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Summary 

Transcription is one of the most important processes in life. Correct timing and regulation of 

transcription is responsible for cellular development, identity, adaptivity to environmental 

cues, differentiation and many other processes. Dysregulation of transcription can lead to the 

development of cancer and other diseases. The transcriptome of polymerase (Pol) II consists 

of messenger RNA (mRNA) encoding proteins and non-coding RNA (ncRNA). Due to their 

short half-life ncRNAs are not easy to catch and thus, many of their functions remain elusive. 

We set out to develop an appropriate method in human cell lines to learn more about 

ncRNAs, their occurrence, regulation, and kinetics.  

To this end we developed transient-transcriptome sequencing (TT-seq) to detect and map 

transient full-length RNAs in vivo. The method is based on 4-thiouridine (4sU) sequencing, 

where a uridine analog is supplied to cells and incorporated into nascent RNA. Fragmentation 

of the RNA prior to isolation of labeled RNA is the key component of the TT-seq method. 

This step leads to a drastic enrichment of newly-synthesized RNAs and enables detection of 

unstable RNAs. We employed TT-seq in the human leukemic cell line K562 and could detect 

and map thousands of intronic RNAs, ncRNA classes such as enhancer RNAs (eRNAs) and 

RNA downstream of the polyadenylation (pA) site. TT-seq enabled the analysis of synthesis 

and degradation rates by comparing the total RNA pool to the nascent labeled RNA fraction. 

In particular, we found that ncRNAs especially eRNAs are short-lived with a median half-life 

of 2 minutes. Analysis of RNAs downstream of the pA site enabled us to map human 

transcription termination sites. We found that termination sites are enriched for a (C/G)(2-6)A 

kmer followed by a (T/A)(3-6) kmer. This nucleotide composition can favor backtracking 

and/or pausing due to the change in the energy landscape of the RNA:DNA hybrid within Pol 

II. We propose that this facilitates termination by the exonuclease Xrn2 and is dependent on 

the presence of a pA site.  

To further understand eRNAs and their synthesis kinetics, we performed TT-seq in Jurkat T 

cells during the first 15 min of T cell activation. We found that thousands of mRNAs and 

ncRNAs transcripts were differentially expressed during the time course in the TT-seq 

samples. Interestingly, not a single transcript was significantly differentially expressed in the 

Total RNA-seq samples. This indicates that the sensitivity of TT-seq can also be used to 

revisit known pathways. We found that the expression levels as well as their change over time 

of the eRNA and the paired mRNA are highly correlated. In contrast to previous reports 

(Arner et al, 2015), showing that eRNA expression precedes its paired mRNA expression, we 

found simultaneous activation or downregulation of mRNA and eRNA pairs that are 

differentially expressed after 15 min. 

Taken together, we developed the new method TT-seq that enables mapping and analysis of 

newly synthesized RNAs and can determine synthesis and degradation rates. In addition, the 

new method is especially sensitive for transient RNAs and allows detection of very rapid 

expression changes. This method can be applied to any organism, which is able of 4sU (or 4-

thiouracil; 4tU) uptake. Therefore, it can be broadly used to investigate many fascinating 

outstanding questions such as the mechanism of Pol II termination, ncRNAs degradation 

pathways or eRNA role in promoter activation.  
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1 Introduction 

Transcription is a one of the most fundamental biological processes. The genetic information 

is encoded in the DNA, which is transcribed to RNA that serves as a template for protein 

synthesis. This is well known as the central dogma of molecular biology (Crick, 1970). 

Transcription is performed by DNA-dependent RNA polymerases (Pol; Roeder & Rutter, 

1969). Eukaryotes, except plants, have three nuclear Pols: Pol I, Pol II and Pol III (Cramer et 

al, 2008). Pol I transcribes ribosomal RNAs (rRNAs), Pol II messenger RNAs (mRNAs) and 

non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), small nuclear RNAs 

(snRNAs) and small nucleolar RNAs (snoRNAs) and Pol III transcribes transfer RNA 

(tRNAs) and 5S rRNAs (Zylber & Penman, 1971). Plants have two additional non-essential 

nuclear Pols: Pol IV and Pol V that synthesize small interfering RNAs (siRNAs; Herr et al, 

2005; Ream et al, 2009). Furthermore, eukaryotes encode for a mitochondrial RNA 

polymerase active in mitochondria (Ringel et al, 2011). 

All nuclear polymerases have a conserved 10-subunit core and additional peripheral subunits 

(Cramer et al, 2008). Pol II is a 12-subunit protein complex of 512 kDa that consists of the 

subunits Rpb1 to Rpb12 (Armache et al, 2003). During transcription, Pols and in particular 

Pol II associate with a plethora of proteins such as general transcription factors and other 

factors that regulate Pols’ activity and ensure the correct course of events. 

1.1 RNA polymerase II transcription cycle 

The process of transcription can be delimited into 4 phases: initiation, elongation, termination 

and recycling (Figure 1; Shandilya & Roberts, 2012). A unique property of Pol II is the large 

Rpb1 subunit with its extended C-terminal domain (CTD; Cramer, 2004). The CTD consists 

of a number of heptapeptide repeats, 26 in Saccharomyces cerevisiae and 52 in human. The 

majority of the heptapeptides are highly conserved and are composed of Tyrosine (Tyr), 

Serine (Ser), Threonine (Thr) and Proline (Pro) in the order Tyr1, Ser2, Pro3, Thr4, Ser5, 

Pro6 and Ser7 (Corden et al, 1985). All amino acids, except Pro, are capable of 

phosphorylation in a dynamic manner during different phases of the transcription cycle, 

which results in the so termed CTD code (Egloff & Murphy, 2008). Furthermore, Ser and Thr 

can be glycosylated and Pro can either be in cis or trans conformation (isomerized; Eick & 

Geyer, 2013; Zeidan & Hart, 2010). Each phase of the transcription cycle is characterized by 
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a specific CTD modification pattern that serves as a binding platform for multiple factors 

(Buratowski, 2009; Heidemann et al, 2013). 

1.1.1 Transcription initiation 

Transcription by Pol II starts by assembling the pre-initiation complex on the DNA (Figure 1; 

Cheung et al, 2011). This is achieved by cooperational binding of general transcription factors 

TFIID, TFIIA, TFIIB, TFIIF and TFIIE and the recruitment of Pol II (Hahn, 2004; Sainsbury 

et al, 2015; Thomas & Chiang, 2006). The pre-initiation complex can be further stabilized and 

enhanced by the Mediator complex or other co-activators such as SAGA (Chen et al, 2012; 

Svejstrup et al, 1997). Subsequently, 11 to 15 base pairs (bp) DNA around the transcription 

start site (TSS) are melted and the template strand is positioned in the active site cleft of Pol II 

to form the Open Complex (Wang et al, 1992). During initiation, the cyclin-dependent kinase 

(Cdk) 7, which is part of the TFIIH complex, phosphorylates Ser5, Ser7 and Tyr1 of the CTD 

(Komarnitsky et al, 2000). The mediator complex subunit Cdk8 has also been shown to 

phosphorylate Ser5 (Liu et al, 2004). Once the transcription bubble is positioned within the 

active site, cycles of abortive transcription of 3 to 10 nucleotides (nt) of RNA ensue (Holstege 

et al, 1997). Once the transcribed RNA reaches a length of 30 nt, the polymerase is able to 

escape the promoter, termed promoter clearance (Luse, 2013). By then, the capping enzyme is 

recruited to the initiation complex via Ser5 phosphorylation (Ser5P; Lidschreiber et al, 2013). 

The capping enzyme links the 5’-end of the RNA to a 7-methylguanosine via a 5'-5' 

triphosphate bridge (Wei et al, 1975; Wei & Moss, 1977). The 5’ cap protects the RNA from 

5’ exonucleolytic cleavage and promotes translation in the cytoplasm (Schwer et al, 1998; 

Sonenberg & Hinnebusch, 2009). 

1.1.1.1 Promoter-proximal pausing 

In higher eukaryotes, transcription can come to a halt 30 to 150 bp after the TSS on particular 

genes during what is termed promoter-proximal pausing (PPP; Figure 1; Adelman & Lis, 

2012; Core et al, 2008b). PPP has been mainly defined by an occurrence of a Pol II peak in 

chromatin immuno-precipitation (ChIP) experiments near the TSS (Zeitlinger et al, 2007). 

However, ChIP experiments have to be interpreted with caution since a peak in a profile can 

be explained by: first, a large amount of crosslinked proteins at this position or second, the 

long residing time of a few target proteins at the same position or third, a mixture of both. 

TFIIH inhibition experiments indicated that the majority of polymerases observed as paused 
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are in fact undergoing repeated rounds of termination and re-initiation, whereas only a small 

fraction of genes have stably paused Pol II (hour-range) near the TSS (Chen et al, 2015). 

Furthermore, accumulation of Pol II near the TSS has also been shown to be a consequence of 

different initiation and elongation speeds without any apparent regulatory functions 

(Ehrensberger et al, 2013). 

 

Figure 1: Schematic of the human transcription cycle. During the initiation phase, polymerase II (Pol II) is 

recruited to the promoter via general transcription factors (GTFs), this interaction is enhanced and stabilized by 

Mediator. After initiation of transcription and Serine 5 phosphorylation (Ser5P), the nascent RNA is capped by 

the capping enzyme. Recruitment of the capping enzyme is mediated by Ser5P. Pol II can pause downstream of 

the transcription start site, termed promoter-proximal pausing. The negative elongation factor (NELF) and the 

DRB sensitivity inducing factor (DSIF) are responsible for Pol II pausing. The kinase positive transcription 

elongation factor (P-TEFb) phosphorylates NELF, DSIF and the C-terminal domain (CTD) of Pol II at Serine 2 

(Ser2P). This releases Pol II from promoter-proximal pausing. Transcription elongation ensues. During this 

phase, splicing factors are recruited to the CTD via Ser5P/Ser2P and splice the nascent RNA. The phosphatase 

Ssu72 binds transiently to the CTD and dephosphorylates Ser5P. The last phase on the template DNA is the 

termination phase. Termination factors CPSF and CstF are recruited to the CTD via Ser2P and cleave the RNA 

at the polyadenylation (pA) site. Subsequently, Ser2P is dephosphorylated by Fcp1. Last, Pol II is terminated by 

Xrn2 and recycled for the next transcription cycle. The RNA is polyadenylated by the polyA polymerase (PAP-

α) and exported to the cytoplasm. 

 PPP is promoted by NELF and DSIF (Gilchrist et al, 2008). Release of Pol II into productive 

elongation is mediated by Cdk9 that is part of the positive transcription elongation factor (P-

TEFb; Bieniasz et al, 1999). Polymerase release is realized by phosphorylation of the CTD at 
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Ser2 (Ser2P), NELF and DSIF via the P-TEFb complex (Peterlin & Price, 2006). In addition, 

Cdk12, Cdk13 and BRD4 have also been reported as Ser2 kinases (Bartkowiak et al, 2010; 

Devaiah et al, 2012). After phosphorylation, NELF disassociates from Pol II and thereon 

DSIF acts as a positive elongation factor. Many functions have been attributed to PPP since 

its discovery in Drosophila melanogaster: synchronous activation of genes during 

development, retaining an open chromatin landscape at promoters, faster activation of genes 

or checkpoint for correct mRNA capping (Gilmour & Lis, 1986; Nechaev & Adelman, 2011).  

1.1.2 Transcription elongation 

Once Ser2 of the CTD has been phosphorylated and Pol II has cleared away from the 

promoter-proximal region, productive elongation can ensue and is supported by elongation 

factors (Figure 1). Together with Pol II, elongation factors form a stable multi-component 

elongation complex (Mayer et al, 2010). The elongation complex can harbor DSIF, TFIIS, the 

PAF complex, elongin, FACT and other proteins, which all together ensure maximal 

processivity of Pol II (Kettenberger et al, 2004; Martinez-Rucobo et al, 2011; Shandilya & 

Roberts, 2012). Ser2P serves as a binding platform for splicing factors that travel with Pol II 

and splice introns during transcription elongation (Gu et al, 2013). Gradually over the gene 

body, the S5P mark is removed by phosphatases such as Ssu72 (Krishnamurthy et al, 2004). 

Ssu72 also removes Ser7 phosphorylation (S7P) on mRNA genes (Zhang et al, 2012).  

1.1.3 Transcription termination 

Termination of protein-coding genes is polyadenylation (pA) signal dependent (Proudfoot, 

2011). Ser2P acts as a binding platform for termination factors (Figure 1; Gu et al, 2013). The 

pA signal is a well-defined RNA sequence 5’-AAUAAA-3’ followed by a G/U rich stretch 

(Gil & Proudfoot, 1984). Once the pA signal is transcribed and emerges in the nascent 

transcript, it is recognized by termination factors such as CPSF leading to Pol II slowdown or 

pausing (Mischo & Proudfoot, 2013). The emerging G/U rich stretch is recognized by CstF, 

which leads to cleavage of the RNA by CPSF 10 to 30 nt downstream of its binding site 

(Kuehner et al, 2011). 3’ processing of the mRNA involves addition of a polyA-tail of 

approximatively 250 nt through the polyadenylation polymerase PAP-α (Balbo & Bohm, 

2007). The mRNA is then exported to the cytoplasm, where it can be translated.  

Not much is known about termination of ncRNAs in metazoans (Porrua & Libri, 2015). So 

far, the only alternative pathway is the termination of snRNAs by the Integrator complex via 
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Ser7P (Egloff et al, 2007; Egloff et al, 2010; Skaar et al, 2015). The Integrator complex 

contains homologs of the CPSF subunits (Baillat et al, 2005). Although Pol II shows 

phosphorylation of Ser7 during transcription of all transcript classes, disruption of this 

phosphorylation only shows an effect on expression of snRNA transcripts (Egloff et al, 2007). 

Termination involves not only RNA release from Pol II but also Pol II release from the DNA 

template. There are two models for termination described: the allosteric and the torpedo 

model. Several studies hint to a combination of both models in vivo. In the first model, Ser2P 

is dephosphorylated by Fcp1 after the pA site (Cho et al, 2001). Loss of Ser2P causes loss of 

elongation factors after the pA site. This leads to a destabilization and/or conformational 

change of the ternary complex and renders Pol II less processive, with lower synthesis rate 

and leads to Pol II pausing or dissociation from the template (Keene et al, 1999; Logan et al, 

1987). The second model is the torpedo model (Connelly & Manley, 1988), where cleavage 

of the RNA at the pA site leads to an unprotected 5’ RNA end, which is recognized by a 5’-3’ 

exonuclease. The exonuclease’s processivity rate competes with Pol II’s synthesis rate, 

eventually catches up with Pol II and dislodges it from the DNA template. So far, the torpedo 

model had only been shown for the yeast protein Rat1 (Kim et al, 2004). However, recent 

findings confirmed that the torpedo model also holds true in human cells (Fong et al, 2015). 

First, dominant-negative Xrn2 mutants in the active site showed termination defects genome-

wide and second, Pol II elongation rate mutants shifted termination sites in comparison to 

wild type (Fong et al, 2015). Many aspects of the termination pathway remain elusive such as 

exact termination sites, nucleotide composition of termination sites and why are those 

favorable to termination.  

1.1.4 Recycling of Pol II 

Pol II is released in a hypo-phosphorylated state from the DNA template and thus, competent 

for re-initiation (Figure 1). Re-initiation is facilitated first, by gene bookmarking, where 

general transcription factors remain bound to the promoter during the transcription cycle 

(Sarge & Park-Sarge, 2005), and second, by gene looping, where the 5’ end of a gene 

interacts through protein-protein interaction with the 3’ end of the same gene (Calvo & 

Manley, 2003). Gene looping is promoted by phosphorylated TFIIB that directly interacts 

with CstF in yeast (Wang et al, 2010). 
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1.2 Transient RNAs  

The most studied RNAs in living organisms are usually the ones that are the most stable and 

therefore easy to purify and analyze. RNAs that only live for few minutes are very hard to 

catch. Therefore, for a long time only protein-coding transcripts were assumed to be 

transcribed by Pol II and that the transcriptome represented only a very small percentage of 

the genome. Recent advances in methodologies and technologies, primarily the development 

of next-generation sequencing, have revoked this concept and showed that 90% of the human 

genome is transcribed (Wang et al, 2009; Wilhelm et al, 2008). This uncovered a multitude of 

ncRNAs with many different crucial functions for cell development and identity (Djebali et 

al, 2012; Eddy, 2001).  

1.2.1 ncRNAs 

Many ncRNAs have been mapped to this day (Andersson et al, 2014; Core et al, 2008b; 

Harrow et al, 2012). However, the function or rather functionality of many ncRNAs is far 

from being understood (Costa, 2010). ncRNAs can be long ( ̴ 10 kb; lncRNAs) or short (  ̴1 to 

5 kb). Short ncRNAs can emerge from promoter regions or enhancer regions (eRNAs). 

Furthermore, short ncRNAs are dispersed in the genome, such as upstream of the TSS of a 

protein-coding gene (mRNA), on the opposite strand of an mRNA or far away from any 

annotated future (Knowling & Morris, 2011). ncRNAs have been associated with many 

functions (Cawley et al, 2004). The MYCNOS ncRNA can silence protein-coding RNA 

through complementary base paring and recruitment of the RNAi silencing machinery (Vadie 

et al, 2015). The ncRNAs Air and Xist can recruit chromatin modifier enzymes and regulate 

gene expression (Navarro & Avner, 2010). The  7SK ncRNA can sequester proteins such as 

P-TEFb (Diribarne & Bensaude, 2009).  

1.2.2 RNAs downstream of the pA site 

As previously mentioned, when Pol II transcribes over the pA site, the mRNA is cleaved. 

Nevertheless, Pol II is still associated with the DNA template and continues transcription. 

This leads to a new RNA with a new 5’ end, which is uncapped (Proudfoot, 2011). It was 

shown for specific loci and genome-wide that the RNA downstream from the pA could be 

very long (Core et al, 2008b; Lian et al, 2008; Proudfoot, 1989). The exact mechanism of 

termination and release of Pol II remains elusive. A more detailed analysis of the transient 

RNAs, especially their length, 3’end and half-life could help understand termination.  
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1.2.3 eRNAs 

eRNAs emerge from enhancers (De Santa et al, 2010a; Kim et al, 2010b). Enhancers are 

regulatory DNA regions that are bound by transcription and activation factors. These factors 

recruit the Mediator complex (Fan et al, 2006), which in turn binds and stabilizes the pre-

initiation complex on a given promoter (Malik & Roeder, 2005). Enhancers have an 

enhancing effect on the transcription of a promoter they regulate (Banerji et al, 1981). 

Protein-protein interaction between activators, Mediator and the pre-initiation complex 

promotes long-range interaction via chromatin looping (Allen & Taatjes, 2015; Plaschka et al, 

2015). This brings the enhancer and the promoter in close proximity even if they are located 

kilobases apart on the same chromosome (Petrascheck et al, 2005). Further proteins such as 

CTCF and cohesin support looping and delimit topologically associated domains (Hadjur et 

al, 2009; Ong & Corces, 2014; Parelho et al, 2008). It is not known whether eRNAs have a 

function or are the mere product of a high local concentration of initiation factors, 

transcription factors and Pols (Li et al, 2016). eRNAs have been associated with stabilization 

of enhancer-promoter looping (Hsieh et al, 2014; Li et al, 2013), but this was not true for 

every loci analyzed (Hah et al, 2013; Schaukowitch et al, 2014). Knockdown of eRNAs was 

shown in some examples to reduce target promoter expression (Li et al, 2013; Schaukowitch 

et al, 2014). In conclusion, further experiments have to be conducted to elucidate eRNA 

occurrences and functions in a cell. Development of a new method to analyze eRNAs in their 

full length without cellular perturbation would shed light on this matter. 

1.3 RNA degradation pathways 

1.3.1 Nuclear degradation pathways 

RNA degradation is conducted by RNases that can be divided into three categories: 

endonucleases, 5’-3’ exonucleases such as Xrn2 or 3’-5’ exonucleases such as the exosome 

complex. Nuclear degradation pathways of Pol II transcripts include first, quality control of 

the mRNA and second, degradation of ncRNAs (Houseley & Tollervey, 2009).  

1.3.1.1 Nuclear mRNA degradation 

Quality control of mRNA requires that all processing steps are correctly completed before the 

RNA can be exported to the cytoplasm. This involves correct capping, splicing and 

polyadenylation. At each step nucleases can degrade the RNA, for example the 5’-3’ 
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exonuclease Xrn2 at non-properly capped mRNAs, intron debranching by DBR1 and 

degradation by exonucleases for splicing errors and last, degradation also by Xrn2 of the 

RNA downstream of the pA site (Chapman & Boeke, 1991; West et al, 2008). Properly 

processed mRNAs are coated with RNA-binding factors that signalize that the mRNA is 

export-ready (Rougemaille et al, 2008). In yeast, the nuclear quality control complex TRAMP 

3’-polyadenylates transcripts that failed quality control and those are subsequently degraded 

by the nuclear exosome complex (Houseley et al, 2006). In human cells, although homologs 

of the TRAMP complex components are present, functionality has not yet been reported 

(Houseley & Tollervey, 2009).  

1.3.1.2 Nuclear ncRNAs degradation  

In yeast, the Nrd1-Nab3-Sen1 complex mediates degradation of many ncRNAs such as 

snRNAs, snoRNAs, cryptic unstable transcripts, a few stable unannotated transcripts and all 

Nrd1-unterminated transcripts (Schulz et al, 2013; Thiebaut et al, 2006; Xu et al, 2009). The 

Nrd1-Nab3-Sen1 complex is recruited to transcribing Pol II by binding to Ser5P of the CTD 

and to specific RNAs through a RNA-binding domain (Schulz et al, 2013; Steinmetz & Brow, 

1996; Vasiljeva et al, 2008). The RNA is then targeted by the TRAMP complex and the 

exosome (Vasiljeva & Buratowski, 2006).  

In humans, several ncRNAs, such as upstream antisense RNAs are targeted by the exosome 

complex (Preker et al, 2008; Schmid & Jensen, 2013). Recruitment of the exosome to specific 

RNAs is mediated by the NEXT complex that interacts with RNA through its subunit RBM7 

that harbors a RNA binding site (Lubas et al, 2015). TSS-associated transcripts emerging 

from stalled Pol II are targeted by Xrn2 (Seila et al, 2008; Valen et al, 2011). ncRNA 

degradation pathways and mechanisms in human cells should be further explored in future 

studies. 

1.3.2 Cytoplasmic degradation pathways 

Once exported to the cytoplasm, the mRNA is subjected to a pioneer round of translation that 

is supported by the cap-binding complex and is important for quality control (Maquat et al, 

2010). One of the quality controls assessed during the pioneer round of translation is correct 

splicing of the mRNA. The splicing machinery deposits an exon junction complex on newly 

ligated exon-exon junctions (Tange et al, 2004), which is assessed by the Nonsense-mediated 

decay machinery (Stalder & Muhlemann, 2008). In case of defective splicing and occurrence 
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of a premature stop codon before the last exon-exon junctions, the Nonsense-mediated decay 

targets the RNA for degradation (Houseley & Tollervey, 2009). 

Other quality control pathways involve the Non-stop decay and the No-go decay. Non-stop 

decay occurs when an mRNA lacks a stop codon. As a result the ribosome cannot be released 

and is therefore stalled (Klauer & van Hoof, 2012). Non-stop decay is mediated by the Ski 

complex, which recruits the cytoplasmic exosome (Halbach et al, 2013; Schaeffer & van 

Hoof, 2011). No-go decay is a pathway also dealing with stalled ribosomes but in contrast to 

Non-stop decay, these are stalled on the transcript - for example due to strong secondary 

structures - and not at the 3’end; this leads to an endonucleolytic cleavage of the mRNA 

(Doma & Parker, 2006).  

Steady-state rounds of translation follow the pioneer round of translation and are also 

supported by the cap-binding complex, which binds and recruits the translation initiation 

factor eIF4E (Isken & Maquat, 2008; Maquat et al, 2010). During translation, the mRNA is 

gradually deadenylated by Ccr4 and Caf1 from the Ccr4-NOT complex (Eulalio et al, 2009; 

Schwede et al, 2008). After Ccr4-NOT removal of the polyA-tail, the mRNA is decapped by 

Dcp1 and Dcp2 (Deshmukh et al, 2008), which leads to either 5’ degradation by Xrn1 or 

3’degradation by the exosome complex (Bonneau et al, 2009; Makino et al, 2015). 

1.4 Methods to analyze RNA metabolism 

1.4.1 Assessing synthesis and degradation rates 

Each RNA has a specific synthesis and degradation rate that depends on its function in the 

cell and both rates define the amount of a given RNA in a cell (Wang et al, 2002). Both rates 

can vary due to external factors, cell cycle progression (Eser et al, 2014), hormonal stimuli 

(Ross, 1995), environment changes or cellular differentiation (Amorim et al, 2010; Jack & 

Wabl, 1988). Those changes will translate into changes in synthesis and/or degradation rates 

(Hargrove & Schmidt, 1989). These processes are therefore extremely important for RNA and 

protein levels and cellular functions (Perez-Ortin, 2007; Perez-Ortin et al, 2007).  

In vivo determination of synthesis and degradation rates can be achieved by different 

experimental methods. Degradation rates can be assessed by specific transcriptional shut-off 

assays using thermal Pol II mutants (Herrick et al, 1990; Nonet et al, 1987), or specific 
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transcription inhibitors such as thiolutin and rifampicin (Bernstein et al, 2002; Grigull et al, 

2004; Narsai et al, 2007). Synthesis rates can be determined for example by fluorescence 

microscopy assays (Darzacq et al, 2007), or by genomic run-on assays (Garcia-Martinez et al, 

2004). 

Another more powerful method is to use metabolic labeling since this enables estimation of 

both synthesis and degradation rates in vivo in a non-perturbing setup (Miller et al, 2011; 

Schwalb et al, 2012; Sun et al, 2012). The cells are fed with a nucleoside analog that is 

incorporated into nascent RNAs (Dolken et al, 2008). The labeled RNA can then be extracted 

from the Total RNA pool by affinity purification (Cleary et al, 2005), and analyzed by 

sequencing (Schulz et al, 2013). Mathematical modeling of the ratio of Total and Labeled 

RNA fractions enables determination of synthesis and degradation rates (Schwalb et al, 2012). 

1.4.2 Analyzing transient RNAs 

Nuclear transient RNAs can be analyzed through different experimental setups. The most 

common way is to deplete cellular factors responsible for degradation of transient RNAs, 

hence making the transient RNAs indirectly more stable for analysis. Factors can include 

exosome components (Carneiro et al, 2007; Preker et al, 2008) or Xrn2 (West et al, 2004). 

One of the downside of these methods is that cellular perturbation can lead to global or off-

target effects (Sun et al, 2013). 

Nuclear run-on assays such as PRO-seq/PRO-cap (Kwak et al, 2013), GRO-seq (Core et al, 

2008b) or GRO-cap (Core et al, 2014), are one of the most sensitive methods when it comes 

to transient RNAs. Downside of these methods is that they are rather experimentally 

complicated and per se in vitro, since one isolates nuclei and resumes transcription with 

labeled and unlabeled nucleotides. CAGE is another sensitive method but similar to GRO-cap 

or PRO-cap it does not map transcripts in their full length but only their 5’ ends (Shiraki et al, 

2003). 

Dynamic transcriptome analysis (DTA; Miller et al, 2011), also called 4sU-Seq is the method 

of choice when it comes to mapping transient RNAs in their full-length and additionally 

learning about synthesis and decay rates. To be able to transfer this method from yeast to 

human cells, one has to take into consideration that human genes are much longer than yeast 

genes. The average gene in yeast is 1.6 kilobase pairs (kb) long and would require 50 to 100 
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sec to be transcribed with a Pol II synthesis rate of 2 to 4 kb/min (Ardehali & Lis, 2009; 

Darzacq et al, 2007; Singh & Padgett, 2009). In 6 min labeling time, as employed in the DTA 

protocol, an average gene in yeast can be labeled between 4 to 7 times. The majority of 

isolated labeled RNA will therefore be completely labeled.  

 

 

Figure 2: Schematic of 4sU-seq protocol when applied to human cells. If transferred as such 

from yeast to human, a large portion of sequenced RNAs will in fact be unlabeled RNAs and 

not labeled RNAs. 

In human cells, a protein-coding gene has a mean length of 67 kb. Assuming an average 

elongation of 2 to 4 kb/min (Ardehali & Lis, 2009; Darzacq et al, 2007; Singh & Padgett, 

2009), this implies that in a short labeling time of 5 min Pol II can transcribe a maximum of 

20 kb. An average gene will therefore be labeled at an extent of  ̴ 30% during the labeling 

time of 5 min. Furthermore, in a steady-state experiment, transcription would be ongoing 

before the start of the experiment and addition of 4sU (Figure 2). Additionally, Pols are 

distributed over the gene body in different positions before the 4sU is added - some just 

initiating, some elongating and some could be already at the 3’ end of the gene. Therefore, 

affinity purified labeled RNA will consist on average of up to 70% of unlabeled RNA. This 

has two disadvantages: first, the synthesis rate will be overestimated and second, sensitivity 

for smaller and less abundant transcripts (ncRNAs mostly) is greatly reduced, since very large 
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unlabeled protein-coding RNA will take up most of the sequencing depth. Taken together, a 

method is required to be able to study ncRNAs in vivo. 
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1.5 Aims of this thesis 

Since the discovery that the majority of the human genome is transcribed (Wilhelm et al, 

2008), the question arose if all transcripts are functional or if ncRNAs are a mere by-product 

of the transcription of protein-coding genes (Palazzo & Lee, 2015). Furthermore, since the 

discovery of eRNAs, it is still an open question in the field if eRNAs are functional or not, 

and how their transcription is coupled to their target promoter (Li et al, 2016). Most of the 

functions, occurrence, abundance and kinetics of ncRNAs in cells remain elusive due to the 

lack of an adequate experimental protocol. Most of the methods used so far are either in vitro, 

not genome-wide, and/or under perturbed cellular conditions such as deletion or depletion of 

cellular factors. Furthermore, these methods lack sensitivity and/or do not map RNAs in their 

full-length but are rather biased towards their 5’ or 3’ end (Arner et al, 2015; Core et al, 2014; 

Kwak et al, 2013; Preker et al, 2008). The aim of this thesis was to develop a superior method 

that would answer the above listed questions. 

In the first part of this thesis, we aimed to improve and adapt the 4sU-seq protocol to be able 

to analyze transient RNA with high sensitivity in human cells (Section 3.1; Miller et al, 2011). 

With this protocol we wanted to map, annotate and further characterized ncRNAs in a steady-

state setup. Of special interest were synthesis and degradation rates of special ncRNAs 

classes, such as eRNA. Furthermore, we wanted to analyze the sequence composition of 

eRNAs and investigate if it could explain their unstable nature. Next, through the use of an 

ENCODE cell line and the available datasets we wanted to characterize differences between 

promoters and enhancers and their binding factors. Additionally, we wanted to learn more 

about termination of Pol II. Termination sites can be kb away from the pA sites and we 

wanted to investigate if we made the same observation. Furthermore, we wanted to 

investigate the exact nucleotide composition of termination sites to see if our improved 

sensitivity could let us find an exact motif that would enhance termination. Last, if such a 

motif were to be found, we wondered if it would depend on a functional pA site. 

In the second part of the thesis, we aimed to learn more about eRNA expression kinetics 

(Section 3.2). We performed a high-resolution time-series of the first 15 min of T cell 

activation and wanted to analyze expression changes of mRNAs and ncRNAs. To this end, we 

wanted to obtain a Jurkat cell specific annotation of all transcripts expressed before or during 

the 15 first minutes of the T cell activation. Next, we wanted to perform differential 

expression analysis of all transcripts and uncover very rapid responsive transcripts that were 
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not described in previous studies. Furthermore, to be able to characterize promoter and 

enhancer pairs, we wanted to employ a stringent pairing method that would minimize the 

number of false positive pairs. With those pairs we wanted to analyze characteristics of 

enhancer promoter pairs, such as expression correlation, distance and in particular activation 

or shutdown kinetics. The question if eRNA expression had to precede mRNA expression for 

correct transcript activation was of particular interest. Last, we wanted to analyze the CTD 

modification status of Pol II on our newly annotated ncRNAs and see if we find differences 

between eRNAs and mRNAs.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Bacterial strain 

Table 1: Bacterial strain used in this work (used in section 2.2.5) 

Strain Description Source 

XL-1 Blue 
Rec1A; endA1; gyrA96; thi-1; hsdR17; supE44; relA1; lac[F' proAB 

lacIqZDM15Tn10(Tetr)] 
Stratagene (La Jolla, CA) 

 

2.1.2 Human cell lines 

Table 2: Human cell lines used in this work (used in sections 2.2.1, 2.2.3, 2.2.4 and 2.2.5) 

Cell line Cell type Source 

K562 Chronic myeloid leukemia in blast crisis DSMZ (Braunschweig) 

Jurkat T cell leukemia 
Conzelmann group, Gene 

Center, LMU Munich 

 

2.1.3 Media and supplements 

Table 3: Media used in this work (used in sections 2.2.1, 2.2.3, 2.2.4, and 2.2.5) 

Name Description Application 

LB 
1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl; 

(+1.5% (w/v) agar for solid media plates) 
E.coli culture  

RPMI-1640 RPMI-1640; 10% FBS; 1% Pen-Strep Human cell culture 

 

Table 4: Additives used in this work (used in sections 2.2.1, 2.2.2, 2.2.3, 2.2.4 and 2.2.5) 

Abbreviation Name Description 
Working 

concentration 

Amp Ampicillin Antibiotic 100 µg/ml 
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Abbreviation Name Description 
Working 

concentration 

FBS Fetal bovine serum Serum supplement 10 % 

Pen-Strep 
Penicillin-

streptomycin 
Antibiotic 100 µg/ml 

PMA 
Phorbol 12-myristate 

13-acetate 
Activates Protein Kinase C for T cell activation 50 mM 

- Ionomycin Calcium ionophore for T cell activation  1 µM 

4sU 4-thiouridine Metabolic labeling of nascent RNAs 500 µM 

 

2.1.4 Spike-ins 

Table 5: Spike-ins used in this work (used in 2.2.2.2 and 2.2.3)  

Spike name ERCC ID GenBank ID Length [nt] Uridine amount GC content [%] comment 

2 ERCC-00043 DQ516787 1023 303 33 4sU 

12 ERCC-00170 DQ516773 1023 316 34 no 4sU 

4 ERCC-00136 EF011063 1033 268 42 4sU 

5 ERCC-00145 DQ875386 1042 266 44 no 4sU 

8 ERCC-00092 DQ459425 1124 296 50 4sU 

9 ERCC-00002 DQ459430 1061 266 51 no 4sU 

 

2.1.5 Primers 

Table 6: Spike-ins PCR primers used in this work (used in 2.2.2.2) 

Name Sequence (5’-3’) 
Annealing 

temperature [°C] 

Spike 2 fwd TAATACGACTCACTATAGGGTGCTTTAACAAGAGGAAATTGTGT 53 

Spike 2 rev CCATCTTGTTTATAAAATCCTAATTACTC 53 

Spike 12 fwd TAATACGACTCACTATAGGGGGCACAAGTTGCTGAAGTTGC 55 

Spike 12 rev TCTGCTGTAATCTCAGCTCC 55 

Spike 4 fwd TAATACGACTCACTATAGGGTTTCGACGTTTTGAAGGAGGG 53 
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Spike 4 rev GTACCCGGGAAAATCCTAGTTC 53 

Spike 5 fwd TAATACGACTCACTATAGGGACTGTCCTTTCATCCATAAGCGG 55 

Spike 5 rev CGCACGCCGAATGATGAAACG 55 

Spike 8 fwd TAATACGACTCACTATAGGGGATGTCCTTGGACGGGGT 55 

Spike 8 rev GCTTTCGGAGCAAATCGCG 55 

Spike 9 fwd TAATACGACTCACTATAGGGGATGTCCTTGGACGGGGT 55 

Spike 9 rev GGGTAAAACGCAAGCACCG 55 

 

Table 7: qPCR primers for labeling protocol efficiency used in this work (used in 2.2.3.5) 

Name Sequence (5’-3’) 

Spike-in 4 fwd CCGAGTTCGCCTTACTGCTC 

Spike-in 4 rev AATCGATCGGAATCACGCCG 

Spike-in 12 fwd AGACTGGCATTCCCGTGATA 

Spike-in 12 rev GCTAAAACCCCTGCCTGCAA 

 

Table 8: qPCR primers used during this thesis for ChIP-qPCR experiments (used in 2.2.4.7) 

Name Sequence (5'-3') fwd primer Sequence (5'-3') rev primer 
Binding 

site 

FOS 1  TCCTCCACCCTCCAAGT TGAGGGCTGGTTCGGTC 5' UTR 

FOS 2  TTCCACGCTTTGCACTGAA GGACTTAAGCCTCGGCTC promoter 

FOS 3  GAGCCCGTGACGTTTACACT GGCTCAGTCTTGGCTTCTCA TSS 

FOS 4  GTCAACGCGCAGGTAAGG GGGAGCCCCCTACTCATCTA intron 1 

FOS 5  CCATGACAGGAGGCCGA ACATTCCCAGGAAGAGTACG 
exon 

2/intron 2 

FOS 6  CCGAGGCTGACTCCTTCC GTCAGAGGAAGGCTCATTGC exon 4 

FOS 7  GCACAAATAATGGCTGATCGT TTCAGAGTCATGTTGACTTCTCC 3' UTR 

GAPDH 1  CAGCCAGACGAGGACACA CCTTTCTGGGATTGCCTTTC 5' UTR 

GAPDH 2  ATCCAAGCGTGTAAGGGT GGAAGGGACTGAGATTGGC promoter 

GAPDH 3  CCCCGGTTTCTATAAATTGAGC GGCTGACTGTCGAACAGGA TSS 

GAPDH 4  CAGAAACAGGAGGTCCCTAC GCGCGAAAGGAAAGAAAGC intron 2 

GAPDH 5  ATAGGCGAGATCCCTCCAA TGAAGACGCCAGTGGAC exon 5 

GAPDH 6  GCTGGCACCACTACTTCAGA TGTTTGGCCAACAGCAGATA 3' UTR 
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Name Sequence (5'-3') fwd primer Sequence (5'-3') rev primer 
Binding 

site 

GAPDH 7  AGATGTGTCAGGGTGACTTAT TAGGTCCCAGCTACACGC 3' UTR 

ACT 1  GGCTGGGCGTGACTGTTA GGGCAGGGCACCTTTTAC promoter 

ACT 2  CCGAAAGTTGCCTTTTATGG CAAAGGCGAGGCTCTGTG TSS 

ACT 3  CGGGGTCTTTGTCTGAGC CAGTTAGCGCCCAAAGGAC exon 3 

ACT 4  CGCCCTTTCTCACTGGTTC TCCAAAGGAGACTCAGGTCAG intron 4 

ACT 5  AAGTCCCTTGCCATCCTAAAA ATGCTATCACCTCCCCTGTG exon 6 

ACT 6  CCTGCAGACAGCTCTGGTTA TCTCCAGTCACAAGGCAGAA 3' UTR 

IL-2 1  GGCCATAGGGCTGATAAAGA AAATCTGAATGAGCTCGGACAT 5' UTR 

IL-2 2  GGTTTAAAGAAATTCCAAAGAGTCA TTCAAAGACTTTACCTGTCTGAAAAA promoter 

IL-2 3  ACCTCAACTCCTGCCACAAT GCAAGACTTAGTGCAATGCAAG TSS 

IL-2 4  GGATTTACAGATGATTTTGAATGGA TCCTGGTGAGTTTGGGATTC 
exon 

1/intron 1 

IL-2 5  AGGCCACAGAACTGAAACATC AAGTGAAAGTTTTTGCTTTGAGC exon 3 

IL-2 6  TCAGAGGAAAAGCGATCAAGT TCCCTAAATTGGGTGCAAAT intron 3 

IL-2 7  GCCCTTTGGCTTTCCATT GTTCCTCATAGTTCCTACCAGCA 3' UTR 

IFNg 1  AGTCATCCAATGTGCCAAAAT GGTAATCCTCATAAAGTGCTAGGAA 5' UTR 

IFNg 2  CCTCAGGAGACTTCAATTAGGTATAAA TCCAAAGGACTTAACTGATCTTTCTC TSS 

IFNg 3  TCCAAGGAGAGTGACAGAAAAAT TTTGGATGCTCTGGTCATCTT exon 3 

IFNg 4  TGCTCAGCTTTCACTATTGCTG TTTCTGGGGGCTTACATGAG intron 3 

IFNg 5  AGTGAGGAGATGCAAGTAGTTCAA AAGAATTGCAACAACTTTTCCAG intron 3 

IFNg 6  TGCTGTGTTGGACTTTTTCTAAGT AGACTCCCCTCCCTACTAATTCA 3' UTR 

IFNg 7  GGGGTGGAGTAGTGGGTGTA CACACTACTTGTAATGGAATAACTTGG 3' UTR 

MYC 1  AAGACGCTTTGCAGCAAAATC AGGCCTTTGCCGCAAAC 5' UTR 

MYC 2  GTAGTTAATTCATGCGGCTCTCTTACT GGGCAGCCGAGCACTCTA promoter 

MYC 3  TTTATAATGCGAGGGTCTGGA AGAAGCCCTGCCCTTCTC TSS 

MYC 4  GCCGCATCCACGAAACTTT TCCTTGCTCGGGTGTTGTAAG exon 1 

MYC 5  TGCCCCTCAACGTTAGCTTC GGCTGCACCGAGTCGTAGTC exon 2 

MYC 6  ACACAATGTTTCTCTGTAAATATTGCCA ACTAGGATTGAAATTCTGTGTAACTGCT exon 3 

MYC 7  GATGCTTCCTGGAGACTATGATAACA GCCTTCTGCCATTCCTTCTAACT 3' UTR 

IL3Rα 1  ACCACCCCTGACCACTAAGA GCGGAGGAGGTTACAGTGAA promoter 

IL3Rα 2  CAAGGAAAGTCAGGTTCATGGT GCTGTCAGAGACCCCCTTCT TSS 

IL3Rα 3  ATGGTCCTCCTTTGGCTCA CTTCCTTCGTTTGCAGGAGA exon 2 

U2 1  GGCCTCGTCTTTCTCCAGGA GGGTCTGTGGAAGAGACTGTCG promoter 
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Name Sequence (5'-3') fwd primer Sequence (5'-3') rev primer 
Binding 

site 

U2 2  TGGATGAGAGTGGGACGGTG AGCCAAAAGGCCGAGAAGC TSS 

U2 3  GGGAGGTCCTTAGGATCTCAGC GAGAGACAGGAGAAAGAAGAACTCCG 3'UTR 

H4 1  TTCTTGTCCTTTCTTGTATTTCCCACAGT TACCACGTTATGAGGCTTTAAAAAATTGCT promoter 

H4 2 fwd GACTCCTCTTGCTCGTCATGTCTG CGCCTTTGCCAAGACCCT TSS 

H4 3  GGTTGAGCGTCCCTTTCTATCAACA TGGGCAAACAAGCATCACGG exon 1 

Neg 1  CGGTAAGAGACCCCTCACAA CACACTGACTCTCAACAGACTCC intergenic 

Neg 2  CTGATGTCCAGGAGGAGAAAGG AGCCCGACAATGTCAAGGACTG intergenic 

 

Table 9: Cloning primers used in this work (used in 2.2.5.2) 

Name Sequence (5’-3’) 
5’ phospho- 

rylation 

Insert 1 control fwd AGTATCGAAGTCAGCAACTGgcggtgggctctatggctt yes 

Insert 2 control fwd AGTATCGAAGTCAGCAACTGcccgctcctttcgctttcttcc yes 

Insert 3 control fwd AGTATCGAAGTCAGCAACTGcttgattagggtgatggttcacgtagtg yes 

Insert 4 control fwd AGTATCGAAGTCAGCAACTGttataagggattttggggatttcggc yes 

Insert 1 C3AN8T4 fwd AGTACCCAAGTCAGCATTTTgcggtgggctctatggctt yes 

Insert 2 C3AN8T4 fwd AGTACCCAAGTCAGCATTTTcccgctcctttcgctttcttcc yes 

Insert 3 C3AN8T4 fwd AGTACCCAAGTCAGCATTTTcttgattagggtgatggttcacgtagtg yes 

Insert 4 C3AN8T4 fwd AGTACCCAAGTCAGCATTTTttataagggattttggggatttcggc yes 

Insert 1 C7AN8T4 fwd CCCCCCCAAGTCAGCATTTTgcggtgggctctatggctt yes 

Insert 2 C7AN8T4 fwd CCCCCCCAAGTCAGCATTTTcccgctcctttcgctttcttcc yes 

Insert 3 C7AN8T4 fwd CCCCCCCAAGTCAGCATTTTcttgattagggtgatggttcacgtagtg yes 

Insert 4 C7AN8T4 fwd CCCCCCCAAGTCAGCATTTTttataagggattttggggatttcggc yes 

Insert 1 rev tccccagcatgcctgctattg no 

Insert 2 rev cgctagggcgctggcaag no 

Insert 3 rev tcgaggtgccgtaaagcactaaatc no 

Insert 4 rev atcaaaagaatagaccgagatagggttgag no 

Remove pA fwd ttcttactgtcatgccaagtaagatgctt yes 

Remove pA rev gcggccgcttagtcacca no 
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Table 10: qPCR and colony PCR primers used for the termination experiment (used in 2.2.5.2 and 2.2.5.3) 

Name Sequence (5’-3’) 

Term qPCR 1 fwd (Transfection efficiency readout fwd) CCTCAAAGGGCTTGCCAACG 

Term qPCR 1 rev (Transfection efficiency readout rev) CCTTGATCTTGTCCACCTGGC 

Term qPCR 2 fwd CTGAGGCGGAAAGAACCAGC 

Term qPCR 2 rev CTGGCAAGTGTAGCGGTCAC 

Term qPCR 3 fwd CCTTTCGCTTTCTTCCCTTCCTTTC 

Term qPCR 3 rev CGTAAAGCACTAAATCGGAACCCT 

Term qPCR 4 fwd ACTTGATTAGGGTGATGGTTCACG 

Term qPCR 4 rev GGTTGAGTGTTGTTCCAGTTTGGA 

Term qPCR 5 fwd (Termination read-through readout fwd) GTGGAATGTGTGTCAGTTAGGGTG 

Term qPCR 5 rev (Termination read-through readout rev) GACTTTCCACACCTGGTTGCT 

 

2.1.6 Thermal cycler programs 

Table 11: Thermal cycler programs used in this work (for section see details of table) 

Program Name 
Used in 

section 

25°C, 10 min; 50°C, 30 min; 85°C,5 min 
Reverse-

transcription 

2.2.3.5, 

2.2.5.3 

95°C, 2 min ; (95°C, 20 sec; 53-55°C, 30 sec; 72°C, 70 sec) x30; 72°C, 10 min; 10°C, ∞ Spike-in PCR 2.2.2.2 

95°C, 2 min ; (95°C, 5 sec; 64°C, 10 sec; 72°C, 15 sec) x40; 72°C, 5 min; 10°C, ∞ qPCR 

2.2.3.5, 

2.2.4.7, 

2.2.5.3 

98°C, 2 min ; (98°C, 45 sec; 60°C, 30 sec; 72°C, 6 min) x29; 72°C, 10 min; 10°C, ∞ Cloning PCR 2.2.5.2 

95°C, 2 min ; (95°C, 5 sec; 60°C, 10 sec; 72°C, 7 sec) x40; 72°C, 5 min; 10°C, ∞ Colony PCR 2.2.5.2 

 

2.1.7 Plasmids 

Table 12: Plasmids used in this work (generated and used in section 2.2.5) 

Name Description Source 

pCMV-GLuc 2 CMV; GLuc; SV40; Neo
R
; pMB1 ori; Amp

R
 NEB 

pCMV-GLuc 2 4x control pCMV-GLuc 2 + 4x AGTATCGAAGTCAGCAACTG This work 
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Name Description Source 

inserted between GLuc pA and SV40 

pCMV-GLuc 2 4x C3AN8T4 
pCMV-GLuc 2 + 4x AGTACCCAAGTCAGCATTTT 

inserted between GLuc pA and SV40 
This work 

pCMV-GLuc 2 4x C7AN8T4  
pCMV-GLuc 2 + 4x CCCCCCCAAGTCAGCATTTT 

inserted between GLuc pA and SV40 
This work 

pCMV-GLuc 2 no pA 4x control pCMV-GLuc 2 4x control + pA of GLuc removed This work 

pCMV-GLuc 2 no pA 4x C3AN8T4 pCMV-GLuc 2 4x C3AN8T4 + pA of GLuc removed This work 

pCMV-GLuc 2 no pA 4x C7AN8T4 pCMV-GLuc 2 4x C7AN8T4 + pA of GLuc removed This work 

 

2.1.8 Buffers and solutions 

Table 13: Buffers and solutions used in this work (for section see details of table) 

Name Description 
Application/

section 

1x TBE 
8.9 mM Tris-HCl; 8.9 mM Boric acid; 2 mM EDTA; pH 8.0 at 

25°C 

Agarose gel/ 

2.2.2.3, 

2.2.2.4, 

2.2.4.3, 

2.2.5.2 
6 x Loading dye 

1.5 g/L Bromphenol blue; 1.5 g/L Xylene cyanol; 50% (v/v) 

Gylcerol 

10x biotinylation buffer 100 mM Tris pH 7.4; 10 mM EDTA 

TT- seq/ 

2.2.3.4 

Biotin-HPDP 1mg/ml in dimethylformamide 

Washing buffer 100 mM Tris pH 7.5; 10 mM EDTA; 1 M NaCl; 0.1% Tween20 

Elution buffer (DTT) 100 mM Dithiothreitol in H2O 

Protease-inhibitor mix 
1 mM Leupetin; 2 mM Pepstatin A; 100 mM 

Phenylmethylsulfonyluoride; 280 mM Benzamidine 

ChIP-seq/ 

2.2.4 
Phosphatase-inhibitor mix  1 mM NaN3; 1 mM NaF; 0.4 mM Na3VO4 

1 x PBS 
2 mM KH2PO4; 4 mM Na2HPO4; 140 mM NaCl; 3 mM KCl; pH 

7.4 at 25°C 

Farnham Lysis buffer 5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40 

ChIP-seq/ 

2.2.4.2 FA lysis buffer 1% SDS 

50 mM HEPESKOH, pH 7.5 at 4°C; 150 mM NaCl; 1 mM 

EDTA; 1% (v/v) Triton X-100; 0.1% (v/v) Na deoxycholate; 1% 

(v/v) SDS; PI 

PBS/Tween 0.02% Tween20 in PBS  

ChIP-seq/ 

2.2.4.4, 

2.2.4.5 

Co-IP buffer 0.5% NP-40, 150 mM NaCl, 50 mM Tris pH 7.4, 2 mM EDTA 
ChIP-seq/ 

2.2.4.5 
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Name Description 
Application/

section 

LiCl wash buffer 
100 mM TrisHCl, pH 8.0 at 4°C; 500 mM LiCl; 1% (v/v) NP-40; 

1% (v/v) Na deoxycholate 
ChIP-seq/ 

2.2.4.6 TE Buffer  10mM TrisHCl, pH 7.4 at 4°C; 1mM EDTA 

ChIP elution Buffer 0.1 M NaHCO3; 1% (v/v) SDS 

 

2.1.9 Antibodies 

Table 14: Antibodies used in this work for ChIP experiments (used in section 2.2.4.4) 

Antibody Amount in ChIP Source 

N-20 5 µl Santa-Cruz 

3D12 (Tyr1P)  50 µl (supernatant cell culture) Elisabeth Kremmer/Dirk Eick 

3E8 (Ser5P)  20 µl (supernatant cell culture) Elisabeth Kremmer/Dirk Eick 

3E10 (Ser2P)  25 µl (supernatant cell culture) Elisabeth Kremmer/Dirk Eick 

4E12 (Ser7P)  50 µl (supernatant cell culture) Elisabeth Kremmer/Dirk Eick 

 

2.2 Experimental methods 

In this section, only methods developed and performed as part of this thesis are described. 

Methods performed by other co-authors regarding Section 3.1 and 3.2 are listed in the 

supplementary materials of the papers (Michel et al, 2016; Schwalb et al, 2016). 

2.2.1 Human cell culture 

K562 cells were acquired from DSMZ (Braunschweig, Germany; Table 2). Jurkat cells were 

kindly provided by the Conzelmann lab, Gene Center, LMU Munich (Table 2). Cells were 

grown in RPMI-1640 medium (Gibco, Carlsbad, CA, USA) supplemented with 10% heat-

inactivated FBS (Gibco) and 1% Penicillin/Streptomycin (100x, PAA now GE Healthcare, 

Chalfont St. Giles, UK) at 37°C under 5% CO2 (Table 3, Table 4). Cells were splitted 1:4 

with fresh media every second day.  
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2.2.2 Generation of spike-ins 

2.2.2.1 Background 

Spike-ins are crucial for normalization when comparing different samples within an 

experiment. They are synthetic probes that do not match any sequence in the human genome 

in order to clearly differentiate them from sequences from your biological experiment. Spike-

ins are added at the beginning of an experiment to every sample in the same amount. They 

serve as an internal standard and can correct for global changes in RNA amount between 

different samples. The idea to use spike-ins is based on a similar approach developed in the 

Cramer lab for S. cerevisiae (Sun et al, 2012).  

Spike-ins used in a 4sU-labeling experiment must be labeled with 4sU so that they are not lost 

throughout the experiment. Spike-ins were therefore based on commercially available 

unlabeled RNA spike-ins that were converted to DNA. These converted spike-ins were used 

as input in an in vitro transcription experiment using 4sUTP as a uridine source, resulting in 

labeled RNA spike-ins. To normalize for labeled and unlabeled RNA, half of the spike-ins 

were not labeled with 4sUTP. 

2.2.2.2 Spike-ins PCR 

Six spike-ins from the ERCC RNA spike-in mix (Life Technologies, Carlsbad, CA, USA) 

were selected by Katja Frühauf based on the following criteria: a length of approximatively 

1 kb and similar uridine amount but different GC content (40 to 60%; Table 5, Schwalb et al, 

2016). Spike-ins were extracted from the ERCC spike-in mix and converted to DNA by PCR 

amplification with the forward primer containing a T7 promoter sequence (Table 6). The PCR 

reaction contained 50 ng RNA, 5 µl 10 x PCR buffer (NEB, Ipswich, Massachusetts, USA), 2 

µl MgSO4 (NEB), 5 µl dNTPs (2mM each, NEB), 3 µl forward primer (5 pmol/µl), 3 µl 

reverse primer (5 pmol/µl), 1 µl Phusion polymerase (NEB) and ddH2O in a total volume of 

50 µl. See Table 11 “spike-in PCR” for thermal cycler conditions. Specific annealing 

temperature for each primer can be found in Table 6. PCR reactions were purified with 

QIAquick PCR purification columns (Qiagen, Venlo, Netherlands) and eluted in 30 µl 

ddH2O.  
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2.2.2.3 In vitro transcription 

After assessing quality, concentration and homogeneity of the PCR products (expected size: 1 

kb) with a 4% agarose gel (Figure 3, Table 13) and a Nanodrop 2000 (Thermo Fisher 

Scientific, Boston, MA, USA), each DNA spike-in was subjected to in vitro transcription with 

the Megascript T7 Transcription Kit (Life Technologies). The transcription reaction was 

performed with either 1:10 4sUTP:UTP ratio for spike-ins 2, 4 and 8 or only UTP for spike-

ins 12, 5 and 9 (Table 5); resulting in labeled and non-labeled spike-ins, respectively. The in 

vitro transcription reaction was mixed following the manufacturer’s instructions starting with 

8 µl/500 ng of DNA and incubated for 4h at 37°C. The reactions were diluted to 40 µl with 

ddH2O. To digest input DNA 2 µl Turbo DNase (Thermo Fischer Scientific) and 4 µl 10x 

Turbo DNase Buffer were added to each reaction and incubated for 15 min at 37°C. No stop 

solution was added to the reactions.  

 

Figure 3: Quality control of RNA spike-ins after in vitro transcription. 1 µg of spike-ins were loaded on a 4% 

agarose gel and run at 100 V for 15 min. 

2.2.2.4 Quality assessment 

All RNA spike-ins were purified with AMPure XP beads with a 1.8x ratio (Beckman-Coulter, 

Brea, CA, USA), eluted in 400 µl ddH2O and quantified with Nanodrop 2000, agarose gel and 

Qubit 3.0 Fluorometer (Life Technologies). A biotinylation-streptavidin purification (see 

2.2.3.4 for details) was performed with each spike-in to check for correct 4sU-labeling or 

non-labeling. The spike-ins were then mixed together as a stock for all future experiments in 

equal amount (1 ng/µl for each spike) to a final concentration of 6 ng/μl and stored at -80 °C. 

2.2.3 TT-seq 

2.2.3.1 Cell culture 

K562 or Jurkat cells were splitted 2 days prior to TT-seq experiment and kept at a maximum 

cell density of 1 x 10
6
 cells/ml to ensure optimal growth conditions. Experiments were 

performed with cells below passage 10 in T75 flasks (Greiner Bio-one,  Kremsmünster, 

Austria).  
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2.2.3.2 RNA purification 

50 million cells were centrifuged for 5 min at 2,000 rpm and resuspended in 50 ml pre-

warmed media to obtain equal labeling conditions for each sample and experiment. Labeling 

was performed in media for 5 min with 500 μM of 4sU (50 mM stock solution in water; 

Sigma-Aldrich, St. Louis, MO, USA; Table 4) after which cells were harvested through 

centrifugation for 2 min at 3,000 rpm. 20 µl of RNA spike-in mix (see section 2.2.2) was 

added to each cell pellet together with 5 ml Qiazol (Qiagen). RNA extraction was performed 

following the Qiazol protocol’s instructions. The extracted RNA was resuspended in 500 µl 

ddH2O and is referred to as “Total RNA”. Total RNA concentration and purity was measured 

with Nanodrop 2000. 

2.2.3.3 RNA fragmentation 

Trials of fragmentation were performed in a time series on 400 µg of Total RNA for 5 min 

with high settings (Figure 4A) and on Poly A + RNA (purified with Ambion Poly(A) Purist 

MAG Kit) for 7 min on high settings or 4 min on low settings (Figure 4B) on a BioRuptor 

Next Gen (Diagenode, Seraing, Belgium) using 1.5 ml Bioruptor Plus TPX microtubes 

(Diagenode). The time series were analyzed on an Experion (Bio-Rad, Hercules, CA, USA; 

Figure 4). Fragmented RNA was supposed to be in a range below 10 kb and above 200 bp. 

Base on that criterion we decided to apply 1 min at high settings for all subsequent 

fragmentations. 

 

Figure 4: Electrophoresis analysis of fragmentation time series on a BioRuptor NextGen. (A) Fragmentation on 

Total RNA at high settings for different time. (B) Fragmentation time series on Poly A+ RNA using different 

settings. 
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In K562 or Jurkat cells, 300 µg of Total Fragmented RNA are needed per 5 min 4sU-labeling 

reaction to obtain a final yield of approximatively 300 ng of labeled fragmented RNA. 300 µg 

Total RNA was fragmented at 240 ng/μl in a maximum of 400 µl per 1.5 ml Bioruptor Plus 

TPX microtubes on a BioRuptor Next Gen at high power for one cycle of 30’’/30’’ ON/OFF. 

The resulting RNA is referred to as “Total fragmented RNA“. Fragmentation efficiency was 

assessed on a Tapestation (Agilent Technologies, Santa Clara, CA, USA) by comparing Total 

RNA and Total fragmented RNA samples using a RNA ScreenTape (Agilent Technologies; 

Figure 5). Total fragmented RNA samples were then subjected to labeled RNA purification 

(Dolken et al, 2008).  

 

Figure 5: Comparison between Total RNA and Total fragmented RNA. Overlaid electropherograms acquired on 

a Tapestation of 100 ng Total RNA (blue) and 100 ng Total fragmented RNA (grey) after 1 min of fragmentation 

on a BioRuptor. 

2.2.3.4 Labeled RNA purification 

Briefly, 300 µg Total fragmented RNA was first heated to 60°C for 10 min and put on ice for 

2 min. The RNA was then biotinylated in 15 ml RNase-free falcons (Sarstedt, Nümbrecht, 

Germany) in a biotinylation reaction containing 300 µl 10x Biotinylation Buffer (1 µl per 1 

µg RNA) and 600 µl Biotin-HPDP (2 µl per 1 µg RNA; Thermo Fischer Scientific, Table 13). 

The biotinylation reaction was brought to a final volume of 2.1 ml with ddH2O (7 µl per 1 µg 

RNA), kept from light and incubated on a rotating wheel for 1.5 hours at room temperature 

(RT). Unbound biotin was removed by chloroform/isoamylacohol extraction in 15 ml phase 

lock gel tubes (5 PRIME, Hilden, Germany). The biotinylated RNA was then precipitated 

with 1 volume isopropanol and 1/10
th

 volume 5 M NaCl. The biotinylated RNA was washed 

twice with 70% ethanol and resuspended in 200 µl RNAse-free water. The biotinylated RNA 

was heated to 65°C for 10 min and put on ice for 5 min. 100 µl Streptavidin µMACS 
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paramagnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) were added to the 

biotinylated RNA and incubated on a shaker at 800 rpm for 15 min at 24°C. The µMACS 

column was equilibrated with 900 µl washing buffer (Table 13) before adding the biotinylated 

RNA/streptavidin mixture to the column. The flow-through was reloaded to maximize labeled 

RNA recovery. The column was washed 3 times with 900 µl 65°C warm washing buffer and 

3 times with 900 µl RT washing buffer. The labeled fragmented RNA was eluted with two 

times 100 µl 100 mM DTT (Table 13) with a 5 min incubation time in between the two 

elutions. The labeled fragmented RNA was purified using 1.8x AMPure XP RNAse-free 

beads and resuspended in 30 µl RNAse-free water. RNA concentration was measured with 

Qubit (Thermo Fischer Scientific) using the Qubit RNA HS Assay Kit (Thermo Fischer 

Scientific). Quality can be assessed with a Tapestation using a high-sensitivity RNA 

ScreenTape (Agilent Technologies, Figure 6).  

 

Figure 6: Comparison between Total fragmented and Labeled fragmented RNA. Overlaid electropherograms 

acquired on a Tapestation of 10 ng Total fragmented RNA (blue) and 10 ng Labeled fragmented RNA (grey) 

after labeling purification. 

2.2.3.5 qPCR against spike-ins to assess labeled RNA purification efficiency 

Successful labeled RNA purification was tested through qPCR with primers against a labeled 

and unlabeled spike-in. The ratio of labeled/unlabeled spike-ins should be 1 in Total RNA or 

Total fragmented RNA samples and greater than 1 in Labeled fragmented RNA samples. 

Different starting concentration between Labeled and Total RNA is not a problem, since one 

does not compare Labeled and Total RNA ratio to one another, but different spike-ins to one 

another within the same sample. Labeled fragmented, Total fragmented and Total RNA were 

reverse-transcribed to cDNA in a reaction containing 1 µl RNA, 1 µl 50 µM random 

hexamers (Thermo Fischer Scientific), 1 µl 10 mM dNTPs (NEB), 4 µl 5x buffer (Thermo 

Fischer Scientific) and 1 µl Maxima Reverse-transcriptase (200 U/µl, Thermo Fischer 
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Scientific). The reaction was brought to 20 µl with ddH2O and incubated in a thermal cycler 

(see Table 11 “Reverse-transcription” for parameters). A qPCR reaction was mixed with 1 µl 

cDNA, 10 µl 2x SensiFAST SYBR mix (Bioline, London, UK), 0.8 µl each 10 µM forward 

and reverse primers for spike-ins 4 (labeled; Table 7) or 12 (unlabeled; Table 7) and filled to 

20 µl with ddH2O. See Table 11 “qPCR” for the thermal cycler conditions. The Ct-values 

between spike-in 4 and 12 should be equal in Total RNA samples and greater Ct-value for 

spike-in 12 than spike-in 4 in Labeled RNA samples (Figure 7). The enrichment of labeled 

spike-ins over unlabeled spike-ins usually ranges between 7 to 9 Ct-values, meaning a 100- to 

500-fold enrichment of labeled RNA. After amount, quality and labeling purification 

assessment sequencing libraries can be generated. 

 

Figure 7: qPCR testing efficiency of labeled RNA purification based on spike-ins enrichment in samples. qPCR 

was performed on cDNA of Total (left) or Labeled (right) RNA samples with primers testing against spike-in 4 

(blue, labeled spike-in) or spike-in 12 (violet, unlabeled spike-in. The Ct-value of spike-in 12 is higher than for 

spike-in 4 in Labeled RNA sample showing that it is less present in the sample.  

2.2.3.6 Generation of sequencing libraries and sequencing 

80-150 ng RNA from all samples was treated with 2 µl (2 units) TURBO DNase (Life 

Technologies) and 0.1 volume 10x TURBO DNase buffer (Life Technologies) for 30 min at 

37°C. The reaction was stopped with 0.1 volume DNase inactivation reagent (Life 

Technologies) and incubated at RT for 5 min. The DNase inactivation reagent was removed 

by centrifugation at 10,000 rpm for 2 min. Sequencing libraries were prepared with the 

Ovation Human Blood RNA-seq library kit (NuGEN, Carlos, CA, USA) following the 

manufacturer’s instructions. If the volume of the 80-150 ng DNase-treated RNA was too large 

for the sequencing kit requirements, the RNA was centrifuged in a vacuum concentrator until 

the desired volume was attained. Concentrations during the PCR amplification were measured 

with a Qubit dsDNA BR assay (Life technologies) from PCR cycle number 13 onward after 
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each cycle. The PCR reaction was stopped when all samples’ concentrations doubled from 

one cycle to the next. All samples were sequenced on a HiSeq 1500 sequencer (Illumina, San 

Diego, CA, USA). 

2.2.4 ChIP-seq 

2.2.4.1 Cell culture and cross-linking 

ChIP-seq was carried out as described (Johnson et al, 2007), with some alterations. 3x10
7
 

Jurkat cells were crosslinked for 7.5 min with 1% methanol-free formaldehyde (Pierce™ 16% 

Formaldehyde (w/v), Methanol-free, Thermo Fischer Scientific) in 30 ml medium. Glycine 

was added to a final concentration of 0.125 M and incubated for 5 min at RT on a rotating 

wheel. Cells were pelleted at 4°C with 1,000 g for 5 min, washed twice with 1 ml 1x PBS 

(Table 13). Cells were transferred to 1.5 ml Bioruptor Plus TPX microtubes and pelleted at 

4°C with 1,000 g for 5 min.  

2.2.4.2 Cell lysis and chromatin isolation 

From this step forward, proteinase inhibitors were added to all buffers (Table 13). Cells were 

resuspended in 1 ml Farnham Lysis buffer (Table 13) to lyse the cell membrane and incubated 

on ice for 5 min. Nuclei were pelleted at 4°C with 2,000 g for 5 min and subsequently 

resuspended in 1 ml FA 1% SDS (Table 13) to lyse the nucleus’ membrane and incubated on 

ice for 5 min. The chromatin was pelleted at 4°C with 15,000 g for 15 min. The chromatin 

was carefully resuspended in 300 µl FA 1% SDS (Table 13) so not to generate air bubbles. 

2.2.4.3 Sonication and sonication efficiency 

The samples were transferred to a pre-cooled BioRuptor Next Gen (4°C) with 3 samples per 

sonication round at the most. Samples were sonicated with high settings for 40 cycles of 

30”/30” sec ON/OFF. Sonication efficiency was tested by taking 15 µl sonicated chromatin. 

100 µl 1x PBS was added to the test samples, together with 1 µl RNase A (10 µg/µl, Thermo 

Fischer Scientific) and incubated at 37°C for 30 min. 1 µl Proteinase K (NEB) was then added 

to the test samples and incubated at 37°C for 1 h. Reverse-crosslinking was performed at 

65°C at least 4h. Test samples were purified using QIAquick PCR purification columns and 

eluted in 30 µl ddH2O. 1 µg test samples were run on a 2% TBE agarose gel (Table 13) and 

analyzed using a Gel iX20 Imager (Figure 8; Intas Science Imaging Instruments, Göttingen).  
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Figure 8: Agarose gel of sonicated chromatin on a BioRuptor NextGen after 40 cycles at high settings 30”/30” 

ON/OFF. 

2.2.4.4 Antibodies-Dynabeads coupling 

Per ChIP-seq experiment, 49.5 µl Dynabeads protein G (Life Technologies) were used. 

Dynabeads are magnetic beads that can be pelleted with a magnet (Life Technologies). The 

Dynabeads were washed 3 times with 1 ml PBS/Tween (Table 13) and subsequently 

resuspended in 1 ml PBS/Tween. The appropriate antibody amount was added to the 

Dynabeads, depending on the antibody used (for amounts, see Table 14) and incubated on a 

rotating wheel for 30 min at RT. In case of a mock-IP, no antibody was bound to the 

Dynabeads. The Dynabeads were then washed three times with 1 ml PBS/Tween and 

resuspended in 100 μl PBS/Tween per ChIP-seq sample.  

2.2.4.5 Immunoprecipitation 

7.5 µl from the sonicated chromatin was taken as “Input” (1 % of the chromatin), transferred 

to 0.5 ml DNA LoBind tubes (Eppendorf, Hamburg, Germany) and kept at 4°C for further 

use. Immunoprecipitation was performed in 13 ml inoculation tubes (Sarstedt) by combining 

6 ml Co-IP buffer (Table 13), 100 µl Antibody-Dynabeads in PBS/Tween and adding 750 µl 

sonicated chromatin. Samples were immunoprecipitated overnight at 4°C on a rotating wheel.  

2.2.4.6 Reverse-cross-linking and DNA purification 

Immunoprecipitated samples were centrifuged for 1 min at 1,000 rpm to gather the 

Dynabeads at the bottom of the tube and then put on a magnet for 1 min. The supernatant was 

removed and the Dynabeads were washed 5 times with 1 ml LiCl wash buffer (Table 13) with 

3 min incubation time on a rotating wheel at RT in between the washes. The Dynabeads were 
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then washed once with 1 ml TE Buffer and resuspended in 50 μl IP Elution Buffer (Table 13). 

To elute the immune-bound chromatin from the Dynabeads, samples were incubated at 70°C 

for 15 min. The supernatant (“IP” sample) was collected in 0.5 ml DNA LoBind tubes. IP 

samples were diluted with 45 µL TE buffer; Input samples were complemented with 45 µL IP 

Elution Buffer and 45 µL TE buffer. 5 µL Proteinase K was added to both the IP and the 

Input samples, and they were incubated at 37°C for 1 h, then at 65°C overnight or at least for 

4h. DNA was purified with MinElute PCR purification columns (Qiagen). 10 µl 3M NaAc 

was added to all samples before binding them to the columns. DNA was eluted with 3 times 

15 µl and concentration was measured with a Qubit HS dsDNA kit (Life technologies). To 

ensure correct sonication for sequencing, 1 µl Input was analyzed with a DNA 1000 

BioAnalyzer kit (Agilent Technologies). 

2.2.4.7 ChIP-qPCR 

A qPCR was performed to ensure enrichment of the immunoprecipitated DNA over 

background. Primers were chosen depending on the antibody used, but usually primers 

binding over the promoter, the TSS, the gene body in exon and introns or near the poly A site 

were chosen (Table 8). The qPCR reaction was mixed with 1 µl DNA, 10 µl 2x SensiFAST 

SYBR mix, 0.8 µl each of 10 µM forward and reverse primers (Table 8) and filled to 20 µl 

with ddH2O. Cycling conditions can be found in Table 11 “qPCR”. Analysis of the qPCR was 

performed by calculating the “% Input”: the enrichment of specific DNA sequences in the IP 

sample over the Input sample: 

% Input = 100 ∗ 2((Ct(Input)−log2(100))−Ct(IP)) 

2.2.4.8 Generation of ChIP-seq libraries and sequencing 

The same amount (1-10 ng) Input and IP was taken to generate ChIP-seq libraries using the 

NEBNext Ultra Kit (NEB) following the manufacturer’s instructions except three 

modifications. First, The NEB adaptors were diluted 1:20 instead of 1:10 as this reduced the 

adapter dimers. Second, the DNA was eluted from the AMPure XP beads with the same 

amount needed in the following step to reduce DNA loss. Last, progress of the PCR reaction 

was followed by measuring the DNA concentration from cycle 13 onward, similar to the TT-

seq library preparation in section 2.2.3.6. to ensure that the PCR is stopped in its exponential 
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phase to limit PCR duplicates. Samples were sequenced on an Illumina HiSeq 1500 

sequencer. 

2.2.5 In vivo termination experiment 

2.2.5.1 Background 

Termination motifs (section 3.1) were cloned into a mammalian expression plasmid to test 

their functionality. It was tested in vivo whether the termination motifs have a negative effect 

on transcription after the pA site of a reporter gene. 

The bioinformatically-determined motifs consist of multiples Cs followed by an A and then 

further downstream multiple Ts (section 3.1). We designed three 20 nucleotides (nt) long 

inserts: a control insert (Ctrl: AGTA TCGA AGTC AGCA ACTG), an insert with 3 Cs and 4 

Ts (C3AN8T4: AGTA CCCA AGTC AGCA TTTT) and an insert with 7 Cs and 4 Ts 

(C7AN8T4: CCCC CCCA AGTC AGCA TTTT). Since termination windows were found to 

have multiple termination motifs, it was decided to insert four motifs in the 585 bp region 

between the poly A site of the Gaussia luciferase gene and the SV40 promoter of the 

neomycin resistance gene of the pCMV GLuc 2 plasmid (NEB). Inserts were not mixed 

between one another. It was either: four times the Ctrl, 4 times the C3AN8T4 or four times the 

C7AN8T4 motif (Figure 9). To test if 5’ cleavage at the poly A site is a requirement for the 

termination motifs to act as such, the poly A site of the luciferase gene was deleted in follow-

up experiments. 

 

Figure 9: Overview of termination experiment. Yellow crosses represent inserts and are the Ctrl, the C3AN8T4 

or the C7AN8T4 motif. In a follow-up experiment, the pA site was deleted. 

2.2.5.2 Cloning 

Four inserts were inserted into the pCMV-GLuc 2 plasmid (NEB) one after another in four 

rounds of cloning using the “around the horn PCR” cloning method. The forward primer was 
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designed to anneal to the plasmid 1 nt downstream of the insertion site, had a 20 nt 5’-

overhang consisting of the sequence to be inserted (Table 9) and was phosphorylated on its 

5’ end to ensure ligation after the PCR. The reverse primer annealed 0 nt upstream of the 

insertion site (Table 9). The inserts were cloned in the reverse order. First, insert 4 was cloned 

into pCMV-GLuc 2 plasmid. Second, insert 3 was cloned in the plasmid containing insert 4. 

Third, insert 2 in the plasmid containing both inserts 4 and 3. Last, insert 1 was cloned in the 

plasmid containing inserts 4, 3 and 2. All cloning rounds were performed the same: a PCR, 

overnight DpnI digest, size selection on a 1% agarose gel, overnight ligation of the PCR 

product into a plasmid and transformation into E. coli. The PCR reaction contained 100 ng of 

plasmid, 2.5µl 10 µM forward primer (Table 9), 2.5 µl 10 µM reverse primer (Table 9), 1 µl 

10 mM dNTPs, 1.5 µl DMSO, 10 µl 5x HF Phusion buffer, 0.5 µl Phusion polymerase and 

ddH2O to a final volume of 50 µl. Cycling conditions can be found in Table 11 “Cloning 

PCR”. After PCR, 2 µl of DpnI (NEB) was added to each PCR reaction and incubated 

overnight at 37°C. 6x Loading dye (Fermentas, Table 13) was added to each reaction and the 

complete reaction was run on a 1% agarose (Life Technologies) TBE (Table 13) gel at 120 V 

for 30 min. The correct band (5.8 kb) was excised with a scalpel and purified with a gel 

purification kit (Qiagen) following the manufacturer’s instructions. The linear PCR product 

was eluted from the Qiagen column in 20 µl ddH2O. The ligation reaction contained 4 µl 

linear PCR product, 1 µl 10x T4 DNA Ligase buffer (NEB), 1 µl 10 mM ATP (NEB), 1 µl T4 

Ligase (NEB) and 3 µl ddH2O in a final volume of 10 µl. The ligation reaction was incubated 

at RT overnight. 4 µl of the ligation reaction was transformed into 50 µl chemically 

competent XL1-Blue E.coli cells (Table 1). Circularized PCR products and XL1-Blue cells 

were incubated for 30 min on ice, followed by a 30 sec 42°C heat shock in a water bath and 2 

min incubation on ice. 900 µl LB medium (Table 3) was added to the cells followed by 1.5 

hours incubation at 300 rpm and 37°C. Cells were plated on LB-Amp agar plates (Table 4) 

and incubated at 37°C overnight. Five colonies were picked the next day and correct insertion 

(+20 nt) was checked with colony PCR, by directly dipping a colony into a PCR reaction mix 

containing 5 µl 2x mastermix, 0.5 µl 10 µM forward primer (Table 10), 0.5 µl 10 µM reverse 

primer (Table 10) and 4 µl ddH2O. The primers closest to the insertion site were chosen, so 

that the PCR product was as small as possible to easily differentiate between +/- 20 bp. The 

colony PCR cycling conditions can be found in Table 11 under “colony PCR”. As a negative 

control, the plasmid taken as a template for the “around the horn PCR” was taken as a 

template for the colony PCR. The PCR products were run with 6x loading dye on a 2% TBE 
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agarose gel for 30 min at 100 V. One positive clone was grown overnight in 5 ml LB+Amp at 

37°C and 300 rpm, plasmids were extracted the next day using QIAprep spin miniprep Kit 

(Qiagen), eluted in 50 µl ddH2O and sent for sequencing at Seqlab (Göttingen) for 

verification. In the plasmids containing four inserts, the poly A site of the Luciferase gene 

was deleted following the same cloning strategy with the primers found in Table 9. 

2.2.5.3 In vivo termination experiment 

2 μg plasmid (Table 12) were transfected into 1x10
6
 K652 cells using the SF Cell line 4D-

Nucleofector X kit and unit from Lonza (Basel, Switzerland) following the manufacturer’s 

instructions. 500 µl of transfected cells (2.5 x 10
5
 cells) were harvested 4h post transfection 

by centrifugation for 10 min at 1,900 rpm. 100 µl Qiazol and 20 µl chloroform were added to 

the cell pellet, incubated at RT for 5 min and centrifuged at 15,000 rpm for 5 min at 4°C. The 

aqueous supernatant was directly pipetted onto a gDNA Eliminator spin columns (Qiagen) 

provided in the RNeasy Plus Mini column (Qiagen). This step removed DNA contamination. 

The RNeasy Plus Mini kit was performed following the manufacturer’s instructions. RNA 

was eluted in 30 µl ddH2O and concentration was measured with Nanodrop 2000. 500 ng of 

RNA was reverse-transcribed to cDNA in a reaction containing 1 µl 50 µM random 

hexamers, 1 µl 10 mM dNTPs, 4 µl 5x buffer and 1 µl Maxima Reverse-transcriptase. The 

reaction was brought to 20 µl with ddH2O and incubated in a thermal cycler (see Table 11 

“Reverse-transcription” for parameters). A negative control for each sample was pipetted 

containing all reverse-transcription components except for the Maxima Reverse-transcriptase. 

This controls for DNA contamination in the samples. A qPCR reaction was mixed with 1 µl 

cDNA, 10 µl SYBR Select master mix (applied biosystems, Carlsbad, CA, USA), 0.8 µl each 

10 µM forward and reverse primers (Table 10) and filled to 20 µl with ddH2O. See Table 11 

“qPCR” for the thermal cycler conditions. The qPCR was performed in technical triplicates. 

Ct-values of the termination read-through readout (qPCR primer pairs 5, Table 10) were 

normalized for transfection efficiency using the qPCR readout assessing the luciferase 

transcript amount (qPCR primer pair 1, Table 10). Additionally, it was controlled for a day-

specific effect apparent on the termination read-through readout by setting day-specific 

control to 0 and normalizing respective values accordingly. Ct values were transformed to 

absolute numbers by taking it to the power of 2.  
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3 Results and Discussion 

3.1 TT-seq maps the human transcriptome 

All results presented in this Section were obtained in collaboration with Björn Schwalb and 

Benedikt Zacher and are published (Schwalb et al, 2016). For detailed author contributions 

see page 7. The full article with supplementary materials can be found at 

http://science.sciencemag.org/content/352/6290/1225. 

Transcription of eukaryotic genomes produces protein-coding mRNAs and diverse non-

coding RNAs (ncRNAs), including enhancer RNAs (eRNAs; Jensen et al, 2013, Andersson et 

al, 2014). Most ncRNAs are rapidly degraded, difficult to detect, and thus far have not been 

mappable in their full range. Mapping of transient RNAs is required, however, for analysis of 

RNA sequence, function, and fate. 

 

Figure 10: TT-seq enables uniform mapping of the human transient transcriptome. (A) Workflow of 4sU-seq 

and TT-seq protocols (4sU, 4-thiouridine). (B) Metagene coverage comparing TT-seq to other transcriptomic 

methods. Average coverage in 2,323 TUs lacking paused and active genes (Core et al, 2008a) around the first 

TSS (left), the 5’-splice site (SS) of intronic sequences > 10 kbp (first intron excluded), and the last pA site. 

Signals are relative to the maximum in the first kb from the first TSS. 
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Figure 11: TT-seq maps entire transcripts. (A) Metagene analysis comparing TT-seq of 2,323 RNAs to different 

experimental methods and to theoretical exon, intron and mixture densities. The theoretical densities depict 8% 

(RNA-seq), 23% (4sU-seq) and 60% (TT-seq) intron coverage. Average coverage relative to the maximum in the 

first kb (left) is shown around the first TSS (left), the 5’-splice site (SS) of an intron of at least 10 kb (first intron 

excluded, middle), and the last pA site (right) for the sense (top panel) and antisense (bottom panel) strand or 

relative to the maximum in the first kb from the 5’ SS (5’bias, top panel). (B) Metagene analysis around the first 

TSS comparing TT-seq to different experimental methods for 4,388 genes classified as Class II paused genes in 

Core et al, 2008a (left) and for the complementary set of 7,535 non-paused genes (right). 
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We developed transient transcriptome sequencing (TT-seq), a protocol that maps 

transcriptionally active regions and enables estimation of RNA synthesis and degradation 

rates. TT-seq is based on 4sU-seq, which involves a brief exposure of cells to the nucleoside 

analog 4-thioruidine (4sU; Figure 10A; Section 2.2.3; Cleary et al, 2005). 4sU is incorporated 

into RNA during transcription, and the resulting 4sU-labeled RNAs are isolated and 

sequenced. 4sU-seq is more sensitive than RNA-seq in detecting transient RNAs. However, 

4sU-seq fails to map human transcripts uniformly, because only a short 3′ -region of nascent 

transcripts is labeled during a 5-min exposure to 4sU, and the long preexisting 5′ -regions 

dominate the sequencing data. To remove this 5′ bias, TT-seq uses RNA fragmentation before 

isolation of labeled RNA fragments (Figure 10A; Section 2.2.3). Thus, TT-seq measures only 

newly transcribed RNA fragments and provides the number of polymerases transcribing a 

genomic position within 5 min. 

 

 

Figure 12: TT-Seq enables uniform sampling of pre-mRNAs and detects ncRNAs with high sensitivity. 

Coverage profiles of 2,500 most highly expressed mRNA transcripts aligned at the TSS, sorted by length and 

merged by averaging into horizontal bins of 10 mRNAs each for all measured samples with pooled replicates. 

The number of position-based read counts is color-coded, ranging from high (dark color) to low (light color). 

Upper and lower panels represent sense and antisense coverage, respectively. 
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Figure 13: TT-Seq is highly reproducible, and RNA fragmentation does neither alter total RNA levels nor 

introduce a labeling bias. (A) Scatter plots comparing all measured samples in a pairwise fashion (upper triangle) 

and corresponding Spearman correlation (lower triangle). (B) Fragment size distributions for all measured 

samples. (C) Scatter plot comparing the number of uridine residues in bins of 1.5 kb against the respective log-

ratio of TT-Seq versus RNA-Seq with fragmentation. 
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When applied to human K562 cells, TT-seq samples newly transcribed regions uniformly, 

whereas 4sU-seq produces a 5′ bias (Figure 11A). The coverage of short-lived introns with 

respect to exons is estimated to be 60% for TT-seq, whereas it is 23% and 8% for 4sU-seq 

and RNA-seq, respectively (Figure 11A and Figure 12). TT-seq is highly reproducible (Figure 

13) and enables complete mapping of transcribed regions, complementing the GRO-cap (Core 

et al, 2014) and CAGE (Kodzius et al, 2006) protocols, which detect RNA 5′ ends (Figure 

10B). TT-seq monitors RNA synthesis, whereas protocols such as PRO-seq (Kwak et al, 

2013), NET-seq (Mayer et al, 2015), and mNET-seq (Nojima et al, 2015) detect RNAs 

attached to polymerase. Therefore, the latter protocols yield peak signals near the promoter 

where polymerase pauses (Figure 10B), whereas TT-seq does not. For paused and active 

genes (Core et al, 2008a), TT-seq reveals higher rates of RNA synthesis near the promoter 

(Figure 11B). 

Using TT-seq data and the segmentation algorithm GenoSTAN (Zacher et al, 2016) we 

identified 21,874 genomic intervals of apparently uninterrupted transcription (transcriptional 

units, TUs; Figure 14, Figure 15A). TT-seq is highly sensitive, recovering 65% of 

transcription start sites (TSSs) obtained by GRO-cap (overlapping annotations within ± 400 

bp; Core et al, 2014). A total of 8,543 TUs overlapped GENCODE annotations (Harrow et al, 

2012), in the sense direction of transcription (50% reciprocal overlap of annotated regions; 

Figure 15B). This analysis detected 7,810 mRNAs, 302 long intergenic noncoding RNAs 

(lncRNAs), and 431 antisense RNAs (asRNAs). The 2,916 TUs that shared less than 50% of 

their length with GENCODE annotations were not classified. The remaining 10,415 TUs 

(48%) represented newly detected ncRNAs that we characterized further. 

Transcripts arise from promoters but also from enhancers, which are regulatory elements with 

characteristic chromatin modifications (Djebali et al, 2012, Kim et al, 2010b). To detect 

chromatin regions comprising putative enhancers and promoters (chromatin states), we 

applied GenoSTAN (Zacher et al, 2016) to ENCODE ChIP-seq data (Consortium, 2012), for 

the coactivator p300 and a series of histone modifications (H3K27me3, H3K36me3, 

H4K20me1, H3K4me1, H3K4me3, H3K9ac, and H3K27ac), and to deoxyribonuclease I 

hypersensitivity data (Figure 16A). Of the resulting strong enhancer state regions, 81% 

overlapped at least one TSS from GRO-cap (Core et al, 2014), and 68% overlapped a 

polymerase II (Pol II) peak (Consortium, 2012), compared with 52% and 37%, respectively, 

for ENCODE enhancer states (Figure 16B-D). 
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Figure 14: Example genome browser view showing RNAs from 5 of 7 transcript classes and 3 of 18 chromatin 

states (chr.18: 9.00 – 9.53; Mbp, million base pairs). Arrows indicate direction of transcription. Units on the y 

axes are read counts per 200 bp bin. 

 

Figure 15: Accurate annotation of transcripts based on TT-Seq data using STAN (A) Jaccard index (compared 

to GENCODE annotation) for different choices of thresholds (RPK, x-axis). (B) Venn diagram showing the 

overlap of the predicted and filtered 21,874 TUs with external data sets. 

The 10,415 non-annotated TUs were classified based on GenoSTAN-derived chromatin states 

and their positions relative to known GENCODE annotations (Figure 17A). TUs within 1 

kilo–base pair (kbp) of a GENCODE mRNA TSS included 685 upstream antisense RNAs 

(uaRNAs; Flynn et al, 2011), and 778 convergent RNAs (conRNAs; Mayer et al, 2015). The 

3,115 TUs on the strand opposite an mRNA were classified as asRNAs when they were more 
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than 1 kbp away from the GENCODE TSS. Remaining TUs were grouped according to their 

GenoSTAN chromatin state at their TSS. The 2,580 TUs that originated from promoter state 

regions were classified as short intergenic ncRNAs (sincRNAs; Figure 17B). Most sincRNAs 

(67%) were located within 10 kbp of a GENCODE mRNA TSS. The remaining 3,257 TUs 

originated from enhancer state regions and were classified as eRNAs (Djebali et al, 2012; 

Kim et al, 2010b). The newly mapped ncRNAs are short (Figure 17C). On average, lncRNAs 

are five times as long as sincRNAs and eRNAs have a median length of ~1000 nucleotides. 

 

Figure 16: Chromatin states and transcriptional activity of the corresponding genomic regions. (A) Mean read 

counts for each chromatin mark and state (Txn, Transcription). (B) The cumulative FDR is plotted against the 

recall for this study and ChromHMM-ENCODE. (C) Fraction of recovered (overlap) GRO-cap TSSs in 4 

different states (strong promoter, strong enhancer, weak/flanking promoter and weak/flanking enhancer) in this 

study and in ChromHMM-ENCODE. (D) Fraction of (promoter and enhancer) chromatin states bound by Pol II 

and TAL1 are shown for the annotation in this study and the ENCODE ChromHMM annotation. 
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Figure 17: Annotation and lengths of RNAs mapped by TT-seq. (A) Definition and color code of seven 

transcript classes. (B) Number of transcripts in different classes (portions covered by GENCODE hatched). (C) 

Distribution of transcript lengths. 

 

Kinetic modeling of TT-seq and RNA-seq data enabled us to estimate rates of RNA synthesis 

and degradation (Figure 18A-B). We estimated rates of phosphodiester bond formation or 

breakage at each transcribed position and averaged these within TUs, thus obtaining estimates 

of relative transcription rates and RNA stabilities. We found that RNAs and lncRNAs had the 

highest synthesis rates and longest half-lives. We determined a median mRNA half-life of 

~50 min, compared to a previous estimate of ~139 min (Rabani et al, 2014). Other transcript 

classes had low synthesis rates and short half-lives, explaining why short ncRNAs are 

difficult to detect. eRNAs had half-lives of a few minutes, consistent with prior data (Rabani 

et al, 2014). Short RNA half-lives correlated with a lack of secondary structure (Figure 18C). 

The folding energy of eRNAs was comparable to the genomic background level (Figure 18D), 

and only 10% of their sequence was predicted to be structured, compared with 52% in 

mRNAs (Figure 18E).  
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Figure 18: Estimated transcript synthesis rates, half-lives, and predicted RNA structure. (A) Estimated RNA 

half-lives for different transcript classes. Black bars represent the median, boxes represent upper and lower 

quartile, and whiskers represent 1.5 times the interquartile range. (B) Distribution of synthesis rates per transcript 

class. (C) Distribution of half-lives of different transcript classes depending on whether they are predicted to be 

structured or not (+, -; Washietl et al, 2005). (D) Distribution of the minimum free energy in the first 1000 

nucleotides per transcript class. (E) Distribution of percentage of structured RNA in different transcript classes. 
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Figure 19: RNA sequence features. (A) Distribution of relative peak occupancies with factors binding promoters 

(ENCODE, +/- 100 bp from TSS) for transcript classes. (B) Occurrence of U1 signal in the first 1000 nt for 

different transcript classes. (C) Distribution of transcript lengths in transcript classes depends on the presence of 

U1 signals in the first 1000 nt. 

We further found differences in transcription from promoters versus from enhancers 

(Andersson et al, 2014). Enhancers showed lower occupancy of initiation factors TBP and 

TAF1 than mRNA promoters did (12-fold and 3.5-fold less, respectively; P < 10
−16

, Fisher’s 

exact test), whereas TFIIB and TFIIF had similar occupancies in enhancers and promoters. 

Occupancies were also similar for factors involved in polymerase pausing, such as NELF-E 

and the P-TEFb subunit cyclin T2 (Figure 19A). Synthesis of eRNAs terminated early (Figure 

17C), probably because eRNAs are not enriched in U1 small nuclear ribonucleoprotein–

binding sites (U1 signals; GGUAAG, GUGAGU, or GGUGAG), that can counteract early 

termination and lead to RNA stabilization (Berg et al, 2012; Kaida et al, 2010). eRNAs 

contained U1 signals at the genomic background level (47%), whereas mRNAs were enriched 

(69%; P < 10
−16

, Figure 19B). In all transcript classes, longer RNAs were enriched with U1 

signals in the first 1000 nucleotides (Figure 19C), suggesting that evolution of stable RNAs 

generally involves acquisition of U1 signals. 
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Figure 20: Transcription Termination Sites (TTSs). (A) TT-seq coverage for two replicates (red and blue) 

downstream of the pA site in the ALDH1B1 gene locus. Arrows indicate TTSs obtained from segmentation 

(solid arrow, ultimate TTS). The last annotated pA site (per GENCODE) was aligned at zero. (B) Generic gene 

architecture. The first TSS was aligned at zero, and the last pA site was set at a rescaled distance of 5,000 bp 

from the TSS (the real median distance is 24,079 bp for 6,977 investigated genes).The ultimate TTS is depicted 

at a median distance of 3,359 bp from the last pA site (rescaled). (C) TT-seq coverage over quantiles 0.05 to 

0.95 (pink area; black center line, median), rescaled and aligned as in (B). (D) Pol II occupancy determined by 

the ChIP-exonuclease method (Venters & Pugh, 2013), visualized as in (C) (white center line, upper quartile). 

(E) (C/G)(2–6)A and (T/A)(3-6) sequence count within ±100 bp of ultimate TTSs. (F) PWM (position weight 

matrix) logo representation of nucleotides at positions –9 to +2 around the ultimate TTS (position 0). (G) 

Predicted polymerase states at the T-rich stretch downstream of the TTS (top) and after backtracking to the TTS 

(bottom) (gray, DNA; red, RNA). 
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Figure 21: Comparison of RNA synthesis downstream of the pA site in different RNA-Seq experiments. (A) 

Generic gene architecture. Genomic position of the first TSS is aligned at 0. Last pA site is located at a distance 

of 5,000 bp from the first TSS for visualization purposes instead of a median of 24,079 bp for 6,977 investigated 

genes. The subsequent first TSS is depicted at a median distance of additional 5,000 bp from the last pA site. (B) 

RNA-Seq coverage fanned out over 0.05% - 0.95% quantile range, rescaled and aligned according to schematic 

in (A) in logarithmic scale for 6,977 investigated genes. (C) RNA-Seq with fragmentation coverage as in (B). 

(D) 4sU-Seq coverage as in (B). (E) TT-Seq coverage as in (B). 
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Figure 22: Estimation of ultimate TTSs via segmentation of potential termination window. (A) Schematic of 

generic gene architecture showing the last annotated pA site (GENCODE). Genomic position of the last pA site 

is aligned at 0. The window for site determination is extended to the subsequent first TSS or max. 10 kb. (B) 

Variance stabilization transformed (VST) TT-seq coverage for two replicates (red, blue) at the ALDH1B1 gene 

loci. The black line depicts the optimal stepwise linear function estimated via a segmentation algorithm; the 

breakpoints are indicated by the dashed lines. (C) Plot shows the same loci as in (B) for non-VST normalized 

data. Dashed and solid arrows indicate putative and ultimate TTSs resulting from the segmentation depicted in 

(B). (D) Distribution of estimated TTSs relative to last pA site for 6,977 investigated genes. (E) Plot showing the 

top 35 enriched 4-mers found by comparing the frequency of all possible 4-mers in a window of +/- 5 bp around 

the estimated TTS for fixed positions. Testing was done via Fisher’s exact tests against the (background) 

frequency of the respective 4-mer obtained from a window of the same size shifted 30 bp downstream. The 

respective p-values and odd-ratios are given in the left and right panel. 

TT-seq also enabled us to uncover transcription termination sites (TTSs). TT-seq detected 

transient RNA downstream of the polyadenylation (pA) site (Figure 10B, Figure 20, Figure 

21). Such RNA is difficult to detect, because RNA cleavage at the pA site leads to an 

unprotected 5′ end and RNA degradation by the XRN2 exonuclease (Almada et al, 2013; Kim 

et al, 2004; West et al, 2004). For a total of 6,977 mRNA genes, we derived, on average, four 

TTSs (Figure 22, Figure 23). TTSs were located within a termination window that extended 

from the last pA site to an “ultimate TTS,” where RNA coverage dropped to background 

levels (Figure 20A-C). The termination window had a median width of ~3,300 bp and could 

be up to 10 kbp wide (Figure 22D), consistent with Pol II occupancy data (Figure 20D; 

Venters & Pugh, 2013). For the 5,113 TTSs with the strongest drop in TT-seq signal, Pol II 

peaks were obtained by PRO-seq (Kwak et al, 2013), NET-seq (Mayer et al, 2015), and 

mNET-seq (Figure 24; Nojima et al, 2015), indicating that Pol II pauses at the TTS. 
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Figure 23: Global detection and nature of TTSs inside the termination window. (A) Generic gene architecture. 

Genomic position of the first TSS is aligned at 0. The last pA site is located at a distance of 5,000 bp from TSS 

for visualization purposes for 5,113 investigated genes. The estimated ultimate TTS is depicted at a median 

distance of 3,359 bp from the last pA site. (B) TT-Seq coverage fanned out over 0.05% - 0.95% quantiles, 

rescaled and aligned according to (A) in log-scale for 5,113 investigated genes with the exception that the 

putative strong TTS is used in a median distance of 1,593 bp from the last pA. (C) ChIP-exo Pol II occupancy 

(Venters & Pugh, 2013) as in (B). (D) (C/G)(2-6)A kmer count in the corresponding RNA sequence rescaled and 

aligned according to schematic in (A). (E) (C/G)(2-6)A and (T/A)(3-6) kmer count in the corresponding RNA 

sequence in a window of +/- 100 bp around estimated putative strong TTS. (F) The mean melting temperature 

for a window of +/-100 bp around the estimated putative strong TTS. (G) PWM logo representation of -9 to +2 

bp of the corresponding RNA sequence around the putative strong TTS (position 0). 
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Figure 24: The derived TTSs coincide with sites of polymerase pausing. (A) Average PRO-seq, mNET-seq and 

NET-seq signal is shown around the putative strong TTSs for 5,113 investigated genes relative to maximum. (B) 

(C/G)(2-6)A and (T/A)(3-6) kmer counts in the corresponding RNA sequence underlying putative strong TTSs 

derived from PRO-seq, mNET-seq and NET-seq for 14,060 investigated genes in a window of +/- 100 bp (the 

TTS was set to be the position with the maximum number of 3’end read counts for all three methods between the 

last pA site and the next annotated downstream feature). Lower panel shows C(2-6)A, G(2-6)A, T(3-6) and A(3-6) 

kmer counts depicted analogously. 
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Figure 25: Distribution of (C/G)(2-6)A kmers. (A) Generic gene architecture. The first TSS was aligned at zero, 

the last pA site was set at a rescaled distance of 5,000 bp from TSS (real median distance is 24,079 bp for 6,977 

investigated genes). The ultimate TTS is depicted at a median distance of 3,359 bp from the last pA site 

(rescaled). (B) (C/G)(2-6)A kmer sequence count rescaled and aligned as in (A). 

 

Figure 26: Supporting evidence for derived TTSs. (A) Schematic of generic gene architecture. Genomic position 

of the first TSS is aligned at 0. The last pA site is located at a distance of 5,000 bp from the first TSS for 

visualization purposes instead of a median of 24,079 bp for 6,977 investigated genes. The estimated ultimate 

TTS is depicted at a median distance of 3,359 bp from the last pA site. (B) TT-Seq coverage fanned out over 

0.05% - 0.95% quantile range rescaled and aligned according to schematic in (A) in logarithmic scale for 6,977 

investigated genes with the exception that the estimated distances from the last pA to the ultimate TTS are 

shuffled across all 6,977 genes. (C) ChIP-exo (Pol II) coverage (Venters & Pugh, 2013) as in (B). (D) (C/G)(2-6)A 

kmer count in the corresponding RNA sequence rescaled and aligned according to schematic in (A). (E) (C/G)(2-

6)A and (T/A)(3-6) kmer count in the corresponding RNA sequence in a window of +/- 100 bp around estimated 

shuffled ultimate TTS. (F) The mean melting temperature for a window of +/-100 bp around the estimated 

shuffled ultimate TTS. (G) PWM logo representation of -9 to +2 bp of the corresponding RNA sequence around 

the shuffled ultimate TTS (position 0). 
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Figure 27: The 3’-end of eRNAs contains TTS motifs. (A) Plot showing the top 35 enriched 4-mers found by 

comparing the frequency of all possible 4-mers in a window of +/- 5 bp around the estimated TTS for fixed 

positions. Testing was done via Fisher’s exact tests against the (background) frequency of the respective 4-mer 

obtained from a window of the same size shifted 30 bp downstream. The respective p-values and odd-ratios are 

given in the left and right panel. (B) (C/G)(2-6)A and (T/A)(3-6) kmer count in the corresponding RNA sequence in 

a window of +/- 100 bp around estimated TTS. (C) The mean melting temperature for a window of +/-100 bp 

around the estimated TTS. (D) PWM logo representation of -9 to 2 bp of the corresponding RNA sequence 

around the TTS. 
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The derived TTSs are strongly enriched for the sequence (C/G)(2–6)A (window ± 5 bp; P < 

10
−16

, Fisher’s exact test; odds ratios, 2.98 and 1.63 for C3A and G3A, respectively; Figure 

20E and Figure 25, Figure 26). This sequence can contain up to six cytosines or guanines 

(Figure 20F and Figure 22E). A G3A element has also been found in a known termination 

signal (Ashfield et al, 1994). The C(2–6)A and G(2–6)A sequences are generally followed by a 

T-rich [T(3–6)] or an A-rich stretch [A(3–6)], respectively (P < 10
−16

; odds ratios, 2.39 and 1.24 

for T4 and A4, respectively), that are located, on average, 15 bp downstream of the TTS 

(Figure 20E). Such sequences were found at TTSs of all TUs (Figure 27) and can even be 

derived from published data (Figure 24B). In summary, the detected TTSs were highly 

enriched with the consensus motif (C/G)(2–6)ANx(T/A)(3–6), where Nx is a short stretch of 

nucleotides. 

To test for the in vivo functionality of the derived TTS motif, we transfected expression 

plasmids into K562 cells that either lacked or contained four C3AN8T4 or C7AN8T4 motifs 

within 600 bp downstream of the pA site (Figure 28A, Table 9, Table 10, Table 15, Table 16, 

Section 2.2.5). When the TTS motifs were present, significantly less RNA was detected 

downstream of the motifs, indicating termination of a fraction of polymerases (Wilcoxon test; 

Figure 28B). This experiment supports the functionality of the derived TTS motif in vivo. 

Termination depended on an upstream pA signal (Figure 28B), consistent with an occurrence 

of the motif in gene bodies, where they do not lead to transcription termination. 

Table 15: Ct-values from qPCR experiments 

 

Transfection efficiency primers – 

Ct values, technical replicates 
Termination read-through primers - 

Ct values, technical replicates 

Samples 1 2 3 4 1 2 3 4 

pA Control 1A 12.86 12.66 13.11 
 

17.07 17.1 17.04 
 

pA Control 1B 12.8 12.56 12.69 
 

17.27 17.32 17.03 
 

pA Control 1C 14.08 14.12 14.1 
 

20.66 20.7 20.81 
 

pA C3AN8T4 1A 13.07 13.21 13.34 
 

18.05 18.21 18.17 
 

pA C3AN8T4 1B 13.15 13.02 13.09 
 

17.79 17.67 17.93 
 

pA C3AN8T4 1C 14.33 14.28 14.35 
 

21.37 21.37 21.44 
 

pA C7AN8T4 1A 13.05 13.04 13.27 
 

17.55 17.85 17.89 
 

pA C7AN8T4 1B 13.33 13.42 13.36 
 

18.39 18.28 18.33 
 

pA C7AN8T4 1C 12.36 12.52 12.47 
 

20.2 20.32 20.39 
 

No pA Control 1A 11.73 12.38 12.31 12.45 13.04 13.4 13.27 13.31 

No pA Control 1B 11.64 12.53 12.32 12.26 12.92 13.23 13.34 13.77 

No pA Control 2A 13.4 13.79 
  

14.67 14.93 
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No pA C3AN8T4 1A 11.69 12.41 12.33 12.27 13.03 13.23 13.8 13.36 

No pA C3AN8T4 1B 12.01 12.64 12.6 12.69 13.02 13.27 13.3 13.46 

No pA C3AN8T4 2A 13.11 13.11 
  

14.24 14.02 
  

No pA C7AN8T4 1A 11.94 12.63 12.62 12.76 13.37 13.89 13.8 13.84 

No pA C7AN8T4 1B 11.62 12.51 12.46 12.51 12.93 13.41 13.28 13.7 

No pA C7AN8T4 2A 13.78 13.59 
  

14.68 14.48 
  

 

Table 16: normalized values from qPCR experiment 

 
normalized qPCR values - technical replicates 

Samples 1 2 3 4 

pA Control 1A 1 0.979 1.021 NA 

pA Control 1B 0.957 0.924 1.13 NA 

pA Control 1C 1.045 1.016 0.942 NA 

pA C3AN8T4 1A 0.637 0.57 0.586 NA 

pA C3AN8T4 1B 0.883 0.959 0.801 NA 

pA C3AN8T4 1C 0.744 0.744 0.709 NA 

pA C7AN8T4 1A 0.849 0.689 0.671 NA 

pA C7AN8T4 1B 0.709 0.765 0.739 NA 

pA C7AN8T4 1C 0.458 0.421 0.401 NA 

No pA Control 1A 1.161 0.904 0.99 0.963 

No pA Control 1B 1.315 1.061 0.983 0.73 

No pA Control 2A 1.094 0.914 NA NA 

No pA C3AN8T4 1A 1.135 0.988 0.665 0.903 

No pA C3AN8T4 1B 1.508 1.268 1.242 1.111 

No pA C3AN8T4 2A 1.053 1.227 NA NA 

No pA C7AN8T4 1A 1.113 0.776 0.826 0.804 

No pA C7AN8T4 1B 1.388 0.995 1.089 0.814 

No pA C7AN8T4 2A 1.157 1.329 NA NA 

 

 

Figure 28: Experimental support for the functionality of the derived TTS motifs. (A) Schematic of in vivo 

transcription assay to test the TTS motif. (B) Barplot showing the relative RNA abundance (qPCR) downstream 

of four TTS motifs relative to a control sequence without and with pA site. 
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Figure 29: Distribution of hybrid stability at TTS. The mean melting temperature for each window of +/-100 bp 

around the estimated TTSs was calculated as the gene-wise position based estimate of the melting temperature of 

8-base pair DNA-RNA hybrids. 

Transcription over the (C/G)(2–6)ANx(T/A)(3–6) sequence is predicted to destabilize the 

polymerase complex (Ashfield et al, 1994; Kireeva et al, 2000), because the melting 

temperature of the DNA-RNA hybrid is low in the T/A-rich region (Figure 29). This may 

trigger backtracking and trap polymerase at the TTS (Figure 20G). At the TTS, the hybrid is 

C/G-rich and stable, and RNA may be cleaved from its 3′ end to yield a terminal A residue. 

Polymerase can then be released from DNA by XRN2 (Kim et al, 2004; West et al, 2004). 

TT-seq has afforded insights into the determinants of human genome transcription and 

provides a complementary tool for transcriptome analysis. 
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3.2 Enhancer RNAs and their paired promoter RNAs arise simultaneously 

after stimulation 

All results presented in this Section were obtained in collaboration with Carina Demel and are 

in the process of being submitted (Michel et al, 2016, unpublished). For detailed author 

contributions see page 7. 

Mammalian genomes are more transcribed than previously assumed (Cheng et al, 2005; 

Consortium, 2012). Recent technology and method developments have led to an updated view 

on transcription; namely that it produces not only protein-coding transcripts (mRNAs) but 

also non-coding transcripts (ncRNAs) that act on various levels in cell function and identity 

(Dhanasekaran et al, 2013). Enhancer RNAs (eRNAs) are one class of ncRNAs (Djebali et al, 

2012; Kim et al, 2010b). They emerge from enhancer regions; genomic regulatory units 

consisting of multiple binding sites for transcription factors that can increase mRNA 

transcription in an orientation-independent manner and can act from a long-range distance 

(Banerji et al, 1981). When activated, enhancers adopt an open chromatin structure (Calo & 

Wysocka, 2013), are bound by specific transcription factors and co-activators that recruit 

Mediator (Fan et al, 2006). Subsequently, mediator can bridge the enhancer to the promoter 

by binding to general transcription factors and the RNA Polymerase II (Pol II) at the promoter 

(Plaschka et al, 2015). Gene-enhancer looping, which is facilitated by CTCF and cohesin, 

increases stability of the initiation complex and promotes successful promoter escape (Allen 

& Taatjes, 2015; DeMare et al, 2013; Splinter et al, 2006). 

Enhancers are a hallmark of gene regulation and cellular identity but identifying them and 

their associated promoters has been a tedious task (Shlyueva et al, 2014). Enhancers can be 

distinguished from other genomic regions through a distinct histone tail signature (Heintzman 

et al, 2007; Schubeler, 2007; Visel et al, 2009), but this method requires a large amount of 

available chromatin immunoprecipitation (ChIP) data sets. An easier and more direct method 

is to detect eRNAs since they are a good proxy for enhancer activity (Li et al, 2016; Melgar et 

al, 2011; Wu et al, 2014). eRNAs are not conserved (Andersson et al, 2014), transient 

(Schwalb et al, 2016), and rapidly targeted for degradation by the exosome (Lubas et al, 

2015). 

The role of enhancer transcription has been widely discussed. Recent findings suggest that 

transcription of the enhancer has to precede the promoter transcription, while others argue that 
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eRNAs are merely a by-product of promoter transcription, where the polymerase transcribes 

the enhancer due to the spatial proximity of promoter and enhancer (Li et al, 2016). Several 

studies detected a delay between the transcription of enhancers and promoters (Arner et al, 

2015; De Santa et al, 2010b; Kaikkonen et al, 2013; Schaukowitch et al, 2014). Some studies 

show impairment of target mRNA activation after eRNA knockdown in single-gene assays 

(Li et al, 2013; Schaukowitch et al, 2014). Negative effects on enhancer-promoter looping 

after eRNA knockdown was also shown (Li et al, 2013), but not in every study (Hah et al, 

2013; Schaukowitch et al, 2014). In conclusion, it remains unclear which role eRNAs carry in 

mRNA activation. 

Here we use TT-seq to detect eRNAs and learn about enhancer and promoter activity. TT-seq 

is a sensitive method to detect transient RNAs and calculate synthesis and degradation rates, 

which is based on metabolic labeling of nascent RNAs with 4-thiouridine (4sU; Schwalb et al, 

2016). Fragmentation of the labeled RNA prior to isolation increases resolution and gives a 

more accurate view on transcriptional activity within the labeling time. We use T cell 

activation as a highly dynamic and rapid cellular process and analyze the first 15 minutes 

after activation in 5 min intervals. T-cell activation is one of the most studied cellular 

responses to stimulation. Activation comprises rapid signaling cascades via protein-protein 

interactions, phosphorylation/dephosphorylation of target signaling molecules, and 

intracellular calcium release leading to a change in gene expression (Crabtree, 1989; Ellisen et 

al, 2001; Feske et al, 2001; Marrack et al, 2000; Raghavan et al, 2002; Rogge et al, 2000).  

Taken together, we use TT-seq in this study to apply a highly sensitive method to the very 

rapid and dynamic system of T cell activation in order to learn about the temporal resolution 

of enhancer and promoter activation. 

TT-seq identifies thousands of differentially expressed genes very early during T cell 

activation 

We performed TT-seq in Jurkat cells after activation with Phorbol 12-myristate 13-acetate 

(PMA) and ionomycin in 5 min intervals for 15 min (Figure 30A). The time points were 0 

min (before activation), 5 min, 10 min and 15 min (after activation). Already after 5 minutes, 

we observed strong upregulation and downregulation of protein-coding transcripts (mRNAs) 

in the TT-seq data compared to the Total RNA-seq data (Figure 30B and C). We also 
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observed an almost uniform coverage of transcripts over introns and transcription after the 

polyA site (PAS) annotated by GENCODE. This shows that our data is sensitive for transient 

RNAs (Figure 30B and C).  

Next, we segmented the genome into expressed and unexpressed regions using GenoSTAN 

(Zacher et al, 2016), to annotate transcripts present in Jurkat cells before and after activation 

(Figure 31A). We annotated a total of 24,835 transcripts (Figure 31B, RPK cutoff = 16.5,). By 

overlapping our transcripts with GENCODE (Harrow et al, 2012), we classified a total of 

9,576 mRNAs, 590 lncRNAs and 14,669 non-coding RNAs (ncRNAs; Figure 31C). The 

length of the RNA classes correlated with previous reports (Figure 31D; Schwalb et al, 2016). 

 

Figure 30: TT-seq during T cell activation. (A) Experimental design. (B) Genome browser examples for an 

upregulated mRNA (JUN). Blue coverage: TT-seq data for 0, 5, 10 and 15 min after activation; grey coverage: 

Total RNA-seq data for 0, 5, 10 and 15 min after activation. (C) Same as in (B) for a downregulated mRNA 

(S1PR1). 
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Figure 31: Annotation of transcripts. (A) Segmentation workflow. Dark blue: Watson strand, green: crick 

strand. The top 8 tracks show the antisense corrected TT-seq data tracks (log2 scale), the following tracks 

indicate the stepwise annotation of transcripts. From the GENCODE annotation, only full transcripts with 

transcript_support_level 1 are depicted. (B) Jaccard index (compared to GENCODE annotation) for different 

choices of thresholds (x-axis: Reads Per Kilobase (RPK)). (C) Number of transcripts per class. (D) Distribution 

of transcript lengths per class. 
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When performing differential expression analysis, notably not one transcript was significantly 

up or downregulated compared to time point 0 min after 5, 10 or 15 min in Total RNA-seq 

(Figure 32A). In strong contrast to this was the analysis of the TT-seq data. We found 276 

upregulated and 117 downregulated transcripts after 5 min, 1,811 upregulated and 589 

downregulated transcripts after 10 min and 3,412 upregulated and 1,312 downregulated 

transcripts after 15 min (Figure 32A; FC > 2, adjusted p-value < 0.05). Within those 

differentially expressed transcripts, 337 mRNAs were up and 343 were downregulated after 

15 min. The top upregulated mRNAs comprised known markers of T cell activation such as 

FOS, FOSB, JUN, JUNB and CD69 (Table 17). Other upregulated families included 

immediate early response genes and other transcription factors such as EGR1, EGR2, EGR3 

or NR4A1 (Table 17). Interestingly, a lot of upregulated transcripts were not described in 

association with T cell activation before, which shows that TT-seq can be used to uncover 

new target genes in well-studied pathways (Cheadle et al, 2005; Diehn et al, 2002). Enriched 

GO categories represent responses to stimuli and immune system processes (Figure 

32B;MacLeod & Wetzler, 2007). In such a short time period it is expected that general 

cellular responses are more represented in enriched GO classes rather than specific cellular 

processes such as T cell activation. 

 

Figure 32: Differentially expressed genes identified by TT-seq. (A) Analysis of statistically significant 

differentially expressed transcripts compared to time point 0 min, before activation. (B) GO analysis of 

upregulated mRNA transcripts between time point 0 and 15 min. 
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Table 17: Top upregulated protein-coding genes, sorted by their fold change after 15min. 

 5 min 10 min 15 min  
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Gene Name 
log2 

FC 

adj. P-

value 

log2 

FC 

adj. P-

value 

log2 

FC 

adj. P-

value 
ENSG 

FOSB 4.25 8.03E
-36

 6.60 2.20E
-125

 7.21 9.70E
-107

 ENSG00000125740.11 X X 

SERPINE1 1.65 5.67E
-05

 4.17 1.44E
-51

 5.88 2.78E
-75

 ENSG00000106366.8  X 

GPR50 2.01 2.50E
-03

 4.11 4.14E
-21

 5.60 7.34E
-33

 ENSG00000102195.8   

KLF4 1.94 7.96E
-08

 4.54 5.85E
-68

 5.39 1.04E
-70

 ENSG00000136826.12   

FOS 3.30 1.85E
-20

 5.20 8.94E
-75

 5.37 3.54E
-57

 ENSG00000170345.7 X X 

IL13RA2 1.67 8.25E
-05

 3.90 5.68E
-43

 5.08 2.55E
-56

 ENSG00000123496.5  X 

CCDC173 1.78 1.00E
-07

 4.15 1.14E
-67

 5.08 1.09E
-71

 ENSG00000154479.10   

OSR2 0.6 2.14E
-01

 3.14 1.76E
-49

 4.44 5.48E
-70

 ENSG00000164920.7   

TPRG1 2.55 1.82E
-04

 4.00 2.98E
-15

 4.30 2.16E
-15

 ENSG00000188001.7   

DUSP1 1.4 7.24E
-05

 3.27 4.61E
-44

 4.08 3.17E
-48

 ENSG00000120129.5   

IFNG 1.80 8.14E
-03

 3.26 5.98E
-14

 4.07 8.75E
-18

 ENSG00000111537.4 X  

PPP1R15A 1.63 2.30E
-05

 3.14 2.58E
-32

 3.93 3.28E
-36

 ENSG00000087074.7   

EGR2 1.03 3.32E
-02

 3.00 1.14E
-29

 3.90 9.51E
-36

 ENSG00000122877.11 X X 

AC008686.1 1.40 1.76E
-01

 3.15 4.25E
-08

 3.90 3.62E
-11

 ENSG00000280221.1   

EGR3 0.20 7.52E
-01

 2.35 2.03E
-20

 3.70 7.81E
-36

 ENSG00000179388.8 X  

MASP2 1.60 3.66E
-03

 2.59 2.91E
-13

 3.65 5.79E
-20

 ENSG00000009724.14   

LMAN1L 1.21 1.90E
-02

 2.17 7.92E
-13

 3.62 1.83E
-26

 ENSG00000140506.14   

NR4A1 0.76 2.71E
-01

 2.76 9.95E
-19

 3.57 6.99E
-23

 ENSG00000123358.17 X X 

JUN 0.87 1.41E
-01

 2.38 4.64E
-16

 3.44 2.39E
-24

 ENSG00000177606.6 X X 

RGCC 0.40 4.02E
-01

 2.23 1.87E
-30

 3.43 5.82E
-50

 ENSG00000102760.12   

MTX1 0.81 5.57E
-02

 2.42 7.45E
-28

 3.42 5.22E
-39

 ENSG00000173171.12   

ARC 1.09 8.84E
-02

 2.76 2.05E
-16

 3.25 5.18E
-17

 ENSG00000198576.3   

CCDC184 0.96 1.91E
-01

 2.66 5.44E
-14

 3.14 4.89E
-15

 ENSG00000177875.4   

KIAA1683 1.20 6.59E
-04

 2.40 1.49E
-26

 3.11 2.69E
-31

 ENSG00000130518.14   
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eRNA and promoter transcription are correlated 

We looked at known enhancers such as the FOS locus (Figure 33A) and observed that we can 

detect enhancers with high accuracy by looking at eRNAs. Furthermore, we also observed 

that they are differentially expressed during the time course (Figure 33A). This eRNA 

upregulation achieves up to 350% of the upregulation of the FOS transcript during the 

observed time course (Figure 33A). To be able to classify ncRNAs as eRNAs we made use of 

the GenoSTAN study (Zacher et al, 2016), where 14 T cell lines were analyzed with regard to 

their chromatin states. We overlapped all enhancer states with our ncRNAs and categorized 

5,572 eRNAs (44% of ncRNAs). Those potential eRNAs were paired with mRNAs in a 

similar fashion to GREAT (McLean et al, 2010). We then filtered the pairs so to keep the 

ones within a CTCF-insulated neighborhood (Figure 33B; Hnisz et al, 2016), which lead to 

2,553 pairs after filtering (Figure 33C). The transcript expression of pairs within the same 

CTCF-insulated neighborhood correlated more than for those pairs not within the same 

neighborhood (Figure 33D). 

We analyzed the pairs regarding number of paired transcripts, distance and expression 

correlation. Altogether, we paired 1,944 eRNAs with 1,446 promoters in 2,553 combinations. 

On average, 1.7 enhancers regulated a promoter and each enhancer was paired with 1.3 

promoters (Figure 34A). The median distance of an eRNA to its paired mRNA is 38 kb 

(Figure 34B). Expression levels between enhancers and their paired promoters were 

extremely correlated and the correlation was higher for enhancers located less than 10 kb 

from their paired promoter (proximal enhancers) rather than further apart (distal enhancers; 

Figure 34C). We also examined described super-enhancers in Jurkat cells (Hnisz et al, 2013), 

and found that promoters associated with enhancer that are located within super-enhancers 

have a higher expression level that other promoters (Figure 34D). 
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Figure 33: Enhancer identification and pairing with promoters. (A) Transcription at FOS and its annotated 

enhancer. (B) Enhancer promoter pairing depending if the pairs are located within one CTCF-insulated 

neighborhood or not. (C) Distribution of identified eRNAs among ncRNAs (left), and of enhancer-promoter 

pairs within the same CTCF-insulated neighborhood among all pairs. (D) Expression correlation between paired 

enhancers and promoters depending if they are situated in the same insulated neighborhood or not. The p value 

was derived by two-sided Mann-Whitney U test. 
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Figure 34: Characteristics of enhancers and promoter pairs. (A) Number of enhancer per promoters and 

promoters per enhancer depending if the pairs are within one CTCF-insulated neighborhood (solid lines) or not 

(dashed lines). (B) Distance distribution between eRNA and mRNA TSS. (C) Correlation of expression over 

time between proximal (left, dark violet) or distal (right, light violet) enhancers and promoters by promoter 

change (from left to right: downregulated, unchanged, upregulated promoters). (D) Expression level of 

promoters for promoters associated with enhancers within and not within super-enhancers and promoters not 

associated with any enhancer at all. All p values were derived by two-sided Mann-Whitney U test. 

 Enhancers and promoters are activated simultaneously 

Next, we investigated the temporal activation or shut-down of enhancers and their paired 

promoters. It has been reported that enhancer transcription precedes the paired promoter’s 

transcription when the second is activated during a time-course (Arner et al, 2015; De Santa et 

al, 2010b; Kaikkonen et al, 2013). We analyzed our enhancer/promoter pairs after 15 min of 

activation and observed drastic differences between the Total RNA-seq samples and the TT-
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seq samples (Figure 35). Due to high synthesis rate and low half-lives of eRNAs, and high 

half-lives of mRNAs (Figure 36), the majority of eRNAs precedes their paired mRNAs in the 

Total RNA-seq samples. This is not the case in the TT-seq samples, where it can be observed 

that both are either up or downregulated simultaneously (Figure 35). Another evidence that 

shows that enhancers and their paired promoters are up or downregulated at the same time is 

seen when we correlated the fold change of the eRNAs and mRNAs at different time points 

(Figure 37). In the TT-seq samples eRNA and mRNA fold changes correlated the most at the 

same time points. This is in contrast to the Total RNA-samples, where all mRNAs expression 

correlated the most with the 5 min eRNA time point, meaning that the fold change of mRNAs 

reaches only later the same magnitude as the one of the eRNAs. 

 

Figure 35: Temporal resolution of enhancer/promoter activation. The black line indicates the median, the lower 

and upper grey lines the 25 and 75 percent quantiles, respectively. The outermost light shaded lines indicate the 

5 and 95 percent quantiles. (A) Promoter/enhancer pairs (n=71) that are both upregulated (FC > 2) after 15 min 

activation for RNA-seq samples. (B) Same as in (A) for TT-seq samples. (C) Promoter/enhancer pairs (n=16) 

that are both downregulated (FC < 2) after 15 min activation for RNA-seq samples. (D) Same as in (C) for TT-

seq samples. 

T cell activation responsive enhancers and promoters are poised for activation 

CAGE is a very sensitive method and the differences seen in the sequential activation of 

enhancers and their promoters could be due to the more time-spanning processes that were 

analyzed (Arner et al, 2015). For late response genes, that are activated hours or days after 
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stimulation, such as in a cell differentiation process, you first need to open the chromatin 

environment of the responsible enhancer (Kaikkonen et al, 2013). This enables transcription 

factor recruitment that will in turn activate the promoter (Spitz & Furlong, 2012). This effect 

could lead to a time lag between enhancer transcription and promoter transcription. As we 

only investigate immediate early responses in this study, we propose that the activation 

process underlies a different mechanism.  

 

Figure 36: Half-lives and synthesis rates of enhancers and promoters. (A) Distribution of half-lives (in minutes) 

for upregulated enhancers (n=70) and upregulated promoters (n=44) paired in 71 combinations. (B) Distribution 

of synthesis rates (arbitrary scale) for upregulated enhancers (n=70) and upregulated promoters (n=44) paired in 

71 combinations. 

 

 

Figure 37: Correlation of fold changes across time between enhancers and promoters. (A) Quadratic error 

correlation between log2 FC for different time points between upregulated Enhancer/Promoter pairs for RNA-

seq (left) and TT-seq (right). (B) Same as in (A) for downregulated Enhancer/Promoter pairs.  
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Figure 38: ChIP-seq and DHS analysis at promoters and enhancers that were activated during T cell activation. 

(A) Pol II phospho isoforms occupancy at 311 activated enhancers. Shaded and solid lines represent data 

collected at time points 0 min and 15 min after activation, respectively. All profiles are normalized by size factor 

and Pol II density. Blue: S2P, red: S5P, violet: Y1P. (B) Same as in (A) for 73 activated promoters. (C) 

Distributions of DHSs at activated enhancers. (D) Same as in (C) for activated promoters. 

We performed chromatin-immunoprecipitation followed by sequencing (ChIP-seq) for RNA 

polymerase II (Pol II) and its different phosphorylated forms. We examined enhancers that 

were not transcribed at the 0 min time point and that were upregulated throughout the time 

course (lowest 10% of synthesis rates, synthesis rate <= 0.005; FC >= 2). We found that those 

enhancers are pre-loaded with Pol II that is elongation-competent with its carboxy terminal 

domain (CTD) phosphorylated on serine 5 (S5P) and tyrosine 1 (Y1P) at time point 0 (Figure 

38A). Interestingly, we could not detect phosphorylation on serine 2 (S2P) on activated 

eRNAs (Figure 38A), similar to observations in yeast on ncRNAs (Kim et al, 2010a). 

Furthermore, mRNAs that were activated and upregulated throughout the time course were 

also pre-loaded with elongation-competent Pol II (Figure 38B; synthesis rate <= 0.005 and FC 

>= 2). This shows that both enhancers and promoters upregulated in this study are poised for 
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activation before T cell activation. Additionally, they are already in an open chromatin 

conformation state as indicated by DNase I hypersensitivity sites (DHSs) present around their 

TSS (Figure 38C and D) and can rapidly be bound by transcription factors when activated. 

Together, these results show that the enhancer-promoter landscape in T cells exhibits 

characteristics that allow for rapid transcription activation.  

Discussion  

Our results indicate that in a rapid response to environmental changes, such as an immune 

response, enhancer and promoter transcription happen simultaneously. Due to the sensitivity 

of the TT-seq protocol in human cells we could observe that enhancers and promoters are 

activated already after 5 minutes after T cell activation, which shows the need of a method 

that is capable to detect and quantify transcriptional changes very early after the perturbation 

of a system.  

This study describes a method to globally detect transcripts in a highly dynamic system. TT-

seq enables us to detect thousands of differentially expressed transcripts, of which many 

already have been reported to act in T cell activation. The remaining differentially expressed 

transcripts are either ncRNAs that we could map de novo, or immediate early genes activated 

transiently during T cell activation. Our results therefore complement previous genome-wide 

studies (Cheadle et al, 2005; Diehn et al, 2002), in the same system and help to understand 

very early transcriptional responses. 

Our work yields in the identification and characterization of eRNAs based on their synthesis. 

Here, we show that the identification and pairing of eRNAs with their respective promoters 

can be performed by taking advantage of previously published datasets (Hnisz et al, 2016; 

Zacher et al, 2016), and methodologies (McLean et al, 2010), resulting in highly correlated 

pairs, regarding their synthesis. In contrast to other genome-wide studies (Arner et al, 2015; 

De Santa et al, 2010b; Kaikkonen et al, 2013; Schaukowitch et al, 2014), our results indicate a 

synchronous activation of enhancers and promoters. The temporal resolution of enhancer and 

promoter transcription is a widely discussed question. Preceding transcription at the enhancer 

could be argued with the function of the enhancer transcript in releasing Pol II into productive 

elongation by releasing NELF (Schaukowitch et al, 2014). We, however, propose a model, 

where both enhancer and promoter are poised for activation. This would lead to a very rapid 
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transcriptional response, which is relevant in immune system processes (Bahrami & Drablos, 

2016). ChIP-seq data support this idea by showing S5P on Pol II at both eRNA and mRNA 

TSS, indicating a high density of elongation competent Pol II. Additionally, DNase I 

hypersensitivity sites around eRNA and mRNA TSS indicate that the DNA is already in an 

open chromatin conformation and thus transcription activation can happen extremely fast 

when needed. These findings raise the question whether different cellular responses acquired 

different transcriptional activation strategies. 

We expect novel biologically insights by the application of TT-seq to other human cell lines, 

which could help to identify early factors in response signaling pathways, acting in the 

progression of diseases and cancer or determine cell differentiation. 

We demonstrate that TT-seq is suitable for annotating potential eRNAs and quantifying 

transcriptional changes very early upon stimulation and thus provides insights into gene 

regulation, activation and enhancer identity. Our data reveals an activation of eRNAs during 

the T cell activation time course, which correlates with the corresponding promoter 

activation; thus enhancer and promoter transcription are happening simultaneously. 
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4 Future Perspectives 

The TT-seq methodology finally provides the appropriate tool to investigate transient RNAs 

in mammals and in vivo. Many methods beforehand were sensitive but did not permit analysis 

of transient RNAs on a genome-wide scale or vice-versa. With the help of TT-seq many open 

questions such as the ones described below can now be tackled.  

4.1 ncRNA surveillance pathway in humans 

A vast majority of promoters have been shown to be bidirectional with in one direction 

producing an mRNA and the other a non-coding RNA (Orekhova & Rubtsov, 2013; Xu et al, 

2009). Additionally, nucleosome-depleted regions at the 3’ end of genes have been shown to 

harbor promoter features and allow for initiation of transcription (Murray et al, 2012). The 

genome is therefore largely transcribed, most of which into non-coding transcripts. 

Regulatory mechanisms such as the Nrd1 surveillance pathway in Saccharomyces cerevisiae 

are responsible for rapid and accurate degradation of non-coding transcripts (Schulz et al, 

2013). To this day, the exact degradation pathway for non-coding transcripts in mammals has 

not been elucidated. It was shown that the exosome pathway can be targeted to some ncRNAs 

through the NEXT complex (Lubas et al, 2015), or that short transcripts emerging from 

stalled Pol II are degraded by Xrn2 (Seila et al, 2008). Nevertheless, the degradation pathway 

of the majority of ncRNAs remains to be discovered. Through knockdown or knockout 

screening experiments followed by TT-seq, one could measure the amount, emergence or 

disappearance of ncRNAs in the mutant and as a result learn more about degradation 

mechanisms.  

4.2 Different underlying mechanisms leading to promoter-proximal peaks 

of Pol II 

Promoter-proximal pausing (PPP) is vastly present in higher eukaryotes (Adelman & Lis, 

2012). The more it becomes apparent that the majority of metazoan promoters harbors a Pol II 

ChIP-occupancy peak in their profile, the more the question arises if they all are the result of 

the same underlying mechanism. For instance, some promoter-proximally paused Pol II do 

not react to NELF knockdown (Muse et al, 2007). NELF-dependent PPP and the associated 

ChIP-peak should be abrogated through NELF knockdown. One can therefore speculate that 

not all Pol II peaks are the result of PPP. Furthermore, it was shown through mathematical 
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modeling that an accumulation of Pol II near the TSS can be the sheer result of a slow 

transition from initiation to elongation (Ehrensberger et al, 2013). ChIP on its own is therefore 

not the appropriate methodology to investigate PPP, since ChIP-peaks are a mixture of two 

phenomena: amount of crosslinked proteins to a DNA fragment and/or residing time of the 

same protein on a DNA fragment. TT-seq would help untangle this problem, since one Pol II 

will produce one RNA fragment regardless of the residing time. One could then differentiate 

between the amount of Pol II and its residing time. One could also imagine experiments with 

knockdowns of different PPP players, such as NELF, P-TEFb or DSIF to learn more about 

PPP. Better than knockdown experiments, which require days when using an RNAi setup, are 

specific protein inhibitors, which usually act within minutes. One could perform experiments 

with PTEF-b inhibitors such as DRB or Flavopiridol that more or less specifically target 

CDK9. This would enable investigation of timing and rate of activation, responsive genes and 

maybe shed light on other kinases responsible for activation of other gene sets. 

4.3 Splicing rate 

Splicing has been very difficult to investigate in vivo due to the very short half-life of introns. 

Many methodologies have been used so far: electron microscopy (Beyer & Osheim, 1988), 

transcription arrest through inhibitors (Clement et al, 1999; Elliott & Rosbash, 1996), in vitro 

reconstituted systems (Padgett et al, 1986), or single-molecule microscopy with reporter 

splicing assays (Martin et al, 2013). It was shown that cell-free assays have a much slower 

kinetic than in vivo assays (Carmo-Fonseca & Kirchhausen, 2014). On the other hand in vivo 

single-molecule assays are not applicable on a genome-wide scale. TT-seq can solve this 

problem since it can measure the synthesis and degradation rate at single-nucleotide 

resolution genome-wide (Schwalb et al, 2016). It has been shown in S. pombe that 4sU-seq in 

combination with spike-ins can be used for determination of splicing rates (Eser et al, 2016). 

With TT-seq, it will now be possible to determine splicing rates in vivo in human cells. One 

could then analyze the nucleotide composition of splice sites to see if it has an effect on 

splicing rate, as it has in S. pombe (Eser et al, 2016), or perform knockdown experiment of 

splicing-associated factors to see if they have an impact on rates. Furthermore, one could 

investigate if different intron lengths lead to different splicing mechanisms or rates.  
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4.4 Initiation and synthesis rate 

In addition to splicing rate, initiation and elongation rates could be elucidated in vivo with TT-

seq. Studies have made use of metabolic labeling (Neymotin et al, 2014; Schwalb et al, 2012), 

single-molecule microscopy (Darzacq et al, 2007), inhibitor treatment (Singh & Padgett, 

2009) and other methods. Elongation rates have been described to range between 2 and 4 

kb/min depending on the methodology used (Ardehali & Lis, 2009). Use of P-TEFb inhibitors 

such as the CDK9 inhibitors DRB and Flavopiridol could shed light on elongation speed, 

while CDK7 inhibition through THZ1 could clarify the pausing status of many polymerases 

(Nilson et al, 2015). Triptolide inhibits XPB of TFIIH, thus hinders bubble opening. In fact, 

ChIP-seq of human Pol II after triptolide treatment revealed that most genes with paused 

polymerases are in fact constantly terminating and re-initiating (Chen et al, 2015).  

4.5 Pol II CTD modifications at ncRNAs loci 

Analysis of transient RNAs under kinase inhibiting conditions would be particularly 

interesting since the CTD phosphorylation status of Pol II at ncRNAs loci is not entirely clear. 

Pol II seems to be carrying Ser5P (Gudipati et al, 2008), Ser7P (Kim et al, 2010a) and Tyr1P 

(Descostes et al, 2014), at most ncRNAs loci. It remains to be investigated if ncRNA loci 

harbor Pol II phosphorylated at Ser2 or not (Li et al, 2016). It was shown in human cells that 

termination of uaRNAs is polyA and U1-signal dependent but the Ser2P-status of Pol II was 

not investigated (Almada et al, 2013; Ntini et al, 2013). Furthermore, it was shown in S. 

cerevisiae that termination and processing of snRNA and snoRNAs are Ser2P-dependent 

(Egloff et al, 2012; Egloff et al, 2010), but in human, termination mechanism of most 

ncRNAs remains elusive. Most importantly, the majority of transient RNAs was not known 

up to this date, or was not known in their full length, rendering Ser2P status investigation 

unfeasible. In this thesis, we showed that polymerase transcribing eRNAs do not carry Ser2P. 

It will be interesting to analyze why Ser2P is absent. Is it due to the fact that ncRNAs are 

relatively short and that Ser2P is usually present far downstream in the gene body, or is it that 

Ser2P is not required at ncRNAs loci?  

4.6 eRNA function 

Until now it was difficult to detect eRNAs in vivo. This is now possible with our novel TT-

seq approach, which not only allows for eRNA detection but additionally enables their full-

length mapping (Schwalb et al, 2016). eRNAs are a relatively new RNA class and their 
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function in cells is unclear (Li et al, 2016). The major question is if eRNA have any function  

or if they are a mere product of high transcription machineries density at the target promoter, 

which is spatially linked to the enhancer. Different layers of functions are possible: first, 

neither the eRNA transcript nor the transcription of the enhancer in itself have any functions. 

Second, the eRNA transcript has no function but the act of transcribing the enhancer has; 

since it could lead to a more open chromatin landscape which could increase the strength of 

the enhancer. Third, the eRNA has a function, for example its sequence composition could 

lead to the recruitment of proteins that promote transcription of the target promoter or 

stabilize enhancer-promoter looping. To this day, there is experimental support for all three 

claims. To shed light on this matter one could make use of the TT-seq technology in 

combination with the clustered regularly interspaced short palindromic repeats (CRISPR) 

system, which has made tremendous advances since its description as a tool for molecular 

biology (Cong et al, 2013; Mali et al, 2013).  

The first hypothesis is that neither the eRNA transcript, nor the act of transcribing the eRNA 

has any function. To this end, one could use the CRISPRi methodology, where the dead 

effector protein Cas9 (dCas9) is sequence specifically targeted to DNA but has no 

endonucleolytic cleavage activity and therefore acts as a roadblock for Pol II (Larson et al, 

2013; Qi et al, 2013). This leads to a gene downregulation when dCas9 is targeted to the 

promoter or to the gene body. One could target DNA sites downstream of the TSS of an 

eRNA; transcription factor binding or initiation on the enhancer would not be hindered but 

transcription elongation would be blocked and the nascent eRNA would be sequestered to a 

stalled Pol II (Larson et al, 2013). One could check gene expression with TT-seq; if this has 

no effect on the target promoter expression, then the first hypothesis holds true. 

The second hypothesis is that the eRNA transcript has no function but transcribing its locus 

has. Since the eRNA has short half-life of 2 min (Schwalb et al, 2016), one would need an 

experimental setup, where transcription is not hindered but where the eRNAs can be removed, 

sequestered or degraded within seconds of being produced. Up to this day, experiments have 

been performed on a small scale and with very long time courses using RNAi. RNAi requires 

many hours, usually 24h to 48h for it to reach its maximum efficiency. The time scale 

differences of eRNA half-life and RNAi time requirements seem incompatible to draw 

valuable biological conclusions. Recently, Cas9 has been modified so that it can be directed to 

mRNAs (Nelles et al, 2016), and not only to DNA. A cell line expressing RNA-targeting 
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Cas9 and the according PAMmer could within seconds be directed to an eRNA that is being 

activated. One would need an eRNA that was off before the experiment and could specifically 

be activated, for example through T cell activation, EGF stimulation or other rapid cellular 

responses pathways. Until now, the RNA-targeting Cas9 is only targeted to mRNAs to track it 

within the cell, but technical advances will without doubt be soon developed to specifically 

degrade the targeted RNA. With TT-seq, one would analyze the correct down-regulation of 

the eRNA and check for expression changes of the activated promoter mRNA. 

Last hypothesis is that the eRNA transcript in itself carry a function. On the one hand, the 

very short eRNA half-life and the poor evolutionary conservation argues against the eRNA 

transcript’s functionality (Villar et al, 2015). On the other hand, it has been shown that both 

the eRNA transcript as a whole (Schaukowitch et al, 2014), or the eRNA’s sequence 

composition in itself (Li et al, 2013), can be important for target mRNA activation. This was 

only shown on specific loci and was not true for all loci analyzed (Hah et al, 2013). Similar to 

the study of Li et al., one could scramble the DNA sequence of the eRNA transcript with the 

help of the CRISPR genome editing technology and see its effect on target gene expression 

(Li et al, 2013). One could also insert U1 signals within the eRNA, which would improve 

eRNA stability and see if this has an enhancing effect on target promoter transcription. Last, 

one could direct RNA-targeting Cas9 to the eRNA or parts of it so that its sequence is masked 

to proteins. The transcript would still be present, but recruitment of proteins to it would be 

impaired.  

4.7 Concluding remarks 

Being able to map transient RNAs in vivo in a non-perturbed environment provides a tool to 

tackle many interesting unanswered questions. These include ncRNA surveillance and 

degradation pathways, ncRNA transcription cycle and metabolism, eRNA activation, 

enhancer-promoter specificity, splicing kinetics and many others. Finally, TT-seq will be a 

very powerful way to try to elucidate eRNA functionality in enhancer-promoter dynamics. 
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6 Abbreviations 

4sU   4-thiouridine 

Amp   Ampicillin 

bp   base pairs 

Cdk   cyclin-dependent kinase 

ChIP-seq  Chromatin immune-precipitation followed by deep-sequencing 

CRISPR  Clustered regularly interspaced short palindromic repeats 

eRNA   Enhancer RNA 

FBS   Fetal bovine serum 

fwd   Forward primer 

kb   kilobase 

lncRNAs  long non-coding RNA 

nt   nucleotide 

pA   Polyadenylation 

Pen-Strep  Penicillin-streptomycin 

PMA   Phorbol 12-myristate 13-acetate 

Pol   Polymerase 

PPP   Promoter-proximal pausing 

rev   Reverse primer 

RT   Room-temperature 

Ser2P, Ser5P, Ser7P Serine 2, Serine 5 and Serine 7 phosphorylation 

TADs   Topologically associated domains 

TSS   Transcription start site 

TT-seq   Transient-transcriptome sequencing 

Tyr1P   Tyrosine 1 phosphorylation 

uaRNAs  Upstream antisense RNAs 

v/v %   volume/volume percent 

w/v %   weight/volume percent 
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