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aa   aminoacids 

ADAM   a disintegrin and metalloproteinase 

ANOVA  analysis of variance 
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BTC   betacellulin 

BV   bone volume 

COL1   collagen α1 promoter 
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IGF1   insulin-like growth factor 1 

IL   interleukin 

KO   knockout 

L1   first lumbar vertebra 

loxP   locus of crossing-over 

Ma.Ar   marrow area 

MAPK   mitogen-activated protein kinase 

MAR   mineral apposition rate 

MCF   Michigan Cancer Foundation 

MCP1   monocyte chemoattractant protein 1 

MCSF   macrophage colony-stimulating factor 

min   minute / minutes 

MMA   methylmethacrylate 

MMP   matrix metalloproteinase 

MMRRC  The Mutant Mouse Regional Resource Center 

mRNA   messenger ribonucleic acid 

NF-κb   nuclear factor-kappa b 

N.Oc   number of osteoclasts 

N.Tb   number of trabeculae 

Ob.S   osteoblast surface 

O.Th   osteoid thickness 

OV   osteoid volume 

PBS   phosphate buffered saline 

PCR   Polymerase chain reaction 



 

PI3K   phosphatidylinositol 3’kinase 

PKA   protein kinase A 

PKC   protein kinase C 

PLC   phospholipase C 

pQCT   Peripheral quantitative computed tomography 

Pro-AREG  “pro-form” of amphiregulin, amphiregulin precursor 

Ps.BPm  periosteal bone perimeter 

PTH   parathyroid hormone 

PTHrP  parathyroid hormone related peptide 

RANK   receptor activator of nuclear factor-kappa b 

RANKL  receptor activator of nuclear factor-kappa b ligand 

RUNX2  Runt-related transcription factor 2 

Scid   severe combined immunodeficiency 

SEM   standard error of the mean 

SH2   Src-homology-2 

siRNA   small interfering ribonucleic acid 

SNK test  Student-Newman-Keuls test 

SOS   son of sevenless 

STAT   signal transducer and activator of transcription 

TACE   tumor-necrosis factor alpha converting enzyme 

TAE buffer  Tris-acetate-EDTA-buffer 

T.Ar   tissue area 

Tb.Ar   trabecular area 

Tb.N   trabecular number 

Tb.Sp   trabecular separation 

Tb.Wi   trabecular width 

TGFA   transforming growth factor alpha 

TRAP   tartrate-resistant acid phosphatase 

TRIS   Tris(hydroxymethyl)aminomethane 

Tt.Ar   total area 

TtCross-sectAr total cross-sectional area 

TV   tissue volume 

Wa5   waved 5 

WT   wild-type control  
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1 Introduction 

 

The bone is a complex organ that fulfils a great variety of functions including mechan-

ical support, protection of vital organs, regulation of blood calcium levels and hemato-

poiesis sustenance. To perform these multiple functions, bone tissue is constantly re-

modeled in a cyclical renewal process, where bone resorption by osteoclasts is con-

tinuously counterbalanced by osteoblastic bone formation (Schneider et al., 2009b). 

Parathyroid hormone (PTH) is a major endocrine regulator of bone remodeling and 

calcium homeostasis (Poole and Reeve, 2005, Schneider et al., 2009b). It is secreted 

by the parathyroid glands in response to low extracellular calcium levels and, after 

binding to the PTH-receptor on its target cells, it activates several signaling cascades 

(Poole and Reeve, 2005, Swarthout et al., 2002). PTH raises the reduced blood cal-

cium levels by stimulating bone resorption, tubular calcium re-absorption in the kidney 

and synthesis of 1,25-dihydroxyvitamin D3, thus increasing the calcium uptake in the 

small intestine. In addition to this classical bone catabolic action, PTH can also act as 

a bone anabolic agent and significantly increase the bone mineral density (BMD) when 

administered intermittently (Hock et al., 1988, Poole and Reeve, 2005, Tam et al., 

1982).  

Although many signaling pathways and molecules have been identified to be key fac-

tors in mediating the bone anabolic effect of intermittent PTH, the detailed mechanisms 

have not yet been fully understood. There is accumulating evidence that amphiregulin 

(AREG), one ligand of the epidermal growth factor receptor (EGFR), is involved in me-

diating the bone anabolic effect of intermittent PTH (Schneider et al., 2009b, Schneider 

and Wolf, 2009). 

Areg is significantly upregulated in osteoblastic cells and bone tissue after PTH treat-

ment and was therefore identified as a PTH-regulated target gene both in vivo and in 

vitro (Qin et al., 2005). Expression of Areg can also be modulated by other osteotropic 

hormones, such as 1,25-dihydroxyvitamin D3 and prostaglandin E2 (Qin et al., 2005). 

Furthermore, release of AREG by osteoblastic cells after PTH treatment increases the 

recruitment of bone marrow mesenchymal progenitors via PI3K/Akt and p38MAPK 
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pathways and subsequently promotes their migration towards the bone surface (Zhu 

et al., 2012). The bone anabolic effect of intermittent PTH was blunted in osteoblast-

specific EGFR-knockout mice (Zhu et al., 2012). Moreover, female mice lacking AREG 

have less trabecular bone as compared to their controls (Qin et al., 2005). Vice versa, 

mice overexpressing Areg specifically in osteoblasts revealed a transient increase in 

trabecular bone mass (Vaidya et al., 2015). Hence, these data indicate that AREG 

seems to be the main EGFR ligand mediating the bone anabolic effect of PTH. 

To clarify to which extent AREG is required for the bone anabolic actions of PTH, we 

treated AREG deficient and control female mice at an age of 12 weeks intermittently 

with PTH or vehicle (physiological saline) for four weeks and examined their bone phe-

notype in detail. 
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2 Review of literature 

 

Epidermal growth factor receptor 

The epidermal growth factor receptor (EGFR, HER1, ERBB1) is a transmembrane ty-

rosine kinase receptor that can be activated by seven ligands: amphiregulin (AREG) 

(Berasain and Avila, 2014), betacellulin (BTC) (Dahlhoff et al., 2014), epidermal growth 

factor (EGF) (Zeng and Harris, 2014), epigen (EPGN) (Schneider and Yarden, 2013), 

epiregulin (EREG) (Riese and Cullum, 2014), heparin-binding EGF-like growth factor 

(HBEGF) (Taylor et al., 2014) and transforming growth factor α (TGFA) (Singh and 

Coffey, 2014). Once bound by a ligand, the EGFR forms homodimers with another 

EGFR molecule or heterodimers with one of the closely related receptors ERBB2 

(HER2, NEU), ERBB3 (HER3) or ERBB4 (HER4) (Citri and Yarden, 2006). In addition, 

the EGFR can be transactivated via other receptors, such as G-protein-coupled recep-

tors (also known as seven transmembrane-domain receptors), whose activation lead 

to cleavage of the membrane-bound ligand precursors (Yarden and Sliwkowski, 2001, 

Prenzel et al., 1999, Tao and Conn, 2014). The ligands of the four ERBB receptors 

can be divided into three groups: The first group binds exclusively to the EGFR and 

includes AREG, EGF, EPGN and TGFA. The second group includes BTC, EREG and 

HBEGF and binds both the EGFR and ERBB4. The neuregulins (NRG1 – NRG4) are 

representing the third group. NRG1 and NRG2 bind both ERBB3 and ERBB4, whereas 

NRG3 and NRG4 only bind to ERBB4 (Arteaga and Engelman, 2014). ERBB2 has no 

known ligand, but it is the preferred dimerization partner of the other ERBB receptors, 

and is able to amplify their signaling (Citri and Yarden, 2006, Yarden and Sliwkowski, 

2001). 

Phosphorylation of the receptor dimers on specific tyrosine residues of the intracellular 

tails leads to the recruitment of a number of signal transducers, such as the Src-ho-

mology-2 (SH2) and growth factor receptor-bound protein 2 (GRB2), which initiate the 

recruitment of RAS and the activation of mitogen-activated protein kinase (MAPK) 

pathways. Other important pathways are the phosphatidylinositol 3’kinase (PI3K-AKT) 

pathway, the phospholipase Cγ-protein kinase C (PLC-PKC) pathway and the signal 

transducer and activator of transcription (STAT) 1, 3 and 5 (Citri and Yarden, 2006, 

Schneider et al., 2009b, Yarden and Sliwkowski, 2001). 
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Most mice lacking EGFR die at mid-gestation or birth, but they may survive up to post-

natal day 20 depending on their genetic background. Surviving EGFR-Knockout mice 

are growth retarded, have an impaired epithelial development and show abnormalities 

in several organs, including skin, kidney, brain and bone (Citri and Yarden, 2006, 

Miettinen et al., 1995, Sibilia and Wagner, 1995, Threadgill et al., 1995).  

Egfr overexpression has been described in several tumor types, e.g. in lung and pan-

creas, and EGFR inhibitors, such as the monoclonal antibody cetuximab, are used 

successfully in cancer therapy (Citri and Yarden, 2006, Arteaga and Engelman, 2014). 

 

 

 

Figure 1 Simplified schematic overview of the binding specificities of the ERBB receptor ligands. AREG, 
EGF, EPGN and TGFA specifically bind to EGFR, whereas BTC, EREG and HBEGF bind both EGFR 
and ERBB4. ERBB2 has no known ligand. NRG1 and NRG2 bind both ERBB3 and ERBB4, whereas 
NRG3 and NRG4 only bind to ERBB4. 
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Amphiregulin 

AREG was first identified in the serum-free conditioned medium of MCF-7 human 

breast carcinoma cells treated with phorbol 12-myristate 13-acetate (Shoyab et al., 

1988). AREG was described as a bifunctional growth factor, with the ability to inhibit 

the growth of several human carcinoma cells and at the same time to stimulate the 

growth of human fibroblasts and other cells (Shoyab et al., 1988, Berasain and Avila, 

2014), a capacity which led to its name. Today AREG is known as one ligand of the 

EGFR and is therefore mainly involved in regulating cell proliferation and differentiation 

(Schneider and Wolf, 2009, Harris et al., 2003). 

Areg is expressed as a type I transmembrane glycoprotein precursor (Pro-AREG) of 

252 aminoacids (Fitch et al., 2003). The soluble form of AREG (78-84 aa) is formed 

via proteolytic cleavage of Pro-AREG by the membrane-bound tumor necrosis factor 

alpha converting enzyme (TACE), which belongs to the disintegrin and metalloprotein-

ase family (ADAM17) (Berasain et al., 2007, Harris et al., 2003, Hinkle et al., 2004, 

Sahin et al., 2004, Sunnarborg et al., 2002). Mature AREG contains the EGF motif and 

can activate the EGFR in a paracrine or autocrine manner, but the EGFR can also be 

activated by Pro-AREG via juxtacrine interactions or via exosomes expressing Pro-

AREG (Higginbotham et al., 2011, Singh and Harris, 2005, Willmarth and Ethier, 2006). 

Additionally, it was shown that Pro-AREG and the AREG-cytosolic fragment (AREG-

CTF) generated after AREG cleavage can be internalized into the nucleus and may be 

responsible for part of AREG effects (Berasain and Avila, 2014, Isokane et al., 2008). 

Areg is expressed in many tissues, including lung, heart, spleen, kidney, pancreas, 

colon, testis, placenta, ovary and breast (Plowman et al., 1990). Recently, AREG was 

found in human colostrum (Nojiri et al., 2012).  
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Figure 2 Schematic overview of AREG processing and signaling. TACE-mediated proteolytic cleavage 
of Pro-AREG leads to the soluble form of AREG, which can activate the EGFR via autocrine (A) or 
paracrine (B) signaling. C Exosomes expressing Pro-AREG can activate the EGFR via paracrine sig-
naling. D Pro-AREG and the AREG cytosolic fragment (AREG-CTF) can also, at least in part, mediate 
AREG effects via intracellular signaling. E Membrane-bound Pro-AREG can bind the EGFR of neigh-
boring cells and therefore signal via juxtacrine interactions.
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Mice lacking AREG are viable and fertile, but show an impaired mammary gland de-

velopment (Luetteke et al., 1999), develop mucosal lesions in the fundus of the stom-

ach (Nam et al., 2009) and, although Areg expression in the healthy liver is very low, 

show signs of liver damage (Berasain et al., 2005). It is reported that AREG-KO mice 

have less trabecular bone as compared to their control littermates (Qin et al., 2005). 

Mice overexpressing Areg in basal keratinocytes show a psoriasis-like phenotype 

(Cook et al., 1997), and most recently it was demonstrated that osteoblast-specific 

Areg overexpression leads to a transient anabolic effect in long bones (Vaidya et al., 

2015). 

Areg is overexpressed in several cancer types, e.g. breast, lung, liver, stomach, pan-

creas and colon. AREG has intrinsic tumor-promoting activities and can stimulate cel-

lular invasion and increase cell motility (Busser et al., 2011). Most recently it was 

shown that increased Areg expression promotes migration of human osteosarcoma 

cell lines in vitro and cell metastasis and tumor progression of osteosarcoma in vivo 

(Liu et al., 2015). 

Under inflammatory conditions Areg is expressed in several immune cells, and it plays 

important roles in tissue repair and wound healing (Zaiss et al., 2015). For instance, 

AREG plays a pivotal role in the protection from liver injury (Berasain et al., 2005). 

 

Bone 

The bone is a complex organ that, unlike most organs, is not restricted to one location 

or structure, but rather spread over the whole body in several uniquely shaped ele-

ments (Karsenty and Wagner, 2002). Bone tissue has several functions, including me-

chanical support for muscles, protection of vital organs, regulation of blood calcium 

levels, and sustenance of hematopoiesis. To fulfill these functions, bone tissue is con-

stantly remodeled in a cyclical process, where bone resorption by osteoclasts is con-

stantly counterbalanced by bone formation by osteoblasts (Schneider et al., 2009b). 

Bone development begins with mesenchymal cell condensations, which differentiate 

into chondrocytes and then form a cartilaginous template. The innermost chondrocytes 

further differentiate into hypertrophic chondrocytes, which attract blood vessels and 

direct mineralization of the adjacent extracellular matrix before they die through apop-

tosis. Osteoclasts and capillaries invade the remaining mineralized extracellular matrix, 
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which is then replaced by bone in a process called endochondral ossification. Later, 

during longitudinal growth, this process becomes restricted to the growth plates. In 

some cases the mesenchymal condensations skip the cartilaginous step and directly 

differentiate into osteoblasts. This process is called intramembranous ossification and 

occurs in a few body areas, e.g. the flat bones of the skull (Karsenty and Wagner, 

2002, Schneider et al., 2009b). 

Osteoblasts are the major bone forming cells, which produce several extracellular pro-

teins, including alkaline phosphatase, osteocalcin and type I collagen. The collagen-

rich extracellular matrix built by osteoblasts is termed osteoid. Osteoblasts can become 

inactive bone lining cells or, when entombed within extracellular matrix, osteocytes, 

which are important regulators of bone remodeling. Osteocytes produce sclerostin, 

which mainly inhibits the WNT signaling in osteoblasts and therefore promotes their 

differentiation (Long, 2012). 

Osteoclasts are bone specific multinucleated cells derived from the monocyte/macro-

phage haematopoietic lineage. They attach to the bone and secrete acid and lytic en-

zymes, e.g. tartrat-resistant acid phosphatase (TRAP), to resorb the bone matrix. The 

receptor activator of NF-κb ligand (RANKL) is a key factor for osteoclast differentiation 

and activation. It can be expressed by osteoblasts to stimulate bone resorption via 

binding to its receptor RANK (receptor activator of NF-κb) on the surface of osteoclasts, 

which means that osteoblasts can directly regulate osteoclasts. Another protein regu-

lating osteoclast activity is osteoprotegerin (OPG), which acts as a decoy receptor for 

RANKL and therefore blocks osteoclast formation (Boyle et al., 2003). 

Long bones can be divided in three regions: The midshaft (diaphysis), the metaphyses 

(below the growth plates) and the epiphyses (above the growth plates). The diaphysis 

consists mainly of dense cortical bone, which surrounds the bone marrow cavity. The 

metaphysis and epiphysis are composed of trabecular (cancellous) bone (Clarke, 

2008). 
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Role of EGFR in skeletal biology and pathology 

The EGFR plays an important role in bone development and homeostasis (Schneider 

et al., 2009b). Mice lacking the EGFR are growth retarded and have facial deformities, 

including elongated snouts, underdeveloped mandibulae and a high incidence of cleft 

palate (Miettinen et al., 1995, Miettinen et al., 1999). EGFR-KO mice have an impaired 

trabecular bone formation, a delayed endochondral ossification and an enlarged zone 

of hypertrophic chondrocytes in the growth plate of long bones on embryonic days 16.5 

and 18.5 and on postnatal day 1 (Sibilia et al., 2003, Wang et al., 2004). Calvarial 

osteoblasts from EGFR-KO mice show decreased proliferation and increased differen-

tiation, indicating that normal EGFR signaling in osteoblasts accelerates proliferation, 

but inhibits differentiation, thus keeping osteoblasts in an undifferentiated, pre-mature 

state (Sibilia et al., 2003). Furthermore, EGFR-KO mice showed a delayed recruitment 

of osteoclasts into the hypertrophic cartilage (Wang et al., 2004). 

Due to the early lethality of EGFR-KO mice, the role of EGFR in bone biology at later 

time points could not be characterized. To circumvent this problem, mouse models with 

an extended survival time were generated, including conditional knockout models us-

ing the Cre/loxP system and treatment of mice with tyrosine kinase inhibitors or EGFR 

antibodies. 

Zhang and co-workers generated preosteoblast/osteoblast-specific EGFR-KO mice 

using the Cre/loxP system (Zhang et al., 2011b). In these mice the loxP (floxed) se-

quences are flanking exon 3 of the Egfr gene, and Cre-mediated recombination results 

in a frameshift and two stop codons in exon 4. EGFRflox/flox Col 3.6-Cre mice developed 

no bone phenotype as compared to controls, probably due to residual EGFR activity. 

To further reduce this activity the mice were crossbred with Waved 5 mice (Wa5), 

which contain a point mutation leading to a kinase dead dominant-negative EGFR (Lee 

et al., 2004). 3-month-old EGFRWa5/flox Col 3.6-Cre mice had a significantly reduced 

total and trabecular bone mineral density (BMD) and their femurs were shorter and 

thinner. Additionally, WT mice treated with the EGFR inhibitors gefitinib or erlotinib 

showed a bone phenotype similar to that of EGFRWa5/flox Col 3.6-Cre mice, indicating 

that signaling via the EGFR leads to an anabolic effect in bone (Zhang et al., 2011b). 

This was also confirmed in the same study using Dsk5 mice, in which constitutively 

activation of the EGFR leads to an increased signaling, and therefore to a higher BMD 
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(Fitch et al., 2003, Zhang et al., 2011b). Furthermore, Zhang and co-workers investi-

gated the bone phenotype of heterozygous Wa5 mice in a 129S1/SvImJ background, 

but there were no differences in 1 and 3 months of age (Zhang et al., 2011b). Shortly 

afterwards it was reported that in a different genetic background (C57BL/6), heterozy-

gous Wa5 mice at the age of 3 months have a significantly reduced total BMD in femurs 

and lumbar vertebral bodies (Schneider et al., 2012). 

Additionally, Zhang and co-workers treated 1-month-old rats with the EGFR inhibitor 

gefitinib and these rats exhibited an accumulation of hypertrophic chondrocytes in the 

growth plate as compared to their vehicle treated controls. Osteoclast recruitment was 

reduced due to a decreased Rankl expression in gefitinib-treated rats. Furthermore, 

gefitinib treatment led to a decreased expression of matrix metalloproteinases (MMP9, 

MMP13, MMP14) (Zhang et al., 2011a).  

To generate a chondrocyte-specific EGFR-KO mouse, Zhang and co-workers used the 

same strategy as before, with one Wa5 and one floxed Egfr allele, but a type 2 collagen 

promoter-driven Cre (Col2-Cre) (Zhang et al., 2011a). EGFRWa5/flox Col2-Cre mice had 

an enlarged zone of hypertrophic chondrocytes and a delayed formation of the sec-

ondary ossification center, due to a suppressed excavation of cartilage canals from the 

perichondrium into the cartilage and a reduced expression of matrix metalloprotein-

ases (MMPs) and Rankl in the hypertrophic chondrocytes, which also leads to a de-

layed differentiation, mineralization and apoptosis of these cells (Zhang et al., 2013). 

Osteoclasts do not express functional Egfr, but its ligands can stimulate osteoclast 

formation indirectly by modulating the expression levels of the osteoclast regulatory 

factors Opg and monocyte chemoattractant protein 1 (MCP1) in osteoblasts. EGF-like 

ligands can stimulate the expression of Mcp1 in osteoblasts, which leads to an in-

creased osteoclast activity, and they can inhibit the expression of Opg (Zhu et al., 

2007). 

Overexpression of EGFR ligands in mice leads to ligand-specific effects on bone for-

mation (Schneider et al., 2009b). Mice overexpressing a shortened human EGF pre-

cursor are growth retarded, show an increased proliferation and abnormal accumula-

tion of osteoblasts in the periosteum and endosteum, and have a reduced cortical 

thickness as compared to controls (Chan and Wong, 2000). Overexpression of Btc in 

mice results in round heads, a reduced longitudinal bone growth, and an increased 
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cortical BMD in the appendicular skeleton, which is mainly due to an increased endo-

cortical bone apposition (Schneider et al., 2009a, Schneider et al., 2005). An osteo-

blast-specific overexpression of Areg under the control of the 2.3kb collagen α1 pro-

moter leads to a transient increase in the trabecular bone mass (Vaidya et al., 2015), 

and, conversely, female mice lacking AREG have less trabecular bone as compared 

to their controls (Qin et al., 2005). 

RT-PCR analysis confirmed the expression of Areg, Btc, Egf, Ereg, Hbegf and Egfr 

and Erbb2 in osteoblasts (Qin et al., 2005).  

In vitro studies with the mouse preosteoblastic cell line MC3T3, mouse bone marrow 

osteoblastic cells, and human bone marrow stromal stem cells, revealed that EGF-like 

ligands stimulate osteoblast proliferation and suppress their differentiation and miner-

alization; furthermore, EGFR signaling inhibits the expression of two important osteo-

blast-specific transcription factors: Runx2 and Sp7 (osterix) (Zhu et al., 2011). Micro-

array analysis of osteoblastic cells treated with EGF revealed an immediate increase 

in the mRNA expression levels of the transcription factors Egr1, 2 and 3 with a peak 

after 30 min in MCT3 cells and after 1 h in rat calvarial osteoprogenitors, and EGR2 

was identified to be a key mediator for EGF-induced cell proliferation and survival 

(Chandra et al., 2013). 

Egfr expression is upregulated in bone and soft tissue tumors (Dobashi et al., 2007), 

in osteosarcoma-derived cell lines and in osteosarcomas (Wen et al., 2007). More im-

portantly, EGFR is upregulated in tumors that have a high tendency to metastasize to 

bone, such as breast, lung and prostate cancer (Citri and Yarden, 2006, Di Lorenzo et 

al., 2002, Mishra et al., 2011, Schneider et al., 2009b). Treatment with tyrosine kinase 

inhibitors decreased the growth of human renal carcinoma cells implanted into tibiae 

of nude mice (Weber et al., 2003), inhibited the osteolytic bone destruction in tibiae 

inoculated with a human non-small lung cancer cell line in Scid mice (Furugaki et al., 

2011), and reduced the number of bone metastases of prostate carcinoma (Angelucci 

et al., 2006). Knockdown of the Egfr expression in nude mice with intratibial inoculation 

of bone metastatic breast cancer cells overexpressing Areg reduced the tumor growth 

within the bone (Nickerson et al., 2012). These data underline the prominent role of 

EGFR signaling in bone metastases development. 
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The major mechanism of osteolytic bone destruction in patients with bone metastases 

is tumor-mediated stimulation of bone resorption (Roodman, 2001). EGFR activation 

in cancer cells leads to the production of signaling molecules such as PTHrP (PTH 

related peptide). PTHrP binds the PTH receptor, which leads to an increased Rankl 

expression and therefore stimulates osteoclast activation and differentiation. Interest-

ingly, while AREG was identified as the major EGFR ligand controlling Pthrp expres-

sion in breast cancer cells, blocking autocrine EGFR signaling loops with an AREG 

antibody only resulted in a modestly inhibited motility of breast cancer cells (Gilmore 

et al., 2008, Nickerson et al., 2012). 

Recently, it was shown by Liu and co-workers that Areg is upregulated in two human 

osteosarcoma cell lines (MG63 and U2OS). Furthermore, supplementation of AREG 

increases the migration of these osteosarcoma cells and AREG enhances tumor pro-

gression and cell metastasis of osteosarcoma in vivo, whereas Areg knockdown re-

duced the number of pulmonary metastases (Liu et al., 2015). 

 

Parathyroid hormone 

Parathyroid hormone (PTH) is the major hormonal regulator of bone remodeling and 

calcium homeostasis. PTH is secreted as an 84 aa polypeptide by the parathyroid 

glands in response to low extracellular calcium levels, and binds after being processed 

at its target cells to the PTH receptor, a G-protein-coupled receptor, thus activating 

distinct signaling pathways, e.g. the protein kinase A (PKA) and protein kinase C (PKC) 

pathways (Partridge et al., 2006, Poole and Reeve, 2005). PTH acts on the bone to 

stimulate bone resorption and to increase the release of calcium (Poole and Reeve, 

2005, Swarthout et al., 2002). It indirectly stimulates osteoclasts by increasing the ex-

pression of Rankl in stromal cells and osteoblasts (Teitelbaum, 2000). In the kidney, 

PTH increases tubular calcium re-absorption and synthesis of 1,25-dihydroxyvitamin 

D3, which then enhances the calcium uptake in the intestine. Paradoxically, in addition 

to this classical bone catabolic action, PTH can also act as a bone anabolic agent, 

depending on the pattern of administration. While continuous infusion causes bone 

loss, daily injections of PTH increase bone formation (Poole and Reeve, 2005, Tam et 

al., 1982). Teriparatide, a recombinant 1-34 aa peptide of human PTH, is currently 

used as a treatment for patients with osteoporosis (Sugiyama et al., 2015). 
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The detailed mechanisms behind the anabolic actions of PTH have not yet been fully 

understood. Intermittent injections of PTH increase the number of osteoblasts by stim-

ulating their proliferation and differentiation (Nishida et al., 1994, Pettway et al., 2008), 

attenuating their apoptosis (Bellido et al., 2003, Jilka et al., 1999) and activating bone 

lining cells (Dobnig and Turner, 1995). Over the years several signaling pathways have 

been identified to play an important role in mediating this effect (Schneider et al., 2012), 

including insulin-like growth factor-1 (IGF1) (Miyakoshi et al., 2001), c-fos (Demiralp et 

al., 2002), interleukin-18 (Raggatt et al., 2008), ß-arrestin 2 (Bouxsein et al., 2005) and 

sclerostin (Kramer et al., 2010a). 

Microarrays were used to access PTH-regulated genes in bone (Qin et al., 2003, von 

Stechow et al., 2004) and to compare gene expression profiles between intermittent 

and continuous PTH (1-34) treatment (Onyia et al., 2005). In both treatments Oniya 

and co-workers found increased levels of genes associated with bone formation. Con-

tinuous PTH treatment of rats led to higher expression of genes associated with bone 

turnover and osteoclast formation, such as MMPs and cathepsin K. Intermittent PTH 

treatment led to fewer changes in gene expression levels, and most of the regulated 

genes are associated with receptor binding (e.g. IGF-binding protein 6), immune re-

sponse or catalysis (e.g. carboxypeptidase E). The latter gene was also upregulated 

after continuous PTH treatment, although to a lesser extent. Surprisingly, some genes 

uniquely regulated by intermittent PTH treatment are associated with neuronal tissue 

(Onyia et al., 2005). Shortly afterwards, Li and co-workers presented similar results (Li 

et al., 2007a). Li and co-workers compared gene expression profiles of rats treated 

continuously or intermittently with three different PTH peptides. Intermittent injections 

of PTH (1-31) or PTH (1-34) led to an increased bone formation, whereas PTH (3-34) 

did not. PTH (3-34) activates the PKC pathway, whereas PTH (1-31) activates the PKA 

pathway. These data indicate that the PKC pathway plays a minor role in mediating 

the bone anabolic actions of PTH (Li et al., 2007a).  

Interestingly, Li and co-workers found in the same study that not only continuous PTH 

treatment led to higher expression levels of Rankl, but also intermittent administration. 

Intermittent PTH treatment led to a striking, but transient, increase in Rankl expression, 

whereas Rankl expression was moderately upregulated, but in a persistent manner, 

after continuous treatment. The authors suggest that the bone anabolic effect may be 
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accomplished by a short termed, increased bone resorption and a subsequent in-

creased bone formation (Li et al., 2007a). 

Intermittent administration of PTH rapidly increases the expression of Mcp1 in osteo-

blasts and therefore enhances osteoclast activity (Li et al., 2007b). Recently, it was 

shown that the bone anabolic response after treatment with intermittent PTH is blocked 

in MCP1-KO mice (Tamasi et al., 2013). These data indicate that the osteoclast regu-

lating factor MCP1 is an important mediator for the bone anabolic effect of PTH.  

 

Role of EGFR signaling in mediating the bone anabolic actions of PTH 

There is accumulating evidence that the bone anabolic actions of intermittent PTH 

treatment are, at least in part, mediated via EGFR signaling. Two ligands of the EGFR, 

Areg and Tgfa, were identified as a PTH-regulated genes in rat UMR 106-01 osteo-

blastic cells. Areg expression was increased more than 2-fold after 4h and 12h of rat 

PTH (1-34) treatment (Qin et al., 2003). Additional studies showed an increase in Areg 

mRNA levels in rat calvarial osteoblasts and mouse MC3T3 cells treated with rat PTH 

(1-34), as well as in the femurs of 4-week-old male rats after subcutaneous injections 

of human PTH (1-38), confirming that Areg is a PTH target gene in vitro and in vivo 

(Qin et al., 2005). In vitro, administration of rat PTH (1-34) increased Areg expression 

levels 5-fold in the proliferative phase (day 6) and 23-fold in the mineralization phase 

(day 14) in rat calvarial osteoblasts, whereas the basal Areg expression levels did not 

change during the three phases of proliferation, differentiation and mineralization. In 

vivo, subcutaneous injections of human PTH (1-38) increased Areg expression 12-fold 

after 1h and 2-fold after 4h. Additional experiments revealed that Areg expression is 

also stimulated in rat primay osteoblastic cells after treatment with prostaglandin E2 

and 1,25-dihydroxyvitamin D3, other osteotropic hormones that play important roles in 

bone remodeling (Qin et al., 2005). 

AREG stimulates proliferation and prevents differentiation and mineralization in rat cal-

varial osteoblasts. Addition of AREG to the medium significantly increased the number 

of cells and completely inhibited their mineralization (Qin et al., 2005). In this study, the 

mRNA levels of bone markers, such as Mmp13, alkaline phosphatase, osteocalcin and 

osteonectin, were decreased in day 20 cultures. Western blot analysis revealed that 
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AREG treatment of osteoblastic cells stimulated the phosphorylation of AKT and ERK 

and increased the expression of c-fos and c-jun (Qin et al., 2005). 

Mice lacking AREG show no abnormalities in growth or body weight (Luetteke et al., 

1999). Microcomputed tomography (µ-CT) analysis of the tibial trabecular bone com-

partment of 4-week-old female AREG-KO mice revealed a significant reduction of tra-

becular number, trabecular thickness, connectivity density and percent bone volume, 

and consequently an increase in trabecular separation, whereas there were no differ-

ences in the femoral cortical bone compartment (Qin et al., 2005), indicating that AREG 

plays a critical role in the development of trabecular bone. In line with these findings, 

recent studies of our group revealed a transient increase of trabecular bone mass in 

mice overexpressing Areg specifically in osteoblasts (Vaidya et al., 2015). 

Recently, AREG was identified as a chemotactic factor for mesenchymal progenitors. 

PTH-mediated release of AREG by osteoblastic cells promotes migration of mesen-

chymal progenitors in vitro via AKT and p38MAPK pathways. Conditioned media col-

lected from cells with a siRNA knockdown of Areg do not possess this chemotactic 

activity (Zhu et al., 2012).  

In the latter study, Zhu and co-workers showed that the bone anabolic effect of inter-

mittent PTH injections was blunted in EGFRWa5/flox Col 3.6-Cre mice, which have a re-

duced EGFR activity in osteoblasts, indicating that the bone anabolic actions of PTH 

require EGFR signaling (Zhu et al., 2012). In heterozygous Wa5 mice the bone ana-

bolic effect of intermittent PTH treatment was fully maintained, most likely due to re-

sidual EGFR activity in these mice (Schneider et al., 2012, Zhu et al., 2012). 

 

Aim of the study 

In summary, AREG seems to be the major EGFR ligand mediating the bone anabolic 

actions of PTH. To clarify to which extent AREG is required for the bone anabolic effect 

of PTH, we treated 3-month-old female AREG-KO mice and controls intermittently with 

PTH or vehicle (saline) and examined their bone phenotype in detail. 
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3 Animals, Methods and Materials 

 

Animals 

AREG knockout (AREG-KO) mice were generated by Luetteke et al. (1999) and ob-

tained from The Mutant Mouse Regional Resource Center (MMRRC) Repository at the 

University of North Carolina, USA. The AREG-KO mice were maintained in an inbred 

129/C57BL/6 mixed background and housed under specified pathogen free conditions 

in a closed barrier facility with a 12 h light cycle at 25°C and 45% humidity. Health 

monitoring was performed according to FELASA (Federation of European Laboratory 

Animal Science Associations) recommendations. The mice were housed in Makrolon 

type II long and type III cages enriched with red houses and cellulose paper and had 

free access to standard rodent diet (V1534; Ssniff, Soest, Germany) and filtered tap 

water. The mice were weaned and marked with ear punches at the age of 4 weeks. 

Only females at an age of 3 months were used for the experiment. 

All experiments were carried out in accordance with the German Animal Protection 

Law and authorized by the responsible veterinary authority. 

 

Genotyping 

For genotyping, ear punch tissues were collected in 1.5 ml vials (Eppendorf, Hamburg) 

and stored at -20 °C if not processed immediately. To isolate DNA, 620 µl digestion 

buffer were added to each tube and the samples were incubated overnight at 56 °C 

with gentle shaking. 

Digestion buffer: 0.5 M EDTA pH 8.0      120 µl 

proteinase K (20 mg/ml in bidistilled H2O)  17.5 µl 

Nuclei Lysis Solution    500 µl 

 

After digestion, 3 µl RNAse (4mg/ml in bidistilled water) were added to each vial. The 

samples were incubated for 20 minutes at 37 °C to degrade RNA. Afterwards, to induce 

protein denaturation and precipitation, 200 µl protein precipitation solution were added 

and the samples were vortexed for 20 seconds at high speed and then chilled on ice 

for 5 minutes. The protein pellet was obtained via centrifugation (14 000 x g for 4 
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minutes) and the DNA containing supernatant was carefully transferred to a fresh vial 

containing 600 µl isopropanol to induce DNA precipitation. After gently inverting the 

tube for several times, the samples were centrifuged at 14 000 x g for 2 minutes. The 

supernatant was discarded. The remaining DNA pellet was washed in 600 µl 70% eth-

anol, and a pure pellet was obtained after centrifugation (14 000 x g for 2 minutes) and 

discarding the supernatant. The DNA pellet was air-dried for 10 to 15 minutes and 

rehydrated with 50 µl DNA Rehydration Solution. The DNA samples were stored at 4 

°C. 

Polymerase chain reaction (PCR) was performed using the Taq DNA polymerase Kit 

(Qiagen, Hilden). A mastermix was prepared on ice as follows (calculated per sample): 

 

10x PCR reaction buffer (Qiagen, Hilden)    2.00 μl  

dNTPs, 1 mM (MBI Fermentas, St. Leon-Rot)     2.00 μl  

Q-Solution (Qiagen, Hilden)       4.00 μl  

MgCl2, 25mM (Qiagen, Hilden)       1.25 μl  

Primer AregDel#1, 10 μM        1.00 μl  

Primer AregDel#2, 10 μM        1.00 μl  

Primer AregDel#3, 10 μM        1.00 μl  

Bidistilled H2O         6.65 μl  

Taq Polymerase, 5 U/μl (Qiagen, Hilden)     0.10 μl  

            

          ∑ 19 µl 

 

19 µl mastermix were added to each DNA template (1 µl) in a PCR-reaction tube. 

 

Primer sequences: 

AregDel#1: 5’ CTT TCC AGC TTT CTC CAC CTC AAG 3’ 

AregDel#2:  5’ ACA GTA ACC TCT GTT GCA TGC CAC 3’ 

AregDel#3:  5’ CTG CAC GAG ACT AGT GAG ACG TGC 3’ 

 

Thermal cycler conditions : 

94°C - 5 minutes 
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94°C - 45 seconds 

59°C - 45 seconds 

72°C - 1 minute 

72°C - 10 minutes 

4 °C - paused (till further process) 

 

The amplified products and molecular weight marker were loaded on a 1.5% agarose 

TAE gel containing ethidium bromide. Electrophoresis was carried out for 40 min at 

120 Volt with TAE running buffer. The amplified DNA bands were visualized with ultra-

violet light. 

The primers AregDel#1 (sense) and AregDel#2 (antisense) both bind in the intron re-

gion before exon 3, leading to a ≈ 330 bp wild type allele signal. In AREG-KO mice, 

exons 3 and 4 are replaced by a neomycin cassette (Luetteke et al., 1999). The primer 

AregDel#3 (antisense) binds to this cassette, leading to a ≈ 600 bp signal for the knock-

out allele. 

The 50x TAE stock contained: 

TRIS    242 g  

Glacial acetic acid  57.1 ml  

0.5M EDTA pH 8.0  100 ml 

ad 1000 ml bidistilled H2O 

 

PTH treatment 

3-month-old female AREG KO mice and WT controls received either 80µg/kg body 

weight (1-34) PTH (Bachem, Weil am Rhein, Germany) or vehicle (0.9% physiological 

saline solution) by subcutaneous injection once daily for five days per week over a 

period of four weeks. Additionally, all mice were subcutaneously injected with alizarin 

complexone (30 mg/kg body weight) once at the beginning of the experiment and with 

calcein (20 mg/kg body weight) on days 4 and 2 prior to necropsy. 

36 x 
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Figure 3 Schematic overview of the subcutaneous PTH and fluorochrome injections over the whole time 
of the experiment. AREG-KO and WT mice were subcutaneously injected with PTH (1-34) (80 mg/kg) 
or physiological saline five times a week for four weeks. Additionally, all animals received an injection 
with alizarine complexone (30 mg/kg) at the beginning of the experiment and calcein on days 4 and 2 
before sacrifice. 

 

Urine, serum and tissue collection 

Spontaneous urine was collected and frozen at -20 °C until further analysis. Anesthe-

tized mice were bled form the retrobulbar venous plexus with a heparinized capillary. 

To obtain serum, the blood samples were centrifuged for two times at 664 x g for 10 

minutes in 1.5 ml centrifuge tubes and stored at -80°C until further analysis. The femurs 

and the first lumbar vertebrae (L1) were removed and cleaned. 

 

Tissue preparation for histology and histomorphometry 

Preparation of femurs and L1 for histology and histomorphometry was performed as 

described previously (Erben, 1997, Reim et al., 2008, Schneider et al., 2009a). First, 

the bones were fixed in 4% paraformaldehyde in PBS at 4 °C for 24h under gentle 

Alizarin complexone (30mg/kg) s.c. injection

Calcein (20mg/kg) s.c. injection

PTH (1-34) (80µg/kg) s.c. injection

Control group: physiological saline

 sacrifice

D7 D9 D11 D13

D14 D16 D18 D20

D21 D23 D25 D27

D0 D2 D4 D6
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shaking. Afterwards, the bones were washed with PBS for 24h at 4°C under gentle 

shaking. 

The 10x PBS stock contained: 

NaCl      80.0 g 

Na2HPO4     14.4 g 

KCl      2.0 g 

KH2PO4     2.4 g 

ad 1000 ml bidistilled H2O 

pH was adjusted to 7.4 

 

After fixation and washing, the femurs and L1 were stored in 70% ethanol until further 

process. The right femur was cut in half using a precision band saw (Exakt, Norder-

stedt, Germany). The distal part of the femur and L1 were subsequently dehydrated 

and embedded in methylmethacrylate (MMA). 

Dehydration: 

Day 1:  96% ethanol 

Day 2:  isopropanol 

Day 8  xylene 

Day 14: MMA I 

Day 18: MMA II 

Day 21: MMA III 

Day 25: embedding 

 

MMA I contained: 

MMA      600 ml 

Butylmethacrylate    50 ml 

Methylbenzoate    50 ml 

Polyethylglycol 400    12 ml 

ad 1000 ml bidistilled H2O 

 

MMA II contained: 

MMA      600 ml 
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Butylmethacrylate    50 ml 

Methylbenzoate    50 ml 

Polyethylglycol 400    12 ml 

Benzylperoxide    4g 

Ad 1000 ml bidistilled H2O 

 

MMA III contained: 

MMA      600 ml 

Butylmethacrylate    50 ml 

Methylbenzoate    50 ml 

Polyethylglycol 400    12 ml 

Benzylperoxide    8g 

ad 1000 ml bidistilled H2O 

 

For embedding, 4 ml/l N,N-Dimethyl-toluidine was added to MMA III to induce polymer-

ization. The bones were embedded in 10 ml glass vials with a previously prepared 

plastic layer on the bottom. The vials were sealed with parafilm and transferred to a 

cooling chamber (-18 °C to -23 °C for 5 days). 

After removing the glass vial and trimming the plastic block, 3-µm-tick sections of the 

femoral metaphysis and of the vertebral bodies were cut using a Microm HM360 mi-

crotome with a tungsten carbide knife. During cutting, the sections were kept wet with 

0.1 % TWEEN® 20 and transferred carefully to APES-coated microscope slides. 

For APES coating, the microscope slides were first incubated with aceton for 10 

minutes and afterwards shortly rinsed with tap water. Thereafter, the slides were again 

incubated with aceton for 5 minutes and then incubated with APES solution, containing 

4 ml APES in 200 ml Aceton. After APES coating, the slides were washed twice in 

bidistilled H2O and incubated at 40°C-50°C overnight. 

After transferring the sections to the APES-coated microscope slides, the sections 

were carefully stretched using 70 % ethanol, covered with polyethylene foil and 

pressed with a slide press for 3-4 days at 42 °C. 
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To obtain cross-sections of the femoral mid-diaphysis, the left femur was also embed-

ded in MMA and 200-µm-sections were taken using a precision band saw. Subse-

quently, the sections were grounded to a final thickness of 20 µm using a micro-grind-

ing system (Exakt Norderstedt, Germany). The sections were carefully glued on APES-

covered microscopy slides. 

 

Kossa/McNeal staining 

To analyze bone formation, the longitudinal sections of the right femur and sections of 

the first lumbar vertebral bodies were stained with Kossa/McNeal tetrachrome accord-

ing to standard protocols (Erben, 1997). The sections were deplastinized with methox-

yethylacetat (for 60 minutes) and aceton (for 10 minutes) and washed with bidistilled 

H2O (for 10 minutes). Next, the sections were incubated with 5% silver nitrate solution 

for 5-10 minutes (protected from light). After rinsing with bidistilled H2O, the sections 

were incubated in a solution containing 5 % sodium carbonate and 9.25 % formalde-

hyde in bidistilled H2O for 2 minutes. The sections were again rinsed with bidistilled 

H2O and then incubated for 30 seconds in Farmer’s Reducer. After rinsing under run-

ning tap water for 20 minutes and quickly washing with bidistilled H2O, the sections 

were stained in a 5 % tetrachrome solution for 60 minutes. Thereafter, the slides were 

again rinsed in bidistilled H2O and dehydrated with isopropanol and xylene. The slides 

were mounted with DePex (SERVA Electrophoresis GmbH, Heidelberg). 

The Farmer’s Reducer solution contained: 

Sodium thiosulfate 10 %   200 ml 

Potassium ferrocyanide 10 %  10 ml 

 

The 5 % tetrachrome solution contained: 

Methylene blue    0.5 g 

Azur-A-Eosinat     0.8 g 

Methylene violet    0.1 g 

Methanol     250 ml 

Glycerol     250 ml 
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Analysis of the osteoblast surface and the osteoid was performed using OsteoMeasure 

3.0 (OsteoMetrics, Decatur, GA, USA) software, the DrawingBoard VI (GTCO Cal-

Comp, Scottsdale, AZ, USA) and the Axioskop 2 Plus (C. Zeiss, Jena, Germany). The 

area within 0.25 mm from the growth plates was excluded from the measurements. 

 

Tartrate resistant alkaline phosphatase (TRAP) staining 

To analyze bone resorption, the longitudinal sections of the right femur were stained 

for tartrate resistant alkaline phosphatase (TRAP) enzyme activity according to stand-

ard protocols (Erben, 1997, Schmidt et al., 1999). The sections were deplastinized with 

methoxyethylacetat (for 60 minutes) and with aceton (for 10 minutes) and washed with 

bidistilled H2O (for 10 minutes). Next, the sections were incubated in 0.2 M acetate 

buffer pH 5.0 for 20 minutes and afterwards with TRAP-reagent for 2-4 hours at 37°C. 

The slides were shortly rinsed with bidistilled H2O, counterstained with Mayer’s hema-

toxylin for 3 minutes and rinsed with tap water for 5-10 minutes. The stained sections 

were mounted with Kaiser’s glycerol galantine (Merck, Darmstadt), an aqueous mount-

ing medium. 

The TRAP reagent contained: 

naphtol AS-MX phosphate disodium salt  0.5 mg/ml  

fast red TR salt     1,1 mg/ml 

disolved in 0.2 M acetate buffer pH 5.0 

 

The hematoxylin staining solution contained: 

Hematoxylin     1 g 

Sodium iodide     0.2 g 

Aluminium potassium sulfate  50 g 

Chloral hydrate    50 g 

Citric acid     1 g 

Ad 1000 ml bidistilled H2O 

 

Analysis of osteoclast numbers was performed using OsteoMeasure 3.0 (OsteoMet-

rics, Decatur, GA, USA) software, the DrawingBoard VI (GTCO CalComp, Scottsdale, 

AZ, USA) and the Axioskop 2 Plus (C. Zeiss, Jena, Germany). The area within 0.25 

mm from the growth plates was excluded from the measurements. 
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Toluidine blue staining 

Toluidine blue staining and automatic image analysis of cross-sections of the femoral 

mid-diaphysis were performed as described previously (Erben, 1997, Reim et al., 

2008, Weber et al., 2004). First, the 20-µm undeplasticized microground sections were 

incubated with 30 % H2O2 under gentle shaking. After shortly rinsing the sections in 

tap water, the sections were stained in toluidine blue staining solution for 60 minutes. 

 

The toluidine staining solution contained: 

Toluidine blue O    2 g 

Di-Sodium hydrogen phosphate   75 mg 

Citric acid      158 mg 

ad 100 ml bidistilled H2O 

 

After staining and air-drying for 2 hours, the sections were mounted with DePex. 

Automatic image analysis was performed using the AxioVision 4.6 (C. Zeiss, Jena, 

Germany) software. 

 

Mounting with Fluoromount 

To measure the cortical mineral apposition rate (MAR) and the trabecular bone for-

mation rate (BFR), undeplasticized and unstained longitudinal sections of the distal 

femoral metaphysis, cross-sections of the femoral mid-diaphysis and sections of the 

first lumbar vertebral bodies were mounted with Fluoromount (Serva, Heidelberg, Ger-

many) as described previously (Erben, 1997). 

Analysis of the trabecular BFR and the cortical MAR was performed using Osteo-

Measure 3.0 (OsteoMetrics, Decatur, GA, USA) software, the DrawingBoard VI (GTCO 

CalComp, Scottsdale, AZ, USA) and the Axioskop 2 Plus (C. Zeiss, Jena, Germany). 

The border of the trabecular and cortical bone were traced under blue violet excitation 

(395-440 nm) and the calcein and alizarin complexone labels were traced under blue 

excitation (450-490 nm) to reduce background. In the distal femoral metaphysis and in 

L1, the area within 0.25 mm from the growth plates was excluded from the measure-

ments. 
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Biochemical bone markers 

Analysis of biochemical bone markers was kindly conducted by Claudia Bergow from 

the laboratory of Prof. Reinhold Erben, Vienna, Austria. Serum osteocalcin levels were 

measured with an immunoradiometric assay (Mouse Osteocalcin ELISA kit, Immu-

topics International) according to the manufacturer's instructions. Total collagen cross-

link deoxypyridinoline was measured with the MicroVue DPD EIA kit (Quidel Corpora-

tion, USA) according to the manufacturer's instructions and normalized to urinary cre-

atinine levels, measured with a Cobas c111 autoanalyzer (Roche Diagnostics). 

 

Statistical analyses 

Statistical analyses were performed using the SPSS software for Windows 17.0 (SPSS 

Inc., Chicago, USA). Differences between the groups were analyzed by one-way 

ANOVA followed by Student-Newman-Keuls (SNK) test as post hoc test. Additionally, 

the data were analyzed by two-way ANOVA to evaluate the individual effects of PTH 

treatment and the knocked out Areg gene, as well as their 2-way interaction. The 

graphs were generated with GraphPad Prism 5.0 (GraphPad Software Inc., La Jolla, 

USA). P values lower than 0.05 were considered significant. The data are presented 

as means ± SEM. 

 

Materials 

 

Machines and software 

Agarose gel electrophoresis chamber  MWG-Biotech, Ebersberg, Germany 

Axioskop 2 Plus      C. Zeiss, Jena, Germany 

AxioVision 4.6      C. Zeiss, Jena, Germany 

Band Saw  EXAKT Apparatebau GmbH, Nor-

derstedt, Germany 

Centrifuge (5417R)  Eppendorf, Hamburg, Germany 

Cobas c111 autoanalyzer    Roche Diagnostics, Germany 

GraphPad Prism 5.0 GraphPad Software Inc., La Jolla, 

USA 
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Incubator  Thermo Fisher Scientific, Schwerte, 

Germany 

Microgrinding System  EXAKT Apparatebau GmbH, Nor-

derstedt, Germany 

Micrometer  Mitutoyo Deutschland GmbH, In-

golstadt, Germany 

Microtome HM 360  Microm International GmbH, Waldorf, 

Germany 

Microwave      Siemens, München, Germany 

MS1 Minishaker  IKA process equipment, Staufen 

OsteoMeasure 3.0   OsteoMetrics, Decatur, GA, USA 

SPSS SPSS Inc., Chicago, USA 

Thermocycler   Biometra®, Göttingen, Germany 

Thermomixer  Eppendorf, Hamburg, Germany 

Wise Shake® Shaker, SHR-1D Wisd Laboratory Instruments, Labora-

tory Supplies Ltd., Dublin, Ireland 

 

Consumables 

Filter paper circles, Ø 150 mm  Whatman GmbH, Dassel, Germany 

Glass microscope slides  Menzel-Gläser, Braunschweig, Ger-

many 

Grinding disks  Hermes Schleifmittel, Hamburg, Ger-

many 

Microscope cover glasses, 24 x 50 mm  VWR International, Darmstadt, Ger-

many 

Microscope cover glasses, 18 x 18 mm  VWR International, Darmstadt, Ger-

many 

Parafilm  VWR International, Darmstadt, Ger-

many 

Pasteur pipette, 5 ml  VWR International, Darmstadt, Ger-

many 

Pasteur pipette, 7 ml VWR International, Darmstadt, Ger-

many 



27 

Polyethylene foil  Heraeus Kulzer GmbH, Hanau, Ger-

many 

QualiPCRTube-strips   Kisher Biotech, Steinfurt, Germany 

Safe-lock tubes, 1.5 ml  Eppendorf, Hamburg, Germany 

Standard rodent diet (V1534)   Ssniff, Soest, Germany 

Tungsten carbide knife  Microm International GmbH, Waldorf, 

Germany 

 

Chemicals 

Agarose  Invitrogen, Karlsruhe, Germany 

Alizarine complexone Sigma-Aldrich, Schnelldorf, Germany 

APES (Aminopropyltriethoxysilane)  Sigma-Aldrich, Deisenhofen, Germany 

Azur-A-Eosin      Merck, Darmstadt, Germany 

Benzylperoxide     Merck, Darmstadt, Germany 

Butylmethacrylate  Sigma-Aldrich, Deisenhofen, Germany 

Calcein  Sigma-Aldrich, Schnelldorf, Germany 

DePex  SERVA Electrophoresis GmbH, Hei-

delberg, Germany 

DNA Rehydration Solution  Promega, Mannheim, Germany 

dNTPs  Thermo Scientific, St. Leon-Roth, Ger-

many 

EDTA       VWR, Darmstadt, Germany 

Ethanol   Carl Roth, Karlsruhe, Germany 

Ethidiumbromide   Carl Roth GmbH, Karlsruhe, Germany 

Fast Red TR  Sigma-Aldrich, Deisenhofen, Germany 

Fluoromount  SERVA Electrophoresis GmbH, Hei-

delberg, Germany 

Formaldehyde Solution, 37 %   Merck, Darmstadt, Germany 

Gene Ruler, 100 bp  Thermo Scientific, St. Leon-Roth, Ger-

many 

Glacial acetic acid  Carl Roth, Karlsruhe, Germany 

Glycerol  Merck Schuchardt, Hohenbrunn, Ger-

many 
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Hematoxylin   Merck, Darmstadt, Germany 

Hydrogen peroxide, 30 %  Merck Schuchardt, Hohenbrunn, Ger-

many 

Isopropanol       VWR, Darmstadt, Germany 

Kaiser’s glycerol gelantine    Merck, Darmstadt, Germany 

KCl       Merck, Darmstadt, Germany 

KH2PO4       Merck, Darmstadt, Germany 

Loctite ® 420 glue Henkel AG & Co. KGaA, Düsseldorf, 

Germany 

Methoxyethyl acetate    Merck, Darmstadt, Germany 

Methyl alcohol  Sigma-Aldrich, Deisenhofen, Germany 

Methylbenzoate     Merck, Darmstadt, Germany 

Methylene blue     Merck, Darmstadt, Germany 

Methylene violet  Chroma-Gesellschaft Schmid & Co., 

Stuttgart-Untertürkheim, Germany 

Methylmethacrylate     Merck, Darmstadt, Germany 

MicroVue DPD EIA kit     Quidel Corporation, USA 

Mouse Osteocalcin ELISA kit   Immutopics International, USA 

Na2HPO4      Merck, Darmstadt, Germany 

Naphtol AS-MX phosphate  Sigma-Aldrich, Deisenhofen, Germany 

N,N-Dimethyl-toluidine   Merck, Darmstadt, Germany  

Nuclei Lysis Solution   Promega, Mannheim, Germany 

Paraformaldehyde  Sigma-Aldrich, Deisenhofen, Germany 

Polyethylglycol     Merck, Darmstadt, Germany 

Potassium ferrocyanide  Sigma-Aldrich, Deisenhofen, Germany 

Protein Precipitation Solution   Promega, Mannheim, Germany 

Proteinase K, 20 mg/ml    Roche, Mannheim, Germany 

PTH  Bachem, Weil am Rhein, Germany 

RNAse   Promega, Mannheim, Germany 

Silver nitrate      Merck, Darmstadt, Germany 

Sodium acetate     Merck, Darmstadt, Germany 

Sodium carbonate     Merck, Darmstadt, Germany 

Sodium iodide  Sigma-Aldrich, Deisenhofen, Germany 

Sodium thiosulfate pentahydrate , 10%  Merck, Darmstadt, Germany 
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Taq DNA Polymerase Kit    Qiagen, Hilden, Germany 

Tartratic acid      Merck, Darmstadt, Germany 

TRIS  Carl Roth, Karlsruhe, Germany 

TWEEN ® 20  Sigma-Aldrich, Deisenhofen, Germany 

Xylene  Herba Chemosan Apotheker AG, 

Wien, Austria 
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4 Results 

 

Cortical bone histomorphometry of the femoral shaft 

Analysis of cross-sections of the femoral mid-diaphysis revealed a profound increase 

of periosteal and endocortical bone in the PTH-treated AREG-KO and WT mice as 

compared to their saline-treated controls, as shown by the red alizarine complexone 

line given at the start of the experiment. Measurement of the periosteal and endocor-

tical mineral apposition rate (MAR) confirmed these findings. Both the periosteal and 

the endocortical MAR were significantly increased in PTH-treated AREG-KO and WT 

mice as compared to their controls. 

 

Figure 4 Fluorochrome labeling showing the newly formed cortical bone over the whole 4-week exper-
imental period as shown by the red alizarin complexone line. Graphs show the periosteal and the endo-
cortical mineral apposition rate (MAR). Data are means ± SEM of 13-14 animals/group. * denotes p < 
0.05 vs. the respective vehicle-treated group. Results of 2-way ANOVA are shown below the graphs. 
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Figure 5 Toluidine blue-stained histological pictures of 20-µm microground cross-sections of the femo-
ral midshaft showing an increase of cortical bone in the PTH-treated AREG-KO and WT mice as com-
pared to their saline-treated controls. 
 

Toluidine blue-stained histological sections of the femoral midshaft also showed an 

increase of cortical bone in the PTH-treated AREG-KO and WT mice as compared to 

their control groups. However, automatic image analysis of toluidine blue-stained 20-

µm-thick microground sections of the femoral midshaft showed only mild changes. The 

cortical area (Ct.Ar) and the cortical thickness (Ct.Th) were increased in PTH-treated 

WT mice as compared to their saline-treated controls, whereas the total (cross-sec-

tional) area (TtCross-sectAr), the marrow area (Ma.Ar) and its relation to the total area, 

the intracortical pore area (hole area, HoleAr) and its relation to the total area, the 

intracortical pore number (hole number, HoleNo), the pore perimeter (hole perimeter, 

HolePm), the cortical area (Ct.Ar) in its relation to the total area (Ct.Ar/Tt.Ar.), the bone 

perimeter (B.Pm), the periosteal (Ps.BPm) and endocortical bone perimeter (Ec.BPm) 

were unchanged between the groups as shown in Figures 6a and 6b. No differences 

were seen between saline-treated WT and AREG-KO mice. 

In conclusion, the bone anabolic effect of intermittent PTH treatment was fully main-

tained in the femoral cortical bone of AREG-KO mice. 
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Figure 6a Automatic image analysis of toluidine blue-stained 20-µm microground cross-sections of the 
femoral midshaft. The cortical thickness (Ct.Th) and area (Ct.Ar) were increased in WT mice after four 
weeks of PTH treatment as compared to their saline-treated controls. The cortical area in relation to the 
total area (Ct.Ar/Tt.Ar) remained unchanged. No differences were found in total cross-sectional area 
(TtCross-sectAr), marrow area (Ma.Ar) and its relation to the total area. Data are means ± SEM of 9-10 
animals/group. * denotes p < 0.05 vs. the respective vehicle-treated group. Results of 2-way ANOVA 
are shown below the graphs.  
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Figure 6b Automatic image analysis of toluidine blue-stained 20-µm microground cross-sections of the 
femoral midshaft. No differences between the groups were found in bone perimeter (B.Pm), the perios-
teal (Ps.BPm) and endocortical bone perimeter (Ec.BPm), the intracortical pore area (hole area, HoleAr) 
and in its relation to the total area, in the number of intracortical pores (hole number, HoleNo) or their 
perimeter (HolePm). Data are means ± SEM of 9-10 animals/group. * denotes p < 0.05 vs. the respective 
vehicle-treated group. Results of 2-way ANOVA are shown below the graphs. 
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Cancellous bone histomorphometry of the distal femoral metaphysis 

Histology of Kossa/McNeil-stained longitudinal sections of the distal femoral metaphy-

sis revealed a profound increase of cortical and cancellous bone in both PTH-treated 

groups as compared to their saline-treated controls. 

 

Figure 7 Kossa/McNeil-stained longitudinal sections of the distal femur showing an increase of bone 
mass in the PTH-treated WT and AREG-KO mice as compared to their saline-treated controls.  

 

Analysis of Kossa/McNeil-stained sections of the distal femoral metaphysis showed 

that the osteoblast surface (in relation to the bone surface, Ob.S/BS), the osteoid sur-

face (in relation to the bone surface, OS/BS) and the osteoid volume (in relation to the 

bone volume, OV/BV) were unchanged between the groups. The osteoid thickness 

(O.Th) was increased in PTH-treated WT mice as compared to their saline-treated 

controls and the same tendency was seen in PTH-treated AREG-KO animals as com-

pared to their controls as shown in Figure 8. 

The mineral apposition rate (MAR) and the bone formation rate (BFR) were increased 

in both PTH-treated groups as compared to their vehicle-treated controls as shown in 

Figure 9. The amount of newly formed trabecular bone was measured by the distance 

between the two green calcein labels. No significant differences were found between 

saline-treated AREG-KO and WT mice and PTH-treated AREG-KO and WT mice. 

560 µm

1 mm
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Figure 8 Analysis of Kossa/McNeil-stained longitudinal sections of the distal femur showing no differ-
ences in Ob.S./BS (osteoblast surface in relation to bone surface), in OS/BS (osteoid surface in relation 
to bone surface) and OV/BV (osteoid volume in relation to bone volume). The osteoid thickness (O.Th) 
was increased in PTH-treated WT mice as compared to their saline-treated controls. Data are means ± 
SEM of 13-14 animals/group. * denotes p < 0.05 vs. the respective vehicle-treated group. Results of 2-
way ANOVA are shown below the graphs. 
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Figure 9 Mineral apposition rate (MAR) and bone formation rate (BFR) were increased in the distal 
femoral metaphysis in PTH-treated WT and AREG-KO mice as compared to their saline-treated con-
trols. Data are means ± SEM of 13-14 animals/group. * denotes p < 0.05 vs. the respective vehicle-
treated group. Results of 2-way ANOVA are shown below the graphs. 

 

 

Figure 10 Analysis of TRAP-stained longitudinal cross-sections of the femoral metaphysis to analyze 
bone resorption showing an increased number of osteoclasts per tissue area (N.Oc/T.Ar) and per bone 
perimeter (N.Oc/B.Pm) in PTH-treated WT mice as compared to their saline-treated controls. The num-
ber of osteoclasts per bone perimeter (N.Oc/B.Pm) was significantly lower in PTH-treated AREG-KO 
mice as compared to PTH-treated WT mice. Data are means ± SEM of 14 animals/group. * denotes p 
< 0.05 vs. the respective vehicle-treated group unless stated otherwise. Results of 2-way ANOVA are 
shown below the graphs. 
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Analysis of TRAP-stained sections of the femoral metaphysis revealed an increased 

number of osteoclasts per tissue area (N.Oc/T.Ar) in PTH-treated WT mice as com-

pared to saline-treated WT mice. The same tendency was seen in PTH-treated AREG-

KO mice as compared to their saline-treated controls. Interestingly, the number of os-

teoclasts per bone perimeter (N.Oc/B.Pm) was increased in PTH-treated WT mice as 

compared to their saline-treated controls, whereas no such tendency was seen in the 

PTH- and vehicle-treated AREG-KO mice. On the contrary, the number of osteoclasts 

per bone perimeter was significantly decreased in PTH-treated AREG-KO mice in com-

parison to their WT control as shown in Figure 10. 

Automatic image analysis of Kossa/McNeil-stained sections of the distal femoral met-

aphysis revealed an PTH-mediated increase in the trabecular area (Tb.Ar), the bone 

area in its relation to the tissue area (B.Ar/T.Ar), the bone perimeter in its relation to 

the tissue area (B.Pm/T.Ar), the trabecular number (Tb.N), the trabecular width (Tb.Wi) 

and the bone surface in relation to the tissue volume (BS/TV) in both PTH-treated WT 

and AREG-KO mice as compared to their vehicle-treated controls. Because of the in-

creased number of trabeculae and their increased area and width, the trabecular sep-

aration was decreased in PTH-treated WT and AREG-KO mice in comparison to their 

saline-treated controls. The trabecular number per bone area (N.Tb/B.Ar) was de-

creased in PTH-treated WT and AREG-KO mice as compared to their saline-treated 

controls. The number of trabeculae in relation to the tissue area (N.Tb/T.Ar) was de-

creased in PTH-treated WT mice as compared to their vehicle-treated control. The 

results of the automatic image analysis of the femoral metaphysis are shown in Figures 

11a and 11b. 

In summary, absence of AREG did not alter the effects of intermittent PTH treatment. 

The bone anabolic effect was maintained in the femoral trabecular bone compartment 

of AREG-KO mice. However, the number of osteoclasts per bone perimeter 

(N.Oc/B.Pm) was decreased in PTH-treated AREG-KO mice as compared to their WT 

control, indicating a decreased osteoclast formation under PTH-mediated bone ana-

bolic conditions in AREG-KO mice. 
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Figure 11a Automatic image analysis of Kossa/McNeil-stained longitudinal cross-sections of the distal 
femoral metaphysis showing an increase in the trabecular area (Tb.Ar), the bone area in its relation to 
the tissue area (B.Ar/T.Ar), the bone perimeter in its relation to the tissue area (B.Pm/T.Ar) and the 
trabecular number (Tb.N) in PTH-treated WT and AREG-KO mice as compared to their saline-treated 
controls. The number of trabeculae per bone area (N.Tb/B.Ar) was decreased in PTH-treated WT and 
AREG-KO mice in comparison to their saline-treated controls. Data are means ± SEM of 13-14 ani-
mals/group. * denotes p < 0.05 vs. the respective vehicle-treated group. Results of 2-way ANOVA are 
shown below the graphs.  
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Figure 11b Automatic image analysis of Kossa/McNeil-stained longitudinal cross-sections of the distal 
femoral metaphysis showing a decreased number of trabeculae in relation to the tissue area (N.Tb/T.Ar) 
in PTH-treated WT mice as compared to their saline-treated controls. The trabecular width (Tb.Wi) was 
increased in both PTH-treated WT and AREG-KO mice as compared to their saline-treated controls, 
and vice versa, the trabecular separation (Tb.Sp) was decreased. The relation of the bone surface to 
the tissue volume (BS/TV) was increased in PTH-treated WT and AREG-KO mice in comparison to their 
saline-treated controls. Data are means ± SEM of 13-14 animals/group. * denotes p < 0.05 vs. the 
respective vehicle-treated group. Results of 2-way ANOVA are shown below the graphs. 
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Cancellous bone histomorphometry of the first lumbar vertebra 

The amount of newly formed trabecular bone was measured by the distance of the two 

green calcein labels under fluorescent light in midsagittal sections of first lumbar (L1) 

vertebral bodies. The mineral apposition rate (MAR) was increased in PTH-treated WT 

mice in comparison to their vehicle-treated control, whereas there were only mild 

changes in the PTH-treated AREG-KO mice as compared to their controls. In line with 

the findings in the trabecular bone compartment of the distal femoral metaphysis, the 

bone formation rate (BFR) was increased after intermittent PTH treatment in both WT 

and AREG-KO mice as compared to their saline-treated controls as shown in Figure 

12. 

 

 

Figure 12 Mineral apposition rate (MAR) and bone formation rate (BFR) of the trabecular bone in the 
first lumbar vertebra. The MAR was increased in PTH-treated WT mice as compared to their saline-
treated controls. The BFR was increased in both PTH-treated WT and AREG-KO mice as compared to 
their controls. Data are means ± SEM of 14 animals/group. * denotes p < 0.05 vs. the respective vehicle-
treated group. Results of 2-way ANOVA are shown below the graphs. 
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Figure 13a Automatic image analysis of Kossa/McNeil-stained first lumbar vertebral bodies showing an 
increase of the bone area in its relation to the tissue area (B.Ar/T.Ar), the bone perimeter in its relation 
to the tissue area (B.Pm/T.Ar) and the trabecular number (Tb.N) in PTH-treated WT and AREG-KO mice 
as compared to their saline-treated controls. No significant differences were seen in the trabecular area 
(Tb.Ar) and the number of trabeculae in relation to the bone area (N.Tb/B.Ar). Data are means ± SEM 
of 13-14 animals/group. * denotes p < 0.05 vs. the respective vehicle-treated group. Results of 2-way 
ANOVA are shown below the graphs. 
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Figure 13b Automatic image analysis of Kossa/McNeil-stained first lumbar vertebral bodies showing an 
increase in the bone surface in its relation to the tissue volume (BS/TV) in both PTH-treated WT and 
AREG-KO mice as compared to their saline-treated controls. No significant differences were seen in the 
number of trabeculae in relation to the tissue area (N.Tb/T.Ar) and the trabecular width (Tb.Wi). The 
trabecular separation (Tb.Sp) was decreased in PTH-treated WT and AREG-KO mice as compared to 
their controls. Data are means ± SEM of 13-14 animals/group. * denotes p < 0.05 vs. the respective 
vehicle-treated group. Results of 2-way ANOVA are shown below the graphs. 
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Automatic image analysis of Kossa/McNeil-stained sections of the first lumbar verte-

bral bodies revealed an increase in the bone area in its relation to the tissue area 

(B.Ar/T.Ar), the bone perimeter in its relation to the tissue area (B.Pm/T.Ar), the tra-

becular number (Tb.N) and the bone surface in relation to the tissue volume (BS/TV) 

in both PTH-treated WT and AREG-KO mice as compared to their saline-treated con-

trols as shown in Figures 13a and 13b. These findings were in line with the previous 

results of the trabecular bone compartment in the distal femoral metaphysis. The tra-

becular separation (Tb.Sp) was decreased in both PTH-treated groups as compared 

to their vehicle-treated controls. The trabecular area (Tb.Ar), the number of trabeculae 

in its relation to the bone area (N.Tb/B.Ar), the number of trabeculae in relation to the 

tissue area (N.Tb/T.Ar) and the trabecular width (Tb.Wi) remained unaffected by inter-

mittent PTH treatment in both WT and AREG-KO mice. 

 

Analysis of serum Osteocalcin and urinary deoxypyridinoline 

To evaluate the effect of intermittent PTH treatment at the whole body level, the serum 

level of osteocalcin, a systemic marker for bone formation, and the excretion of urinary 

collagen crosslink deoxypyridinoline (DPD), a marker for bone resorption, were meas-

ured by ELISA. 

Serum osteocalcin was increased in PTH-treated WT and AREG-KO mice as com-

pared to their vehicle-treated controls as shown in Figure 14. These findings were in 

line with the increased BFR in the trabecular and cortical bone compartment, further 

suggesting that intermittent PTH treatment might lead to an increased bone anabolism 

at the whole body level in both WT and AREG-KO mice and that this effect might not 

only be restricted to the femur and the first lumbar vertebra, but also present at the 

whole body level.  

The level of urinary DPD remained unchanged by intermittent PTH treatment in WT 

and AREG-KO mice, indicating that the possible effect of intermittent PTH treatment 

on bone resorption could not be assessed with this marker. The results of urinary DPD 

levels are shown in Figure 14. 
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Figure 14 Serum osteocalcin and urinary deoxypyridinoline/creatinine (DPD/Crea) levels in vehicle and 
PTH-treated WT and AREG-KO mice after 4 weeks of intermittent PTH treatment. Serum osteocalcin 
was increased in both PTH-treated WT and AREG-KO mice as compared to their saline-treated controls, 
whereas urine DPD remained unchanged. Data are means ± SEM of 12-14 animals/group. * denotes p 
< 0.05 vs. the respective vehicle-treated group by 1-way ANOVA followed by SNK test. Results of 2-
way ANOVA are shown below the graphs. 

 

S
e

ru
m

 O
s

te
o

c
a

lc
in

 (
n

g
/m

L
)

0

2

4

6

8

10

*
*

U
ri

n
e

 D
P

D
/C

re
a

 (
n

M
/m

M
)

0

50

100

150

200

AREG-KO: ns
PTH: ns
AREG-KO * PTH: ns

AREG-KO: ns
PTH: p < 0.001
AREG-KO * PTH: ns

AREG WT NaCl

AREG WT PTH

AREG-KO NaCl

AREG-KO PTH



45 

5 Discussion 

 

To investigate to which extent AREG is required for the bone anabolic actions of PTH, 

we treated AREG-KO mice and their WT controls intermittently with PTH (1-34) or ve-

hicle (saline) and their bone phenotype was evaluated in detail. In addition to bone 

histomorphometry, µ-CT analysis was kindly conducted by Mithila Vaidya of the labor-

atory of Prof. Reinhold Erben, Vienna, Austria. Furthermore, to investigate the role of 

AREG in bone development and homeostasis in vivo, the bone phenotype of 3- and 8-

month-old AREG-KO and WT mice was analyzed by µ-CT. The results of the study 

were published in Molecular and Cellular Endocrinology (Jay et al., 2015). In summary, 

our data indicate that AREG plays only a minor role in bone homeostasis in non-grow-

ing mice and is not required for the bone anabolic actions of intermittent PTH. 

In AREG-KO mice, the deletion of exons 3 and 4 eliminates all three disulfide bounds, 

the heparin-binding region and the transmembrane domain of Pro-AREG. Additionally, 

splicing of exon 2 to exon 5 leads to a frameshift (Luetteke et al., 1999). It was reported 

previously that AREG-KO mice show no alterations in growth or body weight, but fe-

male 4-week-old AREG-KO mice have less trabecular bone as compared to their WT 

control littermates (Luetteke et al., 1999, Qin et al., 2005). It has been described by 

Qin and co-workers that female 4-week-old AREG-KO mice have a reduced trabecular 

number, trabecular thickness, connectivity density and percent bone volume in the 

proximal tibia, and as a consequence an increased trabecular separation, whereas no 

differences were found in the cortical bone compartment (Qin et al., 2005). In our study, 

µ-CT analysis showed that 3-month-old female AREG-KO mice had a mildly reduced 

cortical BMD and 8-month-old female AREG-KO mice showed a minor cortical thinning 

at the femoral midshaft as compared to WT controls. However, there were no differ-

ences in the trabecular bone compartment in the distal femoral metaphysis (Jay et al., 

2015). The different results between our study and that of Qin and co-workers are 

probably due to the different age of the animals (early puberty versus sexual maturity). 

Our data indicate that the lack of AREG does not lead to major abnormalities on cortical 

and trabecular bone on non-growing, sexually mature female mice (Jay et al., 2015). 

To investigate to which extent the lack of AREG might be functionally compensated by 

other EGFR ligands in bone cells in vivo, the expression levels in osteoblasts harvested 
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from the distal femoral metaphysis of male and female 3-week-old AREG-KO, hetero-

zygous AREG+/- and WT mice were analyzed by qRT-PCR in our study. The expres-

sion levels of Btc and Epgn were decreased in osteoblasts of AREG-KO mice as com-

pared to their controls. The mRNA expression level of Ereg remained unchanged, 

whereas the levels of Egf and Hbegf were significantly increased in osteoblasts of 

AREG-KO mice as compared to their controls. A similar tendency was seen in the 

mRNA levels of Tgfa (P=0.062) (Jay et al., 2015). The increased expression levels of 

Egf, Hbegf and Tgfa in AREG-KO mice might, at least in part, be counterbalancing the 

effects of AREG deficiency and therefore explaining the only minor skeletal alterations 

in AREG-KO mice. 

In line with these findings, it was previously reported that reduced expression of one 

EGFR-ligand can alter the expression levels of the other EGFR-ligands. In EPGN de-

ficient mice, the expression of Btc was increased in testes and Egf expression was 

increased in kindney, lung and testes (Dahlhoff et al., 2013). After hepatic injury, which 

leads to increased expression of Areg, the expression of Tgfa, Egf and Btc were de-

creased as compared to baseline levels, whereas the expression of Ereg was in-

creased (Berasain and Avila, 2014, Berasain et al., 2005). 

In our study no differences in the femurs of male AREG-KO mice were found in pQCT 

analyses (unpublished data), indicating that the mild effects of AREG deficiency on 

cortical bone are sex-specific. In line with these findings, the reduction in trabecular 

bone volume in 4-week-old (pubescent) AREG-KO mice was only described in females 

(Qin et al., 2005). 

Skeletal sex-dependent differences in mice occur during puberty (3 to 8 weeks of age) 

and are characterized by a larger and stronger skeleton in male animals as compared 

to females (Callewaert et al., 2010c). The sexual hormones estrogen and testosterone 

and their receptors are involved in the development of skeletal sexual dimorphism and 

have an important impact on skeletal growth and bone homeostasis (Callewaert et al., 

2010b). The primary female sex hormone estrogen limits periosteal bone expansion 

but stimulates endosteal bone apposition in females (Callewaert et al., 2010b, 

Callewaert et al., 2010c). Estrogen can act directly on bone cells and functional estro-

gen receptors are expressed in osteoblasts, osteocytes and osteoclasts (Riggs et al., 

2002, Braidman et al., 2000, Eriksen et al., 1988, Oursler et al., 1991, Tomkinson et 
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al., 1998). In vitro studies showed that estrogen can increase proliferation and differ-

entiation of mouse bone marrow derived osteoblastic-like cells, and it can increase 

osteoclast apoptosis (Qu et al., 1998, Hughes et al., 1996). Estrogen deficiency leads 

to an increased bone resorption and is a main reason for postmenopausal osteoporo-

sis in elderly women (Riggs et al., 2002, Manolagas, 2000). In addition to the actions 

of sex steroid hormones on bone, it is well established that growth hormone (GH, so-

matotropin) and IGF1 play a critical role in pubertal bone growth and in the develop-

ment of skeletal sexual dimorphism. Estrogen can interact with IGF1 by increasing the 

expression of Gh and can therefore, in addition to its direct action on bone cells, indi-

rectly modulate skeletal growth (Callewaert et al., 2010b, Callewaert et al., 2010c, 

Mauras et al., 1996). In addition to the effects of sex on bone, it has been established 

that bone tissue has in its turn an influence on murine (and human) fertility, as the 

osteoblast specific hormone osteocalcin can modulate testosterone synthesis 

(Karsenty and Oury, 2014). Furthermore, estrogen can increase the expression of Areg 

and Erbb2 in MCF-7 human breast carcinoma cells, indicating that Areg is an estrogen 

target gene in vitro (Vendrell et al., 2004). Most recently, Areg has been identified as 

a key target gene of estrogen receptor positive breast cancer cells (Peterson et al., 

2015). 

As in mice, the human male skeleton is larger and stronger than the female skeleton. 

Moreover, men do not experience menopause and therefore lose less bone during 

aging (Callewaert et al., 2010a). 

During menopause, the dropping levels of ovarian estrogen lead to accelerated bone 

loss and can cause postmenopausal osteoporosis (Cauley, 2014). Estrogen deficiency 

leads to an increased secretion of several bone-resorbing cytokines, such as IL1, IL6, 

tumor necrosis factor α (TNF), macrophage colony-stimulating factor (MCSF), and 

granulocyte-macrophage colony-stimulating factor (GMCSF) (Pacifici, 1996, Tella and 

Gallagher, 2014, Khosla et al., 2012). Loss of estrogen also leads to an increased NF-

κB activity in osteoblasts, resulting in a suppressed osteoblast activity and inhibited 

bone formation (Chang et al., 2009, Khosla et al., 2012). 

There are two major approaches to treat osteoporosis: to prevent bone loss using anti 

resorptive agents (e.g. bisphosphonates, denosumab) and to stimulate bone formation 

with bone anabolic agents (e.g. strontium ranelate, teriparatide) (Tella and Gallagher, 
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2014). Bisphosphonates decrease bone turnover by inhibiting osteoclast formation. 

Denosumab is a monoclonal antibody, which specifically binds RANKL, hence sup-

pressing osteoclast formation by inhibiting the binding of RANKL to its receptor RANK 

(Tella and Gallagher, 2014). Strontium renalate is, besides teriparatide, one of the few 

bone anabolic agents used in osteoporosis treatment. It stimulates bone formation by 

increasing osteoblast proliferation, but treatment with strontium renalate is contraindi-

cated in patients with cardiovascular diseases (Canalis et al., 1996, Marie et al., 2001, 

Reginster et al., 2015). Teriparatide contains recombinant human PTH (1-34) and can 

increase bone formation when injected intermittently (Poole and Reeve, 2005). Daily 

treatment with teriparatide rapidly increases bone mass and even weekly injections 

can lead to a bone anabolic effect (Sugiyama et al., 2015). 

However, the detailed mechanisms behind the bone anabolic actions of intermittent 

PTH treatment have not yet been fully understood. Several signaling pathways have 

been identified to play a role in mediating the bone anabolic effect of intermittent PTH 

treatment (Schneider et al., 2012), e.g. IGF1 (Miyakoshi et al., 2001), c-fos (Demiralp 

et al., 2002), IL18 (Raggatt et al., 2008), ß-arrestin 2 (Bouxsein et al., 2005), sclerostin 

(Kramer et al., 2010a) and the osteoclast regulating factor MCP1 (Tamasi et al., 2013). 

The bone anabolic effect of intermittent PTH was blunted in 5-week-old IGF1 deficient 

mice (Miyakoshi et al., 2001), in 4-day-old c-fos deficient mice (Demiralp et al., 2002), 

in 7- to 8-week old IL18 deficient mice (Raggatt et al., 2008), in 4- and 6- month-old 

MCP1 deficient mice (in females to a lesser extent than in males) (Tamasi et al., 2013) 

and in 8-week-old sclerostin deficient male mice and in 6-month-old sclerostin overex-

pressing mice (Kramer et al., 2010b). In 13-week-old female and in 12-week-old male 

ß-arrestin 2 deficient mice the bone anabolic effect of intermittent PTH was altered and 

varied according to the sex (Bouxsein et al., 2005, Ferrari et al., 2005). 

The EGFR ligand Areg was identified as a PTH target gene in vitro and in vivo (Qin et 

al., 2005). In rat UMR 106-01 osteoblastic cells Areg expression was increased more 

than 2-fold 4h and 12h after treatment with rat PTH (1-34) (Qin et al., 2003). In rat 

calvarial osteoblasts, administration of rat PTH (1-34) increased the expression of Areg 

with the highest induction (23-fold) on day 14 (mineralization phase) and the lowest (5-

fold) at day 6 (proliferative phase). The strongest induction was at 1h after administra-
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tion in all three phases of proliferation, differentiation and mineralization, while the ba-

sal Areg expression levels did not change (Qin et al., 2005). In mouse MC3T3 cells 

Areg expression was also increased after PTH treatment (Qin et al., 2005). In vivo, 

intermittent treatment of 4-week-old male Sprague-Dawley rats with human PTH (1-

38) increased Areg expression in the distal femoral metaphysis 12-fold after 1h and 2-

fold after 4h (Qin et al., 2005). Areg expression was also stimulated by other osteo-

tropic hormones, such as prostaglandin E2 and 1,25 dihydroxyvitamin D3, in rat primary 

osteoblastic cells. Treatment of rat primary osteoblastic cells with prostaglandin E2 in-

creased Areg expression with a peak (13-fold) after 1h. Administration of 1,25 dihy-

droxyvitamin D3 to rat primary osteoblastic cells increased Areg expression with a peak 

(24-fold) after 12h, but was lower at 1h (3-fold) and 4h (2-fold) (Qin et al., 2005). Pre-

viously, other in vitro studies showed that Areg is also a 1,25 dihydroxyvitamin D3 target 

gene in cells derived from a human squamous cell carcinoma and in human breast 

cancer cell lines (Akutsu et al., 2001). 

Furthermore, in vitro studies showed that AREG stimulates proliferation and prevents 

differentiation and mineralization of rat calvarial osteoblasts (Qin et al., 2005). Addition 

of AREG to the medium of rat calvarial preosteoblastic cells increased their prolifera-

tion even in low concentrations (5ng/ml). Inhibition of the EGFR blocked this prolifera-

tive effect of AREG, indicating that this effect is mediated via EGFR signaling. The 

presence of ß-glycerolphosphate and ascorbic acid usually induces differentiation and 

mineralization of calvarial osteoblasts, which start to build bone nodules (Qin et al., 

2005). Administration of AREG to the medium either from day 1 or day 7 to day 20 

completely inhibited differentiation, as there was no formation of bone nodules. Analy-

sis of RNA harvested from these day 20 cultures showed an increase in the expression 

of several bone markers, such as Mmp13, alkaline phosphatase, osteocalcin and os-

teonectin in AREG-treated cells as compared to untreated cells (Qin et al., 2005). 

AREG also stimulated the phosphorylation of AKT and ERK, two major downstream 

signaling pathways activated by the EGFR, and increased the expression of c-jun and 

c-fos, whose expression can be activated by phosphorylated ERK (Qin et al., 2005). 

AREG was also identified as a chemotactic factor for mesenchymal progenitors (Zhu 

et al., 2012). PTH treatment leads to release of AREG from osteoblastic cells, which 

promotes the migration of mesenchymal progenitors in vitro via AKT and p38MAPK 

pathways (Zhu et al., 2012). In the same study it was shown that the bone anabolic 
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effect was blunted in EGFRwa5/flox Col 3.6-Cre mice, indicating that the bone anabolic 

properties of intermittent PTH require EGFR signaling. However, the bone anabolic 

effect was fully maintained in heterozygous Wa5 mice, most likely due to residual 

EGFR activity in these animals (Schneider et al., 2012). 

AREG seems to be the major EGFR ligand mediating the bone anabolic effect of PTH 

(Schneider et al., 2009b). To investigate the role of AREG in mediating the bone ana-

bolic actions of PTH, we treated 3-month-old female AREG-KO and WT mice intermit-

tently with PTH or vehicle (physiological saline) five times a week over a period of four 

weeks and analyzed their bone phenotype in detail. 

Surprisingly, the bone anabolic effect of PTH was fully maintained in female AREG-

KO mice in our study (Jay et al., 2015). In the femoral midshaft, microground histolog-

ical sections revealed a strong increase in the cortical thickness in PTH-treated AREG-

KO and WT mice as compared to their saline-treated controls. µ-CT analysis confirmed 

a higher BMD and cortical thickness in the femoral midshaft of the PTH-treated mice 

(Jay et al., 2015). There were no differences in the PTH-mediated increase of cortical 

BMD and cortical thickness between AREG-KO and WT mice. In line with the previous 

findings in 3- and 8-month-old AREG-KO mice, there was a small reduction in the cor-

tical BMD and cortical thickness in the vehicle-treated AREG-KO mice as compared to 

their WT controls (Jay et al., 2015). PTH treatment profoundly increased the amount 

of newly formed periosteal and endocortical bone. Measurement of the periosteal and 

endocortical mineral apposition rate (MAR) showed a marked increase in the bone 

formation over the four weeks of experiment in both WT and AREG-KO mice. 

In the distal femoral metaphysis intermittent PTH treatment led to an increase in BMD, 

trabecular thickness and bone formation rate (BFR) in both AREG-KO and WT mice 

as compared to their saline-treated controls (Jay et al., 2015). Consistent with the pre-

vious results in 3- and 8-month-old mice, no differences were observed in the trabec-

ular bone compartment between vehicle-treated AREG-KO and WT mice. 

The number of osteoclasts per bone perimeter was lower in PTH-treated AREG-KO 

mice as compared to PTH-treated WT mice. It is known that intermittent PTH treatment 

leads to higher expression levels of Rankl, resulting in an increased osteoclast for-

mation and therefore bone resorption, most likely to sustain the balance between bone 

formation and bone resorption (Li et al., 2007a). Osteoclasts do not express functional 
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EGFR, but it was shown by Zhu and co-workers that EGFR ligands can indirectly in-

crease osteoclast recruitment by modulating the expression of Mcp1 and Opg (Zhu et 

al., 2007). EGFR ligands can stimulate the expression of Mcp1 in osteoblasts, resulting 

in an increased osteoclast formation (Zhu et al., 2007). Additionally, it has to be men-

tioned that Rankl, whose expression is increased by intermittent PTH treatment, also 

stimulates Mcp1 expression and can therefore not only directly, but also indirectly pro-

mote osteoclastogenesis (Kim et al., 2005, Li et al., 2007a). EGFR ligands seem to 

have no apparent effect on Rankl expression in osteoblastic cells (Kim et al., 2005). 

Furthermore, EGFR ligands can inhibit the expression of Opg and further increase os-

teoclast formation (Zhu et al., 2007). Normally, OPG acts as a decoy receptor for 

RANKL and blocks its binding to RANK, leading to a reduced osteoclast formation 

(Boyle et al., 2003). Moreover, it has been reported that EGFR-KO mice have delayed 

osteoclast recruitment into the hypertrophic cartilage, and a reduced osteoclast num-

ber was observed at the border to the bone marrow space in TGFA-KO mice and in 

mice with a reduced EGFR activity specifically in chondrocytes (Usmani et al., 2012, 

Wang et al., 2004, Zhang et al., 2013). In line with these findings, our data indicate that 

the absence of AREG leads to a reduced recruitment of osteoclasts and therefore to a 

reduced bone resorption under PTH-mediated bone anabolic conditions, while the BFR 

was similar to that of PTH-treated WT mice. However, this reduction in bone resorption 

did not translate into a stronger bone anabolic effect in PTH-treated AREG-KO mice in 

comparison to PTH-treated WT mice (Jay et al., 2015). 

To evaluate the effects of intermittent PTH treatment at the whole body level, we meas-

ured the serum levels of osteocalcin. Osteocalcin is a non-collagenous protein prefer-

entially expressed by mature, mineralized osteoblasts, and used as a marker for bone 

formation, since it directly reflects the level of osteoblast formation and activity (Neve 

et al., 2013, Chapurlat and Confavreux, 2016). In vitro studies showed that PTH can 

promote osteocalcin transcription in osteoblastic-like cells (Yu and Chandrasekhar, 

1997). Osteocalcin is also released by osteoclasts in vitro, and administration of PTH 

increases the levels of osteocalcin in osteoclasts (Ivaska et al., 2004). The levels of 

serum osteocalcin were similarly increased in the PTH-treated WT and AREG-KO mice 

as compared to their vehicle-treated controls. This finding further indicates that the lack 

of AREG does not impair the bone anabolic effect of intermittent PTH treatment, not 

only at the femur but possibly also on the whole body level (Jay et al., 2015). 
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The level of urinary collagen crosslink deoxypyridinoline (DPD) was unchanged be-

tween the groups. Urinary DPD is a product of collagen degradation and is used as a 

marker for bone resorption (Vesper et al., 2003). However, a possible effect of inter-

mittent PTH treatment on bone resorption could not be assessed with this marker. 

 

Previously it was shown by Zhang and co-workers that the bone anabolic action of 

intermittent PTH was blunted in in EGFRwa5/flox Col 3.6-Cre mice, indicating that this 

effect requires signaling via the EGFR (Zhu et al., 2012). AREG was assumed to be 

the most important ligand of the EGFR in bone and was identified as a PTH target 

gene in vitro and in vivo (Qin et al., 2003, Qin et al., 2005). Surprisingly, the bone 

anabolic response was fully maintained in AREG-KO mice. It is likely that other path-

ways and growth factors might compensate the lack of AREG. Microarray analysis 

identified Tgfa as a PTH-regulated gene (Qin et al., 2003). In UMR 106-01 osteoblastic 

cells Tgfa expression was increased 2.5-fold 4h after PTH treatment. The expression 

of the proto-oncogene c-fos, whose transcription can be activated via EGFR signaling, 

was also found to be upregulated in this study (7-fold after 4h, 2.5-fold after 12h) (Qin 

et al., 2003, Schneider et al., 2009b). It is possible that in absence of AREG, TGFA or 

other EGFR ligands can mediate the bone anabolic effect of PTH via the EGFR. 

Several studies showed that EGFR signaling leads to an anabolic effect in bone. 3-

month-old EGFRwa5/flox Col 3.6-Cre mice have shorter femurs and a significantly re-

duced total BMD, trabecular BMD and cortical thickness (Zhang et al., 2011b). Vice 

versa, mice with a constitutively activation and increased signaling of the EGFR have 

a higher trabecular BMD in both sexes, and a higher total BMD in females (Fitch et al., 

2003, Zhang et al., 2011b). However, 6-month-old female Dsk5 mice do not exhibit a 

bone phenotype, while there is still a profound increase in bone volume in age-matched 

male Dsk5 mice, indicating that sex-specific factors, e.g. estrogen, might influence the 

effects of EGFR signaling in bone (Zhang et al., 2011b). In line with the findings in 

osteoblast-specific EGFR-KO mice, 3-month-old heterozygous Wa5 mice in a C57BL/6 

background have a reduced total BMD in femurs and lumbar vertebral bodies 

(Schneider et al., 2012). In a different genetic background (129S1/SvImJ) 1- and 3-

month-old heterozygous Wa5 mice did not develop a bone phenotype (Zhang et al., 

2011b). Such phenotypic variations depending on the genetic background have been 
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reported earlier in total EGFR-KO mice (Sibilia and Wagner, 1995, Threadgill et al., 

1995). 

While lack of AREG leads to a reduced trabecular bone mass in 4-week-old female 

mice and to slightly reduced BMD and minor cortical thinning in sexually mature female 

mice, Areg overexpression leads to a transient increase in the trabecular bone mass 

(Qin et al., 2005, Vaidya et al., 2015, Jay et al., 2015). Mice with an osteoblast-specific 

overexpression of Areg under the control of the 2.3kb collagen α1 promoter (COL1-

AREG) showed an increased trabecular BMD in the distal femoral metaphysis at 4, 8, 

and 10 weeks of age as compared to WT controls (Vaidya et al., 2015). However, the 

bone phenotype was transient and completely disappeared in 5- and 18-month-old 

mice. No differences were found in the femoral midshaft and in the lumbar vertebrae 

between COL1-AREG and WT mice, indicating that the effects of Areg overexpression 

are site-specific and growth-related. The number of osteoclasts was significantly lower 

in 4-week-old COL1-AREG mice, while the trabecular BFR remained unchanged, indi-

cating that the transient increase in trabecular BMD is due to a reduced bone resorp-

tion (Vaidya et al., 2015). These data demonstrate that EGFR ligands can not only 

stimulate osteoclastogenesis, but that an increased EGFR activity in consequence of 

AREG overabundance can also decrease osteoclast formation (Zhu et al., 2007, 

Vaidya et al., 2015). Furthermore, in vitro studies with mouse calvarial osteoblasts 

showed that Areg overexpression did not change osteoblast differentiation or prolifer-

ation (Vaidya et al., 2015). 

In conclusion, our data suggest that AREG is dispensable for the bone anabolic actions 

of intermittent PTH treatment. AREG plays only a minor role in bone development, and 

lack of AREG results in a reduced cortical thickness and cortical BMD in sexually ma-

ture female mice (Jay et al., 2015). 

Analysis of the expression levels of the other EGFR ligands in AREG-KO osteoblasts 

revealed an increased expression of Egf and Hbegf and a similar trend was seen for 

Tgfa. The latter is of particular interest, because Tgfa was previously reported to be a 

PTH target gene in osteoblasts. Microarray analysis showed that Tgfa expression was 

increased in rat UMR 106-01 osteoblastic cells after PTH treatment (Qin et al., 2003). 

Both Hbegf and Tgfa have been previously reported to be PTH-regulated target genes 
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in rat UMR 106-01 osteoblastic cells (Qin et al., 2005). Future analysis of the expres-

sion levels of the other EGFR ligands in AREG deficient osteoblasts under PTH-medi-

ated bone anabolic conditions will help to gain a greater knowledge about the ability of 

the other ligands to compensate the lack of AREG. In vivo studies, assessing the role 

of TGFA alone and in combination with AREG, will help to gain greater insight in the 

role of EGFR signaling in mediating the bone anabolic actions of intermittent PTH treat-

ment. 

To further understand the underlying mechanisms of the bone anabolic effect of PTH, 

future work needs to assess the role of EGFR signaling in bone in combination with 

the closely related ERBB2 receptor, which is the preferred heterodimerization partner 

of EGFR and the EGFR family member with the highest expression in bone cells (Citri 

and Yarden, 2006, Genetos et al., 2010, Jay et al., 2015). 
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6 Summary 

 

Parathyroid hormone (PTH) is a key regulator of bone remodeling and calcium home-

ostasis. It is well established that PTH, in contrast to its classical bone catabolic ac-

tions, can also act as a bone anabolic agent when administered intermittently (Tam et 

al., 1982, Poole and Reeve, 2005). 

In recent years, numerous signaling pathways and molecules have been proposed as 

mediators of this paradoxical action. However, the detailed mechanisms remain largely 

unknown. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor 

(EGFR) has been identified as a PTH target gene in vitro and in vivo, and there is 

accumulating evidence that the bone anabolic actions of PTH might be, at least in part, 

mediated via AREG-EGFR-signaling (Schneider et al., 2009b, Qin et al., 2005). Areg 

expression was highly increased in UMR 106-01 osteoblastic cells, primary rat calvarial 

osteoblasts, mouse MC3T3 cells and in the femoral metaphysis of young male rats 

after PTH treatment (Qin et al., 2003, Qin et al., 2005). Furthermore, AREG stimulates 

proliferation and inhibits differentiation and mineralization of osteoblasts and Areg ex-

pression is also increased by other osteotropic hormones, such as prostaglandin E2 

and 1,25-dihydroxyvitamin D3 (Qin et al., 2005). Mice lacking AREG show no altera-

tions in growth but they have been reported to have less trabecular bone as compared 

to controls (Qin et al., 2005, Luetteke et al., 1999). Vice versa, mice overexpressing 

Areg specifically in osteoblasts showed a transient increase of bone mass in the tra-

becular bone compartment (Vaidya et al., 2015). Taken together, these data indicate 

that AREG seems to be the major EGFR-ligand in mediating the bone anabolic prop-

erties of intermittent PTH. 

To clarify to which extent AREG is required for the bone anabolic actions of PTH in 

vivo, we treated 3-month-old female global AREG knockout (AREG-KO) mice and con-

trols with 80µg/kg PTH (1-34) or vehicle (physiological saline) five times per week over 

four weeks and analyzed their bone phenotype via bone histomorphometry. Addition-

ally, we analyzed the levels of serum osteocalcin, a marker for bone formation, and 

urinary deoxypyridinoline, a marker for bone resorption. 
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Intermittent PTH treatment of AREG-KO mice led to an increased bone formation of 

trabecular and cortical bone, which was comparable to the effect in control animals. 

Hence, the bone anabolic effect was fully maintained in AREG-KO mice. Surprisingly, 

the number of osteoclasts per bone perimeter was decreased in PTH-treated AREG-

KO mice relative to their respective wildtype controls, indicating that lack of AREG 

leads to a reduced osteoclastogenesis under PTH-mediated bone anabolic conditions. 

However, this reduction did not translate into a stronger bone anabolic effect in AREG-

KO mice. The levels of serum osteocalcin were increased in both PTH-treated groups 

as compared to their vehicle-treated controls, suggesting that PTH might lead to an 

increased bone anabolism at the whole body level in both wildtype and AREG-KO 

mice. The urinary levels of deoxypyridinoline remained unchanged between the 

groups, indicating that the effect of PTH on bone resorption could not be assessed with 

this marker. 

In conclusion, our data indicate that AREG is dispensable for the bone anabolic ef-

fect of intermittent PTH, at least in 3-month-old female mice. 
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7 Zusammenfassung 

 

Parathormon (PTH) ist ein Hauptregulator des Knochenstoffwechsels und der Calci-

umhomöostase. Es ist allgemein bekannt, dass PTH im Gegensatz zu seiner klassi-

schen knochenkatabolen Eigenschaft auch knochenanabol wirken kann, wenn es in-

termittierend verabreicht wird (Tam et al., 1982, Poole and Reeve, 2005). 

In den letzten Jahren wurden von zahlreichen Signalwegen und Moleküle vermutet, 

dass sie diesen paradoxen Effekt vermitteln. Die genauen Mechanismen sind jedoch 

immer noch weitestgehend unbekannt. Amphiregulin (AREG), ein Ligand des Epider-

mal Growth Factor Receptors (EGFR), wurde in vitro und in vivo als PTH-reguliertes 

Gen identifiziert, und es gibt zunehmend Hinweise darauf, dass die knochenanabole 

Wirkung von PTH zumindest teilweise über den AREG-EGFR-Signalweg vermittelt 

sein könnte (Schneider et al., 2009b, Qin et al., 2005). Die Expression von Areg war 

in UMR 106-01 osteoblasten-ähnlichen Zellen, in primären Osteoblasten aus Ratten-

Calvarien, in Maus-MC3T3 Zellen und in der Metaphyse des Femurs junger männli-

cher Ratten nach PTH-Behandlung stark erhöht (Qin et al., 2003, Qin et al., 2005). 

Zudem stimuliert AREG die Proliferation von Osteoblasten, während es ihre Differen-

zierung und Mineralisation hemmt. Auch andere osteotrope Hormone, wie Prostaglan-

din E2 und 1,25-Dihydroxyvitamin D3, erhöhen die Expression von Areg (Qin et al., 

2005). Mäuse, denen AREG fehlt, zeigen kein verändertes Wachstum, aber sie haben 

weniger trabekulären Knochen im Vergleich zu Kontrolltieren (Qin et al., 2005, 

Luetteke et al., 1999). Umgekehrt zeigen Mäuse mit osteoblasten-spezifischer Über-

expression von Areg einen transienten Anstieg der trabekulären Knochenmasse 

(Vaidya et al., 2015). All diese Daten weisen darauf hin, dass AREG vermutlich der 

wichtigste Ligand des EGFR ist, der die knochenanabolen Eigenschaften von intermit-

tierend verabreichtem PTH vermittelt. 

Um zu klären, inwieweit AREG für die knochenanabole Wirkung von PTH in vivo be-

nötigt wird, wurden 3 Monate alte weibliche ubiquitäre AREG-Knockout Mäuse (AREG-

KO) und Kontrolltiere mit 80µg/kg PTH (1-34) oder Trägersubstanz (physiologische 

Kochsalzlösung) fünfmal die Woche für vier Wochen behandelt, und der Knochenphä-
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notyp histomorphometrisch ausgewertet. Zusätzlich wurde die Osteocalcin-Konzent-

ration im Serum, ein Marker für die Knochenformation, und die Deoxypyridinoline-Kon-

zentration im Urin, ein Marker für die Knochenresorption, gemessen. 

Die intermittierende Behandlung mit PTH führte zu einer erhöhten kortikalen und tra-

bekulären Knochenneubildung in AREG-KO Mäusen, die mit der in Kontrollmäusen 

vergleichbar war. Der knochenanabole Effekt war also in AREG-KO Mäusen in vollem 

Umfang erhalten. Überraschenderweise war die Anzahl der Osteoklasten in Relation 

zum Knochenumfang in den mit PTH behandelten AREG-KO Mäusen niedriger als in 

der entsprechenden Wildtyp-Kontrollgruppe. Dies lässt darauf schließen, dass in Ab-

wesenheit von AREG unter PTH-vermittelten knochenanabolen Bedingungen weniger 

Osteoklasten gebildet werden. Diese Reduktion führte jedoch nicht zu einem stärkeren 

knochenanabolen Effekt in AREG-KO Mäusen. In beiden mit PTH behandelten Grup-

pen war im Vergleich zu den mit Trägersubstanz behandelten Kontrollgruppen ein An-

stieg an Osteocalcin im Serum feststellbar. Dies weist darauf hin, dass PTH sowohl 

bei AREG-KO Mäusen als auch bei Kontrolltieren im gesamten Körper knochenanabol 

wirken könnte. Die im Urin gemessenen Werte von Deoxypyridinoline unterschieden 

sich nicht zwischen den Gruppen, was vermuten lässt, dass der Einfluss der PTH-

Behandlung auf die Knochenresorption mit diesem Marker nicht erfasst werden 

konnte. 

Zusammengefasst deuten unsere Daten darauf hin, dass AREG für den knochenana-

bolen Effekt, zumindest in 3 Monate alten weiblichen Mäusen, nicht benötigt wird. 
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