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Zusammenfassung

Die vorliegende Dissertation befasst sich mit topologischen Aspekten und arithme-
tischen Strukturen von Quantenfeldtheorie und String Theorie. Besonderes Augenmerk
wird hierbei auf konsistente Trunkierungen von Supergravitation und Kompaktifizierun-
gen von F-Theorie gelegt.

Der erste Teil behandelt die Brechung von Supersymmetrie in fünf Dimensionen.
Wir konzentrieren uns hierbei auf den Übergang von N = 4 auf N = 2 in geeichter
Supergravitation. Für bestimmte Klassen von einbettenden Tensoren sind wir in der
Lage, die Theorie um das Vakuum zu großen Teilen zu analysieren. Es ist beachtlich,
dass generisch Quantenkorrekturen zu Chern-Simons-Termen induziert werden, die un-
abhängig von der Skala der Supersymmetriebrechung sind. Wir untersuchen konkrete
Beispiele konsistenter Trunkierungen von Supergravitation und M-Theorie, die diese
Brechung von N = 4 auf N = 2 in fünf Dimensionen widerspiegeln. Insbesondere
analysieren wir notwendige Bedingungen dafür, dass diese konsistenten Trunkierungen
für phänomenologische Zwecke herangezogen werden können, indem wir fordern, dass
sich die skaleninvarianten Korrekturen zu den Chern-Simons-Kopplungen konsistent
verhalten.

Im zweiten Teil untersuchen wir Anomalien und große Eichtransformationen in
kreisreduzierten Eichtheorien und F-Theorie. Wir setzen vier- und sechsdimensionale
Eichtheorien mit gekoppelter Materie auf einen Kreis und klassifizieren alle großen Eich-
transformationen, die die Randbedingungen der Materiefelder erhalten. Die Forderung,
dass diese Abbildungen konsistent auf Quantenkorrekturen zu Chern-Simons-Kopplun-
gen agieren sollen, liefert uns explizit alle höherdimensionalen Anomaliebedingungen.
Bezogen auf Kompaktifizierungen von F-Theorie identifizieren wir die klassifizierten
großen Eichtransformationen entlang des Kreises mit arithmetischen Strukturen auf
elliptisch-gefaserten Calabi-Yau-Mannigfaltigkeiten über die duale Beschreibung mittels
M-Theorie. Integrale Abelsche große Eichtransformationen entsprechen in der Tat freien
Verschiebungen der Basis im Mordell-Weil-Gitter der rationalen Schnitte, während
spezielle nicht-ganzzahlige nicht-Abelsche große Eichtransformationen zu torsionellen
Verschiebungen in der Mordell-Weil-Gruppe gehören. Für ganzzahlige nicht-Abelsche
große Eichtransformationen schlagen wir eine neue Gruppenstruktur auf aufgelösten
elliptischen Faserungen vor. Auf dieselbe Weise bringen wir eine neuartige Gruppenop-
peration für Mehrfachschnitte auf Faserungen von Geschlecht Eins ohne echten Schnitt
vor. Wir möchten betonen, dass diese arithmetischen Strukturen die Aufhebung aller
Eichanomalien in F-Theorie-Kompaktifizierungen auf Calabi-Yau-Mannigfaltigkeiten
sicherstellen.





Abstract

In this thesis we investigate topological aspects and arithmetic structures in quan-
tum field theory and string theory. Particular focus is put on consistent truncations of
supergravity and compactifications of F-theory.

The first part treats settings of supersymmetry breaking in five dimensions. We
focus on an N = 4 to N = 2 breaking in gauged supergravity. For certain classes of
embedding tensors we can analyze the theory around the vacuum to a great extent. Im-
portantly, one-loop corrections to Chern-Simons terms are generically induced which are
independent of the supersymmetry-breaking scale. We investigate concrete examples of
consistent truncations of supergravity and M-theory which show this N = 4 to N = 2
breaking pattern in five dimensions. In particular, we analyze necessary conditions
for these consistent truncations to be used as effective theories for phenomenology by
demanding consistency of the scale-independent corrections to Chern-Simons couplings.

The second part is devoted to the study of anomalies and large gauge transfor-
mations in circle-reduced gauge theories and F-theory. We consider four- and six-
dimensional matter-coupled gauge theories on the circle and classify all large gauge
transformations that preserve the boundary conditions of the matter fields. Enforcing
that they act consistently on one-loop Chern-Simons couplings in three and five dimen-
sions explicitly yields all higher-dimensional gauge anomaly cancelation conditions. In
the context of F-theory compactifications we identify the classified large gauge trans-
formations along the circle with arithmetic structures on elliptically-fibered Calabi-Yau
manifolds via the dual M-theory setting. Integer Abelian large gauge transformations
correspond to free basis shifts in the Mordell-Weil lattice of rational sections while spe-
cial fractional non-Abelian large gauge transformations are matched to torsional shifts
in the Mordell-Weil group. For integer non-Abelian large gauge transformations we sug-
gest a new geometric group structure on resolved elliptic fibrations. In the same way we
also propose a novel group operation for multi-sections in genus-one fibrations without
a proper section. We stress that these arithmetic structures ensure the cancelation of
all gauge anomalies in F-theory compactifications on Calabi-Yau manifolds.
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Chapter 1

Introduction

We start this thesis with a very general introduction which is directed mainly towards
non-string theorists and at the beginning to some extent even towards non-physicists.
In section 1.1 we review the general spirit of research in physics and the conceptually
new approaches starting with the beginning of the 20th century. On our way we try to
convey how a final theory could look like, and why physicists expect that there exists
a unified description of all processes in nature. Our survey will be influenced by the
historical proceedings as well as philosophical aspects. We also state the current status
quo of high energy physics together with its open problems and possible resolutions.
After that we aim to an understandable summary of what string theory is about in
section 1.2. We put some emphasis on its original development, which was at first
mainly influenced by considering string theory as a candidate for describing nature.
However, we will also try to make clear that string theory is more than that. In
particular, besides the question if it is the correct theory for the the world around
us, it exists as an independent, presumably consistent framework which has influenced
both mathematics and physics beyond its original scope. In this respect string theory
is justified without reference to the outcome of any experiment. To proceed further,
we find it useful to introduce the concept of symmetries and anomalies in quantum
field theory for non-experts in section 1.3. These topics are very established in modern
physics, and make up crucial parts of this thesis. In particular, we will explain why
anomalies render a theory inconsistent. Finally, we provide an outline of this thesis
in section 1.4. We shortly summarize the contents of the different parts there, and
also state which kind of physical background is required for the understanding of the
individual parts.

1.1 Towards a Final Theory

It seems to lie in our nature as human beings to be curios about the origin and the
fate of the world we are living in. It is remarkable that we have always been asking
questions and trying to get a picture of things which we are not directly confronted

17



18 CHAPTER 1. INTRODUCTION

with in our everyday life. Where do we come from? Where do we go? What precisely is
our world? These are aspects which have bothered people in the past and still haven’t
lost any of their fascination today. Already with the most primitive cultures there had
come some kind of religious dogma to explain what had been in the beginning, how the
world looks like from a distant point of view, and what will happen when it all ends.
Indeed, it is a common ground of nearly all cultures to possess a myth of creation and
an idea of the apocalypse.

While these two aspects had seemed to be far out of reach to be described via direct
investigation, it has always been clear that at least some of the processes in nature follow
certain rules. It is the subject of science to explain the latter based on a collection of
fundamental principles which we would call a theory. When years passed by, bit by bit
phenomena of nature got uncovered or even downgraded from divine events to ones that
could be explained logically although sometimes the underlying principles, i.e. science
itself, were considered to be God-given. However, the following categories had resisted
a long time to be directly addressed by science (or still do):

1. Space and time

Is space just empty or is it made out of some kind of ’substance’ (aether)?

Why are there three spatial dimensions and one time dimension, or are there even
more?

Is space curved, does it end somewhere, or is it infinite?

Is it just a static stage for physical processes, or is it dynamical?

2. The evolution of the universe

Does the universe have a beginning and an end in time?

If yes, how can they be described?

Do there even exist several universes?

3. The origin of matter

What are the fundamental building blocks of matter in nature?

How can they be described?

Can matter be created, destroyed or converted?

4. The nature of forces and interactions

What is the origin of gravity?

Which other forces do exist?

How can they be described?
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5. The origin of any theory or the final theory itself

Why do there exist things at all?

Where would a final theory come from, how is it ’selected’ as the final theory?

It is the great achievement of the 20th century to directly accommodate for many
questions in the (before inaccessible) categories 1-4, and it is the enormous task of the
21st century to reconcile 1-4 in one final theory. I for myself cannot imagine how one
could ever approach point 5. Of course, as many others I am convinced that one can
impose that a final theory should rely on simple principles, it should be aesthetically
pleasing and maybe also unique concerning certain consistency conditions, e.g. as a
consistent theory of quantum gravity. Although these guiding principles might lead us
to finding the final theory in the end, they don’t seem to explain the ’origin’ of the
latter. In contrast to mathematics, which exists as an abstract framework solely based
on logic, physics is always subject to becoming reality.

Let us now start reviewing how a lot of the questions which we raised under the
points 1-4 got answered in the 20th century. The first big step was taken in the year
1915 by Einstein and his theory of general relativity. It is fully justified to say that
the latter is one of the greatest feats in science at all. Namely for the first time in
history (apart from special relativity to some extent) a theory was proposed which
made predictions about space and time itself. In particular, matter and energy were
conjectured to act as a source for the latter. Furthermore gravitational interactions got
explained as an effect of matter curving spacetime. Einstein’s perception is fundamen-
tally different from basically all theories which had been formulated before. Formerly
space and time had been considered as some kind of unalterable stage on which physical
processes take place. General relativity in contrast completely changed our picture in
this respect. Even more, at the time when the theory was formulated no limitations of
Newtonian gravity were known which could be resolved by general relativity. Therefore
from a practical perspective a more fundamental theory for gravity was not desirable.
However, general relativity came along with new predictions which were confirmed only
afterwards thereby establishing it as a solid theory in physics. It is absolutely essential
to comprehend the novelty of this approach: Before Einstein physics was done in such
a way to consider phenomena which could not be explained by current concepts, and
then propose a new theory which was able to explain these phenomena (perhaps in an
aesthetically more pleasing way), and at best to predict new phenomena which serve as
a test for the theory. Einstein simply omitted the first step and created a new theory out
of his mind. This constitutes his outstanding achievement. Finally, it is worth pointing
out that even another item in our list of topics was tackled by Einstein, namely for the
first time a theory was able to make predictions about the origin and the future of the
universe as a whole entity. This is clear since general relativity describes the dynamics
of spacetime. Therefore, given the current status of the universe, one can (in principle
at least) extrapolate the latter into the past and future using Einstein’s field equations.

The second big revolution in physics of the 20th century took place with the arrival
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of quantum mechanics and later quantum field theory, whose development took many
centuries starting with the early experiments of Max Planck in the year 1900 until the
formulation of the Standard Model of particle physics in the early 1970s.1 Accordingly
a lot of scientists have contributed to it over the years. Quantum mechanics first
arose when scientists realized that at very tiny scales matter under some circumstances
shows the behavior of particles and sometimes that of waves. This seemed to be an
obvious contradiction to the at that time separated notions of particles on the one
hand and waves on the other hand. Even more severe, it turned out that seemingly
it was conceptually not possible to predict the exact result of the outcome of a single
experiment but rather only the probability to obtain a certain result. This point of
view was confirmed in all following experiments with no contradiction up to this day.
Moreover, the beautiful mathematical structure of quantum states in an abstract, so-
called Hilbert space was invoked in order to describe these processes and to calculate the
probabilities. Loosely speaking, from that time on matter was understood as certain
kind of waves, which in general ’contain’ a superposition of many different possible
values for observable quantities. When we carry out a measurement, we nevertheless
obtain one unique value. As mentioned, only the probability of the outcome can be
calculated exactly. The macroscopic, heuristic illustration of this quantum effect is for
instance provided by the famous Schrödinger’s Cat Gedankenexperiment. This is a
(hopefully) fictional scenario where the outcome of an experiment at the quantum level
’decides’ if a cat in a box gets killed by some kind of mechanism or not. The upshot
is that the cat seems to be in a superposition of being alive and dead at the same
time until one carries out a ’measurement’ by opening the box and looking into it. Of
course one should not take this illustration too seriously since the cat is far too big to
be described by what physicists call a coherent quantum state for which our statements
concerning superpositions hold. In classical physics, i.e. before the arrival of quantum
mechanics, the situation was different: As soon as one knows all properties of a physical
system at some point in time, one can (at least in principle) predict every measurement
in the future because classical physics is deterministic. In quantum mechanics this is
fundamentally different. Although in case you are given the abstract quantum state
of a system at some point in time you can infer it for all other times, nevertheless the
outcome of concrete measurements is only subject to probabilities.

In the further development quantum mechanics was then reconciled with special
relativity. This resulted in the fascinating and powerful quantum theory of fields. Let
us highlight some important aspects of this theory. Particles were defined in a very
precise sense as certain quantum states associated to so-called field operators. The
latter were even classified into different types according to their spacetime symmetry
properties called irreducible representations of the Poincaré group. It was discovered

1Of course this is just a landmark. Quantum field theory remains an active area of research today.
There are many aspects which are still not settled yet, especially concerning strongly coupled field
theories. Of course the same holds also true for general relativity, however, developing the foundations
of the latter was a more confined process than in quantum field theory.
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that for each particle there has to exist a partner called anti-particle and that particles
can be created out of the vacuum, destroyed or converted. Interactions and forces
(except for gravity) were nicely described by gauge theories, which are based on gauge
symmetries as we will explain in subsection 1.3.1. To put it in a nutshell, quantum field
theory has provided us with a very clear picture of what matter is, how it behaves and
interacts. Note that quantum field theory was even able to predict new particles which
were essential for keeping the theory consistent. Some of these were indeed discovered
afterwards, like the famous Higgs boson.

Some people might call the third and last big step in the 20th century the devel-
opment of string theory. However, in contrast to general relativity and quantum field
theory, which both constitute extremely well tested theories with astonishing precise
descriptions of nature, string theory is still a work in progress with not a single of its
inherent predictions confirmed yet. Partly this is due to the fact that many predictions
of string theory are made for scales which are hard to access for us. We will comment on
what points in our list at the beginning of this section string theory can accommodate
for, and how it can unify quantum field theory and general relativity in section 1.2.
Before we do so it might be fruitful to review what the current accepted and tested
status of physics is, and what the basic puzzles are that still remain.

1.1.1 Where We Stand...

In modern physics there are at the moment two in general accepted theories which
describe nature to extremely high accuracy at the fundamental level: the Standard
Model of particle physics (supplemented by neutrino masses) and the ΛCDM Model of
cosmology. The Standard Model is based on quantum field theory while the ΛCDM
Model is mainly characterized by general relativity. Before we explain these models
in some detail, let us stress that up to now there exists no satisfactory theory which
unifies both theories into a single framework although string theory seems to be a
very promising candidate for achieving this. We will comment on the drawbacks of
reconciling both theories in subsection 1.1.2. However, in most regimes of physical
phenomena effects of either one or the other theory dominate. The Standard Model
becomes important at small length scales, while the ΛCDM Model outweighs for settings
with big masses. For example in particle colliders the length scales are usually very
small and the masses also. That is why the effects of quantum field theory dominate over
general relativity. In contrast, when one observes the behavior of stars and galaxies, the
masses are quite high but the length scales are also very big. Therefore general relativity
is trustworthy. However, there are settings where both theories become important but
make contradicting predictions. This is the regime of the mysterious theory of quantum
gravity with small length scales and big masses. For instance effects of quantum gravity
should become important for the description of black holes or the Big Bang.

The Standard Model of particle physics describes all known interactions and forces
(except for gravity), namely electromagnetism, the weak force and the strong force in
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Figure 1.1: We list the field content of the Standard Model. Antiparticles are not listed.
The picture is taken from wikipedia.org.

terms of so-called gauge theories. Gauge theories always come with a certain number
of spin-one fields which are called gauge bosons. They mediate forces between matter
fields. As already mentioned, gauge theories also have associated gauge symmetry
groups, and in the case of the Standard Model these are given by

SU(3)× SU(2)L × U(1)Y → SU(3)× U(1)em . (1.1)

The arrow indicates that the gauge group is spontaneously broken down to a sub-
group. This is analogous to ferromagnetism for which the underlying theory is in
principle invariant under rotations, but below a certain temperature the spins (or ’el-
ementary magnets’) all spontaneously align into one direction thus breaking the ro-
tational invariance in this way. In the Standard Model a very similar effect is in-
duced by the recently discovered Higgs field which mediates the symmetry breaking
SU(3) × SU(2)L × U(1)Y → SU(3) × U(1)em. In this way mass terms for the gauge
bosons of the weak force, which are called W±- and Z-bosons, are induced. All other
gauge bosons are massless, and for the strong force they are called gluons, and the
one for electromagnetism is the well-known photon. The remaining fields of the theory
have spin-1/2. These are called leptons and quarks and arrange in representations of
the gauge groups, i.e. they in general carry charges under the gauge interactions. Their
non-vanishing masses are also induced by the spontaneous symmetry breaking due to
the Higgs field. We list the full field content of the Standard Model in Figure 1.1.

Let us now only shortly comment on the current widely accepted description of
cosmology, the ΛCDM (Lambda cold dark matter) Model. It is based on the framework
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Figure 1.2: We display the history of the universe according to current cosmological
status. The picture is taken from wikipedia.org.

of general relativity with a small positive cosmological constant, i.e. positive energy
density in the vacuum. According to this theory our universe was created in a Big
Bang around 13.8 billion years ago. It is able to explain the formation of stars and
galaxies as well as the cosmic microwave background. In recent years physicists in
addition proposed an early era of cosmic inflation. According to the latter there should
have existed an epoch of exponential expansion of the universe just in a tiny fraction
of a second after the Big Bang. As we have already noted, string theory provides
an attempt of reconciling the Standard Model with the ΛCDM Model. Indeed at the
moment it becomes more and more attractive to try to realize the idea of inflation in
string theory models. We depict the presumed history of the universe in Figure 1.2.

Apart from the issue of unifying both theories there are in addition several puzzles
concerning fine-tuning which might have to be addressed. In the following we com-
ment on what is called the electroweak hierarchy problem and the cosmological constant
problem:

• The electroweak hierarchy problem states that in the framework of the Standard
Model one would generically expect the Higgs mass to be much bigger than the
observed value due to quantum corrections like the ones we describe in subsec-
tion 1.1.2. The fact that it is so small requires an unimaginable fine-tuning of
parameters over many scales. Thus it is solely a problem of naturalness but no
inconsistency of the theory in principle. However, by imposing a new symmetry
called supersymmetry the measured value for the Higgs mass could lie in a range
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which seems to be more natural.

• The cosmological constant problem is in a similar spirit. In fact, the cosmological
constant is unnaturally small, and it is extremely hard to come up with extensions
of our theories which render this smallness more natural.

For both of these puzzles there exists a possible philosophical resolution called the
anthropic principle, which is widely discussed. It states that if the Higgs mass and the
cosmological constant would acquire the more generic big values, life of any form in such
a universe would not be possible. Therefore in this case observers which could measure
these quantities could not exist. Finally, there are further issues like the abundance
of dark matter or the strong CP problem for which there do not exist satisfactory
explanations by current theories. However, we will not go into the details here.

1.1.2 Effective Theories

The notion of effective field theory in quantum field theory is of particular importance
for this thesis since it appears in the context of consistent truncations in Part II and to-
gether with circle-compactified theories and F-theory in Part III. We therefore dedicate
this subsection to a short introduction into the main ideas.

In principle one would naively expect a quantum field theory to be valid or even
invariant at any energy scale. However, many quantities like the coupling constants to
gauge interactions or the mass depend crucially on the energy scale. The extrapolation
between the values for these objects at different scales is governed by the renormalization
group flow. It can now happen that this procedure only yields good finite results as
long as the energy is smaller than some maximal cut-off energy scale Emax

E < Emax , (1.2)

and breaks down as E → Emax. This signals that the quantum field theory is only
valid up to the scale Emax, and one calls it non-renormalizable. For energies above this
bound there have to be new degrees of freedom which become relevant, i.e. massive
fields which didn’t play a role at energies far below Emax. The putative theory which
includes also these degrees of freedom and is valid up to any energy scale is called an
ultraviolet completion. The original theory is called an effective theory for the full, UV-
complete theory. Since fields which have masses higher than the cut-off scale Emax do
not constitute relevant degrees of freedom for E < Emax, they can be removed from the
description of the theory by a procedure which is called integrating out. Via this process
one obtains an effective description of the light degrees of freedom with E < Emax. Note
that in this so-obtained effective theory new couplings could have been generated or
corrected. The latter usually scale with the energy and can therefore be neglected as
one approaches E → 0. In this thesis however we put special emphasis on corrections
to Chern-Simons couplings in effective field theory. These have the crucial property of
being independent of the mass scale and therefore have to be included at arbitrarily
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low energies. For that reason they encode a lot of interesting physics as we will show
in this thesis.

Let us give a nice historical example of a non-renormalizable effective theory which
was first proposed and later the more fundamental theory was found. Indeed, in 1933
Fermi described the beta decay by directly coupling the involved matter fields to each
other. This theory turned out to be non-renormalizable. Nevertheless much later when
the more fundamental theory for the electroweak interactions was formulated, Fermi’s
theory could be understood in terms of an effective field theory with the massive gauge
bosons integrated out. Put together, in the full theory massive gauge fields mediate
the beta decay. By integrating them out a non-renormalizable coupling between the
involved matter fields is generated.

We are now in a position to convey what goes wrong in trying to reconcile general
relativity with quantum field theory. In fact, if we straightforwardly promote general
relativity to a quantum field theory, we obtain a theory which is non-renormalizable.
Therefore the latter can serve only as an effective theory which is valid at most up to
the Planck scale around energies of 1019 GeV. At this scale we expect new degrees of
freedom which guarantee a nice behavior in the ultraviolet. In string theory for instance
these states are supposed to be provided by higher vibrational modes of the string.

Finally let us close by mentioning also a very important issue related to strongly-
coupled quantum field theory. In order to evaluate certain processes for a given quantum
field theory one usually uses the technique of perturbation theory. Loosely speaking
this corresponds to making a Taylor expansion in the coupling constant. It is clear that
this procedure breaks down if one reaches the regime of strong coupling. In this case
the description of the theory in general changes completely in the sense that one has
to work with different fundamental degrees of freedom. For instance the fundamental
degrees of freedom of matter for the strong interactions at weak coupling are the quarks.
However, as we move to low energies, the theory becomes strongly coupled. That
is why in our world of small energy scales we only observe bound states of quarks,
namely protons, neutrons, pions and so on. These constitute the appropriate degrees
of freedom for strong coupling. Note that nevertheless the precise description of the
strong interactions at strong coupling is still far from being well-understood.

1.2 The Framework of String Theory

“ [. . . ] From those incontrovertible premises, the librarian deduced that the Library is ’total’—perfect,
complete, and whole—and that its bookshelves contain all possible combinations of the twenty-two
orthographic symbols (a number which, though unimaginably vast, is not infinite)—that is, all that is
able to be expressed, in every language. All—the detailed history of the future, the autobiographies of
the archangels, the faithful catalog of the Library, thousands and thousands of false catalogs, the proof
of the falsity of those false catalogs, a proof of the falsity of the true catalog, the gnostic gospel of
Basilides, the commentary upon that gospel, the commentary on the commentary on that gospel, the
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true story of your death, the translation of every book into every language, the interpolations of every
book into all books, the treatise Bede could have written (but did not) on the mythology of the Saxon
people, the lost books of Tacitus.

When it was announced that the Library contained all books, the first reaction was unbounded
joy. All men felt themselves the possessors of an intact and secret treasure. There was no personal
problem, no world problem, whose eloquent solution did not exist—somewhere in some hexagon. The
universe was justified; the universe suddenly became congruent with the unlimited width and breadth
of humankind’s hope. At that period there was much talk of The Vindications—books of apologiæ
and prophecies that would vindicate for all time the actions of every person in the universe and that
held wondrous arcana for men’s futures. Thousands of greedy individuals abandoned their sweet native
hexagons and rushed downstairs, upstairs, spurred by the vain desire to find their Vindication. These
pilgrims squabbled in the narrow corridors, muttered dark imprecations, strangled one another on the
divine staircases, threw deceiving volumes down ventilation shafts, were themselves hurled to their
deaths by men of distant regions. Others went insane. . . . The Vindications do exist (I have seen two
of them, which refer to persons in the future, persons perhaps not imaginary), but those who went in
quest of them failed to recall that the chance of a man’s finding his own Vindication, or some perfidious
version of his own, can be calculated to be zero.

At the same period there was also hope that the fundamental mysteries of mankind—the origin of

the Library and of time—might be revealed. In all likelihood those profound mysteries can indeed be

explained in words; if the language of the philosophers is not sufficient, then the multiform Library

must surely have produced the extraordinary language that is required, together with the words and

grammar of that language. For four centuries, men have been scouring the hexagons. . . . There are

official searchers, the ’inquisitors’. I have seen them about their tasks: they arrive exhausted at some

hexagon, they talk about a staircase that nearly killed them—some steps were missing—they speak with

the librarian about galleries and staircases, and, once in a while, they take up the nearest book and leaf

through it, searching for disgraceful or dishonorable words. Clearly, no one expects to discover anything

[. . . ]”

La Biblioteca de Babel, J. L. Borges (transl. Andrew Hurley, New York, Penguin)

In this section we give a short overview over the various aspects of string theory.
We do not go into detail here but rather aim towards a pedagogical introduction for
non-string-theorists. Our treatment follows the historical development, starting with
the attempt of describing the strong interactions via strings, over the first and second
string revolution until today with the numerous different branches of string theory.

1.2.1 The Beginning

String theory was first considered in the late 1960s as an attempt to describe the strong
interactions which was however abandoned in the 1970s in favor of quantum chromo-
dynamics, an ordinary quantum field theory based on point particles. Luckily, shortly
after that physicists got interested in what is now called bosonic string theory. While
it is only a predecessor of the more advanced superstring theories which constitute the
theories of interest today, it already showed many properties which excited people at
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that time and still do: String theory is about replacing point particles by extended one-
dimensional objects called strings, which can be either open or closed. These fields can
vibrate, and different vibrational modes correspond to different particles, like the differ-
ent vibrational modes of a violin generate different tones. Importantly, in the spectrum
of vibrational modes there is always an excitation, which describes the fluctuation of a
background spacetime metric. This was considered as a hint that string theory could
be a candidate for a consistent theory of quantum gravity. Indeed, it is astonishing how
string theory deals with the bad non-renormalizable infinities in quantum field theory
associated to gravitational interactions. The extended nature of the string delocalizes
interaction vertices, and the problematic ultraviolet regime is mapped by a so-called
duality to the infrared regime which can be described easily. More precisely, this dual-
ity states that the physics of long strings at high energies is the same as the physics of
short strings at low energies. Via a precise ’dictionary’ these regimes can be mapped
to each other. All these nice properties have already appeared in the early version of
bosonic string theory. However, the latter suffers from a couple of important drawbacks
which makes it impossible to consider it as a theory of the world around us. First, it
cannot account for spacetime fermions, which are the fundamental building blocks of
our world. Second, in the spectrum of the theory one finds tachyons, i.e. modes of
imaginary mass. These signal an instability of the theory. While the tachyon in the
sector of open strings is quite well understood (we are sitting at the maximum of a
potential, and rolling down corresponds to so-called D-brane condensation), the impli-
cations of the tachyon in the closed string sector are not clear but might most certainly
render spacetime itself unstable. Both issues, the presence of tachyons and the absence
of spacetime fermions, soon got resolved by moving from bosonic string theory to su-
perstring theory. By introducing a fermionic partner string for the bosonic string the
theory acquires a new symmetry, namely two-dimensional supersymmetry. The latter
is powerful enough to allow for stable solutions, and at the same time also leads to
spacetime fermions, while keeping the nice properties in the ultraviolet regime. Indeed,
it was found that there even exist five different superstring theories, which all require
for consistency a total number of exactly ten spacetime dimensions. They are called
type I, type IIA, type IIB, SO(32) heterotic and E8 × E8 heterotic string theory.

1.2.2 The Two Superstring Revolutions

It was in the mid-1980s when several discoveries (now called the first superstring revo-
lution), like for instance the anomaly cancelation of type I string theory via the Green-
Schwarz mechanism, made physicists realize that superstring theories might be able to
serve as fundamental theories of our world unifying quantum field theory and general
relativity. The superfluous six dimensions out of the in total ten dimensions were ar-
gued to be very tiny in order to have escaped detection so far. Their description is
captured by certain geometrical spaces which are solutions to the equations of motion
of the theory. Importantly, much of the physics in the large four dimensions depends
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Figure 1.3: We depict the famous M-theory star, which illustrates the unification of all
five superstring theories and eleven-dimensional supergravity. These constitute certain
limits of the still not very well understood framework of M-theory.

on the detailed shape of the six small dimensions. The process of rendering dimensions
small is called compactification, and a big part of this thesis consists of considering the
compactification of F-theory on Calabi-Yau manifolds to six and four large spacetime
dimensions, respectively. We will have to say more about F-theory in a moment.

Another ten years later in the mid-1990s Edward Witten and Joseph Polchinski
initiated the second superstring revolution. In fact, strong evidence was found that all
five consistent superstring theories are linked together via dualities, and describe certain
limits of a new conjectured eleven-dimensional theory, which Witten named M-theory,
see Figure 1.3. Finally it was shown that string theories are not theories of strings only,
but for consistency also have to allow for certain higher-dimensional, non-perturbative
objects called branes.

In 1997 Juan Maldacena found the first concrete realization of the holographic prin-
ciple in string theory, which in general conjectures that the properties of quantum
gravity on some space is solely encoded by an ordinary quantum field theory on the
lower-dimensional boundary of that space. Maldacena showed that the N = 4 super
Yang-Mills theory in four dimensions (which is a quantum field theory) is dual to type
IIB string theory compactified on a five-sphere. The remaining five dimensions span a
space of negative curvature called anti-de Sitter space. The N = 4 super Yang-Mills
theory is defined on the boundary of the latter.

One year before, in 1996, Cumrun Vafa and David Morrison formulated F-theory,
which makes up a considerable part of this thesis. Let us therefore spend some time
in order to heuristically describe some of its properties. We provide a much more
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detailed introduction in chapter 11. F-theory is a generalization of type IIB string
theory. The latter possesses an inherent SL(2,Z)-symmetry which is also precisely the
reparametrization symmetry of a two-dimensional torus. The idea of F-theory is to
take this fact seriously, and extend the original ten spacetime dimensions to twelve by
including an additional torus. Due to this property it is in F-theory even more crucial
to analyze the compactification space in detail since most properties of physics in the
remaining large dimensions can be directly read off from the geometry. In particular,
the compactification spaces always have to include tori which in general collapse at
some points. These encode gauge interactions and charged matter fields.

1.2.3 The Different Branches Today

We have seen that string theory, which had originally been developed to describe the
strong interactions, turned out to be a much more powerful framework than anyone
could have imagined. Indeed, today there exist many different areas and aspects of this
field on which theorists work actively, most of them having application and impact also
outside of string theory. The present subsection is meant as a short overview over the
different branches of research within string theory. Note that we will not be able to do
justice to all the branches but only focus on the most important ones. Moreover, we
highlight their connection to quantum field theory and mathematics, which both profit
a lot from developments in string theory, and conversely provide also crucial ingredients
for the latter. The basic topics are also depicted in Figure 1.4.

The oldest branch is certainly the study of the fundamental aspects of string the-
ory. It is however still one of the most mysterious and least understood ones despite
the intriguing connections and hints that have been found. As already mentioned,
starting with the second superstring revolution it became clear that all consistent five
superstring theories are connected via (non-perturbative) dualities and constitute just
different aspects of a more fundamental theory, namely M-theory. Nevertheless we still
lack a full (non-perturbative) formulation of string theory or M-theory, respectively.
There has been at least some progress in understanding the dynamics of the funda-
mental objects in M-theory, M2-branes and M5-branes. As we will explain in more
detail in subsection 11.1.2, the former are described in the context of ABJM theory,
but we still seem to scratch just the tip of the iceberg of the theories describing M5-
branes, namely the 6d (2,0) superconformal field theories. This is a nice example of
how string theory broadened our knowledge of quantum field theory since interacting
superconformal field theories in six dimensions were long thought not to exist. From
a string theory perspective however they are expected to be present as the low-energy
world-volume theories of multiple M5-branes. Furthermore, it is claimed that a certain
class of F-theory compactifications exhausts the full class of consistent 6d (2,0) super-
conformal field theories. Apart from quantum field theory also for mathematics the
fundamental aspects of string theory yield new inspirations and insights. For instance
non-commutative and non-associative structures, which appear naturally in string the-
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Figure 1.4: The different areas of string theory, quantum field theory and mathematics
have strong influence on each other.
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ory, opened up new branches in group theory. Moreover, in this thesis we conjecture
new mathematical structures on genus-one curves from our intuition of F-theory.

Another active area of intense research is compactification of string theories and
M-theory, respectively. Also the much of the original work of this thesis in Part II
and Part III falls into this category. In general, compactifications to any number of re-
maining large spacetime dimensions are interesting on their own and offer new insights,
also to quantum field theory and mathematics. However, the case of four non-compact
spacetime dimensions is particularly important and investigated heavily since this is
the number of (large) dimensions we observe in nature. Indeed, in the field of string
phenomenology physicists try to reconcile the physics at the fundamental level of the
world around us with string theory. This means that they in particular look for ways to
realize the Standard Model of particle physics, which we introduced in subsection 1.1.1,
as a string compactification to four spacetime dimensions. In the same way physicists
also try to embed the ΛCDM Model and in particular also the concept of inflation into
string theory. This branch is usually referred to as string cosmology. It is important
to realize that the number of consistent string compactifications is unimaginably large.
For this whole set people often use the term string landscape. There are some rough es-
timates on the size of the string landscape in the literature which are discussed heavily.
The usual number of different vacua which people refer to is 10500. Even if one does
not believe in the quantity 10500, it is unarguable that the number should be extremely
big. At first it seems that we are in the same situation as the inquisitors, mentioned
in the citation at the beginning of this section, looking for a needle in a haystack. But
there are some important differences: The string landscape is certainly not total in the
sense that every quantum field theory has a stringy realization, i.e. arises as a certain
compactification of string theory. Nevertheless it seems hopeless to go on the quest for
a compactification geometry which exactly yields the Standard Model and the ΛCDM
Model with all their details. In contrast, what people do is trying to find out if general
features of these models can in principle be realized in string theory. This means for
instance: Is it possible to get the gauge group SU(3) × SU(2) × U(1) in some way?
Can the chiral spectrum and the observed mass hierarchies be generated? What are the
restrictions on inflation in string theory? Luckily, many questions of this kind can be
answered very generally in string theory. Thus the aim is not to obtain the exact values
for couplings and masses, but it is rather about getting the big picture right. We now
close our heuristic discussion of string theory and proceed with a general treatment
concerning symmetries and anomalies.

1.3 Symmetries and Anomalies in Field Theory

The appearance of anomalies in quantum field theory makes up a crucial part of this
thesis, especially in Part III. Therefore we heuristically discuss some basic background
on symmetries in physics and quantum anomalies in general for the interested reader.
We start with the introduction of global and local symmetries in subsection 1.3.1,
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and continue to explain in subsection 1.3.2 how the breakdown of symmetries under
quantization leads to anomalies in quantum field theory. For a more advanced recap of
the concept of anomalies we refer to section 2.1.

1.3.1 Global Symmetries vs. Gauge Symmetries

In physics the notion of a symmetry refers to transformations of the configuration space
which map solutions of a particular theory again to solutions of the same theory. For
instance consider the Poincaré group in the theory of electrodynamics. The continuous
part of this group consists of translations in space and time, rotations in space and
Lorentz boosts. Once we have found a solution in electrodynamics for some observer in
spacetime, we can simply apply a Poincaré transformation and obtain in this way the
solutions of the theory for all other observers related to the initial one by precisely this
Poincaré transformation. Note that in contrast this does not work for observers with a
relative acceleration, which are not related by Poincaré transformations.

The role of the Poincaré group in electrodynamics is an example of what one calls
an invariance under a global symmetry group. We will find it important to distinguish
between global and gauge (local) symmetries in this thesis (and also in general of course).
Therefore let us explain the difference:

• For gauge symmetries the symmetry parameter, e.g. the rotation angle, is al-
lowed to depend non-trivially on the spacetime coordinates. This implies that
gauge symmetries only describe redundancies of the theory since certain ’degrees
of freedom’ can be removed by a gauge transformation. One can equally well de-
scribe the theory after getting rid of all redundancies, this is called gauge-fixing.
However, from a technical and mathematical point of view it is often more appeal-
ing to keep them. In a strict sense gauge symmetries are not even ’symmetries’ at
all for precisely that reason. As we have already mentioned, the weak, strong and
electromagnetic interactions are based on gauge symmetries and therefore called
gauge theories.

• Global symmetries only allow for a symmetry parameter which is constant over
spacetime. They cannot be used to remove degrees of freedom, that’s why they
constitute actual symmetries.

It is absolutely essential to keep in mind the fundamentally different natures of
global and gauge symmetries. As we will explain in the next subsection, this difference
renders a theory with an anomalous gauge symmetry inconsistent while anomalous
global symmetries are in general not problematic. Finally, it is worth mentioning that it
is believed that in a consistent full quantum gravity theory continuous global symmetries
cannot exist, and all symmetries are gauge symmetries.
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1.3.2 Anomalies

As already announced we now explain on a very basic level what quantum anomalies are,
how they can arise, as well as their implications for a theory. Many quantum theories
have an underlying classical theory, and the process of making the classical theory into a
quantum theory is called quantization. It can happen that (global or gauge) symmetries
break down under this quantization procedure, meaning that symmetries of the classical
theory are not realized at the quantum level. In principle for global symmetries this
constitutes no problem. On the one hand one might perhaps be interested in keeping
certain global symmetries in the quantum theory, but inconsistencies of the theory
itself do not arise. For gauge symmetries the situation is completely different. Since
they parametrize only redundant, i.e. unphysical degrees of freedom in the theory, they
should not disappear after quantization. In fact, an anomalous gauge symmetry renders
the resulting quantum theory inconsistent. To put it in a nutshell, anomalies of global
symmetries are in principle fine while gauge anomalies must always be canceled in order
to retain a well-defined theory.

There are a lot of equivalent definitions of an anomaly. The most intuitive one on
a basic level is the one just described. Note that there are also a lot of examples of
theories which do not have an underlying classical description but are only defined at
the quantum level. These can also suffer from quantum anomalies, however, at this
heuristic stage we will not comment on such theories. Later in section 2.1 we introduce
anomalies as non-conservation of certain currents, a definition which is independent of
the existence of an underlying classical theory.

1.4 Outline of the Thesis

This thesis is divided into several different parts of which some can be read indepen-
dently from each other. The introductory Part I is first in chapter 1 directed to readers
without much background in string theory or quantum field theory. It conveys the
general status of modern high energy physics as well as its historical origin and devel-
opment. We give a short overview of the framework of string theory and its impact on
other branches in mathematics and physics. Special emphasis is also put on effective
field theories as well as the concept of anomalies in quantum field theory. Our aim is
to put the work in this thesis in an understandable context for readers who are not
experts in this field. Even non-physicists might be able to comprehend many of the
points which are described in this chapter.

In the following chapter 2 we already require familiarity with quantum field theory at
a very basic level. We review some important aspects and results which enter this thesis
at several different stages. These are anomalies in quantum field theory in general, as
well as Chern-Simons terms in three- and five-dimensional theories. Readers who are
familiar with these concepts can safely skip this part or consult it if needed later.

The presentation of original results of this thesis starts in Part II. Fundamental
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knowledge of supergravity is needed in order to understand this part. We investigate
(partial) supersymmetry breaking of five-dimensional N = 4 gauged supergravity, and
in particular derive crucial properties of the effective theory around vacua with special
emphasis on N = 2 vacua. Via a newly described tensorial Higgs mechanism tensors
become massive by eating up a vector, similar to the Stückelberg mechanism. We fully
analyze the N = 2 effective theory for purely Abelian magnetic gaugings. The set of
modes which become massive in this breaking procedure are shown to induce one-loop
corrections to Chern-Simons terms which are independent of the supersymmetry break-
ing scale. We find concrete realizations of the breaking N = 4 → N = 2 in consistent
truncations of type IIB supergravity on five-dimensional (squashed) Sasaki-Einstein
manifolds and M-theory on six-dimensional SU(2)-structure manifolds. The former
truncation has already been described in the literature while the latter is derived here
in detail. Exploiting the mentioned scale-invariant one-loop corrections we determine
necessary conditions for consistent truncations to yield sensible effective theories. We
test these constraints for our two examples of consistent truncations, and both times
we obtain positive results. This part is based on the two publications [1, 2]:

• T. W. Grimm, and A. Kapfer, “Self-Dual Tensors and Partial Supersymmetry
Breaking in Five Dimensions,” JHEP 1503 (2015) 008, 1402.3529

• T. W. Grimm, A. Kapfer, and S. Lüst, “Partial Supergravity Breaking and the
Effective Action of Consistent Truncations,” JHEP 1502 (2015) 093, 1409.0867

In Part III we present original work in the context of circle-reduced gauge theories
and F-theory. At first in chapter 9 and chapter 10 we assume only basic knowledge of
quantum field theory, and we already obtain interesting results in these chapters. In
contrast, beginning with chapter 11 familiarity with string theory is essential. Note
that the reader is not at all required to be an expert in F-theory since we give a short
introduction into the relevant topics of this subject. We start Part III by reviewing
the circle compactification of general four- and six-dimensional matter-coupled gauge
theories along with the anomaly cancelation conditions of the uncompactified theories.
Afterwards we classify large gauge transformations along the circle which preserve the
boundary conditions of all matter fields. Exploiting these maps we describe a procedure
to extract the higher-dimensional anomaly cancelation conditions from the reduced the-
ories on the circle. In order to do so we evaluate the large gauge transformations on
one-loop Chern-Simons terms, and demand that they have to act in a way which is
consistent with quantization. This procedure yields all gauge anomaly cancelation con-
ditions in four and six dimensions as well as the mixed gauge-gravitational anomalies
in six dimensions. In the context of F-theory compactifications we derive a precise dic-
tionary which matches our classification of large gauge transformations along the circle
to arithmetic structures on genus-one fibrations. We also comment on the implications
of different choices for the zero-section of F-theory compactifications, which is a related
topic. Some of these arithmetic structures are well-known (e.g. the Mordell-Weil group

http://arxiv.org/abs/1402.3529
http://arxiv.org/abs/1409.0867
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of rational sections), others are conjectured in this work since they have not been de-
scribed in the mathematical literature yet. We find further evidence for the existence of
our newly derived arithmetic structures by considering concrete geometric examples. In
particular we investigate how novel group structures arise in Higgs transitions as rem-
nants of the familiar Mordell-Weil group structure. Importantly our findings establish
the cancelation of gauge anomalies in Calabi-Yau compactifications of F-theory. The
results of this part are published in [3, 4]:

• T. W. Grimm, and A. Kapfer, “Anomaly Cancelation in Field Theory and F-
theory on a Circle,” JHEP 1605 (2016) 102, 1502.05398

• T. W. Grimm, A. Kapfer, and D. Klevers, “The Arithmetic of Elliptic Fibrations
in Gauge Theories on a Circle,” JHEP 1606 (2016) 112, 1510.04281

We stress that the two parts which contain the original work in this thesis, namely
Part II and Part III, treat two in principle very different topics and can therefore
be read completely independently from each other. The connecting piece is only the
usage of one-loop Chern-Simons terms in order to probe topological properties of gauge
theories (at least as our considerations are concerned). As mentioned before, a review
of one-loop Chern-Simons terms is provided at the beginning of this thesis in chapter 2.

Finally, in Part IV we present further interesting ideas as well as first results which
refer to Part III but have not been published yet. In fact, some topics are more or
less settled and just have to be worked out in full detail, while others are still quite
speculative. This part is on the one hand meant for the interested reader to demonstrate
the universal applicability of the results in Part III to other interesting areas of research,
and on the other hand provides a concrete starting point for future investigation along
these lines.

The main part of this thesis concludes with a summary of our results in Part V
accompanied by a short outlook. We complete our work with additional material in
Part VI covering conventions, longish calculations and convenient tables which would
spoil the readability of the main text.

http://arxiv.org/abs/1502.05398
http://arxiv.org/abs/1510.04281
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Chapter 2

Preliminary Material

2.1 Recap of Anomalies in Quantum Field Theory

Anomalies in quantum field theory and string theory compactifications are very pow-
erful objects. Because of their topological origin they are very robust quantities which
nevertheless carry a considerable amount of information about the chiral spectrum. In
this thesis anomalies play a very prominent role and enter at several stages. Indeed, in
section 10.2 we discuss how one can obtain the gauge anomaly cancelation conditions
of an arbitrary four- or six-dimensional theory after an additional circle compactifica-
tion. These techniques are not only interesting on their own but also help us in better
understanding the mechanisms underlying anomaly cancelation in F-theory compact-
ifications. In particular combining the field theory results of section 10.2 with the
arithmetic structures on elliptic fibrations, which we introduce in chapter 12, we are
able to prove the cancelation of U(1) gauge anomalies in F-theory explicitly, and find
strong evidence that an arithmetic structure for blow-up divisors should also ensure the
cancelation of all non-Abelian gauge anomalies.

Since in the literature there are many excellent introductions into this well-known
field, for example [5–9], we refrain from doing so in this thesis. We assume familiarity
with the very basic facts about anomalies in quantum field theory. The interested reader
is referred to these references for additional information. This chapter is far from being a
survey of this vast topic, we rather recall some special aspects of anomalies, for instance
anomaly polynomials, which are essential to understand the work of this thesis. We
closely follow the notation and reasoning of [9] in this short recap.

In quantum field theory an anomaly AΛ of a symmetry appears when the conserva-
tion law for the symmetry current jµΛ is violated

AΛ(x) = −Dµ〈jµΛ〉 , (2.1)

where µ denotes the d-dimensional spacetime index, Dµ is the gauge covariant deriva-
tive, and the symmetry generators are given by TΛ. The corresponding vector gauge
field is denoted by Aµ = AΛ

µTΛ. If the TΛ generate only a global symmetry, we assume

37
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in the following without loss of generality that the latter is gauged by coupling to a
background gauge field Aµ. Note that also (local) Lorentz transformations (or equiva-
lently diffeomorphisms) can be anomalous. The results which we state here for genuine
gauge symmetries hold in complete analogy also for local Lorentz transformations by
simply replacing the gauge field A by the spin connection ω and the field strength F
by the curvature two-form R.

If the theory has a classical description in terms of an action, there are many different
but equivalent ways of how to think of an anomaly. First it signals that the path-integral
measure is not invariant under the respective symmetry although the classical action
is invariant. Or stated differently, the regularization scheme does not preserve the
symmetry. Equivalently one can also think of an anomaly as a non-invariance of the
quantum effective action Γ under the classical symmetry

δεΓ =

∫
ddx
√
−g εΛ(x)AΛ(x) (2.2)

with ε = εΛ(x)TΛ the parameter of the variation.
The precise form of AΛ(x) can be determined for example by evaluating the transfor-

mation of the path-integral measure of the chiral fields in the theory under a symmetry
transformation, i.e. by calculating functional determinants. Recall that only chiral
modes can induce anomalies. Equivalently one can also determine the index of the cor-
responding chiral kinetic operators. These procedures are nicely explained and carried
out in full detail in [9]. The result for the anomaly is

AΛ(x) =
∑
chiral
matter

c εµ1ν1...µd/2νd/2 trR
(
TΛ ∂µ1Aν1 . . . ∂µd/2

Aνd/2
)

+O(A
d/2+1) , (2.3)

with c a normalization constant depending on the type of fields, and the trace is taken in
the representation R, in which the matter field which induces the anomaly transforms.
When we treat anomalies for different fields in four and six dimensions later in this
thesis, we will just state the values for c and rather than calculating them explicitly.

The structure (2.3) of AΛ(x) suggests to rewrite the anomalous variation of the
effective action in the language of differential forms

δεΓ =

∫
ddx
√
−g εΛ(x)AΛ(x) =

∑
chiral
matter

c

∫
q1
d(R) , (2.4)

where q1
d(R) is a d-form

q1
d(R) := trR

(
ε (dA)

d/2
)

+O(A
d/2+1) = trR

(
ε F

d/2
)

+O(A
d/2+1) . (2.5)

It is important to notice that q1
d(R) is not uniquely determined. In particular the

integral in (2.4) is invariant under adding exact forms dψd−1 which vanish at infinity.
Furthermore one is always free to add local counterterms c

∫
φd to the action. This
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corresponds to adding the variation δφd to q1
d(R). To put it in a nutshell, the ambiguity

of determining q1
d(R) is

q1
d(R) ∼ q1

d(R) + δφd + dψd−1 . (2.6)

Nevertheless it would be desirable to find an unambiguous way of characterizing anoma-
lies, and we will do so in the following by using characteristic classes thereby defining
what is called the anomaly polynomial I(R) which corresponds to q1

d(R).
The first step is to formally extend our d-dimensional spacetime Md to Md × D2,

where D2 is the two-dimensional disc. Note that also the gauge fields and their gauge
transformations are formally extended into the two new directions. Let us define the
following characteristic class on Md ×D2

Pd+2(R) := trR
(
F
d/2+1

)
, (2.7)

which is a top degree form. It is easy to see that Pd+2(R) is closed and gauge-invariant

dPd+2(R) = δPd+2(R) = 0 . (2.8)

By the Poincaré lemma the closedness of Pd+2(R) implies that it is locally exact

Pd+2(R)
locally

= dQCS
d+1(R) , (2.9)

where QCS
d+1(R) are locally defined (d+ 1)-forms which are called Chern-Simons forms.

It is important to notice that the Chern-Simons forms are not uniquely defined. In fact
one can always add exact forms to them

QCS
d+1(R) ∼ QCS

d+1(R) + dΦd (2.10)

with Φd a form of degree d. The fact that the variation of Pd+2(R) vanishes implies
that the variations of the Chern-Simons forms are closed

0 = δPd+2(R)
locally

= δ
(
dQCS

d+1(R)
)

= d
(
δQCS

d+1(R)
)
. (2.11)

From this we can once again conclude by the Poincaré lemma that the variations of the
Chern-Simons forms, which are defined on the individual simply connected patches, are
exact

δQCS
d+1(R) = dQ1

d(R) , (2.12)

with Q1
d(R) differential forms of degree d. Again for a fixed choice of δQCS

d+1(R) the
corresponding Q1

d(R) is not uniquely defined since one can add exact forms dΨd−1.
Putting this together with the ambiguity in defining the Chern-Simons forms (2.10) we
obtain the following equivalence relation

Q1
d(R) ∼ Q1

d(R) + δΦd + dΨd−1 . (2.13)
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The equations (2.9), (2.12) together are called the descent equations. Let us stress once
again that these considerations were carried out in the extended (d + 2)-dimensional
spacetime M×D2, and all differential forms Pd+2(R), QCS

d+1(R), Q1
d(R), Φd, Ψd−1, as

well as the exterior derivative are defined on the latter. Also note that by ’δ’ we mean a
standard gauge variation and not a BRST transformation in which the gauge parameter
is replaced by a ghost field. For a nice exposition on the beautiful connection between
anomalies and BRST cohomology we again refer to [9].

We are now in the position to connect this rather formal treatment to anomalies.
Recall that we want to find a way to characterize anomalies in an unambiguous way.
The crucial point is now that the unappealing equivalence relation of an anomaly (2.6)
has precisely the same form as (2.13). We just need map differential forms on Md to
their formal extensions on Md ×D2

q1
d(R) 7→ Q1

d(R) , (2.14a)

φd 7→ Φd , (2.14b)

ψd−1 7→ Ψd−1 . (2.14c)

We can then characterize an anomaly AΛ by the anomaly polynomial I(R) which is
defined without ambiguities on Md ×D2 via the characteristic class Pd+2(R)

I(R) := cPd+2(R) (2.15)

with the normalization constant c. The vanishing of an anomaly is then equivalent to
the vanishing of the total anomaly polynomial Id+2

Id+2 := IGS +
∑
chiral
matter

I(R) , (2.16)

where we included also an additional contribution IGS coming from Green-Schwarz
terms on which we shortly comment at the end of this section. There is one subtlety
which we didn’t mention explicitly. In the preceding analysis we focused on a single
gauge factor. If there are simultaneously several non-Abelian and Abelian gauge factors
as well as local Lorentz invariance present, there are also mixed anomalies, i.e. the field
strengths of these three categories appear with mixed products in the AΛ and therefore
also in the anomaly polynomial.

One can show that a quantum anomaly is a one-loop effect, for example by introduc-
ing a loop counting parameter S → 1

λ
S in the calculation of the functional determinant.

More precisely, the fields which run in the loop are chiral modes, and the external legs
are either gauge bosons or gravitons if we consider gravitational anomalies. The total
number of external legs is given by d/2 + 1, i.e. by the number of field strength tensors
in the anomaly polynomial. Note that these constitute background fields for the case
of anomalies of global symmetries. We depict the form of these loops in Figure 2.1.
When the external legs are all gravitons, we face a pure a gravitational anomaly, for
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Figure 2.1: This is the general form of a one-loop contribution to the anomaly. The
number of external legs is d/2 + 1, where d is the number of spacetime dimensions.

solely gauge bosons a pure gauge anomaly, and for mixed external legs (gravitons and
gauge bosons) a mixed gravitational-gauge anomaly.

Note also that this characterization of anomalies in terms of polynomials in an ex-
tended space works also for theories without an underlying classical action, for example
anomalies of six-dimensional non-Abelian tensor theories. It is not known if there ex-
ists an action for such theories. Nevertheless people determined the eight-dimensional
anomaly polynomial, e.g. for the R-symmetry [10–20].

Finally to close this section let us mention that there can also sometimes appear
additional classical contributions to anomalies which are crucial. Indeed, axions or two-
form fields might transform in a non-trivial way under gauge transformations and render
the classical action non-gauge-invariant. This results in modified Bianchi identities
and is called Green-Schwarz mechanism. Indeed, it first arose in type I string theory
canceling its gauge anomalies [21]. In this thesis our focus is on four dimensions, where
the Green-Schwarz mechanism is mediated by gauged axions, and six dimensions, where
two-forms are responsible for classical non-gauge-invariance [22,23].

2.2 One-Loop Chern-Simons Terms

Throughout this thesis we frequently make use of one-loop corrections to Chern-Simons
terms in three and five dimensions. They are induced from integrating out parity-
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violating massive modes, and by parity transformations we mean reflections of an odd
number of spatial directions. Via this procedure the classical parity anomaly of the
spectrum is transferred to the effective action since the Chern-Simons terms are not
invariant under such transformations. Importantly, these loop-corrections are indepen-
dent of the mass scale. We will see that this topological property makes them very
robust quantities to encode crucial information about the spectrum. In chapter 7 we
use them to formulate necessary conditions for a consistent truncation to be used as
an effective theory for phenomenology. However, the presumably nicest and most im-
portant property is the relation of Chern-Simons terms to anomalies of theories in one
dimension higher. While the precise relation was long unclear, we provide in section 10.2
the procedure of how to extract gauge anomalies in four and six dimensions from one-
loop Chern-Simons terms in three and five dimensions, respectively, using large gauge
transformations. In chapter 12 we show that this mechanism has a natural implemen-
tation in the M-theory to F-theory duality, and one can use geometric symmetries of
the Weierstrass model in order to explicitly proof cancelation of gauge anomalies in
F-theory.

2.2.1 Three Dimensions

Let us introduce our conventions for Chern-Simons terms in three dimensions. For a
general theory of Abelian vector fields AΛ with field strength FΛ = dAΛ they take the
form

SCS =

∫
ΘΛΣA

Λ ∧ FΣ , (2.17)

where ΘΛΣ are constants.
Importantly, these terms might not only appear at the classical level but can also

receive quantum corrections which are one-loop exact. The corresponding Feynman
diagram is depicted in Figure 2.2. It is well-known that a massive charged spin-1/2-
fermion ψ

1/2 contributes to ΘΛΣ as [24–26]

Θloop
ΛΣ =

1

2
qΛqΣ sign(m) , (2.18)

where qΛ is the charge of the fermion under the U(1) gauge boson AΛ and sign(m) is
the sign of the mass m in the Lagrangian

e−1L = −ψ̄
1/2 /Dψ1/2 +mψ̄

1/2
ψ

1/2 (2.19)

with

Dµψ
1/2 =

(
∇µ − iqΛA

Λ
µ

)
ψ

1/2 . (2.20)

Let us shortly comment on the significance of sign(m). While the physical mass is of
course positive semi-definite, the meaning of sign(m) can be understood as follows: The
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Figure 2.2: This is the loop which induces Chern-Simons terms in three dimensions.
The external legs are Abelian gauge bosons under which the spin-1/2 fermions running
in the loop are charged.

Lorentz group in three dimensions SO(2, 1) has only one (real) spinor representation.
However the Clifford algebra has two physically inequivalent representations related by
γµ → −γµ. Similarly, the massive little group has two spinor representations. The sign
of m tells you under which spinor representation of the little group the massive particle
transforms. However, for this to make sense you first have to fix a representation of the
Clifford algebra since by a change of the latter γµ → −γµ one has m → −m. In this
thesis we choose the basis of the Clifford algebra in three dimensions in such a way that
the circle-compactification of a four-dimensional left-handed spinor yields the following
Kaluza-Klein contribution for the mass of the n-th Kaluza-Klein mode

m = · · ·+ n

r
, (2.21)

where r is the radius of the circle.

Finally let us remark that the mass terms of the fermions violate parity. In par-
ticular, under such a transformation one finds m → −m. This classical property is
also present in the quantum setting after integrating out these modes since the Chern-
Simons terms are also parity-odd.
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2.2.2 Five Dimensions

Five-dimensional Chern-Simons terms for U(1) gauge fields take the general form

Sgauge
CS = − 1

12

∫
kΛΣΘA

Λ ∧ FΣ ∧ FΘ , (2.22a)

Sgrav
CS = −1

4

∫
kΛA

Λ ∧ tr(R∧R) , (2.22b)

where kΛΣΘ and kΛ are constants and R is the five-dimensional curvature two-form.
Although (2.22b) is higher-curvature, it plays an important role in our discussions.

In addition to Chern-Simons couplings which arise at the classical level the effective
theory can admit one-loop induced Chern-Simons couplings from integrating out mas-
sive charged spin-1/2 fermions ψ

1/2, complex self-dual two-forms Bµν in the sense of [27],

and spin-3/2 fermions ψ
3/2
µ [28–30]. The form of the corresponding Feynman graphs is

depicted in Figure 2.3. The contributions of the individual fields are given by

Figure 2.3: This type of loops induces the Chern-Simons couplings kΛΣΘ, kΛ in five
dimensions. The external legs are either three Abelian gauge bosons or one Abelian
gauge bosons plus two gravitons, respectively. The modes which run in the loop are
spin-1/2 fermions, self-dual tensors and spin-3/2 fermions.

kloop
ΛΣΘ = cAFF qΛqΣqΘ sign(m) , (2.23)

kloop
Λ = cARR qΛ sign(m) , (2.24)

where the cAFF , cARR depend on the type of field and are given in Table 2.1. The
quantity qΛ is the charge under AΛ and sign(m) depends on the representation of the
massive little group SO(4) ∼= SU(2) × SU(2) (locally). In analogy to the situation in
three dimensions, which we discussed before, SO(4) admits two spinor representations,
and the Clifford algebra in five dimensions has again two inequivalent representations
related by γµ → −γµ. The full Lorentz group in five dimensions SO(4, 1) has only one
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Spin-1/2 fermion Self-dual tensor Spin-3/2 fermion

cAFF
1
2

−2 5
2

cARR −1 −8 19

Table 2.1: Normalization factors for one-loop Chern-Simons terms in five dimensions.

(pseudo-real) spinor representation. The quantity sign(m) is related to the representa-
tions of the massive little group SO(4) ∼= SU(2)× SU(2) (locally) by

sign(m) =

{
+1 for

(
1
2
, 0
)
,
(
1, 0
)
,
(
1, 1

2

)
,

−1 for
(
0, 1

2

)
,
(
0, 1
)
,
(

1
2
, 1
)
,

(2.25)

where we labeled representations of SU(2) × SU(2) by their spins. Again we fix the
representation of the Clifford algebra by demanding that chiral six-dimensional modes
on a circle precisely yield (2.25) interpreting the representations of SU(2) × SU(2) as
the six-dimensional helicity group. For convenience let us display the Lagrangians of
the five-dimensional fields

e−1L1/2 = −ψ̄
1/2 /Dψ1/2 +mψ̄

1/2
ψ

1/2 , (2.26a)

e−1LB = −1

4
i sign(m) εµνρστB̄µνDρBστ −

1

2
|m| B̄µνB

µν , (2.26b)

e−1L3/2 = −ψ̄
3/2
µ γ

µνρDνψ
3/2
ρ +m ψ̄

3/2
µ γ

µνψ
3/2
ν , (2.26c)

with

Dµψ
1/2 =

(
∇µ − iqΛA

Λ
µ

)
ψ

1/2 , (2.27a)

D[µBνρ] =
(
∂[µ − iqΛA

Λ
[µ

)
Bνρ] , (2.27b)

D[µψ
3/2
ν] =

(
∇[µ − iqΛA

Λ
[µ

)
ψ

3/2
ν] . (2.27c)

Note that for the fermions again, as in three dimensions, the mass terms violate parity
while for the massive tensor the kinetic term is not invariant.
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Part II

Partial Supersymmetry Breaking
and Consistent Truncations

47





Chapter 3

Overview

A systematic classification of supersymmetric vacua of supergravity theories in various
dimensions has been a challenge since the first constructions of such theories. Su-
pergravity theories with non-minimal supersymmetry can often admit Minkowski or
anti-de Sitter ground states that preserve only a partial amount of supersymmetry.
Finding such solutions is typically more involved than determining the fully supersym-
metric solutions. For supergravity theories formulated in even spacetime dimensions
various breaking patterns have been investigated in detail. For example the N = 2 to
N = 1 breaking in four-dimensional supergravity theories has been investigated already
in [31–38]. Recently there has been a renewed interest in this direction [39–41], which
was partially triggered by the application to flux compactifications of string theory [42].
The general analysis of [40] heavily employs the powerful techniques provided by the
embedding tensor formalism [43,44].

The general study of partial supersymmetry breaking in odd-dimensional theories
has attracted much less attention. Such theories however possess the interesting new
possibility that the dynamics of some fields can arise from Chern-Simons-type couplings
that are topological in nature. As was pointed out already for three-dimensional su-
pergravity theories [45] such couplings can allow for special supersymmetry breaking
patterns. In this part we show that in five-dimensional supergravity theories with six-
teen supercharges denoted as N = 4, Chern-Simons-type couplings for two-form tensor
fields can yield interesting new supersymmetry breaking patterns to vacua preserving
eight supercharges denoted as N = 2. Such tensor fields can have first-order kinetic
terms and become massive by a Stückelberg-like mechanism in which they eat a dy-
namical vector field [27, 46, 47]. The degrees of freedom of such tensors are counted
by realizing that they have zero degrees of freedom before eating the vector but admit
three degrees of freedom as massive fields. Hence they should be distinguished from
tensors with standard kinetic and mass terms. They have been named self-dual tensors
in [27], and we introduced them in subsection 2.2.2. The mechanism rendering the
tensor fields massive by eating a vector will be called tensorial Higgs mechanism in the
following.

We begin this part by studying general vacua of N = 4 gauged supergravity in five
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dimensions using the embedding tensor formalism of [47] which encodes the gauging
of global symmetries in a very convenient way. After assigning vacuum expectation
values (VEVs) to the scalars we calculate the gravitino masses, i.e. the number of
broken supersymmetries, the cosmological constant, the bosonic spectrum including
mass terms and charges, as well as Chern-Simons terms. These quantities depend on
the form of the embedding tensors contracted with the VEVs of the coset representatives
of the scalar manifold. Once these objects are specified, one can fully analyze the theory
around the vacuum. While such an analysis is possible for each considered vacuum, a
classification of allowed vacua is beyond the scope of our work.

We continue by analyzing in full detail theories which are subject to a non-vanishing
Abelian magnetic gauging only, i.e. gauged by a constant anti-symmetric matrix ξMN .
The latter encodes the couplings of the five-dimensional self-dual tensors to the vector
fields and the form of the first order kinetic terms. A non-trivial ξMN also induces
vector gaugings and a scalar potential. We analyze the conditions on ξMN that yield
partial supersymmetry breaking to an N = 2 Minkowski vacuum. The massless and
massive N = 2 spectrum comprising fluctuations around this vacuum are then deter-
mined systematically. We particularly stress the appearance of massive tensor fields
and massive spin-1/2 and spin-3/2 fermions. This allows us to derive the key features of
the effective N = 2 supergravity theory arising for the massless fluctuations around the
ground state. The N = 2 effective action for the massless fields comprises two parts.
Firstly, there are the classical couplings inherited from the underlying N = 4 theory.
They are determined by truncating the original theory to the appropriately combined
massless modes. At energy scales far below the supersymmetry breaking scale one might
have expected that this determined already the complete N = 2 theory. However, as
we show in detail in our work, the massive tensor, spin-1/2 and spin-3/2 modes have
to actually be integrated out and generically induce non-trivial corrections. In fact,
using the results of subsection 2.2.2 one infers that if these massive fields are charged
under some vector field they generically induce non-trivial one-loop corrections to the
Chern-Simons terms for the vector. One-loop corrections to the Chern-Simons terms
due to massive charged spin-1/2 fermions have been considered in [28,48], but we stress
here that in the N = 4 to N = 2 breaking both massive tensors and gravitini alter the
result crucially. These kind of one-loop corrections are independent of the mass scale
of the fields and therefore have to be taken into account in a consistent effective theory
at scales well below the supersymmetry breaking scale.

After this analysis we then extend and use our results on partial supersymmetry
breaking and one-loop Chern-Simons terms as a tool to investigate consistent trunca-
tions of supergravity and string theory. In principle for a general compactification of
some higher-dimensional theory on a compact manifold one has to include all massive
and massless modes in the derivation of the effective action. In contrast, consistent
truncations describe the dynamics only for a subset of all these modes. By defini-
tion these modes are chosen such that solutions of the lower-dimensional equations
of motion lift to solutions of the higher-dimensional equations of motion. It is this
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property that allows one to use the truncated theories as tools for constructing higher-
dimensional solutions. However, recently consistent truncations have also been used
for phenomenology in non-Calabi-Yau compactifications. Consequently, the effective
action derived from a consistent truncation should better match the genuine effective
action with the whole tower of massive modes integrated out. Setups with partial su-
pergravity breaking will allow us to derive necessary conditions for this agreement in
theories where we already know parts of the effective action, like e.g. Calabi-Yau com-
pactifications. We investigate this issue in the context of one-loop corrections to the
Chern-Simons terms.

As an application we then make contact with M-theory compactifications on SU(2)-
structure manifolds. First we study general consistent truncations of M-theory on
SU(2)-structure manifolds to N = 4 gauged supergravity before we restrict to the
special case of Calabi-Yau manifolds with vanishing Euler number, which have SU(2)-
structure as well, as can be seen by the Poincaré-Hopf theorem. These spaces consti-
tute N = 2 Minkowski vacua of general N = 4 gauged supergravity including massive
modes. The same analysis has been carried out for the type IIA case in [49, 50]. Since
the Chern-Simons terms in the genuine effective action of M-theory on a smooth Calabi-
Yau threefold are not corrected by integrating out massive modes [51–53], we demand
that one-loop Chern-Simons terms should also be absent in the effective action of a
consistent truncation. For the analyzed example of the Enriques Calabi-Yau it turns
out that the massive modes are not charged under any massless vector, and one-loop
corrections therefore trivially cancel. This is one possible way to ensure that consistent
truncations on SU(2)-structure threefolds that are also Calabi-Yau can be compati-
ble with the genuine effective action. However, already in the considered consistent
truncation for the Enriques Calabi-Yau we miss at the massless level a vector multi-
plet and a hypermultiplet which are not captured by our particular SU(2)-structure
ansatz. Nevertheless, we argue that one can consistently complete the Chern-Simons
terms including an additional massless vector.

As a second example we consider a particular consistent truncation of type IIB
supergravity on a squashed Sasaki-Einstein manifold with RR-flux. This is again de-
scribed by five-dimensional N = 4 gauged supergravity, and indeed there are N = 2
vacua that are now AdS [54–56].1 The most prominent example is certainly the five-
sphere although our results hold for any squashed Sasaki-Einstein manifold. In the
theory around the vacuum there are massive states that are charged under the gauged
U(1) R-symmetry. Remarkably their one-loop corrections to the gauge and gravita-
tional Chern-Simons terms cancel in a very non-trivial way. While we are not able to
give a precise interpretation of this fact, it is an intriguing observation that such can-
celations take place. We suspect that there could exist an underlying principle which
ensures the vanishing of such scale-invariant corrections in consistent truncations. Let
us however also stress that in the AdS case the existence of an effective theory can be
generally questioned, since the AdS radius is linked to the size of the compactification

1See also [57–70] for related works on this subject.
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space. It is not hard to see that the squashed Sasaki-Einstein reductions of type IIB are
reminiscent of the general SU(2)-structure reductions of M-theory considered before.
It was indeed argued that there is a relation between these two settings when using
T-duality [71–75] if one includes warping in the SU(2)-structure ansatz, which is in
general quite difficult and beyond the scope of this thesis.

This part is organized as follows. In chapter 4 we review N = 4 gauged supergravity
in five dimensions using the embedding tensor formalism and evaluate the spectrum as
well as the relevant parts of the Lagrangian around the vacuum in terms of contracted
embedding tensors. We fully analyze supersymmetry breaking from N = 4 to N = 2 in
an Abelian configuration with a non-trivial embedding tensor ξMN in chapter 5. We in
detail account for the tensorial Higgs mechanism as well as the super-Higgs mechanism,
and we determine the N = 2 spectrum and one-loop effective action. We argue that
all massive multiplets generically induce one-loop corrections to the vector couplings of
the theory that are independent of the supersymmetry breaking scale. We proceed in
chapter 6 with the general description of M-theory compactifications on SU(2)-structure
manifolds. In chapter 7, after stating some general remarks about the quantum effective
action of consistent truncations, we analyze M-theory on the Enriques Calabi-Yau and
type IIB supergravity consistent truncation on a squashed Sasaki-Einstein manifold.



Chapter 4

Gauged N = 4 Supergravity in Five
Dimensions and its Vacua

We start this chapter with a short review of some important facts about five-dimensional
N = 4 gauged supergravity theories in section 4.1. In section 4.2 we provide a tool
to extract the propagating degrees of freedom out of the theory since the standard
formulation in [47] uses vectors and dual tensors on equal footing. We study the vacua
of this setup in section 4.3 by deriving the mass terms and charges of the scalar and
tensor fields, and also by giving expressions for the vector masses, field strengths and
Chern-Simons terms. The results depend on the precise form of the embedding tensors
contracted with the scalar field VEVs. Since we are in particular interested in the
amount of preserved supersymmetry in the vacuum, we also compute the mass terms
of the gravitini in terms of the contracted embedding tensors. Finally, we derive some
properties of the subclass of Minkowski vacua in section 4.4.

4.1 Generalities

Let us at the beginning state the general properties of N = 4 gauged supergravity in
five dimensions along the lines of [46, 47].1 First consider ungauged Maxwell-Einstein
supergravity which couples n vector multiplets to a single gravity multiplet. Note that
as long as the theory is not gauged, one can equally well replace the vector multiplets
by dual tensor multiplets. The gravity multiplet has the field content

(gµν , ψ
i
µ, A

ij
µ , A

0
µ, χ

i, σ) (4.1)

with the metric gµν , four spin-3/2 gravitini ψiµ, six vectors (Aijµ , A
0
µ), four spin-1/2 fermions

χi and one real scalar σ. The indices of the fundamental representation of the R-
symmetry group USp(4) are written as i, j = 1, . . . , 4. The symplectic form of USp(4),

1We stress that in our conventions five-dimensional N = 4 supergravity theories have 16 super-
charges and thus are half-maximal supergravities.
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denoted Ω, enjoys the following properties

Ωij = −Ωji , Ωij = Ωij , ΩijΩ
jk = −δki . (4.2)

Raising and lowering of USp(4) indices is carried out according to the rule

V i = ΩijVj , Vi = V jΩji . (4.3)

The double index ij labels the 5 representation of USp(4) defined by the following
properties

Aijµ = −Ajiµ , Aijµ Ωij = 0 , (Aijµ )∗ = Aµ ij . (4.4)

Since USp(4) is the spin group of SO(5), we will often use the isomorphism so(5) ∼=
usp(4) to switch between representations of both groups. The indices of the fundamental
representation of SO(5) are denoted by m,n = 1, . . . , 5, and the Kronecker delta δmn is
used to raise and lower them. Moreover all massless fermions in this part of the thesis
are supposed to be symplectic Majorana spinors. For further conventions and useful
identities consult Appendix A. Finally we will often use the definition

Σ := eσ/
√

3 , (4.5)

where σ is the real scalar of the gravity multiplet (4.1).
Having introduced the gravity multiplet we can now further couple n vector multi-

plets labeled by a, b = 6, . . . , 5 + n. The indices are again raised and lowered using the
Kronecker delta δab. The multiplets have the structure

(Aaµ, λ
ia, φija) , (4.6)

where Aaµ denote the vectors, λia spin-1/2 fermions, and the φija scalars in the 5 of
USp(4).

The set of all scalars in the theory span the manifold

M =M5,n × SO(1, 1) , M5,n =
SO(5, n)

SO(5)× SO(n)
, (4.7)

where we parametrize the coset M5,n by the scalar fields φija in the vector multiplets
whereas the SO(1, 1) part is captured by the scalar σ in the gravity multiplet. Hence
the global symmetry group of the theory is found to be SO(5, n)×SO(1, 1). Note that

dim
(
M5,n

)
= dim

(
SO(5, n)

)
− dim

(
SO(5)

)
− dim

(
SO(n)

)
= 5n . (4.8)

We now define SO(5, n) indices M,N = 1, . . . , 5 + n, which we can raise and lower
with the SO(5, n) metric (ηMN) = diag(−1,−1,−1,−1,−1,+1, . . . ,+1). The coupling
of the vector multiplets to the gravity multiplet is realized by noting that all vectors
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in the theory transform as a singlet A0 and the fundamental representation AM of
SO(5, n):

(A0, Aij, An)→ (A0, AM) , (4.9)

and they carry SO(1, 1) charges −1 and 1/2 for A0 and AM , respectively. In terms of
these representations the generators tMN of SO(5, n) and t0 of SO(1, 1) read2

t Q
MN P = 2δQ[M ηN ]P , t N

0M = −1

2
δNM , t 0

MN 0 = 0 , t 0
0 0 = 1 . (4.10)

The most convenient way to describe the coset space M5,n is via the coset repre-
sentatives V = (V m

M ,V a
M ), here m = 1, . . . , 5 and a = 6, . . . n + 5 are the indices of

the fundamental representations of SO(5) and SO(n), respectively. The definition is
such that local SO(5)×SO(n) transformations act from the right while global SO(5, n)
transformations on V act from the left. It is important to notice that

V a
M = ηMN VNa , V m

M = −ηMN VNm , (4.11)

and also, since (V m
M ,V a

M ) ∈ SO(5, n), we have

ηMN = −V m
M VNm + V a

M VNa . (4.12)

Furthermore we define a non-constant positive definite metric on the coset

MMN := V m
M VNm + V a

M VNa (4.13)

with inverse given by MMN , which is easy to check. Lastly we introduce

MMNPQR := εmnpqrV m
M V n

N V
p

P V
q

Q V
r

R , (4.14)

where εmnpqr is the (flat) five-dimensional Levi-Civita tensor.
We proceed with the gauging of global symmetries. The different possible gaugings

are most conveniently described using the embedding tensors fMNP , ξMN and ξM , which
are totally antisymmetric in all indices. They determine the covariant derivative3

Dµ = ∇µ − AMµ f NP
M tNP − A0

µ ξ
MN tMN − AMµ ξN tMN − AMµ ξM t0 . (4.15)

Note that in the ungauged theory the embedding tensors are supposed to transform
under the global symmetry group. Fixing a value for the tensor components the global
symmetry group is then broken down to a subgroup. In this thesis we will mostly set
ξM = 0 since the calculations simplify considerably and several interesting cases are

2All antisymmetrizations in this thesis include a factor of 1/n! .
3Note that a gauge coupling constant g can explicitly be included whenever an embedding tensor

appears. However for simplicity we take g = 1 in the following.
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already covered. However a non-vanishing ξM might also be included straightforwardly.
Accordingly the covariant derivative (4.15) simplifies to

Dµ = ∇µ − AMµ f NP
M tNP − A0

µ ξ
MN tMN . (4.16)

The embedding tensors are further subject to quadratic constraints which read in the
case of ξM = 0

fR[MNf
R

PQ] = 0 , ξ Q
M fQNP = 0 . (4.17)

For vanishing ξM the linear constraints on the embedding tensors [47] are trivially
satisfied. There is an important issue with this kind of nontrivial gaugings which forces
us to dualize some of the vector fields AMµ into two-forms Bµν M . Therefore we consider
an action where both AMµ and Bµν M are present in order to write down a general gauged
supergravity with ξM = 0.4 Using this approach the tensor fields Bµν M carry no on-shell
degrees of freedom. However, they can eat up a dynamical vector with three degrees of
freedom and become massive. This will be treated in section 4.2.

The bosonic Lagrangian of thisN = 4 gauged supergravity theory is given by [46,47]

e−1Lbos =− 1

2
R− 1

4
Σ2MMN HM

µνHµν N − 1

4
Σ−4F 0

µνF
µν 0

− 3

2
Σ−2(∇µΣ)2 +

1

16
(DµMMN)(DµMMN)

+
1

16
√

2
εµνρλσξMNBµν M

(
DρBλσN + 4ηNPA

0
ρ∂λA

P
σ + 4ηNPA

P
ρ ∂λA

0
σ

)
− 1√

2
εµνρλσA0

µ

(
∂νA

M
ρ ∂λAσM +

1

4
ξMNA

M
ν A

N
ρ ∂λA

0
σ − fMNPA

M
ν A

N
ρ ∂λA

P
σ

)
− 1

4
fMNP fQRS Σ−2

( 1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
− 1

16
ξMN ξPQ Σ4

(
MMPMNQ − ηMPηNQ

)
− 1

6
√

2
fMNP ξQR ΣMMNPQR ,

(4.18)

where R denotes the Ricci scalar, and we define

HM
µν := 2 ∂[µA

M
ν] − ξ M

N A0
µA

N
ν − f M

PN APµA
N
ν +

1

2
ξMNBµν N , (4.19)

as well as

F 0
µν := ∂µA

0
ν − ∂νA0

µ . (4.20)

The vectors and dual tensors in this Lagrangian are subject to vector gauge transforma-
tions with scalar parameters (Λ0,ΛM) as well as standard two-form gauge transforma-
tions with one-form parameters ΞµM . This property will be of importance later since

4As long as ξM vanishes, we do not have to introduce a tensorial counterpart B0
µν for A0

µ.
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it allows us to remove some of the vectors from the action by gauge transformations.
For our choice of gaugings, i.e. ξM = 0, the variation of the vectors reads

δA0
µ = ∇µΛ0 , δAMµ = DµΛM − 1

2
ξMNΞµN . (4.21)

We now continue with the Lagrangian of the gravitino fields. To simplify our nota-
tion we introduce contractions of the embedding tensors with the coset representatives

ξmn := V m
M V n

N ξMN , ξab := V a
M V b

N ξMN , ξam := V a
M V m

N ξMN ,

fmnp := V m
M V n

N V
p

P fMNP , fmna := V m
M V n

N V a
P fMNP , . . . . (4.22)

Note that these objects are field-dependent and acquire a VEV in the vacuum. It is
important to realize that the position of the SO(5, n)-indices M,N in (4.22) is essen-
tial because of (4.11). Using this notation we define what will be identified with the
gravitino mass matrix

Mij
ψ := Mmn

ψ Γ ij
mn (4.23)

with

Mmn
ψ := − 1

4
√

2
Σ2 ξmn +

1

24
εmnpqr fpqr , Γmn := Γ[mΓn] , (4.24)

where Γm are the SO(5) gamma matrices. We are now in the position to write down
the relevant fermionic terms in the Lagrangian. For the purpose of this part we will
find it sufficient to only recall the kinetic terms and the mass terms of the gravitini.
The remaining quadratic terms of the fermions can be found in [46, 47]. The relevant
part of the Lagrangian reads

e−1Lgrav =− 1

2
ψ̄iµ γ

µνρDν ψρ i +
1

2
iMψ ij ψ̄

i
µ γ

µν ψjν . (4.25)

The precise form of the covariant derivative is of no importance for the moment, since
we are only dealing with the gravitino mass in this part. This concludes our discussion
of the general properties of N = 4 gauged supergravity in five dimensions.

4.2 Isolation of the Propagating Degrees of Free-

dom

The formulation of N = 4 gauged supergravity in terms of embedding tensors, as
presented in [47], is a very powerful way to implement general gaugings of global sym-
metries. However, in order to study vacua and the resulting effective field theories we
need to eliminate non-propagating degrees of freedom used in the democratic formu-
lation of [47]. In particular, we have written down the N = 4 gauged supergravities



58 CHAPTER 4. GAUGED SUPERGRAVITY IN FIVE DIMENSIONS

in terms of vectors and dual tensors. We eliminate redundant vectors in the action by
tensor gauge transformations rendering the corresponding dual tensors the (massive)
propagating degrees of freedom. All remaining tensors that are not involved in this
gauging procedure turn out to decouple in the action and can therefore be consistently
set to zero. In these cases the corresponding vectors constitute the appropriate formu-
lation. In the following we carry out the necessary redefinition of vectors and tensors
explicitly.

The isolation of the appropriate propagating degrees of freedom in N = 4 gauged
supergravity depends on the form of the embedding tensor ξMN .5 This can easily be
seen as follows. Consider the gauge transformations of the vectors AM (4.21) as well as
the variation of the action with respect to the tensors Bµν M

δAMµ = DµΛM − 1

2
ξMNΞµN ,

δS

δBµν M

∼ ξMN(. . . )N . (4.26)

Note that one can always find orthogonal transformations such that

(ξMN) 7→

 ξM̂N̂ 0M̂N̄

0M̄N̂ 0M̄N̄

 , (4.27)

M̂, N̂ = 1, . . . , rank(ξMN) , M̄ , N̄ = rank(ξMN) + 1, . . . , 5 + n ,

with (ξM̂N̂) a full-rank matrix. It is now easy to see that after appropriate partial gauge

fixing one can invert (ξM̂N̂) to obtain

δAM̂µ = −AM̂µ (4.28)

using tensor gauge transformations Ξµ M̂ . The AM̂µ are therefore pure gauge and can be
removed from the action. The corresponding tensors Bµν M̂ constitute the appropriate
formulation. In contrast, we find for the remaining vectors and tensors

δAM̄µ = DµΛM̄ ,
δS

δBµν M̄

= 0 . (4.29)

The Lagrangian is therefore independent of the Bµν M̄ , which is why we can set them

to zero. We are left with propagating vectors AM̄ subject to standard vector gauge
transformations. To put it in a nutshell, one can see that the propagating degrees of
freedom are captured by AM̄µ , Bµν M̂ . Moreover, for the pair B0

µν , A
0
µ it turns out that

the tensor B0
µν does not appear in the action and A0

µ constitutes the field carrying the
propagating degrees of freedom.

Note that this procedure easily generalizes if one allows for a non-vanishing ξM . In
this case one just has to replace ξMN → 2ZM0N0

in the previous calculations, where

5We again stress that we set ξM = 0 unless stated differently.
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M0 = (0,M) and

ZMN =
1

2
ξMN , Z0M = −ZM0 =

1

2
ξM . (4.30)

One can then rotate ZM0N0
into a full-rank part and zero-matrices as in (4.27). The

fields A0
µ and B0µν then also take part in the procedure of extracting the propagating

degrees of freedom. As already mentioned several times, we nevertheless set ξM = 0 in
the following.

In this thesis we are interested in deriving the Lagrangian around a vacuum of the
N = 4 theory. In order to extract the propagating fields we therefore slightly modify
the approach which we have just described since this proves convenient for our purposes.
We start with the democratic formulation of N = 4 gauged supergravity reviewed in
section 4.1 including the mentioned redundancies. Let us then assume that we have
found a vacuum in which all scalars, i.e. 〈V m

M 〉, 〈V a
M 〉, 〈Σ〉, acquire a VEV. In analogy

to (4.22) we define

Bm
µν := 〈V〉 m

M BM
µν , Ba

µν := 〈V〉 a
M BM

µν , (4.31a)

Amµ := 〈V〉 m
M AMµ , Aaµ := 〈V〉 a

M AMµ . (4.31b)

Similarly we can introduce the gauge parameters (Λm,Λa) and (Ξm
µ ,Ξ

a
µ) by setting

Λm := 〈V〉 m
M ΛM , Λa := 〈V〉 a

M ΛM , (4.32a)

Ξm
µ := 〈V〉 m

M ΞM
µ , Ξa

µ := 〈V〉 a
M ΞM

µ . (4.32b)

In this rotated basis the gauge transformations (4.21) read

δAmµ =DµΛm +
1

2
ξmn Ξµn −

1

2
ξma Ξµa , (4.33a)

δAaµ =DµΛa +
1

2
ξam Ξµm −

1

2
ξab Ξµ b . (4.33b)

The elimination of redundant vectors and tensors is now carried out for the fluctuations
around the vacuum rather than at a general point in the unbroken theory.

Note that there exist orthogonal matrices S such that the contracted embedding
tensors (4.22) transform as

ST

 ξmn ξmb

ξan ξab

S =

 ξM̂N̂ 0M̂N̄

0M̄N̂ 0M̄N̄

 (4.34)

M̂, N̂ = 1, . . . , rank(ξMN) , M̄, N̄ = rank(ξMN) + 1, . . . , 5 + n ,

where (ξM̂N̂ ) is a full-rank matrix. In particular one can even choose an orthogonal

matrix S such that 〈ξM̂N̂ 〉 is block diagonal

〈ξM̂N̂ 〉 =

γ1ε · · · 0
...

. . .
...

0 · · · γnT ε

 , (4.35)
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where nT = 1
2

rank(ξMN), which turns out to be the number of complex tensors. Fur-
thermore the γ1, . . . , γnT are constants, and ε is the two-dimensional epsilon tensor.

The indices M, M̂, M̄ are raised and lowered with the Kronecker delta. Along the
same lines as before, by inverting 〈ξM̂N̂ 〉 and partial gauge fixing, we find that the
propagating degrees of freedom in the vacuum are captured by AM̄µ and Bµν M̂, where

(AMµ ) =

(
AM̂µ

AM̄µ

)
:= ST

(
Amµ
Aaµ

)
, (BµνM) =

(
Bµν M̂

Bµν M̄

)
:= ST

(
Bµν m

Bµν a

)
.

(4.36)

The gauge transformations are defined similarly, and one easily checks that the com-
plement fields AM̂µ and Bµν M̄ can be eliminated from the action. For later convenience
let us also define the dual elements

(A∗Mµ ) =

(
A∗ M̂µ

A∗ M̄µ

)
:= STηS

(
0M̂

AM̄µ

)
= STη

(
Amµ
Aaµ

)∣∣∣∣
AM̂µ ≡0

, (4.37a)

(B∗µνM) =

(
B∗
µν M̂

B∗
µν M̄

)
:= STηS

(
Bµν M̂

0M̄

)
= STη

(
Bµν m

Bµν a

)∣∣∣∣
Bµν M̄≡0

,

(4.37b)

where η = diag(−1,−1,−1,−1,−1,+1, . . . ,+1). Already at this stage it becomes
obvious that the number of complex massive tensors is always given by 1

2
rank(ξMN).

Moreover a closer look at the Lagrangian (4.18) shows that the charge of the tensors is
independent of the vacuum. This will become important in section 5.2. Unfortunately
for the vectors such simple statements are not possible since most of the properties
depend crucially on the precise form of the vacuum.

4.3 The Theory Around the Vacuum

Having studied the redefinition of vectors and tensors in order to isolate the propagating
degrees of freedom we are now in a position to derive crucial parts of the action around a
general vacuum. In particular, we display the mass terms and charges of the scalars and
tensors as well as the field strengths, Chern-Simons terms and mass terms of the vectors
in a general form which depends on the (field-dependent) contracted embedding tensors
(4.22). Inserting the expressions for the latter for a certain example one is interested
in then easily yields the precise spectrum and the action. Furthermore we derive the
formulae for the cosmological constant as well as the gravitino masses.

Before writing down the Lagrangian, let us define the fluctuations of the scalars σ
and V around their VEVs

σ = 〈σ〉+ σ̃ , (4.38a)

V = 〈V〉 exp
(
φma[tma]

)
, (4.38b)
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where [tma]
N
M = 2δ N

[m ηa]M . The φma capture the unconstrained fluctuations around the
VEVs of the coset representatives. We also define indicesM ,N , . . . in expressions like
fMma using the same transformation as in (4.34). Furthermore we set

ηMN := (STηS)MN , (4.39)

where S is the matrix of (4.34) and η = diag(−1,−1,−1,−1,−1,+1, . . . ,+1).
The relevant part of the Lagrangian of N = 4 gauged supergravity around the

vacuum then reads

e−1L =
1

16
√

2
εµνρλσ ξM̂N̂ B∗

µν M̂DρB
∗
λσ N̂ −

1

16
Σ2 ξM̂N̂ ξ P̂

M̂ B∗
µν N̂B

∗µν
P̂

− 1

4
Σ2F M̄µν F

µν

M̄ −
1

4
Σ−4F 0

µνF
0µν

− εµνρλσ√
2
A0
µ

(
∂νA

∗ M̄
ρ ∂λAσ M̄ − fMNP A∗Mν A∗Nρ ∂λA

∗P
σ −

1

4
ξN̂ P̂ A

∗ N̂
ν A∗ P̂ρ ∂λA

∗ 0
σ

)
− 1

2

(
Dµφma − ξmaA0

µ − f ma
M A∗Mµ

)(
Dµφma − ξmaA0µ − fNmaA

∗µ
N

)
− 1

2
∂µσ̃ ∂

µσ̃ − 1

2
M2

manb φ
maφnb − 1

2
M2 σ̃2 −M2

ma φ
maσ̃ , (4.40)

with

Dµφma := ∂µφ
ma − A0

µ φ
nb
(
ξ a
b δ

m
n − ξ m

n δab
)
− A∗Mµ φnb

(
f a
Mb δ

m
n − f m

Mn δab
)
,

(4.41a)

DρB∗λσ N̂ := ∂ρB
∗
λσ N̂ − ξ

P̂Q̂ ηN̂ Q̂A
0
ρB
∗
λσ P̂ , (4.41b)

F M̄µν := 2 ∂[µA
M̄
ν] − f M̄

NP A∗Nµ A∗Pν , (4.41c)

F 0
µν := 2 ∂[µA

0
ν] , (4.41d)

and

M2
manb :=Σ−2

(
fabpf

p
mn + fabcf

c
mn + fanpf

p
mb + fancf

c
mb + δmnfacpf

cp
b + δabfmcpf

cp
n

)
+

1

3
√

2
Σ
(

3 εmnpqrf
p

ab ξ
qr + 6 εmnpqrf

pq
a ξ r

b + εmnpqrf
pqrξab

+
3

2
δabεmspqrf

sp
n ξqr − δabεmspqrf spqξ r

n

)
(4.42a)

+
1

2
Σ4
(

2 ξmnξab + 2 ξmbξan + δmnξacξ
c
b + δmnξapξ

p
b + δabξmpξ

p
n + δabξmcξ

c
n

)
,

M2 :=Σ−2
(
− 1

9
fmnpf

mnp +
1

3
fmnaf

mna
)

+
4

3
Σ4 ξmaξma +

1

18
√

2
Σ εmnpqrf

mnpξqr ,

(4.42b)

M2
ma :=− 2√

3
Σ−2f bn

a fmbn +
2√
3

Σ4
(
ξabξ

b
m + ξanξ

n
m

)
+

1

6
√

6
εmnpqrΣ

(
3 f np

a ξqr − 2 fnpqξ r
a

)
. (4.42c)
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We stress that (4.40) is not the full bosonic Lagrangian around the vacuum since there
are additional couplings which are not displayed. However, around an N = 2 vacuum,
which is the kind of vacuum we are most interested in, the included terms together
with the residual supersymmetry turn out to be sufficient to determine the full effective
action apart from the metric on the quaternionic manifold. In fact, as we discuss in
more detail along our analysis in subsection 5.3.2, the effective theory is inferred by
knowing the gauge symmetry, Chern-Simons terms as well as the masses and charges
of the fields. This data is indeed captured by (4.40), at least for the bosonic sector. It
is also important to keep in mind that all contracted embedding tensors are meant to
be evaluated in the vacuum.

Let us comment on some of the properties of the action (4.40). Closer inspection
of (4.40) shows that the scalars φma are coupled to the vectors with standard minimal
couplings as well as with Stückelberg couplings. This implies that some of the scalars
φma constitute the longitudinal degrees of freedom of massive vectors. We also see
that it is in general possible to preserve a non-Abelian gauge group in the vacuum
corresponding to a subset of the AM̄µ . For this non-Abelian subgroup the corresponding
Chern-Simons terms can in general appear. The tensors are in general charged only
under a U(1) gauge symmetry. As already mentioned, the number of massive tensors
is given by 1

2
rank(ξMN) which is obvious in (4.40) since their mass matrix, determined

by ξM̂N̂ , is full-rank. In contrast, note that the mass matrices of vectors and scalars
are in general not full-rank.

To proceed further one has to specify the precise form of the contracted embedding
tensors to study the spectrum and the action case by case. In particular, one has to
diagonalize the mass matrices or gauge-interaction matrices of all fields, normalize the
kinetic terms, and possibly complexify the fields. We explicitly carry out this procedure
for the special case of vanishing fMNP in subsection 5.3.1 and for examples of consistent
truncations in section 7.2 and section 7.3 although not presenting all the details of the
computations. The standard form for the Lagrangians of the massive fields are displayed
in (2.26).

To close this general discussion, let us comment on the cosmological constant in
the vacuum. It can be extracted from the value of the scalar potential, which reads in
terms of contracted embedding tensors

V = − 1

12
Σ−2fmnpfmnp +

1

4
Σ−2fmnafmna +

1

4
Σ4 ξamξam +

1

6
√

2
Σ εmnpqrf

mnpξqr .

(4.43)

Furthermore, since we are in particular interested in vacua preserving N = 2 super-
symmetry, it is desirable to formulate a general condition for a certain set of contracted
embedding tensors. Since massless gravitini are in one-to-one correspondence with pre-
served supersymmetries, the remaining amount of supersymmetry in the vacuum can
be determined from the mass terms of the gravitini (4.25). The four eigenvalues of the
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mass matrix (M j
ψ i ) denoted by ±mψ± are given by [76]

mψ± =

√
2 Mmn

ψ Mψmn ∓
√

8
(
Mmn

ψ Mψmn

)2 − 16 Mmn
ψ Mψ np Mpq

ψ Mψ qm . (4.44)

Additionally the masses of the gravitini receive contributions from a possibly non-trivial
cosmological constant Λ = 〈V 〉

δmψ =

√
6

4

√
−〈V 〉 . (4.45)

The condition for preserved N = 2 supersymmetry can then be formulated as

mψ+ − δmψ
!

= 0 . (4.46)

We have now provided all formulae to check, given a set of contracted embedding
tensors, if the associated vacuum preserves supersymmetry and has a non-trivial cos-
mological constant. The spectrum and the most relevant terms of the Lagrangian
are calculated easily using (4.40). In the next section we characterize the subclass of
Minkowski vacua according to their amount of preserved supersymmetry.

4.4 General Properties of Minkowski Vacua

Let us for this section assume that we have found a vacuum of the original N = 4
theory with

〈V 〉 = 0 (4.47)

which is by definition of Minkowski type.6 Therefore δmψ = 0 in (4.45) and the gravitino
masses are simply given by (4.44). Noting that the sum Mmn

ψ Mψmn is quadratic in each
summand there are only three qualitatively different possibilities for gravitino masses
and thus for the amount of preserved supersymmetry in the vacuum which we list in
Table 4.1. We stress that we do not aim for a classification of possible vacua but rather
investigate properties of certain classes of vacua. Since in the following we are mainly
interested in partial supersymmetry breaking vacua from N = 4→ N = 2, let us focus
on the solutions to the second condition in Table 4.1

Mmn
ψ Mψ npM

pq
ψ Mψ qm =

1

4
(Mmn

ψ Mψmn)(Mpq
ψ Mψ pq) 6= 0 . (4.48)

First we bring the antisymmetric matrix Mmn
ψ into block diagonal form by orthogonal

transformations

Mψ 7→

m1ε 0 0
0 m2ε 0
0 0 0

 , (4.49)

6We provide explicit examples of Minkowski vacua in the upcoming chapters.
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Supersymmetry Condition

N = 4 Mmn
ψ = 0 ∀m,n

N = 2 Mmn
ψ Mψ npM

pq
ψ Mψ qm = 1

4
(Mmn

ψ Mψmn)(Mpq
ψ Mψ pq) 6= 0

N = 0 all others

Table 4.1: We collect the characterization for the amount of supersymmetry in
Minkowski vacua.

where ε is the two-dimensional epsilon tensor and m1,m2 ∈ R. Then the expression for
the gravitino masses (4.44) becomes

mψ± = 2|m1 ∓m2| . (4.50)

The condition (4.48) then just states that

m1 = ±m2 6= 0 (4.51)

in order to preserve N = 2 supersymmetry.
Finally let us provide the group-theoretical interpretation for (4.48). When we go

from N = 4 to N = 2 supersymmetry, the R-symmetry USp(4) is broken as follows

USp(4)→ SU(2)R × SU(2)F (4.52)

with SU(2)R the N = 2 R-symmetry and SU(2)F the residual flavor symmetry. Not
that Mmn

ψ are Lie algebra elements of so(5) ∼= usp(4) acting in the fundamental rep-
resentation, which can be derived from (4.23). The group-theoretical decomposition of
traces in the fundamental representation into Casimirs then yields the following con-
straint

tr
so(5)
f M4

ψ
!

= tr
su(2)R⊕su(2)F
f M4

ψ (4.53)

= B
su(2)R⊕su(2)F
f tr

su(2)R(⊕su(2)F
f M4

ψ + C
su(2)R⊕su(2)F
f

(
tr

su(2)R⊕su(2)F
f M2

ψ

)2

.

One can then look up the values for the Casimirs (e.g. by using the results of subsec-
tion E.2.3)

B
su(2)R⊕su(2)F
f = 0 , C

su(2)R⊕su(2)F
f =

1

4
. (4.54)

Inserting these quantities into (4.53) we then obtain precisely the condition (4.48).



Chapter 5

General Solution for Abelian
Magnetic Gaugings

In this chapter we classify all possible vacua of N = 4 gauged supergravity in five
dimensions with

fMNP = ξM = 0 . (5.1)

In particular, for the general category of N = 2 vacua we derive the spectrum of
massive tensors and massive gravitini which enter via a tensorial Higgs mechanism and
a super-Higgs mechanism. Finally we give the complete spectrum and parts of the
effective action around the vacuum including corrections to Chern-Simons terms which
are independent of the supersymmetry-breaking scale.

5.1 Vacuum Conditions

In order to find the vacua of the theory with fMNP = ξM = 0 we consider the scalar
potential in (4.43) which now takes the form

V =
1

4
Σ4ξamξam , (5.2)

where we have used (4.22). The fact that the indices a andm are raised by the Kronecker
delta implies that the scalar potential is a sum of positive semi-definite terms.

Determining the minima of this potential is trivial. The derivative with respect to
Σ yields 〈∂V

∂Σ

〉
= 〈Σ3ξamξam〉

!
= 0 . (5.3)

Since the left-hand-side of this equation is a sum of non-negative terms (Σ is always

65
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positive), the solution simply reads1

〈ξam〉 !
= 0 ∀a,m . (5.4)

The potential at this point takes the value

〈V 〉
∣∣
〈ξam〉=0

= 0 . (5.5)

The remaining derivatives with respect to the scalars in the vector multiplets are triv-
ially vanishing since the potential is positive semi-definite.

In summary, for vanishing embedding tensors fMNP , ξM the vacua are characterized
by the condition 〈ξam〉 = 0 for all a,m. Due to (5.5) all such vacua are necessarily
Minkowskian. The amount of preserved supersymmetry can therefore be inferred from
Table 4.1 or (4.50) using

Mmn
ψ = − 1

4
√

2
Σ2ξmn , (5.6)

i.e. by determining the eigenvalues of 〈ξmn〉. In particular, we obtain an N = 2 vacuum
if 〈ξmn〉 can be brought into the following form using orthogonal transformations

〈ξmn〉 7→

γε 0 0
0 γε 0
0 0 0

 (5.7)

with γ > 0.

5.2 Tensorial Higgs and Super-Higgs Mechanism

In the rest of this chapter we assume that the vacuum preserves N = 2 supersymmetry.
As just mentioned, this means that 〈ξmn〉 can be brought into the form (5.7). Fur-
thermore we note that because of the vacuum condition (5.4) the matrix of contracted
embedding tensors becomes blockdiagonal 〈ξmn〉 〈ξmb〉

〈ξan〉 〈ξab〉

 =

 〈ξmn〉 0mb

0an 〈ξab〉

 . (5.8)

In order to single out the propagating degrees of freedom, as explained in section 4.2, we
have to determine the full-rank part 〈ξM̂N̂ 〉 which we introduced in (4.34) and (4.35).

1Let us stress once more that ξam is a field-dependent quantity.
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It is easy to see that the constants γ1, . . . , γnT defined in (4.35) are obtained from 〈ξmn〉
and 〈ξab〉 by decoupled orthogonal transformations

〈ξmn〉 7→

γ1ε 0 0
0 γ2ε 0
0 0 0

 , 〈ξab〉 7→



γ3ε · · · · · · 0
...

. . .
...

γnT ε
0

...
. . .

...
0 · · · · · · 0


. (5.9)

Note again that we demand

γ1 = γ2 ≡ γ > 0 , (5.10)

which is the N = 2 condition. We conclude that

nT =
1

2

(
rank〈ξmn〉+ rank〈ξab〉

)
. (5.11)

The index split introduced in (4.34)

M→ (M̂,M̄) (5.12)

into a full-rank part and a null-part induces the corresponding split in (5.9)

m→ (m̂, m̄) , a→ (â, ā) , (5.13)

again into full-rank parts labeled by m̂, â and null-parts labeled by m̄, ā. According
to the analysis in section 4.2 the propagating tensors are given by Bm̂, Bâ and the
propagating vectors by Am̄, Aā.

The part of the tensor fields in the Lagrangian (4.40) can now be simplified by using
the quantities γ, γ3, . . . , γnT defined in (5.9). The appearance of the two-dimensional
epsilon tensor in these expressions makes it natural to define the complex tensors out
of the BM̂

Bα := B2α−1 + iB2α , α = 1, 2 , (5.14a)

Bǎ := B2ǎ−1 + iB2ǎ , ǎ = 3, . . . , nT . (5.14b)

One can show that the α index corresponds to the fundamental representation of the
N = 2 R-symmetry group SU(2)R. Here and in the following we will use boldface
symbols to denote complex fields. Inserting these definitions together with (5.9) into
(4.40) we find for the tensor fields2

e−1LB =− 1

16

[
i

1√
2
εµνρλσγB̄

α
µν(∂ρBλσ α + iγBλσ αA

0
ρ) + Σ2γ2B̄

α
µνB

µν
α

]
− 1

16

∑
ǎ

[
i

1√
2
εµνρλσγǎB̄µν ǎ(∂ρBλσ ǎ − iγǎBλσ ǎA

0
ρ) + Σ2γ2

ǎB̄µν ǎB
µν
ǎ

]
.

(5.15)

2In analogy to the fermions we define B̄
α

:= (Bα)∗ .
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In the last step we rescale the complex tensors in order to bring the action into the
standard form (2.26b)

(
Bα,Bǎ

)
7→ 1

25/4

(
√
γBα,

√
|γǎ|Bǎ

)
. (5.16)

We can now determine the characteristic quantities sign(mB), |mB|, qB, i.e. the sign of
the mass, its absolute value and the charge under the U(1) vector A0

sign(mBα) = 1 , |mBα| =
1√
2

Σ2γ , qBα = −γ , (5.17a)

sign(mBǎ) = sign(γǎ) , |mBǎ| =
1√
2

Σ2|γǎ| , qBǎ = γǎ . (5.17b)

This concludes our discussion of the massive tensors. We have found that evaluated
around the N = 2 vacuum there are nT complex massive tensors (Bα,Bǎ) with stan-
dard action (2.26b) and characteristic data (5.17).

The propagating U(1) vector fields A0, Am̄, Aā stay massless in the vacuum since
the Stückelberg couplings to scalars in the Lagrangian (4.40) vanish due to our choice
of gaugings and the vacuum condition 〈ξam〉 = 0. For convenience we summarize the
split of the fields induced by ξMN in Table 5.1.

Rotation with 〈V〉 ξMN -split Physical degrees

(AM , BM)
(Am, Bm)

(Am̄, Bm̄) Am̄ massless

(Am̂, Bm̂) Bα complex, massive

(Aa, Ba)
(Aā, Bā) Aā massless

(Aâ, Bâ) Bǎ complex, massive

Table 5.1: We summarize the natural split of AM and BM induced by ξMN .

As we have already mentioned, in the N = 2 broken phase of an N = 4 theory a
gravitino mass term has to be generated for half of the gravitino degrees of freedom.
This mass arises in the sector of the flavor SU(2)F subgroup of the N = 4 R-symmetry
group USp(4). In fact, two gravitini eat up two spin-1/2 goldstini from the gravity
multiplet and become massive. In this super-Higgs mechanism the massive gravitini
acquire four extra degrees of freedom. The appropriate description of the massive
fields is in terms of a single Dirac spin-3/2 fermion ψµ without a symplectic Majorana
condition. The massive gravitino combines with the two massive complex tensors Bα

from the former gravity multiplet into a massive N = 2 gravitino multiplet (ψµ,Bα).
The construction of such a half-BPS multiplet has been investigated in [77]. In the
following we will briefly discuss the super-Higgs mechanism and determine the mass
and U(1) charge of the gravitino multiplet.
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Let us first consider the four N = 4 symplectic Majorana gravitini ψiµ and the
spin-1/2 fermions in the gravity multiplet χi. These split under the breaking

USp(4)→ SU(2)R × SU(2)F (5.18)

into ψαµ , ψα̇µ and χα, χα̇, respectively. The index α = 1, 2 refers to the fundamental
representation of the N = 2 R-symmetry group SU(2)R, while α̇ = 1, 2 corresponds
to the flavor SU(2)F part. Both indices are raised and lowered with the epsilon tensor
analogous to (4.2) and (4.3). From the fermionic part of the Lagrangian [46,47] it turns
out that all fermion bilinears involving ψαµ and χα vanish in the vacuum leaving only
the kinetic terms for these fields when one uses the N = 2 vacuum conditions (4.46)
and (5.4). Thus we find two massless spin-3/2 symplectic Majorana fermions ψαµ and
two massless spin-1/2 symplectic Majorana fermions χα. We note that throughout this
part all massless fermionic N = 2 fields are taken to be symplectic Majorana.

We proceed with the investigation of the remaining fields ψα̇µ and χα̇. The χα̇

actually are the goldstini that render the ψα̇µ massive and can be removed from the
action by a shift of the gravitini analogous to the one performed in [45, 78]. It is
furthermore convenient to merge the two symplectic Majorana fermions ψα̇µ into a single
unconstrained Dirac spinor3

ψµ := ψα̇=1
µ , (5.19)

and ψα̇=2
µ is also replaced appropriately by ψµ using the symplectic Majorana condition.

The Lagrangian then reads

e−1Lmass grav =− ψ̄µγ
µνρDνψρ +

1√
2

Σ2 γ ψ̄µγ
µνψν , (5.20)

with Dµψν = ∂µψν + iγA0
µψν , and γ is defined in (5.7).

To conclude this section we compare the action (5.20) with the standard form (2.26c)
We find that ψ is in the (1, 1

2
) representation of the little group and carries mass and

A0
µ-charge

sign(mψ) = 1 , |mψ| =
1√
2

Σ2γ , qψ = −γ . (5.21)

These data will be crucial in evaluating the one-loop corrections induced by the massive
gravitino multiplet in the next section. Note that the massive Dirac gravitino ψ indeed
combines with the massive tensors Bα into a massive gravitino multiplet.

3We could also choose ψµ := ψα̇=2
µ which flips the representation and the charge under A0

µ since
both descriptions are equivalent.
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5.3 N = 2 Mass Spectrum and Effective Action

In this section we determine the complete spectrum parameterizing the fluctuations
around the N = 2 vacuum. We determine the masses and U(1)-charges of all fields and
show how they reassemble into N = 2 multiplets in subsection 5.3.1. Furthermore, we
derive the low-energy effective action of the massless modes with particular focus on
the data determining the N = 2 vector sector. The classical truncation from N = 4
to N = 2 is discussed in subsection 5.3.2. The crucial inclusion of one-loop quantum
corrections due to integrating out massive fermions and tensors is discussed in subsec-
tion 5.3.3. These induce extra contributions to the metric and Chern-Simons terms
that are independent of the scale of supersymmetry breaking.

5.3.1 The N = 2 Spectrum

The N = 2 spectrum and its properties can be determined by evaluating the N = 4
action in the vicinity of the N = 2 vacuum. To read off the masses and charges all
kinetic terms and mass terms have to be brought into canonical form after spontaneous
symmetry breaking. This diagonalization procedure is rather lengthy and therefore
partially deferred to Appendix B. In the following we highlight some of the basic steps
and summarize the results.

The key ingredients in the mass generation are the gaugings ξMN . Recall that in
the scalar background we rotated ξMN to ξmn, ξab and found the components

ξmn → ξm̂n̂ , ξm̄n̂ = ξm̄m̄ = 0 , (5.22a)

ξab → ξâb̂ , ξāb̂ = ξāb̄ = 0 , (5.22b)

where ξm̂n̂ and ξâb̂ have maximal rank. This yielded the natural index split

m → (m̄, m̂) → (m̄, [α1], [α2]) ,
a → (ā, â) → (ā, [ǎ1], [ǎ2]) .

(5.23)

Here the splitting of m̂ into [α1], [α2] and the splitting of â into [ǎ1], [ǎ2] arise due to
the block diagonalization in (5.9) with the first index α, ǎ labeling the blocks and the
second index labeling the two entries of each block. In order to extract the massless and
massive scalar spectrum recall that in (4.38b) we introduced φma as the unconstrained
fluctuations around the vacuum value 〈V〉. They constitute the scalar degrees of freedom
in the N = 2 effective theory. Due to the index split (5.23) we need to apply the split
also to the scalars

φma →
(
φm̄ā, φm̄[ǎ1], φm̄[ǎ2], φ[α1]ā, φ[α1][ǎ1], φ[α1][ǎ2], φ[α2]ā, φ[α2][ǎ1], φ[α2][ǎ2]

)
. (5.24)

To treat these more compactly we introduce, just as for the tensors in (5.14), the
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complex scalars

φαā := 1√
2
(φ[α1]ā + iφ[α2]ā) , φm̄ǎ := 1√

2
(φm̄[ǎ1] + iφm̄[ǎ2]) , (5.25a)

φαǎ1 := 1
2
(φ[α1][ǎ1] − φ[α2][ǎ2] + iφ[α2][ǎ1] + iφ[α1][ǎ2]) , (5.25b)

φαǎ2 := 1
2
(φ[α1][ǎ2] − φ[α2][ǎ1] + iφ[α2][ǎ2] + iφ[α1][ǎ1]) . (5.25c)

Note that in this way all φma of the split (5.24) except φm̄ā are combined into complex
scalars.

Similarly we proceed for the split of the N = 4 fermions λai . Note that as for the
gravitino around (5.18) one splits i → (α, α̇). Together with the index split of a given
in (5.23) one has

λai →
(
λāα, λ

[ǎ1]
α , λ[ǎ2]

α , λāα̇, λ
[ǎ1]
α̇ , λ

[ǎ2]
α̇

)
. (5.26)

It turns out to be convenient to combine all components of λai except of λāα into complex
Dirac fermions

λǎα := 1√
2
(λ[ǎ1]

α + iλ[ǎ2]
α ) , (5.27a)

λā := λāα̇=1 , λǎ1 :=
1√
2

(λ
[ǎ1]
α̇=1 + iλ

[ǎ2]
α̇=1) , λǎ2 :=

1√
2

(λ
[ǎ1]
α̇=1 − iλ

[ǎ2]
α̇=1) . (5.27b)

To justify the use of (5.27) we stress that the appearance of all spin-1/2 fermions can
be expressed in terms of the unconstrained Dirac spinors λǎα, λā, λǎ1,2. Concerning

(5.27a) the other linear combination 1√
2
(λ

[ǎ1]
α − iλ[ǎ2]

α ) is related to λǎα by the symplectic

Majorana condition. In (5.27b), by the same reasoning, the linear combinations with
λaα̇=2 are related to those involving λaα̇=1. All degrees of freedom of the massive spin-1/2
fermions are therefore captured by the spinors (5.27) dropping the symplectic Majorana
condition.

We are now in the position to summarize the spectrum. From the N = 4 gravity
multiplet the metric gµν , two gravitini ψαµ , two spin-1/2 fermions χα, two vectors A0, Am̄,
and one scalar Σ remain massless. These fields group into the N = 2 gravity multiplet
(gµν , A

m̄, ψαµ) and oneN = 2 vector multiplet (A0,Σ, χα). Note that the vector multiplet
(A0,Σ, χα) is special since the massive states, such as the tensors and gravitini discussed
in section 5.2, carry A0-charges. In order to later derive the quantum effective action
for the A0 vector multiplet we need to determine these A0-charges. n − 2(nT − 2)
vector multiplets (Aā, φm̄ā, λāα) remain massless. We have already discussed the massless
vectors Aā in section 5.2. We check in Appendix B that the φm̄ā and λāα are indeed
massless.

Recall that an N = 2 hypermultiplet has four real scalars and one Dirac spin-1/2
fermion. Using the definitions above (5.25) and (5.27) one can form the hypermultiplets

(φαā,λā) , (φαǎ1 ,λǎ1) , (φαǎ2 ,λǎ2) . (5.28)

The n−2(nT−2) hypermultiplets (φαā,λā) are always massive since they receive masses
|mā| = 1√

2
Σ2γ from a non-trivial ξm̂n̂. The hypermultiplets (φαǎ1,2,λ

ǎ
1,2) can be either
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massless or massive since their masses have two contributions from a non-trivial ξm̂n̂

and ξâb̂, respectively. As we show in Appendix B, the ξMN -splits (5.9) yield masses
given by

|m1
ǎ| =

1√
2

Σ2|γ − γǎ| , |m2
ǎ| =

1√
2

Σ2|γ + γǎ| , (5.29)

for the fields (φαǎ1 ,λǎ1) and (φαǎ2 ,λǎ2), respectively. This implies that one hypermultiplet
is massless whenever the condition

γǎ = ±γ (5.30)

is satisfied. We denote the number of such massless hypermultiplets by nH , and name
their (pseudo-)real components (hΛ

1,2,3,4, λ
Λ
1,2), with Λ = 1, . . . , nH . Due to the fact that

the hypermultiplets appear in pairs the existence of a massless hypermultiplet implies
the existence of a massive hypermultiplet with mass

√
2Σ2γ. Furthermore, one can

check that one can consistently choose all γǎ > 0 without changing the effective theory.
In summary, one has 2(nT − 2) − nH massive hypermultiplets with mass (5.29) out
of the set (φαǎ1,2,λ

ǎ
1,2). Together with the (φαā,λā) one finds in total n − nH massive

hypermultiplets.
To complete the summary of the spectrum recall that in section 5.2 we have already

identified and analyzed the N = 2 massive gravitino multiplet comprising a massive
Dirac gravitino ψµ and two complex massive tensors Bα. Furthermore, we found nT−2

complex massive tensorsBǎ. They combine with the Dirac fermions λǎα and the complex
scalars φm̄ǎ into nT − 2 complex massive tensor multiplets.

To conclude we list in Table 5.2 the decompositions of the N = 4 fields in terms
of N = 2 fields along with their masses and charges. The reorganization into N = 2
multiplets can be found in Table 5.3.

5.3.2 General N = 2 Action and Classical Matching

We are now in the position to derive the classical N = 2 effective action for the massless
modes. In order to do that we at first simply truncate the N = 4 action to the
massless sector. The discussion of the quantum corrections can then be found in the
next subsection.

To begin with we recall the canonical form of a generalN = 2 ungauged supergravity
theory. The dynamics of the gravity-vector sector is entirely specified in terms of a cubic
potential

N = 1
3!
kIJKM

IMJMK , (5.31)

where M I , I = 1, . . . , n + 6− 2nT are very special real coordinates and kIJK is a sym-
metric tensor. The M I naturally combine with the vectors AI of the theory. However,
since the vector in the gravity multiplet is not accompanied by a scalar degree of free-
dom, the M I have to satisfy one constraint. In fact, the N = 2 scalar field space is
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N = 4 fields N = 2 fields Mass sign(m) A0-charge

gµν gµν 0 - 0

A0
µ A0

µ 0 - 0

Aijµ Am̄µ 0 - 0

Bµν α
1√
2
Σ2γ 1 −γ

ψiµ ψαµ 0 - 0

ψµ
1√
2
Σ2γ 1 −γ

χi χα 0 - 0

χα̇ - goldstino -

Σ Σ 0 - 0

Aaµ Aāµ 0 - 0

Bµν ǎ
1√
2
Σ2|γǎ| sign(γǎ) γǎ

λai λāα 0 - 0

λǎα
1√
2
Σ2|γǎ| sign(γǎ) γǎ

λā 1√
2
Σ2γ -1 γ

λǎ1,2
1√
2
Σ2|γ ∓ γǎ| sign(±γǎ − γ) ±γǎ − γ

φma φm̄ā 0 - 0

φαā 1√
2
Σ2γ singlet γ

φm̄ǎ 1√
2
Σ2|γǎ| singlet γǎ

φαǎ1,2
1√
2
Σ2|γ ∓ γǎ| singlet ±γǎ − γ

Table 5.2: We show the decomposition of the N = 4 fields. The quantity sign(m)
determines the representation of the little group for the massive fields, see (2.25).
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Multiplets Fields Mass Charge

1 gravity gµν , A
m̄
µ , ψ

α
µ 0 0

1 gravitino ψµ,Bµν α
1√
2
Σ2γ −γ

(n+ 5− 2nT ) vector
A0
µ, χα,Σ 0 0

Aāµ, λ
ā
α, φ

m̄ā 0 0

nT − 2 tensor Bǎ
µν ,λ

ǎ
α,φ

m̄ǎ 1√
2
Σ2|γǎ| γǎ

n hyper
λā,φαā 1√

2
Σ2γ γ

λǎ1,2,φ
αǎ
1,2

1√
2
Σ2|γ ∓ γǎ| ±γǎ − γ

Table 5.3: We depict the N = 2 multiplets of the vacuum.

identified with the hypersurface

N !
= 1 . (5.32)

The gauge coupling function and the metric are obtained as

GIJ =

[
−1

2
∂MI∂MJ logN

]
N=1

. (5.33)

The bosonic two-derivative Lagrangian is then given by

Lcan =− 1
2
R− 1

2
GIJ∂µM

I∂µMJ − 1
4
GIJF

I
µνF

µν J

+ 1
48
εµνρσλkIJKA

I
µF

J
νρF

K
σλ −Huv

ΛΣ ∂µh
Λ
u ∂

µhΣ
v . (5.34)

Here we included the kinetic term for the hypermultiplet scalars hΛ
u with metric Huv

ΛΣ.
The canonical Lagrangian (5.34) has to be compared with the truncated N = 4

theory. In our setup we found the vectors AI = (A0, Am̄, Aā), which sets the index range
for I. The massless scalars in the effective theory (except for Σ) are most conveniently
described by SO(5, n)-rotated elements of the coset space

V̂ := 〈V〉−1V = exp
(
φma[tma]

)
. (5.35)

This is in contrast to the analysis of the massive scalar spectrum, for which it is efficient
to consider the fluctuations φma as it was done in the last section. Restricting to the
N = 2 vector multiplets and truncating the massive modes φm̄â and φm̂ā, the only
remaining elements of the coset space are

V̂ m̄
m̄ , V̂ ā

m̄ , V̂ m̄
ā , V̂ b̄

ā . (5.36)
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In fact, it turns out that all couplings involving the elements (5.36) can be expressed
as functions of V̂ ā

m̄ alone. In order to do that one uses the relations

V̂ m̄
m̄ =

√
1 + V̂ ā

m̄ V̂m̄ ā , V̂ m̄
ā = V̂ ā

m̄ , (5.37)

V̂ c̄
ā V̂b̄ c̄ = δāb̄ + V̂ m̄

ā V̂ m̄
b̄ , V̂ b̄

ā V̂m̄ b̄ = V̂ m̄
m̄ V̂ m̄

ā .

The element V̂ ā
m̄ itself can be expanded as

V̂ ā
m̄ = exp

(
φm̄ā[tm̄ā]

)
ā
m̄ , (5.38)

after truncating all massive modes. This implies in particular that V̂ ā
m̄ has no de-

pendence on φm̂â. Therefore, the effective action of the scalars in the N = 2 vector
multiplets decouples from the potentially massless scalars in the hypermultiplets as
expected from N = 2 supersymmetry.

The reduced action then takes the simple form

e−1Lclass =− 1

2
R−Huv

ΛΣ ∂µh
Λ
u ∂

µhΣ
v −

3

2
Σ−2 ∂µΣ ∂µΣ

− 1

2

(
δāb̄ −

1

1 + V̂ c̄
m̄ V̂m̄ c̄

V̂m̄ ā V̂m̄ b̄

)
∂µV̂ ā

m̄ ∂µV̂ b̄
m̄

− 1

4
Σ−4 F 0

µνF
µν 0 + Σ2

√
1 + V̂ b̄

m̄ V̂m̄ b̄
V̂m̄ ā F

m̄
µνF

µν ā

− 1

4
Σ2
(

3 + 2 V̂ ā
m̄ V̂m̄ ā

)
F m̄
µνF

µν m̄ − 1

4
Σ2
(
δāb̄ + 2 V̂m̄ ā V̂m̄ b̄

)
F ā
µνF

µν b̄

+
1

4
√

2
εµνρστA0

µF
m̄
νρF

m̄
στ −

1

4
√

2
εµνρστA0

µF
ā
νρF

ā
στ , (5.39)

where Huv
ΛΣ is the metric of the quaternionic manifold parametrized by the scalars in

the massless hypermultiplets which we however do not discuss any further in the work
of this thesis. Therefore by comparison of (5.39) with (5.34) we find the identifications

M0 =
1√
2

Σ2 , M m̄ = Σ−1V̂ m̄
m̄ , M ā = Σ−1V̂ ā

m̄ , (5.40)

and the real prepotential

N =
1

2
k0m̄m̄M

0M m̄M m̄ +
1

2
k0āāM

0M āM ā =
√

2M0M m̄M m̄ −
√

2M0M āM ā . (5.41)

This result specifies the constant tensors kIJK at the classical level. It is interesting

to realize that the constraint N !
= 1 translates with the identifications (5.40) into the

condition (4.12) for the elements of the coset space. We conclude that the very special
real manifold is the coset space

SO(1, 1)× SO(1, n+ 4− 2nT )

SO(n+ 4− 2nT )
, (5.42)

which is the subspace of (4.7) spanned by the massless scalars in the vector multiplets.



76 CHAPTER 5. ABELIAN MAGNETIC GAUGINGS

5.3.3 One-loop Effects and Chern-Simons Terms

Now we determine the one-loop corrections to the gravity-vector sector of the N = 2
theory specified in subsection 5.3.2. We focus on this sector since the corrections due
to integrating out massive fields are independent of the supersymmetry breaking scale
and the masses of the fields running in the loop. Let us stress that due to the preserved
N = 2 supersymmetry and the fact that the Chern-Simons terms can only receive
constant corrections the integrating out process can only perturbatively correct the
gravity-vector sector at the one-loop level.

To obtain the one-loop corrected N an analysis of the Chern-Simons terms is suffi-
cient. The expressions for the latter were stated in subsection 2.2.2, and we can simply
apply these results to our setup. The one-loop corrections arise from integrating out
massive fields that are charged under some gauge fields AI . Since all massive fields are
only charged under A0, the classical terms in (5.41) are unmodified. The fully quantum
corrected result for these terms therefore reads (including combinatorial factors)

k0m̄m̄ = −k0āā = 2
√

2 . (5.43)

We find that the massive states summarized in Table 5.2 induce the one-loop couplings

k000 =
1

2

[
(−1− n+ 2nT )γ3 − 2

∑
ǎ

|γǎ|3 +
∑
ǎ

|γ − γǎ|3 +
∑
ǎ

|γ + γǎ|3
]
. (5.44)

Furthermore, we find also the gravitational one-loop Chern-Simons coupling

k0 = −
[
(−1− n+ 2nT )γ + 10

∑
ǎ

|γǎ|+
∑
ǎ

|γ − γǎ|+
∑
ǎ

|γ + γǎ|
]
, (5.45)

which we included for completeness although we did not discuss these higher-curvature
terms at the classical level.

The existence of new Chern-Simons couplings implies that the effective theory still
sees remnants of the underlying N = 4 theory at arbitrarily low energy scales. In fact,
the mass of the fields listed in Table 5.3 can be made arbitrarily large by choosing the
VEV of the modulus Σ. The constants γ and γǎ appearing in (5.44) and (5.45) are the
imaginary parts of the eigenvalues of ξMN and therefore independent of the VEVs of
the fields.

An interesting case is the one with

n = 3 , rank(ξMN) = 4 . (5.46)

Remarkably the quantum corrections k000 and k0 both vanish for this special choice
since nT = 1

2
rank(ξMN) and the range of the index ǎ is zero. It would be worthwhile

to understand the underlying principle which enforces the vanishing of both quantum
corrections at the same time. This is in the very same spirit to our upcoming discussion
of effective actions from consistent truncations in section 7.1.



Chapter 6

M-Theory on SU(2)-Structure
Manifolds

In this chapter we introduce one example for a gaugedN = 4 supergravity theory in five
dimensions by reducing eleven-dimensional supergravity on six-dimensional manifolds
M6 with SU(2)-structure. In section 6.1 we first recall some basic properties of SU(2)-
structure manifolds. The introduced definitions are then used in section 6.2 to formulate
the reduction ansatz specifying a consistent truncation of the full compactification on
M6 to five dimensions. The five-dimensional action is derived in section 6.3 and brought
into standard N = 4 supergravity form in section 6.4. This allows us to determine the
embedding tensors induced by the SU(2)-structure and a non-trivial flux background.

6.1 Some Basics on SU(2)-Structure Manifolds

Let us begin by recalling some basics on six-dimensional SU(2)-structure manifolds
M6. See e.g. [79–83] for properties of general G-structure manifolds and [84–90,49,50]
for SU(2)-structure manifolds. If the structure group of a manifoldM6 can be reduced
to SU(2), it admits two globally defined, nowhere vanishing spinors η1, η2. This can
be seen from the fact that two singlets appear in the the decomposition of the spinor
representation 4 of Spin(6) ∼= SU(4) into SU(2) representations 4 → 1 ⊕ 1 ⊕ 2. The
existence of these two spinors gives rise to four supersymmetry generators ξ1,2

i (i = 1, 2)
in five dimensions since we can expand the eleven-dimensional supersymmetry generator
ε as

ε = ξ1
i ⊗ ηi + ξ2

i ⊗ ηc i , (6.1)

where ηc i is the charge conjugate spinor to ηi and the five-dimensional spinors ξ1,2
i

are symplectic Majorana, see Appendix A. This implies that an appropriately chosen
reduction admits N = 4 supersymmetry.

By contraction with appropriate products of SO(6) γ-matrices the globally defined
spinors ηi allow to define three real two-forms Ja, a = 1, 2, 3 forming an SU(2) triplet,

77
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and a complex one-form K. These fulfill the conditions

Ja ∧ J b = δabvol4 ,

KmK
m = 0 , K̄mK

m = 2 , KmJamn = 0 ,
(6.2)

where m,n = 1, . . . , 6 label the local coordinates onM6, and vol4 is a nowhere vanishing
four-form on M6. All contractions are performed with the SU(2)-structure metric on
M6.

These forms define an almost product structure

Pm
n = KmK̄

n + K̄mK
n − δmn . (6.3)

Indeed, it is straightforward to verify that

Pm
nPn

q = δqm , (6.4)

which means that P is a projector, and the manifold’s tangent bundle can be split into
the +1 and −1 eigenspaces of P

TM6 = T2M6 ⊕ T4M6 , (6.5)

where the part T2M6 is spanned by K1 = ReK and K2 = ImK each carrying eigen-
value +1. Note that we implicitly identify the tangent and cotangent bundle.

6.2 The Reduction Ansatz

An appropriate ansatz for the dimensional reduction on manifolds with structure group
SU(2) has been worked out in [49, 50]. The full spectrum of the compactified theory
consists of infinitely many modes from which the choice of a particular ansatz keeps
only a finite subset. Such a truncation is called consistent if any of the modes that we
keep cannot excite one of the modes we exclude. This means that there are no source
terms for the discarded fields in the reduced action. In this case any solution of the
truncated theory can be uplifted to a solution of the full eleven-dimensional equations
of motion. As explained in [50], this can be achieved by choosing the reduction ansatz
to be a set of forms on M6 that it is closed under the action of the wedge product ∧,
exterior differentiation d and the Hodge star ∗.

In [89] it has been demonstrated how to decompose the field content of type IIA
supergravity into representations with respect to the SU(2) structure group ofM6 and
arrange it into four-dimensional N = 4 multiplets. The same analysis can be per-
formed for the case of eleven-dimensional supergravity reduced to N = 4 supergravity
in five dimensions. The modes transforming as singlets under SU(2) constitute the five-
dimensional gravity multiplet and a pair of vector multiplets, and every SU(2)-triplet
corresponds to one triplet of vector multiplets. On the other hand the components
of the fields that are doublets under SU(2) form gravitino multiplets in the N = 4
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theory. Since it is not known how to consistently couple gravitino multiplets to gauged
N = 4 supergravity, these multiplets will be neglected. This is equivalent to excluding
all SU(2) doublets from the reduction ansatz. We will further comment on this point
in section 7.2.

Following up these considerations the reduction ansatz now consists of a basis of
real one-forms vi (i = 1, 2) acting on T2M6, and real two-forms ωI (I = 1, . . . , ñ) acting
on T4M6. Forms of odd rank on T4M6 correspond to doublets of SU(2) and are thus
not included in the ansatz. These forms are normalized via∫

M6

v1 ∧ v2 ∧ ωI ∧ ωJ = −ηIJ , (6.6)

where ηIJ is an SO(3, ñ − 3) metric that will be used to raise and lower indices. For
convenience we can also introduce

vol
(0)
2 = v1 ∧ v2 , −ηIJvol

(0)
4 = ωI ∧ ωJ , (6.7)

which take the role of normalized volume forms on T2M6 and T4M6, respectively.
The ansatz has to be chosen in such a way that it is consistent with exterior differ-

entiation. Therefore we demand that the differentials of vi and ωI obey

dvi = ti v1 ∧ v2 + tiI ω
I ,

dωI = T IiJ v
i ∧ ωJ ,

(6.8)

where the coefficients ti, tiI and T IiJ are related to the torsion classes of M6 and have
to fulfill the consistency conditions [50]

titkI εkj + tiJT
J
jI = 0 , T IiJη

JKtiK = 0 ,

T IiJt
i − T IiKεijTKjJ = 0 , tiηIJ − εijT IjKηKJ − εijT JjKηKI = 0 .

(6.9)

Using this basis of forms one now has to expand all fields of eleven-dimensional su-
pergravity. In order to discuss the reduction of the eleven-dimensional action we first
expand the Ja and K introduced in (6.2) as

Ja = eρ4/2ζaI ω
I , K = eρ2/2(Im τ)−1/2(v1 + τv2) , (6.10)

where now the real ρ4, ρ2, ζaI , and complex τ are promoted to five-dimensional space-

time scalars. Together with (6.2) we find ζaI η
IJζbJ = −δab as well as vol4 = eρ4vol

(0)
4 and

K1 ∧K2 = eρ2vol
(0)
2 .

The action of the Hodge star on the ansatz is given by

∗ vi = eρ4 εijv
j ∧ vol

(0)
4 ,

∗ vol
(0)
2 = eρ4 vol

(0)
4 ,

∗ωI = −eρ2HI
Jω

J ∧ vol
(0)
2 ,

∗
(
vi ∧ ωI

)
= −εijHI

Jv
j ∧ ωJ .

(6.11)
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From the requirement that ∗Ja = Ja ∧K1 ∧K2 the matrix HI
J can be determined to

be HIJ = 2ζaI ζ
a
J + ηIJ . See Appendix C for a further discussion of its properties.

After this preliminary discussion we are now in a position to give the ansatz for the
eleven-dimensional metric. More precisely, reflecting the split of the tangent space (6.5)
the metric takes the form

ds2
11 = gµνdx

µdxν + eρ2gij(v
i +Gi)(vj +Gj) + eρ4gstdx

sdxt , (6.12)

with s, t = 1, . . . , 4. The Gi are space-time gauge fields parameterizing the variation of
T2M6. The metric gij can be expressed in terms of τ

g =
1

Im τ

(
1 Re τ

Re τ |τ |2

)
(6.13)

such that eρ2gijv
ivj = KK̄. Notice that we excluded possible off-diagonal terms of the

form gµs and gis from the ansatz for the metric since they would precisely correspond to
SU(2) doublets. These terms would give rise to two doublets of additional space-time
vectors and four doublets of space-time scalars.

In the following it will be useful to introduce the gauge invariant combination

ṽi = vi +Gi , (6.14)

whose derivative can be calculated using (6.8)

dṽi = d
(
vi +Gi

)
= DGi + tiṽ1 ∧ ṽ2 − tiεjkṽj ∧Gk + tiIω

I . (6.15)

The definition of the covariant derivative DGi can be found in (6.25).
Let us next turn to the ansatz for the three form field C3. Using the basis ṽi, ωI

introduced above, we expand

C3 = C + Ci ∧ ṽi + CI ∧ ωI + C12 ∧ ṽ1 ∧ ṽ2 + ciI ṽ
i ∧ ωI . (6.16)

If we had included SU(2) doublets in the reduction ansatz, we also would have had to
expand C3 in terms of odd forms on T4M6, which would give rise to additional fields in
five dimensions.1 For each SU(2) doublet these would be one doublet of two-forms and
two doublets of vectors and scalars. Together with the contributions from the metric we
see that for every excluded SU(2) doublet this resembles precisely a doublet of N = 4
gravitino multiplets.

Furthermore, we also consider a possible internal four-form flux for which the most
general ansatz is given by2

F flux
4 = n vol

(0)
4 + nI v

1 ∧ v2 ∧ ωI . (6.17)

1To make the ansatz closed under wedge product it might be necessary in this case to include also
additional two-forms on T4M6 and hence additional SU(2) triplets.

2Notice that here n counts flux quanta. It is not related to the number of N = 4 vector multiplets,
also denoted by n in the previous chapters.
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Notice that this is written only in terms of vi and not in terms of the gauge invari-
ant quantities ṽi because this would introduce an unwanted space-time dependency.
Moreover n and nI are not completely independent since it follows from dF flux

4 = 0 that

n ti − nItiI = 0 . (6.18)

We finally have to expand the field strength F4 = F flux
4 + dC3

F4 = F + Fi ∧ ṽi + FI ∧ ωI + F12 ∧ ṽ1 ∧ ṽ2 + FiI ṽ
i ∧ ωI

+ fI ṽ
1 ∧ ṽ2 ∧ ωI + f vol

(0)
4 ,

(6.19)

and obtain the expansion coefficients after evaluating the exterior derivative of C3 using
(6.16)

F = dC + Ci ∧DGi ,

Fi = DCi + εijC12 ∧DGj ,

FI = DCI + ciIDG
i ,

F12 = DC12 , FiI = DciI ,

fI = nI + ticiI + εijT
J
iIcjJ ,

f = n− ciItiJηIJ .

(6.20)

The four-form flux and the fact that ωI and ṽi are in general non-closed forms induce
different non-trivial gaugings. These are encoded by the various appearing covariant
derivatives which are listed in the next section.

6.3 Dimensional Reduction of the Action

Starting from the bosonic action of eleven-dimensional supergravity

S =

∫
11

1
2
(∗1)R− 1

4
F4 ∧ ∗F4 − 1

12
C3 ∧ F4 ∧ F4 , (6.21)

we will compute a five-dimensional action by compactifying it onM6. We can compare
the result with the general description ofN = 4 gauged supergravity given in section 4.1
and determine the embedding tensors in terms of geometrical properties of M6.

To compute the reduced five-dimensional action we insert the expansions (6.16) and
(6.19) into the eleven-dimensional action (6.21) and integrate over the internal manifold
using (6.6). The reduction of the Einstein-Hilbert term has been carried out in [50] and
can be adopted without further modifications. After performing an appropriate Weyl
rescaling gµν → e−

2
3

(ρ2+ρ4)gµν to bring the action into the Einstein frame the final result
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reads

SSU(2) =

∫
5

{
1
2
(∗1)R5 − e

5
3
ρ2+ 2

3
ρ4gijDG

i ∧ ∗DGj − 1
2
(ηIJ + ζbIζbJ)DζaI ∧ ∗DζaJ

− 1
4
(Im τ)−2 Dτ ∧ ∗Dτ̄ − 5

12
Dρ2 ∧ ∗Dρ2 − 1

3
Dρ2 ∧ ∗Dρ4 − 7

24
Dρ4 ∧ ∗Dρ4

− 1
4
e2(ρ2+ρ4)

(
dC + Ci ∧DGi

)
∧ ∗
(
dC + Cj ∧DGj

)
− 1

4
e

1
3
ρ2+ 4

3
ρ4
(
g−1
)ij (

DCi + εikC12 ∧DGk
)
∧ ∗
(
DCj + εjlC12 ∧DGl

)
− 1

4
e

2
3
ρ2− 1

3
ρ4HIJ

(
DCI + ciIDG

i
)
∧ ∗
(
DCJ + cjJDGj

)
− 1

4
e−

4
3
ρ2+ 2

3
ρ4DC12 ∧ ∗DC12 − 1

4
e−ρ2−ρ4HIJ

(
g−1
)ij

DciI ∧ ∗DcjJ
+
(

1
4
dC + 1

6
Ck ∧DGk

)
∧ ciI

(
εijTKjJCK + C12t

i
J + DcjJε

ij
)
ηIJ

− 1
6
Ci ∧ εij

((
DCj + εjkC12 ∧DGk

)
ckIt

k
J +

(
DCI + ckIDG

k
)
∧DcjJ

)
ηIJ

+ 1
6
CI ∧

((
DCi + εikC12 ∧DGk

)
∧DcjJε

ij +
(
DCJ + clJDGl

)
∧DC12

)
ηIJ

+ 1
12
C12 ∧

(
DCI + ciIDG

i
)
∧
(
DCJ + cjJDGj

)
ηIJ

− 1
6
ciI
(
DCj + εjkC12 ∧DGk

)
∧
(
DCJ + clJDGl

)
εijηIJ

− 1
4
n εijCi ∧

(
DCi + εikC12 ∧DGk

)
−
(

1
2
dC + 1

4
Ci ∧DGi

)
∧
(
nC12 − nICI

)
+ (∗1)V

}
.

(6.22)
The potential term V is given by

V = −5
8
e−

5
3
ρ2− 2

3
ρ4gijt

itj + 2e
1
3
ρ2− 5

3
ρ4gijt

i
It
j
Jη

IJ

−1
2
e−

5
3
ρ2− 2

3
ρ4(ηIJ + ζbIζbJ)ζaKζ

a
Lg

ijT̃KiI T̃
L
jJ

+1
4
e−

8
3
ρ2− 5

3
ρ4HIJfIfJ + 1

4
e−

2
3
ρ2− 8

3
ρ4f 2 .

(6.23)

As mentioned above, we have defined several covariant derivatives. For the scalars they
are given by

Dρ2 = dρ2 − εijGitj ,

Dρ2 = dρ4 + εijG
itj ,

Dτ = dτ −
(
(1, τ) ·G

)(
(1, τ) · t

)
,

DζaI = dζaI −GiT̃ JiIζ
a
J ,

DciI = dciI + εijt
j
IC12 − T JiICJ + εijG

jtkckI −GjT JjIciJ + nIεijG
j ,

(6.24)

whereas those of the vectors read

DGi = dGi − tiG1 ∧G2 ,

DCI = dCI + tiICi + T JiICJ ∧Gi − nIG1 ∧G2 ,

DC12 = dC12 + tiCi − εijC12 ∧ tiGj .

(6.25)
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There is also a pair of two-forms Ci with

DCi = dCi + εijG
j ∧ tkCk . (6.26)

In the next section we compare (6.22) with the general form of gauged N = 4
supergravity. For this purpose it is necessary to dualize the three-form field C into a
scalar γ.3 Let us therefore collect all terms from the action containing it,

SC =

∫
−1

4
e2(ρ2+ρ4)F ∧ ∗F +

1

2
F ∧ L (6.27)

with
L = 1

2
ciI
(
εijTKjJCK + C12t

i
J + DcjJε

ij
)
ηIJ − nC12 + nICI . (6.28)

The field strength F = dC + Ci ∧DGi fulfills the Bianchi identity

dF = DCi ∧DGi , (6.29)

which we will impose by introducing a Lagrange multiplier γ. Accordingly we add the
following term to the action

δS = −1

2

∫
γ
(
dF −DCi ∧DGi

)
. (6.30)

We can now use the equation of motion for F

− e2(ρ2+ρ4) ∗ F + L+ dγ = 0 (6.31)

in order to eliminate it from (6.27) and obtain

Sγ =− 1

4

∫
e−2(ρ2+ρ4)(Dγ + 1

2
ciIDcjJε

ijηIJ) ∧ ∗(Dγ + 1
2
ciIDcjJε

ijηIJ)

+
1

2

∫
γDCi ∧DGi ,

(6.32)

where the covariant derivative of γ is defined as

Dγ = dγ + 1
2
ciI(εijT

K
jJCK + tiJC12)ηIJ − nC12 + nICI . (6.33)

Moreover in the general N = 4 theory there are no tensors with second order kinetic
term. Therefore it is necessary to trade the two-form Ci for its dual vector C̃ ı̄. But
since Ci appears additionally in the covariant derivatives of the vectors CI and C12, it
will be necessary to introduce their duals C̃I and C̃12 as well. These dualizations are
described for the analog case of the type IIA supergravity reduction in [49] and [50],
thus we will not perform the explicit calculations again.

3We stress that the scalar field γ should not be confused with the constant eigenvalues γ defined in
(5.7).
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6.4 Comparison with N = 4 Supergravity

As we have described above, the reduced action possesses N = 4 supersymmetry. For
this reason we will work out how to match it with the general description of gauged
N = 4 supergravity from section 4.1.

The arrangement of the vectors into SO(5, n) representations AM , A0 and the form
of the scalar metric MMN can be worked out easiest by switching off all gaugings, i.e. by
setting ti = tiI = T IiJ = 0 and n = nI = 0. Since in this way all covariant derivatives
become trivial and some of the terms in (6.22) vanish, it is now very easy to carry
out the dualization of Ci explicitly. Afterwards the theory will contain 5 + ñ vectors
in total, which means that there are ñ − 1 vector multiplets and the global symmetry
group is given by SO(1, 1)× SO(5, ñ− 1). It is natural to identify C12, which does not
carry any indices, with the SO(5, ñ− 1) singlet A0 and the other vectors with AM , so
in summary we have

AM =
(
Gi, C̃ ı̄, CJ

)
,

A0 = C12 .
(6.34)

The corresponding SO(5, ñ− 1) metric is defined as4

ηMN =

 0 δī 0

δı̄j 0 0

0 0 ηIJ

 . (6.35)

By comparing the kinetic terms of the vectors (in the ungauged theory) with (4.18) one
obtains the scalar matching

Σ = e
1
3
ρ2− 1

6
ρ4 (6.36)

and the non-constant coset metric

Mij = eρ2+ρ4gij +HIJ c
I
i c
J
j + e−ρ2−ρ4gkl(εkiγ + 1

2
ckIc

I
i )(εljγ + 1

2
clIc

I
j ) ,

Mī = e−ρ2−ρ4gjkδj̄(εkiγ + 1
2
ckIc

I
i ) ,

MiI = −HIJc
J
i + e−ρ2−ρ4gjkcjI(εkiγ + 1

2
ckIc

I
i ) ,

Mı̄̄ = e−ρ2−ρ4gijδīıδj̄ ,

Mı̄I = e−ρ2−ρ4gijδīıcjI ,

MIJ = HIJ + e−ρ2−ρ4gijciIcjJ .

(6.37)

From this metric one can also determine the coset representatives V = (VMm,VNa),
where m and a are SO(5) or SO(ñ− 1) indices, respectively. V is related to the scalar

4Note that in the standard form of gauged supergravity η is taken to be diagonal. Therefore, in
order to compare fields and embedding tensors in this reduction to their standard form, one has to
diagonalize η, which is easily done.



6.4. COMPARISON WITH N = 4 SUPERGRAVITY 85

metric via M = VVT and carries the same amount of information. The result can be
found in Appendix C.

From (6.36) and (6.37) we can determine the general covariant derivatives of the
scalars using (4.15) and compare them with the results from (6.24) and (6.33) in order
to derive the embedding tensors

ξi = −εijtj ,
ξiI = εijt

j
I ,

fijı̄ = δı̄[iεj]kt
k ,

fiIJ = −TKiI ηKJ − 1
2
εijt

jηIJ ,

(6.38)

and
ξij = εijn ,

fijI = −εijnI .
(6.39)

All other components are either determined by antisymmetry or vanish. One can now
use these expressions to calculate the covariant derivatives of the vectors from (4.15)
and check that they indeed agree with (6.25).

For consistency the embedding tensors (6.38), (6.39) should fulfill the quadratic
constraints which are listed for ξM = 0 in (4.17) and can be found in full generality
in [47]. In order to show that the latter hold it is necessary to use the consistency
relations (6.9) on the matrices ti, tiI and T IiJ as well as the constraint on the flux (6.18).

If we neglect the contributions coming from the four-form flux, it is possible to check
that (6.38) is consistent with the results from the type IIA reduction in [50]. This is
described in Appendix D.
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Chapter 7

Partial Supergravity Breaking
Applied to Consistent Truncations

In this chapter we elaborate on the general discussion of supersymmetry breaking in
chapter 4 by investigating concrete examples given by consistent truncations of higher-
dimensional theories. In particular we analyze their quantum ’effective action’. In
section 7.1 we start with general considerations on the effective action of consistent
truncations. The analysis of one-loop Chern-Simons terms allows us to formulate nec-
essary conditions such that a consistent truncation gives rise to a physical sensible
effective theory. One class of examples, worked out in section 7.2, will be provided
by the SU(2)-structure reductions of chapter 6 with Calabi-Yau vacuum. Closely re-
lated to these kind of reductions is a second class of examples, consistent truncations
of type IIB supergravity on squashed Sasaki-Einstein manifolds which we investigate in
section 7.3.

7.1 Quantum Effective Action of Consistent Trun-

cations

We start by studying the quantum effective action which we obtain after N = 4 →
N = 2 spontaneous supersymmetry breaking. An effective action is obtained by fixing a
certain energy scale and integrating out all modes that are heavier than this scale. In five
dimensions this is particularly interesting since massive charged modes induce Chern-
Simons terms at one-loop. Importantly, these corrections do not dependent on the
masses of the modes in the loop and are therefore never suppressed. We are interested
in evaluating these terms for the supersymmetry breaking mechanism in chapter 4. This
has already been investigated for purely Abelian magnetic gaugings in subsection 5.3.3.
A prominent class of more advanced examples for such a breaking pattern is given
by consistent truncations of supergravity. For instance, if a Calabi-Yau manifold has
SU(2)-structure, the N = 4 gauged supergravity from the M-theory reduction in the

87
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previous chapter is broken to N = 2 in the vacuum. It is an interesting question when a
consistent truncation also gives rise to a proper effective theory. For example, in order
to phenomenologically analyze non-Calabi-Yau reductions of string theory or M-theory
one needs to deal with effective theories. As we saw in subsection 2.2.2, there are one-
loop corrections to the Chern-Simons terms. The fact that these are independent of
the mass scale will thus allow us in the following to investigate the question:

• What are the necessary conditions for a consistent truncation to yield the physical
effective theory of the setup below a cut-off scale where all massive modes are
integrated out?

Clearly a first step is to analyze compactifications of which we know the relevant parts
of the effective theory, like Calabi-Yau compactifications.

In particular a necessary condition for a consistent truncation to make sense as an
effective field theory after integrating out massive modes is that the one-loop Chern-
Simons terms should coincide with the ones in the genuine effective action. Stated
differently, the corrections to the Chern-Simons terms induced by the truncated modes
must coincide with the ones which are obtained by taking the full infinite tower of
massive modes into account. For the special case that the relevant parts of the effective
theory are already exact at the classical level, as it is the case for theN = 2 prepotential
in Calabi-Yau threefold compactifications of M-theory, the following four possibilities
can in principle occur, such that the fields in the consistent truncation do not contribute
at one-loop: The massive modes

• are uncharged.

• arrange in long multiplets if the R-symmetry is not gauged.

• come in real representations.

• cancel non-trivially between different multiplets.

The contributions of long multiplets indeed cancel as one can explicitly check by using
Table 2.1 and Table 7.1 for the Minkowski case. This is related to the fact that they
have the structure of special N = 4 multiplets, which induce no corrections to the
Chern-Simons terms. For Minkowski space we display the two existing long multiplets
in Table 7.1. Also real multiplets do not contribute since they are parity-invariant in
contrast to the Chern-Simons terms.

After these general considerations let us now turn to some examples. Consider the
M-theory reduction on SU(2)-structure manifolds of chapter 6. If the compactification
space is also Calabi-Yau, the five-dimensional N = 4 gauged supergravity develops an
N = 2 vacuum. This nicely fits into the general pattern of chapter 4. Indeed a Calabi-
Yau threefold has SU(2)-structure if and only if its Euler number vanishes. This can
be seen as follows: A Calabi-Yau threefold has SU(3) holonomy and thus allows for
the existence of one covariantly constant spinor η1. If the manifold has in addition
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Long Gravitino Multiplet Long Vector Multiplet

Field Type (s1, s2) Field Type (s1, s2)

1 gravitino (1, 1
2
) 1 vector (1

2
, 1

2
)

2 tensors 2× (1, 0)
4 fermions

2× (1
2
, 0)

2 vectors 2× (1
2
, 1

2
) 2× (0, 1

2
)

5 fermions
4× (1

2
, 0) 4 scalars 4× (0, 0)

(0, 1
2
)

2 scalars 2× (0, 0)

Table 7.1: We display the long multiplets of N = 2 supersymmetry in five-dimensional
Minkowski space. The fields are labeled by their spins under SU(2)× SU(2).

vanishing Euler number, it follows from the Poincaré-Hopf theorem that there exists
a nowhere-vanishing vector field K1. With this ingredients it is possible to construct
a second nowhere vanishing spinor η2 = (K1)mγmη

1, such that the structure group is
reduced to SU(2). This can also be seen without reference to spinors [50]. By acting
with the complex structure J on K1 one obtains a second vector field K2 = JK1 and
after writing J and the holomorphic three-form Ω as

J = J3 + i
2
K ∧ K̄ , Ω = K ∧ (J1 + iJ2) , (7.1)

it is easy to check that K = K1 + iK2 and Ja fulfill the relations (6.2). We could now
revert the argument and conclude that a SU(2) structure manifold with

dJ = dΩ = 0 (7.2)

is Calabi-Yau and therefore develops vacua with N = 2 supersymmetry. Using the
expansions (6.10) of K and Ja we can translate (7.2) into conditions on the five-
dimensional fields

(t1I + τt2I)(ζ
1
J + iζ2

J)ηIJ = 0 ,

(TK1I + τTK2I )(ζ1
J + iζ2

J)ηIJ = 0 ,

eρ4/2T JiIζ
3
J = εijt

j
Ie
ρ2 .

(7.3)

These relations have to be used in the analysis of the spontaneous supersymmetry
breaking to N = 2 vacua. In section C.2 we use these conditions in order to derive
the contracted embedding tensors (4.22) for Calabi-Yau manifolds with vanishing Euler
number. Note that the expressions in section C.2 still suffer from scalar redundancies,
and it is hard to eliminate the latter in general using the Calabi-Yau conditions. How-
ever, for the special example of the Enriques Calabi-Yau we were able to do so. Thus
we can derive the full spectrum by inserting the contracted embedding tensors into the



90 CHAPTER 7. APPLICATION TO CONSISTENT TRUNCATIONS

results of section 4.3, and we will actually do so in the next section. What we will find
is that the one-loop Chern-Simons terms do indeed cancel (as in the genuine effective
theory) although very trivially since there are simply no modes in the theory that are
charged under a massless vector. In fact we think that this might be the generic case
for Calabi-Yau manifolds because of the following two heuristic arguments:

• Since a Calabi-Yau manifold does not have isometries if the holonomy is strictly
SU(3), one would think that the ‘KK-vectors’ become massive and the massive
modes are not charged under massless gauge symmetries. In particular, the vec-
tors Gi in the ansatz for the metric (6.12)

ds2
11 = gµνdx

µdxν + gij(v
i +Gi)(vj +Gj) + gmndx

mdxn (7.4)

should acquire masses.

• For Calabi-Yau manifolds with χ = 0 and vanishing gaugings ξM there are no
charged tensors. In fact, using the Calabi-Yau relations from (7.3) it is easy to
show that for such manifolds we have ξMNξ P

N = 0. Applying also the quadratic
constraints to (4.18) the vanishing of tensor charges is immediate. Note that the
contributions of tensors was a crucial ingredient in chapter 5 where non-vanishing
one-loop Chern-Simons terms appeared in N = 4→ N = 2 supergravity breaking
to Minkowski vacua.

If massive modes carry no charges under massless vectors in general, our approach via
one-loop Chern-Simons terms imposes no restrictions on the consistent truncation to
yield also a proper effective theory.

Let us now turn to the second example of partial supergravity breaking in the
context of consistent truncations, type IIB supergravity on a squashed Sasaki-Einstein
manifold which is discussed in section 7.3 in greater detail. The geometrical reduction to
N = 4 gauged supergravity in five dimensions was carried out in [54–56] and proceeds
similarly to the M-theory SU(2)-structure reduction of chapter 6. Again the theory
admits N = 2 vacua which however now constitute AdS backgrounds with gauged R-
symmetry. Although it is not really clear if the concept of effective field theory makes
sense on such backgrounds, we nevertheless integrate out massive modes because of
the topological origin of the relevant corrections. Surprisingly the contributions to
the gauge and gravitational one-loop Chern-Simons terms cancel in a non-trivial way
between different multiplets. It would be extremely interesting to find an interpretation
for this result.

7.2 First Example: M-Theory on the Enriques Ca-

labi-Yau

In this section we analyze in detail the spectrum of M-theory on the Enriques Calabi-
Yau around the N = 2 vacuum of the N = 4 gauged supergravity using the results
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of section 4.3. The precise expressions for the embedding tensors in the standard form
of N = 4 gauged supergravity and their contractions with the coset representatives
for Calabi-Yau manifolds with SU(2)-structure are given in section C.2. However, as
already mentioned, these quantities still suffer from redundancies of scalar fields which
should be eliminated by using the Calabi-Yau conditions (7.3) in order to analyze the
setup with the tools of section 4.3. Consequently we focus on the special case of the
Enriques Calabi-Yau where we were able to remove the redundancies. In the following
we derive the spectrum and gauge symmetry in the vacuum of the SU(2)-structure
reduction and compare the results to the known Calabi-Yau effective theory. Besides the
fact that the former yields massive states which are absent in the latter, the consistent
truncation turns out to lack one vector multiplet and one hypermultiplet at the massless
level compared to the effective theory of the Enriques, analogous to the results in [50].
Taking the missing massless vector into account the classical Chern-Simons terms of
both theories may coincide in principle. Corrections at one-loop to the Chern-Simons
terms vanish trivially since there are no modes charged under the massless vectors.

The gauged supergravity embedding tensors fMNP , ξMN of M-theory on the Enriques
Calabi-Yau are evaluated by inserting the expressions (C.23) into (6.38). In the standard
basis, where η takes the form η = (−1,−1,−1,−1,−1,+1, . . . ,+1), they read

f135 = f245 = f815 = f925 = −f13 10 = −f24 10 = −f81 10 = −f92 10 =
1√
2
,

f635 = f745 = f865 = f975 = −f63 10 = −f74 10 = −f86 10 = −f97 10 = − 1√
2
,

ξ13 = ξ24 = ξ81 = ξ92 = −ξ63 = −ξ74 = −ξ86 = −ξ97 =
1√
2
. (7.5)

As can be inferred form the covariant derivative (4.15), the gauged SO(5, n) symmetry
generators tMN are given by (modulo normalization of the generators)

t1 := t15 + t1 10 + t65 + t6 10 , t2 := t25 + t2 10 + t75 + t7 10 ,

t3 := t35 + t3 10 + t85 + t8 10 , t4 := t45 + t4 10 + t95 + t9 10 ,

t5 := t13 + t24 + t18 + t29 + t63 + t74 + t68 + t79 . (7.6)

Since all commutators vanish, as one can check easily, the gauge group in the N = 4
theory is U(1)5.

Let us now move to the vacuum. The structure of the embedding tensors contracted
with the coset representatives is derived in section C.2. They read

f1,6 3,8 5,10 = f2,7 4,9 5,10 =
1√
2

Σ3λξ

ξ1,6 3,8 = ξ2,7 4,9 = λξ , (7.7)

where for each index position of the tensors there are two options to choose from. For
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Multiplet Mass Charge

1 real graviton multiplet
0 0

(2, 2× 3
2
, 1)

9 real vector multiplets
0 0

(1, 2× 1
2
, 0)

11 real hypermultiplets
0 0

(2× 1
2
, 4× 0)

1 complex gravitino multiplet
m 0(

(1, 1
2
), 2× (1, 0), 2× (1

2
, 1

2
), 4× (1

2
, 0), (0, 1

2
), 2× (0, 0)

)
1 real vector multiplet

2mc 0(
(1

2
, 1

2
), 2× (1

2
, 0)
)

1 complex hypermultiplet
2m 0(

(1
2
, 0), 2× (0, 0)

)
Table 7.2: We depict the spectrum of the SU(2)-structure reduction of M-theory on
the Enriques Calabi-Yau.

convenience we define

λξ :=
1√
2
e−

1
2

(ρ2+ρ4) Im τ . (7.8)

The rotation to ξMN , fMNP (4.34), which is the appropriate basis to split off the
propagating degrees of freedom, gives the non-vanishing components

ξ12 = ξ34 = 2λξ , f125 = f345 = f12 10 = f34 10 =
√

2 Σ3 λξ . (7.9)

The spectrum is calculated by inserting the contracted embedding tensors into (4.40)
and bringing the terms in the Lagrangian into standard form. The fields together with
their masses and charges are listed in Table 7.2. The modes are classified according to
their mass, charges under the massless vectors and their spacetime representations under
su(2) or su(2) ⊕ su(2), respectively. Fermions in complex multiplets are Dirac while
fermions in real multiplets are taken to be symplectic Majorana. We set m =

√
2 Σ2λξ

and c = (1+Σ−6)3/2

(1+Σ−12)1/2 .

The massless multiplets are uncharged and consistent with the proper Calabi-Yau
effective theory apart from one missing vector multiplet and one hypermultiplet. More
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precisely, the Enriques Calabi-Yau has Hodge numbers h1,1 = h2,1 = 11. In the effective
action of M-theory on Calabi-Yau threefolds one finds h1,1−1 vector multiplets and h2,1+
1 hypermultiplets while for our consistent truncation on the Enriques Calabi-Yau we
find only 9 vector multiplets and 11 hypermultiplets. This resembles the results in [50]
where the same field content was missing for the analog type IIA setup. Geometrically
the corresponding missing harmonic forms are captured by SU(2)-doublets which we
discarded in the reduction of chapter 6. As explained, the doublets correspond toN = 4
gravitino multiplets, for which no coupling to standard N = 4 gauged supergravity
is known. Having discussed the massless modes in the vacuum we now turn to the
massive spectrum. We find one long gravitino multiplet, one vector multiplet and one
hypermultiplet. Interestingly no massive field is charged under a massless U(1) gauge
symmetry. For the massive tensors this has already been established on general grounds
in the previous section. Thus we conclude that for the Enriques Calabi-Yau the Chern-
Simons terms (2.22) are trivially not corrected by loops of fermions or tensors since
there are no charged modes in the truncation.

Finally let us also comment on the classical Chern-Simons terms in the reduction.
We denote the ten massless vectors in the vacuum of the consistent truncation by Ã9

µ,

Ã10
µ , Ãa

µ with a = 1, . . . , 8. The Ãa
µ originate from the E8 nature of the Enriques surface.

The classical gauge Chern-Simons couplings are found to be

ktrunc
9 10 9 = 2

√
2 , ktrunc

9aa = 2 , (7.10)

all others vanish. In the familiar Calabi-Yau effective action the Chern-Simons coeffi-
cients reproduce the intersection numbers of the manifold. For the Enriques Calabi-Yau
they read in a suitable basis

keff
9 10 11 = 1 , keff

9ab = AE8
ab , (7.11)

where AE8 denotes the Cartan matrix of E8. If we assume that the missing vector Ã11

of the consistent truncation appears together with Ã9 and Ã10 in a Chern-Simons term
with coefficient

kmiss
9 10 11 6= 0 , (7.12)

we can define

Â9
µ := Ã9

µ , Â10
µ := Ã10

µ , Â11
µ :=

√
2 Ã9

µ + kmiss
9 10 11 · Ã11

µ , (7.13)

such that in this basis we obtain the Chern-Simons couplings

k9 10 11 = 1 , k9aa = 2 . (7.14)

The first one matches with (7.11). Concerning the second term we note that the
Cholesky decomposition of AE8 ensures that there exists a field redefinition for the
Âa
µ represented by a matrix T , which fulfills

T TT =
1

2
AE8 . (7.15)
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It is easy to check that under this redefinition k9aa goes to keff
9ab. These considerations

can also be interpreted as a proposition for the Chern-Simons coefficient, which involve
the missing massless vector Ã11, namely kmiss

9 10 11 6= 0. It should be reproduced by the
SU(2)-doublets.

We conclude that for the Enriques Calabi-Yau, apart from the missing vector mul-
tiplet and hypermultiplet, the effective theory of the consistent truncation is consistent
with the genuine Calabi-Yau effective action since it is in principle possible to match
the classical Chern-Simons terms of both sides, and more importantly corrections at
one-loop are absent in the consistent truncation because massive modes do not carry
any charges. Since we think that this is the case for generic Calabi-Yau manifolds with
vanishing Euler number, the analysis of the Chern-Simons terms reveals no restrictions
for the consistent truncation to also yield a proper effective action. This conclusion
might change significantly if the internal space has isometries and there are massive
modes charged under massless vectors. We turn to an example that has these features
in the next chapter.

7.3 Second Example: Type IIB Supergravity on a

Squashed Sasaki-Einstein Manifold

In the following we study a second example of partial supergravity breaking in the con-
text of consistent truncations that features a massive spectrum charged under a massless
vector. More precisely, we consider type IIB supergravity on a squashed Sasaki-Einstein
manifold with 5-form flux. This setup admits a consistent truncation to N = 4 gauged
supergravity in five dimensions which has two vacua, one which breaks supersymmetry
completely and one which is N = 2 AdS. We focus on the latter in our analysis. Since
the theory in the broken phase can be described with the results of section 4.3, we
proceed along the lines of the last section and derive the spectrum and Chern-Simons
terms. The field content turns out to be consistent with [54–56]. Although there are
massive modes charged under the gauged R-symmetry in the vacuum, their corrections
to the gauge and gravitational Chern-Simons terms at one-loop cancel exactly.

In [54] it was shown that in a consistent truncation of type IIB supergravity on a
squashed Sasaki-Einstein manifold to five-dimensional N = 4 gauged supergravity the
non-vanishing embedding tensors fMNP , ξMN take the form

f125 = f256 = f567 = −f157 = −2 , (7.16)

ξ12 = ξ17 = −ξ26 = ξ67 = −
√

2k , ξ34 = −3
√

2 ,

where k denotes 5-form flux on the internal manifold. They encode the gauging of the
group Heis3 × U(1)R, where a U(1)R is a subgroup of the R-symmetry group. The
theory admits a vacuum that preserves N = 2 supersymmetry. If we for simplicity fix
the RR-flux to k = 2, we can use the expressions for the scalar VEVs in [54] to derive
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the contracted embedding tensors (4.22)

f125 = f675 = −f175 = −f625 = 2 , (7.17)

ξ12 = ξ67 = −ξ17 = −ξ62 = −2
√

2 , ξ34 = −3
√

2 .

We can now rotate into the basis of (4.34), in fact we transform ξM̂N̂ already into
block-diagonal form. The non-vanishing gaugings ξMN , fMNP read

ξ12 = 4
√

2 , ξ34 = 3
√

2 , f125 = −4 , (7.18)

and therefore

M̂ = 1, 2, 3, 4 , M̄ = 5, 6, 7 . (7.19)

Carrying out the calculations we find the cosmological constant Λ = −6, corre-
sponding to an AdS5 background. Furthermore half of the supersymmetries are broken
and the gauge group is reduced

Heis3 × U(1)R → U(1)R , (7.20)

where now the full U(1) R-symmetry of minimal supersymmetry in AdS5 is gauged
with gauge coupling g2 = 3/2 . The complete spectrum of the consistent truncation in
the vacuum is depicted in Table 7.3 where we consulted the categorization of [59]. The
fields are classified according to their mass, charge under U(1)R with coupling g and
their representation under the SU(2)× SU(2) part of the maximal compact subgroup
of SU(2, 2|1).

For our example we find at the classical level1

kclass
000 = 4

√
2

3
. (7.21)

In order to calculate the quantum corrections, we again use Table 2.1 with the under-
standing that representations of SU(2)× SU(2) ⊂ SU(2, 2|1) in AdS contribute in the
same way as representations of SU(2) × SU(2) in the Minkowski case. Although the
results of Table 2.1, derived in [30], were originally calculated in a Minkowski back-
ground, we believe that they are applicable to AdS as well because of their topological
origin. Remarkably, the one-loop corrections of the massive charged modes to the gauge
and gravitational Chern-Simons terms both cancel in a highly non-trivial way

k1-loop
000 = 0 , k1-loop

0 = 0 . (7.22)

Note that the index zero is now meant to refer to the remaining massless U(1)R in the
vacuum rather than to A0 in the N = 4 theory.

1We do not account for the classical gravitational Chern-Simons term.
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Multiplet Representation Mass Charge

1 real graviton multiplet

(1, 1) 0 0

(1, 1
2
) 0 -1

(1
2
, 1) 0 +1

(1
2
, 1

2
) 0 0

1 complex hypermultiplet

(1
2
, 0) 3/2 +1

(0, 0) -3 +2

(0, 0) 0 0

1 complex gravitino multiplet

(1
2
, 1) -5 +1

(1
2
, 1

2
) 8 0

(0, 1) 3 +2

(0, 1) 4 0

(0, 1
2
) -5/2 +1

(0, 1
2
) -7/2 +3

1 real vector multiplet

(1
2
, 1

2
) 24 0

(1
2
, 0) 9/2 -1

(0, 1
2
) 9/2 +1

(0, 1
2
) 11/2 -1

(1
2
, 0) 11/2 +1

(0, 0) 12 0

(0, 0) 21 -2

(0, 0) 21 +2

(0, 0) 32 0

Table 7.3: We depict the spectrum of type IIB supergravity on a squashed Sasaki-
Einstein manifold in the N = 2 vacuum corresponding to an AdS5 background.
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The interpretation of this result is not as clear as in the last section concerning
the Enriques Calabi-Yau. Indeed, the naive notion of an effective field theory on AdS
backgrounds is not well-defined since the AdS radius is linked to the size of the internal
space. We nevertheless think that the non-trivial vanishing of the one-loop Chern-
Simons terms is not accidental and should have a clear interpretation. One might even
suppose that there exists a general principle which ensures the nice behavior of scale-
invariant corrections in consistent truncations. It would be interesting to elaborate
more on this. Related to that, it would also be worthwhile to find connections to
other consistent truncations. The simplest example is certainly the N = 8 consistent
truncation to massless modes of type IIB supergravity on the five-sphere [60], which is
a special Sasaki-Einstein manifold.
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Chapter 8

Overview

A study of the consistency of quantum field theories requires to investigate their local
symmetries both at the classical and at the quantum level. In particular, even if such
gauge symmetries are manifest in the classical theory, they might be broken at the
quantum level and induce a violation of essential current conservation laws. Such in-
consistencies manifest themselves already at one-loop level and are known as anomalies
which we have already reviewed in section 2.1. Four-dimensional quantum field theories
with chiral spin-1/2 fermions for example can admit anomalies which signal the breaking
of the gauge symmetry. Consistency requires the cancelation of these anomalies either
by restricting the chiral spectrum such that a cancelation among various contributions
takes place or by implementing a generalized Green-Schwarz mechanism [21, 22]. The
latter mechanism requires the presence of U(1) gauged axion-like scalars with tree-level
diagrams canceling the one-loop anomalies. In six spacetime dimensions anomalies pose
even stronger constraints since in addition to spin-1/2 fermions also spin-3/2 fermions and
two-tensors can be chiral. Also in this case a generalized Green-Schwarz mechanism
can be applied to cancel some of these anomalies.

In this part we address the manifestation of anomaly cancelation in four-dimensional
and six-dimensional field theories from a Kaluza-Klein perspective when considering the
theories to be compactified on a circle. Note that on a circle one can expand all higher-
dimensional fields into Kaluza-Klein modes yielding a massless lowest mode and a tower
of massive excitations. Clearly, keeping track of this infinite set of fields one retains the
full information about the higher-dimensional theory including its anomalies. In a next
step one can compute the lower-dimensional effective theory for the massless modes
only. This requires to integrate out all massive states. Of particular interest for the
discussion of anomalies are the effective lower-dimensional couplings that are topologi-
cal in nature. These do not continuously depend on the cutoff scale and might receive
relevant quantum corrections from integrating out the massive states. Prominent ex-
amples are three-dimensional gauge Chern-Simons terms as well as five-dimensional
gauge and gravitational Chern-Simons terms which we have introduced in section 2.2.
These couplings are indeed modified at one-loop when integrating out massive states. In
three dimensions only certain massive spin-1/2 fermions contribute while in five dimen-
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sions also massive spin-3/2 and massive self-dual tensors give a non-vanishing shift. In
fact, precisely those modes contribute that arise from higher-dimensional chiral fields.
Therefore one expects that the Chern-Simons terms of the effective theories encode
information about the higher-dimensional anomalies. This was recently investigated
motivated by the study of F-theory effective actions via M-theory in [91–96]. With a
different motivation similar questions were addressed in [97–104] in the study of appli-
cations of holography.

The connection between one-loop Chern-Simons terms and anomalies in the higher-
dimensional theory, while expected to exist, was only shown to be rather indirect. In
fact, it is not at all obvious how the anomaly cancelation conditions arise for example
from comparing classical and one-loop Chern-Simons terms. While for many concrete
examples in the framework of F-theory, where these couplings play a prominent role, it
was possible to check anomaly cancelation using the lower-dimensional effective theory
and Chern-Simons terms arising from M-theory, there was no known systematics behind
this as of now. In our work we will show that there is an elegant way to actually approach
this for general quantum field theories by describing symmetry transformations among
effective theories that exist if and only if higher-dimensional anomalies are canceled.

Let us consider an effective theory obtained after circle reduction. If the higher-
dimensional theory admits a gauge group one can use the Wilson-line scalars of the
gauge fields around the circle to move to the lower-dimensional Coulomb branch. In
other words one considers situations in which these Wilson line scalars admit a vacuum
expectation value which we call Coulomb branch parameters in the following. The
masses of all the massive states are now dependent both on the circle radius if they
are excited Kaluza-Klein states, and on the Coulomb branch parameters if they where
charged under the higher-dimensional gauge group. With this in mind one can then
compute the effective theory for the massless modes and focus on the Chern-Simons
terms. Since the one-loop Chern-Simons couplings are not continuous functions of the
masses of the integrated-out states, they can experience discrete shifts when changing
the radius or the Coulomb branch parameters. In particular, the one-loop Chern-
Simons terms carry information about the representations of the higher-dimensional
chiral spectrum supplemented with a table of signs for each state [91,92] which coincide
with the formal signs of the Coulomb branch masses.1 This extra information can
be summarized in so-called box graphs introduced in [107, 110], see also [108, 109].
In general however, it is important to also keep track of an integer label for each
dimensionally reduced state that encodes the mass hierarchy between the Kaluza-Klein
mass and the Coulomb branch mass. In other words, depending on the background
value of the Coulomb branch parameters and the radius, the effective theories can take
different forms. One thus finds infinitely many values for the Chern-Simons coefficients
due to the infinite amount of hierarchies of Kaluza-Klein masses and Coulomb branch
masses. However, we show in detail that higher-dimensional large gauge transformations

1Different gauge theory phases of such theories and their relation to geometric resolutions have been
recently studied in [105,91,106–110].
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along the circle identify different Coulomb branch parameters and effective theories if
and only if the all gauge anomalies are canceled. Our goal is to study this in the context
of four- and six-dimensional gauge theories with a focus on pure gauge anomalies and
for six-dimensional theories in addition also on mixed gauge-gravitational anomalies.

Furthermore, due to the importance of large gauge transformations along the cir-
cle we provide a full classification of such maps which leave the boundary conditions
of all matter fields invariant. We show that depending on the precise spectrum or
global structure of the gauge group the naive set of what we would call integer large
gauge transformations can be enlarged. Indeed for non-simply connected gauge groups
the weights of the matter representations can also allow for special fractional large
gauge transformations. It is one of the major goals of this part to identify these group
structures of circle-reduced gauge theories with arithmetic structures on genus-one fi-
brations via the framework of F-theory and its effective physics [111–116, 93, 94]. The
latter structures can then be invoked to directly show anomaly cancelation in F-theory
compactifications on Calabi-Yau manifolds using one-loop Chern-Simons terms.

In recent years the connection of gauge theories in various dimensions to the ge-
ometry of elliptic curves has been explored intensively by using F-theory. In F-theory
two auxiliary dimensions need to be placed on a two-torus whose complex structure
is identified with the Type IIB axio-dilaton. Its variations are then encoded by the
geometry of a two-torus fibration in F-theory. Magnetic sources for the axio-dilaton are
7-branes that support gauge theories. Several features of these gauge theories can thus
be studied using two-torus fibrations. At first, the F-theory approach seems to suggest
that the connection between geometry and gauge theories is rather direct. However, it
turns out that the geometry of elliptic fibrations should rather be related to gauge the-
ories compactified on a circle. This can be understood by realizing that the volume of
the two-torus is unphysical in F-theory and that there is no notion of an actual twelve-
dimensional background geometry. The geometry of the elliptic fibration in F-theory is
only fully probed in the dual M-theory compactification. M-theory compactified on an
elliptic fibration yields the effective theory of F-theory compactified on an additional
circle. In particular, one is therefore forced to relate the geometry of elliptic fibrations
with gauge theories on a circle. Our focus in this work will be on revealing geometric
symmetry transformations that correspond to the large gauge transformations along
the circle.

As a first example of such a relation we will study Abelian gauge theories on a circle.
In an F-theory compactification the number of massless U(1) fields can be related to the
number of rational sections (or multi-sections) minus one [113]. The section that is not
counted here has to be identified with the Kaluza-Klein vector obtained from the higher-
dimensional metric when placing the gauge theory on the additional circle. Recent
progress in understanding U(1) gauge groups in F-theory can be found for example
in the references [117–122,94,123,95,124–129]. The fact that smooth geometries carry
information about a circle-reduced theory becomes particularly apparent in models with
rational sections in which the mentioned mass hierarchy between Kaluza-Klein masses
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and lower-dimensional Coulomb branch masses is non-trivial [94]. In other words, it
was key in [94] that despite the fact that massive states have to be integrated out in
the circle compactified effective theory some cutoff independent information about the
massive tower has to be kept in order to get the right one-loop Chern-Simons terms. For
models with only a multi-section, see [130–132, 127, 133, 134] for representative works,
the requirement of a lower-dimensional approach is even more pressing. As discussed
in [96, 135–137, 133] the multi-section should be understood as a mixing of the higher-
dimensional U(1)s and the Kaluza-Klein vector.

The first goal of our work is to formalize the relationship between geometries with
rational sections and circle-reduced gauge theories further. We carefully identify the
Mordell-Weil group acting on rational sections as large gauge transformations along
the circle. The Mordell-Weil group is a discrete finitely-generated Abelian group that
captures key information about the arithmetic of elliptic fibrations. We show that
there is indeed a one-to-one correspondence between large gauge transformations and
basis shifts in the Mordell-Weil group. Shifts along the free part of the Mordell-Weil
group are identified with integer Abelian large gauge transformations while its torsion
part is related to special fractional non-Abelian large gauge transformations. As a
byproduct we explore the geometric relationship between the existence of fractional
Abelian charges of matter states and the presence of a non-Abelian gauge group.

A second goal is to use our understanding of the arithmetic for geometries with
rational sections to provide evidence for the existence of a natural group law acting on
fibrations with multi-sections. We call this group extended Mordell-Weil group despite
the fact that there is formally no Mordell-Weil group for multi-sections. We also define
a generalized Shioda map that allows to explore the physical implications of the group
action. Furthermore, we rigorously establish the correspondence of the proposed group
action on the divisor level with large gauge transformations around the circle. In many
examples it is known that there exist geometric transitions from a model with several
sections to a model with only multi-sections [132,96,127,135–137,133]. Physically this
corresponds to a Higgsing of charged matter states. By construction, the group law
of the extended Mordell-Weil group should be inherited from the setup with multiple
sections. Accordingly, it trivially reduces to the standard Mordell-Weil group law in
the presence of genuine sections.

The third goal is to extend the discussion to fully include matter-coupled non-
Abelian gauge theories with gauge group G. Placing these theories on a circle we per-
form large gauge transformations along the circle and explore the associated arithmetic
structure in the geometry. More precisely, we are interested in examining the impact of
non-Abelian large gauge transformation on the U(1)r+1 gauge theory obtained in the
lower-dimensional Coulomb branch. Here r is the rank of G and the additional U(1) is
the Kaluza-Klein vector of the higher-dimensional metric. We show that there indeed is
a natural group structure on the set of exceptional divisors and rational sections corre-
sponding to these large gauge transformations. We also make progress in identifying the
geometric symmetry corresponding to such transformations. First, we show that the
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large Abelian gauge
transformations ⇔ Mordell-Weil
group of rational sections

residual large Abelian
gauge transformations
⇒ extended Mordell-Weil
group of multi-sections

large non-Abelian gauge
transf. in Coulomb branch
⇒ group action for
exceptional divisors

(A)

(B) (C)

Higgsing unHiggsing

Figure 8.1: Schematic depiction of the various geometric configu-
rations considered in this work. The geometries are related by ge-
ometric transitions describing Higgsing and unHiggsing processes.

transformed exceptional divisors and rational sections can have a standard geometry
interpretation. Second, we employ that a non-Abelian gauge theory with adjoints can
be related to an Abelian theory with r U(1)s by Higgsing/unHiggsing corresponding to
complex structure deformations in the geometry, at least for the case that there exists
a geometric realization of this field theory transition. Using recent results in [132, 129]
we show that the postulated group structure on the exceptional divisors gets mapped
precisely to the usual Mordell-Weil group law of the geometry corresponding to the
Abelian theory. All this hints at the existence of a symmetry directly in the geometry
associated to the non-Abelian theory that is yet to be formulated explicitly. In fact, on
the field theory level this is clear since the circle-compactified theories only differ by a
non-Abelian large gauge transformation. This is obviously a symmetry of an anomaly
free gauge theory which indicates that the corresponding geometry should be considered
physically equivalent to the original elliptic fibration.

Let us note that our intuition can be summarized by using Figure 8.1 as follows.
First, we are able to establish the relation of the Mordell-Weil group to large Abelian
gauge transformations in elliptic fibrations with rational sections depicted in (A). Us-
ing a geometric transition which corresponds to Higgsing in field theory the resulting
fibrations might only admit multi-sections, see (B). Therefore, one expects an extended
Mordell-Weil group structure for such geometries. Furthermore, a geometry with ra-
tional sections might arise via a geometric transition describing a non-Abelian gauge
theory. Again this is described by a Higgsing in field theory. Such transitions motivate
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us to transfer the Mordell-Weil group structure to a geometry with exceptional divisors.
The resulting group structure corresponds to large non-Abelian gauge transformation
for an F-theory effective field theory compactified on a circle and pushed to the Coulomb
branch.

It is essential to notice that the investigation of arithmetic structures on the geome-
try which descend to large gauge transformations along the circle allows us to explicitly
show anomaly cancelation in F-theory compactifications on genus-one fibered Calabi-
Yau fourfolds and threefolds. This is obvious since we show at the beginning of this part
that the invariance under large gauge transformations is equivalent to the cancelation of
all gauge anomalies in the higher-dimensional theories. Note that the group structure
for exceptional divisors which we propose is not fully established yet. In order words,
at the level of homology and also by the intuition of complex structure deformations
we have found convincing evidence that it exists, but up to now there is no rigorous
proof that it is actually geometrically realized. The same is also true for the extended
Mordell-Weil group of multi-sections. In contrast, since the genuine Mordell-Weil group
of rational sections is mathematically established, the corresponding large gauge trans-
formations are symmetries of the theory on the circle, and the associated anomalies are
therefore canceled.

Finally, the discussion of arithmetic structures on elliptic fibrations and their relation
to large gauge transformations is also relevant for understanding the freedom of choice
for the zero-section in F-theory. Consider an F-theory compactification on an elliptic
fibration which comes with multiple rational sections generating a non-trivial Mordell-
Weil group. Then one of these sections has to be chosen as the zero-section and is
matched to the Kaluza-Klein vector in the gauge theory on the circle. Although there
should be no preferred choice for what one calls the zero-section, the effective theories
on the circle seem to differ since the calculation of one-loop Chern-Simons terms yields
different results. However we are able to show that different choices for picking the zero-
section are again related by a large gauge transformation along the circle supplemented
by redefining the higher-dimensional U(1) gauge fields.

This part is organized as follows. We review the relevant parts for circle compactifi-
cations of general four- and six-dimensional gauge theories to three and five dimensions,
respectively, in chapter 9 and fix our notation. In chapter 10 we describe the action
of large gauge transformations along the circle in these theories. In particular, we
show that all four- and six-dimensional gauge anomaly cancelation conditions can be
derived from the perspective of the circle-compactified theories by imposing that the
large gauge transformations act consistently on one-loop Chern-Simons terms in three
and respectively five dimensions. Before we relate these kind of settings to F-theory
compactifications on genus-one fibered Calabi-Yau manifolds, we give a short introduc-
tion into the basic concepts of F-theory in chapter 11. Finally, in chapter 12 we match
the field-theoretic large gauge transformations along the F-theory circle to arithmetic
structures on genus-one fibrations thereby concretely conjecturing group structures for
exceptional divisors and multi-sections which have not been considered before. We con-
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clude in chapter 13 with the closely related work on the choice of picking the zero-section
in F-theory compactifications on elliptic fibrations.
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Chapter 9

Circle Compactification of Gauge
Theories

9.1 General Setup

Let us start by introducing some general notions about Abelian and non-Abelian gauge
theories in four and six spacetime dimensions. Unless stated differently our notation
applies to both kinds of settings. Differences between four and six dimensions will then
be highlighted at prominent positions. We denote by G a simple non-Abelian gauge
group1 with gauge bosons Â and Lie algebra g. Introducing the Lie algebra generators
TI , I = 1, . . . , dim g we expand

Â = ÂITI = ÂITI + ÂαTα (9.1)

where TI , I = 1, . . . , rank g are the generators of the Cartan subalgebra and Tα are the
remaining generators labeled by the roots α. In addition, we will allow for a number
nU(1) of Abelian gauge bosons which are denoted by Âm with m = 1, . . . , nU(1).

Since we are in particular interested in anomalies of four- and six-dimensional the-
ories, let us introduce the relevant fields which induce anomalies at one-loop in the
following. Furthermore, it will also become important that a classical four-dimensional
or six-dimensional gauge theory does not necessarily have to be gauge invariant in order
to lead to a consistent quantum theory. In fact, it is well-known that often classical
gauge non-invariance is required to cancel one-loop gauge anomalies induced by chiral
fields. Famously, this is done by the Green-Schwarz mechanism [21–23]. Therefore we
also introduce the fields which participate in the latter.

In four dimensions the following modes contribute to anomalies:

1The generalization to semi-simple gauge groups is straightforward but however omitted for conve-
nience of presentation.
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• Spin-1/2 Weyl fermions in a representation R of the non-Abelian gauge group and

with U(1) charges qm are denoted by ψ̂
1/2

(R, q). The covariant derivative for

left-handed ψ̂
1/2

(R, q) takes the form

D̂µψ̂
1/2

(R, q) =
(
∇̂µ − iÂIµTRI − iqmÂmµ

)
ψ̂

1/2
(R, q) . (9.2)

We expand ψ̂
1/2

(R, q) in an eigenbasis ψ̂
1/2

(w, q) associated to the weights w of
R. They enjoy the property

TRI ψ̂
1/2

(w, q) = wI ψ̂
1/2

(w, q) (9.3)

for the Cartan directions, where wI := 〈α∨I , w〉 are the Dynkin labels and α∨I is
the simple coroot associated to TI . We refer to section E.1 for our conventions in
the theory of Lie algebras.

Finally we denote the chiral index of the fields ψ̂
1/2

(R, q) by F1/2(R, q)

F1/2(R, q) = F left
1/2 (R, q)− F right

1/2 (R, q) (9.4)

such that the effective number of chiral modes in the theory at hand is given by
dim(R) · F1/2(R, q).

• The Green-Schwarz mechanism is mediated by axions2 ρ̂α, α = 1, . . . , nax with a
gauged shift-symmetry under the U(1) vectors Âm. More precisely, their covariant
derivative reads

D̂ρ̂α = dρ̂α + θαmÂ
m (9.5)

with θαm constant. The classical non-gauge-invariant counter-terms are given by

Ŝ
(4)
GS = −1

4

∫
η β
α ρ̂β

(
− 1

4
aαtrR̂ ∧ R̂+ bαλ−1

g trf (F̂ ∧ F̂ ) + bαmnF̂
m ∧ F̂ n

)
, (9.6)

where η β
α is a constant square matrix, and aα, bα and bαmn are the Green-Schwarz

anomaly coefficients. We denote by trf the trace in the fundamental representa-

tion of the gauge algebra. The expressions F̂ and F̂m denote the field strengths
of Â and Âm, respectively, and R̂ is the curvature two-form. The algebra-specific
coefficient is given by

λ−1
g =

1

2
〈αmax,αmax〉 , (9.7)

where αmax is the root of maximal length (see section E.1).

2Note that this index α counts axions and should not be confused with α labeling the roots of g.
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In six dimensions we introduce the following types of fields:

• Spin-1/2 Weyl fermions in a representation R of the non-Abelian gauge group and

with U(1) charges qm are written as ψ̂
1/2

(R, q). Note that in the following we
do note impose an additional symplectic Majorana condition which is in prin-
ciple possible in six dimensions. We indicated this by using bold symbols. For

left-handed ψ̂
1/2

(R, q), i.e. they transform as
(

1
2
, 0
)

of the massless little group
SO(4) ∼=

locally
SU(2)× SU(2), the covariant derivative reads

D̂µψ̂
1/2

(R, q) =
(
∇̂µ − iÂIµTRI − iqmÂmµ

)
ψ̂

1/2
(R, q) . (9.8)

Again, we can expand ψ̂
1/2

(R, q) in an eigenbasis ψ̂
1/2

(w, q) associated to the
weights w of R with

TRI ψ̂
1/2

(w, q) = wI ψ̂
1/2

(w, q) . (9.9)

Finally we write F1/2(R, q) for the chiral index of the fields ψ̂
1/2

(R, q)

F1/2(R, q) = F left
1/2 (R, q)− F right

1/2 (R, q) (9.10)

such that the effective number of chiral
(

1
2
, 0
)
-modes in the theory at hand is

given by dim(R) · F1/2(R, q). We stress once more, that in our conventions the

ψ̂
1/2

(R, q) are not subject to a symplectic Majorana condition.

• By Tsd and Tasd we denote the number of self-dual and anti-self-dual tensors
respectively. In the following we will not treat non-Abelian tensor fields, for
which no Lagrangian description is known, but only restrict to Abelian ones.
These fields are indeed chiral since self-dual tensors transform as (1, 0) under
SU(2)×SU(2), anti-self-dual tensors as (0, 1). We write B̂α, α = 1, . . . , Tsd +Tasd

for the two-form fields, and introduce the chiral index

T = Tsd − Tasd . (9.11)

Furthermore, the B̂α can mediate a Green-Schwarz mechanism since on the one
hand one can assign to them modified field strengths and therefore a non-trivial
transformation under six-dimensional gauge transformations (see e.g. [93, 94] for
a more complete discussion)

δB̂α = dΛ̂α − 1

2
aαtr l̂dω̂ − 2bαtr Λ̂dÂ− 2bαmnΛ̂mdÂn , (9.12)
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where l̂, Λ̂, Λ̂m, Λ̂α are the parameters of local Lorentz, gauge and two-form
transformations, respectively, and ω̂ is the spin connection. On the other hand
the B̂α can appear with topological couplings

Ŝ
(6)
GS = −

∫
ηαβB̂

β ∧
(1

4
aαtrR̂ ∧ R̂+ bαλ−1

g trf (F̂ ∧ F̂ ) + bαmnF̂
m ∧ F̂ n

)
, (9.13)

where aα, bα and bαmn denote the Green-Schwarz coefficients. The matrix ηαβ is
constant, symmetric in its indices and its signature consists of Tsd positive signs
and Tasd negative ones. The F̂ and F̂m denote the field strengths of Â and Âm,
respectively, and R̂ is the curvature two-form. The trace in the fundamental
representation of g is written as trf . We also used

λ−1
g =

1

2
〈αmax,αmax〉 (9.14)

with αmax the root of maximal length.

• We write ψ̂
3/2

µ for spin-3/2 fermions. Left-handed ψ̂
3/2

µ transform as
(
1, 1

2

)
under

SU(2)× SU(2), right-handed ones as
(

1
2
, 1
)
. The chiral index is denoted by

F3/2 = F left
3/2 − F

right
3/2 . (9.15)

In the following section 9.2 we account for the anomalies which are induced by these
fields in full detail. For the moment it is worthwhile to realize that both the four-
dimensional and six-dimensional settings are characterized by Green-Schwarz coeffi-
cients aα, bα, bαmn. Indeed, in the following we will see that the fields ρ̂α and B̂α appear-
ing in (9.6) and (9.13) are both captured by vectors Aα after a circle-compactification
and dualization. This slight abuse of notation will allow us to investigate the four-
dimensional and six-dimensional case simultaneously at once.

9.2 Anomaly Cancelation

In section 10.2 we will show in detail that if one considers the action of large gauge
transformations along the circle on one-loop Chern-Simons, one can recover all gauge
anomaly cancelation conditions of the uncompactified theory in a neat way. Therefore
let us shortly collect the anomaly equations in four and six dimensions. For a more
general recap of anomalies in quantum field theory see section 2.1 at the beginning of
this thesis and the references therein.

9.2.1 Four Dimensions

Potential anomalies in four dimensions stem from loops of chiral spin-1/2 fermions as
depicted in Figure 9.1. As mentioned before, a classical Green-Schwarz mechanism
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Figure 9.1: The four-dimensional one-loop anomaly has gravitons or gauge bosons as
external legs. The modes running in the loop are chiral fermions.

θmα

aα, bα, bαnp

Figure 9.2: The four-dimensional Green-Schwarz mechanism is mediated by axions.
The left external leg is always an Abelian gauge boson Âm while the external legs on
the right-hand side are either gauge bosons or gravitons.

mediated by axions can be exploited in order to cancel the latter. In our conventions
the one-loop anomaly polynomial for left-handed Weyl fermions which transform in
some representation R (which might also possibly be the singlet representation) of the
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non-Abelian gauge group and with U(1) charges qm takes the form [138]

I1-loop
1/2 (R, q) = − 1

24
dim(R) qmF̂

mp1(R̂) +
1

6
trRF̂

3 +
1

2
qmF̂

mtrRF̂
2

+
1

6
dim(R) qmqnqpF̂

mF̂ nF̂ p

=
1

48
dim(R) qmF̂

mtrR̂2 +
1

6
trRF̂

3 +
1

2
qmF̂

mtrRF̂
2 (9.16)

+
1

6
dim(R) qmqnqpF̂

mF̂ nF̂ p ,

with trR the trace taken in the representation R and the first Pontryagin class given by

p1(R̂) = −1

2
trR̂2 . (9.17)

The anomaly polynomial derived from the Green-Schwarz counterterms depicted in
Figure 9.2 takes the following factorized form

IGS = −1

8
θmα

(
aαF̂mp1(R̂) + 2

bα

λg
F̂mtrf F̂

2 + 2bαnpF̂
mF̂ nF̂ p

)
=

1

16
aαθmαF̂

mtrR̂2 − 1

4

bα

λg
θmαF̂

mtrf F̂
2 − 1

4
bαnpθmαF̂

mF̂ nF̂ p , (9.18)

which can be derived straightforwardly by using the anomalous variation of the classical
action in the descent equations.

The vanishing condition of the full six-form anomaly polynomial I6 then comprises
the one-loop part and the Green-Schwarz contributions

I6 :=
∑
R,q

F1/2(R, q) I
1-loop
1/2 + IGS !

= 0 (9.19)

This leads to the cancelation conditions3

−3aαθmα =
∑
R,q

dim(R) F1/2(R, q) qm ,

0 =
∑
R,q

F1/2(R, q)ER ,

1

2

bα

λg
θmα =

∑
R,q

F1/2(R, q) qmAR ,

3

2
bα(mnθp)α =

∑
R,q

dim(R) F1/2(R, q) qmqnqp ,

(9.20a)

(9.20b)

(9.20c)

(9.20d)

3All symmetrizations over n indices include a factor of 1
n! .
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where we employed the definitions

trRF̂
2 = AR trf F̂

2 , (9.21a)

trRF̂
3 = ER trf F̂

3 ,

trRF̂
4 = BR trf F̂

4 + CR (trf F̂
2)2 .

The last definition is only introduced for convenience since it will be used in the six-
dimensional setup later.

It will be essential in section 10.2 that we have managed to express the anomaly
cancelation conditions which involve non-Abelian gauge factors by an alternative repre-
sentation. This is done via replacing the Casimirs AR and ER by certain sums over all
weights of the given representation R. As we show in section E.2, the equations (9.20)
are equivalent to

−1

4
aαθmα =

1

12

∑
R,q

F1/2(R, q)
∑
w∈R

qm ,

0 =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJwK ,

1

2
bαθmα CIJ =

∑
R,q

F1/2(R, q)
∑
w∈R

qmwIwJ ,

3

2
bα(mnθp)α =

∑
R,q

F1/2(R, q)
∑
w∈R

qmqnqp .

(9.22a)

(9.22b)

(9.22c)

(9.22d)

Although we have in principle only rewritten those anomaly cancelation conditions
which involve the non-Abelian gauge symmetry, we once more collect the full set of
conditions in this box for later convenience. Note also that for the same reason all
factors of dim(R) have been rewritten as a sum over weights of the non-Abelian gauge
group. Furthermore, we stress that this way of writing of course involves a lot of
redundancy since there are many more equations due to the appearance of new indices
I, J,K. Indeed, as shown in section E.2 some equations are trivially fulfilled as a
group-theoretical identity, others are equivalent to each other.

9.2.2 Six Dimensions

The chiral modes in six dimensions which induce anomalies at one-loop are spin-1/2
and spin-3/2 fermions as well as (anti-)self-dual tensors. The corresponding anomalous
box diagrams are depicted in Figure 9.3. The (anti-)self-dual tensors can additionally
participate in a Green-Schwarz mechanism at tree-level as illustrated in Figure 9.4.

Let us now write down the one-loop anomaly polynomials for the different types
of fields in our conventions. For a left-handed spin-1/2 fermion which transforms in a
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Figure 9.3: The six-dimensional one-loop anomaly has gravitons or gauge bosons as
external legs. The modes running in the loop can be chiral spin-1/2 fermions, spin-3/2
fermions or (anti-)self-dual tensors.

aβ, bβ , bβpqaα, bα, bαmn

Figure 9.4: The six-dimensional Green-Schwarz mechanism is mediated by (anti-)self-
dual tensors. The external legs can be gauge bosons or gravitons.

representation R and has U(1) charge q, it reads

I1-loop
1/2 (R, q) =

1

360
dim(R)

(
− 4p2(R̂) + 7p2

1(R̂)
)

+
1

3
trRF̂

2p1(R̂)
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+
1

3
dim(R) qmqnF̂

mF̂ np1(R̂) +
2

3
trRF̂

4 +
8

3
qmF̂

mtrRF̂
3

+ 4qmqnF̂
mF̂ ntrRF̂

2 +
2

3
dim(R) qmqnqpqqF̂

mF̂ nF̂ pF̂ q

=
1

360
dim(R)

(
trR̂4 +

5

4
(trR̂2)2

)
− 1

6
trRF̂

2trR̂2 (9.23)

− 1

6
dim(R) qmqnF̂

mF̂ ntrR̂2 +
2

3
trRF̂

4 +
8

3
qmF̂

mtrRF̂
3

+ 4qmqnF̂
mF̂ ntrRF̂

2 +
2

3
dim(R) qmqnqpqqF̂

mF̂ nF̂ pF̂ q ,

for a self-dual tensor we have

I1-loop
sd =

2

45

(
− 7p2(R̂) + p2

1(R̂)
)

=
28

360

(
trR̂4 +

5

4
(trR̂2)2

)
− 1

8
(trR̂2)2 , (9.24)

and finally for a left-handed spin-3/2 fermion

I1-loop
3/2 =

1

72

(
− 196p2(R̂) + 55p2

1(R̂)
)

=
245

360

(
trR̂4 +

5

4
(trR̂2)2

)
− (trR̂2)2 . (9.25)

Note that for right-handed fermions and anti-self-dual tensors one picks up a minus
sign, respectively. Again for the gravitational anomalies we employed the definitions of
the Pontryagin classes

p1(R̂) = −1

2
trR̂2 , (9.26a)

p2(R̂) =
1

8

(
− 2 trR̂4 + (trR̂2)2

)
. (9.26b)

The classical Green-Schwarz counterterms contribute to the anomaly polynomial in
the factorized form

IGS =
1

2
ηαβ

(
aαp1(R̂)− 2

bα

λg
trf F̂

2 − 2bαmnF̂
mF̂ n

)(
aβp1(R̂)− 2

bβ

λg
trf F̂

2 − 2bβpqF̂
pF̂ q
)

=
1

8
aαaβηαβ(trR̂2)2 + aα

bβ

λg
ηαβ trf F̂

2trR̂2 + aαbβmnηαβ F̂
mF̂ ntrR̂2 (9.27)

+ 2
bα

λg

bβ

λg
ηαβ (trf F̂

2)2 + 4bαmn
bβ

λg
ηαβ F̂

mF̂ ntrf F̂
2 + 2bαmnb

β
pqηαβ F̂

mF̂ nF̂ pF̂ q .

The cancelation of all anomalies then requires the vanishing of the full eight-form
anomaly polynomial I8, consisting of the one-loop contributions from chiral fermions
and (anti-)self-dual tensors as well as the classical Green-Schwarz part

I8 :=
∑
R,q

F1/2(R, q) I
1-loop
1/2 (R, q) + T I1-loop

sd + F3/2 I
1-loop
3/2 + IGS !

= 0 . (9.28)
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This condition yields the following set of equations

0 =
∑
R,q

dim(R) F1/2(R, q) + 28T + 245F3/2 ,

aαaβηαβ = T + 8F3/2 ,

6aα
bβ

λg
ηαβ =

∑
R,q

F1/2(R, q) AR ,

6aαbβmnηαβ =
∑
R,q

dim(R) F1/2(R, q) qmqn ,

0 =
∑
R,q

F1/2(R, q) BR ,

−3
bα

λg

bβ

λg
ηαβ =

∑
R,q

F1/2(R, q) CR ,

0 =
∑
R,q

F1/2(R, q) qmER ,

−bαmn
bβ

λg
ηαβ =

∑
R,q

F1/2(R, q) qmqnAR ,

−3bα(mnb
β
pq)ηαβ =

∑
R,q

dim(R) F1/2(R, q) qmqnqpqq ,

(9.29a)

(9.29b)

(9.29c)

(9.29d)

(9.29e)

(9.29f)

(9.29g)

(9.29h)

(9.29i)

with the group theoretical constants AR, BR, CR, ER defined in (9.21).

Again like in (9.20) and (9.22) there is an alternative representation of those anomaly
equations which involve the non-Abelian gauge symmetry as shown in section E.2. Note
that we also display the pure gravitational anomalies in a different manner such that
the connection to Chern-Simons terms becomes more apparent. In particular the new
representations (9.30a), (9.30b) are formed by taking appropriate linear combinations
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of the original conditions (9.29a), (9.29b).

4(T + 11F3/2) =
1

6

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

1− 4T + 19F3/2

)
,

1

4
aαaβηαβ =

1

120

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

1 + 2T− 5F3/2

)
,

1

2
aαbβηαβ CIJ =

1

12

∑
R,q

F1/2(R, q)
∑
w∈R

wIwJ ,

1

2
aαbβmnηαβ =

1

12

∑
R,q

F1/2(R, q)
∑
w∈R

qmqn ,

−3bαbβηαβ C(IJCKL) =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJwKwL ,

0 =
∑
R,q

F1/2(R, q)
∑
w∈R

qmwIwJwK ,

−bαmnbβηαβ CIJ =
∑
R,q

F1/2(R, q)
∑
w∈R

qmqnwIwJ ,

−3bα(mnb
β
pq)ηαβ =

∑
R,q

F1/2(R, q)
∑
w∈R

qmqnqpqq .

(9.30a)

(9.30b)

(9.30c)

(9.30d)

(9.30e)

(9.30f)

(9.30g)

(9.30h)

Similar to the situation in four dimensions, demanding that these equations hold
true for all index choices I, J,K, L involves of course a lot of redundancy since some
equations are trivially fulfilled as group-theoretical identities and others are equivalent
to each other. However note that the single type of equation (9.30e) comprises both
pure non-Abelian gauge anomalies (9.29e) and (9.29f) as shown in section E.2.

9.3 Circle Compactification

In the next step we compactify the four- or six-dimensional theory on a circle and push
it to the Coulomb branch by allowing for a non-vanishing Wilson line background for
the gauge field component along the circle. We stress that we assume generic values for
these VEVs throughout this thesis. In particular they should not be integer multiples
of the radius. Note that we will not account for the full circle reduction but rather
review the relevant parts. A complete treatment (with application to F-theory) can for
example be found in [116,93,94].

9.3.1 Reduction of the Fields

First let us fix some notation for convenience. We stress that all four- or six-dimensional
objects carry a ’hat’ while the three- or five-dimensional ones which appear in the circle-
reduction do not. From the metric in four or six dimensions one finds at lowest level
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the three- or five-dimensional metric gµν , the Kaluza-Klein vector A0, and the radius
modulus r of the circle. Thus the higher-dimensional line element is expanded according
to

dŝ2 = gµνdx
µdxν + r2Dy2 , Dy := dy − A0

µdx
µ , (9.31)

with xµ the three- or five-dimensional coordinates, respectively, and y the coordinate
along the circle. Performing the Kaluza-Klein reduction of the vector fields one finds
at lowest Kaluza-Klein level a number of dim g gauge fields AI and dim g Wilson line
scalars ζI from reducing Â. In addition one has nU(1) U(1) gauge fields Am and Wilson

line scalars ζm from reducing Âm. In particular the gauge fields are expanded as

ÂI = AI − ζIrDy , Âm = Am − ζmrDy . (9.32)

The AI constitute gauge fields of the lower-dimensional version of the gauge group G
while the ζI transform in the adjoint representation of G. In other words, denoting the
gauge parameters by ΛI(x) and Λm(x) one has

δAI = dΛI + fIJKΛJAK , δζI = fIJKζ
JΛK , (9.33)

δAm = dΛm , δζm = 0 ,

where fIJK are the structure constants of g. It will be crucial to realize later that there is

whole class of higher-dimensional gauge transformations with gauge parameters Λ̂I(x, y)
and Λ̂m(x, y) depending non-trivially on y which are not included in (9.33). We will
discuss these additional transformations in chapter 10 in more detail.

The Coulomb branch of the compactified theory is parametrized by the background
values of the scalars ζI and ζm by setting

〈ζI〉 6= 0 , 〈ζα〉 = 0 , 〈ζm〉 6= 0 , (9.34)

i.e. giving the Cartan Wilson line scalars a (generic) vacuum expectation value. This
induces the breaking

G× U(1)nU(1) → U(1)rank g × U(1)nU(1) , (9.35)

and assigns a mass to the W-bosons Aα. Note that one has to include the Kaluza-
Klein vector A0 in addition, such that the full three- or five-dimensional massless gauge
group is actually U(1)rank g+nU(1)+1. We stress that there can be additional massless
U(1) vectors which arise from the dualization of former four-dimensional axions or
six-dimensional (anti-)self-dual tensors, respectively, as we will explain in a moment.
However, there are no modes in the theory which carry charges under these vector fields.

The massive fields in the lower-dimensional theory then are precisely the excited
Kaluza-Klein modes of all higher-dimensional states and the fields that acquire masses
on the Coulomb branch. In particular, also the modes of the higher-dimensional charged
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matter states will gain a mass. The three- and five-dimensional spin-1/2 fermions4

ψ
1/2(w, q), which derive from the former ψ̂

1/2
(w, q) in four and six dimensions having

weight w under the non-Abelian group and U(1) charges qm as introduced in section 9.1,
obtain a Coulomb branch mass mw,q

CB in the background (9.34)

mw,q
CB = wI〈ζI〉+ qm〈ζm〉 . (9.36)

In total the mass of the fields ψ
1/2
(n)(w, q) at Kaluza-Klein level n in the lower-dimensional

theories reads

m = mw,q
CB + nmKK = wI〈ζI〉+ qm〈ζm〉+

n

〈r〉
, (9.37)

with mKK = 1/〈r〉 being the unit Kaluza-Klein mass determined by the background
value of the radius. Note that a similar analysis can be performed for the Kaluza-Klein
modes of all other fields, including scalars, W-bosons, and six-dimensional tensor fields.

In particular each six-dimensional (anti-)self-dual tensor B̂α yields a whole tower
of Kaluza-Klein states after compactification on the circle. While the massive modes
are genuine tensor fields in five dimensions [27,29], the massless mode can be dualized
into a massless five-dimensional vector field Aα. To be more precise, the Kaluza-Klein
ansatz for B̂α reads

B̂α = Bα −
(
Aα − 2λ−1

g bαtrf (ζA)− 2bαmnζ
mAn

)
∧Dy + . . . , (9.38)

omitting contributions from the spin connection in the expansion. Note that the modifi-
cation of this ansatz with terms proportional to the constant Green-Schwarz coefficients
bα and bαmn defined in (9.13) is important since the six-dimensional tensors have modi-
fied field strengths. In the classical five-dimensional Coulomb branch parametrized by
(9.34) the ansatz (9.38) including only the massless fields becomes

B̂α = Bα −
(
Aα − 2bαCIJζIAJ − 2bαmnζ

mAn
)
∧Dy + . . . , (9.39)

where we have introduced the coroot intersection matrix CIJ = λ−1
g trf (TITJ) with TI

being the Cartan generators in the coroot basis. Again, we refer to section E.1, in
particular (E.3) and the following paragraph for more details. In five dimensions the
Bα can then be eliminated from the action in favour of the dual vectors Aα by using
the self- or anti-self-duality of B̂α (see [93, 94] for more details).

The analog objects to B̂α in four dimensions are axions ρ̂α, α = 1, . . . , nax with a
gauged shift-symmetry under the U(1) vectors Âm. As for the (anti-)-self-dual tensors
in six dimensions, after the circle compactification the Kaluza-Klein zero-modes of ρ̂α
can be dualized into three-dimensional vectors Aα (see e.g. [116, 92] for a detailed
discussion).

4Note that as for ψ̂
1/2

, ψ̂
3/2

µ in six dimensions we do not impose a symplectic Majorana condition

on the ψ
1/2, ψ

3/2
µ in five dimensions.
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4d 3d

Field KK-tower Mass
(A0, AI , Am)

Charge

ψ̂
1/2

(w, q) ψ
1/2
(n)(w, q) mw,q

CB + n
〈r〉 (−n,wI , qm)

Table 9.1: Four-dimensional Weyl spinors ψ̂
1/2

(w, q) induce a Kaluza-Klein tower of

massive three-dimensional Dirac spinors ψ
1/2
(n)(w, q), n = −∞, . . . ,+∞ with additional

mass contribution on the Coulomb branch. The Lagrangian is given by (2.19).

Our main interest in the circle-reduced theories at the massive level is into parity-
violating modes since they derive from chiral higher-dimensional fields and contribute
to one-loop Chern-Simons terms in the effective theory. Therefore let us collect all
massive parity violating modes along with their higher-dimensional origin in Table 9.1
and Table 9.2. The connection between chirality in four and six dimensions and the
choice of a representation of the Clifford algebra in three and five dimensions is explained
in section 2.2. The Lagrangians for the massive fields in three and five dimensions are
given in (2.19) and (2.26).

Since the Chern-Simons coefficients couple gauge fields, we once more list the vectors
which stay massless on the Coulomb branch along with their higher-dimensional origins
in Table 9.3. Note that the massless gauge fields are all Abelian in the effective theory
on the Coulomb branch and that there are no modes which are charged under Aα.

9.3.2 Chern-Simons Terms

Now that we have discussed the parity violating massive field content as well as the
massless vectors of the theories on the circle, let us investigate in more detail the special
types of topological couplings in three and five dimensions, namely Chern-Simons terms,
which we already introduced in section 2.2. Recall the general form of these terms in
three dimensions

SCS =

∫
ΘΛΣA

Λ ∧ FΣ , (9.40)

and in five dimensions

Sgauge
CS = − 1

12

∫
kΛΣΘA

Λ ∧ FΣ ∧ FΘ (9.41a)

Sgrav
CS = −1

4

∫
kΛA

Λ ∧ tr(R∧R) , (9.41b)

where AΛ are U(1) vectors with field strengths FΛ, and R is the curvature two-form.
The constants ΘΛΣ, kΛΣΘ, kΛ are called Chern-Simons coefficients, and in five dimension



9.3. CIRCLE COMPACTIFICATION 123

6d 5d

Field su(2)× su(2) KK-tower su(2)× su(2) Mass
(A0, AI , Am)

Charge

ψ̂
1/2

(w, q) (1
2
, 0), (0, 1

2
) ψ

1/2
(n)(w, q) (1

2
, 0), (0, 1

2
) mw,q

CB + n
〈r〉 (−n,wI , qm)

B̂α (1, 0), (0, 1) Bα
(n>0) (1, 0), (0, 1) n

〈r〉 (−n, 0, 0)

ψ̂
3/2

µ (1, 1
2
), (1

2
, 1) ψ

3/2
µ (n) (1, 1

2
), (1

2
, 1) n

〈r〉 (−n, 0, 0)

Table 9.2: Six-dimensional spin-1/2 Weyl fermions ψ̂
1/2

(w, q) induce a Kaluza-Klein

tower of massive five-dimensional spin-1/2 Dirac fermions ψ
1/2
(n)(w, q), n = −∞, . . . ,+∞

with additional mass contribution on the Coulomb branch. The Lagrangian is given
by (2.26a). Furthermore, (anti-)self-dual tensors in six dimensions B̂α yield a tower of
massive complex tensors Bα

(n), n = 1, . . . ,+∞ with Lagrangian (2.26b). Note that n
runs only over the positive integers because of the (anti-)self-duality relation. Finally,

six-dimensional spin-3/2 Weyl fermions ψ̂
3/2

µ give a Kaluza-Klein tower of massive five-

dimensional spin-3/2 Dirac fermions ψ
3/2
µ (n), n = −∞, . . . ,+∞ with Lagrangian (2.26c).

We stress that in our conventions no additional symplectic Majorana condition is im-
posed, neither in six nor in five dimensions.

4d (6d) fields 3d (5d) massless vectors

ĝ A0

Â AI , I = 1, . . . , rank g

Âm Am, m = 1, . . . , nU(1)

ρ̂α (B̂α) Aα, α = 1, . . . , nax (Tsd + Tasd)

Table 9.3: There are in general four different types of massless vectors in the circle-
reduced theory: the Kaluza-Klein vector A0, vectors AI from higher-dimensional Cartan
gauge fields, vectors Am from higher-dimensional U(1) gauge fields and dualized vectors
Aα which stem from four-dimensional axions or six-dimensional (anti-)self-dual tensors,
respectively.
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one can distinguish between gauge and gravitational Chern-Simons terms. Note that
the latter do not exist in three dimensions.

For the special case when the three- and five-dimensional theories arise from a
circle compactification pushed to the Coulomb branch, which we introduced in subsec-
tion 9.3.1, the index Λ labeling the massless vectors splits as Λ = (0, I,m, α), as can
be inferred from Table 9.3. In these settings it is crucial to distinguish in general be-
tween classical and one-loop Chern-Simons terms. We define the classical ones by the
property of always being exact at the classical level and never receiving any corrections
at one-loop. From Table 9.1 and Table 9.2 it is clear that they can be characterized
by carrying at least one index α since there are no states in the theory which are
charged under Aα and therefore no corrections.5 In general for circle-reduced theories
the classical Chern-Simons couplings then can be shown to take the special form

Θαβ = 0 , Θα0 = 0 , ΘαI = 0 , Θαm =
1

2
θαm , (9.42)

and respectively

kαβγ = 0 , k0αβ = ηαβ , kIαβ = 0 ,

kmαβ = 0 , k00α = 0 , kIJα = −ηαβbβCIJ ,
kmnα = −ηαβbβmn , k0Iα = 0 , k0mα = 0 ,

kα = −12 ηαβa
β . (9.43)

All other Chern-Simons coefficients vanish at the classical level and generically receive
corrections at one-loop. Thus we call them one-loop Chern-Simons terms. We derive
the general results for all different types of these one-loop couplings in section F.1.
For convenience let us display here only the most important ones which will appear in
upcoming calculations

ΘIJ =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJ sign

(
mw,q

CB

)
, (9.44a)

Θmn =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qmqn sign

(
mw,q

CB

)
, (9.44b)

ΘIm =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIqm sign

(
mw,q

CB

)
, (9.44c)

as well as

kIJK =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJwK sign

(
mw,q

CB

)
, (9.45a)

5Actually this is the more accurate definition of classical Chern-Simons terms since in principle it
is not required that there is matter which is charged under AI or Am.
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kmnp =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qmqnqp sign

(
mw,q

CB

)
, (9.45b)

kIJm =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJqm sign

(
mw,q

CB

)
, (9.45c)

kImn =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIqmqn sign

(
mw,q

CB

)
, (9.45d)

kI = −2
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wI sign

(
mw,q

CB

)
, (9.45e)

km = −2
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qm sign

(
mw,q

CB

)
, (9.45f)

where the non-negative integer lw,q is defined as

lw,q :=

⌊∣∣∣∣mw,q
CB

mKK

∣∣∣∣
⌋
. (9.46)

This quantity was first introduced in [94] and captures the hierarchy between the
Coulomb branch mass and the Kaluza-Klein mass. It will become very important
later since changes in this hierarchy induce jumps of Chern-Simons terms which have
crucial impact.

Let us conclude by mentioning that for four-dimensional settings on the circle it
will become important later that one can obtain a non-vanishing Θα0 and additional
classical contributions to Θmn and ΘIJ by switching on circle fluxes of the axions

Θα0 =
1

2

∫
S1

〈dρ̂α〉 , (9.47a)

Θclass
IJ = −1

2
bαCIJ

∫
S1

〈dρ̂α〉 , (9.47b)

Θclass
mn = −1

2
bαmn

∫
S1

〈dρ̂α〉 . (9.47c)

In particular we show around (10.11) that certain large gauge transformations can
induce such non-trivial circle fluxes. Note that also in six-dimensional setups circle
fluxes of gauged axions can play an important role in F-theory compactifications on
manifolds without a rational section. This is however beyond the scope of this thesis
and we refer to [96] for more details.
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Chapter 10

Symmetries of Gauge Theories on
the Circle

10.1 Classification of Large Gauge Transformations

In this subsection we discuss in detail the set of gauge transformations of an Abelian or
non-Abelian theory on a circle that are later translated to a symmetry of the geometry of
an elliptic fibration in chapter 12 using F-theory. Recall that after the compactification
the effective theory admits (9.33) as local symmetries before pushed to the Coulomb
branch. In the Coulomb branch one simply has a purely Abelian local symmetry.

In addition to the lower-dimensional gauge transformations (9.33) we could also
have performed a circle-dependent gauge transformation and then reduced on the circle
y ∼ y+2π. If one preserves the boundary conditions of the fields in the compactification
ansatz the gauge invariance of the higher-dimensional theory then implies that there
exists a variety of equivalent lower-dimensional effective theories that are obtained
after circle reduction of the same higher-dimensional theory. Gauge transformations
that cannot be deformed continuously to the identity map are known as large gauge
transformations. More concretely, let us consider the effect of a gauge transformation
that locally takes the form

Λ̂I(x, y) =

{
−nIy

0
, Λ̂m(x, y) = −nmy , (10.1)

where nI and nm are constants, and we have included a minus sign for later convenience.
nI , nm will be further restricted below to ensure that (10.1) is in fact a large gauge
transformation which preserves the boundary conditions of all fields. Using the split
I = (I,α) as in (9.1) we have set Λ̂α(x, y) = 0 to ensure that the Coulomb branch values
〈ζα〉 = 0 in (9.34) are unchanged.1 This guarantees that we stay on the considered

1We stress again that α labels the roots of the gauge algebra while α counts the axions in four
dimensions and the (anti-)self-dual tensors in six dimensions, respectively.
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Coulomb branch; all of the following discussions are performed on this background. The
reduction ansätze (9.32) and (9.39) are also compatible with a gauge transformation
(10.1) if one introduces the new quantities

r̃ = r , ζ̃I = ζI +
nI

r
, ζ̃m = ζm +

nm

r
, (10.2)

and

Ã0

ÃI

Ãm

Ãα


=



1 0 0 0

−nI δIJ 0 0

−nm 0 δmn 0

1
2
nKnLCKLbα + 1

2
npnqbαpq −nKCKJbα −npbαpn δαβ


·



A0

AJ

An

Aβ


. (10.3)

With (10.1) being compatible with (9.32) and (9.39) we mean that the form of the
reduction ansatz after a gauge transformation is unchanged when using the quantities
with tildes.

Some additional remarks are expedient here. First, it is important to stress that
the simple shifts in the vector fields ÃI only occur for the Cartan direction. In the
non-Cartan directions, i.e. for the vectors that are massive on the Coulomb branch, the
non-Abelian structure of G modifies the transformation rule. Second, while 〈ζα〉 = 0 is
preserved by (10.1) the actual values for 〈ζI〉 do change in the vacuum. One therefore
relates theories at different points on the Coulomb branch. In fact, this is a defining
property of a large gauge transformation: they relate theories at different points in the
vacuum manifold of the theory with the same properties, see e.g. [139]. Third, later on
we will consider six-dimensional theories with (1, 0) supersymmetry arising in F-theory.
These theories have Tsd = 1 and Tasd ≡ T . Each six-dimensional anti-self-dual tensor
is accompanied by a real scalar field in the multiplet. After dimensional reduction
these scalar fields combine with T of the Aα into vector multiplets. Importantly, it was
found in [93, 94] that the redefinition of the five-dimensional scalar fields is precisely
of the form compatible with (10.3) (see e.g. (3.30) in [94]). In other words, a gauge
transformation (10.1) shifts both the vectors and scalars in a compatible fashion. We
note that a similar story applies to circle compactifications from four to three space-
time dimensions. In fact, the transformations (10.2) and (10.3) are equally valid for
this latter case. As noted above the vectors Aα are the three-dimensional duals of the
former four-dimensional scalars ρ̂α appearing in (9.6).

Clearly, a gauge transformation (10.1) also requires to transform the Kaluza-Klein
modes of all higher-dimensional charged fields. Given a general matter state ψ(n) (not
necessarily a fermion) at Kaluza-Klein level n in the representation R of G and with
charge qm under Âm we first proceed as described after (9.2), (9.8) and introduce eigen-
states ψ(n)(w, q), where w are the weights of R. The transformation (10.3) mixes these
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states as

ψ(n)(w, q) 7→ ψ(ñ)(w̃, q̃) ,


ñ

w̃I

q̃m

 =


1 −nJ −nn

0 δJI 0

0 0 δnm

 ·

n

wJ

qn

 . (10.4)

Note that in general this transformation shifts the whole Kaluza-Klein tower, but there
is still no state charged under Ãα. Furthermore, imposing that (10.4) is in fact a
consistent reshuffling of the Kaluza-Klein states, which is necessary for invariance of
the theory, imposes conditions on the constants nI and nm that are dependent on the
spectrum of the theory. We will discuss the various choices and conditions in the
following.

Integer large gauge transformations
In (10.1) we have introduced gauge transformations that depend on the circle coordinate
y ∼ y + 2π. As mentioned before, these correspond to large gauge transformations
around the circle if they preserve the circle boundary conditions of all fields and wind
at least once around the circle. Let us now define what we mean by integer large gauge
transformations. First, if we consider pure gauge theory without charged matter, we call
a large gauge transformation to be integer if all nI and all nm are integers. Indeed, the
degrees of freedom in (10.1) are in general characterized by elements of the homotopy
groups

π1(U(1)rkG) ∼= ZrkG , π1(U(1)nU(1)) ∼= ZnU(1) . (10.5)

Clearly, (10.1) define maps from S1 into the gauge group (which is purely Abelian on
the Coulomb branch). These are precisely classified by the first homotopy group of the
gauge group which in the case at hand consists of tuples of integers.

If one now includes a charged matter spectrum, the invariance of the boundary
conditions of all these fields dictates the set of large gauge transformations. In these
cases the space of allowed nI and nm has to be quantized. In general the nI and nm

could still be integer or fractional depending on the weights and charges of the matter
fields. However, for the transformations (10.1) to be an actual symmetry, i.e. a large
gauge transformation, the following condition for each state ψ̂(R, q) has to be satisfied:

nIwI + nmqm ∈ Z , (10.6)

where wI are the weights of R and qm are the U(1) charges. This condition also arises
from the transformation of the Kaluza-Klein level in (10.4) and ensures that ñ is an
integer, which implies equivalence of the full Kaluza-Klein towers of the compactified
theory by a simple reshuffling. Now we are in the position to introduce our notion
of integer large gauge transformations. They are spanned by pairs (nI , nm) satisfying
(10.6) and one of the conditions
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(I) nm = 0 and nI ∈ Z∗,

(II) nm ∈ Z∗ and nIwI ∈ Q.

It is useful to comment on the class (II) of basis vectors. While all wI reside in an in-
teger lattice and therefore do not violate (10.6) for integer nI , the U(1) charges qm can
be fractional. However, we will also consider the set of integer nm’s that allow a com-
pensation of this fractional contribution to (10.6) by an appropriate nI-transformation
which might be fractional.

Special fractional large gauge transformations
There is another set of large gauge transformations that will be of importance for us.
If the arising representations in the spectrum of matter states is special, e.g. if the
fundamental representation does not occur, also fractional nI might be allowed. More
precisely, we also want to consider pairs (nI , nm) satisfying (10.6) and

(III) nm = 0 and nI fractional.

We call large gauge transformations satisfying (III) special fractional large gauge trans-
formations. Note that the conceptual difference between (III) and (I), (II) is that there
is always at least one integer quantity nI , nm in (I) or (II).

It remains to consider the cases where also nm is fractional. As a concrete example
this could be allowed if the spectrum has special charges such that nmqm is integer
for each state, although there are more general possibilities involving also the non-
Abelian sector. However, later we find that models which allow for a fractional nm do
not appear in our geometric considerations of chapter 12. For instance in the known
F-theory examples there are always states that have minimal charge 0 < qm ≤ 1.
Following some folk theorems (see e.g. [140, 141]) this might be true in any theory of
quantum gravity. In this case the space of all large gauge transformations is spanned by
(nI , nm) satisfying (10.6) and either (I), (II) or (III). Nevertheless we stress that from
a purely field-theoretical point of view there should be no restriction for also having
fractional nm in some settings.

10.2 Anomalies from Large Gauge Transformations

We now crown our field theory analysis by applying large gauge transformations to
Chern-Simons terms. In particular, demanding that large gauge transformations con-
stitute a symmetry of the theory on the circle (including the full Kaluza-Klein tower)
we are able to derive all gauge anomaly conditions in four and six dimensions. Note
that since there always exist transformations of type (I) and (II) for any kind of field
theory spectrum, our analysis turns out to be totally general.

The guiding principle is that there are two conceptually different ways to evaluate
the transformation of the Chern-Simons coefficients ΘΛΣ, kΛΣΘ, kΛ under the large
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gauge transformations (10.3),(10.4). First rewrite (10.3) in components as

ÃΛ = LΛ
Λ′A

Λ′ , (10.7)

then the Chern-Simons coefficients accordingly have to transform as the dual elements

Θ̃ΛΣ = (L−1T ) Λ′

Λ (L−1T ) Σ′

Σ ΘΛ′Σ′ , (10.8a)

k̃ΛΣΘ = (L−1T ) Λ′

Λ (L−1T ) Σ′

Σ (L−1T ) Θ′

Θ kΛ′Σ′Θ′ , (10.8b)

k̃Λ = (L−1T ) Λ′

Λ kΛ′ . (10.8c)

On the other hand the transformed couplings Θ̃ΛΣ, k̃ΛΣΘ, k̃Λ can also directly be accessed
by evaluating them in the circle-reduced theory characterized by the gauge-transformed
parameters. In the following we will compare both procedures first for the classical terms
and then for one-loop terms.

It is obvious from (9.42), (9.43) that the classical Chern-Simons couplings (except of
Θα0 because of (9.47a)) only depend on data of the higher-dimensional theory and are
insensitive to the precise form of the circle background. Consistently we find that both
procedures of evaluating their transformation properties yield the same result, namely
that they are invariant

Θ̃αβ = Θαβ = 0 , Θ̃αI = ΘαI = 0 , Θ̃αm = Θαm =
1

2
θαm , (10.9)

and respectively

k̃αβγ = kαβγ = 0 , k̃0αβ = k0αβ = ηαβ , k̃Iαβ = kIαβ = 0 ,

k̃mαβ = kmαβ = 0 , k̃00α = k00α = 0 , k̃IJα = kIJα = −ηαβbβCIJ ,
k̃mnα = kmnα = −ηαβbβmn , k̃0Iα = k0Iα = 0 , k̃0mα = k0mα = 0 ,

k̃α = kα = −12 ηαβa
β . (10.10)

However there is one exception to this, namely the classical Chern-Simons coupling
Θα0. As described in (9.47a) it is sensitive to circle-flux of the axions ρ̂α. Although we
initially started with a setting without such a background, i.e. with Θα0 = 0, large gauge
transformations can induce a nonzero flux 1

2

∫
S1〈dρ̂α〉. Indeed, both of our procedures

to determine Θ̃α0 yield the same result

Θ̃α0 =
1

2
nmθαm 6= Θα0 = 0 . (10.11)

Let us now determine how the two procedures of evaluating large gauge transforma-
tions on Chern-Simons terms are related for the case of one-loop induced couplings. In
contrast to the classical case, first of all the couplings are in general not invariant under
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large gauge transformations. This is somehow expected since the loop-calculations ex-
plicitly depend on the details of the circle background, namely the VEVs for the Wilson
lines 〈ζ̃I〉 and 〈ζ̃m〉 which define the transformed Coulomb branch masses

m̃w,q
CB = w̃I〈ζ̃I〉+ q̃m〈ζ̃m〉 = wI〈ζI〉+ wI

nI

〈r〉
+ qm〈ζm〉+ qm

nm

〈r〉
= mw,q

CB + (nIwI + nmqm)mKK . (10.12)

Note that the Coulomb branch mass enters in the formulae for one-loop Chern-Simons
terms (9.44), (9.45) (see also (F.11), (F.17) for the complete list of one-loop Chern-
Simons terms) through sign(mCB) and lw,q which is defined in (9.46). Thus in general
these couplings indeed do transform which of course poses no problems in principle.
However, if we now compare the results for Θ̃ΛΣ, k̃ΛΣΘ, k̃Λ using the transformation
rule (10.8) with the Θ̃ΛΣ, k̃ΛΣΘ, k̃Λ which we obtain from directly evaluating the loop-
calculations in the gauge transformed setting, i.e. using m̃w,q

CB in the formulae for the
loops, we seem to get different expressions. More precisely let us define

δΘ̃ΛΣ = Θ̃match
ΛΣ − Θ̃dual

ΛΣ , (10.13a)

δk̃ΛΣΘ = k̃match
ΛΣΘ − k̃dual

ΛΣΘ , (10.13b)

δk̃Λ = k̃match
Λ − k̃dual

Λ , (10.13c)

where the labels “match” and “dual” indicate whether the quantities are evaluated
directly by matching to the loop expressions using the transformed m̃w,q

CB or by applying
the dual transformation (10.8), respectively. While we have already mentioned that
for all classical Chern-Simons couplings (also Θα0) this difference of calculating the
transformation with two types of procedures is always zero, for the one loop expressions
the situation is more subtle. In particular for (9.44) we obtain

δΘ̃IJ =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJ

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
− 1

2
nqbαθqα CIJ , (10.14a)

δΘ̃mn =
∑
R,q

F1/2(R, q)
∑
w∈R

qmqn

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
− 3

2
nqbα(mnθq)α , (10.14b)

δΘ̃Im =
∑
R,q

F1/2(R, q)
∑
w∈R

wIqm

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
− 1

2
nLbαθmα CIL , (10.14c)

where it is important to notice that for Θ̃match
IJ and Θ̃match

mn there are besides the standard
one-loop contributions (9.44) also the additional classical parts (9.47b) and (9.47c)
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because of the non-zero circle flux of the axions

Θ̃class
IJ = −1

2
nqbαθqα CIJ , Θ̃class

mn = −1

2
nqbαmnθqα .

For the six-dimensional theory on the circle we obtain the following relations

δk̃IJK =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJwK

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ 3nLbαbβηαβ C(IJCKL) , (10.15a)

δk̃mnp =
∑
R,q

F1/2(R, q)
∑
w∈R

qmqnqp

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ 3nqbα(mnb

β
pq)ηαβ , (10.15b)

δk̃IJm =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJqm

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ nqbαbβmqηαβ CIJ , (10.15c)

δk̃Imn =
∑
R,q

F1/2(R, q)
∑
w∈R

wIqmqn

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ nLbαbβmnηαβ CIL , (10.15d)

δk̃I = −2
∑
R,q

F1/2(R, q)
∑
w∈R

wI

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ 12nLaαbβηαβ CIL , (10.15e)

δk̃m = −2
∑
R,q

F1/2(R, q)
∑
w∈R

qm

[(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)]
+ 12nqaαbβmqηαβ . (10.15f)

This mismatch of evaluating the transformation of Chern-Simons couplings via different
methods might seem confusing at first sight. However crucially, it is possible to rewrite
(10.14) and (10.15) using the very important identity(

l̃w,q +
1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)
= nLwL + nqqq , (10.16)

which we prove in section F.2. We obtain for the four-dimensional theory on the circle

δΘ̃IJ =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJ
[
nLwL + nqqq

]
− 1

2
nqbαθqα CIJ , (10.17a)

δΘ̃mn =
∑
R,q

F1/2(R, q)
∑
w∈R

qmqn
[
nLwL + nqqq

]
− 3

2
nqbα(mnθq)α
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=
∑
R,q

F1/2(R, q)
∑
w∈R

qmqnn
qqq −

3

2
nqbα(mnθq)α , (10.17b)

δΘ̃Im =
∑
R,q

F1/2(R, q)
∑
w∈R

wIqm
[
nLwL + nqqq

]
− 1

2
nLbαθmα CIL

=
∑
R,q

F1/2(R, q)
∑
w∈R

wIqmn
LwL −

1

2
nLbαθmα CIL , (10.17c)

where we made also use of the algebraic identity∑
w∈R

wI = 0 , (10.18)

which holds for all highest weight representations R and is derived in [94]. For the
circle-reduced six-dimensional theory we get

δk̃IJK =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJwK
[
nLwL + nqqq

]
+ 3nLbαbβηαβ C(IJCKL) , (10.19a)

δk̃mnp =
∑
R,q

F1/2(R, q)
∑
w∈R

qmqnqp
[
nLwL + nqqq

]
+ 3nqbα(mnb

β
pq)ηαβ

=
∑
R,q

F1/2(R, q)
∑
w∈R

qmqnqpn
qqq + 3nqbα(mnb

β
pq)ηαβ , (10.19b)

δk̃IJm =
∑
R,q

F1/2(R, q)
∑
w∈R

wIwJqm
[
nLwL + nqqq

]
+ nqbαbβmqηαβ CIJ , (10.19c)

δk̃Imn =
∑
R,q

F1/2(R, q)
∑
w∈R

wIqmqn
[
nLwL + nqqq

]
+ nLbαbβmnηαβ CIL

=
∑
R,q

F1/2(R, q)
∑
w∈R

wIqmqnn
LwL + nLbαbβmnηαβ CIL , (10.19d)

δk̃I = −2
∑
R,q

F1/2(R, q)
∑
w∈R

wI
[
nLwL + nqqq

]
+ 12nLaαbβηαβ CIL

= −2
∑
R,q

F1/2(R, q)
∑
w∈R

wIn
LwL + 12nLaαbβηαβ CIL , (10.19e)

δk̃m = −2
∑
R,q

F1/2(R, q)
∑
w∈R

qm
[
nLwL + nqqq

]
+ 12nqaαbβmqηαβ

= −2
∑
R,q

F1/2(R, q)
∑
w∈R

qmn
qqq + 12nqaαbβmqηαβ . (10.19f)

The interpretation of these potential mismatches is now completely obvious, they
are the anomalies in four and six dimensions. In particular, by taking derivatives
with respect to the winding numbers nL, nq of the large gauge transformations we are
able to reproduce all anomalies (9.22) in four dimensions except for the mixed gauge-
gravitational anomaly. Also in six dimensions we get all anomalies (9.30) except for the

pure gravitational anomalies. In detail, the condition δΘ̃ΛΣ
!

= 0 yields
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∂nL ∂nL∂nq ∂nq

δΘ̃IJ
!

= 0 (9.22b) 0 (9.22c)

δΘ̃mn
!

= 0 0 0 (9.22d)

δΘ̃Im
!

= 0 (9.22c) 0 0

In six dimensions the conditions δk̃ΛΣΘ
!

= 0 and δk̃Λ
!

= 0 give

∂nL ∂nL∂nq ∂nq

δk̃IJK
!

= 0 (9.30e) 0 (9.30f)

δk̃mnp
!

= 0 0 0 (9.30h)

δk̃IJm
!

= 0 (9.30f) 0 (9.30g)

δk̃Imn
!

= 0 (9.30g) 0 0

δk̃I
!

= 0 (9.30c) 0 0

δk̃m
!

= 0 0 0 (9.30d)

We have seen that this procedure misses the pure gravitational anomalies in six
dimensions. This is of course expected since in our procedure we probe the spectrum
with large gauge transformations and not large Lorentz transformations. The fact that
we are able to obtain the mixed gauge-gravitational anomalies is due to the appearance
of the curvature two-form in the gravitational Chern-Simons term (2.22b) which is
nevertheless probed with large gauge transformations. In contrast, the mixed gauge-
gravitational anomaly in four dimensions can not be reproduced with our procedure
because a gravitational Chern-Simons term does not exist in three dimensions. We
are confident that all missing anomalies can be obtained by acting with large Lorentz
transformations on Chern-Simons terms, and we collect evidence for that in section 15.1.

Finally let us clarify the intuition behind our procedure and why it has this intriguing
connection to anomalies. By construction, the classical four- and six-dimensional action
on the circle is of course invariant under large gauge transformations (ignoring Green-
Schwarz terms). In some sense one can then interpret our first way for evaluating the
transformation of the Chern-Simons couplings, namely by treating them as duals of the
vectors (10.8), as exploiting the classical invariance under large gauge transformation in
order to determine them. The second way for calculating the transformed Chern-Simons
coefficients, i.e. by directly evaluating the loops with the transformed quantity m̃w,q

CB ,
is only consistent if the invariance under large gauge transformations is also respected
by the quantized theory. For this property to be satisfied it is sufficient that anomalies
are canceled. The remarkable result is that the quantum invariance under large gauge
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transformations along the circle is actually equivalent to the cancelation of all higher-
dimensional gauge anomalies, including also mixed gauge-gravitational anomalies in six
dimensions.

The techniques of this chapter were inspired by F-theory compactifications on
Calabi-Yau four- and threefolds which will be the main topic of the upcoming two
chapters. In order to determine the effective theory in such settings one has to consider
a four- or six-dimensional theory, respectively, compactified on a circle. The Chern-
Simons terms then correspond to certain intersections between divisors on the manifold
(and homology classes which are dual to flux). Importantly, what we found is that
the precise basis of divisors one has to use in order to obtain the correct matching of
intersections and Chern-Simons terms is not uniquely defined. There are rather whole
groups of divisors which comprise all possible basis choices. These group structures
precisely correspond to large gauge transformations in the field theory setting. Abelian
large gauge transformations correspond to the well-known Mordell-Weil group of ratio-
nal sections while for non-Abelian large gauge transformations we suggest a new group
structure on the geometric compactification space. These groups then establish the
cancelation of gauge anomalies in F-theory compactifications on Calabi-Yau manifolds.
We will derive these results in full detail in chapter 12. But before we do so, we have
to give a short introduction into the basic concepts of F-theory in chapter 11.



Chapter 11

The Basic Concepts of F-Theory

In this chapter we provide a very short introduction into the basic ingredients of F-
theory [111–113]. We stress that our treatment is far from being complete since we are
not doing justice to many in general important aspects, e.g. the precise derivation of
the gauge group and spectrum, the construction of fluxes, the Sen limit, spectral cover
constructions, the duality to heterotic string theory, the relation to superconformal
field theories in six dimension, or T-branes. It is rather meant as a review of the basic
ideas and concepts adjusted in such a way that the special topics of F-theory effective
field theory which are treated in this thesis can be understood. Moreover, we require
fundamental familiarity with superstring theory. Standard text book references for
string theory in general are for instance [142–147]. For a more detailed introduction
into F-theory we refer to the excellent lecture notes [115,148]. A nice review of F-theory
phenomenology especially for GUT models is given by [149]. Finally, my predecessors
included very well-written introductions to similar topics in F-theory effective field
theory and geometric aspects in their theses [150,151].

In section 11.1 we start with a review of the effective physics of type IIB string
theory and M-theory. In particular, we highlight the issue of 7-branes and the need of a
non-perturbative formulation of type IIB theory given by F-theory. We then introduce
our working-definition of F-theory in section 11.2 via the duality to M-theory. The
basic notion of elliptic fibrations and their implications for F-theory compactifications
are finally treated in section 11.3.

11.1 Type IIB String Theory and M-Theory

Up to now there exists no satisfying fundamental description for F-theory, especially not
in terms of a twelve-dimensional effective action.1 However, there are several indirect
ways of how F-theory can be defined. The most straightforward approach towards this
theory is given by considering it as the non-perturbative generalization of type IIB string
theory with 7-branes and varying axio-dilaton background. The latter parametrizes an

1See [152] for a recent approach into this direction.
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10d Fields SO(8) Representations Sector

φ, B2, G 1⊕ 28V ⊕ 35V NS-NS

λ1, ψ1 8S ⊕ 56S NS-R

λ2, ψ2 8S ⊕ 56S R-NS

C0, C2, C4 1⊕ 28C ⊕ 35C R-R

Table 11.1: The massless field content of type IIB string theory in the different sectors
of the worldsheet. The index V labels vector-like representations while S, C refer to
(left- or right-handed) chiral representations of the massless little group SO(8).

auxiliary two-torus, which is why F-theory is often considered as a twelve-dimensional
theory. Sometimes the duality between type IIB string theory and M-theory is invoked
in order to actually define F-theory as M-theory on a torus-fibration with vanishing
fiber. As we will see, the vanishing of the two-torus grows the one additional dimension
which is needed for F-theory (via T-duality). It is unknown if the approach via M-theory
captures all aspects of F-theory, for example it is not clear how a compactification of F-
theory on a Calabi-Yau sixfold could be treated, or if it is even a consistent background.
In this thesis however our approach to F-theory precisely proceeds through this duality
to M-theory. Note that there is also the important duality of F-theory on an elliptically-
fibered K3 to E8 × E8 heterotic string theory on a two-torus (with specification of a
vector bundle), which however won’t be of importance for the work in this thesis.

11.1.1 Low-Energy Description of Type IIB String Theory

Let us start reviewing the perturbative description of type IIB string theory. In Ta-
ble 11.1 we list the massless fields in the different sectors of left- and right-movers on
the worldsheet. The NS-NS sector consists of the dilaton φ, the Kalb-Ramond field B2

and the metric G. The bosonic spectrum is completed by the differential form fields
C0, C2, C4 in the R-R sector accompanied by their magnetic duals. The fermionic spec-
trum contains the dilatini λ1, λ2 and the gravitini ψ1, ψ2. We will omit terms which
involve the fermionic fields since they can be inferred by invoking supersymmetry. It is
convenient to redefine the bosonic fields according to

H3 := dB2 , Fp := dCp−1 (p = 1, 3, 5) , τ := C0 + ie−φ ,

G3 := F3 − τH3 , F̃5 := F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (11.1)

The low-energy effective action of the massless fields is given by N = (2, 0) super-
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gravity in ten dimensions, whose pseudo-action reads in the Einstein frame

Spseudo
IIB =

2π

l8s

∫
M10

R ∗ 1− 1

2

dτ ∧ ∗dτ̄
(Imτ)2

− 1

2

G3 ∧ ∗Ḡ3

Imτ
− 1

4
F̃5 ∧ ∗F̃5 −

1

2
C4 ∧H3 ∧ F3

(11.2)

with ls = 2π
√
α′ the string length and R the ten-dimensional Ricci scalar derived from

the metric G. It is crucial to keep in mind that we have written down only a pseudo-
action. In fact, one has to additionally impose the self-duality condition

∗F̃5 = F̃5 (11.3)

after deriving the equations of motion from the pseudo-action. Note that no manifestly
covariant action for such a self-dual tensor field is available. It is well-known that the
action2 (11.2) is classically invariant under the group SL(2,R). Indeed, if we assign the
following transformation properties to the individual fields

for

(
a b

c d

)
∈ SL(2,R) :

(
C2

B2

)
7→

(
a b

c d

)(
C2

B2

)
, (11.4a)

τ 7→ aτ + b

cτ + d
, (11.4b)

and all other fields invariant, it is easy to see that this constitutes a symmetry. Note
that since D(-1) instantons contribute with a factor of e2πiτ , the classical SL(2,R) is
broken at the quantum level down to SL(2,Z). This behavior is very similar to the
S-duality of N = 4 super Yang-Mills theory in four dimensions, in particular it can be
invoked to relate regimes of strong and weak string coupling gs = eφ.

The supergravity action (11.2) also allows for in general non-perturbative solutions
which correspond to (electric or magnetic) sources for the generalized gauge potentials
B2, C0, C2, C4. The R-R fields are sourced by D-branes while for the Kalb-Ramond
field the fundamental string and the NS5-brane constitute the electric and magnetic
sources, respectively. We summarize the fields together with their respective sources in
Table 11.2.

The following discussion now is essential in order to understand the nature and
necessity for F-theory. We focus in more detail on the different types of branes and
we elaborate on the fundamental difference between codimension-two branes on the
one hand and lower-dimensional branes on the other hand. Already at this stage we
draw attention to the following fact: Because of the SL(2,Z) transformation properties
(11.4) of the massless fields the sources for the latter, i.e. the branes and strings, mix
in general under the action of SL(2,Z). In the following we will therefore generally
denote the sources which extend over p + 1 dimensions as p-branes. It is important
to recognize the special asymptotic behavior of 7-branes in contrast to p-branes with

2We will omit the prefix pseudo in the following.
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Gauge Potential Electric Source Magnetic Source

B2 fundamental string NS5-brane

C0 D(-1)-brane D7-brane

C2 D1-brane D5-brane

C4 D3-brane D3-brane

Table 11.2: We display the generalized gauge potentials of type IIB supergravity with
the corresponding electric and magnetic sources.

p < 7. More precisely, consider general codimension-n p-branes, i.e. p = 9− n. In the
n directions normal to the brane the latter looks like a point-like source and we find a
Poisson equation for the sourced fields Φ

∆(n)Φ(r) ∼ δ(n)(r) (11.5)

with r the radial coordinate in the n normal directions to the brane. The solutions to
this equation are of course well-known and depend crucially on n

Φ(r) ∼ 1

rn−2
for n > 2 , (11.6a)

Φ(r) ∼ log(r) for n = 2 . (11.6b)

From this heuristic discussion one realizes that for n > 2 the effect of backreaction of
the branes drops off as long as one moves away from the brane far enough. For a more
detailed discussion see for instance [148]. However, this is not true anymore for n = 2,
i.e. for 7-branes, since the logarithm has a totally different asymptotic behavior and,
what seems even more severe, a branch cut.

Let us investigate in detail how this puzzle concerning 7-branes in type IIB is re-
solved. We start with a D7-brane, which constitutes a magnetic source for C0. In terms
of SL(2,Z) representations C0 combines together with the string coupling gs into the
complex axio-dilaton τ

τ = C0 +
i

gs
. (11.7)

From supersymmetry considerations it is known that τ must be a holomorphic function
in z := x8 + ix9 with x8, x9 parameterizing the space perpendicular to the brane. It can
be shown that in the vicinity of the D7-brane located at z0 the solution for τ takes the
form

τ(z) = τ0 +
1

2πi
ln(z − z0) + . . . (11.8)
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omitting regular terms. As already mentioned, the solution exhibits a branch cut which
means that it is a multivalued function. Indeed, when we circle once around this D7-
brane at z0, we find the monodromy

τ 7→ τ + 1 ⇒ C0 7→ C0 + 1 . (11.9)

Although this behavior might seem odd, we stress that using the SL(2,Z) symmetry
of type IIB (11.4) resolves the puzzle in a very elegant fashion. In fact, we define the
transformation T

T :=

(
1 1

0 1

)
∈ SL(2,Z) (11.10)

such that it precisely acts on τ as in (11.9).
This special interplay between the SL(2,Z) symmetry and the monodromy behavior

of the D7-brane is actually only the tip of the iceberg. We have seen that the SL(2,Z)
symmetry mixes the fields C2 and B2. Thus we should combine the electric sources of
these fields, i.e. the fundamental string and the D1-brane, into an SL(2,Z) doublet, the
(p, q)-string carrying charge p under B2 and charge q under C2. Thus the fundamental
string is represented by (1, 0) and the D1-brane is written as (0, 1). A (p, q)-7-brane is
then defined as the object on which a (p, q)-string can end, generalizing the notion of
the D7-brane. The monodromy around a (p, q)-7-brane takes the general form

Mp,q =

(
1− pq p2

−q2 1 + pq

)
∈ SL(2,Z) . (11.11)

Note that for each single (p, q)-7-brane in the theory it is possible to transform it into
a D7-brane using SL(2,Z) transformations. However, globally this does not work for
all 7-branes at the same time, at least in the generic case.

In the following we will show how the standard type IIB setup with conventional
D7-branes and O7-planes fits into this pattern. For type IIB orientifold compactifi-
cations one usually places four D7-branes on top of one O7-plane in order to achieve
tadpole cancelation locally (a D7 brane carries one unit of charge while an O7-plane
contributes −4 units). This special configuration results in a constant τ over the whole
compactification space, and since τ0 is a modulus, the string coupling can be chosen
to be perturbatively small gs = eφ � 1 everywhere. In fact, the O7-plane is described
by the combination of a (3,−1)-7-brane and a (1,−1)-7-brane as one can check by
evaluating the corresponding monodromy (11.11) around the brane system.

Generically however, tadpole cancelation does not necessarily have to be accom-
plished locally which then results in a non-constant axio-dilaton. However, it is still
possible to find a weak-coupling limit in complex structure moduli space, i.e. by a limit
on τ0. For this rewrite the solution (11.8) as (ignoring regular terms)

τ(z) =
1

2πi
ln
z − z0

λ
, with lnλ := −2πiτ0 . (11.12)
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For the string coupling we find

1

gs
= − 1

2π
ln
∣∣∣z − z0

λ

∣∣∣ . (11.13)

In particular, if |z − z0| � |λ|, then gs becomes small. So the limit of weak coupling in
complex structure moduli space is given by |λ| → ∞ since, loosely speaking, the region
with |z−z0| � |λ| becomes large. Note however that the axio-dilaton still has a varying
profile generically since the latter depends on the configuration of branes. For a more
detailed analysis of the weak coupling limit we refer to the original paper of Sen [153].

Finally, we are now in the position to formulate the F-theory conjecture: The frame-
work of F-theory interprets the SL(2,Z) as the parametrization symmetry of an actual
two-torus T 2 (in the limit of vanishing volume). The axio-dilaton τ constitutes the
complex-structure modulus of this T 2, and a varying background for τ corresponds to
a non-trivial torus-fibration structure over some base space. The problem of finding
consistent axio-dilaton profiles is then geometrically recast into the task of constructing
genuine T 2-fibrations. As we will see later in more detail, the whole information about
7-branes and their backreaction is encoded in the geometry of the elliptic fibration.
In this thesis we are mainly concerned with compactifications down to effective four-
and six-dimensional supergravity theories with minimal supersymmetry. These effective
settings can be obtained by considering F-theory compactifications on T 2-fibered, com-
pact Calabi-Yau four- and threefolds, respectively. They describe (non-perturbative)
type IIB compactifications on the complex-three- or two-dimensional base spaces of the
T 2-fibrations.

From (11.8) it is easy to see how one can locate the position of 7-branes in the base
space since the axio-dilaton, i.e. the complex structure of the torus, diverges at the
7-brane loci. In order to find the latter we therefore have to look for degenerations of
the T 2-fibration, i.e. for loci in the base over which the torus pinches as depicted in
Figure 11.1. This is part of subsection 11.3.1 where we sketch how the information of
the gauge group, matter and Yukawa couplings is encoded in the geometry. Before we
come to that, we first explain in section 11.2 the duality between F-theory and M-theory
which is also sometimes referred to as the definition of F-theory. As a preparation we
shortly review the low-energy effective physics of M-theory.

11.1.2 Low-Energy Description of M-Theory

At low energies M-theory can be approximated by eleven-dimensional supergravity. The
field content of the latter is summarized in Table 11.3. It consists of the metric G, the
gravitino ψ and a three-form field C3 (accompanied by the dual six-form field) with
field strength G4 = dC3. The bosonic effective action of M-theory is given by

SM =
2π

l9M

∫
M11

R ∗ 1− 1

2
G4 ∧ ∗G4 +

1

12
C3 ∧G4 ∧G4 + l6M C3 ∧ I8(R) + . . . , (11.14)
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Figure 11.1: We schematically depict a T 2-fibration over some base space. Degenera-
tions of the fiber indicate the presence of 7-branes. These pinching tori can in principle
appear over isolated points in the base or over higher-dimensional submanifolds (indi-
cated by the red curves). The crosses denote rational sections of the fibration. We will
introduce T 2-fibrations in section 11.3 in more detail.

11d Fields SO(9) Representations

G, C3 44⊕ 84

ψ 128

Table 11.3: We display the field content of eleven-dimensional supergravity in terms of
representations of the massless little group SO(9).
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with lM the Planck length in eleven dimensions. Note that the part of the action
which involves the gravitino ψ can be derived by invoking the power of supersymmetry.
Furthermore, in addition to the standard two-derivative supergravity action we also
included the higher-curvature contribution I8(R) [154,155] in the effective action. I8(R)
is a polynomial of degree four in the curvature two-form R, and it plays a crucial role
in anomaly and tadpole cancelation In particular, for compactifications on Calabi-Yau
threefolds I8(R) induces a gravitational Chern-Simons term (2.22b) which lifts to a
Green-Schwarz counterterm in six dimensions canceling gravitational anomalies.

Finally the electric sources for C3 are given by M2-branes whose world-volume theory
can be described by the famous ABJM theory [156]. The magnetic sources constitute
M5-branes whose world-volume theories are the mysterious six-dimensional N = (2, 0)
superconformal field theories [157, 158]. For a single M5-brane one faces a free theory
of an (Abelian) (2, 0) tensor multiplet which is well-understood. In the case of a stack
of M5-branes the situation is much more subtle since one expects an interacting theory
of non-Abelian tensors for which the existence of an action is not expected. Although
few is known about such theories, let us collect at least some properties that have been
derived:

• They follow an ADE-pattern.

• There are some results about the conformal anomalies and its relations to R-
symmetry anomalies [159–161, 13, 162, 14]. In particular the conformal anomaly
of N M5-branes scales like N3.

• The effective theory on a circle is given by N = 4 supersymmetric Yang-Mills
theory in five dimensions. The gauge algebra is of the ADE-type of the higher-
dimensional theory. For some first steps towards investigating properties of six-
dimensional superconformal field theories via a circle-compactification to five di-
mensions exploiting the Kaluza-Klein tower and the power of Chern-Simons terms
we refer to e.g. [163,20].

• Classical string constructions are type IIB compactifications on C2/Γ with Γ a
discrete subgroup of SU(2) [164].

• The F-theory realization is given by compactifications on non-compact Calabi-Yau
threefolds of the form B × T 2 with B = C2/Γ. Again Γ is a discrete subgroup
of SU(2). There are also attempts to classify and investigate six-dimensional
N = (1, 0) and N = (2, 0) superconformal field theories by constructing non-
compact elliptically-fibered Calabi-Yau threefolds for F-theory compactifications,
for recent work in this direction see [165–178].
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11.2 Defining F-Theory via M-Theory

In the previous section we approached F-theory via generalizing type IIB with a generic
configuration of 7-branes which takes their backreaction into account. However, often
the duality between type IIB string theory and M-theory is actually invoked in order to
define F-theory compactifications as M-theory compactified on torus fibrations whose
fiber volume vanishes in a certain limit to be explained later. While it is not clear if
all compactifications of F-theory can be approached via M-theory,3 in many instances
it serves as a more convenient definition to work with. Also in this thesis F-theory
compactifications on torus-fibered Calabi-Yau manifolds are always understood in the
dual M-theory setting. In the following we will shortly review this important duality.

11.2.1 Fibering the Duality

Obviously, M-theory on a two-torus is dual to type IIB theory on a circle since the
compactification of M-theory on one circle gives type IIA theory and T-duality along
the second circle leads to type IIB theory on the circle with dual radius. We now explain
how this procedure can be applied also fiberwise for non-trivial torus fibrations. We
closely follow the excellent treatment in [115] where more details can be found.

Let us consider an M-theory compactification on an elliptic fibration over some nine-
dimensional spacetime manifold M9. Technically an elliptic fibration is a T 2-fibration
with a rational section. We will introduce the notions of elliptic fibrations and rational
sections together with their nice mathematical properties in more detail in section 11.3.
However, for the moment it is only important to know that, if the T 2-fibration has
a rational section (i.e. constitutes an elliptic fibration), the metric does not have off-
diagonal components between base and fiber, and it thus takes the form4

ds2
M =

v

τ2

(
(dx+ τ1dy)2 + τ 2

2 dy
2
)

+ ds2
9 (11.15)

with x and y parameterizing the torus with complex structure τ = τ1 + iτ2 and volume
v. For a non-trivial fibration structure both moduli τ and v depend on the coordinates
of M9. We stress that also T 2-fibrations without sections are consistent backgrounds.
Indeed, in [132, 96, 127, 135–137, 133] it is shown that fibrations without sections sig-
nal the presence of discrete symmetries in the effective theory. Note that except for
section 12.2 we will restrict to only elliptic fibrations in this thesis.

Let us now proceed by applying the duality between M-theory and type IIB string
theory fiberwise to (11.15). In order to do so we choose the cycle parametrized by x
as the circle which mediates the duality between M-theory and type IIA string the-
ory. Afterwards we then T-dualize to type IIB string theory along the second cycle

3For example it is not clear how to treat compactifications on torus-fibered Calabi-Yau sixfolds or
if they are consistent at all.

4This ansatz is only correct in the limit v → 0 which we are however going to take in the end.
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M-theory Object Fiber Cycle Type IIB Object

M2-brane none D3-brane

(p, q) (p, q)-string

M5-brane none Kaluza-Klein-monopole

(p, q) (p, q)-5-brane

T 2 D3-brane

Kaluza-Klein-monopole (p, q) (p, q)-7-brane

Table 11.4: We depict the mapping between brane wrappings/degenerations of cycles
in the fiber of M-theory compactifications and branes in type IIB string theory.

parametrized by y. Suppose moreover that M9 is a product of a compact complex-
n-dimensional Kähler manifold Bn and (9 − 2n)-dimensional Minkowski space. We
choose the torus fibration over Bn to be a Calabi-Yau (n+ 1)-fold in order to preserve
supersymmetry. A careful analysis gives the following relations between the different
quantities of type IIB string theory and M-theory on the elliptic fibration:

ds2
IIB = −(dx0)2 + (dx1)2 + · · ·+ (dx8−2n)2 +

l6M
v2
dy2 + ds2

Bn , C0 +
i

gs
= τ

(11.16)

with τ the complex structure of the torus and dsIIB the line element in the Einstein
frame. The matching of the remaining differential form fields can also be derived
straightforwardly by expanding the M-theory three-form in harmonic forms which rep-
resent the cycles of the elliptic fiber and again tracing their fate under the duality
chain fiberwise. Note that different type IIB fluxes enjoy a uniform description in the
dual M-theory setting in terms of G4-flux [179].5 We finally summarize the mapping
of sources between type IIB string theory and M-theory in Table 11.4. For the precise
correspondence between all fields on both sides of the duality see e.g. [115]. In the next
step we send v → 0. This limit somehow mysteriously grows an additional non-compact
dimension, and at the same time it implements full Poincaré invariance of the resulting
(10− n)-dimensional Minkowski spacetime. Although there has been some progress in
recent years, this limit is still not understood in full detail.

5Since most of the time the construction of appropriate G4-fluxes won’t play any crucial role in
this thesis, we refrain from treating this vast and poorly understood subject in our introduction. At
prominent positions we will only mention the facts which we need for our work.
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11.3 F-Theory and Elliptic Fibrations

In this section we introduce the important mathematical notion of elliptic fibrations,
which are the most important geometric objects of interest in F-theory compactifica-
tions. It is unavoidable that the following discussion requires some basic knowledge in
algebraic geometry and topology.

Elliptic fibrations are defined as fibrations of elliptic curves over a fixed base space,
thus we need to define elliptic curves first. An elliptic curve is a non-singular (in our
setups complex ) algebraic curve of genus one with one marked point, the base point
O. Loosely speaking, it is a T 2 with a special point singled out. A convenient way to
represent elliptic curves is by embedding them as hypersurfaces into weighted projective
space. Since they are in particular Calabi-Yau onefolds, the degree of the hypersurface
equation has to match the sum of all scaling weights.6 The three most prominent
representations are the cubic P1,1,1[3], the quartic P1,1,2[4] and the sextic P2,3,1[6]. We
will work with the sextic in the following since it is the most common one in the physics
literature. One can show that after a suitable coordinate redefinition every hypersurface
of degree six in P2,3,1 can be transformed into what is called Weierstrass form

y2 − x3 − fxz4 − gz6 = 0 (11.17)

with general complex coefficients f, g, and x, y, z are the homogenous coordinates of
P2,3,1. It is easy to see that one can specify a base point O with rational coordinates
independently of f and g, namely O := [1, 1, 0]. This point will become important
when we pass to elliptic fibrations. Furthermore, we have already mentioned that in
the framework of F-theory one also has to consider degenerations of elliptic curves,
since they indicate the presence of 7-branes. The procedure to figure out from a given
Weierstrass equation (11.17) if the associated elliptic curve degenerates is in fact not
very complicated. One can show that Weierstrass model is singular if and only if the
discriminant ∆, given by

∆ = 27g2 + 4f 3 , (11.18)

vanishes for the given values of f and g. In this case the elliptic curve indeed pinches
as depicted in Figure 11.2.

Now we pass to fibrations of elliptic curves over a complex-n-dimensional Kähler
base space Bn with local coordinates ui. In order to define the fibration structure the
former constants f, g in (11.17) are promoted to functions in the local coordinates ui,
or more accurately formulated, they become global sections of certain line bundles over
the base Bn. The line bundles corresponding to the different variables are fixed by
demanding that we want the total space to be Calabi-Yau. One finds, as for example

6This property implements the vanishing of the first Chern class. It therefore holds for all Calabi-
Yau hypersurfaces in weighted projective space. Compare for instance the Quintic in P4.
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Figure 11.2: We depict a singular elliptic curve where a certain (p, q)-cycle has collapsed
to zero size.

nicely explained in [148,127], that

x ∈ H0(Bn, K
−2
Bn

) , y ∈ H0(Bn, K
−3
Bn

) , z ∈ H0(Bn,OBn) , (11.19a)

f ∈ H0(Bn, K
−4
Bn

) , g ∈ H0(Bn, K
−6
Bn

) , (11.19b)

with K−pBn the (−p)-th power of the canonical bundle of the base space, and OBn is the
trivial bundle over Bn. In fact, the former hypersurface in the weighted projective space
P2,3,1 is promoted to a hypersurface in the weighted projective bundle P2,3,1(K−2

Bn
⊕K−3

Bn
⊕

OBn). The conditions (11.19) are then the global generalizations of the local necessity
that the degree of the hypersurface has to coincide with the sum over all scaling weights
in the ambient projective space. Finally, we consider the analog object of the base point
O for elliptic fibrations, the (rational) zero-section. We have mentioned earlier that a
genus-one fibration is called an elliptic fibration if it admits at least one rational section,
i.e. the section has to cut out a rational point in each elliptic fiber, and one of the (maybe
multiple) rational sections has to be picked as the zero-section. The physical significance
of this choice and the remaining rational sections will be explained in section 12.1 and
chapter 13. Note that fibrations which are defined by a Weierstrass equation (11.17)
always constitute elliptic fibrations since the (z = 0)-locus defines a rational section
independently of f and g. Conversely, one can show that up to flop transitions any
elliptic fibration can be described by (11.17). Note that if a “section” does not cut
out rational points in each fiber but irrational roots of an algebraic equation, there will
be branch cuts. Thus as one moves around the fibration, monodromies exchange the
different roots, and the “section” actually cuts out several points in the fiber whose
number is given by the degree of the defining algebraic equation. These objects are
therefore from now on referred to as multi-sections. They will become important later
when we consider F-theory compactifications on geometries without rational section in
section 12.2, but for now we restrict to elliptic fibrations. We stress that nevertheless
elliptic fibrations do indeed possess besides of rational sections also multi-sections, and
we will take a first step towards uncovering their significance in section 14.2.
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11.3.1 Gauge Symmetry, Matter and Yukawas

In F-theory the main interest is usually in locating the degenerations of the elliptic
fiber since they indicate the presence of 7-branes. Therefore we have to look for van-
ishing loci of the discriminant ∆ = 27g2 + 4f 3, which depends on the local coordinates
of the base ui. Suppose that the discriminant vanishes to order N over a complex-
codimension-one locus Sb in the base, i.e. a divisor of the base. This indicates that
there are, formulated in the language of type IIB, N coincident 7-branes wrapping Sb.
For the case of K3, i.e. Calabi-Yau twofolds, Kodaira investigated the different types
of fiber degenerations resulting in the famous ADE-classification of singularities. In
the following we will explain how this classification is to be understood by looking at
resolutions of the degenerate fibers. Along the way we will argue that the singularity
types over complex-codimension-one in the base precisely constitute the gauge algebras
of the F-theory model. For higher-dimensional Calabi-Yau manifolds than Calabi-Yau
twofolds additional monodromies come into play, and the possible singularity types are
extended to the non-simply laced B- and C-series as well as F4 and G2, see e.g. [180].

To work directly with singular elliptic fibrations in F-theory is quite hard, partly
because we do not understand M-theory on singular spaces very well. Therefore we will
in the rest of this thesis always resolve the singularities in the fiber, assuming implicitly
that there exists a resolution which preserves the Calabi-Yau condition. Following the
duality of section 11.2 M-theory compactified on the resolved elliptic fibration (with
still finite fiber size) corresponds to going to the Coulomb branch of the F-theory
setting on the circle of finite size.7 Importantly, the blow-up of the singularities over
complex-codimension-one in the base introduces a tree of P1s in the fiber, which intersect
(together with the original fiber component) as the (affine extension of the) Dynkin
diagram of a simple Lie algebra. This explains the classification of singularities started
by Kodaira. Note that there can also be codimension-one singularities which only lead
to a degeneration of the fiber but do not render the total space singular. These so-called
I1-singularities are therefore not part of the resolution process and do not introduce
blow-up P1s. In the framework of F-theory the singularity type directly corresponds to
the non-Abelian gauge algebra induced by the stack of 7-branes wrapping the divisor
Sb. Expanding the M-theory three-form along the resolution P1s (fibered over Sb)
gives the Cartan fields of the gauge theory while wrapping chains of P1s by M2-branes
provides amongst others the massive W-bosons. When the P1s collapse to zero size, the
W-bosons actually become massless as it should be for the singular geometry. We depict
the resolution process for a specific example in Figure 11.3. In principle it is possible that
there are singular fibers over several different complex-codimension-one loci in the base,
which corresponds to a product of simple non-Abelian gauge algebras. For simplicity we
will assume in this thesis that there is only one simple non-Abelian gauge algebra in the
F-theory compactification at hand. The generalization to semi-simple gauge algebras

7Note that one can also deform the singularities in order to obtain a smooth geometry. This would
correspond to a Higgsing of the gauge group.
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blow-up→

Figure 11.3: The singular elliptic fiber of type A4 is blown up by introducing a tree of
four P1s. The original fiber component is marked in red and constitutes the affine node
of the extended Dynkin diagram of A4. The cross marks the zero-section.

is straightforward but the additional index would reduce the readability. Note that
the global structure of the gauge group is encoded in torsional rational sections which
will be introduced in subsection 12.1.3. To complete our discussion of codimension-
one singular fibers note that at this stage not only non-Abelian gauge multiplets are
induced, but also a certain sets of so-called bulk matter states which are counted by
sheaf extension groups can arise, see e.g. [148] for more details.

In a general F-theory compactification one can also find a number of U(1) gauge
symmetries. Their nature is rather different from the one of non-Abelian gauge symme-
tries since they are not localized on divisors in the base but in contrast depend explicitly
on the global structure of the geometry. In fact, the number of independent rational
sections (minus the zero-section) of the elliptic fibration gives the number of Abelian
gauge factors. We will discuss this in more detail in section 12.1 when we introduce
the Mordell-Weil group of rational sections. In particular we will clarify what we mean
by “independent rational sections”. Moreover, for compactifications of F-theory on
Calabi-Yau fourfolds there are still additional U(1)s which do not correspond to ratio-
nal sections but are counted by h2,1. These so-called bulk U(1)s will be neglected in
this thesis since there is no matter which is charged under them, and they never enter
in the discussions of this work. However, they nevertheless encode interesting physics
and have also recently attracted renewed attention [181,182].

So far we have only considered fiber degenerations over a divisor Sb in the base,
which corresponds to a non-Abelian gauge algebra in the F-theory effective field theory.
Let us now pass to higher codimension degenerations, which also encode interesting
physics. We have to distinguish between two different cases. First, the singularity at
complex-codimension-two could arise at the intersection of two divisors Sb

1 , Sb
2 in the

base on which non-Abelian gauge symmetries are located. Note that actually Sb
1 and Sb

2

can be identical, and for our restriction to one simple non-Abelian algebra they indeed
are. Second, the singularity could be isolated at complex-codimension-two in the base.
These two cases lead to different physical behaviors:

• From the intuition of intersecting branes it seems clear that colliding Sb
1 and Sb

2

should correspond to an intersecting stack of 7-branes inducing matter states. The
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easiest way to see what exactly happens is to work with the resolved geometry in
the M-theory picture. The P1s over Sb

1 and Sb
2 intersect as dictated by the the

gauge algebras g1 and g2, respectively. We denote their adjoint representations
by adg1 , adg2 . At the intersection of Sb

1 and Sb
2 the number of P1s enhances, and

the latter intersect according to the (affine extension of the) Dynkin diagram of
an enhanced simple Lie algebra g3 with the rank given by the sum of the ranks of
g1 and g2. In M-Theory M2-branes can wrap the P1s at the intersection yielding
formally the adjoint representation of the enhanced algebra adg3 . The latter
however does not correspond to an actual gauge theory, and the states therefore
have to be decomposed into representations of the true gauge algebras g1 ⊕ g2

g3 → (g1 ⊕ g2) (11.20)

adg3 → (adg1 , 1)⊕ (1, adg2)⊕
∑
i

(Ri
1, R

i
2) ,

with Ri
1, Ri

2 denoting the representations which complete the decomposition.
These precisely provide the additional matter states at the intersection. Re-
call that the adjoint representation of the gauge theory is located at complex-
codimension-one.

• Isolated singularities at complex-codimension-two are conifold singularities. Once
they get resolved by a single P1, an M2-brane can wrap the latter and induce
matter states in this way. These however are generically singlets under the non-
Abelian gauge group but carry non-trivial U(1)-charge.

Starting with Calabi-Yau fourfolds there can also appear complex-codimension-three
singularities. It his not hard to verify that these induce Yukawa couplings. This can be
derived in the M-theory picture by again considering an enhanced gauge algebra of now
three colliding divisors Sb in the base. We will not further comment on this topic since
it is not important for this thesis. Yukawa couplings are nevertheless extremely inter-
esting (in particular for model building purposes), but unfortunately they are poorly
understood in global models though some results exist for local settings. Again we refer
to [148] for more details and references.

At this point it is crucial to draw attention to a very important point. While
compactifications on Calabi-Yau threefolds to six-dimensional N = (1, 0) theories are
always necessarily chiral, this is not true for compactifications on Calabi-Yau four-
folds to four-dimensional N = 1 theories. In the former the chiral index of a matter
state over codimension-two in the base is simply given by the homology class of the
codimension-two locus in the base, i.e. by counting a number of points. In contrast, in
four dimensions chirality is only introduced in the presence of G4-flux. In particular,
for a matter state in a representation (R, q), which is located on a surface S(R,q) at
codimension-two in the base, the chiral index is given by

χ(R, q) =

∫
S(R,q)

G4 . (11.21)
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Furthermore, in compactifications on Calabi-Yau threefolds (anti-)self-dual tensors
arise from M5-branes wrapping vertical divisors which are pullbacks from divisors in
the base to the whole fibration. Indeed this leads to string states in six dimensions. In
compactifications on Calabi-Yau fourfolds the same setting yields a number of axions.

Before we conclude let us stress that F-theory allows for richer possibilities concern-
ing the gauge groups and matter states than the standard type II D-brane settings.
Since in the latter only two-index representations can occur (strings begin and end
on D-branes), the only possible gauge algebras are the classical ones of type A, B, C
or D. In contrast, the richer monodromy structure of (p, q)-strings ending on (p, q)-
branes allows one to form so-called string junctions in a well-defined manner. These
then give rise to more general gauge algebras and representations than in the type II
case [183,184].

11.3.2 The Topology of Elliptic Fibrations in F-Theory

We now investigate in detail how topological quantities of Calabi-Yau fourfolds and
threefolds enter in the effective field theory of the corresponding F-theory compactifi-
cation. We stress that the results which we review in here are crucial for the original
work in this thesis.

As already mentioned, in order to derive the effective theory of F-theory compacti-
fications on elliptically-fibered Calabi-Yau manifolds we first consider M-theory on the
resolved spaces, and obtain three-dimensional or five-dimensional N = 2 supergravity
theories, respectively. These are matched to general four-dimensional N = 1 or six-
dimensional N = (1, 0) supergravities on a circle of finite radius. The resolution of
the geometry further forces us to move to Coulomb branch of the circle-compactified
theories [111–116, 93, 94]. For convenience we depict the duality in Figure 11.4. Via
this matching procedure the parameters of the unknown four-dimensional and six-
dimensional effective theories can be obtained in terms of the data describing the elliptic
fibration. In this thesis we only restrict to the topological sector of the matching pro-
cedure, more precisely we consider in detail matchings of Chern-Simons terms in field
theory with intersection numbers on Calabi-Yau manifolds.

In chapter 9 we already discussed the compactification of general four- and six-
dimensional gauge theories on a circle. This of course also includes the minimal su-
pergravity theories in these dimensions which appear in F-theory compactifications on
Calabi-Yau manifolds. Moreover, we described large gauge transformations along the
circle as additional symmetries. Assuming that the M-theory to F-theory duality pro-
vides a correct approach to understand the system, we have to suspect that the smooth
Calabi-Yau geometry should share the symmetries of the gauge theories on a circle as
well. Thus let us start with describing the M-theory compactifications and specify the
matching to the circle-reduced theories.

First we establish some geometric notions of the Calabi-Yau manifold which we
compactify on. We denote the resolved Calabi-Yau space by Ŷ , and assume that it
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12-dim. F-Theory

11-dim. M-Theory

(10− 2n)-dim.
Supergravity

(9− 2n)-dim. Supergravity (9− 2n)-dim. Supergravity

Singular
π : Y → Bn

Circle
Reduction

Coulomb
Branch

Resolved
π : Ŷ → Bn

matching

Figure 11.4: We show a schematic diagram of how the duality between F-theory and M-
theory can be used to infer the effective action of F-theory on elliptically-fibered singular
Calabi-Yau manifolds Y . The circle compactification of a general minimal (10 − 2n)-
dimensional supergravity theory is pushed to the Coulomb branch and matched to
M-theory compactified on the resolved space Ŷ . Sending the volume of the blow-up
P1s to zero corresponds to going to the origin of the Coulomb branch in the dual
picture. The limit of vanishing elliptic fiber on the M-theory side corresponds to the
decompactification limit of the circle on the F-theory side.
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constitutes an elliptic fibration over some base space Bn, with the corresponding pro-
jection given by π : Ŷ → Bn. As announced, we will assume that the fibration has at
least one rational section. A set of linearly independent (minimal) rational sections of
the elliptic fibration is denoted by s0, sm, tr where one arbitrary section s0 is singled
out as the so-called zero-section. The sections tr will be purely torsional, while the sm
are assumed to be non-torsional. We will have to say more about rational sections and
this distinction in section 12.1. Furthermore, there might exist a divisor Sb in the base
Bn of the resolved space Ŷ over which the fiber becomes reducible with the individual
irreducible components intersecting as the (affine extension of the) Dynkin diagram of
the gauge algebra. Fibering these over the corresponding codimension-one locus Sb in
Bn yields the blow-up divisors of Ŷ which we denote by DI .

In the following we define a basis of divisors DΛ = (D0, DI , Dm, Dα) on the resolved
space Ŷ in the correct frame such that the corresponding gauge fields obtained from
the expansion of the M-theory three-form

C3 = A0 ∧ [D0] + Am ∧ [Dm] + AI ∧ [DI ] + Aα ∧ [Dα] (11.22)

can be matched properly to the gauge fields in the circle-reduced theory in Table 9.3.
In this expression [D] denotes the Poincaré-dual two-form to the divisor D in Ŷ .

• DivisorsDb
α of the baseBn define the vertical divisorsDα := π−1(Db

α) via pullback.
For each Db

α in Bn there is an axion in the four-dimensional F-theory compacti-
fication and an (anti-)self-dual tensor in the six-dimensional setting, respectively.
Supersymmetry implies Tsd = 1 (this is the tensor in the gravity multiplet) and
thus we find

nax = h1,1(B3) in four dimensions , (11.23)

Tasd ≡ T = h1,1(B2)− 1 in six dimensions ,

with Tsd, Tasd, nax as defined in section 9.1, and T denotes the number of six-
dimensional tensor multiplets.

For Calabi-Yau fourfolds it is also necessary to introduce vertical four-cycles Cα :=
π−1(Cαb ) which are the pullbacks of curves Cαb in the base intersecting the Db

α as

η β
α = Db

α · C
β
b (11.24)

with η β
α a full-rank matrix. For Calabi-Yau threefolds the analogous intersection

matrix

ηαβ := Db
α ·Db

β (11.25)

is used to raise and lower indices α, β. The matrices (11.24) and (11.25) are
matched to the corresponding expressions in the four- and six-dimensional Green-
Schwarz terms (9.6) and (9.13), respectively.
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For later convenience we also define the projection of two arbitrary divisors D,D′

as

π(D ·D′) :=


(
D ·D′ · Cβ

)
η−1 α

β Dα in three dimensions,(
D ·D′ ·Dβ

)
η−1βα Dα in five dimensions.

(11.26)

Furthermore we write πMI for the intersection number of a section sM with a
blow-up divisor DI restricted to the elliptic fiber E

πMI := ∩(sM, DI)
∣∣
E . (11.27)

• We denote the divisor associated to the zero-section s0 by S0 ≡ Div(s0). The
divisor D0 is then defined by shifting S0 as

D0 = S0 −
1

2
π(S0 · S0) . (11.28)

The corresponding vector A0 in (11.22) is identified with the Kaluza-Klein vector
in the circle-reduced F-theory setting, i.e. with A0 in (9.31).

We stress that since all rational section enjoy the property that they always square
to the canonical class of the base, we have

π(S0 · S0) = K , (11.29)

with K the canonical class of the base.

• The DI denote the blow-up divisors and yield the Cartan gauge fields AI in
(11.22). This implies that I = 1, . . . , rankG.

• Given a set of rational sections sm the U(1) divisors Dm are defined via the so-
called Shioda map. Denote by Sm ≡ Div(sm) the divisor associated to sm. The
Shioda map D(·) reads

D(sm) ≡ Dm = Sm − S0 − π
(

(Sm − S0) · S0

)
+ πmI C−1 IJDJ , (11.30)

where CIJ is the coroot intersection matrix (E.3) of the gauge algebra g derived
from the intersection of the blow-up divisors. Via (11.22) the Dm yield the Abelian
gauge fields in the F-theory setting such that m = 1, . . . , nU(1).

• The crucial property of the purely torsional sections tr is that they have no non-
trivial image under the Shioda map. Denoting the divisors associated to tr by
Tr = Div(tr) one has [185]

D(tr) = Tr − S0 − π
(

(Tr − S0) · S0

)
+ πrI C−1 IJDJ = 0 , (11.31)

which, as the other expressions above, should be read in homology.
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By the Shioda-Tate-Wazir theorem (D0, DI , Dm, Dα) indeed form a basis of the Nerón-
Severi group of divisors8 (times Q). Let us briefly mention that with this basis of
divisors the charges and weights of matter states can be computed in a very simple
fashion geometrically. Suppose that a holomorphic curve C is wrapped by an M2-brane,
they are precisely given by the intersections

(n,wI , qm) = (D0 · C, DI · C, Dm · C) (11.32)

with n the Kaluza-Klein level, wI the Dynkin labels and qm the U(1)-charges of the
state.

It is important to realize that the definition of the base divisor ensures in contrast
to (11.29) that

π(D0 ·D0) = 0 , (11.33)

and the Shioda map enjoys the orthogonality properties

π(Dm ·Dα) = π(Dm ·DI) = π(Dm ·D0) = 0 , (11.34)

which are essential in order to perform the F-theory limit correctly. The blow-up
divisors DI and the vertical divisors Dα further satisfy the properties

π(DI ·Dα) = π(DI ·D0) = π(Dα ·Dβ) = 0 . (11.35)

Via the matching of the M-theory compactification to the circle-reduced theory some
intersections of the divisor basis π(DΛ ·DΣ) ≡ π(DΛ ·DΣ)αDα can be nicely related to
four- and six-dimensional supergravity data

π(DI ·DJ)α = −CIJ bα , (11.36a)

π(Dm ·Dn)α = −bαmn , (11.36b)

π(D0 ·Dβ)α = δαβ , (11.36c)

where the last equality implicitly encodes the matching of the intersection matrices η β
α ,

ηαβ in (11.24), (11.25) with the corresponding objects in the Green-Schwarz-terms be-
cause of the definitions (11.26). The bα, bαmn are the Green-Schwarz couplings appearing
in (9.6) and (9.13). These relations hold both for Calabi-Yau three- and fourfolds. The
Green-Schwarz coefficients bα are equivalently obtained as

Sb = bαDb
α , (11.37)

where Sb was the divisor in Bn supporting the non-Abelian gauge group.
Since we are in particular interested in the matching of Chern-Simons terms between

the circle-reduced theory and the M-theory compactification, let us approach this topic

8For Calabi-Yau manifolds the Nerón-Severi group coincides with the Picard group which is why
we will identify both groups throughout this thesis.
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in the following. The origin of Chern-Simons terms gauge theories on the circle has
already been investigated in subsection 9.3.2. In particular recall that there are classi-
cal contributions as well as quantum corrections at one-loop which have to be included
for a proper matching procedure [91, 93, 92, 94–96]. In contrast, in the M-theory com-
pactifications all Chern-Simons terms are on equal footing, and the massive modes are
automatically integrated out since we are already facing an effective theory. In terms
of geometrical and flux data the Chern-Simons couplings are given by

ΘΛΣ = −1

4
DΛ ·DΣ · [G4] , (11.38)

for compactifications on Calabi-Yau fourfolds with [G4] the Poincaré-dual to four-form
flux, and

kΛΣΘ = DΛ ·DΣ ·DΘ , (11.39a)

kΛ = DΛ · [c2] , (11.39b)

for compactifications on Calabi-Yau threefolds with [c2] the Poincaré-dual to the second
Chern class of the resolved total space. Note that the special set of Chern-Simons
couplings kαΛΣ has already been discussed since they appear in the expressions π(DΛ ·
DΣ). For convenience we list the one-loop Chern-Simons terms for the circle-reduced
theory in section F.1 and the relevant intersection numbers along with their matching
to Chern-Simons terms and supergravity data in Appendix G.

We highlight that, since one-loop induced Chern-Simons terms carry information
about the number of matter fields, the matching to M-theory allows to translate in-
formation about the spectrum into the geometric data of the resolved space. This is
the underlying reason why will be able in the following chapter to relate field-theoretic
large gauge transformations to geometric symmetries on elliptic fibrations, and in par-
ticular show anomaly cancelation in F-theory compactifications on elliptically-fibered
Calabi-Yau manifolds.
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Chapter 12

Arithmetic Structures on
Genus-One Fibrations

In this chapter we finally connect the results of chapter 10 with the general considera-
tions in subsection 11.3.2. In particular we identify arithmetic structures on genus-one
fibrations with large gauge transformations of gauge theories on the circle in F-theory.

In section 12.1 we focus on geometries with rational sections and the corresponding
Abelian parts of the gauge theory. The Mordell-Weil group action is introduced and
mapped to large gauge transformations along the circle. We also discuss the impact of
torsion from this perspective. In section 12.2 we then turn to geometries with multi-
sections. Insights obtained by using Higgs transitions allow us to define an extended
Mordell-Weil group of multi-sections and a generalized Shioda map. In section 12.3
we extend the analysis further to cover non-Abelian gauge groups. We argue for the
existence of a group law on the exceptional divisors and rational sections that is shown to
be induced by large gauge transformations of the Cartan gauge fields. We geometrically
motivate its existence by explicitly considering Higgsings to Abelian gauge theories.

12.1 Arithmetic Structures on Fibrations with Ra-

tional Sections

In this section we argue that the arithmetic structures of elliptic fibrations with mul-
tiple rational sections correspond to certain large gauge transformations introduced in
section 10.1. The considered arithmetic is encoded by the so-called Mordell-Weil group
of rational sections which we introduce in more detail in subsection 12.1.1. In the same
subsection we also discuss how the geometric Mordell-Weil group law translates to a
general group law for rational sections in terms of homological cycles. The free genera-
tors of the Mordell-Weil group correspond to Abelian gauge symmetries in the effective
F-theory action. In subsection 12.1.2 we show that group actions of the free part of
the Mordell-Weil group are in one-to-one correspondence to specific integer large gauge

159
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transformations along the F-theory circle. A similar analysis for the torsion subgroup
is performed in subsection 12.1.3. We find that it precisely captures special fractional
non-Abelian large gauge transformations introduced in section 10.1 due to the presence
of a non-simply connected non-Abelian gauge group.

12.1.1 On the Mordell-Weil Group and its Divisor Group Law

The most famous arithmetic structure on an elliptic curve is encoded by the Mordell-
Weil group. The Mordell-Weil group is formed by the rational points of an elliptic curve
endowed with a certain geometric group law (see e.g. [186]). The rational points on
the generic elliptic fiber of an elliptic fibration Y directly extend to rational sections
and form a finitely generated Abelian group which is called the Mordell-Weil group of
rational sections MW(Y ). Thus it splits into a free part and a torsion subgroup

MW(Y ) ∼= Zrank MW(Y ) ⊕ Zk1 ⊕ . . .⊕Zkntor
. (12.1)

Having chosen one (arbitrary) zero-section as the neutral element of the Mordell-Weil
group, rank MW(Y ) rational sections generate the free part and ntor rational sections
generate the torsion subgroup. The precise group law on the generic fiber (in Weierstrass
form) may be looked up for example in [186]. We denote the addition of sections s1, s2

using the Mordell-Weil group law by ‘⊕’, i.e. we write s3 = s1⊕s2 with s3 being the new
rational section. Since, as noted before, the rational sections sM of an elliptic fibration
define divisors SM ≡ Div(sM), we will investigate how the group law is translated to
divisors. More precisely, we will derive the divisor class

Div(s1 ⊕ ns2) , n ∈ Z , (12.2)

where ns2 = s2 ⊕ . . . ⊕ s2 with n summands. In contrast the addition in homology of
divisor classes associated to sections is denoted by ‘+’ . Extending the treatment in [119]
the group law written in homology is uniquely determined by the three conditions:

1. The Shioda map D(sM) introduced in (11.30) is a homomorphism from the
Mordell-Weil group to the Nerón-Severi group (times Q)

D(s1 ⊕ ns2) = D(s1) + nD(s2) . (12.3)

2. A section sM intersects the generic fiber E exactly once

SM · E = 1 . (12.4)

3. In the base Bn a divisor SM associated to a section squares to the canonical class
of the base K, i.e.

π(SM · SM) = K . (12.5)
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Taking these constraints into account the group law for two sections s1, s2 on the level
of divisors can then be derived to be of the following form

Div(s1 ⊕ ns2) = S1 + n(S2 − S0)− nπ
(

(S1 − nS0) · (S2 − S0)
)
, (12.6)

where S0 denotes the divisor associated to the zero-section s0. We stress that we
assumed that blow-up divisors do not contribute to the group-law. This can be derived
easily in a general ansatz by enforcing that Div(s1 ⊕ s0) = Div(s0 ⊕ s1) = Div(s1).
In other words, the appearance of blow-up divisors in the ansatz always violates the
Abelian structure of the group.

It is well known that the Shioda map as an injective homomorphism (11.30) transfers
this group structure to the Nerón-Severi group (times Q) of divisors modulo algebraic
equivalence. Therefore it is reasonable to ask how a Mordell-Weil group action on the
elliptic fibration effects the circle-reduced supergravity. We will find that the free part
of the Mordell-Weil group corresponds to certain Abelian large gauge transformations
while the torsion subgroup manifests in special fractional non-Abelian large gauge trans-
formations. As we discussed in section 10.2 these arithmetic structures allow to establish
the cancelation of all pure Abelian and mixed Abelian-non-Abelian gauge anomalies in
the effective field theory of F-theory (as well as Abelian gauge-gravitational anomalies
in six-dimensional models).

12.1.2 The Free Part of the Mordell-Weil Group

Let us first consider the free part of the Mordell-Weil group. On the elements of the
Mordell-Weil basis, consisting of the zero-section s0, the free generators sm, and the
torsional generators tr, we now perform a number of nm ∈ Z shifts into the directions
of the free generators sm, i.e. we find a new Mordell-Weil basis given by

s̃0 := s0 ⊕ nnsn , s̃m := sm ⊕ nnsn , t̃r := tr ⊕ nnsn , (12.7)

where nnsn = n1s1⊕. . .⊕nnU(1)snU(1)
and each summand n1s1, n

2s2, . . . is evaluated using
the Mordell-Weil group law. For illustration we depict the transformation in Figure 12.1.
Our goal will be to translate these shifts to the divisor basis DΛ = (D0, DI , Dm, Dα)
introduced in subsection 11.3.2, and then identify the corresponding large gauge trans-
formation.

We use the formula (12.6) to derive the change in the definition of the U(1) divisors
Dm, the Cartan divisors DI and the base divisor D0. Note that the divisors D̃α = Dα

are unchanged under this transformation. Explicitly we find

D̃m = Dm − nn π(Dn ·Dm), (12.8a)

D̃I = DI − nK π(DK ·DI) , (12.8b)

D̃0 = D0 + nnDn + nJ DJ −
nnnp

2
π(Dn ·Dp)−

nJnL

2
π(DJ ·DL) . (12.8c)
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s0 sm1

sm2

nnsn
s̃0 s̃m1

s̃m2

s̃0 = s0 ⊕ nnsn

s̃m = sm ⊕ nnsn

Figure 12.1: We depict the process of shifting the basis of the free Mordell-Weil group
by a vector nnsn. Note that in addition also possible torsional generators tr get shifted.

where we have defined
nI := −nn πnJ C−1 JI . (12.9)

Using the expressions (11.36) one further evaluates

D̃0

D̃I

D̃m

D̃α


=



1 nJ nn npnq

2
bβpq + nKnL

2
CKLbβ

0 δJI 0 nKCIKbβ

0 0 δnm npbβmp

0 0 0 δβα


·



D0

DJ

Dn

Dβ


. (12.10)

It is now straightforward to check that, using (12.10) and the large gauge transforma-
tions (10.3) with (nm, nI) as in (12.7) and (12.9), one finds

C3 = AΛ ∧ [DΛ] = ÃΛ ∧ [D̃Λ] . (12.11)

This implies that the Mordell-Weil shift (12.7) indeed induces a large gauge transfor-
mation as discussed in section 10.1. More precisely, the pair (nm, nI) are in general the
basis vectors of type (II) and realize an Abelian large gauge transformation combined
with a fractional non-Abelian large gauge transformation. It is also straightforward to
check that the quantization condition (10.6) is satisfied for the pair (nm, nI) inferred
from the geometry. In fact, one finds

nIwI + nnqn = nn(−πnJ C−1 JIwI + qn) = nn
(
Sn− S0− π

(
(Sn− S0) · S0

))
· C , (12.12)

where we have used that wI = DI · C and qm = Dm · C are the charges of a matter
state ψ̂(wI , qm) arising from an M2-brane wrapped on the curve C. The condition (10.6)
then follows from the fact that nm ∈ Z and the appearing intersections between divisors



12.1. ARITHMETIC ON FIBRATIONS WITH RATIONAL SECTIONS 163

Sn, S0 and the curve C are always integral. From its definition (12.9) it is also clear
that nI are either zero or fractional due to the appearance of the inverse C−1 IJ .

Let us make a few comments concerning the derivation and interpretation of (12.8)
and (12.10). First, it seems from counting the number of conditions (12.7) and (12.8)
that the former conditions cannot suffice to fix the complete transformation law. In
fact, the shift of the non-Abelian Cartan divisors DI to D̃I is not immediately inferred
from (12.7) but appears to be crucial to make the transformation well-defined. To derive
(12.8) one first starts with the transformation to D̃0 by evaluating S̃0 = Div(s0⊕nnsn)
and using (11.28) which is straightforward. If one tries to proceed in a similar fashion for
D̃m one realizes that the evaluation of the Shioda map (11.30) for D̃m in the transformed
divisors formally requires also to use new D̃I , which is not fixed by (12.7). However,
note that the shift (12.8b) is uniquely fixed by requiring that the D̃I again behave
as genuine blow-up divisors. More precisely, we find that (12.8b) is fixed if the three
conditions

π(D̃I · D̃α)
!

= 0 , π(D̃I · D̃J)
!

= π(DI ·DJ) , π(D̃I · D̃0)
!

= 0 . (12.13)

are to be satisfied for the new divisors. These are simply the conditions (11.35) and
(11.36) in the D̃Λ basis. Having fixed D̃I the transformed D̃m in (12.8a) are determined
uniquely.

Let us again emphasize that the non-Abelian part of this gauge transformation is
absolutely essential. On the one hand it is non-zero if and only if πmI 6= 0 for some
DI . On the other hand we find fractional U(1)-charges if and only if πmI 6= 0. This
can easily be seen in the Shioda map (11.30). The U(1) charge qm of an M2-brane
state wrapping a holomorphic curve C is given by the intersection of C with Dm. A
fractional contribution to the charge therefore can only arise from the last term in
(11.30) since C−1 IJ in general has fractional components proportional to det(C)−1. In
fact, since a section can only intersect nodes with Coxeter label equal to one, the
last term in (11.30) always vanishes for the simple Lie algebras E8, F4, G2, which do
not have nodes with Coxeter label one, and they are precisely the only simple Lie
algebras having integer C−1 IJ , or equivalently det(C) = 1.1 The Coxeter labels for
the simple Lie algebras can be found in Table E.1. To put it in a nutshell, if and
only if there are fractional U(1) charges, the free Mordell-Weil group action induces
Abelian large gauge transformations supplemented by non-zero fractional non-Abelian
large gauge transformations. Effectively, in the presence of fractional U(1) charges a
pure Abelian large gauge transformation with integer winding nm ∈ Z is in general ill-
defined. What makes it well-behaved is precisely the additional contribution from the
fractional non-Abelian large gauge transformation (which is by itself also ill-defined)
which compensates for the fractional part in the Abelian sector. This matches the
gauge theory discussion of section 10.1.

1This is related to the fact that the center of the corresponding universal covering group is trivial.
We will elaborate more on this fact in the part about the torsion subgroup of the Mordell-Weil group.
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It should be stressed that not all redefinitions (12.8) have an immediate geometric
interpretation. Away from the singular loci over Bn that are resolved the transformation
Dm → D̃m is induced by the action of the Mordell-Weil group, which has a known
geometric origin as addition of points in the fiber (see e.g. [186]). We are not familiar
of how the latter geometric group law is extended to the non-Abelian singularities
or to their resolutions. This prevents us from identifying a geometric interpretation
of DI → D̃I . Nevertheless the considered arithmetic operations are well-defined on
the level of divisors and consistently include also the blow-up divisors for example
in the Shioda map. This suffices to infer information about the effective theory after
compactification on this space. We will encounter similar transformations in the general
discussion of non-Abelian large gauge transformations in section 12.3. A possible way
to resolve this puzzle could be provided by the theory of schemes in connection with the
minimal model program. In particular for the resolved space the Mordell-Weil group
could be only well-defined as an arithmetic structure on a whole scheme rather than on
individual algebraic varieties. Or loosely speaking, there exists a branched cover of the
elliptic fibration on which the arithmetic structure is properly defined. See e.g. [187]
for more details.

Finally, we conclude the discussion about the free part of the Mordell-Weil group
with a comment about G4-flux. As we have seen around (10.11), Abelian large gauge
transformations of four-dimensional theories generically induce circle-fluxes 1

2

∫
S1〈dρ̂α〉

resulting in a non-vanishing Chern-Simons coupling Θ̃α0 6= 0. Note that we started
with Θα0 = 0. In F-theory compactifications this coefficient is given by

Θα0 = −1

4
Dα ·D0 · [G4] , (12.14)

and the vanishing of it constrains the choices for G4-flux. If we now also want Θ̃α0

to vanish, we should manually switch on in field theory additional compensating flux
−1

2

∫
S1〈dρ̂α〉 after the large gauge transformation such that the net flux adds up to zero.

In the F-theory picture this corresponds to imposing that also the G4-flux transforms
after a Mordell-Weil shift according to

G̃4 = G4 − nn
(
Dα ·Dn · [G4]

)
η−1 α

β C
β . (12.15)

It is then easy to show that this compensates for the unwanted contributions of (9.47),
i.e. setting them to zero.

12.1.3 The Torsion Part of the Mordell-Weil Group

In a similar spirit we can show that a non-trivial torsion subgroup in (12.1) is con-
nected to special fractional non-Abelian large gauge transformations, i.e. to the basis
vectors (nI , nm) of type (III) introduced in section 10.1. For a torsional section tr,
r = 1, . . . , ntor, we use the key fact that its image under the Shioda map vanishes,
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cf. (11.31). As discussed in subsection 11.3.2 this implies that they do not define di-
visors that appear in the Kaluza-Klein expansion (11.22) and thus do not give rise to
massless gauge fields in the effective theory.

Despite the fact that torsional sections do not define massless gauge fields in the
effective field theory, the Mordell-Weil group action along these sections nevertheless
results in a non-trivial transformation in the circle-reduced theory. In order to show this
we perform nr ∈ Z shifts along the torsional generators tr using the Mordell-Weil group
law (12.6). The derivation proceeds in a similar fashion as the one in subsection 12.1.2.
In fact, keeping in mind that D(tr) = 0 one can use (12.8) to infer

D̃m = Dm , (12.16)

D̃I = DI − nKπ(DK ·DI) , (12.17)

D̃0 = D0 + nJDJ −
nJnL

2
π(DJ ·DL) , (12.18)

where we have defined, similar to (12.9), that

nI := −nr πrJ C−1 JI . (12.19)

Just as in subsection 12.1.2, in general nI will be fractional due to the appearance of
the inverse matrix C−1 JI . In other words the transformations induced by nr correspond
to special fractional non-Abelian large gauge transformations parametrized by pairs
(nI , nm = 0), introduced as case (III) in section 10.1.

The fact that torsion in the Mordell-Weil group allows for the presence of special
fractional non-Abelian large gauge transformations is not unexpected. As discussed
in [188, 185], torsion in the Mordell-Weil group indicates that the gauge group is not
simply connected, and therefore certain representations of the Lie algebra do not appear
on the level of the group, i.e. the weight lattice of the group is coarser. Because of this
fact also certain fractional non-Abelian large gauge transformations are compatible
with the circle boundary conditions. Indeed the torsional shifts exhaust all possible
fractional large gauge transformations, which is evident from considering the center
of the universal covering group as in section 3.3 of [185]. Note that since the adjoint
representation is always present in terms of gaugini, the possible set of special fractional
large gauge transformations, which might be restricted by the global structure of the
group, can be derived by demanding

nIwadj
I ∈ Z (12.20)

with wadj the weights of the adjoint representation.

12.2 Arithmetic Structures on Fibrations with Mul-

ti-Sections

In this section we aim to generalize the discussion of section 12.1 to Calabi-Yau ge-
ometries that admit a genus-one fibration that does not have a rational section. These
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setups always come with multi-sections that no longer cut out rational points of the
genus-one fiber but rather roots which are exchanged over branch cuts in the base Bn.
On such genus-one fibrations with only multi-sections there is no known arithmetic
structure analog to the Mordell-Weil group. However, our understanding of the F-
theory effective action associated to such geometries, which will have U(1) gauge group
factors if there is more than one independent multi-section, and the possibility to per-
form Abelian large gauge transformations in these setups suggest that an arithmetic
structure should equally exist on genus-one fibrations without section. We will collect
evidence for the existence of this structure which we name the extended Mordell-Weil
group and study its key properties.

Our considerations will be driven by two facts. First, we will make use of the fact
that a genus-one fibration with only multi-sections can often be related by a geometric
transition to elliptic fibrations with multiple rational sections. Physically this corre-
sponds to an unHiggsing of Abelian gauge fields [132, 96, 127, 135–137, 133]. Following
the divisors through this transition we are able to reverse-engineer on the level of divisor
classes the group law on the geometry without rational sections from the Mordell-Weil
group law in the unHiggsed geometry. We note that at this point we can only deter-
mine the extended Mordell-Weil group law up to vertical divisors, which will be the
task of subsection 12.2.1. This definition however will allow us to uniquely define a
generalized Shioda map in subsection 12.2.2. The latter defines divisors associated to
massless Abelian gauge symmetries from the generators of the postulated extended
Mordell-Weil group, i.e. from the multi-sections. Finally, in subsection 12.2.3 we show
that translations in the extended Mordell-Weil group correspond to Abelian large gauge
transformations.

12.2.1 A Group Action for Fibrations with Multi-Sections

We now present an extension of the results from the last subsection to F-theory compact-
ified on genus-one fibrations without section. These geometries come with multi-sections
which mark points in the elliptic fiber that are exchanged over branch cuts in the base
Bn. If they mark a set of n points in the fiber, we call the multi-section an n-section. For
a genus-one fibration one can always birationally move to the Jacobian fibration, which
replaces each independent n-section by a rational section and therefore constitutes an
elliptic fibration. Importantly the genus-one fibration and its Jacobian describe the
same F-theory effective action in four or six dimensions [130, 131]. It is therefore clear
that the presence of at least two homologically independent multi-sections indicates the
existence of massless U(1) gauge fields in the four- or six-dimensional F-theory effective
field theory.2 In particular, the associated Jacobian fibration of a genus-one fibration
with more than one multi-section will have a non-trivial Mordell-Weil group. One can
therefore ask how to identify the divisor classes associated to massless U(1) gauge sym-

2A single multi-section gives one massless U(1) in the three- or five-dimensional effective theory,
which captures the degree of freedom of the circle Kaluza-Klein vector.
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metries already in the genus-one fibrations. This is relevant e.g. for the computation of
U(1)-charges or the computation of anomaly coefficients. Furthermore, we will argue
for the existence of a group law for multi-sections.

To address these issues we first have to introduce some additional facts about fibra-
tions with multi-sections and state our assumptions. First, recall that an n-section s(n)

with divisor class S(n) = Div(s(n)) fulfills

S(n) · f = n , (12.21)

where f is the class of the genus-one fiber. This implies that

S(n) ·Dα ·Dβ = nDb
α ·Db

β , S(n) ·Dα ·Dβ ·Dγ = nDb
α ·Db

β ·Db
γ , (12.22)

where the first equation applies for threefolds and the second for fourfolds. Second,
note that it is always possible to find a basis of multi-sections in homology that are all
of the same degree [131], i.e. they cut out the same number of points in the fiber. We
denote the number of such multi-sections by nms and assume nms ≥ 2. We denote such
a basis of n-sections by s

(n)
0 , s

(n)
m , m = 1, . . . , nms − 1 and demand that it is minimal

in the sense that there does not exist any multi-section in the geometry that cuts out
n − 1 or fewer points.3 We have also singled out an arbitrary multi-section which we
labeled by 0. The divisors associated to these sections are denoted by S

(n)
0 = Div(s

(n)
0 )

and S
(n)
m = Div(s

(n)
m ) in accord with our previous notation.

To propose a group law we will work with the following assumption for genus-one
fibrations throughout this section:

• We assume that there exists a specialization of the complex structure of the
fibration such that each n-section s

(n)
0 and s

(n)
m splits into n rational sections

s1
0, . . . , s

n
0 and s1

m, . . . , s
n
m. After resolving the singularities in the new geometry

we will denote the resulting space by ŶuH, where we indicate that this geometry
captures the unHiggsing from a field-theoretic point of view. In the following we
impose that the rational sections s1

0, . . . , s
n
0 and s1

m, . . . , s
n
m are the generators of

the Mordell-Weil group supplemented by the zero-section of the elliptic fibration
ŶuH. We expect however that the following discussion can be extended to the
more general situation in which these rational sections only generate a sublattice
of the Mordell-Weil lattice. With this simplification the divisor homology groups
of Ŷ and ŶuH are generated as follows:

Hp(Ŷ ) = 〈S(n)
0 , S(n)

m , Dα〉 , Hp(ŶuH) = 〈S1
0 , . . . , S

n
0 , S

1
m, . . . , S

n
m, D

′
α〉 , (12.23)

where p = 4 for Calabi-Yau threefolds and p = 6 for Calabi-Yau fourfolds. Note
that we will in the following assume that the theory has no non-Abelian gauge
groups. In other words, we do not include exceptional divisors in (12.23).

3From now on we will always require that the considered basis of multi-sections is of this type.
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• We also introduce an unHiggsing map ϕ from the divisors of Ŷ , i.e. the fibrations
admitting multi-sections, to the divisors of ŶuH,

ϕ : Hp(Ŷ ) ↪→ Hp(ŶuH) . (12.24)

Here we have indicated that the map is injective. In addition, we require it to
be an injective ring homomorphism from the full intersection ring on Ŷ into that
of ŶuH. This map is defined to identify the n-sections with n rational sections on
the divisor level:

ϕ(S
(n)
0 ) = S1

0 + · · ·+ Sn0 , ϕ(S(n)
m ) = S1

m + · · ·+ Snm . (12.25)

We do not consider torsional sections in the following discussion. We furthermore
assume that the map ϕ acts trivially on the remaining divisors Dα and is linear
on the vector space of divisors, i.e.

ϕ(νiS
(n)
i + ναDα) = νiS1

i + · · ·+ νiSni + ναD′α , (12.26)

for some constants (νi, να). Note that Dα and D′α actually define the same divisor
classes since they both ascend from the same divisors in the base Bn common to
both Ŷ and ŶuH.

Note that only a single example of a geometry with more than one independent
multi-section has been studied in the literature [127] which is given by an embedding
of the fiber as a hypersurface into P1 × P1. In these setups one finds two independent
two-sections which do indeed split into four sections in the prescribed way by blowing
up the fiber ambient space to dP3.4

Let us make the following preliminary ansatz for a group structure placed on the set
of multi-sections written down in homology similar to (12.6): Choose one n-section s

(n)
0

as what we call the zero-n-section or zero-multi-section. Then two arbitrary n-sections
s

(n)
1 , s

(n)
2 are added according to

Div(s
(n)
1 ⊕ ns

(n)
2 ) := S

(n)
1 + n(S

(n)
2 − S(n)

0 ) + λαDα . (12.27)

Making the definition (12.27) precise would require to determine the constants λα.
However, we will argue in the following that these are not uniquely determined, which
can be traced back to the fact that there exist divisor classes corresponding to genuine
multi-sections that differ only in their vertical parts induced by the base homology.
This implies that we need to talk about equivalence classes [·] of divisors associated
to multi-sections defined modulo vertical part. Furthermore, we will in the following
provide evidence that Div(s

(n)
1 ⊕ ns

(n)
2 ) defines a divisor class representing an actual

n-section in the geometry when neglecting the vertical part. Let us stress again that
our approach just allows us to investigate how the group law for multi-section is defined
in terms of homology classes.

4It is important to notice that the two toric two-sections of P1 × P1 do not exclusively split into
the four toric sections of dP3. One rather has to pick four appropriate elements of the Mordell-Weil
lattice of the blow-up that are not necessarily torically realized.
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s
(3)
0 s1

0 s2
0 s3

0

zero-3-section zero-section

Figure 12.2: The zero-n-section is chosen to contain the zero-section
after unHiggsing to a setting with rational sections only.

We first want to provide evidence that there is indeed a multi-section associated to
S̃(n) ≡ Div(s

(n)
1 ⊕ns

(n)
2 ) as defined in (12.27). In order to do that we will check in which

ways ϕ(S̃(n)) can split into a sum of n sections in the homology of ŶuH. Let us denote
such a set of n linear independent sections of ŶuH by {ŝi}, and demand that

ϕ
(
S

(n)
1 + n(S

(n)
2 − S(n)

0 ) + λαDα

) !
=

n∑
i=1

Ŝi , (12.28)

where {Ŝi = Div(ŝi)} is the associated set of linearly independent divisors in ŶuH.
It turns out that there are infinitely many possibilities to define an appropriate set
of sections {ŝi}. For example, choosing one arbitrary element sl0 (for fixed l) as the
zero-section (see Figure 12.2 where e.g. l = 2), there is the very simple choice

ŝi := si1 ⊕ nsi2 	 nsi0 , (12.29)

which gives the right structure (12.28) upon using (12.26) and the conventional Mordell-
Weil group law (12.6). Clearly, the ansatz (12.29) allows us to fix the λα specifying the
vertical part in (12.27). The existence of an appropriate set of ŝi indicates that there

is indeed a multi-section in the divisor class Div(s
(n)
1 ⊕ ns

(n)
2 ) when fixing the λα via

(12.28), (12.29) and (12.6).
However, using merely the existence of sections ŝi in ŶuH satisfying (12.28) does

not seem to fix the class Div(s
(n)
1 ⊕ ns

(n)
2 ) uniquely. In fact, other appropriate sets

{ŝ′i} can be obtained if one picks two arbitrary sections out of {ŝi} and adds a third
arbitrary chosen section to one of the latter while subtracting it from the other one by
using the Mordell-Weil group law on ŶuH. Such a freedom of choice is schematically
depicted in Figure 12.3. The set {ŝ′i} can be used to satisfy (12.28) but will generally
yield a different set of constants λα compared to the choice (12.29). In other words,
the contribution from vertical divisors in (12.27) is a priori not uniquely fixed by the
compatibility conditions that we impose. This should be contrasted with the situation
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⊕

⊕ ⊕

⊕ ⊕

(1) (2)

⊕ ⊕

Ŷ

ŶuH

Figure 12.3: Moving from Ŷ to the unHiggsed phase ŶuH there are in
general many ways to add the individual sections. We schematically
indicate two choices in (1) and (2), which in general differ by their
vertical parts when considering the associated multi-section.

for genuine sections (i.e. n = 1) in which this part is fixed by demanding that the section
squares to the canonical class in the base of the elliptic fibration. For multi-sections this
relation to the canonical class of the base is in general not valid.5 In fact, for concrete
examples one can verify that there exist multi-sections that differ only by their vertical
parts.6 Therefore there is no immediate way that we are aware of to infer the possible
vertical parts of a multi-section. As stressed above this also reflects our inability to give
a unique choice for the splitting (12.28) and the fixation of the constants λα in (12.27).

It is therefore natural to define the group law (12.27) only in terms of equivalence
classes of multi-sections modulo vertical divisors as

D̂iv([s
(n)
1 ]⊕ n[s

(n)
2 ]) :=

[
S

(n)
1 + n(S

(n)
2 − S(n)

0 )
]
. (12.30)

In this expression we indicate that the divisors as well as the multi-sections should
only be considered modulo vertical parts. D̂iv maps between equivalence classes of
multi-sections and equivalence classes of divisors and reduces on representatives to
Div. Let us stress that this does not imply that one can add arbitrary vertical divisors
to the right-hand side of this equation and find an actual multi-section in the geometry.
The formulation in (12.30) loses some information about divisor classes supporting

5This can also be understood after applying the map ϕ to Ŷ , since two of the individual sections
s1i , s

2
i arising from the ith n-section can have non-trivial intersection.

6One can consider for example fibrations where the fiber is embedded as a hypersurface into P1×P1.
In these setups one can find four toric multi-sections from which two are independent, and the other
two do indeed differ by vertical parts from the latter in certain examples.
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multi-sections. Crucially, this information turns out to be irrelevant in the discussion
of the generalized Shioda map and therefore does not affect the considered physical
implications of the setup.

12.2.2 The Generalized Shioda Map

In order to investigate the physical implications of the group law studied in subsec-
tion 12.2.1 for the effective field theory we first need to define a generalized Shioda
map for multi-sections. Recall that the considered multi-sections were arbitrarily sub-
divided as s

(n)
0 , s

(n)
m , m = 1, . . . , nms − 1, where we called s

(n)
0 the zero-n-section. The

generalized Shioda map associates divisors D
(n)
m ≡ D(s

(n)
m ) to the n-sections s

(n)
m . In

addition one has to define a map from s
(n)
0 to a divisor D

(n)
0 generalizing (11.28), also

to be defined below. The Poincaré-dual two-forms [D
(n)
0 ] and [D

(n)
m ] can then appear in

the Kaluza-Klein expansion of the M-theory three-form C3 generalizing (11.22) as

C3 = Aα ∧ [Dα] + A0 ∧ [D
(n)
0 ] + Am ∧ [D(n)

m ] , (12.31)

where we recall that we assume the absence of exceptional divisors DI associated to a
non-Abelian gauge group in this section. The vectors Am correspond to massless linear
combinations of former U(1) gauge fields in the six- or four-dimensional effective theory,
while A0 will contain (in a massless linear combination) the degree of freedom arising
from the Kaluza-Klein vector along the circle when performing the F-theory uplift from
three or five to four or six dimensions.

If we have nms ≥ 2, as we will assume in the following, we have to define generalized
Shioda maps yielding the U(1) divisors D

(n)
m . To this end, we once again borrow results

from the unHiggsed geometry ŶuH. As was explained in [132, 96, 127, 135–137, 133] the
transition from the unHiggsed geometry ŶuH to the genus-one fibration is described by a
Higgsing in the effective five- or three-dimensional field theory of certain matter states
charged under a linear combination of the n×nms Abelian gauge fields. We aim to find
the proper linear combinations of these U(1)s that constitute the massless U(1) vectors
after the Higgsing. To begin with we consider the divisor classes D′m,l on ŶuH given by

D′m,l :=
n∑
i=1

Di
m −

n∑
i=1
i 6=l

Di
0 , (12.32)

where Di
m ≡ D(sim), Di

0 = D(si0) denote the Shioda maps of sim, s
i
0, with i 6= l, and

we have chosen an element sl0 (fixed l) as the zero-section on ŶuH. We want our ansatz
to be invariant under exchanging individual sections which come from the same multi-
section since we aim to write all expressions in terms of the map ϕ as defined in
(12.25). Note that the ansatz (12.32) is invariant under the exchange of the components

sim, s
i 6=l
0 of a given multi-section s

(n)
m and the zero-multi-section s

(n)
0 , respectively, and

it is therefore almost consistent with the map (12.25). However, the definition (12.32)
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of D′m,l still depends on the choice of the zero-section sl0 and is thus not invariant

under the exchange of all the components of the zero-multi-section s
(n)
0 in this respect.

We therefore included an additional index l in the notation. Inserting the explicit
expressions for the Shioda maps Di

m, D
i
0 and using (12.25) we obtain

D′m,l = ϕ(S(n)
m − S

(n)
0 )− π

(
ϕ(S(n)

m − S
(n)
0 ) · Sl0

)
. (12.33)

Thus it is clear that the expression (12.33) is still problematic if one wants to
move solely to the phase of the genus-one fibration since (12.33) manifestly depends
on the choice of the zero-section sl0 on ŶuH. However, as it follows from the upcoming
discussion in chapter 13, different choices of the zero-section are just related by large
gauge transformations in the effective field theory. Therefore it seems logical to treat
all phases with different zero-section sl0 on equal footing. We thus average over all these
choices and use again (12.25) to obtain

1

n

∑
l

D′m,l = ϕ(S(n)
m − S

(n)
0 )− 1

n
π
(
ϕ(S(n)

m − S
(n)
0 ) · ϕ(S

(n)
0 )
)
. (12.34)

Since ϕ is a ring homomorphism and all pieces lie in the image of ϕ, we can now drop
the map ϕ in this expression and consistently define a generalized Shioda map D

(n)
m for

the multi-section s
(n)
m without reference to an unHiggsed phase

D(n)
m := S(n)

m − S
(n)
0 − 1

n
π
((
S(n)
m − S

(n)
0

)
· S(n)

0

)
. (12.35)

By construction it is evident that U(1) charges qm of matter in the genus-one fibration

without rational sections are calculated by intersecting the associated curves with D
(n)
m .

Note that this intersection is independent of the vertical contribution in Dm. Further-
more (12.35) is a generalization of the map given in [127] (without the factor 1

n
), where

the authors consider fibers embedded into P1×P1. We expect that our definition of D
(n)
m

yields the correct U(1) divisors in order to study the effective field theory of F-theory
on genus-one fibrations directly without explicit reference to an unHiggsed geometry
ŶuH or the Jacobian of Ŷ . Exploring this effective theory in detail is however beyond
the scope of the work in this thesis.

Further indication that D
(n)
m is an important object of the genus-one fibration is

provided by the fact that the definition (12.35) only depends on the equivalence classes[
S

(n)
m

]
,
[
S

(n)
0

]
. Indeed, it is easy to check that (12.35) even provides a homomorphism

from the generalized Mordell-Weil group (12.30) to the Nerón-Severi group. Note that
both of these conditions are extremely restrictive.

In a similar fashion we can construct the divisor D
(n)
0 appearing in (11.22). It is the

cycle that is dual to the massless linear combination of the Kaluza-Klein vector and a
set of n− 1 U(1) vectors that are massive in the higher-dimensional theory [96]. These
correspond to the individual constituents of the zero-multi-section under the splitting
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(12.25). In analogy to (12.32) we first make the ansatz

D′0,l := nD0 +
n∑
i=1
i 6=l

Di
0 , (12.36)

where Di
0 = D(si0) are the Shioda maps with a chosen zero-section sl0. This expression

is again as before invariant under the exchange of the individual sections si 6=l0 modulo
vertical divisors. We stress that D0 denotes the divisor yielding the Kaluza-Klein vector
in ŶuH and is therefore given as in (11.28) by

D0 = Sl0 −
1

2
π(Sl0 · Sl0) . (12.37)

Using in (12.36) the explicit expressions for the Shioda maps as well as (12.37) and
(12.25) we obtain

D′0,l = ϕ(S
(n)
0 ) +

n

2
K − π

(
ϕ(S

(n)
0 ) · Sl0

)
(12.38)

with K the canonical class of the base. Averaging over all zero-section choices as in
(12.34) we get

1

n

∑
l

D′0,l = ϕ(S
(n)
0 ) +

n

2
K − 1

n
π
(
ϕ(S

(n)
0 ) · ϕ(S

(n)
0 )
)
. (12.39)

Now we can drop the map ϕ using the similar arguments as above, and are therefore
able to define D

(n)
0 as

D
(n)
0 := S

(n)
0 +

n

2
K − 1

n
π
(
S

(n)
0 · S(n)

0

)
, (12.40)

which is a generalization of (11.28).

12.2.3 Extended Mordell-Weil Group and Large Gauge Trans-
formations

In this final subsection we show that, similar to the genuine Mordell-Weil group of
rational sections, translations in the extended Mordell-Weil lattice are in one-to-one
correspondence with Abelian large gauge transformations in the effective field theory.
As before, the formulation of this group law on the divisor level will be completely
sufficient for the question we aim to address due to the uniqueness of the generalized
Shioda maps.

We begin by shifting the basis of multi-sections by nm-times the n-section s
(n)
m as[

s̃
(n)
0

]
:=
[
s

(n)
0

]
⊕ nm

[
s(n)
m

]
, (12.41)[

s̃(n)
m

]
:=
[
s(n)
m

]
⊕ nm

[
s(n)
m

]
.



174 CHAPTER 12. ARITHMETIC ON GENUS-ONE FIBRATIONS

Using the group law (12.30) and inserting the resulting divisor classes into the general-

ized Shioda map (12.35) we then find that the transformation of D
(n)
m is given by

D(n)
m 7→ D(n)

m −
np

n
π
(
D(n)
p ·D(n)

m

)
, (12.42)

which differs by a factor of 1
n

in the vertical part from (12.8a). We emphasize that in this
evaluation the ambiguity in the vertical parts is absent after applying the generalized
Shioda map.

Let us now analyze the large gauge transformations from a field theory perspective.
Recall that in general the actual Kaluza-Klein vector mixes in the Higgsed phase with
other U(1)s as dictated by the zero-multi-section s

(n)
0 [96, 135–137, 133]. While there

are n − 1 massive U(1)s parametrized by s
(n)
0 only a single U(1) remains massless.

To simplify the treatment of the large gauge transformations in such a situation, we
again can consider the unHiggsed phase. This will allow us to show that (12.42) is
induced by large gauge transformations. In particular we consider the different splits
corresponding to the divisor D

(n)
m . Note that D

(n)
m was obtained in (12.34) by averaging

over all divisors D′m,l, defined in (12.32), which together represent the different choices

for the zero-section. Focusing now on a particular divisor D′m,l with zero-section sl0, we
find that the dual gauge field in the unHiggsed phase reads

A′m,l =
1

n

( n∑
i=1

Ami −
n∑
i=1
i 6=l

A0
i

)
, (12.43)

with A0
i , A

m
i dual to Di

0, D
i
m. Our main interest is in the form of the large gauge trans-

formation for this vector field A′m,l. Therefore let us apply large gauge transformations
with winding nmi of the individual constituents Am,li . We find

Ami 7→ Ami − nmi A
0
l , A0

i 7→ A0
i , (12.44)

where A0
l denotes the Kaluza-Klein vector. We conclude that the large gauge transfor-

mations act on A′m,l as

A′m,l 7→ A′m,l −
∑n

i=1 n
m
i

n
A0
l . (12.45)

Using the results from section 12.1 we conclude that the dual divisors transform as

D′m,l 7→ D′m,l −
∑n

i=1 n
p
i

n
π
(
D′p,l ·D′m,l

)
. (12.46)

Averaging now as in (12.34) over the different choices for the zero-section we can finally

infer that the genuine U(1) divisors D
(n)
m in the Higgsed phase transform as

D(n)
m 7→ D(n)

m −
∑n

i=1 n
p
i

n
π
(
D(n)
p ·D(n)

m

)
. (12.47)

This is precisely what we get from (12.42) for appropriate choices of the nmi . We finally
conclude that shifts in the generalized Mordell-Weil group correspond to Abelian large
gauge transformations in the Higgsed phase.
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12.3 Arithmetic Structures on Fibrations with Ex-

ceptional Divisors

In this section, we focus on elliptic fibrations Ŷ with codimension-one singularities lead-
ing to non-Abelian gauge groups with matter in F-theory. The resolution of singularities
of the elliptic fibration at codimension-one in the base Bn requires introducing a set
of blow-up divisors. In subsection 12.3.1 we define a novel group action on the set of
these divisors in Ŷ . We are guided by two principles in defining this group structure,
one geometric and one field-theoretic one.

First, we employ the geometric fact that many geometries Ŷ with a Higgsable non-
Abelian gauge group can be connected by a number of extremal transitions, correspond-
ing to Higgsing in field theory, to a geometry ŶH with a purely Abelian gauge group,
i.e. a number of rational sections. Under this transition, the Cartan U(1)s inside the
non-Abelian gauge group are mapped to U(1)s associated to the free generators of the
Mordell-Weil group of the Higgsed geometry ŶH. The postulated group structure on
the blow-up divisors of the non-Abelian theory is then nothing but the translational
symmetry in the Mordell-Weil group of the Higgsed theory that has been shown to be
a geometric symmetry in section 12.1. In subsection 12.3.1 we will assume that such
a Higgs transition exists and exploit it to define the group structure on Ŷ . We show
this correspondence explicitly in the simplest case of an adjoint Higgsing of SU(2) to
U(1) in subsection 12.3.2 and use induction on the number of U(1)s to generalize to
higher rank groups. Thus, we see that the non-Abelian group structure is required by
consistency under motion in the moduli space of F-theory.

Second, we show in subsection 12.3.1 that in the effective field theory the postulated
group action manifests itself simply as non-Abelian large gauge transformations and is
therefore trivially a symmetry in an anomaly-free theory. Thus, we claim that the
non-Abelian group action should have a direct geometric interpretation on Ŷ and does
generally exist for any non-Abelian setup, even for those lacking Higgsings to Abelian
theories.

We note that application of the results from section 10.2 implies that the geometric
symmetries postulated here imply the cancelation of all pure and mixed non-Abelian
gauge anomalies in the effective action of F-theory compactifications on elliptically
fibered Calabi-Yau three- and fourfolds.

12.3.1 A Group Action for Exceptional Divisors

As outlined at the beginning of this section, we define in the following a group structure
on the set of resolution divisors of codimension-one singularities of an elliptic fibration
Ŷ . We first motivate the group structure geometrically by the connection between
Abelian and non-Abelian gauge groups via (un)Higgsing. Then we show that the pos-
tulated group law is identified with non-Abelian large gauge transformations, which
are automatically a symmetry of the effective theory. Furthermore, we show that the
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postulated group law leaves key classical intersections on Ŷ invariant. In particular
the intersections of the transformed exceptional divisors yield the same Cartan matrix
as before and the transformed rational sections obey again the defining intersection
properties of rational sections discussed in subsection 11.3.2.

We will start with a purely Abelian theory specified by an elliptic fibration ŶH with a
Mordell-Weil group generated by elements s′m, m = 1, . . . , nU(1). Although the following
arguments hold in general, we will assume that the Mordell-Weil group has no torsion
elements. We consider an unHiggsing to a geometry Ŷ where a subset of the rational
sections are turned into exceptional divisors DI corresponding to a non-Abelian gauge
group G. As discussed systematically in [132, 129], such an unHiggsing is a tuning in
the complex structure of ŶH such that certain rational sections coincide globally in the
tuned geometry. Thus Ŷ will have a lower-rank Mordell-Weil group with generators
denoted by sn, n = 1, . . . , ñU(1) for ñU(1) < nU(1).

We focus here on the simplest situation possible corresponding to a rank preserving
unHiggsing, i.e. a situation with rk(G) = nU(1) − ñU(1). Then the non-Abelian gauge

theory associated to Ŷ is Higgsed back to the original Abelian gauge theory specified
by ŶH via matter in the adjoint representation. Thus the divisor groups of ŶH and Ŷ
are of the same dimension and generated by the following elements, respectively:

Hp(ŶH) = 〈S ′0, S ′n, S ′I , D′α〉 , Hp(Ŷ ) = 〈S0, Sn, DI , Dα〉 , (12.48)

where p = 4 for Calabi-Yau threefolds and p = 6 for Calabi-Yau fourfolds. Here S ′0, S ′n
and S ′I are divisor classes associated to the rational sections on ŶH, S0 and Sn are divisor
classes of the sections on Ŷ . D′α and Dα are divisors that ascent from divisors in Bn and
define in fact the same classes in ŶH and Ŷ . The index I = 1, . . . , nU(1) − ñU(1) is the

same for both geometries and labels the sections on ŶH that are mapped to exceptional
divisors DI associated to the group G on Ŷ .

We propose that the unHiggsing ŶH → Ŷ induces a map ϕ from the divisor group
of ŶH to that of Ŷ ,

ϕ : Hp(ŶH) → Hp(Ŷ ) , (12.49)

with certain properties to be defined next. We we will argue explicitly in subsec-
tion 12.3.2 that the (un)Higgsing processes described in [119,132,129] implies the exis-
tence of a map ϕ as described now.

We require ϕ to be a bijective ring homomorphism from the full intersection ring
on ŶH to that on Ŷ , i.e. to commute with the intersection pairing of divisors and to be
linear. The image of ϕ on the generators of Hp(ŶH) with p = 4 (for threefolds) or p = 6
(for fourfolds) is given by

ϕ(S ′0) = S0 , ϕ(S ′n) = Sn , ϕ
(
D(s′I)

)
= DI , ϕ(D′α) = Dα . (12.50)

We emphasize that ϕ maps the Shioda map D(s′I) of the rational section s′I to a Cartan
divisor DI of the unHiggsed gauge group G on Ŷ . Note however that (12.50) implies
that ϕ does not necessarily map the Shioda map D(s′n) of a section s′n on ŶH to the
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Shioda map D(sn) of sn on Ŷ . This is clear as the formula for D(sn) according to
(11.30) involves the Cartan divisors on Ŷ that are absent on ŶH and consequently do
not appear in the formula for D(s′n).

We are now in the position to investigate the image of a translation in the Mordell-
Weil group of ŶH under the map ϕ to the unHiggsed geometry Ŷ . We are particularly
interested in shifts by rational sections s′I , whose associated Shioda maps D(s′I) map to
Cartan divisors DI in Ŷ . To this end we recall the action of a Mordell-Weil translation
on ŶH on its divisor group. First, we express the Mordell-Weil translations on ŶH

conveniently in terms of the D(s′I). Shifting the Mordell-Weil lattice on ŶH by a vector
⊕ nIs′I we rewrite (12.6) for all sections s′M := {s′0, s′m} as

Div(s′M ⊕ nIs′I) = S ′M +
∑
I

nID(s′I)−
1

2

∑
I,J

nInJπ
(
D(s′I) ·D(s′J)

)
−
∑
I

nIπ
(
S ′M ·D(s′I)

)
. (12.51)

We also recall the general Mordell-Weil group action on a Shioda map D(s′m) ≡ D′m of
a section s′m as given in (12.8a). We now perform the unHiggsing by applying the ring
homomorphism ϕ, employing (12.50), to the formulae in (12.51) and (12.8a). We find
the following transformation of divisor classes of sections and Cartan divisors on Ŷ by
lifting the Mordell-Weil translations on ŶH:

S̃0 = S0 +
∑
I

nIDI −
1

2

∑
I,J

nInJπ(DI ·DJ) , (12.52a)

S̃n = Sn +
∑
I

nIDI −
1

2

∑
I,J

nInJπ(DI ·DJ)−
∑
I

nIπ(Sn ·DI) , (12.52b)

D̃I = DI −
∑
J

nJπ(DJ ·DI) . (12.52c)

We note that the map ϕ simply amounts to
∑

I n
ID(s′I) 7→

∑
I n

IDI , as follows from
(12.50). Then, we have additionally used π(S0 · DI) = 0 in the first equation since
the zero section does not pass through the Cartan divisors on Ŷ as expected and
π(Dn ·DI) = 0 by definition of the Shioda map on the unHiggsed geometry Ŷ .

From a field theory point of view it is clear that the shifted classes (12.52) correspond
to non-Abelian large gauge transformations along the Cartan subalgebra. Indeed one
finds that under (12.52) the natural F-theory divisor basis on Ŷ transform as

D̃0

D̃I

D̃n

D̃α


=



1 nJ 0 nKnL

2
CKLbβ

0 δJI 0 nKCIKbβ

0 0 δkn 0

0 0 0 δβα


·



D0

DJ

Dk

Dβ


, (12.53)
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where we have used (11.36) and again recall that π(Dn · DI) = 0. Indeed, (12.53) is
precisely the formula for a non-Abelian large gauge transformation given in (10.2) along
the non-Abelian Cartan gauge fields AI with windings nI , i.e. for nm = 0, so that the
combination C3 = AΛ ∧ [DΛ] remains invariant.

In the following we will impose these shifts in F-theory compactifications with non-
Abelian gauge symmetry independently of an existing adjoint Higgsing to the maximal
torus of G. We conclude this by showing that the transformed divisor classes (12.52) on
Ŷ obey the key properties (11.34) and (11.35) of new Cartan divisors and new rational
sections, respectively, so that the gauge algebra and the rank of the Mordell-Weil group
are invariant. First of all let us note that the S̃M = {S̃0, S̃n} define good divisor classes
for sections. Indeed we find that

S̃0 · D̃I = 0 (12.54)

S̃M · E = 1 (12.55)

π(S̃M · S̃M) = K . (12.56)

Second we check that also the other classical intersection numbers such as (11.36) for the
divisors D̃I are not changed. This indicates that there might exist a new geometric in-
terpretation of the transformed divisors (S̃0, S̃n, D̃I) as sections and exceptional divisors
in an associated geometry. It also hints to the existence of a geometric interpretation
for the Mordell-Weil translations lifted from ŶH to Ŷ .

To close this subsection, let us note that we can push the analogy to the elliptic
fibration with rational sections even further by defining a so-called zero-node Σ0. We
introduce Σ0 as

Σ0 :=
∑
I

nIDI . (12.57)

Using this definition the transformations (12.52) can be rewritten in a simpler form
eliminating all explicit nI-dependence. The freedom to make a shift by a large non-
Abelian gauge transformation then translates to ‘picking a zero-node’ in the lattice
which is spanned by the blow-up divisors. This is analogous to determining the origin
in the Mordell-Weil lattice. For the latter case we have argued in section 12.1 that this
should constitute an actual symmetry of the M-theory to F-theory limit and therefore
implies cancelation of Abelian anomalies. We will also discuss a closely related topic
in chapter 13. For the non-Abelian large gauge transformations and the group action
introduced here such a geometric symmetry principle has yet to be established but
would guarantee the cancelation of all non-Abelian anomalies.

12.3.2 Arithmetic Group Structures from Higgs Transitions

Given a gauge theory with non-Abelian gauge group G and matter in the adjoint rep-
resentation, we can Higgs to U(1)r with r = rk(G) by switching on VEVs along the
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Cartan generators in the adjoint. The inverse process is called unHiggsing a U(1)
symmetry. Various examples of unHiggsing U(1) symmetries in F-theory have been
considered, see e.g. the most recent works [119, 132, 127, 129] on unHiggsings of up to
two U(1)s. We will employ the unHiggsing of U(1) symmetries to non-Abelian groups
in the following in order to provide further geometrical evidence for the existence of
the group structure on the exceptional divisors postulated in subsection 12.3.1. For
simplicity we focus here on the simplest case of the unHiggsing of one U(1) to SU(2) as
studied in [119,132]. By induction over the number of U(1)s, as suggested in [129], the
obtained results are expected to generalize to higher-rank non-Abelian gauge groups.
Note that basic knowledge of toric geometry is required to understand the following
discussion.

It has been shown by Morrison and Park in [119] that the normal form of a general
elliptic fibration with a Mordell-Weil group of rank one, i.e. a single U(1), is a Calabi-
Yau hypersurface ŶH with elliptic fiber given as the quartic hypersurface in the blow-up
of P2(1, 1, 2), denoted Bl1P2(1, 1, 2). This space has a toric description. Denoting the
projective coordinates on Bl1P2(1, 1, 2) by [u : v : w : e], where e = 0 is the exceptional
divisor of the blow-up (with map [u : v : w : e] 7→ [ue : v : we] to P2(1, 1, 2)), the
hypersurface equation which defines the elliptic fibration can be brought into the form7

ew2 + bv2w = u(c0u
3e3 + c1u

2e2v + c2uev
2 + c3v

3) . (12.58)

The coefficients ci, i = 0, 1, 2, 3, are sections in specific line bundles that are determined
by the the requirement that (12.58) defines a well-defined section of a line bundle on
the base Bn and obeys the Calabi-Yau condition:

Section Class

[c0] −4K − 2[b]

[c1] −3K − [b]

[c2] −2K

[c3] −K + [b]

[b] [b]

(12.59)

Here, we denote the divisor class of a section by [·] and −K is the anti-canonical divisor
of Bn. Note that the class [b] of the divisor b = 0 is a free parameter of the Calabi-Yau
manifold Ŷ .

The two rational sections of the elliptic fibration are given by

s′0 : [0 : 1 : 1 : −b] , s′1 : [b : 1 : c3 : 0] , (12.60)

7Note that the coefficient of ew2 is set to one in order to avoid the Z2-singularity at u = v = 0 which
would give rise to a codimension-one singularity of type I2, i.e. an SU(2) gauge group in F-theory,
see [96,127] for an analysis of the geometry with this additional singularity.
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where we picked s′0 as the zero-section.8 The Shioda map (11.30) of the section s′1 reads

D(s′1) = S ′1 − S ′0 +K − [b] = S ′1 − S ′0 − [c3] , (12.61)

where we denoted the homology class of the two sections by S ′0 = Div(s′0) and S ′1 =
Div(s′1).

The divisor D(s′1) supports the U(1) of the F-theory compactification on (12.58) as
can be seen from the expansion (11.22) of the M-theory three-form. Shifting the origin
in the Mordell-Weil lattice, as discussed in subsection 12.1.2, yields the new divisor
classes (12.8a) that were shown to correspond to large Abelian gauge transformations.

The unHiggsing of the U(1) to an SU(2) is performed by tuning b 7→ 0 in the
elliptic fibration (12.58), as discussed in [119, 132], so that the rational sections in
(12.60) coincide globally except for the locus c3 = 0. As the fiber is toric, we blow up
at u = e = 0, which amounts to replacing

u 7→ ue1 , e 7→ ee1 , (12.62)

where e1 = 0 is a new divisor. The hypersurface equation for the unHiggsed geometry
Ŷ after blow-up reads

ew2 = u(c0u
3e3e6

1 + c1u
2e2e4

1v + c2uee
2
1v

2 + c3v
3) . (12.63)

The single remaining section on Ŷ , now denoted by s0, is described by e1 = 0 after
blow-up, with coordinates [u : v : w : e : e1] reading

s0 : [1 : 1 : 1 : c3 : 0] (12.64)

showing that s0 is holomorphic. We note that the blown-up hypersurface has a Kodaira
singularity of type I2 at c3 = 0 corresponding to an SU(2) gauge group in F-theory.
Indeed, by setting c3 = 0 in (12.63) we obtain

e
(
w2 − u(c0u

2e2e6
1 + c1uee

4
1v + c2e

2
1v

2)
)

= 0 , (12.65)

which describes two P1s intersecting at two points. Thus we identify SSU(2) = {c3 = 0}
as the divisor supporting the SU(2) gauge group. As the zero-section s0 passes through
the P1 given by e = 0, we determine the class of the Cartan divisor D1 as

D1 = [c3]− [e] . (12.66)

Furthermore, we see that the divisor u = 0 does not intersect the hypersurface (12.63),
i.e. Ŷ ∩ {u = 0} = 0, due to the Stanley-Reisner ideal of the blown-up ambient space.
Using these observations, we infer that the pull-back of the Shioda map (12.61) of the
original rational section s′1 to the unHiggsed geometry Ŷ reads

D(s′1) 7→ [e]− [c3] = −D1 . (12.67)

8This convention deviates from the one chosen in [119] but is physically equivalent as we show in
chapter 13.
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Clearly, we have S ′0 7→ S0 while vertical divisor Dα map trivially. These are, up to the
irrelevant sign in the map of D(s′1), precisely the properties of the map ϕ defined in
(12.50).

In summary, we see that the Shioda map of the rational sections is mapped, up
to sign, to the Cartan divisor of the unHiggsed SU(2) gauge group on ŶuH. Conse-
quently, the Mordell-Weil shift of a rank one Mordell-Weil group, as introduced in
subsection 12.1.2, is mapped under the transition corresponding to the unHiggsing to
SU(2) to a similar shift of divisors, where the Shioda map is replaced by the Cartan
divisor of the SU(2) (the sign can be absorbed by the integer n in (12.7)). In addition,
a similar replacement should apply for unHiggsing a higher rank Mordell-Weil group by
induction on its rank as discussed in [129]. This is expected to establish the existence of
the group law postulated in subsection 12.3.1 on the Cartan divisors of any non-Abelian
gauge group in F-theory that can be Higgsed in an adjoint Higgsing to a purely Abelian
gauge group. We propose that this group law exists even for those non-Abelian groups
that can not be Higgsed, such as the non-Higgsable clusters in [189].
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Chapter 13

The Freedom of Picking the
Zero-Section in F-Theory

Finally, let us conclude this part by presenting the work and results which actually had
served as the inspiration for what we have discussed up to now. The original aim was
to clarify the implication of the fact that one is free to choose the zero-section in F-
theory in any way. More precisely, given a full set of independent sections of an elliptic
fibration one has to single out one as the zero-section. F-theory does not seem to impose
constraints on which section has to be chosen, they are rather all on equal footing. On
the other hand it has been known that the intersection numbers which are matched
to data in the circle-reduced supergravity are not invariant when comparing different
choices. In order to understand how F-theory deals with this fact we investigate how
the basis of divisors defined in subsection 11.3.2 transforms.

We start with a setting that has s0 as the chosen zero-section and generating sections
sm which correspond to Abelian gauge symmetries. Let us now consider the same
geometry but with a different choice for the zero-section ŝ0 and the generating sections
ŝm. We denote the quantities in the new F-theory setup by a ’hat’. In order to compare
both choices we first have to split the index labeling the generating sections, i.e. the
higher-dimensional U(1)s, in the old setting

m→ m◦,mc , (13.1)

where m◦ refers to the single section sm◦ which we pick as the new zero-section ŝ0, and
smc denotes the remaining generating sections, the complement to sm◦ in {sm}. We set

ŝ0 = sm◦ , ŝm◦ = s0 , ŝmc = smc . (13.2)

Before we infer the transformation of the basis of divisors which we defined in
subsection 11.3.2, let us introduce the following notation

A J
I := δJI − πm◦I(δJI + a J

I ) , (13.3a)

a J
I := aJ ∀I , (13.3b)

nJ := −πm◦K C−1KJ (13.3c)
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with aJ the Coxeter labels defined in (E.7). Using (11.28), (11.30) we then obtain

D̂0

D̂I

D̂m◦

D̂mc

D̂α


=



1 nJ 1 0 1
2
bβm◦m◦ + nKnL

2
CKLbβ

0 A J
I 0 0 πm◦Ib

β

0 0 −1 0 −bβm◦m◦

0 0 −1 δn
c

mc −bβm◦m◦ + bβm◦mc

0 0 0 0 δβα


·



D0

DJ

Dm◦

Dnc

Dβ


(13.4)

=



1 0 0 0 0

0 A M
I 0 0 0

0 0 −1 0 0

0 0 −1 δp
c

mc 0

0 0 0 0 δγα


︸ ︷︷ ︸

redefintion of lattice generators,
redefintion of blow-up divisors ≡
redefinition of 4d/6d gauge fields

·



1 nJ 1 0 1
2
bβm◦m◦ + nKnL

2
CKLbβ

0 δJM 0 0 nKCMKb
β

0 0 1 0 bβm◦m◦

0 0 0 δn
c

pc bβm◦pc

0 0 0 0 δβγ


︸ ︷︷ ︸

basis shift in the Mordell-Weil lattice ≡
large gauge transformation

·



D0

DJ

Dm◦

Dnc

Dβ


.

Using the results of subsection 12.1.2 we see immediately that this map factorizes
into the large gauge transformation (12.10), corresponding to a shift in the Mordell-
Weil lattice with nn = δnm◦ , and a simple redefinition of U(1) divisors. We explain
in Figure 13.1 in detail why this form is indeed to be expected from the perspective
of the Mordell-Weil lattice. We stress that also the definition of the blow-up divisors
changes if πm◦I = 1 for some index I. In this case the new zero-section ŝ0 intersects the
blow-up divisor DI in the old basis. However, the zero-section should not intersect a
blow-up node but rather the affine node which is why we have to perform the following
redefinition for πm◦I = 1

D̂affine = DI , (13.5a)

D̂I = Daffine ≡ S − aJDJ (13.5b)

with aJ the Coxeter labels and Daffine the divisor which corresponds to the affine node
of the extended Dynkin diagram. We note that the components of the tuple of blow-up
divisors in the new basis (D̂1, . . . , D̂rank g) still has to be permuted in order to get the
standard intersections in terms of the coroot intersection matrix.

Let us conclude by mentioning that using the results of section 10.2 and subsec-
tion 12.1.2 it is obvious that the freedom of the choice for the zero-section is equivalent
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s0 sm◦

smc

ŝm◦ ŝ0

ŝmc

ŝ0 = sm◦

ŝm◦ = s0

ŝmc = smc

s̃0 s̃m◦

s̃mc

s̃0 = s0 ⊕ sm◦
s̃m◦ = sm◦ ⊕ sm◦
s̃mc = smc ⊕ sm◦

ŝ0 = s̃0

ŝm◦ = s̃0 	̃ s̃m◦

ŝmc = s̃mc 	̃ s̃m◦

Figure 13.1: In the first line we depict the change of the zero-section choice from s0 to
ŝ0 := sm◦ . In the original setting the generators of the Mordell-Weil lattice are defined
by sm◦ and smc while in the new setting they are given by ŝm◦ and ŝmc . The crucial
observation is that this map factorizes in a convenient way. In particular we first shift
the whole basis of the lattice by sm◦ . These shifts were investigated in subsection 12.1.2
and were shown to correspond to integer Abelian large gauge transformations in the
theory on the circle. The second map leaves the zero-section invariant and only redefines
the generators. Since the Shioda map is a homomorphism, this corresponds just to a
simple redefinition of four- or six-dimensional U(1) gauge fields. Finally note that 	̃
indicates that the Mordell-Weil group law is defined with respect to the zero-section s̃0

while ⊕ is defined with respect to the original zero-section s0.
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to the cancelation of pure and mixed Abelian gauge anomalies in F-theory compactifi-
cations on Calabi-Yau fourfolds and threefolds.



Part IV

Unpublished Results and Ideas
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Chapter 14

More on the Arithmetic Structure
of Genus-One Fibrations

The treatment in this chapter mainly refers to the results of chapter 12 concerning
arithmetic structures on genus-one fibrations and their connection to F-theory effective
physics.

14.1 Constraints on the F-Theory Spectrum

It was pointed out in section 10.1 that there is another possibility how one might fulfill
(10.6). In fact, the spectrum could be such that some of the nm can be chosen to be
fractional. We illustrate this in the following examples:1

• SU(2)× U(1) with matter 21

Choose the windings (nI) = (nm) = (1
2
).

We can now easily verify that (10.6) is fulfilled for all states:

adjoint representation (w± = ±2, w0 = 0, q = 0)

nmqm + nIw±I = ±1 ∈ Z
nmqm + nIw0

I = 0 ∈ Z

fundamental matter (w± = ±1, q = 1)

nmqm + nIw+
I = 1 ∈ Z

nmqm + nIw−I = 0 ∈ Z
1One might include additional singlets and a Green-Schwarz mechanism in order to cancel potential

anomalies in our examples, and obtain a consistent effective theory. For the considered cases this should
always be possible.
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• U(1)2 with matter 1(1,1)

Choose the windings (nm) = (1
2
, 1

2
).

Then, (10.6) takes the form:

charged matter
(
~q = (1, 1)

)
nmqm = 1 ∈ Z

• SU(3)× U(1) with matter 31

Choose the windings (nm) = (−1
3
), (nI) = (1

3
, 2

3
).

Investigating (10.6) we obtain:

adjoint representation

One can check that nIwI ∈ Z for all weights of the adjoint representation. This
is clear since (nI) = (1

3
, 2

3
) are precisely the fractional numbers which parametrize

the special fractional large gauge transformations for a non-simply connected
gauge group SU(3)/Z3 as introduced in section 10.1 and along with torsion in
the Mordell-Weil group in subsection 12.1.3. Both gauge groups of course share
the same adjoint representation since the algebra is identical.

fundamental matter
(
w+ = (1, 0), w− = (0,−1), w0 = (−1, 1)

)
nmqm + nIw+

I = 0 ∈ Z
nmqm + nIw−I = −1 ∈ Z
nmqm + nIw0

I = 0 ∈ Z

As already mentioned in section 10.1, we conjecture that the F-theory spectrum is
always such that fractional values for nm can never lead to

nmqm + nIwI ∈ Z . (14.1)

The indication that this might be true is twofold:

• By checking the generic spectra of [127] we have verified that in all these cases
fractional values for nm are not possible.

• From (12.8) and its connection to (12.7) it is obvious that a fractional value of
nm would correspond in the Mordell-Weil group to the addition of a fraction of
a generating section. However, the Mordell-Weil generators are minimal, and it
seems hard to make sense out of the addition of fractional generators.

Indeed, there are many known compactifications in F-theory which share the same
gauge groups with our three examples. However, in the F-theory setting there seems
to be always additional matter which forbids the use of fractional nm. These enlarged
settings generically look like
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• SU(2)× U(1) with matter 21,20,11

• U(1)2 with matter 1(1,1),1(1,0),1(0,1)

• SU(3)× U(1) with matter 31,30,11

We have also mentioned in section 10.1 that there might exist precise physical rea-
sons for why the spectrum in F-theory seems to be always such that fractional n are
not allowed. Indeed, folk theorems about the consistency of quantum gravity theo-
ries constrain especially the U(1)-charges of states in the theory. They have attracted
recent attention in terms of the Weak Gravity Conjecture [190] and its extensions. Par-
ticularly interesting seems to be the (Sub)Lattice Weak Gravity Conjecture [191–194]
which might be connected to the seemingly forbidden fractional shifts in the Mordell-
Weil lattice. This could be subject to future research.

14.2 Towards a Graded Mordell-Weil Pseudo-Ring

In this section we take a first step towards combining the arithmetic structures for
rational sections and multi-sections, i.e. the genuine Mordell-Weil group and the con-
jectured extended Mordell-Weil group, into a single mathematical structure which we
call the graded Mordell-Weil pseudo-ring.

In section 12.2 we defined the extended Mordell-Weil group of multi-sections only
for fibrations which lack a rational section. This was inspired geometrically by Higgs
transitions to geometries with rational sections, and field-theoretically by investigat-
ing large gauge transformations. However, typically fibrations which do have rational
sections also admit multi-sections though their associated homology classes are not lin-
early independent from the ones of genuine sections. For instance, realizing the fiber
as the sextic P2,3,1[6] the fibration generically admits one toric rational section, one
toric two-section and one toric three-section. They correspond to the three edges of
the defining reflexive polytope. Another interesting example is given by embedding
the fiber as a generic hypersurface into dP1. It was found in [127] that this setting
has two independent rational sections, one of which is non-torically realized. Thus the
Mordell-Weil group has rank one. It is easy to verify in this example that already on
the toric level there are two two-sections and one three-section which correspond to
the remaining edges of the polytope. It seems plausible to suspect that also in such
settings there exists for each n ≤ nmax an extended Mordell-Weil group of n-sections
as defined in section 12.2. We will call the latter the n-extended Mordell-Weil group,
and we assume that n is bounded by some natural number nmax which should depend
on the precise geometrical setting one is considering. The reason why we think that
such structures could be present and also useful is twofold. First, writing down the
group law in terms of cycles for the extended Mordell-Weil group in section 12.2 can be
done without reference to the non-existence of rational sections. However, this time the
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arguments of Higgs transitions and large gauge transformations don’t seem to apply
immediately. Second, multi-sections in settings without section were shown to capture
the information about massive U(1)s. Our intuitions of type IIB setups let us sup-
pose that massive Abelian gauge symmetries should be generically present in F-theory
compactifications, whether or not the geometry admits a section. We think that this in-
formation is precisely encoded in the multi-sections of the fibration even in the presence
of genuine sections.

We are now in the position to define the graded Mordell-Weil pseudo-ring MW as
the formal direct sum of all n-extended Mordell-Weil groups MW(n)

MW :=
nmax⊕
n=1

MW(n). (14.2)

As in section 12.2 we assume for simplicity that there are now exceptional divisors
present in the geometry.

Having written down MW as a set we now define the pseudo-ring operations. We
start with the addition ’⊕’ of two elements s1, s2 ∈MW . Expanding

s1 =
nmax⊕
n=1

[s
(n)
1 ] , with [s

(n)
1 ] ∈ MW(n) , (14.3a)

s2 =
nmax⊕
n=1

[s
(n)
2 ] , with [s

(n)
2 ] ∈ MW(n) , (14.3b)

we set

s1 ⊕ s2 :=
nmax⊕
n=1

(
[s

(n)
1 ]⊕ [s

(n)
2 ]
)
. (14.4)

Note that the expression [s
(n)
1 ]⊕ [s

(n)
1 ] denotes the addition in the n-extended Mordell-

Weil group which we introduced in subsection 12.2.1. This operation on elements of the
pseudo-ring inherits the individual Abelian group structures of the n-extended Mordell-
Weil groups. The zero-element of the addition s0 is obviously given by the sum of all
zero-multi-sections [s

(n)
0 ] of the individual n-extended Mordell-Weil groups

s0 :=
nmax⊕
n=1

[s
(n)
0 ] . (14.5)

We now sketch how the ring multiplication, denoted by ’⊗’, should look like. Let
s1, s2 ∈MW with expansions (14.3), then we set

s1 ⊗ s2 :=
nmax⊕
n=2

⊕
p+q=n

(
[s

(p)
1 ]⊗ [s

(q)
2 ]
)
. (14.6)
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Note that without extending this structure there is no multiplicative identity element,
i.e. we only have a pseudo-ring, and we still have to specify how the operation [s

(p)
1 ]⊗

[s
(q)
2 ] is defined on equivalence classes of n-sections. We conjecture that

⊗ : MW(p) ×MW(q) → MW(p+q) (14.7)

is indeed well-defined and fulfills the following condition

D̂iv
(

[s
(p)
1 ]⊗ [s

(q)
2 ]
)

=


[
S

(p)
1 + S

(q)
2

]
[0]

(14.8)

with [S
(p)
1 ] and [S

(q)
2 ] the divisors classes (modulo vertical divisors) associated to [s

(p)
1 ]

and [s
(q)
2 ]. In particular, ’⊗’ should be commutative. We have also assumed that it

might happen that this product vanishes at some point in order to get a finite value for
nmax. Note that it is not clear if there actually exists a (p+ q)-section in the geometry

with divisor class [S
(p)
1 + S

(q)
2 ] or how the multiplication looks like algebraically (not in

terms of homology). One might also again suspect, similar to the discussion at the end
of subsection 12.1.2, that one has to consider some kind of branched cover or scheme of
the fibration where MW is well-defined. However we stress again that, although the
n-extended Mordell-Weil group structure was strongly motivated in settings without
rational sections, there is no evidence that it is also realized geometrically (beyond
homology level) in setups that do have rational sections. These questions along with the
physical implications of the full suggested pseudo-ring structure have to be investigated
in future research.
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Chapter 15

More on Anomalies

This chapter provides a first step towards generalizing the results of chapter 10 and
especially section 10.2.

15.1 Gravitational Anomalies

We managed to derive all gauge anomaly cancelation conditions in four and six dimen-
sions from large gauge transformations in section 10.2. In particular we derived these
constraints from demanding that after an additional circle compactification gauge trans-
formations act in a consistent way. In six dimensions we were even able to derive the
mixed gauge-gravitational anomaly equations. Thus we are still missing two kind of
anomaly equations:

• The mixed gauge-gravitational anomaly in four dimensions (9.22a)

−1

4
aαθmα =

1

12

∑
R,q

F1/2(R, q)
∑
w∈R

qm . (15.1)

• The two pure gravitational anomalies in six dimensions (9.30a), (9.30b)

4(T + 11F3/2) =
1

6

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

1− 4T + 19F3/2

)
, (15.2a)

1

4
aαaβηαβ =

1

120

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

1 + 2T− 5F3/2

)
. (15.2b)

The reason why our procedure so far misses these conditions is obvious since gravita-
tional anomalies should be probed with large local Lorentz transformations rather than
with large gauge transformations.1

1Note that it was possible to derive the mixed gauge-gravitational anomaly in six dimensions only
because of the presence of gravitational Chern-Simons terms in five dimensions. Such terms do not
exist for three-dimensional theories.
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Indeed, the form of certain one-loop Chern-Simons couplings already reveals the
structure of these anomalies, and suggests that we might be able to extract the latter
by acting with large local Lorentz transformations:

• For the mixed gauge-gravitational anomaly in four dimensions we have

Θ0m =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
qm . (15.3)

• For the two pure gravitational anomalies in six dimensions we have

k0 =
1

6

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
− 4T + 19F3/2

)
, (15.4a)

k000 =
1

120

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

(
1− 30 l2w,q

(
lw,q + 1

)2
)

+ 2T− 5F3/2

)
.

(15.4b)

To be more precise, using the notation of (10.13) we describe in Table 15.1 which
anomaly cancelation condition we expect to obtain from which Chern-Simons coupling.

Finally let us note that, although this reasoning seems to proceed in a straightfor-
ward manner, there are a lot of subtleties involved. For instance one has to keep track of
how precisely the spacetime representations of the matter fields, the Wilson line moduli
and the radius change under a local Lorentz transformation. Furthermore, comparing
the Chern-Simons terms with the anomaly equations, we are already familiar of how
the structure of the left-hand sides of (15.1) and (15.2b) can in principle be obtained
from geometry, namely via intersections of divisors Dα. In contrast it is not at all clear
how to obtain the left-hand side of (15.2a), and there might be some higher-derivative
couplings involved which have not been considered before.

In the spirit of chapter 12 it would be extremely interesting to uncover the sym-
metry structure of elliptically-fibered Calabi-Yau manifolds which corresponds to large
local Lorentz transformations in F-theory compactifications, and therefore ensures the
expected cancelation of gravitational anomalies beyond the treatment in [92,94] where
this is shown using a different argument.

15.2 Chern-Simons Terms and Anomalies Revisited

This section does not provide completely new ideas but makes some of our results in
section 10.2 more precise. We have shown that demanding that large gauge trans-
formations act consistently on Chern-Simons terms is equivalent to the cancelation of
gauge anomalies in the higher-dimensional theory. In fact, it is now even possible to
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Large Lorentz Transf. Large Lorentz Transf.

δΘ̃00
!

= 0 0 δk̃000
!

= 0 (9.30b)

δΘ̃0I
!

= 0 0 δk̃00I
!

= 0 0

δΘ̃0m
!

= 0 (9.22a) δk̃00m
!

= 0 0

δΘ̃IJ
!

= 0 0 δk̃0IJ
!

= 0 (9.30c)

δΘ̃mn
!

= 0 0 δk̃0mn
!

= 0 (9.30d)

δΘ̃Im
!

= 0 0 δk̃0Im
!

= 0 0

δk̃IJK
!

= 0 0

δk̃mnp
!

= 0 0

δk̃IJm
!

= 0 0

δk̃Imn
!

= 0 0

δk̃0
!

= 0 (9.30a)

δk̃I
!

= 0 0

δk̃m
!

= 0 0

Table 15.1: We depict which anomaly equations we expect to obtain from a consis-
tent action of large local Lorentz transformations on Chern-Simons couplings in the
respective theory on the circle.
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write down the higher-dimensional anomaly polynomial in terms of the variation of
Chern-Simons couplings (10.13) in the theory on the circle. We find using

trRF̂
k =

∑
w∈R

wI1 . . . wIk F̂
I1 . . . F̂ Ik (15.5)

and introducing the generalized index Î = (I,m) labeling gauge fields

I6 =
1

6
∂nÎ
(
δΘ̃ĴK̂

)
F̂ ÎF̂ Ĵ F̂ K̂ + . . . , (15.6a)

I8 =
1

12
∂nÎ
(
δk̃Ĵ
)
F̂ ÎF̂ ĴtrR̂2 +

2

3
∂nÎ
(
δk̃ĴK̂L̂

)
F̂ ÎF̂ Ĵ F̂ K̂F̂ L̂ + . . . , (15.6b)

where we are missing the contribution from mixed gauge-gravitational anomalies in four
dimensions and the one from pure gravitational anomalies in six dimensions indicated
by the ’dots’.

What makes the precise relations (15.6) so powerful is the fact that we now have ac-
cess to global anomalies. Note that in section 10.2 we have only shown that the anomaly
cancelation conditions can be derived from one-loop Chern-Simons terms rather than
the precise form of the anomaly polynomial. Global anomalies however do not necessar-
ily have to be canceled in the effective theory in order to obtain a consistent quantum
theory, and one is often interested in the precise form of the anomaly rather than a can-
celation condition. Using (15.6) this is now possible. Indeed, in order to compute the
anomaly polynomial of the global symmetry group one is interested in, one introduces
associated background gauge fields and evaluates the one-loop Chern-Simons terms in
the theory on the circle pushed to the Coulomb branch of the background gauge fields.

With this procedure it is for instance for some theories straightforward to compute
R-symmetry anomalies. However, we stress that there might appear complications
when the structure of the Kaluza-Klein tower is unclear. This happens for example for
interacting six-dimensional (2,0) SCFTs. Although we know that the effective theory on
the circle is a five-dimensional N = 4 supersymmetric Yang-Mills theory. The precise
dualization prescription and the charges of the Kaluza-Klein modes are still speculative.
One might indeed go the other way round and use the established conjecture for the
global anomalies [10–20] in order to understand the structure of the Kaluza-Klein tower.
For convenience we list the different six-dimensional supermultiplets along with the
spacetime representation and R-symmetry representation of their component fields in
Appendix H.
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Chapter 16

Closing Remarks and Future
Directions

In this thesis we investigated topological aspects of quantum field theory and string
theory. Furthermore a deep connection between gauge theories on the circle and the
arithmetic of genus-one fibrations was uncovered using the framework of F-theory. Of
particular importance were corrections to Chern-Simons couplings at one-loop in three
and five dimensions since these turned out to capture crucial features of the underlying
theories.

In the first part we considered supersymmetry breaking of five-dimensional N = 4
gauged supergravity. We derived essential quantities in the theory around the respective
vacuum without aiming at a classification of vacua. Special emphasis was put on N = 2
vacua of the N = 4 theories, and for the case of solely Abelian magnetic gaugings we
were even able to derive the completeN = 2 effective theory in the gravity-vector sector.
The latter includes one-loop corrections to the Chern-Simons terms, i.e. corrections to
the N = 2 prepotential. Importantly, since they are independent of the supersymmetry
breaking scale, they have to be included at any energy. We found that for a special
choice of the Abelian magnetic gaugings and the spectrum these corrections can van-
ish. The same cancelation occurs for more general N = 4 gaugings with N = 2 vacua.
Indeed, such breaking patterns naturally arise in consistent truncations of supergravity
and string theory. Therefore we derived a consistent truncation of M-theory on SU(2)-
structure manifolds to five-dimensional N = 4 gauged supergravity. The latter theory
(with different gaugings) also arises in a well-studied truncation of type IIB supergravity
on squashed Sasaki-Einstein manifolds. Both examples allow for N = 2 vacua, and we
studied them in the context of effective field theory. More precisely, although consistent
truncations originally had been developed to derive particular solutions to the higher-
dimensional theories, recently they have also been used in the literature as effective
theories arguing that quantum corrections can be safely neglected at low energies. In
principle this can be in conflict with the scale-invariant corrections we just described.
Therefore, the latter should better coincide for consistent truncations and their genuine
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effective actions in order for this procedure to make sense. We formulated necessary
conditions for this non-trivial obstruction. Surprisingly, in our two examples of consis-
tent truncations with breaking pattern N = 4→ N = 2 the scale-invariant corrections
vanish. For M-theory on SU(2)-structure manifolds this is trivial since there are simply
no charged states in the N = 2 vacuum of the consistent truncation. The latter is a
Calabi-Yau manifold of which we know the genuine effective theory. In particular, since
one-loop correction are also absent there, the consistent truncation is in this respect
consistent with the genuine effective theory. In contrast, for type IIB supergravity on
a squashed Sasaki-Einstein manifold there are charged states in the N = 2 vacuum.
Nevertheless integrating them out does not induce scale-invariant corrections because a
very non-trivial cancelation between all contributions takes place. Note that the notion
of an effective theory is not so clear here since we are in anti-de Sitter space. It would
be interesting to find out if it constitutes a general feature of consistent truncations
that scale-invariant corrections are well-behaved. Turning this argument around, one
could identify field-theoretically cancelations of scale-invariant corrections in gauged
supergravity and try to find a corresponding consistent truncation. For instance, for
purely Abelian magnetic gaugings we found a non-trivial cancelation of the gauge and
the gravitational Chern-Simons term for the special choice n = 3 and rank(ξMN) = 4.
We suspect that there is an underlying principle to be uncovered for this case.

The topological properties of Chern-Simons couplings were then used in the second
part of this thesis to investigate anomaly cancelation in higher-dimensional gauge the-
ories. More precisely, we considered general matter-coupled four- and six-dimensional
theories on a circle pushed to the Coulomb branch, and classified large gauge transfor-
mations which preserve the boundary conditions of the matter fields along the circle.
It was easy to see that there exist in principle two different approaches to evaluate the
mapping of one-loop Chern-Simons couplings under these non-trivial transformations.
The classical way is to treat these coefficients as the duals the the vector fields. The
quantum way to infer their mapping is to directly evaluate the loop-calculation with
the gauge-transformed quantities, in particular the gauge-transformed Wilson lines.
Demanding consistency of both approaches we were able to derive all four- and six-
dimensional gauge anomaly cancelation conditions. By probing one-loop corrections
to the gravitational Chern-Simons term we even obtained the six-dimensional mixed
gauge-gravitational anomaly constraints. We then applied our findings to the frame-
work of F-theory and genus-one fibrations. In particular, the fact that the F-theory
effective action is determined by matching a circle-reduced gauge-theory with M-theory
on a genus-one fibration allowed us to derive a detailed dictionary between boundary
conditions preserving large gauge transformations along the circle on the one hand
and arithmetic structures of genus-one fibrations on the other hand. Indeed, integer
Abelian large gauge transformations were identified with the free part of the Mordell-
Weil group of rational sections. For the case that the genus-one fibration does not
admit a section there can still be Abelian large gauge transformations in the associated
theory on the circle. Accordingly we conjectured the new arithmetic structure called



203

extended Mordell-Weil group, and formulated the group law in terms of homological
cycles. While a general algebraic proof of the existence of this group is still missing,
we found further evidence by investigating Higgs transitions of example geometries. In
the non-Abelian sector we were able to match so-called special fractional large gauge
transformations to the torsion subgroup of the Mordell-Weil group. Ordinary integer
non-Abelian large gauge transformations again led us to defining a novel associated
arithmetic structure on the elliptic fibration. We again wrote down the group opera-
tion in terms of homological cycles. As for the extended Mordell-Weil group there is yet
no proof of this structure beyond homology level, but we once more gathered further
evidence by considering geometric examples of Higgs transitions. For future research
it would be extremely interesting to verify this group structures on an algebraic level,
i.e. to find a general proof for geometric transitions associated to the conjectured group
operations. This would fully proof the cancelation of the corresponding anomalies. We
think that in general to achieve this one has to investigate branched covers of genus-one
fibrations in terms of schemes, and define the group structures on these more abstract
objects. In fact there seems to be a striking relation to the minimal model program in
algebraic geometry. This goes however beyond the work in this thesis. Let us mention
that in this respect it could be fruitful to extend our results to F-theory compactifica-
tions to two or eight dimensions. In the latter case one has to consider K3 manifolds
which are quite well understood, and one might even be able to prove the existence of
some of the conjectured group structures there as a first step.

In Part IV we already highlighted some directions into which one could proceed from
this. Let us shortly collect them again here. First of all, it seems that F-theory spec-
tra are always such that fractional Abelian large gauge transformations in the effective
theory are not possible. We argued that this might be due to constraints from quantum
gravity, and it is also hard to imagine a group structure on genus-one fibrations which
would realize them as a geometric symmetry. One might get some new insights by
making these points more precise. In particular there might even be a connection to
the recently investigated (Sub)Lattice Weak Gravity Conjecture. Second, we made a
first step in unifying the Mordell-Weil group of rational sections with the conjectured
extended Mordell-Weil groups of multi-sections into a single framework called graded
Mordell-Weil pseudo-ring. We think that this might be key to understanding massive
U(1)s in F-theory much better. Moreover, the quintessence of our discussion on ge-
ometric symmetries is that arithmetic structures on genus-one fibrations are mapped
to gauge theories on the circle and vice versa. This fact is very constraining since the
dictionary has to make use of homomorphisms. Note that we discussed only Calabi-Yau
compactifications of F-theory in this thesis, but enforcing that such a dictionary always
exists might give us a tool to go beyond Calabi-Yau level. In fact, although we had
known the effective theory for Calabi-Yau compactifications before we carried out our
analysis, much of the structure turned out to be directly dictated by the homomor-
phisms.

Finally, field-theoretically we proposed an idea how one could approach gravitational
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anomalies via Chern-Simons terms, but there are still a lot of subtleties which need to be
worked out. Much more settled is the application of our results to global anomalies and
in particular R-symmetries. However, in order to treat them for superconformal field
theories like the 6d (2, 0) non-Abelian tensor theories, there is always the issue that one
has to fully understand the complete Kaluza-Klein tower after circle-compactification.
Another direction to continue could be to investigate other kinds of topological terms
like Wess-Zumino terms, and find out if a similar analysis can teach us new lessons.



Part VI
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Appendix A

Spacetime Conventions and
Identities

We shortly state the conventions of differential geometry in five dimensions used in this
thesis. Curved five-dimensional spacetime indices are denoted by Greek letters µ, ν, . . . .
Antisymmetrizations of any kind are always done with weight one, i.e. include a factor
of 1/n! . We use the (−,+,+,+,+) convention for the five-dimensional metric gµν , and
we adopt the negative sign in front of the Einstein-Hilbert term. Moreover we set

κ2 = 1 . (A.1)

The Levi-Civita tensor with curved indices εµνρλσ reads

ε01234 = +e , , ε01234 = −e−1 , (A.2)

where e =
√
− det gµν .

The five-dimensional spacetime gamma matrices are denoted by γµ and satisfy

{γµ, γν} = 2gµν . (A.3)

Antisymmetrized products of gamma matrices are defined as

γµ1,...,µk := γ[µ1γµ2 . . . γµk] . (A.4)

The convention for the charge conjugation matrix C is such that

CT = −C = C−1 (A.5)

and it fulfills

CγµC
−1 = (γµ)T . (A.6)

All massless spinors in five dimensions are meant to be symplectic Majorana, that is in
the N = 4 theory they are subject to the condition

χ̄i := (χi)
†γ0 = ΩijχTj C , (A.7)
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where i, j = 1, . . . , 4 and Ωij is the symplectic form of USp(4) defined in (4.2). In the
N = 2 theory the symplectic Majorana condition reads

χ̄α := (χα)†γ0 = εαβχTβC , (A.8)

where α, β = 1, 2, εαβ is the two-dimensional epsilon tensor.



Appendix B

Derivation of the N = 2 Mass Terms
and Couplings

In this chapter we explicitly derive the masses for the spin-1/2 fermions and scalars
induced by the supergravity breaking in chapter 5. We also evaluate the charges of
the spin-1/2 fermions under the Abelian gauge field A0. Note that the Lagrangian of a
massive spin-1/2 Dirac spinor is given in (2.26a).

B.1 Fermion Masses

Let us now investigate the masses which theN = 4 gaugini acquire from supersymmetry
breaking. The relevant mass terms can be found in [46, 47]. In our notation they take
the following form

e−1Lλ,mass = i
( 1

2
√

2
Σ2ξabδ

j
i −

1

2
M j

ψ i δab

)
λ̄iaλbj

= 0 · λ̄αāλb̄α +
1

2
√

2
iΣ2ξâb̂λ̄

αâλb̂α −
1

2
iM β̇

ψ α̇ δāb̄λ̄
α̇āλb̄

β̇

+ i
( 1

2
√

2
Σ2ξâb̂δ

β̇
α̇ −

1

2
M β̇

ψ α̇ δâb̂

)
λ̄α̇âλb̂

β̇
. (B.1)

We proceed by diagonalizing these terms. In order to do so we discuss the four different
types of fields separately.

• λāα
We observe that the λāα stay massless. Thus all together we find a number of
2(n+4−2nT ) massless spin-1/2 fermions supplemented by a symplectic Majorana
condition. They constitute the fermionic part of massless vector multiplets in the
vacuum.
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• λâα
For the fermions λâα we write the mass terms using the split (5.26) as

1

2
√

2
iΣ2ξâb̂λ̄

αâλb̂α =
1

2
√

2
iΣ2

∑
ǎ

γǎεklλ̄
α[ǎk]λ[ǎl]

α

=
1√
2

Σ2
∑
ǎ

γǎλ̄
αǎ
λǎα , (B.2)

with k, l both taking values 1, 2. Here we redefined the fermions by introducing
λǎα as in (5.27a) and drop the symplectic Majorana condition such that the mass
terms become diagonal. Let us now have a look at how the corresponding kinetic
terms transform under this redefinition

−1

2

∑
ǎ

(
λ̄α[ǎ1]/∂λ [ǎ1]

α + λ̄α[ǎ2]/∂λ [ǎ2]
α

)
= −

∑
ǎ

λ̄
αǎ/∂λǎα . (B.3)

The computation of the charge under A0 proceeds as for the mass terms. The
covariant derivatives can be found in [46,47]. We find

|mλǎα
| = 1√

2
Σ2|γǎ| , sign(mλǎα

) = sign γǎ , qλǎα = γǎ . (B.4)

• λāα̇
The structure of mass terms of the fermions λāα̇ is similar to those of the mas-
sive gravitini. In particular, the diagonalization procedure of the gravitino mass
terms automatically diagonalizes the mass terms of the λāα̇. Again we move from
symplectic Majorana spinors to Dirac spinors λā using (5.27b). We find

|mλā | =
1√
2

Σ2γ , sign(mλā) = −1 , qλā = γ . (B.5)

• λâα̇
The mass terms after the split (5.26) become

i
∑
ǎ

( 1

2
√

2
Σ2γǎεklδ

β̇
α̇ −

1

2
M β̇

ψ α̇ δkl

)
λ̄α̇[ǎk]λ

[ǎl]

β̇
. (B.6)

We redefine and use Dirac spinors λǎ1 and λǎ2 given in (5.27b). The mass terms
then become∑

ǎ

[ 1√
2

Σ2γǎ(λ̄
ǎ
1λ

ǎ
1 − λ̄

ǎ
2λ

ǎ
2)− 1√

2
Σ2γ(λ̄

ǎ
1λ

ǎ
1 + λ̄

ǎ
2λ

ǎ
2)
]
. (B.7)

The kinetic terms are unaffected. We conclude that

|mλǎ1
| = 1√

2
Σ2|γ − γǎ| , |mλǎ2

| = 1√
2

Σ2|γ + γǎ| , (B.8a)

sign(mλǎ1
) = sign(γǎ − γ) , sign(mλǎ2

) = sign(−γǎ − γ) , (B.8b)

qλǎ1 = γǎ − γ , qλǎ2 = −γǎ − γ . (B.8c)
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B.2 Scalar Masses

Lastly we investigate the scalar degrees of freedom in the vacuum (except of Σ). In
order to derive the scalar masses we insert the expansion (4.38b) into the scalar potential
written down in (4.18)

e−1Lpot = − 1

16
ξMNξPQΣ4

[
〈V〉 exp

(∑
m,a

φma[tma]
)

exp
(∑
n,b

φnb[tnb]
)T 〈V〉T]

MP
×[

〈V〉 exp
(∑
p,c

φpc[tpc]
)

exp
(∑
q,d

φqd[tqd]
)T 〈V〉T]

NQ
. (B.9)

To read off the mass terms of the scalars, we focus on the terms quadratic in φma

e−1Lφ,mass = − 1

16
Σ4φmaφnb(8ξmnξab + 4δmnξacξ

c
b + 4δabξmpξ

p
n ) . (B.10)

According to the index split (5.23) the scalar fields arrange in four different groups:

• φm̄ā

The mass terms for these fields vanish:

e−1Lφ,mass = 0 . (B.11)

Thus we find n+ 4− 2nT massless real scalar fields φm̄ā.

• φm̂ā

The mass terms of these modes receive one contribution from the gauging ξmn

e−1Lφ,mass = −1

4
γ2Σ4φm̂āφm̂ā . (B.12)

We can now complexify the scalars as in (5.25a) into the 2(n+ 4− 2nT ) massive
complex scalars φαā with mass1

mφαā =
1√
2

Σ2γ . (B.13)

• φm̄â

There is now solely a mass contribution from the gaugings ξab

e−1Lφ,mass = −1

4
Σ4
∑
â

γ2
ǎφ

m̄âφm̄â . (B.14)

Using the definition (5.25a) one identifies nT − 2 massive complex scalar fields
φm̄ǎ with mass

mφm̄ǎ =
1√
2

Σ2|γǎ| . (B.15)

1We stress that the kinetic terms for the scalars here and in the following are always automatically
canonically normalized, even after the field redefinitions carried out in this section. This one can check
explicitly by inserting the expansion (4.38b) into the N = 4 scalar kinetic terms.
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• φm̂â

We now face mass contributions both from ξmn and ξab

e−1Lφ,mass = − 1

16
Σ4
∑
ǎ,α

(8γγǎεα̇β̇εkl + 4γ2δα̇β̇δkl + 4γ2
ǎδα̇β̇δkl)φ

[αα̇][ǎk]φ[αβ̇][ǎl] .

(B.16)

One can check that the mass terms are diagonalized by the redefinitions (5.25b)
and (5.25c) to 4nT − 8 complex scalars φαǎ1 and φαǎ2 with masses

mφαǎ1
=

1√
2

Σ2|γ − γǎ| , mφαǎ2
=

1√
2

Σ2|γ + γǎ| . (B.17)



Appendix C

The Coset Representatives and
Contracted Embedding Tensors for
SU(2)-Structure Manifolds

C.1 The Coset Representatives V
From the expressions for MMN in (6.37) we can extract representatives V = (VMm,VMa)
of the coset space

SO(5, ñ− 1)

SO(5)× SO(ñ− 1)
, (C.1)

where m = 1, . . . , 5 and a = 6, . . . , 5+n denote SO(5) and SO(n) indices.1 These coset
representatives are related to the scalar metric via

(MMN) = VVT = VmVm + VaVa (C.2)

and have to fulfill
(ηMN) = −VmVm + VaVa . (C.3)

Before we can determine V , it is necessary to diagonalize gij and HIJ . First we observe
that gij can be expressed as

gij = e−ρ2kki k
l
jδkl , (C.4)

where k = eρ2/2(Im τ)−1/2(1, τ).

In (6.11) we have introduced HIJ via ∗ωI = −HI
Jω

J ∧ vol
(0)
2 , and as described

in [90] it only depends on ζaI
HIJ = 2ζaI ζ

a
J + ηIJ . (C.5)

From (6.2) and (6.10) one sees that

ζaI η
IJζbJ = −δab . (C.6)

1Note that the indices n, defined around (4.6), and ñ, defined around (6.6), are related by n = ñ−1.
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Therefore ζaIH
I
J = −ζaJ , which means that the three ζaI are eigenvectors of HI

J with
eigenvalue −1. If we now introduce an orthonormal basis ξαI (α = 1, . . . , ñ − 3) of the
subspace orthogonal to all ζaI (i.e. ξαI η

IJξβJ = δαβ and ζaI η
IJξβJ = 0), we can write

HIJ = ζaI ζ
a
J + ξαI ξ

α
J (C.7)

since we can deduce from (C.5) that the ξαI are eigenvectors of HI
J with eigenvalue +1.

Moreover it follows that ξαI ξ
α
J = ζaI ζ

a
J + ηIJ and so

ηIJ = −ζaI ζaJ + ξαI ξ
α
J . (C.8)

We can shorten the notation by defining

EII = (ζaI , ξ
α
J ) , I = (a, α) , (C.9)

which allows us to write

HIJ = EII E
J
J δIJ and ηIJ = EII E

J
J ηIJ , (C.10)

with ηIJ = diag(−1,−1,−1; +1, . . . ,+1).
After this preparation we are able to write down V ,

Vij = eρ4/2kji ,

Vī = e−ρ4/2δj̄(k−1)kj (εkiγ + 1
2
ckIc

I
i ) ,

ViI = −EIIcIi ,
Vı̄ ̄ = e−ρ4/2δj̄δīı(k

−1)ij ,

VI ı̄ = e−ρ4/2δ īı(k−1)jicjI ,

VII = EI
I ,

(C.11)

such that
MMN = (VVT )MN = VMiVNi + VMı̄VN ı̄ + VMIVNI , (C.12)

and
ηMN = 2δīıVMiVN ı̄ + ηIJVMIVNJ . (C.13)

In the end it is necessary to split (C.11) into Vm and Va, which corresponds to
bringing (C.13) into diagonal form. The result reads

VMm =


1√
2

(
−VM 1 + VM 1̄

)
1√
2

(
−VM 2 + VM 2̄

)
VMI=1,2,3

 , VMa =


1√
2

(
VM 1 + VM 1̄

)
1√
2

(
VM 2 + VM 2̄

)
VMI6=1,2,3

 . (C.14)

Using (C.12) and (C.13) one can easily check that these combinations fulfill (C.2) and
(C.3).
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C.2 The Contracted Embedding Tensors for Calabi-

Yau Manifolds with χ = 0

Using the results from (C.11) we can compute the contractions of the embedding tensors
(6.38) with the coset representatives as introduced in (4.22). Hereby we restrict to the
special case of Calabi-Yau manifolds with vanishing Euler number and use the relevant
relations from (7.3) that follow to simplify the resulting expressions. We also restrict
to the case without four-form flux and set n = nI = 0.

For (ξmn) we find that it takes the general form

(ξmn) =


02×2

− ξ1n −
− ξ2n −

| |
03×3ξm1 ξm2

| |


, (C.15)

where its non-vanishing components are given by

ξ1,m=3,4,5 = −ξm1 =
1√
2
e−

1
2

(ρ2+ρ4)
√

Im τ t2Iζa=1,2,3
I ,

ξ2,m=3,4,5 = −ξm2 = − 1√
2
e−

1
2

(ρ2+ρ4) 1√
Im τ

(
t1I + Re τ t2I

)
ζa=1,2,3
I .

(C.16)

Similarly we have

ξab =


02×2

− ξ6b −
− ξ7b −

| |
0(n−2)×(n−2)ξa6 ξa7

| |


, (C.17)

with

ξ6,a=8,...,5+n = −ξa6 =
1√
2
e−

1
2

(ρ2+ρ4)
√

Im τ t2Iξα=1,...,ñ−3
I ,

ξ7,a=8,...,5+n = −ξa7 = − 1√
2
e−

1
2

(ρ2+ρ4) 1√
Im τ

(
t1I + Re τ t2I

)
ξα=1,...,ñ−3
I ,

(C.18)
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and finally for the mixed-index part

ξma =


02×2

− ξ1a −
− ξ2a −

| |
03×(n−2)ξm6 ξm7

| |


, (C.19)

where its entries are again given by (C.16) and (C.18).

Following the notation introduced in (C.9) we obtain for the non-vanishing compo-
nents of the contracted fMNP

fm=1,IJ = fa=6,IJ =− 1√
2
e−

1
2

(ρ2+ρ4)
√

Im τ
(
T J1Kη

KI + 1
2
t2ηIJ

)
EII E

J
J ,

fm=2,IJ = fa=7,IJ =
1√
2
e−

1
2

(ρ2+ρ4) 1√
Im τ

((
T J2I − Re τ T J1I

)
ηIK

+ 1
2

(
t1 + Re τ t2

)
ηIJ
)
EIKE

J
J .

(C.20)

For completeness we also give the contracted versions of ξM although they vanish for
the special case of the Enriques Calabi-Yau,

ξm=1 = ξa=6 = − 1√
2
e−

1
2

(ρ2+ρ4)
√

Im τ t2 ,

ξm=2 = ξa=7 =
1√
2
e−

1
2

(ρ2+ρ4) 1√
Im τ

(
t1 + Re τ t2

)
.

(C.21)

It is important to notice that these expression are still subject to a set of constraints
since there are redundancies in the scalar sector. One has to use the relations in [50]
in order to extract the proper unconstrained contracted embedding tensors. For the
Enriques Calabi-Yau we find2

f1,6 3,8 5,10 = f2,7 4,9 5,10 =
1

2
Σ3 e−

1
2

(ρ2+ρ4) Im τ

ξ1,6 3,8 = ξ2,7 4,9 =
1√
2
e−

1
2

(ρ2+ρ4) Im τ , (C.22)

where there are two options for each index position. We explicitly inserted the quantities

2The geometrical analysis of the Enriques Calabi-Yau was also carried out in [50].
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tiI , T
I
iJ for the Enriques Calabi-Yau [50]

(tiI) =

(
0 1 0 0 −1 0 01×8

−1 0 0 1 0 0 01×8

)
,

(T I1J) =



0 0 1 0 0 −1 01×8

0 0 0 0 0 0 01×8

−1 0 0 1 0 0 01×8

0 0 1 0 0 −1 01×8

0 0 0 0 0 0 01×8

−1 0 0 1 0 0 01×8

08×1 08×1 08×1 08×1 08×1 08×1 08×8


,

(T I2J) =



0 0 0 0 0 0 01×8

0 0 1 0 0 −1 01×8

0 −1 0 0 1 0 01×8

0 0 0 0 0 0 01×8

0 0 1 0 0 −1 01×8

0 −1 0 0 1 0 01×8

08×1 08×1 08×1 08×1 08×1 08×1 08×8


. (C.23)

Note that the general elimination of redundancies is far from being straightforward.
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Appendix D

Comparison with Type IIA
Supergravity on SU(2)-Structure
Manifolds

Another way of reproducing the results from chapter 6 is to take the four-dimensional
theory obtained in [50] by reducing type IIA string theory on SU(2)-structure manifolds,
and relate it to the five-dimensional case. Since type IIA string theory can be obtained
from M-theory by compactifying it on a circle, our results should be connected to the
four-dimensional theory in the same way. Thus it is possible to take the dictionary
from [47] where exactly the relevant compactification of N = 4, d = 5 supergravity is
described, and uplift the existing results to five dimensions.

It has been worked out in [49] how to group the vectors in four dimensions into
SO(6, ñ) representations

AM̃+ =
(
Gi, B̃ ı̄, A, C̃12, C

J
)
,

AM̃− =
(
Bi, G̃ı̄, C12, Ã, C̃

J
)
,

(D.1)

where AM̃− is the magnetic dual of AM̃+.1 The SO(6, ñ) metric is given by

ηM̃Ñ =



0 δī 0 0 0

δı̄j 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 ηIJ


. (D.2)

1 We use indices M̃, Ñ , · · · = 1, . . . , 6+ ñ for the SO(6, ñ) to distinguish them from the SO(5, ñ−1)
indices M,N, . . .. Notice also that the d = 4 theory contains one additional vector multiplet compared
to d = 5, so SO(5, ñ− 1) in five dimensions corresponds indeed to SO(6, ñ) in four dimensions.
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It is now necessary to determine how to break AM̃+ and AM̃− into SO(5, ñ−1) represen-
tations. Therefore we will write M̃ = {M,⊕,	}. Obviously A does not appear in the
five-dimensional case. When tracing back its origin from the reduction of M-theory to
IIA supergravity, it is clear that it is the Kaluza-Klein vector coming from reducing the
five-dimensional metric to four dimensions. Thus according to [47] we have to identify
it with A	+ and its magnetic dual with A⊕−. This makes it furthermore possible to fix
A⊕+ = C̃12 and A	− = C12. Lastly Bi and B̃ ı̄ do not appear in the five-dimensional
theory as well, but since they originate from Ci and C̃ ı̄, they can simply be replaced
by the latter. Using this information, the correct identification of the five-dimensional
vectors with AM and A0 is

AM = AM+ =
(
Gi, C̃ ı̄, CJ

)
,

A0 = A	− = C12 ,
(D.3)

which reproduces our original results. Furthermore we can obtain (6.35) by crossing
out the fifth and sixth row and line from (D.2).

Note that we can also get Σ and the scalar metric MMN from the four-dimensional
results in [49]. Namely (6.37) can be obtained from the four-dimensional MM̃Ñ by
replacing β with γ and removing all scalars that do not exist in the five-dimensional
theory. Σ is related to the M66 component in four dimensions whereby here the ad-
ditional factor of Im τ and the different Weyl rescalings of the metric in four and five
dimensions have to be taken into account.

Furthermore in [47] formulae are provided for the reduction of the embedding tensors
which together with the expressions from [50] yield

ξi = 2f+i⊕	 = −2f+i56 = −εijtj ,
ξiI = f−	iI = f−5IJ = εijt

j
I ,

fijı̄ = f+ijı̄ = δı̄[iεj]kt
k ,

fiIJ = f+iIJ = −TKiI ηKJ − 1
2
εijt

jηIJ .

(D.4)

For ξi one can equally well use the relation

ξi = ξ+i = −εijtj . (D.5)



Appendix E

Lie Theory

E.1 Lie Theory Conventions

In this appendix we summarize our conventions for the Lie algebra theory used in this
thesis.

We consider a simple Lie algebra g associated to the Lie group G. The definition of
a (preliminary) basis of Cartan generators {T̃I} with

trf (T̃I T̃J) = δIJ , (E.1)

will allow us to fix the normalization of the root lattice. The trace trf is taken in the
fundamental representation. We denote the simple roots by αI , I = 1, . . . , rank g, the
simple coroots are denoted by α∨I := 2αI

〈αI ,αI〉
.

In order to match with the geometric setup it is important to introduce a coroot-
basis {TI} for the Cartan-subalgebra. It is defined by

TI :=
2αJI T̃J
〈αI ,αI〉

(E.2)

with αJI the components of the simple roots. We furthermore define the (normalized)
coroot intersection matrix CIJ as

CIJ = λ−1
g 〈α∨I ,α∨J 〉 , (E.3)

with

2λ−1
g = 〈αmax,αmax〉 , (E.4)

where αmax is the root of maximal length. The normalization of the Cartan generators
TI (in the coroot basis) is then given by

trf (TITJ) = λg CIJ . (E.5)
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Furthermore for some weight w the Dynkin labels are defined as

wI := 〈α∨I , w〉 . (E.6)

The Coxeter labels aI denote the components of the highest root θ in the expansion

θ =:
∑
I

aIαI . (E.7)

Finally, in Table E.1 we display the numbering of the nodes in the Dynkin diagrams,
the Coxeter labels and the definition of the fundamental representations of all simple
Lie algebras as well as the values for the normalization factors λg in our conventions.

E.2 Trace Identities

In the following we show that the factors appearing in trace reductions of highest weight
representations of simple Lie algebras can be related to certain sums over the weights
in that representation. This will allow us to relate one-loop Chern-Simons terms to
non-Abelian anomaly cancelation conditions since sums over weights are evaluated in
the former while factors of trace reductions appear in the latter. It also gives a general
tool to evaluate trace factors in a straightforward way.

E.2.1 Quadratic Trace Identities

We start with the evaluation of the quadratic trace identity, i.e. we relate the quantity
AR defined by

trRF̂
2 = AR trf F̂

2 (E.8)

to a sum over weights. This was done in [94], and in contrast to the cubic and quartic
trace identities the result takes a very simple form∑

w∈R

wIwJ = ARλgCIJ . (E.9)

This equation holds for all highest weight representations of any simple Lie algebra.

E.2.2 Cubic Trace Identities

We now show that the conditions (9.22b) and (9.30f)∑
R,q

F1/2(R, q)
∑
w∈R

wIwJwK = 0 , (E.10a)∑
R,q

F1/2(R, q)
∑
w∈R

qmwIwJwK = 0 , (E.10b)
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Type Dynkin diagram Coxeter labels Fund. rep. λg

An 1 2 3 n-1 n
(1, 1, 1, . . . , 1, 1) (1, 0, 0, . . . , 0, 0) 1

Bn 1 2 3 n-1 n
(1, 2, 2, . . . , 2, 2) (1, 0, 0, . . . , 0, 0) 2

Cn 1 2 3 n-1 n
(2, 2, 2, . . . , 2, 1) (1, 0, 0, . . . , 0, 0) 1

Dn
1 2 3 n-2

n-1

n

(1, 2, 2, . . . , 2, 1, 1) (1, 0, 0, . . . , 0, 0, 0) 2

E6

1 3 4 5 6

2

(1, 2, 2, 3, 2, 1) (0, 0, 0, 0, 0, 1) 6

E7

1 3 4 5 6 7

2

(2, 2, 3, 4, 3, 2, 1) (0, 0, 0, 0, 0, 0, 1) 12

E8

1 3 4 5 6 7 8

2

(2, 3, 4, 6, 5, 4, 3, 2) (0, 0, 0, 0, 0, 0, 0, 1) 60

F4 1 2 3 4
(2, 3, 4, 2) (0, 0, 0, 1) 6

G2 1 2
(3, 2) (1, 0) 2

Table E.1: We display our conventions for the simple Lie algebras.
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are, depending on the choice of indices, either trivially fulfilled (as a group theoretical
identity) or equivalent to the four- and six-dimensional anomaly conditions (9.20b) and
(9.29g) ∑

R,q

F1/2(R, q)ER = 0 , (E.11a)∑
R,q

F1/2(R, q) qmER = 0 , (E.11b)

where ER appears in the trace reduction

trRF̂
3 = ER trf F̂

3 . (E.12)

Expanding the traces we can write (E.12) as

F̂ IF̂ J F̂K
∑
w∈R

wIwJwK = F̂ IF̂ J F̂K ER
∑
wf

wfIw
f
Jw

f
K , (E.13)

where F̂ = F̂ ITI and we sum over all weights, in particular wf denote the weights of
the fundamental representation. Considering this equation as a generating function we
find ∑

w∈R

wIwJwK = ER
∑
wf

wfIw
f
Jw

f
K . (E.14)

The key point is now to try to generally evaluate the sum over the fundamental weights
on the right hand side. This procedure indeed will allow us to relate the factor ER to a
certain sum over the weights in the representation R which appears in the calculation
of one-loop Chern-Simons terms. In the following we carry this out for all simple Lie
algebras.

A1, Bn≥3, Cn≥2, Dn≥4, E6, E7, E8, F4, G2

For these algebras there exists no cubic Casimir operator which is why non-Abelian
anomalies are always trivially absent and one therefore defines ER = 0. Via (E.14) the
conditions from the one-loop Chern-Simons matchings (E.10) are then equivalent to the
anomaly cancelation conditions (E.11).1

1Note also that the condition
∑
wf w

f
Iw

f
Jw

f
K = 0 ∀ I, J,K precisely means that there is no cubic

Casimir and one then also has by definition ER = 0.
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An6=1

For An 6=1 there exists a cubic Casimir and we start by explicitly evaluating the traces
over the fundamental weights for different index choices.

(a) I = J = K

We calculate ∑
wf

(wfI )3 = 0 (E.15)

such that we can conclude using (E.14)∑
w∈R

(wI)
3 = 0 . (E.16)

The corresponding Chern-Simons matchings (E.10) are therefore trivial
and impose no restrictions on the spectrum.

(b) I = K 6= J

Now we evaluate ∑
wf

(wfI )2wfJ = (I − J) CIJ . (E.17)

With (E.14) the Chern-Simons matchings (E.10) in this case become∑
R,q

F1/2(R, q)ER (I − J) CIJ = 0 , (E.18a)∑
R,q

F1/2(R, q) qmER (I − J) CIJ = 0 , (E.18b)

which are equivalent to the anomaly conditions (E.11).

(c) I 6= J 6= K

Finally it turns out that ∑
wf

wfIw
f
Jw

f
K = 0 , (E.19)

which is why the Chern-Simons matchings are again trivial like in the
case I = J = K.
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To put it in a nutshell we have shown that the Chern-Simons matchings (E.10) are
completely equivalent to the anomaly cancelation conditions (E.11) for all simple Lie
algebras.

We stress that here and in the following writing down the kind of expansions trRF̂
3 =

F̂ IF̂ J F̂K
∑

w∈R wIwJwK would already suffice in order to show that the consistent
action of large gauge transformations on Chern-Simons couplings is equivalent to the
cancelation of anomalies. This is easy to see since trRF̂

3 appears in the anomaly
polynomial and

∑
w∈R wIwJwK in the variation of Chern-Simons terms. However, as

usually these conditions are written down by using the Casimir ER and all traces are
transferred to the fundamental representation, we take a little more effort and relate
Casimir operators to sums over weights. This procedure also yields convenient formulae
for the latter which are quite useful.

E.2.3 Quartic Trace Identities

Let us perform the same steps as in the last subsection now for quartic traces. More
precisely we show that the condition (9.30e)∑

R,q

F1/2(R, q)
∑
w∈R

wIwJwKwL = −3bαbβηαβC(IJCKL) (E.20)

is equivalent to the six-dimensional pure non-Abelian gauge anomalies (9.29e) and
(9.29f) ∑

R,q

F1/2(R, q)BR = 0 , (E.21a)

∑
R,q

F1/2(R, q)CR = −3
bα

λg

bβ

λg
ηαβ , (E.21b)

where the constants BR, CR are defined as

trRF̂
4 = BR trf F̂

4 + CR (trf F̂
2)2 . (E.22)

Expanding the traces on both sides of (E.22) and taking derivatives with respect to F̂ I

we obtain in analogy to (E.14)∑
w∈R

wIwJwKwL

= BR

∑
wf

wfIw
f
Jw

f
Kw

f
L +

CR
3

[(∑
wf

wfIw
f
J

)(∑
w′f

w
′f
Kw

′f
L

)
+
(∑

wf

wfIw
f
K

)(∑
w′f

w
′f
J w

′f
L

)
+
(∑

wf

wfIw
f
L

)(∑
w′f

w
′f
J w

′f
K

)]
. (E.23)
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Like in the preceding subsection we now explicitly evaluate the sums over the fun-
damental weights in order to rewrite (E.23). For the different simple Lie algebras and
all possible choices of indices (E.23) then becomes:

An , n ≥ 1

(a) I = J = K = L∑
w∈R

(wI)
4 = BR CII λg + CR C2

II λ
2
g , (E.24)

(b) I = K = L, I 6= J∑
w∈R

(wI)
3wJ = BR CIJ λg + CR CII CIJ λ2

g , (E.25)

(c) I = L, I 6= J 6= K∑
w∈R

(wI)
2wJwK =

1

3
CR
(
2 CIJ CIK + CII CJK

)
λ2
g , (E.26)

(d) I 6= J 6= K 6= L∑
w∈R

wIwJwKwL = CR C(IJ CKL) λ
2
g . (E.27)

We can now insert these equations into the Chern-Simons matching (E.20) and find
two linearly independent equations∑

R,q

F1/2(R, q)

(
1

2
BR + CR

)
= −3

bα

λg

bβ

λg
ηαβ , (E.28)

∑
R,q

F1/2(R, q) CR = −3
bα

λg

bβ

λg
ηαβ . (E.29)

These equations are in fact equivalent to the gauge anomaly conditions (E.21).

Bn , n ≥ 3
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(a) I = J = K = L∑
w∈R

(wI)
4 =

1

4
BR C2

In CII λg + CR C2
II λ

2
g , (E.30)

(b) I = K = L, I 6= J∑
w∈R

(wI)
3wJ =

1

4
BR C2

In CIJ λg + CR CII CIJ λ2
g , (E.31)

(c) I = L, I 6= J 6= K∑
w∈R

(wI)
2wJwK =

1

3
CR
(
2 CIJ CIK + CII CJK

)
λ2
g , (E.32)

(d) I 6= J 6= K 6= L∑
w∈R

wIwJwKwL = CR C(IJ CKL) λ
2
g . (E.33)

Insertion into (E.20) yields∑
R,q

F1/2(R, q)

(
1

4
BR + CR

)
= −3

bα

λg

bβ

λg
ηαβ , (E.34)

∑
R,q

F1/2(R, q) CR = −3
bα

λg

bβ

λg
ηαβ , (E.35)

which is equivalent to (E.21).

Cn , n ≥ 2

(a) I = J = K = L∑
w∈R

(wI)
4 = BR CII λg + CR C2

II λ
2
g , (E.36)

(b) I = K = L, I 6= J∑
w∈R

(wI)
3wJ = BR CIJ λg + CR CII CIJ λ2

g , (E.37)
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(c) I = L, I 6= J 6= K∑
w∈R

(wI)
2wJwK =

1

3
CR
(
2 CIJ CIK + CII CJK

)
λ2
g , (E.38)

(d) I 6= J 6= K 6= L∑
w∈R

wIwJwKwL = CR C(IJ CKL) λ
2
g , (E.39)

which can be inserted into (E.20)∑
R,q

F1/2(R, q)

(
1

4
BR + CR

)
= −3

bα

λg

bβ

λg
ηαβ , (E.40)

∑
R,q

F1/2(R, q) CR = −3
bα

λg

bβ

λg
ηαβ . (E.41)

These equations are equivalent to the anomaly conditions (E.21).

Dn , n ≥ 4

(a) I = J = K = L∑
w∈R

(wI)
4 = BR CII λg + CR C2

II λ
2
g , (E.42)

(b) I = K = L, I 6= J∑
w∈R

(wI)
3wJ = BR CIJ λg + CR CII CIJ λ2

g , (E.43)

(c) I = L, I 6= J 6= K∑
w∈R

(wI)
2wJwK = αIJK BR +

1

3
CR
(
2 CIJ CIK + CII CJK

)
λ2
g , (E.44)

(d) I 6= J 6= K 6= L∑
w∈R

wIwJwKwL = CR C(IJ CKL) λ
2
g , (E.45)
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with the definition

αIJK := 4
(
δI,n−2 δ(J,n δK),n−1 − δI,n−1 δ(J,n δK),n−2 − δI,n δ(J,n−1 δK),n−2

)
(E.46)

Inserting into (E.20) we obtain∑
R,q

F1/2(R, q)

(
1

4
BR + CR

)
= −3

bα

λg

bβ

λg
ηαβ , (E.47)

∑
R,q

F1/2(R, q) CR = −3
bα

λg

bβ

λg
ηαβ , (E.48)

which is equivalent to the anomaly conditions (E.21).

E6, E7, E8, F4, G2

For these algebras there is no fourth-order Casimir, therefore by definition BR = 0 for
all representations. We find by explicit calculation

(a) I = J = K = L ∑
w∈R

(wI)
4 = CR C2

II λ
2
g (E.49)

(b) I = K = L, I 6= J∑
w∈R

(wI)
3wJ = CR CII CIJ λ2

g (E.50)

(c) I = L, I 6= J 6= K∑
w∈R

(wI)
2wJwK =

1

3
CR
(
2 CIJ CIK + CII CJK

)
λ2
g (E.51)

(d) I 6= J 6= K 6= L∑
w∈R

wIwJwKwL = CR C(IJ CKL) λ
2
g (E.52)

Plugging this in into the Chern-Simons matching (E.20) we get∑
R,q

F1/2(R, q) CR = −3
bα

λg

bβ

λg
ηαβ , (E.53)
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which is again equivalent to the cancelation of anomalies since the first equation in
(E.21) is trivial due to the absence of a fourth-order Casimir.

Thus we have shown that the matching condition from one-loop Chern-Simons terms
(E.20) is fully equivalent to the cancelation of non-Abelian gauge anomalies (E.21) for
all simple Lie algebras.
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Appendix F

Identities for Circle-Reduced
Theories

F.1 One-Loop Chern-Simons Terms

In this section we derive the special form of one-loop corrections to the Chern-Simons
terms in three- and five-dimensional Abelian gauge theories when the latter arise from a
circle compactification of four- and six-dimensional theories, respectively. We stress that
generic VEVs for the Wilson line scalars are assumed. The following discussions and
formulae do not hold e.g. for integer Wilson line backgrounds. This setup is described
in chapter 9 and we will use the notation which is introduced there. Before we go
into the details let us in general introduce zeta function regularization which will be
exploited in our calculations.

F.1.1 Zeta Function Regularization

Since we are analyzing circle-compactified theories in this thesis, the full contributions
to the one-loop Chern-Simons terms are generically infinite sums over Kaluza-Klein
modes, which need to be regularized. In the following calculations four different types
of infinite sums do appear

+∞∑
n=−∞

sign(x+ n) ,
+∞∑

n=−∞

n sign(x+ n) , (F.1)

+∞∑
n=−∞

n2 sign(x+ n) ,
+∞∑

n=−∞

n3 sign(x+ n) ,

with some generic constant x which is to be specified but is not integer. Note that the
zeta function is defined as

ζ(s) =
∞∑
n=1

n−s , Re(s) > 1 . (F.2)
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Analytic continuation of this expression yields in particular

ζ(−1) = − 1

12
, ζ(−3) =

1

120
, (F.3)

such that we can use the following regularization scheme

∞∑
n=1

n 7→ ζ(−1) = − 1

12
,

∞∑
n=1

n3 7→ ζ(−3) =
1

120
. (F.4)

The sums in (F.1) then become

+∞∑
n=−∞

sign(x+ n) = 2
(
l +

1

2

)
sign(x) , (F.5)

+∞∑
n=−∞

n sign(x+ n) = −1

6
− l
(
l + 1

)
, (F.6)

+∞∑
n=−∞

n2 sign(x+ n) =
2

3
l
(
l + 1

)(
l +

1

2

)
sign(x) , (F.7)

+∞∑
n=−∞

n3 sign(x+ n) =
1

60
− 1

2
l2
(
l + 1

)2
, (F.8)

with the definition l :=
⌊
|x|
⌋
, where we make use of the floor function b·c.

F.1.2 Three Dimensions

We are now in a position to evaluate the one-loop Chern-Simons terms of a four-
dimensional gauge theory on a circle which is pushed to the Coulomb branch (generic
VEVs). Recall from section 2.2 that the general correction from a massive charged
spin-1/2 Dirac fermion reads

Θloop
ΛΣ =

1

2
qΛqΣ sign(m) , (F.9)

and in Table 9.1 we have already listed the spectrum of massive modes. We depict it
here once more for convenience

4d 3d

Field KK-tower Mass
(A0, AI , Am)

Charge

ψ̂
1/2

(w, q) ψ
1/2
(n)(w, q) mw,q

CB + n
〈r〉 (−n,wI , qm)
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With the definition

lw,q :=

⌊∣∣∣∣mw,q
CB

mKK

∣∣∣∣
⌋

(F.10)

the one-loop corrections now are evaluated by using zeta function regularization [94,95]

Θ00 =
1

3

∑
R,q

F1/2(R, q)
∑
w∈R

lw,q
(
lw,q + 1

) (
lw,q +

1

2

)
sign

(
mw,q

CB

)
, (F.11a)

Θ0I =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
wI

=
1

2

∑
R,q

F1/2(R, q)
∑
w∈R

lw,q
(
lw,q + 1

)
wI , (F.11b)

Θ0m =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
qm , (F.11c)

ΘIJ =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJ sign

(
mw,q

CB

)
, (F.11d)

Θmn =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qmqn sign

(
mw,q

CB

)
(F.11e)

ΘIm =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIqm sign

(
mw,q

CB

)
, (F.11f)

where the sums are over all representations R of the non-Abelian gauge group and the
U(1) charges q, as well as all weights w of a given representation R. In (F.11b) we used
the relation ∑

w∈R

wI = 0 , (F.12)

which holds for all highest weight representations R and is proven in [94].

Finally, as an application, note that for deriving the effective action of F-theory
compactifications on Calabi-Yau fourfolds one has to consider a circle-reduced four-
dimensional N = 1 supergravity theory. Since the spin-1/2 fermions in these settings
are provided by chiral multiplets, we find

F1/2(R, q) = C(R, q) , (F.13)

where C(R, q) is defined as the number of chiral multiplets transforming in the repre-
sentation R and with U(1) charges q.
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F.1.3 Five Dimensions

Let us now turn to circle-compactified six-dimensional theories on the Coulomb branch
(generic VEVs). Recall the general form of the one-loop correction to the Chern-Simons
terms in five dimensions as already introduced in section 2.2

kloop
ΛΣΘ = cAFF qΛqΣqΘ sign(m) , (F.14)

kloop
Λ = cARR qΛ sign(m) , (F.15)

with cAFF , cARR given by

Spin-1/2 fermion Self-dual tensor Spin-3/2 fermion

cAFF
1
2

−2 5
2

cARR −1 −8 19

We also display once more the spectrum of massive modes from Table 9.2

6d 5d

Field su(2)× su(2) KK-tower su(2)× su(2) Mass
(A0, AI , Am)

Charge

ψ̂
1/2

(w, q) (1
2
, 0), (0, 1

2
) ψ

1/2
(n)(w, q) (1

2
, 0), (0, 1

2
) mw,q

CB + n
〈r〉 (−n,wI , qm)

B̂α (1, 0), (0, 1) Bα
(n>0) (1, 0), (0, 1) n

〈r〉 (−n, 0, 0)

ψ̂
3/2

µ (1, 1
2
), (1

2
, 1) ψ

3/2
µ (n) (1, 1

2
), (1

2
, 1) n

〈r〉 (−n, 0, 0)

As before we define

lw,q :=

⌊∣∣∣∣mw,q
CB

mKK

∣∣∣∣
⌋

(F.16)

and use zeta function regularization in order to obtain [94]

k000 =
1

120

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

(
1− 30 l2w,q

(
lw,q + 1

)2
)

+ 2T− 5F3/2

)
, (F.17a)

k00I =
1

3

∑
R,q

F1/2(R, q)
∑
w∈R

lw,q
(
lw,q + 1

) (
lw,q +

1

2

)
wI sign

(
mw,q

CB

)
, (F.17b)

k00m =
1

3

∑
R,q

F1/2(R, q)
∑
w∈R

lw,q
(
lw,q + 1

) (
lw,q +

1

2

)
qm sign

(
mw,q

CB

)
, (F.17c)

k0IJ =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
wIwJ , (F.17d)



F.1. ONE-LOOP CHERN-SIMONS TERMS 237

k0mn =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
qmqn , (F.17e)

k0Im =
1

12

∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
wIqm

=
1

2

∑
R,q

F1/2(R, q)
∑
w∈R

lw,q
(
lw,q + 1

)
wIqm , (F.17f)

kIJK =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJwK sign

(
mw,q

CB

)
, (F.17g)

kmnp =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qmqnqp sign

(
mw,q

CB

)
, (F.17h)

kIJm =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIwJqm sign

(
mw,q

CB

)
, (F.17i)

kImn =
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wIqmqn sign

(
mw,q

CB

)
, (F.17j)

k0 =
1

6

(
−
∑
R,q

F1/2(R, q)
∑
w∈R

(
1 + 6 lw,q

(
lw,q + 1

))
− 4T + 19F3/2

)
, (F.17k)

kI = −2
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
wI sign

(
mw,q

CB

)
, (F.17l)

km = −2
∑
R,q

F1/2(R, q)
∑
w∈R

(
lw,q +

1

2

)
qm sign

(
mw,q

CB

)
, (F.17m)

where we made use of (F.12) in (F.17f).

Once more let us specify these general formulae to F-theory compactifications.
Putting the latter theory on Calabi-Yau threefolds one has to investigate a circle-
reduced six-dimensional N = (1, 0) supergravity theory in order to derive the effec-
tive action. We denote the number of six-dimensional tensor multiplets by T , vector
multiplets by V and hypermultiplets by H. We find

F1/2(R, q) = (nU(1) − T ) δR,1 · δq,0 + δR,adj · δq,0 −H(R, q) , (F.18a)

T = 1− T , (F.18b)

F3/2 = 1 . (F.18c)

The factor δR,1 · δq,0 is only non-vanishing for uncharged singlets and implements the
contribution of tensorini and U(1) gaugini while δR,adj · δq,0 is different from zero for the
adjoint representation, thus taking care of non-Abelian gaugini.



238 APPENDIX F. IDENTITIES FOR CIRCLE-REDUCED THEORIES

F.2 Coulomb Branch Identities

In this section we show the central identity(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)
= nIwI + nmqm (F.19)

under the transformation (10.2). It again only holds for generic Wilson line back-
grounds, i.e. no integer multiples of the radius.

Consider a massive mode with weight w under a non-Abelian gauge group and
charges qm under Abelian gauge bosons Am, Coulomb branch mass mw,q

CB and KK-level
n. We pick vectors nI , nm and perform the basis change (10.2). It is important to notice
that this transformation leaves all VEVs invariant except of

〈ζI〉 7→ 〈ζI〉+
nI

〈r〉
, (F.20)

〈ζm〉 7→ 〈ζm〉+
nm

〈r〉
. (F.21)

One can then easily show that the sign function fulfills

sign
(
mw,q

CB + nmKK

)
= sign

(
m̃w,q

CB + (n− nIwI − nmqm)mKK

)
. (F.22)

Depending on the sign of the Coulomb branch masses we have to investigate four
different cases:

sign
(
mw,q

CB

)
> 0

The integer quantity lw,q is then defined via the following property

sign
(
mw,q

CB − lw,qmKK

)
> 0 ∧ sign

(
mw,q

CB − (lw,q + 1)mKK

)
< 0 . (F.23)

Using (F.22) we find

sign
(
m̃w,q

CB − (lw,q + nIwI + nmqm)mKK

)
> 0 , (F.24)

sign
(
m̃w,q

CB − (lw,q + nIwI + nmqm + 1)mKK

)
< 0 .

Depending on the sign of m̃w,q
CB we can now read off l̃w,q

l̃w,q = lw,q + nIwI + nmqm for sign
(
m̃w,q

CB

)
> 0 , (F.25a)

l̃w,q = −lw,q − nIwI − nmqm − 1 for sign
(
m̃w,q

CB

)
< 0 . (F.25b)

sign(mw,q
CB) < 0

Now lw,q is defined as

sign
(
mw,q

CB + (lw,q + 1)mKK

)
> 0 ∧ sign

(
mw,q

CB + lw,qmKK

)
< 0 . (F.26)
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With (F.22) we get

sign
(
m̃w,q

CB + (lw,q − nIwI − nmqm + 1)mKK

)
> 0 , (F.27)

sign
(
m̃w,q

CB + (lw,q − nIwI − nmqm)mKK

)
< 0 .

From this we can again determine l̃w,q

l̃w,q = −lw,q + nIwI + nmqm − 1 for sign
(
m̃w,q

CB

)
> 0 , (F.28a)

l̃w,q = lw,q − nIwI − nmqm for sign
(
m̃w,q

CB

)
< 0 . (F.28b)

It is now easy to check that the relations (F.25), (F.28) are indeed summarized as(
l̃w,q +

1

2

)
sign

(
m̃w,q

CB

)
−
(
lw,q +

1

2

)
sign

(
mw,q

CB

)
= nIwI + nmqm . (F.29)

As shown in section 10.2, this expression plays a crucial role when one investigates
the relation between one-loop Chern-Simons terms which have been calculated in dif-
ferent frames (related by large gauge transformations). Indeed, the characteristic factor(
lw,q + 1

2

)
sign

(
mw,q

CB

)
directly appears in the formulae for

δΘIJ , δΘmn, δΘIm, δkIJK , δkmnp, δkIJm, δkImn, δkI , δkm,

as one can see by looking at their explicit expressions in section F.1. In order to
perform a similar analysis for the other types of one-loop Chern-Simons terms we will
need additional identities which however can be derived from (F.29) straightforwardly.
In particular, in order to relate

δΘ0I , δΘ0m, δk0IJ , δk0mn, δk0Im, δk0,

to anomalies one has to use the relation

l̃w,q
(
l̃w,q + 1

)
− lw,q

(
lw,q + 1

)
= 2

(
nIwI + nmqm

)(
lw,q +

1

2

)
sign(mw,q

CB)

+
(
nIwI + nmqm

)2
, (F.30)

since these are the type of factors which appear in the loop calculations section F.1.
Similarly for δΘ00, δk00I , δk00m we exploit

l̃w,q
(
l̃w,q + 1

) (
l̃w,q +

1

2

)
sign(m̃w,q

CB)− lw,q
(
lw,q + 1

) (
lw,q +

1

2

)
sign(mw,q

CB)

=
1

2

(
nIwI + nmqm

) (
1 + 6 lw,q

(
lw,q + 1

))
(F.31)

+ 3
(
nIwI + nmqm

)2(
lw,q +

1

2

)
sign(mw,q

CB) +
(
nIwI + nmqm

)3
,
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and finally for δk000 the relevant identity is

l̃2w,q
(
l̃w,q + 1

)2 − l2w,q
(
lw,q + 1

)2
(F.32)

= 4
(
nIwI + nmqm

)
lw,q
(
lw,q + 1

) (
lw,q +

1

2

)
sign(mw,q

CB)

+
(
nIwI + nmqm

)2
(

1 + 6 lw,q
(
lw,q + 1

))
+ 4

(
nIwI + nmqm

)3(
lw,q +

1

2

)
sign(mw,q

CB) +
(
nIwI + nmqm

)4
.

We will comment on the precise relation of the individual Chern-Simons couplings to
anomalies in the upcoming section.

F.3 Large Gauge Transformations of Chern-Simons

Terms

In section 10.2 we conveyed how one can obtain all gauge anomaly cancelation condi-
tions in four and six dimensions (and also mixed gauge-gravitational anomalies in six
dimensions) by considering two different ways of evaluating large gauge transforma-
tions on one-loop induced Chern-Simons couplings and demanding consistency of both
approaches. We showed there that it suffices to consider only a subset of all one-loop
Chern-Simons terms in order to obtain all anomalies. In this section we provide the
complete list of which anomaly cancelation conditions one obtains from the large gauge
transformations of all possible one-loop Chern-Simons terms. These calculations are
straightforward, however besides of the identity (F.29), which we used in section 10.2
in order to evaluate δΘ̃IJ , δΘ̃mn, δΘ̃Im, δk̃IJK , δk̃mnp, δk̃IJm, δk̃Imn, δk̃I , δk̃m, one now
also has to make use of the additional relations (F.30), (F.31), (F.32) which however
can be derived from (F.29) as we have just shown. In four-dimensional theories on the
circle we have

∂nL∂nM . . . ∂nL . . . ∂nq . . . ∂nq∂nr . . .

δΘ̃00
!

= 0 (9.22b) (9.22c) (9.22d)

δΘ̃0I
!

= 0 (9.22b) (9.22c) 0

δΘ̃0m
!

= 0 (9.22c) 0 (9.22d)

δΘ̃IJ
!

= 0 (9.22b) 0 (9.22c)

δΘ̃mn
!

= 0 0 0 (9.22d)

δΘ̃Im
!

= 0 (9.22c) 0 0

while in the circle-reduced six-dimensional settings the full list is
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∂nL∂nM . . . ∂nL . . . ∂nq . . . ∂nq∂nr . . .

δk̃000
!

= 0 (9.30e) (9.30f),(9.30g) (9.30h)

δk̃00I
!

= 0 (9.30e) (9.30g) 0

δk̃00m
!

= 0 (9.30f) (9.30g) (9.30h)

δk̃0IJ
!

= 0 (9.30e) (9.30f) (9.30g)

δk̃0mn
!

= 0 (9.30g) 0 (9.30h)

δk̃0Im
!

= 0 (9.30f) (9.30g) 0

δk̃IJK
!

= 0 (9.30e) 0 (9.30f)

δk̃mnp
!

= 0 0 0 (9.30h)

δk̃IJm
!

= 0 (9.30f) 0 (9.30g)

δk̃Imn
!

= 0 (9.30g) 0 0

δk̃0
!

= 0 (9.30c) 0 (9.30d)

δk̃I
!

= 0 (9.30c) 0 0

δk̃m
!

= 0 0 0 (9.30d)

Let us explain these tables: In order to obtain the indicated anomaly conditions one has

to take an appropriate number of derivatives of the equations δΘ̃ΛΣ
!

= 0, δk̃ΛΣΘ
!

= 0,

δk̃Λ
!

= 0 with respect to nL and nq, i.e. in the non-Abelian and Abelian directions,
respectively. The total number of derivatives one has to take is given by one plus the
number of 0-indices in δΘ̃ΛΣ, δk̃ΛΣΘ, δk̃Λ, e.g. three derivatives for k00I and one deriva-
tive for Θmn. In the first column we only take derivatives in the Cartan directions of
the non-Abelian gauge group, though possibly different directions, while in the third
column the derivatives are only with respect to U(1) large gauge transformation pa-
rameters, also possibly different ones. In the second column we assume derivatives with
respect to both Cartan and U(1) directions.
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Appendix G

Intersection Numbers

In this chapter we list useful intersection numbers of elliptically-fibered Calabi-Yau four-
and threefolds along with their matched quantity in the M-theory to F-theory duality.
Special emphasis is put on Chern-Simons couplings ΘΛΣ, kΛΣΘ, kΛ.

For Calabi-Yau fourfolds we consider the specific intersections

π(DΛ ·DΣ)α := (DΛ ·DΣ · Cβ) η−1 α
β (G.1)

and the induced Chern-Simons couplings

ΘΛΣ = −1

4
DΛ ·DΣ · [G4] , (G.2)

where η β
α is the full-rank intersection matrix (11.24). One finds

π(Dα ·Dβ)γ = 0 , π(Dm ·Dα)β = 0 , π(DI ·Dα)β = 0 , (G.3)

π(D0 ·D0)α = 0 , π(D0 ·Dm)α = 0 , π(D0 ·DI)
α = 0 ,

π(D0 ·Dα)β = δβα , π(DI ·DJ)α = −bα CIJ , π(Dm ·Dn)α = −bαmn

and

Dα ·Dβ · [G4] = 0 , Dα ·D0 · [G4] = 0 , (G.4)

Dα ·DI · [G4] = 0 , Dα ·Dm · [G4] = −2θαm .

The remaining Chern-Simons couplings are one-loop expressions which are evaluated
field-theoretically in section F.1.

Finally for Calabi-Yau threefolds all relevant intersection numbers correspond to
Chern-Simons couplings

kΛΣΘ = DΛ ·DΣ ·DΘ , kΛ = DΛ · [c2] , (G.5)

and one evaluates

Dα ·Dβ ·Dγ = 0 , D0 ·Dα ·Dβ = ηαβ , DI ·Dα ·Dβ = 0 ,

243
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Dm ·Dα ·Dβ = 0 , D0 ·D0 ·Dα = 0 , DI ·DJ ·Dα = −ηαβbβ CIJ ,
Dm ·Dn ·Dα = −ηαβbβmn , D0 ·DI ·Dα = 0 , D0 ·Dm ·Dα = 0 ,

Dα · [c2] = −12 ηαβa
β . (G.6)

Finally let us collect some useful geometrical facts about elliptic fibrations. For any
divisor which corresponds to a rational section S we have

π(S · S) = K (G.7)

where the map π is defined in (11.26) and K is the canonical class of the base. The same
quantity appears in connection with the second Chern class for Calabi-Yau threefolds(

Dα · [c2]
)
η−1αβ Dβ = −12K . (G.8)

Furthermore, the pullback of the divisor Sb over which the elliptic fiber degenerates
fulfills

π(DI ·DJ) = −CIJ S . (G.9)

Finally for the case of a holomorphic zero-section one can explicitly evaluate some
intersections which are matched to one-loop Chern-Simons terms. One finds for Calabi-
Yau fourfolds

D0 ·Dm · [G4] = −1

2
K ·Dm · [G4] , D0 ·DI · [G4] = 0 , D0 ·D0 · [G4] = 0 , (G.10)

and for Calabi-Yau threefolds

D0 ·Dm ·Dn = −1

2
K ·Dm ·Dn , D0 ·D0 ·Dm = 0 , D0 ·Dm ·DI = 0 ,

D0 ·DI ·DJ = −1

2
K ·DI ·DJ , D0 ·D0 ·DI = 0 , D0 ·D0 ·D0 =

1

4
K ·K ·D0 ,

D0 · [c2] = 52− 4h1,1(B2) . (G.11)

Note that the condition of holomorphicity is absolutely crucial here.
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Six-Dimensional Supermultiplets

In the following we display the six-dimensional supermultiplets. The first two factors
encode the representation under the little group in terms of spins whereas the second two
entries label the representation under the R-symmetry group USp(2NL) × USp(2NR)
in terms of the dimension of the representation. The table is taken from [195] and
adjusted to our chirality conventions.

Multiplet Bosons Fermions

(1,0) hyper
(
0, 0; 2, 1

)
⊕ h.c.

(
0, 1

2
; 1, 1

)
⊕ h.c.

(1,0) tensor
(
0, 1; 1, 1

)
⊕
(
0, 0; 1, 1

) (
0, 1

2
; 2, 1

)
(1,0) vector

(
1
2
, 1

2
; 1, 1

) (
1
2
, 0; 2, 1

)
(1,0) graviton

(
1, 1; 1, 1

)
⊕
(
1, 0; 1, 1

) (
1, 1

2
; 2, 1

)
(2,0) tensor

(
0, 1; 1, 1

)
⊕
(
0, 0; 5, 1

) (
0, 1

2
; 4, 1

)
(2,0) graviton

(
1, 1; 1, 1

)
⊕
(
1, 0; 5, 1

) (
1, 1

2
; 4, 1

)
(1,1) vector

(
1
2
, 1

2
; 1, 1

)
⊕
(
0, 0; 2, 2

) (
0, 1

2
; 1, 2

)
⊕
(

1
2
, 0; 2, 1

)
(1,1) graviton

(
1, 1; 1, 1

)
⊕
(

1
2
, 1

2
; 2, 2

)
⊕

(
1
2
, 1; 1, 2

)
⊕
(
1, 1

2
; 2, 1

)
⊕(

1, 0; 1, 1
)
⊕
(
0, 1; 1, 1

)
⊕
(
0, 0; 1, 1

) (
1
2
, 0; 1, 2

)
⊕
(
0, 1

2
; 2, 1

)
(2,1) graviton

(
1, 1; 1, 1

)
⊕
(

1
2
, 1

2
; 4, 2

)
⊕

(
1
2
, 1; 1, 2

)
⊕
(
1, 1

2
; 4, 1

)
⊕(

1, 0; 5, 1
)
⊕
(
0, 1; 1, 1

)
⊕
(
0, 0; 5, 1

) (
1
2
, 0; 5, 2

)
⊕
(
0, 1

2
; 4, 1

)
(2,2) graviton

(
1, 1; 1, 1

)
⊕
(

1
2
, 1

2
; 4, 4

)
⊕

(
1
2
, 1; 1, 4

)
⊕
(
1, 1

2
; 4, 1

)
⊕(

1, 0; 5, 1
)
⊕
(
0, 1; 1, 5

)
⊕
(
0, 0; 5, 5

) (
1
2
, 0; 5, 4

)
⊕
(
0, 1

2
; 4, 5

)
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[177] A. Font, I. Garćıa-Etxebarria, D. Lust, S. Massai, and C. Mayrhofer, “Heterotic
T-fects, 6D SCFTs, and F-Theory,” 1603.09361.

[178] D. R. Morrison and T. Rudelius, “F-theory and Unpaired Tensors in 6D SCFTs
and LSTs,” 1605.08045.

[179] E. Witten, “On flux quantization in M theory and the effective action,” J.
Geom. Phys. 22 (1997) 1–13, hep-th/9609122.

[180] M. Bershadsky, K. A. Intriligator, S. Kachru, D. R. Morrison, V. Sadov, and
C. Vafa, “Geometric singularities and enhanced gauge symmetries,” Nucl. Phys.
B481 (1996) 215–252, hep-th/9605200.

[181] S. Greiner and T. W. Grimm, “On Mirror Symmetry for Calabi-Yau Fourfolds
with Three-Form Cohomology,” 1512.04859.

[182] P. Corvilain, T. W. Grimm, and D. Regalado, “Shift-symmetries and gauge
coupling functions in orientifolds and F-theory,” 1607.03897.

[183] M. R. Gaberdiel and B. Zwiebach, “Exceptional groups from open strings,”
Nucl. Phys. B518 (1998) 151–172, hep-th/9709013.

[184] O. DeWolfe and B. Zwiebach, “String junctions for arbitrary Lie algebra
representations,” Nucl. Phys. B541 (1999) 509–565, hep-th/9804210.

[185] C. Mayrhofer, D. R. Morrison, O. Till, and T. Weigand, “Mordell-Weil Torsion
and the Global Structure of Gauge Groups in F-theory,” JHEP 10 (2014) 16,
1405.3656.

[186] J. H. Silverman, The arithmetic of elliptic curves, vol. Graduate texts in
mathematics. Springer, 1986.

http://arXiv.org/abs/1504.04614
http://arXiv.org/abs/1505.00009
http://arXiv.org/abs/1510.08056
http://arXiv.org/abs/1511.05565
http://arXiv.org/abs/1601.04078
http://arXiv.org/abs/1603.09361
http://arXiv.org/abs/1605.08045
http://arXiv.org/abs/hep-th/9609122
http://arXiv.org/abs/hep-th/9605200
http://arXiv.org/abs/1512.04859
http://arXiv.org/abs/1607.03897
http://arXiv.org/abs/hep-th/9709013
http://arXiv.org/abs/hep-th/9804210
http://arXiv.org/abs/1405.3656


260 BIBLIOGRAPHY

[187] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,
vol. Graduate texts in mathematics. Springer, 1994.

[188] P. S. Aspinwall and D. R. Morrison, “Nonsimply connected gauge groups and
rational points on elliptic curves,” JHEP 07 (1998) 012, hep-th/9805206.

[189] D. R. Morrison and W. Taylor, “Classifying bases for 6D F-theory models,”
Central Eur.J.Phys. 10 (2012) 1072–1088, 1201.1943.

[190] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The String landscape,
black holes and gravity as the weakest force,” JHEP 06 (2007) 060,
hep-th/0601001.

[191] B. Heidenreich, M. Reece, and T. Rudelius, “Sharpening the Weak Gravity
Conjecture with Dimensional Reduction,” JHEP 02 (2016) 140, 1509.06374.

[192] B. Heidenreich, M. Reece, and T. Rudelius, “Axion Experiments to Algebraic
Geometry: Testing Quantum Gravity via the Weak Gravity Conjecture,”
1605.05311.

[193] B. Heidenreich, M. Reece, and T. Rudelius, “Evidence for a Lattice Weak
Gravity Conjecture,” 1606.08437.

[194] M. Montero, G. Shiu, and P. Soler, “The Weak Gravity Conjecture in three
dimensions,” 1606.08438.

[195] B. de Wit, “Supergravity,” in Unity from duality: Gravity, gauge theory and
strings. Proceedings, NATO Advanced Study Institute, Euro Summer School,
76th session, Les Houches, France, July 30-August 31, 2001, pp. 1–135. 2002.
hep-th/0212245.

http://arXiv.org/abs/hep-th/9805206
http://arXiv.org/abs/1201.1943
http://arXiv.org/abs/hep-th/0601001
http://arXiv.org/abs/1509.06374
http://arXiv.org/abs/1605.05311
http://arXiv.org/abs/1606.08437
http://arXiv.org/abs/1606.08438
http://arXiv.org/abs/hep-th/0212245





	I Introduction
	Introduction
	Towards a Final Theory
	Where We Stand...
	Effective Theories

	The Framework of String Theory
	The Beginning
	The Two Superstring Revolutions
	The Different Branches Today

	Symmetries and Anomalies in Field Theory
	Global Symmetries vs. Gauge Symmetries
	Anomalies

	Outline of the Thesis

	Preliminary Material
	Recap of Anomalies in Quantum Field Theory
	One-Loop Chern-Simons Terms
	Three Dimensions
	Five Dimensions



	II Partial Supersymmetry Breaking and Consistent Truncations
	Overview
	Gauged N=4 Supergravity in Five Dimensions and its Vacua
	Generalities
	Isolation of the Propagating Degrees of Freedom
	The Theory Around the Vacuum
	General Properties of Minkowski Vacua

	General Solution for Abelian Magnetic Gaugings
	Vacuum Conditions
	Tensorial Higgs and Super-Higgs Mechanism
	N=2 Mass Spectrum and Effective Action
	The N=2 Spectrum
	General N=2 Action and Classical Matching
	One-loop Effects and Chern-Simons Terms


	M-Theory on SU(2)-Structure Manifolds
	Some Basics on SU(2)-Structure Manifolds
	The Reduction Ansatz
	Dimensional Reduction of the Action
	Comparison with N=4 Supergravity

	Partial Supergravity Breaking Applied to Consistent Truncations
	Quantum Effective Action of Consistent Truncations
	First Example: M-Theory on the Enriques Calabi-Yau
	Second Example: Type IIB Supergravity on a Squashed Sasaki-Einstein Manifold


	III Circle-Reduced Gauge Theories, F-Theory and the Arithmetic of Elliptic Fibrations
	Overview
	Circle Compactification of Gauge Theories
	General Setup
	Anomaly Cancelation
	Four Dimensions
	Six Dimensions

	Circle Compactification
	Reduction of the Fields
	Chern-Simons Terms


	Symmetries of Gauge Theories on the Circle
	Classification of Large Gauge Transformations
	Anomalies from Large Gauge Transformations

	The Basic Concepts of F-Theory
	Type IIB String Theory and M-Theory
	Low-Energy Description of Type IIB String Theory
	Low-Energy Description of M-Theory

	Defining F-Theory via M-Theory
	Fibering the Duality

	F-Theory and Elliptic Fibrations
	Gauge Symmetry, Matter and Yukawas
	The Topology of Elliptic Fibrations in F-Theory


	Arithmetic Structures on Genus-One Fibrations
	Arithmetic Structures on Fibrations with Rational Sections
	On the Mordell-Weil Group and its Divisor Group Law
	The Free Part of the Mordell-Weil Group
	The Torsion Part of the Mordell-Weil Group

	Arithmetic Structures on Fibrations with Multi-Sections
	A Group Action for Fibrations with Multi-Sections
	The Generalized Shioda Map
	Extended Mordell-Weil Group and Large Gauge Transformations

	Arithmetic Structures on Fibrations with Exceptional Divisors
	A Group Action for Exceptional Divisors
	Arithmetic Group Structures from Higgs Transitions


	The Freedom of Picking the Zero-Section in F-Theory

	IV Unpublished Results and Ideas
	More on the Arithmetic Structure of Genus-One Fibrations
	Constraints on the F-Theory Spectrum 
	Towards a Graded Mordell-Weil Pseudo-Ring

	More on Anomalies
	Gravitational Anomalies
	Chern-Simons Terms and Anomalies Revisited


	V Conclusions
	Closing Remarks and Future Directions

	VI Appendices
	Spacetime Conventions and Identities
	Derivation of the N=2 Mass Terms and Couplings
	Fermion Masses
	Scalar Masses

	The Coset Representatives and Contracted Embedding Tensors for SU(2)-Structure Manifolds
	The Coset Representatives V
	The Contracted Embedding Tensors for Calabi-Yau Manifolds with chi=0

	Comparison with Type IIA Supergravity on SU(2)-Structure Manifolds
	Lie Theory
	Lie Theory Conventions
	Trace Identities
	Quadratic Trace Identities
	Cubic Trace Identities
	Quartic Trace Identities


	Identities for Circle-Reduced Theories
	One-Loop Chern-Simons Terms
	Zeta Function Regularization
	Three Dimensions
	Five Dimensions

	Coulomb Branch Identities
	Large Gauge Transformations of Chern-Simons Terms

	Intersection Numbers
	Six-Dimensional Supermultiplets


