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Zusammenfassung

In Folge des schnellen technologischen Fortschritts steht die Statistik heute
vor zahlreichen methodischen Herausforderungen. In vielen Bereichen
werden Video- und Bilddaten erhoben, die wegen ihrer großen Menge nicht
mehr per Hand analysiert werden können. Die vorliegende Arbeit beschäftigt
sich mit zwei komplexen Fragestellungen aus dem Bereich der angewandten
Statistik, die in Zusammenhang mit dem Klimawandel motiviert sind. In
beiden interdisziplinären Projekten werden statistische Methoden entwickelt,
um aus Video- bzw. Bilddaten effizient und mit wenig manuellem Aufwand
Informationen zu gewinnen.

Das erste Projekt stammt aus dem Bereich der Fischökologie: Mit dem Aus-
bau erneuerbarer Energien werden immer mehr Wasserkraftwerke gebaut,
die Fischen bei der Wanderung große Probleme bereiten. Vor diesem Hin-
tergrund wird in der vorliegenden Arbeit ein System entwickelt, mit dem au-
tomatisch und in Echtzeit Fische gezählt und klassifiziert werden können, die
von einer Unterwasser-Sonarkamera vor einem Wasserkraftwerk gefilmt wur-
den. Mit der Information über Anzahl und Art der Fische können Maßnah-
men durchgeführt werden, die Fischen bei der Durchwanderung von Flüssen
helfen. Das entwickelte Verfahren der Fischerkennung beginnt mit einer um-
fassenden Vorverarbeitung der Bilder, bei der Fische auf den Videos erkannt
und verfolgt werden. Anschließend werden die Fische vermessen und Merk-
male berechnet, mit denen sie im letzten Schritt mit statistischen Klassifika-
tionsverfahren den Klassen Aal, anderer Fisch und Treibgut zugeordnet wer-
den. Anhand von Beispielvideos wird die hohe Klassifikationsgüte des Ver-
fahrens demonstriert. Im Rahmen des Projekts wurde außerdem eine Soft-
ware implementiert, mit welcher das entwickelte System im laufenden Betrieb
eines Wasserkraftwerks angewandt werden kann.

Das zweite Projekt ist im Bereich der Phänologie angesiedelt: Eine Hy-
pothese von Klimaforschern besagt, dass sich die Zeitpunkte der Jahreszei-
tenwechsel aufgrund der Erderwärmung verschieben. Um diese Zeitpunkte
für eine große Anzahl verschiedener Orte herauszufinden, können Bilder von
Webcams genutzt werden. In diesem Zusammenhang wird in der vorliegen-
den Arbeit eine Methode entwickelt, mit der die Zeitpunkte der Jahreszei-



tenwechsel für gegebene Bilder einer Webcam automatisch bestimmt werden
können. Dazu werden zunächst datengesteuert Bereiche der Bilder identi-
fiziert, die viel Information über saisonale Variation haben. Im zweiten Schritt
werden basierend auf der Zeitreihe der relativen Grünintensität in diesen
Bereichen die Zeitpunkte der Jahreszeitenwechsel bestimmt. Hierfür werden
Strukturbruchmethoden für Zeitreihen aus der Literatur benutzt. Zusätzlich
wird ein Ansatz überwachter Klassifikation vorgestellt, der auf einer Va-
rianzzerlegung der Bilder in Eigenbilder basiert und ebenfalls die Zeitpunkte
der Jahreszeitenwechsel bestimmt. Das Funktionieren der entwickelten Me-
thoden wird an Bildern zweier wissenschaftlicher Webcams demonstriert
sowie an Bildern dreier Webcams, deren Daten öffentlich im Internet verfüg-
bar sind. Außerdem wird anhand einer frei zugänglichen Webcam-Datenbank
von über 13000 Webcams gezeigt, dass sich die entwickelten Methoden auch
für vollautomatische Analysen großer Datenmengen eignen.

Alle entwickelten Methoden sind im statistischen Programmpaket R imple-
mentiert und in den R-Paketen sonar und phenofun frei verfügbar.



Summary

Due to the fast technological progress of our days, statistics is faced with
various methodological challenges. In many different areas, video and image
data are collected and cannot be analyzed manually due to the large data
volume. The present thesis deals with two complex problems of applied
statistics which are motivated related to the global climate change. In both
interdisciplinary projects, statistical methods are developed to extract relevant
information from video and image data efficiently and with low manual effort.

The first project originates from the area of fisheries ecology: With the
expansion of renewable energies, more and more water power plants are
constructed and make fish migration difficult. Motivated by this fact, in this
thesis a system is developed which allows to count and classify fish seen on
underwater sonar videos in front of water power plants automatically and in
realtime. With the information about number and species of fish, protection
measures can be taken to help the fish to migrate through rivers. The
developed method of fish detection starts with a thorough preprocessing of
the images which detects and tracks fish on the videos. Then, features are
computed for each fish, and finally, the fish are assigned to the classes eel,
other fish and debris using the computed features and standard statistical
classification methods. The high classification accuracy of the method is
shown for example videos. Within the scope of this project, a software was
implemented which allows to apply the developed system at a water power
plant during operation.

The second project originates from the area of phenology: The climate
change research community is interested in the question if season onset
dates change due to the global warming. To observe season onset dates
for a large amount of different locations, webcam images can be used. In
this thesis, a method is developed which allows to automatically extract
season onset dates from webcam images. Therefore, regions of interest
on the images are defined in a data-driven way, i.e., areas containing
pixels with high information about seasonal variation. Subsequently, season
onset dates are derived from the time series of percentage greenness in
these regions using structural change point methods for time series from



the literature. Additionally, a supervised classification approach based on a
variance decomposition of the images in eigenimages is presented which also
determines season onset dates. The usefulness of the developed methods is
demonstrated with data from two scientific webcams and three webcams with
data publicly available from the internet. Moreover, by analyzing images from
a publicly available webcam database of over 13000 webcams it is shown that
the developed methods can be applied completely automatically to large data
volumes as well.

All developed methods are implemented in the statistical software package R
and publicly available in the R packages sonar and phenofun.
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Chapter 0: Outline

Chapter 0: Outline

This thesis results from two interdisciplinary research projects involving the
Institut für Statistik at the Ludwig-Maximilians-Universität München. The first
project originates from the field of fisheries ecology and connects fisheries
biologists, computer scientists and statisticians. It is motivated by the question
how fish can pass a water power plant when migrating downstream in a
river. With this purpose, an approach shall be developed which allows
to count and classify fish based on underwater sonar videos in realtime.
Additionally, a user-friendly and fast software shall be provided based on
this approach. The second project originates from the field of phenology and
connects phenologists, computer scientists and statisticians. It is motivated
by the question how season onset dates change with the warming of the
global climate. In this project, a method shall be developed which allows to
automatically identify season onset dates based on webcam images. The
underlying idea is to analyze the images of a large number of webcams
located all over the world simultaneously and in short time.

Both projects share the methodological property that a large amount of image
data shall be analyzed automatically and that manual analyses would be
possible but unfeasible due to the large data volume. The term efficient in
the title of this thesis refers to the requirement that all developed methods
have to deliver good results at low computational complexity. This means that
minimal improvements of classification accuracy can be sacrificed when in
return a high gain in computing time or computing complexity is obtained.

The two main parts of this thesis can be read independently. Detailed
motivations and outlines of the different projects are given in the respective
introductory Chapters 1 and 7. In this chapter, we shortly sketch the frames
and goals of the two projects:

Realtime classification of fish in underwater sonar videos

On behalf of the Bezirksregierung Düsseldorf, Obere Fischereibehörde, Ger-
many, and RWE Innogy, Hydro Power & New Technologies, Essen, Germany,
an interdisciplinary working group cooperated in this research project. Apart
from statisticians from the Institut für Statistik at the Ludwig-Maximilians-
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Chapter 0: Outline

Universität München, biologists from the Büro für Umweltplanung, Gewässer-
management und Fischerei, Bielefeld, Germany and from the LFV Hy-
droakustik GmbH, Münster, Germany were involved in this project, as well
as a computer scientist from jTi-Soft, Gütersloh, Germany.

The overall goal of this project was the development of a realtime warning
system (EtWas – Echtzeit-Warnsystem) for the arrival of fish at a water power
plant. The project started at the beginning of 2012 and was successfully
completed in April 2014. As main output, a software was implemented for
the usage at a water power plant. This software announces the arrival of fish
in front of the power plant and warns the operator to take measures for the
protection of the fish.

One sub-project was the automatic detection, counting and classification of
fish based on videos produced by an underwater sonar camera. The first
part of this thesis treats this sub-project and is mainly based on Bothmann
et al. (2016b). However, this thesis extends the paper in several ways: Each
individual step of the analysis is explained and illustrated thoroughly, this was
not completely possible in the article for reasons of space. In addition, the
developed tracking algorithm is presented in detail in Section 2.2. Moreover,
Chapter 5 gives computational details on the implementation of the methods
and information on the application in practice. Finally, the discussion in
Chapter 6 is thoroughly extended to justify the choices made in our analysis
and to point out directions for future research. Furthermore, the results are
discussed from a user’s perspective.

Automated processing of webcam images for phenological
classification

In July 2014, researchers from the Institut für Statistik at the Ludwig-
Maximilians-Universität München, the Wissenschaftszentrum Weihenstephan
für Ernährung, Landnutzung und Umwelt at the Technische Universität
München, Freising, and the Fakultät für Informatik at the Technische
Universität München started an interdisciplinary research project.

The idea was to bring together knowledge from the fields of computer
science and statistics for answering phenological questions arising with the
global climate change. In a first project, which is treated in this thesis, we
pursued the question whether season onset dates can be identified in a
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Chapter 0: Outline

fully automated way using digital webcam images of natural motifs such as
deciduous forests. These methods could later be used on a larger scale: By
analyzing images from several hundreds or thousands of webcams with data
from various years, knowledge about temporal and spatial variation of such
onset dates could be gained.

In March 2016, a manuscript (Bothmann et al., 2016a) was submitted
presenting the developed methods which could be successfully applied to two
scientific cameras, three open-access cameras with data available at http:
//www.foto-webcam.eu and 13988 cameras from the AMOS database with
data available at http://amos.cse.wustl.edu/. Based on this manuscript, the
second part of this thesis thoroughly describes and illustrates the developed
methods and the results. Additionally, Chapter 10 contains an alternative
approach for the identification of season onset dates. This approach uses
supervised classification methods based on eigenimages of the data.

Contributing manuscripts

The present work is mainly based on the following manuscripts:

• Bothmann L, Windmann M, Kauermann G (2016b). Realtime classi-
fication of fish in underwater sonar videos. Journal of the Royal Sta-
tistical Society: Series C (Applied Statistics), 65(4), 565–584. doi:
10.1111/rssc.12139.

Part I of this thesis is based on this manuscript. Contributions of the
authors are:

Involved in the project setup and communication within the project:
LB MW GK. Developed methods for the localization of hotspots: LB
GK. Developed tracking algorithms: LB. Developed methods for feature
extraction: LB GK. Implemented the methods: LB. Analyzed the data:
LB. Wrote the paper: LB GK.

• Bothmann L, Menzel A, Menze BH, Schunk C, Kauermann G (2016a).
Automated processing of webcam images for phenological classification.
PLOS ONE. Under review.

Part II of this thesis is based on this manuscript. Contributions of the
authors are:
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Conceived and designed the experiments: LB AM BM CS GK. Collected
and prepared the data: LB AM CS. Developed optimality criteria:
LB. Developed sROI method: LB. Developed uROI method: LB BM
AM GK. Developed the method for supervised classification based on
eigenimages: LB. Implemented the methods: LB. Analyzed the data: LB
AM. Wrote the paper: LB AM BM CS GK.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1. Motivation and research goals

Motivation

In answer to the global climate change, renewable energy sources become
of increasing relevance. The wide use of renewable energy sources such as
water power, wind power and solar power shall ensure the energy supply
of men and simultaneously decrease the adverse environmental impact.
Nevertheless, the use of renewable energy sources leads to new challenges
in environmental protection.

There are many fish species which migrate at some stage of their lives and
thereby cover large distances. These migrating fish are distinguished in
two classes: While anadromous fish live most of their lives in seawater and
migrate upstream into fresh water to spawn and breed, catadromous fish do
exactly the opposite. They live most of their lives in fresh water and migrate
downstream into the sea to spawn and breed (Northeast Fisheries Science
Center, 2015).

The most important example for catadromous fish is the eel. Towards the end
of their lives, eels migrate from European rivers to the Sargasso Sea in the
Atlantic Ocean. Water power plants are major obstacles for fish migration.
Since eels are a threatened species, power plant operators in Germany are
obliged to ensure their migration by implementing protection measures.

One of these protection measures are so called fish passes. Fish passes can
be found at most modern barrages and water power plants. The basic idea
is that the flow in the fish pass is weak enough such that the fish are able to
pass the barrage or power plant upstream. If the design of the fish pass is
successful, this is a good way to help the fish migrating upstream.

Unfortunately, fish passes hardly work downstream and “satisfactory solutions
for downstream migration problems” have not been found yet (Larinier and
Travade, 2002). Therefore, new approaches have to be developed that help
the fish migrating downstream.
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Chapter 1: Introduction

This is the point where our project starts: We want to develop a system which
allows to observe and investigate the underwater activity of fish in front of a
water power plant automatically. With the information at which time how many
fish of protected species are in front of the power plant, protection measures
for the downstream migration can be put in place. The description and choice
of possible protection measures goes beyond the scope of this work. In this
work we focus on counting and classifying the fish. This means we want to

1. count how many fish are in front of the power plant in a given period and

2. classify the detected fish into the categories eel and other fish.

The discrimination into eels and other fish is of interest since the European eel
is a threatened species and its protection is thus of paramount importance.

Sonar videos

One approach to observe underwater activity are sonar videos. Sonar videos
have the advantage over optical videos that they require no light and that they
deliver good videos even in turbid water. The sonar video device used in
the present analysis is the so called DIDSON (Dual-frequency IDentification
SONar), see http://www.soundmetrics.com for details on the sonar camera.

The sonar camera emits sonar waves in different directions and records the
respective echoes. From the delay and strength of the recorded echoes, a
software generates a two-dimensional gray-scale image per time point, see
for an example Figure 1.1 where the four dark shadows represent four trouts
swimming in front of the camera. Note that these images represent a top
view, i.e., the fish are observed from the top, not from the side. Over the
time the DIDSON delivers a stream of these images and thus, a video is
recorded. Example videos can be found at http://bothmann.userweb.mwn.
de/dissertation.html.

Research goals

Based on these sonar videos, a simple strategy for the counting and
classification of fish would be to engage at each water power plant a team
of biologists who would watch the sonar videos day and night and manually
count how many fish of which species could be seen. But obviously, this
strategy is neither feasible nor affordable.
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Chapter 1: Introduction

Figure 1.1. Example sonar image showing trouts.

Thus, we want to automate the process and therefore define the following
research goals. Given a sonar video of T seconds, we want to develop a
software which:

1. delivers a sensible count of fish present in the video sequence,

2. distinguishes between eels and other fish,

3. runs in realtime, i.e., the computing time shall be less than T, the running
time of the video and

4. has a high usability for practitioners not familiar with the statistical
software R or even with statistics.

The final system shall run continuously at the water power plant and report
fish presence in realtime. Thus, short computing time and high usability are
as important as high classification accuracy of the system.

Page 9
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Literature

The analysis of DIDSON sonar images and videos has become a recent
research focus in fisheries ecology. Holmes et al. (2006) explore the accuracy
of the system by visually counting fish on the DIDSON videos and comparing
them with simultaneous observer counts in the river. Rakowitz et al. (2012)
investigate fish behavior towards a surface trawl of a fishing boat. Burwen
et al. (2010) explore the accuracy of length measurements of sonar images
of fish. Langkau et al. (2012) pursue the question of identifying fish by optical
projection. Crossman et al. (2011) use DIDSON videos to monitor presence
and activity of white sturgeons in a Canadian river, while Pipal et al. (2012)
estimate the escapement of small populations of steelhead. Overall, most (if
not all) investigations of DIDSON data are based on visual analyses of the
image sequences while computer-driven image analysis is only rudimentary
developed, see Mueller et al. (2010) and Mueller et al. (2008) and references
given there.

1.2. From sonar videos to fish classification

Data structure of sonar videos

The DIDSON emits sonar waves at different angles between -14.25◦ and
14.25◦ in steps of 0.3◦ or 0.6◦ resulting in 96 or 48 beams, respectively. At
each beam, the sonar response is recorded at 512 pixels on an equidistant
grid, this sonar response is visualized in Figure 1.1 as gray intensity. The
range of the grid can be tuned; for example, in our data the range is from
0.83 to 5.83 meters measured from the lense of the DIDSON. Figure 1.2
visualizes the structure of such an image. With the information about angles
of the beams and range of the grid, it is possible to compute either cartesian
coordinates or polar coordinates of each pixel.

For each pixel (i, j) and time point t we observe a signal yijt standing for the
gray intensity. The data array Y = {yijt; i = 1, . . . , n1, j = 1, . . . , n2, t = 1, . . . , n3}
serves as our three-dimensional raw data.
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512 Pixels
Range e.g. 5 m

0.3 / 0.6 Degrees

96 / 48 Beams

28.5 Degrees

Lense

Figure 1.2. Structure of a DIDSON image with descriptions in green.

Analysis steps

The main steps to classify and count fish present in the videos are as follows.

First, we have to find those areas in each image which most likely contain a
fish, these areas will be called hotspots in the remainder (Section 2.1). Once
we have found the hotspots on each single image, we have to connect the
hotspots of the same fish over time because we would like to classify each
object swimming in the water rather than each hotspot of each object. This
procedure is called tracking in the remainder (Section 2.2).

Second, we have to extract features from the tracked objects which describe
the fish and allow for the discrimination of fish species (Chapter 3). This step
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results in a data matrix which contains in each row classification variables for
each object, as for example given in Table 1.1.

Table 1.1. Data structure of classification data set (example).

ID Species Length (in cm) Width (in cm) Speed (in m/s) . . .
1 ? 45.0 6.2 0.5 . . .
2 ? 42.2 5.9 0.4 . . .
3 ? 24.0 5.0 1.7 . . .
... ... ... ... ... . . .

Once we have generated this data matrix, we can make use of the whole
spectrum of statistical classification methods such as discriminant analysis,
support vector machines, random forests etc. to classify the tracked objects
with respect to the three classes eel, other fish and debris (Chapter 4).

Table 1.2 shows an example output of the analysis: Each object is classified
with respect to the three classes eel, other fish and debris, additionally the
time points of first and last appearance are given.

Table 1.2. Intended data structure after classification (example).

ID Species First appearance (in s) Last appearance (in s)
1 Eel 15.0 18.3
2 Eel 21.4 29.0
3 Other Fish 24.0 31.0
... ... ... ...
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Nomenclature: Objects and hotspots

Note the use of the terms object and hotspot : In our nomenclature, each solid
object, as for example an eel, a trout or a branch is called object. Each object
can be seen on several images of the sonar video, i.e., each object consists of
one or more hotspots. The classification shall be on the level of objects, i.e.,
we have to extract and gather all hotspots corresponding to the same object.
In Chapter 3, we will extract features on the level of objects which are based
on these sets of hotspots and describe the objects.

Data at hand

We apply the proposed methods to three classes of sonar videos recorded by
a DIDSON camera, Table 1.3 summarizes basic properties of these videos.

Table 1.3. Properties of the videos used for the analysis. Example fragments
of these videos can be found at http://bothmann.userweb.mwn.de/

dissertation.html

Video Duration Time resolution No. of images Image resolution
Eels 11 min 10 images/sec 6600 512 × 96 pixels
Trouts 13 min 10 images/sec 7800 512 × 96 pixels
Debris 30 min 10 images/sec 18000 512 × 96 pixels

For the eel video, several eels were put in a net cage into the water in front
of a sonar camera, the same applies to the trout video. These videos were
recorded in the year 2010 in the lake Möhnesee near Dortmund, Germany.
A careful visual inspection showed the purity of these videos, i.e., we can be
sure that all objects found on the eel video are eels and all objects found on
the trout video are trouts.

For the debris video, the camera monitored the river Lippe near Hamm,
Germany, upstream a water power plant in the year 2009 during a period
of time when a huge amount of leaves was swimming in the water. On this
video, no living objects can be seen.
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Classification outcome: Eels, trouts and debris

Note that in our data, all fish of the class other fish are actually trouts. Since
most fish species living in European rivers look like trouts from above, we
do not consider this as a drawback of our method and think that the results
can be generalized to other fish species as well. Therefore, we will use trout
synonymously with other fish in the remainder.

The third class – debris – is needed for the following reason: Our first goal
is to get a sensible count of the number of fish present in the video. The
preprocessing steps leading to the classification data set do not distinguish
between the types of objects swimming in the water. Additionally to fish there
are many things which could swim in an ordinary river, for example leaves,
branches but also waste etc. Therefore, we have to divide the found objects
into dead and living objects. All dead objects shall be classified into the class
debris. Our second goal is to get a sensible count of the number of eels.
Thus, the living objects are divided into classes eel and other fish.

Implementation

As mentioned above, short computing time and high usability are as important
as high classification accuracy of the system. Therefore, all methods are
implemented in the statistical software package R (R Core Team, 2016) and
C++ as efficiently as possible (see Section 5.1 for details). The resulting R
package sonar is available on R-Forge at https://r-forge.r-project.org/
projects/sonar/, the documentation of the package is sketched in Appendix
B. Additionally, a computer scientist was engaged to develop a user interface
for the application of the system at a water power plant (see Section 5.2).
Thereby, the user can read in sonar videos and analyze them automatically
with a few mouse clicks.
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Chapter 2: Preprocessing of the sonar
videos

The first step of the analysis is the preprocessing of the sonar videos. On
each single image, those pixel clouds have to be located which most likely
represent a fish. These relevant pixel clouds are called hotspots, Section 2.1
describes in detail how the hotspots are located.

Since the classification shall be carried out on the level of objects rather than
on the level of hotspots, we have to gather those hotspots which correspond
to the same object. This procedure is called tracking, Section 2.2 describes
the developed tracking algorithms in detail. (For the use of the terms object
and hotspot see page 13.)

2.1. Localization of hotspots
This section explains how hotspots can be located and cut out from a video.
We proceed in four steps:

1. Noise filtering: We filter the white noise from the video with three-
dimensional splines using the linear array model proposed by Currie et al.
(2006).

2. Centering: We center each image of the video around the mean image
over time.

3. Thresholding: We threshold the centered image to delete pixels which do
not correspond to an object.

4. Extracting the hotspots: We cut out each area of interest, i.e., hotspot, on
each image using the flood-fill algorithm proposed by Lee et al. (1987).

Figure 2.1 visualizes the goal of this section: We want to delete every pixel
from the raw signal which does not correspond to an area of interest. Note that
this and the following figures are two-dimensional visualizations of a problem
which indeed is three-dimensional. For a better understanding of the analysis
we provide short videos in addition to most of the following figures. The videos
can be viewed by clicking on the link in the caption of the respective figures
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or by accessing http://bothmann.userweb.mwn.de/dissertation.html. All
steps of the preprocessing are explained in the following for this example
video showing a trout moving from left to right.

Figure 2.1. From raw signal (left) to hotspots (right). (Link to the video)

An alternative visualization of the goal of this section is given by Figure 2.2.
The top row shows three snapshots of a sonar video at three time points: An
eel is swimming from right to left. The bottom row shows the result of the
preprocessing: A set of hotspots associated to the eel.

Note that in the preprocessing we ignore the fact that the pixels lie in reality
on a complex, somehow curvy grid as shown in Figure 1.2. We pretend that
the pixels lie on a regular rectangular grid which considerably simplifies the
preprocessing yielding good results. In further work the curvy grid of the
pixels could be considered, but we feel that the effort would be huge while the
benefit would be rather small.
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Figure 2.2. Under-water images of an eel swimming from right to left (top row) and
detected corresponding hotspots (bottom row) at three time points given
in 1/10 of a second.

Noise filtering

The first step of the preprocessing is to reduce the white noise in the
video. The data array Y containing the signals yijt for pixel (i, j) and
time point t is three-dimensional. To remove the white noise we want to
smooth a three-dimensional surface using the linear array model proposed
by Currie et al. (2006). For a better understanding, we first present the
idea in usual matrix notation. We therefore vectorize the data to y =

(y111, . . . , yn1n21, y112, . . . , yn1n2n3)
> with n1 × n2 as the dimension of each single

image and n3 as the number of images over time, i.e., the length of the video.
In matrix notation, the linear model can be written as follows:

y = Bθ + ε, ε ∼ Nn

(
0, σ2I

)
, (2.1)

where n = n1 · n2 · n3. The design matrix B is built from the Kronecker product
B = B1 ⊗ B2 ⊗ B3, with Bk (k = 1, 2, 3) being marginal design matrices of
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dimension nk × pk built from B-splines to be specified subsequently. In our
data, each image is of dimension 512× 96. Thus, a choice of 100× 25× (n3/2)

B-Spline basis functions with equidistant knots shows to be reasonable and
leads to good results. While (2.1) is conceptually simple, it is numerically
unfeasible to estimate θ when n1, n2 and n3 are large. For example, a rather
short video of T = 10 seconds with 10 images per second has dimension
512 × 96 × 100, and when using B-splines of dimension 100 × 25 × 50, B is of
dimension 4.915.200 × 125.000. We therefore rewrite model (2.1) as a linear
array model

Y = BΘ +E . (2.2)

Here, Y contains the data in a three-dimensional array structure. The design
matrix B is built from B1, B2 and B3 as above and Θ is a three-dimensional
array of dimension p1 × p2 × p3. The error terms are stored in an array E of
same dimension as Y , namely n1 × n2 × n3. Writing the model in this form
obviously requests a definition of the product of a matrix and an array. This
definition is given in Currie et al. (2006) and we refer to Appendix A for the
exact statement.

Using model formulation (2.2) instead of (2.1) the parameter estimations Θ̂

and the predictions Ŷ = BΘ̂ can be computed in a very fast way with software
allowing for array manipulation (e.g. the statistical software R, R Core Team,
2016). For further information about algebraic details and computational
advantages of array calculation see Currie et al. (2006).

Note again that we ignore the fact that the pixels are not located on a regular
equidistant grid in all three dimensions while computing the B-Spline basis
functions. Due to the fact that the results are very appealing we consider this
simplification as reasonable. Note further that we use unpenalized splines.
A penalization could be incorporated easily if necessary, see Currie et al.
(2006), with the drawback of higher computational effort and time.

Figure 2.3 shows the data before and after this smoothing step.
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Figure 2.3. Raw signal (left) and smoothed signal (right). (Link to the video)

Centering

Now, the signal is smoother than before the noise filtering, but still the
echo of the river bank can be seen in the upper left and right corners. To
reduce the signals of such fixed objects in the water, we apply a pixel-wise
mean correction as follows: Let ŷij1, . . . , ŷijn3 denote the smoothed signal at
pixel (i, j) over time. We apply a pixel-wise mean correction and calculate
ỹijt = ŷijt − ȳij, where ȳij = (1/n3)

∑n3

t=1 ŷijt is the mean of the predicted signal
at pixel (i, j) over time. The result of this step is shown in Figure 2.4 where
the echo of the river bank is no longer present in the video.

Thresholding

Now, the signal of the fish is much larger than everything else. Therefore, we
threshold each image to delete those pixel signals which do not correspond
to the fish. This means that we set all pixel signals to zero for which ỹijt is
below a threshold a, and get the signal of the cleaned image after background
subtraction zijt as

zijt =

{
ŷijt, if ỹijt > a

0, if ỹijt ≤ a
(2.3)
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Figure 2.4. Smoothed signal (left) and centered signal (right). (Link to the video)

The threshold a has to be determined for the given sonar camera and location
in a calibration process. For our data, a good threshold turned out to be a = 18.

Figure 2.5 shows the data before and after this thresholding step.

Figure 2.5. Centered signal (left) and cleaned signal (right). (Link to the video)
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Figures 2.6 and 2.7 illustrate the previous cleaning steps from another
perspective. For three selected pixels (a), (b) and (c) located in different areas
of the image (see Figure 2.6), Figure 2.7 displays the temporal behavior of
the raw, smoothed, centered and cleaned signal over time. Pixel (a) lies in the
upper left area where the river bank is visible, pixel (b) lies in the center where
only noise can be seen and pixel (c) lies on a location where the fish passes
by between time points 9 and 19. In Figure 2.7 one can see that the centered
signals ỹt (solid lines) for fixed object pixels (a) and noise pixels (b) are almost
zero over time and can therefore be filtered by thresholding. The centered
signal of the fish pixel (c) is clearly non-zero over time and thus remains in the
cleaned image after the thresholding.

Figure 2.6. Location of the three selected pixels illustrated in Figure 2.7.
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Figure 2.7. Temporal behavior of the signal at three pixels (a) – (c) and visualization
of the cleaning process (for exact locations see Figure 2.6). Points (◦)
show observed signal yt while crosses (×) stand for modified signal zt
after cleaning. Dashed lines visualize the smoothed signal ŷt, solid lines
show the centered signal ỹt.

Extracting the hotspots

All pixels with a positive signal zijt after the thresholding step are considered
to be fish pixels. All fish pixels together yield the hotspots. If only one fish is
present in the video, the localization of hotspots is completed.

However, on most videos, several fish can be seen. Therefore, we have to
handle the case where more than one fish is present on a single image. For
example, after the cleaning process applied to the image shown in Figure 2.8
(left) we get the image shown in Figure 2.8 (right). In order to separate the
four fish we assign a unique label to each point cloud that sticks together. With
statistical tools, this problem can be solved with classical methods of cluster
analysis, but it turns out that the computing takes too long. Therefore, we use
the flood-fill algorithm first proposed by Lee et al. (1987) to assign the labels.

The labelling of point clouds that stick together has a further advantage:
Sometimes, a few spam pixels remain in the cleaned image after the
thresholding step. By deleting all pixel clouds which do not exceed a certain
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size, we can remove these spam pixels. In our data, pixel clouds with less
than 50 pixels were deleted.

This step finishes the localization of relevant hotspots in the video. Henceforth
we work with a changed data structure: Instead of a three-dimensional array
– representing the sonar video – we have a large set of hotspot images as
shown in Figure 2.2 (bottom row). These hotspot images are small two-
dimensional matrices with entries 1 or 0. Additionally, for each hotspot image
we record the localization in the original sonar image.

Figure 2.8. Raw signal (left) and hotspots (right) for a case with multiple fish on a
single image.
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2.2. Tracking of objects
As a result from the preprocessing in Section 2.1, we extracted for each
object, i.e., for each eel, trout or piece of debris in the video all hotspots
at all time points. Before we can move on to the extraction of features for
preparing the classification, we have to take care of another problem: In the
final step we want to classify each object, not each hotspot. Therefore, we
have to assign the hotspots to their corresponding objects. For now we only
have a large set of hotspots and we do not know which hotspot belongs to
which object.

Figure 2.9 illustrates the problem and the desired solution: At time t = 1430,
four hotspots are detected, half a second later, at time t = 1435, three hotspots
are detected. It is easy to match the corresponding hotspots visually and it is
obvious that the second fish from the top in the left image disappears on the
right image. But, in practice it is not possible to match the hotspots visually.
The challenge is now to create an algorithm which tracks the objects over
time automatically. This tracking algorithm is based on differences between
the centroids of the hotspots and is explained in detail in this section.

Figure 2.9. Tracking of objects: Example for matching of hotspots at two different
time points.
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As stated above, assigning the hotspots to their corresponding objects is the
main challenge for videos that contain more than one single object. Figure
2.10 provides an alternative illustration of the problem. This kind of plot gives
a sketch of the tracking problem and its desired solution over time and is used
throughout the section. Each plot is a fictitious overlay of a small number
of hotspot images as shown in Figure 2.8 (right), where each blue ellipse
stands for one hotspot. All objects are swimming from the left to the right with
a maximum of 7 appearances in the illustrations. Figure 2.10 a) shows the
situation prior to the tracking: We have located the hotspots for three objects
over time but do not know which hotspot corresponds to which object. Figure
2.10 b) shows the desired solution: Each hotspot is assigned to one object
and is labelled with a tracking number which is unique for each object.

(a) Tracking problem

1 1 1 1 1 1 1

2 2 2 2 2

3 3 3 3

(b) Tracking solution

Figure 2.10. (a) Detected hotspots over time, (b) Hotspots labelled with tracking
numbers of three objects.

For this task, a huge amount of algorithms was proposed in the past years,
see for example Yilmaz et al. (2006) and Trucco and Plakas (2006) for a broad
overview. Thus, the basic ideas used for our tracking method are not new.
However, as the application is very special we could not just take one of
the existing methods but had to adapt the ideas of these methods for our
requirements.
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This section describes our proceeding regarding the tracking of the objects,
i.e., the matching of the objects to their hotspots. First we describe the
developed tracking algorithms in Section 2.2.1. Section 2.2.2 describes a
method to evaluate the tracking procedure. Finally, Section 2.2.3 mentions
some problems that could not be solved yet.

2.2.1. Tracking algorithms

The basic idea of our tracking procedure is to assign two hotspots to the
same object if the distance of their centers of gravity – in the remainder called
centroids – does not exceed a certain value. This means that we go through
time and compare the centroids of the hotspots at time t with those at time
t − 1 and assign them to the same object if their distance is relatively small,
i.e., they are labelled with the same tracking number.

Algorithm 1 describes the basic tracking algorithm. The basic tracking
algorithm can handle situations as shown in Figure 2.10. However, there
are some special cases where the tracking remains unsatisfying. Below
we describe these special cases along with our ideas of a solution through
Algorithms 2 – 4.

Algorithm 1 Basic tracking algorithm
Input: hotspots, the hotspots resulting of the previous step as two-

dimensional black / white images, i.e., matrices containing 1s and 0s;
max.dist, the maximal distance that two centroids are allowed to have to
be assigned to the same object (depends preferably on the time between
two images)

1: Initialize tracker, a list that will contain the tracking / object number for
each hotspot

2: Compute matcher, a matrix that matches the IDs of the hotspots to their
time point t and index within that time point

3: Compute the coordinates of the centroids for each hotspot and store them
as additional columns in matcher

4: Each hotspot at time t = 1 gets a new, unique tracking number
5: t.max← Number of images
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Algorithm 1 (continued) Basic tracking algorithm
6: for t = 2, . . . , t.max do
7: if There is at least one hotspot at time t then
8: if There is at least one hotspot at time t− 1 then
9: cent.t← centroids of hotspots at time t

10: cent.t_1← centroids of hotspots at time t− 1

11: Compute distances between all centroids at time t and t− 1

12: for i = 1, . . . , number of hotspots at time t do
13: flag.newnumber ← true
14: ID.i← ID of i-th hotspot at time t

15: for j = 1, . . . , number of hotspots at time t− 1 do
16: ID.j ← ID of j-th hotspot at time t− 1

17: if Distance of centroids of ID.i and ID.j ≤ maxdist then
18: Hotspot ID.i gets tracking number(s) of hotspot ID.j
19: {NOTE: It is possible that one hotspot gets several tracking

numbers and that several hotspots can get the same
tracking number at the same time point. Solutions to these
problems are provided in the following algorithms.}

20: flag.newnumber ← false
21: end if
22: end for
23: if flag.newnumber = true then
24: {NOTE: Hotspot ID.i does not match to any hotspot at time t−1}
25: Hotspot ID.i gets a new, unique tracking number
26: end if
27: end for
28: else
29: Each hotspot at time t gets a new, unique tracking number
30: end if
31: end if
32: end for
33: numb.objects← number of objects computed as number of distinct tracking

numbers
34: track.out← list of tracker,matcher and numb.objects

Output: track.out
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Problems of the basic tracking algorithm and solutions

As result of the tracking procedure, each hotspot should be uniquely assigned
to one single object, i.e., each hotspot should be labelled with a unique
tracking number as shown in Figure 2.10 b). However, in some cases
the output of the basic tracking algorithm 1 does not comply with these
requirements. There are two main cases which have to be treated separately:

Problem 1: It is possible that two hotspots at the same time point have the
same tracking number.
→ Multiple hotspots per tracking number and time point

Problem 2: It is possible that one hotspot has two different tracking numbers.
→ Multiple tracking numbers per hotspot

These problems are solved by Algorithms 2 – 4. The order of solving these
two problems has no significant impact on the results, i.e., it does not matter if
problem 1 or problem 2 is treated first. Note that in practice it can also happen
that three or more hotspots at the same time point have the same tracking
number or that one hotspot has three or more different tracking numbers.
These hotspots are deleted because meaningful features cannot be extracted.
In our data, the frequency of these cases is minimal.

Problem 1: Multiple hotspots per tracking number and time point

Using the basic tracking algorithm 1 it is possible that two hotspots at the
same time point are labelled with the same tracking number. Figure 2.11 a)
illustrates this problem: At time t = 3 appears a second object. Due to the fact
that the localization of its first appearance is very close to the already existing
object, the basic tracking algorithm 1 labels it with the same tracking number.
Figure 2.11 b) illustrates the desired solution: The second object gets a new
tracking number.
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(a) Problem
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(b) Solution

Figure 2.11. Problem and solution: Multiple hotspots per tracking number and time
point.

The basic idea of the procedure is to split the tracks if there is more than one
hotspot per time point that is labelled with the same tracking number. For
the tracking numbers where the problem of multiple hotspots appears we go
through time and split the track beginning at the first appearance of the second
object, i.e., this hotspot of the second object gets a new tracking number and
the subsequent hotspots of both objects are assigned either to the old or to
the new tracking number.

Algorithm 2 describes the procedure.

Algorithm 2 Split tracks with multiple hotspots
Input: track.out, the output of the basic tracking algorithm 1 (or Algorithm 3

respectively) containing tracker, matcher and numb.objects

1: for i = 1, . . . , numb.objects do
2: ids← IDs of the hotspots with tracking number i (from tracker)
3: if Tracking number i is assigned to > 1 hotspots at > 0 time points
4: and Each hotspot of ids is assigned to a unique tracking
5: number then
6: {NOTE: The case of multiple tracking numbers is treated in

Algorithms 3 and 4.}
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Algorithm 2 (continued) Split tracks with multiple hotspots
7: if At each time point ≤ 2 hotspots are assigned to tracking
8: number i then
9: {NOTE: Until now, cases with 3 or more hotspots per tracking

number and time are deleted}
10: t.min ← First time point where two hotspots are assigned to

tracking number i
11: numb.objects← numb.objects+ 1

12: if Tracking number i appears the first time at t.min− 1 then
13: The hotspot at time t.min whose centroid is further away from

the centroid of the hotspot at t.min − 1 gets the new tracking
number numb.objects, the other hotspot keeps the tracking
number i

14: else
15: Compute a linear prediction from the centroids of the hotspots

at time t.min− 2 and t.min− 1 for time t.min

16: The hotspot at time t.min whose centroid is further away from
the prediction gets the new tracking number numb.objects, the
other hotspot keeps the tracking number i

17: end if
18: t.max← time point of last appearance of tracking number i
19: for t = t.min+ 1, . . . , t.max do
20: if At time t two hotspots are assigned to tracking number i then
21: Compute a linear prediction from the centroids of the

hotspots at time t− 2 and t− 1 for time t

22: The hotspot at time t whose centroid is further away from
the prediction gets the new tracking number numb.objects,
the other hotspot keeps the tracking number i

23: end if
24: end for
25: end if
26: end if
27: end for
28: track.out← list of tracker (updated), matcher and numb.objects (updated)
Output: track.out
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Problem 2: Multiple tracking numbers per hotspot

Using the basic tracking algorithm 1 it is possible that one hotspot is labelled
with two different tracking numbers. Here we have to distinguish two cases:

1. Crossing tracks: The tracks of two objects are crossing each other such
that at time t there remains just one hotspot, an overlay of the two
objects.

2. Close tracks: The tracks of two objects are at time t so close to each
other that both hotspots are assigned to both tracking numbers.

Figure 2.12 a) illustrates the first case: At time t = 3 the tracks of the two
objects are crossing each other, at time t = 6 they are separated again. Due to
the fact that in practice it is very difficult to match the hotspots after separation
to the hotspots before the crossing, the hotspots get a new tracking number
after the separation and are henceforth considered as new objects, see Figure
2.12 b). The hotspots representing the overlay of the two objects are deleted
for the further analysis.

1 1 1 1,2 1,2
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2

1,2
1,2

1,2
1,2
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(a) Problem

1 1 1 4 4

2
2

0
0

0
3

3

(b) Solution

Figure 2.12. Problem and solution: Multiple tracking numbers per hotspot - crossing
tracks. The tracking number 0 means that the respective hotspot is
deleted.
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Figures 2.13 a) and b) illustrate the second case: At time t = 3 the hotspots
are so close to each other that both hotspots are assigned to both tracking
numbers at the following time points. It is possible that – as shown in Figure
2.13 b) – only one of the two hotspots is assigned to both tracking numbers.
The solution is the same for both cases: The hotspots are assigned to the
corresponding tracking numbers as in Figure 2.13 c).
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(c) Solution

Figure 2.13. Problem and solution: Multiple tracking numbers per hotspot - close
tracks.

Algorithms 3 and 4 describe the procedure to solve these problems.
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Algorithm 3 Revise tracks with multiple tracking numbers per hotspot
Input: track.out, the output of the basic tracking algorithm 1 (or Algorithm 2

respectively) containing tracker, matcher and numb.objects

1: i← 1

2: while i ≤ numb.objects do
3: {NOTE: The advantage of the while loop over a for loop is that

numb.objects can increase in this loop but nevertheless the new tracking
numbers can also be analyzed}

4: ids← IDs of the hotspots assigned to tracking number i
5: n.tracks ← Vector that contains for each hotspot of ids the number of

tracking numbers the respective hotspot is assigned to
6: if max(n.tracks) = 2 then
7: {NOTE: Until now it is not possible to handle hotspots that are

assigned to three or more tracking numbers. In our data, this
does not occur very often and we prefer deleting the whole tracks
if occuring because these hotspots are not useful for the later
classification problem.}

8: j ← Tracking number of the second object
9: t.min ← First time point when a hotspot is assigned to tracking

number i and the second tracking number j
10: t.max ← Last time point when a hotspot is assigned to tracking

number i and the second tracking number j
11: flag.overlap← false
12: while t ∈ [t.min, t.max] do
13: {NOTE: The advantage is that we can leave the loop after

assigning new tracking numbers}
14: Run Algorithm 4
15: end while
16: end if
17: i← i+ 1

18: end while
19: track.out← list of tracker (updated), matcher and numb.objects (updated)
Output: track.out
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Algorithm 4 Helper of Algorithm 3, to run only within that algorithm
1: id.t← IDs of hotspots detected at time t (from ids)
2: if length(id.t) = 1 then
3: {NOTE: Overlapping objects → Hotspot is deleted}
4: Set tracking number of this hotspot to 0 (use tracker)
5: flag.overlap← true
6: else
7: if One hotspot h1 is only assigned to tracking number i and the other
8: hotspot h2 to both tracking numbers i and j then
9: {NOTE: Case from Figure 2.13 b) at t = 3}

10: Hotspot h2 gets only the other tracking number j
11: end if
12: if Both hotspots are assigned to tracking numbers i and j then
13: if flag.overlap = false then
14: {NOTE: Case from Figure 2.13 a)}
15: if Only one time point prior to t with tracking number i then
16: The hotspot at time t whose centroid is further away from the

centroid of the hotspot corresponding to object i at t − 1 gets
tracking number j, the other hotspot keeps tracking number i

17: else
18: Compute a linear prediction from the centroids of the hotspots

corresponding to object i at times t− 2 and t− 1 for time t

19: The hotspot at time t whose centroid is further away from
the prediction gets tracking number j, the other hotspot keeps
tracking number i

20: end if
21: else
22: {NOTE: Case from Figure 2.12 a)}
23: k ← numb.objects+ 1

24: l← numb.objects+ 2

25: numb.objects← l

26: Set tracking number of one hotspot to k, the other to l and all
following to (k, l) {NOTE: will be treated later}

27: t← t.max {NOTE: stop while loop}
28: end if
29: end if
30: end if
31: t← t+ 1
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2.2.2. Evaluation of the tracking procedure

After performing all tracking steps it is of interest to evaluate the tracking
procedure and its algorithms also with the aim of error search. Therefore
we implemented an algorithm that computes per video:

• the number of tracks

• the length of each track, i.e., the number of hotspots per track

• a flag for the problem of multiple hotspots per tracking number and time
point

• a flag for the problem of multiple tracking numbers per hotspot

The basic idea of the algorithm is to go through all tracking numbers and
decide whether there is one of the mentioned problems or not. Algorithm 5
describes the procedure.

Note that even after performing all tracking steps not all cases are solved.
This is due to the fact that until now we do not solve cases where hotspots
are assigned to three or more tracking numbers and where tracking numbers
are assigned to three or more hotspots at the same time point.

The results of the evaluation for our analysis were the following: There was
only one case where a tracking number was assigned to three hotspots at
the same time point and only three cases where hotspots had three tracking
numbers. Therefore, there was no need to develop solutions for these cases.
These cases were deleted before the next step because it turned out that they
are not useful for the later classification: In cases where three or more objects
overlap or where three or more hotspots are so close that they are labelled
with the same tracking number, meaningful features cannot be derived. For
the results of the number and length of tracks identified for our data, see
Table 4.1 on page 57 where each object stands for one track and the average
number of hotspots per object reflects the average track length.
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Algorithm 5 Evaluation of the tracking procedure
Input: track.out, the output of the tracking algorithms containing tracker,

matcher and numb.objects

1: Initialize track.eval, an output matrix with numb.objects rows and 4 columns
2: Initialize object.ids, an output list with numb.objects elements
3: for i = 1, . . . , numb.objects do
4: ids← Vector that contains the IDs of hotspots with tracking number i
5: n.tracks← Vector that contains for each ID of ids the number of

objects the hotspot is assigned to
6: if max(n.tracks) > 1 then
7: {NOTE: Multiple tracking numbers per hotspot}
8: problem← true
9: prob.num← 1

10: else
11: if There is a time t where i has more than one hotspot then
12: {NOTE: Multiple hotspots per tracking number and time}
13: problem← true
14: prob.num← 2

15: end if
16: end if
17: count.hotspots← length(ids)

18: {NOTE: Number of hotspots that are assigned to object i}
19: i-th row of track.eval ← (i, count.hotspots, problem, prob.num)

20: i-th element of object.ids ← Matrix with two columns: ids and
corresponding time points

21: end for
Output: track.eval, object.ids
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2.2.3. Open challenges

There are some problems that can occur within the tracking procedure which
are not solved by the algorithms described in this section. These problems
are shown together with the current and the desired solution in Figures 2.14,
2.15 and 2.16. Due to the fact that these problems rarely occur in our
data, we did not develop solutions for these problems. Depending on the
application for which the tracking procedure shall be used, one could think
about implementing solutions to these problems.
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1
1

1
1

1
1

(a) Problem

1 1 1 1 1 1
2

2
2

2
2

1
1

(b) Current solution

1 1 1 1 1 1
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2

2
2

0
0

(c) Better solution

Figure 2.14. Problem: Two objects start overlapped to one hotspot, later they are
separated.

1 1 1 1 1 11
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(a) Problem

1 1 1 1 1 11
1

(b) Current solution

1 1 1 1 1 10
0

(c) Better solution

Figure 2.15. Problem: Two objects start overlapped to one hotspot, one object
disappears prior to the separation of the two objects.
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(c) Better solution

Figure 2.16. Problem: Two objects overlap at all time points.
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Chapter 3: Feature extraction

In Chapter 2 we preprocessed the sonar video so far that for each object we
have a set of tracked hotspots, i.e., small images containing the relevant pixel
clouds. Based on these hotspots we want to extract features which allow to
discriminate the objects and classify them into the three classes eel, other
fish and debris.

We proceed as follows: Until now, each object consists of a certain number of
hotspots. We first compute variables on hotspot level which form the basis for
the construction of variables on object level, see Section 3.1. In the Baseline
variables, these variables are simply summarized on object level to capture
the rough size of the objects, see Section 3.2.1. In the Shape variables, we
make use of methods from the field of functional data analysis to represent
the shape of the objects, see Section 3.2.2. In the Motion variables, we derive
variables which describe motion features such as swimming direction and
velocity of the objects, see Section 3.2.3. Finally, in Section 3.3, we state
further ideas for discriminating variables which seemed to be useful but did
not improve the classification results further.

3.1. Hotspot level
For each hotspot we compute the following variables:

1. Centroid : The cartesian coordinates of the center of gravity of the hotspot.

2. Area of the hotspot : Due to the special geometry of the DIDSON image,
we cannot just count the pixels of a hotspot to determine the area of this
hotspot. Pixels that are further away from the lense stand for a larger
area because the distance between two pixels increases with increasing
distance from the lense, see Figure 1.2 on page 11 for an illustration.
Instead of just counting the pixels, we compute for each pixel the area
one pixel represents. By summing up the areas of all pixels of the hotspot
we get the area of the hotspot.
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Watch hands

The next step is to capture the silhouette of the fish which is done by
constructing a circular silhouette function in angle α ∈ [0, 2π). For angle α we
compute x(α), the distance from the centroid of the hotspot to the contour of
the hotspot, which we call “watch hand” function subsequently. (For different
representations of the shape of the hotspots see the discussion on page 70.)

To do so, we first need to orientate each fish with respect to its swimming
direction so that the watch hands of a fish are standardized, see Figure 3.1.
Hence, the value for α = 0, namely x(0), always stands for the distance
between centroid and head of the fish and x(π) always stands for the distance
between centroid and tail of the fish. This orientation of the silhouette is
done as follows: First, the main body axis of the fish is determined using
a linear regression of the y- on the x-coordinates of all fish pixels, i.e., the y-
coordinate of a pixel is considered as response variable while the x-coordinate
is the explanatory variable. (For the definition of y- and x-axis see for example
Figure 1.1.) Second, the location of the head of the fish is determined using
all hotspots of this fish. Looking at the centroids of the same fish at all
time points, we find its swimming direction. Given that the fish is swimming
forwards, we thereby have the information where the head is. We will make
use of the so constructed silhouette functions throughout this chapter. We
additionally define the following variables:

3. Watch hands: For a grid of angles 0 = α1 < · · · < αM < 2π we calculate
the watch hands x(α1), . . . , x(αM ).

4. Length: Length of the fish, i.e., sum of the watch hands x(0) + x(π).

5. Width: Width of the fish, i.e., sum of the watch hands x(π/2) + x(3π/2).

6. Aspect ratio: Aspect ratio of the fish, i.e., ratio of Length and Width.

7. Product : Product of Length and Width. This mirrors the area of the fish
but measured as a rectangle.

Data structure

The resulting data matrix of constructed variables on hotspot level is denoted
by Xhot having dimension n× (M + 7) where n =

∑N
i=1 ni with ni as number of

hotspots for the i-th object, N as number of objects and M = 72 watch hands
are used in our analysis.
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α

α

Figure 3.1. Illustration of the watch hands. A watch hand is the distance from the
centroid to the fish contour. Recall that we see the fish from the top.

3.2. Object level
Each hotspot image is now represented by the quantities above leading to
M + 7 variables (M for the watch hands, two for the cartesian coordinates of
the centroid and one for the area of the hotspot, length, width, aspect ratio
and product, respectively). As mentioned above, a sequence of hotspots
are images of the same object. Since we are interested in the classification
of objects we combine hotspot variables to object variables, leading to a
classification data set consisting of N rows, one row per object. To do so,
each ni rows of Xhot corresponding to all hotspots of the i-th object are
aggregated to one row. The remainder of this section presents different ways
of aggregating the information on object level and thereby defines sets of
classification variables.
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3.2.1. Baseline variables

To extract information about the average size of an object we compute the
mean of the Length, Width, Aspect ratio, Product and Area for each object.
The resulting matrix of classification variables is denoted by ZBaseline having
dimension N × 5.

While the mean of these variables is a natural choice, it would also be possible
to compute other functions to combine the hotspot variables on object level,
for example the minimum, maximum, median or other quantiles. However, our
analyses showed that computing the mean is optimal in terms of classification
accuracy.

3.2.2. Shape variables

We already extracted the information about the size of the object in the
Baseline variables and are now primarily interested in the shape of the object.
To extract information about the shape of an object we further exploit the
watch hand functions defined above. Let therefore xij(α) denote the watch
hand function of the j-th hotspot of object i. The watch hand functions are
recorded at a finite grid of angles α1, . . . , αM . Note that fish of the same
species can be of different sizes while the shape is the same. In the Shape
variables we are not interested in the size of the object but only in the
shape. We therefore standardize the watch hand functions such that the sum
equals one and denote the standardized watch hand functions with xsij(α), i.e.,
xsij(α) =

xij(α)∑M
t=1 xij(αt)

.

Model

The watch hand functions are noisy due to the blurred image, so that we
decompose them stochastically as follows. Let

xsij(α) = yij(α) + εij(α), (3.1)

where yij(α) is a smooth silhouette function and εij(α) is an error term. This
error term captures both, the measurement error of the sonar camera as well
as the error due to the fact that the watch hands are calculated based on
pixeled images only.
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The next step is to decompose the smooth silhouette function yij(α) further by
setting

yij(α) = m(α|g(i)) + ε̃ij(α) (3.2)

where g(i) stands for the class of object i, that is g(i) ∈ G = {eel, trout, debris}.
Equation (3.2) means that yij(α) is composed of a class-specific mean
function m(α|g(i)) of the object’s class g(i) and its deviation ε̃ij(α). Note that
m(α|g) gives the mean silhouette of object class g (eel, trout or debris).

The final step is to look at the error term ε̃ij(α), which can be explained as
silhouette or shape variation, corrected for the mean shape of the class. We
approximate ε̃ij(α) using a Karhunen-Loève approach (see e.g. Dony, 2001)
and set

ε̃ij(α) =

K∑
k=1

zijkvk(α|g(i))︸ ︷︷ ︸
fij(α|g(i))

+ ˜̃εij(α) (3.3)

where K gives the degree of approximation and zijk are random variables with
zero mean and decreasing order of variance in k = 1, . . . , K. Functions vk(α|g)

are class-specific functional silhouette components which reflect the possible
shapes of objects in class g. The remaining error term ˜̃εij(α) is considered to
be unstructured and not further explored.

Class-specific estimation of model components

For the construction of classification variables we need to estimate the
components m(α|g) and vk(α|g), k = 1, . . . , K in (3.2) and (3.3) separately for
each class g ∈ G. This means, we estimate one model for eels, one model for
trouts and one model for debris. To do so we first smooth the standardized
watch hand functions xsij(α) for all hotspots using a Fourier basis which
provides us with cyclic estimated silhouette functions ŷij(α). This is illustrated
in Figure 3.2 for a set of standardized watch hand functions xsij(α). We use
a Fourier basis with 65 basis functions to represent the M = 72 discrete
measures of the watch hands. Note that this high number does not force very
smooth watch hand functions, as can be seen in Figure 3.2. Essentially, we
transform the discrete measures of the watch hands into functional objects,
see for example Ramsay and Silverman (2005) for details on this approach.
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Figure 3.2. Raw standardized watch hand functions (left plot) and smoothed watch
hand functions (right plot) for a randomly chosen eel. One line stands
for one hotspot. Horizontal axis: Angle α, vertical axis: Length of the
corresponding watch hand, see Figure 3.1 for an explanation.

The next step is to estimate a class-specific mean function which is done by
simple averaging over all smoothed watch hand functions from all objects of
a given class, i.e.,

m̂(α|g) =
1

ng

∑
i∈Ig

ni∑
j=1

ŷij(α) for g ∈ G, (3.4)

where Ig denotes the index set of all objects of class g and ng =
∑

i∈Ig ni is
the total number of hotspots of these objects. The estimated class-specific
mean functions m̂(α|g) for the three classes eel, trout and debris are shown in
Figure 3.3.
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Figure 3.3. Class-specific mean watch hand functions m̂(α|g) for the three classes
eel, trout and debris, computed as given in Equation (3.4).

The fitted residuals ˆ̃εij(α) = ŷij(α) − m̂(α|g) are directly available and stored
in an n × M matrix where n =

∑N
i=1 ni is the total number of watch hand

functions. Now we can estimate the class-specific silhouette components
vk(α|g) for each class assuming and fitting smooth, circular and orthonormal
eigenfunctions via functional principal component analysis (fPCA). As above,
we use 65 Fourier basis functions with an additional smoothing parameter of
λ = 10, which showed to be optimal in terms of classification accuracy, forcing
smooth principal components, see Ramsay and Silverman (2005) for details
on this estimation approach. We make use of K = 3 < M eigenfunctions
covering 57.1% of the overall variability in the data for eels, 46.6% for trouts
and 61.2% for debris, respectively. These estimations are based on the R-
packages fda (Ramsay et al., 2013) and fda.usc (Febrero-Bande and Oviedo
de la Fuente, 2012).
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The estimated class-specific silhouette components v̂k(α|g) are shown in
Figure 3.4, where an alternative way of visualization is used: In Figures
3.2 and 3.3, the polar coordinates – i.e., the angle α on the horizontal
axis and the length of the watch hand on the vertical axis – are directly
plotted. In contrast, in Figure 3.4, the polar coordinates are retransformed into
cartesian coordinates – i.e., this visualization represents a top view as shown
throughout Chapter 2. The dashed lines represent the class-specific mean
watch hand functions m̂(α|g) as shown in Figure 3.3, the solid lines represent
the sum of m̂(α|g) and a multiple of the respective estimated class-specific
silhouette components, i.e., m̂(α|g)+ak,gv̂k(α|g), for g ∈ G and k = 1, 2, 3, where
as factor ak,g the 95%-quantile of the scores on the respective component was
chosen to achieve reasonable plots.

We see differences between the classes: The aspect ratio of eels is larger
than for trouts and debris and the aspect ratio of trouts is larger than for debris,
this can best be seen in Figure 3.3, but also in the solid lines of Figure 3.4. The
first silhouette component of all three classes adjusts the aspect ratio, see the
first column of Figure 3.4. The second and third silhouette components of eels
and trouts show typical swimming movements of fish whereas the second and
third silhouette components for debris seem to reflect rather random shapes.
The amount of variance explained by the debris components suggests that
the first component is much more important than the other components for
this class which is not the case, to this extent, for eels and trouts. This reflects
the fact that the shape of dead objects does not fundamentally change over
time whereas the shape of living objects changes due to movement activity.
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Figure 3.4. Effect of the first three class-specific silhouette components of eels,
trouts and debris on the respective class average shape. The dashed
lines give the class-specific mean watch hand functions m̂(α|g) while the
solid lines show the sum of m̂(α|g) and a multiple of the respective class-
specific silhouette component v̂k(α|g). The numbers in brackets give the
amount of variance explained by the respective principal component. In
the rows from top to bottom: eels, trouts, debris. In the columns from
left to right: First, second and third principal component.

Prediction for a new object

How can we use these class-specific model estimations to construct
classification variables? We assume that the dataset is divided into training
and test cases and that estimates m̂(α|g) and v̂k(α|g) for all g ∈ G are based on
the training part only. For a new object i of the test cases with unknown class
g(i) we first compute the smooth silhouette functions ŷij(α) using a Fourier
basis as described above for all hotspots j = 1, . . . , ni of the new object i.
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Assuming the new object to come from class g we obtain class-specific fitted
residuals

ˆ̃εij(α|g) = ŷij(α)− m̂(α|g) for g ∈ G.

Next we calculate predictions for the residual component in (3.3) through

ˆ̃̃εij(α|g) = ˆ̃εij(α|g)−
K∑
k=1

ẑijkv̂k(α|g)

= ŷij(α)− m̂(α|g)−
K∑
k=1

ẑijkv̂k(α|g) for g ∈ G,

where ẑijk = v̂>k (·|g)ˆ̃εij(·|g) and ˆ̃εij(·|g) = (ˆ̃εij(α1|g), . . . , ˆ̃εij(αM |g))> and
analogous definition for v̂k(·|g). Note that ẑijk apparently depends on the
assumed class g which is suppressed in the notation for simplicity.

Classification variables

The idea for the construction of classification variables is the following: If a
given hotspots belongs to an object from class g, the prediction of the shape
of this hotspot through a model with estimations based on class g should
be better than the predictions through models with estimations based on the
other classes. Hence, the residuals ˆ̃εij(α|g) and ˆ̃̃εij(α|g) should be rather small
for the true class and higher for the other classes.

Therefore, for each hotspot j of object i we compute the L2-norms of the
residual components

d1ij(g) = ||ˆ̃εij(α|g)||2 and

d2ij(g) = || ˆ̃̃εij(α|g)||2 for g ∈ G, j = 1, . . . , ni.

For object i with a number of ni hotspots, we average d1ij(g) and d2ij(g) on
object level resulting in six classification variables

d1i (g) =
1

ni

ni∑
j=1

d1ij(g) and (3.5)

d2i (g) =
1

ni

ni∑
j=1

d2ij(g) for g ∈ G. (3.6)
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The variables corresponding to Equation (3.5) are stored in the matrix
ZShapeMean and the variables corresponding to Equation (3.6) are stored in the
matrix ZShapeV ariation, each having dimension N × 3, i.e., one row per object
and one column per class.

At this point we would like to argue why we use only K = 3 eigenfunctions:
The more eigenfunctions we use, the better becomes the approximation of
the residual shape ˆ̃εij(α|g). Hence, the residual component ˆ̃̃εij(α|g) becomes
small for each of the three classes and the differences between the three
class approximations vanish resulting in a poor classification power of the so
constructed variables d2i (g). Thus, with the aim of classification, the number of
eigenfunctions should not be too large. Our analyses showed that a number
of K = 3 eigenfunctions provides the best classification rate.

3.2.3. Motion variables

The features proposed so far are invariant with respect to the permutation
of hotspots, i.e., we do not account for the time chronology of the hotspots.
Therefore, we propose to additionally exploit the path of an object’s centroid.
Figure 3.5 shows the path of the centroids for the example trout used for the
presentation of the preprocessing methods in Chapter 2.

We may construct features based on such paths: First, we compute the
distances between temporally adjacent centroids of a given object. Second,
we compute the angles between the line connecting temporally adjacent
centroids and the y-axis. For both distances and angles, we get ni − 1

values for an object i with ni hotspots. From these values, we construct four
classification variables:

1. Mean velocity : Mean of the distances per object

2. Mean moving direction: Mean of the angles per object

3. Variability of velocity : Standard deviation of the distances per object

4. Variability of moving direction: Standard deviation of the angles per
object
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Figure 3.5. Path of a trout’s centroid moving in an arc from left to right. Crosses
stand for centroids of hotspots over time.

The idea of using these variables is as follows: Since debris can only swim
with the current we can expect that the mean velocity and the mean moving
direction as proxies for speed and swimming direction are very specific for this
class. Additionally, the variability in speed and swimming direction should be
very small and thus the standard deviations of distances and angles should
be small. Moreover, one can see in the example videos that the movement of
eels is more monotone than the movement of trouts. Thus, the variability
in speed and swimming direction should be larger for trouts than for eels
and therefore these variables are promising for the discrimination of dead vs.
living objects as well as for the discrimination of eels vs. trouts. The resulting
variable matrix is denoted by ZMotion and has dimension N × 4.

3.3. Summary and further ideas
To summarize, in the previous steps we generated four different feature
matrices ZBaseline, ZShapeMean, ZShapeV ariation and ZMotion. These matrices
share the property that they have N rows, i.e., they contain one row vector
of variables for each object. In total we constructed 5 + 3 + 3 + 4 = 15 variables
which will be used for classification.
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We delevoped further ideas which took as a starting point the mean watch
hand functions shown in Figure 3.3. These ideas, which will be sketched in
the following, lead to further classification variables. However, our analyses
showed that for the data at hand, the classification accuracy cannot be
improved by including these variables. Therefore we do not include them
in the results in Chapter 4. Nevertheless we think that these variables could
be useful for other data sets because they capture the class information in a
different manner than the above variables. Thus, we shortly describe them in
the following.

Mean functions

We look again at the smoothed watch hand functions ŷij(α) from Section 3.2.2.
The idea for the construction of the Shape mean variables in Equation (3.5) is
basically the same as the following idea: Compute the mean smoothed watch
hand function of a given object and compare it with the three class means
using an L2-norm. This leads to three classification variables similar to the
Shape mean variables.

Variance and autocorrelation functions

From that point of view, a natural extension comes to our mind: We can
compute a variance function instead of the mean function for each object and
compare it with the three class variance functions. Figure 3.6 (left) shows
the mean variance functions for the three classes. They apparently vary
strongly between the classes and can be interpreted as follows: Eels show
the highest variation in the watch hand functions, most of all for the watch
hands with angles around 0 and π representing the head and tail of the fish.
This is reasonable because the aspect ratio of eels is larger than for the other
classes and hence the distance between head and tail can vary stronger due
to swimming movements. (Remind that we are working with the standardized
watch hand functions here, i.e., no information about the absolute size of the
objects is present.) The variation of the watch hand functions for debris is
very small which goes well with the fact that this class only contains dead
objects. For dead objects we cannot expect much variation in the shape.
Nevertheless, the variation is not zero because debris is swimming with the
current and thus for example rotating while passing by the sonar camera.
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Analogously we can compute the autocorrelation functions to lag 1 for each
object and compare it with the three class autocorrelation functions to lag 1.
Figure 3.6 (right) shows the mean autocorrelation functions to lag 1 for the
three classes. They apparently vary strongly between the classes, too. The
advantage of using the autocorrelation functions is: Both mean and variance
functions do not consider the time chronology of the hotspot functions. This
means, permutation of time points does not change these classification
variables which implies a loss of information. For the autocorrelation functions
however, the order in time matters. The autocorrelation functions shown in
Figure 3.6 (right) have a reasonable interpretation: The high autocorrelations
for eels mean that the shape varies rather slowly over time whereas the shape
of trouts seems to vary rather fast. On the other hand, the autocorrelation for
debris is nearly zero which means that there is hardly information in the time
chronology of debris. For dead objects, this has to be expected, because only
living objects should show temporally recurring movement patterns.

Figure 3.6. Mean variance (left) and autocorrelation (right) functions of the watch
hand functions per class.
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Derivatives of the watch hand functions

Now that we are looking at the watch hands from a functional data point of
view, we can additionally inspect the derivatives of the watch hand functions.
Figure 3.7 shows the mean function of the first derivatives of the smoothed
watch hand functions for each class.

Figure 3.7. Mean functions of the first derivative of the watch hand functions per
class.

Similarly to the ideas given above, we can compute the variance and
autocorrelation functions of the first derivatives. Figure 3.8 shows the mean
variance and the mean autocorrelation functions of each class.

Using mean, variance and autocorrelation function we can construct further
nine variables computing L2-distances between mean, variance and autocor-
relation functions of the considered object and the means of this functions for
the three classes.
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Figure 3.8. Mean variance (left) and autocorrelation (right) functions of the first
derivative of the watch hand functions per class.

However, although these ideas seem quite convincing, for our data they could
not improve the classification accuracy. Apparently, the information captured
by these variables is already included in the other variables.
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Chapter 4: Classification and results

In Chapter 3 we finally completed the preprocessing of the videos by
extracting features for each object. With these features we can now classify
the objects detected in the sonar videos, decide which combination of features
classifies best and evaluate the classification accuracy of our approach.

Figure 4.1 visualizes the work flow of the steps necessary to conduct the
classification and to derive the misclassification rates. First, on the given data
basis of sonar videos all the preprocessing steps of Chapter 2 are carried
out. Second, the data set of detected objects is splitted into training and test
data. Third, the features of the detected objects are computed as explained
in Chapter 3: For the Shape mean and Shape variation variables, the model
components of Equations (3.2) and (3.3) are estimated using the training
data only. With these estimations, the features for training and test data are
computed. (For the Baseline and Motion variables, no model estimations
are necessary, these variables can be directly computed.) Based on the
features extracted from the training data, a classification rule is learned with
classification methods stated below. Then, all objects of the test data are
classified with the learned classification rule with respect to the three classes
eel, trout and debris. Finally, the misclassification rate in the test data is
computed to evaluate the classification procedure.

The classification steps (learning and testing) are carried out several times
with different settings and each setting is evaluated by subsampling bootstrap
with 1000 iterations. On the one hand, the features used for the classification
are varied, on the other hand, the classification method is varied. The aim is to
find the best combination of classification variables and classification method
which can be used for the application of the system in practice. Details on the
different settings are given in Section 4.1
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Sonar videos

Training data Test data

Estimation shape model

Computation of features

Preprocessing

Computation of features

Learning classification rule Testing classification rule

Computation of 
misclassification rate

Figure 4.1. Work flow for the classification procedure and the computation of
misclassification rates.
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4.1. Data and methods
We apply the proposed methods to three sonar videos introduced in Section
1.2 on page 13. After the preprocessing steps, we deleted all objects which
could only be seen for a short time or which were rather small. The reason is
that for such objects meaningful features cannot be extracted. An object was
deleted

• if the object stayed in the focus of the camera less than half a second,
i.e., less than five images, or

• if the mean length of the object’s hotspots did not exceed 10 cm.

After this step, 134 eels, 414 trouts and 166 pieces of debris, i.e., 714 objects
remained in the final data set. Table 4.1 summarizes basic properties of the
videos.

Table 4.1. Properties of the videos used for the analysis.

Video Duration No. of images No. of objects Average no. of
hotspots per object

Eels 11 min 6600 134 25.4
Trouts 13 min 7800 414 18.5
Debris 30 min 18000 166 10.8

We perform a subsampling bootstrap with B = 1000 iterations for the
estimation of the misclassification rates of different models and classification
methods as described in Figure 4.1. One bootstrap iteration starts with the
splitting into training and test data, the preprocessing has to be conducted
only once. In each iteration b = 1, . . . , B we draw randomly (without
replacement) 80% of the N = 714 objects and consider them as training
data. The remaining objects are considered as test data. On the training
data we compute all the variables proposed in Chapter 3, i.e., we generate
matrices ZBaseline, ZShapeMean, ZShapeV ariation and ZMotion. With those variables
we compute the respective variables of the test data. Combining these design
matrices we generate 15 different models for the classification. Table 4.2 lists
the different components included in the classification models.
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Table 4.2. Composition of the 15 considered models. 1 indicates that the respective
variables are included in the model, 0 indicates that the respective
variables are not included in the model.

Model Baseline Shape mean Shape variation Motion
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0

4 0 0 1 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0

8 0 0 0 1
9 1 0 0 1

10 0 1 0 1
11 1 1 0 1

12 0 0 1 1
13 1 0 1 1
14 0 1 1 1
15 1 1 1 1

For each model we use as classification methods linear discriminant analysis
(lda), quadratic discriminant analysis (qda), multinomial logit model (mnl),
trees (tree, see for example Breiman et al., 1984), support vector machines
(svm, see for example Cortes and Vapnik, 1995) and random forests (rf, see
for example Breiman, 2001).

4.2. Results
Figure 4.2 shows the mean misclassification rates resulting from the
subsampling bootstrap for all combinations of the 15 models and the 6
classification methods.
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Figure 4.2. Mean misclassification rates of subsampling bootstrap with 1000
iterations for different models and classification methods.

Figure 4.2 suggests that including the Motion variables (models 8 to 15)
clearly improves the classification. For these models support vector machines
and random forests outperform the competing classification methods. The
lowest misclassification rate is obtained using random forests with model
13, i.e., Baseline, Shape variation and Motion variables where only 3.6% of
the objects are misclassified on average. Closest competitor to model 13 is
model 15. To finally decide which combination of model and method predicts
best, Figure 4.3 shows the estimated distributions of the misclassification
rates for model 13 and 15 for all considered classification methods. These
results support the prior impression in favoring model 13 classified with
random forests. Note that even though this is the best combination of
classification variables and classification method, the misclassification rates
of other combinations are close which means that there are no significant
differences between the best models. For a different set of sonar videos, a
different combination could be optimal. Nevertheless, for our data model 13
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classified with random forests is the optimal choice in terms of out-of-sample
classification accuracy.

Figure 4.3. Distribution of the misclassification rates estimated by subsampling
bootstrap with 1000 iterations. Comparison of models 13 and 15 with all
considered classification methods.

To finally evaluate the classification accuracy of our procedure, we take a
closer look into the misclassification pattern of model 13 using random forests.
Table 4.3 shows the misclassification pattern resulting from a 5-fold cross
validation.
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Table 4.3. Misclassification pattern for model 13 with random forests and 5-fold
cross validation, absolute values and row percentages are shown.

Prediction
Truth Eel Trout Debris Total

Eel 122 11 1 134
91.0% 8.2% 0.7% 100%

Trout 5 408 1 414
1.2% 98.6% 0.2% 100%

Debris 0 6 160 166
0.0% 3.6% 96.4% 100%

Total 127 425 162 714

Misclassification mainly appears between the two fish classes: The misclas-
sification rate between eel and trout is 2.9% while the misclassification rate
between fish and debris is just 1.1%. The overall misclassification rate is
3.4%. Hence, even though classification of fish carries some error, our routine
performs promising to detect fish and living objects in general in the videos.

We finally state that model 13, containing Baseline, Shape variation and
Motion variables is the best predicting model. Note that these three
components in total only consist of twelve variables, i.e., we compressed
the information in the data very efficiently. This compression of information
was achieved through a careful construction of the classification variables:
The Baseline variables capture the rough size and dimensions of the objects.
The Shape variation variables reflect class-specific possible shapes which go
beyond the mean shape of the objects. Finally, the Motion variables capture
the class-specific movement patterns of eels, trouts and debris.

The Shape mean variables do not improve the classification accuracy further
which means that the information of these three variables is apparently
contained in the other twelve variables. There is a reasonable explanation
for this result: As shown in Chapter 3 in Figure 3.4, the mean shape of all
three classes is approximately an ellipse where the difference between the
classes lies mainly in the aspect ratios of these ellipses. But, the aspect ratio
of the objects is already included in the Baseline variables and the aspect ratio
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is a feature which does not change with the standardization of the watch hand
functions. (Remind that for the Baseline variables, the unstandardized watch
hand functions are used whereas for the Shape variables the standardized
watch hand functions are used.)

As an interim conclusion, we can state that we have reached the first two of
our four research goals defined in Chapter 1 on page 8: We have developed
a system which is able to deliver a sensible count of fish present in the video
and to distinguish between eels and other fish. Note again that although the
category other fish is restricted to trouts in our analysis, the results can be
generalized to other fish species as well because most fish species found in
European rivers look like trouts from above.
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Chapter 5: Implementation and applica-
tion in practice

While Chapter 4 has shown that the first two research goals, the accurate
counting and classification of fish (see page 8), were reached by our
approach, the present chapter is concerned with the other two research goals
regarding computational issues: The system has to run in realtime and to
ensure high usability in order to be suitable for the usage at water power
plants. Realtime means in this context that the computing time shall be less
than the running time of the video. Additional details on the implementation in
R and on the application of the system in practice are given here.

5.1. Implementation and computing time

Implementation

As one part of this thesis, the developed methods for preprocessing, feature
extraction and classification were implemented in R (R Core Team, 2016) with
one exception: Only the flood-fill algorithm, used for the extraction of hotspots
in Chapter 2, is outsourced into C++ to ensure low computing times. Apart
from the base packages in R, the following packages were used:

Preprocessing:

• hexView (Murrell, 2014) for directly reading in the sonar videos (.ddf).

Feature extraction:

• fda (Ramsay et al., 2013) for most of the functional data analysis
methods used in Section 3.2.2 and

• fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012) for selected
functional data analysis methods used in Section 3.2.2, above all the
derivatives of the watch hand functions.

Classification:

• e1071 (Meyer et al., 2014) for support vector machines,
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• MASS (Venables and Ripley, 2002) for linear and quadratic discriminant
analysis,

• nnet (Venables and Ripley, 2002) for the multinomial logit model,

• randomForest (Liaw and Wiener, 2002) for random forests and

• tree (Ripley, 2015) for trees.

R package

The entire implementation is written as user-friendly and generic as possible:
First, some parameters have to be specified such as the threshold a used for
the cleaning of the images or the number of cores if parallelization is desired.
Then, the analysis runs and displays – additionally to the final classification
table – various plots and videos which might be useful for the user. Of
course, the user can specify which output shall be generated. The resulting R
package sonar is available on R-Forge at https://r-forge.r-project.org/
projects/sonar/, see Appendix B for an excerpt of the documentation.

Computing time

With the proposed methods for preprocessing, feature extraction and
classification we are able to process whole sonar videos and to count objects
with respect to the three categories eel, trout and debris. The three videos
used for our analysis have a total running time of 54 minutes. In order to avoid
stack overflow, we split each video in parts of one minute, i.e., 600 images.
Once the classification rule is learned, an entire analysis of all videos, i.e.,
preprocessing of the videos with localization of hotspots and tracking, feature
extraction and classification of detected objects lasts about 36 minutes using
a MacBook Pro Intel Core i7 2 GHz, 8 GB RAM from the year 2011. Note
that we can easily parallelize the analysis and thus reduce the computing
time further by using multiple cores. For example, using two cores on the
same device the computing time is about 22 minutes and thus less than half
of the videos’ running time. This means that we also achieved our third goal
– running in realtime.

Page 64

https://r-forge.r-project.org/projects/sonar/
https://r-forge.r-project.org/projects/sonar/


Chapter 5: Implementation and application in practice

5.2. Application in practice

User interface

The final purpose of our project was to provide a software which can be used
for fish counting and classification at a water power plant during operation.
And of course, no matter how well implemented or how fast an R package is –
the usability in practice suffers because few practitioners are trained in using
R. Since this task is not part of our statistical work, we worked together with a
computer scientist (Joachim Tischbierek from jTi-Soft, Gütersloh, Germany)
who implemented a user interface for our R package. With this user interface,
the staff at the water power plant is able to use our system autonomously and
without additional training in R. The user can read in sonar videos and analyze
them automatically with a few mouse clicks. As alternative, the online modus
can be selected – then a continuous stream of sonar videos is analyzed. In
any case, as output a table as shown in Table 1.2 on page 12 is generated.
Supplemented by descriptive analyses, the amount and species of fish in front
of the turbine can be easily assessed. Figure 5.1 shows a screenshot of the
user interface.

Application steps

Calibration of the system: If our program shall be used at a water power
plant, the system has to be calibrated first. This means, the tuning parameters
of the preprocessing steps such as the number of B-spline basis functions, the
threshold a etc. have to be optimized for the given location. Then, the best
combination of the extracted features and the best classification method have
to be found and with this optimal combination, the classification rule has to
be learned. The easiest way to achieve this is to put fish of known species in
the water, to record a video for each species and then to derive the optimal
classification rule as explained in Chapter 4 and visualized in Figure 4.1. It is
necessary to learn a rule for each new location because rivers and thus fish
behavior vary strongly. For example the direction and strength of the current
can be very different for different rivers and this information is important for
the classification, most of all for the discrimination of dead and living objects.

For our example data, the Baseline, Shape variation and Motion variables
were selected and random forests were used as classification method. For
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Figure 5.1. Screenshot of the user interface, provided and approved for publication
courtesy of jTi-Soft, Gütersloh, Germany

a new site, the analysis presented in Chapter 4 can be replicated and other
sets of variables and another classification method could be chosen.

Ongoing operation: After calibration, the system at the water power plant
works as follows: First, one minute of the sonar video is recorded. While
the next minute of video is recorded, the present video is analyzed by the
system, i.e., the preprocessing steps with the optimized tuning parameters
are performed, the selected features are extracted and finally the objects
are classified with the learned classification rule. This takes on average
30 seconds (this time varies with the amount of fish in front of the camera)
which means that the system detects a fish not later than 1.5 minutes after its
first appearance. For practical purposes, this can be considered as realtime
because fish in front of a turbine stay there for some time even up to several
hours. Thus, measures for the protection of the fish can be taken in time.

To sum up, we reached also our third and fourth research goal: We provide
a software which is easy to use at the water power plant and fast enough for
the planned purpose.
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Chapter 6: Discussion and outlook

6.1. Summary and research goals

Summary

In this project, we were faced with a very complex problem of applied
statistics: Given a sequence of underwater sonar images, i.e., a sonar video,
we had to develop a software which allows to detect, count and classify fish
of different fish species and which is fast and user-friendly enough for the
application at a water power plant.

Therefore, we first preprocessed the videos in order to locate pixel clouds
on each image which most likely represent a fish and called them hotspots.
Then, we tracked those hotspots which belong to the same object over time.
From these sets of tracked hotspots, we extracted features which allow to
discriminate living objects from dead objects and eels from other fish. In the
results section we showed the high classification accuracy of the system using
statistical classification methods. A careful and thorough implementation in
the statistical software package R ensures low computing times and high
usability for practitioners.

Research goals

In the introduction on page 8 we defined four main research goals of the
project which were achieved as follows:

1. The software should deliver a sensible count of fish present in the video:
After several steps of preprocessing and feature extraction, we can
finally divide the found objects into living and dead objects with a very
high accuracy leading to a sensible count of fish.

However, although the classification into living and dead objects proved
to be very accurate, we cannot be sure that we found all objects present
in the video. It could happen that an object is overlooked by the
preprocessing and thus cannot be classified into living or dead. Until now
we have no satisfying tool to check whether the amount of overlooked
objects is high or not. All we can do ad hoc is viewing the videos
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and counting the number of objects manually. Then we can compare
this number with the number resulting from our automated analysis.
Doing so, we see that for the data treated in this thesis, the amount
of overlooked objects is minimal. However, this is no guarantee that in
other data the performance will be equally satisfying. Another limitation
is that a fish which leaves the focus of the sonar camera and later returns
into the focus will be counted twice. To the best of our knowledge, there
is no possibility to solve this problem.

2. The software should distinguish between eels and other fish: The results
in Chapter 4 show that with the proposed features, the classification
accuracy is very high. Due to the fact that we can additionally interpret
the features well and explain why these features should discriminate
eels and other fish, we are very confident that the performance will be
comparable for sonar videos at other locations.

3. The software should run in realtime: This goal was achieved. The
implementation was optimized with regard to computing time and error
handling. Thus, the software is suitable for the application at a water
power plant.

We would like to emphasize that the realization of such low computing
times is one of the substantial achievements of this project: At each step
of the analysis, low computational complexity was a key factor when
choosing the methods. Furthermore, the concrete implementation in R
and C++ pursued the goal of ensuring low computing times on the one
hand and robust error handling on the other hand. The second point is of
great importance because when applying the system in practice, many
and perhaps unexpected exceptional cases have to be dealt with without
resulting in a system crash. A pilot study at a water power plant showed
the robustness of our system with other data as well.

4. The software should have a high usability for practitioners not familiar
with R: Thanks to the cooperating computer scientist, we can also
provide a user-interface for our R package sonar (https://r-forge.
r-project.org/projects/sonar/). Thus, no knowledge of R and not
even of statistics are necessary to use our software in practice.
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6.2. Methodological alternatives
At several points of our analysis, alternative approaches would have been
possible. We discuss these alternatives in the order of the analysis steps and
justify our own choices.

Orientation of hotspots (Section 3.1, Page 40)

For the orientation of the hotspots we proceed in two steps:

• We find the main body axis using a linear regression of the y- on the
x-coordinates of all pixels of the hotspot. This approach could fail in the
case where a fish swims from the top to the bottom of the image (or
from bottom to top), because the slope would be infinity then. But this
does not happen in the given videos. Additionally, if a fish would swim
from top to bottom there would be another problem: The sonar camera
emits sonar waves from bottom to top resulting in a poor image quality
when a fish swims exactly with or against the direction of the waves. An
alternative to linear regression is principal component analysis (PCA).
The result would be more or less the same in most cases but the problem
with a slope of infinity does not exist. The reason why we decided in
favor of linear regression and against PCA to find the main body axis
was: Consider a case where the hotspot is more or less circular. Using
a PCA, the angle of the main body axis with the x-axis could be anything
between 0 and π, potentially only depending on a few pixels. In contrast,
the default of the regression line is an angle of 0. Hence, the linear
regression is more stable in these cases.

• We find the head of a fish using all hotspots of this fish at all time points:
Looking at the centroids at all time points we extract the information if
the fish swims from right to left or from left to right. Assuming that the
fish is swimming forwards, we know which side is the head and which
side is the tail. This approach could fail if a fish changes its swimming
direction or is swimming backwards. A visual inspection of the analyzed
data showed that this does not occur in our data.
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Representation of the shape of the hotspots (Section 3.1, Page 40)

As representation of the shape of the hotspots, we use the watch-hand
function which is also known as radius-vector function in the literature, see for
example Stoyan and Stoyan (1994). Alternative shape representations would
have been possible. We discarded simpler representations such as the cross-
section or support functions because they are constructed for symmetric or
convex shapes, respectively. Competitors to the radius-vector function were
the contour parametric or contour complex function and the tangent-angle
function, see Stoyan and Stoyan (1994) and Kindratenko (2003). These
functions do not require star-shaped figures and are hence alternatives for
the radius-vector function which is constructed for star-shaped figures. After
careful consideration, we decided us in favor of the radius-vector approach
and against the alternatives because

• it is simple both to compute (complexity of implementation and comput-
ing time) and to explain it to the practitioners,

• the Baseline variables are computed straightforward from the radius-
vector function. For the alternatives, the calculations would have been far
more complicated (complexity of implementation and computing time),

• it suits very well with our approach for the orientation of the figures.
Because once the angle of the main body axis is determined, all we
have to do is to translate the original angles of the radius-vector function
by this constant angle.

However, the radius-vector functions require star-shaped figures and not all
hotspots are star-shaped. We handle two exceptions as follows:

• Non-star-shaped figures: In the case where more than one contour point
is available for a given angle, we choose the furthermost point from the
centroid to define the length of the respective watch hand. The idea
was here that we do not want to underestimate the length of the fish,
especially for eels, which tend to not being star-shaped. If we chose the
nearest point to the centroid we would run the risk of “not seeing” the tail
of the fish resulting in an underestimation of the length. Choosing the
furthermost point from the centroid results in a slight smoothing for non-
star-shaped figures. However, this smoothing is not very strong and, as
implicated by the results, no major problem. If there would be a large
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amount of extremely non-star-shaped figures in another application of
our method, one would have to think about how to incorporate the more
complex shape functions mentioned above.

• U-shaped figures: In the case where the centroid is outside the fish, we
set all watch hands to zero which do not point into the direction of the
fish. We think that this procedure is sufficient because (a) there are very
few cases with such an extreme shape (less than 0.6% for eels and less
than 0.02% for trouts), (b) in these cases, the centroid is not far away
from the fish, and (c) it happens almost exclusively for eels and not for
trouts, resulting in a special feature of eels which does not affect the
discrimination power.

Selection of variables (Section 3.2 and Table 4.2)

With regard to the set of Shape variation variables, we summarize the
information in three variables (note that the distances from the mean curves
d1ij(g) do not result from the PCA). It would be an alternative to use the scores
of the PCA directly: We could compute more principal components, say 20
or 30 for each class, and would thus have between 60 and 90 variables in
total. Then, in the following step we would have to apply a variable selection
procedure to filter the important variables. However, this would not be in line
with the idea of generating four sparse sets of variables:

As the original purpose was the application at a water power plant, the
stability of the system is of paramount importance. This means, not
only the classification accuracy in the given data is important but also the
classification accuracy in new unknown data. In contrast to many other
statistical applications the uncertainty of how these unknown new data will
look is rather high: Even if the camera and the fish species are comparable,
many other characteristics of the river such as flow velocity, turbidity and
behavior of the fish could differ strongly from our data. In order to develop
a system which promises to classify satisfactory even under rather unknown
conditions, we feel that it is favorable to put some thought in the selection of
the variables we use for classification, in contrast to leave everything up to a
black box algorithm. All our variables are motivated substantially (Baseline -
rough size of the object, Shape mean - standardized average shape, Shape
variation - deviation from this standardized average shape, Motion - moving
characteristics). With only four sets of variables, a formal variable selection
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procedure is not necessary in the following. All we have to do is to test
each combination of the four sets of variables to get the best combination.
We are hence confident to classify even in different and rather unknown
conditions because the variables we constructed should always differentiate
well between the considered classes.

Additionally to the good classification performance we have a good interpreta-
tion of our procedure and the results which is also favorably when explaining
the methods and results to biologists and engineers. In contrast, using many
scores followed by an algorithm-driven variable selection would rather be a
black box.

Number K of eigenfunctions (Section 3.2.2, Page 49)

We use K = 3 because we got the best classification with this number
of eigenfunctions compared to 2, 4, 5 or more eigenfunctions. However, in
some cases, omitting the low-variance eigenfunctions could mean to throw
away relevant information on between-group variation (see Jolliffe, 2002, pp.
200-201 for an illustration). Thus, we cannot be sure that we use the best
set of eigenfunctions in terms of classification accuracy. Nevertheless, the
results in Section 4.2 show that this selection yields a good and satisfactory
classification. It would be an interesting challenge for future work to select
the set of eigenfunctions which is optimal for classification. However, we think
this is not trivial as each subset of indices {1, ..., T} would be a candidate, and
this even for each class since the optimal subset of indices can differ between
classes.

6.3. Possible extensions

Methodological developments

With the proposed Shape variables in Section 3.2.2, we do not exploit the
information that several hotspots belong to the same object. We average
the distances d1ij(g) and d2ij(g) on object level, but for the computation of
these distances each hotspot is treated separately. Actually, we know even
more: Not only that the hotspots are clustered on object level but we have
additionally the information about the chronological order. It seems plausible
that the results could be improved by exploiting this information. Recent work
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in the context of functional data analysis created the possibility to treat the
watch hand functions as longitudinal functional data, see the review of Morris
(2015) for a broad overview of the development in this field over the past
years. Especially, the concept of longitudinal functional principal component
analysis, developed by Greven et al. (2010), could be very useful here. It
would be an interesting work to adopt these concepts to further increase the
information contained in the Shape variables.

Another way to account for the order information would be to smooth the
watch hand functions of one object over time. Either a suitable penalisation
for the differences of the basis function weights over time could be applied.
Alternatively, a two-dimensional basis for angle α and time t could be defined.
Both approaches would be additional steps in the preprocessing of the watch
hand functions. Afterwards the same methods as proposed in Chapter 3 could
be used for these preprocessed functions.

The Motion variables seem to carry strong information about class member-
ships. These variables are based on the track of an object’s centroid. An al-
ternative to pull out information from these tracks could be to understand the
track of a given object as function in time and two-dimensional space. Then,
methods of functional data analysis could be adopted to define informative
classification variables.

Though the tracking procedure works satisfactory for the given data, we
cannot be sure that our tracking procedure is optimal. There are many other
tracking methods proposed in the literature, see for example Yilmaz et al.
(2006) for a broad overview. It would be interesting to adopt some of these
methods for the context of sonar videos and to compare the performance with
our approach.

R package

At the moment, the developed R package sonar is rather specialized and
therefore may not have the chance to be used by a large part of the R
community. As future work it would be promising to extend the package in
order to reach a larger group of users. Among the new features should be the
following:

• Possibility to directly read in further video formats such as .avi and .mp4,
for example, thus including color videos (the sonar videos consist only of
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one color channel). To the best of our knowledge, until now there does
not exist an R package with this functionality.

• Possibility to additionally analyze three-dimensional videos. This could
be interesting for example for the analysis of functional magnetic
resonance imaging (fMRI) data.

• Possibility to carry out the preprocessing steps such as smoothing,
identification and tracking of hotspots for all video formats.

• Possibility to compute the features proposed here and to define own
features.

Alternatively, the package could be more oriented towards the needs of
practitioners working with sonar videos. For example, Mueller et al. (2008)
is heading for the automatic classification of sonar images and identifying
eels using R, but there, several additional software packages are needed to
carry out the preprocessing. Langkau et al. (2012) uses acoustic shadows
to identify fish species, also working with a series of preprocessing programs
and the final classification is carried out in SPSS. Thus, there could be a
significant demand for an R package unifying and simplifying the processing
of sonar videos.

Possible applications

The DIDSON sonar camera is not the only sonar recording device used for
scientific questions. Another device is for example the Simrad EK15 (see
http://www.simrad.com/ek15 for details), which is much cheaper. Our project
partners are interested in the question to what extent the results achieved
with the DIDSON sonar camera can be reproduced with the EK15. Thus,
comparable results would be very welcome in the community working with
sonar images and videos.

In our analysis, we focus on fish of medium and large size with a minimal
length of 10 cm, smaller objects were deleted prior to the classification
because meaningful features cannot be computed for such small fish. But
very small fish often appear in shoal of fish. Depending on the monitored
waters, it could be interesting to incorporate an additional class shoal.
Therefore, the preprocessing would have to be extended because currently
the focus is on separating individual fish. When aiming on the detection of
shoals, the focus would pass over to connecting clusters of small fish.
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Finally, an interesting field of application is the study of so called tail-beat
patterns, see for example Mueller et al. (2010) who investigate tail-beat
patterns based on DIDSON sonar videos. Tail-beat patterns of fish can on
the one hand be used for species identification. On the other hand they
can be used for bioenergetics studies, see Mueller et al. (2010). As in other
applications, data have to be preprocessed, noise has to be reduced and
objects have to be tracked. Thus, the methods proposed in this thesis could
be beneficiary in that field as well.

Related own work

In a recent master’s thesis, Maier (2013) applied and expanded the ideas and
algorithms given in this thesis on a different setting of sonar videos. There,
the DIDSON camera was rotated such that the fish in the videos can be seen
from the side rather than from the top. The aim was then to distinguish the
two fish species barbel and bream which look rather similar in comparison
to the here treated case of eels versus trouts. Classification variables were
constructed using the rough size of the hotspots and coefficients resulting
from a Fourier approximation of the silhouettes. In addition, distances
between examined silhouettes and prototype silhouettes of barbel and bream
were used as classification variables. Apart from some difficulties regarding
the preprocessing of the videos, the classification results were appealing
confirming the broader applicability of the shown methods and our approach.

6.4. User’s perspective
Last but not least we would like to assess our work from a practitioner’s point
of view.

The research goals of our project were defined in interdisciplinary work and
therefore reflect the practitioner’s requirements. As thoroughly described in
Section 6.1, all goals were achieved. An additionally interesting point from the
user’s perspective might be that the developed approach is not only a black
box. Although the used methods are complex, the steps of the approach
can also be explained without formulas and the results have meaningful
interpretations.

In case that similar conditions as in our project (i.e., detect eels vs. other fish)
are given, our system is ready for operation under real-world conditions. To
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set up the system at a new location, a few parameters have to be calibrated
for the given water and the classification rule has to be learned as explained
on page 65. This is considered to be between one and two weeks’ work
for a person trained in statistics and familiar with R. Compared to the high
costs of a DIDSON, the expenses for the calibration are neglectable. After
the calibration, the system can be easily used by the staff of the water power
plant.

In case that other conditions are given, the system would have to be expanded
and adapted and the present system could be used as a starting point. Except
for eels, the classification of other fish species cannot be guaranteed at the
moment. This is mainly due to the fact that we see the fish from a top view.
In Maier (2013) we showed how resembling fish species such as barbel and
bream can be distinguished by a different setup of the camera. Also for shoals
of fish, a separate solution would have to be developed.

From a user’s perspective, the high costs of the presented approach are
certainly of interest: The DIDSON is with a price of around 100.000e rather
expensive if such a system should be implemented at all water power plants of
a country or of a specific power company. Depending on the size of the river,
multiple cameras could be necessary to cover the area in front of a power
plant. To reduce these costs, it would be desirable to repeat our analysis with
cheaper cameras such as the EK15 with a price of around 5.000e.

Further issues might also be important from a practitioner’s point of view: We
cannot be sure that we detect all fish swimming in the monitored river for two
reasons. First, our system could overlook fish. Second, it is possible that fish
pass above or below the field of view of the camera and thus are not recorded.
Construction measures or the use of multiple cameras could circumvent this
problem at the price of additional costs.

Furthermore, the experimental setup was not optimal. As described in
Chapter 1 on page 13, the videos of eels and trouts originate from a water
without current while the video showing debris originates from a river with
current. Thus, parts of the high classification accuracy of living versus dead
objects could be explained by the different settings. However, we think that
this is no major drawback and that our results can be generalized for two
reasons: First, the constructed variables discriminate living and dead objects
above all due to the Motion variables. This would also be the case in the
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same water. Second, in a further pilot study we analyzed data of fish and
debris recorded at a water power plant near Hamm, Germany, with satisfying
results regarding the classification accuracy.

Finally, a user would have to decide about protection measures which could
be taken when fish are detected in front of a water power plant. An obvious
option would be to shut down the turbines and to let the fish pass. This
comes along with a loss of generated energy and thus with a loss of profit
for the power companies which adds to the high costs of the sonar cameras.
However, protection measures lie beyond the scope of this thesis.

All in all we are confident that the present analysis is a significant step for the
automatic detection of fish at water power plants. We hope that our approach
can be a contribution for the environmental compatibility of water power plants
and for the protection of endangered fish species.
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7.1. Motivation and research goals

Motivation

Along with the global climate change, there is an increasing interest for its
effect on the nature: How affects the global warming the flora and fauna on
the earth? A science sector called phenology deals with the description and
study of annually recurring events in nature. For example, the time of the first
appearance of migratory birds and the dates of leaf unfolding in spring and
leaf coloring and leaf fall in autumn are objects of phenological studies.

Thereby, phenology has been recognized to be a key factor in the
description of ecosystem processes. The dates of the start and end of the
growing season define the length of the vegetation season, then triggering
biogeochemical fluxes between atmosphere and biosphere, such as carbon
sequestration (Piao et al., 2008; Richardson et al., 2013), ecosystem
respiration (Piao et al., 2008; Migliavacca et al., 2011), and biomass
production (Keenan et al., 2012). Moreover, the seasonality of vegetation
activity determines vegetation cover and biodiversity, but also controls the
vegetation feedbacks to the climate system, in terms of oxygen production,
evapotranspiration, BVOC (biogenic volatile organic compound) emission,
and other surface layer changes (Schwartz, 1992; Menzel, 2002; Peñuelas
et al., 2009; Richardson et al., 2013).

To estimate the effect of the global warming, it is of great interest how
the dates of the start and end of the growing season vary over the
years. Additionally, the spatial variation of these dates can give insights in
phenological processes.

Phenological analyses – state of the art

Ground observations. Today, most phenological information is either
collected by volunteers or semi-professionals in phenological networks run
by national meteorological services or citizen science organisations (Menzel,
2013). At this local scale that is also covered by ground-based webcams,
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onset dates of leaf unfolding or leaf coloring are recorded for selected sites
and species.

Satellite remote sensing. At the regional and even national and continental
scale, start and end of season dates can also be derived from annual time
series of vegetation indices from various remote sensing products, mainly
AVHRR (advanced very-high-resolution radiometer), MODIS (moderate-
resolution imaging spectroradiometer), and MERIS (medium-resolution imag-
ing spectrometer) instruments. The longest available record is the Norma-
lized Difference Vegetation Index (NDVI) with data from 1982 onwards (Jeong
et al., 2011; Jeganathan et al., 2014). However, remote sensing only pro-
vides a coarser spatial and temporal resolution, the so-called integrated land
surface phenology (LSP, see Liang and Schwartz, 2009). For example, us-
ing the so-called maximum-value composite procedure (Holben, 1986) with
a MODIS instrument, the resulting resolution is 250m × 250m per pixel and
one observation every 16 days. Unfortunately, linking LSP with species- and
site-specific ground observations has turned out to be quite complicated or
even impossible (White et al., 2009; Fu et al., 2014; Rodriguez-Galiano et al.,
2015).

Webcams. To close the gap between LSP and species- and site-specific
ground observations, close surface remote sensing in terms of daily digital
camera images has been proposed (Richardson et al., 2007), see also
Graham et al. (2010), Zhao et al. (2012), Henneken et al. (2013) and
Alberton et al. (2014). A major intention is to automatically capture seasonal
changes on a fine spatial resolution, which could be at the end also on
species level. Secondly, one wants to relate the findings with satellite remote
sensing systems, since the percentage of greenness (%greenness) derived
from the red, green and blue information mirrors the temporal behavior of
vegetation indices by remote sensing, see e.g. Hufkens et al. (2012). Still,
single scientific cameras will not yield spatially dense information. Therefore,
a dense webcam network is required which then demands for advanced
and automatic image processing in order to handle these high resolution
spatio-temporal data. This thesis deals with the development of such image
processing methods.
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Use of webcam images for the identification of phenological patterns

Usually, webcams are used for the identification of phenological patterns as
follows: A webcam takes every day one or more images from the same natural
motive showing for example trees or grassland sites (Julitta et al., 2014;
Alberton et al., 2014). Based on these images, the dates of (1) the start of the
growing season (SOS), (2) the time point of maximum %greenness (MAX)
and (3) the end of the growing season with start (EOS1) and end (EOS2)
of leaf coloring in autumn shall be determined. Therefore, the dimension
of the data is reduced by first defining regions of interest (ROIs) on the
image. A ROI is a region which is subjectively relevant, for example pixels
representing crowns or canopies of deciduous trees because they show high
seasonal variation necessary for phenological classification. In these ROIs, a
%greenness time series is computed: For each time point t, the value pgt of
%greenness inside the ROI is defined as

pgt =
1

n

∑
i∈IR

git
rit + git + bit

, (7.1)

where rit, git and bit are the red, green and blue values at pixel i and time
point t, respectively, IR denotes the index set of all pixels inside the ROI and
n = |IR| is the number of pixels inside the ROI. Finally, the dates of SOS, MAX,
EOS1 and EOS2 are determined by a search for structural changes in the
%greenness time series, see for example Ahrends et al. (2008), Henneken
et al. (2013) and Menzel et al. (2015).

Abbreviations

In the remainder we will use the term DOY (day of year) to refer to the dates
of images, i.e., all days of the year are numbered from January 1 to December
31 as DOY 1 to DOY 365 (or DOY 366 in leap years). Table 7.1 summarizes
the most important abbreviations used in this part.
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Table 7.1. Definition of frequently used abbreviations

Abbreviation Definition
DOY Day of year
%greenness Percentage of greenness in an image / ROI
SOS Start of the growing season
MAX Time point of maximum %greenness
EOS1 End of the growing season - start of leaf coloring in autumn
EOS2 End of the growing season - end of leaf coloring in autumn
ROI Region of interest on an image
eROI Expert-based region of interest
sROI Semi-supervised region of interest
uROI Unsupervised region of interest
SVD Singular value decomposition

Research goals

While the above identification procedure is suitable for determining the dates
of SOS, MAX, EOS1 and EOS2, it is associated with a considerable amount
of manual work, because the ROIs have to be defined manually by an
expert. We call these regions “expert-based regions of interest” (eROI) in the
remainder to differentiate this standard approach from our new approaches
for the definition of ROIs. Our aim is to use webcam images on a larger scale
and to analyze the data of several hundreds or thousands of webcams at the
same time. For this purpose, the processing of the webcam images has to be
automated and an efficient implementation is needed.

This leads to the definition of the following research goals:

1. Develop a method for the automated definition of ROIs.

2. Develop a reasonable optimality criterion to evaluate the amount of
information contained in the resulting ROIs. The automated ROIs have
to be at least as informative as the eROIs.

3. Develop a procedure for determining the dates of SOS, MAX, EOS1 and
EOS2 for given image data. To some extent, existing methods for structural
change point detection in time series from the literature can be applied for
this point.
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4. Implement the methods so efficiently that the analysis can be scaled up to
several hundreds or thousands of webcams. For this purpose, the required
manual work has to be reduced to a minimum.

The third research goal is also referred to as “phenological classification” in
the remainder, because from another point of view, the days of the year are
classified as “before SOS”, “between SOS and MAX” and so on. Thus, the
phenological dates can be matched with the classical terms for seasons as
shown in Table 7.2.

Table 7.2. Definition of season names and season numbers used in this thesis.

Season name Definition Season number
Spring Days between SOS and MAX 1
Summer Days between MAX and EOS1 2
Autumn Days between EOS1 and EOS2 3
Winter Days between EOS2 and SOS 4

7.2. From webcam data to phenological classification

Data structure of webcam images

In contrast to the images of the sonar videos presented in Part I, the images
of a webcam are color images recorded on an equidistant rectangular grid.
For each pixel (i, j), color channel c and time point t we observe a signal yijct
standing for the red (c = r), green (c = g) and blue (c = b) intensity with values
in [0, 1]. The data array Y = {yijct; i = 1, . . . , n1, j = 1, . . . , n2, c ∈ {r, g, b}, t =

1, . . . , T} serves as our four-dimensional raw data where n1 stands for the
number of pixels in horizontal direction, n2 for the number of pixels in vertical
direction and T for the number of recorded images for a given webcam.

For example, from the scientific camera described later in Section 7.3 we have
T = 1441 images with n1 = 1276 and n2 = 960 pixels for the year 2014. In total,
this sums up to approximately 5.3 billion observed pixel values. This large
number of observations shows that we are already dealing with a big data
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problem by analyzing the data produced by one single webcam in one single
year. But, as mentioned above, our aim is to use webcam images on a larger
scale and to analyze the data of several hundreds or thousands of webcams.
Thus, it is necessary to develop efficient tools which allow for fully automated
analyses. At the same time the computational complexity has to be as low as
possible to ensure the applicability of the methods in practice.

Analysis steps

Optimality criteria. As first step, we define two optimality criteria in Section
8.1 to meet the second research goal. We begin with this step because we
will make use of the optimality criteria in the automated definition of ROIs
as well as in the comparison of the resulting ROIs. Both optimality criteria
assign a scalar value to a given ROI which is high when the %greenness time
series inside the ROI captures much information about phenological variation.
Thus, the optimality criteria can be used to compare ROIs and to decide which
approach delivers the most informative ROI.

Automated definition of ROIs. Regarding the first research goal, we
propose two data-driven approaches for the definition of ROIs as alternatives
to the eROIs in Sections 8.3 and 8.4:

• First, we propose a semi-supervised approach: We select a very small
number of pixels which clearly show phenological features like deciduous
trees. This is in principle done as in the eROI approach, but here we just
select a few number of pixels (6×6) rather than delineating the structures
of interest at fine resolution as done in the eROI approach. Once these
pixels of interest are defined, we let them grow to a data-driven region
of interest by adding pixels with high seasonal correlation. We call this
region “semi-supervised region of interest” (sROI) in the remainder.

This strategy is an improvement of the standard approach because
instead of defining large expert-based ROIs we just set a pinprick on
the image which requires less manual effort from the expert and may
even be applied by non-experts.

Additionally, we provide a fully automated and purely data-driven
version of the sROI approach: Instead of defining a single expert-
chosen pinprick, multiple random pinpricks can be placed on the image.
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Then, based on the two optimality criteria, the best sROI in terms of
phenological information can be selected.

• As second strategy we propose an unsupervised approach: We carry
out a singular value decomposition (SVD) of the images in order to
reduce the dimension of the data while maintaining the information about
phenological variation. A subsequent cluster analysis groups the pixels
with regard to their variation over time. Finally, we identify the interesting
cluster of pixels which show the highest phenological variation by
comparing the optimality criteria for the resulting %greenness time
series. The resulting cluster of pixels is called “unsupervised region of
interest” (uROI) in the remainder.

Phenological classification. Both approaches lead to ROIs for the images.
Regarding the third research goal, determining the dates of SOS, MAX, EOS1
and EOS2, these ROIs can be used to derive and analyze %greenness
time series as commonly done in the phenological community. This means,
structural changes in these time series can be searched for and thus dates
of SOS, MAX, EOS1 and EOS2 are identified. We show that with our more
advanced definitions of ROIs we obtain %greenness time series which carry
at least as much phenological information as those based on the standard
eROI approach. The advantage of our approach is that considerably less
manual effort is required. Chapter 8 presents our new approaches and
Chapter 9 compares the performance of our approaches with the state-of-
the-art approach of expert-based eROIs for images resulting from a scientific
webcam. Additionally, we show how the methods can be applied to publicly
available open-access webcams.

Thus, once the ROIs are defined, we use existing methods for the search for
the dates of SOS, MAX, EOS1 and EOS2 in Chapters 8 and 9. In Chapter 10
we additionally propose a completely different approach for determining these
dates: After the SVD, each image is represented via scores on a small number
of eigenimages, these scores can be used for a supervised classification.
Therefore, each image of a training year has to be classified manually into four
categories spring, summer, autumn and winter. Then, images of a test year
can be classified with respect to these four categories based on the scores of
the SVD using standard statistical classification methods. By summarizing
the predicted categories on day level, each day is uniquely classified as

Page 87



Chapter 7: Introduction

spring, summer, autumn or winter day. As final step, we further process these
predictions to derive unique dates of season changes. Thereby we propose a
different approach for the third research goal, the determination of the dates
of SOS, MAX, EOS1 and EOS2.

As additional benefit of this supervised approach, the days of the year can
be classified with respect to other sets of categories. One example is the
identification of snow days: By learning a classification rule to discriminate
snow days from non-snow days, all snow days from a test year can be
identified. This is for example useful when monitoring remote forest areas
because sudden and unexpected onsets of winter can be identified.

Implementation. All methods are implemented in the statistical software
package R (R Core Team, 2016). The resulting R package phenofun is avail-
able on R-Forge at https://r-forge.r-project.org/projects/phenofun/,
the documentation of the package is sketched in Appendix C. In Section 9.2
we show how the methods can be applied to a large database of several thou-
sands of webcams. We thereby show that also the fourth research goal of an
efficient implementation is achieved.

7.3. Scientific and open-access webcams
We demonstrate our routines in detail with five webcams, two scientific
webcams and three publicly available open-access webcams. Additionally,
we show that the methods can be used on a larger scale as well by applying
them to a database of several thousands of webcams.

Scientific webcams

Kranzberg Forest. The study site Kranzberg Forest is located near
Freising/Germany at 48◦25′08′′ N and 11◦39′41′′ E (485 m.a.s.l.). During the year
2014, a scientific MOBOTIX M12D-Sec-DNight camera recorded four images
per day with the same field of view. Two images were taken in the morning
around 9.45 am and two images were taken on midday around 1.45 pm. Due
to technical reasons, some images had to be deleted, resulting in a total of
1441 images. For the year 2013, 1000 images were recorded starting at DOY
105 (April 15). The image resolution is 1276 × 960 pixels, Figure 7.1 (top row)
shows two example images from DOY 121 (May 1) and DOY 365 (December
31) for the year 2014.
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Brandwiese. For the study site Brandwiese, located at 47◦26′44′′ N and
11◦6′30′′ E (900 m.a.s.l.), a camera of the same type recorded seven images
per day around midday between 1.45 pm and 2.15 pm. For the year 2012,
1413 images were recorded starting at DOY 122 (May 1), for the year 2013,
only 725 images were recorded between January 1 and December 31 due to
technical problems. Figure 7.1 (bottom row) shows two example images from
DOY 140 (May 19) and DOY 348 (December 13) for the year 2012.

Figure 7.1. Example images of Kranzberg forest on DOY 121 (top left) and DOY
365 (top right) and of Brandwiese on DOY 140 (bottom left) and DOY
348 (bottom right).
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Open-access webcams – foto-webcam.eu

The first open-access webcam data were taken from the website http:

//www.foto-webcam.eu. This website hosts images from a large variety of
webcams which are mainly located in the Alps. The original purpose of
this collection was not to enable phenological analyses but many of the
webcams are well suited for this purpose as well. Here, we use three
sites: First, data from Marquartstein Süd, near the lake Chiemsee in South
Germany from the year 2013; second, data from Kolm-Saigurn, Austria, from
the year 2014; and third, data from Studentenstadt in the north of Munich,
Germany, from the year 2013. Example images are shown in Figure 7.2. The
webcams were selected to cover a wide range of possible views, i.e., from rich
phenological information (Marquartstein and Kolm-Saigurn, top and middle
image) to poor phenological information looking at buildings and streets in
a big city (Studentenstadt, bottom image). All images have a resolution of
1200 × 675 pixels where the top 50 pixel rows of each image were discarded
before the analysis to delete the time stamp and location information. At
each site we use one image per day taken around midday for each day of the
respective year.
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Figure 7.2. Example images of Marquartstein on DOY 190 (top image), Kolm-
Saigurn Sonnblickbasis on DOY 193 (middle image) and Studenten-
stadt München-Freimann on DOY 185 (bottom image). Images are
available at http://www.foto-webcam.eu.
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Open-access webcams – AMOS

AMOS - the archive of many outdoor scenes “is a collection of long-term
timelapse imagery from publicly accessible outdoor webcams around the
world” (Jacobs et al., 2007) and can be accessed through http://amos.

cse.wustl.edu/. It contains image data from almost 30000 webcams of
which the majority is located in the United States. A map with the locations
of all cameras can be found at http://amos.cse.wustl.edu/browse_map.
Figure 7.3 shows example images for camera ID 8221 from Iowa, USA (top
image), camera ID 441 from New York, USA (middle image) and camera ID
22231 from Lake Louise, Canada (bottom image). The first two cameras
show deciduous trees and grassland in large parts of the images. Here,
the challenge for the algorithm is not to mix up pixels of deciduous trees
and grassland. The third camera shows no deciduous trees at all. Here,
seasonality has to be derived from the grassland only.
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Figure 7.3. Example images for three selected webcams from AMOS. Images are
available at http://amos.cse.wustl.edu/.
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Chapter 8: Automated definition of re-
gions of interest

In this chapter we propose two new approaches for the definition of regions
of interest (ROIs), namely the “semi-supervised regions of interest” (sROI,
Section 8.3) and the “unsupervised regions of interest” (uROI, Section 8.4)
which are automated alternatives to the standard approach of “expert-based
regions of interest” (eROI, Section 8.2). As first step, we present in Section
8.1 two optimality criteria which can be used to compare ROIs with respect
to their amount of phenological information. The optimality criteria will also
be used in the definition of sROIs. In Chapter 9, we apply and compare the
approaches for the given webcam data.

8.1. Optimality criteria
We propose two optimality criteria which can be used to assess the amount
of phenological information in a ROI. Both optimality criteria have in common
that they assign a scalar value to a given ROI which is high when the
%greenness time series inside that ROI captures much information about
phenological variation.

For a given ROI, the %greenness time series pgt inside the ROI is computed
as given in Equation (7.1). If more than one image is taken at day t, the values
are additionally averaged per day resulting in

pgt =
1

n · nt

∑
s∈It

∑
i∈IR

gis
ris + gis + bis

, for t = 1, . . . , T (8.1)

where ris, gis and bis are the red, green and blue values at pixel i and image s,
respectively, IR denotes the index set of all pixels inside the ROI, It denotes
the index set of all images at day t, n = |IR| is the number of pixels inside
the ROI, nt = |It| is the number of images at day t. Note that in this section
the index t refers to a day of the year while in the previous chapter the index
t referred to a specific image. This shall allow for multiple images per day.
Figure 8.1 shows as an example the %greenness time series for the eROI of
the Kranzberg data.
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Figure 8.1. %greenness pgt in eROI over the year 2014, resulting time series from
Kranzberg data. For the used eROI see Figure 8.3 (top left).

Optimality criterion 1

The first optimality criterion (OC1) is based on methods from the field of
structural change point analysis. Since we are searching for the pixels with
the highest phenological variation over time, we know that the corresponding
%greenness time series has to show a significant structural change in spring
as can be seen for example around DOY 120 in Figure 8.1. Before and after
this change, the %greenness time series has to be more or less linear until
autumn. We use this knowledge to define an optimality criterion as follows.

We only consider the first 240 days, i.e., all days until the end of August, and
thereby delete the autumn and beginning of winter because at this point we
are only interested in the structural change in spring. First, we compute the
%greenness time series pgt of the pixels inside the given ROI as shown in
Equation (8.1).

Then we search for a structural change in this %greenness time series with
usual methods for structural change point detection, for example described
in Hansen (1992), Andrews (1993) and Zeileis et al. (2003) and implemented
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in the R package strucchange by Zeileis et al. (2002). All time points from
DOY 30 to DOY 210 are subsequently considered as potential change point.
The reason for not considering DOYs from 1 to 29 and from 211 to 240 is
that at some point the sample size would be too small to fit the corresponding
models. Additionally we know that the spring onset in Germany will neither be
in January nor in August.

For each potential change point cp = 30, . . . , 210, a linear model LMcp with
changing intercept and slope at time cp is fitted:

pgt = (β0 + β1 · t) · I(t ≤ cp) + (β3 + β4 · t) · I(t > cp) + εt, t = 1, . . . , T, (8.2)

where I(·) is an indicator function, T is the number of time points, i.e., here
T = 240, and εt is the error term for which usual assumptions apply.

Additionally, a linear model LM0 without a change point is fitted:

pgt = β0 + β1 · t+ εt, t = 1, . . . , T. (8.3)

Then, for each potential change point cp, an F-statistic is computed to
compare the model with change point, LMcp, with the model without change
point, LM0:

Fcp =
(RSS0 −RSScp)/k
RSScp/(T − 2k)

, for cp = 30, . . . , 210, (8.4)

where RSS0 and RSScp are the residual sums of squares for the models LM0

and LMcp, respectively, and k is the number of estimated parameters in model
LM0, i.e., here k = 2. See also Zeileis et al. (2002) for details.

Finally, the change point cpopt with the largest F-statistic is considered to be
the point of structural change. The reason is that for this change point, the
signal-to-noise ratio in the resulting %greenness time series is maximal with
respect to the fitted models. The value of the corresponding F-statistic Fcpopt is
the value of the optimality criterion OC1 for this time series and corresponding
ROI.
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Optimality criterion 2

The second optimality criterion (OC2) is closer to the expected seasonal
pattern of the %greenness time series. From long-term phenological
experience we know that the %greenness time series of a deciduous tree
behaves as follows: In winter, the time series stays constant on a rather low
level. In spring, there is a steep increase followed by a small decrease and
then, in summer, the time series remains constant again but on a higher level
than in winter. Finally, in autumn, the time series further decreases until the
level of winter is reached.

Although we know this rough functional pattern, we do not know the concrete
dates of the change points. But we can exploit our structural knowledge: We
define a large set of template time series which reflect the known seasonal
patterns but differ in the time points of start of spring a and end of autumn b.
Figure 8.2 shows nine of these template time series for varying values of a and
b. In principle also other templates such as typical %greenness time series of
grassland systems, agricultural cereals or infrastructure could be used.
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Figure 8.2. Template %greenness time series for varying values of start of spring a
and end of autumn b.

For a given ROI, we can now compute the correlation of the resulting %green-
ness time series with each of the template time series, where the values a

and b vary in all possible combinations between a ∈ {50, 51, . . . 149, 150} and
b ∈ {265, 266, . . . 364, 365}. Then, the value of the highest correlation is consid-
ered as optimality criterion OC2.

This approach has the advantage that additionally to the definition of an
optimality criterion, we obtain rough estimates of the SOS and EOS2 dates
via the values a and b of the best combination.
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8.2. Expert-based ROI approach
The standard approach for filtering the relevant pixels from the data is the
following: The analyzing researcher defines one or more ROIs per hand by
simply drawing rectangles, polygons or free shapes around regions which are
subjectively relevant, usually around crowns or canopies of deciduous trees.
Deciduous trees are of special interest because they show high seasonal
variation necessary for phenological classification, whereas evergreen trees
and grassland display less; other abiotic items, such as bare soil, stone and
sky should not be affected.

This means, a ROI is generated that defines which pixels are discarded
and which pixels remain in the data for further analyses. Figure 8.3 (top
left) shows the “expert-based regions of interest” (eROI) for the scientific
webcam as example. These eROIs were defined with a considerable amount
of manual work, see Stratopoulos (2015) for details on this process which
aimed at identifying individual specimen-specific parts of the upper sun crown.
Such an approach is state-of-the-art and yields satisfying results, since it
allows the identification of single trees even in an homogeneous stand of
one species, see for example Henneken et al. (2013), Alberton et al. (2014)
and Menzel et al. (2015). Nevertheless, this approach requires an expert to
define the eROIs manually. Therefore, it does not allow to be scaled up to an
analysis of hundreds or thousands of webcams where the focus would be on
the phenology of general vegetation types (e.g. deciduous trees, evergreen
vegetation).

8.3. Semi-supervised ROI approach
The choice of eROIs can be subjective and the results may be improved by a
more sophisticated and data-driven approach which we call “semi-supervised
regions of interest” (sROI). The term semi-supervised refers to the fact that we
start with a few handpicked pixels. Then, the region of interest grows data-
driven to capture most of the relevant information in the images. The sROI
approach works as follows.

Page 100



Chapter 8: Automated definition of regions of interest

First, we select a very small ROI in the middle of the crown of a deciduous
tree, for example 6 × 6 pixels. This means that we point with a needle on
the picture, where the needle head is on a clearly identifiable deciduous tree.
This pinprick is visualized in Figure 8.3 (top right). Second, for the selected
few pinprick pixels, we compute the %greenness time series pgt,pp according
to Equation (8.1), visualized in Figure 8.4.

Figure 8.3. Expert-based eROI (top left), pinprick (top right), correlation image
(bottom left, brighter colors indicate higher correlations) and resulting
sROI (bottom right, white pixels are selected for the sROI) for Kranzberg
data 2014.
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Figure 8.4. %greenness pgt,pp in pinprick over the year 2014, resulting time series
from Kranzberg data. For the used pinprick see Figure 8.3 (top right).

As a third step, we compute for each single pixel i = 1, . . . , N , where N = n1 ·n2
is the total number of pixels per image, the %greenness time series pgt,i over
the year and correlate it with the pinprick pixels’ %greenness time series pgt,pp.
This results in N correlations ρi = cor(pgt,i, pgt,pp) which can be visualized in
a correlation image as shown in Figure 8.3 (bottom left). The brighter the
level of gray is at a pixel i, the higher is ρi, the pixel’s correlation with the
pinprick. As final step, we threshold this correlation image and discard all
pixels which have small correlations, in the example correlations of less than
0.65 are neglected. The remaining pixels constitute the sROI, visualized in
Figure 8.3 (bottom right).

Automation of sROI approach

In the example given above, the pinprick and the correlation threshold were
chosen manually to obtain a visually optimal ROI. Since we are heading
towards an automated approach, we propose the following extension: Instead
of setting a single pinprick expert-based in the crown of a deciduous tree, we
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distribute a number of q pinpricks randomly over the image. Additionally, the
threshold for the correlation image is not chosen subjectively as above but
we compute candidate ROIs for a grid of r correlation thresholds between 0

and 1. This leads to a number of M = qr candidate ROIs, i.e., one for each
combination of pinprick and correlation threshold.

Now, the crucial question is: How can we select the best ROI from these M

candidate ROIs? We can make use of the two optimality criteria presented
above:

We compute for each candidate ROI m = 1, . . . ,M the optimality criterion
OC1 or OC2. The ROI with the highest value of the optimality criterion is
considered to be the optimal ROI and hence the corresponding combination
of random pinprick and correlation threshold is considered to be optimal. For
practical purposes, one of the optimality criteria OC1 and OC2 has to be
chosen beforehand because they might vote for different optimal ROIs. Our
analyses showed that using OC2 is preferable since the resulting ROIs are
visually more convincing.

Thus, there are two options when using the sROI procedure: A semi-
automated and an automated version. For the semi-automated version, a
single prinprick has to be set by an expert. With this pinprick, the sROI
procedure computes an optimal ROI by optimizing the correlation threshold.
For the fully automated version, a number of q pinpricks are randomly
distributed over the image. Then, for each pinprick the best threshold is
found and finally the best combination of pinprick and correlation threshold
is identified.

8.4. Unsupervised ROI approach
We propose an alternative approach for the automated definition of ROIs,
called “unsupervised regions of interest” (uROI).

We assume the following data structure of the color images: We consider
each color channel of each pixel as observation unit and each time point
t = 1, . . . , T as variable. Each image has N = n1 · n2 pixels with three color
channels red, green and blue. We store each image in a vector of length 3N

and denote it as xt = (r1t, . . . , rNt, g1t, . . . , gNt, b1t, . . . , bNt)
> for t = 1, . . . , T where

rit, git and bit denote the intensity of the red, green and blue color channel of
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pixel i at time t, respectively. Altogether we get a data matrix X = (x1, . . . ,xT )

of dimension 3N × T which is centered prior to the following steps such that
the mean of the pixel values is 0 for each image xt, t = 1, . . . , T .

On X we perform a singular value decomposition (SVD). This means, X is
decomposed into X = UDV >, where the columns of U are the eigenvectors
of XX>, the columns of V are the eigenvectors of X>X and D contains the
square roots of the non-zero eigenvalues of XX> or X>X, see for example
Golub and Reinsch (1970). In order to achieve a dimension reduction, we
make use of a truncated version of the SVD and only compute the first p� T

left singular vectors, i.e., the matrix U is of dimension 3N × p. The columns
of U may also be called eigenimages, in Chapter 10 we will explain how to
interpret these eigenimages. We rearrange rows and columns of U such that
each pixel is described by 3p variables, i.e., p variables per color channel, and
denote it as U∗ with dimension N × 3p. Now that each pixel is described by a
small set of only 3p variables (in contrast to 3T variables prior to the SVD), we
can find similar pixels by performing cluster analyses on the rows of U∗. While
hierarchical clustering is computationally unfeasible due to the large number
of pixels, k-means procedures lead to good results with low computational
effort. As a result, the image is segmented into k clusters and each cluster of
pixels defines a candidate ROI.

Figure 8.5 shows as an example the result of the cluster analysis for p = 12

and k = 3 for the Kranzberg data from 2014. Comparing the resulting k = 3

clusters with the example image in Figure 7.1 (top left), we can see that
cluster 3 (black) is a candidate for the final uROI since it reflects the deciduous
trees. Clusters 1 and 2 refer to evergreen Norway spruce specimens of which
cluster 1 trees in the foreground clearly reveal spring seasonality due to May
shoots as well as edge effects by the deciduous European beech trees.
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Figure 8.5. Resulting three clusters from uROI method: cluster 1 in green, cluster
2 in blue and cluster 3 in black, to compare with Figure 7.1 (top row).
Kranzberg data 2014.
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Figure 8.6. Resulting %greenness time series for clusters from uROI approach
shown in Figure 8.5. Kranzberg data 2014.
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Automation of uROI approach

However, as we seek for a fully automated procedure, we have to select the
final uROI data-driven and automatically: Therefore, we compute again the
optimality criteria OC1 and OC2 for the %greenness time series for each
cluster, the time series are shown in Figure 8.6. In our example, the OC1
for the three clusters are 665, 299 and 1863, respectively, and the OC2 for the
three clusters are 0.89, 0.81 and 0.96, respectively. Thus, both optimality criteria
clearly select cluster 3 as final uROI, as expected by comparing the clusters
with the original images.

Additionally, the optimal number of left singular vectors p and clusters k has
to be determined automatically: Therefore, we carry out the SVD and the k-
means clustering for all combinations of a grid of np values for p and of a grid
of nk values for k. Then, we compute the optimality criterion for each of the
k clusters for all np · nk combinations of p and k. The cluster with the largest
value of the optimality criterion is the final uROI and the corresponding values
for p and k are considered as optimal.

Implementation

The computational burden of the uROI approach is rather small, although an
SVD of a very large matrix has to be carried out. Using the statistical software
R (R Core Team, 2016), the singular vectors can be computed very efficiently
with the package irlba by Baglama and Reichel (2015).

The developed R package phenofun contains all relevant functions to use
the presented sROI and uROI methods. It is available on R-Forge at
https://r-forge.r-project.org/projects/phenofun/, see Appendix C for
an excerpt of the documentation.
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Chapter 9: Resulting ROIs and pheno-
logical change points

In this chapter we compare the eROI, sROI and uROI approaches for the
definition of ROIs with the goal to identify the SOS, MAX, EOS1 and EOS2
dates. These phenological onset dates are derived from the %greenness
time series of eROI, sROI and uROI. Change points in these time series
are modelled using the Bayesian multiple change point approach proposed
by Henneken et al. (2013), based on Dose and Menzel (2004) and Schleip
et al. (2006), and e.g. applied in Pope et al. (2013) and Menzel et al.
(2015). First, we use the images from the scientific camera at Kranzberg
forest, second we use the images from the open-access webcam data
from http://www.foto-webcam.eu and then we challenge the approach and
analyze images from several thousands of webcams from AMOS (http:
//amos.cse.wustl.edu/).

9.1. Scientific webcam
Figure 9.1 shows an overlay of the ROIs resulting from the eROI, sROI and
uROI approaches. For the sROI approach, one expert pinprick is used,
both sROI and uROI use optimality criterion 2. All approaches exclude the
evergreen trees but differ in the amount and selection of pixels corresponding
to deciduous trees. In the following our aim is to decide which of these ROIs
is optimal with respect to phenological information.
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Figure 9.1. Overlay of the ROIs resulting from the eROI (pink polygons), sROI
(green) and uROI (purple, overlay with sROI light blue) approaches for
the images from Kranzberg data 2014.

The resulting %greenness time series for eROI, sROI and uROI for the data of
Kranzberg 2014 are shown in Figure 9.2, see also Figure 9.3 for a comparison
of the LOESS estimators. It seems that the time series resulting from the
uROI and eROI approach are the most informatives because the decisive
spring amplitude is slightly larger than for the sROI approach. However, the
error variability is slightly smaller for the sROI approach. Thus, we need an
objective measure to decide which time series is the most informative and
therefore use the optimality criteria OC1 and OC2. The resulting values for
OC1 and OC2 are shown in Table 9.1. It can be seen that the amount of
information contained in the three time series is approximately the same, but
the sROI time series carries the most information, followed by uROI and eROI.

Table 9.1. Values of optimality criteria OC1 and OC2 for different ROI approaches
for images from Kranzberg data 2014.

eROI sROI uROI
OC1 1848 1944 1863
OC2 0.967 0.972 0.961

Page 108



Chapter 9: Resulting ROIs and phenological change points

1) eROI

DOY

P
er

ce
nt

ag
e 

G
re

en

1 60 120 200 280 360

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

2) sROI

DOY

P
er

ce
nt

ag
e 

G
re

en

1 60 120 200 280 360

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

3) uROI
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Figure 9.2. %greenness time series from Kranzberg data 2014 for three different
approaches. Blue dashed lines show LOESS estimators for smoothed
time series.
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Figure 9.3. Comparison of LOESS estimators for smoothed %greenness time
series for the images from Kranzberg data 2014.
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For the identification of the SOS, MAX, EOS1 and EOS2 dates we use the
approach of Henneken et al. (2013) and Menzel et al. (2015). There, the
dates of change points in the univariate %greenness time series values are
found via a Bayesian multiple change point analysis. The total number of
change points is not specified by the researcher but determined automatically
by the method.

In all three cases eROI, sROI and uROI, four change points turned out to be
optimal to describe the annual course of %greenness comprising SOS, MAX,
EOS1 and EOS2. Table 10.1 shows the results.

Table 9.2. Estimated phenological change points (DOYs) for different ROI ap-
proaches for images from Kranzberg data 2014.

eROI sROI uROI Date
SOS 105.0 105.0 105.1 April 15
MAX 119.0 119.0 118.9 April 29
EOS1 303.0 303.0 302.8 October 30
EOS2 308.0 308.0 307.7 November 4

Thus, the information about phenological variation resulting from eROI, sROI
and uROI are almost identical, both regarding the optimality criteria OC1 and
OC2 and regarding the estimated phenological change points. Therefore,
we conclude that the sROI and uROI approaches outperform the approach
of expert-based eROIs because additionally to the degree of information
contained in the %greenness time series, they have the great advantage that
they are fully automated.
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9.2. Open-access webcams – foto-webcam.eu
For the open-access data from http://www.foto-webcam.eu, where expert-
based ROIs were not available, we apply the uROI approach as follows:
For each webcam site we compute clusters as described above for different
settings, namely for p ∈ P = {12, 24} singular vectors and k ∈ K =

{4, 5, 6, 7, 8, 9, 10} clusters for the k-means procedure. This results in |P | · |K| =
14 partitions of the image and yields in total

∑
p∈P
∑

k∈K k = 98 clusters. For
each of the 98 clusters we compare the OC2 of the %greenness time series
defined above and thereby identify one optimal cluster for each webcam site.

Figure 9.4 shows the resulting %greenness time series for the optimal cluster
of each webcam site. Most interestingly the resulting %greenness time series
of the optimal cluster in each picture display different shapes. Whereas in
case of Studentenstadt 2013 and Kolm-Saigurn 2014 a typical deciduous
type is achieved, Marquartstein 2013 exhibits after the spring increase an
early summer depletion and a second increase from DOY 200 again. We
guess that this might be linked to quite dark / underexposed pictures in mid
of July 2013. Additionally, careful checking of all pictures reveals a felling of a
prominent deciduous tree in the foreground in front of the spruce (cluster 4).
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Figure 9.4. Resulting %greenness time series for sites Marquartstein (left), Kolm-
Saigurn (center) and Studentenstadt (right) obtained by the uROI
approach.
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In Figure 9.5 - Figure 9.7 we show the optimal cluster for each webcam site
along with all other clusters from the respective partition by plotting an overlay
of a selected original image and the respective cluster in yellow. The clusters
are ordered with respect to the information criterion OC2.

Figure 9.5 shows the clusters for the site Marquartstein. It can be seen
that besides two sky clusters (10, 9) four clusters differentiated background
vegetation, mainly mixed forests, in elevational belts (8, 7, 6, 5). The
foreground vegetation was separated into a single dominating spruce (4) and
deciduous vegetation (3), partly also assigned to (2) due to different winter
aspects. The optimal cluster (1) consists of the upper crown part of the
deciduous forest edge and a tree at the left side of the picture.
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Figure 9.5. Resulting k = 10 clusters from uROI approach for the site Marquartstein,
ordered with respect to OC2. Cluster 1 has the highest OC2.
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Figure 9.6 shows the clusters for the site Kolm-Saigurn Sonnblickbasis. It
displays clusters of meadows in the valley (3), roofs of buildings (10), wall
structures and rocks (8) as well as water fall / rocks (7). All vegetation is
divided into various clusters from the background (9, likely mugo pine) to
deciduous broadleaf vegetation (2, likely alder) in the valley. The optimal
cluster (1), however, are deciduous European larch (Larix decidua) turning
bright green needles in spring into yellow in autumn.
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Figure 9.6. Resulting k = 10 clusters from uROI approach for the site Kolm-Saigurn
Sonnblickbasis, ordered with respect to OC2. Cluster 1 has the highest
OC2.
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Figure 9.7 shows the clusters for the site Studentenstadt-Nord, which is a
mixed urban landscape in the northern area of Munich. The clusters comprise
sky (9) as well as infrastructure components such as flat roofs / parking
space (8), facade and contour lines (7, 6) and streets (5). Cluster comprising
predominantly vegetation are background vegetation (4), grass (3), deciduous
vegetation including facades and seasonal shadows from the autobahn (2) as
well as the optimal cluster (1) with pure deciduous vegetation components.

These results for images from open-access webcams emphasize the broad
applicability of the presented methods. Additionally to the definition of
an optimal ROI, the uROI method delivers a complete partition of the
images. Thereby, vegetation is separated from infrastructure components
and sky (Studentenstadt), and within the vegetation, different species can
be discriminated (Kolm-Saigurn), or different elevations of similar vegetation
(Marquartstein). Most importantly, the fully automated implementation allows
to use the proposed methods on a larger scale of several hundreds or
thousands of webcams as well. Thereby, the analysis is not restricted to
scientific cameras, especially set up for phenological analyses, but the huge
amount of publicly available, open-access webcam data can be exploited.
This is demonstrated for webcams of the AMOS database in the following.
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Figure 9.7. Resulting k = 9 clusters from uROI approach for the site Studenten-
stadt, ordered with respect to OC2. Cluster 1 has the highest OC2.
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9.3. Open-access webcams – AMOS
Finally we challenge our methods and apply the uROI approach to a large
database of webcams from AMOS. We automatically analyze all webcams
which offer images for the year 2015. For most of these webcams, between
one and four images per hour are available. We reduce the computational
complexity by selecting images of a fixed hour during day time. This is
challenging because the timestamp of the images reflects GMT (Greenwich
Mean Time) instead of the local time. We restrict the analyses to images
with GMT between 5pm and 6pm. This should deliver useful images for
webcams located in the United States as well as for webcams located in
Europe. We apply the uROI method to all thereby selected webcams. As
number of left singular vectors we choose p = 12 and as candidates for the
number of clusters we define the grid K = {4, 5, 6, 7, 8, 9, 10}. Finally, we use
OC2 to find the best of the resulting clusters.

To automatically perform the analyses, we proceed as follows. The website
offers a python script at http://amos.cse.wustl.edu/dataset which allows
to download the data for a given webcam, year and month. We embed this
python script in an R script and are thereby able to start the download directly
with R. The format of the images is yyyymmdd_hhmmss.jpg. We restrict the
analyses to images where the timestamp starts with 17 for the given hour.
We distribute the computations on 16 cores on a server with four Intel Xeon
E5-4620 CPUs with 2.20GHz and 8 cores each and 528 GB RAM in total.
This results in a computation time of 23 days. Full results can be downloaded
at http://bothmann.userweb.mwn.de/dissertation.html. For each webcam
all ROIs from the best setting are shown together with the OC2 values and
the resulting %greenness time series.

In total, for 13988 webcams a uROI analysis was started. For 13095 of
these the entire analysis could be carried out without errors, i.e., ROIs and
%greenness time series were derived. 9299 webcams offer enough data to
compute OC2, for most of the other cameras there are large gaps in the
year where no images are recorded. Figures 9.8 and 9.9 show example
images, final uROIs and corresponding %greenness time series for three
selected webcams. In all three cases, the uROI method finds ROIs with high
phenological information. For ID 8221 (Figure 9.8, top) and ID 441 (Figure 9.8,
bottom), the deciduous trees are identified and the resulting %greenness time
series show clear structural changes in spring and autumn.
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Figure 9.8. Example image, uROI and %greenness time series in uROI for cameras
with ID 8221 (top) and ID 441 (bottom).
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For ID 22231 (Figure 9.9), the grassland in the foreground is defined as
uROI since no deciduous trees are captured by the camera. The resulting
%greenness time series shows a clear seasonal pattern as well.

All in all, the results are satisfying but nevertheless a blind automatic
proceeding is problematic due to the following issues:

• For some webcams, the field of view shifts significantly over the year.
This means that some webcams are for example directed towards the
north on some days and towards the south on other days. For these
cases, meaningful uROIs can obviously not be extracted.

• In other cases, the field of view shifts only slightly. For these cases a
registration of the images as preprocessing step would be beneficial.

• As mentioned above, we use images where the timestamp starts with 17
for the given hour. Due to the fact that the timestamp of the images does
not refer to the time at the webcam location but to GMT, we get images
at night for a variety of locations. Of course, the analysis does not make
sense for images at night. Therefore, in a further analysis, the location
of the webcams should be extracted from the AMOS website in order to
determine the time zone.

• For some webcams, the image quality is rather poor and meaningful
uROIs cannot be derived. Of course, the quality of the results depends
on the image quality.

We conclude that the presented results for the AMOS data demonstrate that
our new methods are suitable for the analysis on a large scale because the
computing time is reasonable and the results are overall satisfying. Even if
the above mentioned problems have to be solved in further research, this first
analysis seems to be a very promising start.
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Figure 9.9. Example image, uROI and %greenness time series in uROI for camera
with ID 22231.
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Chapter 10: Supervised classification of
webcam images

In this chapter we present an approach for phenological classification which
is completely different to the approach presented in Chapter 9. There are two
ways of describing phenological changes:

1. Either unique dates of season changes are defined and then all days
between these change point dates are considered as spring, summer,
autumn or winter, respectively (see Chapter 9).

2. Alternatively, all days of the year are separately classified as spring,
summer, autumn or winter resulting in a discrete time series of seasons.
Then, unique dates of season changes are defined by further processing
this time series.

In this chapter, we pursue the second approach. Section 10.1 describes the
methods. Section 10.2 presents the results of applying the approach to the
scientific webcam data of Kranzberg and Brandwiese.

10.1. Methods

Eigenimages

Recall a singular value decomposition (SVD) of X, where X = (x1, . . . ,xT ),
the matrix containing the vectorized images, is of dimension 3N × T and
centered prior to the following steps. Through the SVD, X is decomposed
into X = UDV >. The left singular vectors of X, stored in U , can also be
considered as “eigenimages”. Since we make use of a truncated version of
the SVD and only compute the first p� T left singular vectors, the matrix U is
of dimension 3N ×p. Each column uj , j = 1, . . . , p, of U is a vector of length 3N

and is hence of the same dimension as the vectorized images xt, t = 1, . . . , T .
We can rearrange the dimensions of U such that we get a four-dimensional
array A of dimension n1 × n2 × 3 × p. Thus, we generate p eigenimages with
three color channels and n1 × n2 pixels.
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The uROI approach described in Section 8.4 was also based on an SVD
of X. There, the matrix U was used for a clustering of pixels yielding
ROIs. Then, the %greenness time series inside the ROIs were used for
phenological classification. Here we directly use the outcome of the SVD for
phenological classification as described below. This means that no ROIs and
no %greenness time series are generated and that all three color channels
are directly used for classification.

What is the interpretation of eigenimages? As in a usual principal component
analysis, the first eigenimage explains the largest part of the variance. But
since this is a rather theoretical interpretation, we visualize the effect of the
eigenimage on the mean image in order to derive an illustrative interpretation.
Figure 10.1 shows the mean image (top left) of all images of Kranzberg 2014
and the first eigenimage (top right). For the mean image, the average of all
values over the year is computed separately for each color channel and each
pixel. Additionally, the sum (bottom left) and difference (bottom right) of the
mean image and a suitable multiple of the first eigenimage are shown. It can
be seen that a low score on the first eigenimage means that the deciduous
trees carry leaves (bottom right) while a high score means that no leaves are
present (bottom left).

In this example, the 5%- and the 95%-quantile of the scores of the images
on the first eigenimage where chosen as “suitable multiple”. But these are
only two possible values. If we use a grid of values between the minimal and
the maximal score as weights and stick the resulting sums of mean image
and weighted first eigenimage together, we create an “eigenvideo” where we
can watch the leaves growing. The eigenvideo for the first eigenimage of
the Kranzberg data can be accessed at http://bothmann.userweb.mwn.de/
dissertation/videos/kranzberg_eigenvideo1.mp4.
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Figure 10.1. Mean image (top left), first eigenimage (top right), sum (bottom left)
and difference (bottom right) of mean image and suitable multiple of
first eigenimage for Kranzberg data 2014.

This interpretation goes along with the score time series corresponding
to the first eigenimage. To compute the score stj of an image at time
point t on the j-th eigenimage, the vectorized image xt is projected on the
vectorized eigenimage uj, i.e., stj = x>t uj. Figure 10.2 shows the score time
series resulting from all images from Kranzberg 2014 projected on the first
eigenimage where scores are averaged per DOY. It can be seen that the first
eigenimage captures the gross seasonal variation: At the beginning of spring
around DOY 110, the scores decrease significantly and stay on a low value
until the beginning of autumn around DOY 300. In this period of the year,
the deciduous trees carry leaves which corresponds to low scores on the
first eigenimage as suggested by Figure 10.1 (bottom right). Note that this
time series is generated on all three color channels, not only on %greenness
values.
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Figure 10.2. Score time series of the images on the first eigenimage for Kranzberg
data 2014. The number in the header reflects the amount of variance
explained by this eigenimage.

Eigenimages and scores for Brandwiese data

Figure 10.3 shows the sum (left column) and difference (right column) of the
mean image over the year and a suitable multiple of the first, second and
third eigenimage for the Brandwiese data from 2012. The first eigenimage
covers illumination effects: A high score on the first eigenimage means that
the image is rather bright or in other words – the sun is shining (top row). It
can be seen that a high score on the second eigenimage means that the site
is covered by snow while a low score means that no snow is present (middle
row). The third eigenimage covers seasonal variation: A low score on the third
eigenimage means that the deciduous trees carry leaves while a high score
means that no leaves are present (bottom row). Links to the corresponding
eigenvideos can be found in the caption of Figure 10.3.
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Figure 10.3. Sum (left column) and difference (right column) of mean image and
a multiple of first (top row), second (middle row) and third (bottom
row) eigenimage for Brandwiese data. Differences in the degree of
illumination (top row), presence of snow (middle row) and amount of
leaves (bottom row) can be seen. Links to the corresponding first,
second and third eigenvideo.

Page 127

http://www.statistik.lmu.de/~bothmann/dissertation/videos/brandwiese_eigenvideo1.mp4
http://www.statistik.lmu.de/~bothmann/dissertation/videos/brandwiese_eigenvideo2.mp4
http://www.statistik.lmu.de/~bothmann/dissertation/videos/brandwiese_eigenvideo3.mp4


Chapter 10: Supervised classification of webcam images

This goes along with the score time series corresponding to the three
eigenimages shown in Figure 10.4. The first score time series shows no
specific pattern, which means that in every season there can be brighter
and darker days. The second score time series has particularly high scores
around DOY 300 and later from DOY 340 onwards. These are exactly the
days where the site was covered by snow. And finally, the third score time
series reflects the gross seasonal variation: Here, the scores decrease in
spring and increase in autumn which corresponds to the interpretation of the
eigenimage in Figure 10.3, where a low score means that the deciduous trees
carry leaves.

This means that especially the scores on the third eigenimage are promising
for the classification of images with respect to seasons and thereby for the
detection of phenological change points SOS, MAX, EOS1 and EOS2. One
could think of applying structural change point methods on the score time
series to detect season onset dates. However, in the approach presented
in this chapter, no methods for the detection of structural change points
are used. Among others this is due to the fact that we cannot know
beforehand which eigenimage will carry information about seasonal variation.
For Kranzberg data it is the first eigenimage, for Brandwiese data it is the
third eigenimage. We therefore use all p eigenimages to set up a supervised
classification as explained in the following.
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Figure 10.4. Scores of the images on the first, second and third eigenimage for
Brandwiese data 2012. The number in the header reflects the amount
of variance explained by each eigenimage.
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Definition of score-based classification variables

The good interpretability of the eigenimages encourages us to compute
scores on all eigenimages and to later use these scores for a supervised
classification as follows: We project each vectorized image xt, t = 1, . . . , T, on
each vectorized eigenimage uj , j = 1, . . . , p, where uj is the j-th column of U .
This results in p scores per given image, i.e., stj = x>t uj. This can be done for
all T images and all p eigenimages, resulting in a matrix of scores S = X>U

of dimension T × p.

This procedure can be seen as a dimension reduction technique: Each
original image is now represented by p scores and the corresponding p

eigenimages instead of n1 · n2 · 3 = 3N pixel color channels.

Supervised classification

We can use the score matrix S to set up a supervised classification procedure:
For a training year, all days are manually and visually classified with respect
to the season categories spring, summer, autumn or winter. Thereby, each
image is assigned a “true” season for the training year, i.e., for each row of S,
the season is known. Then, a classification rule can be learned with standard
classification methods, such as discriminant analysis, which use the columns
of S as discriminating variables.

This classification rule can be used along with the eigenimages of the training
year to classify the images of a new test year: First, each image x∗t , t =

1, . . . , T ∗ of the test year is projected on each eigenimage of the training year,
uj , j = 1, . . . , p, i.e., s∗tj = x∗>t uj resulting in a score matrix S∗ = X∗>U , where
X∗ = (x∗1, . . . ,x

∗
T ∗) is the matrix of all vectorized images of the test year. Then

the classification rule is used to predict the season for each image using the
columns of the score matrix S∗. Finally, the predicted seasons are averaged
per DOY to define a unique season for each DOY in the case of multiple
images per DOY: For example using discriminant analysis, the posterior class
probabilities can be averaged per DOY and then the season with the highest
average posterior class probability is the predicted class.

Likely there will be some misclassified DOYs in practice, even if the
classification accuracy is overall high. To determine unique DOYs of season
changes, the following rule is applied to revise the predicted seasons: The
onset date of a new season is defined as the first DOY at which for the first
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time three consecutive DOYs are classified as this new season. Thereby, the
phenological change points SOS, MAX, EOS1 and EOS2 can be estimated.

To sum up, to detect season onset dates, an SVD is used as in the
uROI procedure. However, here no ROIs are defined and no %greenness
time series are generated but the SVD outcome is directly used for the
classification. No subsequent structural change point detection is necessary
but the manual classification of days of a training year into the four season
classes. No unique change points are directly obtained by this approach but a
broader applicability is given, as exemplarily shown below for the Brandwiese
data.

10.2. Results

Kranzberg – classification of seasons

Figure 10.5 shows a scatterplot of the scores on the first two eigenimages
of the Kranzberg data 2014 where colors refer to the true classes. The data
of 2014 will be used as training data in the remainder whereas the data of
2013 will be used as test data. Already the first two eigenimages seem to
differentiate well between the classes. Taking into account for example a
number of p = 12 components promises a good classification accuracy.
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Figure 10.5. Scores of the images on the first two eigenimages for Kranzberg data
2014. Each point corresponds to one image.

To estimate the classification accuracy we perform a leave-one-out cross-
validation (LOO-CV) with a quadratic discriminant analysis: The images of
each DOY are considered successively as test data and the images of all
other DOYs as training data. We predict posterior class probabilities for each
image of the test data and gather these on DOY level to get a predicted class
for each DOY. Figure 10.6 shows true and predicted classes per DOY: Only
1.4% of the DOYs are misclassified.

Additionally we classify DOYs of the test year 2013. Therefore we first
compute the scores of each image of the test year on the eigenimages of
the training year. With these scores we classify each DOY of the test year
with the classification rule learned on the training year. Figure 10.7 (top)
shows predicted classes for each DOY of the test year where images were
only available starting from DOY 105 due to technical reasons. About 90%
of the DOYs seem to be correctly classified. Nevertheless the results are not
entirely satisfying because they do not indicate unique change point DOYs,
especially for the transition from summer to autumn.
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Figure 10.6. True seasons and LOO-CV-predicted seasons per DOY, Kranzberg
data 2014.

Therefore, we apply the additional step introduced in Section 10.1: The onset
date of a new season is defined as the earliest DOY at which for the first
time three consecutive DOYs are classified as this new season. The resulting
change point DOYs are compared with the true change point DOYs in Table
10.1 and visualized in Figure 10.7 (bottom). The resulting change points are
estimated close to the true change points SOS, MAX, EOS1 and EOS2.

Table 10.1. True and predicted phenological change points for images from
Kranzberg data 2013.

True DOY Predicted DOY True date Predicted date
SOS 116 117 April 26 April 27
MAX 133 133 May 13 May 13
EOS1 279 282 October 6 October 9
EOS2 299 296 October 26 October 23
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Figure 10.7. True seasons and predicted seasons per DOY for test year 2013 (top).
True seasons and predicted seasons per DOY for test year 2013 after
revision (bottom), Kranzberg data.
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Brandwiese – classification of seasons

We carry out the same analysis for the Brandwiese data. As shown in Figure
10.3, the first eigenimage reflected illumination effects here. Thus Figure 10.8
shows a scatterplot of the scores on the second and third eigenimage of
Brandwiese data 2012 reflecting the presence of snow and the amount of
leaves on the deciduous trees, respectively. The data of 2012 will be used as
training data in the remainder whereas the data of 2013 will be used as test
data. Similar to the results for the Kranzberg data, these two eigenimages
alone seem to separate the seasons from each other.

Figure 10.8. Scores of the images on the second and third eigenimage for
Brandwiese data 2012. Each point corresponds to one image.
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Similarly as above, we use the scores on the first p = 12 eigenimages for
a supervised classification. Figure 10.10 (top) shows true season classes
along with LOO-CV predicted classes where images were only available from
DOY 122 onwards. Only four days are misclassified, this corresponds to a
classification error of 1.7%.

Figure 10.10 (bottom) shows the classification for the test year 2013. The
classification did not really work: No DOY is classified as spring day at all and
around DOY 300, no clear class could be identified. This can be explained by
the poor image quality in 2013: At some point, humidity entered the camera,
this resulted in very foggy images with other colors than in the training year.
Figure 10.9 shows two example images on DOY 88 (March 29) and DOY 303
(October 30). It is not surprising that clear seasons cannot be derived from
this data.

Figure 10.9. Example images of Brandwiese on DOY 88 (left) and DOY 303 (right)
from year 2013.
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Figure 10.10. True seasons and LOO-CV-predicted seasons per DOY for training
year 2012 (top). Predicted seasons per DOY for test year 2013
(bottom), Brandwiese data.

Page 137



Chapter 10: Supervised classification of webcam images

Brandwiese – classification of snow days

Another application of the presented method is the automatic detection of
snow days. Instead of classifiying the days with respect to the four seasons,
we can classify them as day with snow or day without snow. Figure 10.11
shows a scatterplot of the scores on the first two eigenimages where points
are colored with respect to the two classes day with snow and day without
snow. It can be seen that these two eigenimages alone separate the two
classes almost perfectly.

This application of our method could be very useful for the detection of
unexpected frost days, as for example dealt with in Menzel et al. (2015).

Figure 10.11. Scores of the images on the first and second eigenimage for
Brandwiese data 2012. Each point corresponds to one image.
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And indeed, the LOO-CV classifies the days perfectly. As can be seen in
Figure 10.12 (top), each day is correctly classified as either day with snow or
day without snow. Regardless the poor image quality in the test year 2013
(recall Figure 10.9), even the classification in the test year is satisfying with a
misclassification rate of 3.7%, see Figure 10.12 (bottom). This is due to the
fact that almost half of the image is dominated by grassland in the lower part
so that on a snow day half of the image is white. Even with foggy images due
to humidity in the camera, this striking feature of the images can be identified
by our method. A visual check of the misclassified days revealed that either
the image was so dark that barely anything could be seen or that the snow
started melting such that only parts of the grassland were covered with snow.
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Figure 10.12. True classes and LOO-CV-predicted classes per DOY for training year
2012 (top). True and predicted classes per DOY for test year 2013
(bottom), Brandwiese data.
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Chapter 11: Discussion and outlook

11.1. Summary and research goals

Summary

In this project, we developed an efficient solution for a big data problem from
applied statistics: Given a set of digital webcam images showing the same
motive over the course of a year, we developed a method to identify those
pixels of the image which are most important in the sense of phenological
information. In the end, onset dates of beginning spring, summer, autumn and
winter should be determined from the image data. The developed methods
should allow to scale up the analyses to several hundreds or thousands of
webcams, i.e., the methods should run fully automated and with reasonable
computational effort.

Therefore, we first developed two fully automated methods for the definition
of regions of interest (ROIs). From these ROIs, time series of percentage
greenness (%greenness) were derived and methods for the identification
of structural changes delivered the desired onset dates. In an alternative
approach, eigenimages were computed and a subsequent supervised
classification yielded the onset dates. We showed that our new methods for
the definition of ROIs led to %greenness time series which are at least as
informative as those resulting from an expert-based definition of ROIs. All
methods yielded similar onset dates. Moreover, one of our methods comes
along with a partition of the image motive which can be interpreted with
respect to different vegetation types, infrastructure and sky pixels. A careful
implementation and the development of the R package phenofun allows to use
the methods on a larger scale as well which was demonstrated on a database
of 13988 webcams.

Research goals

In the introduction on page 84 we defined four main research goals of the
project which were achieved as follows:

1. Develop a method for the automated definition of ROIs: In Chapter 8, we
proposed two new methods for the automated definition of ROIs. More
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precisely, we proposed two alternatives for the expert-based definition
of regions of interest (eROI), namely the semi-supervised regions of
interest (sROIs) and the unsupervised regions of interest (uROIs). All
ROI approaches lead to ROIs for the image data. Based on these
ROIs, %greenness time series can be computed and analyzed. Structural
changes in these time series indicate phenological change points. We
found that the time series based on the sROI and uROI approaches are
as informative as those based on the expert-based ROI approach with
respect to two optimality criteria for the example of a scientific webcam
in an experimental forest. See the second research goal for details on
these optimality criteria.

The uROI method was also successfully applied to open-access webcam
data yielding phenologically interesting partitions of the images while
clearly separating infrastructure, rocks, buildings and different vegetation
types. However, the most “deciduous” vegetation type was either the upper
crown part, as also shown for the scientific webcam, or deciduous larch.
Quite promising is the fact that different vegetation types such as alpine
meadow and urban grass could be clearly separated. Additionally, no
manual action is necessary to define the ROIs. Hence, we conclude that
our new sROI and uROI methods for the definition of ROIs are favorable,
especially when working with a large amount of webcams at different
locations.

2. Develop a reasonable optimality criterion to evaluate the amount of
information contained in the resulting ROIs: In Section 8.1 we presented
two optimality criteria for the comparison of the ROI approaches. Both
criteria evaluate the phenological information contained in the %greenness
time series derived from the pixels inside the ROIs. The first approach tries
to find the striking structural change in spring and compares the signal-to-
noise ratios subsequently. The second approach fits an optimal template
%greenness time series and computes the correlation of %greenness
inside the ROI with this template time series. Our analyses showed that the
second approach is preferable since the resulting ROIs are visually more
convincing.

3. Develop a procedure for determining the dates of SOS, MAX, EOS1 and
EOS2 for given image data: The different approaches for the definition
of ROIs were used to extract the annual course of deciduous vegetation
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greenness in Chapter 9. Therefore, a method from the literature called
Bayesian multiple change point analysis was used to detect change points
in the %greenness time series. This led to almost identical results in terms
of start, peak and end of season dates for eROI, sROI and uROI. The
quality of this Bayesian multiple change point analysis was not investigated
in this thesis. This means that other methods for the identification of
change points could lead to similar or even better results. However, for
the comparison of the different ROI approaches we felt that it is sufficient
to use the established method from the literature.

In Chapter 10 we proposed a method for deriving eigenimages from the
image data followed by a supervised classification. Thereby, each image
can be classified with respect to the four seasons spring, summer, autumn
and winter. It is even possible to classify the images of a new year
considering the eigenimages and classification rule of a training year. The
definition of eigenimages is based on a singular value decomposition of
the vectorized image data, the resulting eigenimages of the data set have
a meaningful interpretation. For example, a high score on a specific
eigenimage implies that the deciduous trees on the image are carrying
leaves while a high score on another eigenimage implies that the site is
covered by snow. The scores of the original images on these eigenimages
serve as classification variables for the supervised classification using
standard statistical classification methods.

The added value of this approach is that images cannot only be classified
with respect to seasons. For example, the images can be separated
into images where the site is covered with snow and images where no
snow is present. The classification accuracy was even higher than for the
classification of seasons because snow on main parts of the image is more
striking than leaves on the deciduous trees.

4. Implement the methods so efficiently that the analysis can be scaled up to
several hundreds or thousands of webcams: All methods are implemented
in the statistical software package R and computing times and storage
needed are kept as low as possible. For the large AMOS database, the
analysis of 13988 webcams lasted about 23 days on a server with 528 GB
RAM where the analyses were parallelized to 16 cores. The resulting R
package phenofun containing all relevant functions to use the presented
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methods is available on R-Forge at https://r-forge.r-project.org/

projects/phenofun/, see Appendix C for an excerpt of the documentation.

Strengths and limitations

Automated definition of ROIs. One strength of the sROI approach is that
ROIs are defined mainly data-driven while the researcher can simultaneously
control the definition by setting the pinprick on the favored region of the image.
Additionally, the resulting %greenness time series is slightly more informative
than with the expert-based ROI approach.

The first strength of the sROI approach could at the same time considered
to be a weakness: Through the fact that the pinprick has to be set manually
and at a reasonable position, the approach is not optimal when heading for
big data applications and analyses where several hundreds or thousands
of webcams shall be analyzed simultaneously. However, with the option of
setting multiple pinpricks at random locations and selecting the best ROI with
the proposed optimality criteria, we also provide a fully automated version of
the sROI approach. Nevertheless, this option comes along with an increase in
computing time because the analysis has to be carried out for each pinprick.
Depending on the given images, a rather large number of random pinpricks
could be necessary.

This potential limitation of the sROI approach is not present in the uROI
approach: The uROI approach is fully automated and purely data-driven, no
manual action is required to define the ROIs and the computing time for this
approach is rather small. This property is in particular of great importance for
the mentioned big data applications. Moreover, the resulting %greenness
time series are actually as informative as with the eROI approach. This
finding has to be emphasized since the definition of expert-based ROIs is
accompanied by a large amount of manual work while the sROI and uROI
approaches require no manual action at all.

However, there is also a limitation: Although the approaches work promising
for the data sets considered here, we cannot blindly guarantee that results are
equally satisfying for other data sets. It happens that there are more than only
one resulting cluster which is important for the identification of phenological
patterns, as shown for example for the data from Marquartstein, see Figure
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9.5, and it could happen that there is no cluster which is pure enough for the
identification of phenological patterns.

Nowadays, there is a large variety of open-access collections of webcams as
for example in the two sources used in this thesis: http://www.foto-webcam.
eu/ and the “Archive of Many Outdoor Scenes” (AMOS, http://amos.cse.
wustl.edu/) with almost 30000 webcams located around the world. With
our new and automated approaches it is now possible to exploit these
databases for phenological purposes without additional costs for installing
and maintaining cameras. This is a fundamental result of our work because
by this means many existing webcam databases can be directly used for
phenological research.

Supervised classification approach. A strength of the supervised classi-
fication approach based on scores on the eigenimages is that each image
is assigned to a unique class or season, respectively. This information can
be useful for example when a sudden onset of winter happens at an unex-
pected time in year. Then, the respective days are classified as winter but the
surrounding days are not affected.

The drawback of this approach is that a considerable amount of work is
required from the researcher: All images or at least all days of the training
year have to be classified manually with respect to the defined classes. For
big data applications with a large amount of different webcams, this may not
be feasible because this manual work has to be carried out once for each
webcam. Furthermore, the procedure has to be trained again when the focus
of the camera shifts or when the vegetation changes substantially, for example
after trees were cut down or have grown significantly.

11.2. Possible extensions
This work is considered as a starting point for a larger project connecting
phenologists, computer scientists and statisticians. As next step it is planned
to refine the first AMOS analysis and to solve the problems mentioned in
Section 9.3. Thereby, season onset dates should be derived for each webcam
location and year yielding high-resolution spatio-temporal data. Then, it
could be investigated how the season onset dates change over the years,
and spatial patterns of these changes could be analyzed. Furthermore, the
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question should be addressed if these changes are related to the global
climate change.

From a user’s perspective it would certainly be of interest to implement the
Bayesian multiple change point analysis in the R package phenofun. Then,
not only %greenness time series inside the final ROI but also season onset
dates could be derived automatically and with a single R script. Furthermore,
the question of uncertainty of the estimated season onset dates should be
addressed.

There are some methodological challenges in this area. First, a warping
approach could be developed which can be applied to the %greenness time
series. Until now, only discrete dates of SOS, MAX, EOS1 and EOS2 can
be compared. With a warping approach one would aim at making continuous
statements on how the phenology at a particular location in a particular year
behaves in comparison to other locations and other years. For example, it
is imaginable that the phenology is delayed at some point in the year but
then catches up this delay until the next phenological change point. By only
assessing a low number of landmarks over the year, this behavior could be
overlooked.

Second, a recent methodological development in Happ and Greven (2015)
allows us to investigate climate data such as daily temperature, humidity and
solar radiation functions simultaneously with the webcam images in order to
increase the amount of information contained in the classification variables of
the supervised classification method.
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Contributions of this thesis

Statistics is a science which gains information from data and describes and
quantifies this information. Statistics is thereby applied in various areas to
allow for better decision making based on empirical analyses. This thesis
contributes to statistical research by applying, combining and extending state-
of-the-art statistical methods in two complex interdisciplinary projects from
ecological research fields. Efficient methods for automatically analyzing large
amounts of image and video data were developed and implemented.

First project: Realtime classification of fish in underwater sonar videos

The first project was motivated by the protection of migrating fish species.
With the increasing number of water power plants, the migration of fish is
impeded. To implement protection measures for endangered fish species,
information about number, species and time of arrival of fish at a water power
plant is required. In this project, underwater sonar videos were used to obtain
this information as follows.

An approach was developed which allows to automatically count the fish and
thereby discriminate eels from other fish species. This is important because
the eel is a particularly endangered species. The approach was implemented
in a software which is fast enough to monitor the fish in realtime. A user
interface ensures that the software can be used by non-statisticians at a water
power plant.

Various statistical methods are combined to reach the goal of counting and
classifying the fish. As first step, a given sonar video is smoothed using
the linear array model. After further preprocessing steps including centering,
thresholding and identification of connected pixel clouds, areas of interest –
so-called hotspots – are defined. These hotspots most likely represent fish
pixels and are processed in further steps: In a tracking procedure, hotspots
corresponding to the same object (or fish) are connected. Then, features
such as length, width or velocity are derived from these connected hotspots
and shall allow to discriminate the fish species. In this step, among others,
methods from the field of functional data analysis are applied.

Finally, the objects are classified with respect to the three classes eels, other
fish and debris – where the class debris is needed to filter all dead objects
swimming in the water – using established statistical classification methods
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such as discriminant analysis, support vector machines or random forests.
This results in a high classification accuracy of the system.

Second project: Automated processing of webcam images for
phenological classification

The second project was motivated in connection with the global climate
change. While nowadays almost nobody seriously doubts the global warming,
the effects of the global climate change on the flora and fauna are still under
research. Among others, phenologists are interested in season onset dates
and how they vary over the years and places on earth. In this project, digital
webcam images were used to obtain information about season onset dates
as follows.

With the goal of identifying season onset dates, a procedure was developed
which allows to automatically process webcam images. The procedure was
applied to two scientific cameras and three open-access cameras with publicly
available data. Moreover, a number of 13988 cameras from the publicly
available AMOS database was analyzed. A careful implementation of the
methods in the statistical software package R ensures the scalability, i.e., data
from several hundreds or thousands of webcams can be analyzed in rather
short time.

In principle, the analysis consists of two steps: First, a region of interest
(ROI) is defined on the image which shall only contain pixels which are
relevant for the identification of season onset dates, for example deciduous
trees. Second, from the time series of percentage greenness inside this
ROI, the onset dates are identified using methods from structural change
point analysis. While for the second task existing methods from the time
series literature can be used, we proposed two alternative approaches for
the automated definition of ROIs. These automated ROIs shall replace the
current state-of-the-art method of expert-based ROIs, where a considerable
amount of manual work is necessary.

As an alternative approach for the identification of season onset dates, we
proposed a supervised classification procedure based on eigenimages of
the image data. Thereby, each image is classified with respect to the four
seasons spring, summer, autumn and winter based on scores of the images
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on the eigenimages of a training year. Further processing of the time series
of predicted seasons leads to unique season onset dates.

We conclude that with the proposed new methods for the automated
processing of webcam images, we paved the way for analyzing webcam data
on a large scale. Especially with the fully automated and purely data-driven
definition of regions of interest, we are now able to analyze a large amount of
webcam data with low manual effort, as shown for the AMOS data. We hope
that our work can be a relevant contribution for the application and analysis of
webcam images for phenological questions.

Analogies of the two projects

Apart from the fact that both projects originate from ecological questions,
there are close methodological analogies as well.

Obviously, both projects tackle imaging problems: In the fish project, videos
produced by an underwater sonar camera are analyzed, in the phenology
project, sets of images from several webcams are analyzed.

In both cases, the preprocessing of the data is a challenge requiring efficient
solutions due to the huge data volume. Since not the whole images but only
parts are of interest, the first step of the analyses is a search for the areas of
interest in both cases. In the fish project, these areas are called hotspots
and capture a single fish. The hotspots move through the image as the
fish move and change over time. In the phenology project, these areas are
called regions of interest or ROIs. The ROIs are fixed over time and capture
phenologically interesting parts of the image such as deciduous trees. As a
result, the data structures are changed by the preprocessing.

In the following steps, based on the areas of interest, features are extracted
to prepare for the classification: In the fish project, the sets of hotspots
corresponding to the same fish are measured and variables are derived which
shall distinguish eels from other fish species and debris. In the phenology
project, time series of percentage greenness inside the ROIs are used for the
identification of season onset dates. As described in the respective chapters,
this can be seen as a classification problem as well.

Finally, both projects originate from cooperations with researchers from
ecological areas, fisheries biology in the first project and phenology in
the second project. This means that there was a need for efficient
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implementations in order to allow the project partners and their communities
to make use of the developed methods. In this context, different requirements
had to be met: In the fish project, the analyses had to run in realtime to ensure
the applicability of the system at water power plants during operation. In the
phenology project, computing time was a less urgent issue but the methods
should allow to scale up to several hundreds or thousands of webcams. Thus
the computing time was an important point here as well. To sum up, in both
cases the choice of methods and the concrete implementation had to take into
account the practical needs of the users. Therefore the R packages sonar and
phenofun were developed to make the presented methods publicly available.

Data science – the future of statistics?

Nowadays, more and more data are collected. This comes along with an
increased need for methods which allow to analyze and to extract information
from these huge data volumes. In order to be a modern science, a task of
statistical research should be to develop new statistical methods for solving
big data problems. Ideally this should be motivated by underlying practical
research questions. Yet the developed methods should be general enough to
be applicable to other problems as well.

Common research in statistics often deals with extending small details in
existing methods in a very advanced and sophisticated way. In the end, the
benefit of the new method is demonstrated on a well known data set which has
been analyzed by generations of other statisticians before. Thereby, common
statistical research risks to edge away from application which is dangerous
since statistics cannot exist without application.

At the same time, efforts for the development of big data methods are being
made by several other science sectors. Quantitative branches of applied
sciences such as social sciences and econometrics on the one hand, and
computer sciences on the other hand are developing their own ways to
analyze large data volumes. Thereby, statistics should not miss the boat in
order to play a key role in the analysis of the growing data volumes of our
days.

In our opinion, the question is not whether statistics or computer sciences
or other sciences engaged with data analysis find the “better” methods.
In contrast, we think that the future of research on the analysis of big
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data volumes lies in “data science”: The interdisciplinary connection of
the expertises of statisticians, computer scientists and quantitative applied
researchers from different fields.

This thesis is a contribution to this branch of statistical research. It was
shown that imaging problems can be solved with statistical techniques as
well. Therefore, to yield the desired solutions, modern statistical methods
were used, combined and extended. The focus of the methodological
developments was on meeting the requirements of the given applied problems
in order to provide relevant and useful support for the researchers from
fisheries biology and phenology.

The technological developments of our days open up vast and fascinating
challenges and opportunities in data analysis. We hope that this thesis can
be a contribution to the further development of statistics as a modern science.
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Appendix A: Linear array model

The definition of the product of a matrix and an array is given in Currie et al.
(2006):

Definition 1 The H-transform of the d-dimensional arrayA of size c1×c2×. . .×
cd by the matrix X of size r × c1 is denoted H(X,A) and defined as follows:
let A∗ be the c1 × c2c3 . . . cd matrix that is obtained by flattening dimensions
2-d of A; form the matrix product XA∗ of size r × c2c3 . . . cd; then H(X,A) is
the d-dimensional array of size r × c2 × . . . × cd that is obtained from XA∗ by
reinstating dimensions 2-d of A.

Definition 2 The rotation of the d-dimensional array A of size c1× c2× . . .× cd
is the d-dimensional array R(A) of size c2× c3× . . .× cd× c1 that is obtained by
permuting the indices of A.

Definition 3 The rotated H-transform of the array A by the matrix X is given
by

ρ(X,A) = R
{
H(X,A)

}
. (A.1)

Thus, the least-squares estimate of the three-dimensional array Θ of
coefficients of the linear array model (2.2) can be written as

Θ̂ =
[
(B>3 B3)

−1 B>3 ⊗ (B>2 B2)
−1 B>2 ⊗ (B>1 B1)

−1 B>1

]
Y (A.2)

= ρ
[
(B>3 B3)

−1 B>3 , ρ
[
(B>2 B2)

−1 B>2 , ρ
[
(B>1 B1)

−1 B>1 ,Y
]]]

. (A.3)

The smoothed data array Ŷ can then be written as

Ŷ = BΘ̂ = ρ
[
B3, ρ

[
B2, ρ

[
B1, Θ̂

]]]
. (A.4)
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Appendix B: R package sonar

Excerpt of the documentation of the R package sonar. For the full documentation and
download of the package see https://r-forge.r-project.org/projects/sonar/.
Executable example code cannot be provided due to missing rights for publication
of the sonar videos used in this thesis.

Package “sonar”
Title Realtime classification of fish in underwater sonar videos
Version 0.1.1
Author Ludwig Bothmann [aut, cre], Michael Bothmann [ctb]
Maintainer Ludwig Bothmann <ludwig.bothmann@stat.uni-muenchen.de>

Description Realtime classification of fish in underwater sonar videos.
Depends R (>= 2.6.0)
Imports hexView, splines, pixmap, cluster, MASS, tree, e1071, parallel, nnet
License GPL (>=2)
LazyData true
RoxygenNote 5.0.1

analyze_ddf Analyze complete .ddf file

Description

This function analyzes a given sonar video (.ddf file), i.e., carries out the entire
preprocessing with identification of hotspots, tracking, extraction of features and finally
classifies the identified objects.

Usage

analyze_ddf(ddf.file, win.start = 0.83, win.length = 5, vers = 3,

max.frame, y.lim = 512, a = 18, cut = 50, m.d.cs = 0.2, folder.output,

n.angle = 3, do.plots = FALSE, n.cores = 1, frames.pack = 600,

df.t = NULL, save.preprocess = FALSE, timestamp = "", min.length = 10,

file.classrule, type.classrule, save.movie = TRUE, each = 5,

win = FALSE)
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Arguments

ddf.file File name of .ddf file to be analyzed

win.start Start of the sonar window (distance from the lense of the camera),
possibly extracted before via get.version

win.length Length of the sonar window, possibly extracted before via get.version

vers Version of the .ddf file, possibly extracted before via get.version

max.frame Total number of frames (images) of the given video, possibly extracted
before via get.version

y.lim Number of pixels to analyze in each beam, counted from the camera

a Threshold for the centered data

cut Minimal size of clusters in number of pixels. Smaller clusters are deleted
before the tracking and hence not considered as hotspots.

m.d.cs Maximal distance for which two hotspots can be assigned to the same
tracking number

folder.output Folder for resulting plots and output

n.angle Number of watch hands per quarter, i.e., total number of watch hands is
4 x n.angle

do.plots TRUE: Plots of preprocessing are saved, default is FALSE

n.cores Number of cores if parallelization is needed, default is 1

frames.pack Number of frames to be analyzed simultaneously, possibly the total
number of frames max.frame of the given video. If frames.pack is less
than max.frame, the video is splitted in parts of frames.pack frames and
each part is analyzed separately.

df.t Number of degrees of freedom for the splines for first smoothing
step. Default NULL results in c(100, 25, round(n.frames/2)) where
n.frames is the total number of frames of the analyzed video, i.e.,
length(frames.pack).

save.preprocess

TRUE: Results of preprocessing are saved, default is FALSE

timestamp Time stamp of .ddf file (used for file names of results)

min.length Minimal length of tracks. Tracks with less hotspots are deleted.

file.classrule

File name of classification rule, .RData file containing the rules
type.classrule

Type of classification rule, i.e., lda, qda...

save.movie TRUE: Video of raw signal and cleaned signal is created, default is TRUE

Page 157



each Interval of images for the video, for example default 5 means that each
5th image is saved in the video

win Specify TRUE if you are running under windows, then parallelization is not
possible

Value

As output, a table is generated which lists the detected objects with predicted class and
computed features at folder.output.
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Appendix C: R package phenofun

Excerpt of the documentation of the R package phenofun. For the full documentation
and download of the package see https://r-forge.r-project.org/projects/

phenofun/. Executable example code can be found at http://bothmann.userweb.
mwn.de/dissertation.html.

Package “phenofun”
Title Automated processing of webcam images for phenological classification
Version 0.1.2
Author Ludwig Bothmann [aut, cre], Michael Matiu [ctb]
Maintainer Ludwig Bothmann <ludwig.bothmann@stat.uni-muenchen.de>

Description
Automated processing of webcam images for phenological classification.
uROI method, sROI method and supervised classification method are fully
implemented.

Depends R (>= 3.2.1)
Imports EBImage, irlba, strucchange, abind, MASS
License GPL (>=2)
LazyData true
RoxygenNote 5.0.1

amos_uroi_wrap Wrapper function for analyzing data from AMOS

Description

This function allows to analyze webcam data from AMOS (http://amos.cse.wustl.edu/)
with the uROI method in a fully automated way. Only the parameters of camera, year,
month and hour of images to be analyzed have to be specified. Example code can be
downloaded at http://bothmann.userweb.mwn.de/dissertation.html.

Usage

amos_uroi_wrap(camera, year_analysis, months_analysis, hour_analysis,

do_mean_greenness = TRUE, do_strucchange = TRUE, testmode = FALSE,

only_download = FALSE, folder_results = getwd(),

Page 159

https://r-forge.r-project.org/projects/phenofun/
https://r-forge.r-project.org/projects/phenofun/
http://bothmann.userweb.mwn.de/dissertation.html
http://bothmann.userweb.mwn.de/dissertation.html
http://amos.cse.wustl.edu/
http://bothmann.userweb.mwn.de/dissertation.html


name_of_analysis = substr(as.character(Sys.time()), 1, 10),

folder_data = getwd(), n_pc_vec = 12, k_vec = 4:10, nstart = 2,

save_results = TRUE, save_masks = TRUE, masks_type = ".jpg",

a_vec = seq(1, 150, by = 1), b_vec = seq(1, 100, by = 1), ...)

Arguments

camera Name of the camera (five-digit number, see http://amos.cse.wustl.

edu/)

year_analysis Year(s) to be analyzed as vector
months_analysis

Month(s) to be analyzed as vector

hour_analysis Hour(s) to be analyzed as vector
do_mean_greenness

If TRUE (default), time series of percentage greenness inside the ROIs are
computed

do_strucchange

If TRUE (default), points of structural changes are searched for and OC
values are computed

testmode If TRUE, only 10 images for testing are analyzed, default is FALSE

only_download If TRUE, images are downloaded but not analyzed, default is FALSE

folder_results

Folder path where the results will be saved, default is the current working
directory

name_of_analysis

Name of subfolder for the results of the analysis, default is the date as
yyyy-mm-dd

folder_data Folder where the data will be saved, default is the current working
directory

n_pc_vec Vector of numbers of eigenimages

k_vec Vector of numbers of clusters for k-means

nstart Number of iterations for k-means

save_results If TRUE (default), results of clustering are saved

save_masks If TRUE (default), masks are saved

masks_type File name extension of masks, default is .jpg

a_vec Possible spring DOYs

b_vec Possible autumn DOYs (counted backwards from 31.12.)
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... Further arguments

Value

As output, all resulting masks and percentage greenness time series inside the masks
are saved in subfolders of folder_results. Additionally, overlays of all masks of the
best setting with a background image and the background image itself are saved in
folder_results, ordered with respect to optimality criterion OC2.
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