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Summary

The innate immune system provides our body with a first set of rapid defense mechanisms against

invading pathogens. Microbial or eukaryotic invaders are sensed by specialized, germline-encoded

innate immune receptors that induce the activation of a systemic response in order to fight off the

infection. The innate immune system also triggers the activation of the adaptive immune system

and modulates the phenotype and function of the adaptive response.

Constitutive activation of innate immune sensors, however, or loss of specificity and thereforemisfir-

ing by detection of endogenous molecules can lead to serious autoimmune disorders. Indeed, more

and more diseases have been linked to different innate immune pathways. The molecular basis for

incorrect signaling, nevertheless, often remains to be determined.

The RIG-I-like receptors (RLRs) RIG-I, MDA5 and LGP2 are cytosolic distributed proteins, that detect

foreign double-stranded (ds) RNA. RLRs consist of several domains specialized in dsRNA-recognition

as well as in transmitting the recognition event to other proteins in order to start the defense.

Despite the availability of several RLR protein structures accompanied with various in vitro and in

vivo experiments, the exact role of their central Superfamily 2 (SF2) helicase domain, that displays

an RNA-dependent ATP hydrolysis function, is still not understood. Furthermore, whereas from in

vitro experiments it is known that RIG-I favors the recognition of short dsRNA ends containing 5′ tri-

or diphosphates andMDA5 cooperatively binds within long dsRNA, so far only limited knowledge of

in vivo ligands and their origin in infected cells is available.

In order to identify physiological ligands of RLRs, in the first part of this thesis, RIG-I and MDA5 pro-

tein:RNA complexes from measles virus (MeV)-infected cells were purified and analyzed via deep

sequencing. The results were validated by qPCR and are supported by several in vitro and in silico

analyses. Specifically, RIG-I and MDA5 were found to recognize distinct but partly overlapping MeV

RNA species: MDA5 preferentially interacted with mRNA species of the MeV polymerase gene. RIG-

I additionally bound positive and negative-sense RNA near the genomic and antigenomic 5′ ends.

Both RIG-I and MDA5 interacted with 5′-copyback defective interfering (DI) sequences as detected

by PCR. Further, in vitro transcripts covering different regions of the MeV antigenome were used

to verify the correlation between actual immunostimulatory potential of RNA and deep sequencing

results. Bioinformatics analysis in addition revealed a preference of MDA5 for AU-rich RNA but an

anti-correlation of MDA5 ATP hydrolysis rate and RNA AU-content.

Based on this study, a model of how MDA5 preferentially senses AU-rich dsRNA species can be es-

tablished: In this regard a reduced ATPase function of MDA5 when bound to AU-rich RNA helps to

generate stable protein filaments and therefore leads to increased type I interferon signaling.
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Summary

In the second and major part of this thesis the RIG-I SF2 helicase domain as well as RIG-I variants

identified in the multi-system disorder Singleton-Merten syndrome (SMS) were functionally ana-

lyzed. RIG-I SF2 mutants deficient in ATP binding severely lost their signaling capabilities in both

infected and uninfected cells. In contrast to that, ATP hydrolysis-impaired RIG-I that can still bind

ATP, a phenotype that is found in SMS patients as well, constitutively signaled on endogenous RNA.

Furthermore, the recognition of a ribosomal expansion segment by ATP hydrolysis-impaired RIG-I

could be determined through co-immunopurification from uninfected cells and was visualized by

cryo-electron microscopy. Interactions with the ribosome were also found for the respective MDA5

mutant as well as in infected cells. Subsequent biochemical analyses validated reduced binding of

wild type RIG-I in presence of ATP, whereas ATP hydrolysis-deficient RIG-I was found to stably inter-

act with this RNA.

The presence of ATP therefore seems to be a prerequisite for RIG-I immune signaling and probably

helps to release the CARD domains. ATP hydrolysis by RIG-I, in contrast, weakens the affinity of the

protein towards endogenous RNA lacking the 5′ triphosphate signature. This renders the ATPase

domain of RIG-I to be an essential feature for the discrimination between self and non-self RNA.

Importantly, both studies combined provide the basis for an updated view on ATP-dependent RIG-I-

like receptor signaling that is presented and discussed.
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Introduction

1 Basic principles of the immune system

All organisms need to continuously protect themselves against invading pathogens. Because of that

all domains of life evolved sophisticated defense strategies, including both inherited as well as adap-

tive mechanisms, known as immune system1. Immunity is provided if an organism is able to detect

and eliminate foreign molecules or pathogens while tolerating non-harmful self molecules or com-

mensal organisms.

The human body is prepared with two distinct kinds of immune systems: an inherited, rather unspe-

cific system, as well as an adaptive one, that is able to specifically react to changing environmental

conditions2.

Inherited or innate immune systems are passed from one generation to the next and often provide

more general detection mechanisms for several classes of molecules. The innate immune system

of multicelluar organisms is fairly conserved across evolution and mediated by a limited number of

germline-encoded receptors. Similar receptors are found in plants and animals3. Innate systems,

however, only have a short term memory and need to start from the beginning every time they

encounter foreign molecules.

Adaptive immune systems, on the other hand, are typically more specialized and can be acquired in

a relatively short period of time1. Adaptive immunity of jawed vertebrates is facilitated by antigen

specific receptors that are not germ-line encoded, but generated by randomgenomic recombination

of gene segments resulting in many different but individual receptor specificities. Those adaptive

systems are characterized by a greater number or reacting receptors, an extended life span and

memory, while providing a more rapid response to molecules they might not have seen before. The

adaptive response, however, is also more prone for the development of allergy and autoimmunity4.

The importance of an intact immune system is frequently emphasized, for instance by the recent

Ebola or Zika virus pandemics or by the recurring influenza virus outbreaks. The molecular basis for

pathogen recognition and defense of the human body as well as the tricks of pathogens to evade

immune recognition and to successfully reproduce, however, are still fairly unknown and subject of

recent research.

A precise knowledge about these mechanisms will help to develop better vaccines or therapeutics,

but also contributes to our understanding of autoimmune diseases where immune receptors are

directed against self.
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Introduction

2 Pattern recognition receptors of the innate immune system

If pathogens successfully overcome the physical and chemical barriers of the human body and try

to establish an infection, they immediately face different innate immune sensors called pathogen

recognition receptors (PRRs). PRRs survey both the intra- and extracellular space, and are activated

by unique, so-called pathogen-associated molecular patterns (PAMPs) that are conserved and spe-

cific to a wide range of microorganisms5.

PAMPs are often to some extent invariable since they represent molecular structures that are es-

sential for the pathogen survival and therefore are not subject to a rapid adaptive evolution of the

pathogen5. Further, PAMPs are typically either not expressed ormodifiedby themammalian host, or

only occur in certain compartments. Nevertheless, somePRRs also recognize endogenousmolecules

released from damaged cellular compartments or cells, so-called damage-associated molecular

patterns (DAMPs)6. Recognition of PAMPs and DAMPs by different PRRs is considerably redundant

ensuring that a microbe that evades one mechanism can still be detected by another.

Upon sensing of PAMPs or DAMPs, PRRs activate signaling cascades that start the expression of in-

terferons, cytokines and chemokines, that in turn promote the synthesis of many antiviral proteins7.

These proteins shut down translation, promote growth arrest or even cell death. Cytokines and che-

mokines further recruit immune cells to the site of infection in order to control pathogen spread and

to initiate an adaptive immune response7. Collectively, both innate and adaptive immune response

subsequently provide the mechanisms to fight off the infection and to restore homeostasis.

Problems occur, however, if there is no clear cut-off criterion for the distinction between self and

non-self. Viruses for example, express only a very limited number of specific molecules and on top

exploit the host cell machinery for their reproduction. In order to detect viruses, the immune system

thus often relies on the recognition of viral nucleic acids that flood the cell upon an infection, and

thereby risks to evolve autoimmunity against very similar self molecules8.

The major families of human PRRs are: Toll-like receptors (TLRs), C-type lectin receptors (CLRs),

retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), nucleotide binding oligomerization do-

main (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs) and the cyclic

GMP-AMP synthase (cGAS)/ stimulator of interferon genes (STING) system.

TLRs are membrane bound receptors recognizing a variety of different bacterial, fungal and viral

PAMPs ranging from cell wall parts such as lipopolysaccharides and lipopeptides over parts of the

bacterial flagellum to different kinds of nucleic acids9. CLRs are a large family of soluble and mem-

brane bound receptors recognizing specific carbohydrate structures10. RLRs, ALRs and cGAS bind

foreign or mislocated cytosolic double-stranded (ds) nucleic acids11. NLRs are located within the

cytosol as well and provide a back-up defense by recognizing bacterial cell wall components similar

to TLRs, but also toxins or host-derived ligands, e.g. uric acids or damaged membranes. Many NLRs

assemble into large inflammasome complexes12.

This thesis focuses on RIG-I-like receptors and the detection of cytosolic viral RNA. For that pur-

pose, first other nucleic acid-sensing PRRs in general, including TLRs and the cGAS/STING system,

are briefly introduced. Afterwards the main attention is drawn towards RLRs signaling.
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2 Pattern recognition receptors of the innate immune system

2.1 Nucleic acid-sensing by Toll-like receptors

Toll-like receptors are membrane-bound proteins mostly expressed on immune cells, endothelial

and epithelial cells with each cell type expressing a different set of TLRs13,14. They reside both on

the cell surface as well as on intracellular membranes. 10 human TLRs are known: TLR1, TLR2, TLR4,

TLR5, TLR6 and TLR10 are expressed largely on the surface of cells and recognize molecules found

outside of pathogens, like e.g. components of the bacterial cell wall. TLR3, TLR7, TLR8 and TLR9 are

locatedwithin themembrane of the endosomal compartment and generally bind structures that are

only available after uptake and destruction of potential pathogens15. TLRs all have a characteristic

extracellular horseshoe-like shaped leucine-rich repeat (LRP) domain, a transmembrane domain and

a cytosolic Toll/interleukin-1 receptor (TIR) domain16.

TLRs are activated by simultaneous PAMP binding to two TLRs which leads to homo- or heterodimer-

ization and to the recruitment of several intracellular signaling adapters and kinases. Activated and

dimerized TLRs further form higher order clusters in the cell membrane. Specifically, TLRs recognize

PAMPs via their extracellular domains. Except for TLR3, which uses TRIF as adapter molecule, all

TLRs then directly or indirectly interact through their cytosolic TIR domains with the adapter protein

MyD88 for downstream signal transmission (Figure 1). MyD88 in turn promotes the formation of the

so-calledMyddosome, a large helical assembly of several TLRs andMyD88s, via their death domains

that enables the interaction with signal transmitting kinases18.

TLR2 forms a heterodimer with either TLR1 or TLR6 in order to bind different kinds of bacterial

lipoproteins19,20. TLR10 seems to have regulatory roles by competing for ligands with TLR221. TLR4

recognizes lipopolysaccharides (LPS) which is a major component of the outer membrane of Gram-

Figure 1: Simplified signaling cascade of the en-

dosomal Toll-like receptor pathway. All

nucleic acid-sensing TLRs reside in endo-

somes, dimerize upon ligand binding and

signal either via the adapter protein TRIF

or MyD88. These in turn activate the

NF-κB- and IRF3-dependent expression of
proinflammatory cytokines and type I in-

terferons.

Figure adopted from Junt and Barchet 17 .
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Introduction

negative bacteria22–24 and TLR5 can be activated by a depolymerized form of bacterial flagellin25.

Nucleic acid-binding TLRs, however, only reside within the endosomal compartment. Guanosine-

and uridine-rich single-stranded (ss) RNA as well as synthetic polyuridines and siRNAs are recog-

nized by TLR7 and TLR826–29. TLR3 responds to dsRNA30. TLR9 was originally described to recognize

double-stranded, unmethylated CpG-rich DNA31 but was later shown to only depend on the 2′de-

oxyribose backbone of nucleic acids and therefore to respond to all kinds of dsDNA regardless of

specific sequences32,33.

2.2 Recognition of cytosolic DNA

Since the occurrence of DNA within eukaryotic cells is restricted to the nucleus and mitochondria,

the appearance of cytosolic DNA in non-dividing cells provides a clear danger signal for potentially

invaded pathogens or cellular damage. DNA-sensing TLRs are, however, restricted to plasma mem-

branes, thereby facing the extracellular space or endosomes. Thus several cytosolic DNA sensors,

including DNA-dependent activator of IFN-regulatory factors (DAI), DDX41, interferon gamma in-

ducible protein 16 (IFI16), AIM2 and cGAS, exist11,34–38. With the exception of cGAS and IFI16, how-

ever, they play redundant roles or may be cell type specific.

cGAS is ubiquitously expressed and belongs to the nucleotidyltransferase (NT) family. It consists

of a C-terminal NTase and Mab21 domain which is highly conserved in vertebrates, and of a less

conserved, long unstructured N-terminal sequence37. cGAS is activated by a variety of DNA stim-

uli, including transfected plasmid DNA, mislocated mitochondrial DNA, and viral DNA generated by

infection with DNA viruses as well as retroviruses. For HIV-1 especially, it was shown that cGAS rec-

ognizes short Y-shaped cDNA structures with unpaired, flanking guanosines39. cGAS was also found

to indirectly contribute to the recognition of some RNA viruses, perhaps by inducing a very low basal

autoimmune response triggered by endogenousDNA,which ensures the availability of other sensors

needed for the primary response to viruses40.

When activated by dsDNA, cGAS catalyzes the production of cyclic AMP-GAMP (cGAMP) from ATP

and GTP, which in turn functions as an endogenous second messenger for the activation of the en-

doplasmic reticulum (ER)-bound adapter protein STING41 (Figure 2). dsDNA-binding by cGAS is facil-

itated by a highly positive charged platform as well as a conserved zinc thumb which is furthermore

important for DNA-induceddimerizationof cGAS42–45. Interestingly, the cGAMPproducedby cGAS is

Gp(2′– 5′)Ap(3′– 5′) and contains a mixed phosphodiester linkage between the two ring-forming nu-

cleotides46–48. STING, however, responds to various cyclic dinucleotides (CDNs) and is, even though

to a lesser extent, activated by bacterial CDNs like c-di-GMP or c-di-AMP as well, thereby providing

an additional direct immune response to bacterial second messengers49.

Upon binding to CDNs, STING in turn triggers the induction of type I interferons in order to start an

immune response. Thereby STING was found to dimerize and to relocate from the ER to perinuclear

vesicles50.

Two other DNA sensors, AIM2 and IFI16, are shown to trigger an immune response through the

6



2 Pattern recognition receptors of the innate immune system

Figure 2: Simplified signaling cascade of the

cGAS/STING pathway. Upon detection

of cytosolic dsDNA, cGAS dimerizes and

produces the eukaryotic second messen-

ger cGAMP, which activates the adapter

protein STING. STING in turn induces the

NF-κB- and IRF3-dependent expression

of proinflammatory cytokines and type I

interferons.

Figure adopted from Junt and Barchet 17 .
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activation of the inflammasome51–53, which is an intracellular multiprotein complex that mediates

the activation of caspase-1 and thereby triggers pyroptotic cell death through an inflammatory re-

sponse54. Both proteins contain a positively charged DNA-binding HIN-200 domain55 as well as a

pyrin domain (PYD) that allows homotypic PYD:PYD interactionswith the adapter protein ASC56. ASC

further possesses a caspase activation and recruitment domain (CARD) and, through CARD-CARD

interactions, links the PYD-containing sensor proteins to caspase-1 recruitment, dimerization, and

autoproteolytic activation. Caspase-1 in turn processes the inactive precursors of IL-1β and IL-18

into mature cytokines57.

In addition IFI16 was reported to detect foreign DNA within the nucleus58 and might thereby even

interact with cGAS59.

2.3 RNA-sensing by RIG-I-like receptors

In contrast to cytosolic DNA, cytosolic RNA as such is no unusual condition, since translation is facil-

itated outside the nucleus. Thus several types of endogenous RNAs, including small RNAs, mRNAs,

rRNAs and tRNAs are localized in the cytosol and need to be discriminated from foreign, often viral,

RNA.

Non-self cytosolic RNA is detected by the RIG-I-like receptors including the eponymous RIG-I, mela-

noma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2).

RLRs are ubiquitously expressed and thereby ensure that every cell can respond to viral infections. All

RLRs specifically recognize foreign dsRNA with slightly different substrate specificities which broad-

ens the spectrum of detected viruses.

RIG-I andMDA5 are composed of three major domains: two N-terminal CARDs necessary for signal-

ing, a central Superfamily 2 (SF2) helicase domain and a C-terminal domain (CTD). Both SF2 helicase

domain and CTD are involved in RNA binding60–62. Furthermore, an alternative splicing form for

each RIG-I and MDA5 exist63: RIG-I isoform 2 lacks the amino acids (aa) 36 – 80 within the CARDs,
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while MDA5 isoform 2 contains only the CARDs aa 1 – 207 as well as an additional 14 aa tail.

LGP2 misses the CARDs entirely but has otherwise a similar domain architecture.

Detection of dsRNA by RIG-I and MDA5 releases the otherwise shielded CARDs61, rendering them

free to bind to the mitochondrial antiviral signaling protein (MAVS) through CARD-CARD interac-

tions64–69. This interaction can further be stabilized by binding of K48-linked ubiquitin chains69,70.

Translocation of activated cytosolic RIG-I to the membrane bound MAVS is facilitated by 14-3-3ε

chaperons71. Activation of MAVS by RIG-I or MDA5 in turn starts an innate immune response that

aims to clear the cell of the invading virus, to attract specialized immune cells, and to alert and pro-

tect uninfected neighboring cells.

LGP2 is thought to have regulatory functions within this process, since it lacks the signal promoting

CARDs72,73.

2.3.1 RIG-I and MDA5 signaling cascade via the adapter protein MAVS

Similar to MyD88 within the TLR pathway or STING within the cGAS axis, MAVS integrates the RLR

immune response signal, and promotes the activation of several transcription factors. These include

nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and various interferon regulatory

factors (IRFs), all of which together act to create an antiviral state of the cell (Figure 3).

MAVS itself contains a C-terminal transmembrane domain anchoring it to mitochondria, peroxi-

somes and mitochondrion-associated membranes74, a long unstructured region and an N-terminal

CARD domain. Binding of the RIG-I or MDA5 CARDs to the MAVS CARD, leads to conformational

changes within MAVS and to multimerization into prion-like functional aggregates. Thereby MAVS

polymers recruit more MAVS molecules and that in turn activate downstream proteins75.

MAVS is, depending on its localization, able to induce a sequential antiviral response. Peroxisome-

bound MAVS triggers an immediate interferon-independent antiviral response that provides short-

term protection by inducing type III interferons and the rapid expression of antiviral genes76. Mito-

chondrion-located MAVS, apart from that, triggers type I interferon (IFN) gene expression ensuring

a long-term containment of the infection74. In the latter case, MAVS polymers recruit several re-

dundantly acting tumor necrosis factor (TNF) receptor-associated factors (TRAF) ubiquitin E3 ligases

through proline-rich repeats within the unstructured region to synthesize linear K63-linked polyu-

biquitin chains77. These polyubiquitin chains in turn bind the regulatory subunits of IκB kinase (IKK)

and TANK-binding kinase 1 (TBK1) complexes thereby activating them78–81. Active IKK phosphory-

lates the inhibitor ofNF-κB (IκB) resulting in its degradative K48-linked polyubiquitination and subse-

quent proteasome-mediated digestion. Active TBK1, in contrast, phosphorylates theMAVS polymer,

which is then able to recruit IRF3 that harbors a positively charged phospho-binding domain82. This

recruitment enables TBK1 to phosphorylate IRF3 as well, thereby resulting in its dimerization and

activation. Finally, activated NF-κB and IRF3 translocate into the nucleus and activate the expression

of interferons and multiple cytokines or chemokines.

Cytokines and chemokines help to recruit immune cells to the site of viral infection in order to control

8
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Figure 3: Signaling cascade initiated by RIG-I-like receptors. RIG-I and MDA5 recognize different foreign cy-

tosolic dsRNA species or RNA polymerase III transcripts. LGP2 is thought to have regulatory func-

tions. Activation and tetramerization of RIG-I and MDA5, followed by subsequent K63-linked ubiq-

uitination or ubiquitin binding (see section 3.4), induces to MAVS polymerization. MAVS polymers

recruit several TRAF proteins that synthesize K63-linked ubiquitin chains and thereby activate IKK and

TBK1 complexes. IKK and TBK1 phosphorylate different IRFs or IκB and thus induce their transloca-

tion into the nucleus in order to activate the expression of type I interferons and proinflammatory

cytokines.

Released interferons in turn initiate the expression of hundreds of interferon stimulated genes via

the STAT pathway.

virus spread and to initiate the adaptive immune response. IFNs activate the janus kinase/signal

transducers and activators of transcription (JAK/STAT) pathway and lead in turn to the expression of

several hundreds interferon regulated genes (ISGs) in both the infected and surrounding uninfected

cells83 (Figure 3). ISGs encode additional cytokines and chemokines, antibacterial effectors, pro-

and anti-apoptotic molecules, as well as molecules involved in metabolic processes, that amplify

and stabilize the antiviral response. In addition, all RLRs are ISGs themselves and are upregulated in

order to boost or control the immune response84.

Other ISGs comprise the RIG-I splice variant lacking aa 36-80 within the first CARD domain85. This

variant competes with full-length RIG-I for RNA substrates, but potentially suppresses the CARD-

CARD interactionswithMAVS and therefore interferon signaling. Further, an N-terminally shortened

isoform of MAVS that entirely misses the CARD domain is upregulated during infections and might

interfere with the immune response by competing with downstream signaling factors of MAVS86.

Both shortened molecules thus provide a negative feed-back loops and help to modulate the im-
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mune response.

RLRs were further shown to co-localize to virus-induced stress granules (SGs) upon phosphorylation

of eukaryotic translation initiation factor 2α (eIF2α) by dsRNA-dependent protein kinase (PKR) or

general control non-derepressible-2 (GCN2) during some viral infections87–89. Phosphorylation of

eIF2α terminates the initiation of translation, stalls mRNAs and thereby inhibits mRNA translation

until eIF2α is dephosphorylated again. Several viruses are implicated in inducing SG formation or

even shown to exploit them for replicating their own RNAs90,91. Other viruses however, like measles

virus, are shown to inhibit SGs by promoting RNA editing thereby decreasing the amount of PKR

substrates92. SGs could thus represent a platform for viral RNA recognition and immune response

activation by RLRs.

2.3.2 LGP2 has regulatory functions in RIG-I or MDA5-mediated signaling

In contrast to RIG-I andMDA5, there is still relatively little knownabout LGP2. LGP2was originally dis-

covered as highly expressed gene in a mammary tissue93 and later shown to be involved in anti-viral

signaling94. Since thenmostly controversial literature regarding LGP2’s function has been published.

Even though, of all RLRs, LGP2 has the highest affinity for RNA and it might bind to the same RNA

substrates as RIG-I or MDA5 or both95, the role of LGP2 within the RLR signaling pathway is contra-

dictory. Since LGP2 lacks CARDs it might function as a negative feedback regulator by competitive

binding of stimulatory RNA68,72. Later studies, however, suggested that LGP2 might have different

regulatory roles depending on the virus and the RLR it might interact with96.

In that regard, limited levels of LGP2 are reported to have a positive regulatory role forMDA5 by pro-

moting cooperative dsRNA binding97–99. Higher levels of LGP2, however, negatively regulate RIG-I-

and to a lesser extentMDA5-mediated signaling99. Furthermore, LGP2was shown to be required for

T cell survival during virus infection by blocking death-receptor-mediated cell death100. This might

be related to the inhibition of RIG-I-mediated signaling at high protein concentrations in order to

terminate the immune response and to prevent cell death.

2.3.3 RNA structures recognized by RIG-I-like receptors in vitro and in vivo

Despite their structural similarities, RLRs recognize distinct dsRNA species in vitro. At the same time,

they have overlapping functions in virus recognition. Many negative-sense RNA viruses including

orthomyxoviruses, rhabdoviruses and bunyaviruses are predominantly recognized by RIG-I. MDA5,

in contrast, detects picornaviruses and caliciviruses. Several flaviviruses, paramyxoviruses and re-

oviruses are sensed by both RIG-I and MDA5101.

In order to allow a distinction of both RNA strands within the duplex, this thesis will refer to the

strand that is mainly recognized by the SF2 helicase domain as “bottom strand”. The complementary

strand, that might harbor the phosphorylation mark, will be referred to as “top strand” of the RNA

duplex (compare to Figure 4).
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RNA 5’ endtriphosphate7-methylguanosine

RNA
RNA

RNA 3’ end

top RNA strand                 bottom RNA strand

Figure 4: The first two base pairs of a potential RIG-I dsRNA substrate. RIG-I preferentially recognizes short

dsRNA ends. Methylation of the cap structure as well as of the first 5′ ribose (depicted in pink)

reduces recognition.

The top and bottom RNA strand of the duplex, as used in this thesis, are indicated. Figure adopted

from Leung and Amarasinghe 112 .

Numerous in vitro experiments defined the optimal RIG-I ligand as short 5′ tri- or diphosphory-

lated dsRNA with at least 10 base pairs length and the phosphate-carrying nucleoside being part

of a Watson-Crick base pairing102–106. Binding affinities of RIG-I towards 5′ phosphorylated dsRNA

are in the low nanomolar range107,108. However, with only slightly lower affinities RIG-I recognizes

blunt-endeddsRNAwithout phosphates108 and also tolerates unmethylated 5′ cap-structures105,109.

Methylation at N7 of the capping guanosine or the top strand first ribose, however, drastically de-

creases signaling105 (comparewith Figure 4). Further, RIG-I accepts RNA:DNA hydrides as well, while

only tracking the OH-groups of the bottom RNA strand110,111. 3′ overhangs at the phosphorylated

end are better tolerated by RIG-I than 5′ overhangs102.

Despite the variety of RNAs that RIG-I is able to recognize in vitro, in vivo ligands are still controver-

sial. Several transfection assays validated the preference for tri- or diphosphorylated dsRNA102–104.

The minimal RNA duplex length, however, varies and might depend on the stage of infection or the

amount of available RIG-I or RNA substrates, respectively111,113. In that regard, even unphosphory-

lated dsRNAs like ribonuclease L (RNase L) cleavage products of endogenous or viral RNAs amplify

RIG-I signaling114–116.

Likewise, different infection assays confirm RIG-I activation by 5′ tri- or diphosphorylated dsRNA

structures, as these are present on viral genomes102,104 or incoming viral nucleocapsids that are de-

tected by RIG-I117,118. RIG-I also recognizes viral replicating RNA products as for instance stem-loop

structures in defective interfering (DI) RNA genomes, short internal deletion defective interfering

particles119,120 or abortive replication products. Further, viral or even endogenous mRNAs might

represent RIG-I agonists and thereby especially their 3′ untranslated regions (UTR)114,121–123.

In addition, RIG-I indirectly senses cytosolic DNA through RNA polymerase III that transcribes AT-rich

DNA as for instance present in Epstein-Barr virus, adenoviruses and Herpes simplex virus-1, or in
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intracellular bacteria like Legionella pneumophila, promoter-independently into dsRNA containing

a 5′ triphosphate124–126. RIG-I is further implicated to be involved in the recognition of cytosolic

uncapped and unphosphorylated bacterial mRNA127.

In contrast to RIG-I, MDA5 has a lower affinity to dsRNA in general, but cooperatively recognizes

long dsRNA stems and branched or higher-order structured RNAs128–130. Similar to RIG-I, MDA5 is

described to discriminate self from non-self based on ribose 2′-OH methylation marks as well131.

Further, MDA5 is like RIG-I implicated to take part in the recognition of intracellular bacteria, like

Plasmodium species, probably by detecting double-stranded non-coding RNAs132.

In addition, both RIG-I and MDA5 might prefer U- and AU-rich RNA respectively114,119,133–135.

Furthermore, RIG-I and MDA5 might respond to viral infections in a temporal manner136. For in-

stance, early occurring triphosphate-containing replication intermediates of West Nile Virus are rec-

ognized by RIG-I, whereas MDA5 responded to later produced dsRNA species137.

Ligands of LGP2 are not well described. Similar to RIG-I, LGP2 preferentially recognizes RNA ends

but does not discriminate the phosphorylation state138. Furthermore, in infected cells, LGP2 was

shown to have overlapping binding sites with MDA5 since LGP2 co-immunopurified RNA was found

to stimulate in a MDA5-dependent manner95.

3 Structural basis for antiviral signaling of RIG-I and MDA5

RIG-I-like receptors are a subfamily of SF2 helicases owing to their central DECH box RNA helicase

domain that consists of two structurally almost identical RecA-like domains (domain 1a and domain

2a, Figure 5). Both domains 1a and 2a form an active site for ATP binding and hydrolysis between

their interfaces, which defines SF1 and SF2 helicases and distinguishes them from SF3 – SF6 helicases

that form hexameric toroids. Compared to other SF2 helicases, the RLR helicase domain further

harbors an unusual helical insertion domain (domain 2b) within domain 2a as well as an elbow-like

helical pincer domain that also emerges from 2a. The helicase domain is structurally related to the

archaeal Hef helicase/nuclease139.

Functional specificity of RLRs comes from their accessory domains that augment the SF2 helicase

domain (Figure 5): All RLRs possess a CTD that supports the helicase domain in RNA binding and that

confers RNA substrate specificity. The CTD further contains a conserved zinc-binding site essential

for the structural integrity of the domain85,140. Structurally, the CTD resembles GDP/GTP exchange

factors of Rab-like GTPases140. Furthermore, except for LGP2, RLRs harbor two N-terminal CARDs

belonging to the death domain (DD)-fold superfamily141 that elicit the downstream signal. Similar

DD-fold domains can be found in various other immune signaling pathways.

Other RLR homologue proteins include Dicer as well as the DNA-binding protein Fanconi anemia,

complementation group M (FANCM)142.

Upon RNA and ATP binding large conformational changes are induced with all subdomains moving

12



3 Structural basis for antiviral signaling of RIG-I and MDA5

CARD1     CARD2                 1a          2a         2b           2a    Pincer    CTD

MDA5

RIG-I

LGP2

SF2 domain

1 925

10251

1 678

C-RecAinsertion 
domain

N-RecA

Figure 5: Domain organization of the RIG-I-like receptors RIG-I, MDA5 and LGP2. Individual domains are de-

picted as cylinders, long linkers are shown as lines. SF2 helicase domain notations are according to

Singleton et al. 143 .

relative to each other (Figure 6). RIG-I, MDA5 and LGP2 completely encircle the RNA double-strand

within a large network of interactions between RNA, SF2 helicase domain and CTD60–62,144,145. The

dsRNA itself, maintains an A-form conformation without any structural evidence of RNA destabiliza-

tion or partial unwinding60–62. In addition, RLRs miss a characteristic phenylalanine-loop motif, that

is conserved in other SF2 helicases with nucleic acid unwinding activity62. In in vitro experiments,

nevertheless, RNA unwinding was reported and thereby preferentially takes place on 3′ overhangs

and independently whether the bottom strand consists of RNA or DNA146.

RNA + 
ATP binding

CARDs 
shielded

CTD 
released 2b

pincer
2a

1a

CARD2

CARD1

CARDs 
released

CTD bound

2b
pincer

2a

1a

CARD1

CARD2

inactive conformation             active conformation

Figure 6: RIG-I three-dimensional reorganization upon RNA and ATP binding. In the ligand-free state RIG-I

adopts an inactive conformation with CARD2 bound to the insertion domain 2b, whereas the CTD

is flexibly linked and free to survey the cytoplasm. Upon RNA binding, the CTD presents bound

dsRNA to the helicase domain and subsequent ATP binding establishes the active conformation with

released CARDs that are able to transmit the signal. Colors of individual domains are according to

Figure 5. Flexible linkers are shown as dashed lines.

RCSB PDB codes for the depicted structures are: 2qfb (CTD released, human), 4a2q (CARDs bound

to SF2 helicase, duck), 3tmi (RIG-I∆CARDs bound to dsRNA and ADP·BeF3, human).
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3.1 The ligand-free state of RIG-I and MDA5

In the ligand-free state the SF2 helicase domain of RIG-I is shown to be in an extended flexible con-

formation with only domains 2a and 2b rigidly attached to each other60,61,147,148. Domain 1a is

stabilized by the pincer arm, but otherwise only in lose contact to domain 2a. Without RNA, ATP can

bind to domain 1a, but cannot be hydrolyzed because domain 2a is rotated and too far away147. In

addition, several interstrand loops for ATP binding or hydrolysis, particularly within domain 2a, are

disordered. The CTD is flexibly linked to the rest of protein and is thus available for RNA-sensing and

capturing61,106. The CARDs, in contrast, form a rigid head-to tail unit and are bound via CARD2 to

domain 2b61,106.

The insertion domain 2b, hence, has a very pivotal role in maintaining the non-signaling state: while

attached to domain 2b, CARD2 is shielded from interactions with other cytosolic proteins and thus

unable to interact with theMAVS CARD. In addition, the binding site of CARD2 to domain 2b partially

overlaps with an RNA binding site of domain 2b and would sterically clash with both CTD and RNA in

the ligand-bound state61. The domain 2b:CARD2 interface is thus thought to provide a checkpoint

for RNA selection, which only tightly CTD-bound 5′ tri- or diphosphorylated dsRNAs can disrupt108.

The helicase domain of ligand-free MDA5 adopts an open conformation similar to RIG-I and the

CTD is flexibly linked as well. Domain 1a is, as in RIG-I, stabilized by the pincer arm. In contrast to

RIG-I, however, a longer linker between CARD2 and domain 1a, as well as several variations within

domain 2b lead to reduced intramolecular autoinhibitory interactions and partially released CARDs

even in absence of ligands. To that effect, the length of several domain 2b helices is reduced and a

critical phenylalanine within 2b, which is responsible for CARD2 binding in RIG-I, is not conserved in

MDA5149. The MDA5 CARDs thus do not as tightly associate with domain 2b106,130. In contrast to

RIG-I, MDA5 is therefore thought to alternate in a conformational equilibrium between bound- and

extended-CARDs with the bound state being favored149. This in turn results in a higher background

activity of MDA5 compared to RIG-I.

The crucial role of the CARDs in triggering an antiviral response is emphasized by the fact that over-

expression of the isolated RIG-I or MDA5 CARDs is sufficient for immune response activation70,72.

Release of the CARDs as well as the establishment of CARD-CARD interactions withMAVS, therefore,

need to be carefully controlled.

3.2 RIG-I signaling requires a conformational switch that releases the CARDs

RIG-I binds dsRNA as a monomer without forming protein-protein mediated oligomers113. RNA

binding to RIG-I induces a closure of the SF2 domain and creates the mature ATP binding pocket.

Yet, RNA binding alone is not sufficient to entirely free the CARDs, but rather slowly destabilizes the

CARD2:domain 2b interface and leads to a partial release106. RNA-induced ATP binding, however,

induces further conformational changes within the protein resulting in a switchlike compaction of

the SF2 helicase domain that brings domains 1a and 2a into very close proximity61,62. ATP hydrolysis

was further suggested to induce an intramolecular domain repositioning that is needed to release
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Figure 7: RIG-I∆CARDs bound to dsRNA and the ATP analogue ADP·BeF3 (RCSB PDB code 3tmi, human). RIG-I

completely encircles the dsRNA and especially caps one RNA end via the CTD. Coloring according to

Figure 5.

the CARDs, since ATP binding-deficient RIG-I is unable to induce signaling, even though the protein

has no altered RNA binding properties73. Nevertheless, the exact activation mechanism remained

elusive until recently and will be discussed in detail later.

An overview of dsRNA encircled by RIG-I∆CARDs is shown in Figure 7.

Most of the dsRNA contacts are provided by domains 1a and 2a of the helicase domain (Figure 8A-1),

whichmainly track the bottomRNA strand. Thereby, almost every helix from RIG-I’s SF2 domain that

reaches into the RNA-binding tunnel provides potential binding partners to the RNA phosphodiester

backbone thus creating an extensive network of protein:RNA interactions. The insertion domain 2b

also participates in RNA binding with an α-helix that runs perpendicular to the minor RNA groove

and contacts both RNA strands (Figure 8A-2). ATP is coordinated within a pocket between domain

1a and 2a distant from the RNA binding sites (Figure 8A-3).

The pincer domain further establishes comprehensive contacts between domains 1a, 2a and CTD,

thereby providing amechanical connection that might transmit information between different parts

of the molecule60–62 (Figure 6, 7). Thus, the pincer domain might allosterically control the ATPase

core and probably plays an important role by mediating the enzymatic and signaling activities of

RIG-I150. In accordance with this, disruption of the domain 1a:pincer interface results in loss of

immune signaling because of defects in RNA dissociation and ATP hydrolysis while ATP and RNA

binding are still intact150.

The RIG-I CTD mainly captures the very 5′ dsRNA end via a positively charged end-capping loop

(Figure 8B-4/5). This loop contains several lysines that either contact the phosphate backbone or

the 5′ phosphate groups of RNA107,140,151. Thereby, specific contacts to the phosphates are varying

between different crystallized RIG-I CTD:RNA constructs and even capped RNA ends can be flexi-

bly accommodated109(Figure 8B-4). F853 within the end-capping loop stacks to the terminal base

pair explaining the preferred nucleic acid end recognition of RIG-I60,62,107. S854 (also part of the

end-capping loop) and H830 contribute to preference for RNA over DNA by hydrogen bonding with

the ribose hydroxyl groups of the first base pair62. H830 further sterically hinders binding of 2′-OH-

methylated RNA105,107,109.
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Figure 8: Contacts of RIG-I’s helicase domain (A) and CTD (B) to dsRNA as well as to ADP·AlF3. (1) Potential
contacts of domains 1a and 2a to the dsRNA backbone. (2) Potential contacts of domain 2b to the

dsRNA backbone. (3) Coordination of the ATP analogue ADP·AlF3 by several residues of the ATP

binding pocket. (4) Several residues of the RNA end-capping loop coordinate the first nucleotide

base pair including the phosphates. The cap itself, however, is not coordinated and therefore found

in different conformations (green and black). (5) RIG-I CTD contacts to the dsRNA backbone via a

second positively charged loop. Domain coloring according to Figure 5.

RCSB PDB codes for the depicted structures are: 4a36 (RIG-I helicase, duck), 5f98 (RIG-I ∆CARDs,

human, only CTD is shown).
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Figure 9: Helical assembly of RIG-I CARDs bound to ubiquitin (1, RCSB PDB code 4nqk, human) and building

the scaffold for the MAVS CARD assembly into large filaments (model of RCSB PDB code 2ms7, hu-

man, docked onto 4nqk using pymol). Structural stability of the RIG-I CARDs tetramer is provided

by several ubiquitin chains wrapping around the complex. (2) Model of RIG-I and MDA5 nucleating

signaling competent MAVS filaments. Whereas MDA5 cooperatively assembles onto long dsRNA,

RIG-I preferentially recognizes shorter dsRNAs or RNA ends and therefore requires stabilization by

ubiquitin chains.

Due to the disruption of the CARD2:domain 2b interface, the CARDs are released and accessible

for the interaction with the MAVS CARD or other proteins69 (Figure 9). Thereby, each four RIG-I

molecules oligomerize via their CARD domains to build a tetrameric complex70. In particular, left-

handed helical CARDs tetramers with a 5Å rise per CARDs module and a total rise of one CARD per

turn are formed152. In addition, covalently or transiently-linked ubiquitin chains can wrap around

the CARDs tetramer and thus further stabilize the complex152 (Figure 9). The CARDs tetramer in

turn constitutes the scaffold for the assembly of large MAVS-CARD filaments starting at the surface

of the second RIG-I CARD and extending the helix in a counter-clockwise manner153. Similar large

assemblies have as well been shown to arise from other death domain-fold proteins including the

death domains of the Myddosome and inflammasome154,155.

3.3 Cooperative binding of MDA5 on dsRNA stems induces signaling

In contrast to RIG-I’s preference for RNA ends, MDA5 nucleates within the RNA duplex and coopera-

tively assembles into long filaments on dsRNA130,149,156. Protein:protein contacts are induced upon

RNA binding106 and are dynamically regulated via the ATPase activity of MDA5.

Similar to RIG-I, MDA5 interacts with dsRNA using the helicase domain as well as the CTD. RNA con-
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Figure 10:MDA5∆CARDs bound to dsRNA and the non-hydrolyzable ATP analogue AMPPNP (RCSB PDB code

4gl2, human). MDA5 completely encircles the dsRNA similar to RIG-I, but instead of binding to the

RNA end, it rather recognizes the dsRNA stem. Coloring according to Figure 5.

tacts to the RNA backbone and 2′ hydroxyl groups are, except for the CTD:RNA contacts, conserved

in MDA5 and RIG-I144 (Figure 10).

The orientation of the MDA5 CTD, however, is 20◦ rotated compared with the RIG-I CTD and runs

parallel to the dsRNA stem thus leaving a gap of approximately 30◦ (Figure 10). This results in an

open, C-shaped structure of MDA5 and preferential binding to the dsRNA stem through recognition

of internal duplexes130,144. In NMR experiments, the isolated MDA5 CTD was shown to have a sim-

ilar fold compared to the RIG-I CTD and seemed also be able to bind RNA ends via its end-capping

loop157. MDA5∆CARDs co-crystallized with dsRNA, however, was found to recognize the RNA stem

via a flat surface with the end-capping loop being unfolded144. The intrinsic flexibility of the MDA5

CTD might thus allow alternative binding modes.

MDA5 filaments build up by stacking of individualmonomers in a head to tail arrangement144 (Figure

11). In the current model, each monomer is rotated by 70◦ and each helicase domain is in close

contact with the adjacent helicase domain resulting in extensive protein:protein interactions. These

interactions explain the cooperativity of MDA5 upon dsRNA binding and lead to higher affinity for

long dsRNA144.

Filament formation brings several MDA5 CARDs into close spatial proximity in order start immune

signaling (Figure 9). As detailed earlier, release of the MDA5 CARDs, however, seems not as strictly

coupled to ATP as the RIG-I CARDs106,149 (see Discussion as well).

3.4 RIG-I and MDA5 are regulated by post-translational modifications

As aberrant or premature immune signaling as well as sustained activation maybe harmful to the

host, control mechanisms are required that prevent RLR activation in uninfected cells or that shut

down signaling in infected cell once the infection is cleared. Therefore, signal-transducing activities

of RIG-I and MDA5 are tightly regulated by various post-translational modifications (PTMs) that act
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Figure 11: Structural basis for filament formation of MDA5. (A) and (B) Surface representation of RIG-I

∆CARDs bound to dsRNA (A, RCSB PDB code 3tmi, human) and MDA5 ∆CARDs bound to dsRNA

(B, RCSB PDB code 4gl2, human). (A) The RNA end-capping mode of RIG-I does not allow filament

formation on dsRNAs. (B) MDA5’s O-shaped structure that recognizes dsRNA stems is compatible

with filament formation. (C) Model of a head-to-tail MDA5 filament with a 70◦ turn per molecule

based on the monomer crystal structure in B and built with pymol. Bridging RNA (gray) was added

to assemble monomers while preserving the dsRNA continuity. Coloring according to Figure 5.

on protein activation and degradation. Regulation occurs by phosphorylation, acetylation, ISGyla-

tion, SUMOylation and polyubiquitination or binding of free ubiquitin chains respectively. The latter

can be distinguished into eight different linkage types of ubiquitin chains158, of which K48-linked,

i.e. degradative, and K63-linked, i.e. signal-transducing, ubiquitination are reported for RLRs.

Most post-translational modifications are identified within the CARDs or the CTD of RLRs and are

again best studied for RIG-I (Figure 12).

In uninfected cells RIG-I is constitutively phosphorylated at serine 8 of the first CARD and threonines

170 and 197 of the second CARD by protein kinases C -α (PKC-α) and PKC-β 159,160. Threonine 770

within the RIG-I pincer kink as well as serines 854 and 855 within the CTD RNA end-capping loop

are shown to be phosphorylated by casein kinase II (CK2) or IKK subunit ε161–163. Furthermore,

lysines 858 and 909 are acetylated by a so far unknown acetyl transferase162,164. All modifications

are thought to help keeping RIG-I in an inactive state by either stabilizing the RNA unbound state,

interfering with RNA binding, or by suppressing other modifications that help to activate RIG-I.

Besides these experimentally validated post-translationalmodification sites, several other sides have

been found in mass spectrometry-based assays: serine 468 and tyrosine 473 have been found to be

phosphorylated, and lysines 99, 169, 181, 190, 193, 644 and 796 might be ubiquitinated69,162,165.

The in vivo relevance, however, is not determined.

In infected cells and upon RNA and ATP binding, conformational changes of RIG-I allow access of

phosphoprotein phosphatase (PP) 1α and PP1γ to the CARDs, which dephosphorylate serine 8
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Figure 12: Knownpost-translationalmodifications of RIG-I. (putative) phosphorylation sites: (light) green; (pu-

tative) ubiquitination sites: (light) red; acetylation sites: orange. (A) Left: RIG-I PTMs within the

CARDs (RIG-I ligand-free state). Estimated localization of PTMs within the unstructured linker are

marked as red circles. Right: Localization of PTMs on a CARDs tetramer (RIG-I ligand-bound state).

(B) RIG-I PTMs within the helicase domain as well as within the CTD. Domain coloring according to

Figure 5 and residue labeling according to the human RIG-I sequence. Flexible linkers are shown as

dashed lines.

RCSB PDB codes for the depicted structures are: 4a2q (CARDs bound to SF2 helicase, duck), 4nqk

(CARDs tetramer, human), 3tmi (RIG-I∆CARDs bound to dsRNA and ADP·BeF3, human).

and threonine 170166. This in turn renders the CARDs free to interact with K63-linked polyubiq-

uitin chains159,167. Several kinds of RIG-I:ubiquitin or ubiquitin-like protein interactions have been

described, emphasizing the apparent importance of this process during RLR signaling: RIG-I was

found to be either polyubiquitinated by tripartite motif 25 (TRIM25) at lysine 17269,85, to bind short

unanchored cytosolic polyubiquitin chains70,168 or to interact with the tandemubiquitin-like domain

(UBL) of the human IFN-inducible oligoadenylate synthetases-like (OASL) protein that mimics polyu-

biquitin chains169–171. RIG-I was further shown to be modified by small ubiquitin-like modifier-1

(SUMO-1), which promotes ubiquitination and the interaction with MAVS as well172.

Ubiquitination or ubiquitin binding is thought to be critical for efficient interactions with MAVS69

and a prerequisite for stable antiviral signal transduction since it prevents rebinding of the CARDs

to domain 2b due to steric reasons61. Polyubiquitin binding further induces RIG-I oligomerization

and stabilizes the CARDs cluster which in turn interact with the MAVS CARD, thereby activating the
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immune response70,75.

Other ubiquitin ligases, that have been described to promote K63-linked ubiquitination of the RIG-I

CARDs and that might complement TRIM25 in cells where it is not present, are RING finger protein

leading to RIG-I activation (Riplet, also called RIG-I E3 ubiquitin ligase/ REUL or Ring Finger Protein

135/ RNF135, ubiquitination of lysines 154, 164)173, TRIM4174 and the stress granule associated

ligase MEX3C175. In addition to ubiquitination of the CARDs, Riplet was shown to attach K63-linked

ubiquitin chains to lysine 788within the pincer region of RIG-I, which like ubiquitination of the CARDs

promotes RIG-I signaling176,177.

Furthermore, during an infection, lysine 909 of the RIG-I CTD is deacetylated by histone deacetylase

6 (HDAC6), which was shown to promote recognition of viral RNA178. The phosphatase that is re-

sponsible for pincer and CTD dephosphorylation as well as the biological significance still need to be

investigated.

Proteasomal degradation of RIG-I and thus negative regulation, on the other hand, is facilitated by

the interferon inducible ubiquitin ligase Ring Finger Protein 125 (RNF125) and guided by the p97

chaperon complex179,180. RNF125 conjugates K48-linked ubiquitin to RIG-I lysine 181179. This can be

reversed byUSP4 that removes K48-linkedpoly- ubiquitination chains and thereby stabilizes RIG-I181.

RIG-I is further shown to be ISGylated with ISG15182, which is as well an ubiquitin-like protein nega-

tively regulating antiviral signaling183. Another suppressor is the linear ubiquitin assembly complex

(LUBAC) that targets both TRIM25 and RIG-I. LUBAC induces proteasomal degradation of TRIM25

and competes with TRIM25 for RIG-I leading to inhibition of RIG-I ubiquitination and suppression

antiviral signaling184. In addition cylindromatosis (CYLD)185,186, USP3187, USP15188 and USP21189

remove K63-linked polyubiquitin chains from RIG-I and therefore constitute a negative regulatory

mechanism as well.

Post-translational modifications of MDA5 are less well investigated, even though alsoMDA5 is heav-

ily modified a. For instance, in uninfected cells, the MDA5 CARDs are similar to the RIG-I CARDs

phosphorylated at serines 88 and 104 in order to inhibit downstream signaling166. Dephosphory-

lation upon infection is accomplished by PP1α and PP1γ as well166. The MDA5 CARDs were, as

RIG-I, found to bind K63-linked polyubiquitin chains 70,168 as well as SUMO-1191. In addition, also

proteasomal degradation of MDA5 due to K48-linked ubiquitination was shown to be mediated by

RNF125179.

4 The ATPase domain of RIG-I-like receptors

RIG-I-like receptors are often termed ”RIG-I-like helicases” due to their classification as SF2 helicases.

RNAor DNAhelicases are usually found to unwind duplex nucleic acids by translocation on one of the

product single strands in an ATP-dependentmanner110. Their ATPase activity is therefore stimulated

in presence of single-stranded nucleic acids. RLRs, in contrast, hydrolyze ATP upon detection of

afor an overview see also http://www.phosphosite.org 190
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Figure 13: RIG-I-like receptor helicase motifs and their three-dimensional arrangement. (A) Motif localization

within the primary amino acid sequence and their respective function. (B) Left: Mapping of motifs

onto the ligand-free, inactive conformation of RIG-I. Right: Mapping of motifs onto the RNA- and

ADP·AlF3-bound active conformation of RIG-I.

RCSB PDB codes for the depicted structures are: 4a2q (RIG-I CARDs bound to helicase domain,

duck), 4a36 (RIG-I ∆CARDs bound to dsRNA and ADP·AlF3, duck), only domains 1a and 2a are

shown.

double-stranded RNA102,103 and their helicase activity is controversial62,146.

ATP hydrolysis occurs within an ATP binding pocket between both RecA-like domains in presence of

RNA. RLRs are thus as well termed dsRNA-dependent ATPases (DRAs)192. Sequence and structure

analysis of different SF2 helicases including RLRs revealed a common arrangement of several con-

served motifs for ATP hydrolysis and RNA binding which are distributed between the domains 1a

and 2a of the helicase core193 (Figure 13). Motifs for ATP binding and hydrolysis include the Qmotif,

motif I (”Walker A motif”) and motif II (”Walker B motif”) within domain 1a, and motif VI (”argi-

nine finger”) within domain 2a. Residues of the Q and Walker A motifs primarily coordinate the

nucleotide-triphosphate for hydrolysis and provide specificity for the adenine base. Furthermore,

Walker A motif residues, but mainly the Walker B motif bind a magnesium ion, that in turn coordi-

nates the β and γ-phosphate of the nucleotide and thereby helps stabilizing the ATP conformation

needed for hydrolysis. In addition, a residue of the Walker B motif usually serves as a catalytic base

by activating the water residue that participates in hydrolysis of ATP. The arginine finger of domain

2a of the opposing side of the ATP binding pocket stabilizes the ATP hydrolysis transition state.

Conserved SF2motifs involved in binding of the bottomRNA strand are themotifs Ia, Ib and Ic within

domain 1a as well as motifs IV, IVa and V of domain 2a. Motifs III within domain 1a and Va within
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domain 2a help to couple RNA binding and ATP hydrolysis143,193,194. Furthermore, in contrast to

other SF2 helicases, two other possible RNA binding motifs, motif IIa within domain 1a and motif Vc

within domain 2a, were suggested192. Both of them help to recognize the complementary top RNA

strand and thus explain the double-stranded RNA binding mode of RLRs.

ATP hydrolysis, however, does not occur on the isolated SF2 domain, but requires besides RNA also

the C-terminal domain62,195. Presence of the CARDs, on the other hand, decreases the ATPase func-

tion and emphasizes a negative regulatory role for the CARDs.

The role of ATP hydrolysis in RNA binding and signaling, however, is still controversial. Already early

studies found a strict dependence of in vivo signaling on the presence of ATP, since RIG-I and MDA5

Walker A mutants, that are defect in ATP binding are impaired in immune signaling as well68,72,73.

Later on, both protein gain-of-function, i.e. increased signaling, as well as loss-of-function, i.e. re-

duced signaling, have been described for different ATPase motif mutants196,197. ATPase activity of

RLR was further reported to lead to either unwinding of RNA duplexes146, translocation on dsRNA,

oligomerization110,198–200 or dissociation from RNA149.

4.1 ATPase activity of RIG-I correlates with its binding affinity towards RNA

In order to infer a possible in vivo relevance, several studies addressed the in vitro biochemical prop-

erties of RIG-I in presence or absence of ATP, RNA or both.

In vitro ATP turnover rates of RIG-I under saturating ATP and RNA conditions are shown to be mostly

independent of RNA length, the presence of a 5′ triphosphate motif or even an RNA end108,113. ATP

binding under dsRNA saturating conditions, however, decreases with increasing RNA length but is

still independent of RNA-end phosphorylation113. Whereas the maximal ATP hydrolysis rate, thus,

seems to be independent of the RNA substrate, only ATP binding conditions, i.e. RNA-dependent

formation of the ATP binding pocket, impact hydrolysis.

In vitro RNA binding, on the other hand, is dependent on the availability of ATP108. The only ex-

ception are short triphosphorylated RNA with a very high affinity at nanomolar range, that is not

significantly changed in presence of ATP108. The affinity towards short blunt-ended dsRNA is slightly

weaker and was shown to further decrease under ATP saturating conditions108. Therefore, ATP, as

present in cells, might help decreasing the affinity of RIG-I towards RNA without phosphorylated

ends.

In addition, ATPase activity of RIG-I under saturating ATP conditions was shown to correlate with

the RNA binding affinity. Blunt-ended or triphosphorylated dsRNAs induce the highest ATPase rates,

whereas hairpin RNAs have a reduced potential108. Nevertheless, ATPase activity and RNA binding

do not correlate with immune signaling106. Blunt ended dsRNAs, for instance, show very tight bind-

ing affinities to RIG-I and stimulate ATP hydrolysis rates comparable to triphosphorylated RNA, but

do not induce an immune response in vivo102,103,106. The presence of a 5′ triphosphate on dsRNA

might therefore be important at the initial steps of RNA- and ATP-binding as well as for release of

CARDs. The lack of immune system stimulation by blunt-ended dsRNAs, also excludes the possibility
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that ATP hydrolysis of RIG-I would provide the energy to directly liberate the CARDs.

4.2 MDA5 forms ATP-sensitive filaments

For MDA5 comparably little biochemical data concerning the ATPase activity is available so far. Nev-

ertheless, several in vitro studies showed that filament formation of MDA5 on long double-stranded

RNA becomes instable upon addition of ATP. ATP hydrolysis by MDA5 is thus found to weaken the

protein:RNA interaction similar to RIG-I. This is thought to confer MDA5 filament disassembly on

RNA ends and thus mainly effects the stability on short dsRNA130. By that, MDA5 improves length

discrimination of dsRNA and it explains the preference for long double-stranded RNAs201. Repeated

cycles of ATP hydrolysis and hence filament assembly and disassembly, however, can fill gaps within

filaments and promote a more efficient coating of the dsRNA (Figure 14).

Since MDA5 immune signaling requires filament formation and subsequent CARDs oligomerization,

ATP thereby controls the MDA5 antiviral immune response to different types of RNAs130,149. The

non-hydrolyzable ATP analogue AMPPNP or the reaction product ADP have no effect on filament

formation149. This emphasizes the importance of a functional ATPase activity, rather than the need

to bind ATP.

ATP hydrolysis-dependent 
end disassembly

ATP hydrolysis-dependent 
cooperative filament propagation

autorepressed
MDA5

dsRNA internal nucleation

Figure 14:Model of MDA5 ATP-dependent filament formation. MDA5 cooperatively assembles on dsRNA

stems. ATP hydrolysis helps to efficiently coat the dsRNA stems and leads to disassembly on dsRNA

ends. The longer an RNA is, the more stable MDA5 can bind. Figure adopted from Peisley et al. 199 .

4.3 RIG-I forms signaling competent filaments in presence of ATP

Similar to MDA5, RIG-I was recently found to form filaments on dsRNA as well. RIG-I filament

formation is ATP-dependent and correlates with immune signaling198,199. Mechanistically, mono-

meric RIG-I binds to the RNA end, translocates inward thereby hydrolyzing ATP, and stacks along the

translocation track (Figure 15). During that process, the RIG-I CTD needs to adopt a different orien-

tation towards the dsRNA stem and the RNA capping loop is most likely not involved in RNA binding,

resulting in loss of affinity106. In addition, RIG-I filaments propagate with only very limited coop-

erativity leading to inefficient coating and poor recognition of longer dsRNA198,199. Nevertheless,
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ATP hydrolysis-dependent 
limited filament propagation

ATP hydrolysis-dependent 
limited filament propagation

autorepressed
RIG-I

dsRNA end capping

Figure 15:Model of RIG-I ATP-dependent filament formation. RIG-I preferentially binds to dsRNA ends, but

is able to translocate into the dsRNA interior by hydrolyzing ATP irrespective of a triphosphate

PAMP. RIG-I filaments propagate only with very limited cooperativity. Figure adopted from Peisley

et al. 199 .

the 50 aa linker between the RIG-I’s CARDs and the SF2 helicase domain is in theory long enough to

allow direct contacts between CARDs that are six molecules apart.

The RIG-I filaments have been shown to be signaling competent without further binding of ubiquitin

chains199. Ubiquitination, however, could help stabilizing CARD-oligomers that do not arise from

one long double-stranded RNA and are therefore more prone to dissociate again (compare with

Figure 9).

4.4 RIG-I and MDA5 show ATP-dependent effector-like functions in virus-infected cells

The translocation function of RLRs might provide a direct, interferon-independent mechanism by

remodeling of protein:nucleic acid complexes and by displacing viral proteins bound to dsRNA200.

In accordance to this RIG-I and MDA5 CARD-less proteins, that are impaired in downstream signal-

ing and induction if ISG expression, were shown to have an antiviral activity against several RNA

viruses200. This was not true for their respective ATP binding-deficient Walker A mutants, which

again illustrates the relevance of an intact RLR SF2 helicase domain.

Further effector functions of RIG-I and MDA5 where found in hepatitis B virus (HBV) infected cells,

where RIG-I might counteract the HBV polymerase by binding to the 5′ ε region of the pregenomic

RNA and suppresses replication202. Similar results have been reported for influenza A virus-infected

cells, where RIG-I was shown to recognize the incoming fully encapsidated, 5′ triphosphate-contain-

ing genome and inhibits infection probably by competing with the nucleocapsid proteins203.
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5 Immune evasion strategies of viruses to avoid RIG-I-like

receptor-signaling

In order to avoid detection and subsequent signaling of RLRs, viruses evolved an immense arsenal

of counteracting strategies. These include modification of their own RNA in order to decrease RLR

binding and the prevention of RLR immune response activation.

The simplest case of viral RNA modifications is probably processing of 5′ termini of genomes and

replication intermediates in order to avoid RIG-I detection. This can include either processing to a

monophosphate, trimming of the 5′ end in order to produce 3′ overhangs or usage of a more so-

phisticated ”prime and realign”mechanism during genome and antigenome synthesis that produces

a 5′ G overhang117,204–207. Furthermore some viruses modify their 5′ RNA termini by capping and

2′-O-methylation in order to appear like host mRNA, or by protecting the end with covalently linked

viral proteins131,208,209. Another strategy is to coat the viral dsRNA with proteins that out-compete

binding by RIG-I and MDA5210, or to degrade dsRNA replication intermediates and thus to remove

potential PAMPs211.

Some viruses reduce activation of RLRs by manipulating post-translational modifications of RIG-I or

MDA5. Examples are the viral blockage of TRIM25-mediated ubiquitination of RIG-I or the expres-

sion of deubiquitination enzymes that remove covalently-linked K63-linked ubiquitin residues of the

CARDs212–214. Also PP1-α/γ is a viral target and blockage of MDA5 dephosphorylation was shown

to impedes its signaling activation215. Other viruses were shown to attack MDA5 by inserting into

the three-dimensional structure and unfolding the protein216,217, or to cleave RIG-I or MDA5 either

by exploiting cellular caspases and the proteasome or by expressing viral proteinases218–220.

6 Mutations within the RIG-I-like receptor SF2 domain can cause

autoimmune diseases

A comparably new field within RLR research are RIG-I- and MDA5-related autoimmune diseases.

Due to the growing field of genome-wide association studies (GWAS) of human diseases, an increas-

ing number of genetic variants become available. GWAS usually compare genetic data of healthy

people to those of people carrying a certain disease phenotype and look for single-nucleotide poly-

morphisms (SNPs) that are more frequent within the disease genomes. Thereby more and more

attention is also drawn to RLRs.

Examples for RLR-related diseases are the Aicardi-Gutières syndrome, diabetes mellitus type 1, mul-

tiple sclerosis, systemic lupus erythematosus, the Singleton-Merten syndrome, psoriatic arthritis or

cutaneous psoriasis, dermatomyositis, selective IgA deficiency and dilated cardiomyopathy221,222.

In most cases the involved RLR is MDA5, with only a few known disease-correlated SNPs for RIG-I

and so far non for LGP2. Interestingly, almost all of the so far identified pathogenic SNPs are either

non-coding or are located within the RLR helicase domain (Table 1 and Figure 16).
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Table 1: DDX58 (encodes RIG-I) and IFIH1 (encodes MDA5) single nucleotide polymorphisms associated with

autoimmune diseases.

SMS: Singleton-Merten syndrome, AGS: Aicardi-Gutières syndrome, SLE: Systemic lupus erythemato-

sus, T1D: type 1 diabetes, NA: not available

protein SNP nucleotide

change

amino acid

change

SNP location disease

RIG-I rs786204848 G to T C268F domain 1a SMS

rs786204847 A to C E373A domain 1a SMS

MDA5 rs587777447 A to G R337G domain 1a AGS

rs587777576 C to T L372F domain 1a AGS

rs587777449 A to T D393V domain 1a AGS

rs587777575 G to A A452T domain 1a AGS

rs10930046 G to A R460H domain 1a SLE

rs672601336 G to A G495R domain 1a AGS

rs35744605 G to T E627X domain 2b T1D1

rs587777445 G to A R720Q domain 2a AGS

rs587777446 G to A R779H domain 2a AGS, SLE

rs587777448 C to T R779C domain 2a AGS

rs376048533 G to A R822Q domain 2a SMS

NA G to A R824K domain 2a AGS

rs3747517 A to G R843H pincer, AP-1 binding site T1D

rs35667974 A to G I923V CTD T1D1

rs1990760 G to A A946T CTD, HNF-3bFOXA2 binding site T1D, SLE

rs13023380 G to A intronic intron SLE

rs2111485 T to C intergenic 13 kb 3′ of IFIH1 gene T1D

rs13422767 C to T intergenic 23 kb 3′ of IFIH1 gene T1D

rs35337543 G to A intronic intron 8+1 T1D1

rs35732034 G to A intronic intron 14+1 T1D1

1 The indicated SNPs confer protection against T1D.

6.1 Type I interferonopathies – the Aicardi-Gutières syndrome and systemic lupus

erythematosus

The term ”type I interferonopathies” is only recently emerging in literature and is used to describe a

group of (mono)genetic diseases in which a constitutive upregulation of type I IFN production is con-

sidered to be directly relevant to pathogenesis223. As detailed earlier, type I interferon production

and the expression of ISGs controls virus replication and spread in infected cell. Aberrant stimula-

tion, however, or unregulated control of the type I interferon system can lead to inappropriate or

sustained IFN production and might thus result in autoimmune diseases.

Known RLR-related diseases that are associated with the activation of type I interferon production

include the Aicardi-Gutières syndrome and systemic lupus erythematosus.

Aicardi-Gutières syndrome:

The Aicardi-Gutières syndrome (AGS) is a rare monogenetic, inflammatory disease affecting the skin

and brain, and is manifested by the degeneration of white matter due to the deterioration of myeli-

nated nerve fibers224. The majority of affected patients are profoundly disabled with significant
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Figure 16:Mapping of known RLR disease-related susceptibility loci to the three-dimensional protein struc-

ture. Amino acids connected to a disease-promoting prognosis are depicted in green, potential

disease-protecting sites are shown in orange. Dashed lines: invisible linkers containing susceptibil-

ity loci. (A) Overview ofMDA5 susceptibility loci. (B) and (C) Susceptibility loci that map to residues

within the ATP binding pocket between domains 1a and 2a of MDA5 or RIG-I respectively.

RCSB PDB codes for the structures depicted are: 4gl2 (MDA5∆CARDs) and 3tmi (RIG-I∆CARDs).

intellectual and physical problems225. Other symptoms that are consistently associated with AGS

include skin lesions referred to as chilblains and raised intraocular pressure (glaucoma). All patients

show a constitutive upregulation of type I IFN production that is considered to cause pathogene-

sis226.

So far, AGS is known to be induced by mutations in one or several of the genes encoding the fol-

lowing seven proteins: the DNA 3′ repair exonuclease 1 (TREX1)227, the subunits H2A, H2B and H2C

of the ribonuclease H2 (RNase H2) endonuclease complex228, the deoxynucleoside triphosphate

triphosphohydrolase and ribonuclease SAM domain and HD domain 1 (SAMHD1)229, the adenosine

deaminase acting on RNA 1 (ADAR1)230 and the gene encoding MDA5197. A deficiency in these

genes may result in the accumulation of immune stimulatory RNA or DNA, leading to the chronic

production of IFN via nucleic acid sensors like TLRs, RLRs or cGAS221.

In total 8 susceptibility loci within domains 1a and 2a of MDA5 have been related to AGS197,225,231

(see Figure 16 and Table 1). All SNPs are described as gain-of-functionmutations due to increased IFN
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signaling197. In contrast to all other so far identified AGS-related SNPs, mutations in MDA5 display

an autosomal dominant pattern of inheritance and occur exclusively heterozygous225. Nevertheless,

some of the patients inherited themutation from their parents or grandparents that were symptom-

free despite also having elevated IFN levels197. A monogenetic background, therefore, seems not

necessarily be sufficient to develop AGS.

Interestingly, increased IFN signaling of ADAR1 mutations within AGS patients is also dependent

on MDA5. ADAR1 converts adenosine to inosine within endogenous RNAs and is essential for the

maintenance of both fetal and adult hematopoietic stem cells by protecting against IFN-mediated

apoptosis232. ADAR1-edited RNA has immunosuppressive properties233 and altered binding affini-

ties to RLRs234. Specifically, ADAR1 was shown to deaminate adenosine to inosine preferentially at

the 3′ UTR of mRNA thereby remodeling RNA secondary structure and preventing the formation of

long dsRNA regions which are potential MDA5 binding sites235.

Systemic lupus erythematosus:

Systemic lupus erythematosus (SLE) is a chronic systemic inflammatory disease characterized by

multi-organ damage caused by hyperactive T and B cells and autoantibody production against self

nucleic acids and small nuclear RNA-binding proteins223,236. Affected organs are for instance the

skin, kidney, joints, lungs, various blood elements, heart and the central and peripheral nervous

system237. Like AGS, SLE is characterized by high IFN levels and dysregulated expression of genes of

the IFN pathway with both the innate and the adaptive immune system being activated238. 90% of

the SLE incidences affect women of child-bearing age between 20 and 30 years239.

For SLE there are so far more than 40 genetic susceptibility loci identified240. Many of these loci are

shared with other autoimmune diseases like type 1 diabetes or AGS. The most prominent loci are

HLA genes, especially class II genes, and the Fcγ receptor. MDA5 is also shown to be a risk factor

and especially the SNP that results in the MDA5 A946T mismatch241,242 as well as MDA5 R779H243,

R460H and an intronic SNP244 have been linked to SLE (see Figure 16 and Table 1).

6.2 Other RIG-I-like receptor-related autoimmune diseases: the Singleton-Merten

syndrome and type 1 diabetes

So far, not all RLR-related immune diseases are connected to elevated levels of type I IFN in patients.

Examples, were no interferon signature is described are the Singleton-Merten syndrome as well as

Type I diabetes.

Singleton-Merten syndrome:

The Singleton-Merten syndrome (SMS) is a multi-system disorder mainly characterized by dental

dysplasia, thoratic aortic calcification, osteoporosis, psoriasis, glaucoma and skeletal abnormali-

ties245,246. SMS has an autosomal dominant pattern of inheritance246.

Recently, two mutations of RIG-I and one of MDA5 were found to be associated with SMS247,248. All

mutations are located within the ATP binding pocket (Figure 12 and Table 1) and led to enhanced

IFN signaling in cells, even without stimulus247,248. Clinical features of SMS patients harboring the

identified mutations, however, are very diverse with for instance RIG-I-associated SNPs resulting in
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atypical SMS which lacks the dental dysplasia phenotype.

The RIG-I SMS variant C268F and E373A affect key aa residues within the ATPase motifs I (Walker A)

and II (Walker B) of domain 1a, respectively (see Figure 16). MDA5 R822 is located in motif VI (the

”arginine finger”) of domain 2a. The molecular basis for increased IFN production of SMS mutants

was so far not understood, but is addressed in the second part of thesis and will be discussed later.

Type 1 diabetes:

Type 1 diabetes (T1D) is a type of the metabolic disorder diabetes mellitus that is developed dur-

ing childhood or adolescence. It is characterized by chronic hyperglycaemia with disturbances of

carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action,

or both. During T1D the body develops amongst others autoantibodies against insulin-producing

β-cells in pancreatic islets and insulin itself249. The trigger for the occurrence of those autoanti-

bodies is still highly controversial and might, amongst others, be connected to enterovirus infec-

tions249–251. Statistically, the development of T1D has a seasonal pattern, being more common

during the cold season, and has a higher incidence in industrialized countries where the sanitary

conditions are better and, paradoxically, the prevalence of enteroviral infections is lower249,252.

The enteroviruses mainly implicated with T1D are Coxsackie type B viruses253 and are sensed by

MDA5254. It is speculated that the appearance of autoantibodies is connected to either an enhanced

production of type I IFNs and subsequent inflammation induced tissue damage, or to a weak re-

sponse that might favor viral replication and spread and therefore tissue damage255. In any case,

the upregulation of type I IFNs helps to activate the adaptive immune response by enhancing the

expression of major histocompatibility complex (MHC) molecules. By that cells become highly sus-

ceptible to recognition and destruction by adaptive immune cells256. Infections with enteroviruses

might therefore contribute either to the initiation of autoimmunity or to the progression from islet

autoimmunity to T1D or both255.

So far, more then 50 susceptibility loci for T1D have been identified257. Implicated genetic factors are

mainlymutationswithin human leukocyte antigen (HLA) geneswith class II genes being the strongest

genetic contributors. Less prominent associations have been found for example for MDA5, which

could therefore provide a link between genetic susceptibility, viral infections and the innate immune

response, all being believed to contribute to T1D pathogenesis250.

In case of MDA5 the A946T and R843H substitutions as well as two intergenic SNPs were implicated

in being a risk factor for T1D258,259 (Figure 16 and Table 1). These fourmutations, however, are found

in a strong linkage disequilibrium and are reported to have cumulative effects259,260. Furthermore,

MDA5 gene expression in unstimulated cells is increased260. Opposed to that, the mutations I923V,

E627X and two variants with SNPs at an intron first nucleotide position are suspected to confer lower

risk for T1D261 (Figure 16 and Table 1). In vitro I923V and E627X show decreased IFN production

after poly(I:C) stimulation262,263 and except for I923V all protective MDA5 SNPs have lower mRNA

levels264. A decrease in MDA5 driven production of type I IFNs might thus have protective effects

on T1D development.
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7 Objectives

RIG-I and MDA5 are the key immune receptors for defending many viral infections. Over the last

decade, an immense number of studies focused on the molecular characterization of RIG-I-like re-

ceptors and their respective agonists in vitro. Several crystal structures of RIG-I and MDA5 suc-

cessfully explain different binding preferences of both proteins towards distinct kinds of dsRNA,

and build together with biochemical and cellular assays the foundation for their particular mode

of action. The optimal RIG-I agonist, as defined in vitro, is short 5′ di- or triphosphorylated, but

unmethylated, dsRNA. MDA5 ligands, however, are less well understood and only characterized as

long unmethylated dsRNAwithout any further particular discriminating element. In contrast to their

distinct binding partners in vitro, RLRs show nevertheless overlapping functions when it comes to

virus detection in vivo. The precise nature and origin of viral RLR agonists are thus still enigmatic.

In addition, the function of the central SF2 helicase domain of RLRs remained mysterious. This be-

came even more important, since recently several autoimmune disease variants, including single

nucleotide polymorphisms causing Singleton-Merton syndrome (SMS), have been identified within

the RLR helicase domain and particular within ATP binding or hydrolysis motifs of RIG-I and MDA5.

The aim of the first part of this thesis was the isolation and characterization of in vivo occurring

ligands of RIG-I and MDA5 in measles virus-infected cells. Because of the comparably low affinity of

MDA5 towards dsRNA a protein:RNA crosslinking approach with subsequent co-immunopurification

from infected cells was established. In order to elucidate the nature of physiological RLR agonists,

the recovered RNAwas analyzed via Next Generation Sequencing. In addition, different biochemical

assays were used to validate the sequencing results.

The second, and major, aim of this thesis was the functional characterization of the SF2 domain

of RIG-I. For that purpose designed Walker A and Walker B mutants as well as RIG-I SMS variants

were used. The impact of these mutations onto the RLR signaling pathway was analyzed in cellu-

lar assays with both infected and uninfected RIG-I KO cells. In addition, physiological ligands of the

RIG-I Walker B mutant, that shows constitutive activity, and of SMS variants were investigated by

co-immunopurification. The interaction of one putative endogenous ligand, that was found to be

recognized by the RIG-I Walker B mutant, was visualized by cryo-electron microscopy. Again, bio-

chemical experiments with purified proteins were used to independently validate the results.
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Summary

In this publication we report the purification and characterization of physiological ligands of MDA5

and RIG-I in measles virus-infected cells. Since MDA5 shows only comparably poor affinity towards

RNA ligands, we established a protein:RNA crosslinking approach aiming at improving the nucleic

acid yield. Thereby incorporation of photoactivatable nucleosides into newly-synthesized RNA al-

lows a subsequent selective UV light linkage to interacting proteins. Afterwards, we analyzed MDA5

and RIG-I co-immunopurified RNAs by next generation deep sequencing and compared the obtained

reads to the measles virus genome.

In accordance with previous literature, RIG-I mainly interacted with measles virus genomic (i.e.

negative-sense) RNA or antigenomic (i.e. positive-sense) RNA close to the 5′ end. These RNA species

most likely represent leader read-through transcripts or abortive replication products. For MDA5 on

the other hand, we were for the first time able to purify in vivo relevant RNA and show that it solely

interacted with antigenomic RNA/ mRNA excluding the end, but otherwise similar regions as RIG-I.

For both proteins most interactions were found to occur within the measles virus L gene encoding

the viral polymerase. We confirmed the sequencing results by quantitative PCR. Furthermore, by

PCR, in both sequencing libraries measles virus copyback DI sequences could be detected. By bioin-

formatics evaluation of the sequencing data we found a direct connection between sequencing read

number and AUbase composition forMDA5. With subsequent cellular analysis of dephosphorylated

in vitro transcribed (IVT) RNA spanning different regions of the measles virus antigenome, we could

recapitulate this finding: IVTs with higher AU content exhibited also higher immunostimulatory po-

tential. We further confirmed this correlation with Mengo virus IVTs. Finally, using in vitro ATP hy-

drolysis assays of purified MDA5 interacting with measles virus IVTs we show a negative correlation
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of MDA5’s ATPase function with AU base composition, indicating that ATP hydrolysis might disturb

immunopurification of MDA5 associated RNA.

Based on our results we conclude that MDA5 preferentially senses AU-rich RNA species because

they are poorer activators of its ATPase domain and therefore result in more stableMDA5 filaments,

which in turn are better activators of type I interferon signaling.
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Abstract

RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections
and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a
complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In
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identified 59-triphosphate containing blunt-ended double-strand RNAs as potent RIG-I inducers and these findings were
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infected with measles virus. Our findings suggest that RIG-I and MDA5 associate with AU-rich RNA species originating from
the mRNA of the measles virus L gene. Corresponding sequences are poorer activators of ATP-hydrolysis by MDA5 in vitro,
suggesting that they result in more stable MDA5 filaments. These data provide a possible model of how AU-rich sequences
could activate type I interferon signaling.
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Introduction

The retinoic acid inducible gene I (RIG-I)-like receptor (RLR)

proteins are key players in innate immunity and act by recognizing

viral RNA (vRNA) in the cytosol. The RLR family consists of

the members retinoic acid inducible gene I (RIG-I), melanoma

differentiation associated protein 5 (MDA5), and laboratory of

genetics and physiology 2 (LGP2) [1–3]. In vitro studies have shown

that RIG-I and MDA5 recognize the majority of viruses in a

complementary manner. While many negative-strand RNA

viruses like rabies and influenza viruses are predominantly sensed

by RIG-I, picornaviruses are predominantly recognized by

MDA5. The observed preferences are, however, unlikely to be

exclusive and the exact role of LGP2 still needs to be investigated

[4–9]. In case of MDA5, a minor contribution to recognition of

measles, rabies, vesicular stomatitis and Sendai virus has been

reported [10–13].

The RLR proteins belong to the DExD/H-box ATPases

sharing a central ATP-dependent helicase domain and a C-

terminal regulatory domain (RD) that is responsible for initial

RNA binding. In addition, RIG-I and MDA5 possess N-terminal

tandem caspase activation and recruitment domains (CARDs) that

are responsible for downstream signaling transduction [2,14,15].

Several crystal structures of RIG-I have shown that, in the absence

of virus, the protein exists in an auto-inhibited state where the RD

domain folds back to the CARDs, thereby shielding them from the

cytosol. Upon viral infection and initial vRNA binding, the protein

undergoes large conformational changes leading to the interaction

with the mitochondrial associated signaling protein (MAVS) [16–

19]. This leads to the activation of a downstream signaling cascade

and finally to the induction of type I interferon (IFN) expression

and the establishment of an anti-viral state. Although the exact

nature of RLR ligands is not yet fully understood, several studies

report that RIG-I preferentially binds to relatively short (between

25 to 1000–2000 bp) 59-triphosphate double-stranded RNAs

(59-triphosphate dsRNA) like those of Sendai virus (SeV) defective

interfering (DI) particles [20–23]. In contrast, MDA5 seems to

have a preference for long (more than 1000–2000 bp) dsRNA

stretches [24,25]. Upon binding to dsRNA, MDA5 is thought to

cooperatively form polar helical filaments leading to association
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with MAVS and activation of the downstream signaling cascade

[26–28].

Viruses have developed numerous strategies to evade the

immune system. For instance, viruses of the paramyxovirus family

(e.g. measles, parainfluenza, Sendai and Nipah viruses) encode

V inhibitor proteins that specifically bind to MDA5 and LGP2,

but not always to RIG-I [29–31]. By determining the structure

of MDA5 in complex with parainfluenza virus V-protein, we

previously showed that the viral protein unfolds the ATPase

domain of MDA5. This leads to the disruption of the MDA5

ATP-hydrolysis site and prevents RNA bound MDA5 filament

formation [32].

One of the remaining key questions in this field is how RLR

proteins are able to distinguish between self and non-self RNA in

the cytosol. Recently, several studies showed that 59-triphosphate

RNA is not the only RNA ligand for RIG-I. Specific poly U/C-

rich regions within certain viral genomes seem to contribute to

efficient recognition by the protein [33,34]. In case of MDA5, it is

not known which features of vRNA are required in order to induce

an immune response. Expression of subgenomic and subgenic

RNA from parainfluenza virus 5 (PIV5) indicated that MDA5

recognizes a specific region within the L mRNA [35]. For

picornaviruses, it is speculated that MDA5 binds to long dsRNA

that represents replicative intermediates composed of the positive

genome and the negative antigenome [36]. These studies were,

however, based on in vitro transfection experiments and it has so far

not been possible to isolate a natural RNA ligand for MDA5

directly from virus-infected cells.

In this study we combined different methods, including RNA-

protein crosslinking and deep sequencing, to investigate in vivo

RNA ligands for RLR proteins from virus-infected cells. Based on

the crosslinking we were able to co-purify immunostimulatory

RNA in a RIG-I and MDA5 dependent manner from measles

virus (MeV)-infected cells. Deep sequencing and bioinformatics

analysis revealed that RIG-I and MDA5 bind RNA of positive

polarity originating from the L gene of the MeV genome. In

addition, RIG-I binds to the 59 ends of genomic and antigenomic

RNAs, which probably represent 59-triphosphate RNA, and are

therefore not recognized by MDA5. Furthermore, we showed that

RIG-I, but not MDA5, binds RNA of negative polarity, indicating

that MDA5 does not efficiently recognize the MeV genome. Based

on bioinformatics analysis, we observed a correlation between

MDA5-enriched RNA sequences and the AU content and this was

confirmed by in vitro transcription assays. In summary, we report

the isolation of MDA5-associated RNA from virus-infected cells

and the discovery of in vivo occurring activating viral RNA ligands

for MDA5.

Results

4-thiouridine treatment and 365 nm UV light exposure
lead to improved RLR-associated RNA recovery from
virus-infected cells

Several in vitro studies showed that MDA5 preferably recognizes

long dsRNA stretches [24,25]. However, it is still unclear if the

protein has a preference for specific RNA sequences. The main

reason for this may lie in the weak interaction between the protein

and its ligand resulting in very poor RNA levels that co-purify

from MDA5 immunoprecipitates. In order to address this

problem, we established an RNA-protein crosslinking approach

adapted from the PAR-CLIP (Photoactivatable-Ribonucleoside-

Enhanced Crosslinking and Immunoprecipitation) methodology

[37]. With this approach, we intended to improve RNA recovery

from RLR immunoprecipitates in the context of a viral infection.

For validation of the method, we compared the crosslinking

approach with a conventional pull-down technique previously

used for the identification of SeV DI particles as potent RIG-I

inducers [20]. We infected A549 human lung carcinoma cells with

SeV at a high multiplicity of infection (MOI) in the presence of 4-

thiouridine (4SU) and allowed infection to occur over 24 h. A part

of the cells was then exposed to 365 nm UV light and endogenous

RIG-I was immunopurified (Figure 1a). The recovered RNA was

isolated and subjected to quantitative PCR (qPCR) analysis and

immunoactivity experiments. The data indicate that treatment

of cells with 4SU and exposure to 365 nm UV light lead to a

reduction of immunostimulatory activity of RIG-I-associated

RNA to 50% (Figure 1b). However, the results of qPCR analysis

showed that the crosslinking approach yields a quantitatively

improved RNA recovery, with an increase of 50% in SeV DI

particles in comparison to the non-crosslinking approach

(Figure 1c and d). Furthermore, we confirmed that treatment

of cells with the photoreactive nucleoside does not affect cell

viability or virus replication (data not shown). Taken together, our

data indicate that the crosslinking technique is a promising tool to

study in vivo occurring RNA ligands for RLR proteins.

Next, we validated the crosslinking approach on cells that were

infected with a variety of viruses, including negative-stranded (2)

RNA viruses (MeV [38] and rabies [39]) and positive-stranded (+)

RNA viruses (Encephalomyocarditis virus (EMCV [40]) and

Mengo virus [41]). In all cases, we infected A549 cells at an

MOI of 1.0 in the presence of 4SU. Cells were crosslinked 24 h

post infection (hpi) and RIG-I and MDA5 were immunopurified.

The recovered RNA was subjected to immunoactivity experi-

ments. Based on the data, we concluded that immunoactive RNA

was co-purified in a RIG-I- and MDA5-dependent manner from

MeV-infected cells. This induction was significant in comparison

to the negative control (Figure 2). In the case of RIG-I-associated

RNA, we obtained an immunostimulatory effect that was 2600-

fold higher in comparison to the control. For MDA5, we observed

an 800-fold induction. The data show that the approach yields

RIG-I- and MDA5-specific immunoactive RNA from MeV-

infected cells in a RIG-I- and MDA5-dependent manner.

Author Summary

RIG-I-like receptors (RLRs) are helicase-like molecules that
detect cytosolic RNAs that are absent in the non-infected
host. Upon binding to specific RNA patterns, RLRs elicit a
signaling cascade that leads to host defense via the
production of antiviral molecules. To understand how RLRs
sense RNA, it is important to characterize the nature and
origin of RLR-associated RNA from virus-infected cells.
While it is well established that RIG-I binds 59-triphosphate
containing double-stranded RNA, the in vivo occurring
ligand for MDA5 is poorly characterized. A major challenge
in examining MDA5 agonists is the apparently transient
interaction between the protein and its ligand. To improve
the stability of interaction, we have used an approach to
crosslink MDA5 to RNA in measles virus-infected cells. The
virus-infected cells were treated with the photoactivatable
nucleoside analog 4-thiouridine, which is incorporated in
newly synthesized RNA. Upon 365 nm UV light exposure
of living cells, a covalent linkage between the labeled RNA
and the receptor protein is induced, resulting in a higher
RNA recovery from RLR immunoprecipitates. Based on
next generation sequencing, bioinformatics and in vitro
approaches, we observed a correlation between the AU-
composition of viral RNA and its ability to induce an
MDA5-dependent immune response.
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Although we detected significant immunostimulatory activity for

RLR-associated RNAs from MeV-infected cells, the experimental

set up is currently unsuitable for the isolation of RLR RNA ligands

from the other viruses (Figure S1). The reason for this may lie

in the heterogeneity and the need for precise timing of viral

replication cycles or in the efficiency of 4SU incorporation and

crosslinking. Utilization of this technique for other viruses may

require adjustment of parameters, such as the time points of 4SU

addition, crosslinking and harvesting after infection.

Deep sequencing reveals regions within the measles
virus genome recognized by RIG-I and MDA5

Based on the above-mentioned results, we focused our studies

on MeV, which belongs to the order of Paramyxoviridae. MeV has a

single-stranded RNA genome of negative polarity consisting of

15,894 nucleotides. It comprises six non-overlapping genes,

which are flanked by small terminal non-coding regions known

as leader (le) and trailer (tr) sequences. These sequences serve as

promoter regions during viral replication and transcription

[42,43]. While the replication of the genome and antigenome is

performed in a continuous process, viral transcription is carried

out in a sequential manner, giving rise to an mRNA gradient

declining in the 39 to 59 direction (Figure S2), as previously

published [44]. Since (2) RNA virus polymerases eventually fail in

transcription termination, they generate, in addition to mono-

cistronic mRNAs, numerous alternative RNA species including

read-through transcripts, such as leader-N, bi- or tricistronic

mRNAs [45]. Furthermore, replication can give rise to abortive

replication products and DI RNA with large internal deletions or

copy-back genomes [46]. Due to the complex RNA composition of

Figure 1. Validation of crosslinking and immunoprecipitation of RLR/RNA complexes from 24 h virus-infected cells. A: Schematic
representation of the experimental procedure for characterization of RLR-associated RNA molecules. B: Immunostimulatory activity of RNA from RIG-I
and control (GFP) crosslinking samples in comparison to non-crosslinking immunoprecipitates. C: Western blot analysis of crosslinked and non-
crosslinked RIG-I and control (GFP) pull-down experiments. D: Comparison of RNA recovery levels by quantitative PCR analysis of RIG-I-associated
RNA from SeV-infected cells (n = 3). n.d. = not detectable.
doi:10.1371/journal.ppat.1004081.g001
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a virus-infected cell, the analysis of specific RNA ligands for RLR

proteins is challenging.

In order to shed light on the exact nature of RIG-I and MDA5-

associated RNAs derived from MeV-infected cells, we performed

a deep sequencing analysis on isolated RNA species from co-

immunopurifications with antibodies against endogenous RIG-I

and MDA5. As a control, we used an antibody against GFP (GFP

protein was not present). The MeV strain used for the studies

presented here was a recombinant measles virus rescued from

cDNA with the exact sequence of the Schwarz vaccine strain

(Genbank AF266291.1) [38].

Obtained sequences were mapped to the MeV antigenome and

the relative abundances of these sequences between RIG-I pull-

down, MDA5 pull-down, and GFP pull-down were compared.

Analysis of the reads showed that RIG-I and MDA5 bind to similar

regions within the L gene-derived RNAs. In addition, RIG-I,

but not MDA5, binds to RNAs derived from the 39 and the 59 ends

of the MeV genome (Figure 3a and b). These regions probably

represent le or trRNA generated in the course of replication or

transcription. Additionally, internal genomic and antigenomic

sequences found in the pull-downs could potentially originate from

MeV DI particles [46–51]. To address this question, we performed

a PCR analysis of RLR libraries in which we specifically amplified

copyback DI RNA of MeV [47–49]. Indeed, we detected copyback

DI particles not only in the RIG-I pull-down but also within RNA

recovered from MDA5 immunoprecipitates (Figure S3). We did

not find DIs in the GFP control pull-downs.

Consistent with previous work, the higher copy numbers of

reads indicate that RIG-I binds MeV RNA with higher affinity

than MDA5 [11]. This observation is in good agreement with

the increased immunostimulatory activity of isolated RNA from

RIG-I pull-down samples in comparison to MDA5. Regarding

the immunostimulatory activity, RIG-I-associated RNA gives a

4-fold higher induction in comparison to MDA5-associated RNA

(Figure 3d and e).

Analysis of deep sequencing data reveals remarkable
differences in the strand-specificity of RIG-I and MDA5

Based on the protocol used for cDNA library preparation,

sequencing reads could be separated according to their strand

orientation. During cDNA synthesis, adaptors were specifically

ligated to the 39 or 59 ends, thereby keeping the information of

strand specificity during the deep sequencing run. Separation of

sequences revealed remarkable differences between both protein

immunoprecipitations. RIG-I associated RNA sequences of

positive polarity, which represent either antigenomic RNA or

mRNA transcripts, are enriched in regions close to the 59 end of

the viral antigenome (leader) but also in distinct regions within the

L gene. In contrast, sequences of negative polarity, representing

the viral genome, are exclusively enriched in the 59 end of the

genome (trailer region) and in regions of the L gene (Figure 4a).

Analysis of MDA5-associated RNA revealed that sequences of

positive polarity were enriched within the L gene originating from

similar regions as (+) RNA from the RIG-I library (Figure 4b).

In contrast to RIG-I, however, MDA5 did not bind to RNA

sequences comprising the 59 end of the antigenome or leader

RNA. Comparison of (2) RNA from RIG-I and MDA5 libraries

further revealed that, in contrast to RIG-I, MDA5 did not enrich

sequences of negative polarity, including trailer sequences.

According to the analysis of strand specific enrichment, it

appears that MDA5 does not bind vRNA of negative polarity that

represents the MeV genome. Furthermore, the data evidently rule

out the possibility that MDA5 recognizes RNA duplexes of (+)

and (2) RNA that might represent replication intermediates, as

previously suggested for a positive-strand RNA virus [36]. In fact,

the result suggests that MDA5 binds (+) RNA that could either

represent mRNA or the MeV antigenome.

To further validate the specificity of the accumulation of RIG-I

and MDA5-associated RNA, we calculated specific read enrich-

ments [52] of the RLR libraries compared to the control library

(Figure S4). Enrichment (greater than 26 compared to the

control library) of RIG-I-associated RNA of positive polarity can

be found across the whole genome, whereas only few reads of

negative polarity are enriched within the N and L segment. In

contrast, enriched sequences of MDA5-associated RNA are

exclusively present within the L segment of positive polarity,

whereas no specific enrichment was observed for (2) RNA.

Based on the data, we observed a good correlation between the

deep sequencing analysis and enrichment calculations, indicating

that distinct regions within the MeV genome are indeed

specifically enriched in a RIG-I- and MDA5-dependent manner

in comparison to the control.

Confirmation of deep sequencing data with quantitative
PCR

To independently validate the relative amount of RLR-

associated RNA, qPCR amplification was performed. The

obtained copy read numbers were normalized to the GFP negative

control in order to compare the genomic segments in the RIG-I

and MDA5 samples (Figure 5a). Analysis of relative abundances

confirmed that RIG-I specifically enriches sequences from the

39 and 59 regions of the MeV genome, representing either

antigenome or viral mRNA. Interestingly, the analysis showed

that RIG-I-associated RNA from the genomic 39 end most likely

represents leader read-through transcripts or abortive replication

products and not N mRNA. In MDA5 pull-downs, RNA was

enriched in the case of the L mRNAs and partly in the case of H

mRNAs, while no relevant copy numbers were obtained at other

genomic positions. This is in good agreement with the results of

Figure 2. Immunoprecipitation of RLR-associated RNA from
24 h MeV infections. Validation of immunostimulatory activity of
RNA from RIG-I, MDA5, and GFP immunoprecipitates upon transfection
into 293T ISRE-FF reporter cells (n = 3, ** P,0.01).
doi:10.1371/journal.ppat.1004081.g002
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Figure 3. Deep sequencing analysis of RLR-associated RNA from MeV-infected cells. A–C: RNA from RIG-I pull-down (red), MDA5 pull-
down (blue), and control (GFP) pull-down (black) from MeV-infected cells were subjected to Illumina deep sequencing analysis. Obtained sequencing
reads are mapped to their position on the viral antigenome. The x-axis corresponds to all possible 15,894 positions in the MeV antigenome and the y-
axis shows the number of reads at the respective position. (A) RIG-I-associated sequences in comparison to the control mapped to the viral
antigenome. (B) MDA5-associated sequences in comparison to the control mapped to the viral antigenome. (C) Overlay of RIG-I associated and
MDA5-associated sequences. D: Western blot analysis of RIG-I and MDA5 immunopurification in comparison to the GFP pull-down. E: Validation of
immunostimulatory activity of RNA from RIG-I, MDA5, and GFP immunoprecipitates upon transfection into 293T ISRE-FF reporter cells.
doi:10.1371/journal.ppat.1004081.g003
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the deep sequencing analysis, indicating that MDA5 indeed

recognizes RNA originating from the L gene of the MeV genome.

Furthermore, comparison of the relative copy numbers between

RIG-I and MDA5 revealed remarkable differences between both

proteins. The relative abundances in the RIG-I sample were up to

40-fold higher in comparison to MDA5. This observation again

indicates that RIG-I has a higher affinity for MeV RNA sequences

in comparison to MDA5. Our conclusion is further supported by

immunoactivity experiments, where the relative immunostimula-

tory activity of RIG-I-associated RNA was 20-fold higher in

comparison to MDA5 (Figure 5b and c).

Bioinformatics analysis reveals a preferred binding of
RIG-I and MDA5 to RNA species with a higher AU
composition

To elucidate the exact nature of sequences enriched by RIG-I

and MDA5 immunoprecipitations, we conducted a bioinformatics

analysis. For this, the complete genome was divided into fragments

of size 201 nt with a shifting window of 5 nt. Each sequence was

folded in silico (RNAfold [53]) and several RNA primary and

secondary structure features were analyzed. The analyzed para-

meters were set in relation to the mean coverage of sequencing

reads from RIG-I and MDA5 pull-down experiments. Heat scatter

plots indicate that sequences rich in AU correlate with a high

mean coverage of sequencing reads in both the RIG-I (cor =

0.273, cor = 0.334) and MDA5 (cor = 0.358, cor = 0.348) libraries

(Figure 6a and b). These data suggest that RIG-I and MDA5

preferably bind to AU-rich sequences originating from the viral

genome. Although we further analyzed a variety of secondary

structure parameters, including paired nucleotides and bulges, we

did not see any other relevant correlation with the mean coverage

of sequencing reads (Figure S5 and Figure S6).

Confirmation of deep sequencing analysis by
immunoactive experiments on in vitro transcripts

To further confirm the obtained sequencing data, we generated

17 single-stranded, 200 nucleotide long in vitro transcripts (IVTs)

covering different regions of the MeV antigenome (Table S1).

RNAs were double-dephosphorylated in order to ensure that

59-triphosphate groups were removed. For immunoactivity

Figure 4. Strand separation of sequencing libraries into (+) and (2) MeV RNA. RNA deep sequencing libraries were generated based on the
strand-specific mRNA sample preparation protocol from Epicentre. The Epicentre protocol encompasses sequential ligation of 59 and 39 adapters to
RNA molecules, thus preserving strandness information. A: RIG-I-associated sequences in comparison to the control mapped to the viral antigenome.
(+) RNA is shown in red; (2) RNA is shown in magenta; the control library is shown in black and grey. B: MDA5-associated sequences in comparison to
the control mapped to the viral antigenome. (+) RNA is shown in blue, (2) RNA is shown in cyan; the control library is shown in black and grey.
doi:10.1371/journal.ppat.1004081.g004
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Figure 5. Quantitative PCR analysis of RLR-associated RNA from MeV-infected cells. A: Comparison of RNA levels between RIG-I and
MDA5 immunoprecipitates for each genomic segment at 24 hpi. Relative RNA ratios were normalized against the control (GFP) library (mean values, n = 2).
B: Western blot analysis of RLR pull-down experiments in comparison to the GFP pull-down. C: Immunostimulatory activity of RLR-associated RNA at 24 hpi.
doi:10.1371/journal.ppat.1004081.g005

Figure 6. Heatscatter plots of AU content of 201 nucleotide MeV RNA fragments and the fragment’s mean coverage. The linear
correlation is expressed via the Pearson coefficient. Every dot corresponds to one fragment with its respective AU content and mean coverage within
an RLR library. The more yellow the plot, the more data points overlap. A: Correlation between AU composition and coverage of RIG-I-associated RNA
of positive and negative RNA respectively. B: Correlation between AU composition and coverage of MDA5-associated RNA of positive and negative
RNA respectively.
doi:10.1371/journal.ppat.1004081.g006
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experiments IVTs were transfected into 293T ISRE-FF reporter

cells. The stimulatory effect revealed a correlation of high read

numbers from deep sequencing analysis and high stimulatory

activity of the IVT sequences (Figure 7). According to the

immunostimulatory experiment, we observed increased immunos-

timulatory activities for transcripts 8, 9, and 12 (Figure 7a). These

transcripts correspond to regions at the 59 end of the L gene,

which is also the region with the highest copy numbers of reads

(Figure 3). In general, IVTs representing regions within the L

gene have higher immunostimulatory activity in comparison to

the upstream genomic segments. This is in good agreement to

the deep sequencing analysis. Furthermore, calculated Pearson

correlations showed that the best correlation between maximal

numbers of sequencing reads and the immunostimulatory activity

of RNA transcripts can be found in the MDA5 sequencing data

(cor = 0.526), while RIG-I and GFP samples showed less

correlation (cor = 0.369 and cor = 0.217) (Figure 7b). In order

to find a possible explanation for the different immunostimulatory

potentials of IVTs, several characteristics of the transcripts were

analyzed in silico. The obtained data revealed that the immu-

nostimulatory potential correlates with the AU content of IVTs

(cor = 0.599) (Figure 7d), which is consistent with the results

from the deep sequencing analysis. Visualization of transcripts on

an Agilent bioanalyzer RNA chip indicates that no higher-order

structures due to the sequence composition were formed that

might explain differences in immunostimulatory activity (data not

shown).

In order to get a more general conclusion about the

contribution of the AU content to the immunostimulatory

potential of RNAs, in vitro transcripts from Mengo virus (Table
S3) were tested for their immunostimulatory activity. The

transcripts were generated according to the protocol for MeV

RNA sequences. We again observed a correlation (cor = 0.583) of

the AU content of the tested sequences and their immunostimu-

latory potential (Figure S 7a and b). These data are consistent

with the in vitro analysis of MeV RNA sequences indicating that the

AU composition of RNA might play a general role in activating

RLR signaling.

In vitro transcripts with a low proportion of AU strongly
stimulate ATP hydrolysis by MDA5

Finally, we asked whether the ATP hydrolysis activity of MDA5

correlates with the immunostimulatory potential of the tested

IVTs. We measured the ATP hydrolysis rate of recombinant

mouse MDA5 in the presence of RNA transcripts (Figure 7 and
Figure S8) and observed a negative correlation between the

maximum number of sequencing reads in the MDA5 library and

the ATP hydrolysis rate (cor = 20.414, Figure 7c). Analysis of the

in vitro data revealed that AU-rich sequences lead to a decrease in

ATP hydrolysis activity of MDA5 (cor = 20.445). Furthermore,

the ATP hydrolysis rate negatively correlates with the immu-

nostimulatory potential of RNA transcripts (cor = 20.426)

(Figure 7d). This result suggests that the ATPase hydrolysis

activity of MDA5 is not correlated to the binding and the

immunostimulatory potential of the RNA transcripts and could

therefore provide a model of RNA recognition by the protein.

The data are consistent with previous work on MDA5 filament

formation upon dsRNA binding [26,27]. In structural and

biophysical studies, Berke et al showed that ATP hydrolysis by

MDA5 causes filaments to disassemble, perhaps by inducing

translocation along the RNA or triggering a conformational

change in the protein. According to our data, this may explain

the observed inverse correlation between the immunostimulatory

activity of IVTs and their potential to induce the ATPase activity

of MDA5.

Discussion

Until now, in vivo RLR ligands were poorly understood and

a naturally occurring MDA5 ligand could only be purified

indirectly by immunoprecipitation of LGP2:RNA complexes from

virus-infected cells overexpressing LGP2 [54]. By applying a

combination of RNA-protein crosslinking, immunoprecipitation of

endogenous proteins and RNA deep sequencing analysis, we were

able to investigate RLR-associated RNA from MeV infected cells.

We compared our results to the empty GFP antibody control

resembling a previously published immunoprecipitation strategy

[20].

Our approach reveals that MDA5 preferentially binds measles

virus RNA of positive polarity, whereas RIG-I additionally binds to

(2) sense RNA within the trailer region as well as in the adjacent L

gene. We propose that enriched RNA of positive polarity most

likely represents mRNA species, since antigenomic RNA is only

generated during replication and is immediately packed into

nucleocapsids [55–57]. For Mononegavirales, these RNA-protein

complexes are considered inaccessible for cytoplasmic proteins

[55,58] and might not be ligands for RLR proteins unless they

become released. We show that, unlike MDA5, RIG-I binds (+)

sense RNA originating from not only the L genomic segment,

but also from the 39 end of the MeV genome, which could be

either le-N read-through transcripts or abortive replication

products comprising 59-triphosphate ends [45,46]. Furthermore,

we hypothesize that RIG-I specific enriched RNA of negative

polarity represents abortive replication products also having

59-triphosphate ends [20–23]. Additionally, 59-copyback DI

sequences combining vRNA of positive and negative polarity

were found both in RIG-I and MDA5 immunoprecipitates and

may contribute to recognition [49].

Bioinformatics analysis and in vitro transcription experiments

revealed a correlation between AU content and read coverage of

the obtained sequences or IVTs, respectively. As shown before

[59], this indicates that RNA rich in AU could serve as a putative

ligand for RIG-I and MDA5, or in a secondary manner lead to a

specific structure that is recognized by both proteins. The slightly

weaker correlation of RIG-I associated sequences with their AU

content compared to MDA5 bound RNAs could be explained by

additional sequences or triphosphate RNAs recognized by RIG-I

that originate from regions less rich in AU.

Interestingly, ATP hydrolysis assays performed with recombi-

nant MDA5 and RNA transcripts indicate that the AU content of

RNA negatively correlates with the ATP hydrolysis rate of the

protein. This inverse correlation between the immunostimulatory

potential of RNAs and their capability to stimulate ATP hydrolysis

by MDA5 lets us speculate that the ATPase activity might not be

necessary for, or even interfere with, the immunoactivity of RNA

ligands. Although this observation disagrees with recent findings

about the role of ATP hydrolysis in RIG-I oligomerization on

59-triphosphate dsRNA [60], we assume that MDA5 and RIG-I

differ markedly in their mechanical activation and the role of ATP

hydrolysis. Our data is supported by results suggesting that MDA5

filament formation is abrogated in an ATP-sensitive manner. By

electron microscopy (EM) analysis it was shown that MDA5

filaments disassemble in the presence of ATP, indicating that

ATP hydrolysis triggers the translocation of the protein along

the dsRNA molecule or reduces the binding affinity, thereby

interfering with downstream signaling [26,27]. In light of the

available data in the literature we therefore hypothesize that the
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Figure 7. Analysis of in vitro transcribed RNA of the measles virus genome. Sequences were generated according to deep sequencing data.
The transcripts were either transfected into 293T ISRE-FF reporter cells in order to validate the immunostimulatory potential or ATPase hydrolysis
experiments were performed in presence of recombinant mMDA5. A: Comparison of relative luciferase activities (black) and relative ATPase activities
(grey) of in vitro transcribed RNAs (n = 3 and n = 2 respectively, values were normalized to the highest mean value of each replicate). B: Pearson
correlation between (+) RNA maximal coverage and relative luciferase activity. C: Pearson correlation between (+) RNA maximal coverage and relative
ATPase activity. D: Correlation analysis between AU content and luciferase or ATPase activity, and between ATPase and luciferase activity.
doi:10.1371/journal.ppat.1004081.g007
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ATPase activity of the MDA5 helicase domain contributes to

substrate specificity by detaching the protein from low affinity

substrates. To further test this hypothesis we generated RIG-

IE373Q and MDA5E444Q, which are mutated in the ‘‘Walker B’’

ATP hydrolysis motif [61], slowing down or abrogating the ATP

hydrolysis activity of the proteins, while preserving formation

of ATP complexes. Overexpression of these mutant proteins

from transfected plasmids showed a dramatic increase in their

immunostimulatory potential in the absence of any viral ligands

in comparison to expressed wild-type MDA5 (Figure S9).

Furthermore, pull-down studies with the RIG-I Walker B mutant

revealed an increase in the amount of recovered RNA while

their immunostimulatory potential decreased (data not shown).

The increased immunostimulation of ATPase deficient RLRs is

consistent with the model that RNAs that lead to a reduced ATP-

hydrolysis rate are more proficient in immunostimulation, possibly

by stabilizing RLR:RNA complexes. The negative correlation

between AU-rich sequences and the ATP hydrolysis rate suggests

that MDA5 binds AU-rich RNA in preference to GC-rich RNA.

This would lead to a stronger interaction between RNA and

MDA5 and result in a higher immunostimulatory signal. In order

to test this hypothesis, we performed binding assays with MDA5

and IVTs but we were not able to demonstrate differences in

the binding affinities between the different transcripts that might

support this theory (data not shown). Finally, we speculate that

RNA ligands for RLR proteins could be divided into two classes.

The first class would comprise RNA molecules originating from

the 59-triphosphate ends of the genome or antigenome. These

molecules could be generated in the course of read-through

transcription and abortive replication [45,46] and could therefore

represent preferred ligands of RIG-I, as shown previously [20].

The second class of RNA molecules could be recognized by both

receptor proteins. Our data suggest that recognition of these RNAs

might occur through the AU composition of sequences [34]. This

second class might also prominently include defective interfering (DI)

particles generated during MeV replication. For MDA5, however,

our deep sequencing data show that the (2) strand portion of the DIs

is either relatively short or the fraction of DIs binding to MDA5 is

magnitudes lower than the binding to L derived (+) sense RNAs and

therefore not easily detectable during sequencing. A more detailed

analysis of the deep sequencing data is currently ongoing in order to

shed more light on the complex nature of the DIs involved.

It will be interesting to see what types of RNA associate with

RIG-I and MDA5 during infections with different viruses and to

what extent the AU composition and DI generation contributes

to RNA recognition in these types of viruses. In particular, the

finding that both RIG-I and MDA5 localize to AU rich regions

suggests partially overlapping roles in detection of different viruses.

The specificity of RIG-I and MDA5 for certain viruses may lie not

only in the detection of 59-triphosphate by RIG-I, but also in the

heterogeneity of viral evasion strategies [62]. Our findings support

a model for the recognition of AU-rich sequences by RIG-I and

MDA5 from MeV-infected cells. Consistently, we find a similar

correlation for in vitro transcribed RNA from the Mengo virus

genome.

In general, the data support previous experiments indicating

that MeV is mainly recognized by RIG-I, while MDA5 seems to

play a minor role [4,5,13,63]. It could be possible that RIG-I

initially recognizes le-N read-through transcripts or abortive

replication products containing 59-triphosphate ends, leading to

the activation of the signaling cascade. In a second round of

recognition, RIG-I and MDA5 then recognize viral transcripts

that are rich in AU. To further test this hypothesis, time dependent

experiments need to be carried out.

One feature of the applied crosslinking technique is the

introduction of specific T to C transitions at the interaction sites

of 4SU-labeled RNA and the protein upon UV light exposure

[37]. By identifying these point mutations in the deep sequencing

data, one can exactly pinpoint the RNA sequences that interact

with the protein of interest. However, our bioinformatics analysis

did not reveal significant enrichment of T to C mutations, which

could be explained by the rather low incorporation efficiency of

the photoreactive nucleoside into viral RNA, consistent with the

low incorporation level of 4SU into host RNA. Nevertheless, by

increasing the incorporation efficiency in future studies, the

identification of point mutants could further narrow down the

precise binding sites of RLRs.

In summary, our approach provides a first insight into the

molecular basis of vRNA derived from MeV interaction with

MDA5 in living cells and reveals a preference for binding of AU-

rich regions originated from (+)-sense RNA of the L gene. In vitro,

these RNA molecules appear to be a poorer stimulator of the

ATPase activity of MDA5, and result in more stable MDA5

filaments and support better downstream signaling.

Materials and Methods

Cell lines, viruses and antibodies
Infection experiments were carried out in A459 human lung

carcinoma cells. HEK 293T ISRE-FF reporter cells (stable

expression of firefly luciferase under the control of an interferon

stimulated response element) were used for interferon stimulation

luciferase reporter gene assays. All cells were maintained in

Dulbecco’s Modified Eagle Medium supplemented with 2 mM L-

glutamine, 1% Penicillin-Streptomycin and 10% FBS (all purchased

from Invitrogen). Viruses used for infections were recombinant

measles virus with a sequence identical to the vaccine strain Schwarz

(AF266291.1.), Sendai virus, Sendai virus defective interfering

particles H4 (kindly provided by Dominique Garcin, Geneva,

Switzerland), Mengo virus strain pMC0 (kindly provided by Anne

Krug, TU Munich, Germany) and EMCV. Primary antibodies to

human MDA5 (AT113) and RIG-I (Alme-1) were purchased from

Enzo Life Science (Loerrach, Germany). Antibody to GFP (ab1218)

was obtained from Abcam (Cambridge, UK). Secondary antibodies

were supplied by GE Healthcare (Buckinghamshire, UK).

Crosslinking and immunoprecipitation of RLR-associated
RNA from virus-infected cells

A549 cells were infected with virus with an MOI of 1.0 in the

presence of 400 mM 4SU. Infection was allowed to proceed for

24 h and living cells were washed with PBS (10 mM phosphate,

137 mM NaCl, 2.7 mM KCl, pH 7.5) and exposed to 1 J/cm2

365 nm UV light using a photocrosslinker (Vilbert Lourmat). Cells

were harvested and incubated in Nonidet P-40 lysis buffer (50 mM

HEPES, 150 mM KCl, 1 mM NaF, 10 mM ZnCl2, 0.5% NP-40,

0.5 mM DTT, protease inhibitor, pH 7.5) for 10 min on ice. The

lysate was cleared by centrifugation and endogenous proteins were

immunoprecipitated for 4 h with the respective antibodies (1 mg/

mL) bound to protein G Dynabeads (Life Technologies). The beads

were washed five times with high-salt wash buffer (50 mM HEPES,

500 mM KCl, 0.05% NP-40, 0.5 mM DTT, protease inhibitor,

pH 7.5) and incubated with proteinase K (Thermo Scientific) for

30 min at 55uC. The RNA was isolated by phenol/chloroform/

isoamylalcohol extraction and subjected to further analysis.

Total RNA isolation from virus infected cells
A549 cells were infected with MeV with an MOI of 1. Cells

were harvested 24 hpi. Total RNA was isolated according to
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manufacturer’s protocol of the RNeasy Protect Mini Kit (Qiagen)

and subjected to Illumina deep sequencing.

Luciferase transfection assay
Immunoactivity experiments were carried out in 24-well plates.

2.56105 HEK 293T ISRE-FF reporter cells were transfected with

250 ng of recovered RNA, 500 ng in vitro transcripts or 500 ng

plasmid DNA using Lipofectamine 2000 (Invitrogen) according

to manufacturer’s protocol. After 24 h incubation, cells were

subjected to immunoactivity experiments using the Dual-Glo

luciferase assay system (Promega) according to manufacturer’s

instructions. The luciferase activity was determined in a 96-well

plate reader. Significance of differences in luciferase activity

between samples were determined via an unpaired t-test.

cDNA library preparation and deep sequencing analysis
Isolated RNA was prepared for Illumina sequencing using

the mRNA-Seq library preparation kit (Epicentre) according to

manufacturer’s protocol. To remove ribosomal RNA species from

the sequencing libraries a Ribo-Zero rRNA removal kit (Epicen-

tre) was used. Quality of RNA-Seq libraries was validated on a

DNA1500 chip for the Bioanalyzer 2100 (Agilent). Sequencing

was performed on the Illumina Genome Analyzer in the Gene

Center sequencing facility (LAFUGA). Obtained sequences were

processed with the FASTX toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/) in order to remove adapter sequences and reads

with PHRED scores below 30. Remaining sequences were

mapped to human and viral genomes by utilization of the Bowtie

algorithm [64], allowing maximal one mismatch per unique read.

The Bowtie sequence alignments were converted with SAMtools

[65] to pileup format, which was subsequently used for further data

analysis. Relative sequence abundances were analyzed between

RLR pull-down samples and the GFP control. Specific read

enrichments were calculated by determining the relative sequence

abundance at each position on the genomic segment and calculating

the average of the RLR/GFP ratios over a dynamic window of 200

reads. Relative sequence abundances with log2 ratios above +1 were

defined as significantly enriched in the RLR library.

Analysis of RNA sequences
RNA secondary structure prediction from measles virus genome

or in vitro transcripts was performed by utilization of RNAfold from

the ViennaRNA package [53] using standard parameter settings.

For this purpose, the genome was divided into 201 nt fragments

with a shifting window size of 5 nt. The sequences were folded in

silico and the linear relationship between different data sets was

quantified with the Pearson correlation coefficient.

SYBR green quantitative PCR analysis
DNase treatment of the immunoprecipitated RNAs and qPCR

was performed as previously described [66]. The primer pairs

used for quantification were identical to those published [67]. For

cDNA synthesis a random hexanucleotide mix was used (Roche).

Full length MeV vac2 cDNA with a known concentration was

used for standard generation. Copy number values obtained for

MDA5 and RIG-I were normalized to the control GFP.

PCR for 59-copyback defective interfering genome
detection

Specific primers for reverse transcription (Roche transcriptor

transcriptase) and the subsequent PCR (Biozym Phusion Poly-

merase) were adapted from Calain et al [47]. PCR products were

analyzed on agarose gels and stained with ethidium bromide.

T7 RNA transcription
Templates were generated for in vitro transcription in a PCR

adding the T7 promoter sequence (TAATACGACTCACTATA

GGG) to the 59 end of the desired MeV or Mengo virus genomic

fragment, respectively (for oligonucleotides see Tables S2 und
S4 respectively). PCR products were subsequently purified on

agarose gels. RNA was transcribed using the Ambion Megashort-

script T7 Kit according to the manufacturer’s protocols. The

reaction was incubated overnight at 37uC and RNA was precipitated

using LiCl at 220uC for 30 minutes. Afterwards, RNA was

subjected to triphosphate digestion using FastAP (Fermentas)

according to the manufacturer’s instructions and purified on

denaturing 8 M urea/10% polyacrylamide gels at 25 mA constant

current. Gel slices containing RNA were incubated overnight with

450 mL probe elution buffer (0.5 M ammonium acetate, 1 mM

EDTA, 0.2% SDS). Eluted RNA was isolated by phenol/

chloroform/isoamylalcohol extraction and precipitated with ethanol.

ATPase hydrolysis assays
ATPase hydrolysis activity was determined using [c-P32] ATP.

Mouse MDA5 was purified as described previously [32] and

1.6 mM of protein was preincubated with 80 nM in vitro

transcribed RNA for 10 min at room temperature. The reaction

was initiated by addition of ATPase hydrolysis buffer (20 mM

HEPES, pH 7.5, 150 mM NaCl, 1.5 mM MgCl2, and 2 mM

DTT) containing 2 mM ATP and 0.2 mCi [c-P32] ATP. The

hydrolysis rate was monitored over 1 h and analyzed by thin layer

chromatography (TLC).

Generation of RLR mutants
Sequences encoding full-length human RIG-I with N-terminal

FLAG-tag and full-length human MDA5 with N-terminal FLAG-

tag were cloned into pcDNA5 FRT/TO (Invitrogen). Mutants

(FLAG-RIG-I E373Q and FLAG-MDA5 E444Q) were generated

by site directed mutagenesis with PfuUltra (Agilent).

Supporting Information

Figure S1 Validation of immunostimulatory activity of
RNA from RIG-I, MDA5, and GFP immunoprecipitates
upon transfection into 293T ISRE-FF reporter cells (n = 3,

** P,0.01).

(TIF)

Figure S2 Deep sequencing analysis of total RNA from
MeV-infected cells 24 hpi. RNA was isolated according to

manufacturer’s protocol of the RNeasy Protect Mini Kit (Qiagen)

and total RNA was subjected to Illumina deep sequencing. The

data show an mRNA gradient declining in the 59 to 39 direction,

while RNA of negative polarity has no relevant copy numbers.

(TIF)

Figure S3 Qualitative PCR analysis of MeV copyback DI
RNA. Following a specific reverse transcription of RNA with a

primer binding at the 39-terminus of the antigenome, 59-copyback

DI genomes were specifically amplified using another primer in

the same direction 600 nt downstream. The PCR was afterwards

analyzed on agarose gels to separate the amplicons of specific

copyback DIs with different length and branching points. The

RNA used for these experiments is indicated on the lanes (RIG-I,

MDA5 and GFP immunoprecipitates).

(TIF)

Figure S4 Enrichments in RLR sequencing libraries.
Binary logarithms of RLR to GFP ratios of sequence reads

(log2([read number RLR/read number GFP] * [total read number

In Vivo Ligands of MDA5 and RIG-I

PLOS Pathogens | www.plospathogens.org 11 April 2014 | Volume 10 | Issue 4 | e1004081

1 In vivo ligands of MDA5 and RIG-I in measles virus-infected cells

45



GFP/total read number RLR])) were calculated in order to

determine specific accumulations within the RLR libraries. Data

points with log2 ratios above 1 represent sequencing reads that were

enriched in comparison to the control (GFP) library. A: Enrich-

ments within the whole RIG-I (+) or (2) stranded sequencing

library. B: Enrichments within the whole MDA5 (+) or (2) stranded

sequencing library. C: Similar to A and B, but zoomed in view of

the enrichments for positive polarity (le)N and L segments. Mean

values for RIG-I and MDA5 log2 ratios are shown in red and blue,

respectively. Standard deviations are represented in grey. The mean

coverage of (+) RNA sequences is shown for the RIG-I (red), MDA5

(blue), and GFP (black) libraries below each graph.

(TIF)

Figure S5 Secondary structure analysis of several
features from in silico folded 201 nucleotide MeV RNA
fragments and correlation to the fragment’s mean
coverage within the RIG-I sequencing library. In silico

folding was done with RNAfold using standard parameters. The

analysis is visualized in heatscatter plots and the linear correlation

is expressed via the Pearson coefficient. Every dot corresponds to

one fragment with its depicted feature and mean coverage. The

more yellow the plot, the more data points overlap. Analyzed

RNA features are: number of paired nucleotides, longest paired

stretch, number of stem-loops, mean size of stem-loops, number of

bulges, mean size of bulges and mean number of paired

nucleotides per branch. A: Correlation analysis of RNA secondary

structure features with the RIG-I associated RNA of positive

polarity. B: Correlation analysis of RNA secondary structure

features with the RIG-I associated RNA of negative polarity.

(TIF)

Figure S6 RNA secondary structure analysis of several
features from in silico folded 201 nucleotide MeV RNA
fragments and correlation to the fragment’s mean
coverage within the RIG-I sequencing library. Foldings

were performed with RNAfold using standard parameters. The

analysis is visualized in heatscatter plots and the linear correlation

is expressed via the Pearson coefficient. Every dot corresponds to

one fragment with its depicted feature and mean coverage. The

more yellow the plot, the more data points overlap. Analyzed

RNA features are: number of paired nucleotides, longest paired

stretch, number of stem-loops, mean size of stem-loops, number of

bulges, mean size of bulges and mean number of paired

nucleotides per branch. A: Correlation analysis of RNA secondary

structure features with the RIG-I associated RNA of positive

polarity. B: Correlation analysis of RNA secondary structure

features with the RIG-I associated RNA of negative polarity.

(TIF)

Figure S7 Analysis of in vitro transcribed RNA of the
Mengo virus genome. Six 201 nt fragments were chosen to

include low and high AU content. Transcripts were transfected

into 293T ISRE-FF reporter cells in order to validate the

immunostimulatory potential. A: Relative luciferase activity of

transfected RNA (n = 3). B: Pearson correlation between (+) RNA

maximal coverage and the relative luciferase activity.

(TIF)

Figure S8 MDA5 ATPase activity assay. Free phosphate

was separated by thin layer chromatography (TLC) and visualized

on a Storm PhosphorImager from Molecular Dynamics. The

ATPase hydrolysis rate was determined by quantifying free

phosphate in comparison to non-hydrolyzed ATP 15 min after

adding [c-P32] ATP to the reaction mixture.

(TIF)

Figure S9 Immunostimulatory activity of overex-
pressed Walker B mutants RIG-IE373Q and MDA5E444Q

compared to wildtype proteins in 293T ISRE-FF reporter
cells (n = 3, ** P,0.01, *** P,0.001).

(TIF)

Table S1 Sequences of in vitro transcribed MeV RNAs.
The gene annotation with the exact nucleotide position on the

MeV genome is shown in brackets.

(DOCX)

Table S2 Oligonucleotides used for generation of in
vitro transcribed MeV sequences.
(DOCX)

Table S3 Sequences of in vitro transcribed Mengo
RNAs. The gene annotation with the exact nucleotide position

on the Mengo virus genome is shown in brackets.

(DOCX)

Table S4 Oligonucleotides used for generation of in
vitro transcribed Mengo sequences.
(DOCX)
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Summary

In this publicationwe analyze the SF2 helicase domain of RIG-I like receptors. We engineered several

single amino acid point mutations in SF2 motifs or found in patients with the multi-system disease

Singleton-Merten syndrome (SMS) into RIG-I. We are thus able to dissected ATP binding and ATP

hydrolysis for the function of RIG-I as an innate immune sensor of non-self RNA.

By luciferase reporter gene assays in cells lacking endogenous RIG-I we show that, regardless of the

presence of an infection, ATP binding-deficient RIG-I is not able to induce any immune response at

all. ATP hydrolysis-deficient RIG-I on the other hand, as for instance found in SMS patients, con-

stitutively signals in an RNA binding-dependent manner. We exclude structural protein alterations

of the hydrolysis-deficient mutant by thermofluor assays and SAXS with purified proteins, and by

cellular competitions assays with wild type RIG-I. In addition, we were able to purify a physiological

ligand for ATP hydrolysis-deficient RIG-I, i.e. an expansion segment of the big ribosomal subunit,

by co-immunoprecipitation and visualize the interaction by cryo-electron microscopy. Similar co-

immunoprecipitation results were obtained for infected cells as well as for the respective MDA5

mutant. Subsequent biochemical studies with wild type RIG-I or the ATPase-dead mutant and ei-

ther purified human ribosomes or a derived hairpin-RNA verified binding of the mutated protein

and confirmed a loss of interaction of wild type RIG-I in presence of ATP. By EMSA and fluorescence

anisotropy we further show that, in contrast to the hairpin-RNA, dsRNA binding of wild type RIG-I is

enhanced under ATP hydrolyzing conditions.

Based on our studies and previous literature, we conclude that ATP hydrolysis of RIG-I confers a

proof-reading step in order to discriminate between self- and non-self RNA by testing the CTD affinity

towards the respective RNA. RNAs providing a high affinity CTD anchor, like a triphosphate motif,

bind very stable to RIG-I regardless of the presence of ATP. Endogenous RNAs lacking an anchor,

however, are removed from the protein through ATP hydrolysis.

Our results further provide themolecular basis of RLR signaling for the development of autoimmune

diseases like the Singleton-Merten syndrome and emphasize the importance of an intact RLR ATPase

domain in discrimination between self and non-self RNA.
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Abstract The cytosolic antiviral innate immune sensor RIG-I distinguishes 5¢ tri- or diphosphate

containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood

mechanism that involves ATP hydrolysis by RIG-I’s RNA translocase domain. Recently discovered

mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome

(SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report

that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis.

ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-

RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S

ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient

RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5’ triphosphate

dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that

SMS mutations lead to unintentional signaling through prolonged RNA binding.

DOI: 10.7554/eLife.10859.001

Introduction
The innate immune system provides a rapid initial reaction to invading pathogens and also stimu-

lates the adaptive immune system (Iwasaki and Medzhitov, 2015). Pattern recognition receptors

(PRRs) of the innate immune system sense pathogen- or danger-associated molecular patterns

(PAMPs or DAMPs) and trigger molecular cascades that together initiate and orchestrate the cellular

response through activation of e.g. interferon regulatory factors and nuclear factor kB

(Brubaker et al., 2015; Pandey et al., 2015; Wu and Chen, 2014).

Retinoic-acid inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and

laboratory of physiology and genetics 2 (LGP2) are three structurally related PRRs – denoted RIG-I

Lässig et al. eLife 2015;4:e10859. DOI: 10.7554/eLife.10859 1 of 20
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like receptors (RLRs) – that recognize cytosolic foreign RNA. RIG-I senses RNA from a broad range

of viruses including measles virus and Sendai virus (both paramyxoviridae), Influenza A virus, Japa-

nese encephalitis virus and Hepatitis C virus, whereas MDA5 is activated for example by picornavirus

RNA. LGP2 has augmenting and regulatory roles in MDA5 and RIG-I dependent signaling

(Bruns et al., 2014; Satoh et al., 2010; Sparrer and Gack, 2015).

RIG-I preferentially detects base-paired double-stranded RNA (dsRNA) ends containing either 50

triphosphate (ppp) or 50 diphosphate (pp) moieties (Goubau et al., 2014; Hornung et al., 2006;

Pichlmair et al., 2006; Schlee et al., 2009; Schmidt et al., 2009) and not 2’ OH methylated at the

first 5’ terminal nucleotide (Schuberth-Wagner et al., 2015). ppp-dsRNA arises, for example, at

panhandle structures of influenza virus nucleocapsids, or during measles or Sendai virus transcription

(Liu et al., 2015; Weber et al., 2013). 50 diphosphates are found on genomic RNA of reoviruses

(Banerjee and Shatkin, 1971). RIG-I can also detect poly-U/UC-rich dsRNA (Schnell et al., 2012).

Ligands of MDA5 are less well characterized but include dsRNA longer than 1000 bp (Kato et al.,

2008), higher-order dsRNA structures (Pichlmair et al., 2009), or AU-rich RNA (Runge et al., 2014).

RLRs are members of the superfamily II (SF2) of ATPases, helicases or nucleic acid translocases.

RIG-I and MDA5 consist of two N-terminal tandem caspase activation and recruitment domains

(2CARD), a central ATPase/translocase domain and a C-terminal regulatory domain (RD). LGP2 lacks

the 2CARD module but otherwise has a similar domain architecture. Binding of RNA induces a con-

formational change in RIG-I. If activated, the RD binds the ppp- or pp-dsRNA end, while the SF2

domain interacts with the adjacent RNA duplex and forms an active ATPase site (Civril et al., 2011).

In this conformation, the 2CARD module is sterically displaced from its auto-inhibited state

(Jiang et al., 2011; Kowalinski et al., 2011; Luo et al., 2011) and can be K63-linked poly-ubiquiti-

nated (Gack et al., 2007). Multiple Ub-2CARD complexes assemble to form a nucleation site for the

polymerization of mitochondrial antiviral-signaling adaptor protein (MAVS) into long helical filaments

(Hou et al., 2011; Wu et al., 2014; Xu et al., 2014). Instead of recognizing terminal structures like

eLife digest Living cells produce long, strand-like molecules of RNA that carry the instructions

needed to make proteins. Viruses also make use of RNA molecules to hijack an infected cell’s

protein-production machinery and create new copies of the virus. RNA molecules from viruses have

a number of features that distinguish them from a cell’s own RNAs, and human cells contain

receptors called RLRs that can start an immune response whenever they detect viral RNAs. All of

these receptors break down molecules of ATP, a process that releases useable energy. However, so

far it is not understood how this activity helps the receptors to distinguish viral RNA from the cell’s

own RNA molecules (called self-RNA).

Recently, some autoimmune diseases (including Singleton-Merten Syndrome) were linked to

mutations in the parts of RLRs that allow the receptors to break down ATP. Now, La€ssig et al. have

studied the effects of specific mutations in an RLR called RIG-I in human cells. The experiments

showed that mutations that disrupt RIG-I’s ability to bind to ATP also prevented the receptor from

becoming activated. However, mutations linked to Singleton-Merten Syndrome don’t stop ATP from

binding but instead slow its breakdown; this effectively locks the receptor in an ATP-bound state.

La€ssig et al. found that similar mutations in RIG-I caused human cells to trigger a constant immune

response against the self-RNAs.

Further experiments then suggested that the breakdown of ATP helps to remove RIG-I that has

bound to double-stranded sections of self-RNAs. This activity frees the receptor, making it more

able to detect double-stranded viral RNAs and preventing unintentional signaling. La€ssig et al. also

identified a specific double-stranded section of a human RNA that may be recognized by the

mutated version of RIG-I in people with Singleton-Merten Syndrome.

The next steps following on from this work are to extend the analysis to also include other RLRs

and further explore the underlying mutations within the three-dimensional structures of the

receptors and RNA molecules involved.

DOI: 10.7554/eLife.10859.002
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RIG-I, MDA5 cooperatively polymerizes along dsRNA (Berke and Modis, 2012), which is suggested

to trigger MAVS polymerization.

The SF2 ATPase domain plays a critical part in RIG-I activation, although the role of the ATPase

activity is still debated. Mutation of the seven SF2 “helicase” motifs resulted in RLRs that are either

inactive or signal constitutively (Bamming and Horvath, 2009; Louber et al., 2015). On the other

hand, overexpression of the 2CARD module alone is sufficient for signaling (Yoneyama et al.,

2004). Further studies revealed that the SF2 domain is an ATP-dependent dsRNA translocase

(Myong et al., 2009) that can help enhance signaling by loading multiple RIG-I on dsRNA

(Patel et al., 2013) and may execute anti-viral “effector” functions through displacement of viral

proteins (Yao et al., 2015). Finally, RIG-I ATPase activity promotes recycling of RIG-I:dsRNA com-

plexes in vitro, suggesting a kinetic discrimination between self and non-self RNA (Anchisi et al.,

2015; Louber et al., 2015).

Several autoimmune diseases, including the Aicardi-Goutières and Singleton-Merten syndromes

(SMS), were linked to single amino acid mutations in the SF2 domains of MDA5 and RIG-I

(Funabiki et al., 2014; Jang et al., 2015; Rice et al., 2014; Rutsch et al., 2015). Two point muta-

tions within the Walker A (motif I) or Walker B (motif II) of RIG-I are linked to atypical SMS and func-

tional studies indicated constitutive RIG-I activation (Jang et al., 2015). Thus, these mutations have

been described as a gain of function, which is puzzling considering previous mutations in motif I led

to loss of RIG-I function, while mutations in motif II led to either gain or loss of function, depending

on the type of mutation (Bamming and Horvath, 2009; Louber et al., 2015).

In order to clarify the role of RIG-I’s ATPase in antiviral signaling and RLR associated human dis-

eases, we engineered structure-derived and patient-identified mutations into RIG-I and tested the

resulting proteins in different types of cell-based and in vitro analyses. Collectively, we find that SMS

mutations phenocopy the structure-derived E373Q mutation in motif II, which is designed to trap

RIG-I in an ATP-bound state. Freezing this state results in a dramatic autoimmune response because

the enzyme binds self-RNA and signals. An unexpected, strongly enriched self-RNA is the ribosomal

large subunit, which contains large, dsRNA expansion segments. Collectively, our results suggest

that a biomedical and functional critical role of RIG-I’s ATPase is to prevent spontaneous and unin-

tended activation by self-RNA. Thus, the SF2 translocase likely increases the sensitivity of the system

by reducing background signaling. Furthermore, our studies suggest that in SMS, RIG-I is trapped in

an ATP-bound state and signals through self-ligands.

Results

Prevention of ATP hydrolysis in RIG-I leads to a constitutive activation
of the interferon-b promoter by recognition of self-RNA
To address the roles of ATP binding and hydrolysis by the SF2 domain of RIG-I, we studied RIG-I var-

iants containing structure-based mutations designed to i) prevent ATP binding and formation of a

functional ATP-bound complex, ii) allow ATP binding and ATP-induced conformational changes but

prevent ATP hydrolysis, or iii) disable interaction of the RNA with either the 1A or 2A domain of SF2

(Figure 1A, B). The structure of RIG-I in complex with RNA and ADP�BeFx served as guide for these

mutations ([Jiang et al., 2011], PDB code 3TMI, Figure 1B).

In order to dissect the influence of these mutations on the ability of RIG-I to elicit downstream

signaling, we used an interferon-b (IFNb) promoter activity assay carried out in HEK 293T RIG-I KO

cells (Figure 1—figure supplement 1A,B). Overexpressed wild-type RIG-I (wtRIG-I) is able to induce

a slight activation of the IFNb promoter, which can be further amplified by stimulation with Sendai

virus defective interfering particles (SeV DIs) (Figure 1C). The 2CARD module (RIG-I 1-229) induced

a strong activation in both non-infected and SeV DI-stimulated cells and is crucial since constructs

lacking these domains (D2CARD, RIG-I 230-925) cannot conduct any downstream signaling. RIG-I

K270I, carrying a mutation in the motif I lysine that reduces ATP binding (Rozen et al., 1989), sig-

naled in neither uninfected nor SeV DIs stimulated cells, consistent with previous studies. Remark-

ably, the E373Q substitution in motif II had a strikingly different effect. RIG E373Q, which has a

stabilized ATP-bound state by slowed-down ATP hydrolysis, strongly signaled in both non-infected

and SeV DIs stimulated cells. Western blots validated correct expression of all mutants (Figure 1—

figure supplement 1C).
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Figure 1. Cellular studies of RIG-I ATPase mutants in infected or non-infected cells. (A) Location of amino acid substitutions of RIG-I SF2 domain

variants used in this study (orange lines) within different RLR helicase motifs (orange squares). (B) Single amino acid substitutions (orange) within the

RIG-I 3D structure (PDB: 3TMI). (C) Fold change of interferon-b (IFNb) promoter driven luciferase activity in uninfected HEK 293T RIG-I KO cells or in

cells challenged with Sendai virus defective interfering particles (SeV DIs). Cells were co-transfected with RIG-I expression vectors and p125-luc/ pCMV-

RL reporter plasmids, and infected with SeV DIs 6 hr post transfection. Firefly (FF) luciferase activities were determined in respect to Renilla (Ren)

luciferase activities 24 hpi. All ratios were normalized to the empty vector control. n=3–12, error bars represent mean values ± standard deviation.

Figure 1 continued on next page
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To rule out a “constitutive” active conformation of RIG-I E373Q due to an exposed 2CARD mod-

ule (e.g. from an unfolded SF2) we performed small angle X-ray scattering with purified wtRIG-I and

RIG-I E373Q demonstrating that both proteins have the same solution structure (Figure 1—figure

supplement 2A, B). In addition, thermal unfolding assays show that the E373Q mutation does not

destabilize RIG-I (Figure 1—figure supplement 2C). Finally, RIG-I D2CARD,E373Q has a dominant

negative effect on signaling by RIG-I E373Q (Figure 1, Figure 1—figure supplement 2D, E). Taken

together, these data show that RIG-I E373Q is neither destabilized nor constitutively active, suggest-

ing it needs productive RNA interactions.

To test whether E373Q signals in non-infected (and perhaps also infected cells) because of inter-

action with self-RNA, we additionally introduced mutations in various RNA binding sites, in particular

a DRD variant (RIG-I 1-798) and mutations in two RNA-interacting residues in domains 1A (T347A)

and 2A (V699A) of SF2. The single mutation RIG-I T347A did not signal in either infected or non-

infected cells, showing that the interaction of RNA with this specific amino acid is critical for signal-

ing (Figure 1C). Interestingly, we find that the single mutation V699A slightly increases the signaling

activity of RIG-I in non-infected cells (Figure 1C), which could be explained by a putative reduction

of translocation activity instead of a prevention of RNA binding to SF2 (see discussion). Finally, dele-

tion of the regulatory domain (DRD) inactivates signaling in both infected and non-infected cells as

previously observed (Cui et al., 2008). As expected, both combination mutants RIG-I E373Q,T347A

and RIG-I E373Q,DRD failed to signal in both SeV DIs infected and non-infected cells. These data

show that the increased immunostimulatory effect of E373Q requires a productive RNA interaction

of SF2 and RD.

Since RD is also required for the displacement of the 2CARD module from SF2, we

additionally analyzed a point mutation in RD. K888 mediates triphosphate binding in RD and muta-

tions in this residue inactivate recognition of viral RNA (Cui et al., 2008; Wang et al., 2010). Of

note RIG-I E373Q,K888T is still constitutively active in non-infected cells. This effect indicates that

the increased signaling capacity on endogenous RNA is independent from the ppp-dsRNA or pp-

dsRNA epitopes that RIG-I recognizes on viral RNA via the RD.

Finally, we addressed the effect of the Singleton-Merten mutations C268F and E373A. E373A is

at the same position as our structure-derived E373Q mutant. Consistent with this, we observed that

this substitution leads to a constitutive activation of the IFNb promoter (Jang et al., 2015)

(Figure 1C). Interestingly, although C268 is located in motif I, it also leads to constitutive signaling,

whereas motif I mutation of K270 (which coordinates the b-phosphate of ATP) blocks ATP binding

and renders RIG-I inactive. Thus, mutation of the non-ATP binding C268 in motif I appears to pheno-

copy a mutation that prevents ATP hydrolysis.

In summary, our studies show that signaling of RIG-I requires both ATP and RNA binding. ATP

hydrolysis, on the other hand, appears to be critical to dissolve the signaling state and to prevent

activation of RIG-I by self-RNA.

RIG-I ATP hydrolysis defective mutant E373Q shows increased
interaction with ribosomal RNA
We hypothesized that E373Q traps RIG-I in an ATP bound high affinity conformation that is activated

already by self-RNA. To test this idea, we immunoprecipitated RIG-I and its mutants from non-

infected HEK 293T RIG-I KO cells or cells infected with measles or Sendai virus and analyzed the co-

purified RNA molecules. Regardless of whether co-purified from infected or non-infected cells, the

amount of RNA recovered from RIG-I E373Q was about 3 times higher than that from RIG-I

(Figure 2A). Similarly increased amounts of RNA co-purified with the SMS mutants C268F and

E373A from uninfected cells, reflecting the same altered RNA binding properties as in RIG-I E373Q

(Figure 2—figure supplement 1A).

When analyzed on a Bioanalyzer RNA chip or on agarose gels, we found that the increased

amount of RNA is to a large extent due to the presence of 28S rRNA, while 18S rRNA remains unal-

tered (Figure 2B). Control analysis of the total RNA content ruled out an alteration of ribosome sub-

unit ratio in RIG-I E373Q transfected cells (Figure 2C). Both increased amount of RNA and specific

enrichment of 28S rRNA were also observed for the equivalent MDA5 E444Q Walker B mutant (Fig-

ure 2—figure supplement 1B, C).

In order to determine the immunostimulatory potential of the RNA co-purified from virus-infected

cells, we back-transfected the RNA into HEK 293T ISRE-FF/RFP reporter cells (which contain
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endogenous RIG-I, see Figure 2—figure supplement 2A). RNA co-purified with wtRIG-I and RIG-I

lacking the 2CARD module induced an immune response in these cells (Figure 2—figure supple-

ment 3A). RNA co-purified with RIG-I K270I (ATP binding deficient) and V699A (putative transloca-

tion deficient) was also able to stimulate the ISRE reporter in an amount comparable to wtRIG-I,

indicating no altered RNA binding properties in these mutants under virus infected conditions. In

Figure 2. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vivo. (A) Relative RNA amount co-purified with

overexpressed RIG-I or RIG-I E373Q from virus infected or non-infected HEK 293T RIG-I KO cells. n=4 (infected) or n=10 (non-infected), error bars

represent mean values ± standard deviation. (B) Bioanalyzer evaluation and agarose gel separation of RNA co-purified with overexpressed RIG-I or RIG-

I E373Q from non-infected HEK 293T RIG-I KO cells. Curves are normalized in respect to 18S rRNA peaks. (C) Bioanalyzer evaluation and agarose gel

separation of total RNA content of non-infected HEK 293T RIG-I KO cells overexpressing RIG-I or RIG-I E373Q. Curves were normalized as in panel B.

(D) Immunostimulatory potential of co-purified RNA from RIG-I, RIG-I E373Q or GFP overexpressed in measles virus (MeV), MeV-Cko-ATU-Cs or Sendai

virus Cantell (SeV) infected HEK 293T RIG-I KO cells. RNA was back-transfected into HEK 293T ISRE-FF/RFP cells together with pTK-RL transfection

control. Firefly luciferase (FF) activities were determined 24 hr after transfection in respect to Renilla luciferase (Ren) activity and were normalized to the

immunostimulatory potential of RIG-I associated RNA. n=4, error bars represent mean values ± standard deviation. (E) Immunostimulatory potential of

endogenous RNA in cells overexpressing RIG-I E373Q. RNA was co-transfected into HEK 293T RIG-I KO cells together with a RIG-I E373Q expression

vector and p125-luc/ pCMV-RL reporter plasmids. FF luciferase activities were determined in respect to Ren luciferase activities 24 hr after transfection.

All ratios are normalized to the RIG-I E373Q control without RNA stimulation. Purified RNA was in addition analyzed on agarose gels. n=3, error bars

represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.006

The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of RNA co-purified with RIG-I SMS or MDA5 variants.

DOI: 10.7554/eLife.10859.007

Figure supplement 2. Assay for defining the immunostimulatory potential of different RNAs.

DOI: 10.7554/eLife.10859.008

Figure supplement 3. Immunostimulatory potential of co-purified RNA from Sendai virus Cantell (SeV) infected cells.

DOI: 10.7554/eLife.10859.009
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contrast, RNA that co-purified with the RNA-binding deficient RIG-I T347A (mutation in SF2 domain),

RIG-I K858E (mutation in RD domain that reduces triphosphate recognition) or RIG-I DRD poorly

stimulated the ISRE promoter and probably represents background RNA (Figure 2—figure supple-

ment 3A). These data suggest that RIG-I recognizes immunostimulatory RNA via the SF2 and RD

domains, but does not require ATP binding for this process. ATP binding is necessary, however,

because RIG-I K270I expression alone does not stimulate the IFNb promoter (compare with

Figure 1C). Interestingly, RNA co-purified with RIG-I E373Q failed to induce reporter gene expres-

sion (Figure 2D, Figure 2—figure supplement 3A). Thus, despite the observation that RIG-I E373Q

co-purifies with approximately threefold more RNA than wtRIG-I from infected cells, the co-purified

RNA is not immunostimulatory in a wtRIG-I background. However, cells that transiently express RIG-I

E373Q can be further stimulated by transfection of total RNA extracts and purified ribosomal RNA

(Figure 2E), suggesting that ribosomal RNA can activate RIG-I E373Q. Cells lacking wtRIG-I or RIG-I

E373Q on the other hand do not respond to those RNAs. We conclude that host-RNA, which does

not activate wtRIG-I, can apparently compete with viral RNA for RIG-I E373Q.

In order to verify a higher affinity of the RIG-I ATP hydrolysis defective mutant towards ribosomal

RNA, we purified full-length human RIG-I and RIG-I E373Q, as well as human 80S ribosomes, and

tested for a direct interaction. We confirmed that while both RIG-I E373Q and the wild-type protein

are able to bind ATP, only wtRIG-I can hydrolyze ATP (Figure 3A, B). We subsequently conducted

sedimentation assays via ultra-centrifugation of sucrose cushions loaded with 80S ribosomes that

have been pre-incubated with wtRIG-I or RIG-I E373Q in presence or absence of ATP or the non-

hydrolysable ATP analogue ADP�BeF3. In presence of ATP a minor binding of wtRIG-I to the ribo-

some could be observed, whereas RIG-I E373Q bound in a near stoichiometric manner. In absence

of ATP or in presence of ADP�BeF3 binding of wtRIG-I was greatly enhanced and showed similar lev-

els compared to RIG-I E373Q (Figure 3C).

We next analyzed RIG-I E373Q:80S ribosome complexes by cryo-electron microscopy and single

particle 3D reconstruction (Figure 3D). The average resolution was estimated to be 17.7 Å based on

the Fourier shell correlation cut-off criterion at 0.5. When compared with the reconstruction of the

human 80S ribosome alone (Figure 3E), the ribosome:RIG-I E373Q complex revealed an additional

density located at rRNA expansion segment (ES) 7L, which is located at the back of the large ribo-

somal subunit. Calculation of a statistical difference map between the two reconstructions confirmed

that this distinct region contained significant additional density (Figure 3F). Human ribosomes con-

tain several long, G:C rich, base-paired RNA expansion segments forming large tentacle-like hairpin

structures of substantial double-stranded nature (Anger et al., 2013). A large part of the double-

stranded RNA in these segments is not covered by ribosomal proteins and accessible for cytosolic

proteins. The crystal structure of ADP�BeFx-bound RIG-I 42CARD:RNA complex ((Jiang et al.,

2011), PDB code 3TMI) fits well into the density observed at ES7L and is located at the root of the

solvent exposed portion of helix A of ES7L that contains a contiguous stretch of seven G:C/C:G

base pairs (Figure 3G).

In summary, we conclude that stabilizing the ATP-bound state of RIG-I induces a conformation

where RIG-I binds to ribosomes, presumably at exposed dsRNA expansion segments.

Specificity of RIG-I towards double-stranded RNA is increased in
presence of ATP
To further evaluate the role of ATP binding and hydrolysis of RIG-I we performed electrophoretic

mobility shift assays (EMSAs), fluorescence anisotropy experiments and ATP hydrolysis assays in

presence and absence of ATP or ADP�BeF3 with different RNAs. These RNAs mimic different types

of endogenous or viral RNAs and help dissecting contributions of RD’s binding to the RNA end and

SF2’s binding to the stem. In addition to a 24mer or 12mer blunt-ended dsRNA or ppp-dsRNA

(Goldeck et al., 2014), we also used a 60 nucleotide hairpin RNA (denoted as ES hairpin) derived

from the ribosomal expansion segment ES7L, which contains several bulges and a non-pairing end

(Figure 4—figure supplement 1A). The hairpin at one end and the added Y-structure at the other

end are used to minimize RNA end binding by RIG-I’s RD because RD has a high affinity for blunt

RNA ends.

RIG-I and RIG-I E373Q bound to the 24mer blunt ended dsRNA with a slightly higher affinity in

presence of ATP or ADP�BeF3 than in its absence (Figure 4A), suggesting that ATP binding to the

SF2 domain positively contributes to the overall affinity in addition to RD. A similar result was
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Figure 3. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vitro. (A) DRaCALA ATP binding assay of RIG-I or RIG-I

E373Q in presence or absence of RNA. (B) ATP hydrolysis assay of RIG-I or RIG-I E373Q in presence and absence of RNA. (C) Binding studies of human

80S ribosomes with RIG-I or RIG-I E373Q in presence or absence of ATP or ADP�BeF3. Pre-formed complexes were separated on sucrose cushions via

ultracentrifugation and pellet (P) as well as supernatant (SN) fractions were analyzed by SDS-PAGE. (D) Side views of a cryo-EM reconstruction of RIG-I

E373Q (blue) bound to the human 80S ribosome (yellow: 40S subunit, gray: 60S subunit). Data was low pass-filtered at 15 Å. (E) Side views of a cryo-EM

reconstruction of the human 80S ribosome without prior RIG-I E373Q incubation. Data filtering and color coding as in panel D. (F) Statistical difference

map (left, s = 2) of cryo-EM reconstructions in panels D and E reveals a significant additional density at expansion segment 7L A (ES7L-A, pink) into

which RIG-I (PDB 3TMI) can be fitted (right, s = 1.51). (G) Secondary structure map of the 28S rRNA ES7L (derived from (Anger et al., 2013) and zoom

into RIG-I E373Q binding area. ES7L-A is indicated in pink (as in panel F).

DOI: 10.7554/eLife.10859.010
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obtained when we used a 12mer dsRNA in fluorescence anisotropy experiments in order to further

dissect the influence of different RNA ends (Figure 4B). Interestingly, the positive effect of ATP was

not observed when we used the corresponding ppp-dsRNA 12mer (Figure 4C), most likely because

the RD dominates RNA binding under these conditions. Thus, it is plausible that RIG-I dissociates

from unphosphorylated RNA termini with an increased rate after ATP hydrolysis than from triphos-

phorylated termini.

We next tested the role of ATP on binding of wtRIG-I, RIG-I E373Q, RIG-I T347A,E373Q and the

SMS variant RIG-I C268F to the ES hairpin RNA mimicking the base of the ribosomal ES7L. In pres-

ence of ATP we observed moderately increased binding of RIG-I E373Q and of RIG-I C268F to this

hairpin, however wtRIG-I displayed a strikingly opposing effect (Figure 4D, Figure 4—figure supple-

ment 1C). For this RNA, ATP reduced rather than increased the affinity of wtRIG-I. The addition of

ADP�BeF3 to RIG-I could reconstitute the high affinity state of RIG-I E373Q. The RIG-I T347A,E373Q

double mutant, on the other hand, showed binding affinities similar to RIG-I in presence of ATP,

probably caused by residual binding of RD (Figure 4D).

Consistent with this, the ES hairpin RNA could induce signaling in RIG-I E373Q transfected HEK

293T RIG-I KO cells (Figure 2F) and could also stimulate the ATPase activity of RIG-I 42CARD, and

to a lesser extent wtRIG-I (which is auto-inhibited by the 2CARD module) (Figure 5A, Figure 5—fig-

ure supplement 1A). A comparable stimulatory effect on the ATPase activity of RIG-I could also be

detected with whole human ribosomes (Figure 5A). Control assays with the ATP hydrolysis defective

mutants RIG-I E373Q and RIG-I T347A,E373Q confirmed the lacking ability of those proteins to

hydrolyze ATP even in the presence of triphosphorylated RNA (Figure 5A, Figure 5—figure supple-

ment 1B).

In summary, our results show that ATP hydrolysis leads to a moderately increased binding of RNA

containing base-paired ends, but decreased binding of RNA lacking base-paired ends. These in vitro

data are also consistent with our co-immunopurification studies of RNA from cells, where we

observed that the ATP hydrolysis deficient RIG-I E373Q mutant co-purified with increased amounts

of endogenous RNA.

Discussion
Here we show that mutations that slow down or inhibit RIG-I’s ATPase lead to an increased interac-

tion of RIG-I with endogenous RNA, including double-stranded RNA expansion segments of the

human large ribosomal subunit. Our results suggest that RIG-I’s ATPase confers specificity to viral

RNA by preventing signaling through the abundant background of self-RNA and provide a molecular

framework for understanding the pathology of atypical Singleton-Merton syndrome.

Recently, several autoimmune diseases, including the Aicardi-Goutières and Singleton-Merten

syndromes, have been linked to RLRs through whole exome sequencing, which discovered single

amino acid mutations that are mostly found within the ATPase domain of RLRs (Jang et al., 2015;

Rice et al., 2014; Rutsch et al., 2015). Increased interferon levels suggest that an increased activa-

tion of MDA5 or RIG-I underlies the molecular pathology of these diseases. Indeed we find that not

only E373Q, consistent with recent results, leads to an increased activation of RIG-I in non-infected

cells, but also the SMS mutations E373A and C268F (Jang et al., 2015) (Figure 1C). While this could

have been expected for E373A, because of its similarity to E373Q, the increased immunostimulatory

effect of C268F in motif I comes as a surprise. Prior mutations in motif I studied by others and us led

to an inactivation of RIG-I, rather than constitutive activation. The precise structural reason for the

increased signaling of C268F needs to be addressed in future studies, but our co-immunoprecipita-

tion and in vitro binding assay results suggest that this mutation may also lock RIG-I in an RNA-

bound, active conformation (Figure 2—figure supplement 1A, Figure 4—figure supplement 1C).

Mutational and biochemical analyses previously suggested a kinetic model for RIG-I’s specificity

towards viral RNA, where the ATP-dependent recycling helps to discriminate ppp-dsRNA from

endogenous RNA (Anchisi et al., 2015; Louber et al., 2015; Runge et al., 2014) (Figure 6A). Our

studies show that, in case of base-paired triphosphate containing RNA ends, the RIG-I RD dominates

binding. Although RIG-I’s ATPase is very active, we do not see a strong effect of ATP on the affinity

for the RNA (Figure 4C, Figure 5A). ATP hydrolysis may under the assayed conditions not efficiently

displace RIG-I from ppp-dsRNA because RD might prevent full dissociation even after ATP-hydrolysis

displaced SF2. Importantly, ATP reduces the affinity towards self-RNA containing a duplex region
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Figure 4. RIG-I’s ATP hydrolysis enhances RNA end recognition and removes RIG-I from RNA stems. (A) Quantification of electrophoretic mobility shift

assays of RIG-I or RIG-I E373Q incubated with 24mer dsRNA in presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure

supplement 1B). (B) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence of ATP into solutions

containing fluorescently labeled 12mer dsRNA. (C) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence

of ATP into solutions containing fluorescently labeled 12mer ppp-dsRNA. (D) Quantification of electrophoretic mobility shift assays of RIG-I, RIG-I

E373Q or RIG-I T347A, E373Q incubated with an RNA hairpin derived from helix A of the human ribosome expansion segment 7L (ES hairpin) in

presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure supplement 1C). All binding curves were fitted using the LL.2 function

of the R drc package (Cedergreen et al., 2005). n=3-6, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.011

The following figure supplement is available for figure 4:

Figure supplement 1. Design of the ribosomal expansion segment derived hairpin RNA, EMSA raw figures and control experiments with RIG-I C268F

SMS mutant.

DOI: 10.7554/eLife.10859.012
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but not a “proper” ppp-dsRNA end (Figure 4D). Thus, if RD is unable to tether RIG-I to ppp-dsRNA

ends the ATPase could rapidly remove RIG-I from RNA duplex regions via its translocase and there-

fore prevents an autoimmune response towards self-RNA (Figure 6B). Our cellular studies are con-

sistent with this biochemical observation, because a point mutation in K888, a residue that is critical

for recognizing ppp-dsRNA ends, did not reduce the constitutive activation of ATP hydrolysis-defi-

cient RIG-I (Figure 1C). However, RD and ATP binding are clearly important for signaling, as shown

by 4RD and K270I mutations by us and others (Louber et al., 2015) (Figure 1C), suggesting that a

ring-like, ATP-bound structure is also involved in signaling caused by self-RNA (Figure 6C). In this

conformation, the RD likely helps to displace the 2CARD module from the SF2 domain but may not

have a high affinity for the RNA itself. Of note, the mutation in V699 of motif V also leads to

increased constitutive signaling (Figure 1C). A plausible explanation could be that this mutation in

RecA2 decouples RNA-binding induced ATP hydrolysis from translocation or displacement of RNA.

In summary, our results suggest a model where RIG-I’s translocase removes SF2 from dsRNA, per-

haps at nearby bulges, unless high-affinity binding by the RD on RNA ends containing di- or triphos-

phates tethers RIG-I despite ATP-hydrolysis and leads to repeated or prolonged exposure of the

2CARD module.

An unexpected finding was that trapping the ATP state of RIG-I leads to a particularly increased

interaction with the large ribosomal subunit via the expansion segment ES7L (Figure 3D, F). This

expansion segment is present in metazoan ribosomes, however its length is substantially increased

in human compared to drosophila ribosomes. The function of these expansion segments is not

understood, but since helix E (ES7L-E) was recently found to interact with the selenoprotein synthesis

factor SBP2, it is likely that the RNA in these elements is accessible to cytosolic proteins

(Kossinova et al., 2014). The specific enrichment of the large ribosomal subunit under conditions

where ribosomal subunits disengage argues for rather specific interactions of RIG-I E373Q with RNA

present on the large but not the small subunit. The dominant binding of ribosomes by RIG-I E373Q

can be explained by the high abundance of ribosomal RNA compared to other potential RIG-I

ligands in the cytosol. We could directly visualize RIG-I E373Q on the ribosome at the solvent

exposed root of ES7L-A (Figure 3F, G). This site contains a stretch of seven G:C/C:G base pairs,

which approximately matches the footprint of dsRNA across the two SF2 RecA domains in the crystal

structure of ADP�BeFx-bound RIG-I (Jiang et al., 2011; Kohlway et al., 2013; Kowalinski et al.,

2011; Luo et al., 2011) and also meets the requirements for activation of RIG-I’s ATPase

Figure 5. RIG-I’s ATPase activity correlates with its RNA binding affinity. (A) Quantification of hydrolyzed [g-32P]ATP by RIG-I or RIG-I E373Q in presence

of different RNA substrates. Reactions were allowed to proceed for 20 min at 37 ˚C and free phosphate was separated from ATP via thin layer

chromatography. Spots corresponding to labeled ATP and labeled Pi were quantified using ImageJ. All curves were fitted using the LL.2 function of the

R drc package. n=3, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.013

The following figure supplement is available for figure 5:

Figure supplement 1. RIG-I’s 2CARD module reduces the ATP hydrolysis activity.

DOI: 10.7554/eLife.10859.014
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(Anchisi et al., 2015). Since 40% of the particles had this additional density, it is conceivable that

additional binding sites could contribute to the interaction with RIG-I E737Q as well. However, the

peripheral parts of the expansion segments are flexible and not visible in the 3D reconstructions,

preventing us from observing RIG-I at other regions.

The RNA corresponding to the observed binding region of ES7L-A is also bound by RIG-I in vitro

and can moderately stimulate RIG-I’s ATPase (Figure 4D, Figure 5A). The much more efficient stim-

ulation of RIG-I’s ATPase by ppp-dsRNA is likely due to the high affinity towards RD, which could

repeatedly “present” the RNA to SF2 (i.e. increasing the “local” concentration of RNA at SF2). Of

note, while the addition of ATP to RIG-I reduces the interaction with the ES hairpin RNA, consistent

with a role of the ATPase in preventing interaction with self-RNA, RIG-I E373Q binds with a moder-

ately increased affinity to the ES-hairpin RNA in presence of ATP. Because of the large number of

ribosomes in the cytosol it is therefore conceivable that RIG-I binds to double-stranded ribosomal

RNA, including ES7L-A, under conditions where the ATPase is not able to efficiently displace the

protein, such as those arising in patients with atypical SMS. In addition, the high local concentration

of ribosomes in polysomes as well as a potential binding of RIG-I to other expansion segments could

bring multiple RIG-I E373Q in contact, such that their exposed 2CARD module could interact for

downstream signaling (Peisley et al., 2014; Wu et al., 2014). We do not, however, want to rule out

contributions by other self-ligands as well. For instance, RIG-I can bind to endogenous mRNA

(Zhang et al., 2013) or RNase-L cleavage products (Malathi et al., 2007), while MDA5 was shown

to be activated by mRNA stem loop structures under conditions where reduction of A:T base-paired

RNA is not prevented by ADAR1 (Liddicoat et al., 2015).

In any case, there are two levels of control to limit RLR mediated signaling to viral RNA. On one

hand, RNA editing (Liddicoat et al., 2015) and methylation (Schuberth-Wagner et al., 2015) modi-

fies particular types of self-RNA that would otherwise form reasonable ligands for RIG-I or MDA5.

On the other hand, the intrinsic ATPase and translocase activity removes RLRs from short, but abun-

dant endogenous dsRNA stretches, thereby reducing background signaling and increasing the sensi-

tivity of the system.

Figure 6. Proposed model for impact of ATP on RIG-I signaling on different RNAs. (A) RIG-I recognizes tri- or diphosphorylated double-stranded RNA

and preferentially binds to the RNA end through its regulatory domain (RD, green). Binding of ATP-SF2 (purple) to the dsRNA releases the 2CARD

module (yellow) and activates the downstream signaling process. ATP hydrolysis displaces the SF2 domain from dsRNA leading to either rebinding at

the RNA end (tethered by RD) or to translocation along the RNA. (B) In healthy cells, sustained binding of RIG-I to self-RNA containing dsRNA stretches

is prevented by ATP hydrolysis. The SF2 domain can be sufficiently displaced because the RD does not provide a high affinity tether. (C) Mutations that

allow ATP promoted binding of dsRNA and displacement of the 2CARD module, but prevent ATP hydrolysis dependent dissociation of SF2 from

dsRNA, such as those underlying atypical Singleton-Merten Syndrome, will result in an unintended signaling through self-RNA.

DOI: 10.7554/eLife.10859.015
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Materials and methods

Cell lines, viruses and antibodies
Luciferase assays and RIG-I:RNA co-immunopurifications were carried out in HEK 293T cells (pur-

chased from ATCC, CRL-11268) or HEK 293T RIG-I KO cells (Zhu et al., 2014). HEK 293T ISRE-FF/

RFP reporter cells (stable expression of firefly luciferase and RFP under the control of an ISRE pro-

moter, kindly provided by Luis Martinez-Sorbid, University of Rochester, Rochester, NY) were used

for interferon stimulated luciferase reporter gene assays of recovered RNA. HEK cells were main-

tained in high glucose Dulbecco’s Modified Eagle Medium supplemented with GlutaMAX, pyruvate

and 10% FBS (all purchased from Gibco, UK). Human ribosomes were purified from HeLa S3 cells

cultured in SMEM (Sigma, Germany) supplemented with 10% FBS, Penicillin (100 U/mL)/ Streptamy-

cin (100 mg/mL) and 1x GlutaMAX (all purchased from Gibco, UK) using a spinner flask at 40 rpm. All

cell lines were routinely checked for Mycoplasms by PCR and were, except for the HEK 293T ISRE-

FF/RFP cell line, tested to be negative. Mycoplasm contaminations were suppressed using Plasmocin

(InvivoGen, France) according to the manufacturer’s protocol. Viruses used for infections were Sen-

dai virus Cantell, Sendai virus defective interfering particles H4 (kindly provided by Dominique Gar-

cin, Geneva, Switzerland), recombinant measles virus (MeV) with a sequence identical to the vaccine

strain Schwarz (AF266291.1.)(del Valle et al., 2007; Devaux et al., 2007) and recombinant MeV-

Cko-ATU-Cs. MeV-Cko-ATU-Cs expresses the C Schwarz protein from an additional transcription

unit (ATU) located between the M and the P gene, while expression of C from the P gene is abro-

gated. Specifically, three stop codons were introduced into the P gene for the C ORF while leaving

P and V protein expression intact. Cloning was done as described previously (Pfaller and Conzel-

mann, 2008; Sparrer et al., 2012). Additionally, an ATU was introduced between the P and M gene

by duplicating the gene borders of the P gene. The ORF of the C (Schwarz) protein was cloned into

that ATU and the virus rescued from cDNA using helper plasmids in 293-3-46 cells (Radecke et al.,

1995) and propagated on Vero cells as described previously (Parks et al., 1999; Pfaller et al.,

2014). Primary antibodies to human MDA5 (AT113) and RIG-I (Alme-1) were purchased from Enzo

Life Science (Loerrach, Germany). Antibodies to FLAG (M2), HA (HA-7) and b-tubulin (TUB 2.1) were

obtained from Sigma-Aldrich (Saint Luis, MO, USA). Secondary antibodies were supplied by GE

Healthcare (Buckinghamshire, UK).

Generation of RLR mutants
Sequences encoding full-length human RIG-I or MDA5 with N- or C-terminal FLAG/HA-tag were

cloned into pcDNA5 FRT/TO (Invitrogen, Carlsbad, CA, USA). Mutants were generated by site-

directed mutagenesis with PfuUltra polymerase (Agilent, Santa Clara, CA, USA).

Immunoprecipitation of RLR-associated RNA from infected or non-
infected cells
6x106 HEK 293T or HEK 293T RIG-I KO cells were transfected with 10 mg pcDNA5 vector coding for

different FLAG/HA tagged RLR proteins. Non-infected cells were harvested 24 h after transfection.

Infections were carried out 6h after transfection with an MOI of 0.05 for measles virus or high MOI

for Sendai virus and were allowed to proceed for 40 or 24 hr, respectively. Cells were harvested and

incubated in Nonidet P-40 lysis buffer (50 mM HEPES, 150 mM KCl, 1 mM NaF, 0.5% NP-40, 0.5

mM DTT, protease inhibitor (Sigma, Saint Luis, MO, USA), pH 7.5) for 10 min on ice. Lysates were

cleared by centrifugation and proteins were immunoprecipitated for 2.5 - –4 hr with anti-DDK mag-

netic beads (OriGene, Rockville, MD, USA) or anti-FLAG (M2) bound to magnetic protein G Dyna-

beads (Novex, Life Technologies, Carlsbad, CA, USA). Beads were washed five times with washing

buffer (50 mM HEPES, 300 mM KCl, 0.05% NP-40, 0.5 mM DTT, protease inhibitor, pH 7.5) and incu-

bated with proteinase K (Thermo Scientific, Vilnius, Lithuania) for 30 min at 50 ˚C. RNA was isolated

by phenol/ chloroform/ isoamyl alcohol extraction using Phase Lock Gel Heavy tubes (5

PRIME, Germany). The quality of the isolated RNA was validated on an Agilent RNA 6000 Nano

chip.
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Luciferase transfection assays
Immunoactivity experiments were carried out in 24-well plates seeded with 2.5�105 HEK 293T RIG-I

KO or 2.5�105 HEK 293T ISRE-FF/RFP reporter cells per well using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA, USA) as transfection reagent according to the manufacturer’s protocol. For down-

stream signaling assays HEK 293T RIG-I KO cells were co-transfected with 500 ng protein expression

vector, 100 ng p125-luc, 10 ng pCMV-RL and 50 ng empty expression vector. For RIG-I E373Q/RIG-I

D2CARD,E373Q competition assays HEK 293T RIG-I KO cells were co-transfected with 100 ng RIG-I

E373Q expression vector, varying concentrations of the RIG-I D2CARD,E373Q expression vector,

100 ng p125-luc and 10 ng pCMV-RL. DNA concentrations were held constant by adding empty

expression vector if necessary. For determination of the immunostimulatory potential of recovered

RNA from co-immunoprecipitations, HEK 293T ISRE-FF/RFP cells were transfected with 250 ng RNA

in Opti-MEM (Gibco, UK). For RNA stimulation of cells overexpressing RIG-I E373Q 2.5�105 HEK

293T RIG-I KO cells were transfected with 100 ng RIG-I E373Q expression vector, 100 ng p125-luc,

10 ng pCMV-RL and 1000 ng total RNA/ rRNA or ES hairpin RNA in Opti-MEM. All cells were har-

vested 24 h after transfection using 200 mL PLB (Promega, Madison, WI, USA) and subjected to

immunoactivity experiments using the Dual-Glo luciferase assay system (Promega, Madison, WI,

USA) as previously described (Runge et al., 2014). The luciferase activity was determined with a

Berthold Luminometer in 96-well plates using 20 mL cell lysate.

Protein expression and purification
RIG-I and RIG-I E373Q were expressed and purified from insect cells as described previously

(Cui et al., 2008). Briefly, sequences encoding RIG-I were cloned into pFBDM vectors and trans-

formed into E. coli DH10MultiBac cells. Bacmids were extracted for transfection into SF9 insect cells

and propagated virus was used for protein expression in High Five insect cells. Seventy-two hours

after infection cells were harvested and flash frozen in liquid nitrogen. RIG-I D2CARD was expressed

in E. coli BL21 Rosetta (DE3), using pET expression vectors as described earlier (Cui et al., 2008). All

recombinant proteins were purified using metal affinity (QIAGEN, Germany), heparin affinity and gel

filtration chromatography (both GE Healthcare, Buckinghamshire, UK). Fractions containing RIG-I

were concentrated to 6 mg/mL and flash-frozen in liquid nitrogen.

Thermal unfolding assay
Thermal stability of RIG-I or RIG-I E373Q in presence or absence of ATP was analyzed by fluores-

cence thermal shift assays. Proteins (20 mM) were incubated in 25 mM HEPES pH 7, 150 mM NaCl,

10 mM MgCl2, 5 mM TCEP, 5% glycerol and 5 mM ATP. After addition of SYPRO orange (Invitro-

gen, Carlsbad, CA, USA, final concentration: 2.5x) the fluorescence signal was detected using a gra-

dient from 5 ˚C to 100 ˚C with 0.5 K/30 s and one scan each 0.5 K in a real-time thermal cycler

(Biorad, Germany, CFX96 touch) using the FRET mode.

Small-angle X-ray scattering
SAXS experiments were conducted at the PETRA3 P12 beamline of the European Molecular Biology

Laboratory/ Deutsches Elektronen-Synchrotron, Hamburg, Germany. Samples were measured in

absence or presence of 5 mM ATP in size exclusion buffer (25 mM HEPES pH 7, 150 mM NaCl, 5

mM MgCl2, 5 mM b-Mercaptoethanol, 5% glycerol). RIG-I samples were measured at protein con-

centrations of 1.28, 2.65 and 8.35 mg/mL and RIG-I E373Q samples with concentrations of 0.87,

2.13 and 6.84 mg/mL. The respective scattering of the corresponding buffer was used for buffer sub-

traction. The samples did not show signs of radiation damage, which was assessed by automatic and

manual comparison of consecutive exposure frames. The data was processed using PRIMUS from

the ATSAS package (Konarev et al., 2006) and the radius of gyration was determined by Guinier

plot [ln I(s) versus s2] analysis obeying the Guinier approximation for globular proteins (s x Rg < 1.3).

Human 80S ribosome preparation
HeLa S3 cells were harvested (2 min, 650 x g), washed with PBS (Invitrogen, Carlsbad, CA, USA) and

incubated with 1.5x vol Buffer 1 (10 mM HEPES/KOH, pH 7.2/4 ˚C, 10 mM KOAc, 1 mM Mg(OAc)2
and 1 mM DTT) for 15 min on ice, followed by disruption with nitrogen pressure (300 psi, 30 min, 4

˚C) in a cell disruption vessel (Parr Instrument, Moline, IL, USA). The cell lysate was cleared (10 min,
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14,000 rpm, Eppendorf 5417R, 4 ˚C) and the resulting supernatant was loaded onto a sucrose cush-

ion (Buffer 1 supplemented with 35% sucrose). Subsequent spinning (98 min, 75.000 rpm, TLA

120.2, 4 ˚C) was performed. After resuspension of the ribosomal pellet, a high-salt purification by

centrifugation through a 500 mM sucrose cushion (50 mM Tris/HCl, pH 7.0/4 ˚C, 500 mM KOAc, 25

mM Mg(OAc)2, 5 mM b-mercaptoethanol, 1 M sucrose, 1 mg/mL cycloheximide and 0.1% Nikkol)

was conducted (45 min, 100,000 rpm, TLA120.2, 4 ˚C). The ribosomal pellet was resuspended in

Ribosome Buffer (50 mM Tris/HCl, pH 7.0/4 ˚C, 100 mM KOAc, 6 mM Mg(OAc)2, 1 mM DTT, 1/200

EDTA-free Complete protease inhibitor (Roche, Germany), 0.2 U/mL RNasin (Promega, Madison, WI,

USA)), quickly centrifuged, frozen in liquid nitrogen and stored at -80 ˚C.

Total RNA and ribosomal RNA isolation
For total RNA isolation 2.5 x 105 HEK 293T were seeded per well of 24 well plates. After 24 h cells

were harvested in PBS, collected by centrifugation and lysed in Nonidet P-40 lysis buffer for 10 min

on ice. Supernatant was cleared by centrifugation and DNA was digested with TURBO DNase

(Ambion, Life Technologies, Carlsbad, CA, USA) for 3 min at 37 ˚C. Proteins were digested and RNA

was extracted as described above. For ribosomal RNA isolation purified human ribosomes were pro-

teinase K digested and RNA was extracted accordingly.

Ribosomal binding studies
Human 80S ribosomes were incubated with or without 2.5x molar excess of RIG-I or RIG-I E373Q in

binding buffer (50 mM HEPES/KOH, pH 7.5/ 4 ˚C, 100 mM KCl, 2.5 mM Mg(OAc)2, 2 mM DTT, 1

mM ATP, 0.1% DDM, 10% Glycerol) for 15 min at room temperature and then for 15 min at 4 ˚C.
The mixture was loaded onto a sucrose cushion (binding buffer with 750 mM sucrose) and spun (3 h,

40,000 rpm, SW55Ti, 4 ˚C). Supernatant and pellet fractions were separated and TCA precipitated.

The resulting samples were analyzed by SDS-PAGE and visualized using SYPRO Orange

Staining (Molecular Probes, Eugene, OR, USA).

Cryo-grid preparation
5 OD/mL human 80S ribosomes were incubated with or without 2.5x molar excess of RIG-I E373Q.

Each sample (50 mM HEPES / KOH, pH 7.5 / 4 ˚C, 100 mM KCl, 2.5 mM Mg(OAc)2, 2 mM DTT, 1

mM ATP, 0.1% DDM, 5% glycerol) was applied to 2 nm pre-coated Quantifoil R3/3 holey carbon

supported grids and vitrified using a Vitrobot Mark IV (FEI Company , Germany).

Cryo-electron microscopy and single particle reconstruction
Data were collected on a 120 keV TECNAI SPIRIT cryo-electron microscope with a pixel size of 2.85

Å/pixel at a defocus range between 1.4 mm and 4.6 mm (with RIG-I E373Q ligand) or between 1.8

mm and 5.3 mm (without ligand) under low dose conditions. Particles were detected with SIGNATUR-

E (Chen and Grigorieff, 2007). Initial alignment resulted in 61,067 particles (with ligand) and 29,959

particles (without ligand). Subsequent data processing and single particle analysis was performed

using the SPIDER software package (Frank et al., 1996). Non-ribosomal particles (19,080 particles,

31% (with ligand) and 10,663 particles, 35% (without ligand)) were removed from each data set by

unsupervised 3D sorting (Loerke et al., 2010). The remaining particles were further sorted, resulting

in a volume with additional density (with ligand: 23,715 particles, 39% ). The identical sorting scheme

was applied to the control 80S ribosome without ligand, resulting in final 11,727 particles (39% ).

The final 80S structures with and without ligand were refined to an overall resolution (FCS0.5) of 17.7

Å and 21.9 Å, respectively. For comparison of the two final volumes, a statistical difference map

between the two reconstructions was calculated.

Figure preparations and model docking
We used the crystal structure of the human RIG-I protein (PDB code 3TMI) (Jiang et al., 2011) and

the human ribosome (PDB 4V6X) (Anger, et al., 2013) for rigid-body fitting into the additional den-

sity. Figures depicting atomic models with and without density were prepared using UCSF Chimera

(Pettersen et al., 2004).
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Differential radial capillary action of ligand assay
ATP binding was determined by DRaCALA using [a-32P]ATP (Hartmann Analytik, Germany). 12 mM

RIG-I or RIG-I E373Q were incubated in 50 mM HEPES, pH 7.5, 150 mM KCl, 5 mM MgCl2, 2.5 mM

TCEP, 0.1 mg/mL BSA supplemented with 2.5 nM [a-32P]ATP for 10 min at room temperature in

presence or absence of 100 nM RNA. 2.5 mL of reaction mixture was spotted on nitrocellulose mem-

branes (0.22 mM pores, GE Healthcare, Buckinghamshire, UK), air-dried and [a-32P]ATP was detected

using a phosphor-imaging system (GE Healthcare, Germany).

Electrophoretic mobility shift assay
Proteins at different concentrations were pre-incubated with ATP, ADP or ADP�BeF3 (all 3 mM end

concentration, ADP�BeF3 was generated using ADP, NaF and BeCl2 in a 1:1:5 molar ratio) and added

to 0.5 mM ES hairpin RNA or 0.2 mM 24mer RNA in EMSA buffer (50 mM Tris pH 7.5, 50 mM KCl, 5

mM MgCl2, 5 mM TCEP, 7.5 mM ZnCl2, 3 mM ATP, 5% glycerol). Reactions were incubated for 20

min at 37 ˚C. Samples were separated on TB agarose gels (89 mM Tris, 89 mM boric acid, 0.8% aga-

rose) and stained with Gel-Red (Biotium, Hayward, CA, USA). Unbound RNA bands were quantified

with ImageJ.

Fluorescence anisotropy assays
Different RIG-I or RIG-I E373Q protein concentrations were titrated into EMSA buffer without ATP

and glycerol. Reactions were started by addition of 5 mM ATP and 20 nM Cy3- or Cy5-labeled RNA

and fluorescence anisotropy was measured with a TECAN M1000 plate reader after incubation at

room temperature for 20 min.

ATPase hydrolysis assays
ATPase hydrolysis activity was determined using [g-32P]ATP (Hartmann Analytik, Germany). Proteins

at different concentrations were pre-incubated with 100 nM RNA or purified ribosomes for 10 min at

room temperature in EMSA buffer without ATP. The reaction was initiated by addition of 1.5 mM

unlabeled and 10 nM [g-32P]ATP and incubated for 20 min at 37 ˚C. Free phosphate was separated

from ATP by thin layer chromatography in TLC running buffer (1 M formic acid, 0.5 M LiCl) on polye-

thyleneimine cellulose TLC plates (Sigma-Aldrich, Germany). [g-32P]Pi and [g-32P]ATP were detected

using a phosphor-imaging system (GE Healthcare, Germany) and quantified using ImageJ.
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Discussion

1 Discrimination of self vs non-self by RIG-I and MDA5

1.1 What are physiological ligands of RIG-I and MDA5?

One of the main unsolved questions within the field of RIG-I like receptors is still addressing in vivo

occurring ligands of RIG-I and MDA5. Even though several in vitro experiments successfully defined

optimal RNA substrates for both proteins, data under infectious conditions are so far only sparse and

often raise more questions than they answer. Regarding the present knowledge, how do RIG-I and

MDA5 ligands look like? When, if ever, do they occur in vivo? And how does the cell protect itself

from generating these ligands?

Optimal RIG-I ligands are described as short blunt-ended dsRNA containing 5′ tri- or diphos-

phates265,266. Naturally such RNAs could occur within the nucleus, but are typically masked be-

fore they are transported to the cytosol. mRNAs modifications that are believed to abolish cytosolic

immune activation include capping of the 5′ end with a guanosine residue methylated at N7, and

methylation of the first 5′ nucleotide ribose267. Methylation of the 5′ cap is mainly important for

translation initiation and was recently shown to only partly suppress RIG-I activation105. This is due

to the flexible incorporation of the cap within RIG-I‘s CTD where contacts to the RNA were demon-

strated to be limited to theα and β-phosphates105,109. In this regard, capped but unmethylated RNA

have been shown to fully activate RIG-I similar to non-capped triphosphorylated RNA105 (compare

to Figure 4). Methylation of the first 5′ nucleotide however, effectively inactivates RIG-I-dependent

signaling by introducing a steric clash with the CTD105. This efficiently prevents binding of RIG-I to

folded mRNA 5′ ends or even capturing of mRNAs by the RIG-I CTD. Other potential endogenous

ligands like tRNAs are cleaved to produce 5′ monophosphate ends268 and ribosomal RNA is mainly

masked by ribonucleoprotein complexes and modified ribonucleotides. Furthermore, miRNAs and

siRNAs generated by Dicer have a characteristic 2 nucleotide 3′ overhang which is unfavorable for

RIG-I end recognition269.

During viral infections however, viruses often fail to entirely mask their own RNA and thereby pro-

duce species that can be detected by RLRs. Potential RIG-I ligands are the incoming viral genome in

the first place105,117, but as well replication intermediates or defective interfering genomes harbor-

ing 5′ triphosphates119,135. Nevertheless, more and more evidence, including our own study, also

points towards 5′ triphosphate independent recognition of viral RNA like internal mRNAs regions

and parts of the 3′ UTRs114,122,123,135. In this regard, also short RNAs generated by RNase L through
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cleavage of U-rich cytosolic RNA have been described as RIG-I ligands115,116.

Sensing of these ligands happens primarily via a basic surface on the RIG-I CTD and its RNA end-

capping loop that provides a strong specificity towards the di- or triphosphate. However, also other

RIG-I domains help ensure specificity: The CARDs:domain 2b interface aids in discriminationof blunt-

ended and non blunt-ended dsRNA or ssRNA, since it prevents the generation of productive pro-

tein:RNA complexes that do not have a high affinity tether towards the CTD108,109. In addition, the

SF2 helicase domain lowers the general affinity towards dsRNA stems, thereby raising the specificity

towards RNA ends as well (discussed in detail in discussion section 2).

The optimal MDA5 ligand, on the other hand, is long dsRNA without bulges and regardless of the

presence of a tri- or diphosphate end270. The more general appearance of MDA5 ligands without a

characteristic feature like phosphate-containing ends, as for instance RIG-I ligands have, renders this

RLR more prone to the recognition of endogenous RNA. Most cellular RNAs, however, only contain

short dsRNA regions and even if longer parts occur, base pairing is effectively destabilized by con-

verting adenosine ribonucleotides to inosine by ADAR1234. This is further supported by the fact that

loss of A-to-I editing results in embryonic death through the induction of an autoimmune response

against self-RNA by MDA5235. Other potential endogenous MDA5 ligands could arise from short

interspersed nucleotide elements (SINEs) like repetitive Alu elements that constitute up to 10% of

the human genome and that can occur within introns or other non-coding regions of transcripts271.

Alu elements are approximately 300 bases long, contain an A-rich region and are, if present within

inverted repeats, ideal MDA5, but also ADAR, substrates272. A-to-I editing and the subsequent loss

of base pairing might therefore prevent MDA5-dependent signaling.

Consistent with the preference for long dsRNA stems, viral MDA5 agonists have been found to be for

instance the replicative form of viruses273. Furthermore, and similar to RIG-I, several sense or anti-

sense transcripts were found to be recognized in virus-infected cells by deep sequencing of MDA5

associated RNA95,123,135. However, since MDA5 does not signal on ssRNA, the identified transcripts

might harbor yet unrecognized double-stranded regions. With conventional RNA folding software,

nevertheless, so far no connection between length of potential dsRNA parts and sequencing reads

could be established, leaving room for speculations about non-cooperative MDA5 binding and sig-

naling.

In addition, besides RNA length, also AU composition of viral RNA was suggested to have an influ-

ence onMDA5 recognition135. In the same context, also an decreased ATPase activity ofMDA5 upon

recognition of AU-rich transcript was found. Since so far no base-specific recognition ofMDA5 could

be detected within any structural protein analysis, one could speculate, that less stable AU-rich se-

quencesmightmore likely partiallymelt, leading to a slow-down ofMDA5 translocation. Hereof, any

RNA structure that disfavors ATP hydrolysis by at the same time preserving RNA binding might lead

to prolonged protein:RNA interactions and therefore to increased immune signaling. Nevertheless,

the exact mechanism of MDA5 signaling on shorter dsRNA stems still remains to be analyzed.
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1.2 Is RIG-I’s CTD able to bind dsRNA stems?

A still controversial question within RIG-I in vivo-functioning concerns the ability of the protein to

bind dsRNA stems similar to MDA5. This, however, is a prerequisite for translocation or binding at

internal dsRNA parts without proper end. Whereas different crystal structures of RLRs show interac-

tions of the SF2 domain exclusively with the RNA backbone, the relative CTD position

varies60–62,109,144,145. All so far published RIG-I:RNA complexes show an RNA end-capping mode

of RIG-I’s CTD via a positively charged loop that encloses the phosphate groups and stacks to the

terminal base pair61,109. For MDA5, on the other hand, data showing both RNA end-binding as well

as recognition of the dsRNA stem are available144,145. In all MDA5:RNA crystal structures, however,

the end-capping loop, is found to be disordered. This might be convincing since, the end-capping

loop of MDA5, contrary to RIG-I, lacks the aromatic amino acids required for base stacking of the

RNA end as well as the lysines contacting the phosphates. This suggests, that when MDA5 accom-

modates dsRNA stems, this loop has an increased flexibility compared to the end-capping loop of

RIG-I.

NMR titration experiments of dsRNA to isolated RIG-I and MDA5 CTDs further report different bind-

ing modes of these domains146,274: Whereas in solution, the RIG-I CTD was found to bind RNA ends

via the end-capping loop as well, the MDA5 CTD was shown to sequester the dsRNA stem via its flat

surface. Further, biochemical assays and electron microscopy confirm MDA5 stem binding on long

double-stranded RNA130,149 and the preference of RIG-I for (phosphorylated) dsRNA ends102,103.

However, all isolated CTDs are found to adopt similar conformations in solution if no RNA is bound

(Figure 17)146,274, arguing for an intrinsic flexibility of the CTDs that might allow different confor-

mations according to the appropriate RNA substrate. More and more recent data also point to the

ability of RIG-I to translocate and oligomerize on dsRNA stems110,198,199. Co-immunoprecipitation

studies of RIG-I from different virus-infected or uninfected cells further identified binding sites dis-

tant from dsRNA-ends indicating that RIG-I might indeed be able to bind dsRNA stems123,135,275. A

RNA end 
capping loop

Figure 17: Comparison of RIG-I (cyan, RCSB PDB code 2rmj, human) and MDA5 (gray, RCSB PDB code 2rqb,

human) CTD NMR structures in solution without presence of RNA. Each 4 out of 20 NMR structures

are depicted. The overall root mean square deviation of all RIG-I structures compared to all MDA5

structures equals 2.5 Å as calculated with pymol.
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binding mode of the RIG-I CTD similar to the MDA5 CTD might thus be conceivable, but would need

to shift the whole domain towards the dsRNA stem followed by an enforced alteration within the

RNA capping loop. Nevertheless, structural data supporting the RIG-I stem binding hypothesis are

mostly lacking.

In the same regard, also the RIG-I footprint is currently not exactly known and ranges from 8 to 10

nucleotides depending on the crystal structure61,113. Otherwise, RIG-I‘s footprint was suggested

to be as small as 6 to 7 nucleotides as known for other SF2 helicases276. In vitro studies further

showed, that even though an 8mer ppp-dsRNA is stably bound by RIG-I via the SF2 helicase domain

and CTD, the CARD2:domain 2b interface is not allosterically disrupted106. Since those experiments

where done in absence of ATP, however, one cannot exclude that ATP binding-dependent structural

changes might reduce a potential footprint below 8 nucleotides. The structural integrity of such an

RNA under in vivo temperature conditions however remains questionable.

Nevertheless, knowledge of the precise minimal binding unit of RIG-I on RNA might help design

dsRNA oligos suitable to address questions concerning a RIG-I RNA-stem binding mode.

2 What role has ATP in RIG-I-like receptor signaling?

Another question in the field of RLRs addresses the SF2 domain and its ATPase function upon binding

to double-stranded RNA.Why do RLRs hydrolyze ATP?Would it not be easier to just release the CARD

domains as soon as a suitable ligand is found? Already with the discovery of RIG-I it became clear,

that blocking of the ATPase function impedes signaling of the protein72. But how is an immune

response triggered by RIG-I connected to the ability to hydrolyze ATP? And is it the same for MDA5?

Nevertheless, despite intense biochemical and cellular studies over the last years, the exact function

of the RLR ATPase domain remained puzzling and only recently it started to be understood.

Several RIG-I constructs co-crystallizedwith different ATP analogues or ADP and RNA captured differ-

ent protein conformations during the ATP hydrolysis cycle (Figure 18). Thereby, the main difference

in all RIG-I structures is due to different orientations of both domain 1a and 2a to each other depend-

ing on the usedATP analogue. This apparentmovement of the SF2 domain is further accompanied by

changes of the orientation of the insertion domain 2b. The RIG-I CTD however, is so far only caught

in one distinct orientation relative to the dsRNA, independent of the presence of a triphosphate or

other dsRNA termini.

Recently, three independent groups, including us, dissected the role of ATP binding vs. ATP hydrolysis

for the RIG-I immune response by mutating different key amino acids in the Walker A and B motifs,

respectively275,277,278. Thereby, theWalker Amotif lysine (RIG-I K270) was exchanged to a neutral or

even acidic amino acid (e.g. alanine, isoleucine or glutamic acid) in order to decrease ATP binding.

The ATP bound state, in contrast, was assessed by disturbing the activation of the catalytic water

through conversion of a glutamic acid residue of the Walker B motif to glutamine. Thus magnesium

binding by neighboring Walker B residues as well as ATP binding stays intact, but ATP hydrolysis is
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Figure 18: Residues involved in coordination of ATP during different states of hydrolysis in RIG-I. ADP·BeF3
(RCSB PDB code 3tmi, human) resembles the ATP bound state, ADP·AlF3 (RCSB PDB code 4a36,

duck) corresponds to the ATP hydrolysis transition state and ADP (RCSB PDB code 3zd7, human)

resembles the reaction product state.

slowed down. This is in contrast to the earlier used aspartate mutation within Walker B motifs that

mainly disturbs magnesium ion coordination: Loss of magnesium within the ATP binding pocket,

however, disturbs ATP binding as well and therefore is indistinguishable to a Walker A mutation.

Interestingly through different experiments all three studies showed, that ATP binding and hydrolysis

for RIG-I and MDA5 have opposing cellular effects: Recognition of both RNA and ATP by RIG-I, or

RNA only by MDA5, are sufficient to induce signaling. ATP hydrolysis, in contrast, destabilizes the

RLR:RNA complexes and leads to RNA disengagement of the SF2 helicase domain, thereby testing

the substrate interactions with the CTD106,275,277.

2.1 RNA and ATP binding liberate the RIG-I CARDs, whereas MDA5 activation needs

RNA only

Blocking of ATP binding in RIG-I through a Walker A lysine mutation in cellular studies with over-

expressed proteins resulted in reduced or abrogated signaling even in presence of stimulating RNA

or Sendai virus defective interfering genomes275,277,278. Interestingly, ATP binding assays of RIG-I

K270A/R mutants showed an only two-fold reduced affinity of the protein towards ATP, whereas

hydrolysis activity was abolished as expected278. RNA binding properties, in contrast, are not al-

tered73,279. Immune response signaling on the other hand, as monitored by IRF3 dimerization as

well as binding of free ubiquitin chains was shown to be prevented in cell-free systems mimicking

viral infections168. Thus abrogation or impeding of ATP binding leads to loss of immune signaling,

probably though disrupted CARDs release, even in presence of bound RNA. In accordance with this,

published crystal structures of RIG-I:RNA complexes bound to ADP with an open helicase state280

as well as RIG-I with sequestered CARDs to domain 2b61 can be superimposed without introducing

any clash between different domains192.

Contrary to RIG-I, the MDA5 CARDs do not entirely fold back to domain 2b and are already partially

released even without binding to RNA and ATP as shown in SAXS and deuterium exchange measure-

ments106,149. Further, overexpression of MDA5 in cells is already sufficient to induce signaling73.
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Full activation of an immune response by MDA5 is nevertheless dependent on cooperative MDA5

oligomerization on long dsRNA stretches130.

The function of ATP binding in MDA5 signaling might thus differ from RIG-I. In accordance with this

and contrary to RIG-I, mutations that disrupt ATP binding are shown to result in constitutive signal-

ing200,277. This can be reversed, similar to RIG-I, by additionally disrupting RNA binding sites within

the MDA5 SF2 like helicase domain or by abrogating the RNA driven self-assembly of MDA5277. In-

terestingly, a doublemutation of theWalker Amotif aswell as an RNAbinding residuewithin the CTD

cannot impede signaling, emphasizing a comparably smaller contribution of theMDA5 CTD towards

RNA binding.

2.2 ATP hydrolysis by RIG-I and MDA5 impedes signaling on endogenous RNA

Recently, the ATP hydrolysis activity of MDA5’s and RIG-I’s SF2 helicase domains was found to be

required to avoid activation by self-RNA275,277,278. In this regard, RIG-I shows enhanced dissociation

kinetics for varying RNA substrates already in presence of ADP or the non-hydrolyzable ATP analogue

ATPγS in vitro278.

RIG-I trapped in the ATP bound state, in contrast, constitutive signaled in cellular overexpression

studies regardless if cells are stimulated with RIG-I ligands or not275,277. Signaling is dependent on

RNA binding, since the additional insertion of RNA binding mutations in both helicase or CTD results

in loss of signaling275,277. Structural changes of the protein that could result in constant CARDs-

release without RNA stimulus were ruled-out by SAXS and thermofluor experiments as well as by

cellular competition assays with a CARD-less RIG-I construct. Furthermore, co-immunoprecipitation

studies revealed an expansion segment of the large ribosomal subunit as a possible abundant en-

dogenous ligand, that might be responsible for the immune response275. The relevance of this

ligand was further highlighted by transfection into ATPase-deficient RIG-I-expressing cells. Simi-

lar to triphosphorylated dsRNA, this endogenous ligand further enhanced the cell´s immune re-

sponse275,277. Nevertheless, the idea that RIG-I could not signal from internal duplexes, since they

would not efficiently displace the CTD in order to induce a clash with the CARDs278, cannot entirely

be rejected: Even though in vitro and cellular studies confirm binding of RIG-I in absence of ATP or in

presence of an ATP analogue to the dsRNA stem, there is still the possibility, that signaling in cellular

assays in fact relies on other endogenous ligands that are recognized as well. Further, increased sig-

naling upon transfection of this RNA into RIG-I Walker B mutant-stimulated cells could be induced

due to any other upregulated ISG.

Nevertheless, even though nucleotide binding lowers the RIG-I affinity for RNA substrates, it seems

not to be enough to restrict activation of an immune response in cells. Therefore, ATP hydrolysis

provides the important mechanisms to avoid signaling on endogenous RNA.

An explanation might be, that ATP hydrolysis contributes a proof reading mechanism, that recycles

RIG-I on triphosphorylated RNA ends or promotes its dissociation from supposedly non-pathogenic

RNA111,275,277,278. The CTD of RIG-I might thus serve as an anchor towards tri- or diphosphorylated
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dsRNAs, whose binding strength to the protein is constantly challenged by the SF2 helicase domain

which in turn weakens the interactions with the RNA stem111. By that, ATP hydrolysis of RIG-I en-

hances specificity towards viral dsRNA and reduces background binding to endogenous RNA. Ac-

cordingly, loss of this feature, like e.g. observed in atypical SMS patients, results in the development

of autoimmune diseases against cytosolic self-RNA247.

MDA5 signaling in contrast is independent of ATP binding, since both ATP binding and ATP hydrolysis-

deficient mutants were found to induce a constitutive immune response277. Nevertheless, in vitro

filament formation of MDA5 was shown by electron microscopy to be stabilized in presence of the

ATP analogue ADP·AlFx 281 and in addition ATPase-deficient MDA5 co-purifies with the big riboso-

mal subunit275. Similar to RIG-I, ATP hydrolysis of MDA5 thus seems to be important to disengage

MDA5:RNA complexes and to prevent a continuous response149. Thereby contrary to RIG-I, not the

MDA5 CTD provides the RNA anchor but rather oligomerization on long RNA stems provides the

stability needed for signaling.

2.3 ATP influences LGP2’s regulatory function

In contrast to MDA5 and RIG-I, only limited data concerning the ATP dependency of LGP2 is avail-

able. LGP2 is thought to possess regulatory functions in RLR signaling in general170. Cellular over-

expression assays showed, that low amounts of LGP2 enhance MDA5-dependent signaling, while

higher levels of LGP2 inhibit an immune response of both RIG-I and MDA594,281. The increase of

MDA5-dependent signaling through LGP2 is realized by attenuating the length ofMDA5filaments281.

These shorter, but more numerous polymers seem to have higher signal-transducing abilities than

longer filaments. Interestingly, LGP2’s positive regulatory role depends on the availability of ATP,

since ATP binding-deficient LGP2 (Walker A mutant) only retains the ability to inhibit signaling at

higher concentrations97,281. In addition, the LGP2 Walker A mutant severely suppresses RIG-I sig-

naling even upon transfection with RIG-I ligands281.

Since LGP2 lacks the CARDs for immune response signaling, an ATP binding-dependent molecular

switch, similar to RIG-I, upon RNA binding might not be necessary. Rather ATP hydrolysis could be

important to destabilize the protein:RNA interactions, as in the case of RIG-I and MDA5. This might

allow either translocation on long dsRNA and thereby aid in MDA5 cooperative binding, or enhance

RNA end recognition in order to turn off an RIG-I mediated immune response282. Further, LGP2 was

found to have increased RNA recognition abilities in presence of ATP in vitro98. This could have a

broad effect on different cellular RNAs as well, thereby affecting both RIG-I and MDA5 during later

stages of infection and in the presence of higher cellular levels of LGP2.

In addition, ATP hydrolysis might drive effector like functions of LGP2 similar to those suggested for

RIG-I and MDA5200 in order to release dsRNA-bound viral factors or even other RLRs and to stop an

immune response.

Nevertheless, the effect of ATP onto LGP2’s regulatory function is so far less understood and requires

further analysis.
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3 Translocation of RLRs: a model based on the Hepatitis C virus NS3

protein

Related to the ability of RLRs to hydrolyze ATP and due to their assignment to Superfamily 2 helicases,

another question concerning their ability to move on RNA emerged. Are RLRs able to translocate

on dsRNA? Biochemical studies, mainly conducted on RIG-I, suggested that it binds via the CTD to

the 5′ triphosphate end of dsRNA and then subsequently moves into the RNA interior in an ATP-

dependent manner110,198,199. This process might be required to achieve oligomerization of several

RLRs on one RNA molecule in order to induce the spatial proximity of the RLR CARDs that is needed

for their tetramerization and the subsequent signal transfer. Further, as mentioned, translocation-

dependent effector-like functions of RIG-I andMDA5have been described, proposing a displacement

of bound proteins or a remodeling of RNA structures200.

Nevertheless, the structural basis for an ATP-dependent translocation of RLRs is still lacking. In order

to overcome these limitations, a comparison to other SF2 proteins can be done. In this context, one

of the best studied SF2 helicases is the viral non-structural protein 3 (NS3) of which structural data on

proteins of different viruses, including Dengue virus, Yellow fever virus, Murray Valley encephalitis

virus and Hepatitis C virus (HCV), are available283–289. Especially in case of the HCV NS3 protein,

a precise model can be established based on several biochemical assays combined with structural

data of the protein bound to nucleic acids and varying nucleotide analogues representing different

ATP hydrolysis states.

The HCV NS3 protein consists of an N-terminal serine protease as well as a C-terminal helicase do-

main290. The helicase domain contains, similar to the corresponding domain of RLRs, two RecA-like

domains (domains 1 and 2, corresponding to domains 1a and 2a of RLRs, see Figure 19), between

whose interfaces a nucleotide binding pocket is formed, as well as anα-helical domain 3. In contrast

to RLRs, the NS3 helicase domain can hydrolyze any nucleotide upon nucleic acid binding and further

has no preference for DNA or RNA substrates291–293.

Based on biochemical and structural studies, a canonical translocation and unwinding mechanism

has been proposed. According to the model, NS3 binds to single-stranded regions of nucleic acids

and then translocates in anATP-dependentmanner nucleotide-wise in 3′ to 5′ until it reaches double-

stranded regions. Duplexes are subsequently unwound by a ”spring-loaded” mechanism after each

3 cycles of ATP hydrolysis via the α-helical domain of NS3294. Mechanistically, domains 1 and 2 step

from 3′ to5 ′direction into the duplex interior, whereas the α-helical domain 3 lacks behind, stays

placed at the double-stranded end and accumulates tension towards the protein:nucleic acid com-

plex. After three nucleotide steps, i.e. three cycles of ATP hydrolysis, the created tension reliefs in a

burst of 3 base pairs unwinding.

Themovement of NS3 on the nucleic acid backbone can be linked to different ATP hydrolysis states of

the protein288: In the ATP-unbound state, the NS3 domains 1 and 2 form an open nucleotide binding

cleft. Domain 1 contacts the nucleic acid backbone phosphates (p) 1 and p2 (counted from 3′ direc-

tion), wheres domain 2 captures p3 to p5. Upon binding of ATP to NS3 (which is resembled by the

ADP·BeF3-bound state) domain 1 moves one nucleotide towards domain 2, now interacting with p2
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Figure 19: Structure and sequence alignment of the SF2 domains of human RLRs and the Hepatitis C virus NS3

protein. (A) Comparison of the RIG-I RecA-like domains 1a and 2a (RCSB PDB code 4a36, duck RIG-I

helicase domain) to the NS3 domains 1 and 2 (RCSB PDB code 3kql, HCV NS3). Accessory domains

as well as the second RNA strand within the RIG-I structure are hidden for comparison purposes.

(B) Sequence alignment of RLRs and HCV NS3 based on a structure alignment of RIG-I and NS3

using pymol. Conserved motifs involved in ATP binding and hydrolysis are marked in red, motifs

involved in RNA binding are depicted in green and motifs involved in coupling of ATP hydrolysis to

RNA binding are shown in orange (compare with Figure 13).
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and p3, whereas domain 2 looses the contact to p3. During the ATP transition state (ADP·AlF3-bound
state), the distances between domain 1 and the nucleic acid are rearranged, stabilizing the inter-

actions to p2 and p3 via new hydrogen bonds. ATP hydrolysis leads to re-opening of the helicase

domain cleft and thereby shifts domain 2 into 5′ direction to phosphates p4 to p6.

Since key residues involved in nucleotide hydrolysis, nucleic acid binding and translocation are con-

served in SF2 proteins, a similar translocation mechanism might occur in RLRs. In addition, even

though RLRs signal only upon binding to double-stranded nucleic acids, domains 1a and 2a almost

exclusively contact the bottom RNA strand and could therefore perform a similar movement like

NS3. Concerning RIG-I, several binary and ternary structures co-crystallized with RNA and different

ATP analogues are available as well. Alignment of these structures based on domain 1 as well identi-

fies movements within the SF2 domain (Figure 20). Interestingly and opposed to NS3, regardless of

the co-crystallized nucleotide, no shift of domain 1 relative to the RNA strand is visible. The reason

for this could be the high affinity anchor of the CTD, which might relocate the SF2 domain towards

the RNA end. The lack of translocation by domain 1a upon ATP binding, however, is compensated

by a shift within domain 2a motif V (Figure 20 residues V699 and T697). Yet, in accordance with

NS3, nucleotide binding seems to destabilize RIG-I:RNA interactions as well, as emphasized by an

reduced affinity of the protein towards RNA278. Nevertheless, if the ATP-bound state (ADP·BeF3) is
compared to the ATP hydrolysis transition state (ADP·AlF3) a clear compaction of the whole helicase

domain is visible, bringing domain 2a into close contact to domain 1a and decreasing the footprint

of both domains on RNA from 5 nucleotides to 4 (Figure 20A). Compared to NS3, translocation of

RIG-I in presence of an RNA endmight thus be prevented by the CTD leading to stumbling of domain

1a and a subsequent 5′ to 3′shift of domain 2a rather than a translocation into 3′ to 5′direction.

In order to avoid RNA end binding, further studies with hairpin RNAs or RLR constructs lacking the

CTD in the presence of different ATP analogues would therefore give important evidence whether

domain 1a of RIG-I is able to move or not.

After ATP hydrolysis, i.e. in the ADP bound state, the RIG-I SF2 domain is open again, leading to a loss

of RNA contacts within domain 2a, while domain 1a still stays bound (Figure 20B). Repeated cycles

of ATP hydrolysis, however, might due to the intramolecular movements facilitate the disruption of

the CTD:RNA end interface and could thus help establish a translocation competent binding state.

Contrary to that and as discussed earlier, ATP hydrolysis by RIG-I and MDA5 was shown to lead to

disengagement of the SF2 domain from RNA, and thereby helps restore the open helicase state and

enables rebinding of the CARDs to domain 2b106,275,280. All those scenarios, however, are not mu-

tually exclusive and could happen during different states of infection.

Moreover ATP-dependent translocation of RIG-I andMDA5 could even help dissociate both proteins

from endogenous RNA275. In that regard, translocation and subsequent running into bulges on en-

dogenous dsRNA could help release protein:RNA complexes. Evidence for this is provided by studies

of amino acid residues contacting the RNA backbone. A prominent amino acid pair are e.g. two

conserved threonine residues within domain 1a and 2a which are shown to reduce RNA binding and

unwinding in NS3295 (compare to RIG-I in Figure 20C). According to that finding, mutation of the

corresponding threonine T347 in RIG-I results in loss of signaling due to decreased RNA binding275.
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Figure 20: RIG-I domain movements. For comparison reasons only domains 1a and 2a are shown. (A) Com-

parison of the ATP bound state (ADP·BeF3, light gray: domain 1a, green: domain 2a) with the ATP

hydrolysis transition state (ADP·AlF3, dark gray: domain 1a and 2a). (B) Comparison of the ATP hy-

drolysis transition state (ADP·AlF3, dark gray: domain 1a and 2a) with reaction product state (ADP,

light gray: domain 1a, light blue: domain 2a). (C) RNA coordination of domain 1a motif Ic and

domain 2a motif V (upper panels) and domain 1a motif Ib and domain 2a motif IVa (lower panels)

during different states of ATP hydrolysis.

RCSB PDB codes for the depicted structures are: 5f9f (RIG-I ∆CARDs without nucleotide, hu-

man), 3tmi (RIG-I ∆CARDs, ADP·BeF3, human), 4a36 (RIG-I helicase, ADP·AlF3, duck), 3zd7 (RIG-I

∆CARDs, ADP, human).

Interestingly, if a valine residue (V699) near the domain 2a-located threonine (T697) is mutated, sig-

naling is not prevented but rather slightly enhanced even under non-infected conditions. V699 does

not initially bind to the RNA backbone, but is later relocated and helps coordinating the RNA during

the ATP reaction cycle. An explanation for increased signaling might be, that not RNA binding, but

translocation is affected. This might result in a slipping of domain 2a on the RNA backbone rather

than a distinct one-nucleotide translocation step and could lead to prolonged binding of domain 1a.

If the theory holds, this finding would emphasize the importance of translocation on non-perfect

dsRNA stems in non-infected cells for protein dissociation and prevention of signaling on endoge-

nous RNA.
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4 The current model of RNA- and ATP-dependent activation of RIG-I and

MDA5

The current view on regulation of signaling by RIG-I and MDA5 in uninfected and virus-infected cells

can be updated, based on the presented literature. Thereby, crucial structural differences between

both RLRs lead to distinct activation and signaling suppression mechanisms.

In healthy and uninfected cells several instances ensure inactivation of RIG-I but allow surveillance

of the cytoplasm in order to detect optimal ligands. In this regard, the RIG-I CARDs are folded back

to the insertion domain 2b in order to prevent a stochastic communication with the MAVS CARDs

in absence of an RNA stimulus61. Thereby, especially CARD2 is shielded from the cytosol since this

is the domain to provide the template surface for MAVS activation152,153. The RIG-I CTD, however,

is flexibly linked to the rest of the protein and free to interact with RNA61,62. In addition, several

post-translational modifications impede signaling in uninfected cells: examples are phosphorylation

of the CARDs that prevents ubiquitination and therefore tetramer stabilization in case of a release

of the CARD domains, and acetylation of the CTD that decreases RNA binding69,178. Furthermore,

unspecific binding to endogenous RNA is decreased through ATP hydrolysis, which leads to either im-

mediate dissociation or to translocation and subsequent disengagement on nearby bulges275 (Figure

21A). On the other hand compartmentalization of eukaryotic cells shields triphosphate containing

unmethylated mRNAs from the cytosol which also helps to avoid the immune activation by those

RNAs.

Upon viral infection, the RIG-I CTD captures 5′ phosphorylated ends of double-stranded RNA and

presents it to the helicase domain102–104 (Figure 21B). Thereby, even a capped 5′ end is tolerated,

but not methylation of the first nucleotide105,109. RNA-binding again stimulates the ATPase function

of the SF2 domain. Since the phosphorylated RNA end now provides a strong anchor to the CTD,

ATP hydrolysis still leads to a widening of both domain 1a and 2a of the SF2 helicase domain, there-

fore decreasing RNA stem recognition, while CTD-mediated binding is not disturbed. Subsequently,

the SF2 helicase domain could rebind as before, or might bind with a slightly different orientation,

helping to reposition the CTD in order to start translocation on the duplex. Translocation itself might

function to dislocate bound viral proteins or to load several RIG-I molecules onto the RNA double-

strand in order to enhance downstream signaling198–200.

Release of the CARDs is, besides being dependent on dsRNA binding, coupled to ATP and is trig-

gered by a molecular switch upon ATP binding that compacts the SF2 helicase domain. This induces

a clash between CARDs and RNA bound to the CTD, and either liberates the CARDs or leads, in case

of non tri- or diphosphorylated dsRNA, to dissociation61. Successfully freed CARDs, in turn, inter-

act with adjacent CARDs to form tetramers and build a scaffold for the recruitment of MAVS CARDs

in order to start an immune response152,153. Released RIG-I CARDs or CARDs-tetramers are fur-

ther dephosphorylated and either bind polyubiquitin chains, ubiquitin-like proteins or domains, or

are covalently polyubiquitinated69,70,166,296. Ubiquitination, itself is not strictly required for an im-

mune response199, but it stabilizes the RIG-I signaling competent complex, especially if no oligomers

can be formed on an RNA double-strand, and thus impedes CARDs complex dissociation. In ad-
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Figure 21: RIG-I ATP- and RNA-dependent signaling. (A) RNA binding alone is not sufficient to induce signaling

and needs subsequent ATP. ATP hydrolysis and translocation, however, result in rapid dissociation,

prevent prolonged protein binding and therefore enable refolding of the CARDs. (B) RIG-I binds

phosphorylated dsRNA ends via its CTD. Subsequent ATP binding releases the CARDs and allows

immune response signaling. ATP hydrolysis displaces the SF2 domain from the RNA strand, but

leads to either rebinding on the RNA end caused by the CTD anchor, or to translocation on the

stem.

RIG-I SF2 domain: gray, CTD: cyan, CARDs: orange, phosphates: red dots. Figure adopted from

Lässig et al. 275 .

dition, deacetylation of the RIG-I CTD further stimulates RNA binding and enhances the immune

response178. Activation of the downstream signaling cascade ultimately leads to expression of hun-

dreds of ISGs including RLRs themselves in order to boost or fine-tune the immune response.

MDA5 is like RIG-I autoinhibited by phosphorylation of its CARDs166. Nevertheless, the CARDs them-

selves do not as tightly associate with domain 2b as in RIG-I, which leads to partially exposed CARDs

and higher background activity of MDA5106 (Figure 22A). Phosphorylation and its suppressive role

in immune response activation through decreased binding of free ubiquitin chains might thus even

play a more crucial role for MDA5 compared with RIG-I. The MDA5 CTD is as well flexible, but pref-

erentially captures dsRNA stems144. In addition and contrary to RIG-I, also the MDA5 SF2 domain

alone is able to bind dsRNA277. TheMDA5 CTDmight therefore have an especially crucial role in sta-

bilizing the MDA5 ring-like structure on dsRNA by docking onto domain 2b via the convex zinc-ion

containing surface144.

If bound to dsRNA,MDA5 cooperatively forms large filaments and thus scans the RNA length130 (Fig-

ure 22B). Thereby, MDA5 preferentially nucleates within the RNA interior. In contrast to RIG-I and

because of the higher flexibility of the MDA5 CARDs, ATP binding is not as essential in order to start
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Figure 22:MDA5 ATP- and RNA-dependent signaling. (A) The MDA5 CARDs are partially opened and RNA

binding alone is sufficient to induce signaling. ATP hydrolysis and translocation, however, prevent

prolonged protein binding and result in rapid dissociation from endogenous RNA, thus reducing

background signaling. (B) MDA5 binds to viral dsRNA stems. Subsequent ATP binding entirely re-

leases the CARDs and allows increased immune response signaling. ATP hydrolysis leads to translo-

cation and cooperative binding of MDA5 on the RNA stem thereby filling gaps.

MDA5 SF2 domain: gray, CTD: blue, CARDs: orange. Figure adopted from Lässig et al. 275 .

an immune response277. Nevertheless, RNA binding induces ATP hydrolysis similar to RIG-I, which

leads to disassembly of the filaments and therefore displays immunosuppressive effects as well130.

Since MDA5 lacks the high affinity anchor of the CTD towards phosphorylated RNA ends, transloca-

tion might happen easier compared with RIG-I and might lead to faster loading of several molecules

onto the dsRNA strand, thereby filling gaps. Cooperative protein binding provides filament stabil-

ity, whereas ATP hydrolysis-driven disassembly might primary happen at RNA ends199. In addition

MDA5 might have a preference for U or A/U-rich dsRNA, which show lower ATP hydrolysis rates and

thus could result in more stable filaments through decreased translocation or dissociation. Spatial

proximity of several MDA5 molecules on longer dsRNA further induces CARD oligomerization and

immune response activation via MAVS.

Importantly, the ATPase function of both RIG-I and MDA5 indirectly prevents immune signaling by

disturbing the CARDs-tetramer formation needed for MAVS activation until post-translational mod-

ifications are exchanged or the CARDs are ubiquitinated. In that regard, RNA dissociation from non-

phosphorylated dsRNA of RIG-I allows CARDs rebinding to domain 2b. Translocation or dissociation

on short RNA stems by MDA5 disturbs the spatial proximity. Further, ATP hydrolysis of both RIG-I

and MDA5 reduces signaling on short internal dsRNA stems by challenging the helicase:RNA back-

bone interactions and highlighting additional RNA features but themere double-stranded nature: In

case of RIG-I the SF2 domain tests for the presence of a tri- or diphosphate and for MDA5 it restricts

signaling to long dsRNAs.

84



References

[1] Max D Cooper and Brantley R Herrin. How did our complex immune system evolve? Nature

Reviews Immunology, 10(1):2–3, 2010.

[2] Charles Janeway, Kenneth P Murphy, Paul Travers, and Mark Walport. Janeway’s Immunobi-

ology. Garland Science, 2008.

[3] Jonathan DG Jones and Jeffery L Dangl. The plant immune system. Nature, 444(7117):

323–329, 2006.

[4] Carrie L Lucas and Michael J Lenardo. Identifying genetic determinants of autoimmunity and

immune dysregulation. Current Opinion in Immunology, 37:28–33, 2015.

[5] Charles A Janeway. Approaching the asymptote? Evolution and revolution in immunology.

In Cold Spring Harbor Symposia on Quantitative Biology, volume 54, pages 1–13. Cold Spring

Harbor Laboratory Press, 1989.

[6] Polly Matzinger. Tolerance, danger, and the extended family. Annual Review of Immunology,

12(1):991–1045, 1994.

[7] Akiko Iwasaki and Ruslan Medzhitov. Control of adaptive immunity by the innate immune

system. Nature Immunology, 16(4):343–353, 2015.

[8] Andrea Ablasser, Carola Hertrich, Ruth Waßermann, and Veit Hornung. Nucleic acid driven

sterile inflammation. Clinical Immunology, 147(3):207–215, 2013.

[9] Taro Kawai and Shizuo Akira. The role of pattern-recognition receptors in innate immunity:

update on toll-like receptors. Nature Immunology, 11(5):373–384, 2010.

[10] David Sancho and Caetano Reis e Sousa. Signaling by myeloid C-type lectin receptors in im-

munity and homeostasis. Annual Review of Immunology, 30:491, 2012.

[11] Jiaxi Wu and Zhijian J Chen. Innate immune sensing and signaling of cytosolic nucleic acids.

Annual Review of Immunology, 32:461–488, 2014.

[12] Vijay AK Rathinam, Sivapriya Kailasan Vanaja, and Katherine A Fitzgerald. Regulation of in-

flammasome signaling. Nature Immunology, 13(4):333–342, 2012.

[13] Kiyoshi Takeda, Tsuneyasu Kaisho, and Shizuo Akira. Toll-like receptors. Annual Review of

Immunology, 21(1):335–376, 2003.

[14] Akiko Iwasaki and Ruslan Medzhitov. Toll-like receptor control of the adaptive immune re-

sponses. Nature Immunology, 5(10):987–995, 2004.

[15] Maximiliano Javier Jiménez-Dalmaroni, M Eric Gerswhin, and Iannis E Adamopoulos. The criti-

cal role of Toll-like receptors, from microbial recognition to autoimmunity, a comprehensive

review. Autoimmunity Reviews, 15(1):1–8, 2016.

85



References

[16] DongHyun Song and Jie-Oh Lee. Sensing ofmicrobialmolecular patterns by Toll-like receptors.

Immunological Reviews, 250(1):216–229, 2012.

[17] Tobias Junt and Winfried Barchet. Translating nucleic acid-sensing pathways into therapies.

Nature Reviews Immunology, 2015.

[18] Qian Yin, Tian-Min Fu, Jixi Li, and Hao Wu. Structural biology of innate immunity. Annual

Review of Immunology, 33:393, 2015.

[19] Osamu Takeuchi, Taro Kawai, Peter F Mühlradt, Michael Morr, Justin D Radolf, Arturo Zych-

linsky, Kiyoshi Takeda, and Shizuo Akira. Discrimination of bacterial lipoproteins by Toll-like

receptor 6. International Immunology, 13(7):933–940, 2001.

[20] Osamu Takeuchi, Shintaro Sato, Takao Horiuchi, Katsuaki Hoshino, Kiyoshi Takeda, Zhongyun

Dong, Robert LModlin, and Shizuo Akira. Cutting edge: role of Toll-like receptor 1 inmediating

immune response to microbial lipoproteins. The Journal of Immunology, 169(1):10–14, 2002.

[21] Marije Oosting, Shih-Chin Cheng, Judith M Bolscher, Rachel Vestering-Stenger, Theo S

Plantinga, Ineke C Verschueren, Peer Arts, Anja Garritsen, Hans van Eenennaam, Patrick

Sturm, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proceed-

ings of the National Academy of Sciences, 111(42):E4478–E4484, 2014.

[22] Alexander Poltorak, Xiaolong He, Irina Smirnova, Mu-Ya Liu, Christophe Van Huffel, Xin Du,

Dale Birdwell, Erica Alejos, Maria Silva, Chris Galanos, et al. Defective LPS signaling in C3H/HeJ

and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282(5396):2085–2088, 1998.

[23] Salman T Qureshi, Line Larivière, Gary Leveque, Sophie Clermont, Karen J Moore, Philippe

Gros, and DanielleMalo. Endotoxin-tolerantmice havemutations in Toll-like receptor 4 (Tlr4).

The Journal of Experimental Medicine, 189(4):615–625, 1999.

[24] Katsuaki Hoshino, Osamu Takeuchi, Taro Kawai, Hideki Sanjo, Tomohiko Ogawa, Yoshifumi

Takeda, Kiyoshi Takeda, and Shizuo Akira. Cutting edge: Toll-like receptor 4 (TLR4)-deficient

mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product.

The Journal of Immunology, 162(7):3749–3752, 1999.

[25] Fumitaka Hayashi, Kelly D Smith, Adrian Ozinsky, Thomas R Hawn, C Yi Eugene, David R

Goodlett, Jimmy K Eng, Shizuo Akira, David M Underhill, and Alan Aderem. The innate im-

mune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410(6832):

1099–1103, 2001.

[26] Florian Heil, Hiroaki Hemmi, Hubertus Hochrein, Franziska Ampenberger, Carsten Kirschning,

Shizuo Akira, Grayson Lipford, Hermann Wagner, and Stefan Bauer. Species-specific recog-

nition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303(5663):1526–1529,

2004.

[27] Sandra S Diebold, Tsuneyasu Kaisho, Hiroaki Hemmi, Shizuo Akira, and Caetano Reis e Sousa.

Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

Science, 303(5663):1529–1531, 2004.

[28] Jennifer M Lund, Lena Alexopoulou, Ayuko Sato, Margaret Karow, Niels C Adams, Nicholas W

Gale, Akiko Iwasaki, and Richard A Flavell. Recognition of single-stranded RNA viruses by

Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United States of

America, 101(15):5598–5603, 2004.

86



References

[29] Veit Hornung, Margit Guenthner-Biller, Carole Bourquin, Andrea Ablasser, Martin Schlee,

Satoshi Uematsu, Anne Noronha, MuthiahManoharan, Shizuo Akira, Antonin de Fougerolles,

et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid

dendritic cells through TLR7. Nature Medicine, 11(3):263–270, 2005.

[30] Lena Alexopoulou, Agnieszka Czopik Holt, Ruslan Medzhitov, and Richard A Flavell. Recog-

nition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 413

(6857):732–738, 2001.

[31] Hiroaki Hemmi, Osamu Takeuchi, Taro Kawai, Tsuneyasu Kaisho, Shintaro Sato, Hideki Sanjo,

Makoto Matsumoto, Katsuaki Hoshino, Hermann Wagner, Kiyoshi Takeda, et al. A Toll-like

receptor recognizes bacterial DNA. Nature, 408(6813):740–745, 2000.

[32] Kei Yasuda,Mark Rutz, Beatrix Schlatter, JochenMetzger, Peter B Luppa, Frank Schmitz, Tobias

Haas, Antje Heit, Stefan Bauer, and Hermann Wagner. CpG motif-independent activation of

TLR9 upon endosomal translocation of “natural” phosphodiester DNA. European Journal of

Immunology, 36(2):431–436, 2006.

[33] Tobias Haas, Jochen Metzger, Frank Schmitz, Antje Heit, Thomas Müller, Eicke Latz, and Her-

mann Wagner. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 acti-

vation. Immunity, 28(3):315–323, 2008.

[34] Akinori Takaoka, ZhiChao Wang, Myoung Kwon Choi, Hideyuki Yanai, Hideo Negishi, Tatsuma

Ban, Yan Lu, Makoto Miyagishi, Tatsuhiko Kodama, Kenya Honda, et al. DAI (DLM-1/ZBP1)

is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448(7152):

501–505, 2007.

[35] Zhiqiang Zhang, Bin Yuan, Musheng Bao, Ning Lu, Taeil Kim, and Yong-Jun Liu. The helicase

DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature

Immunology, 12(10):959–965, 2011.

[36] Leonie Unterholzner, Sinead E Keating, Marcin Baran, Kristy A Horan, Søren B Jensen, Shruti

Sharma, Cherilyn M Sirois, Tengchuan Jin, Eicke Latz, T Sam Xiao, et al. IFI16 is an innate

immune sensor for intracellular DNA. Nature Immunology, 11(11):997–1004, 2010.

[37] Lijun Sun, Jiaxi Wu, Fenghe Du, Xiang Chen, and Zhijian J Chen. Cyclic GMP-AMP synthase

is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339(6121):

786–791, 2013.

[38] Zhe Ma and Blossom Damania. The cGAS-STING Defense Pathway and Its Counteraction by

Viruses. Cell Host & Microbe, 19(2):150–158, 2016.

[39] Anna-Maria Herzner, Cristina Amparo Hagmann, Marion Goldeck, Steven Wolter, Kirsten

Kübler, Sabine Wittmann, Thomas Gramberg, Liudmila Andreeva, Karl-Peter Hopfner,

Christina Mertens, et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA

structures as found in primary HIV-1 cDNA. Nature Immunology, 16(10):1025–1033, 2015.

[40] John W Schoggins, Donna A MacDuff, Naoko Imanaka, Maria D Gainey, Bimmi Shrestha, Jen-

nifer L Eitson, Katrina B Mar, R Blake Richardson, Alexander V Ratushny, Vladimir Litvak, et al.

Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Na-

ture, 505(7485):691–695, 2014.

[41] Jiaxi Wu, Lijun Sun, Xiang Chen, Fenghe Du, Heping Shi, Chuo Chen, and Zhijian J Chen. Cyclic

87



References

GMP-AMP is an endogenous secondmessenger in innate immune signaling by cytosolic DNA.

Science, 339(6121):826–830, 2013.

[42] Filiz Civril, Tobias Deimling, Carina C de Oliveira Mann, Andrea Ablasser, Manuela Moldt, Gre-

gorWitte, Veit Hornung, and Karl-Peter Hopfner. Structural mechanism of cytosolic DNA sens-

ing by cGAS. Nature, 498(7454):332–337, 2013.

[43] Philip J Kranzusch, Amy Si-Ying Lee, James M Berger, and Jennifer A Doudna. Structure of

human cGAS reveals a conserved family of second-messenger enzymes in innate immunity.

Cell Reports, 3(5):1362–1368, 2013.

[44] Xin Li, Chang Shu, Guanghui Yi, Catherine T Chaton, Catherine L Shelton, Jiasheng Diao, Xiaob-

ing Zuo, C Cheng Kao, Andrew B Herr, and Pingwei Li. Cyclic GMP-AMP synthase is activated

by double-stranded DNA-induced oligomerization. Immunity, 39(6):1019–1031, 2013.

[45] Xu Zhang, Jiaxi Wu, Fenghe Du, Hui Xu, Lijun Sun, Zhe Chen, Chad A Brautigam, Xuewu Zhang,

and Zhijian J Chen. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA

and undergoes switch-like conformational changes in the activation loop. Cell Reports, 6(3):

421–430, 2014.

[46] Pu Gao, Manuel Ascano, Yang Wu, Winfried Barchet, Barbara L Gaffney, Thomas Zillinger,

Artem A Serganov, Yizhou Liu, Roger A Jones, Gunther Hartmann, et al. Cyclic [G (2′, 5′) pA
(3′, 5′) p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP

synthase. Cell, 153(5):1094–1107, 2013.

[47] Elie J Diner, Dara L Burdette, Stephen C Wilson, Kathryn M Monroe, Colleen A Kellenberger,

Mamoru Hyodo, Yoshihiro Hayakawa, Ming C Hammond, and Russell E Vance. The innate

immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human

STING. Cell Reports, 3(5):1355–1361, 2013.

[48] Andrea Ablasser,MarionGoldeck, Taner Cavlar, Tobias Deimling, GregorWitte, Ingo Röhl, Karl-

Peter Hopfner, Janos Ludwig, and Veit Hornung. cGAS produces a 2′-5′-linked cyclic dinu-

cleotide second messenger that activates STING. Nature, 498(7454):380–384, 2013.

[49] Dara L Burdette, Kathryn M Monroe, Katia Sotelo-Troha, Jeff S Iwig, Barbara Eckert, Mamoru

Hyodo, Yoshihiro Hayakawa, and Russell E Vance. STING is a direct innate immune sensor of

cyclic di-GMP. Nature, 478(7370):515–518, 2011.

[50] Hiroki Ishikawa, ZheMa, andGlenNBarber. STING regulates intracellular DNA-mediated, type

I interferon-dependent innate immunity. Nature, 461(7265):788–792, 2009.

[51] Tilmann Bürckstümmer, Christoph Baumann, Stephan Blüml, Evelyn Dixit, Gerhard Dürn-

berger, Hannah Jahn, Melanie Planyavsky, Martin Bilban, Jacques Colinge, Keiryn L Bennett,

et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor

for the inflammasome. Nature Immunology, 10(3):266–272, 2009.

[52] Teresa Fernandes-Alnemri, Je-Wook Yu, Pinaki Datta, Jianghong Wu, and Emad S Alnemri.

AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature,

458(7237):509–513, 2009.

[53] Veit Hornung, Andrea Ablasser, Marie Charrel-Dennis, Franz Bauernfeind, Gabor Horvath,

Daniel R Caffrey, Eicke Latz, and Katherine A Fitzgerald. AIM2 recognizes cytosolic dsDNA and

forms a caspase-1-activating inflammasome with ASC. Nature, 458(7237):514–518, 2009.

88



References

[54] David Wallach, Tae-Bong Kang, Christopher P Dillon, and Douglas R Green. Programmed

necrosis in inflammation: Toward identification of the effectormolecules. Science, 352(6281):

aaf2154, 2016.

[55] Tengchuan Jin, Andrew Perry, Jiansheng Jiang, Patrick Smith, James A Curry, Leonie Unter-

holzner, Zhaozhao Jiang, Gabor Horvath, Vijay A Rathinam, Ricky W Johnstone, et al. Struc-

tures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of

the AIM2 inflammasome and IFI16 receptor. Immunity, 36(4):561–571, 2012.

[56] Seamus R Morrone, Mariusz Matyszewski, Xiong Yu, Michael Delannoy, Edward H Egelman,

and Jungsan Sohn. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a

polymerization template for downstream ASC. Nature Communications, 6, 2015.

[57] Mohamed Lamkanfi and Vishva M Dixit. Mechanisms and functions of inflammasomes. Cell,

157(5):1013–1022, 2014.

[58] Tuo Li, Benjamin A Diner, Jin Chen, and Ileana M Cristea. Acetylation modulates cellular dis-

tribution and DNA sensing ability of interferon-inducible protein IFI16. Proceedings of the

National Academy of Sciences, 109(26):10558–10563, 2012.

[59] MeganHOrzalli, NicoleMBroekema, Benjamin ADiner, Dustin CHancks, Nels C Elde, IleanaM

Cristea, and David M Knipe. cGAS-mediated stabilization of IFI16 promotes innate signaling

during herpes simplex virus infection. Proceedings of the National Academy of Sciences, 112

(14):E1773–E1781, 2015.

[60] Dahai Luo, Steve C Ding, Adriana Vela, Andrew Kohlway, Brett D Lindenbach, and Anna Marie

Pyle. Structural insights into RNA recognition by RIG-I. Cell, 147(2):409–422, 2011.

[61] Eva Kowalinski, Thomas Lunardi, AndrewAMcCarthy, Jade Louber, Joanna Brunel, BoyanGrig-

orov, Denis Gerlier, and Stephen Cusack. Structural basis for the activation of innate immune

pattern-recognition receptor RIG-I by viral RNA. Cell, 147(2):423–435, 2011.

[62] Fuguo Jiang, Anand Ramanathan, Matthew T Miller, Guo-Qing Tang, Michael Gale, Smita S

Patel, and JosephMarcotrigiano. Structural basis of RNA recognition and activation by innate

immune receptor RIG-I. Nature, 479(7373):423–427, 2011.

[63] Stephanie Bechtel, Heiko Rosenfelder, Anny Duda, Christian Schmidt, Ute Ernst, Ruth Wellen-

reuther, Alexander Mehrle, Claudia Schuster, Andre Bahr, Helmut Blöcker, et al. The full-ORF

clone resource of the German cDNA Consortium. BMC genomics, 8(1):1, 2007.

[64] Rashu B Seth, Lijun Sun, Chee-Kwee Ea, and Zhijian J Chen. Identification and characterization

of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 122

(5):669–682, 2005.

[65] Taro Kawai, Ken Takahashi, Shintaro Sato, Cevayir Coban, Himanshu Kumar, Hiroki Kato,

Ken J Ishii, Osamu Takeuchi, and Shizuo Akira. IPS-1, an adaptor triggering RIG-I-and

Mda5-mediated type I interferon induction. Nature Immunology, 6(10):981–988, 2005.

[66] Etienne Meylan, Joseph Curran, Kay Hofmann, Darius Moradpour, Marco Binder, Ralf Barten-

schlager, and Jürg Tschopp. Cardif is an adaptor protein in the RIG-I antiviral pathway and is

targeted by hepatitis C virus. Nature, 437(7062):1167–1172, 2005.

[67] Liang-Guo Xu, Yan-Yi Wang, Ke-Jun Han, Lian-Yun Li, Zhonghe Zhai, and Hong-Bing Shu. Visa is

an adapter protein required for virus-triggered ifn-β signaling. Molecular Cell, 19(6):727–740,

89



References

2005.

[68] Mitsutoshi Yoneyama, Mika Kikuchi, Kanae Matsumoto, Tadaatsu Imaizumi, Makoto Miyag-

ishi, Kazunari Taira, Eileen Foy, Yueh-Ming Loo, Michael Gale, Shizuo Akira, et al. Shared and

unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate im-

munity. The Journal of Immunology, 175(5):2851–2858, 2005.

[69] Michaela U Gack, Young C Shin, Chul-Hyun Joo, Tomohiko Urano, Chengyu Liang, Lijun Sun,

Osamu Takeuchi, Shizuo Akira, Zhijian Chen, Satoshi Inoue, et al. TRIM25 RING-finger E3

ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 446(7138):916–920,

2007.

[70] Xiaomo Jiang, Lisa N Kinch, Chad A Brautigam, Xiang Chen, Fenghe Du, Nick V Grishin, and

Zhijian J Chen. Ubiquitin-induced oligomerization of the rna sensors rig-i and mda5 activates

antiviral innate immune response. Immunity, 36(6):959–973, 2012.

[71] Helene Minyi Liu, Yueh-Ming Loo, Stacy M Horner, Gregory A Zornetzer, Michael G Katze, and

Michael Gale. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon

that mediates membrane association and innate antiviral immunity. Cell Host & Microbe, 11

(5):528–537, 2012.

[72] Mitsutoshi Yoneyama, Mika Kikuchi, Takashi Natsukawa, Noriaki Shinobu, Tadaatsu Imaizumi,

Makoto Miyagishi, Kazunari Taira, Shizuo Akira, and Takashi Fujita. The RNA helicase RIG-I

has an essential function in double-stranded RNA-induced innate antiviral responses. Nature

Immunology, 5(7):730–737, 2004.

[73] Takeshi Saito, Reiko Hirai, Yueh-Ming Loo, David Owen, Cynthia L Johnson, Sangita C Sinha,

Shizuo Akira, Takashi Fujita, andMichael Gale. Regulation of innate antiviral defenses through

a shared repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sci-

ences, 104(2):582–587, 2007.

[74] Evelyn Dixit, Steeve Boulant, Yijing Zhang, Amy SY Lee, Charlotte Odendall, Bennett Shum,

Nir Hacohen, Zhijian J Chen, Sean P Whelan, Marc Fransen, et al. Peroxisomes are signaling

platforms for antiviral innate immunity. Cell, 141(4):668–681, 2010.

[75] Fajian Hou, Lijun Sun, Hui Zheng, Brian Skaug, Qiu-Xing Jiang, and Zhijian J Chen. MAVS forms

functional prion-like aggregates to activate and propagate antiviral innate immune response.

Cell, 146(3):448–461, 2011.

[76] Charlotte Odendall, Evelyn Dixit, Fabrizia Stavru, Helene Bierne, Kate M Franz, Ann Fiegen

Durbin, Steeve Boulant, Lee Gehrke, Pascale Cossart, and Jonathan C Kagan. Diverse intracel-

lular pathogens activate type III interferon expression fromperoxisomes. Nature Immunology,

15(8):717–726, 2014.

[77] Siqi Liu, Jueqi Chen, Xin Cai, Jiaxi Wu, Xiang Chen, You-TongWu, Lijun Sun, and Zhijian J Chen.

MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife, 2:

e00785, 2013.

[78] Chuan-JinWu, Dietrich B Conze, Tao Li, SrinivasaM Srinivasula, and Jonathan D Ashwell. Sens-

ing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature

Cell Biology, 8(4):398–406, 2006.

[79] Chee-Kwee Ea, Li Deng, Zong-Ping Xia, Gabriel Pineda, and Zhijian J Chen. Activation of IKK by

90



References

TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molec-

ular Cell, 22(2):245–257, 2006.

[80] Daqi Tu, Zehua Zhu, Alicia Y Zhou, Cai-hong Yun, Kyung-Eun Lee, Angela V Toms, Yiqun Li,

Gavin P Dunn, Edmond Chan, Tran Thai, et al. Structure and ubiquitination-dependent acti-

vation of TANK-binding kinase 1. Cell Reports, 3(3):747–758, 2013.

[81] Michael Hinz and Claus Scheidereit. The IκB kinase complex in NF-κB regulation and beyond.

EMBO Reports, 15(1):46–61, 2014.

[82] Siqi Liu, Xin Cai, Jiaxi Wu, Qian Cong, Xiang Chen, Tuo Li, Fenghe Du, Junyao Ren, You-Tong

Wu, Nick V Grishin, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING,

and TRIF induces IRF3 activation. Science, 347(6227):aaa2630, 2015.

[83] Finlay McNab, Katrin Mayer-Barber, Alan Sher, Andreas Wack, and Anne O’Garra. Type I in-

terferons in infectious disease. Nature Reviews Immunology, 15(2):87–103, 2015.

[84] Lionel B Ivashkiv and Laura TDonlin. Regulation of type I interferon responses. Nature Reviews

Immunology, 14(1):36–49, 2014.

[85] Michaela U Gack, Axel Kirchhofer, Young C Shin, Kyung-Soo Inn, Chengyu Liang, Sheng Cui,

Sua Myong, Taekjip Ha, Karl-Peter Hopfner, and Jae U Jung. Roles of RIG-I N-terminal tandem

CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the

National Academy of Sciences, 105(43):16743–16748, 2008.

[86] Sky W Brubaker, Anna E Gauthier, Eric W Mills, Nicholas T Ingolia, and Jonathan C Kagan. A

bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell,

156(4):800–811, 2014.

[87] Koji Onomoto, Michihiko Jogi, Ji-Seung Yoo, Ryo Narita, Shiho Morimoto, Azumi Takemura,

Suryaprakash Sambhara, Atushi Kawaguchi, Suguru Osari, Kyosuke Nagata, et al. Critical role

of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity.

PloS One, 7(8):e43031, 2012.

[88] Randal J Kaufman. The double-stranded RNA-activated protein kinase PKR. In: dsRNA genetic

elements – concepts and applications in agriculture, forestry, and medicine. CRC Press, 2000.

[89] Juan J Berlanga, Ivan Ventoso, Heather P Harding, Jing Deng, David Ron, Nahum Sonenberg,

Luis Carrasco, and Cesar de Haro. Antiviral effect of the mammalian translation initiation

factor 2α kinase GCN2 against RNA viruses. The EMBO Journal, 25(8):1730–1740, 2006.

[90] Koji Onomoto, Mitsutoshi Yoneyama, Gabriel Fung, Hiroki Kato, and Takashi Fujita. Antiviral

innate immunity and stress granule responses. Trends in Immunology, 35(9):420–428, 2014.

[91] Mitsutoshi Yoneyama, Michihiko Jogi, and Koji Onomoto. Regulation of antiviral innate im-

mune signaling by stress-induced RNA granules. Journal of biochemistry, page mvv122, 2016.

[92] Kristina M Okonski and Charles E Samuel. Stress granule formation induced by measles virus

is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. Journal

of Virology, 87(2):756–766, 2013.

[93] Yongzhi Cui, Minglin Li, Katherine D Walton, Kailai Sun, John A Hanover, Priscilla A Furth, and

Lothar Hennighausen. The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-

like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Ge-

91



References

nomics, 78(3):129–134, 2001.

[94] Simon Rothenfusser, Nadege Goutagny, Gary DiPerna, Mei Gong, Brian G Monks, Annett

Schoenemeyer, Masahiro Yamamoto, Shizuo Akira, and Katherine A Fitzgerald. The RNA heli-

case Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-

I. The Journal of Immunology, 175(8):5260–5268, 2005.

[95] Safia Deddouche, Delphine Goubau, Jan Rehwinkel, Probir Chakravarty, Sharmin Begum,

Pierre V Maillard, Annabel Borg, Nik Matthews, Qian Feng, Frank JM van Kuppeveld, et al.

Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. eLife, 3:

e01535, 2014.

[96] Thiagarajan Venkataraman, Maikel Valdes, Rachel Elsby, Shigeru Kakuta, Gisela Caceres, Shi-

nobu Saijo, Yoichiro Iwakura, and Glen N Barber. Loss of DExD/H box RNA helicase LGP2 man-

ifests disparate antiviral responses. The Journal of Immunology, 178(10):6444–6455, 2007.

[97] Takashi Satoh, Hiroki Kato, Yutaro Kumagai, Mitsutoshi Yoneyama, Shintaro Sato, Kazufumi

Matsushita, Tohru Tsujimura, Takashi Fujita, Shizuo Akira, and Osamu Takeuchi. LGP2 is a pos-

itive regulator of RIG-I–and MDA5-mediated antiviral responses. Proceedings of the National

Academy of Sciences, 107(4):1512–1517, 2010.

[98] Annie M Bruns, Darja Pollpeter, Nastaran Hadizadeh, Sua Myong, John F Marko, and Curt M

Horvath. ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the

innate immune sensor, laboratory of genetics and physiology 2 (LGP2). Journal of Biological

Chemistry, 288(2):938–946, 2013.

[99] Kay S Childs, Richard E Randall, and StephenGoodbourn. LGP2plays a critical role in sensitizing

mda-5 to activation by double-stranded RNA. PloS One, 8(5):e64202, 2013.

[100] Mehul S Suthar, Hilario J Ramos, MargaretM Brassil, Jason Netland, Craig P Chappell, Gabriele

Blahnik, Aimee McMillan, Michael S Diamond, Edward A Clark, Michael J Bevan, et al. The

RIG-I-like receptor LGP2 controls CD8+ T cell survival and fitness. Immunity, 37(2):235–248,

2012.

[101] Michaela U Gack. Mechanisms of RIG-I-like receptor activation and manipulation by viral

pathogens. Journal of Virology, 88(10):5213–5216, 2014.

[102] Martin Schlee, Andreas Roth, Veit Hornung, Cristina Amparo Hagmann, Vera Wimmenauer,

Winfried Barchet, Christoph Coch, Markus Janke, Aleksandra Mihailovic, Greg Wardle, et al.

Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as

contained in panhandle of negative-strand virus. Immunity, 31(1):25–34, 2009.

[103] Andreas Schmidt, Tobias Schwerd,WolfgangHamm, Johannes CHellmuth, Sheng Cui, Michael

Wenzel, Franziska SHoffmann,Marie-CecileMichallet, Robert Besch, Karl-Peter Hopfner, et al.

5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I.

Proceedings of the National Academy of Sciences, 106(29):12067–12072, 2009.

[104] Delphine Goubau, Martin Schlee, Safia Deddouche, Andrea J Pruijssers, Thomas Zillinger,

Marion Goldeck, Christine Schuberth, Annemarthe G Van der Veen, Tsutomu Fujimura,

Jan Rehwinkel, et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing

5′-diphosphates. Nature, 514(7522):372–375, 2014.

[105] Christine Schuberth-Wagner, Janos Ludwig, Ann Kristin Bruder, Anna-Maria Herzner, Thomas

92



References

Zillinger, Marion Goldeck, Tobias Schmidt, Jonathan L Schmid-Burgk, Romy Kerber, Steven

Wolter, et al. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N

1-2′O-Methylated Self RNA. Immunity, 43(1):41–51, 2015.

[106] Jie Zheng, Hui Yee Yong, Nantika Panutdaporn, Chuanfa Liu, Kai Tang, and Dahai Luo. High-

resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I

and MDA5. Nucleic Acids Research, 43(2):1216–1230, 2015.

[107] Yanli Wang, Janos Ludwig, Christine Schuberth, Marion Goldeck, Martin Schlee, Haitao Li,

Stefan Juranek, Gang Sheng, Ronald Micura, Thomas Tuschl, et al. Structural and functional

insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature

Structural & Molecular Biology, 17(7):781–787, 2010.

[108] Anand Ramanathan, Swapnil C Devarkar, Fuguo Jiang,Matthew TMiller, Abdul G Khan, Joseph

Marcotrigiano, and Smita S Patel. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs

RNA selection. Nucleic Acids Research, page gkv1299, 2015.

[109] Swapnil C Devarkar, ChenWang, Matthew TMiller, Anand Ramanathan, Fuguo Jiang, Abdul G

Khan, Smita S Patel, and Joseph Marcotrigiano. Structural basis for m7G recognition and

2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proceedings

of the National Academy of Sciences, 113(3):596–601, 2016.

[110] Sua Myong, Sheng Cui, Peter V Cornish, Axel Kirchhofer, Michaela U Gack, Jae U Jung, Karl-

Peter Hopfner, and Taekjip Ha. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent
translocase on double-stranded RNA. Science, 323(5917):1070–1074, 2009.

[111] Stéphanie Anchisi, Jessica Guerra, and Dominique Garcin. RIG-I ATPase Activity and Discrimi-

nation of Self-RNA versus Non-Self-RNA. mBio, 6(2):e02349–14, 2015.

[112] Daisy W Leung and Gaya K Amarasinghe. When your cap matters: structural insights into self

vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Current Opinion in

Structural Biology, 36:133–141, 2016.

[113] Andrew Kohlway, Dahai Luo, David C Rawling, Steve C Ding, and AnnaMarie Pyle. Defining the

functional determinants for RNA surveillance by RIG-I. EMBO Reports, 14(9):772–779, 2013.

[114] Takeshi Saito, David M Owen, Fuguo Jiang, Joseph Marcotrigiano, and Michael Gale Jr. In-

nate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.

Nature, 454(7203):523–527, 2008.

[115] Krishnamurthy Malathi, Beihua Dong, Michael Gale, and Robert H Silverman. Small self-RNA

generated by RNase L amplifies antiviral innate immunity. Nature, 448(7155):816–819, 2007.

[116] Krishnamurthy Malathi, Takeshi Saito, Nannette Crochet, David J Barton, Michael Gale, and

Robert H Silverman. RNase L releases a small RNA from HCV RNA that refolds into a potent

PAMP. RNA, 16(11):2108–2119, 2010.

[117] Michaela Weber, Ali Gawanbacht, Matthias Habjan, Andreas Rang, Christoph Borner,

Anna Mareike Schmidt, Sophie Veitinger, Ralf Jacob, Stéphanie Devignot, Georg Kochs, et al.

Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I

and antiviral signaling. Cell Host & Microbe, 13(3):336–346, 2013.

[118] GuanQun Liu, Hong-Su Park, Hyun-Mi Pyo, Qiang Liu, and Yan Zhou. Influenza A virus pan-

handle structure is directly involved in RIG-I activation and interferon induction. Journal of

93



References

Virology, 89(11):6067–6079, 2015.

[119] Alina Baum, Ravi Sachidanandam, and Adolfo García-Sastre. Preference of RIG-I for short viral

RNA molecules in infected cells revealed by next-generation sequencing. Proceedings of the

National Academy of Sciences, 107(37):16303–16308, 2010.

[120] Jie Xu, Xiomara Mercado-López, Jennifer T Grier, Won-keun Kim, Lauren F Chun, Edward B

Irvine, Yoandris Del Toro Duany, Alison Kell, Sun Hur, Michael Gale, et al. Identification of a

natural viral RNA motif that optimizes sensing of viral RNA by RIG-I. mBio, 6(5):e01265–15,

2015.

[121] Min-Hi Lee, Pritesh Lalwani, Martin J Raftery, Markus Matthaei, Nina Lütteke, Sina Kirsanovs,

Marco Binder, Rainer G Ulrich, Thomas Giese, Thorsten Wolff, et al. RNA helicase retinoic

acid-inducible gene I as a sensor of Hantaan virus replication. Journal of General Virology, 92

(9):2191–2200, 2011.

[122] Hong-Xin Zhang, Zi-Xing Liu, Yue-Ping Sun, Jiang Zhu, Shun-Yuan Lu, Xue-Song Liu, Qiu-Hua

Huang, Yin-Yin Xie, Hou-Bao Zhu, Su-Ying Dang, et al. Rig-I regulates NF-κB activity through

binding to Nf-κb1 3′-UTR mRNA. Proceedings of the National Academy of Sciences, 110(16):

6459–6464, 2013.

[123] Raul Y Sanchez David, Chantal Combredet, Odile Sismeiro, Marie-Agnès Dillies, Bernd Jagla,

Jean-Yves Coppée, Marie Mura, Mathilde Guerbois Galla, Philippe Despres, Frédéric Tangy,

et al. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. eLife, 5:

e11275, 2016.

[124] Andrea Ablasser, Franz Bauernfeind, Gunther Hartmann, Eicke Latz, Katherine A Fitzgerald,

and Veit Hornung. RIG-I-dependent sensing of poly (dA:dT) through the induction of an RNA

polymerase III-transcribed RNA intermediate. Nature Immunology, 10(10):1065–1072, 2009.

[125] Yu-Hsin Chiu, John BMacMillan, and Zhijian J Chen. RNA polymerase III detects cytosolic DNA

and induces type I interferons through the RIG-I pathway. Cell, 138(3):576–591, 2009.

[126] Takeharu Minamitani, Dai Iwakiri, and Kenzo Takada. Adenovirus virus-associated RNAs in-

duce type I interferon expression through a RIG-I-mediated pathway. Journal of Virology, 85

(8):4035–4040, 2011.

[127] Mirco Schmolke, Jenish R Patel, Elisa de Castro, Maria T Sánchez-Aparicio, Melissa B Uccellini,

Jennifer C Miller, Balaji Manicassamy, Takashi Satoh, Taro Kawai, Shizuo Akira, et al. RIG-I

detects mRNA of intracellular Salmonella enterica serovar Typhimurium during bacterial in-

fection. MBio, 5(2):e01006–14, 2014.

[128] Hiroki Kato, Osamu Takeuchi, Eriko Mikamo-Satoh, Reiko Hirai, Tomoji Kawai, Kazufumi

Matsushita, Akane Hiiragi, Terence S Dermody, Takashi Fujita, and Shizuo Akira. Length-

dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I

and melanoma differentiation–associated gene 5. The Journal of Experimental Medicine, 205

(7):1601–1610, 2008.

[129] Andreas Pichlmair, Oliver Schulz, Choon-Ping Tan, JanRehwinkel, Hiroki Kato, OsamuTakeuchi,

Shizuo Akira,MichaelWay, Giampietro Schiavo, and Caetano Reis e Sousa. Activation ofMDA5

requires higher-order RNA structures generated during virus infection. Journal of Virology, 83

(20):10761–10769, 2009.

94



References

[130] Alys Peisley, Cecilie Lin, Bin Wu, McGhee Orme-Johnson, Mengyuan Liu, Thomas Walz, and

Sun Hur. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA

recognition. Proceedings of the National Academy of Sciences, 108(52):21010–21015, 2011.

[131] Roland Züst, Luisa Cervantes-Barragan, Matthias Habjan, Reinhard Maier, Benjamin W Neu-

man, John Ziebuhr, Kristy J Szretter, Susan C Baker,Winfried Barchet,Michael S Diamond, et al.

Ribose 2 [prime]-O-methylation provides a molecular signature for the distinction of self and

non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 12(2):137–143,

2011.

[132] Peter Liehl, Vanessa Zuzarte-Luís, Jennie Chan, Thomas Zillinger, Fernanda Baptista, Daniel

Carapau,Madlen Konert, Kirsten KHanson, Céline Carret, Caroline Lassnig, et al. Host-cell sen-

sors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine,

20(1):47–53, 2014.

[133] Gretja Schnell, Yueh-Ming Loo, Joseph Marcotrigiano, and Michael Gale Jr. Uridine composi-

tion of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathogens,

8(8):e1002839, 2012.

[134] William G Davis, J Bradford Bowzard, Suresh D Sharma, Mayim E Wiens, Priya Ranjan, Shiv-

aprakash Gangappa, Olga Stuchlik, Jan Pohl, Ruben O Donis, Jacqueline M Katz, et al. The

3′ untranslated regions of influenza genomic sequences are 5′ PPP–independent ligands for
RIG-I. PLoS One, 7(3):e32661, 2012.

[135] Simon Runge, Konstantin MJ Sparrer, Charlotte Lässig, Katharina Hembach, Alina Baum,

Adolfo García-Sastre, Johannes Söding, Karl-Klaus Conzelmann, and Karl-Peter Hopfner. In

vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathogens, 10(4):

e1004081, 2014.

[136] Brenda L Fredericksen, Brian C Keller, Jamie Fornek, Michael G Katze, and Michael Gale. Es-

tablishment andmaintenance of the innate antiviral response toWest Nile Virus involves both

RIG-I and MDA5 signaling through IPS-1. Journal of Virology, 82(2):609–616, 2008.

[137] John S Errett, Mehul S Suthar, Aimee McMillan, Michael S Diamond, and Michael Gale. The

essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus

infection. Journal of Virology, 87(21):11416–11425, 2013.

[138] Diana A Pippig, Johannes C Hellmuth, Sheng Cui, Axel Kirchhofer, Katja Lammens, Alfred Lam-

mens, Andreas Schmidt, Simon Rothenfusser, and Karl-Peter Hopfner. The regulatory domain

of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Research, page

gkp059, 2009.

[139] Tatsuya Nishino, Kayoko Komori, Daisuke Tsuchiya, Yoshizumi Ishino, and Kosuke Morikawa.

Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain in-

volved in branched DNA processing. Structure, 13(1):143–153, 2005.

[140] Sheng Cui, Katharina Eisenächer, Axel Kirchhofer, Krzysztof Brzózka, Alfred Lammens, Katja

Lammens, Takashi Fujita, Karl-Klaus Conzelmann, Anne Krug, and Karl-Peter Hopfner. The

C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Molecular Cell, 29

(2):169–179, 2008.

[141] Kristof Kersse, Jelle Verspurten, TomVanden Berghe, and Peter Vandenabeele. The death-fold

superfamily of homotypic interactionmotifs. Trends in Biochemical Sciences, 36(10):541–552,

95



References

2011.

[142] David C Rawling and Anna Marie Pyle. Parts, assembly and operation of the RIG-I family of

motors. Current Opinion in Structural Biology, 25:25–33, 2014.

[143] Martin R Singleton, Mark S Dillingham, and Dale B Wigley. Structure and mechanism of heli-

cases and nucleic acid translocases. Annual Reviews of Biochemistry, 76:23–50, 2007.

[144] Bin Wu, Alys Peisley, Claire Richards, Hui Yao, Xiaohui Zeng, Cecilie Lin, Feixia Chu, Thomas

Walz, and Sun Hur. Structural basis for dsRNA recognition, filament formation, and antiviral

signal activation by MDA5. Cell, 152(1):276–289, 2013.

[145] Emiko Uchikawa, Mathilde Lethier, Hélène Malet, Joanna Brunel, Denis Gerlier, and Stephen

Cusack. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2

and MDA5. Molecular Cell, 62(4):586–602, 2016.

[146] Kiyohiro Takahasi, Mitsutoshi Yoneyama, Tatsuya Nishihori, Reiko Hirai, Hiroyuki Kumeta, Ryo

Narita, Michael Gale, Fuyuhiko Inagaki, and Takashi Fujita. Nonself RNA-sensing mechanism

of RIG-I helicase and activation of antiviral immune responses.Molecular Cell, 29(4):428–440,

2008.

[147] Filiz Civril, MatthewBennett,ManuelaMoldt, Tobias Deimling, GregorWitte, Stefan Schiesser,

Thomas Carell, and Karl-Peter Hopfner. The RIG-I ATPase domain structure reveals insights

into ATP-dependent antiviral signalling. EMBO Reports, 12(11):1127–1134, 2011.

[148] Tobias Deimling, Sheng Cui, Katja Lammens, K-P Hopfner, and Gregor Witte. Crystal and solu-

tion structure of the human RIG-I SF2 domain. Structural Biology and Crystallization Commu-

nications, 70(8), 2014.

[149] Ian C Berke and Yorgo Modis. MDA5 cooperatively forms dimers and ATP-sensitive filaments

upon binding double-stranded RNA. The EMBO Journal, 31(7):1714–1726, 2012.

[150] David C Rawling, Andrew S Kohlway, Dahai Luo, Steve C Ding, and Anna Marie Pyle. The RIG-I

ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer

domain. Nucleic Acids Research, 42(18):11601–11611, 2014.

[151] Cheng Lu, Hengyu Xu, CT Ranjith-Kumar, Monica T Brooks, Tim Y Hou, Fuqu Hu, Andrew B

Herr, Roland K Strong, C Cheng Kao, and Pingwei Li. The structural basis of 5′ triphosphate
double-stranded RNA recognition by RIG-I C-terminal domain. Structure, 18(8):1032–1043,

2010.

[152] Alys Peisley, Bin Wu, Hui Xu, Zhijian J Chen, and Sun Hur. Structural basis for ubiquitin-

mediated antiviral signal activation by RIG-I. Nature, 509(7498):110–114, 2014.

[153] Bin Wu, Alys Peisley, David Tetrault, Zongli Li, Edward H Egelman, Katharine E Magor, Thomas

Walz, Pawel A Penczek, and Sun Hur. Molecular imprinting as a signal-activation mechanism

of the viral rna sensor rig-i. Molecular Cell, 55(4):511–523, 2014.

[154] Su-Chang Lin, Yu-Chih Lo, and HaoWu. Helical assembly in theMyD88–IRAK4–IRAK2 complex

in TLR/IL-1R signalling. Nature, 465(7300):885–890, 2010.

[155] A Lu, Y Li, FI Schmidt, Q Yin, S Chen, TM Fu, AB Tong, HL Ploegh, Y Mao, and HWu. Molecular

basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nature

Structural & Molecular Biology, 2016.

96



References

[156] Ian C Berke, Xiong Yu, Yorgo Modis, and Edward H Egelman. MDA5 assembles into a po-

lar helical filament on dsRNA. Proceedings of the National Academy of Sciences, 109(45):

18437–18441, 2012.

[157] Xiaojun Li, Cheng Lu, Mikaela Stewart, Hengyu Xu, Roland K Strong, Tatyana Igumenova, and

Pingwei Li. Structural basis of double-stranded RNA recognition by the RIG-I like receptor

MDA5. Archives of Biochemistry and Biophysics, 488(1):23–33, 2009.

[158] Meredith E Davis and Michaela U Gack. Ubiquitination in the antiviral immune response.

Virology, 479:52–65, 2015.

[159] MichaelaUGack, EstanislaoNistal-Villán, Kyung-Soo Inn, AdolfoGarcía-Sastre, and JaeU Jung.

Phosphorylation-mediated negative regulation of RIG-I antiviral activity. Journal of Virology,

84(7):3220–3229, 2010.

[160] Natalya P Maharaj, Effi Wies, Andrej Stoll, and Michaela U Gack. Conventional protein ki-

nase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction. Journal of

Virology, 86(3):1358–1371, 2012.

[161] Zhiguo Sun, Hongwei Ren, Yan Liu, Jessica L Teeling, and Jun Gu. Phosphorylation of RIG-I by

casein kinase II inhibits its antiviral response. Journal of Virology, 85(2):1036–1047, 2011.

[162] Philipp Mertins, Jana W Qiao, Jinal Patel, Namrata D Udeshi, Karl R Clauser, DR Mani,

Michael W Burgess, Michael A Gillette, Jacob D Jaffe, and Steven A Carr. Integrated pro-

teomic analysis of post-translational modifications by serial enrichment. Nature Methods,

10(7):634–637, 2013.

[163] Xiaoqing Zhang, Haiyang Yu, Jun Zhao, Xiuqing Li, Jiada Li, Jiantai He, Zanxian Xia, and Jinfeng

Zhao. IKKε negatively regulates RIG-I via direct phosphorylation. Journal of Medical Virology,

2015.

[164] Chunaram Choudhary, Chanchal Kumar, Florian Gnad, Michael L Nielsen, Michael Rehman,

Tobias CWalther, Jesper V Olsen, andMatthias Mann. Lysine acetylation targets protein com-

plexes and co-regulates major cellular functions. Science, 325(5942):834–840, 2009.

[165] Woong Kim, Eric J Bennett, Edward L Huttlin, Ailan Guo, Jing Li, Anthony Possemato,Mathew E

Sowa, Ramin Rad, John Rush, Michael J Comb, et al. Systematic and quantitative assessment

of the ubiquitin-modified proteome. Molecular Cell, 44(2):325–340, 2011.

[166] EffiWies, May KWang, Natalya P Maharaj, Kan Chen, Shenghua Zhou, Robert W Finberg, and

Michaela U Gack. Dephosphorylation of the RNA sensors RIG-I andMDA5 by the phosphatase

PP1 is essential for innate immune signaling. Immunity, 38(3):437–449, 2013.

[167] Estanislao Nistal-Villán, Michaela U Gack, Gustavo Martínez-Delgado, Natalya P Maharaj,

Kyung-Soo Inn, Heyi Yang, RongWang, Aneel K Aggarwal, JaeU Jung, andAdolfoGarcía-Sastre.

Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-β production.

Journal of Biological Chemistry, 285(26):20252–20261, 2010.

[168] Wenwen Zeng, Lijun Sun, Xiaomo Jiang, Xiang Chen, Fajian Hou, Anirban Adhikari, Ming Xu,

and Zhijian J Chen. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored

polyubiquitin chains in innate immunity. Cell, 141(2):315–330, 2010.

[169] Jesper Melchjorsen, Helle Kristiansen, Rune Christiansen, Johanna Rintahaka, Sampsa

Matikainen, Søren R Paludan, and Rune Hartmann. Differential regulation of the OASL and

97



References

OAS1 genes in response to viral infections. Journal of Interferon and Cytokine Research, 29

(4):199–208, 2009.

[170] Jianzhong Zhu, Yugen Zhang, Arundhati Ghosh, Rolando A Cuevas, Adriana Forero, Jayeeta

Dhar, Mikkel Søes Ibsen, Jonathan Leo Schmid-Burgk, Tobias Schmidt, Madhavi K Ganapathi-

raju, et al. Antiviral activity of human OASL protein is mediated by enhancing signaling of the

RIG-I RNA sensor. Immunity, 40(6):936–948, 2014.

[171] Mikkel Søes Ibsen, Hans Henrik Gad, Line Lykke Andersen, Veit Hornung, Ilkka Julkunen,

Saumendra N Sarkar, and Rune Hartmann. Structural and functional analysis reveals that

human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Research, page gkv389,

2015.

[172] Zhiqiang Mi, Jihuan Fu, Yanbao Xiong, and Hong Tang. SUMOylation of RIG-I positively regu-

lates the type I interferon signaling. Protein & Cell, 1(3):275–283, 2010.

[173] Dong Gao, Yong-Kang Yang, Rui-Peng Wang, Xiang Zhou, Fei-Ci Diao, Min-Dian Li, Zhong-He

Zhai, Zheng-Fan Jiang, and Dan-Ying Chen. REUL is a novel E3 ubiquitin ligase and stimulator

of retinoic-acid-inducible gene-I. PloS One, 4(6):e5760, 2009.

[174] Jie Yan, Qi Li, Ai-Ping Mao, Ming-Ming Hu, and Hong-Bing Shu. TRIM4 modulates type I inter-

feron induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination.

Journal of Molecular Cell Biology, 6(2):154–163, 2014.

[175] Kanako Kuniyoshi, Osamu Takeuchi, Surya Pandey, Takashi Satoh, Hidenori Iwasaki, Shizuo

Akira, and Taro Kawai. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I–

mediated antiviral innate immunity. Proceedings of the National Academy of Sciences, 111

(15):5646–5651, 2014.

[176] Hiroyuki Oshiumi, Misako Matsumoto, Shigetsugu Hatakeyama, and Tsukasa Seya.

Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction

during the early phase of viral infection. Journal of Biological Chemistry, 284(2):807–817,

2009.

[177] Hiroyuki Oshiumi, Moeko Miyashita, Misako Matsumoto, and Tsukasa Seya. A distinct role of

Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human an-

tiviral innate immune responses. PLoS Pathogens, 9(8):e1003533, 2013.

[178] Su Jin Choi, Hyun-Cheol Lee, Jae-Hoon Kim, Song Yi Park, Tae-Hwan Kim, Woon-Kyu Lee, Duk-

Jae Jang, Ji-Eun Yoon, Young-Il Choi, Seihwan Kim, et al. HDAC6 regulates cellular viral RNA

sensing by deacetylation of RIG-I. The EMBO Journal, page e201592586, 2016.

[179] Kei-ichiro Arimoto, Hitoshi Takahashi, Takayuki Hishiki, Hideyuki Konishi, Takashi Fujita, and

Kunitada Shimotohno. Negative regulation of the RIG-I signaling by the ubiquitin ligase

RNF125. Proceedings of the National Academy of Sciences, 104(18):7500–7505, 2007.

[180] Qian Hao, Shi Jiao, Zhubing Shi, Chuanchuan Li, XiaMeng, Zhen Zhang, YanyanWang, Xiaomin

Song, WenjiaWang, Rongguang Zhang, et al. A non-canonical role of the p97 complex in RIG-I

antiviral signaling. The EMBO Journal, page e201591888, 2015.

[181] Lijuan Wang, Wei Zhao, Meng Zhang, Peng Wang, Kai Zhao, Xueying Zhao, Shangru Yang,

and Chengjiang Gao. USP4 positively regulates RIG-I-mediated antiviral response through

deubiquitination and stabilization of RIG-I. Journal of Virology, 87(8):4507–4515, 2013.

98



References

[182] Chen Zhao, Carilee Denison, Jon M Huibregtse, Steven Gygi, and Robert M Krug. Human

ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning

in diverse cellular pathways. Proceedings of the National Academy of Sciences of the United

States of America, 102(29):10200–10205, 2005.

[183] Min-Jung Kim, Sun-Young Hwang, Tadaatsu Imaizumi, and Joo-Yeon Yoo. Negative feedback

regulationof RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. Jour-

nal of Virology, 82(3):1474–1483, 2008.

[184] Kyung-Soo Inn, Michaela U Gack, Fuminori Tokunaga, Mude Shi, Lai-Yee Wong, Kazuhiro

Iwai, and Jae U Jung. Linear ubiquitin assembly complex negatively regulates RIG-I-and

TRIM25-mediated type I interferon induction. Molecular Cell, 41(3):354–365, 2011.

[185] Minying Zhang, Xuefeng Wu, Andrew J Lee, Wei Jin, Mikyoung Chang, Ato Wright, Tadaatsu

Imaizumi, and Shao-Cong Sun. Regulation of IκB kinase-related kinases and antiviral re-

sponses by tumor suppressor CYLD. Journal of Biological Chemistry, 283(27):18621–18626,

2008.

[186] Constantin S Friedman, Marie Anne O’Donnell, Diana Legarda-Addison, Aylwin Ng, Wash-

ington B Cardenas, Jacob S Yount, Thomas M Moran, Christopher F Basler, Akihiko Komuro,

Curt M Horvath, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated

antiviral response. EMBO Reports, 9(9):930–936, 2008.

[187] Jun Cui, Yanxia Song, Yinyin Li, Qingyuan Zhu, Peng Tan, Yunfei Qin, Helen YWang, andRong-Fu

Wang. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell

Research, 24(4):400–416, 2014.

[188] Huan Zhang, Dang Wang, Huijuan Zhong, Rui Luo, Min Shang, Dezhi Liu, Huanchun Chen,

Liurong Fang, and Shaobo Xiao. Ubiquitin-specific Protease 15 Negatively Regulates Virus-

induced Type I Interferon Signaling via Catalytically-dependent and-independent Mecha-

nisms. Scientific Reports, 5, 2015.

[189] Yihui Fan, Renfang Mao, Yang Yu, Shangfeng Liu, Zhongcheng Shi, Jin Cheng, Huiyuan Zhang,

Lei An, Yanling Zhao, Xin Xu, et al. USP21 negatively regulates antiviral response by acting as

a RIG-I deubiquitinase. The Journal of Experimental Medicine, 211(2):313–328, 2014.

[190] Peter V Hornbeck, Bin Zhang, Beth Murray, Jon M Kornhauser, Vaughan Latham, and Elzbi-

eta Skrzypek. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids

Research, 43(D1):D512–D520, 2015.

[191] Jihuan Fu, Yanbao Xiong, Youli Xu, Genhong Cheng, and Hong Tang. MDA5 is SUMOylated

by PIAS2β in the upregulation of type I interferon signaling. Molecular Immunology, 48(4):

415–422, 2011.

[192] Dahai Luo, Andrew Kohlway, and Anna Marie Pyle. Duplex RNA activated ATPases (DRAs)

Platforms for RNA sensing, signaling and processing. RNA Biology, 10(1):111–120, 2013.

[193] Eckhard Jankowsky, editor. RNA Helicases, volume 19. RSC Biomolecular Sciences, 2010.

[194] Eckhard Jankowsky. RNA helicases at work: binding and rearranging. Trends in Biochemical

Sciences, 36(1):19–29, 2011.

[195] Adriana Vela, Olga Fedorova, Steve C Ding, and Anna Marie Pyle. The thermodynamic basis

for viral RNA detection by the RIG-I innate immune sensor. Journal of Biological Chemistry,

99



References

287(51):42564–42573, 2012.

[196] Darja Bamming and Curt M Horvath. Regulation of signal transduction by enzymatically inac-

tive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2. Journal of Biological Chemistry,

284(15):9700–9712, 2009.

[197] Gillian I Rice, Yoandris del Toro Duany, EmmaM Jenkinson, GabriellaMA Forte, Beverley H An-

derson, Giada Ariaudo, Brigitte Bader-Meunier, EileenM Baildam, Roberta Battini, Michael W

Beresford, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease

phenotypes associated with upregulated type I interferon signaling. Nature Genetics, 46(5):

503–509, 2014.

[198] Jenish R Patel, Ankur Jain, Yi-ying Chou, Alina Baum, Taekjip Ha, and Adolfo García-Sastre.

ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon.

EMBO Reports, 14(9):780–787, 2013.

[199] Alys Peisley, Bin Wu, Hui Yao, Thomas Walz, and Sun Hur. RIG-I forms signaling-competent fil-

aments in an ATP-dependent, ubiquitin-independent manner. Molecular Cell, 51(5):573–583,

2013.

[200] Hui Yao, Meike Dittmann, Alys Peisley, Hans-Heinrich Hoffmann, Rachel H Gilmore, Tobias

Schmidt, Jonathan L Schmid-Burgk, Veit Hornung, Charles M Rice, and Sun Hur. ATP-

dependent effector-like functions of RIG-I-like receptors.Molecular Cell, 58(3):541–548, 2015.

[201] Alys Peisley, Myung Hyun Jo, Cecilie Lin, Bin Wu, McGhee Orme-Johnson, Thomas Walz,

Sungchul Hohng, and Sun Hur. Kinetic mechanism for viral dsRNA length discrimination by

MDA5 filaments. Proceedings of the National Academy of Sciences, 109(49):E3340–E3349,

2012.

[202] Seiichi Sato, Kai Li, Takeshi Kameyama, Takaya Hayashi, Yuji Ishida, Shuko Murakami, Tsuna-

masa Watanabe, Sayuki Iijima, Yu Sakurai, Koichi Watashi, et al. The RNA sensor RIG-I dually

functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity, 42(1):

123–132, 2015.

[203] Michaela Weber, Hanna Sediri, Ulrike Felgenhauer, Ina Binzen, Sebastian Bänfer, Ralf Jacob,

Linda Brunotte, Adolfo García-Sastre, Jonathan L Schmid-Burgk, Tobias Schmidt, et al. In-

fluenza virus adaptation PB2-627Kmodulates nucleocapsid inhibition by the pathogen sensor

RIG-I. Cell Host & Microbe, 17(3):309–319, 2015.

[204] U Schneider, A Martin, M Schwemmle, and P Staeheli. Genome trimming by Borna disease

viruses: viral replication control or escape from cellular surveillance? Cellular and Molecular

Life Sciences, 64(9):1038–1042, 2007.

[205] Matthias Habjan, Ida Andersson, Jonas Klingström, Michael Schümann, Arnold Martin, Petra

Zimmermann, Valentina Wagner, Andreas Pichlmair, Urs Schneider, Elke Mühlberger, et al.

Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-

dependent interferon induction. PloS One, 3(4):e2032, 2008.

[206] HaoWang, Antti Vaheri, FriedemannWeber, and Alexander Plyusnin. OldWorld hantaviruses

do not produce detectable amounts of dsRNA in infected cells and the 5′ termini of their ge-

nomic RNAs are monophosphorylated. Journal of General Virology, 92(5):1199–1204, 2011.

[207] Jean-Baptiste Marq, Daniel Kolakofsky, and Dominique Garcin. Unpaired 5′ ppp-nucleotides,

100



References

as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. Journal

of Biological Chemistry, 285(24):18208–18216, 2010.

[208] Daisy W Leung, Kathleen C Prins, Dominika M Borek, Mina Farahbakhsh, JoAnn M Tufariello,

Parameshwaran Ramanan, Jay C Nix, Luke A Helgeson, Zbyszek Otwinowski, Richard B Hon-

zatko, et al. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35.

Nature Structural & Molecular Biology, 17(2):165–172, 2010.

[209] Shridhar Bale, Jean-Philippe Julien, Zachary A Bornholdt, Christopher R Kimberlin, Peter Half-

mann,Michelle A Zandonatti, John Kunert, Gerard JA Kroon, Yoshihiro Kawaoka, Ian JMacRae,

et al. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for

interferon antagonism. PLoS Pathogens, 8(9):e1002916, 2012.

[210] Parameshwaran Ramanan, Megan R Edwards, Reed S Shabman, Daisy W Leung, Ariel C

Endlich-Frazier, Dominika M Borek, Zbyszek Otwinowski, Gai Liu, Juyoung Huh, Christopher F

Basler, et al. Structural basis forMarburg virus VP35–mediated immune evasionmechanisms.

Proceedings of the National Academy of Sciences, 109(50):20661–20666, 2012.

[211] KathrynMHastie, Christopher R Kimberlin, Michelle A Zandonatti, Ian JMacRae, and Erica Oll-

mann Saphire. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ ex-
onuclease activity essential for immune suppression. Proceedings of the National Academy

of Sciences, 108(6):2396–2401, 2011.

[212] Michaela Ulrike Gack, Randy Allen Albrecht, Tomohiko Urano, Kyung-Soo Inn, I-Chueh Huang,

Elena Carnero, Michael Farzan, Satoshi Inoue, Jae Ung Jung, and Adolfo García-Sastre. In-

fluenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral

RNA sensor RIG-I. Cell Host & Microbe, 5(5):439–449, 2009.

[213] Kyung-Soo Inn, Sun-Hwa Lee, Jessica Y Rathbun, Lai-Yee Wong, Zsolt Toth, Keigo Machida,

Jing-Hsiung James Ou, and Jae U Jung. Inhibition of RIG-I-mediated signaling by Kaposi’s

sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. Journal of Virology, 85(20):

10899–10904, 2011.

[214] Puck B van Kasteren, Corrine Beugeling, Dennis K Ninaber, Natalia Frias-Staheli, Sander

van Boheemen, Adolfo García-Sastre, Eric J Snijder, and Marjolein Kikkert. Arterivirus and

nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control

innate immune signaling. Journal of Virology, 86(2):773–785, 2012.

[215] Meredith E Davis, May K Wang, Linda J Rennick, Florian Full, Sebastian Gableske, Annelies W

Mesman, Sonja I Gringhuis, Teunis BH Geijtenbeek, W Paul Duprex, and Michaela U Gack.

Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate

immune escape of MDA5. Cell Host & Microbe, 16(1):19–30, 2014.

[216] Jean-Patrick Parisien, Darja Bamming, Akihiko Komuro, Aparna Ramachandran, Jason J Ro-

driguez, Glen Barber, Robert D Wojahn, and Curt M Horvath. A shared interface mediates

paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. Journal of Virology,

83(14):7252–7260, 2009.

[217] CarinaMotz, KerstinMonika Schuhmann, Axel Kirchhofer, ManuelaMoldt, GregorWitte, Karl-

Klaus Conzelmann, and Karl-Peter Hopfner. Paramyxovirus V proteins disrupt the fold of the

RNA sensor MDA5 to inhibit antiviral signaling. Science, 339(6120):690–693, 2013.

[218] Paola M Barral, Juliet M Morrison, Jennifer Drahos, Pankaj Gupta, Devanand Sarkar, Paul B

101



References

Fisher, and Vincent R Racaniello. MDA-5 is cleaved in poliovirus-infected cells. Journal of

Virology, 81(8):3677–3684, 2007.

[219] Paola M Barral, Devanand Sarkar, Paul B Fisher, and Vincent R Racaniello. RIG-I is cleaved

during picornavirus infection. Virology, 391(2):171–176, 2009.

[220] Qian Feng, Martijn A Langereis, Marie Lork, Mai Nguyen, Stanleyson V Hato, Kjerstin Lanke,

Luni Emdad, Praveen Bhoopathi, Paul B Fisher, Richard E Lloyd, et al. Enterovirus 2Apro targets

MDA5 and MAVS in infected cells. Journal of Virology, 88(6):3369–3378, 2014.

[221] Hiroki Kato and Takashi Fujita. RIG-I-like receptors and autoimmune diseases. Current Opinion

in Immunology, 37:40–45, 2015.

[222] Insa Buers, Yvonne Nitschke, and Frank Rutsch. Novel interferonopathies associated with

mutations in RIG-I like receptors. Cytokine & Growth Factor Reviews, 2016.

[223] Yanick J Crow. Type I interferonopathies: a novel set of inborn errors of immunity. Annals of

the New York Academy of Sciences, 1238(1):91–98, 2011.

[224] J Aicardi and F Goutières. A progressive familial encephalopathy in infancy with calcifications

of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Annals of Neurology, 15

(1):49–54, 1984.

[225] Yanick J Crow, Diana S Chase, Johanna Lowenstein Schmidt, Marcin Szynkiewicz, Gabriella

Forte, Hannah L Gornall, Anthony Oojageer, Beverley Anderson, Amy Pizzino, Guy Helman,

et al. Characterization of human disease phenotypes associated with mutations in TREX1,

RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. American Journal of Medical

Genetics Part A, 167(2):296–312, 2015.

[226] Yanick J Crow and Nicolas Manel. Aicardi-Goutieres syndrome and the type I interfer-

onopathies. Nature Reviews Immunology, 15(7):429–440, 2015.

[227] Yanick J Crow, Bruce E Hayward, Rekha Parmar, Peter Robins, Andrea Leitch, Manir Ali, Debo-

rah N Black, Hans van Bokhoven, Han G Brunner, Ben C Hamel, et al. Mutations in the gene

encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1

locus. Nature Genetics, 38(8):917–920, 2006.

[228] Yanick J Crow, Andrea Leitch, Bruce E Hayward, Anna Garner, Rekha Parmar, Elen Griffith,

Manir Ali, Colin Semple, Jean Aicardi, Riyana Babul-Hirji, et al. Mutations in genes encoding

ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain

infection. Nature Genetics, 38(8):910–916, 2006.

[229] Gillian I Rice, Jacquelyn Bond, Aruna Asipu, Rebecca L Brunette, Iain W Manfield, Ian M Carr,

Jonathan C Fuller, RichardM Jackson, Teresa Lamb, Tracy A Briggs, et al. Mutations involved in

Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response.

Nature Genetics, 41(7):829–832, 2009.

[230] Gillian I Rice, Paul R Kasher, Gabriella MA Forte, Niamh M Mannion, Sam M Greenwood,

Marcin Szynkiewicz, Jonathan E Dickerson, Sanjeev S Bhaskar, Massimiliano Zampini, Tracy A

Briggs, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I

interferon signature. Nature Genetics, 44(11):1243–1248, 2012.

[231] Hirotsugu Oda, Kenji Nakagawa, Junya Abe, Tomonari Awaya, Masahide Funabiki, Atsushi Hi-

jikata, Ryuta Nishikomori, Makoto Funatsuka, Yusei Ohshima, Yuji Sugawara, et al. Aicardi-

102



References

Goutieres syndrome is caused by IFIH1 mutations. The American Journal of Human Genetics,

95(1):121–125, 2014.

[232] Jochen C Hartner, Carl R Walkley, Jun Lu, and Stuart H Orkin. ADAR1 is essential for the main-

tenance of hematopoiesis and suppression of interferon signaling. Nature Immunology, 10

(1):109–115, 2009.

[233] Patrice Vitali and ADJ Scadden. Double-stranded RNAs containing multiple IU pairs are suffi-

cient to suppress interferon induction and apoptosis. Nature Structural & Molecular Biology,

17(99):1043–1050, 2010.

[234] NiamhMMannion, SamMGreenwood, Robert Young, Sarah Cox, James Brindle, David Read,

Christoffer Nellåker, Cornelia Vesely, Chris P Ponting, Paul JMcLaughlin, et al. The RNA-editing

enzyme ADAR1 controls innate immune responses to RNA. Cell Reports, 9(4):1482–1494,

2014.

[235] Brian J Liddicoat, Robert Piskol, Alistair M Chalk, Gokul Ramaswami, Miyoko Higuchi, Jochen C

Hartner, Jin Billy Li, Peter H Seeburg, and Carl RWalkley. RNAediting byADAR1preventsMDA5

sensing of endogenous dsRNA as nonself. Science, 349(6252):1115–1120, 2015.

[236] Yogita Ghodke-Puranik and Timothy B Niewold. Genetics of the type I interferon pathway in

systemic lupus erythematosus. International Journal of Clinical Rheumatology, 8(6):657–669,

2013.

[237] Daniel Wallace and Bevra Hannahs Hahn. Dubois’ Lupus Erythematosus and related syn-

dromes: Expert Consult-Online. Elsevier Health Sciences, 2012.

[238] Emily C Baechler, Franak M Batliwalla, George Karypis, Patrick M Gaffney, Ward A Ortmann,

Karl J Espe, Katherine B Shark,William JGrande, KarisMHughes, Vivek Kapur, et al. Interferon-

inducible gene expression signature in peripheral blood cells of patients with severe lupus.

Proceedings of the National Academy of Sciences, 100(5):2610–2615, 2003.

[239] Corinna E Weckerle and Timothy B Niewold. The unexplained female predominance of sys-

temic lupus erythematosus: clues from genetic and cytokine studies. Clinical Reviews in Al-

lergy & Immunology, 40(1):42–49, 2011.

[240] Yong Cui, Yujun Sheng, and Xuejun Zhang. Genetic susceptibility to SLE: recent progress from

GWAS. Journal of Autoimmunity, 41:25–33, 2013.

[241] Vesela Gateva, Johanna K Sandling, Geoff Hom, Kimberly E Taylor, Sharon A Chung, Xin Sun,

Ward Ortmann, Roman Kosoy, Ricardo C Ferreira, Gunnel Nordmark, et al. A large-scale repli-

cation study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus

erythematosus. Nature Genetics, 41(11):1228–1233, 2009.

[242] Deborah S Cunninghame Graham, David LMorris, Tushar R Bhangale, Lindsey A Criswell, Ann-

Christine Syvänen, Lars Rönnblom, TimothyWBehrens, Robert R Graham, and Timothy J Vyse.

Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS

Genetics, 7(10):e1002341, 2011.

[243] Lien Van Eyck, Lien De Somer, Diana Pombal, Simon Bornschein, Glynis Frans, Stéphanie

Humblet-Baron, Leen Moens, Francis de Zegher, Xavier Bossuyt, Carine Wouters, et al. Brief

report: IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency.

Arthritis & Rheumatology, 67(6):1592–1597, 2015.

103



References

[244] Julio EMolineros, Amit KMaiti, Celi Sun, Loren L Looger, ShizhongHan, Xana Kim-Howard, Stu-

art Glenn, Adam Adler, Jennifer A Kelly, Timothy B Niewold, et al. Admixturemapping in lupus

identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation,

and autoantibody production. PLoS Genetics, 9(2):e1003222, 2013.

[245] Edward B Singleton and David F Merten. An unusual syndrome of widened medullary cavi-

ties of the metacarpals and phalanges, aortic calcification and abnormal dentition. Pediatric

Radiology, 1(1):2–7, 1973.

[246] Annette Feigenbaum, ChristineMüller, Christopher Yale, Johannes Kleinheinz, Peter Jezewski,

Hans Gerd Kehl, Mary MacDougall, Frank Rutsch, and Raoul Hennekam. Singleton–Merten

syndrome: An autosomal dominant disorder with variable expression. American Journal of

Medical Genetics Part A, 161(2):360–370, 2013.

[247] Mi-Ae Jang, Eun Kyoung Kim, Nhung TH Nguyen, Woo-Jong Kim, Joo-Yeon Yoo, Jinhyuk Lee,

Yun-Mi Jeong, Cheol-Hee Kim, Ok-Hwa Kim, Seongsoo Sohn, et al. Mutations in DDX58, which

encodes RIG-I, cause atypical Singleton-Merten syndrome. The American Journal of Human

Genetics, 96(2):266–274, 2015.

[248] Frank Rutsch, Mary MacDougall, Changming Lu, Insa Buers, Olga Mamaeva, Yvonne Nitschke,

Gillian I Rice, Heidi Erlandsen, Hans Gerd Kehl, Holger Thiele, et al. A specific IFIH1 gain-

of-function mutation causes Singleton-Merten syndrome. The American Journal of Human

Genetics, 96(2):275–282, 2015.

[249] Mikael Knip, Riitta Veijola, Suvi M Virtanen, Heikki Hyöty, Outi Vaarala, and Hans K Åkerblom.

Environmental triggers and determinants of type 1 diabetes. Diabetes, 54(suppl 2):

S125–S136, 2005.

[250] Tom L Van Belle, Ken T Coppieters, and Matthias G Von Herrath. Type 1 diabetes: etiology,

immunology, and therapeutic strategies. Physiological Reviews, 91(1):79–118, 2011.

[251] KT Coppieters, A Wiberg, SM Tracy, and MG von Herrath. Immunology in the clinic review

series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult

dilemma. Clinical & Experimental Immunology, 168(1):5–11, 2012.

[252] Didier Hober and Enagnon K Alidjinou. Enteroviral pathogenesis of type 1 diabetes: queries

and answers. Current Opinion in Infectious Diseases, 26(3):263–269, 2013.

[253] Wing-Chi G Yeung, William D Rawlinson, and Maria E Craig. Enterovirus infection and type

1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies.

BMJ, 342:d35, 2011.

[254] Jennifer P Wang, Anna Cerny, Damon R Asher, Evelyn A Kurt-Jones, Roderick T Bronson, and

Robert W Finberg. MDA5 andMAVS mediate type I interferon responses to coxsackie B virus.

Journal of Virology, 84(1):254–260, 2010.

[255] K Lind, MH Hühn, andM Flodström-Tullberg. Immunology in the clinic review series; focus on

type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible

role in regulating type 1 diabetes. Clinical & Experimental Immunology, 168(1):30–38, 2012.

[256] Matthias von Herrath. Diabetes: a virus–gene collaboration. Nature, 459(7246):518–519,

2009.

[257] John A Todd. Etiology of type 1 diabetes. Immunity, 32(4):457–467, 2010.

104



References

[258] Deborah J Smyth, Jason D Cooper, Rebecca Bailey, Sarah Field, Oliver Burren, Luc J Smink, Cris-

tian Guja, Constantin Ionescu-Tirgoviste, BarryWidmer, David B Dunger, et al. A genome-wide

association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-

induced helicase (IFIH1) region. Nature Genetics, 38(6):617–619, 2006.

[259] Siyang Liu, Hongjie Wang, Yulan Jin, Robert Podolsky, MV Prasad Linga Reddy, Jennifer Peder-

sen, Bruce Bode, John Reed, Dennis Steed, Steve Anderson, et al. IFIH1 polymorphisms are

significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood

mononuclear cells. Human Molecular Genetics, 18(2):358–365, 2009.

[260] Magdalena Zurawek, Marta Fichna, Piotr Fichna, Bogda Skowronska, Agnieszka Dzikiewicz-

Krawczyk, Danuta Januszkiewicz, and Jerzy Nowak. Cumulative effect of IFIH1 variants and

increased gene expression associated with type 1 diabetes. Diabetes Research and Clinical

Practice, 107(2):259–266, 2015.

[261] Sergey Nejentsev, Neil Walker, David Riches, Michael Egholm, and John A Todd. Rare variants

of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science,

324(5925):387–389, 2009.

[262] Dimitry A Chistiakov, Natalia V Voronova, Kirill V Savost’Anov, and Rustam I Turakulov. Loss-

of-function mutations E627X and I923V of IFIH1 are associated with lower poly (I: C)–induced

interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients.

Human Immunology, 71(11):1128–1134, 2010.

[263] Taeko Shigemoto, Maiko Kageyama, Reiko Hirai, JiPing Zheng, Mitsutoshi Yoneyama, and

Takashi Fujita. Identification of Loss of Function Mutations in Human Genes Encoding RIG-

I and MDA5. Implications for resistance to tzpe I diabetes. Journal of Biological Chemistry,

284(20):13348–13354, 2009.

[264] Kate Downes, Marcin Pekalski, Karen L Angus, Matthew Hardy, Sarah Nutland, Deborah J

Smyth, Neil MWalker, Chris Wallace, and John A Todd. Reduced expression of IFIH1 is protec-

tive for type 1 diabetes. PLoS One, 5(9):e12646, 2010.

[265] Konstantin MJ Sparrer and Michaela U Gack. Intracellular detection of viral nucleic acids.

Current Opinion in Microbiology, 26:1–9, 2015.

[266] Alison M Kell and Michael Gale. RIG-I in RNA virus recognition. Virology, 479:110–121, 2015.

[267] Agnidipta Ghosh and Christopher D Lima. Enzymology of RNA cap synthesis. Wiley Interdisci-

plinary Reviews: RNA, 1(1):152–172, 2010.

[268] Heike Betat, Yicheng Long, Jane E Jackman, and Mario Mörl. From end to end: tRNA

editing at 5’-and 3’-terminal positions. International Journal of Molecular Sciences, 15(12):

23975–23998, 2014.

[269] Joao Trindade Marques, Thalie Devosse, Die Wang, Maryam Zamanian-Daryoush, Paul

Serbinowski, Rune Hartmann, Takashi Fujita, Mark A Behlke, and Bryan RG Williams. A struc-

tural basis for discriminating between self and nonself double-stranded RNAs in mammalian

cells. Nature Biotechnology, 24(5):559–565, 2006.

[270] Axel Roers, Björn Hiller, and Veit Hornung. Recognition of Endogenous Nucleic Acids by the

Innate Immune System. Immunity, 44(4):739–754, 2016.

[271] Mark A Batzer and Prescott L Deininger. Alu repeats and human genomic diversity. Nature

105



References

Reviews Genetics, 3(5):370–379, 2002.

[272] Niamh Mannion, Fabiana Arieti, Angela Gallo, Liam P Keegan, and Mary A O’Connell. New

Insights into the Biological Role ofMammalianADARs; the RNAEditing Proteins. Biomolecules,

5(4):2338–2362, 2015.

[273] Qian Feng, Stanleyson V Hato, Martijn A Langereis, Jan Zoll, Richard Virgen-Slane, Alys Peis-

ley, Sun Hur, Bert L Semler, Ronald P van Rij, and Frank JM van Kuppeveld. MDA5 detects

the double-stranded RNA replicative form in picornavirus-infected cells. Cell Reports, 2(5):

1187–1196, 2012.

[274] Kiyohiro Takahasi, Hiroyuki Kumeta, Natsuko Tsuduki, Ryo Narita, Taeko Shigemoto, Reiko

Hirai, Mitsutoshi Yoneyama, Masataka Horiuchi, Kenji Ogura, Takashi Fujita, et al. Solu-

tion structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains identification

of the rna recognition loop in RIG-I-like receptors. Journal of Biological Chemistry, 284(26):

17465–17474, 2009.

[275] Charlotte Lässig, Sarah Matheisl, Konstantin MJ Sparrer, Carina C de Oliveira Mann, Manuela

Moldt, Jenish R Patel, Marion Goldeck, Gunther Hartmann, Adolfo García-Sastre, Veit Hor-

nung, et al. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition

of self-RNA. eLife, 4:e10859, 2015.

[276] Harald Dürr, Andrew Flaus, Tom Owen-Hughes, and Karl-Peter Hopfner. Snf2 family ATPases

and DExx box helicases: differences and unifying concepts from high-resolution crystal struc-

tures. Nucleic Acids Research, 34(15):4160–4167, 2006.

[277] Jade Louber, Joanna Brunel, Emiko Uchikawa, Stephen Cusack, and Denis Gerlier. Kinetic

discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biology,

13(1):54, 2015.

[278] David C Rawling, Megan E Fitzgerald, and Anna Marie Pyle. Establishing the role of ATP for

the function of the RIG-I innate immune sensor. eLife, 4:e09391, 2015.

[279] Peter Gee, Pong Kian Chua, Jirair Gevorkyan, Klaus Klumpp, Isabel Najera, David C Swinney,

and Jerome Deval. Essential role of the N-terminal domain in the regulation of RIG-I ATPase

activity. Journal of Biological Chemistry, 283(14):9488–9496, 2008.

[280] Dahai Luo, Andrew Kohlway, Adriana Vela, and AnnaMarie Pyle. Visualizing the determinants

of viral RNA recognition by innate immune sensor RIG-I. Structure, 20(11):1983–1988, 2012.

[281] Annie M Bruns, George P Leser, Robert A Lamb, and Curt M Horvath. The innate immune

sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament

assembly. Molecular cell, 55(5):771–781, 2014.

[282] Xiaojun Li, CT Ranjith-Kumar, Monica T Brooks, Srisathiyanarayanan Dharmaiah, Andrew B

Herr, Cheng Kao, and Pingwei Li. The RIG-I-like receptor LGP2 recognizes the termini of double-

stranded RNA. Journal of Biological Chemistry, 284(20):13881–13891, 2009.

[283] Ting Xu, Aruna Sampath, Alex Chao, Daying Wen, Max Nanao, Patrick Chene, Subhash G Va-

sudevan, and Julien Lescar. Structure of the dengue virus helicase/nucleoside triphosphatase

catalytic domain at a resolution of 2.4 Å. Journal of Virology, 79(16):10278–10288, 2005.

[284] Jinhua Wu, Aloke Kumar Bera, Richard J Kuhn, and Janet L Smith. Structure of the Flavivirus

helicase: implications for catalytic activity, protein interactions, and proteolytic processing.

106



References

Journal of Virology, 79(16):10268–10277, 2005.

[285] Erika J Mancini, Rene Assenberg, Anil Verma, Thomas S Walter, Roman Tuma, Jonathan M

Grimes, Raymond J Owens, and David I Stuart. Structure of the Murray Valley encephalitis

virus RNA helicase at 1.9 Å resolution. Protein Science, 16(10):2294–2300, 2007.

[286] Dahai Luo, Ting Xu, Randall P Watson, Daniella Scherer-Becker, Aruna Sampath, Wolfgang

Jahnke, Sui Sum Yeong, Chern Hoe Wang, Siew Pheng Lim, Alex Strongin, et al. Insights into

RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. The EMBO Journal, 27(23):

3209–3219, 2008.

[287] Dahai Luo, Ting Xu, Cornelia Hunke, Gerhard Grüber, Subhash G Vasudevan, and Julien Lescar.

Crystal structure of the NS3 protease-helicase from dengue virus. Journal of Virology, 82(1):

173–183, 2008.

[288] Meigang Gu and Charles M Rice. Three conformational snapshots of the hepatitis C virus NS3

helicase reveal a ratchet translocation mechanism. Proceedings of the National Academy of

Sciences, 107(2):521–528, 2010.

[289] Todd C Appleby, Robert Anderson, Olga Fedorova, Anna M Pyle, Ruth Wang, Xiaohong Liu,

Katherine M Brendza, and John R Somoza. Visualizing ATP-dependent RNA translocation by

the NS3 helicase from HCV. Journal of Molecular Biology, 405(5):1139–1153, 2011.

[290] Cristina Failla, Licia Tomei, and RAFFAELE De Francesco. Both NS3 and NS4A are required for

proteolytic processing of hepatitis C virus nonstructural proteins. Journal of Virology, 68(6):

3753–3760, 1994.

[291] JA Suzich, JK Tamura, F Palmer-Hill, PWarrener, AGrakoui, CMRice, SMFeinstone, andMSCol-

lett. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and

comparison with the related pestivirus and flavivirus enzymes. Journal of Virology, 67(10):

6152–6158, 1993.

[292] Dong Wook Kim, Yousang Gwack, Jang H Han, and Joonho Choe. C-terminal domain of the

hepatitis C virus NS3 protein contains an RNA helicase activity. Biochemical and Biophysical

Research Communications, 215(1):160–166, 1995.

[293] Chun-Ling Tai, Wei-Kuang Chi, Ding-Shinn Chen, and Lih-Hwa Hwang. The helicase activity

associated with hepatitis C virus nonstructural protein 3 (NS3). Journal of Virology, 70(12):

8477–8484, 1996.

[294] Sua Myong, Michael M Bruno, Anna M Pyle, and Taekjip Ha. Spring-loaded mechanism of

DNA unwinding by hepatitis C virus NS3 helicase. Science, 317(5837):513–516, 2007.

[295] Chao Lin and Joseph L Kim. Structure-based mutagenesis study of hepatitis C virus NS3 heli-

case. Journal of Virology, 73(10):8798–8807, 1999.

[296] Ying Kai Chan and Michaela U Gack. RIG-I-like receptor regulation in virus infection and im-

munity. Current Opinion in Virology, 12:7–14, 2015.

107





List of abbreviations

ADAR1 adenosine deaminase acting on RNA 1, A-to-I RNA editing enzyme

aa amino acids

CARDs caspase activation and recruitment domains, tandem domain of RLRs involved

in signal transmission

CTD C-terminal domain, domain of RLRs that confers substrate specificity

dsRNA double-stranded RNA

HBV/ HCV hepatitis B/ C virus

IFN interferon

IKK IκB kinase, kinase that phosphorylates IκB

IRF interferon regulatory factor, transcription factor

ISG interferon regulated gene

LGP2 laboratory of genetics and physiology 2, RIG-I paralogue involved in viral RNA

sensing

MAVS mitochondrial antiviral signaling protein, adapter protein of RLRs

MDA5 melanoma differentiation-associated gene 5, RIG-I paralogue involved in viral

RNA sensing

MeV measles virus, single-stranded, negative-sense RNA virus

NF-κB nuclear factor κ-light-chain-enhancer of activated B cells, transcription factor

NS3 non-structural protein 3, viral enzyme

PAMP pathogen-associated molecular pattern

PP1 phosphoprotein phosphatase 1, RIG-I and MDA5 dephosphorylating enzyme

PRR pathogen recognition receptor

RIG-I retinoic acid-inducible gene I

RLRs RIG-I-like receptors

RNase L ribonuclease L, enzyme that cleaves ssRNA

SF2 Superfamily 2, domain that characterizes Superfamily 2 helicases/ translocases

SMS Singleton-Merten syndrome, multi-system disease

SNP single-nucleotide polymorphism

ssRNA single-stranded RNA

TBK1 TANK-binding kinase 1

TLRs Toll-like receptors

TRAF tumor necrosis factor (TNF) receptor-associated factor

TRIM25 tripartite motif 25, a RIG-I ubiquitinating enzyme

UTR untranslated region, non-coding part of mRNA
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