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Abstract

The Red Queen Hypothesis postulates that reciprocal selection arising from host-parasite interac-
tions should accelerate evolutionary rates through the need for continual adaptation and counter-ad-
aptation. A process driving such rapid reciprocal adaptation is referred to as negative frequency-de-
pendent selection, in which the most common genotypes decrease over time because they have a
higher probability of becoming infected by coevolving parasites. This proposed mechanism of host-
parasite coevolution was commonly tested in laboratory experiments under controlled conditions.
Regarding field investigations of natural populations, temporal changes in relative frequencies of
genotypes were mostly tested for host only, because tracking parasite dynamics over time remained
difficult. As parasite population dynamics are highly sensitive to environmental changes, studies un-
der natural conditions are essential to understand host-parasite coevolution.

The commonly explored model system to address coevolutionary questions are the water
fleas of the genus Daphnia and their microparasites. In this PhD thesis, I analysed the population
structure of two major microparasites of Daphnia: Caullerya mesnili (Chapters 2 and 3) and mi-
crosporidia (Chapter 4). First, in Chapter 2, I developed a new bioinformatic pipeline to analyse
molecular data generated by next-generation-sequencing (NGS) platforms. C. mesnili populations
from different water reservoirs in the Czech Republic were sequenced at the first internal tran-
scribed spacer (ITS1) of the ribosomal gene cluster, analysed with this new pipeline and compared
with published results from the same populations but using cloning and Sanger sequencing method.
I detected that relative frequencies of C. mesnili ITS1 sequence types were similar when compared
to other sequencing methods, thereby validating the bioinformatic pipeline, and showing the suitab-
ility of 454 platform to perform population biology analyses. After this validation, in Chapter 3, I
analysed the population dynamics and host-genotype specificity of C. mesnili, in long-term samples
collected from a single lake, and based on the sequence variations in the ITS1 region. I found that
the most abundant C. mesnili ITS1 sequence type decreased, while rare sequences increased over
the course of the study (4 years). The observed pattern is consistent with the negative frequency-de-
pendent selection. However, only a weak signal of host-genotype specificity between C. mesnili and
Daphnia genotypes was detected, which supports the lack of host-genotype specificity in this sys-
tem. Finally, in Chapter 4, I described the patterns of geographical population structure, intraspe-
cific genetic variation, and recombination of two Daphnia-infecting microsporidia: Berwaldia
schaefernai and the unknown microsporidium MICI1. These patterns were used to predict the exist-

ence of secondary hosts in the life cycle of these microsporidia. I observed little variation among B.
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schaefernai parasite strains infecting different host populations; in contrast, there was significant
genetic variation among populations of MIC1. Additionally, ITS genetic diversity was lower in B.
schaefernai than in MIC1. These findings suggest that the presumed secondary host for B. schae-
fernai is expected to be mobile, while in MIC1 the secondary host (if exists) does not appear to fa-
cilitate dispersal to the same degree. Finally, recombination analyses indicated cryptic sex in B.
schaefernai and pure asexuality in MIC1. All these findings enable a more comprehensive under-
standing of the biology of Daphnia-infecting microparasites and the genetic basis of Daphnia-mi-

croparasites coevolution in natural populations.



Zusammenfassung

Die “Red Queen”-Hypothese besagt, dass die wechselseitige Selektion in Wirt-Parasit-Interaktionen
und die hierdurch bedingte Notwendigkeit kontinuierlicher Anpassung zu einer Beschleunigung der
Evolution solcher Systeme fiihren sollte. Ein Prozess, der eine solch rapide wechselseitige Anpas-
sung antreibt, wird als negativ frequenzabhédngige Selektion bezeichnet. In diesem Fall nimmt die
Frequenz der haufigsten Genotypen mit der Zeit ab, da sie mit hoherer Wahrscheinlichkeit von koe-
volvierenden Parasiten infiziert werden. Dieser angenommene Mechanismus fiir Wirt-Parasit-Koe-
volution wurde hdufig in Laborexperimenten unter kontrollierten Bedingungen untersucht. Im Hin-
blick auf Freilandversuche mit natiirlichen Populationen wurden zeitliche Verdanderungen der relati-
ven Genotypfrequenzen iiberwiegend fiir Wirtsorganismen untersucht, da die Untersuchung der
Parasitendynamik im Zeitverlauf kompliziert blieb. Da die Dynamik von Parasitenpopulationen
hochempfindlich auf Umweltverdnderungen reagiert, sind Studien unter natiirlichen Bedingungen
essentiell flir das Verstdndnis von Wirt-Parasit-Koevolution.

Das fiir Fragen der Koevolution am hiufigsten untersuchte Modellsystem sind die Wasser-
flohe der Gattung Daphnia und thre Mikroparasiten. In dieser Doktorarbeit untersuchte ich die Po-
pulationsstruktur zweier wichtiger Mikroparasiten von Daphnia: Caullerya mesnili (Kapitel 2 und
3) und Microsporidia (Kapitel 4). Zuerst entwickelte ich eine neue bioinformatische Pipeline fiir die
Analyse von durch Next Generation Sequencing (NGS)-Plattformen generierte molekulare Daten
(Kapitel 2). Der erste interne transkribierte Spacer (ITS1) des ribosomalen Genclusters von C. mes-
nili—Populationen aus verschiedenen Wasserreservoiren in der Tschechischen Republik wurde se-
quenziert, mit der neuen Pipeline analysiert und mit auf Klonierung und Sanger-Sequenzierung be-
ruhenden publizierten Ergebnissen derselben Populationen verglichen. Die relativen Frequenzen der
C. mesnili ITS1-Sequenztypen waren mit den Ergebnissen der anderen Sequenziermethoden ver-
gleichbar, wodurch die bioinformatische Pipeline sowie die Eignung der 454-Plattform fiir die
Durchfiihrung populationsbiologischer Analysen bestitigt wurden. Kapitel 3 beschreibt die Analyse
der Populationsdynamiken und der Wirtsgenotyp-Spezifitit von C. mesnili mithilfe von Langzeit-
proben eines einzelnen Sees auf der Basis von Sequenzvariationen in der ITS1-Region. Ich konnte
zeigen, dass der haufigste C. mesnili ITS1-Sequenztyp im Verlauf der Studie (vier Jahre) abnahm,
wihrend seltene Sequenzen zunahmen. Das beobachtete Muster stimmt mit negativer frequenzab-
hingiger Selektion tiberein. Allerdings wurde nur ein schwaches Signal fiir Wirtsgenotyp-Spezifitat
zwischen C. mesnili- und Daphnia-Genotypen nachgewiesen, was das Fehlen von Wirtsgenotyp-

Spezifitdt in diesem System unterstiitzt. Kapitel 4 beschreibt die geografische Populationsstruktur,
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intraspezifische genetische Variation und Rekombination zweier Daphnia-infizierender Mikrospori-
dien, Berwaldia schaefernai und der unbekannten Mikrosporidium-Art MIC1. Diese Muster wurden
verwendet, um die Existenz sekundédrer Wirte im Lebenszyklus dieser Mikrosporidien vorherzusa-
gen. Ich beobachtete geringe Variation zwischen B. schaefernai-Parasitenstimmen, die verschiede-
ne Wirtspopulationen infizieren. Im Gegensatz dazu zeigte sich signifikante genetische Variation
zwischen MIC1-Populationen. Zusétzlich war die genetische Diversitdt von ITS in B. schaefernai
geringer als in MIC1. Diese Ergebnisse legen nahe, dass der angenommene sekundidre Wirt fiir 5.
schaefernai mobil ist, wihrend der sekunddre Wirt von MIC1 (falls vorhanden) anscheinend die
Verbreitung nicht im selben Ma3 ermdoglicht. AbschlieBend deuten Rekombinationsanalysen auf
verborgene geschlechtliche Fortpflanzung in B. schaefernai und reine Asexualitit in MIC1 hin. Alle
diese Ergebnisse verhelfen zu einem umfassenderen Verstindnis der Biologie von Daphnia-intizie-
renden Mikroparasiten und der genetischen Basis von Daphnia-Mikroparasiten-Koevolution in na-

tiirlichen Populationen.
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Chapter 1 — Introduction

1.1. Introductory notions to the Red Queen Hypothesis

One of the most important questions in Evolutionary Biology is why sexual reproduction exists
even when it usually implies a 50% fitness disadvantage compared to asexual reproduction
(Dawkins, 1989; Maynard Smith, 1978), assuming that there is no sex ratio distortion (Hurst and
Pomiankowski, 1991; Werren, 1987). One of the widely accepted explanations for this is the Red
Queen Hypothesis (RQH). This hypothesis stemmed from the observation that most population
show constant extinction rates over time, which led to a proposal that extinction is more related to
biotic factors, rather than abiotic ones (Van Valen, 1973). However, RQH is now more associated
with debates related with the parasite-driven evolution of sex (reviewed in Brockhurst et al., 2014)
and host-parasite coevolution (reviewed in Lively, 2010). According to the RQH, reciprocal selec-
tion arising from host-parasite interactions should accelerate evolutionary rates through the need for
continual adaptation and counter-adaptation. Such rapid reciprocal adaptation can be driven by dir-
ectional selection or negative frequency-dependent selection, being called “arms race dynamics”
(ARD) and “fluctuating selection dynamics” (FSD) respectively (Brockhurst and Koskella, 2013;
Gaba and Ebert, 2009; Gandon et al., 2008). In ARD, recurrent selective sweeps of novel host res-
istance and parasite infectivity alleles occur through time, leading to increases in the parasite's host
range and host resistance traits (Gandon et al., 2008). Alternatively, in FSD, common genotypes of a
given host have a higher probability of becoming infected by coevolving parasites than do rare gen-
otypes. In such case, rare uninfected host genotypes display a fitness advantage and eventually take
over the previously common host genotypes. At this point, parasite genotypes that are able to infect
those surviving host genotypes will be favoured over those that are still adapted to previously com-
mon host (Fig. 1.1) (Clarke, 1976; Hamilton, 1980; Jaenike, 1978). Since sex is efficient at generat-
ing genetic diversity, this parasite-driven negative frequency-dependent selection could explain the
long-term maintenance of sex in host and parasite populations (Bell, 1982; reviewed in Lively,
2010). However, a prerequisite for the FSD is the existence of genetic specificity in host-parasite in-
teractions, where the outcome of infection depends on the genotypic identity of both host and para-

site (Dybdahl et al., 2014).
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Figure 1.1. Allele frequency dynamics during host-parasite coevolution according to the FSD.
Black lines indicate host genotypes and red lines indicate parasite genotypes. In this model, it is as-
sumed that every host genotype has a specific parasite genotype. This assumption is represented by

the type of line (continuous or discontinuous).

1.2. Fluctuating selection dynamics in natural populations

The strength and the response to parasite-mediated selection in nature vary across space and time.
Such variation can be caused by selection mosaics across the landscape (Forde et al., 2004) or can
result from temporal factors such as the seasonality of epidemics (Altizer et al., 2006). However, the
majority of the studies about host-parasite dynamics to date were performed in the laboratory under
controlled conditions (e.g. Decaestecker et al., 2007; Duffy and Sivars-Becker, 2007; Koskella and
Lively, 2009; Schulte et al., 2010). Although such experiments are necessary to reduce environ-
mental noise which can otherwise conceal important factors and processes, they tend to oversim-
plify natural conditions. Since parasite population dynamics are highly sensitive to environmental
changes (reviewed in Wolinska and King, 2009), studies under natural conditions are essential to

understand host-parasite coevolution.

1.2.1. Spatial scale of parasite populations
Most of the studies about parasites populations focus on the spatial genetic structure, which can af-
fect the outcome of host-parasite interactions such as the parasite specialisation (Tripet et al., 2002)

or the evolution of virulence (Thrall and Burdon, 1997). These two questions are relevant in epi-



demiological studies for disease control and prediction, as shown in clinical reports (e.g. Arnott et
al., 2012; Brownstein et al., 2003; Raso et al., 2006). Specifically, estimates of parasite gene flow
are fundamental to understand coevolutionary processes. Theoretical models show that the relative
rate of gene flow could change parasite adaptation to local hosts and, thus, influence host-parasite
dynamics (Frank, 1991). In fact, high parasite migration rates relative to those of their hosts are as-
sociated with parasite local adaptation by infectivity but not by virulence (Greischar and Koskella,
2007). For example, the introduction of novel alleles via gene flow among parasite populations may
counteract host evolutionary responses (Slatkin, 1987). While in some cases limited parasite dis-
persal resulted in isolation-by-distance scenarios (e.g. Koop et al., 2014; Tanabe et al., 2013) in
other cases parasite dispersal homogenised local patterns of population subdivision (e.g. Ocana-

Mayorga et al., 2010; Reuter et al., 2008).

1.2.2. Temporal changes in host populations

Field studies have demonstrated that host frequencies are tracked by parasites in a number of or-
ganismal systems, like in plants — fungi (e.g. Burdon and Thompson, 1995; Siemens and Roy,
2005), Potamopyrgus antipodarum (Gastropoda) — Microphallus sp. (Trematoda) (e.g. Jokela et al.,
2009; King et al., 2009), Cristatella mucedo (Bryozoa) — Tetracapsula bryozoides (Myxozoa) (Ver-
non et al., 1996), and Daphnia spp. (Cladocera) — microparasites (e.g. Decaestecker et al., 2007;
Little and Ebert, 1999; Wolinska and Spaak, 2009) systems. Below is a summary of the results in
the mentioned systems.

Regarding the plant — fungi interactions, Linum spp. — Melapsora lini is one of the most well
studied systems in phytopathology. In fact, this system was used to demonstrate the gene-for-gene
relationship, in which the host resistance and parasite ability to cause disease in controlled by pairs
of matching genes (Flor, 1971). Using this system, spatial differences between populations of L.
marginale were found and such populations were described based on the proportion of resistant
phenotypes. M. lini showed a similar spatial pattern based on the occurrence and frequency of its
four most common races (Jarosz and Burdon, 1991). In a field study performed between 1981 and
1991 in Kiandra, New South Wales (Australia), the most common host genotypes decreased over
time (Burdon and Thompson, 1995). These changes in frequencies of the most common host resist-
ance genotypes were explained by linkage between resistance genes and the presence of M. lini
races which are virulent for specific host phenotypes (Burdon et al., 1999). In other plant — fungi

system (Boechera holboelli — Puccinia monoica) similar results were obtained. B. holboelli is a bi-
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ennial or short-lived perennial apomictic (asexual by seed) plant distributed over Greenland and
eastern Canada. Recently, its use for evolutionary and ecological genomics was proposed because it
is phylogenetically related with Arabidopsis thaliana (Rushworth et al., 2011). This plant is at-
tacked by a parasitic rust fungus, P. monoica, which inhibits flowering and transforms host morpho-
logy to facilitate its own sexual reproduction via pseudoflowers. In a ten-year field study, parasitism
was lower in population with higher host genetic diversity as well as the evidence of local host ad-
aptation in the fungus was detected. Although all these results supports the FSD, when herbivory by
weevils was also incorporated, the parasitism decreased as host clone frequency and fitness in-
creased, indicating that FSD is affected also by other interactions such as predation (Siemens and
Roy, 2005).

P. antipodarum, the New Zealand mudsnail, is an ovoviviparous and parthenogenetic snail
which is an invasive species. Native populations in New Zealand consist of diploid (sexual) and
triploid parthenogenetically cloned females and sexually functional males (Dybdahl and Lively,
1995). These native populations of P. antipodarum are infected by Microphallus sp., a highly pre-
valent trematode which is able to completely sterilise infected snails (Jokela and Lively, 1995). In a
field study performed between 1994 and 2005, the most common clones of snails were almost com-
pletely replaced by initially rare clones in the shallow and mid-water habitats of Lake Alexandrina
(New Zealand), while sexual snails persisted in both habitats. The replacement of the most common
clones by the rare clones was due to the susceptibility of the common clones to being infected by
sympatric parasites (Jokela et al., 2009).

C. mucedo is a colonial, facultatively sexual freshwater bryozoan that has the unusual
strategy of dispersing via asexually generated propagules. C. mucedo has a high genetic variability
within populations, even in asexual populations (Freeland et al., 2000), and independently of the
geographic distances among sites (Hatton-Ellis et al., 1998). In these populations, there is a highly
prevalent parasitic myxozoa, 7. bryozoides, that infects the body cavity and generates swelling, mal-
formations and colony degeneration (Okamura, 1996). In a field study performed in the Bear Park
Lake near Reading in Berkshire (United Kingdom) between 1992 and 1994, the two most common
host clones varied in abundance and the significantly more common clone in the first year de-
creased its abundance in the third year. However, there was no evidence of high infection rate of the
most common clone by the parasites which could be due to the existence of time-lags between para-
site adaptations and the parasite-mediated decline of hosts (Vernon et al., 1996).

Finally, although the Daphnia spp. — microparasites system will be introduced in detail in



the section 1.4. of this thesis, here I focus on the evidences suggesting that Daphnia frequencies are
tracked by parasites. In a field work performed during the summer of 1996 and spring of 1997 in six
ponds between Northwest Switzerland and Northern Germany, temporal changes were observed in
the proportion of parasitised Daphnia based on the host clonal frequencies and the population ge-
netic characteristics. However, only three of these six ponds showed clonal dynamics consistent
with FSD (Little and Ebert, 1999). In another field study, performed in spring and autumn of 2003
and 2004, the most common clone in Daphnia populations across several North Italian and Swiss
lakes was often observed to decrease in frequency over time, supporting the FSD. In uninfected
populations, however, the decrease was not observed (Wolinska and Spaak, 2009). Finally, a time-
shift experiment using Daphnia magna and Pasteuria ramosa, a Gram-positive obligate intracellu-
lar bacteria showed that the parasite quickly adapts to its host. Also the observed temporal variation

in parasite infectivity and virulence supported the FSD (Decaestecker et al., 2007).

1.2.3. Temporal changes in parasite populations

The majority of field studies investigated temporal changes in relative frequencies of host geno-
types only, because tracking parasite dynamics over time often remained difficult in natural condi-
tions (reviewed in Penczykowski et al., 2015). Surprisingly, except for the Linum marginale-
Melampsora lini system (Thrall and Burdon, 2003), the Red Grouse-Trichonstrongylus tenuis sys-
tem (Hudson and Dobson, 1997) and the St. Kilda Soay Sheep Project (Gulland and Fox, 1992;
Gulland, 1992; Wilson et al., 2004), the majority of the studies on temporal changes in parasite pop-
ulations and host-parasite specificity to date have been performed in the laboratory under controlled
environmental conditions (reviewed in Penczykowski et al., 2015; Sadd and Schmid-Hempel,
2009). Studies under natural conditions are essential to understand host-parasite coevolution and to

control diseases (Altizer et al., 2006).

1.2.4. Molecular identification of parasites

Traditionally, parasites were identified according to mainly morphological traits, although the in-
formation from epidemiology, host distribution and parasite physiology were also used to classify
parasite strains (reviewed in McManus and Bowles, 1996). However, the existence of cryptic spe-
cies of parasites questions the use of these traditional identification methods (e.g. Hanelt et al.,
2015; Perkins, 2000; Vilas et al., 2005). Additionally, there are life stages such as eggs and larvae

that are morphologically indistinguishable between phylogenetically related parasite species (re-
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viewed in Criscione et al., 2005). For this reason, there is a trend to use molecular markers to
identify parasites, especially their presence or absence (e.g. Djimde et al., 2001; Fischer et al., 2002;
Knight et al., 1999). However, these molecular markers are often not able to differentiate among
strains of the same parasite species, which would otherwise be necessary to study the parasite popu-

lation dynamics at population level.

1.3. Internal transcribed spacer and its use as a molecular marker

The internal transcribed spacer (ITS) is the spacer DNA situated between the small and the large
subunit ribosomal RNA (rRNA) genes. While in prokaryotes and in several Microsporidia (Nosema
being an exception; see below) there is only one ITS region, in Eukaryotes there are two ITS re-
gions; the ITS1 is located between the small subunit and 5.8S rRNA genes, while ITS2 is between
5.8S and the large subunit rRNA genes. ITS1 seems to be related to the prokaryotic ITS, while ITS2
is considered to be originated as an insertion that interrupted the ancestral large subunit rRNA gene
(Lafontaine and Tollervey, 2001).

The rRNA gene structure is well preserved in all known phylogenetic groups, except in the
Nosemal/Vairimorpha group of Microsporidia (see below). For this reason, the ITS region is often
used in molecular ecology and molecular systematics. In the former case, ITS region is mostly em-
ployed in Fungi, where it has been recommended as the universal fungal barcode sequence (Schoch
et al., 2012). However, the combination of ITS sequences with other molecular markers is highly re-
commendable in some clinical molds (Balajee et al., 2009). Alternatively, as published ITS primers
tend to amplify specific taxa to the detriment of other, the design of new primers for ITS sequences
was suggested (Anderson et al., 2003; Bellemain et al., 2010). In the case of molecular systematics,
ITS was employed at specific levels in bacteria (Boyer et al., 2001; Roth et al., 1998), and mainly in
plants (e.g. Baldwin, 1992; Downie et al., 1998; Suh et al., 1993) and fungi (Iwen et al., 2002;
Lloyd-MacGilp et al., 1996; Scorzetti et al., 2002). However, ITS substitution rate is highly variable
between lineages in plants, and for this reason it is recommended to calibrate the molecular clock
when ITS is used to study the evolution of a specific taxonomical group (Kay et al., 2006).

Although the rRNA gene structure is usually well preserved, such structure is highly vari-
able in the Nosema/Vairimorpha group inside the Microsporidia. In fact, the rearrangement between
small and large subunits and the presence of a 5S subunit at the end of the ribosomal RNA leads to

the existence of an ITS2 between the small and the 5S subunits, as described in N. bombycis, N. an-



theraceae, N. plutellae and N. spodopterae (Huang et al., 2004; Tsai et al., 2005; Wang et al., 2006).
Moreover, as the ribosomal RNA repeat unit is present in multiple copies throughout the genome,
each copy has the potential for mutation, resulting in intragenomic variation. In fact, the presence of
transcriptionally active fragmented copies of rRNA genes that coexist with the intact rRNA copies
within the same genome was described in several isolates of N. bombycis (liyama et al., 2004). All
this structural variation of the rRNA genes is a potential source of confusion in rRNA phylogenies
(Ironside, 2007) and leads to a high variability in both ITS1 and ITS2 sequences in Nosema/Vairio-
morpha (Ironside, 2013). Such high variability could be due to recombination, which may be con-
sidered as evidence of “cryptic sex” in Microsporidia (Ironside, 2013; Krebes et al., 2014).
Moreover, transposition events in ribosomal markers (including the ITS) are another source of high

genetic variability (Iliyama et al., 2004; O’Mahony et al., 2007; Tsai et al., 2005).

1.4. Daphnia-microparasites as a host-parasite system

One of commonly explored model systems to address coevolutionary questions are the water fleas
of the genus Daphnia (Crustacea: Cladocera) and their microparasites (Ebert, 2008; Gaba and
Ebert, 2009; Stollewerk, 2010). Daphnia are small, largely transparent crustaceans that are found in
most still freshwater bodies around the world. Such genus is probably the best-studied subjects in
ecology, especially species D. magna and D. pulex (Ebert, 2005; Stollewerk, 2010). They can be
kept as laboratory cultures on a diet of unicellular green algae. In fact, most members of this genus
are able to reproduce both by parthenogenesis and sexually, switching a mode of reproduction de-
pending on external factors (Ebert, 2008, 2005). The parthenogenetic reproduction allows obtaining
clonal individuals that could be maintained in laboratory for years, with minimal genetic changes
(Ebert, 2008).

As Daphnia spp. can be infected by several microparasites, such as fungi (including mi-
crosporidia), protozoa, oomycetes and bacteria (Ebert, 2008, 2005; Green, 1974), there is a need to
decide on few microparasites as a model parasites. The best choice would be considering the most
common microparasites infecting Daphnia. One of those is Caullerya mesnili (Ichthyosporea: Ich-
thyophonida; Bittner et al., 2002; Lohr et al., 2010a; Wolinska et al., 2007), which causes regular
epidemics in large permanent lakes in Central Europe, reaching prevalences up to 40% (Wolinska et
al., 2011a, 2007). C. mesnili is a highly virulent parasite that reduces the survival (from 36 days in
healthy host to 21 days in infected host) and reproduction rate (from 23 to 2 offspring per healthy
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and infected host, respectively) of its host (Lohr et al., 2010b). In Daphnia populations where C.
mesnili is present, the existence of an acquired resistance to this parasite was described (Schoebel et
al., 2010). C. mesnili was shown to be involved in driving frequencies of host species' abundance
and genotypes (Wolinska et al., 2006) and its growth is mainly influenced by temperature (Schoebel
et al., 2011) and the cyanobacteria abundance (Tellenbach et al., submitted). In a recent study, C.
mesnili populations from seven water reservoirs in Czech Republic were shown to be significantly
structured across space, and the frequency of C. mesnili genotypes varied significantly over time.
Both observations suggest a limited dispersal of C. mesnili and a rapid evolutionary turnover (Wol-
inska et al., 2014).

Another relevant group of Daphnia microparasites are microsporidia. These parasites belong
mainly to the Clade I or “Aquasporidia” class, which infect freshwater animals (Vossbrinck and
Debrunner-Vossbrinck, 2005). Microsporidian parasites of Daphnia have received considerable at-
tention due to their complex life cycles (Refardt et al., 2008, 2002; Weigl et al., 2012). In the
present thesis, the focus was put on two abundant microsporidia infecting Daphnia communities in-
habiting large lakes and reservoirs in Central Europe: Berwaldia schaefernai and the microspor-
idium MIC1 (Wolinska et al., 2009). Both of these microsporidia species infect the body cavity of
their host, where a massive amount of spores then proliferate (Vavra and Larsson, 1994). They are
closely related to Marssoniella elegans (a parasite of the copepod Cyclops vicinus), Senoma
globulifera (a parasite of the malaria mosquito Anopheles messeae), and other parasites of Daphnia,
including Larssonia obtusa, Gurleya vavrai and Binucleata daphniae (Weigl et al., 2012). Unlike S.
globulifera and B. daphniae, which are monoxenous parasites (Refardt et al., 2008; Simakova et al.,
2005), L. obtusa, G. vavrai and B. schaefernai cannot be maintained in the laboratory, which could
suggest the existence of an indirect life cycle with a secondary host (Refardt et al., 2002; Vavra and
Larsson, 1994). Moreover, their relative species M. elegans is a dixenous parasite, having copepods
as its main host and likely using mosquitoes or caddisflies as secondary hosts (Vavra et al., 2005;
Vossbrinck et al., 2004). Although abiotic factors such as temperature are important to the aquatic
microsporidian growth (Dunn et al., 2006; Grabner et al., 2014), it is assumed that the monoxenous
life cycles of S. globulifera and B. daphniae are due to the loss of the ancestral character (i.e. the
use of a secondary host) and it has been predicted that B. schaefernai and MIC1 may also have a
secondary insect host, which would confer previously observed substantial potential for dispersal

(Weigl et al., 2012; Wolinska et al., 2011b).



1.5. Outline of the thesis

The main goal of this PhD project was to analyse the population structure of two major endopara-
sites of Daphnia: Caullerya mesnili and microsporidia. To perform this kind of study, a new bioin-
formatic pipeline needed to be developed in order to be able to analyse molecular data generated by
next-generation-sequencing (NGS) platform. NGS technologies provide a cheaper and faster altern-
ative to sequencing DNA than traditional methods like cloning and Sanger sequencing (reviewed in
Grada and Weinbrecht, 2013). However, the consideration of the number of taxon-specific reads as
an indicator for the abundance of different taxa (semi-quantitative analysis) is still debated because
NGS techniques produce several types of artefacts (e.g. Amend et al., 2010; Baldrian et al., 2013;
Deagle et al., 2013), such as the presence of homopolymer and indel misinterpretations in 454
pyrosequencing platform (Margulies, 2005) and the increase of single-base errors and inverted re-
peats or GGC motifs in [llumina (Nakamura et al., 2011). In order to minimise these artefacts, the
most abundant sequences per sequence cluster could be considered as the presumed ancestral allelic
reference (Sommer et al., 2013). These sequences are called “representative sequences”.

First, in Chapter 2, a new bioinformatic pipeline based on the concept of representative se-
quences was developed and applied to data of C. mesnili populations from different water reservoirs
in the Czech Republic and compared with published results from the same populations but using
Sanger sequencing method.

In Chapter 3, samples of infected Daphnia population from lake Greifensee (Switzerland)
were collected during four consecutive years, and analysed with 454 pyrosequencing. Our new
bioinformatic pipeline was then applied to analyse C. mesnili sequences and the population dynam-
ics and host-genotype specificity of this parasite were assessed based on the sequence variation in
the ITS1 region.

Finally, in Chapter 4, populations of B. schaefernai and the unknown microsporidium MICI1
sampled from seven water reservoirs in the Czech Republic, were sequenced on 454-platform and
further analysed to describe their genetic diversity and the patterns of geographical population
structure. All this information was useful to infer the biology of these parasite species. Also here,
our new bioinformatic pipeline was employed.

The thesis concludes with Chapter 5, providing a general discussion and suggestions for fu-

ture research.
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Abstract

Next generation sequencing (NGS) platforms are replacing traditional molecular biology protocols like cloning and
Sanger sequencing. However, accuracy of NGS platforms has rarely been measured when quantifying relative fre-
quencies of genotypes or taxa within populations. Here we developed a new bioinformatic pipeline (QRS) that pools
similar sequence variants and estimates their frequencies in NGS data sets from populations or communities. We
tested whether the estimated frequency of representative sequences, generated by 454 amplicon sequencing, differs
significantly from that obtained by Sanger sequencing of cloned PCR products. This was performed by analysing
sequence variation of the highly variable first internal transcribed spacer (ITS1) of the ichthyosporean Caullerya mes-
nili, a microparasite of cladocerans of the genus Daphnia. This analysis also serves as a case example of the usage of
this pipeline to study within-population variation. Additionally, a public Illumina data set was used to validate the
pipeline on community-level data. Overall, there was a good correspondence in absolute frequencies of C. mesnili
ITS1 sequences obtained from Sanger and 454 platforms. Furthermore, analyses of molecular variance (AMoOvA)
revealed that population structure of C. mesnili differs across lakes and years independently of the sequencing plat-
form. Our results support not only the usefulness of amplicon sequencing data for studies of within-population
structure but also the successful application of the QRS pipeline on Illumina-generated data. The QRS pipeline is
freely available together with its documentation under GNU Public Licence version 3 at http://code.google.com/p/
quantification-representative-sequences.

Keywords: amplicon sequencing, Caullerya mesnili, Ichthyosporea, ITS1 region, Next Generation Sequencing, pipeline
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comparisons of results from cloning/Sanger sequencing

Introduction and amplicon sequencing by NGS focused mostly on

Next generation sequencing (NGS) technologies generate
substantially more data than Sanger sequencing, while
being both cheaper and faster. Thus, NGS data sets can
increase our understanding of biological phenomena as,
for instance, linking observed microbial diversity with
ecological functions (e.g. Huber et al. 2007, Edgcomb
et al. 2011; Kautz ef al. 2013). However, investigation of
population or community changes over time and space
requires not only identification of different genetic vari-
ants, but also reliable quantification of genotypes, opera-
tional taxonomic units (OTUs) or species. Until now,

Correspondence: Enrique Gonzilez-Tortuero, Fax: +49 30
83850784; E-mail: gonzalez@igb-berlin.de

© 2015 John Wiley & Sons Ltd

read length and sequencing accuracy (e.g. Huse et al.
2007; Harismendy et al. 2009; Liang et al. 2011), or on the
correspondence at the qualitative level (Edgcomb et al.
2011; Sommer et al. 2013). The few analyses that consider
the number of taxon-specific reads as an indicator for the
abundance of the different taxa (i.e. semiquantitative
analyses) are still debated (e.g. Amend et al. 2010;
Baldrian et al. 2013; Deagle et al. 2013).

The correctness of quantitative assignments is still
discussed because NGS methods produce several types
of errors and artefacts. In the case of 454 pyrosequencing
platform, homopolymer and indel misinterpretations
(Margulies et al. 2005) are described as common errors.
In contrast, reads from the Illumina platform are much



1386 E. GONZALEZ-TORTUERO ET AL.

more precise, but systematic base-calling biases are pres-
ent (Erlich et al. 2008; Rougemont et al. 2008; Renaud
et al. 2013). Specifically, there is a correlation between
increased single-base errors and inverted repeats or
GGC motifs (Nakamura et al. 2011). Moreover, error
rates between reads vary between 0.3% and 4.6% (Dohm
et al. 2008; Dolan & Denver 2008; Kozich et al. 2013) due
to the different tiles of the sequencing plate. To correct
for such errors, DNA from the same individuals can be
amplified independently and information from different
sequencing runs can be compared (Sommer et al. 2013).
This, however, is impractical for large population data
sets. In such cases, identification of true alleles can be
optimized by grouping sequences containing minor
errors using the most abundant sequence as the correct
allelic reference. Such representative sequences could
then be used in analyses of community or population
structure.

Representative sequences from NGS data sets are
usually inferred by distance-based methods and neigh-
bour-joining clustering, as implemented in, for example,
SESAME Barcode (Piry et al. 2012). These algorithms are
fast but assume no reticulate relationships (Posada &
Crandall 2001) and no recombination events (Posada &
Crandall 2002). However, the task of identifying repre-
sentative sequences requires discriminating between
natural variants present in a population or organism
and variants that result from methodological errors.
Variation within an organism does not imply methodo-
logical errors as this variation can result from natural
processes like incomplete concerted evolution of multi-
copy genes (e.g. Hugall ef al. 1999; Koch et al. 2003;
Lindner et al. 2013). To deal with this problem, network
approaches such as statistical parsimony (Templeton
et al. 1992) should be preferred. This algorithm involves
grouping the sequences within networks in the most
parsimonious way, while at the same time, it preserves
the number of differences between sequences within
groups below a specific threshold (Templeton et al.
1992; Posada & Crandall 2001). In fact, statistical parsi-
mony has been proven to be more precise in identifying
representative ITS1 sequences, that is the first internal
transcribed spacer region of ribosomal DNA (rDNA),
than distance-based methods and neighbour-joining
clustering. Specifically, in a previous work (Giessler &
Wolinska 2013), we compared the neighbour-joining
method with statistical parsimony to address polymor-
phisms in the ichthyosporean Caullerya mesnili. Thus,
half of the representative sequences, as assigned by sta-
tistical parsimony, were collapsed by the neighbour-
joining method, indicating that statistical parsimony
approach is more robust (Giessler & Wolinska 2013).
Nevertheless, as far as large complex NGS data sets are
concerned, no bioinformatic solution is readily available
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for the identification of representative sequences based
on statistical parsimony.

In this study, we developed a new bioinformatic pipe-
line — quantification of representative sequences (QRS) —
that infers the representative sequences from NGS data
sets (based on neighbour joining or statistical parsimony)
and calculates their frequencies. With this pipeline, we
compared data from 454 amplicon sequencing (‘454 data
set’) with data from Sanger sequencing of cloned ITS1
amplicons (‘Sanger data set’) of the ichthyosporean Caul-
lerya mesnili, a common microparasite of the cladoceran
Daphnia (Bittner et al. 2002; Lohr et al. 2010). The C. mes-
nili-Daphnia system has been used to study general evo-
lutionary questions about host-parasite co-evolution
(e.g. Wolinska et al. 2006; Wolinska & Spaak 2009; Schoe-
bel et al. 2010). Using QRS, the frequencies of representa-
tive C. mesnili ITS1 sequences in the 454 data sets were
scored and then compared against the outcome from
Sanger-produced data sets using the same — but cloned —
template DNA. Spatiotemporal variation of C. mesnili
populations was then assessed, and the consistency of
results from the two sequencing methods was compared
to validate the usefulness of amplicon sequencing for
semiquantitative analyses. Additionally, the robustness
of results generated by the QRS pipeline was tested
using a published Illumina amplicon sequence data set.
The outcome of analysis was compared with that
obtained from two well-established metabarcoding pro-
grams: mothur (Schloss et al. 2009) and UPARSE (Edgar
2013).

Materials and methods

Bioinformatic pipeline

General description. We developed an automatic and
modular bioinformatic pipeline (implemented in
Python 3.4) called QRS that determines genotypic struc-
ture within populations and communities from ampli-
con sequencing data. This pipeline can deal with any
molecular marker but data sets with multiple markers
(like multilocus sequence typing) should be demulti-
plexed (i.e. separated according to the combination of
multiplexer identifiers, MIDs) before running QRS.
Although our pipeline was developed specifically for
analyses of 454 and Illumina data sets, it is applicable
to other technologies, for example Ion Torrent (Roth-
berg et al. 2011) with minimal modifications. QRS
processes all input files in four steps: (i) creating a ref-
erence data set, (ii) describing the NGS data set, (iii)
processing the NGS data set to obtain an alignment
and (iv) inferring representative sequences (Fig. 1). The
complete manual of the program is provided in Data
S1 (Supporting information).

© 2015 John Wiley & Sons Ltd
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Fig. 1 Flowchart of the quantification of representative
sequences (QRS) pipeline. Grey rectangles represent the differ-
ent steps of the program (among those, broken-lined rectangles
indicate optional steps; see main text and Data S1, Supporting
information). Blue rectangles with a wavy base stand for input
files and green rectangles indicate output files. Insets with red
lines (numbered in 1-4) summarize steps of the QRS pipeline
according to the main text and Data S1 (Supporting informa-
tion). For the purpose of alignment, it is possible to use different
tools (see main text).

Creating a reference data set. The program requires a refer-
ence FASTA file containing multiple sequences of the
respective marker. Sequences within this reference file
are aligned using one of several alignment programs (see
below for details) according to the user criteria (Fig. 1:
inset 1). Then, HMMER 3.1b (Finn et al. 2011) is called to
infer a profile Hidden Markov Model (HMM; Churchill

© 2015 John Wiley & Sons Ltd
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1989) from the previously generated alignment. HMM is
a probabilistic model that is used to search for a specific
DNA sequence, and it has been proven that this method
is as fast as BLAST but more accurate (Wheeler & Eddy
2013).

Describing the NGS data set. QRS uses a NGS FASTQ (sin-
gle or paired FASTQ files) or a NGS FASTA file as input
(it is also possible to add a NGS quality file when a FASTA
file is used) (Fig. 1: inset 2). Sequences are processed in
PrinSeq (Schmieder & Edwards 2011) to calculate basic
statistics about length, GC content, base quality and
sequence complexity distributions. All these measures
are important for defining the best parameters in the
subsequent analysis steps. The output of this step is an
HTML file with all pertinent information regarding the
NGS data set quality.

Processing the NGS data set to obtain an alignment. This
step is divided in three processes: (i) filtering and assign-
ing sequences to samples, (ii) denoising sequences and
removing chimeras, and (iii) aligning all sequences
(Fig. 1: inset 3).

Filtering and assigning sequences to samples (inset 3.I). Ini-
tially, the sequences from the NGS data sets are provided
as input to PrinSeq to be filtered according to their qual-
ity, length, GC content and/or presence of homopoly-
mers. If the NGS data sets are composed by paired
FASTQ files, the deriving filtered sequences are merged
in a single FASTA file using PEAR (Zhang et al. 2014).
Then, all sequences are filtered according to the reference
profile HMM, using nhmmer (Wheeler & Eddy 2013)
from the HMMER 3.1b package. This software classifies
each sequence to a specific marker according to the
HMM profile based on the e-value. In our case, the
threshold e-value was set to 107, as in BLAST (Altschul
et al. 1990), but this value can be adjusted interactively
from the user interface. After that, the accepted
sequences are assigned to the respective samples based
on their MID sequences (if not already separated accord-
ing to their MIDs). Primers are removed using CutAdapt
(Martin 2011). To assign sequences to samples and to
remove the primers, QRS uses the information from two
plain text files: one provides a sample-specific combina-
tion of MID sequences (DESIGN file), and the other one
contains information on the primers and MID sequences
(OLIGOS file). All incomplete reads (not containing both
forward and reverse MIDs) are discarded.

Denoising sequences and removing chimeras (inset 3.11). All
accepted sequences from the ‘filtering and assigning
sequences to samples’ process are joined at a given iden-
tity level, whereas all spurious nucleotides across all
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sequences are removed, based on the CD-HIT-
OTU approach (Li et al. 2012), using USEARCH. By
default, the sequences are joined if they have only one
mismatch or one or two gaps. The identity threshold
can be modified by the user (see Data S1, Supporting
information).

After this denoising step, the QRS pipeline can
remove clusters that have fewer sequences than a speci-
fied threshold. By default, all clusters that have fewer
than three sequences are removed. This threshold was
determined by previous analyses (Data S2, Supporting
information). Although clustering and subsequent
removal of rare clusters result in less RAM consumption
for the follow-up analyses, it is important to note that
this step is optional and it can be disabled depending on
users’ preferences. Finally, to remove chimeric
sequences, QRS calls the UCHIME algorithm (Edgar
et al. 2011) implemented in USEARCH, using all
sequences that passed through previous filters as a refer-
ence. This method is based on the assumption that abun-
dant sequences in a data set have a lower probability of
chimerism than rare ones (Quince et al. 2009). The use of
all sequences that passed through previous filters as a
reference is more efficient than using a reference align-
ment only (Schloss et al. 2011).

Aligning all sequences (inset 3.III). QRS can align all
accepted sequences from the ‘denoising and removal chi-
meras’ process using one of several supported aligners:
Clustal Omega (Sievers et al. 2011), FSA (Bradley et al.
2009), GramAlign (Russell et al. 2008), Kalign (Lassmann
& Sonnhammer 2005), MAFFT (Katoh & Standley 2013),
MUSCLE (Edgar 2004), PicXAA (Sahraeian & Yoon 2010)
and PRANK (Loytynoja & Goldman 2005). QRS can then
(optionally) execute ReformAlign (Lyras & Metzler 2014)
to postprocess the alignment based on a profile-based
meta-alignment approach.

Inferring  representative  sequences. QRS can assign
sequences from the alignment of the previous step to
representative sequences based on neighbour-joining
clustering (Saitou & Nei 1987) or statistical parsimony
(Templeton et al. 1992). When a neighbour-joining algo-
rithm is needed, USEARCH is executed to cluster
sequences. When a statistical parsimony algorithm is
used to pool sequences into groups, QRS calls an embed-
ded R script. Via this R 3.0 script, QRS can analyse a
higher number of sequences compared to when the Tcs
software (Clement et al. 2000) is executed, because the
latter requires more RAM when pooling huge data sets
(results not shown). In our case, a 99.5% identity thresh-
old (representing three connection steps) was used to
assign sequences to representative sequences. We treated
gaps as a fifth character (similar to Giessler & Wolinska
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2013), but this can be changed by the user (see Fig. 1:
inset 4, and Data S1, Supporting Information).

Independent of the used method (i.e. neighbour join-
ing or statistical parsimony), QRS assigns the most likely
representative sequence to each group and calculates the
frequencies of each representative sequence in the differ-
ent samples. To identify the most representative
sequence in every group, QRS searches for the respective
sequence header (according to the USEARCH output log
file in case of neighbour joining or according to the R
script analyses in case of statistical parsimony) in the ori-
ginal FASTA alignment. Then, all representative
sequences are saved in a new FASTA file. Additionally,
to quantify the frequencies of each representative
sequence in the samples, a plain text file (SAMPLES file)
is needed that contains all information about the samples
(starting from the sample identifier which must be the
same as in the DESIGN file). With this information, the
USEARCH output log file (in case of neighbour joining)
or the result from the R script analysis (in case of statisti-
cal parsimony) is processed to count how many repre-
sentative sequences exist in each sample. This results in
a matrix with the absolute frequencies (plain text file).

Case study: C. mesnili ITS1 sequence variation

Sampling design. For this study, we used the same para-
site DNA samples as those previously cloned and San-
ger sequenced in a methodological study by Giessler &
Wolinska (2013), and in which the detailed sampling
design is described. In short, Daphnia samples were col-
lected from seven drinking water reservoirs in the
Czech Republic: Brno, Rimov, Stanovice, Trndvka, Vir,
Vranov and Zelivka (geographical locations and further
characteristics of the reservoirs are provided in Seda
et al. 2007). From all available samples (collected in
autumn 2004, 2005, 2008 and 2009), those containing a
substantial proportion of C. mesnili-infected Daphnia
individuals were chosen (16 samples, one to four per
lake; see Table S1, Supporting information and Giessler
& Wolinska 2013). Twenty highly infected Daphnia indi-
viduals were selected and pooled per sample for DNA
extraction.

Molecular analyses. DNA isolates from twenty pooled,
infected Daphnia individuals (per sample) were pro-
cessed as follows. First, PCR was run to amplify the ITS1
region in a 20 ul reaction volume, containing 1 ul of
genomic DNA isolate, 0.25 mm of deoxynucleoside tri-
phosphates, 1 um of each primer, 1x buffer and 1.25 U of
Dream Taq DNA polymerase (Thermo Fisher Scientific,
Waltham, MA, USA). Specific C. mesnili ITS1 primers (For-
ward: ACACCGCCCGTCACTACTAC and Reverse: TGG
ATATACCACTCTCAAACAG), amplifying a fragment

© 2015 John Wiley & Sons Ltd
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approximately 425 bp long, were designed using Oligo
Explorer 1.2 (Kuulasmaa 2010) based on the sequence
alignment from Giessler & Wolinska (2013). The primers
used in this previous study were 185 Cm1469For [AG-
CACAAGTCCTTAACTTGTGTT] and a 1:1 mix of 285
Cml-1 Rev [CACTCGCCGTTACTGAGG
GAATC] and 285 CM1-2 Rev [CATTCGCCATTACTA
AGGGAATC] (Lohr et al. 2010). The newly designed
C. mesnili-specific primer sequences were used as the
3'-portions of fusion primers for amplicon pyrosequencing,
together with a 25-mer for binding to the DNA Capture
Beads (Lib-A) at the 5-end, and 10-base MIDs chosen
from the 454 Standard MID Set (Roche/454 Life Sciences)
in the middle of the fusion primer. Samples were tagged
with a unique combination of MIDs at forward and
reverse primers. The following PCR protocol was used
as follows: an initial denaturation step of 3 min at 94 °C,
followed by 40 cycles of 30 s at 94 °C, 30 s at 53 °C,
2 min at 72 °C and a final extension step of 7 min at
72 °C. All 16 samples were then pooled in an equimolar
concentration of each product, with DNA concentrations
determined by fluorescence measurements using Pico-
Green (Invitrogen, Inc.). Emulsion-based clonal amplifi-
cation of a DNA library was subsequently performed,
following the GS Junior Titanium emulsion-based clonal
amplification (emPCR) protocol for amplicons (Roche/
454 Life Sciences) and using the recommended chemis-
try. Amplicon sequencing was carried out on the GS
Junior System (Roche/454 Life Sciences), according to
the manufacturer’s instructions.

Comparison between 454 and Sanger data sets. To test
whether 454 sequencing introduces quantitative bias
into the assessment of population structure, we joined
the 454 data set generated in this study (‘filtered 454’)
with a data set previously obtained from the same
DNA isolates by cloning and Sanger sequencing (Giess-
ler & Wolinska 2013; Wolinska et al. 2014). The ‘filtered
454’ data set was produced by discarding all clusters
that contained only one or two sequences after denois-
ing and removing chimeras (see Data S2, Supporting
information). Statistical parsimony was run jointly for
all 16 samples (analysed both by 454 and by Sanger
sequencing). It was possible to run this step with all 16
samples, because less than 2 MB of RAM was required
to connect the reduced number of sequences after filtra-
tion. Specifically, 3245 sequences were present in the
“filtered 454’ data set versus 16,100 in the ‘raw 454’ data
set. After each sequence was assigned to a specific rep-
resentative sequence, we compared the frequencies of
representative C. mesnili sequences between the ‘filtered
454’ and Sanger data sets, separately for each of 16 anal-
ysed samples, by applying a Monte Carlo permutation
test with 10,000 replicates as implemented in SPSS (ver-
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sion 20.0, IBM 2011). Sequential Bonferroni correction
(Rice 1989) was used to correct P-values in these and all
other statistical tests, if necessary. To assess the extent
of spatial and temporal variation among C. mesnili pop-
ulation samples in both the ‘filtered 454’ and Sanger
data sets, we applied analyses of molecular variance
(aMovA) using the distance method and pairwise differ-
ences, in ARLEQUIN 3.5 (Excoffier & Lischer 2010). AMOVA
tests for spatial patterns were run separately for each
year, from which more than two population samples
were available (2004, 2005 and 2009; Table S1, Support-
ing information). Similarly, tests for temporal patterns
were applied separately per lake, focusing on lakes that
had been sampled more than twice (Rimov, Vir and
Vranov; Table S1, Supporting information). The signifi-
cance of each AMOvA run was assessed relative to 1000
randomly permuted data sets.

Validation of the QRS pipeline on an Illumina data set

The QRS pipeline was also tested on an Illumina MiSeq
data set using published data from 185 rDNA of inter-
tidal meiofauna of Alabama (Brannock et al. 2014). In this
validation test, we analysed only a subset of samples (i.e.
29 samples, which corresponds to ~ 8% of the entire data
set), to restrict computational effort. This subset was
downloaded from the SRA webpage (SRR codes:
SRR1290551-SRR1290578, SRR1290580) and was pro-
cessed in QRS, UPARSE (Edgar 2013) and mothur v.
1.34.4, inferring representative sequences at the 97%
identity level, using neighbour-joining clustering. Later,
all representative sequences were assigned to OTUs
using SINA (Pruesse et al. 2012) and SILVA 119 SSU
database as reference (Yilmaz et al. 2014). Finally, fre-
quencies of all OTUs at phylum level were compared
between the results from QRS, UPARSE and mothur
after pooling all samples. This was performed by apply-
ing a Monte Carlo permutation test with 10 000 repli-
cates using R 3.1.2 (R Core Team 2014). Sequential
Bonferroni correction (Rice 1989) was used to correct
P-values of post hoc comparisons. Detailed information
on the validation of the QRS pipeline is presented in
Data S3 (Supporting information).

Results

Comparison between 454 and Sanger data sets

There were no significant differences between the ‘fil-
tered 454’ and ‘raw 454’ data sets (as assessed for 16
analysed cases) in the frequencies of representative
sequences (Data S2, Supporting information). This
allowed us to use the ‘filtered 454" data set in all subse-
quent analyses of this study.
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Specifically, the 3245 sequences recovered in the ‘fil-
tered 454’ data set (see Data S2, Supporting information)
were joined with 455 sequences obtained from cloning/
Sanger sequencing runs (Giessler & Wolinska 2013). The
length of this combined alignment (i.e. ‘filtered 454 and
Sanger’) was 406 bp. Fifteen representative sequences
(i.e. the most abundant sequence in each group; C2.1 to
C2.15; Table S2, Supporting information) were identified
in this combined data set. More than half of the
sequences (53.9%) were assigned to a single representa-
tive sequence: C2.14. By contrast, ten representative
sequences were present at proportions less than 0.5%
(Table S2, Supporting information). In general, the same
representative sequences were recovered by 454 and San-
ger sequencing, at similar frequencies per sample
(Fig. 2). There was only one instance where the relative
frequencies of representative sequences differed signifi-
cantly between the two sequencing approaches: Vranov
2009 (Fig. 2; Table S2, Supporting information). The con-
sistency of results from the two sequencing methods was

supported, even when the most abundant representative
sequence was discarded in each pair of samples. In that
case, the differences in representative sequence frequen-
cies remained nonsignificant in all 16 pairwise compari-
sons (Table S4, Supporting information). Overall, the
sequences present exclusively in one or the other data set
were those of low frequencies. Specifically, seven rare
representative sequences (i.e. at proportions less than
0.5%; Table S2, Supporting information) were present
exclusively in the 454 data set and three in the Sanger
data set only.

The largest amount of variation in both data sets, as
revealed by aMova, was observed at the within-popula-
tion level. However, both spatial and temporal compo-
nents were still significant in the two data sets and
explained comparable amounts of variation. Thus,
7-11% and 6-14% of the total variance were explained by
the spatial, and 3-15% and 4-13% by the temporal com-
ponent in the 454 and Sanger data sets, respectively
(Table 1). Regarding the Sanger data set, the results

2004 2005 2008 2009
Sanger 'Filtered 454' Sanger 'Filtered 454' Sanger 'Filtered 454' Sanger 'Filtered 454'
0.542 0.144
=C2.1
0.423 0.111 0.505 0.933 22
C23
Stanovice uC24
mC25
0. 0.050 C2.6
uC27
Trnévka nc28
uC29
0.015 =C2.10
mC2.11
Vir uC2.12
mC2.13
0.172 0.027 0.550 “C2.14
mC2.15
0.103 0.074 0.003
Zelivka

‘0.0 14‘

Fig. 2 Comparison of frequencies of Caullerya mesnili ITS1 representative sequences between ‘Sanger’ and ‘filtered 454’ data sets.
Results of Monte Carlo permutation tests are shown between the respective pie charts. All calculations were performed using 10 000
replicates. The P-value that remained significant after sequential Bonferroni correction is shown in bold.
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Table 1 Results of the analysis of molecular variance (aMova) to explore spatial and temporal population structure in Caullerya mesnili
parasites. All calculations were based on the frequency of representative ITS1 sequences in parasite DNA

‘Filtered 454’ data set Sanger data set
Level of Source of % of explained % of explained
variation variation df. variation P-value df. variation P-value
Spatial variation
All 2004 Among lakes 5 8.70 <0.001 5 19.14 <0.001
Within lakes 1208 91.30 162 80.86
All 2005 Among lakes 4 727 <0.001 4 991 <0.001
Within lakes 944 92.73 133 90.09
All 2009 Among lakes 2 10.75 <0.001 2 6.70 0.005
Within lakes 670 89.25 86 93.30
Temporal variation
All Rimov Among years 3 9.9 <0.001 3 4.11 0.027
Within years 694 90.01 114 95.89
All Vir Among years 2 14.88 <0.001 2 12.84 0.001
Within years 601 85.12 77 87.16
All Vranov Among years 2 3.62 <0.001 2 6.47 0.001
Within years 576 96.38 89 93.53

generated by the QRS pipeline are comparable with the
outcome of AMOvA analyses published in Wolinska et al.
(2014). Small differences in the amount of explained vari-
ation result from cutting sequence ends, necessary to
standardize the alignment length for the comparison of
Sanger and ‘filtered 454" data set, whereas the slightly
different number of analysed sequences is due to the
removal of sequences that had ambiguous nucleotides.

Validation of the QRS pipeline on an Illumina data set

The QRS pipeline applied on an already published Illu-
mina data set provided similar results regarding the fre-
quencies of identified OTUs, as derived from two well-
established metabarcoding programs: UPARSE and mo-
thur. In fact, five phyla were only recovered by QRS,
while there were no OTUs uniquely appearing in the
results of mothur or UPARSE. Additionally, the percent-
age of ‘unclassified’ or prokaryotic OTUs was less in
QRS than in UPARSE or in mothur. Detailed results on
the validation of the QRS pipeline are presented in Data
S3, Supporting information.

Discussion

Quantification of representative sequences, our newly
developed bioinformatic pipeline, was used to estimate
the frequency of representative variants of the ITS1
region from the Daphnia parasite, Caullerya mesnili. Data
from cloning/Sanger sequencing and 454 amplicon
sequencing from the same DNA isolates were compared
to test the accuracy of the pipeline when using error

© 2015 John Wiley & Sons Ltd
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prone NGS data. Results from both sequencing platforms
were in good agreement with respect to the QRS as well
as the outcome of population analyses focusing on spa-
tial and temporal variation.

Development of the QRS pipeline

We developed a new pipeline to assign and quantify
representative sequences from 454 data sets to analyse
variation within populations using network-based
approaches. Network algorithms are frequently used to
analyse Sanger data sets at community or intraspecific
levels (e.g. Knittweis ef al. 2009; Chen et al. 2010;
Wolinska et al. 2011). Missing, however, are toolkits
which would allow the application of the same algorithm
to large sequencing data sets, such as those obtained by
NGS technologies. The majority of existing programs
that use amplicon sequence data sets as input, like
mothur (Schloss et al. 2009), QIIME (Caporaso et al. 2010)
and UPARSE (Edgar 2013), were developed to describe,
compare and analyse microbial communities in metage-
nomic studies, typically focusing on biodiversity at levels
higher than the genus (e.g. Edgcomb et al. 2011; Kautz
et al. 2013). SESAME BARCODE software (Piry et al. 2012) and
a recently developed metabarcoding pipeline for fungal
ITS1 sequences (Balint et al. 2014) infer representative
sequences using neighbour-joining clustering to classify
amplicon sequences into operational taxonomic units for
DNA barcoding purposes. However, representative
sequences might be better inferred by network
approaches to study within-population variability using
multicopy genes or gene families. In fact, as shown in
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our previous work (Giessler & Wolinska 2013),
neighbour-joining clustering was not precise enough to
identify representative ITS1 sequences in C. mesnili pop-
ulation samples because reticulate relationships and
recombination events are not considered by this method
(Posada & Crandall 2001, 2002). Therefore, we imple-
mented in the QRS pipeline both neighbour joining and
statistical parsimony (Templeton ef al. 1992) as a cluster-
ing algorithm and a network approach, respectively,
making it useful to identify and quantify representative
sequences for a variety of purposes. However, the QRS
pipeline is also open to the implementation of other net-
work methods, such as reduced median networks
(Bandelt et al. 1995) and median-joining networks (Ban-
delt et al. 1999).

Another advantage of the QRS pipeline is its flexibil-
ity to use a variety of alignment algorithms. After identi-
fying the best-fitting multiple alignment program for the
sequence data set, automatic tools can be applied to post-
process the alignment. For the purpose of our evaluation,
we used PRANK and ReformAlign because the combina-
tion of both methods generated more accurate align-
ments in terms of Modeler’s and Cline shift scores than
other aligners (results not shown). The Modeler’s score
computes the ratio of correctly aligned residue pairs with
the length of the resulting alignment (Sauder et al. 2000),
whereas the Cline shift score penalizes under- and over-
alignment and considers regions in the generated align-
ment that may be shifted by a few positions according to
the reference alignment (Cline et al. 2002).

Finally, the validation analysis suggested that the pro-
posed pipeline was able to retrieve the same phyla and
at similar frequencies as other state-of-the-art methods.
These results demonstrated that the pipeline is compati-
ble with Illumina-generated data sets (as we discuss in
Data S3, Supporting information) and can be further
adjusted to analyse Ion Torrent amplicon sequence data
sets (e.g. Jiinemann et al. 2012; Deagle et al. 2013). In the
latter case, it would be necessary to implement tools that
correct for the high number of erroneous sequences with
high GC content (Quail et al. 2012; Deagle et al. 2013).

Comparison between 454 and Sanger data sets

The frequencies of representative ITS1 sequences derived
from 454 and Sanger data sets were similar, with only
one significant difference across the 16 studied cases. As
expected, 454 pyrosequencing detected some additional
rare (i.e. < 0.5%) representative sequences, because of the
higher sampling power of the method (Huse et al. 2007;
Krober et al. 2009; Liang et al. 2011). Alternatively, the
cloning bias, that is some sequences being less likely to
be cloned than others due to the cell culture strain used
(Forns et al. 1997; Sorek et al. 2007) and/or ligation con-
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ditions (Palatinszky et al. 2011; Zhuang et al. 2012), could
also explain missing representative sequences in the
Sanger results.

Surprisingly, some rare representative ITS1 sequences
identified in the Sanger data set were not detected in the
454 data set. This discrepancy is consistent with reports
from previous studies on fungal diversity which sug-
gested poor sensitivity of the 454 method for certain,
even frequent, taxa (Tedersoo et al. 2010; Kauserud et al.
2012). Moreover, differences between primers used in
Sanger and in 454 could have produced further bias in
the detection of rare representative ITS1 sequences.
These additional sequences, however, might also result
from artefacts. In both Sanger and 454 data sets, PCR
errors like the inverse relationship between nucleotide
quality and sequence length (Schroder et al. 2010) as well
as chimeric sequence formation (Wang & Wang 1996;
Ashelford et al. 2005; Haas et al. 2011) are well known. In
fact, while up to 10% of sequences are chimeras in Sanger
data sets, a frequency of up to 20% has been described
for pyrosequencing (Haas et al. 2011). Thus, although the
used here UCHIME algorithm to detect chimeras is
highly sensitive and specific (Schloss et al. 2011), it is still
possible that some chimeras could be overlooked and
included in the subsequent analysis, leading to overesti-
mation of sequence diversity (Reeder & Knight 2009).
Finally, the nonproofreading DNA polymerases generate
relatively high error rates, due to the lack of 3'-5' exonu-
clease activity, resulting in an overestimation of sequence
diversity (Malet et al. 2003). Because Dream Taq is a mix-
ture of proofreading and nonproofreading polymerases
(Thermo Fisher Scientific, Waltham, MA, USA), we can-
not exclude the generation of similar artefacts although
these artefacts should have minimal influence when the
sequences are clustered at a specific threshold (like in the
denoising step of QRS). To summarize, artefacts of both
sequencing methods might lead to the detection of some
rare artificial sequences. It is thus necessary to improve
chimera detection programs. Also, proofreading polyme-
rases should be used to avoid erroneous estimation of
sequence frequencies.

Conclusion

Our results further support the idea that 454 generated
semiquantitative results are reliable at intraspecific level.
Here, based on the ITS1 marker, we were able to identify
and characterize variation among closely related popula-
tions from the same species, obtaining patterns compara-
ble with our previous Sanger sequencing-based study
(Wolinska et al. 2014). Applying the QRS pipeline on
cloning/Sanger sequencing and 454 pyrosequencing
generated data sets, the same representative sequences
were recovered at similar frequencies, despite the

© 2015 John Wiley & Sons Ltd



SEMIQUANTITATIVE DATA FROM AMPLICON SEQUENCING 1393

differences between the two sequencing platforms and
associated potential methodological errors. Conse-
quently, our results suggest that amplicon sequencing is
useful for studies of genetic population structure. More-
over, in response to the rapid development of more
advanced NGS technologies, our pipeline was adjusted
to analyse Illumina data sets. Its modular nature and
flexible interfaces to bioinformatic tools at most steps
allow for fast adjustment to data sets generated by future
platforms.
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ogle.com/p/quantification-representative-sequences.
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ARTICLE INFO ABSTRACT

Article history: Studies of parasite population dynamics in natural systems are crucial for our understanding of
Received 20 November 2015 host-parasite coevolutionary processes. Some field studies have reported that host genotype frequen-
Received in revised form 2 March 2016 cies in natural populations change over time according to parasite-driven negative frequency-dependent
::i;‘;:;: zm“gls selection. However, the temporal patterns of parasite genotypes have rarely been investigated. More-
over, parasite-driven negative frequency-dependent selection is contingent on the existence of genetic

s specificity between hosts and parasites. In the present study, the population dynamics and host-genotype
’C(m;ya 'mesm.h. specificity of the ichthyosporean Caullerya mes_ni{i, acommon er}doparasite of Dflphnia water fleas, were
Host-genotype specificity analysed based on the observed sequence variation in the first internal transcribed spacer (ITS1) of the
Negative frequency-dependent selection ribosomal DNA. The Daphnia population of lake Greifensee (Switzerland) was sampled and subjected to
Parasite population dynamics parasite screening and host genotyping during C. mesnili epidemics of four consecutive years. The ITS1

of wild-caught C. mesnili-infected Daphnia was sequenced using the 454 pyrosequencing platform. The
relative frequencies of C. mesnili ITS1 sequences differed significantly among years: the most abundant
C. mesnili ITS1 sequence decreased and rare sequences increased over the course of the study, a pattern
consistent with negative frequency-dependent selection. However, only a weak signal of host-genotype
specificity between C. mesnili and Daphnia genotypes was detected. Use of cutting edge genomic tech-
niques will allow further investigation of the underlying micro-evolutionary relationships within the
Daphnia-C. mesnili sy

© 2016 Elsevier GmbH. All rights reserved.

1. Introduction

selection arising from host-parasite interactions should acceler-
ate evolutionary rates through the need for continual adaptation

One of the most important questions in evolutionary biology is
why sexual reproduction persists when it usually has a 50% fit-
ness disadvantage compared to asexual reproduction (Maynard
Smith, 1978). One widely accepted explanation is that reciprocal

and counter-adaptation. Such rapid reciprocal adaptation can
be driven by either directional selection or negative frequency-
dependent selection (NFDS) (Gaba and Ebert, 2009; Brockhurst
and Koskella, 2013; Papkou et al., 2016, current issue). In the

former case, recurrent selective sweeps of novel host resistance

and parasite infectivity alleles occur through time, leading to

- increases in the parasite’s host range and in host resistance
* Corresponding author at: Department of Ecosystem Research, Leibniz Institute traits. In the latter case, common genotypes of a given host have
of l-‘feshwater Ecology and Inland Fisheries (IGB), Miiggelseedamm 301, D-12587 a higher probability of becoming infected by coevolving para-
Berlin, Germany. . sites than do rare genotypes. Rare uninfected host genotypes

E-mail add lez@igb-berlin.de, enri leztortuer com
(E. Gonzélez-Tortuero). thus tend to have a fitness advantage and eventually replace the

http://dx.doi.org/10.1016/j.z001.2016.04.003
0944-2006/© 2016 Elsevier GmbH. All rights reserved.
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previously common host genotypes. At this point, parasite geno-
types that are able to infect surviving host genotypes will be
favoured over those that are still adapted to previously common
hosts. Parasite-driven NFDS could explain the long-term main-
tenance of sex in host and parasite populations (reviewed in
Lively, 2010), since sex is efficient at promoting genetic diver-
sity.

A prediction of NFDS is that common hosts (and thus, com-
mon parasites which are adapted to those common hosts) are at a
disadvantage. Field studies of various systems have demonstrated
that host frequencies are tracked by parasites, including the sys-
tems of Daphnia water fleas and microparasites (e.g., Decaestecker
etal.,, 2007; Wolinska and Spaak, 2009), bryozoans and myxozoans
(Vernon et al., 1996), plants and fungi (e.g., Burdon and Thompson,
1995; Siemens and Roy, 2005) and freshwater snails and trema-
todes (e.g., Jokela et al.,, 2009; King et al., 2009). However, the
majority of field surveys investigated temporal changes in relative
genotype frequencies only for hosts. This exclusion of parasites is
striking because NFDS predicts changes to both host and parasite
frequencies.

A prerequisite for NFDS is the existence of genetic specificity
in host-parasite interactions, where the outcome of infection
depends on the genotypic identity of both host and parasite
(Dybdahl et al., 2014). Genotype-by-genotype interactions have
been demonstrated in several host-parasite systems under exper-
imental conditions (reviewed in Sadd and Schmid-Hempel, 2009).
Thus, the pattern that might be expected under natural conditions
is that parasite populations within hosts differ in their genetic com-
position depending on the host genotypes they infect (e.g., Lythgoe,
2002; Schmid-Hempel and Funk, 2004).

Water fleas of the genus Daphnia (Crustacea: Cladocera) and
their microparasites were recently proposed as a model system
to address coevolutionary questions (Ebert, 2008; Gaba and Ebert,
2009). One of the most common microparasites infecting Daph-
nia of large European lakes is the ichthyosporean Caullerya mesnili
(Wolinska et al., 2007; Lohr et al., 2010). C. mesnili is a highly viru-
lent parasite that reduces the survival and reproduction rate of its
hosts (Wolinska et al., 2006). It has also been shown to be involved
in driving frequencies of host species’ abundance and genotypes
(Wolinska et al.,2006). Moreover, Daphnia genotype dynamics have
been associated with NFDS; the most common host genotypes
decreased in frequency in infected but not in uninfected popula-
tions (Wolinska and Spaak, 2009). However, C. mesnili population
dynamics over longer time scales have not been explored in detail.
In the present study, we analyse the population dynamics of C.
mesnili and its host-genotype specificity in a natural Daphnia pop-
ulation during parasite epidemics of four consecutive years, based
on the observed variation in the first internal transcribed spacer
ITS1 marker.

2. Materials and methods
2.1. Study site

Greifensee (N 47°20'41”, E 8°40'21") is a eutrophic peri-alpine
lake in Switzerland. The cladoceran community of this lake is dom-
inated by hybridising members of the Daphnia longispina complex
(Brede et al., 2009). Epidemics of C. mesnili in Greifensee have
been documented in previous studies (Wolinska et al., 2004, 2006).
Ongoing work since 2002 demonstrates that parasite prevalence
in this lake follows an epidemic pattern, with infection of 20-30%
of the Daphnia population during autumn, and parasite presence
dropping to undetectable levels during the rest of the year (Fig. 1)
(Wolinska et al., 2006).

2.2. Daphnia sampling

Daphnia specimens from Greifensee have been regularly sam-
pled for C. mesnili screening (since 2002) and for microsatellite host
genotyping (since 2007), biweekly or monthly (in winter). At the
deepest point of the lake, zooplankton samples were taken using
a 250 pm net. In the laboratory, ~80 adult Daphnia individuals
were randomly chosen and visually screened for C. mesnili infection,
using a stereomicroscope (Lohr et al., 2010). Then, during each C.
mesnili epidemic, ~80 additional infected Daphnia were collected
(i.e. “infected sample”). These infected Daphnia were then geno-
typed using microsatellites (see Section 2.3). Here, we focus our
analysis on four C. mesnili epidemic peaks, occurring from 2010
to 2013 (Fig. 1). C. mesnili DNA was obtained from infected Daph-
nia from those years; one infected sample per epidemic year was
analysed (2010-08-10, 2011-09-13, 2012-09-06 and 2013-08-29).

2.3. Selection of Daphnia hosts for characterisation of C. mesnili
genetic structure

In order to assign each infected Daphnia individual to a par-
ticular multilocus genotype (MLG) (Yin et al., 2010), all Daphnia
specimens from each “infected sample” were characterised by ten
polymorphic microsatellite markers (Brede et al., 2006; for details
see Data S1 in the supplementary online Appendix). The MLGs
were used to assess host genotype abundance distributions in the
“infected sample” of Daphnia collected during four consecutive C.
mesnili epidemics (Fig. S1 in the supplementary online Appendix).
“Common” Daphnia genotypes were defined as those making up
more than 5% of the sample, and “rare” genotypes as those which
were only detected once in a sample. For each sampling period, 15
randomly selected rare genotypes, as well as all of the common
genotypes, were taken for C. mesnili genetic analyses (genotypes
neither “common” nor “rare” were excluded). If a common geno-
type was represented by more than ten individuals, ten specimens
were randomly selected for subsequent analysis; otherwise all
individual Daphnia belonging to a given common genotype were
analysed.

2.4. Molecular analyses of C. mesnili ITS1 region

Primers amplifying the ITS1 region of C. mesnili were con-
structed by fusing a specific core primer sequence (forward: ACAC-
CGCCCGTCACTACTAC and reverse: TGGATATACCACTCTCAAACAG)
with a basal 25-mer for binding to the DNA capture beads (Lib-
A) and a 10-base multiplex identifier (MID) chosen from the 454
Standard MID Set (Roche, Basel, Switzerland) targeting the approx-
imately 425 bp long ITS1 region (Gonzalez-Tortuero et al., 2015).
DNA samples previously used for Daphnia microsatellite genotyp-
ing were purified by re-precipitation in 70% EtOH and resuspended
in TE buffer. C. mesnili from infected Daphnia DNA samples was
amplified using the following protocol: KAPA2 G Robust Ready Mix
(Kappa Biosystems, Wilmington, MA, USA), 0.3 M each of forward
and reverse primer, 0.8 mM BSA, and 2 pl genomic DNA, for a total
reaction volume of 14 p.l. The PCR cycling parameters included ini-
tial denaturation at 94 °C for 3 min, followed by 40 cycles of 94°C
for 30s, 53 °C for 30s, and 72 °C for 30s, followed by a final elonga-
tion at 72 °C for 7 min. The success of amplification was verified by
agarose gel electrophoresis.

To construct a 454 library, PCR products were purified inde-
pendently for each MID-labelled sample (i.e., isolated from each
infected Daphnia) with a Gel/PCR DNA Fragments Extraction Kit
(Geneaid Biotech, Taipei, Taiwan), their DNA concentration was
measured on a Qubit 2.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA), and then they were pooled in equimolar con-
centrations. The final poolplex was further purified by separation

Please cite this article in press as: Gonzalez-Tortuero, E., et al., Daphnia parasite dynamics across multiple Caullerya epidemics indicate
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Fig. 1. C. mesnili prevalence in the Daphnia population of Greifensee, 2002 to 2014. Epidemic periods in which the prevalence of infection exceeded 2% are indicated in dark
grey. Samples collected for genetic analyses are shown with a dot. X-axis labels indicate beginning of year.

on Pippin Prep (Pippin Prep Kit CSD2010; size-selection range
400-580bp; Sage Science, Beverly, MA, USA) and purified with
SPRI AMPure XP paramagnetic beads (Beckman Coulter Genomics,
Danvers, MA, USA). Emulsion PCR and pyrosequencing were per-
formed with the amplicon (Lib-A) kit, using GS Junior reagents and
the manufacturer’s protocols (454 Life Sciences, Branford, CT, USA),
with the input ratio of DNA molecule-to-bead decreased to 0.4. DNA
bead enrichment level was within the expected range (6%). The raw
454 dataset is available in the Sequence Read Archive (SRA) under
accession number SRP065924.

2.5. Identifying representative ITS1 sequences of C. mesnili

The raw C. mesnili dataset was analysed using the Quantification
of Representative Sequences (QRS) pipeline (Gonzélez-Tortuero
et al,, 2015) to determine the number and frequency of repre-
sentative sequence variants. A representative sequence is defined
as the most abundant sequence per sequence cluster, and could
be considered the presumed ancestral allelic reference (Gonzalez-
Tortuero et al.,, 2015). This reduction of variation is useful for
population structure analysis when a multicopy marker (like the
ITS1) is considered, as it helps mitigate potential overestimation
of polymorphism (Giessler and Wolinska, 2013) as well as minor
sequencing errors. These representative sequences were subse-
quently used instead of the raw data. The pipeline was run with
default parameters (unless indicated otherwise; see Data S2 in
the supplementary online Appendix). The most abundant ITS1
representative sequences are available in the GenBank sequence
database under the accession numbers KU094678-KU094681.

2.6. Haplotype network of C. mesnili

A haplotype network was constructed for the abundant ITS1
representative sequences (“abundant” refers to representative
sequences that reached overall frequencies higher than 0.5%). Con-
nection distances between haplotypes were calculated using TCS
(Clement et al., 2000) according to the statistical parsimony algo-
rithm. The output was processed using a force-directed algorithm,
implemented in Cytoscape 3.2.1 (Shannon et al., 2003). Addition-
ally, to test if the ITS1 representative sequences detected here
were present in previous studies, the abundant C. mesnili rep-
resentative sequences obtained here were compared with those
from a previous study (Gonzalez-Tortuero et al.,, 2015). In that
study, C. mesnili-infected Daphnia were sampled across seven

reservoirs in the Czech Republic (Gonzalez-Tortuero et al., 2015).
Here, all abundant representative sequences were re-aligned using
the MUSCLE algorithm (Edgar, 2004) and manually corrected.
Subsequently, a haplotype network was created as described
above.

2.7. Temporal variation of C. mesnili

To investigate temporal variation in C. mesnili, two types
of analyses were performed. First, the frequencies of C. mes-
nili representative sequences were compared among years, using
a Chi-squared test. Second, to describe the temporal trend, a
Mann-Kendall trend test (Mann, 1945; Kendall, 1948) was per-
formed on the residuals from the locally weighted scatterplot
smoothing (LOWESS) (Cleveland, 1979), with the frequency of C.
mesnili representative sequences as the dependent variable and
time (year) as the independent variable. These statistical tests were
performed inR(R Core Team, 2015). The Kendall (Hipel and McLeod,
2005) package was used for the Mann-Kendall trend test. For these
analyses, all C. mesnili sequences were pooled per year, regardless
of their host genotype.

2.8. Host-genotype specificity of C. mesnili

To assess differences in C. mesnili population structure between
Daphnia genotypes, two types of statistical tests were performed.
The tests were run by year (2010, 2011, 2012 and 2013) and only
C. mesnili sequences detected on common Daphnia genotypes were
considered. First, an analysis of molecular variance (AMOVA) was
performed at three hierarchical levels: within a Daphnia individual,
within a Daphnia genotype (i.e. among individuals that represented
the same genotype) and among Daphnia genotypes. Second, to
visualise the potential differences in the distribution of C. mesnili
representative sequences sampled from different Daphnia geno-
types, a non-metric multidimensional scaling (nMDS) plot was
constructed, using the Bray-Curtis metric, and a permutational
MANOVA was conducted (PERMANOVA) (Anderson, 2001). These
statistical tests were performed in R using the ade4 (Dray and
Dufour, 2007) package for the AMOVA test and the vegan (Oksanen
etal,, 2015) and MASS (Venables and Ripley, 2003) packages for the
nMDS and PERMANOVA.
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3. Results

3.1. Selection of Daphnia hosts for characterisation of C. mesnili
genetic structure

The genotype frequency distributions of infected Daphnia spec-
imens fitted the expected pattern of many rare and few common
genotypes (Fig. S1 in the supplementary online Appendix). There
were 10 Daphnia genotypes that met the “common genotype”
threshold: three in 2010 and 2013, and two in 2011 and 2012
(Table S1 in the supplementary online Appendix). An additional
15 Daphnia individuals per sampling year were randomly selected
from the rare genotype pool. In total, C, mesnili ITS1 was separately
sequenced from 145 infected Daphnia individuals (Table S1).

3.2. Description of the C. mesnili ITS1 dataset

Processing with the QRS pipeline yielded 20,645C. mesnili ITS1
sequences (out of 76,719 available sequences). The majority of
the sequences removed were singletons. Moreover, if less than 10
sequences remained per Daphnia host, these Daphnia hosts were
excluded from further analyses, resulting in 138 analysed Daphnia
(out of the 145 that were originally sequenced; Table S1). The aver-
age number of C. mesnili ITS1 sequences retained per Daphnia was
149.5, with a standard deviation of 82.9. The length of the align-
ment was 460 bp (see the Fasta file in the supplementary online
Appendix).

3.3. Identifying representative ITS1 sequences of C. mesnili

1,062 unique representative sequences were detected in the C.
mesnili dataset. Across the entire dataset (i.e. all Daphnia genotypes
and years pooled), the most abundant C. mesnili ITS1 representative
sequences reached a frequency of 77.45% (CAUL-1), 7.89% (CAUL-2),
1.83% (CAUL-3) and 0.86% (CAUL-4). The remaining 1,058 represen-
tative sequences were present at proportions lower than 0.5% and
were classified as rare.

3.4. Haplotype network

The haplotype network had an almost linear structure, with
the most abundant C. mesnili ITS1 representative sequence (CAUL-
1) placed between the other abundant representative sequences
(Fig. 2). The second most abundant C. mesnili representative
sequence (CAUL-2) matched the C2.14-type from a previous study
(Gonzalez-Tortuero et al., 2015), which was the most abundant
type in that study. In a joint haplotype network of representative

Table 1

Results of AMOVA tests of the distribution of C. mesnili ITS1 representative sequences
in Greifensee, per year. Only C. mesnili sequences originating from “common” Daph-
nia genotypes were included in these analyses.

Year  Source of variation df Percent variation P
2010 Among Daphnia genotypes 2 -0.05 0.003
Within a Daphnia genotype 23 1.65 <0.001
Within a Daphnia individual =~ 5235 98.40 <0.001
2011  Among Daphnia genotypes 1 0.21 0.007
Within a Daphnia genotype 13 0.69 <0.001
Within a Daphnia individual ~ 2137 99.10 <0.001
2012  Among Daphnia genotypes 1 —-0.06 0.067
Within a Daphnia genotype 14 1.70 <0.001
Within a Daphnia individual =~ 2550 98.36 <0.001
2013  Among Daphnia genotypes 2 0.22 0.050
Within a Daphnia genotype 20 294 <0.001
Within a Daphnia individual 1900  96.83 <0.001

sequences (i.e. those from the present study as well as from the
previous study by Gonzilez-Tortuero et al., 2015), the two most
abundant representative sequences (CAUL-1 and C2.14-type) were
present at the centre of the network (Fig. S2 in the supplementary
online Appendix).

3.5. Temporal variation of C. mesnili

The relative frequencies of the C. mesnili ITS1 representative
sequences differed among the years analysed (Chi-squared test:
x2=1138.4,P<2.2 x 10-16; Fig. 3). Adecrease in the most abundant
C. mesnili ITS1 representative sequence (CAUL-1) and an increase
in the rare representative sequences were the most pronounced
trends. The significant changes in the relative abundance of repre-
sentative frequencies over time were confirmed by a Mann-Kendall
test (Fig. 4).

3.6. Host-genotype specificity of C. mesnili

Differences in the distribution of C. mesnili ITS1 representative
sequences among different Daphnia genotypes were tested with
an AMOVA (separately per epidemic year). The largest amount
of variation was observed at the “within a Daphnia individual”
level (up to 99.1% in 2011). Only a very small proportion of the
variation was explained by differences in the frequencies of C. mes-
nili ITS1 representative sequences among Daphnia genotypes (this
level of variation was significant in 2010 and 2011; Table 1). Dif-
ferences in ITS1-based C. mesnili genetic structure between the
Daphnia genotypes were visualised in nMDS plots, where the posi-
tion of individual points is based on the frequencies of specific
ITS1 representative sequences per Daphnia host (Fig. 5). The geno-
type centroids overlapped in 2010 (for two of the three analysed
genotypes) and in 2011 (for both analysed genotypes). In 2012
and 2013, the group centroids were distinct. The results of the
nMDS plots were supported by PERMANOVA tests, which indicated
significant differences in the presence and abundance of represen-
tative C. mesnili ITS1 sequences among Daphnia genotypes in 2013
only (2010: F=0.782, P=0.470; 2011: F=0.590, P=0.631; 2012:
F=2.220,P=0.104; 2013: F=2.342, P=0.038).

4. Discussion

In natural populations, tracking parasite dynamics over time
remains difficult (reviewed in Penczykowski et al., 2015). Except
for the Trichostrongylus tenuis-red grouse system (Hudson and
Dobson, 1997) and the St. Kilda Soay Sheep Project (e.g., Wilson
et al.,, 2004), the majority of studies about temporal changes in par-
asite populations to date have been performed in the laboratory
under controlled conditions (e.g., Koskella and Lively, 2009; Schulte
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et al., 2010). Although such experiments are necessary to reduce
environmental noise which can otherwise conceal important fac-
tors and processes, they tend to oversimplify natural conditions.

Since parasite population dynamics are highly sensitive to envi-
ronmental changes (reviewed in Wolinska and King, 2009), studies
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was 0.079 for all plots.

under natural conditions are essential to understand host-parasite
coevolution.

In the present study, we detected a decrease of the most abun-
dant C. mesnili ITS1 representative sequence (CAUL-1) and an
increase of the rare representative sequences in a natural Daph-
nia population over the four study years. This observation is in line
with NFDS, as common parasites which presumably are adapted to
the most common host genotypes are at a disadvantage and must
then decrease in abundance. In a similar study examining seven
drinking water reservoirs in the Czech Republic, the frequencies
of C. mesnili ITS1 representative sequences changed across time as
well (Wolinska et al., 2014). However, here we were able to analyse
a much larger sequence dataset; the number of C. mesnili ITS1 rep-
resentative sequences analysed per infected Daphnia was 25-33
in the study by Wolinska et al. (2014) in contrast to 3,452-7,823
sequences in the present study (due to the use of Sanger sequencing
and 454 pyrosequencing platforms, respectively).

One alternative explanation that could have led to the trend
of parasite genetic change over time observed here could be that
different parasite genotypes are being favoured over time due
to changes in the external environment (reviewed in Wolinska
and King, 2009). In fact, interaction between parasites and tem-
perature was significant in the C. mesnili-Daphnia system when
assessed experimentally (Schoebel et al., 2011). However, there is
no indication that conditions in Greifensee have changed in any
particular direction within the four years examined. Another alter-
native explanation is that a yearly expansion following a bottleneck
might explain the trend seen in the data. It is still unknown how
C. mesnili survives between the epidemics; it may persist either at
very low and undetectable densities in the Daphnia host, in as yet
unknown alternative hosts (like fish) or in the sediment as spores.

To be able to discard this potential explanation, population genetic
tests are needed.

NEFDS is associated with the parasite-driven evolution of sex
(reviewed in Brockhurst et al,, 2014). In fact, the existence of
sexual cycles could potentially explain the origin of the rare C.
mesnili ITS1 representative sequences. However, cryptic sexuality
has only been described in the ichthyosporean shellfish symbiont
Sphaeroforma tapetis so far (Marshall and Berbee, 2010). Alterna-
tive mechanisms might also account for the origin of rare variants.
For instance, ribosomal DNA is present in multiple copies through-
out the genome and each copy is a potential target for mutations
leading to intragenomic variation. It has long been thought that
such regions (including the ITS1) evolve under concerted evolu-
tion, i.e., become homogenised and evolve as a unit (reviewed in
Liao, 1999). Although ITS1 polymorphism is not well studied in the
class Ichthyosporea, high intragenomic ITS1 variability has been
described in other protozoa such as the human intestinal parasite
Dientamoeba fragilis (Bart et al., 2008) and the foraminiferan Elphid-
ium macellum (Pillet et al., 2012). This high ITS1 variability argues
against the concerted evolution of the ribosomal genes (at least
in those particular taxa) and suggests a birth-and-death process,
where new genes originate from gene duplication and some are
maintained in the genomes while others are eliminated or become
non-functional (Nei et al., 1997). To elucidate ribosomal gene evolu-
tion according to the above hypotheses (i.e. concerted evolution or
birth-and-death processes), cytogenetic and genomic techniques
should be implemented.

The weak signals of host-genotype specificity we found between
C. mesnili and Daphnia genotypes support the lack of host-genotype
specificity in this system, as indicated in a previous study in which
we compared the distribution of C. mesnili ITS1 sequences between
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Daphnia hybrids and their parental species (Wolinska et al., 2014).
Two main arguments are commonly used to explain host speci-
ficity and its related factors: the specialisation of parasites and
the relationship between host specificity and parasite transmission
mode. Parasites tend to infect specific hosts that are phylogeneti-
cally and/or eco(physio)logically related (Adamson and Caira, 1994;
Pedersen et al., 2005). In invertebrates, parasite specificity is asso-
ciated with differential expression of the innate immune system,
the genetic diversity of receptors or effectors, dosage effects and
the host’s microbiota (Schulenburg et al., 2007; Riddell et al., 2009;
Koch and Schmid-Hempel, 2012). Host ecology is an important
factor that affects specificity when the parasites interact mini-
mally with the host’s physiology and/or evade the host immune
system (Adamson and Caira, 1994; Schmid-Hempel, 2009). Ecolog-
ical parameters like composition of the community (e.g., Poulin,
1997; Marcogliese, 2002), host foraging strategies (Salathé and
Schmid-Hempel, 2011) and the presence of vectors (reviewed in
Hoberg and Brooks, 2008) have been associated with a lack of par-
asite specificity. In contrast, factors including similarity between
habitats (Simkova et al., 2006) and host geographical distribution
(reviewed in Poulin et al., 2011) could reinforce host-genotype
specificity. Additionally, non-structured parasite populations could
be the result of weak genetic interactions or of frequent genetic
exchange (Schmid-Hempel and Funk, 2004; Bruyndonckx et al.,
2009). Host specificity might also relate to parasite transmission
mode; specific forms of transmission might facilitate encounters
with multiple types of host (Pedersen et al., 2005). For instance,
Daphnia become infected when they ingest C. mesnili spores during
grazing (Lohr et al., 2010). This method of transmission, common
in gut parasites, is expected to be a non-specific mode of parasite
transmission (Marcogliese, 2002).

Finally, despite its many benefits, ITS1 may not be the opti-
mal marker for host-genotype specificity tests. However, ITS1
sequences are the only known polymorphic marker in C. mesnili
which could allow for the identification of different parasite strains
or variants (Giessler and Wolinska, 2013). In a similar way, the use
of ITS1 to discriminate strains or variants was successful in amoe-
bozoa (Kdhsler et al., 2006) and trichomonads (Ibafiez-Escribano
et al., 2014). Nevertheless, the resolution of this marker is not fine
enough to discriminate between strains or variants in oomycetes
(Robideau etal.,2011), dinoflagellates (Stern et al.,2012) or in other
protozoa (Homan et al., 1997; Lollis et al., 2011). For this reason,
strains or variants identified with the ITS1 marker should be con-
firmed with other neutral markers which identify strains at a higher
resolution.

In conclusion, we detected a decrease in the most abundant C.
mesnili ITS1 representative sequence and an increase in the rare
representative sequences over four consecutive epidemics. These
findings are consistent with the assumptions of NFDS. However,
only weak host-genotype specificity between C. mesnili and Daph-
nia was detected in our survey. In future studies, NFDS should be
further confirmed by performing simultaneous genetic screening
of host and parasite populations.
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Abstract

Background: Microsporidia are spore-forming obligate intracellular parasites that include both emerging
pathogens and economically important disease agents. However, little is known about the genetic diversity of
microsporidia. Here, we investigated patterns of geographic population structure, intraspecific genetic variation,
and recombination in two microsporidian taxa that commonly infect cladocerans of the Daphnia longispina
complex in central Europe. Taken together, this information helps elucidate the reproductive mode and life-cycles
of these parasite species.

Methods: Microsporidia-infected Daphnia were sampled from seven drinking water reservoirs in the Czech
Republic. Two microsporidia species (Berwaldia schaefernai and microsporidium lineage MIC1) were sequenced
at the internal transcribed spacer (ITS) region, using the 454 pyrosequencing platform. Geographical structure
analyses were performed applying Fisher's exact tests, analyses of molecular variance, and permutational
MANOVA. To evaluate the genetic diversity of the ITS region, the number of polymorphic sites and Tajima’s
and Watterson's estimators of theta were calculated. Tajima’s D was also used to determine if the ITS in these
taxa evolved neutrally. Finally, neighbour similarity score and pairwise homology index tests were performed
to detect recombination events.

Results: While there was little variation among Berwaldia parasite strains infecting different host populations,
the among-population genetic variation of MIC1 was significant. Likewise, ITS genetic diversity was lower in
Berwaldia than in MIC1. Recombination signals were detected only in Berwaldia.

Conclusion: Genetic tests showed that parasite populations could have expanded recently after a bottleneck
or that the ITS could be under negative selection in both microsporidia species. Recombination analyses
might indicate cryptic sex in Berwaldia and pure asexuality in MIC1. The differences observed between the
two microsporidian species present an exciting opportunity to study the genetic basis of microsporidia-Daphnia
coevolution in natural populations, and to better understand reproduction in these parasites.

Keywords: Cryptic sex, Genetic diversity, Internal transcribed spacer, Microsporidia, Recombination

* Correspondence: gonzalez@igb-berlin.de; enriquegleztortuero@gmail.com
"Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology
and Inland Fisheries (IGB), Muggelseedamm 301, 12587 Berlin, Germany
2Berlin Centre for Genomics in Biodiversity Research (BeGenDiv),
Konigin-Luise-StraBe 6-8, 14195 Berlin, Germany

Full list of author information is available at the end of the article

- . © 2016 Gonzalez-Tortuero et al. Open Access This article is distributed under the terms of the Creative Commons Attribution
( ) BiolMed Central 49 Intemnational License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

37



Gonzélez-Tortuero et al. Parasites & Vectors (2016) 9:293

Background

Microsporidia are a phylum of spore-forming obligate
intracellular parasites, and constitute one of the most
phylogenetically divergent basal fungal clades [1]. This
taxon comprises over 1500 known species distributed
across more than 187 genera [2], although this is likely
an underestimate of their true diversity [3]. Microspori-
dia are able to infect a wide range of eukaryotes, from
protists of the Stramenopiles-Alveolata-Rhizaria (SAR)
supergroup to the majority of animal lineages (including
humans) [2]. Currently, Microsporidia are considered to
be emerging pathogens [4] and a relevant threat to human
health, as they are commonly found in immunocomprom-
ised patients [5]. There are also economically important
pathogens among Microsporidia such as Nosema
bombycis, which parasitises the silkworm [6, 7], or N.
ceranae, one of the causes of the honeybee population de-
cline [4, 8]. Nosema species have also been considered for
use in pest biocontrol in place of parasitoids [9].

Despite the importance of microsporidians, little is
known about patterns of genetic diversity in these para-
sites. Recent approaches to understanding these patterns
have included intraspecific genome analysis as a way to
investigate between-host genetic variation and the evolu-
tionary history of parasite populations. Comparative gen-
omics has also been used to predict mode of
reproduction based on genes associated with meiosis
[10] and/or recombination [11-13]. Reproduction ap-
pears to vary across microsporidians; while the existence
of sexual reproduction was suggested in Nematocida
spp. based on genomic evidence [12], Nosema ceranae
populations across the world seem to be clonal [11].
Moreover, genomic approaches present an opportunity
to search for new markers when substantial genetic vari-
ability between strains is discovered (e.g. in Encephalito-
zoon cuniculi [13]). However, genomic data are still
lacking for most microsporidian taxa. Thus, another
common approach to the analysis of intraspecific genetic
diversity in Microsporidia is sequencing of a target gen-
omic region; markers used for this purpose included
single-copy loci such as those encoding the 70 kDa heat-
shock protein [14, 15], the large subunit of the RNA
polymerase II [15] and the polar tube proteins [16, 17],
or a multi-copy marker such as the internal transcribed
spacer, ITS [18-20].

The internal transcribed spacer (ITS) is the non-
coding stretch of DNA situated between the small (16S)
and the large (18S) subunit ribosomal RNA genes in the
majority of microsporidian species. Intraspecific ITS
variability differs markedly between microsporidian spe-
cies: while low ITS variability has been described for
Enc. cuniculi [21], Enc. hellem [19] and Enc. intestinalis
[22], high variability was detected in Enterocytozoon
bieneusi [23]. Although the ITS region is not related to
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the infection mechanism, it has been used to determine
parasite genetic variability because the ITS variation is
assumed to be neutral. Variability in the parasite is
important because it increases the probability that the
parasite will be able to successfully evade its host’s
immune response (reviewed in [24]), leading to survival
and potential transmission (reviewed in [25]). Understand-
ing the nature of genetic variation of a parasite is thus
crucial to the understanding of host-parasite interactions.

The planktonic cladocerans of the genus Daphnia and
their microparasites were recently proposed as a suitable
host-parasite model system to study coevolutionary
questions (e.g. [26, 27]). In addition, microsporidian par-
asites of Daphnia have received considerable attention
due to their complex life-cycles [28-30]. In our study,
we focused on two abundant microsporidians infecting
Daphnia communities inhabiting large lakes and reser-
voirs in central Europe, classified as Berwaldia schaefer-
nai and as the microsporidium MIC1 [31]. Both of these
species infect the body cavity of their host, where a
massive amount of spores then proliferate [32]. They are
closely related to Marssoniella elegans (a parasite of the
copepod Cyclops vicinus), Senoma globulifera (a parasite
of the malaria-hosting mosquito Anopheles messeae),
and other parasites of Daphnia, including Larssonia
obtusa, Gurleya vavrai and Binucleata daphniae [30];
these relatives span a range of transmission and
reproduction modes. Marssoniella elegans is a dixenous
parasite which likely uses mosquitoes or caddisflies as
secondary hosts [33, 34], while S. globulifera and B.
daphniage are monoxenous parasites [29, 35]. It is
thought that L. obtusa, G. vavrai and B. schaefernai
may have an indirect life-cycle which involves a sec-
ondary host (similar to M. elegans), given that at-
tempts to maintain them in the laboratory have
proven consistently unsuccessful [28, 32]; however,
failure to replicate relevant environmental conditions
cannot be excluded [36, 37]. Alhough relatively
limited, the available data indicate low genetic vari-
ability among populations of Berwaldia, pointing to a
highly mobile secondary host or vector which is able
to effectively homogenise the parasite population [38].
For MICI1, no previous data are available. The goal of
the present work is to compare the patterns of geo-
graphic population structure, intraspecific genetic
variation and recombination events of the ITS se-
quence of Berwaldia and MIC], in order to infer the
dispersal mechanism of these parasites. Recombin-
ation analyses were also used to investigate the
potential presence of sexual reproduction in the
life-cycle of the studied taxa. Taken together, this
information will be used to better characterise the
life-cycles and dispersal patterns of these parasite
species.
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Methods

Sampling design

Zooplankton samples, including the Daphnia longispina
species complex, were collected from seven reservoirs in
the Czech Republic (Brno, Rimov, Se¢, Stanovice, Trnévka,
Vir, and Zlutice) in the summer and autumn of 2004 and
2005 by hauling a plankton net (mesh size 170 pm)
through the water column. Geographical locations and
further characteristics of the reservoirs are provided in
[39]. In the present study, we focused on analysing para-
site DNA from infected Daphnia host individuals which
had been previously assessed for microsporidia infection
[30]. Eighty-seven Daphnia infected with Berwaldia
(sampled across six reservoirs: Rimov, Se¢, Stanovice,
Trnavka, Vir, and Zlutice), and 28 Daphnia infected with
the microsporidium MIC1 (sampled from two reservoirs:
Brno and Stanovice) were included in this study. The
number of infected Daphnia sampled per reservoir varied
from 9 to 25 (see Additional file 1: Table S1). In a previous
parasite survey of Daphnia populations from the afore-
mentioned reservoirs, Berwaldia and MIC1 were the most
abundant of the eight microsporidian taxa detected [30].

Molecular analyses
Primers amplifying the ITS regions to be used for 454
amplicon pyrosequencing were constructed by fusing a
specific core primer sequence (Berwaldia forward: 5'-
TGA TGR CGA TGC TCG ATG AGA G-3; MIC1 for-
ward: 5- TTT GAC TCA ACG CGG GAM AAC TT-3}
reverse used for both species: 5- CAA YTT CRC
TCG CCG CTA CTA-3' [31]) with a basal 25-mer for bind-
ing to the DNA Capture Beads (Lib-A) and a 10-base
multiplex identifier (MID) chosen from the 454 Standard
MID Set (Roche, Basel, CH). After DNA isolation [30], the
ITS region of 115 microsporidia-infected Daphnia was
PCR-amplified using the following protocol: 1X Phusion
HF Buffer, 0.5 U Phusion HF DNA polymerase (Thermo
Fisher Scientific, Waltham, MA), 0.5 uM each of Forward
and Reverse primer, 025 mM deoxynucleoside triphos-
phates, and 2 pl genomic DNA, for a total reaction volume
of 25 pl. The success of amplification was evaluated by
agarose gel electrophoresis. In cases when the initial PCR
failed, DNA concentration in the reaction was varied (1 and
3 pl). To evaluate differences among (presumably) identical
samples subjected to the same 454 sequencing run, three
technical replicates were sequenced for each of three indi-
vidual Daphnia (two individuals infected with Berwaldia
and one individual infected with MIC1). These replicates
were created by carrying out independent PCR reactions of
the same DNA template using primers labelled with
different multiplex identifiers.

To verify primer specificity, one Berwaldia and two
MIC1 PCR products were randomly selected and cloned
using a StrataClone PCR Cloning Kit (Agilent
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Technologies, La Jolla, CA), according to the manufac-
turer’s protocol. Between two and four positive bacterial
colonies were then selected for sequencing on an ABI 3730
DNA Analyzer using the BigDye 1.1 Terminator Sequen-
cing Kit (both Applied Biosystems, Foster City, CA). The
resulting electropherograms were visually inspected and
manually corrected in MEGA6 [40]. NCBI's Nucleotide
BLAST [41] was then used to verify PCR product sequence
identity.

To create a 454 library, all PCR products were purified
independently for each sample with a Gel/PCR DNA Frag-
ments Extraction Kit (Geneaid Biotech Ltd., Taipei, TW),
their concentrations were measured on a Qubit 2.0
Fluorometer, and then the samples were pooled in
equimolar concentrations (Berwaldia and MIC1 separ-
ately). Fragments of the appropriate size (Berwaldia,
650 bp; MIC1, 800 bp) were subsequently separated
from the pooled samples using the E-Gel platform
with SizeSelect 2 % agarose gel kit, and the selected
fragments were then purified with SPRI AMPure XP
paramagnetic beads (Beckman Coulter Genomics,
Danvers, MA) using a slightly modified standard
protocol (isopropyl alcohol added to the sample in a
1:3 ratio in the binding step with beads). The pooled
Berwaldia and MIC1 amplicon solutions were mixed
at a 4-fold excess of the longer MIC1 amplicons, to
compensate for the higher affinity of the shorter
Berwaldia fragments to the sequencing beads during
emulsion PCR. Emulsion PCR and pyrosequencing
were performed with the amplicon (Lib-A) kit, using
GS Junior Plus reagents and the manufacturer’s pro-
tocols (454 Life Sciences, Branford, CT), with the ra-
tio of DNA molecule-to-bead decreased to 0.35. DNA
bead enrichment was slightly above the expected level
(25 %). The raw 454 dataset is available in the Se-
quence Reads Archive (SRA) under accession number
(GenBank: SRP056909).

Preparation of the dataset

The bioinformatic analyses (and subsequent statistical
tests) were run separately for each of the two parasite
species. The raw datasets were analysed using the Quan-
tification of Representative Sequences (QRS) pipeline
[42]. The pipeline was run with default parameters, un-
less indicated otherwise. The following sequences were
discarded: those that contained more than two uncalled
bases, those with GC content outside of the 43-49 %
range, or those with length outside of the 570-660 bp
(for Berwaldia) or 700-800 bp (for MIC1) range. Homo-
polymer error correction was performed using HECTOR
[43]. After de-noising to minimise the presence of
sequencing errors, only sequences present in at least
three copies (or four copies, in case of genetic diversity
and recombination analyses, see below) were retained.
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Alignments were carried out using the MUSCLE algo-
rithm [44] and manually corrected.

Defining representative sequences

In the analyses of geographical structure, phylogeny, and
haplotype networks, “representative sequences” were used
instead of raw data. A representative sequence is the most
abundant sequence per group which is considered the cor-
rect or ancestral allelic reference [42]. Representative se-
quences are useful for the analysis of sequence variation
when a multicopy marker like the ITS is used [45]. To ob-
tain these representative sequences, the raw sequences
were clustered using Statistical Parsimony [46] at 99.5 %
of divergence (i.e. three connection steps) with gaps desig-
nated as a fifth state. These settings were consistent with
the approach used to analyse ITS variation in Berwaldia
in a previous study [38]. Additionally, statistical parsimony
was used in these analyses because it is more robust than
distance methods; the number of singletons is reduced
using statistical parsimony compared to neighbour-joining
because distance methods assume that there are no reticu-
late relationships between sequences and no recombin-
ation events [45]. The representative ITS sequences are
available in the GenBank sequence database under acces-
sion numbers KR816811-KR816826.

Abundant Berwaldia representative sequences (“abun-
dant” refers to representative sequences with overall fre-
quencies higher than 0.5 %) were compared with
representative sequences from [38] to assess whether
any matched. In that previous study, Berwaldia-infected
Daphnia were sampled from three Czech reservoirs
(including two reservoirs studied here: Rimov and Vir)
and ITS sequence variation was assessed using Sanger
sequencing of cloned PCR products [38]. All representa-
tive sequences (i.e. from the previous and present study)
were re-aligned using the MUSCLE algorithm [44] and
manually corrected. Subsequently, a haplotype network
was created as described below. In the case of MICI1,
such a comparison was not possible as neither intra- nor
inter-population variation was evaluated in previous
studies involving this parasite [30, 31].

Geographical structure

To investigate the geographical structure of genetic
variation in Berwaldia and MICI1, four types of analyses
were performed, all based on the ITS representative
sequences identified in each species’ dataset. First, the
frequencies of abundant representative sequences were
compared among populations using Fisher’s exact test
(representative sequences that did not reach a threshold
abundance of 0.5 % in any population were pooled into
the “rare” category). Secondly, an analysis of molecular
variance (AMOVA) was run at different hierarchical
levels: within individuals (i.e. within a Daphnia host),

Page 4 of 15

within populations (among Daphnia hosts within each
reservoir), and among populations. To test whether the
use of representative sequences produced results consist-
ent with the original data, an AMOVA was also per-
formed using the raw dataset in addition to the AMOVA
with the representative sequences. Thirdly, a non-metric
multidimensional scaling (nMDS) plot using Bray-Curtis
dissimilarity was constructed in order to visualise genetic
variation among microsporidian populations. The max-
imum number of iterations was set to 1000. The “stress”
value, which represents the rank dissimilarities between
the distance matrix and the plotted distances, was used to
evaluate the reliability of the nMDS plots. Fourthly, a per-
mutational multivariate analysis of variance (PERMA-
NOVA) [47] was then performed to assess differences
among microsporidian populations inhabiting the various
reservoirs. All statistical tests were carried out at an alpha
level of 0.05 and were performed in R 3.2.2 [48] using the
ade4 [49], vegan [50] and MASS [51] packages.

Phylogenetic analyses

To check if the phylogenetic position of Berwaldia and
MIC1 obtained with ITS is congruent with conclusions
derived from the SSU marker [30], neighbour-joining
and maximum likelihood trees for the abundant ITS
representative sequences of Berwaldia and MIC1 were
constructed. The selection of other microsporidian taxa
was based on similarity searches using BLAST [41]. A
sequence of the basidiomycete Agaricus bisporus was
used as an outgroup. All sequences were aligned using
Opal v. 2.1.3 [52]. Poorly aligned, non-conserved, and
highly-divergent regions were discarded using Gblocks
0.91b [53] set to less stringent settings, resulting in a
677 bp long alignment. Sequence similarity among taxa
was inferred by the neighbour-joining method in
rapidNJ [54] under the Kimura-2-Parameter model;
branch support in the resulting tree was estimated using
bootstrapping with 1000 pseudoreplicates. A maximum
likelihood tree was built using RaxML v. 8.2.3 [55]
under the GTR+ G model selected by the corrected
Akaike Information Criterion in jModeltest v. 2.1.7
[56]. Branch support in the resulting tree was esti-
mated by the rapid bootstrapping algorithm [57]
using 600 pseudoreplicates according to the a poster-
iori bootstrapping convergence test [58] based on the
extended majority rule consensus tree.

Haplotype network

To study the relationships between the abundant ITS
representative sequences, haplotype networks were cre-
ated for Berwaldia and for MIC1. Connection distances
between haplotypes were calculated using TCS [59] ac-
cording to the statistical parsimony algorithm. Both
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outputs were processed using a force-directed algorithm,
implemented in Cytoscape 3.2.1 [60].

Genetic diversity

To evaluate the genetic diversity of the ITS region, raw
sequences were used (in contrast to all aforementioned
analyses, which were run using representative se-
quences). Only sequences present in at least four copies
were retained. Calculations were carried out for pooled
datasets (i.e. pooled across all six or two populations, for
Berwaldia and MIC1, respectively). Three parame-
ters, the number of polymorphic sites, Tajima’s estimator
of theta (7r; [61]) and Watterson’s estimator of theta (6;
[62]), were obtained using the package PopGenome [63].
While 7 is defined as the average number of nucleotide
differences between two sequences [61], 6,, quantifies
the level of variability as the total number of poly-
morphic sites [62]. Both estimators were divided by the
alignment length to obtain the relative values per nu-
cleotide. Changes in nucleotide diversity based on these
summary statistics were also calculated within a sliding
window of 50 bp with an increment of 25 bp. To deter-
mine if Berwaldia and MIC1 ITS sequences evolved
neutrally (ie. in mutation-drift equilibrium), Tajima’s D
[64] test was performed.

In order to evaluate whether the differences in sample
size (i.e. six populations of Berwaldia but only two of
MIC1) affected the results, Berwaldia sequences were re-
sampled using the sub.saumple function in mothur v.
1.36.1 [65] to obtain a dataset representing two popula-
tions and containing the same number of sequences as in
the MIC1 dataset (one population with 2290 sequences
and another one with 340 sequences). Then, genetic diver-
sity was estimated across the two pooled, re-sampled pop-
ulations. Re-sampling was repeated ten times. Tajima’s D
values obtained from the re-sampled sets were compared
with the value obtained across all six Berwaldia popula-
tions using a two-sample Kolmogorov-Smirnov test.

Another potential source of error in population gen-
etic tests is related to the fact that several structured
subpopulations could produce more negative values of
Tajima’s D than the whole dataset, due to the “pooling
effect” [66]. To rule out this possibility, a new dataset
was created by randomly choosing a single microspori-
dian ITS sequence per Daphnia host and then calculat-
ing Tajimas D, as described above. This analysis was
repeated ten times per microsporidian taxon, and then
compared with the Tajima’s D value obtained for the entire
dataset (ie. including multiple sequences per Daphnia
host) using a two-sample Kolmogorov-Smirnov test.

Recombination
Raw sequences were used for the recombination ana-
lysis. However, as dereplication is a prerequisite for
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recombination tests, only one copy of each sequence
was retained in the dataset (ie. 606 out of 18,871 se-
quences were retained for Berwaldia and 138 out of
2630 sequences for MIC1). To detect recombination
events, neighbour similarity score (NSS; [67]) and the
pairwise homology index (PHI; [68]) with 1000 permuta-
tions were calculated in PhiPack [68]. Both NSS and
PHI are based on compatibility of parsimoniously in-
formative sites, i.e. sites that contain at least two types of
nucleotides that occur twice [69]. While the PHI is de-
fined as the minimum number of convergent or recur-
rent mutations (homoplasies) necessarily present on any
tree describing the history of two sites [68], NSS is cal-
culated as the fraction of adjacent parsimonious inform-
ative sites (independently of their compatibility) in an
alignment [67]. A sliding window of 50 bp was used in
these tests. When the results were significant, DnaSP
5.10.1 [70] was subsequently used to identify the mini-
mum number of recombination events (Rm) according
to the four-gamete test [71]. The RDP, GeneConv, Chi-
maera, MaxChi, BootScan and 3Seq algorithms were
used to identify parental and recombinant sequences
using the RDP4 Beta 4.46 interface [72]. A sliding win-
dow of 50 bp with an increment of 25 bp was used in
the latter five tests. Gaps were not excluded in the re-
combination tests. To trace the origin of parental and
recombinant sequences, raw sequences were classified
into representative sequences according to Statistical
Parsimony (see “Defining representative sequences”)
using TCS [59]. Then, the parental and recombinant se-
quences were tracked into the different representative
sequences according to the log file.

Results

Description of the final dataset

After processing with the QRS pipeline, 19,681 ITS se-
quences were retrieved for Berwaldia (18,871 excluding
tripletons) and 2906 (2630 excluding tripletons) for
MIC1 (out of 49,947 and 32,369 sequences available for
the respective taxa). These sequences originated from 80
Berwaldia- and 23 MICl-infected Daphnia individuals;
the remaining seven and five host individuals were dis-
carded as they contributed less than ten parasite se-
quences each. The majority of the originally-generated
sequences were discarded due to anomalous length, a
product of the presence of two different forward primers
at once (especially in MIC1). The length of the aligned
sequences after the removal of primers was 546 bp for
Berwaldia and 706 bp for MIC1 (Additional file 2: File S1
and Additional file 3: File S2, respectively). In the case of
the Berwaldia sequences, the first 192 bp belonged to the
16S region of the rRNA and the final 194 bp belonged to
the 18S region of the rRNA, which indicates that the ITS
region is approximately 160 bp long (based on [28, 31]).
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However, such an exact prediction is impossible to make
for MIC1 as no published information about its rRNA
gene structure is currently available.

Defining representative sequences

Twenty-six representative sequences were detected in the
Berwaldia dataset and 32 in the MIC1 dataset. The most
abundant representative sequence reached a frequency of
97.02 % in Berwaldia and 62.66 % in MIC1. The majority
of representative sequences were classified as rare
(i.e. were present at proportions lower than 0.5 %):
23 out of a total of 26 in Berwaldia and 19 out of 32 rep-
resentative sequences in MIC1. The most abundant repre-
sentative sequence in Berwaldia, BERW-1, matched
exactly with the B3-type that was the most abundant in a
previous study [38], confirming the dominance of the
same ITS representative sequence in a larger set of lakes.
The BERW-2 and BERW-3 sequences found here did not
match any previously identified representative sequences.
In a joint haplotype network of representative sequences
from this and from a previous study [38], the BERW-1 (or
B3-type) representative sequence was located in the centre
of the network (Additional file 4: Figure S1), suggesting
that it could be the ancestral type.

The 454 sequencing reaction repeatability assay pro-
duced mixed results. Neither of the two Berwaldia-in-
fected individuals tested showed significant differences
in the frequencies of representative sequences among
three sequenced replicates (as assessed by Fisher’s exact
test; Additional file 5: Figure S2). On the other hand, one
of the replicates of MICl-infected Daphnia differed sig-
nificantly in the proportion of representative ITS se-
quences from the other two (Additional file 5: Figure S2).
This outlying replicate showed intermediate amplification
success. In further analyses, only those samples with the
greatest number of sequences (out of the three replicates)
were considered.

Geographical structure

For both parasite species, the distribution of representa-
tive sequences differed significantly among populations,
as assessed by Fisher’s exact test (Fig. 1). In Berwaldia,
the three most abundant representative sequences were
present in all six surveyed populations. The relative
abundance of the variant BERW-2 differed among popu-
lations; this variant had the highest frequency in Zlutice
(3.57 %) and lowest in Se¢ (0.08 %) (Fig. 1). However,
AMOVA tests did not detect any significant among-
population genetic variation in Berwaldia (Table 1), indi-
cating overall low effect of such variation in proportion
of genetic variants across all screened populations. In
MIC1, for which only two populations were tested, the
differences in the distribution of representative se-
quences were much more pronounced. Although the
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frequency of the most abundant representative sequence
(MIC1-1) was approximately the same in both popula-
tions, only five other representative sequences - out of
twelve - were detected in both reservoirs (Fig. 1). These
strong differences in the distribution of MIC1 representa-
tive sequences were confirmed by AMOVA. Specifically,
genetic variation between the two MIC1 populations was
significant and explained 3.02 % of total variance (Table 1).
For both parasites, the largest amount of variation
was observed at the within-individual level (i.e. within
a Daphnia host): 93.7 % for Berwaldia and 93.6 % for
MIC1. The results of AMOVA tests were similar between
the raw and representative sequence datasets, indicating
that the use of representative sequences did not bias the
overall pattern (Additional file 1: Table S2).

The population structure of both microsporidia spe-
cies was visualised using nMDS plots, where the position
of individual points was based on the frequencies of spe-
cific ITS representative sequences per Daphnia host
(Fig. 2). In Berwaldia, centroids of Zlutice and Rimov
populations overlapped and clustered away from the
centroids of the four other populations. In MIC1, the
centroids of the Brno and Stanovice populations were
distinct, and there was no overlap among individual
Daphnia hosts sampled from these two populations. The
nMDS stress values in Berwaldia and in MIC1 were
0.022 and 0.055 respectively, indicating that both plots
constituted a good representation of the original pat-
terns of variation. The results of the nMDS plots were
supported by PERMANOVA tests, which revealed sig-
nificant differences in the presence and abundance of
representative ITS sequences among populations for
both microsporidian species (PERMANOVA (Berwal-
dia): F=0.166, df=>5, P=0.006; PERMANOVA (MIC1):
F=0.378, df=1, P=0.001).

Phylogenetic analyses

The ITS-based trees obtained for Berwaldia, MIC1, and
reference parasite species using both methods produced
identical topologies; thus, only the maximum likelihood
tree is presented (Fig. 3). Microsporidian ITS sequences
grouped in a single clade. Berwaldia ITS representative
sequences clustered with several microsporidia known to
infect Daphnia (including L. obtusa and B. daphniae), as
well as the mosquito parasite S. globulifera. Similarly,
MIC1 ITS representative sequences were grouped with
Gurleya daphniae and G. vavrai.

Haplotype network

In the haplotype networks constructed for Berwaldia
and for MICI, the most abundant ITS representative
sequences (BERW-1 or MIC1-1) were in the central
position (Fig. 4). The different representative sequences
did not cluster by populations of origin.
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Fig. 1 Comparison of frequencies of the ITS representative sequences of (a) Berwaldia and (b) MIC1, among the different reservoirs.
Number of screened Daphnia individuals and number of analysed ITS sequences are shown below each reservoir label. Results of Fisher's
exact test are shown below each of the stacked bar charts. The “rare” category includes all ITS representative sequences present at a
frequency lower than 0.5 %

Table 1 Results of the hierarchical analysis of molecular variance (AMOVA) of spatial population structure in Berwaldia and MIC1.
Calculations were based on the frequency of representative ITS sequence variants, as detected within individual Daphnia host

Microsporidia Source of variation df Variation explained (%) P

Berwaldia Among host populations 5 -0.11 0.145
Within host population 74 642 < 0001
Within host individual 19,562 93.69 < 0.001

MIC1 Among host populations 1 302 < 0.001
Within host population 24 337 < 0.001
Within host individual 2826 9361 < 0.001
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Genetic diversity

Summary statistics from Tajima’s D neutrality test are re-
ported in Table 2. Berwaldia’s ITS 7 value was lower than
that of MIC1, while the reverse was true for 6, indicating
lower genetic diversity in Berwaldia and a larger proportion
of rare alleles in MIC1. In addition, sequence diversity per
site showed different patterns for Berwaldia and MIC1
according to the sliding window analyses. In Berwaldia, ©
was always lower than 6,,, remaining near zero across all
sliding windows (Fig. 5a). By contrast, for MIC1, 7 and 6,,
followed similar patterns of variation across all sliding win-
dows (Fig. 5b). Taken together, these statistics indicate that
the ITS is more variable in MIC1 than in Berwaldia.

Differences in sample size between the two taxa
did not have a substantial effect on the results of
analyses, as demonstrated by comparison of the en-
tire dataset with the smaller, re-sampled datasets.
Tajima’s D values from the ten re-sampled Berwal-
dia datasets (-2.444 +0.030) did not differ signifi-
cantly from the value calculated using the entire
dataset, -2.426 (Kolmogorov-Smirnov test: D=0.5,
P=0.977; Additional file 1: Table S3). Likewise,
Tajima’s D values from the ten re-sampled datasets
(per microsporidium taxon) which contained a sin-
gle random sequence per Daphnia individual
(Berwaldia: -2.397 +0.088; MIC1: -1.633 + 0.252) did
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Fig. 3 Maximum likelihood tree of selected microsporidian taxa, including all abundant representative types of Berwaldia and MIC1 as detected in

internal node is given as rapid bootstrap values and neighbour-joining bootstrap values, respectively. Branch lengths are based on the expected
number of nucleotide substitutions per site. Bold labels indicate the most abundant ITS representative sequences of Berwaldia and MIC1

neighbour-joining trees produced identical tree topologies. Support for each

not differ significantly from those obtained for the entire
dataset: Berwaldia: -2426; MIC1: -1.811 (Kolmogorov-
Smirnov test (Berwaldia): D = 0.6, P =0.909; Kolmogorov-
Smirnov test (MIC1): D = 0.8, P = 0.546; Additional file 1:
Table S4).

Recombination

The two recombination tests yielded contrasting results.
A PHI test detected recombination signals in Berwaldia
but not in MIC1 (PHI test (Berwaldia): P =0.002; PHI
test (MIC1): P=0.654) whereas NSS tests found
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recombination in neither Berwaldia nor in MIC1
(NSS test (Berwaldia): P=0.133; NSS test (MIC1):
P=0.114). Thus, further recombination tests were
only carried out for Berwaldia. The minimum
number of recombination events (Rm) was esti-
mated to be ten in this species. Recombination
breakpoints were detected in the middle of the
alignment (Additional file 1: Table S5). Recombin-
ant and parental sequences were detected mostly in
Berwaldia sampled from different lakes (Additional
file 1: Table S5). When the raw ITS sequences
were classified into ITS representative sequences,
parental and recombinant sequences belonged to
BERW-1, BERW-3, and several rare ITS representa-
tive sequences (Additional file 1: Table S5).

Table 2 Summary statistics of the Berwaldia and MIC1 TS marker

Discussion

The ITS phylogenetic trees constructed here are consist-
ent with those retrieved in previous studies that used the
small subunit ribosomal DNA [30, 31, 33], even though
the microsporidian ITS can sometimes generate incon-
gruous phylogenies, as seen in the evolutionary history
of the clade Vairimorpha/Nosema [73]. The positions of
Berwaldia and MIC1 on the phylogenetic tree reinforce
the prediction that both microsporidian species could be
dixenous parasites, as previously suggested [30, 31].
Moreover, the negligible geographical variation observed
in Berwaldia and the fact that recombinant and parental
sequences originated from different lakes further support
the hypothesis that this species can disperse with relative
ease, and likely uses a mobile secondary host during its

Microsporidia Number of Number of m 6y D
sequences segregating sites

Berwaldia 18,871 171 1470 x 10° 28784 x 10 -2.426

MIC1 2630 75 3764 % 10° 12291 x 102 -1811

Samples from different populations were pooled. Genetic diversity is calculated as the average heterozygosity per site (Tajima’s estimator, 1) and the average
number of nucleotide differences per site (Watterson’s estimator, 6,,). Bold number indicates a significant value in Tajima’s D neutrality test
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life-cycle [38]. Parasitic species with life-cycles where
long-distance dispersal is needed generally show less
population structure and diversity than those with a
little ability to spread [74, 75]. In this way, the pres-
ence of a mobile secondary host in Berwaldia life-
cycle could explain the obtained results in this study.
Additionally, various measures of population genetic
diversity strengthen the original observation (from a
smaller set of localities) that the Berwaldia ITS
marker has relatively low diversity [38]. These results
are very similar to those obtained for N. ceranae
across globally sampled populations. In that case,
ITS microsporidian sequences from different host
species (Apis mellifera and A. cerana) were identical,
which indicates the ability of N. ceranae to infect
both hosts [11].

ITS sequences are used as a universal fungal barcode
due to the ease of PCR amplification and a higher
probability of successful identification compared with
protein-coding genes [76]. Consequently, variability of the
ITS has been most frequently assessed to obtain informa-
tion on genetic variation within microsporidian species
[18, 19] as well as within one isolate [21]. Indeed, the ITS
is the only known polymorphic marker in several micro-
sporidians such as Ent. bieneusi [23] and Nosema/
Vairimorpha spp. [77], although a low ITS variability was
described in other microsporidians, e.g. Enc. hellem, Enc.
cuniculi and Enc. intestinalis [19, 21, 22]. Nevertheless,
low ITS variability in Enc. cuniculi [21] is not congruent
with high intraspecific variability revealed by whole
genome analysis [13]. This discrepancy is likely due to the
short length of this species’ ITS (28—45 bp, [21]), while in
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other microsporidians the ITS sequence is considerably
longer (e.g. Ent. bieneusi, 243 bp) [23]. In our study, we
determined that Berwaldia ITS region was approximately
160 bp long (based on [28, 31]) while in MIC1 it was
presumably longer, although Northern Blot analyses
would be needed [78] for the experimental verification of
the position of the ITS sequence in both microsporidia.
Moreover, although the rRNA gene structure is usually
well preserved, it is highly variable in the Nosema/
Vairimorpha group within the Microsporidia. In fact, the
rearrangement of the 18S and 16S subunits and the
presence of a 5S subunit at the end of the ribosomal RNA
results in an ITS1 located between the 18S and the 16S
subunits and an ITS2 between 16S and the 5S subunits, as
described in N. bombycis, N. antheraceae, N. plutellae and
N. spodopterae [79-81]. In addition, because the riboso-
mal RNA repeat unit is present in multiple copies
throughout the genome, each copy has the potential for
mutation, resulting in further intragenomic variation. In
fact, the existence of transcriptionally active but fragmen-
ted copies of rRNA genes that coexist with the intact
rRNA copies within the same genome was described in
several isolates of N. bombycis [82]. The structural vari-
ation of rRNA genes is a potential source of complication
in rRNA phylogenies [83] and leads to a high variability in
both ITS1 and ITS2 sequences in Nosema/Vairiomorpha
[77]. The high variability of the ITS region could also be
evidence of recombination (or so called “cryptic sex”) in
Microsporidia [77, 84]. Moreover, transposition events in
ribosomal markers (including the ITS) are another source
of high genetic variability in Microsporidia [80, 82, 85].
Finally, with multicopy gene markers one is not able to
exclude the existence of co-infections, when DNA is iso-
lated from an individual host and high variability in the
multicopy gene region is observed, as was the case in our
dataset. Thus, future analyses of population genetic
diversity at the strain level will need to include additional
nuclear genes [14—17], micro- or minisatellites [86, 87] or
even whole genome analysis [12, 13] in order to make
stronger predictions regarding the evolution of microspor-
idian populations and to evaluate their genetic diversity.

MIC1 is closely related to the genus Gurleya ([30]; this
study), which is predicted to have a complex life-cycle
[28]. However, MIC1 exhibits greater ITS genetic diver-
sity than Berwaldia, and the differences between popula-
tions of the two microsporidians could indicate that
MIC1 life-cycle does not facilitate dispersal among
Daphnia host populations as efficiently as is seen in
Berwaldia. However, even with dispersal, small effective
parasite population size, highly aggregated distribution
among hosts, high host specificity, and patchy spatial
and temporal parasite niche distribution could poten-
tially contribute to increased genetic variability of a
parasite [74, 75].
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According to the results of Tajima’s D test, the ITS re-
gions of both Berwaldia and MIC1 could have evolved fol-
lowing recent population expansions after a bottleneck,
under negative selection and/or multiple mergers [88].
However, as the results from Tajima’s D test could be af-
fected by recombination signals [89], recombination tests
were conducted. These tests could indicate the presence
of cryptic sex in Berwaldia and pure asexuality in MIC1.
Although gene recombination tests have been used to
demonstrate cryptic sex in microsporidia in past studies
[77, 90], such analyses may not be sufficient to unambigu-
ously confirm the presence of sexual cycles in this group,
because multiple and heterogeneous copies of rDNA
could recombine non-homologously [91]. Thus, other evi-
dence is needed, such as confirmation of the existence of
polyploid stages. While no diplokaryotic cells have been
observed in Berwaldia, the existence of bi- or tetranu-
cleated cells has been described [32]. If there is any sexual
cycle present, the different sets of chromosomes in poly-
ploid species must sort during meiosis to produce bal-
anced gametes. Recently, genes relevant to meiosis were
detected in two microsporidian parasites of mosquitoes
(Edhazardia aedis and Vavraia culicis; [10]). These genes
were only expressed in E. aedis, confirming the existence
of sexuality in this species [92] and providing an explan-
ation for the lack of sexual cycles in V. culicis [93]. To in-
vestigate whether Berwaldia and MIC1 have sexual cycles,
cytogenetic, flow cytometry, genomic and transcriptomic
studies should be considered, even though such studies
may be challenging with intracellular parasites.

Conclusions

The biology and life history of the presumed secondary
hosts of Berwaldia and MIC1 likely differ. While the pre-
sumed secondary host for Berwaldia is expected to be mo-
bile, in MIC1 the secondary host (if it exists) does not
appear to facilitate dispersal to the same degree. Further, the
recombination tests might suggest that there is cryptic sex
in Berwaldia and pure asexuality in MIC1. These predic-
tions should be confirmed in future experiments using
modern laboratory techniques (cytogenetics, flow cytome-
try, genomics and/or transcriptomics). This would allow a
more comprehensive understanding of the biology of Daph-
nia-infecting microsporidians and of the genetic basis of
microsporidia-Daphnia coevolution in natural populations.

Additional files

Additional file 1: Table S1. Number of Daphnia host individuals
sampled from each reservoir. Table $2. Comparison between the results
of the hierarchical analysis of molecular variance (AMOVA) of spatial
population structure for Berwaldia and MICT, using the dataset before
and after clustering with Statistical Parsimony (using QRS pipeline; [42]).
Table S3. Comparison of the summary statistics of the ten re-sampled,
smaller Berwaldia TS marker datasets simulating only two populations
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entire Berwaldia ITS dataset, including all six populations (‘Entire™ 18871 se-
quences). Table S4. Comparison between the summary statistics of the ten
smaller Berwaidia and MIC1 [TS datasets (‘B-1” to “B-10" and “M-1 to M-10;

80 and 26 sequences per dataset, respectively) and the summary statistics cal-
culated for the entire Berwaldia and MIC1 ITS datasets (“‘B-Entire” and “M-Entire”;
18871 and 2630 sequences, respectively). Table S5. Recombination events
detected in the Berwaldia ITS alignment using RDP4. (XLS 31 kb)

Additional file 2: File S1. DNA alignment of the 26 Berwaldia ITS
representative sequences in FASTA format. (FASTA 14 kb)

Additional file 3: File S2. DNA alignment of the 32 MIC1 ITS
representative sequences in FASTA format. (FASTA 23 kb)

Additional file 4: Figure S1. Haplotype network of the most abundant
ITS representative sequences of Berwaldia. Each red circle represents a
single connection step (i.e. a single mutation) between the TS
representative sequences. Red-outlined boxes indicate the abundant ITS
representative sequences. White boxes indicate Berwaldia ITS representative
sequences from [30]. Grey boxes indicate Berwaldia ITS representative
sequences from this study. The black box represents the Berwaldia ITS
representative sequences that was present in both studies. (PDF 24 kb)

Additional file 5: Figure $2. Comparison of frequencies of (A)
Berwaldia and (B) MIC1 ITS representative sequences in the replicated
samples. “ID” refers to identity of the Daphnia individual that was processed.
The total number of ITS representative sequences (per replicate) is shown in
each “replicate” label (as “n”). Results of Fisher's exact test are shown below
each stacked bar chart. P-values that remained significant after sequential
Bonferroni correction are shown in bold. The “rare” category includes all ITS
representative sequences that were present at a frequency lower than 05 %
(calculated per parasite taxon). (PDF 61 kb)
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Chapter 5 — Discussion

5.1. General discussion

Using molecular techniques and bioinformatic analyses, this PhD project aimed to obtain a better
understanding of population structure of C. mesnili and microsporidian parasites from natural popu-
lations of Daphnia. Such information would allow a comprehensive understanding of the biology of
Daphnia-infecting microparasites as well as population dynamics of host-parasite under natural

conditions.

5.1.1. The use of Next Generation Sequencing platforms in population biology

Before discussing the parasite population structure and its dynamics, accurate methods for identific-
ation of parasites' strains or variants are needed. As discussed in Chapter 2, there is a controversy
about the use of Next Generation Sequencing (NGS) platforms in ecological studies, especially con-
sidering the number of taxon-specific reads as an indicator for the abundance of the different taxa
(e.g. Amend et al., 2010; Baldrian et al., 2013; Deagle et al., 2013). Other pipelines such as SES-
AME Barcode (Piry et al., 2012) and the unnamed Balint's automated metabarcoding pipeline for
Fungi (Balint et al., 2014) were also developed to identify and (semi-)quantify variation within pop-
ulations using distance methods and neighbour-joining clustering. However, distance and neigh-
bour-joining methods are less robust and precise than network methods to identify representative
sequences (Giessler and Wolinska, 2013). For this reason, I developed the Quantification of Repres-
entative Sequences (QRS) pipeline as a modular pipeline to analyse variation within population us-
ing network-based approaches, which consider the existence of reticulations and polytomies
(Posada and Crandall, 2001).

As provided in Chapter 2, QRS was validated by doing two different comparisons. First, the
frequencies of representative ITS1 sequences derived from 454 and Sanger datasets from C. mesnili
Czech Republic populations were compared with each other (see Chapter 2 for details). In this com-
parison, the frequencies were similar between the sequencing methods, indicating the suitability of
454 to perform population biology analyses. Second, a subset of a published dataset from 18S
rDNA of intertidal meiofauna of Alabama (Brannock et al., 2014) was processed for metagenomics

applications using three different metabarcoding programs: QRS, mothur (Schloss et al., 2009) and
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UPARSE (Edgar, 2013). Obtained results were similar between the pipelines when all samples were
pooled (Data S3 from Gonzalez-Tortuero et al., 2015). However, if we consider each sample separ-
ately, the results differ between the employed pipelines (Fig. 5.1). This finding is consistent with re-
cent publications about the lack of reproducibility in metabarcoding studies, which it is due to
mainly the use of greedy clustering algorithms to obtain the different operational taxonomic units
(OTUs; Chen et al., 2013; He et al., 2015; Koskinen et al., 2014). In fact, QRS was the only bioin-

formatic pipeline able to detect phyla that were not present in other datasets, which could be consi-
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Figure 5.1. Comparison of the results generated by three pipelines (QRS, UPARSE and mo-
thur) that were used for validation of the Illumina dataset. Shown are the frequencies of the
OTUs as retrieved from the 18S dataset of intertidal meiofauna (Brannock et al., 2014) per sample
and depth.
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dered as an indicator that the QRS pipeline is more sensitive in clustering sequences to OTUs than
other standard metabarcoding programs. These differences between results obtained by different
pipelines could lead to biases in the interpretation of alpha and beta diversity due to the over- or un-
derestimation of the number of real OTUs in the samples (Chen et al., 2013; He et al., 2015). Sev-
eral solutions such as the implementation of the distribution of the sequences across samples in
clustering algorithms (Preheim et al., 2013) and the use of graph theory-based algorithms (Wang et
al., 2013) were proposed as potential alternatives to greedy clustering algorithms. Nevertheless,
there are also other potential biases that could lead a misrepresentation of OTUs such as the misid-
entification of chimeric sequences (Edgar, 2013) and the different outputs from de-noising al-

gorithms (Koskinen et al., 2014).

5.1.2. C. mesnili population dynamics and host-genotype specificity

In Chapter 3, C. mesnili population dynamics were tracked in a natural Daphnia population, by ex-
ploring samples collected over four years, from a single study lake, Greifensee. I tested if the most
common parasite genotype decreased over time; this being expected according to the fluctuating se-
lection dynamics; see Chapter 1 for more information. Under the assumption of this theory, com-
mon parasites, which presumably are adapted to the most common host genotypes, are in disadvant-
age and must then decrease in frequency (Clarke, 1976; Hamilton, 1980; Jaenike, 1978). In the C.
mesnili population of lake Greifensee, I detected a decrease of the most common ITS1 representat-
ive sequence and an increase of the rare representative sequences. Although this observation may
suggest a fluctuating selection dynamics, there are other potential explanations that could explain
the decrease of the most common sequence, such as changes in the external environment and a
parasite yearly expansion after a bottleneck. Specifically, an alternative explanation for the parasite
genetic change in frequency over time could be that different parasite genotypes are being favoured
over time due to changes in the external environment (reviewed in Wolinska and King, 2009). Inter-
action between parasites and temperature was significant in the C. mesnili-Daphnia system when
assessed experimentally (Schoebel et al., 2011). However, there is no indication that conditions in
Greifensee have changed in any particular direction within the four years examined. Another altern-
ative explanation is that a yearly expansion following a bottleneck might explain the parasite ge-
netic change in frequency seen in the lake Greifensee. This potential explanation will be discussed
in more detail in the Section 5.2.3.

In Chapter 3, only a weak signal in the host-parasite specificity between C. mesnili and
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Daphnia genotypes was detected. This observation is supported by a previous study where the dis-
tribution of C. mesnili ITS1 sequences did not differ between Daphnia hybrids and their parental
species (Wolinska et al., 2014). The lack of specificity between hosts and parasites could be attrib-
uted also to high levels of parasite gene flow (e.g. Olival et al., 2013) and the influence of sym-
bionts in host-parasite interactions (Bordenstein and Theis, 2015; Kwiatkowski et al., 2012). In the
latter case, the symbionts and hosts interact in a biological market, in which the symbionts are able
to outcompete parasites if the host bring resources to the symbionts (No& and Hammerstein, 1995;
Sachs and Simms, 2006). Moreover, as discussed in Chapter 3, there are two other explanations to
clarify host specificity and its related factors: the specialisation of parasites and the relationship
between host specificity and parasite transmission mode.

Parasites tend to infect specific hosts that are phylogenetically (e.g. Bellec et al., 2014; Ped-
ersen et al., 2005; Sasal et al., 1999) and/or eco(physio)logically related (Adamson and Caira,
1994). The phylogenetic relationship between hosts and parasites are used at a macroevolutionary
scale to study the divergence of each species and to test if this divergence in host and parasites is
mirrored, having a parallel speciation (Fahrenholz, 1912). However, this kind of studies cannot of-
fer direct insight into the coevolutionary process or rate at which change is occurring within popula-
tions (de Vienne et al., 2013; Penczykowski et al., 2015). The physiological relationship between
both players results from the interaction between parasites' virulence factors and host's resistance
genes. Usually, genetic specificity is explained according to theoretical models such as the gene-for-
gene (Flor, 1971; reviewed in Thompson and Burdon, 1992), the matching alleles (e.g. Grosberg
and Hart, 2000), the inverse gene-for-gene (Fenton et al., 2009) and the hologenome (Bordenstein
and Theis, 2015) hypotheses. In most host-parasite systems, virulence factors and resistance loci are
unknown although their identification is necessary in order to reveal their interaction (reviewed in
Penczykowski et al., 2015). In clinical studies, virulence factors are often used to identify parasite
strains instead of neutral markers (e.g. Mooi et al., 1999; Ruiz et al., 2002; Xiang et al., 1995). Vir-
ulence factors are normally present in multiple copies and they could be recombined due to the
presence of hypervariable regions (e.g. Baldo et al., 2005; Bhat et al., 1991; Zhang et al., 1997). The
presence of different copies of virulence factors allows the parasite to infect more potential hosts,
increasing the parasite transmission rate (Frank, 1996). All these genes could evolve under balanced
selection to optimise parasite virulence because highly virulent parasites kill hosts too quickly to al-
low their transmission (Alizon et al., 2009). The same applies for host resistance genes, which are

hypervariable in order to protect against new potential parasites (e.g. Barrangou et al., 2007; Par-
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niske et al., 1997; Schatz, 2004). However, the expression of resistance genes could imply a reduc-
tion of the reproductive traits supporting a trade-off between the immunity and reproduction
(French et al., 2007; Zuk and Stoehr, 2002). For this reason, the identification of virulence factors
and resistance genes is a proper approach to explain the genetic specificity between hosts and para-
sites, but not to identify parasite strains or variants. The latter must be conducted with neutral mark-

€rS.

5.1.3. Existence of sexuality in Daphnia-infecting microsporidia

In Chapter 4, the patterns of geographic population structure, intraspecific genetic variation, and re-
combination events of the ITS sequence were compared between two microsporidia taxa: Berwal-
dia and MIC1. This was done in order to better understand the biology of these parasite species. The
lack of geographic variation in Berwaldia suggested the existence of a mobile secondary host, as
well as the geographical differences between the two MICI1 populations could indicate that the sec-
ondary host (if exists) does not appear to facilitate dispersal to the same degree. Moreover, the re-
combination tests pointed out that there is cryptic sex in Berwaldia and pure asexuality in MICI.
Although gene recombination tests have been used to demonstrate cryptic sex in Microsporidia
(Ironside, 2013; Wilkinson et al., 2011), such analyses may not be sufficient to unambiguously con-
firm the presence of sexual cycles in this group, because multiple and heterogeneous copies of
rDNA could recombine nonhomologously (Lee et al., 2014). Thus, other evidence is needed, such
as confirmation of the existence of polyploid stages or the presence of meiosis-related genes.

For a long time, microsporidia were presumed to be asexual organisms. However, if we con-
sider that they could have a fungi-like ancestor, it is reasonable that such ancestor could have sexual
reproduction (Dyer, 2008; Lee et al., 2008). Probably, sex has been eliminated in several microspor-
idian species as a consequence of the morphological miniaturisation and genomic compaction (Cor-
radi and Slamovits, 2011; Haag et al., 2014), which are considered adaptations to the parasitic life-
style (Poulin and Randhawa, 2015). Nevertheless, the existence of diplokaryotic cells (i.e. cells with
binucleated nucleus; e.g. Freeman and Sommerville, 2009; Ironside, 2007; Vavra et al., 2005) or
plurinucleated cells (e.g. Bylén and Larsson, 1994; Leiro et al., 1996; Lom et al., 1989; Vagelli et
al., 2005; Vavra and Larsson, 1994) indicated the existence of diploid stages in the life cycles of
several microsporidian species. Due to these observations, unusual meiotic processes in microspor-
idia were proposed (reviewed in Lee et al., 2014). In fact, if there is any sexual cycle present, the

different sets of chromosomes in polyploid species must be sorted during meiosis to produce bal-
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anced gametes.

Although microsporidian genomes are the most reduced ones across eukaryotes (Katinka et
al., 2001; Slamovits et al., 2004), the presence of genes related with meiosis was described in some
microsporidial species such as Antonosema locustae, Encephalitozoon cuniculi, Enterocytozoon
bieneusi and Nematocida parisii. However, the majority of these genes are also related with DNA
reparation, questioning their relevance in microsporidian cryptic sexuality (reviewed in Lee et al.,
2014). Recently, the presence of a sex locus in Zygomycota was described in several microsporidia,
including Enc. cuniculi, Enc. intestinalis, Enc. hellem, Ent. bieneusi, A. locustae and Nosema cer-
anae (Lee et al., 2010, 2008). The sex locus consists of a triose phosphate transporter, an unknown
additional ORF, a high-mobility-group (HMGQG) transcription factor and an RNA helicase gene. The
HMG genes are named sexP/M, and these genes are encoded in the positive and the negative strand
of the DNA, respectively. Both genes play a key role in the mating system, although the RNA hel-
icase gene is not necessarily linked to the sex-related locus (Lee et al., 2010). A similar sex locus
was recently detected in two microsporidian parasites of mosquitoes (Edhazardia aedis and Vavraia
culicis; Desjardins et al., 2015). This sex locus was only expressed in E. aedis, confirming the exist-
ence of sexuality in this species (Becnel et al., 1989) and providing an explanation for the lack of
sexual cycles in V. culicis (Diarra and Toguebaye, 1991). The presence of this gene cluster in Ber-
waldia and MIC1 should be tested using genomic and transcriptomic analyses to corroborate the ex-

istence of cryptic sexuality in Berwaldia and pure asexuality in MIC1.

5.2. Future directions

5.2.1. Implementing new algorithms and techniques in metabarcoding studies

In the present PhD thesis, I developed the QRS pipeline (as described in the Chapter 2) to identify
intraspecific variation in NGS datasets. Currently, this bioinformatic pipeline only uses Neighbour
Joining (Saitou and Nei, 1987) as a clustering algorithm, and Statistical Parsimony (Templeton et
al., 1992) as a network approach (as defined in Section 5.1.1). However, other network methods
such as reduced median networks (Bandelt et al., 1995) and median-joining networks (Bandelt et
al., 1999) are also being used to identify new variants or strains in population ecology and they
should be implemented in future versions of the QRS pipeline.

Moreover, NGS platforms are evolving fast, and nowadays new molecular sequencing tech-

niques such as Illumina (e.g. Brannock et al., 2014; Degnan and Ochman, 2012; Schmidt et al.,
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2013), Ion Torrent (e.g. Deagle et al., 2013; Jiinemann et al., 2012), PacBIO (Fichot and Norman,
2013; Mosher et al., 2014, 2013) and MinlON (Greninger et al., 2015; Mikheyev and Tin, 2014) are
used to perform metabarcoding or population biology studies. Therefore, although the QRS pipeline
is able to deal with Illumina datasets (as indicated in Chapter 2), it would be necessary to update
this bioinformatic software to deal with other emerging platforms. In the case of Ion Torrent, imple-
menting tools that are able to correct for the high number of erroneous sequences with high GC
content (Deagle et al., 2013; Quail et al., 2012) is needed. Another needed improvement for its ap-
plication in Ion Torrent datasets is the reduction of homopolymer errors. Although the homopoly-
mers correction in the QRS pipeline was originally based on low-complexity masking algorithms
(Morgulis et al., 2006), a new tool for minimising the effect of homopolymers (HECTOR; Wirawan
et al., 2014) was implemented in a recent version of the mentioned pipeline (and was used in
Chapters 3 and 4 to correct such errors). Additionally, in future versions of the pipeline, a new al-
gorithm based on the Poisson binomial distribution (Puente-Sanchez et al., 2015) will be implemen-
ted to avoid the use of the de-noising step, because de-noising algorithms negatively influences in
taxonomic affiliation (Koskinen et al., 2014). In respect to the PacBIO sequencing platform, there is
very little work done in its application to metagenomics and the established protocols are simple ad-
aptations from 454 Pyrosequencing and Illumina (Fichot and Norman, 2013; Mosher et al., 2014).
Recently, a new bioinformatic protocol was developed to deal with PacBIO, but only a small frac-
tion of the sequences are really informative due to the high error rates (Schloss et al., 2016). This
suggests that this sequencing platform should be improved in order to be applied in metagenomics.
Finally, MinlON was recently developed to shorten the time between specimen collection to first
sequence data without relying on PCR. However, this platform is currently unsuitable for genotyp-
ing due to their high error rates and, as in the case of PacBIO, improving MinlON platform is

needed for its use in population biology (Mikheyev and Tin, 2014).

5.2.2. Testing the suitability of the internal transcribed spacers for parasites'
strains identification

As indicated in the Chapter 1, there is a controversy about the suitability of the ITS1 sequences in
molecular ecology. In the present PhD thesis, ITS1 sequences were used to discriminate representat-

ive sequences in C. mesnili and in two microsporidia taxa—all common parasites of Daphnia. ITS1

sequences are the only known polymorphic sequences in C. mesnili, which could allow for the iden-

59



tification of different microparasitic strains or variants (Giessler and Wolinska, 2013). In a similar
way, the use of ITS1 to discriminate strains or variants was successful in amoebozoa (Kohsler et al.,
2006) and trichomonads (Gaspar da Silva et al., 2007; Ibafiez-Escribano et al., 2014). However,
such markers might not be suitable to identify parasite strains, as it happened in oomycetes (Ro-
bideau et al., 2011), dinoflagellates (Stern et al., 2012) or in other protozoa like apicomplexa (Ho-
man et al., 1997) and parabasalids (Lollis et al., 2011). Moreover, as discussed in Chapter 4 and in
Wolinska et al. (2011b), ITS variability may not be a good estimator of the intraspecific variability
in Microsporidia. In fact, a low ITS variability was described in Encephalitozoon cuniculi (Selman
et al., 2013) whereas these microsporidia have a high intraspecific variability according to the
whole genome analysis (Pombert et al., 2013). These differences are probably due to the sequence
length, as E. cuniculi presents a short ITS sequence (28-45 bp., Selman et al., 2013) while in other
microsporidia like Enterocytozoon bieneusi ITS sequence are 243 bp long. The ITS is the only
known polymorphic marker also in E. bieneusi (Henriques-Gil et al., 2010). Nevertheless, strains or
variants identified with the ITS1 marker should be confirmed with other neutral markers (see be-
low) which might enable the identification of strains with higher resolution.

Ribosomal DNA is present in multiple copies throughout the genome and each copy is a po-
tential target for mutations leading to intragenomic variation (as explained in Chapter 1). For long
time, it was considered that such regions (including the ITS1 sequences) evolved under concerted
evolution. Under this hypothesis, ribosomal genes become homogenised by unequal crossing over
and gene conversion (reviewed in Liao, 1999). As unequal crossing over is more common in homo-
logous recombination than in non-homologous end joining (Goldman, 1996), concerted evolution
would be stronger for tandem arrays of genes than for dispersed repeated DNA regions. Thus, dif-
ferences in obtained sequences between strains could be due to the number of ITS1 copies found in
tandem in the same chromosomes, rather than because of the simple ITS1 sequence variability (as
detected in Nosema apis; Gatehouse and Malone, 1998). However, the high intragenomic ITS1 vari-
ability in several microorganisms such as the human intestinal protozoan parasite Dientamoeba fra-
gilis (Bart et al., 2008) and the foraminiferan Elphidium macellum (Pillet et al., 2012) argues
against the concerted evolution of ribosomal genes. In fact, the high intragenomic ITS1 variability
could suggest a birth-and-death process, where new genes originate from gene duplication and some
are maintained in the genomes while others are eliminated or become non-functional (Nei et al.,
1997). Birth-and-death processes are expected to happen when the multi-copy DNA sequences are

dispersed throughout the genome, as observed in the microsporidian Encephalitozoon cuniculi
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(Peyretaillade et al., 1998), Nosema bombi (O’Mahony et al., 2007; Tay et al., 2005) and N. bomby-
cis (Liu et al., 2008). To elucidate ribosomal gene evolution according to the above hypotheses
(concerted evolution and birth-and-death process), the spatial distribution of the ITS1 in the chro-
mosomes would have to be evaluated by chromosomes mapping (Biderre et al., 1997; Peyretaillade
et al., 1998) and by de novo sequencing of the genomes of the microparasites (reviewed in Keeling
etal., 2014).

The latter analysis brings also the opportunity to search for other neutral markers that could
be used for population genetic tests to study the evolution of parasite populations and to evaluate
their genetic diversity. As indicated above, ITS might evolve under birth-and-death processes,
which could explain the high intragenomic variability of these sequences. To avoid this matter, it is
convenient to use single copy genes which are neutral markers such as the 70kDa heat shock protein
(hsp70; Haag et al., 2013a, 2013b). The use of these alternative neutral markers will result in ob-
taining better predictions of the genetic diversity and the evolution of parasite populations (Goémez-
Moracho et al., 2015, 2014; Roudel et al., 2013). Other alternatives is the use of micro- or min-
isatellites (Li et al., 2013, 2012) or even whole genome analysis (Cuomo et al., 2012; Pelin et al.,

2015; Pombert et al., 2013) to study the genetic diversity and the evolution of parasite populations.

5.2.3. Deciphering the life cycle of C. mesnili and Daphnia-infecting microspor-
idia
As indicated in the Chapter 1, the life cycles of the most common microparasites infecting Daphnia
are not well known. In the present PhD thesis, I was focusing on the description of population dy-
namics and host-genotype specificity of C. mesnili (Chapter 3) and the genetic diversity and the pat-
terns of geographic population structure in two microsporidian parasites: Berwaldia and MIC1
(Chapter 4). All this information could help to predict the biology of these parasites.

In chapter 3, an alternative explanation to the observed decrease of the most common geno-
type in C. mesnili, beside a postulated mechanism of negative frequency-dependant selection, is a
yearly expansion following a bottleneck. It is still unknown how C. mesnili survives between the
epidemics, as this microparasite repeatedly appears in later summer and disappears towards the end
of autumn. C. mesnili may persist either under very low (and, thus, undetectable) densities in Daph-
nia host, in as of yet unknown alternative hosts (like fish) or in the sediment as spores. Population

genetic tests such as Tajima's D (Tajima, 1989), Fu's FS (Fu, 1997) and/or Ramos-Onsins' and
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Rozas' R, (Ramos-Onsins and Rozas, 2002) are necessary in order to test for the existence of an ex-
pansion after a bottleneck in the parasite populations.

Ichthyosporean parasites are known to infect the digestive organs of various marine verteb-
rates (mainly fishes) and invertebrates (reviewed in Suga and Ruiz-Trillo, 2015). To verify the exist-
ence of reservoir hosts in C. mesnili life cycle, it should be recommendable to screen freshwater an-
imals and search for the presence of this microparasite via nested PCR of the SSU rRNA genes.
These kind of approaches have been successfully applied for the detection of intracellular microor-
ganisms such as Wolbachia (e.g. Arthofer et al., 2009a; Taylor and Hoerauf, 1999; Werren et al.,
1995). However, nested PCR is prone to generate a high number of false positives and contamina-
tion (Arthofer et al., 2009a, 2009b). Due to this, other approaches such as PCR followed by con-
sequent hybridization (Arthofer et al., 2009b; Schneider et al., 2014) and quantitative PCR (Gos-
iewski et al., 2014; Mee et al., 2015) were proposed to detect the presence of microorganisms even
in low titre infections. However, C. mesnili is able to survive in laboratory cultures (Bittner et al.,
2002; Lohr et al., 2010a), which could indicate the lack of necessity of a reservoir host in the C.
mesnili life cycle.

Recently, analysis of environmental rRNA libraries suggested the existence of free living
species or free living stages of ichthyosporea (del Campo and Ruiz-Trillo, 2013; Mendoza et al.,
2002; Suga and Ruiz-Trillo, 2015; van Hannen et al., 1999). In order to test if C. mesnili is able to
have any diapause stages in the sediments (as proposed also in Chapter 3), molecular screening of
sediments should be used. In this kind of studies, sediment cores are processed to describe the mi-
croorganism diversity using universal primers, which amplifies different hypervariable regions of
the small subunit of the ribosomal genes (e.g. Berney et al., 2004; Dawson and Pace, 2002; Lawley
et al., 2004). Nevertheless, these hypervariable regions exhibit different degrees of sequence di-
versity, and no single hypervariable region is enough to differentiate between all living organisms,
as seen in bacteria (Chakravorty et al., 2007). For this reason, to detect only the presence or absence
of C. mesnili spores in sediments, it should be convenient to apply PCR with hybridization and
quantitative PCR (as described before) using specific primers for C. mesnili small subunit of the ri-
bosomal gene.

In Chapter 4, I predicted that Berwaldia may have a mobile secondary host whereas MICI
might not have a secondary host (or if it exists it should not facilitate its dispersal) according to the
geographic variation, genetic diversity and recombination tests. However, these results are just

bioinformatic predictions and they need to be demonstrated in field and/or laboratory work. To
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verify them, sampling benthic insects and searching for insects that are positive for Berwaldia
and/or MIC1 (as described above for the C. mesnili problematics) should be performed. I hypothes-
ise that mosquitoes and/or caddisflies are the secondary hosts in Berwaldia, as described for cope-
pods-infecting microsporidia (Vavra et al., 2005; Vossbrinck et al., 2004). Although the transmis-
sion of Amblyospora spp. between copepods and mosquitoes was described in previous studies (An-
dreadis, 1994; Sweeney et al., 1990), the release of spores to the environment (during mosquito life
or after mosquito death) allows that copepods would be randomly infected with these microsporidia
during grazing.

However, 1 cannot discard that strains of Berwaldia or MIC1 are not maintained in the
laboratory due to the influence of abiotic factors such as temperature (Dunn et al., 2006; Martin-
Hernéndez et al., 2009). Although higher temperatures cause the increase of the number of spores in
Nosema apis and N. ceranae (Martin-Hernandez et al., 2009), in aquatic microsporidia it seems that
reduced temperatures has a greater impact on the parasite burden in host cells (Dunn et al., 2006).
Also the transmission of aquatic microsporidia is influenced by the temperature because high tem-
peratures increases the vertical transmission and low temperatures increases the horizontal transmis-
sion of N. granulosis and Dictyocoela duebenum (Dunn et al., 2006). To test the influence of tem-
perature on the life cycle of Berwaldia and MICI1, parasite transmission experiments using different

temperature treatments should be performed.
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