of micro- or min-

isatellites (Li et al., 2013, 2012) or even whole genome analysis (Cuomo et al., 2012; Pelin et al.,

2015; Pombert et al., 2013) to study the genetic diversity and the evolution of parasite populations.

5.2.3. Deciphering the life cycle of C. mesnili and Daphnia-infecting microspor-

idia

As indicated in the Chapter 1, the life cycles of the most common microparasites infecting Daphnia

are not well known. In the present PhD thesis, I was focusing on the description of population dy-

namics and host-genotype specificity of C. mesnili (Chapter 3) and the genetic diversity and the pat-

terns  of  geographic  population  structure  in  two microsporidian  parasites:  Berwaldia and  MIC1

(Chapter 4). All this information could help to predict the biology of these parasites.

In chapter 3, an alternative explanation to the observed decrease of the most common geno-

type in C. mesnili, beside a postulated mechanism of negative frequency-dependant selection, is a

yearly expansion following a bottleneck. It is still unknown how C. mesnili  survives between the

epidemics, as this microparasite repeatedly appears in later summer and disappears towards the end

of autumn. C. mesnili may persist either under very low (and, thus, undetectable) densities in Daph-

nia host, in as of yet unknown alternative hosts (like fish) or in the sediment as spores. Population

genetic  tests  such as Tajima's  D  (Tajima, 1989),  Fu's  FS (Fu,  1997) and/or Ramos-Onsins'  and
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Rozas' R2 (Ramos-Onsins and Rozas, 2002) are necessary in order to test for the existence of an ex-

pansion after a bottleneck in the parasite populations. 

Ichthyosporean parasites are known to infect the digestive organs of various marine verteb-

rates (mainly fishes) and invertebrates (reviewed in Suga and Ruiz-Trillo, 2015). To verify the exist-

ence of reservoir hosts in C. mesnili life cycle, it should be recommendable to screen freshwater an-

imals and search for the presence of this microparasite via nested PCR of the SSU rRNA genes.

These kind of approaches have been successfully applied for the detection of intracellular microor-

ganisms such as  Wolbachia (e.g. Arthofer et al., 2009a; Taylor and Hoerauf, 1999; Werren et al.,

1995). However, nested PCR is prone to generate a high number of false positives and contamina-

tion (Arthofer et al., 2009a, 2009b). Due to this, other approaches such as PCR followed by con-

sequent hybridization  (Arthofer et al., 2009b; Schneider et al., 2014) and quantitative PCR (Gos-

iewski et al., 2014; Mee et al., 2015) were proposed to detect the presence of microorganisms even

in low titre infections. However, C. mesnili is able to survive in laboratory cultures (Bittner et al.,

2002; Lohr et al., 2010a), which could indicate the lack of necessity of a reservoir host in the C.

mesnili life cycle.

Recently, analysis of environmental rRNA libraries suggested the existence of free living

species or free living stages of ichthyosporea  (del Campo and Ruiz-Trillo, 2013; Mendoza et al.,

2002; Suga and Ruiz-Trillo, 2015; van Hannen et al., 1999). In order to test if C. mesnili is able to

have any diapause stages in the sediments (as proposed also in Chapter 3), molecular screening of

sediments should be used. In this kind of studies, sediment cores are processed to describe the mi-

croorganism diversity using universal primers, which amplifies different hypervariable regions of

the small subunit of the ribosomal genes (e.g. Berney et al., 2004; Dawson and Pace, 2002; Lawley

et al.,  2004). Nevertheless, these hypervariable regions exhibit different degrees of sequence di-

versity, and no single hypervariable region is enough to differentiate between all living organisms,

as seen in bacteria (Chakravorty et al., 2007). For this reason, to detect only the presence or absence

of  C. mesnili spores in sediments, it should be convenient to apply PCR with hybridization and

quantitative PCR (as described before) using specific primers for C. mesnili small subunit of the ri-

bosomal gene.

In Chapter 4, I predicted that Berwaldia may have a mobile secondary host whereas MIC1

might not have a secondary host (or if it exists it should not facilitate its dispersal) according to the

geographic  variation,  genetic  diversity  and recombination  tests.  However,  these  results  are  just

bioinformatic predictions and they need to be demonstrated in field and/or laboratory work. To
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verify them, sampling benthic  insects  and searching for insects that  are  positive for  Berwaldia

and/or MIC1 (as described above for the C. mesnili problematics) should be performed. I hypothes-

ise that mosquitoes and/or caddisflies are the secondary hosts in Berwaldia, as described for cope-

pods-infecting microsporidia  (Vávra et al., 2005; Vossbrinck et al., 2004). Although the transmis-

sion of Amblyospora spp. between copepods and mosquitoes was described in previous studies (An-

dreadis, 1994; Sweeney et al., 1990), the release of spores to the environment (during mosquito life

or after mosquito death) allows that copepods would be randomly infected with these microsporidia

during grazing.

However,  I  cannot discard that  strains of  Berwaldia or  MIC1 are not  maintained in the

laboratory due to the influence of abiotic factors such as temperature  (Dunn et al., 2006; Martín-

Hernández et al., 2009). Although higher temperatures cause the increase of the number of spores in

Nosema apis and N. ceranae (Martín-Hernández et al., 2009), in aquatic microsporidia it seems that

reduced temperatures has a greater impact on the parasite burden in host cells (Dunn et al., 2006).

Also the transmission of aquatic microsporidia is influenced by the temperature because high tem-

peratures increases the vertical transmission and low temperatures increases the horizontal transmis-

sion of N. granulosis and Dictyocoela duebenum (Dunn et al., 2006). To test the influence of tem-

perature on the life cycle of Berwaldia and MIC1, parasite transmission experiments using different

temperature treatments should be performed.
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