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“Die Probleme werden gelöst, nicht durch Beibringen neuer Erfahrungen,

sondern durch Zusammenstellung des längst Bekannten.”

— Ludwig Wittgenstein



Zusammenfassung

Die vorliegende Dissertation widmet sich der Untersuchung der Höhere Spin-Gravitation

auf einem Anti-de-Sitter-Raum (AdS). Es gibt Hinweise darauf, dass dem Hochen-

ergiebereich der Quantengravitation eine große (Höhere Spin-) Symmetriegruppe zu-

grundeliegt und somit eine mögliche effektive Beschreibung dieses Beriechs durch eine

Höhere Spin-Theorie gegeben ist. Die Reaslisierung einer Quantengravitation mit dieser

Symmetrie ist insbesondere in der String Theorie bei hohen Energien gegeben, wenn

die Stringspannung vernachlässigt werden kann.

Die Untersuchung der Höhere Spin-Theorien ist von physikalischer Relevanz, weil

ihre unendlichdimensionale Symmetrie als Leitprinzip verwendet werden kann, um neue

Erkenntnisse über die Quantengravitation bei Energien jenseits der heute experimen-

tall erreichbaren Energieskalen zu gewinnen. Es muss dabei berücksichtigt werden, dass

die verfügbaren nichtlinearen Formulierungen der Höhere-Spin-Theorien unendlich viele

Hilfsfelder mit einschließen, so dass selbst grundlegende Eigenschaften wie Unitarität

oder Kausalität noch nicht vollständig verstanden sind.

Zielsetzung dieser Arbeit ist es, die Wechselwirkungen zwischen höheren Spin-Feldern

im Rahmen der Lagrangeformulierung zu untersuchen, da dies ohne Hilfsfelder möglich

ist. Um dies zu ermöglichen, wird die vermutete Dualität zwischen der Höhere Spin-

Gravitation im AdS-Raum und integrablen konformen Feldtheorien benutzt. Durch

Anwendung von Techniken der konformen Feldtheorie werden in der Lagrangefunktion

der Höheren Spin-Theorie alle Wechselwirkungsterme bis zur dritten Ordnung sowie die

Selbstwechselwirkung des Skalarfeldes bis zur vierten Ordnung bestimmt. Zu diesem

Zweck werden neue Methoden entwickelt: Diese umfassen eine neue Herangehensweise
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zur Berechnung von Dreipunktamplituden mit externen Feldern beliebigen Spins und

die explizite Form von Propagatoren für Eichfelder mit beliebigem ganzzahligen Spin im

AdS-Raum. Weiterhin werden Techniken zur Berechnung konformer partieller Wellen-

zerlegungen von Vierpunktamplituden in Höhere Spin-Theorien entwichelt.

Die α′-Korrekturen in der Stringtheorie spiegeln sich in der Nichtlokalität der Wech-

selwirkungen zwischen Höhere Spin-Feldern wider: Es treten beliebig hohe Ableitun-

gen der Felder auf. In der Stringtheorie bei endlicher Stringspannung bedeuten diese

höheren Ableitungsterme offensichtlich keine Einschränkung von fundamentalen Eigen-

schaften wie etwa der Kausalität. In der Höhere-Spin-Theorie jedoch ist dies Gegen-

stand aktueller Forschung. Im Kontext der Ergebnisse dieser Arbeit wird die Bedeu-

tung der AdS/CFT Dualität für die Lokalität der Wechselwirkungen zwischen Höhere

Spin-Feldern diskutiert. Insbesondere wird auf die holographische Interpretation der

Korrelatoren in der konformen Feldtheorie als Streuamplituden der dualen Gravita-

tionstheorie im AdS-Raum eingegangen.



Abstract

In this thesis we investigate aspects of higher-spin gravity on an anti-de Sitter (AdS)

background. Such theories are believed to give an effective description of quantum

gravity in its high energy regime, where there have been hints that a large underlying

(higher-spin) symmetry may become restored. In particular, through considerations

of string theory in the high-energy (tensionless) limit. The study of higher-spin gauge

theories is thus of physical relevance, for their infinite dimensional symmetry may serve

as a guiding principle to help shed light on the nature of quantum gravity at energies

which are beyond the reach of present day experiments.

To fulfil this potential, there is much still to be understood about higher-spin the-

ories themselves. To date, the fully non-linear formulations of higher-spin theories

include infinitely many additional auxiliary fields. With this work we take steps to-

wards clarifying the nature of interactions amongst higher-spin fields in a metric-like

Lagrangian framework, free from such auxiliary fields. To this end, we employ the con-

jectured holographic duality between higher-spin gravity theories on AdS and certain,

solvable, conformal field theories (CFTs). In this way well-known methods in CFT

may be applied, and with them we determine completely all cubic interactions and the

quartic self-interaction of the scalar in the higher-spin Lagrangian on an AdS back-

ground. For this purpose a number of further original results were established, which

include: Tools to evaluate three-point amplitudes in AdS space involving external fields

of arbitrary integer spin, propagators for gauge fields of arbitrary integer spin on an

AdS background, and techniques to determine conformal partial wave expansions of

four-point amplitudes in higher-spin theories.
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Reminiscent of the tail of α′ corrections in string theory, higher-spin interactions are

non-local in the sense that they are unbounded in their number of derivatives. While in

(finite tension) string theory this higher-derivative behaviour does not appear to pose

a threat to fundamental properties like causality, in higher-spin theories this remains

to be clarified. In the context of the results established in this work, we briefly discuss

the implications of the AdS/CFT duality on the locality properties of interactions in

higher-spin theory. In particular, by drawing on the holographic interpretation of CFT

correlation functions as scattering amplitudes in the dual gravity theory on AdS.
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Chapter 1

Introduction

1.1 A tale of two theories

Existing physical theories provide a powerful framework to describe all phenomena

observed so far in Nature. To date, the range of length scales accessed by physical

experiment is colossal: From the deep subatomic distances of ∼ 10−19 m probed by

collisions of highly accelerated particles, to ∼ 1025 m from deep sky surveys.

The two monumental pillars behind our theoretical understanding of Nature thus far

are Quantum Field Theory (QFT) and General Relativity:

QFT describes the dynamics of elementary particles. All known elementary particles

and their interactions are encoded in the Lagrangian of the Standard Model of particles

physics [5–7], and consists of three fundamental ingredients: Matter fields, the Higgs

boson responsible for particle masses and force carriers (gauge bosons). The gauge

bosons account for three of the four known fundamental interactions amongst the con-

stituents of visible matter: The electromagnetic, strong nuclear and weak nuclear forces.
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The remaining fundamental force is gravity. Einstein’s theory of General Relativity [8]

provides a beautiful theory of gravitation at the classical level, which elegantly ge-

ometrises dynamics. Gravity is a dominant force at large, cosmic, scales and indeed,

General Relativity is the backbone of the cosmological standard model (or ΛCDM

model). The latter provides a coherent framework for the history of the Universe from

Big Bang nucleosynthesis up to the present day.

In spite of these successes, the theoretical tools of QFT — that have been so effective in

describing interactions at the subatomic scale — are unfortunately not directly applica-

ble to the gravitational force. The characteristic gravitational scale is the Planck scale

`pl ∼ 10−35 m, with the gravitational coupling being ∼ `2
p/L

2 in a process at length

scales L. Unlike for the Standard Model, General Relativity therefore suffers a lack

of predictive power at Planckian scales, where it becomes strongly coupled (in other

words, it is non-renormalisable [9,10]). An understanding of how to reconcile QFT and

General Relativity is imperative, since gravity couples to matter and consequently we

cannot forgo the need for a quantum description of it.

One approach, which has proven to be particularly successful in improving UV be-

haviour, is to consider coupling gravity to an enlarged spectrum of gauge and matter

fields. A notable example is N = 8 supergravity, which contains one graviton, 8 graviti-

nos (which have spin 3/2), 28 vector bosons, 56 fermions and 70 scalar fields. Current

results indicate its finiteness at seven-loop order [11–14], with speculations that it is

all-loop finite. These promising results illustrate that the idea of increasing the particle

content, and symmetry, is one worth pursuing.

1.2 Higher-spins and strings

From a Wilsonsian perspective, both the Standard Model and General Relativity are

effective field theories describing the relevant degrees of freedom up to a certain energy



1.2 Higher-spins and strings 3

scale. The ultimate physical theory is viewed as having an onion-like structure, with

different layers corresponding to different energies, with different degrees of freedom

being excited and governed by different Lagrangians. In this regard, the break down of

General relativity at the Planck scale indicates that it should be substituted by a new,

more fundamental theory.

The problem of formulating a consistent quantum theory that includes as its low-energy

limit both the Standard Model and General Relativity is known as the quantum gravity

problem. Because energies at which quantum-gravitational effects become significant

are not directly accessible via existing experiments, the development of the subject has

been largely driven by Gedankenexperiments and symmetry principles.

For example, considering General Relativity as an effective quantum theory with cut-off

Mpl, counter-terms to the Einstein-Hilbert action appear in the form of higher curvature

invariants (due to diffeomorphism invariance) and therefore additional derivatives. At

one loop for example, the only correction that is generated is the Gauss-Bonnet term,

S1-loop = SEH + SGB =
1

`d−2
p

∫ √
−g
[
R + α

(
R2 − 4RµνRµν +RµνρσR

µνρσ
)]
, (1.1)

with α >> `2
p. Such corrections (O (R2, R3, ...)) lead to short distance violations of

causality at the classical level [15], inducing (Shapiro) time advances. Causality cannot

be restored by adding local higher curvature terms, but instead by introducing an infi-

nite number of new massive particles of spins s > 2 and mass ∼ 1/
√
α.

We see from above example that basic consistency requirements seem to imply that

a theory of quantum gravity should admit a completion to a theory with an enlarged

spectrum, which includes an infinite tower of higher-spin excitations.

A promising research program which addresses the problem of quantum gravity is string
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theory, which indeed has a spectrum containing infinitely many massive excitations

of increasing mass and spin. These arise from the different vibrational modes of the

fundamental string, in an enticing unified manner. The string states dispose themselves

on Regge trajectories in the (mass)2 vs. spin plane, where for the first Regge trajectory

we have, e.g. for the open bosonic spin in flat space,

α′m2
s = s− 1, (1.2)

with α′ = l2s the square of the string length. In fact, the higher-spin resonances are

responsible for the improved UV behaviour [16–24] compared to General Relativity

above, essentially because the string length ls acts as a natural UV-cutoff.

An important observation from our experience with QFTs is that improved UV be-

haviour is typically the signal of an underlying symmetry. In addition to the example

of supersymmetry mentioned previously, another demonstration of this phenomenon is

given by the weak interaction: Fermi’s four-fermion theory is non-renormalisable, but

describes the weak interaction remarkably well up to ∼ 100 GeV. Together with QED,

it can be considered as the low-energy effective theory for the Standard Model of the

electroweak interactions. In the latter, as opposed to the effective four-point interac-

tion of Fermi’s theory, weak interactions are mediated by massive W± and Z bosons.

These arise from the spontaneous breaking of an SU (2)×U (1) gauge symmetry, which

emerges at very high energies.

One may then ask whether a similar phenomenon occurs in string theory. This ques-

tion was indeed posed by Gross in 1988 [25], and subsequently explored in a number

of works (for instance: [24, 26–32]). Just like the broken SU (2) × U (1) symmetry of

the electroweak interactions can be seen by examining weak scattering amplitudes at

energies high enough so that the masses of W± and Z can be neglected, by studying

the high energy (α′ →∞) behaviour of string scattering, Gross argued for the existence
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of an infinite dimensional symmetry group that gets restored at high energies. Should

this be the case, the symmetry would be generated by gauge symmetries associated to

the infinite family of higher-spin gauge fields that emerge in this limit.1

With the presence of an infinite dimensional symmetry comes a lot of control. In this

sense, uncovering such an underlying symmetry principle behind string theory could

lead to a greater understanding of quantum gravity at high energies. For example, from

the space-time viewpoint string theory is still formulated in a background-dependent

manner, without an analogue of the powerful geometric background independent pre-

sentation of Einstein gravity. Further more, at present both the action principle and

equations of motion for the second quantised form of string theory (string field theory)

require the addition of infinitely many auxiliary fields.2 In this sense much remains to

be unravelled about the properties of high energy interactions in quantum gravity.

1.3 This thesis

In this thesis we aim to shed some light on the nature of interactions in the presence of

higher-spin symmetry. To this end we employ a particular consequence of string the-

ory known as holography, focusing on its most celebrated incarnation: The AdS/CFT

correspondence [44–46].

In its most general form, the AdS/CFT correspondence is the statement that two

systems are equivalent:

AdSd+1 QG = CFTd. (1.3)

Quantum gravity in asymptotically anti-de Sitter spacetime AdSd+1 and non-gravitational

conformal field theory3 (CFT) in a flat d-dimensional spacetime. This relationship is

1Recall, for example, that on the first Regge trajectory in flat space we have m2
s ∝ 1/α′ → 0.

2At the free level, the second quantised formulation of all string models was completed in the
‘80s [33–40]. While at the interacting level, see for example: [41–43].

3A conformal field theory is a quantum field theory without any intrinsic scale.
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called a duality. It is holographic since the gravitational theory lives in (at least) one

extra dimension. Since AdS space is conformally flat, we can in fact think of the dual

CFT as living on the boundary of the gravity theory in AdS, which is often represented

as in figure 1.1 .

Figure 1.1: For a given dual pair (1.3), we can think of the CFTd as living on the
boundary (solid black boundary of disc) of the gravity theory in asymptotically AdSd+1

(entire disc).

The duality (1.3) is remarkable, as it opens up the possibility to study quantum gravity

through its dual CFT, and vice versa. In particular, the dimensionless coupling λ in

the CFTd is typically related to the string length of the gravity theory in AdS via

λ ∼
(
R2

α′

)d/2
, (1.4)

where R is the AdS radius. This relationship between the CFT coupling and the string

length illustrates the duality’s strong-weak nature: For example, in taking the point-

particle limit α′/R2 → 0, the CFT coupling λ grows large. The latter limit therefore

opens up the possibility to study strongly coupled systems from the perspective of the

comparably well-understood General Relativity (at least when quantum corrections are

suppressed), and has been extensively explored since the birth of the AdS/CFT corre-



1.3 This thesis 7

spondence.4

Taking the opposite limit on the other hand – α′/R2 →∞ – equation (1.4) tells us that

the high-energy limit of string theory may be probed by taking the free theory limit

λ → 0 in the dual CFT [49–61]. Free CFTs are constrained by higher-spin symmetry

(as we shall demonstrate later), owing to the emergence of an infinite tower of con-

served currents of increasing in the free limit. Since the dual quantum gravity theory

should be governed by the same symmetry as its CFT counterpart, the above striking

relationship makes the existence of a highly symmetric phase of string theory even more

plausible, and more tractable to study.

The most famous manifestation of the holographic duality (1.3), crystallised by Mal-

dacena in 1997 [44], is the conjecture that N = 4 Super Yang-Mills theory in d = 3 + 1

dimensions is equivalent to type IIB superstring theory on AdS5 × S5. In the high

energy limit α′/R2 → ∞, the string spectrum on the AdS5 × S5 background has been

extrapolated, and could be identified with the operator spectrum of planar5 N = 4

Super Yang-Mills theory at weak coupling (λ → 0) [62–68]. With control of the spec-

trum, studies towards understanding the spontaneous breaking of the local higher-spin

symmetries in AdS were also undertaken from a holographic vantage point. From the

CFT perspective, this corresponds to switching on the Yang-Mills coupling (λ 6= 0),

leading to the anomalous violation of the higher-spin (s > 2) conserved currents. These

studies were made possible by a remarkable feature of N = 4 Super Yang-Mills, which

is that the spectrum of local operators is calculable for any coupling λ in the planar

limit [69].

While the above example provides a concrete framework to study string theory in the

4See, for example, [47,48] for pedagogical introductions to applying the AdS/CFT correspondence
to stongly coupled systems.

5I.e. when the number of colours goes to infinity. As shall be explained later, this limit corresponds
to the weak coupling regime of the dual string theory.
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α′ → ∞ limit, in practice this is complicated by the exponentially growing spectrum,

composed of infinitely many Regge trajectories. A streamlined version of this set-up is

provided by instead considering interacting higher-spin gauge theories on AdS space,

which are believed to provide an effective description of the first Regge trajectory of

string theory in the tensionless limit. Such theories have been conjectured to be dual

to the free fixed points of vector models [51, 70–76],6 which indeed have linear spectra

as opposed to the exponentially growing spectra of Matrix models, like that of N = 4

Super Yang-Mills theory. The duality between higher-spin theories and vector models

therefore provides a toy model for investigating the nature of string interactions in its

putative maximally symmetric phase. Moreover, there have been recent results on em-

bedding such higher-spin gauge theories into string theory [82].

Interactions in higher-spin gauge theories have a long history, with some of their prop-

erties still remaining quite elusive. While no-go theorems [83–90] seem to indicate that

Minkowski space breaks higher-spin symmetry (however see developments [91–94]),

there are promising results for the existence of interacting theories in (A)dS.7 Ex-

panding about an (A)dS background, all possible structures for cubic interactions of

bosonic gauge fields have been constructed for any triplet of spin [30,96–114] and clas-

sified [90,108,112,113], with consistent propagation at the non-linear level requiring the

spectrum to be unbounded in spin [91, 92, 115].8 Little is known about the properties

of quartic and higher-order interactions in (A)dS within a standard Lagrangian frame-

work, though background-independent fully non-linear equations of motion have been

constructed by Vasiliev [73,76,118–127], which employ an infinite set of auxiliary fields.9

A complete understanding of higher-spin theories beyond cubic order in a standard La-

6See also [77–81] for earlier closely related work.
7For a comprehensive review of no-go theorems for higher-spin interactions in flat spacetime, and

how to evade them, see: [95].
8This comes from the structure of the higher-spin algebra, which is to large extent unique [116,117].
9See also [128–132] for proposals of an action, using the machinery of auxiliary fields.
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grangian framework is a problem which has remained open since the ball began rolling

for studies of higher-spin interactions in the ‘70s. In particular, like the tail of α′ correc-

tions in string theory, one expects the appearance of non-local interactions unbounded

in their number of derivatives. The latter behaviour requires careful consideration for

the consistency of interacting higher-spin theories.

1.3.1 Summary of main results

It is the goal of this work to employ the holographic duality (1.3) to shed some light on

the above questions, regarding the nature of interactions in higher-spin gauge theories

within a standard Lagrangian framework.

For simplicity, we consider the most streamlined set-up of the minimal bosonic higher-

spin theory on AdSd+1, which is a theory of even spin gauge fields represented by totally

symmetric double-traceless10 tensors ϕµ1...µs . These have linearised gauge transforma-

tions

δϕµ1...µs = ∇(µ1ξµ2...µs ), s = 2, 4, 6, ... . (1.5)

In addition to the gauge fields above, the spectrum includes a parity even scalar which

we denote by ϕ0. This theory has been conjectured to be dual to the free scalar O (N)

vector model in d-dimensions [70, 71], which is a CFT of an N -component real scalar

field transforming in the fundamental representation of O (N).

The leitmotiv of this thesis is that correlation functions of the free scalar O (N) vec-

tor model in the large N limit are considered equivalent to a perturbative Feynman

diagram expansion in the minimal bosonic higher-spin theory on AdS. Assuming this

holographic duality holds, with the knowledge of correlators in the free O (N) model

(which, in a free theory, are straightforward to compute by Wick’s theorem) one can

then in principle infer the on-shell form of the interactions in the higher-spin theory.

10This is the algebraic constraint: ϕµ1...µs−4ρσ
ρσ = 0, whose role will be explained later.
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The basic idea (which is made more precise in the following chapter) is illustrated for

the extraction of cubic interactions in AdS in figure 1.2.

Figure 1.2: Holographic interpretation of the three-point function of operators Jsi in
the free O (N) model at large N . The operators Jsi are inserted on the boundary of
AdSd+1, sourced by the boundary values of their dual fields ϕsi in AdS. The wavy lines
are the propagators of the ϕsi . With the knowledge of 〈Js1Js2Js3〉 the on-shell form of
the cubic interaction Vs1,s2,s3 can then in principle be determined.

Taking the above approach, in this work we determine the complete set of cubic cou-

plings and the quartic self interaction of the scalar ϕ0 in the action of the minimal

bosonic higher-spin theory on AdS. In other words, using holography we fix the on-

shell action

S [ϕ] =
∑
s

∫
AdS

1

2
ϕs
(
�−m2

s + ...
)
ϕs +

∑
si

∫
AdS

Vs1,s2,s3 (ϕ) +

∫
AdS

V0,0,0,0 (ϕ0) + ...,

where the . . . in the free quadratic action denote terms which depend on the gauge

fixing [133]. The cubic interaction for each triplet of spins takes the schematic form

Vs1,s2,s3 (ϕ) = gs1,s2,s3
[
∇µ1 ...∇µs3ϕν1...νs1

∇ν1 ...∇νs1ϕρ1...ρs2
∇ρ1 ...∇ρs2ϕµ1...µs1

+O(Λ)
]
,

(1.6)

where the terms of O(Λ) and higher in the bracket are descending in the number of
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derivatives, and are fixed uniquely. The overall coupling is given by

gs1,s2,s3 =
1√
N

π
d−3

4 2
3d−1

2 (−2Λ)(s1+s2+s3)/2

Γ(d+ s1 + s2 + s3 − 3)

√
Γ(s1 + d−1

2
)

Γ (s1 + 1)

Γ(s2 + d−1
2

)

Γ (s2 + 1)

Γ(s3 + d−1
2

)

Γ (s3 + 1)
.

(1.7)

Put in the context of existing results for cubic vertices of higher-spin gauge fields, the

above result is new in the sense that the coefficients (1.7) together with the precise

combination of structures in (1.6) were previously unknown in any higher-spin theory

on AdS.

The quartic self interaction of the scalar takes the schematic form

V0,0,0,0 (ϕ0) =
∑
r, n

ar,n (ϕ0∇µ1 ...∇µrϕ0 + ...)�n (ϕ0∇µr ...∇µ1ϕ0 + ...) , r ∈ 2N, (1.8)

where the . . . denote a finite number of terms with no more than r derivatives. As

opposed to the cubic vertices in AdSd+1 above, to extract the quartic interaction we

work in AdS4, in which the conformally coupled scalar affords certain simplifications.

The coefficients in the derivative expansion can be expressed in terms of a generating

function ar (z) =
∑

n ar,n z
n, whose explicit form is quite involved:

ar (z) =
Λr

N

(
πeγ(2r+1)Γ (r)2

(
(2r + 1)2 +

(
Λz + r + 9

4

)2
)2

P
(
r + 1

2
; z
)2 − 42

)
2r−4Γ (r)2

((
Λz + r + 9

4

)2
+
(
r − 1

2

)2
)

− irπ2

2
√

2N

Γ
(
r + 3

2

)
Γ
(
r
2

+ 1
)2 e

γ(2r+ 5
2)P

(
r + 1

2
; z
)
P
(

3
4
; z
)

×
(

(2r + 1)2 +
(
2Λz + 2r + 9

2

)2
)(

9 +
(
2Λz + 2r + 9

2

)2
)
,
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where we introduced

P (a|z) =
∞∏
k=0

[(
1 +

a

k

)2

+

(
4Λz + 4r + 9

4k

)2
]
e−2a/k, (1.9)

and γ is the Euler-Mascheroni constant.

Consistent with standard expectations, the quartic interaction (1.8) is non-local in the

sense that it has an unbounded number of derivatives. Drawing on the interpretation of

CFT correlation functions as scattering amplitudes in AdS, the non-locality of a vertex

can be quantified by studying the contributions in the conformal partial wave expansion

of its four-point amplitude. Our findings suggest that the holographic duality rules out

the appearance of certain pathological non-localities, however there are some subtleties

which remain to be clarified. This is discussed in the final chapter of this work.

Intermediate results

In obtaining the above results, we took a number of intermediate steps which may be

of interest / applicable in a broader context. For example:

• Techniques to evaluate tree-level three-point amplitudes in AdS, involving exter-

nal fields of arbitrary integer spin.

• Propagators in AdS for gauge fields of arbitrary integer spin, in a basis of harmonic

functions.

• Methods to decompose a general tree-level four-point amplitude in AdS into con-

formal partial waves.

Ambient space

We emphasise that obtaining many of the results in this work was facilitated by the

application of the “ambient space formalism”. This is a powerful approach, with the
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basic idea being that fields in Euclidean AdSd+1, or their dual CFT operators, can be

expressed in terms of fields in an ambient Minkowski space Md+2. The action of the

AdSd+1 isometry group, or of the conformal group SO(d+ 1, 1), can then be realised

as the group of linear Lorentz transformations. For calculations in AdS, a key feature

of this approach is the ability to represent expressions that are intrinsic to the AdS

manifold (e.g. involving non-commuting covariant derivatives) in terms of simpler-flat

space ones of the ambient space (e.g. commuting partial derivatives). Because of these

simplifying features, the ambient framework has enjoyed a wide variety of applications

in the AdS, higher-spin and conformal field theory literature. See for example: [134–152]

1.3.2 Outline

The outline of this thesis is as follows:

In chapter 2 we explain our approach to holographically reconstruct higher-spin inter-

actions in detail. The review the precise dictionary between CFT correlation functions

and amplitudes in the dual gravity theory on AdS, as well as the identification of CFT

operators with fields in AdS. We further elaborate on the relevant aspects of the duality

between higher-spin theories on AdS and free CFTs.

In chapter 3 we give a self contained review of the techniques in CFT which are rele-

vant for this work. We recall how the conformal symmetry constrains two-, three- and

four-point functions of operators, paying particular attention to operators of arbitrary

integer spin. We further review the conformal partial wave expansion of four-point

correlation functions, and introduce useful techniques for later application.

In chapter 4 we introduce the free scalar O (N) vector model. We apply the discussion

on CFT correlators in chapter 3, together with useful tools to apply Wick’s theorem,

to establish the two- and three-point functions of all single-trace conserved currents



14 1. Introduction

of arbitrary spin in the theory. We also compute the four-point function of the scalar

single-trace operator, and determine all coefficients in its operator product expansion.

With the latter result, we determine the conformal partial wave expansion and express

it in an integral form for later application. This chapter is based on aspects of the

original works: [2, 4].

Chapter 5 is dedicated to the computation of Witten diagrams. We review existing

results for three-point Witten diagrams involving external scalars, and introduce an

approach to extend them to external fields of arbitrary integer spin. We then turn

to four-point Witten diagrams, deriving bulk-to-bulk propagators for gauge fields of

arbitrary spin in a basis of AdS harmonic functions. Techniques are developed to de-

compose a general four-point Witten diagram into conformal partial waves. We apply

the latter techniques to Witten diagrams with identical external scalars, including four-

point exchanges of gauge fields with arbitrary spin and a general contact interaction

dressed with derivatives. This chapter is based on aspects of the original works: [1,2,4].

Chapter 6 is a culmination of the preceding chapters, in which the intermediate results

established throughout are put together to extract all cubic interactions in the minimal

bosonic higher-spin theory on AdSd+1, and the quartic self-interaction of the scalar for

the theory on AdS4. This chapter is based on aspects of the original works: [2, 4].

In chapter 7 we summarise the main results of this work, and discuss the non-locality

of higher-spin interactions from a holographic perspective. This chapter is based on

on-going work, and aspects of the original works: [2, 3].

Various technical details are relegated to the appendices (A-H). In particular, a detailed

review of the ambient formalism is given in appendix A.



Chapter 2

The AdS/CFT correspondence

As stated in the introduction, the AdS/CFT correspondence is the conjecture that

quantum gravity in asymptotically anti-de Sitter spacetime AdSd+1 is equivalent to a

non-gravitational conformal field theory (CFT) in a flat d-dimensional spacetime,

AdSd+1 QG = CFTd. (2.1)

The aim of this chapter is to review the most pertinent aspects of this duality, relevant

for the applications this thesis.

2.1 Practicalities

For practical applications, the holographic correspondence is more conveniently for-

mulated in terms of the generating functions of the two dual theories, in Euclidean

signature.

In a CFT, the generating function FCFT [ϕ̄] of connected correlators admits the path-

integral representation ,

exp (−FCFT [ϕ̄]) =

∫
Dφ exp

(
−SCFT [φ] +

∫
ddy ϕ̄ (y)O (y)

)
. (2.2)
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We use φ to denote the fundamental field(s) in the theory, governed by the conformally

invariant action SCFT [φ]. The operator O is built from the fields φ, and is sourced by

ϕ̄ (y). The source is not dynamical, but a fixed function which is under our control.1

The basic idea behind the holographic duality (2.1) is to breathe life into the source ϕ̄.

We can think of the CFTd as living on the boundary of the higher-dimensional AdSd+1,

in which the source is promoted to a dynamical field ϕ (y, z) governed by the bulk action

SAdS [ϕ] at the classical level. The only control we have over the field is the boundary

value ϕ̄ (y) at z = 0. The duality then states that the physical quantity FCFT [ϕ̄] in the

CFT coincides with the AdS one ΓAdS [ϕ̄], [45, 46]. I.e. FCFT [ϕ̄] = ΓAdS [ϕ̄], with

exp (−ΓAdS [ϕ̄]) =

∫
ϕ|∂AdS=ϕ̄

Dϕ exp

(
− 1

G
SAdS [ϕ]

)
, (2.3)

and G the gravitational constant. We make the above identification more precise in the

following section.

The crucial point, central to the work behind this thesis, is that connected correlators

in the CFT can be computed holographically by instead functionally differentiating the

bulk quantity ΓAdS [ϕ̄]

〈O (y1) ...O (yn)〉conn. = (−1)n
δ

δϕ̄ (y1)
...

δ

δϕ̄ (yn)
ΓAdS [ϕ̄]

∣∣∣
ϕ̄=0

, (2.4)

with each differentiation sending a ϕ (y, z) particle into AdS.

Quantum effects in the gravity theory on AdS are measured in the dual CFT by the

number of degrees of freedom

(
R

`p

)d−1

∼ Ndof.. (2.5)

1For example, it might be a background electric or magnetic field, or a background pressure density.
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This can be understood by the fact that we can roughly measure the degrees of free-

dom in a CFT by the overall coefficient CT of the energy momentum tensor two-point

function.2 From the preceding discussion, under the holographic duality we identify

〈TT 〉CFT ∼ CT ∼ Ndof. ↔ 〈gg〉AdS ∼ Rd−1

G
∼

(
R

`p

)d−1

,

(2.6)

since the CFT energy momentum tensor is dual to the graviton in AdS (§2.1.1). This

gives the relation (2.5).

The weak coupling expansion G << R in the bulk, with dominant contribution3

exp (−ΓAdS [ϕ̄]) ≈ exp

(
− 1

G
SAdS [ϕ]

) ∣∣∣
ϕ|∂AdS=ϕ̄

, (2.7)

therefore corresponds to a large Ndof expansion in the dual CFT, controlled by the

dimensionless coupling

g := R1−dG ∼ 1/Ndof. (2.8)

From the corresponding 1/Ndof expansion admitted by FCFT,

FCFT = Ndof F
(0)
CFT + F

(1)
CFT +

1

Ndof

F
(2)
CFT + ..., (2.9)

we can identify

exp
(
−Ndof F

(0)
CFT [ϕ̄]

)
= exp

(
− 1

G
SAdS [ϕ]

) ∣∣∣
ϕ|∂AdS=ϕ̄

. (2.10)

Correlators in the CFT may thus be computed in the large Ndof limit via a tree-level

Feynman diagram expansion in AdS space.

2Consider for example free theory: The stress tensors add, so increasing the number of fields (degrees
of freedom) increases the two-point function coefficient.

3I.e. neglecting loops.
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Equation (2.10) is essential for the results established in this work. It is from this

equation that we extract interactions in the action of the minimal bosonic higher-spin

theory from correlation functions in its dual CFT, as will be explained in more detail

in the following sections. To this end, we first make more precise the identification

between operators in CFT and fields on AdS in the large Ndof limit.

2.1.1 Field-operator map

What does it take for an operator O of scaling dimension ∆ and spin-s to be described

by some field ϕ in an asymptotically AdSd+1 space? First of all, the CFT operator must

be gauge invariant. This restricts the spectrum of local operators to be composed of

traces. In the large Ndof limit, single-trace operators are identified with single particle

states in the gravity theory, while multi-trace operators with multi-particle states.

An important feature of the AdS/CFT duality is that both theories are governed by

the same symmetry group: The conformal group is isomorphic to SO (d, 2), which is

the isometry group of AdS. A second natural requirement for CFT operators and bulk

fields to be identified, is then that they sit in the same representation of SO (d, 2).

This has the implication that ϕ is also spin-s. Furthermore, it must transform in the

same way as O under dilatations, which correspond to boundary limit of the energy

generators E in AdS:

The action of the dilatation generator D on O is derived in §3.2, and is given by

[D,O (y)] = −i (∆ + y · ∂)O (y) . (2.11)

It acts on the bulk field ϕ through a Lie derivative with respect to the AdS Killing field
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E (which can be extracted from (A.7), E = J(d+1) d):
4

LE ϕµ1...µs = −i (z · ∂z + y · ∂y + s)ϕµ1...µs . (2.13)

Comparing the above with (2.11), to preserve conformal invariance as z → 0, we require

for boundary directions i

(z · ∂z + s)ϕi1...is ∼ ∆ϕi1...is =⇒ ϕi1...is ∼ z∆−s. (2.14)

The coefficient of z∆−s is identified with the expectation value 〈O (y)〉, since both have

the same transformation properties under the conformal group.

The source ϕ̄ of O has scaling dimension d − ∆, which can be verified by demanding

that (2.2) is invariant under dilatations. For ϕ to describe the source, we thus require5

ϕi1...is ∼ zd+s−∆ as z → 0, (2.15)

with the coefficient of zd+s−∆ given by the source ϕ̄.

The above near-boundary behaviour places restrictions on the mass of the field ϕs,

which can be seen as follows. At the linearised level, we have

(
−� +m2

s

)
ϕµ1...µs = 0. (2.16)

To extract the boundary behaviour, we need only consider the asymptotic form of the

4For concreteness we work in Poincaré co-ordinates for AdSd+1

ds2 =
R2

z2

(
dz2 + dyidy

i
)
, (2.12)

with R the AdS radius. The boundary of AdS is located at z = 0, with boundary directions yi,
i = 1, ..., d.

5Note that here we do not have −s (unlike in (2.14)) since the µ indices are raised and receive a
minus sign in the Lie derivative.
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equation of motion as z → 0, which in the boundary directions reads

−
( z
R

)d+1

∂z

((
R

z

)d−1

∂zϕi1...is

)
− 2sz

R2
∂zϕi1...is (2.17)

+
sd

R2
ϕi1...is +

(
m2
s −

1

R2
s (s− 1)

)
ϕi1...is = 0.

The solution is given in terms of two integration constants Ai1...is (y) and Bi1...is (y),6

ϕi1...is ∼ Ai1...is (y) z∆−s + Bi1...is (y) zd−∆−s, (2.18)

where ∆ satisfies

∆ (∆− d)− s = m2
sR

2. (2.19)

Should this hold, from the above discussion we can thus interpret Ai1...is (y) as the ex-

pectation value 〈Oi1...is (y)〉 in the presence of the source Bi1...is (y) = ϕ̄i1...is (y).

To summarise, small excitations around a given CFT state are dual to perturbations

of the gravitational background, where the latter satisfy equations of motion derived

from the gravitational action.

2.1.2 Gauge fields and conserved currents

A special entry in the field-operator dictionary is reserved for operators/fields with

spin-s and dimension/energy ∆ = s + d − 2. Such representations of SO (d, 2) are

short representations due to the appearance of zero norm states in the Fock space/ The

latter form an invariant submodule, which can be factored out. This leaves us with a

“shorter” unitary representation. For the bulk fields, this multiplet shortening can be

6This can be obtained by Fourier transforming with respect to the boundary directions, and making
an ansatz of the type ϕ̂s (p, z) ∼ Â (p) z∆+s.
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seen as the emergence of a gauge symmetry

δϕµ1...µs = ∇(µ1 ξµ2...µs ). (2.20)

In the dual CFT, this shortening manifests itself in the fact that the corresponding

operators are conserved. This is explained further in §3.3.2, however for now let us note

that invariance under the transformations induced by the bulk gauge symmetry (2.20)

ensures conservation of the dual CFT operator:

0 = δ

∫
∂AdS

ddy ϕ̄i1...isOi1...is = −
∫
∂AdS

ddy ξi2...is∂i1Oi1...is =⇒ ∂i1Oi1...is = 0.

Such representations saturate the unitarity bound for spin-s > 0 unitary irreducible

representations of SO (d, 2). States with lower dimension / energies will have negative

norm, and should be excluded from the physical spectrum. This is justified from a CFT

perspective in §3.3.2.

As a final comment, note that the above discussion applies only to representations of

non-zero spin. The celebrated result for the unitarity bound of scalar fields in AdS was

derived earlier by Breitenlohner and Freedman [153]. It reads

∆ ≥ 1

2
(d− 2) , (2.21)

or more familiarly in terms of the mass of the bulk scalar field,

m2 > −
(
d

2R

)2

. (2.22)

This is known as the Breitenlohner-Freedman (or BF) bound, and informed us that

fields can be a little bit tachyonic in AdS and still be stable.
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2.2 Higher-spin / vector model holography

With the dictionary between CFT operators and bulk fields in place, we are ready to

explore the holographic duality in more detail. As outlined in the introduction, in this

work we are interested in studying interactions in the high energy limit α′/R2 → ∞

through the holographic looking-glass. The logic is clear: In this regime the dual CFT

with coupling λ is free (recall (1.4))

λ ∼
(
R2

α′

)d/2
→ 0, (2.23)

and one may then hope that its simplicity can be used to help us gain some insight in

the bulk.

Let us first consider this limit in the context of well-known conjectured equivalence

between N = 4 Super-Yang Mills in d = 3 + 1 dimensions with SU (N) gauge group,

and the type IIB super-string on AdS5 × S5. Amongst the single-trace operators in

the former, in the free limit there emerges an infinite tower of conserved currents of

increasing spin. For example, bi-linears of the schematic form7 8

Ji1...is =
1

N

6∑
a=1

Tr
[
φa∂(i1 ...∂ is)φ

a
]

+ ... , s = 2, 4, 6, ... , (2.24)

where the . . . denote terms which make the operator a primary one (§3.2.1), and the

φa are the six scalar fields9 in the adjoint representation of SU (N). Recalling the

field-operator map for conserved currents (§2.1.2), each conserved current (2.24) is dual

to a gauge field of the same spin in the bulk. In this way the correspondence confirms

7Note that we use the partial derivative ∂ as opposed to the gauge-covariant derivative ∇, since we
are working in the free theory.

8Since the scalar φa has scaling dimension d
2 −1, the quantum numbers of (2.24) coincide with that

for a spin-s conserved current §3.3.2.
9Analogous gauge-invariant bi-linears also exist for the N2 − 1 free gauge fields and 4

(
N2 − 1

)
free complex fermions. At the free level different fundamental fields propagate independently so it is
consistent to restrict attention to a subset of them.
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that string theory in the regime α′/R2 →∞ possesses an infinite tower of gauge fields:

one for each spin s. As these states saturate the unitarity bound, they have the lowest

mass for given spin and therefore lie on the first Regge trajectory.

Since the fields in N = 4 SYM are matrix valued, the single-trace operators in the

theory are not restricted to bi-linears in the elementary fields. In general, any single-

trace operator built from φa can be expressed as a linear combination of the operators

1

Nn/2
Tr
[(
∂i1 ...∂im1φa1

) (
∂j1 ...∂jm2φa2

)
...
(
∂k1 ...∂kmnφan

)]
, (2.25)

which are multi-linear in the elementary fields. These correspond to the exponentially

growing number of single-particle states on sub-leading (for n > 2) Regge trajectories

in the bulk AdS theory, forming matter multiplets of the higher-spin algebra.

While the above set up gives a complete holographic description of the high-energy limit

of string theory, the study of interactions is complicated by the shear magnitude of the

spectrum. A crucial simplifying observation is that the bi-linears (2.24) form a closed

subsector in the free theory at λ ≡ 0.10 This suggests that it is possible to consistently

restrict attention to the first Regge trajectory in the tensionless limit α′/R2 → ∞,11

which contains a single gauge field for each integer spin. The dynamics of the first

Regge trajectory in this regime is thus captured by non-linear theories of higher-spin

gauge fields on AdS,12 and their study may shed some light on string theory in the

tensionless limit (or equivalently, its maximially symmetric phase).

From a CFT perspective, the proliferation of single-trace operators (2.25) is a con-

sequence of the elementary fields sitting in the adjoint of SU (N). A toy model

10By this we mean that the OPEs of the bi-linears (2.24) contain no contributions from single-trace
operators with k > 2. This can be confirmed by direct computation of the OPE coefficients via Wick’s
theorem, or see [81].

11In fact, this was verified recently [82] for the case of string theory on AdS3 × S3 × T4.
12See [95,154–164] for a selection of reviews on various aspects of higher-spin theories.
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of the above scenario was proposed by Szegin and Sundell [70], and Klebanov and

Polyakov [71], who contemplated the holographic duals of CFTs in which the elemen-

tary fields are instead in the fundamental representation. In this case the only possible

class of single-trace operators are bi-linears in the elementary fields, and one could there-

fore conceive that they give a holographic description of higher-spin gauge theories on

AdS. More concretely, they proposed:

The free scalar O (N) vector model in d-dimensions

is equivalent to

The type A minimal bosonic higher-spin theory on AdSd+1.

The theory on AdS is one of even spin gauge fields, represented by symmetric tensors

ϕs, of spins s = 2, 4, 6, ... . It also contains a parity even scalar, which we denote by ϕ0.

The free scalar O (N) vector model is a theory of an N component free real scalar field

φa, transforming in the fundamental representation of O (N). The single-trace spectrum

consists of a scalar single-trace operator O = φaφa of scaling dimension ∆ = d− 2, as

well as an infinite tower of even-spin conserved currents

Ji1...is =
1√
N
φa∂i1 ... ∂isφ

a + ..., ∂i1Ji1...is = 0, s = 2, 4, 6, ... , (2.26)

of scaling dimension ∆s = s+ ∆ = s+ d− 2.

While the crucial requirement that the CFT single-trace and bulk single-particle states

are in one-to-one correspondence is satisfied, the bulk fields must be prescribed the

near-boundary behaviour (§2.1.1):

ϕi1...is ∼ z∆s−s, (2.27)
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in order to be able to identify

ϕs ↔ Js,

ϕ0 ↔ O.

Generalisations

The above duality is the simplest of its kind in the context of AdS higher-spin / vector

model dualities. In particular, the spectrum of gauge fields in the bulk is truncated

to those involving only even spin. The full non-minimal theory contains a higher-spin

gauge field for each integer spin, and its dual CFT description is given by the free

U (N) invariant theory with a complex N component scalar field φa. The latter also

contains conserved currents of odd spin, which accommodates for the extension of the

bulk spectrum to include gauge fields of odd spin. Further generalisations of this set

up have been considered, including for instance: Having a parity odd scalar in the bulk

(the so-called type-B theory), Chan-Paton factors and supersymmetry [72–74, 76].13

However in this work we focus on the simplest, most streamlined, case presented above,

free from the latter extra decorations.

Tests of the duality

Before we proceed to applications of the higher-spin / free vector model duality, let us

note that although the duality is still a conjecture, its validity has withstood a number

of non-trivial checks. Most well known is the heroic tree-level three-point function

test by Giombi and Yin [178, 179], who verified using Vasiliev’s system that certain

three-point amplitudes in the bulk higher-spin theory on AdS4 correctly reproduce the

corresponding three-point functions in the free scalar O (N) vector model in 3d. The

duality has also been verified at the level of one-loop vacuum energy [180–183] (see

also [184] in the context of adjoint-valued elementary fields).

13Some approaches towards deriving the higher spin/vector model duality from first principles were
investigated in [165–177].
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2.2.1 AdS higher-spin interactions from CFT

As explained in the introduction, there is much to be learnt about interactions in

higher-spin gauge theories within a standard Lagrangian framework. This makes the

higher-spin / vector model duality even more profound, as it opens up the possibility to

study higher-spin interactions on AdS space through the consideration of a drastically

simpler (free) CFT. The role of this subsection is to put this idea on a more concrete

footing.

Assuming the existence of a standard action principle SHS AdS [ϕ] for the minimal

bosonic higher-spin theory, we perform a weak field expansion around an AdS back-

ground in the power of the fields,14

SHS AdS [ϕ] = GS
(2)
HS AdS [ϕ] +G3/2S

(3)
HS AdS [ϕ] +G2S

(4)
HS AdS [ϕ] + ... . (2.28)

Recalling the holographic equality (2.10), with the knowledge of the leading contribution

to the generating function, F
(0)
free O(N), of connected correlators in the large N free scalar

O (N) vector model, one may in principle iteratively extract the on-shell interactions

in the conjectured classical bulk higher-spin theory:

exp

(
− 1√

N
F

(0)
free O(N)

)
=
∞∏
n=2

exp
(
−
√
G

n−2
S

(n)
HS AdS [ϕ]

) ∣∣∣
ϕ|∂AdS=ϕ̄

. (2.29)

With the quadratic kinetic term S
(2)
HS AdS [ϕ] known, we begin this procedure at cubic

order (n = 3). The cubic action of the minimal bosonic higher-spin theory takes the

form

S
(3)
HS AdS [ϕ] =

∞∑
si=0

∫
AdS

Vs1,s2,s3 [ϕsi ] , (2.30)

14To do so, we re-define the fields ϕ →
√
Gϕ. This also ensures a canonically normalised kinetic

term.
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where by applying the Noether procedure the possible structures that can enter the

cubic vertex Vs1,s2,s3 between gauge fields of spins s1, s2 and s3 have already been

determined [108,109,113]. In this work, building on the latter results we completely fix

the coupling constants between all vertex structures by solving

〈Js1Js2Js3〉 =
√
G

δ

δϕ̄s1

δ

δϕ̄s2

δ

δϕ̄s3
S

(3)
HS AdS [ϕ]

∣∣∣
ϕsi |∂AdS=ϕ̄si

, (2.31)

which equates the three-point correlator of the spin-si conserved currents (2.26) in the

free scalar O (N) vector model, to the tree-level three-point amplitude of the dual spin-

si gauge fields ϕsi , generated by the bulk interaction Vs1,s2,s3 . In particular, to this end

we determine the three-point correlators of all single-trace conserved currents Jsi , and

develop techniques to systematically compute three-point bulk amplitudes involving

external fields of arbitrary integer spin.

With the above result for the cubic action, we may then proceed to quartic order. We

restrict to the simplest case of solving for the quartic self-interaction of the scalar ϕ0,

which is dual to the scalar single-trace operator O. Moreover, we focus on the set-up

in AdS4, where the conformally coupled scalar provides further simplifications (which

will become clear in §5.). For clarity, the equation we solve is given diagrammatically

below

〈O (y1)O (y2)O (y3)O (y4)〉conn. (2.32)

.

The diagrams contributing to the right hand side of the equality consist of: the contact
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amplitude generated by the quartic interaction V0,0,0,0 we seek to establish, and the

four-point exchanges of each spin-s gauge field between two pairs of the bulk scalar.

The iterative nature of this reconstruction procedure is thus apparent, for in order

to compute the exchange diagrams we require all cubic interactions between two real

scalars and a spin-s gauge field in the theory.

There is quite a large gap in technical difficulty in applying this holographic approach

to extracting the cubic vertices Vs1,s2,s3 , and extending it to the quartic vertex above.

In particular, in order to match the four-point correlator of the operator O with the

dual four-point bulk amplitudes as shown in equation (2.32), we put both sides of the

equation on an equal footing by decomposing them into conformal partial waves. While

it is well understood how to decompose CFT correlators into conformal partial waves

(especially in free theories), as an intermediate step we tailor methods to establish con-

formal partial wave expansions of the bulk amplitudes.

We therefore spend the following chapters gathering the necessary ingredients and

sharpening technical tools. This culminates in §6, in which we put together the latter

intermediate results, to fix completely the cubic action and the scalar quartic self-

interaction in the type A minimal bosonic higher-spin theory as described above.

Quantum corrections

Let us note that a key feature of free CFTs is that the large Ndof expansion is exact.

For example, in the expansion of the generating function of connected correlators,

FCFT = Ndof F
(0)
CFT + F

(1)
CFT +

1

Ndof

F
(2)
CFT + ... , (2.33)
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we have F
(n≥1)
CFT ≡ 0. An immediate implication of this property in the conjectured

bulk higher-spin theory dual is the absence of any quantum corrections.15 In other

words, the interactions in the minimal bosonic higher-spin theory that we extract from

equation (2.29) should (assuming validity of the holographic duality, in particular for

for finite N) also hold in the quantum bulk theory.

15This is a remarkable feature because it necessitates a precise cancellation of infinitely many loop
diagrams in the bulk. This has been investigated in a series of papers [180, 182, 183, 185–188], where

the simplest simplest example of the vanishing of the one-loop vacuum energy F
(1)
CFT from the bulk was

considered.
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Chapter 3

Correlation functions in CFT

The work of this thesis is to a large part underpinned by techniques and concepts in

conformal field theory (CFT). This chapter is intended to give a self-contained overview

of the relevant ideas, in particular of the constraints imposed by conformal symmetry

on two-, three- and four-point functions of local operators. The first few sections cover

the basics of CFT, which can be safely skipped by the knowledgeable reader. Later

sections move on to discuss conformal block expansions, and more recent developments

relevant for applications in this work.

3.1 Conformal algebra and transformations

A conformal transformation is a change of co-ordinates that locally rescales the metric

tensor,

gµν (x)→ Ω2 (x) gµν (x) . (3.1)

A conformal field theory is a field theory that is invariant under these transformations,

and whose physics looks the same at all length scales as a consequence. In this thesis

we are concerned with CFTs defined on a fixed flat background, and for the remainder

of this discussion we therefore restrict to the case gµν (x) = ηµν .
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The transformations (3.1) form a group, which for a fixed Minkowski background in-

cludes the Poincaré group as a subgroup, since the metric is invariant under Lorentz

transformations and translations (Ω (x) = 1). In addition to the latter, the conformal

group is generated by scale transformations

xµ → λxµ, Ω (x) = λ, λ ∈ R, (3.2)

and special conformal transformations

xµ → xµ + bµx2

1 + 2b · x+ b2x2
, Ω (x) =

1

x2
. (3.3)

The conformal algebra can be determined by considering the infinitesimal form of the

above transformations. For example, the generator D associated to scale transforma-

tions can be obtained by considering its action on a test function

δf (x) = eiλDf (x) e−iλD = λ [iD, f (x)] +O
(
λ2
)

= λ (x · ∂) f (x) +O
(
λ2
)
, (3.4)

which implies iD = (x · ∂). Similarly, the remaining generators can be determined

iPµ = ∂µ, iMµν = xµ∂ν − xν∂µ, iKµ = 2xµ (x · ∂)− x2∂µ, (3.5)

which are associated to translations, special conformal transformations and Lorentz

transformations, respectively. These annihilate the conformal vacuum. With the ex-

plicit form of the generators, the conformal algebra can be worked out to be

[D,Kµ] = iKµ, [D,Pµ] = −iPµ, [Pµ, Kν ] = 2iMµν − 2iηµνD (3.6)

[Mµν , Pσ] = −i (ηµσPν − ηνσPµ) , [Mµν , Kσ] = −i (ηµσKν − ηνσKµ) ,

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) ,

with all other commutators vanishing.
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From an AdS/CFT point of view, perhaps the most important property of the conformal

group on Rd−1,1 is that it is isomorphic to SO (d, 2), which (as shown in §A) is the

isometry group of AdSd+1. This can be seen at the level of the generators by defining

JAB, A,B = 0, ..., d+ 1

Jµν = Mµν , Jµd =
1

2
(Kµ − Pµ) , Jµ(d+1) =

1

2
(Kµ + Pµ) , J(d+1)d = D,

(3.7)

which satisfy the so (d, 2) commutation relations,

[JAB, JCD] = i (ηBCJAD + ηADJBC − ηACJBD − ηBDJAC) , (3.8)

where ηAB = (−+ +...+−).

3.2 Representations on operators

With the knowledge of the conformal algebra and its generators, we can classify opera-

tors according to their representations. These can be derived as induced representations

of the subgroup that leave a point in space-time invariant, the stability subgroup.

The stability subgroup is generated by Lorentz generators Mµν , dilatations D and

special conformal transformations Kµ. This can be verified using their explicit forms

(3.4) and (3.5). Operators at a fixed space-time point form a representation of this

subgroup. On the other hand, the translation generator Pµ acts exclusively on the

co-ordinates xµ, so that

[Pµ,Oa (x)] = −i∂µOa (x) . (3.9)

This implies that an operator Oa at a generic point in space-time can be obtained from
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its value at, for example, the origin via

Oa (x) = eix·POa (0) e−ix·P . (3.10)

Therefore, the representation of an operator under the full conformal algebra can be

determined (or induced) from its representation under the stability subalgebra through

the action (3.10) of the translation generator. To wit, for a conformal generator G

[G,Oa (x)] = eix·P [G̃,Oa (0)]e−ix·P , (3.11)

with

G̃ = e−ix·P Geix·P =
∞∑
n=0

(−i)n

n!
[x · P , [x · P , ..., [x · P ,︸ ︷︷ ︸

n times

G ] ... ] ] , (3.12)

using the Baker-Campbell-Hausdorff formula. In practice, for all generators of the

conformal algebra this series truncates at either the first or second term.

Warm up: Poincaré Representations

In a Poincaré invariant QFT, local operators at the origin transform in irreducible

representations of the Lorentz group,

[Mµν ,Oa (0)] = (Σµν)
a
bOb (0) . (3.13)

This defines the spin of the operator Oa, given matrices Σµν forming a finite dimensional

representation of the Lorentz algebra. Away from the origin, we then have

[Mµν ,Oa (x)] = eix·P
[
e−ix·PMµνe

ix·P ,Oa (0)
]
e−ix·P

= eix·P [Mµν + xµPν − xνPµ,Oa (0)] e−ix·P

= (Σµν
a
b − ixµ∂ν + ixν∂µ)O (x) , (3.14)
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where in the second equality we employed (3.12).

Dilatations and special conformal transformations

In a scale invariant theory, it is natural to diagonalise the dilatation operator acting on

operators at the origin,

[D,O (0)] = −i∆O (0) . (3.15)

∆ is referred to as the scaling dimension of O.

Applying again the Baker-Campbell-Hausdorff formula, we find

[D,O (x)] = −i (∆ + x · ∂)O (x) . (3.16)

Likewise, for the special conformal transformation,

[Kµ,O (x)] =
(
2xνΣνµ + 2i∆xµ − ix2∂µ + ixµx · ∂ +Kµ

)
O (x) , (3.17)

where we define

[Kµ,O (0)] = KµO (0) . (3.18)

3.2.1 Primaries and descendants

In fact, Kµ is a lowering operator for scaling dimension,

[D, [Kµ,O (0)]] = [[D,Kµ] +KµD,O (0)] (3.19)

= −i (∆− 1) [Kµ,O (0)] .

As we shall see in §3.3.2, for unitary CFTs scaling dimensions are bounded from below.

This implies that each representation of the conformal algebra must have an operator
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of lowest dimension, which is then annihilated by Kµ at x = 0,

[Kµ,O (0)] = KµO (0) = 0. (3.20)

This is the definition of a primary operator.

Translation generators on the other hand are raising operators for scaling dimension,

[D, [Pµ,O (0)]] = −i (∆ + 1) [Pµ,O (0)] . (3.21)

Given a primary operator O of dimension ∆, we can construct operators of higher

dimension by acting with translation generators,

O (0)→ (−i)n∂µ1 ...∂µnO (0) , ∆→ ∆ + n. (3.22)

These operators are called descendants of the operator O. A representation of the

conformal algebra is thus constructed from O (0) and its descendants.

Finite conformal transformations

In the preceding section, we derived the action of infinitesimal conformal transforma-

tions on operators, given by (3.9), (3.14), (3.16) and (3.17). For a primary operator of

scaling dimension ∆ and rotation matrices Σµν , these can be summarised as

[Qv,O (x)] = −i
(
v · ∂ +

∆

d
(∂ · v)− i

2
∂µvνΣµν

)
O (x) , (3.23)

where vµ is a general conformal Killing vector

vµ = aµ + ωµσx
σ + λxµ +

(
bµx

2 − 2xµb · x
)
. (3.24)
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This corresponds to a combination of infinitesimal translations aµ, rotations ωµν , scal-

ings λ and special conformal transformations parametrised by bµ.

The corresponding finite transformations are obtained by exponentiating the charge,

O′ (x′) = UO (x)U−1 = Ω (x′)
∆
D (R (x′))O (x′) , U = eQv , (3.25)

where

∂x′µ

∂xν
= Ω (x′)Rµ

ν (x′) , Rµ
ν ∈ SO (d) . (3.26)

In (3.25), D (R) is a matrix implementing the action of R in the SO (d) representation

of O. For example,

scalar representation: D (R) = 1

vector representation: D (R)µ
ν = Rµ

ν

...
...

spin-s representation: D (R)µ1...µs
ν1...νs = R(µ1

ν1 ... Rµs)
νs − traces.

3.3 Radial quantisation

In this section we introduce a particular way of quantising CFTs, which proves useful

in establishing various properties of conformally invariant theories. Examples of which,

that we rely upon later, include: The state-operator correspondence (§3.3.1), the sub-

sequent convergence of the operator product expansion (§3.4) and unitarity bounds

(§3.3.2).

The commutation relations considered in the previous section hold in any quantisation.

The standard way to quantise in QFT is to choose a specific space-time foliation, with
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each leaf endowed with its own Hilbert space. Hilbert spaces on different leaves are

connected by a unitary evolution operator.

In practice, it is convenient to choose quantisations that respect the symmetries of a

theory: if all surfaces are related by a symmetry transformation, the Hilbert space is

the same on each surface. For example, in a theory with Poincaré symmetry typically

we divide space-time into surfaces of equal time. The evolution operator is then the

Hamiltonian, which moves us from one fixed time slice to another.

In a theory with conformal symmetry in Rd, it is natural to foliate space-time with

concentric spheres. States are then evolved from smaller spheres to larger spheres using

the dilatation operator. This is naturally parameterised by co-ordinates (r,n), where

r ∈ R is a radial co-ordinate and nµ is a unit vector on Sd−1. The space-time metric is

then

ds2 = dr2 + r2dn2. (3.27)

To gain a more intuitive grasp of why the dilatation generator defines an evolution

operator, we introduce a time co-ordinate t = ln r. The metric then becomes

ds2 = e2t
[
dt2 + dn2

]
, (3.28)

which is conformally equivalent to a cylinder. This maps Rd to R×Sd−1, with the Sd−1

spheres precisely those which define the foliation above. In the Schrödinger picture,

states on the cylinder evolve as

∂

∂t
|ψ (t)〉 = −H|ψ (t)〉. (3.29)

The crucial observation is that a time translation t→ t+ τ on the cylinder is generated

by a rescaling r → eτr. In other words, the dilatation operator displaces points along
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the time direction of the cylinder,

D = −ix · ∂
∂x
→ −i ∂

∂t
. (3.30)

We can hence identify the Hamiltonian H with the dilatation operator

H = iD. (3.31)

We can use this observation to quantise a CFT on the cylinder, and in the next section

we construct the Hilbert space. Quantising a CFT is this manner is known as radial

quantisation, which dates back to Fubini, Hanson and Jackiw [189].

3.3.1 State-operator correspondence

Having laid down the basic framework of radial quantisation, we now construct a com-

plete basis of states on a sphere of fixed radius. To begin, we assume the existence of

a vacuum state |0〉 that is invariant under all global conformal transformations

Pµ|0〉 = Kµ|0〉 = Mµν |0〉 = D|0〉 = 0. (3.32)

The SO (d) angular momentum operators Mµν are the only generators that commute

with D. States in the Hilbert space H can therefore be classified according to two

quantum numbers: Their scaling dimension ∆ and spin s,

D|∆〉 = −i∆|∆〉 and Mµν |∆, s〉a = (Σ) ab|∆, s〉b. (3.33)

We can organise H in this way by defining states on the sphere though insertions of

local operators at its origin,1

Oj (x) → |Oj〉 ≡ lim
x→0
Oj (x) |0〉. (3.34)

1In this language, the vacuum is prepared by inserting the identity operator.



40 3. Correlation functions in CFT

Since we diagonalise the dilatation generator acting on operators at the origin (3.15),

such states will be eigenstates of D. We can determine their quantum numbers as

follows. For a state created by a primary operator O of scaling dimension ∆, we have

D|O〉 = [D,O (0)] |0〉+O (0)D|0〉 (3.35)

= −i∆|O〉. (3.36)

Similarly, we can conclude

Mµν |O〉 = Σµν |O〉 and Kµ|O〉 = 0. (3.37)

When we act on |O〉 with the translation generator Pµ, it raises the energy (scaling

dimension) by one unit

DPµ|O〉 = [D,P ] |O〉+ PD|O〉 (3.38)

= −i (∆ + 1) |O〉.

This state is associated to the descendant operator −i∂µO, since

Pµ|O〉 = lim
x→0

[Pµ,O (x)] |0〉 (3.39)

lim
x→0
−i∂µO (x) |0〉.

∂µ1 ...∂µnO (x) = [iPµ1 . , [iPµ2 , ... [iPµn ,O (x)] ... ] ] . (3.40)

Owing to conformal symmetry, defining states in this manner accounts for the entire

Hilbert space of the CFT. Any state created by an operator inserted at x 6= 0 is a

superposition of states (3.34),

O (x) |0〉 = eiPxO (0) e−iPx|0〉 = eiPx|O〉 =
∑
n

1

n!
xµ1 ...xµn|∂µ1 ...∂µnO〉. (3.41)
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This construction also works backwards: Given a state |ψ〉 in radial quantisation, it is

natural to decompose it into eigenstates |Oj〉 of the dilatation operator,

|ψ〉 =
∑
j

aj |Oj〉, D|ψ〉 = −i
∑
j

∆j aj |Oj〉. (3.42)

From each eigenstate |Oj〉 we can construct a local operator with dimension ∆j. If the

state is annihilated by the superconformal generator Kµ, this operator will be a primary

one. This feature of CFTs is known as the state-operator correspondence: States are in

one-to-one correspondence with local operators.

This is a remarkable (and, as we shall see, useful) property of CFTs. In a typical

quantum field theory, states and local operators are very different objects. While local

operators live at a point in space-time, states live over an entire spatial slice.

3.3.2 Unitarity bounds, conserved currents and free scalars

For a theory to be unitarity, all states must have positive norm. This requirement on

every state in a conformal multiplet places bounds on the dimensions of primary oper-

ators, in a way that we explain in the following. We continue in radial quantisation,

which has the convenient feature that P †µ = Kµ.2

For concreteness, consider the example of a scalar primary operator O of dimension ∆.

The condition that the first level descendant Pµ|O〉 has positive norm gives

(Pµ|O〉)† Pν |O〉 = 〈O|KµPν |O〉 = 〈O| [Kµ, Pν ] |O〉 = 2i〈O| (δµνD +Mµν) |O〉 = 2∆δµν .

where we normalised 〈O|O〉 = 1. For the above to be positive definite, we require

2This is most easily verified on the Minkowskian cylinder, where

Pµ = ie−it
[
−inµ∂t + (δµν − nµnν)

∂

∂nν

]
, Kµ = ieit

[
inµ∂t + (δµν − nµnν)

∂

∂nν

]
.
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∆ ≥ 0. The operator saturating this bound is the identity operator, which has ∆ = 0.

Similarly, for spin-s primaries Os one can verify (see e.g. [190]) that the same condition

yields

(Pν |Os〉)† Pµ|Os〉 is positive definite =⇒ ∆ ≥ s+ d− 2. (3.43)

Moreover, the above bound implies that spin-s states with dimension ∆ = s+d− 2 are

conserved currents: −iP µ1|Oµ1...µs〉 = 0 =⇒ ∂µ1Oµ1...µs (x) = 0. Conserved currents

of arbitrary spin will appear often throughout this work.3

For traceless symmetric tensors in generic CFTs, no further conditions arise by con-

sidering higher descendants. However, for scalar operators we can go one step further:

Considering the second level descendant, it is possible to obtain

(
P 2|O〉

)†
P 2|O〉 = 2 (2∆ + 2− d) 〈O|K · P |O〉 ≥ 0 =⇒ ∆ ≥ d

2
− 1, (3.44)

where it was used that 〈O|K ·P |O〉 ≥ 0, following from unitary at the first level (3.43).

The scalar operator which saturates this bound satisfies the Klein-Gordon equation

P 2|O〉 = 0 =⇒ �O = 0. (3.45)

I.e. it is a free scalar with scaling dimension ∆ = d
2
− 1.

3.4 Operator product expansion

An invaluable tool in conformal field theory is the operator product expansion (OPE).

This is a statement about what happens as local operators approach each other. Al-

though it has a place in any quantum field theory, in a CFT the OPE gains additional

3In fact for CFTs in d ≥ 3, assuming the existence of exactly one stress tensor, the presence of
currents with spin s ≥ 3 implies that the theory is free [117, 191, 192]. The CFT we consider in this
work is precisely of this type.
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and very powerful properties.

More concretely, the OPE asserts that the product of any two local operators inserted

at nearby points can be closely approximated by a string of operators at one of these

points. In a CFT, the OPE can thus be expressed in the form

O1 (x1)O2 (x2) =
∑

Ok primary

F12k (x12, ∂x2)Ok (x2) , (3.46)

where F12k (x12, ∂x2) is a power series in ∂x2 , and xij = xi−xj. From a primary operator

Ok, this generates the contributions of all of its descendants.4

The OPE is to be understood as a statement that holds inside correlation functions

(within its radius of convergence),

〈X O1 (x1)O2 (x2)〉 =
∑

Ok primary

F12k (x12, ∂x2) 〈X Ok (x2)〉, (3.47)

where X denotes any other operator insertions, X = Oi1 (y1) ...Oin (yn). This relation

can in fact be established using radial quantisation:

Let B be a sphere that separates {x1, x2} from all other insertion points {y1, ..., yn}

in the correlation function (3.47). We can then quantise radially around the centre z

of B, inserting a complete basis of states 1 =
∑
n

|n〉〈n|

〈0|X O1 (x1)O2 (x2) |0〉 =
∑
n

〈0|X |n〉〈n|O1 (x1)O2 (x2) |0〉. (3.48)

By the state-operator correspondence, the states |n〉 correspond to operators O inserted

4For simplicity, we have suppressed all SO (d) indices.
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at z. We can thus write

〈0|X O1 (x1)O2 (x2) |0〉 =
∑
{O}

fO (x12) 〈X O (z)〉, fO (x12) = 〈O|O1 (x1)O2 (x2) |0〉.

(3.49)

To bring the above in the desired form (3.47), we separate the contributions from the

primaries and descendants, and re-sum the descendants. In this way, we obtain

〈0|X O1 (x1)O2 (x2) |0〉 =
∑

Ok primary

F̃12k (x12, ∂z) 〈X Ok (z)〉 (3.50)

=
∑

Ok primary

F12k (x12, ∂x2) 〈X Ok (x2)〉,

where in the second equality we expanded Ok (z) = Ok (x2) + (z − x2) ·∂x2Ok (x2) + ... .

The above derivation indicates that for the OPE to hold, we require the existence of a

sphere which separates x1 and x2 from all other insertion points yi. In fact, in CFT the

OPE is convergent, with radius of convergence equal to the distance to the closest in-

sertion point yi [193,194]. This is by virtue of the state-operator correspondence, since

convergence of the OPE is then guaranteed by the usual convergence of a complete set

of states in quantum mechanics.

The form of the differential operators F (x, ∂) appearing in the OPE (3.46) is fixed by

conformal invariance. To see this, we simply apply the OPE to the three-point function5

〈O1 (x1)O2 (x2)Ol (y)〉 =
∑

Ok primary

F12k (x12, ∂x2) 〈Ok (x2)Ol (y)〉 (3.51)

= F12k (x12, ∂x2) 〈Ol (x2)Ol (y)〉.

The F (x, ∂) are therefore determined by the two- and three-point functions of the cor-

5This is valid in the domain |x1 − x2| < |y − x2|. In the second line, we assumed an orthogonal
basis of primaries.
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responding primary operator, and the structures appearing in both of the latter are

fixed by conformal symmetry. This is discussed in detail in the following sections.

With the above property of the OPE, higher-point functions are essentially determined

with the knowledge of the two- and three-point functions in the theory. This is discussed

in detail for four-point functions of scalar operators in §3.5.3, and plays a key role in

this work.

3.5 Correlation functions of primary operators

The structure imposed by conformal symmetry on correlation functions is a central tool

in obtaining some of the results in this work. In this section we therefore review these

constraints in detail for the cases relevant for the applications in this thesis.

The absence of a length scale means the concept of the standard S-matrix ill-defined in

a CFT. This makes correlation functions of gauge invariant operators key observables

in conformally invariant theories. As we shall see below, conformal symmetry places

powerful constraints on the form they can take. We focus on the correlation functions

of primary operators, since those involving descendants can be immediately determined

from the latter via (3.22).

In a conformally invariant theory, correlation functions are constrained to be invariant

under conformal transformations (3.25)

〈O1 (x1) ...On (xn)〉 = 〈UO1 (x1)U−1... UOn (xn)U−1〉 (3.52)

= Ω (x′1)
∆1 D1 (R (x′1)) ...Ω (x′n)

∆n Dn (R (x′n)) 〈O1 (x′1) ...On (x′n)〉,

where Di (R) is the SO(d) representation of the primary operator Oi, of scaling dimen-

sion ∆i. In the following, we investigate the consequences of the above constraints on
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the structure of two-, three- and four-point functions.

When considering correlators of operators with spin, the framework of ambient space

provides a powerful setting to explore the consequences of conformal symmetry. We

give a brief review of the ambient formalism in this chapter, however the full details

are given in §A.

3.5.1 Two-point functions

As a warm up, consider the two-point function of scalar primary operators O1 and O2

with scaling dimensions ∆1 and ∆2. For rotation and translation invariance, we require

〈O1 (x)O2 (y)〉 = h (|x− y|) , (3.53)

for some function h. In a scale-invariant theory with scale-invariant boundary condi-

tions, correlators must be invariant under the action of the dilatation operator D,

0 = 〈[D,O1 (x)]O2 (y)〉+ 〈O1 (x) [D,O2 (y)]〉, (3.54)

which implies the following differential equation for h

i (x · ∂ + ∆1 + y · ∂ + ∆2)h (|x− y|) = 0. (3.55)

It is straightforward to see that the general solution is

h (|x− y|) =
C

|x− y|∆1+∆2
, (3.56)

for some constant C. This gives the form of the two-point function in a scale invariant

theory.

For theories exhibiting full conformal symmetry, there is a further constraint from
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invariance under special conformal transformations:

0 = 〈[Kµ,O1 (x)]O2 (0)〉+ 〈O1 (x) [Kµ,O2 (0)]〉 (3.57)

= i
(
2∆1xµ − x2∂µ + xµx · ∂

) C

|x|∆1+∆2

= i (∆1 −∆2)
C

|x|∆1+∆2
,

where in the second equality we used the fact that O2 is primary. For a non-trivial

two-point function, we therefore require ∆1 = ∆2.

To summarise, two-point functions of scalar operators with dimensions ∆1 and ∆2 in a

CFT take the form

〈O1 (x)O2 (y)〉 = C
δ12

|x− y|∆1+∆2
, (3.58)

for some constant C, and Kronecker delta δ12.

Technical interlude

When considering correlators of operators with spin, a direct generalisation of the ap-

proach used for the scalar operators above becomes increasingly involved as the spin

increases. Before considering the analogous constraints on the two-point functions of

such operators, we make a brief pause to review some useful tools for dealing with

spinning operators. The full details can be found in §A.

First, when considering operators with spin it is convenient to encode them in poly-

nomials of auxiliary vectors. For example, a spin-s primary operator Oµ1...µs can be

packaged in the polynomial

Oµ1...µs → Os (x|z) =
1

s!
Oµ1...µs (x) zµ1 ...zµs , z2 = 0, (3.59)

with the null condition on the auxiliary vector z enforcing tracelessness. In this way,
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tensorial operations (e.g. trace and index contractions) are mapped into relatively sim-

ple differential operations.

Second, investigating the consequences of conformal invariance is more transparent in

the ambient space formalism, in which the SO (d, 2) symmetry is manifest. The basic

idea behind this framework is due to Dirac [195], and is that the natural habitat for the

conformal group SO (d, 2) is an ambient (d+ 2)-dimensional ambient space Rd,2. Here,

the conformal group is realised as the group of linear isometries, and the constraints

from conformal symmetry become as trivial as those from Lorentz symmetry. This is

provided all CFT fields can be lifted to Rd,2, which we quickly review below (see §A for

full details).

In the ambient framework, d-dimensional flat space-time is realised as a hypercone in

Rd,2. Points xµ are represented by null rays in Rd,2, which can be parameterised in

light-cone ambient co-ordinates as

PA (x) =
(
1, x2, xµ

)
, PA =

(
P+, P−, P µ

)
. (3.60)

Analogously, the auxiliary variables zµ in (3.59), are represented by

ZA (x) = zµ
∂PA

∂xµ
= (0, 2x · z, zµ) . (3.61)

Therefore, the ambient counterpart of the generating function (3.59) for a spin-s pri-

mary operator is given by

Os (P |Z) =
1

s!
OA1...As (P )ZA1 ...ZAs , (3.62)

where to make the mapping one-to-one, we require

Os (λP |Z) = λ−∆Os (P |Z) and (P · ∂Z)Os (P |Z) = 0. (3.63)
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In other words, Os (P ) must be homogeneous and tangent to the hypercone P 2 = 0.

As usual, ∆ represents the scaling dimension of the operator.

Two-point functions of operators with spin

We turn to applying the above technology to the study of conformal correlators involv-

ing operators with spin. We begin in this section with two-point functions.

Generalising the selection rule for scalar two-point functions considered previously, it

can be shown that two-point functions of primaries with different spin or conformal

dimension vanish. We therefore consider the two-point function of two identical spin-s

primary operators Oµ1...µs , of scaling dimension ∆. Employing the ambient framework

that was reviewed in the previous section, this takes the form

〈Os (P1|Z1)Os (P2|Z2)〉 = H (P1, P2|Z1, Z2) , (3.64)

where H is a function of (P1 · P2), (P1 · Z2) and (P2 · Z1).6 It must also be a SO (d, 2)

singlet, satisfying homogeneity, tangentiality and spin constraints7

H ({λiPi} | {Zi}) = (λ1λ2)−∆ H ({Pi} | {Zi}) , λ1, λ2 > 0, (3.65)

P1 ·
∂

∂Z1

H ({Pi} | {Zi}) = P2 ·
∂

∂Z2

H ({Pi} | {Zi}) = 0, (3.66)

H ({Pi} | {αiZi}) = (α1α2)sH ({Pi} | {Zi}) . (3.67)

The first condition arises from the fact that the ambient representative of Oµ1...µs is

homogeneous of degree −∆. The second condition ensures that H is tangent to the

projective null cone in the (d+ 2)-dimensional ambient space. The third is just a fancy

way of saying that it is a degree s polynomial in null auxiliary vectors Z1 and Z2.

6Since the Pi and Zi are null vectors, all other possible contractions are zero.
7For concision we often abbreviate functions F̃ (P1, ..., Pn) = F̃ ({Pi}), i = 1, ..., n.



50 3. Correlation functions in CFT

To satisfy the transversality condition (3.66), it is straightforward to see that the aux-

iliary vectors Z1 and Z2 can only appear through the following building block

H3 =
1

P12

(
(Z1 · Z2) +

2 (Z1 · P2) (Z2 · P1)

P12

)
, (3.68)

where the overall factor of P12 = −2P1 · P2 has been chosen for future convenience.

The homogeneity and spin-s conditions (3.65) and (3.67), can then be solved up to an

overall coefficient as

〈Os (P1|Z1)Os (P2|Z2)〉 = CO
(H3)s

P τs
12

, (3.69)

where we have introduced the twist τs ≡ ∆− s of a spin-s operator with scaling dimen-

sion ∆.

3.5.2 Three-point functions

Conformal invariance is also sufficiently powerful to fix three-point correlation functions.

Like with the two-point functions of operators with spin above, constructing their form

is most straightforward and systematic in the ambient formalism. As a warm up, we

begin with three-point functions involving only scalar primary operators.

Scalar primary operators

Consider the three-point function of scalar primary operators Oi with dimensions ∆i,

i = 1, 2, 3,

〈O1 (P1)O2 (P2)O3 (P3)〉 = F (P1, P2, P3) . (3.70)

Since the Pi are null vectors P 2
i = 0, this is a function only of P12, P13 and P23,

F (P1, P2, P3) ∝ P k1
23P

k2
13P

k3
12 , (3.71)
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for some constants ki to be determined.

For scalar operators in the ambient formalism, there is only the homogeneity constraint

F ({λiPi}) = λ−∆1
1 λ−∆2

2 λ−∆3
3 F ({Pi}) . (3.72)

This is enough to fix the ki in (3.71) completely,

k1 =
1

2
(∆1 −∆2 −∆3) , k2 =

1

2
(∆2 −∆1 −∆3) , k3 =

1

2
(∆3 −∆2 −∆1) . (3.73)

Conformal symmetry thus requires the three-point function takes the form

〈O1 (x1)O2 (x2)O3 (x3)〉 =
C123

(P23)
∆1−∆2−∆3

2 (P13)
∆2−∆1−∆3

2 (P12)
∆3−∆1−∆2

2

, (3.74)

for some multiplicative constant C123.

As a final note, while the above form (3.74) is the most general one dictated by conformal

symmetry, an additional constraint comes from Bose symmetry. This requires that it

is invariant under the exchange of any two operator insertions, from which it follows

that Cijk is symmetric in its indices i, j and k.

Two scalars and a spinning operator

We now turn things up a gear, and consider three-point functions involving primary

operators with spin. The simplest case is given by those involving a single spinning

operator and two scalars, as it involves just a single tensor structure.

For a three-point function involving scalar operators O1 and O2, and a spin-s operator

Oµ1...µs of dimension ∆,

〈O1 (P1)O2 (P2)Os (P3|Z)〉 = F (P1, P2, P3|Z) , (3.75)
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we must satisfy the three constraints

F ({λiPi} |Z) = λ−∆1
1 λ−∆2

2 λ−∆
3 F ({Pi} |Z) , (3.76)

P3 ·
∂

∂Z
F ({Pi} |Z) = 0, (3.77)

F ({Pi} |αZ) = αsF ({Pi} |Z) . (3.78)

In this case, satisfying the transversality condition (3.77) is only possible if Z appears

with P1 and P2 through the new building block

Y3 =
(Z · P2)

P23

− (Z · P1)

P13

, (3.79)

where the overall factor of (P13) (P23) was chosen for later convenience. Combining this

with the homogeneity (3.76) and spin conditions (3.78), we find that the most general

form of the correlator (3.75) as fixed by conformal symmetry is

〈O1 (x1)O2 (x2)Os (x3|z)〉 = CO1O2Os
Ys

3

(P 2
12)

∆1+∆2−τs
2 (P 2

23)
∆2+τs−∆1

2 (P 2
31)

τs+∆1−∆2

2

.

(3.80)

Just like for the scalar three-point function in the previous section, we can constrain the

overall coefficient using Bose symmetry. In this case, since Y3 ↔ −Y3 under O1 ↔ O2,

a similar argument shows that

CO1O2Os = (−1)s CO2O1Os . (3.81)

The immediate consequence of this condition is that the correlator (3.80) vanishes for

odd spin s.
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The general case

We now consider the general case of a three-point function involving primary operators

Osi of integer spin si and dimension ∆i. This is more involved, owing to the increased

number of possible tensorial structures compatible with conformal symmetry.

We write

〈Os1 (P1|Z1)Os2 (P2|Z2)Os3 (P3|Z3)〉 =
F (P1, P2, P3|Z1, Z2, Z3)

(P12)
τ1+τ2−τ3

2 (P13)
τ1+τ3−τ2

2 (P23)
τ2+τ3−τ1

2

,

(3.82)

where τi = ∆i − si. Conformal symmetry requires8

F ({λiPi} | {αiZi}) = F ({Pi} | {Zi})
∏
i

(αi)
si (3.83)

Pj ·
∂

∂Zj
F ({Pi} | {Zi}) = 0, for each j = 1, 2, 3. (3.84)

Restricting to parity-invariant correlators,9 in this case there are six possible transverse

building blocks from which the three-point function can be constructed [148],

Y1 =
(Z1 · P3)

P13

− (Z1 · P2)

P12

, H1 =
1

P23

(
(Z2 · Z3) +

2 (Z2 · P3) (Z3 · P2)

P23

)
, (3.85a)

Y2 =
(Z2 · P1)

P21

− (Z2 · P3)

P23

, H2 =
1

P13

(
(Z1 · Z3) +

2 (Z1 · P3) (Z3 · P1)

P13

)
, (3.85b)

Y3 =
(Z3 · P2)

P32

− (Z3 · P1)

P31

, H3 =
1

P23

(
(Z2 · Z3) +

2 (Z2 · P3) (Z3 · P1)

P13

)
. (3.85c)

Each of the above structures independently satisfy the transversality constraint (3.84)

in more than three dimensions.

8We chose the denominator such that F ({Pi} | {Zi}) does not scale with the Pi.
9In three- and four-dimensions, we can construct parity odd correlators using the SO (d, 2)-invariant

epsilon tensor.
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Taking into account the spin and homogeneity conditions (3.83), the most general

three-point function compatible with conformal symmetry is thus

〈Os1 (P1|Z1)Os2 (P2|Z2)Os3 (P3|Z3)〉 (3.86)

=
∑
ni

Cn1,n2,n3

Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3 Hn1

1 Hn2
2 Hn3

3

(P12)
τ1+τ2−τ3

2 (P23)
τ2+τ3−τ1

2 (P13)
τ3+τ1−τ2

2

,

with theory-dependent coefficients Cn1,n2,n3 .

Back to Intrinsic

In the preceding sections, with the power of the ambient formalism we were able to

write down the most general form of two- and three-point functions of primary oper-

ators of any scaling dimension and spin. In §4 we apply these results to a particular

CFT, and for this purpose it is useful to give the dictionary which translates them back

into the standard d-dimensional language.

For the scalar products of ambient vectors ubiquitous in the ambient expressions for

the correlators: −2Pi ·Pj, Zi ·Pj and Zi ·Zj, this is straightforward to write down from

the explicit forms of the ambient space-time and auxiliary vectors

PA(x) = (1, x2, xµ), ZA(x) = (0, 2x · z, zµ). (3.87)

Recalling that we work in light-cone ambient co-ordinates, this establishes the following

dictionary between ambient and intrinsic scalar products

−2Pi · Pj = x2
ij , Zi · Pj = −zi · xij , Zi · Zj = zi · zj , (3.88)

where by definition

Pi ≡ P (xi) , Zi ≡ Z(xi) . (3.89)
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Employing the above dictionary, one obtains the following intrinsic expressions of the

building blocks found above:

Y1 =
z1 · x12

x2
12

− z1 · x13

x2
13

, H1 =
1

x2
23

(
z2 · z3 +

2z2 · x23 z3 · x32

x2
23

)
, (3.90a)

Y2 =
z2 · x23

x2
23

− z2 · x21

x2
21

, H2 =
1

x2
31

(
z3 · z1 +

2z3 · x31 z1 · x13

x2
31

)
, (3.90b)

Y3 =
z3 · x31

x2
31

− z3 · x32

x2
32

, H3 =
1

x2
12

(
z1 · z2 +

2z1 · x12 z2 · x21

x2
12

)
. (3.90c)

3.5.3 Four-point functions

Correlation functions with more than three operator insertions are no longer fixed by

conformal kinematics alone. This is due to the existence of cross ratios, which are con-

formal invariants that can be built from four or more distinct space-time points. In this

section, and for the remainder of this chapter, we focus our attention on the degree to

which four-point functions of scalar primary operators can be constrained by conformal

symmetry.

Out of four distinct points, one can build two independent cross ratios,

u =
(x1 − x2)2 (x3 − x4)2

(x1 − x3)2 (x2 − x4)2 , v = u
∣∣
2↔4

=
(x1 − x4)2 (x2 − x3)2

(x1 − x3)2 (x2 − x4)2 . (3.91)

Four-point functions may therefore depend non-trivially on u and v, in a way that

cannot be fixed by conformal symmetry. For a four-point function of scalar operators

Oi, reverting briefly to the ambient formalism we have

〈O1 (P1)O2 (P2)O3 (P3)O4 (P4)〉 =
g1234 (u, v)

P k1
12P

k2
13P

k3
14P

k4
23P

k5
24P

k6
34

, (3.92)
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with the ki constrained by the homogeneity condition

〈O1 (λ1P1)O2 (λ2P2)O3 (λ3P3)O4 (λ4P4)〉 = (3.93)

λ−∆1
1 λ−∆2

2 λ−∆3
3 λ−∆4

4 〈O1 (P1)O2 (P2)O3 (P3)O4 (P4) .

This implies the following relations amongst the ki,

k1 = ∆1 + ∆2 −∆3 −∆4 + k6, k2 = ∆1 −∆2 + ∆3 −∆4 + k5 (3.94)

k3 = 4∆4 − k5 − k6, k4 = −∆1 + ∆2 + ∆3 + ∆4 − k5 − k6.

For instance we can take the following convenient parametrisation

〈O1 (P1)O2 (P2)O3 (P3)O4 (P4)〉 =

(
P24

P14

)∆1−∆2
2
(
P14

P13

)∆3−∆4
2 g1234(u, v)

P
∆1+∆2

2
12 P

∆3+∆4
2

34

. (3.95)

Like for the three-point functions, the function g1234 (u, v) is not completely uncon-

strained as it must be consistent with Bose-symmetry. I.e. invariance under permuta-

tions of the scalar operators. Since all permutations of {x1, x2, x3, x4} are generated by

x1 ↔ x2, x3 ↔ x4 and x1 ↔ x3, it is sufficient to consider the constraints coming from

O1 (x1)↔ O2 (x2), O3 (x3)↔ O4 (x4) and O1 (x1)↔ O3 (x3). These require10

g1234 (u, v) = v
∆4−∆3

2 g2134

(
u

v
,

1

v

)
, (3.96)

g1234 (u, v) = v
∆1−∆2

2 g1243

(
u

v
,

1

v

)
, (3.97)

g1234 (u, v) = u
∆1+∆2

2 v−
∆2+∆3

2 g3214 (v, u) , (3.98)

respectively. This gives the most general form of a scalar four-point function in a con-

formally invariant theory.11

10Note that under x1 ↔ x2 and x1 ↔ x2, the cross ratios transform as u→ u/v and v → 1/v. Under
x1 ↔ x3, we have u↔ v.

11We will see shortly that the functions gijkl (u, v) are not arbitrary, but for a given theory are
related in a non-trivial way to its three-point functions.
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The case relevant for applications in later chapters of this thesis is the four-point func-

tions of identical scalar operators. In general, the Bose-symmetry constraints (3.96),

(3.97) and (3.98) relate different functions gijkl (u, v). However for four-point functions

involving identical scalars O, these constraints just apply to a single function g (u, v),

g (u, v) = g

(
u

v
,

1

v

)
, g (u, v) =

(u
v

)∆

g (v, u) . (3.99)

3.6 Conformal block decomposition

In the previous subsection, we observed that conformal kinematics fixes four-point func-

tions up to a function of the cross ratios u and v. As we shall demonstrate below, this

function can be completely determined from a combination of conformal invariance and

the OPE (c.f. §4.38). The OPE coefficients encode the dynamics of the CFT.

For simplicity and relevance for applications in this thesis, we simply consider a four-

point function of identical scalar operators O with scaling dimension ∆,

〈O (x1)O (x2)O (x3)O (x4)〉 =
g (u, v)

(x2
12)

∆
(x2

34)
∆
, (3.100)

where x2
ij = (xi − xj)2. Applying the OPE twice, for example in the (12) and (34)

channels, we can represent the four-point function as a double sum over the primary

operators that appear in the OPE

〈O (x1)O (x2)O (x3)O (x4)〉 =
∑
Oi,Oj

primary

FOOi (x12, ∂x2)FOOj (x34, ∂x4) 〈Oi (x2)Oj (x4)〉.

(3.101)
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Choosing an orthonormal basis of operators, this collapses to a single sum

〈O (x1)O (x2)O (x3)O (x4)〉 =
∑

Oi primary

(cOOi)
2WOi (x1, x2;x3, x4) , (3.102)

where we have extracted the OPE coefficients cOOi from the differential operators FOOi.

Owing to the relationship (3.51) between FOOi and the three-point function 〈OOOi〉,

this OPE coefficient is given by

c2
OOi = C2

OOOi/COiOi , (3.103)

where COOOi is the overall three-point function coefficient and COiOi the overall coef-

ficient of the two-point function 〈OiOi〉. The conformal partial wave WOi re-sums the

contribution of the primary Oi and all of its descendants to the correlator, and thus

represents the contribution from the entire conformal multiplet.

It is often instructive to think of a conformal partial wave WOi as the insertion of a

projector onto the conformal multiplet of Oi,

WOi (x1, x2;x3, x4) = 〈O (x1)O (x2) |Oi|O (x3)O (x4)〉,

|Oi| =
∑
n

|Pµn ...Pµ1Oi〉
1

NOi
〈Pµn ...Pµ1Oi|, (3.104)

for some normalisation NOi . The identity is the sum of the projection operators over

all primary operators

1 =
∑

Oi primary

|Oi|. (3.105)

The projector |Oi| commutes with all conformal generators, and thus the partial wave

WOi has the same transformation properties as the four point function (3.100). It may

then be written as

WOi (x1, x2;x3, x4) =
GOi (u, v)

(x2
12)

∆
(x2

34)
∆
. (3.106)
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The function GOi (u, v) of cross ratios is known as a conformal block, and encodes the

contribution of a primaryOi and its descendants to the function g (u, v) in the correlator

(3.100),

g (u, v) =
∑

Oi primary

(cOOi)
2 GOi (u, v) . (3.107)

The space-time dependence of g (u, v) is completely encoded in the conformal blocks

GOi (u, v), which are universal in the sense that they do not depend on the CFT under

consideration but only on the conformal representation of Oi. I.e. its spin and scaling

dimension. The a priori arbitrary function g (u, v) is thus completely fixed by conformal

invariance and the OPE.

While conformal blocks are central objects in CFT,12 their explicit forms have been

difficult to pin down in generality. Explicit formulas are known only for simple cases,

like for external scalar operators in even spacetime dimensions [199, 200] . In other

cases one has to resort to more indirect methods, like recursion relations [199,201,202]

or efficient series expansions [203, 204]. There is also a general method to increase the

spin of the external operators using differential operators [149,205,206].

Another indirect approach is given by so-called integral representations [151, 201, 207–

212], which we introduce in the following section. This is most useful for our purposes,

for it allows us to define conformal blocks as integral products of three-point structures.

In this way it is more straightforward to identify conformal blocks arising from com-

putations in theories which are not, a priori, CFTs. Such as gravity theories in anti-de

Sitter space.

3.6.1 Integral representation

In this section we derive a useful representation of the projector (3.105), which leads

to an integral expression for conformal blocks. This is motivated by the following ob-

12For example, they are basic ingredients in the conformal bootstrap program [196–198].
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servation of Dolan and Osborn [201],13 which is underpinned by the shadow formalism

of Ferrara, Gatto, Grillo, and Parisi [207–209,213].

We first define for a given primary operator O with quantum numbers [∆, s], an asso-

ciated dual (or shadow) operator 14

Õ (x1|z1) = κ∆,s

∫
ddx2

1

(x2
12)

d−∆

(
z1 · I (x1 − x2) · ∂̂z2

)s
O (x2|z2) , (3.109)

which has quantum numbers [d−∆, s]. The normalisation κ∆,s is chosen such that

˜̃O = Õ, which requires

κ∆,s =

(
2

π

) d
4 Γ (d−∆ + s)

Γ
(
∆− d

2

) 1

(∆− 1)s
. (3.110)

Dolan and Osborn observed that inserting the invariant projection operator

POi = κd−∆,s

∫
ddxOi (x) |0〉〈0|Õi (x) , (3.111)

in a four-point function yields the contributions from the [∆i, s] and [d−∆i, s] confor-

mal multiplets,

〈O (x1)O (x2)POiO (x3)O (x4)〉 = c2
OOOiWOi (x1, x2;x3, x4) + c2

OOÕi
WÕi (x1, x2;x3, x4) .

This entails an integral representation of their total contribution,

c2
OOOiWOi (x1, x2;x3, x4) + c2

OOÕi
WÕi (x1, x2;x3, x4) (3.112)

= κd−∆,s

∫
ddx 〈O (x1)O (x2)Oi (x)〉〈Õi (x)O (x3)O (x4)〉,

13Later formulated in the ambient framework in [151].
14 ∂̂z is a differential operator which accommodates tracelessless (§A.2.3), and Iµν (x) is the inversion

tensor

Iµν (x) = δµν −
2xµxν
x2

; z1 · I (x) · z2 = z1 · z2 − 2
z1 · x z2 · x

x2
. (3.108)
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as a product of two three-point functions. The factor of κd−∆,s in the above ensures

that the projector (3.111) acts trivially when inserted into a correlator involving Oi.

An integral expression for the non-shadow contribution can be obtained by integrating

over complex scaling dimensions with poles at dimensions ∆i and d−∆i,∫ ∞
−∞

dν

ν2 +
(
∆i − d

2

)2

(
WO d

2 +iν
(x1, x2;x3, x4) +WO d

2−iν
(x1, x2;x3, x4)

)
. (3.113)

This projects out the shadow contribution, since the ν-contour may only be closed

around the poles with d
2
± iν = ∆i,

15

∫ ∞
−∞

dν

ν2 +
(
∆i − d

2

)2

(
WO d

2 +iν
(x1, x2;x3, x4) +WO d

2−iν
(x1, x2;x3, x4)

)
=

2π(
∆i − d

2

)WOi (x1, x2;x3, x4) .

We then arrive to the following integral representation of a single conformal block

WOi (x1, x2;x3, x4) =
(∆i − d

2
)

2π

∫ ∞
−∞

dν
1

ν2 +
(
∆i − d

2

)2

κ d
2
−iν,s

(2π)
d
4

Γ
(
d
2
−iν+s

2

)2

Γ
(
d
2

+iν+s

2

)2 (3.114)

×
∫
ddx 〈〈O (x1)O (x2)O d

2
+iν (x)〉〉〈〈Õ d

2
−iν (x)O (x3)O (x4)〉〉,

where we introduced the notation

〈O (x1)O (x2)O d
2
±iν (x)〉 = COOO d

2±iν
〈〈O (x1)O (x2)O d

2
±iν (x)〉〉, (3.115)

15The partial wave WO d
2
±iν

(x1, x2;x3, x4) decays fast enough (exponentially) only for Im (ν)→ ∓∞.

Applying the residue theorem, we must therefore close the contour in the lower half plane for WO d
2
+iν

thus picking up a contribution from the pole at iν = δi− d
2 , while for WO d

2
−iν

we close in the upper-half

plane around the pole at iν = d
2 − δi.
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I.e. 〈〈•〉〉 denotes the removal the overall coefficient from the three-point function.16

Similarly we can express the conformal block expansion of a give four-point function in

the following form17

〈O (x1)O (x2)O (x3)O (x4)〉 =
∑
s

∫ ∞
−∞

dν gs (ν)WO d
2 +iν,s

(x1, x2;x3, x4) , (3.117)

which we refer to as the contour integral representation. For each spin-s primary opera-

tor in the OO OPE of scaling dimension ∆i, the meromorphic function contains a pole

at iν = ∆i − d
2
. The residue of gs (ν) at this pole gives the square of the corresponding

OPE coefficient, such that the usual conformal block decomposition (3.102) is recovered

upon application to the residue theorem.

This way of representing the conformal block expansion and conformal blocks will prove

instrumental in later sections of this thesis, in which we apply the conformal block

expansion in the context of the AdS/CFT duality.

16In establishing (3.114), we used that

COOO d
2
−iν

=
1

(2π)
d
4

Γ
(
d
2−iν+s

2

)2

Γ
(
d
2 +iν+s

2

)2COOO d
2
+iν
. (3.116)

17Which has origins in the early literature, for example [214–216].



Chapter 4

Correlators in the free O (N) model

Having discussed the general structure and properties of two-, three- and four-point

correlation functions in CFTs, in this chapter we move on to consider them in the

context of the simplest examples of such theories: free conformal field theories. In this

case, exact results for the correlators can be obtained by simple application of Wick’s

theorem.

Our consideration of these simple CFTs is motivated by the conjectured equivalence

between higher-spin gauge theories on AdS and free vector model CFTs. In particular,

we compute two-, three- and four-point functions of single-trace operators in the free

scalar O (N) vector model, which are dual to single-particle states in the higher-spin

theory. Moreover, we apply the conformal partial wave expansion techniques introduced

in the previous chapter to the four-point function of the scalar single-trace operator.

This is in the view to compare with the corresponding processes in the dual higher-spin

theory on AdS.

4.1 The free scalar O (N) vector model

Some of the simplest examples of CFTs are given by free theories without a mass scale.

These theories are solvable in the sense that the path integral is Gaussian, which can
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therefore be straightforwardly be evaluated to determine all correlators in the theory.

In this chapter we focus on the example of the free scalar O (N) vector model, which

is conjectured to be dual to the type A minimal bosonic higher-spin theory on AdS

(§2.2). This is a theory of an N component real scalar field φa, transforming in the

fundamental representation of O (N). The action is simply

S[φ] =
N∑
a=1

∫
ddx

1

2
∂iφ

a∂iφa, (4.1)

with equation of motion ∂2φa = 0. As we saw in §3.3.2, free massless scalar fields are

primary of scaling dimension ∆φ = d
2
− 1.

Correlation functions of operators in the theory can be defined by the path integral

〈O1 (x1) ...On (xn)〉 =

∫
d[φ]O1 (x1) ...On (xn) e−S[φ], (4.2)

where the measure is normalised such that 〈1〉 = 1. In particular, by evaluating the

Gaussian integral the two-point function of the fundamental scalar is given by

〈φa (x1)φb (x2)〉 =
1

(d− 2) Vol (Sd)

δab

|x12|d−2
, Vol

(
Sd
)

=
2π

d
2

Γ
(
d
2

) . (4.3)

It is conventional to re-define φ →
√

(d− 2) Vol (Sd), to obtain a canonical unit nor-

malisation

〈φa (x1)φb (x2)〉 =
δab

|x12|d−2
. (4.4)

Since the theory is free, we may determine all correlation functions of operators in the

theory by expressing them in terms of the two-point function (4.3) through Wick’s the-

orem.

As explained in §2.2.1, from the correlation functions of operators in the singlet sector,
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we can study the possible interactions in the dual minimal bosonic higher-spin theory

on AdS. For this purpose, in the following sections we determine the explicit forms of

the appropriate 2-, 3- and 4-pt functions. We work in Euclidean signature throughout.

4.1.1 Singlet sector

By definition, operators in the singlet sector are invariants under the O (N) symmetry

group. Operators in this sector have no free O (N) indices, and are thus composite in

the elementary scalar φa. We distinguish between single-trace operators, consisting of a

single contraction of the O (N) indices, and multi-trace operators, consisting of two or

more contractions. As discussed in §2.1.1, these are dual to single- and multi- particle

states in anti-de Sitter space, respectively.

Single-trace operators

The spectrum of single-trace operators in the vector model are bi-linears in the elemen-

tary scalar φa. There is just a single scalar primary operator

O =
1√
N

: φaφa : , ∆ = 2∆φ = d− 2, (4.5)

whose scaling dimension is simply twice the scaling dimension of the elementary scalar.1

The rest of the single-trace spectrum comprises of an infinite tower of even spin con-

served currents of the schematic form

Ji1...is ∼
1√
N

: φa∂i1 ...∂isφ
a : + ... , s ∈ 2N. (4.6)

The . . . denote further symmetric singlet bi-linear structures, which ensure that the

operator is primary and whose form we determine explicitly below. Recall (§3.3.2) that

spin-s conserved operators are primary with scaling dimension ∆Js = s+d−2 = s+∆,

1Recall that in a free theory, scaling dimensions are additive.
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which can be verified in the above by counting derivatives.

To compute correlation functions of the conserved currents (4.6), it is convenient to

employ the index-free notation

Js (x|z) = Ji1...is (x) zi1 ...zis , z2 = 0. (4.7)

In this way, they can be packaged in the compact form

Js (x|z) =
1√
N
f (s)(z · ∂y1 , z · ∂y2) : φa(y1)φa(y2) :

∣∣
y1,y2→x

, (4.8)

where the function f (s) (x, y) is given in terms of a Gegenbauer polynomial [217],

f (s) (x, y) = (x+ y)s C
(∆φ− 1

2)
s

(
x− y
x+ y

)
. (4.9)

Recall that ∆φ is the scaling dimension of φa.

This way of representing the currents can be derived by demanding that the expres-

sion (4.8) is annihilated by the conformal boost generator Ki, which gives rise to the

differential equation,2

[(∆φ + x ∂x)∂x + (∆φ + y ∂y)∂y] f
(s)(x, y) = 0, (4.10)

whose solution is expressed in terms of the Gegenbauer polynomials above.

2This equation can be generalised to deal with scalar single-trace operators built out of constituents
with different dimensions ∆1/2 and ∆2/2. The corresponding primary is in this case a Jacobi polyno-

mial f(x, y) = (x+ y)sP
(∆2/2−1,∆1/2−1)
s (x−yx+y ).
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Double-trace operators

There are also operators in the singlet sector composed of higher traces, which are dual

to multi-particle states in the gravity theory on AdS. At the level of four-point functions

studied in this work, we need only consider double-trace operators. In particular, in

studying the conformal block expansion of the four-point function 〈OOOO〉, we will

encounter contributions from double-trace operators of the schematic form

[OO]n,s ∼
1

N
: φaφa :

↔
∂i1 . . .

↔
∂is

(↔
∂ ·
↔
∂
)n

: φbφb : , (4.11)

where s is the spin, and ∆n,s = 2∆ + 2n + s the scaling dimension. The primary

condition (3.20) fixes their precise form, which we determine for all s and n in §D.

4.2 Singlet sector correlation functions

We now consider correlation functions of operators in the singlet sector introduced

above. Since the theory is free, we simply apply Wick’s theorem and express them in

terms of two-point functions of the fundamental scalar (4.3).

Our computations are drastically simplified by using the Schwinger-parametrised form

of the fundamental scalar two-point function

〈φa (x1)φb (x2)〉 =
δab

Γ
(

∆
2

) ∫ ∞
0

dt

t
t

∆
2 e−t x

2
12 , (4.12)

which allows for a seamless application of Wick’s theorem.

Conformal symmetry fixes the form of 2- and 3-pt functions up a set of theory dependent

coefficients (§3.5). The goal of the following sections is to determine them for the free

scalar O (N) vector model in d-dimensions.
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4.2.1 2-point functions

As we reviewed in §3.5.1, conformal invariance determines two-point functions up a

single overall coefficient, with those of spin-s conserved currents (4.8) taking the form

〈Js (x1|z1)Js (x2|z2)〉 = CJs
(H3)s

(x2
12)

∆
. (4.13)

The purpose of this section is to determine the coefficient CJs , which essentially depends

on the choice of normalisation of the currents (4.8).

Employing the generating function (4.9) for the conserved current, applying Wick’s

theorem we have

〈Js (x1|z1)Js (x2|z2)〉 =
1

N
f (s)(z1 · ∂y1 , z1 · ∂y2)f (s)(z2 · ∂ȳ1 , z2 · ∂ȳ2) (4.14)

×
[
〈φa(y1)φa(y2)〉〈φb(ȳ1)φb(ȳ2)〉 + φa(y2)↔ φb(ȳ1) + φa(y2)↔ φb(ȳ2)

] ∣∣
y1,y2→x1;ȳ1,ȳ2→x2

.

To extract the overall two-point coefficient, due to conformal invariance it is sufficient

to restrict attention to terms with zero contractions between the null auxiliary vectors.

We thus set to zero z1 · z2, and match with the corresponding term in (4.13). This

is straightforward using the Schwinger-parameterised form of the fundamental scalar

two-point function (4.12), through which we obtain

CJs =

[
1 + (−1)s

2

]
2s+1

Γ(∆
2

)2

∫ ∞
0

dt1
t1

dt2
t2
t

∆
2

1 t
∆
2

2 (t1 + t2)2sC
(∆φ− 1

2)
s ( t1−t2

t1+t2
)C

(∆φ− 1
2)

s ( t1−t2
t1+t2

)e−(t1+t2)

=

[
1 + (−1)s

2

]
2s+2−∆

Γ(∆
2

)2

∫ ∞
0

dq

q
q2s+∆e−q

∫ 1

−1

dp (1− p2)
∆
2
−1C

(∆φ− 1
2)

s (p)C
(∆φ− 1

2)
s (p)

=

[
1 + (−1)s

2

]
2s+2−∆

Γ(∆
2

)2
Γ (∆ + 2s)

∫ 1

−1

dp (1− p2)
∆
2
−1C

(∆φ− 1
2)

s (p)C
(∆φ− 1

2)
s (p)

=
[

1+(−1)s

2

]
2s+1 (∆− 1)s(∆− 1)2s

Γ (s+ 1)
(4.15)



4.2 Singlet sector correlation functions 69

where in the second equality we used the change of variables

q = t1 + t2, p =
t1 − t2
t1 + t2

, (4.16)

and in the third the orthogonality relation for Gegenbauer polynomials.

In the same way, we can determine the coefficient of the two-point functions of the

double-trace operators (4.11)

〈[OO]n,s (x1|z1) [OO]n,s (x2|z2)〉 = C[OO]n,s

(H3)s

(x2
12)

2∆+2n
. (4.17)

Using the explicit form (D.2) of the operators [OO]n,s, together with the Schwinger

parameterisation (4.12), we find

C[OO]n,s
=

1 + (−1)n
4

N

Γ (s)

2sΓ
(
s
2

)
(
d
2
− 1
)
n+

s
2(

d−1
2

)
s
2

(d− 2)
n+

s
2

 (4.18)

×
(−1)n4n+sΓ(n+ 1)(−d− 2n+ 4)n(d− 2)2

n+s

(
d
2

+ s
)
n

(
3d
2

+ n+ s− 4
)
d
2

+n+s−1

Γ(s+ 1)
(
d
2
− 1
)2

n

(
3d
2

+ 2n+ s− 4
)
d
2
−1

,

where we inserted ∆ = d− 2.

4.2.2 3-point functions of single-trace operators

Warm-up: s-0-0

As a warm up, we consider the simplest case of two scalar single trace operators O and

a spin-s conserved current. In §3.5.2, we saw that conformal symmetry fixes its form

up to an overall factor

〈Js (x1|z1)O (x2)O (x3)〉 = CJsOO
1

(x2
12)

∆
2 (x2

13)
∆
2 (x2

23)
∆
2

Ys
1, (4.19)
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which we determine in the following.

Applying the same tools we used for the two-point functions in the previous section,

we have

〈Js (x1|z1)O (x2)O (x3)〉 (4.20)

=
4

(
√
N)3

f (z1 · ∂y1 , z1 · ∂y2)
[
〈φa (y1)φb (x2)〉〈φa (y2)φc (x3)〉〈φb (x2)φc (x3)〉+ y1 ↔ y2

] ∣∣
y1,y2→x1

=
1√
N

8

Γ
(

∆
2

)3

[
1 + (−1)s

2

]
(z1 · ∂y1 + z1 · ∂y2)sC

(∆φ− d2)
s

(
z1 · ∂y1 − z1 · ∂y2

z1 · ∂y1 + z1 · ∂y2

)

×
∫ ∞

0

(
3∏
i=1

dti
ti
t

∆
2
i

)
e−t1 (y1−x2)2−t2 (y2−x3)2−t3 (x2−x3)2∣∣

y1,y2→x1;ȳ1,ȳ2→x2
.

To extract CJsOO, as with the two-point function in the previous section, by conformal

symmetry we need only identify the coefficients of (x12 · z1)s in (4.20) and (4.19). This

leads to

CJsOO =
1√
N

2s+2

Γ
(

∆
2

)3

[
1 + (−1)s

2

] ∫ ∞
0

(
3∏
i=1

dti
ti
t

∆
2
i

)
ts1 e
−t1−t2−t3

=
8√
N

[
1 + (−1)s

2

]
2s
(

∆
2

)
s
(∆− 1)s

Γ(s+ 1)
. (4.21)

Likewise, we can also determine the analogous three-point function for a spin-s double-

trace operator for general n,

〈[OO]n,s (x1|z1)O (x2)O (x3)〉 = C[OO]n,sOO
(x2

23)
n

(x2
12)

∆+n
(x2

13)
∆+n

Ys
1, (4.22)

with

C[OO]n,sOO = (−1)n+s2n+s
(d− 2)2

n+s

Γ (s+ 1)

1 + (−1)n
4

N

Γ (s)

2sΓ
(
s
2

)
(
d
2
− 1
)
n+

s
2(

d−1
2

)
s
2

(d− 2)
n+

s
2

 .

(4.23)
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General case: s1-s2-s3

With the approach clear, we now tackle the more involved general case of a three-point

function involving currents (4.8) for a generic triplet of spin {s1, s2, s3}. As we saw in

§3.5.2, the most general three-point function takes the form

〈Js1(x1|z1)Js2(x2|z2)Js3(x3|z3)〉

=
∑
ni

Cn1,n2,n3
s1,s2,s3

Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3 Hn1

1 Hn2
2 Hn3

3

(x2
12)

τ1+τ2−τ3
2 (x2

23)
τ2+τ3−τ1

2 (x2
31)

τ3+τ1−τ2
2

, (4.24)

built from the six basic conformal structures (3.90). Each individual term is indepen-

dently invariant under conformal transformations, and thus conformal symmetry does

not determine the coefficients Cn1,n2,n3
s1,s2,s3

.

The requirement that the currents are conserved relates the coefficients Cn1,n2,n3
s1,s2,s3

amongst

each other, reducing the number of independent forms. Conservation constraints on the

structure of three-point functions involving conserved vector operators and the stress-

energy tensor where first studied by Osborn and Petkou in [218]. This was extended

to a generic triplet of spins {s1, s2, s3} in [148,219,220]. In [220], the general structure

required by conservation in d > 3 was found to be

〈Js1(x1|z1)Js2(x2|z2)Js3(x3|z3)〉 =

1+min(s1,s2,s3)
2∑
l=0

cl 2F1

(
1

2
− l,−l, 3− d

2
− 2l,−1

2

Λ

H2
1H2

2H2
3

)
×
eY1+Y2+Y3

0F1(∆,−1
2
H1)0F1(∆,−1

2
H2)0F1(∆,−1

2
H3)

(x2
12)

τ1+τ2−τ3
2 (x2

23)
τ2+τ3−τ1

2 (x2
31)

τ3+τ1−τ2
2

Λ2l,

(4.25)

with

Λ = Y1Y2Y3 +
1

2
[Y1H1 + Y2H2 + Y3H3] , (4.26)
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and where l takes both integer and half integer values. The coefficients cl are left unfixed

by current conservation, and depend on the theory. In particular, for a generic triplet

of spins there are 1 + min (s1, s2, s3) independent structures, which was first counted

in [218,221] (see also [29,222,223]). In the following we determine the coefficients cl for

the d-dimensional free scalar O (N) vector model.3 As we shall see, our results confirm

a prediction made in [220], that the free scalar correlator corresponds to the l = 0

structure in the above.

As with the two-point functions in §4.2.1, we can focus on terms with no contractions

amongst the auxiliary vectors. In the calculations we may then set zi · zj = 0, giving

〈Js1(x1|z1)Js2(x2|z2)Js3(x3|z3)〉 (4.27)

=
8N

Γ
(

∆
2

)3

∫ ∞
0

(
3∏
i=1

dti
ti
t

∆
2
i

)
f (s1) (−2t3z1 · x12,−2t2z1 · x13) f (s2) (−2t3z2 · x21,−2t1z2 · x23)

× f (s3) (−2t1z3 · x32,−2t2z3 · x31) e−t1x
2
23−t2x2

31−t3x2
12

=

si∑
ni=0

Dn1,n2,n3
s1,s2,s3

(z1 · x12)s1−n1(z2 · x21)s2−n2

(x2
12)

∆
2

+s1+s2−n1−n2

(z1 · x13)n1(z3 · x31)n3

(x2
31)

∆
2

+n1+n3

(z2 · x23)n2(z3 · x32)s3−n3

(x2
23)

∆
2

+s3+n2−n3

,

where

Dn1,n2,n3
s1,s2,s3 =

N(−1)n1+n2+n323+s1+s2+s3

s1!s2!s3!

(
s1

n1

)(
s2

n2

)(
s3

n3

)
(∆− 1)s1(∆− 1)s2(∆− 1)s3 (4.28)

×
Γ
(
s1 + ∆

2

)
Γ
(
s2 + ∆

2

)
Γ
(
s3 + ∆

2

)
Γ
(
n1 + ∆

2

)
Γ
(
n2 + ∆

2

)
Γ
(
n3 + ∆

2

) Γ
(
n1 + n3 + ∆

2

)
Γ
(
n2 − n3 + s3 + ∆

2

)
Γ
(
−n1 − n2 + s1 + s2 + ∆

2

)
Γ
(
−n1 + s1 + ∆

2

)
Γ
(
−n2 + s2 + ∆

2

)
Γ
(
−n3 + s3 + ∆

2

) .

By matching with the corresponding expansion of the general form for the correlator

3These results extend to general dimensions the results [224–226] for the same correlators in three-
dimensions. See also [227] for an earlier result for the stress-tensor three-point function in a free scalar
theory in general dimensions.
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(4.24), we can write down the following recursion relation for the coefficients Cn1,n2,n3
s1,s2,s3

Cn1,n2,n3
s1,s2,s3

= 2−n1−n2−n3

[
Dn2,s2−n3,s3−n1
s1,s2,s3

(4.29)

−
n1+n2+n3∑
k1+k2+k3=1

(−1)k1+k2+k3

(
k1 + k2 − n1 − n2 + s3

k1

)(
k1 + k3 − n1 − n3 + s2

k3

)
×
(
k2 + k3 − n2 − n3 + s1

k2

)
2−k1−k2−k3+n1+n2+n3C(n1−k1,n2−k2,n3−k3)

s1,s2,s3

]
,

where the summation assumes ki ≤ ni. Solving for the explicit form of the coefficients,

we find:

Cn1,n2,n3
s1,s2,s3

= − N(−1)n1+n2+n32s1+s2+s3−(n1+n2+n3)+3

n1!n2!n3!(s1 − n2 − n3)!(s2 − n3 − n1)!(s3 − n1 − n2)!

×
Γ
(
s1 + ∆

2

)
Γ
(
s2 + ∆

2

)
Γ
(
s3 + ∆

2

)
Γ
(
n1 + ∆

2

)
Γ
(
n2 + ∆

2

)
Γ
(
n3 + ∆

2

) (∆− 1)s1(∆− 1)s2(∆− 1)s3 . (4.30)

A nice observation is that the ni dependence can be re-summed in terms of a Bessel

function, giving the following compact form for the correlation function

〈Js1(x1|z1)Js2(x2|z2)Js3(x3|z3)〉

= N

(
3∏
i=1

csi q
1
2
−∆

4
i Γ(∆

2
) J∆−2

2
(
√
qi)

)
Ys1

1 Ys2
2 Ys3

3

(x2
12)∆/2(x2

23)∆/2(x2
31)∆/2

, (4.31)

where we introduced

q1 = 2H1∂Y2∂Y3 , q2 = 2H2∂Y3∂Y1 , q3 = 2H3∂Y1∂Y2 . (4.32)

Normalising the two-point functions (4.13) canonically,4 the csi are given by

c2
si

=

√
π 2−∆−si+3 Γ(si + ∆

2
)Γ(si + ∆− 1)

N si! Γ(si + ∆−1
2

)Γ(∆
2

)2
. (4.33)

4I.e. by redefining Jsi → 1√
CJsi
Jsi .
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A nice check of this result is that it is consistent with that established for the s-0-0

correlator in the previous section, which was already available in the literature [228].

Furthermore, using the identity

Γ (α + 1)x−αJα (2x) = 2−α0F1

(
α + 1;−x

2

4

)
, (4.34)

our result confirms the conjecture made in [220], that the free scalar correlator corre-

sponds to the l = 0 term in (4.25).

With the results (4.13) and (4.31) for the two- and three-point functions of higher-spin

conserved currents, in §6 we are able to fix the cubic action of the dual type A minimal

bosonic higher-spin theory on AdSd+1, using the conjectured holographic higher-spin

/ vector model duality. Furthermore, together with the double-trace operator 3- and

2-point functions (4.22) and (4.17), as discussed in §3.6 these expressions also determine

the conformal block expansion of the scalar single-trace operator four-point function,

to which we now turn our attention. The latter is a key result for later applications

(§6), as it will allow us to determine the on-shell quartic self interaction of the scalar

in the dual higher-spin theory.

4.2.3 Scalar 4-point function

For the remainder of this chapter we consider the four-point function of the scalar

single-trace operator [199],

〈O (x1)O (x2)O (x3)O (x4)〉 =
gO (u, v)

(x2
12x

2
34)

∆
, (4.35)

which has disconnected and connected parts,

gO (u, v) = gdisc. (u, v) + gconn. (u, v) , (4.36)
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gdisc. (u, v) = 1 + u∆ +
(u
v

)∆

, gconn. (u, v) =
4

N

(
u

∆
2 +

(u
v

)∆
2

+ u
∆
2

(u
v

)∆
2

)
,

(4.37)

where we used canonical normalisation for the 〈OO〉 two-point function. As usual, we

can obtain the above expressions by simply Wick contracting. The individual contri-

butions can be understood pictorially in figure 4.1.

Figure 4.1: Contributions to the full four-point function (4.35) of the scalar single-trace
operator O. The first line constitutes the three disconnected terms, while the second
line comprises the connected part of the correlator.

OPE and conformal block expansion

For later application, we require the conformal block expansion of the four-point func-

tion (4.35). As explained in §3.5.3, although functions (4.37) of the cross ratios are

invariant under conformal transformations, those in four-point functions they are com-
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pletely determined by the OO OPE. Schematically, the latter takes the form5

OO ∼ 1 +
∑
s

cOOJs Js +
∑
s,n

cOO[OO]s,n
[OO]s,n + descendents, (4.38)

with OPE coefficients cOOJs and cOO[OO]s,n
of the conserved currents and double-trace

operators, respectively. Using the results for the two- and three-point functions estab-

lished in the previous sections, together with their relationship (3.103) to the corre-

sponding OPE coefficients, we find

c2
OOJs =

[
(−1)s + 1

2

]
1

N

2s+3
(

∆
2

)
s

s! (∆ + s− 1)s
, (4.39)

c2
OO[OO]s,n

=

[
(−1)s+1

2

]
2s+1

(
∆
2

)2

n
(∆)2

s+n

s!n!
(
s+ ∆

2
+ 1
)
n

(∆− 1 + n)n (2∆ + 2n+ s− 1)s
(

3∆
2
− 1 + n+ s

)
n

×

1 + (−1)n
4

N

Γ (s)

2sΓ
(
s
2

)
(

∆
2

)
n+

s
2(

∆+1
2

)
s
2

(∆)
n+

s
2

 .

(4.40)

With the above results, we can write down the conformal block decomposition of the

four-point function (4.35) (recall the discussion §3.6 on the conformal block decompo-

sition of four-point correlators). For example, in the (12)(34) channel

〈O (x1)O (x2)O (x3)O (x4)〉 (4.41)

=
1

(x2
12x

2
34)

∆

(
1 +

∑
s

c2
OOJs G∆+s,s (u, v) +

∑
s, n

c2
OO[OO]s,n

G2∆+2n+s,s (u, v)

)
,

where the first term on the RHS is the contribution from the identity operator, the sec-

ond from the conformal multiplet of each conserved currents (4.8) and the third from

the muliplets of each of the double-trace operators (4.11).

5That there are no contributions from higher-trace operators is clear from the triviality of their
three-point functions with two insertions of O. This can be seen immediately by applying Wick’s
theorem.
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To compare with the corresponding calculations of Witten diagrams in the dual higher-

spin theory in §5, it is useful to express the expansion (4.41) of the correlator in a

crossing-symmetric form. To this end, it is instrumental to understand the microscopic

interpretation of each term in the connected part of the correlator (4.35): In free CFTs,

four-point correlators can be straightforwardly separated into terms which indepen-

dently satisfy crossing [229]. Recall that for four-point correlator of identical scalar

operators, one requirement is (3.99)

v∆gO (u, v) = u∆gO (v, u) . (4.42)

In a free theory, the function gO (u, v) is a Laurent polynomial in
√
u and

√
v, meaning

that the independent solutions of (4.42) can be expressed in a basis of the form

v∆pij (u, v) = u
i−j
2 v

j
2 + v

i−j
2 u

j
2 = u∆pij (v, u) . (4.43)

In the u→ 0 limit, a given conformal block behaves as [201]

G∆k,s (u, v) ∼ u
τ
2 ĝτ,s (v) = u

τ
2 (1− v)s 2F1

(
τ
2

+ s, τ
2

+ s; τ + 2s; 1− v
)
, (4.44)

where τ = ∆k−s is the twist of an operator with quantum numbers [∆k, s], and ĝτ,s (v)

is sometimes referred to in the literature as a collinear conformal block. In this way we

can identify the independent crossing-symmetric contributions

4

N

(
u

∆
2 +

(u
v

)∆
2

)
=

4

N
p3∆,2∆ (u, v) =

∑
s

c2
OOJs G∆+s,s (u, v) , (4.45)

and

4

N
u

∆
2

(u
v

)∆
2

=
2

N
p3∆,∆ (u, v) =

∑
s, n

c2
OO[OO]s,n

G2∆+2n+s,s (u, v) . (4.46)

With the above understanding, we can express the four-point correlator in a manifestly
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crossing-symmetric form by writing,

〈O (x1)O (x2)O (x3)O (x4)〉conn. (4.47)

= G (y1, y2; y3, y4) + G (y1, y3; y2, y4) + G (y1, y4; y3, y2)

with

G (y1, y2; y3, y4) (4.48)

=
4

N

1

(x2
12x

2
34)

∆

(
a · p3∆,2∆ (u, v) + b

2
· p3∆,∆ (u, v)

)
=

1

(x2
12x

2
34)

∆

(
a ·
∑
s

c2
OOJs G∆+s,s (u, v) + b ·

∑
s, n

c2
OO[OO]s,n

G2∆+2n+s,s (u, v)

)
.

We are at liberty to choose any a and b such that 2a+ b = 1. This simply parametrises

the freedom to add to terms which vanish under symmetrisation. In other words G with

different solutions for a, b and c are related by the addition of G̃ with the property that

G̃ (y1, y2; y3, y4) + G̃ (y1, y3; y2, y4) + G̃ (y1, y4; y3, y2) = 0 (4.49)

Contour Integral form

In §6.2.2 we employ the conformal block expansion of the scalar singlet four-point

function (4.41) in 3d to extract the quartic self-interaction of the bulk scalar in the

type A minimal bosonic higher-spin theory on AdS4. This is achieved by matching

with the conformal block expansions of the dual Witten diagrams in AdS. To do so, it

will be convenient to employ the contour integral form (3.117)

〈O (x1)O (x2)O (x3)O (x4)〉 =

∫ ∞
−∞

dν
∑

s
gs (ν)Wd

2
+iν,s

(x1, x2;x3, x4) , (4.50)

which we determine in the following for d = 3.
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As explained in §3.6.1, the poles of the meromorphic function gs (ν) encode the contri-

butions of each spin-s conformal multiplet. In the case of the scalar singlet four-point

function (4.41), it thus takes the form

gs (ν) = gJs (ν) + g[OO]s
(ν) , (4.51)

with gJs (ν) generating the contribution from the spin-s conserved current multiplets,

and g[OO]s
(ν) that of each of the spin-s double trace operators (4.11).

More precisely, when closing the ν-contour in the lower half plane as prescribed in

§3.6.1, gJs (ν) contains a single simple pole corresponding to the dimension of a spin-s

conserved current. I.e. at d
2

+ iν = ∆ + s

gJs (ν) =
cOOJs (ν)

ν2 +
(
∆ + s− d

2

)2 , (4.52)

cOOJs (ν) =

[
(−1)s + 1

2

]
2−2iν+s+5Γ

(
iν + 1

2

)
Γ
(

2s+2iν+3
4

)2

π3/2N(2iν + 2s+ 1)Γ(iν)Γ
(

2s+2iν+1
4

)2 . (4.53)

The function cOOJs (ν) is chosen so that

cOOJs (ν)
∣∣∣
d
2

+iν=∆+s
=

i

2π
(2∆ + 2s− d) c2

OOJs , (4.54)

i.e. such that the single-trace contribution in (4.39) is recovered upon application of

Cauchy’s residue theorem.

Similarly, for the spin-s double-trace operators, g[OO]s
(ν) has a string of simple poles

at double-trace dimensions: d
2

+ iν = 2∆ + 2n+ s, n = 0, 1, 2, ...,∞

g[OO]s
(ν) = cOO[OO]s

(ν) Γ

(
2∆ + s− d

2
− iν

2

)
, (4.55)

which are accounted for by the poles of the Gamma function factor, and cOO[OO]s
(ν)
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generates the corresponding OPE coefficients at each pole:

cOO[OO]s
(ν) (4.56)

=

[
(−1)s + 1

2

](
Γ
(
iν + 1

2

)
2−2iν+3s+2Γ

(
s+ 3

2

)
Γ
(

2s+2iν+3
4

)2

πΓ(iν)(2iν + 2s+ 1)Γ(s+ 1)Γ
(
s− iν + 1

2

)
Γ
(
s+ iν + 1

2

)
+

1

N

isΓ
(
iν + 1

2

)
2−2iν+3s+ 3

2 Γ
(
s+1

2

)
Γ
(
s+ 3

2

)
Γ
(

2s+2iν+3
4

)2

πs!(s/2)!Γ
(

3
2
− iν

2

)
Γ
(

3
2

+ iν
2

)
Γ(iν)(2iν + 2s+ 1)Γ

(
s− iν + 1

2

)
Γ
(
s+ iν + 1

2

)) .
with

cOO[OO]s
(ν)
∣∣∣
d
2

+iν=2∆+2n+s
=

i

2π
n! (−1)n c2

OO[OO]s,n
. (4.57)



Chapter 5

Witten diagrams in higher-spin theory

With this chapter we turn to the bulk side of the story. In the preceding chapter we

computed correlation functions of single-trace operators in the singlet sector of the free

scalar O (N) vector model. In the context of holography, correlation functions of single-

trace operators correspond to so-called Witten diagrams in the weak coupling regime

of the dual gravity theory on AdS. In the present context, the dual theory is one of

higher-spin gauge fields on AdS. With this setting in mind, in this chapter we introduce

methods for computing Witten diagrams in theories containing fields of arbitrary rank.

These methods are underpinned by the ambient space framework, which is reviewed in

detail in §A.

In particular, we demonstrate how to compute three-point Witten diagrams involving

external fields of arbitrary spin and mass (and also a parity even scalar), as well as

methods to establish conformal partial wave expansions of four-point exchange and

contact diagrams. This is all in the view to bring the Witten diagrams in the type A

minimal bosonic higher-spin theory into the appropriate form, to match their counter-

parts in the free scalar O (N) vector model. All computations are at tree-level.
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Before we proceed, let us first settle the notation. We denote points on AdSd+1 by xµ,

and often work in Poincaré co-ordinates xµ = (z, yi),

ds2 =
R2

z2

(
dz2 + dyidy

i
)
, (5.1)

with yi representing points on the boundary of AdS, i = 1, 2, ... , d. We set the AdS

radius R is set to one for all computations in this chapter. When working in ambient

space, we use X to represent points on the AdS manifold and P for those on the con-

formal boundary.

5.1 Witten diagrams

Back in §2.1, we saw that the AdS/CFT duality can be phrased as the equivalence

between the generating functional of correlators in a CFT and the full AdS partition

function of its putative dual gravity theory, which in Euclidean signature reads

〈exp

(∫
ddy ϕ̄ (y)O (y)

)
〉CFT =

∫
ϕ|∂AdS=ϕ̄

Dϕ exp

(
− 1

G
SAdS [ϕ]

)
. (5.2)

The bulk field ϕ, which is dual to the single-trace CFT operator O of scaling dimension

∆ and spin-s, is subject to the boundary condition (2.15)

lim
z→0

ϕ (z, y) z∆−d−s = ϕ̄ (y) , (5.3)

in order to define the path integral. In particular, this implies that correlators of single-

trace operators Oi can be computed by functionally differentiating the gravity partition

function with respect to ϕ̄i

〈O1 (y1) ...On (yn)〉 =
δ

δϕ̄1 (y1)
...

δ

δϕ̄n (yn)

∫
ϕi|∂AdS=ϕ̄i

Dϕ exp

(
− 1

G
SAdS [ϕi]

) ∣∣∣
ϕ̄i=0

.

(5.4)
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When the gravity theory in AdS is weakly coupled,1 we can perform a semi-classical

expansion of the correlators generated by the gravity partition functional,

〈O1 (y1) ...On (yn)〉 (5.5)

=
δ

δϕ̄1 (y1)
...

δ

δϕ̄n (yn)
exp

(
− 1

G
SAdS [ϕi|∂AdS = ϕ̄i]

) ∣∣∣
ϕ̄i=0

+ loops,

in which quantum loop corrections are subdominant. This corresponds to a large Ndof.

expansion in the dual CFT, and the corresponding Feynman diagrams in AdS space

are known as Witten diagrams.

As explained in §2.2.1, by studying the tree-level contribution to the relation (5.5) for

non-linear higher-spin theories on AdS, we can extract the nature of their on-shell inter-

actions by employing their conjectured equivalence with free conformal field theories.

To do so, we therefore need to develop effective techniques for the systematic evaluation

of tree-level Witten diagrams in theories containing fields of arbitrary rank. We first

warm up by considering the simplest index-free example of a scalar field in AdS, the

amplitudes of which we later show can be related to those with external higher-spin

fields.

5.1.1 Warm-up example: Scalar field in AdS

Consider the example of a scalar field φ in AdSd+1, with classical action

S =
1

G

∫
AdS

1

2
∇µφ∇µφ+

1

2!
m2φ2 +

1

3!
gφ3 +

1

4!
λφ4 + ... , (5.6)

for some overall coupling G. According to the field-operator map §2.1.1, the bulk scalar

φ will be dual to some single-trace scalar operator O with scaling dimension ∆, which

1In the sense of ~→ 0, not necessarily small curvature/non-stringy.
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is related to the (mass)2 of φ

(mR)2 = ∆ (∆− d) . (5.7)

In the weak coupling regime G << 1 we can make the saddle point approximation

exp
(
−FCFT

[
φ̄
])

≈ exp
(
−S

[
φ̄
])
, (5.8)

where we neglect loop corrections, which are suppressed in G. Here, FCFT

[
φ̄
]

is the

generating function of connected correlators ofO with source φ̄, and S
[
φ̄
]

is the on-shell

action (5.6) subject to the boundary condition

lim
z→0

φ (z, y) z∆−d = φ̄ (y) . (5.9)

In the following, we demonstrate how to to evaluate correlation functions of O at lead-

ing order in Ndof using the holographic equality (5.8).

To do so, we must evaluate the on-shell action S
[
φ̄
]
. The first step is to solve the

non-linear classical equation of motion,

δS

δφ
=
(
−� +m2

)
φ+

g

2!
φ2 +

λ

3!
φ3 + ... = 0, (5.10)

subject to the boundary condition (5.9). To express the solution in terms of the bound-

ary value φ̄, we solve perturbatively in φ̄ by using integral kernels.2 We write

φ (x) = φ0 (x) + φ1 (x) + φ2 (x) + ..., (5.11)

where φn is the solution at order n+1 in φ̄. To begin, the solution of the linear equation

(
−� +m2

)
φ0 = 0, (5.12)

2This is justified either for small source φ̄ or small couplings {g, λ, ...}.
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can be constructed from the boundary data via the corresponding bulk-to-boundary

propagator. This is an integral kernel

φ0 (z, y) =

∫
∂AdS

ddy′K∆ (z, y; y′) φ̄ (y′) , (5.13)

where

(
−� +m2

)
K∆ (z, y; y′) = 0, lim

z→0

(
z∆−dK∆ (z, y; y′)

)
=

1

2∆− d
δd (y − y′) . (5.14)

Increasing the order in φ̄, we must solve

(
−� +m2

)
φ0 = 0, (5.15)(

−� +m2
)
φ1 +

g

2!
φ2

0 = 0,(
−� +m2

)
φ2 + gφ0φ1 +

λ

3!
φ3

0 = 0,

... .

Through use of the bulk-to-bulk propagator

(
−� +m2

)
Π∆ (x;x′) =

1√
|g|
δd+1 (x− x′) , (5.16)

the solution can be determined order-by-order in terms of the linear solution φ0 and

thus the boundary value φ̄,

φ0 (x) =

∫
∂AdS

ddy′K∆ (z, y; y′) φ̄ (y′) , (5.17)

φ1 (x) = − g
2!

∫
AdS

dd+1x′Π∆ (x;x′)φ2
0 (x′) ,

φ2 (x) = − λ
3!

∫
AdS

dd+1x′Π∆ (x;x′)φ3
0 (x′)− g

∫
AdS

dd+1x′Π∆ (x;x′)φ0 (x′)φ1 (x′) ,

... .
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The value of the action for this classical solution is given by the diagrammatic expansion

(5.18)

Correlation functions ofO can be computed at leading order in Ndof by taking functional

derivatives of (5.18). In the following subsections we give explicit examples for the two-

and three-point functions, for which we only require the bulk-to-boundary propagator

(5.14). We therefore first discuss the latter in more detail.

Propagators

To compute two- and three-point Witten diagrams at tree-level, as can be seen from the

diagrammatic expansion (5.18) we require the form of the boundary-to-bulk propagator

(5.14).3 Its most familiar expression is given in the Poincaré patch

K∆ (z, y; y′) = C∆,0

(
z

z2 + (y − y′)2

)∆

, (5.19)

where the overall coefficient is fixed by the near-boundary behaviour (5.14)

C∆,0 =
Γ (∆)

2πd/2Γ
(
∆ + 1− d

2

) . (5.20)

However, we consider the evaluation of Witten diagrams in ambient space §A, in which

the propagator takes the form

K∆ (X;P ) =
C∆,0

(−2X · P )∆
. (5.21)

As we shall see, the ambient framework proves effective in extending the results for the

scalar to those with higher-spin external legs. In particular, the ambient expression for

3We postpone a derivation until §5.2.2, where it is considered together with the higher-spin propa-
gators.
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the propagator admits a Schwinger-Parameterised form

K∆ (X;P ) =
C∆,0

Γ (∆)

∫ ∞
0

dt

t
t∆e2tP ·X , (5.22)

which turns out to dramatically simplify the evaluation of contact Witten diagrams.

Two-point Witten diagram

We begin with the two-point Witten diagrams. Unlike their higher-point counter-

parts, their computation via the above prescription requires careful treatment of IR

divergences which arise from integrating over the infinite volume of AdS space [230].

However these issues can be circumvented by noting that, as in flat space, at tree-level

they can simply be given by the corresponding propagator (5.16)/(5.14)

〈O (y1)O (y2)〉 = K∆ (y1; y2) = Π∆ (y1; y2) , (5.23)

which can be seen pictorially in figure 5.1.

Figure 5.1: Bulk interpretation of the 〈OO〉 CFT two-point function, in the large Ndof

limit. The propagator departs from one boundary insertion point to the other.

Three-point Witten diagram

For Witten diagrams of three or more external points, there are no issues of IR di-

vergences.4 We thus proceed using the prescription for computing Witten diagrams

as described at the beginning of this subsection. The three-point correlator of O at

4This can be verified straightforwardly by power counting.
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Figure 5.2: Tree-level three-point Witten diagram generated by the bulk vertex gφ3.
This gives the holographic computation of the dual scalar operator three-point function
at leading order in 1/Ndof.

leading order in 1/Ndof can thus be computed holographically via

〈O (y1)O (y2)O (y3)〉 =
δ

δφ̄ (y1)

δ

δφ̄ (y2)

δ

δφ̄ (y3)
S
[
φ̄
]

= g

∫
AdS

dd+1xK∆ (x; y1)K∆ (x; y2)K∆ (x; y3) , (5.24)

and is depicted in figure 5.2. An effective way to evaluate the bulk integral (5.24), is to

employ the Schwinger-parameterised form of the propagator in the ambient formalism.

This gives

〈O (P1)O (P2)O (P3)〉 = g

∫
AdS

dX K∆ (X;P1)K∆ (X;P2)K∆ (X;P3) (5.25)

= g

(
C∆,0

Γ (∆)

)3 ∫ ∞
0

3∏
i=1

(
dti
ti
t∆
)∫

AdS

dXe2(t1P1+t2P2+t3P3)·X .

The integral over AdS is straightforward to evaluate using (B.1), and yields

〈O (P1)O (P2)O (P3)〉 (5.26)

= g π
d
2 Γ

(
3∆− d

2

)(
C∆,0

Γ (∆)

)3 ∫ ∞
0

3∏
i=1

(
dti
ti
t∆i

)
e(−t1t2P12−t1t3P13−t2t3P23).
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The remaining integrals can dealt with through the change of variables

t1 =

√
m2m3

m1

, t2 =

√
m1m3

m2

, t3 =

√
m1m2

m3

, (5.27)

which gives the final form for the three-point amplitude

〈O (P1)O (P2)O (P3)〉 = g
1

2
π
d
2 Γ

(
3∆− d

2

)(
C∆,0

Γ (∆)

)3 ∫ ∞
0

3∏
i=1

(
dmi

mi

m
∆
2
i

)
exp (−miPjk)

= g
1

2
π
d
2 Γ

(
3∆− d

2

)(
C∆,0

Γ
(

∆
2

)
Γ (∆)

)3
1

P
∆/2
13 P

∆/2
23 P

∆/2
12

. (5.28)

This result is straightforward to generalise to different interacting scalars φi of of mass

m2
iR

2 = ∆i (∆i − d), connected via the cubic vertex

V̂0,0,0 = g φ1φ2φ3, (5.29)

In precisely the same way as above, the corresponding amplitude at tree-level can be

determined to be

〈O1 (P1)O2 (P2)O3 (P3)〉

= g π
d
2 Γ

(
−d+

∑3
i=1 ∆i

2

)
C∆1,0C∆2,0C∆3,0

Γ (∆1) Γ (∆2) Γ (∆3)

∫ ∞
0

3∏
i=1

(
dti
ti
t∆i
i

)
e(−t1t2P12−t1t3P13−t2t3P23)

= g C (∆1,∆2,∆3; 0)
1

P
∆1+∆3−∆2

2
13 P

∆2+∆3−∆1
2

23 P
∆1+∆2−∆3

2
12

, (5.30)

where in the second equality we use the same change of variables (5.27), and we intro-

duced

C (∆1,∆2,∆3; 0) (5.31)

=
1

2
π
d
2 Γ

(
−d+

∑3
i=1 ∆i

2

)
C∆1,0C∆2,0C∆3,0

Γ
(

∆1+∆2−∆3

2

)
Γ
(

∆1+∆3−∆2

2

)
Γ
(

∆2+∆3−∆1

2

)
Γ (∆1) Γ (∆2) Γ (∆3)

.
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Note that (5.30) coincides with the structure (3.74) for the three-point correlator for

the dual scalar operators, as required for the holographic duality to hold. In a sense

this matching of space-time dependence (unlike matching the multiplicative constants)

is a bit trivial at the three-point level, since everything is fixed by SO (d, 2) kinematics.

5.2 Propagators of arbitrary spin

With a firm understanding of tree-level three-point Witten diagrams for external scalars,

for the remainder of this chapter we extend these results to four-point Witten diagrams

in theories involving fields with arbitrary integer spin, and also to three-point Witten

diagrams with spinning external legs. In this section we begin with the corresponding

boundary-to-bulk and bulk-to-bulk propagators.

5.2.1 Bulk-to-bulk propagators

In this subsection we derive the explicit form of the bulk-to-bulk propagators for spin-s

fields propagating on an AdS background.5 In particular we employ the ambient space

formalism, which is reviewed in detail in §A. Let us note that this discussion only ap-

plies to gauge fields, for otherwise the only available quadratic actions require non-local

terms or auxiliary fields [243–245] .6

The linearised dynamics of an off shell spin-s gauge field ϕs in AdS coupled to a con-

served source Js is governed by the action

S [ϕs] =
s!

2

∫
AdSd+1

ϕs (x; ∂u)Gs (x;u)− g ϕs (x; ∂u) Js (x;u) , (5.32)

5See also [134, 231–234] for earlier works on higher-spin bulk-to-bulk propagators. For results on
lower spin propagators, see: [235–242].

6See however [152] for the traceless and transverse parts of spinning bulk-to-bulk propagators for
any mass in AdS.
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where Gs is the generalisation of the linearised Einstein tensor to spin-s gauge fields

Gs (x;u) =

(
1− 1

4
u2 ∂u · ∂u

)
Fs (x;u,∇, ∂u)ϕs (x, u) , (5.33)

with Fronsdal operator [81, 246]

Fs(x, u,∇, ∂u) = �−m2
s − u2(∂u · ∂u)− (u · ∇)

(
(∇ · ∂u)−

1

2
(u · ∇)(∂u · ∂u)

)
,

(5.34)

m2
sR

2 = (s+ d− 2) (s− 2)− s,

In order to satisfy the Bianchi identity

(∂u · ∇)Gs (x, u) = 0, (5.35)

we require the field ϕs to be double-traceless, (∂u · ∂u) ϕs (x, u) = 0. The above action

is invariant under the linearised spin-s gauge transformations

δϕs(x, u) = (u · ∇)εs−1(x, u), (5.36)

where εs−1(x, u) is a generating function for a rank-(s - 1) symmetric and traceless gauge

parameter

εs−1(x, u) ≡ 1

(s− 1)!
εµ1µ2...µs−1u

µ1uµ2 . . . uµs−1 , (∂u · ∂u)εs−1(x, u) = 0. (5.37)

The field is given in response to the source by

ϕs (x, u) = g

∫
AdS

Πs (x, u;x′, ∂u′) Js (x′;u′) , (5.38)
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where the bulk-to-bulk propagator satisfies the equation7

(
1− 1

4
u2

1∂u1 · ∂u1

)
Fs(x1, u1,∇1, ∂u1)Πs(x1, u1, x2, u2) =

− {{(u1 · u2)s}} δ(x1, x2) + (u2 · ∇2)Λs,s−1(x1, u1, x2, u2).

(5.40)

The term Λs,s−1 is pure gauge, whose effect is immaterial when integrating against a

conserved current (5.38).8 We thus have the following freedom in the definition of the

propagator

Πs(x1, u1, x2, u2) ∼ Πs(x1, u1, x2, u2) + (u2 · ∇2) E2,s,s−1(x1, u1, x2, u2), (5.42)

where E2 is defined by Λ.

However, fixing Λ does not specify the propagator uniquely. Due to gauge invariance

(5.36), the left hand side of (5.40) is not sensitive to variations of the propagator of the

form

Πs(x1, u1, x2, u2) ∼ Πs(x1, u1, x2, u2) + (u1 · ∇1) E1,s−1,s(x1, u1, x2, u2),

where E1 has the same rank and trace properties as E2, but with ‘1’ and ‘2’ interchanged.

This freedom is usually fixed by imposing a gauge, and is required to make the operator

on the left hand side of (5.40) non-degenerate and thus invertible.

7The notation {{•}} signifies a double-traceless projection:

(∂u · ∂u)2 {{f(u, x)}} = 0, and {{f(u, x)}} = f(u, x) iff (∂u · ∂u)2f(u, x) = 0. (5.39)

8In more detail, it is a bi-tensor that is traceless in tangent indices at x2 and double-traceless in
tangent indices at x1:

(u2 · ∂u2)Λs,s−1 = s− 1, (u1 · ∂u1)Λs,s−1 = s, (∂u2 · ∂u2)Λs,s−1 = (∂u1 · ∂u1)2Λs,s−1 = 0. (5.41)
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In the following sections, we determine the explicit form of the bulk-to-bulk propagator

(5.38) in three different gauges: the de Donder gauge, a traceless gauge and what

we define as the “manifest trace gauge”. As the name suggests, the latter makes the

trace structure of the propagator manifest. In particular, in the view of expressing

exchange diagrams as partial wave expansions, we derive the propagators in a basis of

AdS harmonic functions.

de Donder gauge

It is often useful to eliminate gradients and divergences from the Fronsdal tensor (5.34).

This can be achieved by imposing the de Donder gauge

(∇ · ∂u)ϕs(x, u)− 1

2
(u · ∇)(∂u · ∂u)ϕs(x, u) = 0, (5.43)

With this choice, the Fronsdal tensor reads

Fs(x, u,∇, ∂u)ϕs(x, u) = (�−m2
s)ϕs(x, u)− u2(∂u · ∂u)ϕs(x, u). (5.44)

To proceed, we decompose the bulk-to-bulk propagator (5.38) into symmetric and trace-

less components9

Πs(x1,u1, x2, u2) = Π{0}s (x1, u1, x2, u2) + u2
1u

2
2 Π
{1}
s−2(x1, u1, x2, u2),

(∂u1 · ∂u1)Π{0}s = (∂u2 · ∂u2)Π{0}s = 0 = (∂u1 · ∂u1)Π
{1}
s−2 = (∂u2 · ∂u2)Π

{1}
s−2 . (5.45)

9Any double-traceless tensor (∂u · ∂u)
2
ts (x, u) = 0 can be expressed in the form

ts (x, u) = t{0}s (x, u) + u2 t
{1}
s−2 (x, u) , (∂u · ∂u) t{0}s (x, u) = (∂u · ∂u) t{1}s (x, u) = 0.
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The equation (5.40) for the propagator thus splits in two equations for traceless bi-

tensors

(�1 −m2
s)Π

{0}
s (x1, u1, x2, u2) = −{(u1 · u2)s} δ(x1, x2), (5.46)

(�1 −m2
t )Π

{1}
s−2(x1, u1, x2, u2) =

s(s− 1)

(d+ 2s− 3)(d+ 2s− 5)

{
(u1 · u2)s−2

}
δ(x1, x2),

where m2
t = s2 + (d− 1)s− 2, and we used

{{(u1 · u2)s}} = {(u1 · u2)s}+
s(s− 1)

2(d+ 2s− 3)
u2

1u
2
2

{
(u1 · u2)s−2

}
. (5.47)

In decomposing into symmetric and traceless components, we can employ the operator

algebra on traceless symmetric tensors (which can be found in §A.2.3). This reduces the

problem to an algebraic one: Make an ansatz in a basis of traceless harmonic functions,

and apply the latter operator algebra to determine the basis coefficients. This is most

streamlined using the ambient formalism (§A), in which we make the ansatz

Π{0}s =
s∑
`=0

∫ ∞
−∞

dνf
{0}
s,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−` (X1, X2;W1,W2) , (5.48)

Π
{1}
s−2 =

s−2∑
`=0

∫ ∞
−∞

dνf
{1}
s−2,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−2−` (X1, X2;W1,W2) ,

where f
{0}
s,` and f

{1}
s−2,` are to be fixed by (5.46), and W1,2 are null auxiliary vectors which

enforce tracelessness. Employing the equation of motion (C.2) for Ω, the completeness

relation (C.5) and the commutator (A.50), we can conclude that

f
{0}
s,` (ν) =

cs,` (ν)

m2
s + d2

4
+ ν2 + s− `+ l(d+ 2s− `− 1)

, (5.49)

f
{1}
s−2,` (ν) =− s(s− 1)

(d+ 2s− 3)(d+ 2s− 5)

cs−2,` (ν)

m2
t + d2

4
+ ν2 + s− `− 2 + `(d+ 2s− `− 5)

,

(5.50)
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where

cs,` (ν) =
2` (r − `+ 1)`

(
d
2

+ r − `− 1
2

)
`

`! (d+ 2r − 2`− 1)`
(
d
2

+ r − `+ iν
)
`

(
d
2

+ r − `− iν
)
`

, (5.51)

comes from the completeness relation (C.5).

Traceless gauge

In a similar way, we can also solve for the propagator by imposing a traceless gauge

on the spin-s field. To set the trace of the spin-s Fronsdal field to zero, the gauge

parameter εs (x, u) needs to be chosen such that

(∇ · ∂u) εs−1 (x, u) = − (∂u · ∂u)ϕs, (5.52)

after which (∇ · ∂u) εs−1 is fixed. In this partial gauge, the field ϕs (x, u) is left with

residual gauge symmetry

δϕs(x, u) = (u · ∇)εs−1(x, u), (∇ · ∂u) εs−1 (x, u) = (∂u · ∂u) εs−1 (x, u) = 0. (5.53)

Subject to the condition (∂u · ∂u)ϕs = 0, the Fronsdal tensor then reads

Fs(x, u,∇, ∂u)ϕs(x, u) (5.54)

=
(
�−m2

s

)
ϕs (x, u)− (u · ∇) (∇ · ∂u)ϕs (x, u) +

1

d+ 2s− 3
u2 (∇ · ∂u)2 ϕs (x, u) ,

which is simply its traceless part.

Before using the form (5.54) for the Fronsdal tensor to solve for the propagator, we need

to fix the residual gauge symmetry (5.53). This can be done by further demanding that
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the propagator is symmetric under u1 ↔ u2.10 The equation for the propagator is then

(
�1 −m2

s

)
Πs(x1, u1, x2, u2)− (u1 · ∇1) (∇1 · ∂u1) Πs(x1, u1, x2, u2) (5.55)

+
1

d+ 2s− 3
u2

1 (∇1 · ∂u1)2 Πs(x1, u1, x2, u2) = −{(u1 · u2)s} δ(x1, x2),

with

(∂u1 · ∂u1) Πs(x1, u1, x2, u2) = (∂u2 · ∂u2) Πs(x1, u1, x2, u2) = 0, (5.56)

Πs(x1, u1, x2, u2) = Πs(x1, u2, x2, u1). (5.57)

In the ambient formalism, using the null auxiliary vectors W1,2 this is

(
�1 −m2

s

)
Πs −

2

d+ 2s− 3
(W1 · ∇1) (∇1 · D̂W1)Πs = − (W1 ·W2)s δ (X1, X2) , (5.58)

with Πs (X1, X2;W1,W2) = Πs (X1, X2;W2,W1).

Like for the de Donder gauge, since the propagator is traceless we can make the ansatz

Πs =
s∑
`=0

∫ ∞
−∞

dνfs,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−` (X1, X2;W1,W2) , (5.59)

with fs,` (ν) arbitrary functions to be determined. By simply employing again a combi-

nation of the equation of motion for the Ω (C.2), the completeness relation (C.5), and

commutators: (A.50) and (A.51), the propagator equation (5.58) determines the basis

coefficients to be

fs,` (ν) = −cs,` (ν)
d+ 2s− 3

(`− 1) (2s+ d− `− 3)

1

ν2 +
(
s− 2 + d

2

)2 . (5.60)

where we recall that cs,` (ν) comes from the completeness relation (C.5).

10Note that (5.40) does not assume this symmetry.
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Manifest trace gauge

In the previous sections, fixing a gauge for the massless spin-s field allowed us to invert

the differential operator in the defining equation (5.38) for the bulk-to-bulk propagator,

and solve for its form. However, as already explained, since we ultimately integrate the

propagators against a conserved current (5.38), they are defined only up to the addition

of terms proportional to gradients.11

This freedom can be used to simplify the form of the de Donder- (5.48) and traceless-

(5.59) propagators: By removing terms proportional to gradients, it is possible to bring

them into the form

Πs =

[s/2]∑
k=0

∫ ∞
−∞

dν gs,k (ν)
(
u2

1

)k (
u2

2

)k
Ων,s−2k, (5.61)

i.e. with no differential operators in the explicit expression. We refer to this as the

“manifest trace gauge”.

Reaching this gauge, on the other hand, is a non-trivial task owing to the non-commuting

covariant derivatives∇. Relegating the details to §E, starting from either the de Donder

(5.48) or traceless (5.59) propagators, we find

gs,0 (ν) =
1

(d
2

+ s− 2)2 + ν2
,

gs,k (ν) = −
(1/2)k−1

22k+3 · k!

(s− 2k + 1)2k

(d
2

+ s− 2k)k(
d
2

+ s− k − 3/2)k
(5.62)

×
(
(d

2
+ s− 2k + iν)/2

)
k−1

(
(d

2
+ s− 2k − iν)/2

)
k−1(

(d
2

+ s− 2k + 1 + iν)/2
)
k

(
(d

2
+ s− 2k + 1− iν)/2

)
k

, k 6= 0.

11In other words, we are free to add or eliminate terms of the form ∇ · f , because they drop out
after integrating by parts and employing current conservation in (5.38).
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5.2.2 Review: Boundary-to-bulk propagators

Boundary-to-bulk propagators are limiting cases of bulk-to-bulk propagators, where

one of the two bulk points is taken to the boundary. In this section we review existing

results for the bosonic boundary-to-bulk propagators for particles of arbitrary spin and

mass in the ambient formalism [152].12

Generalising the scalar case (5.14) presented in §5.1.1, the boundary-to-bulk propagator

for a symmetric and traceless rank-s tensor ϕµ1...µs of energy ∆ and spin-s satisfies the

wave equation

(−� + ∆ (∆− d)− s)K∆, µ1...µs
i1...is (z, y; y′) = 0, (5.63)

lim
z→0

(
z∆−d+sK∆, µ1...µs

i1...is (z, y; y′)
)

=
δi1 ...{µ1 ...

δisµs }
2∆− d

δd (y − y′) (5.64)

Finding the explicit form of the propagator is straightforward in the ambient formalism.

Within this framework, the simple form of the constraints imposed by the boundary

and bulk SO (d, 2) symmetry:

K∆,s (X,α1W ;λP, α2Z + βP ) = λ−∆ (α1α2)sK∆,s (X,W ;P,Z) , (5.65)

imply the unique structure

K∆,s (X,W ;P,Z) = (W · P · Z)s
C∆,s

(−2X · P )∆
, (5.66)

with projector

PAB = δAB −
PAXB

P ·X
. (5.67)

12See also [81, 134, 247, 248] for earlier formulations of the propagators, which includes the intrinsic
and unfolded forms.
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The role of the above projector is to ensure transversality of the propagator at both its

bulk and boundary points. The normalisation C∆,s is fixed by equation (5.64), where

the coefficient of the Dirac delta function in the latter ensures consistency with the

boundary limit of the corresponding bulk-to-bulk propagator,

K∆,s (z, y; y′) = lim
w→0

Π∆,s (z, y;w, y′) . (5.68)

This gives,

C∆,s =
(s+ ∆− 1) Γ (∆)

2πd/2 (∆− 1) Γ
(
∆ + 1− d

2

) . (5.69)

5.3 Three-point Witten diagrams

By taking the results for the propagators in the previous section, we can proceed to

evaluate Witten diagrams with spinning external legs and exchanged fields. We begin

in this section with three-point Witten diagrams, which also (as we shall see) play a

significant role for higher-point amplitudes.

When considering spinning external particles, the bulk integrals encountered are more

complicated due to the introduction of tensor structures. Before proceeding further, we

first introduce some useful tools in order to handle the latter more effectively.

5.3.1 Tool kit

The basic idea behind the techniques introduced in this subsection, is to simplify the

bulk integrals encountered when evaluating Witten diagrams with spinning external

legs by removing the tensor structures from the integrand. This enables amplitudes

with spinning external legs to be expressed in terms of those generated by the basic

scalar cubic vertex (5.29).
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The way this idea is implemented, is to express spinning propagators and their deriva-

tives in terms of a scalar propagator:

Notice that the spin-s propagator (5.65) is essentially the propagator of a scalar

field (5.21) of the same dimension ∆, with the projector (5.67) simply propagating

the indices. This relationship can be expressed as the s-fold application of an X-

independent differential operator13

K∆,s (X,W |P,Z) =
1

(∆− 1)s
(DP (Z|W ))sK∆,0 (X;P ) , (5.70)

DP (Z|W ) = (Z ·W )

(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P ·W )

(
Z · ∂

∂Z

)
. (5.71)

Moreover, we can express the n-th ambient derivative of the bulk-to-boundary propa-

gator in terms of a scalar propagator of dimension ∆ + n:

(W · ∂X)nK∆,s(X,P |U,Z) (5.72)

=
C∆,s

s!C∆+n,0

s∑
i=0

i∑
ω=0

(
s

i

)(
i

ω

)
(−1)s 2n

(n− ω + 1)ω

1

Γ(∆ + i)
(U · P )i(U · Z)s−i

× (Z ·W )ω(P ·W )n−ω
(
(Z · ∂P )i−ωK∆+n,0(X,P )

)
. (5.73)

With (5.70) and (5.73), we can shift the tensor structures from the integrand in a Witten

diagram with spinning external legs, allowing the amplitudes to be expressed in terms

of a basic scalar amplitude (i.e. generated by an interaction involving only scalars and

with no derivatives). As we shall demonstrate in the following, this provides a powerful

approach to evaluating bulk amplitudes with external fields of non-zero spin.

5.3.2 Two scalars and a spin-s

We begin with the simplest case of three-point Witten diagrams involving two external

scalars and a bosonic spin-s field.

13These relationships are straightforward to verify using commutators [�,P] = −P and [�,DP ] =
−DP .
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Any such amplitude can be evaluated at tree-level with the knowledge of that generated

by the basic vertex,

V̂s,0,0 = ϕµ1...µs φ1∇µ1 ...∇µsφ2, (5.74)

where the covariant derivatives just act on the scalar φ2. The reason for this is that

external legs are on-shell, and there is just a single on-shell non-trivial vertex involving

two scalars and a spin-s field [221].

The example that we encounter in later sections is the following: On-shell, a spin-s field

is traceless and transverse. Through integrating by parts and using transversality, the

following types of vertices can then be identified on-shell with the basic vertex (5.74):

∇µ1ϕµ1...µs ≈ 0 (5.75)

=⇒
∫

AdS

ϕµ1...µs∇µ1 ...∇µrφ1∇µr+1 ...∇µsφ2 ≈
∫

AdS

V̂s,0,0 (x) , r ∈ {1, ..., s} .

We therefore spend the remainder of this section on evaluating tree-level three-point

amplitudes generated by the basic vertex (5.74). According to the usual recipe, this is

given by

Â∆1,∆2,∆3,s (P1, P2, P3|Z) (5.76)

=
1

s!
(
d
2
− 1
)
s

∫
AdS

K∆3,s

(
X, D̂W ;P3, Z

)
K∆1,0 (X;P1) (W · ∇)sK∆2,0 (X;P2) .

As explained in §5.3.1, with the help of (5.70) and (5.73) which express any propagator

or its derivatives in terms of a scalar propagator, this amplitude can be generated from

that with s = 0. In this way we can use the result already obtained in §5.1.1, equation

(5.30). More explicitly, we have

Â∆1,∆2,∆3,s (P1, P2, P3|Z) (5.77)
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=
1

s!
(
d
2
− 1
)
s

(
DP3(Z|D̂W )

)s
(∆3 − 1)s

∫
AdS

K∆3,0 (X;P3)K∆1,0 (X;P1) (W · ∇)sK∆2,0 (X;P2)

=

(
1− d

2
+ ∆2

)
s

(∆3 − 1)s
(2DP3(Z|P2))s Â∆1,∆2+s,∆3,0 (P1, P2, P3) .

This relationship is illustrated in figure 5.3.

Figure 5.3: Through the techniques given in §5.3.1, the three-point Witten diagram
generated by the basic vertex (5.29), with a single spin-s external leg and scaling di-
mensions (∆1,∆2,∆3), may be expressed in terms of that with only external scalars
and scaling dimensions (∆1,∆2 + s,∆3). The latter we already computed in §5.1.1.

The notation ~∇ indicates that the covariant derivative acts on the rightmost external
scalar field.

The amplitude (5.76) can then be expressed in the more familiar form (3.80) dictated

by conformal symmetry by using

(DP3 (Z|P2))s
1

P
∆1+∆3−∆2−s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

(5.78)

=

(
∆1 + ∆3 −∆2 − s

2

)
s

((Z · P1)P23 − (Z · P2)P13)s

P
∆1+∆3−∆2+s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

.

We therefore obtain

Â∆1,∆2,∆3,s (P1, P2, P3) = C (∆1,∆2,∆3; s)
((Z · P1)P23 − (Z · P2)P13)s

P
∆1+∆3−∆2+s

2
13 P

∆2+∆3−∆1+s
2

23 P
∆1+∆2−∆3+s

2
12

,

(5.79)
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with

C (∆1,∆2,∆3; s) (5.80)

=
2s
(
1− d

2
+ ∆2

)
s

(∆3 − 1)s

(
∆1 + ∆3 −∆2 − s

2

)
s

C (∆1,∆2 + s,∆3; 0)

= C∆1,0C∆2,0C∆3,s

2sπ
d
2 Γ
(

∆1+∆2+∆3−d+s
2

)
Γ
(

∆1+∆2−∆3+s
2

)
Γ
(

∆1+∆3−∆2+s
2

)
Γ
(

∆2+∆3−∆1+s
2

)
2Γ (∆1) Γ (∆2) Γ (∆3 + s)

.

5.3.3 General case: s1-s2-s3

We now consider the more involved general case of tree-level three-point Witten dia-

grams with external fields of spin (s1, s2, s3). The logic is the same as for the simpler

(0, 0, s) amplitudes considered in the previous section: Reduce the task to the straight-

forward evaluation of basic three-point Witten diagrams with external scalars.

The most general cubic vertex involving symmetric fields of spin (s1, s2, s3) in AdSd+1

is parameterised by six basic contractions, given by (5.83) in the ambient formalism

(§A) below. These are the bulk counterparts of the six conformal structures on the

boundary (3.85). Using point-splitting, the most general (on-shell) cubic vertex takes

the form [109]14

Vs1,s2,s3 (ϕi) =

si∑
ni=0

gn1,n2,n3
s1,s2,s3

In1,n2,n3
s1,s2,s3

(ϕi), (5.81)

with structures

In1,n2,n3
s1,s2,s3

(ϕi) = Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3

×Hn1
1 Hn2

2 Hn3
3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3)

∣∣∣
Xi=X

, (5.82)

14In AdS4, dimensional dependent identities reduce the number of independent structures, and allow
for parity violating vertices. However these are not relevant in the context of this thesis.
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and

Y1 = ∂U1 · ∂X2 , Y2 = ∂U2 · ∂X3 , Y3 = ∂U3 · ∂X1 , (5.83a)

H1 = ∂U2 · ∂U3 , H2 = ∂U3 · ∂U1 , H3 = ∂U1 · ∂U2 . (5.83b)

Note that in the above we employed the partial derivative ∂A (which acts in the am-

bient Rd,2 space), as opposed to the covariant derivative ∇ on AdSd+1. For obvious

reasons, this is for ease of computation e.g. avoiding the non-commutativity of covari-

ant derivatives. However, it is explained in detail in §G how the above expressions can

be re-expressed in terms of ∇, and this is just a change of basis for representing the

vertices in the ambient framework. The above is simply more convenient of packaging

the vertices.

To compute the tree-level amplitude generated by the structure (5.82), using (5.73) we

again generate it from the result (5.30) for the basic scalar vertex. The final expression

for the amplitude is quite involved, but for completeness we include it below

An1,n2,n3

(∆1,s1),(∆2,s2),(∆3,s3) ({Pi} | {Zi}) (5.84)

=

∫
AdS

dX In1,n2,n3
s1,s2,s3

(K∆i,si)

= f ({∂Pi} , {∂Pi} , {Zi})A
n1,n2,n3

(∆1+s3−k3,0),(∆2+s1−k1,0),(∆3+s2−k2,0) ({Pi}) ,

where

f ({∂Pi} , {∂Pi} , {Zi}) (5.85)

= Hn1
1 Hn2

2 Hn3
3

(
3∏

α=1

sα−kα∑
iα=0

kα∑
jα=0

(
sα − kα
iα

)(
kα
jα

)
2sα−kαC∆α,sα

Γ (∆α + sα) kα!
(Uα · Zα)kα−jα (Uα · Pα)jα

)

×

(
i1+j1∑
ω2=0

i3+j3∑
ω1=0

i2+j2∑
ω3=0

(
i1 + j1

ω2

)(
i2 + j2

ω3

)(
i3 + j3

ω1

)
(Z1 · Z3)ω2 (Z3 · P1)s3−k3−i3−ω2 (P1 · P3)i3

C∆1+s3−k3,0C∆2+s1−k1,0C∆3+s2−k2,0

× (Z2 · Z3)ω1 (Z2 · P3)s2−k2−i2−ω1 (P2 · P3)i2 (Z1 · Z2)ω3 (Z1 · P2)s1−k1−i1−ω3 (P1 · P2)i1



5.3 Three-point Witten diagrams 105

× (s1 − k1 − i1 − ω3 + 1)ω3
(s2 − k2 − i2 − ω1 + 1)ω1

(s3 − k3 − i3 − ω2 + 1)ω2

× (−P1 · ∂P1 − s3 + k3 + ω2)s1−i1−j1 (−P2 · ∂P2 − s1 + k1 + ω3)s2−i2−j2

× (−P3 · ∂P3 − s2 + k2 + ω1)s3−i3−j3 (Z1 · ∂P1)i1+j1−ω2 (Z3 · ∂P3)i3+j3−ω1 (Z1 · ∂P1)i2+j2−ω3

)
,

and we defined k1 = n2 + n3, k2 = n1 + n3 and k3 = n1 + n2. We illustrate this relation

in figure 5.4.

Figure 5.4: Employing the tools given in §5.3.1, we may relate the tree-level Witten
diagram with external fields of spins (s1, s2, s3) and scaling dimensions (∆1,∆2,∆3) to
that with only external scalars and dimensions (∆1 +s3−n1−n2,∆2 +s1−n2−n3,∆3 +
s2 − n1 − n3).

Using the explicit result (5.30) for the scalar Witten diagram, after evaluating all deriva-

tives and some lengthy algebra, we can see how the amplitude generated by each individ-

ual bulk structure (5.82) decomposes into conformal structures (3.85) on the boundary:

An1,n2,n3

(∆1,s1),(∆2,s2),(∆3,s3) ({Pi} | {Zi}) = E3

 3∏
α=1

sα−kα∑
iα=0

kα∑
jα=0

nα∑
δα=0

iα−1+jα−1∑
ωα=0

 i2+j2−ω3∑
γ3=0

i3+j3−ω1∑
γ1=0

i1+j1−ω2−γ3∑
γ2=0

×
(

n1!n2!n3!(i1 + j1)!(i2 + j2)!(i3 + j3)!(s3 − n1 − n2)!(s2 − n1 − n3)!(s1 − n2 − n3)!

γ1!γ2!γ3!δ1!δ2!δ3!i1!i2!i3!ω1!ω2!ω3Γ(j1 − n2 + δ2 + 1)Γ(j2 − n3 + δ3 + 1)Γ(j3 − n1 + δ1 + 1)

×
(i1 + j1 + ∆1)s1−γ2−n2+δ12−ω2−∆1

(i2 + j2 + ∆2)s2−γ3−n3+δ23−ω3−∆2
(i3 + j3 + ∆3)s3−γ1−n1+δ31−ω1−∆3

Γ(i1 + j1 − γ2 − γ3 − ω2 + 1)Γ(i2 + j2 − γ1 − γ3 − ω3 + 1)Γ(i3 + j3 − γ1 − γ2 − ω1 + 1)

× 1

Γ(−i1 − n2 − n3 + s1 − ω3 + 1)Γ(−i2 − n1 − n3 + s2 − ω1 + 1)Γ(−i3 − n1 − n2 + s3 − ω2 + 1)

× 1

Γ(−j1 + n2 + n3 − δ2 − δ3 + 1)Γ(−j2 + n1 + n3 − δ1 − δ3 + 1)Γ(−j3 + n1 + n2 − δ1 − δ2 + 1)
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× (−1)−δ1−δ2−δ3+i1+i2+i3+j1+j2+j3+n1+n2+n3+s1+s2+s32−γ1−γ2−γ3−δ1−δ2−δ3−n1−n2−n3+s1+s2+s3−ω1−ω2−ω3

× Hγ1+δ1+ω1

1 Hγ2+δ2+ω2

2 Hγ3+δ3+ω3

3 Ys1−γ2−γ3−δ2−δ3−ω2−ω3

1 Ys2−γ1−γ3−δ1−δ3−ω1−ω3

2 Ys3−γ1−γ2−δ1−δ2−ω1−ω2

3

)
,

with the prefactor

E3 =
π−dΓ(∆1 − 1)Γ(∆2 − 1)Γ(∆3 − 1)(∆1 + s1 − 1)(∆2 + s2 − 1)(∆3 + s3 − 1)

16 Γ
(
∆1 + 1− d

2

)
Γ
(
∆2 + 1− d

2

)
Γ
(
∆3 + 1− d

2

)
× Γ

(
τ1 + τ2 + τ3 − d

2
+ s1 + s2 + s3 − n1 − n2 − n3

)
1

(P 2
12)δ12(P 2

23)δ23(P 2
31)δ31

,

and

δij =
1

2
(τi + τj − τk) , τi = ∆i − si . (5.86)

Although this result is quite involved, it will play an instrumental role in §6.2.1 to fix

the cubic action of higher-spin gauge fields in AdS, by matching with the dual three-

point correlators in the free scalar O (N) vector model. As a double-check, with the

above result we recover the same coefficient as for the (s, 0, 0) case (5.80) when any two

of the si are set to zero.

5.4 Four-point Witten diagrams

In this section we consider four-point Witten diagrams with identical parity even exter-

nal scalar fields. At tree level, there are two possible processes: A contact interaction

or the exchange of a field between two pairs of the scalars. These two possibilities are

illustrated in figure 5.5.

In the present context of higher-spin gauge theories on AdS, the exchanged fields are

bosonic gauge fields of integer spin, in addition to the bulk scalar itself. The former

have dimension ∆s = s + d − 2, while the parity even scalar of the type A theory has

dimension ∆ = d− 2.
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(a) Exchange of a spin-s field
of dimension ∆s.

(b) Contact diagram gener-
ated by a quartic self inter-
action V of the bulk scalar.

Figure 5.5: Possible tree-level bulk processes with four identical external scalars.

Ultimately, our goal is to identify the above four-point Witten diagrams in the type A

minimal bosonic higher-spin theory with the dual scalar operator four-point function

in the free scalar O (N) vector model. This is in order to extract the on-shell quartic

self-interaction of the bulk scalar from its corresponding contact diagram (figure 5.5b).

To compare the Witten diagrams with their dual CFT correlator, we put them both on

an equal footing by decomposing them into conformal blocks. For the correlator of the

scalar operator O in the free scalar O (N) model, this was carried out in §4.2.3. In the

following we introduce a method to decompose four-point Witten diagrams into their

constituent conformal blocks, which draws upon the results for the three-point Witten

diagrams obtained in the previous sections.

5.4.1 Conformal partial wave expansion

The key idea behind our method to determine the conformal block expansion of four-

point Witten diagrams, is to decompose the them into partial waves of the isometry

group SO (d+ 1, 1). I.e. in terms of AdS harmonic functions labelled by energy and
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spin,

.

(5.87)

Since SO (d+ 1, 1) is also the d-dimensional Euclidean conformal group, this way of

decomposing Witten diagrams is equivalent to a conformal block expansion on the

boundary. We make this identification more concrete in the following, which draws

upon a particular feature of harmonic functions, known as their split representation.

Split representation

As projectors onto angular momentum and energy components, harmonic functions

admit the factorisation [134,152,231,232,249]

Ων,` (x1, w1;x2, w2) =
ν2

π`!
(
d
2
− 1
)
`

∫
∂AdS

ddy K d
2

+iν,`(x1, w1; y, ∂̂w)K d
2
−iν,` (y, w;x2, w2) ,

(5.88)

which is depicted in figure 5.6.

Figure 5.6: Factorisation of an AdS harmonic function Ων,` into a product of two spin-
` boundary-to-bulk propagators of dimension d

2
± iν, integrated over their common

boundary point.

Drawing comparisons with the conformal block expansion in CFT, the split represen-
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tation (5.88) makes manifest that harmonic functions Ων,` are the bulk analogue of the

boundary projector (3.104) onto a given conformal multiplet. Indeed, inserting this

form for the harmonic functions into the partial wave expansion (5.87) of a four-point

Witten diagram causes each partial wave to factorise into a product of two three-point

Witten diagrams,

.

(5.89)

Evaluating the two integrals over AdS in each bulk partial wave gives the unique struc-

ture of a product of two three-point correlation functions with two scalar operator

insertions, as in the analogous representation of boundary conformal partial waves

(3.114). The bulk partial wave expansion (5.87) thus induces a conformal partial wave

expansion on the boundary, in the contour integral form (3.117).

In the following we apply this technology to derive the conformal partial wave ex-

pansions of four-point Witten diagrams with identical external scalars (figure 5.5). In

particular, for the exchange diagrams we focus on the exchange of bosonic gauge fields

of arbitrary spin.

5.4.2 Exchange diagrams

We first determine the conformal partial wave expansion of the Witten diagram cor-

responding to the tree-level exchange of a spin-s gauge field between two pairs of real

scalars in the s-channel (figure 5.5a for ∆s = s+ d− 2).15 As previously explained, the

15Since the external scalars are identical, expansions for the t- and u- channel exchanges can be
obtained from the s-channel result by permuting the external legs.
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cubic vertex mediating this exchange is unique on-shell, and for consistency with the

gauge symmetry is required to be of the Noether type

Vs,0,0 (x) = gs s!ϕs (x; ∂u) Js (x, u) , (∇ · ∂u) Js (x, u) ≈ 0, (5.90)

with coupling gs, and where [104]

Js (x, u) =
s∑

k=0

(−1)k

s! (s− k)!
(u · ∇)k φ (x) (u · ∇)s−k φ (x) + Λu2 (...) . (5.91)

The second term that is proportional to the cosmological constant Λ is pure trace and

vanishes in the flat-space limit, Λ→ 0.

Putting the ingredients together, the four-point amplitude takes the form

Aexch.
s (y1, y2; y3, y4) (5.92)

= g2
s

∫
AdS

dd+1x1

∫
AdS

dd+1x2 Πs (x1, ∂u1 ;x2, ∂u2) Js (x1, u1; y1; y2) Js (x2, u2; y3; y4) ,

where Πs is the spin-s bulk-to-bulk propagator, and the notation Js (x, u; yi; yj) denotes

the insertion of scalar boundary-to-bulk propagators anchored at the boundary points

yi and yj.

In §5.2.1, we derived bulk-to-bulk propagators gauge fields of arbitrary integer spin

in a basis of harmonic functions. This way of representing the propagators therefore

turned out to be beneficial, as it readily establishes the partial wave expansion of the

bulk amplitude and the subsequent factorisation of each partial wave into three-point

Witten diagrams. In practice, it is most convenient to employ the propagator in the

manifest trace gauge (5.61), as it eliminates the need to deal directly with derivatives.
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The exchange then takes the form

Aexch.
s (y1, y2; y3, y4) =

[s/2]∑
k=0

∫ ∞
−∞

dν gs,k (ν) Āexch.
s,s−2k (y1, y2; y3, y4) , (5.93)

with factorised partial amplitudes

Āexch.
s,s−2k (y1, y2; y3, y4) =

ν2

π (s− 2k)!
(
d
2
− 1
)
s−2k

∫
∂AdS

ddy (5.94)

gs s!

∫
AdS

dd+1x1K d
2

+iν,s−2k(x1, ∂u1 ; y, ∂̂z)J
(k)
s (x1, u1; y1; y2)

× gs s!
∫

AdS

dd+1x2K d
2
−iν,s−2k(x2, ∂u2 ; y, z)J (k)

s (x2, u2; y3; y4) ,

=
ν2

π (s− 2k)!
(
d
2
− 1
)
s−2k

∫
∂AdS

ddy

×A∆,∆, d
2

+iν,s−2k(y1, y2, y|∂̂z)A∆,∆, d
2
−iν,s−2k (y, y3, y4|z)

where J
(k)
s denotes the k-th trace of Js. Each of the above partial amplitudes is a

product of three-point Witten diagrams A∆,∆, d
2
±iν,s−2k, generated by cubic vertices of

the form

V̄ d
2
±iν,s−2k = gs ϕ d

2
±iν, s−2k (x, ∂u) J

(k)
s (x, u) , (5.95)

where ϕ d
2
±iν, s−2k is a spin-(s – 2k) field of dual scaling dimension d

2
± iν.

The next step is to evaluate the amplitudes A∆,∆, d
2
±iν,s−2k in (5.94). As previously

noted, cubic vertices involving two scalars and a (massive or massless) spinning field

are unique on-shell. This has the implication that the vertex (5.95) above can be ex-

pressed in terms of the basic vertex (5.74), modulo terms which do not contribute to

the tree-level three-point amplitudes. Relegating the details to §F, this relation is
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V̄ d
2
±iν,s−2k ≈ gs 2s−2k τs,k (ν)ϕ d

2
±iν,s−2k (x, ∂u)ϕ0 (x) (u · ∇)s−2k ϕ0 (x) , (5.96)

with

τs,k (ν) =

k∑
m=0

22kk!

m!(k −m)!
(d2 − k +m− 3

2 )k−m

(
d
2 + s− 2m+ 1 + iν

2

)
m

(
d
2 + s− 2m+ 1− iν

2

)
m

.

In this way we may we the result (5.79) for the three-point amplitude of the basic vertex

(5.74), which gives16

A∆,∆, d
2
±iν,s−2k (y1, y2, y|z) (5.98)

=
gs 2s−2k τs,k (ν)

C∆,0

Â∆,∆, d
2
±iν,s−2k (y1, y2, y|z)

=
gs 2s−2k τs,k (ν)

C∆,0

C(∆,∆, d
2
± iν; s− 2k)〈〈O (y1)O (y2)O d

2
±iν,s−2k (y|z)〉〉,

where the 〈〈•〉〉 notation was introduced in §3.6.1.17

With this way of decomposing the exchange amplitude, we may readily apply the

techniques introduced in §3.6.1 to establish the conformal partial wave expansion. By

simply recalling that

W d
2 +iν,s−2k (y1, y2; y3, y4) +W d

2−iν,s−2k (y1, y2; y3, y4) (5.100)

16We divide by the bulk-to-boundary propagator normalisation C∆,0, equation (5.69), to normalise
the two-point functions canonically:

〈O (y1)O (y2)〉 =
1

(y2
12)

∆
. (5.97)

17 Note that

C(∆,∆, d2 − iν, s− 2k) =
iC
(
∆,∆, d2 + iν, s− 2k

)
ν C d

2 +iν,s−2k

Γ
(
d
2−iν+s−2k

2

)2

2Γ
(
d
2 +iν+s−2k

2

)2

κ d
2−iν,s−2k

(2π)
d
4

, (5.99)

with κ d
2−iν,s−2k defined in (3.110).
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=
κ d

2−iν,s−2k

(2π)
d
4

Γ
(
d
2−iν+s−2k

2

)2

Γ
(
d
2 +iν+s−2k

2

)2

∫
ddy 〈〈O (y1)O (y2)O d

2 +iν,s−2k (y)〉〉〈〈Õ d
2−iν,s−2k (y)O (y3)O (y4)〉〉,

where W d
2
±iν,s−2k denote conformal partial waves for

[
d
2
± iν, s− 2k

]
conformal multi-

plets, we may write down the conformal partial wave expansion for the spin-s exchange

diagram in the contour integral form:

Aexch.
s (y1, y2; y3, y4) =

s∑
k=0

∫ ∞
−∞

dν bs−2k (ν)W d
2

+iν,s−2k (y1, y2; y3, y4) , (5.101)

with

bs−2k(ν) =
iν

π
gs,k(ν)τ 2

s,k(ν)

(
gs 2s−2kC(∆,∆, d

2
+ iν, s− 2k)

)2

C d
2

+iν,s−2kC
2
∆,0

. (5.102)

We recall (§3.6.1) that the poles of the function bs−2k(ν) in the lower-half complex

plane encode the contributions to the conformal block expansion: A pole located at

d
2

+ iν = ∆ corresponds to the contribution from a conformal multiplet with quantum

numbers [∆, s− 2k]. We discuss these contributions in detail for the spin-s exchange

in the following.

Conformal block expansion contributions

It is illuminating to understand the contributions to the conformal block expansions of

Witten diagrams, for they give a means to quantify the properties of the process that

occurs in the bulk. For example, the properties of the intermediate states.

Focusing first on the spin-s contribution, (5.102) for k = 0, explicitly we have

bs (ν) =
iν

π

1

ν2 +
(
∆ + s− d

2

)2

(
gs 2sC(∆,∆, d

2
+ iν, s)

)2

C d
2

+iν,sC
2
∆,0

. (5.103)

This encodes two types of contribution: Single trace and double-trace of spin-s.
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• Single-trace

The factor gs,0 (ν) = 1

ν2+(∆+s− d
2)

2 coming from the on-shell (traceless and trans-

verse) part of the spin-s bulk-to-bulk propagator contains a pole for Im(ν) < 0 at

d
2

+ iν = ∆ + s = s+ d− 2. This corresponds to a contribution from a conformal

multiplet of a spin-s single-trace conserved current Js. It is consistent with the

notion that a single-trace operator in the CFT corresponds to a single-particle

state in the bulk: The exchange of a single-trace conserved current in the bound-

ary four-point function corresponds to the exchange of the dual gauge field in AdS.

Furthermore, recalling that gs2
sC(∆,∆,∆ + s, s) is the overall coefficient of the

dual (0, 0, s) CFT correlator as generated by the bulk cubic vertex (5.90), we

may identify the following combination with the OPE coefficient cOOJs at leading

order in Ndof.:
18

(gs 2sC(∆,∆,∆ + s, s))2

C∆+s,sC2
∆,0

= c2
OOJs . (5.104)

In applying Cauchy’s residue theorem to (5.101) about the pole d
2

+ iν = ∆ + s,

the spin-s single-trace contribution to the spin-s exchange is thus

Aexch.
s (y1, y2; y3, y4)

∣∣∣
spin−s single-trace

= c2
OOJsW∆+s,s (y1, y2; y3, y4) . (5.105)

This precisely coincides with the form of the spin-s single-trace contribution in

the (12)(34) channel expansion of the dual CFT correlator.

• Double-trace

The remaining contributions come from the factor

C(∆,∆, d
2

+ iν, s) (5.106)

18The definition of the OPE coefficient is given in terms of those of three- and two-point functions
(3.103). Recall also that the bulk-to-boundary propagator coefficients C∆,s give the normalisations of
the two-point functions from the bulk side.
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=
2−

d
2
−iν−2Γ

(
d
2

+ iν − 1
)

Γ
(
d+2s+2iν

4

)
Γ
(
−d

4
+ s

2
+ ∆ + iν

2

)
πd−

1
2 Γ(iν + 1)Γ

(
−d

2
+ ∆ + 1

)2
Γ
(
d+2s+2iν−2

4

) Γ
(
s+2∆− d

2
− iν

2

2

)
,

in which the Gamma function Γ
(
s+2∆− d

2
− iν

2

2

)
generates an infinite string of poles

at d
2

+ iν = 2∆ + 2n+ s, for each n = 0, 1, 2, 3, ... .19 These correspond to contri-

butions from the family of spin-s double-trace operators (4.11).

Double-trace contributions originate from contact terms in the bulk-to-bulk prop-

agator (note the Dirac delta function on the RHS of its equation of motion (5.40)),

and therefore arise from the limit of coincidence between the two-points where

the spin-s particle is exchanged in AdS. This is consistent with the interpretation

that double-trace operators are dual to two-particle states of the scalar in the

bulk.

As we shall discuss below, for the exchange in AdS4 we need only consider the spin-s

contributions above. However let us comment that the spin s − 2k contributions in

(5.102) for k 6= 0 take the form

bs−2k (ν) = (no poles in Im (ν) < 0)× Γ
(

2∆+s−2k− d
2
−iν

2

)2

,

and therefore give rise to contributions from double-trace operators of scaling dimension

2∆ + 2n + s − 2k and spin s − 2k. In the same way as for the contributions from the

spin-s double-trace operators above, these also arise from limit of coincidence between

the two-points in the bulk.

Exchange in AdS4

In §6.2.2 we will employ the above result for the conformal block expansion of the spin-

s exchange to extract the quartic self interaction of the scalar in the type A minimal

bosonic higher-spin theory on AdS4. That we work in AdS4 is no coincidence, for in

19Recall that the gamma function Γ (x) has poles at x = 0,−1,−2,−3, ... .
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Figure 5.7: An exchange diagram can be divided into two types of contributions: When
the points are separated (represented by a dashed line), there is a genuine exchange of
a single-particle state. At coinciding points, contact terms arise from the off-shell bulk-
to-bulk propagator: �Πs (x1, x2) + ... = δ (x1, x2). The latter generate double-trace
contributions in the conformal block expansion, while the exchanged single-particle
state generates the contribution from its dual single-trace operator.

this case the bulk scalar is conformally coupled. This provides certain simplifications,

which we discuss below.

A particular consequence of having a conformally coupled scalar, is that the spin-s

conserved currents (5.91) built from it can be taken to be traceless. Since the scalar is

conformal, its energy momentum tensor can be made traceless. The currents of higher-

spin sit in the same higher-spin symmetry multiplet as the energy momentum tensor,

and they are also traceless as a result. Choosing a traceless conserved current to enter

the cubic vertex (5.90), means that the contributions to the conformal block expansion

of spin less than s are vanishing: Āexch.
s,s−2k ≡ 0. This is a dramatic simplification, for

then only spin-s conformal blocks contribute to the spin-s exchange; there is no sum

over k in (5.101). Moreover, these contributions are encoded in a single meromorphic

function bs (ν), equation (5.103).



5.4 Four-point Witten diagrams 117

5.4.3 Contact diagrams

In this section we determine the conformal partial wave expansion of a general four-

point contact Witten diagram with identical external scalars. For similar reasons as

described in the previous section, we focus our attention on contact amplitudes in AdS4.

As will be explained, since the scalar is conformal in AdS4 a particularly useful basis

for their quartic interaction may be chosen.

A generic quartic self-interaction of a scalar ϕ0 in AdS space has the form

�n1 (∇...∇ϕ0) �n2 (∇...∇ϕ0) �n3 (∇...∇ϕ0) �n4 (∇...∇ϕ0) , ni ∈ N, (5.107)

i.e. each ϕ0 is dressed with covariant derivatives ∇, which are contracted amongst each

other. Not all such vertices are independent: First of all, since the covariant deriva-

tives do not commute there is a choice of ordering. There is also freedom to distribute

derivatives amongst the four scalars by integrating by parts. Going on-shell, as relevant

for four-point contact Witten diagrams, vertices can also be related using the equation

of motion for ϕ0.

An example of a complete basis of on-shell quartic self-interactions can be constructed

from the spin-s conserved currents (5.91), which are bi-linear in the bulk scalar

Jµ1...µs (x) = ϕ0 (x)∇(µ1 ...∇µs)ϕ0 (x) + ... . (5.108)

In §H it is shown that an example of such a basis is given by the collection of structures

V̂s,m = Js (x) ·�m(Js (x)), s = 2k, k ≥ m ≥ 0, k, m ∈ N, (5.109)

and accounts for all independent quartic self-interactions of the scalar in AdSd+1. As

will become clear, this choice of basis allows us to re-cycle some of the steps taken in
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computing the partial wave expansion of the exchange diagrams in the previous sec-

tion. While on the one hand this reduces the amount of extra work, it also facilitates

a comparison between the features of exchanges and contact diagrams.

A generic quartic self-interaction in AdSd+1 can therefore be expressed as the linear

combination

V0,0,0,0 =
∑
s,m

as,mV̂s,m, as,m ∈ R, (5.110)

for some coefficients as,m. To determine the conformal partial wave expansion of a

generic four-point contact diagram, it is therefore sufficient to determine the confor-

mal partial wave expansions of the contact amplitudes generated by the basis vertices

(5.109).

For the remainder of this section, we therefore consider the tree-level four-point contact

diagram associated to the vertex V̂s,m. Furthermore, for simplicity we restrict to the

AdS4 case, where we may instead use the traceless improvement J̃s in place of Js. That

this still provides a complete basis is shown in §H.

The first step in determining the conformal partial wave expansion of a given contact

diagram, is to decompose the corresponding interaction into into AdS harmonic func-

tions. This can be achieved by simply inserting the completeness relation (C.5) for

harmonic functions between the two conserved currents in the vertex (5.109), through

which we obtain

V̂s,m (x1) = (∂̂w1 · ∂̂w2)sJ̃s(x1, w1)�m(J̃s (x1, w2)) (5.111)

=
s∑
`=0

∫ ∞
−∞

dν cs,` (ν)

∫
AdS

d4x2 (∂̂w1 · ∇)`(∂̂w2 · ∇)`Ων,s−`(x1, ∂̂w1 ;x2, ∂̂w2)

× J̃s(x1, w1)�m(J̃s (x2, w2))

≈
∫ ∞
−∞

dν (−1)m
(
ν2 + s+ 9

4

)m ∫
AdS

d4x2 Ων,s(x1, ∂̂w1 ;x2, ∂̂w2)
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× J̃s(x1, w1)J̃s (x2, w2) ,

where in the second equality we used conservation of the spin-s current, and the equa-

tion of motion for the harmonic function Ων,s. The function cs,` (ν) originates from the

completeness relation (C.5) for the harmonic functions. Owing to the tracelessness of

the currents, only the term ` = s contributes.

With the above form for the vertex, we can determine the partial wave expansion for

the corresponding bulk amplitude in the same way as for the exchange diagrams in the

previous section. For a given configuration of external legs, we have

Acont.
m,s (y1, y2; y3, y4) =

∫ ∞
−∞

dν (−1)m
(
ν2 + s+ 9

4

)m ν2

π

∫
∂AdS

d3y
1

s!
(

1
2

)
s

(5.112)

×
∫

AdS

√
|g| d4x1 J̃s (x1, ∂u1 ; y1, y2)K3

2
+iν,s

(x1, u1; y, ∂̂z)

×
∫

AdS

√
|g| d4x2 J̃s (x2, ∂u2 ; y3, y4)K3

2
−iν,s

(x2, u2; y, z) .

The utility of the basis (5.109) becomes manifest when one notices that the product

of three-point Witten diagrams in the above is precisely the same as that appearing in

the corresponding result for the spin-s exchange (5.94). This allows us to immediately

write down the conformal partial wave expansion

Acont.
m,s (y1, y2; y3, y4) (5.113)

=

∫ ∞
−∞

dν (−1)m
(
ν2 + s+ d2

4

)m iν

π

(
2sC(∆,∆, d

2
+ iν, s)

)2

C d
2

+iν,sC
2
∆,0

Wd
2

+iν,s
(u, v) ,

where we must keep in mind that d = 3.

In this case, since the only poles with Im(ν) < 0 come from the factor C(∆,∆, d
2

+iν, s),

the only contributions to the conformal block expansion come from spin-s double-trace

operators. The absence of any single-trace contribution is consistent, since there is no
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exchange of a single-particle state in a local contact interaction.

With the above result (5.113) for a given basis vertex, the conformal block expansion

of a contact diagram generated by a generic quartic scalar self interaction follows by

expressing it in the basis (5.109).

Let us note that while in this section we restricted for simplicity to the AdS4 case,

the same procedure applies in general dimensions. The difference is that generally it is

not possible to use traceless currents in the basis (5.109). In general dimensions, the

use of traceful currents introduces contributions for all ` ≤ s in (5.111). This gives

rise to contributions from double-trace operators for all spins ` ≤ s in the subsequent

conformal block expansion (5.113). As a final comment, in applying the above approach

it is not necessary to use a basis of quartic vertices built from conserved currents. It

applies to any quartic vertex, and the choice (5.109) was made for ease of comparison

with the exchange diagrams.



Chapter 6

Holographic reconstruction

This chapter is a culmination of the results established in the previous, in which we fix

the complete cubic action and the quartic scalar self-interaction in the type A mini-

mal bosonic higher-spin theory on AdS. We do so by employing its conjectured duality

with the free scalar O (N) vector model, by matching three- and four-point functions of

single-trace operators in the latter (computed in §4.2) with their dual Witten diagrams

in the higher-spin theory (computed in §5). In extracting the quartic scalar interac-

tion, we employ the conformal partial wave expansion in CFT §3.6 and §4.2.3, and for

four-point Witten diagrams §5.4.

We begin by reviewing the standard non-holographic Noether approach to constructing

Lagrangian interactions in higher-spin theories, exhibiting the existing results upon

which we build in this work.

6.1 Interactions in higher-spin theory

One of the main tools for constructing interactions in higher-spin theories is the Noether

method. Any theory whose non-linear form is determined by a gauge principle can

be constructed by a Noether procedure, which was first understood in the context of

gravity in [250–254] and proved highly successful in the construction of supergravity
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theories [255–259]. This is a perturbative approach whose aim is to give a systematic

prescription for constructing interacting theories, order-by-order in the fields, as defor-

mations of free theories.

The starting point is a given spectrum of free fields, which we denote collectively by

ϕ, on a fixed background. These are described by a quadratic action S(2) [ϕ], which is

invariant under the linear gauge transformations δ
(0)
ξ ϕ. One then postulates the exis-

tence of a full non-linear action with corresponding non-linear gauge transformations,

and expands them both in a weak field expansion around the background in powers of

the fields

S[ϕ] = S(2) [ϕ] + S(3) [ϕ] + S(4) [ϕ] + ... , (6.1)

δξϕ = δ(0)ϕ+ δ(1)ϕ+ δ(2)ϕ+ ... . (6.2)

The superscript (n) means that the corresponding term is power n in the fields. The

requirement δξS[ϕ] = 0 that the action is gauge-invariant provides a set of recursive

equations

δ(0)S(2) [ϕ] = 0, (6.3a)

δ(0)S(3) [ϕ] + δ(1)S(2) [ϕ] = 0, (6.3b)

δ(0)S(4) [ϕ] + δ(1)S(3) [ϕ] + δ(2)S(2) [ϕ] = 0, (6.3c)

... , (6.3d)

whose solution would iteratively fix the full non-linear action.

In this way, all possible cubic vertices involving symmetric gauge fields of arbitrary in-

teger spin on an AdSd+1 background that are consistent with the first order constraint

(6.3b) have been determined [30,90,96,97,104,108–114,260].
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The approach to establishing consistent cubic vertices is similar to that of constraining

correlation functions involving conserved currents of arbitrary spin (§4.2.2): Working

in the ambient framework [30, 90, 109–112, 114], for a given triplet of spins {s1, s2, s3},

one considers the most general cubic vertex

Vs1,s2,s3 (ϕi) =

si∑
ni=0

gn1,n2,n3
s1,s2,s3

In1,n2,n3
s1,s2,s3

(ϕi), (6.4)

where

In1,n2,n3
s1,s2,s3

(ϕi) = Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3

×Hn1
1 Hn2

2 Hn3
3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3)

∣∣∣
Xi=X

, (6.5)

built from the six basic contractions (5.83),

Y1 = ∂U1 · ∂X2 , Y2 = ∂U2 · ∂X3 , Y3 = ∂U3 · ∂X1 , (6.6a)

H1 = ∂U2 · ∂U3 , H2 = ∂U3 · ∂U1 , H3 = ∂U1 · ∂U2 . (6.6b)

This general cubic interaction (6.4) is the analogue of (3.86), for a correlation function

involving operators of spin {s1, s2, s3} in CFT. To constrain the coefficients gn1,n2,n3
s1,s2,s3

,

one first considers the first non-trivial constraint (6.3b), which leads to the requirement

δ(0)S(3) ≈ 0, (6.7)

since the rightmost term in (6.3b) is proportional to the free equations of motion. By

inserting the ansatz (6.4) into the above, it is possible to identify all independent cubic

interactions consistent with the linear gauge symmetries δ(0)ϕsi .1

1Each such structure is a linear combination of the In1,n2,n3
s1,s2,s3 . The number of independent structures

is equal to: 1+min (s1, s2, s3), which (as required by the duality) coincides with the number demanded
by current conservation on the CFT three-point correlator 〈Js1Js2Js3〉, with ∂ · Jsi ≈ 0.
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For example, in the case of spin-1 gauge fields there are two independent interaction

terms of the schematic form

S(3) = b1
1,1,1

∫
AAF + b0

1,1,1

∫
F F F. (6.8)

The first is the one-derivative Yang-Mills vertex, while the second is the three-derivative

Born Infeld vertex. For spin-2 gauge fields, there are three independent interactions

S(3) = b2
2,2,2

∫
h∇h∇h + b1

2,2,2

∫
RR + b0

2,2,2

∫
RRR, (6.9)

where the first is the two-derivative gravitational minimal coupling, while the other two

come from the expansions of (Riemann)2 and (Riemann)3. The latter involve four and

six derivatives, respectively. More generally, solutions to (6.7) are vertices involving

fields of spin (s1, s2, s3), with different number of derivatives associated to the coupling

constants bns1,s2,s3 , where 0 ≤ n ≤ min (s1, s2, s3).

Let us note that the coupling constants bns1,s2,s3 are not fixed at this level: equation

(6.3b) is linear in the deformation, and so any linear combination of solutions is also a

solution. This freedom left over in the cubic action can in principle be fixed by consid-

ering higher-order consistency conditions. This has led to results [96, 108, 117, 261] for

the relative coefficients between a certain class of cubic vertices, known as non-abelian

vertices.2 However, due to the increasing complexity of higher order conditions in the

Noether procedure, neither the complete cubic action nor higher-order interactions have

been determined in a standard Lagrangian form.3

In this chapter we push the above results further by taking an alternative route, using

2As their name suggests, such vertices deform the linearised gauge transformations and give rise
to the non-zero structure constants of the higher-spin algebra. The relative coefficients between such
vertices can be constrained by demanding that the linearised theory carries a representation of the
global symmetry algebra. This is known as admissibility and is a second order constraint.

3See however [262] for results for higher-order vertices in the so-called unfolded formulation, which
employs an infinite set of auxiliary fields.
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the conjectured holographic duality between higher-spin theories in AdSd+1 and free

CFTs in d-dimensions. As we saw in §2.2, the generating function of connected cor-

relators in a free CFT can be identified with the on-shell classical action of the dual

higher-spin theory in AdS,

〈O1 (y1) ...On (yn)〉conn. =
δ

δϕ̄1 (y1)
...

δ

δϕ̄n (yn)
SHS AdS

[
ϕi
∣∣
∂AdS

= ϕ̄i
] ∣∣∣
ϕ̄=0

. (6.10)

With the result for the correlators of single-trace operators in the free CFT, one should

then in principle be able to determine the on-shell interactions of their dual higher-spin

fields in AdS by requiring that (6.10) holds.

Here, we work in the context of the conjectured duality between the type A minimal

bosonic higher-spin theory on AdS and the free scalar O (N) vector model. In §4.2.2,

we determined the three-point functions of all single-trace operators in the latter. With

these results, combined with those for tree-level 3-point Witten diagrams with spinning

external fields in §5.3.3, by employing the holographic requirement (6.10) we are able

to extract the explicit form of all coefficients in the cubic vertex (6.4) in the higher-spin

theory on AdSd+1. In more detail, we solve the equation shown diagrammatically below

for gn1,n2,n3
s1,s2,s3

, for any triplet of even integer spins {s1, s2, s3}

.

With the action fixed up to cubic order, we take the holographic reconstruction to
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quartic order.4 The simplest example to begin with is given by solving for the quartic

self interaction of the scalar, as it minimises the number of tensor structures that one

needs to confront. The scalar quartic self-interaction contributes to the holographic

computation of the scalar single-trace operator 4-pt function §4.2.3, together with the

bulk exchanges mediated by the 0-0-s cubic vertices (6.4). The latter we determine at

lower order in the holographic reconstruction procedure. The equation we solve for the

quartic interaction is shown in figure 6.1.

Figure 6.1: Assuming validity of the HS / free vector model duality, the four-point
function of the boundary scalar single trace operator O can be computed from the sum
of all four-point exchanges of the spin-s gauge fields between two pairs of scalars and
the four-point contact diagram generated by the quartic scalar self-interaction V0,0,0,0.

To extract the scalar quartic self-interaction, we proceed in the same way as at cubic

order by making the most general ansatz

V0,0,0,0 =
∑
r,m

ar,m (ϕ0∇µ1 ...∇µr ϕ0 + ...)�m (ϕ0∇µ1 ...∇µr ϕ0 + ...) (6.11)

where a completion of the . . . is given for example by the basis of quartic vertices

(5.109). For technical reasons that were explained in the previous section, we restrict

to extracting the quartic vertex in AdS4. To solve the holographic equation shown in

figure 6.1 for the coefficients ar,m in the derivative expansion, it is effective to decompose

4In general, the tree-level Witten diagram computation of n-point CFT correlators involves bulk
interactions of orders n, n− 1, ..., 3. The holographic reconstruction therefore provides an alternative
(and more efficient) iterative procedure to the Noether procedure in constructing interactions.
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the bulk and boundary amplitudes into conformal partial waves. We therefore employ

the results §4.2.3 for the expansion of the scalar single-trace four-point function, and

those established in §5.4.2 and §5.4.3 for tree-level four-point Witten diagrams with

identical parity even external scalars.

6.2 Holographic reconstruction

Before we proceed, let us note that in order for the holographic relation (6.10) which we

use to extract the interactions to be meaningful, it must be ensured that the two-point

functions have the same normalisation from both the bulk and boundary perspectives.

In all that follows, we choose the unit normalisation

〈Js (y1|z1)Js (y2|z2)〉 =
(H3)s

(y2
12)

∆
. (6.12)

6.2.1 Cubic couplings

Simple illustrative example: s-0-0 coupling

As customary, we begin the simplest example: Fixing holographically the bulk 0-0-s

interactions, which are of the Noether type

Vs,0,0 = gs, 0, 0 ϕs (x, ∂u) · Js (x, u) , ∇ · ∂u Js (x, u) ≈ 0, (6.13)

where Js is a conserved current that is bi-linear in the bulk scalar ϕ0 (e.g. (5.91)), and

gs, 0, 0 is the coupling we would like to determine. As we already saw, for each s the

form of these vertices is unique on-shell, and the structure is on-shell equivalent to the

basic structure (5.74)

Vs,0,0 = gs, 0, 0 ϕs (x, ∂u) · Js (x, u) ≈ gs, 0, 0 2s V̂s,0,0, (6.14)
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where

V̂s,0,0 = ϕs (x, ∂u)ϕ0 (x) (u · ∇)s ϕ0 (x) . (6.15)

The vertex (6.14) in the type A minimal bosonic theory is the unique bulk structure

responsible for the holographic computation of the 0-0-s correlator (4.19) in the free

scalar O (N) vector model. Using AdS/CFT dictionary (6.10), we have

〈O (y1)O (y2)Js (y3|z)〉 =
δ

δϕ̄0 (y1)

δ

δϕ̄0 (y2)

δ

δϕ̄s (y3)
SHS AdS

[
ϕi
∣∣
∂AdS

= ϕ̄i
]

(6.16)

= gs, 0, 0 2sÂ∆,∆,∆+s,s (y1, y2, y3|z) ,

where Â∆,∆,∆+s,s is the tree-level 3-pt amplitude (5.79) generated by the basic vertex

(6.15). Together with the result (4.19) for the dual vector model correlator on the

LHS, normalising the two-point functions consistently (6.12), we can extract gs, 0, 0 from

(6.16):

gs,0,0 =
2

3d−s−1
2 π

d−3
4 Γ

(
d−1

2

)√
Γ
(
s+ d

2
− 1

2

)
√
N
√
s! Γ (d+ s− 3)

. (6.17)

In particular, for d = 3 we have

gs,0,0 =
24− s

2

√
N Γ (s)

. (6.18)

This is consistent with the known vanishing of the cubic scalar self coupling (s = 0) in

AdS4 [73], which itself provided an early check of the holographic duality by comparing

with earlier CFT results in [263].

In §6.2.2 we shall employ the result (6.18) to complete the computation of the tree-level

spin-s exchange diagram (5.92), mediated by the (0, 0, s) cubic vertices (6.13) in the

type A minimal bosonic higher-spin theory on AdS4.
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Full cubic action: s1-s2-s3 couplings

Let us now consider the problem in full generality. Our goal is to determine holograph-

ically the complete set of cubic couplings in the action of the type A minimal bosonic

higher-spin theory on AdSd+1. As discussed in the preceding section, this takes the

form

SHS AdS [ϕ] =
∑
si

∫
AdSd+1

1

2
ϕsi
(
�−m2

si
+ ...

)
ϕsi +

∑
si, ni

gn1,n2,n3
s1,s2,s3

∫
AdSd+1

In1,n2,n3
s1,s2,s3

(ϕsi) + ... ,

for some coefficients gn1,n2,n3
s1,s2,s3

to be determined. We also display the kinetic terms, to

emphasise that the couplings we determine correspond to the canonical normalisation

of the former. This is ensured by the normalisation of the boundary-to-bulk propaga-

tors.

In this general case, we have to solve the holographic equation in the figure below

, (6.19)

for the coefficients gn1,n2,n3
s1,s2,s3

. All the ingredients are at our disposal: In §5.3.3 we com-

puted the tree-level 3-pt amplitudes generated by each vertex structure (6.5), and in

§4.2.2 we computed all three-point correlation functions of the single-trace conserved

currents in the free scalar O (N) vector model. For convenience, we recall here that the

latter are given by (4.31)

〈Js1(y1|z1)Js2(y2|z2)Js3(y3|z3)〉
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= N

(
3∏
i=1

csi q
1
2
−∆

4
i Γ(∆

2
) J∆−2

2
(
√
qi)

)
Ys1

1 Ys2
2 Ys3

3

(y2
12)∆/2(y2

23)∆/2(y2
31)∆/2

, (6.20)

with

q1 = 2H1∂Y2∂Y3 , q2 = 2H2∂Y3∂Y1 , q3 = 2H3∂Y1∂Y2 . (6.21)

The csi are given by

c2
si

=

√
π 2−∆−si+3 Γ(si + ∆

2
)Γ(si + ∆− 1)

N si! Γ(si + ∆−1
2

)Γ(∆
2

)2
, (6.22)

for canonical normalisation (6.12) of the two-point functions.

To solve equation (6.19) for the gn1,n2,n3
s1,s2,s3

, the crucial observation is that the 3-pt ampli-

tude generated by the simplest vertex structure (6.5) with ni = 0 and τi = d − 2 can

be re-summed. The resulting expression precisely produces the free scalar conformal

structure (6.20) above, up to an overall coefficient

∫
AdSd+1

I0,0,0
s1,s2,s3

(Ksi+d−2,si) =
π

3
2
−d (−1)s1+s2+s3 2−3d−s1−s2−s1+8 Γ(d+ s1 + s2 + s1 − 3)

(y2
12)d/2−1(y2

23)d/2−1(y2
31)d/2−1

× Γ(d− 3 + s1)Γ(d− 3 + s2)Γ(d− 3 + s1)

Γ
(
d−3

2
+ s1

)
Γ
(
d−3

2
+ s2

)
Γ
(
d−3

2
+ s1

) 3∏
i=1

(
q

1− d
4

i J d
2
−2 (
√
qi)
)

Ys1
1 Ys2

2 Ys3
3 . (6.23)

Since the mapping between consistent cubic vertices in the bulk and conserved 3-pt

structures in the dual CFT is one-to-one (cf. footnote 1 of this chapter), the above

vertex is the only one which can possibly generate the CFT result (6.20).5 This imme-

diately gives gn1,n2,n3
s1,s2,s3

= 0 for all ni except when n1 = n2 = n3 = 0.

5Other vertex structures (6.5) may generate the free scalar conserved structure (6.20) on the bound-
ary, but since the mapping is one-to-one there will also be contributions from the other conserved
structures in (4.25) for l 6= 0, which cannot be removed by any linear combination of bulk cubic ver-
tices. The vertex with ni = 0 is thus singled out when demanding agreement with the result (6.20) in
the free scalar O (N) model.
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The final step is then to determine g0,0,0
s1,s2,s3

. Normalising the two-point functions in

both the bulk and boundary computations consistently (6.12), and combining the CFT

(6.20) and bulk (6.23) results, we obtain the following coupling constants

gs1,s2,s3 := g0,0,0
s1,s2,s3

=
1√
N

π
d−3

4 2
3d−1+s1+s2+s3

2

Γ(d+ s1 + s2 + s3 − 3)

3∏
i=1

√
Γ(si + d−1

2
)

Γ (si + 1)
. (6.24)

The simplest form for the above coupling constants manifests itself in AdS4, where the

spin-dependence coincides with the one obtained in [91, 92] from a flat space quartic

analysis

gs1,s2,s3 =
2
s1+s2+s3

2
+4

√
N Γ(s1 + s2 + s3)

, (6.25)

confirming a conjecture [264] made for the coefficient of the highest derivative part of

the s1-s2-s3 vertex in AdS4, which is the part of a vertex which survives when taking

the flat limit of AdS. This is a non-trivial consistency check of our results, and also a

check of the higher-spin / vector model duality itself: Upon taking the flat limit Λ→ 0,

we recover the known results in flat space.

Discussion / Back to intrinsic

As mentioned earlier in §5.3.3, for ease of computation we established the cubic cou-

plings in the ambient formalism. In this framework, complete bulk cubic coupling for

given (s1, s2, s3) in ambient space reads

Vs1,s2,s3 =
∑

s1,s2,s3

gs1,s2,s3 I0,0,0
s1,s2,s3

, (6.26)

where explicitly

I0,0,0
s1,s2,s3

(ϕi) (6.27)

= (∂U1 · ∂X2)s1 (∂U2 · ∂X3)s2 (∂U3 · ∂X1)s3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3)
∣∣∣
Xi=X

.
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In particular, we employed the partial derivative ∂A which acts in the flat Rd,2 ambient

space, as opposed to the covariant derivative ∇ that is intrinsic to the AdSd+1 manifold.

In §G we explain how to obtain the intrinsic expressions for the interactions (6.26), i.e.

in terms of ∇.

One should note that although the interaction (6.27) contains s1 + s2 + s3 ambient

partial derivatives, when re-expressing it in terms intrinsic to AdS one picks up lower

derivative terms. In particular, the quasi-minimal interactions with the lowest number

s1 + s2 − s3 of derivatives (s1 ≥ s2 ≥ s3). In the spin-2 case for example, one recovers

the Einstein-Hilbert terms supplemented by those with higher-derivatives.

6.2.2 Quartic couplings

In the previous section, we fixed holographically the complete cubic action for the type

A minimal bosonic higher-spin theory on AdSd+1. With this result, we may now extend

this reconstruction of bulk interactions to the quartic order. The simplest case is given

by extracting the scalar self-interaction, whose four-point contact diagram contributes

to the holographic computation of the scalar single-trace operator four-point function

(4.35), with the total contributing Witten diagrams shown in figure 6.2.

In §5.4.3 we saw that any bulk quartic scalar self-interaction can be expressed in the

form

V0,0,0,0 =
∑
r,m

ar,m V̂r,m (6.28)

=
∑
r,m

ar,m (ϕ0∇µ1 ...∇µrϕ0 + ...)�m (ϕ0∇µ1 ...∇µrϕ0 + ...) ,

built from the complete set of vertices V̂r,m defined in (5.109). In this section we

determine the coefficients ar,m for the higher-spin theory on AdS4. As discussed in §5.4,

working in AdS4 allowed for certain simplifications in computing the relevant Witten
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Figure 6.2: Total contributing four-point Witten diagrams to the holographic computa-
tion of 〈OOOO〉conn.. The four-point exchange diagrams (top line), were computed in
§5.4.2 as a conformal partial wave expansion. The analogous result for tree-level con-
tact diagrams for a general scalar quartic self-interaction (second line) was computed
in §5.4.3. All permutations of the external legs are taken into account.

diagrams, which will also manifest themselves in extracting the quartic vertex in this

section. The coefficients are fixed by requiring that its four-point contact diagram

correctly reproduces the dual vector model correlator (4.35) when supplemented with

the exchange diagrams (5.101) (figure 6.2). In other words, they must satisfy the

equation,

〈O(y1)O(y2)O(y3)O(y4)〉conn. (6.29)

=
∑
s

Aexch.
s (y1, y2; y3, y4) +

∑
s,m

as,m Âcont.
s,m (y1, y2; y3, y4) + y2 ↔ y3, y4,

which we solve in the following. The role of y2 ↔ y3, y4 is to include all permutations

of the external legs – i.e. all diagrams in figure 6.2.

First, notice that the Witten diagram computation of the dual CFT correlator is au-
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tomatically crossing symmetric (as can be seen from the RHS of (6.29)). Using the

manifestly crossing symmetric form (4.47) for the scalar single-trace four-point func-

tion, we may thus reduce the above problem to solving the equation

G (y1, y2; y3, y4) =
∑
s

Aexch.
s (y1, y2; y3, y4) +

∑
s,m

as,m Âcont.
s,m (y1, y2; y3, y4), (6.30)

where we recall that

〈O(y1)O(y2)O(y3)O(y4)〉conn. = G(y1, y2; y3, y4) + y2 ↔ y3, y4. (6.31)

If a vertex that solves (6.30) is found, then the definition of G above ensures that equa-

tion (6.29) is automatically satisfied. Since the non-trivial quartic vertex is completely

determined by (6.29), any solution of (6.30) would give the only solution of (6.29). The

two problems are thus equivalent.

To proceed, we solve for the coefficients as,m by matching the contributions in the

conformal block expansion of both sides of equation (6.30). Solving equation (6.30)

is therefore much simpler, as it eliminates the issue of comparing conformal block ex-

pansions in different channels. This is essentially the key technical difficulty behind

the conformal bootstrap. Another crucial simplification is provided by the conformally

coupled scalar in AdS4: As we saw in §5.4, in this case each bulk amplitude for fixed s

in equation (6.30) only generates spin-s contributions. We may thus solve the equation

spin-by-spin:

Aexch.
s (y1, y2; y3, y4) +

∑
m

as,m Âcont.
s,m (y1, y2; y3, y4) (6.32)

= a · c2
OOJsW∆+s,s(y1, y2; y3, y4) + c ·

∑
n

c2
OO[OO]s,n

W2∆+2n+s,s(y1, y2; y3, y4),

where we used the conformal block expansion for G derived in §4.2.3, which we repeat
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for convenience below:

G(y1, y2; y3, y4) (6.33)

= a ·
∑
s

c2
OOJsW∆+s,s(y1, y2; y3, y4) + c ·

∑
s, n

c2
OO[OO]s,n

W2∆+2n+s,s(y1, y2; y3, y4),

with a and c constrained by 2a + c = 1. As previously explained, this freedom in the

choice of a and c represents the ambiguity in the definition (6.31) of G, in which we are

at liberty to add terms Gtrivial with the property

Gtrivial(y1, y2; y3, y4) + Gtrivial(y1, y3; y2, y4) + Gtrivial(y1, y4; y3, y2) = 0. (6.34)

In the bulk, this translates to the freedom of adding trivial vertices to the scalar self

interaction (6.28), which give a vanishing total contact amplitude

Acont.
trivial(y1, y2; y3, y4) +Acont.

trivial(y1, y3; y2, y4) +Acont.
trivial(y1, y4; y3, y2) = 0. (6.35)

In other words, the different solutions for the quartic vertex which arise from the am-

biguity in the definition of G differ by trivial vertices which vanish on-shell.

A particularly illuminating choice is a = −c = 1:

G(y1, y2; y3, y4) (6.36)

=
∑
s

c2
OOJsW∆+s,s(y1, y2; y3, y4)−

∑
s, n

c2
OO[OO]s,n

W2∆+2n+s,s(y1, y2; y3, y4).

Recalling (equation (5.105)) that the spin-s exchange generates precisely the spin-s

single-trace contribution in the (12)(34) channel expansion of the dual CFT correlator,

the above choice of a and c exhibits the explicit cancellation of the single-trace contri-

butions in equation (6.32). This leaves only double-trace contributions, to be matched

by the contact amplitude of the quartic vertex.
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Solving for the coefficients is simplified by using the contour-integral form of the confor-

mal block expansion (4.50), as it eliminates the sum over n.6 In this way, the coefficients

as,m are given implicitly by

∑
m

as,m (−1)m
(
ν2 + s+ 9

4

)m
=

28−s

N

1

ν2 + (s− 1
2
)2

[
π

Γ
(

2s−2iν+1
4

)2
Γ
(

2s+2iν+1
4

)2 −
1

Γ (s)2

]
(6.37)

− 1

N

(−1)
s
2 π

3
2 2s+5Γ

(
s+ 3

2

)
Γ
(
s
2

+ 1
2

)
√

2Γ
(
s
2

+ 1
)

Γ (s+ 1) Γ
(

3
4
− iν

2

)
Γ
(

3
4

+ iν
2

)
Γ
(
s+ 1

2
+ iν

)
Γ
(
s+ 1

2
− iν

) ,
which we obtain by inserting the contour integral forms (4.50), (5.101) and (5.113) into

equation (6.32) for a = −c = 1. Through setting z = −
(
ν2 + s+ 9

4

)
, one can establish

a generating function

as(z) ≡
∑
m

as,m zm, (6.38)

for the coefficients for each s:

as (z) =
Λs

N

(
πeγ(2s+1)Γ (s)2

(
(2s+ 1)2 +

(
Λz + s+ 9

4

)2
)2

P
(
s+ 1

2
; z
)2 − 42

)
2s−4Γ (s)2

((
Λz + s+ 9

4

)2
+
(
s− 1

2

)2
)

− isπ2

2
√

2N

Γ
(
s+ 3

2

)
Γ
(
s
2

+ 1
)2 e

γ(2s+ 5
2)P

(
s+ 1

2
; z
)
P
(

3
4
; z
)

×
(

(2s+ 1)2 +
(
2Λz + 2s+ 9

2

)2
)(

9 +
(
2Λz + 2s+ 9

2

)2
)
,

where we introduced

P (a|z) =
∞∏
k=0

[(
1 +

a

k

)2

+

(
4z + 4s+ 9

4k

)2
]
e−2a/k, (6.39)

6This is because the contributions from double-trace operators of the same spin are packaged in a
single gamma function.
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and γ is the Euler-Mascheroni constant. In particular, we employed the Weierstrass

infinite product representation of the Gamma function and reinserted the dependence

on the cosmological constant.

This determines the quartic vertex (6.28) of the parity even scalar in the minimal

bosonic higher-spin theory on AdS4, in the form

V0,0,0,0 =
∑
s∈2N

J̃s (x, ∂u) as(�)J̃s (x, u) , (6.40)

where the J̃s is the traceless improvement of the spin-s conserved currents (5.91), bi-

linear in the bulk scalar ϕ0.

We conclude this chapter with some comments:

• To solve for the vertex (6.40), we relaxed the constraint m ≤ k in the basis (5.109).

I.e. we used a redundant set of vertices, which can be re-expressed purely in terms

of those for m ≤ k using the freedom of integration by parts and the free equations

of motion.

• Since we solve for the coefficients as,m at the level of the contour integral integrand

in (6.37), näıvely it may seem that the vertex is not defined uniquely: One is free

to add functions of ν that are entire within the contour. In doing so, this would

change the form of as,m and thus the solution for the quartic vertex. However, the

addition of such terms does not change the four-point amplitude and therefore

the different vertices obtained in this manner would differ only by trivial terms

which vanish on the free mass shell.

• Let us also comment on the presence of anomalous scaling dimensions for the

double-trace operators in the partial wave decompositions of Witten diagrams:

These manifest themselves by the presence of double-poles in (5.102) and (5.113)

for d
2

+ iν = 2∆ + 2n + s, n = 0, 1, 2, ... . Owing to the double-poles, evaluating
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the ν-integral using Cauchy’s theorem produces not only the “non-anomalous”

double-trace conformal blocks G∆n,s,s, but also their derivatives with respect to

the dimension (∂/∂∆n,s)G∆n,s,s. These two terms together originate from the

conformal block G∆n,s+γn,s,s, with an anomalous scaling dimension γn,s for the

double-trace operator. Indeed, this can be seen by expanding as a Taylor series

in γn,s,

G∆n,s+γn,s,s = G∆n,s,s + γn,s
∂

∂∆n,s

G∆n,s,s +O
(
1/N2

)
. (6.41)

The presence of anomalous dimensions for a given Witten diagram is natural, since

the former are dual to the binding energies of two-particle states in the bulk. At

the same time however, the boundary theory is free and the double-trace opera-

tors (4.11) do not receive any anomalous dimensions. This fact manifests itself in

the contour integral representation (4.50) for the dual CFT four-point function,

which contains only single poles at d
2

+ iν = 2∆ + 2n + s, n = 0, 1, 2, ... . The

holographic duality between higher spin theories and free CFTs therefore requires

a delicate cancellation of the anomalous conformal blocks generated by each in-

dividual Witten diagram. That the quartic vertex that we found solves (6.29),

implies that this cancellation indeed takes place.

In this respect, the contour integral representation for the conformal block de-

composition turned out to be a powerful tool: First of all, it allowed us to solve

for the quartic interaction by performing simple algebraic manipulations with the

functions of ν. Moreover, this representation allowed us to treat conformal blocks

with anomalous dimensions on the same footing as non-anomalous ones, simply

by controlling the degree of the pole in ν at the associated point.

• As a final point: One motivation for studying higher-spin interactions using holog-

raphy, was owing due to the technical difficulties encountered when restricted to
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standard methods of approach. Indeed, using the Noether procedure it has not

yet been possible to fix all cubic couplings, or to determine quartic or higher-order

vertices in a standard Lagrangian form. In comparison, the holographic approach

we took seems to be more efficient. Furthermore, solving for the quartic scalar

self-interaction (7.2) holographically even skips steps which are necessary in the

Noether procedure. The first Noether-consistency condition in which the quartic

action enters is (6.3d)

δ(2)S(2) + δ(1)S(3) + δ(0)S(4) = 0. (6.42)

However, since the scalar is invariant under δ(0) (it is not a gauge field itself),

to extract the quartic scalar self-interaction (7.2) using the Noether method one

needs to (at least) consider the quintic-order condition

δ(3)S(2) + δ(2)S(3) + δ(1)S(4) + δ(0)S(5) = 0. (6.43)

Furthermore, in principle one may require the knowledge of other quartic inter-

actions to solve (6.43) for the scalar quartic self-interaction.



140 6. Holographic reconstruction



Chapter 7

Summary and discussion

7.1 Summary of results

In this thesis, employing the conjectured duality between higher-spin gauge theories on

anti-de Sitter space and free conformal field theories, we studied higher-spin interac-

tions on an AdS background.

In the context of the duality between the type A minimal bosonic higher-spin theory on

AdS and the free scalar O (N) vector model, we determined the complete on-shell cubic

action (on AdSd+1) and the quartic self interaction of the scalar (on AdS4). These in-

teractions were previously unknown in a metric-like Lagrangian form, without auxiliary

fields. For this we drew on the equivalence between correlation functions of single-trace

operators in CFT and Witten diagrams in the dual theory on AdS in the large N limit.

The approach is therefore particularly appealing, as correlation functions are straight-

forward to compute in free CFTs.

We repeat the explicit results for the interactions in the higher-spin action (expanded
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about AdS) below:

S [ϕ] =
∑
s

∫
AdS

1

2
ϕs
(
�−m2

s + ...
)
ϕs +

∑
si

∫
AdS

Vs1,s2,s3 (ϕ) +

∫
AdS

V0,0,0,0 (ϕ0) + ... .

The cubic interaction for each triplet of spins takes the schematic form

Vs1,s2,s3 (ϕ) = gs1,s2,s3

[
∇µ1 ...∇µs3ϕν1...νs1

∇ν1 ...∇νs1ϕρ1...ρs2
∇ρ1 ...∇ρs2ϕµ1...µs1

+O(
√
|Λ|)

]
,

where the terms O(
√
|Λ|) and higher in the bracket are descending in the number of

derivatives, and are fixed uniquely. The overall coupling is given by

gs1,s2,s3 =
1√
N

π
d−3

4 2
3d−1

2
√
−2Λ

s1+s2+s3

Γ(d+ s1 + s2 + s3 − 3)

√
Γ(s1 + d−1

2
)

Γ (s1 + 1)

Γ(s2 + d−1
2

)

Γ (s2 + 1)

Γ(s3 + d−1
2

)

Γ (s3 + 1)
. (7.1)

The quartic self-interaction of the scalar takes the schematic form

V0,0,0,0 (ϕ0) =
∑
r,m

ar,m (ϕ0∇µ1 ...∇µrϕ0 + ...)�m (ϕ0∇µ1 ...∇µrϕ0 + ...) , (7.2)

where the . . . denote a finite number of terms with no more than r derivatives. In

§6.2.2 we gave a generating function (6.39) for the coefficients ar,m.

Establishing the above results involved a number of non-trivial intermediate steps. We

list those which may be of interest for further applications below. Afterwards (§7.2), in

the context of the above results we discuss the issue of locality in higher-spin theories.

Three-point Witten diagrams with external fields of arbitrary spin

In order to evaluate tree-level three-point Witten diagrams involving external fields of

arbitrary integer spin, we developed an approach which allowed them to be re-expressed

in terms of a differential operator acting on three-point diagrams involving only external

scalars. This was an instrumental result, in particular because the latter scalar ampli-
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tudes are well-known and straightforward to compute. This method is summarised in

the figure below.

In this work we focused on symmetric fields, while for broader applications it may be

useful to extend this result to more general representations of the isometry group. For

instance, those of the anti-symmetric or mixed-symmetry type, which can be found for

example in string theory.

Figure 7.1: Tree-level three-point Witten diagrams with external fields of arbitrary
integer spin and scaling dimensions, can be expressed in terms of tree-level three-point
diagrams involving only external scalars. This is achieved through the application of a
differential operator f ({Pi} , {∂Pi}), which encodes the tensor structure of the original
amplitude.

Conformal partial wave expansion of four-point Witten diagrams

In order to extract the quartic self-interaction of the scalar (7.2), we developed tools to

determine conformal block expansions of tree-level four-point Witten diagrams. This

was in order to match with the corresponding decomposition of the dual CFT correlator.

The idea was centred upon the decomposition of four-point Witten diagrams into partial
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waves,

,

(7.3)

whose factorised form could be identified with the integral representation (3.114) of

conformal blocks,

WO∆i,`
(y1, y2; y3, y4) =

(∆i − d
2
)

2π

∫ ∞
−∞

dν
1

ν2 +
(
∆i − d

2

)2

κ d
2
−iν,`

(2π)
d
4

Γ
(
d
2
−iν+`

2

)2

Γ
(
d
2

+iν+`

2

)2 (7.4)

×
∫
ddy 〈〈O (y1)O (y2)O d

2
+iν,` (y)〉〉〈〈Õ d

2
−iν,` (y)O (y3)O (y4)〉〉.

In particular, for exchange diagrams we expressed the bulk-to-bulk propagators for

gauge fields of arbitrary spin in a basis of AdS harmonic functions, shown below. This

form for the propagator is also applicable in extending this approach to conformal block

expansions of diagrams with loops. This would allow, for example, further tests of the

higher-spin AdS/CFT duality at loop-level.

, (7.5)

While in this work we focused on four-point Witten diagrams involving external scalars,
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the above method is applicable to more general scenarios. For example, to determine

the conformal block expansions of four-point Witten diagrams with spinning external

legs. The latter result would be crucial to extract quartic vertices involving fields with

non-zero spin. Moreover, it would utilise the result for three-point Witten diagrams

mentioned above.

7.2 Discussion: Locality

The most distinguishable feature of our quartic vertex (7.2) is that it is unbounded in

its number of derivatives. In a sense, this is to be expected: In string theory there

is an infinite number of higher-derivative α′ corrections, which play a key role in the

soft behaviour of high energy scattering amplitudes. However, the implications of non-

localities for higher-spin gauge theories are still to be fully understood. In this section,

we discuss how the AdS/CFT correspondence provides a framework in which these is-

sues may be elucidated. But let us begin by revisiting the concept of locality in the

more familiar framework of QFT.

In QFT, locality is a crucial requirement for causality. In non-gravitational theories,

where the space-time manifold is fixed and non-dynamical, causality means that the

theory has localisable observables which commute at space-like separations,

[O (x) ,O (y)] = 0, (x− y)2 > 0, (7.6)

since space-like separated measurements should not interfere. This follows directly

from locality, since observables are functions of local fields that, as quantum operators,

commute at space-like separations (up to a gauge transformation) as a consequence of

Lorentz invariance and locality of interactions. However in gravitational theories there

are no local gauge (diffeomorphism) invariant observables, which leaves open the possi-
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bility for fields to interact in a non-local way. As we shall discuss below, in such theories

these issues can be translated instead into analyticity properties of the S-matrix.

A well known example of a consistent theory that is not local in the standard QFT

sense is string theory. Indeed, the covariant string field theory action governing the

dynamics of the infinite set of fields contains space-time derivatives of all orders. For

example, one finds interactions of the form

V3 =
[
e

1
2
α′∂2

φ (x)
]3

, (7.7)

where we can write

e
1
2
α′∂2

φ (x) =
1

2πα′

∫
dy e

1
2α′ (x−y)2

φ (y) . (7.8)

Näıvely, this seems to be problematic: The field φ at the point x not only couples to

itself, but also to its values arbitrarily far in the future, past, and even at space-like

separations. Most troubling is the presence of an infinite number of time derivatives.

The issues that generally accompany theories containing such interactions are well-

known, and include [265–275]: Possible violations of unitarity and causality, problems in

setting up an initial value problem, and difficulties quantising the theory and/or finding

a stable Hamiltonian. However, for string theory there is evidence which indicates that

the higher-derivative structure is not problematic. Indeed, when passing to the light-

cone gauge it is possible to make field redefinitions which render the theory completely

local in light-cone time [276–278].

Locality in higher-spin theories, and Mellin amplitudes

Our understanding of these issues in higher-spin gauge theories is comparably limited.

Recently, classes of admissible field redefinitions (i.e. those which do not alter physical

observables) have been proposed in [279–281], however their implications are yet to
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be fully realised. The point is whether the field re-definitions required to reduce the

number of time derivatives are physical.

More generally, questions about locality can be translated into certain analytical prop-

erties of the S-matrix [282]. It is well-known that local interactions give rise to ampli-

tudes which are polynomial in Mandelstam variables. In turn, amplitudes for exchange

diagrams, which are distinct from local contact interactions, contain simple poles in

the Mandelstam variables. So one criterion for consistency in higher-spin theories may

be to demand that amplitudes of contact interactions be free from poles, for such

non-localities cannot be tamed by admissible field redefinitions. In fact, already in

higher-spin theory on flat space it has been observed that gauge invariance requires

the quartic contact amplitudes to generate poles in the Mandelstam variables [28]. I.e.

they are of the form

ϕ2 1

�−m2
ϕ2, (7.9)

and the corresponding class of field-redefinitions is unphysical, as they would change

the form of the on-shell cubic vertices.

On the other hand, it is well known that higher-spin theories in flat space are plagued

with their own issues, which are summarised by the number of no-go theorems stacked

up against their existence. So one might hope for a better picture when turning to

higher-spin theories on AdS. While the standard notion of an S-matrix in AdS is ill

defined,1 we can create and annihilate particles in AdS by changing the boundary

conditions at the time-like boundary. Via the AdS/CFT correspondence, the transition

amplitudes between such states are identified with the correlation functions of the dual

CFT, which suggests an interpretation of CFT correlators as AdS scattering amplitudes

1AdS space-time has a time-like conformal boundary, and thus does not admit in and out states;
particles in AdS live in a box and interact forever.
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[283–286]. In fact, it has been put forward that the Mellin representation of a CFT

correlator of Mack [216,287] may provide a definition for an S-matrix of the dual gravity

theory in AdS [146,147,150,216,287]:

Consider the example of a Euclidean four-point CFT correlator with identical scalar

fields,

〈O (y1)O (y2)O (y3)O (y4)〉 =
g (u, v)

(y2
12y

2
34)

∆
. (7.10)

The Mellin representation of (7.10) is given by inverting the Mellin transform

〈O (y1)O (y2)O (y3)O (y4)〉 =
N

(2πi)2

∫
dδijM (δij)

4∏
i<j

(
y2
ij

)−δij , (7.11)

with some normalisation N , and where the integration contour runs parallel to the

imaginary axis with Re(δij) > 0. By conformal symmetry, the Mellin variables δij are

constrained by

∑
j

δij = ∆, δii = 0, (7.12)

The object M (δij) defined by

M (δij) =M (δij)
4∏
i<j

Γ (δij) , (7.13)

is known as the Mellin amplitude, and has been proposed to be understood as the AdS

scattering amplitude [146]. To help motivate this identification, let us first solve the

conditions (7.12) in a suggestive way by introducing auxiliary “momenta” ki, satisfying

4∑
i=4

ki = 0, k2
i = −∆. (7.14)
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One can then define analogues of Mandelstam variables as

s = − (k1 + k2)2 = 2∆− 2δ12 (7.15)

t = − (k1 + k3)2 = 2∆− 2δ13 (7.16)

u = − (k1 + k4)2 = 2∆− 2δ14, (7.17)

satisfying the relation s+ t+ u = 4∆. Let us now consider the structure of the Mellin

amplitude in terms of these variables. As observed by Mack, in order to reproduce the

contribution of a conformal multiplet with quantum numbers [∆k, J ] in the conformal

partial wave expansion of (7.10) in, say, the (12)(34) channel, the Mellin representation

(7.13)

M (s, t, u) =M (s, t, u) Γ
(
∆− s

2

)2
Γ
(
∆− t

2

)2
Γ
(
∆− u

2

)2
, (7.18)

must contain simple poles at

s = ∆k − J + 2m, m = 0, 1, 2, 3, ... . (7.19)

The contributions from double-trace operators are thus taken care of by the Gamma

function factors in (7.18), leaving the Mellin amplitude M (s, t, u) to take care of the

single-trace contributions. Under the AdS/CFT correspondence, single-trace CFT op-

erators are identified with single-particle bulk states §2.1.1, and therefore the Mellin

amplitude of a four-point exchange Witten diagram contains the corresponding simple

poles in the Mandelstam variables, analogous to flat space S-matrix amplitudes for ex-

changes.2 Furthermore, local bulk contact interactions give rise to polynomial Mellin

amplitudes [146], in perfect analogy with flat space scattering amplitudes. More sub-

stance to this identification of the Mellin amplitude as an S-matrix for AdS was given

by the observation that the standard flat space scattering amplitude is recovered in the

2This was verified explicitly in: [146] for the scalar and graviton exchange.
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appropriate flat limit [146,288] (see also: [289]).

With the above analogy in place, let us explore its implications in the context of higher-

spin holography. According to the above prescription, we may interpret the Mellin

amplitude of the connected four-point correlator (4.35) in the free scalar O (N) vector

model

〈O (y1)O (y2)O (y3)O (y4)〉conn. =
4

N

1

(y2
12y

2
34)

∆

[
u

∆
2 +

(u
v

)∆
2

+ u
∆
2

(u
v

)∆
2

]
, (7.20)

as a scattering amplitude with external scalar legs in the type A minimal bosonic higher-

spin theory on AdS. While the Mellin amplitudes of correlators in strongly coupled

CFTs are well understood [290], there are some subtleties in applying the definition

(7.11) to free (or weakly coupled) CFTs. To see this more clearly, consider the latter

in terms of the “Mandelstam variables”,

〈O (y1)O (y2)O (y3)O (y4)〉 =
N

(y2
12y

2
34)

∆

∫
ds

2πi

∫
dt

2πi
u
s
2v∆− s+t

2 M (s, t) . (7.21)

The main issue is that a power function (which is characteristic of free CFT correlators

as a result of Wick contractions)

f (w) = wα, α ∈ R, (7.22)

does not have a well defined Mellin transform [291]

M (z) =

∫ ∞
0

dwwzf (w)
dw

w
. (7.23)

One possibility is to understand the Mellin transform in this case as a distribution [292]

M (z) = δ (z + α) . (7.24)
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With this interpretation, the Mellin transform of the vector model correlator (7.20) is

given by [3, 281]

M (s, t, u) =
4

N
δ
(
s
2
− ∆

2

)
δ
(
t
2
− ∆

2

)
δ
(
u
2
−∆

)
+ cycl. (7.25)

Owing to its distributional nature, there may be subtleties in applying the definition

(7.18) to obtain the corresponding Mellin amplitude (and hence scattering amplitude

in AdS higher-spin theory). The problem is that each value in the support of the LHS

in (7.18) corresponds to a pole of one of the Gamma functions on the RHS. Formally,

treating the Mellin amplitude as a distributional product one would conclude that it

must vanish identically.

Assuming the validity of the above observation, let us briefly explore its implications in

the context of the results obtained in this thesis. Recall (§5.4.2) that the single-trace

contributions from the bulk exchanges3

Aexch.
total (y1, y2; y3, y4) =

∑
J

Aexch.
J (y1, y2; y3, y4) (7.26)

=
∑
J

c2
OOJJW∆+J,J (y1, y2; y3, y4) + double-trace,

precisely account for all single-trace contributions in the conformal block expansion of

the dual CFT correlator (4.41),

G (y1, y2; y3, y4) =
∑
J

c2
OOJJW∆+J,J (y1, y2; y3, y4) + double-trace. (7.27)

The Witten diagram generated by the quartic vertex (7.2) therefore should not generate

single-trace contributions. Recalling that single-trace contributions are the only ones

3To avoid confusion with the Mandelstam variable “s”, in this section we use the label J to denote
spin.
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which can generate simple poles in the corresponding Mellin amplitude,4 one is led to

conclude that the scattering amplitude generated by the quartic vertex (7.2) does not

give rise to simple poles in the “Mandelstam variables”.

While it seems that there are no simple poles in the four-point contact amplitude in

AdS, we encounter the following issue. Should the re-summation (7.28) of the Mellin

transforms of the bulk exchanges be an analytic function, with simple poles corre-

sponding to the respective intermediate states (7.19), the above discussion may be in

contradiction with the form (7.25) of the dual CFT correlator’s Mellin transform. In

this case, the absence of these poles in the full amplitude (7.25) would then imply that

the bulk contact amplitude contains simple poles to compensate. On the other hand,

the appearance of Dirac delta functions in the Mellin transform (7.25) indicates possible

issues of convergence for the conformal partial wave expansion of the scalar four-point

function when summing over the spin. Therefore, one subtlety may lie in subtracting,

term-by-term, a divergent sum over bulk exchanges from a divergent series. In this del-

icate scenario, to study the Mellin amplitude generated by the quartic vertex (7.2), the

most rigorous way to proceed may be to instead re-sum the bulk exchanges (sum over

spins) and then subtract them from the re-summed CFT amplitude (7.25). Further clar-

ity may also be afforded by expressing the quartic vertex (7.2) in a non-redundant basis.

As a final comment, let us note that potential divergent behaviour of higher-spin ex-

changes discussed above has been observed in the case of conformal higher-spin gauge

4For clarity, the Mellin transform of the sum over exchanges (7.26) takes the form,

M exch.
total (s, t) = Γ

(
∆− s

2

)2
Γ
(
∆− t

2

)2
Γ
(
s+t
2 −∆

)2 ∞∑
J=0

Mexch.
J (s, t) , (7.28)

Mexch.
J (s, t) =

∞∑
m=0

gJ
QJ,m (t)

s−∆− 2m
+ PolJ (s, t) (7.29)

where QJ,m (t) is a kinematical polynomial [216], QJ,m (t) = tJ +O
(
tJ−1

)
, and PolJ (s, t) is a possible

degree J − 1 polynomial in s and t.
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theories in flat space [293]. There, the regularised sum over the spin-J exchanges gives

Mtotal exch. (s, t, u) =
1

(−s)
d−4

2

∞∑
J=0

(J + d−3
2

)C
( d−3

2 )
J

(
t− u
t+ u

)
(7.30)

∼ 1

(−s)
d−4

2

(−1)d−4

(d− 4)!
δ[d−4]

(
− 2u

t+ u

)
, (7.31)

where δ[d−4] (z) denotes the (d− 4)-th derivative of the Dirac delta function, and we

recall that C
( d−3

2 )
J (z) is a Gegenbauer polynomial.
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Appendix A

Ambient formalism

A.1 Ambient Space

Figure A.1: Euclidean AdS and its boundary in ambient space. This figure displays
the AdS surface X2 = −R2 = −1 and the identification of a (green) boundary point
with a (green) light ray of the light cone P 2 = 0, which intersects the Poincaré section
(A.12) on a (red) point.

The basic idea behind the ambient formalism is to regard AdS space as a one-sheeted
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hyperboloid Hd+1 with curvature radius R

Hd+1 : X2 = −R2, X0 > 0, (A.1)

embedded into an ambient (d+ 2)-dimensional flat space-time, parameterised by Carte-

sian co-ordinates XA with A = 0, 1, ..., d+ 1.

To be more precise, denoting the intrinsic coordinates on Hd+1 by xµ, we are considering

the isometric smooth embedding

i : Hd+1 ↪−→ Rd+2 : xµ 7−→ XA (xµ) . (A.2)

The ambient space itself is endowed with a flat metric ηAB, which defines the quadratic

form X2 = −R2. The choice of signature dictates whether one describes Euclidean or

Lorentzian AdS:

Lorentzian signature: ηAB = (−+ + ...+) → Euclidean AdS (A.3)

Conformal signature: ηAB = (−+ ... +−) → Lorentzian AdS, (A.4)

where in both cases we adopt the “mostly plus” convention.

Towards the boundary of AdS, the hyperboloid Hd+1 asymptotes to the light cone

X2 = 0. The boundary is thus identified with the ambient projective cone of light rays,

which can be identified by setting

PA ≡ εXA, (A.5)

in the limit ε→ 0. Since X2 is fixed, these ambient co-ordinates satisfy

P 2 = 0, P ∼ λP, λ 6= 0, (A.6)
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where the equivalence relation expresses the fact that we are dealing with rays. This

quotienting of the light cone allows us to describe the d-dimensional boundary. We can

identify this projective null cone with the d-dimensional space by “gauge-fixing” this

rescaling. We give an example of this below.

A particular virtue of the ambient formalism is that the mutual SO (d, 2) (or SO (d+ 1, 1)

in the Euclidean case) symmetry of AdS and its conformal boundary is made manifest,

by which we mean that the symmetry transformations act linearly. Simply put, the

ambient formalism makes the kinematics in AdS or its conformal boundary as simple

as Lorentz-invariant kinematics. For co-ordinates, we have

X ′A = eiω
CDJCDXA, iJCD = XC

∂

∂XD

−XD
∂

∂XC

, (A.7)

with SO (d, 2) generators JCD, which satisfy the commutation relations (3.8).

Example: Euclidean AdS in Poincaré co-ordinates

A simple example is given by Euclidean AdS in Poincaré co-ordinates xµ = (z, yi),

i = 1, ..., d. The points on AdS are parameterised by

X0 =
z2 + y2 +R2

2z
(A.8)

Xd+1 =
R2 − z2 − y2

2z
(A.9)

X i =
R

z
yi (A.10)

Pulling the ambient metric ηAB with signature (A.3) back onto the AdS manifold one

recovers

ds2 =

(
∂XA

∂xµ
∂XB

∂xν
ηAB

)
dxµdxν =

R2

z2

(
dz2 + δijdy

idyj
)
. (A.11)
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With the gauge choice P+ = P 0 + P d+1 = 1, the boundary can be parameterised by

P 0 =
1

2

(
1 + y2

)
, P d+1 =

1

2

(
1− y2

)
, P i = yi. (A.12)

This corresponds to a Poincaré section of the light cone, and is illustrated in figure A.1

for the Euclidean conformal group SO (d+ 1, 1). Conformal transformations relate this

section to others with dP+ = 0.

A.2 Fields in the ambient formalism

To describe fields in the bulk or on the boundary of AdS in this formalism, they need

to be identified with the appropriate representatives in the ambient space. Uplifting to

the higher-dimensional ambient space introduces extra degrees of freedom, and thus the

representatives of bulk and boundary fields must be constrained to keep the number

of degrees of freedom constant. In the following subsections we detail the ambient

description of scalar and tensorial bulk and boundary fields. For definiteness, we work

with the Euclidean AdS isometry group / conformal group SO (d+ 1, 1).

A.2.1 Bulk fields

A smooth rank-r covariant tensor field tµ1...µr (x) on AdSd+1 is represented in ambi-

ent space Rd+1,1 by a SO (d+ 1, 1)-tensor TA1...Ar (X), whose pullback onto the AdS

manifold satisfies

i∗ : TA1...Ar (X) 7−→ tµ1...µr (x) =
∂XA1 (x)

∂xµ1
...
∂XAr (x)

∂xµr
TA1...Ar (X (x)) . (A.13)

They not represented uniquely: The pullback is surjective, so every such tensor on the

AdS manifold has an ambient representative, but it is not injective. Indeed, since for

Hd+1

X2 = −R2 =⇒ ∂X

∂xµ
·X

∣∣∣∣
Hd+1

= 0, (A.14)
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the kernel of the pullback (A.13) contains “pure gauge” tensors with components nor-

mal to the AdS manifold, which have no influence in the theory defined on AdS.

To obtain a unique representation of AdS tensors in ambient space, the extra compo-

nents need to be eliminated [134]. This is achieved by demanding:

• Tangentiality to surfaces of constant radial co-ordinate ρ =
√
−X2,

XAiTA1...Ai...Ar

∣∣∣∣
ρ=const.

= 0. (A.15)

Explicitly, we can apply the projection operator

PBA = δBA −
XAX

B

X2
, (A.16)

which acts on ambient tensors as

(PT )A1...Ar
:= PB1

A1
...PBrAr TB1...Br , XAi (PT )A1...Ai...Ar

= 0. (A.17)

• Homogeneity in XA. I.e. prescribed extension along the extra radial direction

ρ

TA1...Ar (λX) = λ−µ TA1...Ar (X) , (A.18)

where µ is fixed by the representation of SO (d+ 1, 1).

Example I: AdS metric

A straightforward application of the above is to the intrinsic AdS metric

gµν =
∂XA

∂xµ
∂XB

∂xν
ηAB. (A.19)
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The induced AdS metric is given by

GAB = PCAPDB ηCD = ηAB +
XAXB

R2
,

confirming its role as a projector.

Example II: Covariant derivative

Following the above prescription, in ambient representative of the covariant derivative

is

∇A = PBA ∂B, (A.20)

and its action is given by

∇ = P ◦ ∂ ◦ P . (A.21)

This ensures that the result is tangent to the AdS manifold, and crucially that the

partial derivative is acting on an object which already represents an AdS tensor.

For example,

∇BTA1...Ar = PBCPA1

C1 ...PArCr
∂

∂XC
(PT )C1...Cr

(X) . (A.22)

Example III: Symmetric and traceless spin-s fields

An important example for this work is the ambient description of symmetric and trace-

less spin-s fields in AdSd+1. Such fields satisfy the Fierz system (generalised to AdS)

(
−∇µ∇µ +m2

s

)
ϕµ1...µs (x) = 0, ∇µ1ϕµ1...µs (x) = 0, ϕµ1...µs−1

µs−1 (x) = 0,

(A.23)

where ∇µ is the intrinsic covariant derivative on AdS and m2
sR

2 = ∆ (∆− d)− s, with

[∆, s] labelling representation of SO (d, 2): ∆ is the lowest energy eigenvalue, and s the
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spin.

The ambient description ϕA1...As (X) of the above intrinsic system, is naturally given

by

(
−∇A∇A +m2

s

)
ϕA1...As (X) = 0, ∇A1ϕA1...As (X) = 0, ϕA1...As−1

As−1 (X) = 0,

(A.24)

where ∇A is the ambient representative of the covariant derivative. These are supple-

mented by the tangentiality and homogeneity conditions

XA1ϕA1...As (X) = 0, ϕA1...As (λX) = λ−∆ϕA1...As (X) , (A.25)

with the requirement that ϕA1...As carries the same representation of SO (d, 2) fixing

the degree of homogeneity to be ∆.

A nice observation is that the above is equivalent to the flat ambient Fierz system

∂2ϕA1...As (X) = 0, ∂A1ϕA1...As (X) = 0, ηA1A2ϕA1...As (X) = 0. (A.26)

when supplemented with the homogeneity and tangentiality conditions (A.25), and

employing the definition (A.20) of the ambient representative of the covariant derivative.

A.2.2 Boundary fields

In this thesis we consider only symmetric and traceless primary fields in CFT, though

the ambient description can be extended to other representations of SO (d).

A spin-r primary field fi1...ir (y) of dimension ∆ is represented in the ambient formalism

by a SO (d+ 1, 1)-tensor FA1...Ar (P ) which lives on the light cone P 2 = 0. This ambient
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tensor is also symmetric and traceless, as well as homogeneous of degree −∆

FA1...Ar (λP ) = λ−∆FA1...Ar (P ) , λ > 0. (A.27)

To be tangent to the light cone, FA1...Ar (P ) must satisfy

PA1FA1...Ar = 0. (A.28)

We can define fi1...ir (y) is related to FA1...Ar (P ) by a projection onto the Euclidean

section (A.12)1

fi1...ir (y) =
∂PA1 (y)

∂yi1
...
∂PAr (y)

∂yir
FA1...Ar (P (y)) , (A.30)

whose kernel contains arbitrary tensors proportional to PA.

To check that the number of degrees of freedom is unchanged, note that the transver-

sality condition (A.28) eliminates one of the two extra components per ambient index.

Since we are on the light cone P 2 = 0, unlike for the bulk case considered in the previ-

ous section, the transversality condition (A.28) is not sufficient to fix FA1...Ar uniquely.

This “gauge invariance” eliminates the residual extra degrees of freedom.

A.2.3 Operations with ambient tensors

Tensor operations such as contractions can be greatly simplified by encoding tensors

in generating functions. In d-dimensional intrinsic space, we can encode symmetric

1Note that this relation preserves tracelessness: To compute the trace of fi1...ir (y), we need the
contraction

δij
∂PA

∂yi
∂PB

∂yj
= ηAB + PAQB + PBQA, where QA = (1, 0,−1). (A.29)

This gives vanishing trace of fi1...ir owing to the tracelessness and transversality (A.28) of FA1...Ar .
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tensors in polynomials

tµ1...µr (x) −→ t (x, u) =
1

r!
tµ1...µr (x)uµ1 ...uµr , (A.31)

where we have introduced the constant d-dimensional auxiliary vector uµ. Furthermore,

traceless tensors can be encoded as

tµ1...µr (x) −→ t (x,w) =
1

r!
tµ1...µr (x)wµ1 ...wµr , (A.32)

where now the auxiliary vector is null, w2 = 0.

In terms of generating functions, tensor operations are then translated into an operator

calculus, which simplifies manipulations significantly. For example, the contraction

between two symmetric rank-r tensors is implemented via

tµ1...µr (x) sµ1...µr (x) = r! t (x, ∂u) s (x, u)
∣∣
u=0

= r! s (x, ∂u) t (x, u)
∣∣
u=0

. (A.33)

The covariant derivative also gets modified when acting on functions of the intrinsic

auxiliary variables,

∇µ → ∇µ + ωabµ ua
∂
∂ub

, (A.34)

with ωabµ the spin-connection. With this, the following further operations can be repre-

sented:

divergence: ∇ · ∂u, symmetrised gradient: u · ∇, trace: ∂u · ∂u, (A.35)

The symmetric metric gµν is denoted simply by u2, and thus terms proportional to u2

are pure trace.

For symmetric and traceless tensors, one instead uses the Thomas derivative [294],
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which we denote by ∂̂w.2 This takes into account w2 = 0,

tµ1...µr (x) sµ1...µr (x) =
r!(

d
2
− 1
)
r

t (x, ∂w) s (x,w)
∣∣
w=0

=
r!(

d
2
− 1
)
r

s (x, ∂w) t (x,w)
∣∣
w=0

,

(A.36)

where

∂̂wµ =

(
d
2
− 1 + w · ∂

∂w

)
∂

∂wµ
− 1

2
wµ

∂2

∂w · ∂w
. (A.37)

This formalism can be extended to ambient representatives of bulk and boundary tensor

fields discussed in the previous section, which we outline in the following.

Ambient AdS tensors

The ambient counterpart of the intrinsic generating function (A.31) for symmetric rank-

r tensors is,

TA1...Ar (X) −→ T (X,U) =
1

r!
TA1...Ar (X)UA1 ...UAr , X · U = 0, (A.38)

where TA1...Ar is the ambient representative of tµ1...µr . In this case, the auxiliary vector

UA is constrained to ensure that we are working modulo components which drop out

after projection onto the tangent space of Hd+1.

Contraction between symmetric tensors slightly modified in contrast to the intrinsic

case. The generalisation of (A.33) being

TA1...Ar (X)SA1...Ar (X) = r!T (X,DU)S (X,U)
∣∣∣
U=0

= r!S (X,DU)T (X,U)
∣∣∣
U=0

,

(A.39)

where the derivative DU is given by,

DA
U = PBA

∂

∂UB
=

∂

∂UA
− XA

X2

(
X · ∂

∂U

)
, (A.40)

2This is also know in the literature as the Todorov differential [295].
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and accommodates for the condition X · U = 0.

The ambient representative of the covariant derivative in the generating formalism takes

the form

∇A = ∂AX −
1

X2

(
XAX · ∂X + UAX · ∂U − U ·X∂AU

)
, (A.41)

which satisfies the useful operator algebra

[X · ∂U ,∇A] = 0 , [∂U · ∂U ,∇A] = 0 , [∇A, X
2] = 0 , X · ∇ = 0 , (A.42)

together with

[DA
U ,∇B] = XA

X2 D
B
U . (A.43)

For symmetric and traceless tensors, the ambient counterpart of the intrinsic generating

function (A.32) is

TA1...Ar (X) −→ T (X,W ) =
1

r!
TA1...Ar (X)WA1 ...WAr , X ·W = W 2 = 0. (A.44)

Like for the symmetric ambient tensors above, the Thomas derivative (A.37) that imple-

ments contractions between symmetric traceless tensors is slightly modified, to account

for the transversality condition X ·W = 0. We denote it by D̂W , and it is given explicitly

by

D̂WA =

(
d+1

2
− 1 +W · ∂

∂W

)
PBA

∂

∂WB
− 1

2
WA (P ◦ P)CD

∂

∂WC

∂

∂WD
(A.45)

=
d− 1

2

(
∂

∂WA
− XA

X2

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA

− XA

X2

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2
WA

(
∂2

∂W · ∂W
− 1

X2

(
X · ∂

∂W

)(
X · ∂

∂W

))
.
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The ambient generalisation of (A.36) is then

TA1...Ar (X)SA1...Ar (X) =
r!(

d
2
− 1

2

)
r

T
(
X, D̂W

)
S (X,W )

∣∣∣
W=0

(A.46)

=
r!(

d
2
− 1

2

)
r

S
(
X, D̂W

)
T (X,W )

∣∣∣
W=0

.

When working modulo traces, we have the operations

divergence: ∇ · D̂W , symmetrised gradient: W · ∇, Laplacian: ∇2, (A.47)

and W · ∂W , which returns the spin of a tensor. These satisfy the operator algebra

[
∇ · D̂W ,W · ∇

]
(A.48)

=
(
d
2
− 1

2
+W · ∂W

)
∇2 −

(
(W · ∂W )2 + 3

(
d
2
− 1

2

)
W · ∂W +

(
d
2
− 1

2

)2
)
W · ∂W ,[

∇2,W · ∇
]

= −2
(
d
2
− 1 +W · ∂W

)
W · ∇. (A.49)

The following commutators will come in use,

[
∇2, (W · ∇)n

]
= −n (d− 1 + 2W · ∂W − n) (W · ∇)n , (A.50)

and

[
∇ · D̂W , (W · ∇)

n
]

(A.51)

=
n

2
(W · ∇)

n−1
(d+ n+ 2W · ∂W − 2)

(
1− n− (n+W · ∂W − 1) (d+ n+W · ∂W − 2) +∇2

)
.
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Ambient boundary tensors

The ambient representative (A.27) of a symmetric traceless spin-r primary field fi1...ir

can be encoded in the generating polynomial

FA1...Ar (P ) −→ F (P,Z) =
1

r!
FA1...Ar (P )ZA1 ...ZAr , Z2 = 0. (A.52)

Tangentiality to the light cone,

(
P · ∂

∂Z

)
F (P,Z) = 0, (A.53)

can be enforced by requiring F (P,Z + αP ) = F (P,Z) for any α. The “gauge freedom”

is represented by the orthogonality condition Z · P = 0.

Contractions between ambient representatives of primary fields can be implemented via

the Thomas derivative (A.37), acting in the (d+ 2)-dimensional ambient space

∂̂AZ =

(
d
2
− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA ∂2

∂Z · ∂Z
. (A.54)
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Appendix B

Appendix of integrals

B.1 Bulk integrals

In using the Schwinger parameterised form (B.2) of boundary-to-bulk propagators in

the ambient formalism, a key integral often encountered is of the form

∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)∫
AdS

dX exp

(
2

n∑
i=1

ti Pi ·X

)
(B.1)

= πd/2Γ

(
−d

2
+

1

2

n∑
i=1

∆i

)∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)
exp

(
−
∑
i<k

titkPik

)
.

In this appendix we explain its application to tree-level contact diagrams, and give a

proof. We also discuss its utility in establishing Mellin amplitudes of Witten diagrams.

Application: Tree-level contact diagrams

A straightforward application of the above integral is in evaluating tree-level Witten

diagrams. Recall that the Schwinger parameterised form of a scalar boundary-to-bulk

propagator of dimension ∆ is

K∆,0 (X,P ) =
C∆,0

(−2X · P )∆
=

C∆,0

Γ (∆)

∫ ∞
0

dt

t
t∆ exp (2tP ·X) . (B.2)
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Considering for example the tree-level n-point contact diagram

Acont (P1, ..., Pn) =

∫
AdS

dXK∆1,0 (X,P1) ... K∆n,0 (X,Pn) (B.3)

=

(
n∏
i=1

C∆i,0

)∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)∫
AdS

dX exp

(
2

n∑
i=1

ti Pi ·X

)
,

we see that the integral (B.1) naturally arises and can be employed to evaluate the

amplitude. This is particularly straightforward for three-point diagrams, for which no

integration is required. This will be shown in the subsequent, after proving the formula

(B.1).

Proof of (B.1):

To prove (B.1), we first evaluate the AdS integral. Defining T =
n∑
i=1

ti Pi, by Lorentz

invariance we can make the simple choice T = |T | (1, 1, 0), where we recall that we

parameterise AdSd+1 in the (d+ 2)-dimensional ambient space by

X =
(
X+, X−, Xµ

)
=

1

z

(
1, z2 + y2, yi

)
. (B.4)

In this way we obtain

∫
AdS

dX exp

(
2

n∑
i=1

ti Pi ·X

)
=

∫ +∞

0

dz

z
z−d

∫
ddx e−(1+z2+y2)|T |/z (B.5)

= πd/2
∫ +∞

0

dz

z
z−d/2 e−z+T

2/z, (B.6)

where in the second line we evaluated the Gaussian integral over x. Returning to the

RHS of the full expression (B.1), and rescaling ti → ti/
√
z,

πd/2
∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)∫ +∞

0

dz

z
z−d/2 e−z+T

2/z (B.7)

= πd/2
∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)
eT

2

∫ +∞

0

dz

z
z
− d

2
+ 1

2

n∑
i=1

∆i

e−z
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= πd/2Γ

(
−d

2
+

1

2

n∑
i=1

∆i

)∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)
eT

2

,

where in the second equality we simply employ the integral representation of the Gamma

function. Noting that T 2 = −
∑

i<k Pik, the above establishes (B.1).

The Symanzik star formula

To establish the Mellin amplitude of Witten diagrams, it is illuminating to employ the

Symanzik star formula [296]

∫ +∞

0

n∏
i=1

(
dti
ti
t∆i

)
exp

(
−
∑
i<k

titkPik

)
=

πd/2/2

(2πi)
1
2
n(n−3)

∫
dδij

∏
1≤i≤j≤n

Γ (δij) (Pij)
−δij ,

(B.8)

which allows to massage Witten diagrams in the form of a Mellin transform [146,216].

The integration contour runs parallel to the imaginary axis with Re δij > 0, with the

integration variables constrained by

n∑
j 6=i

δij = ∆i, (B.9)

so that the integrand is conformally covariant with scaling dimension ∆i at the point

Pi. This gives n (n− 3) /2 integration variables.

In particular, this implies that the integration variables are completely fixed for three-

point integrals, allowing the straightforward evaluation of three-point Witten diagrams.
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Appendix C

Harmonic functions in AdS

In this appendix we give an overview of the harmonic decomposition of tensorial func-

tions of geodesic distance in AdSd+1.

Consider bi-tensors tµ1...µr,ν1...νr (x1, x2), which depend only on the geodesic distance

between x1, x2 ∈ AdSd+1, and are square integrable

∫
AdSd+1

|t (x1, x2)|2 < ∞. (C.1)

This includes bulk-to-bulk propagators Π∆,r (x1, x2).

Such tensors can be decomposed in a basis of regular eigenfunctions of the AdS Lapla-

cian,

(
�AdS +

(
d

2
+ iν

)(
d

2
− iν

)
+ `

)
Ων,` (x1, x2) ≡ 0, ν ∈ R, ` ∈ N (C.2)

∇ · Ων,` = 0, (C.3)

which are symmetric and traceless spin-` irreducible representations of SO (d+ 1, 1),

with ν labelling the energy.
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Crucially, they satisfy orthogonality and (traceless) completeness relations [152]

∫
AdS

dd+1x′ Ων̄,` (x1;x′) · Ων,` (x′;x2) =
1

2
[δ (ν + ν̄) + δ (ν − ν̄)] Ων,` (x1;x2) ,

(C.4)

s∑
`=0

∫ ∞
−∞

dν cr,` (ν) (w1 · ∇1)` (w2 · ∇2)` Ων,r−` (x1, w1;x2, w2) = (w1 · w2)r δd+1 (x1, x2) ,

(C.5)

where auxiliary variables w2
i = 0 enforce tracelessness, and

cr,` (ν) =
2` (r − `+ 1)`

(
d
2

+ r − `− 1
2

)
`

`! (d+ 2r − 2`− 1)`
(
d
2

+ r − `+ iν
)
`

(
d
2

+ r − `− iν
)
`

. (C.6)

The set of tensors

{
(w1 · ∇1)` (w2 · ∇2)` Ων,r−` (x1, w1;x2, w2) | w2

i = 0, ν ∈ R, ` = 0, 1, .., r
}
, (C.7)

thus form a basis for symmetric traceless bi-tensors in AdS,

t (x1, w1;x2, w2) =
r∑
`=0

∫ ∞
−∞

fr,` (ν) (w1 · ∇1)` (w2 · ∇2)` Ων,r−` (x1, w1;x2, w2) , (C.8)

for some fr,` (ν) = fr,` (−ν).

As corollary, any symmetric bi-tensor can be expressed in the basis (C.7) supplemented

with products of the metric; any symmetric bi-tensor t (x1, u1;x2, u2) admits the trace

decomposition of the schematic form,1

t (x1, u1;x2, u2) (C.9)

∼ t{0} (x1, u1;x2, u2) + u2
1u

2
2 t
{1} (x1, u1;x2, u2) + ...+

(
u2

1u
2
2

)[ r2 ]
t{[

r
2 ]} (x1, u1;x2, u2) ,

1I.e. omitting for concision the relative coefficients between the terms.
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where here t{n} denotes the traceless part of the n-th trace of t. Each of the t{n} can

then be decomposed in the basis (C.7).
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Appendix D

Double trace operators

In this appendix we construct primary operators bi-linear in two scalar primary oper-

ators O1 and O2 of scaling dimensions ∆1 and ∆2. These have the schematic form

[O1O2]n,s = O1∂µ(s)�
nO2 + . . . , (D.1)

where the ellipsis denote terms which ensure that [O1O2]n,s is primary. The double

trace operator [O1O2]n,s has spin s, and in a free theory (or otherwise at leading order

in the 1/N expansion) has scaling dimension ∆n,s = ∆1 + ∆2 + 2n+ s.

Our goal is to specify implicit terms in (D.1). To this end, we make the most general

ansatz1

[O1O2]n,s =
∑
s1,b1,b2

an,s(s1, s2; b1, b2, b12)∂µ(s1)�
b1∂ν(b12)O1∂µ(s2)�

b2∂ν(b12)O2 − traces,

(D.2)

and specify an,s from the requirement (3.20) that [O1O2]n,s is primary. In other words,

we solve for the coefficients by imposing the condition

Kµ[O1O2]n,s = 0. (D.3)

1There are three independent summuations in the above sum, since s = s1 +s2 and n = b1 +b2 +b12.
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The action of the special conformal generator

For ease of computation, we contract the free indices with the auxiliary traceless sym-

metric tensors zµ to ensure that [O1O2]n,s is traceless and symmetric. A typical term

in the sum (D.2) then takes the form

Tn,s(s1, s2; b1, b2, b12) = zµ(s1)ν(s2)(ηµν)b1(ηµν)b12(ηνν)b2Pµ(s1+2b1+b12)O1Pν(s2+2b2+b12)O2,

(D.4)

where we employ the notation uµ(s) = uµ1 ...uµs .

Using the conformal algebra (3.6), one can show that

KνPµ(n)O1 = 2n(∆1 + n− 1)ηµνPµ(n−1)O1 − n(n− 1)ηµµPνPµ(n−3)O1, (D.5)

which use to determine the action of Kµ on each term in the ansatz (D.2). We find

KνTn,s(s1, s2; b1, b2, b12) = 2[∆1 + s1 + 2b1 + b12 − 1]s1Cz(s1 − 1, s2; b1, b2, b12)

+ 2b1[2∆1 + 2b1 − d]C1(s1 + 1, s2; b1 − 1, b2, b12)

− b12(b12 − 1)C1(s1 + 1, s2; b1, b2 + 1, b12 − 2)

− 2s1b12C1(s1, s2 + 1; b1, b2, b12 − 1)

+ 2[∆1 + s1 + 2b1 + b12 − 1]b12C2(s1, s2 + 1; b1, b2, b12 − 1)

+ 2[∆2 + s2 + 2b2 + b12 − 1]s2Cz(s1, s2 − 1; b1, b2, b12)

+ 2b2[2∆2 + 2b2 − d]C2(s1, s2 + 1; b1, b2 − 1, b12)

− b12(b12 − 1)C2(s1, s2 + 1; b1 + 1, b2, b12 − 2)

− 2s2b12C2(s1 + 1, s2; b1, b2, b12 − 1)

+ 2[∆2 + s2 + 2b2 + b12 − 1]b12C1(s1 + 1, s2; b1, b2, b12 − 1),

(D.6)
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where

Cz(s1 − 1, s2; b1, b2, b12)

= V νµ(s1−1)σ(s2)(ηµµ)b1(ηµσ)b2(ησσ)b2Pµ(s1+2b1+b12−1)O1Pσ(s2+2b2+b12)O2,

C1(s1 + 1, s2; b1 − 1, b2, b12)

= zµ(s1)σ(s2)(ηµµ)b1−1(ηµσ)b12(ησσ)b2PνPµ(s1+2b1+b12−2)O1Pσ(s2+2b2+b12)O2,

C2(s1, s2 + 1; b1, b2, b12 − 1)

= zµ(s1)σ(s2)(ηµµ)b1(ηµσ)b12−1(ησσ)b2Pµ(s1+2b1+b12−1)O1PνPσ(s2+2b2+b12−1)O2.

(D.7)

Imposing the primary condition

Having understood how the special conformal generator Kν acts on each term of the

ansatz (D.2), we act with Kν on the entire expression. Using (D.6), the condition

Kν [O1O2]n,s = 0, (D.8)

can be expressed in terms of the three independent structures Cz, C1 and C2 defined

in (D.7). By setting the prefactors of each of these structures to zero we obtain three

conditions on an,s.

The equation corresponding to Cz reads

an,s(s1, s2; b1, b2, b12)2[∆1 + s1 + 2b1 + b12 − 1]s1

+ an,s(s1 − 1, s2 + 1; b1, b2, b12)2[∆2 + s2 + 2b2 + b12](s2 + 1) = 0. (D.9)

It can be used to fix the dependence of an,s on s1 for fixed b1 and b2

an,s(s1, s2; b1, b2, b12) = (−1)s2
s!

s2!s1!

(∆1 + 2b1 + b12 + s1)s2
(∆2 + 2b2 + b12)s2

an,s(s, 0; b1, b2, b12). (D.10)
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A second equation, which sets the prefactor of C1 to zero is

an,s(s1, s2; b1, b2, b12)2b1(2∆1 + 2b1 − d)

− an,s(s1, s2; b1 − 1, b2 − 1, b12 + 2)(b12 + 2)(b12 + 1)

− an,s(s1 + 1, s2 − 1; b1 − 1, b2, b12 + 1)2(s1 + 1)(b12 + 1)

+ an,s(s1, s2; b1 − 1, b2, b12 + 1)2(∆2 + s2 + 2b2 + b12)(b12 + 1) = 0. (D.11)

The third term contains an,s(s1 + 1, s2 − 1; b1 − 1, b2, b12 + 1), which can be expressed

in terms of an,s(s1, s2; b1 − 1, b2, b12 + 1) by (D.9). This results in

an,s(s1, s2; b1, b2, b12)2b1(2∆1 + 2b1 − d)

− an,s(s1, s2; b1 − 1, b2 − 1, b12 + 2)(b12 + 2)(b12 + 1)

+ an,s(s1, s2; b1 − 1, b2, b12 + 1)2(b12 + 1)(∆2 + s2 + 2b2 + b12)

× ∆1 + s+ 2b1 + b12 − 1

∆1 + s1 + 2b1 + b12 − 1
= 0, (D.12)

which relates an,s’s for the same values of arguments s1 and s2 and different values of

b1, b2 and b12.

In a similar way, the equation corresponding to C2 reads

an,s(s1, s2; b1, b2, b12)2b2(2∆2 + 2b2 − d)

− an,s(s1, s2; b1 − 1, b2 − 1, b12 + 2)(b12 + 2)(b12 + 1)

+ an,s(s1, s2; b1, b2 − 1, b12 + 1)2(b12 + 1)(∆1 + s1 + 2b1 + b12)

× ∆2 + s+ 2b2 + b12 − 1

∆2 + s2 + 2b2 + b12 − 1
= 0. (D.13)

Together with (D.12), this defines b-dependence of an,s for fixed s1 and s2.
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Dependence on contracted derivatives

In this section we solve the recurrence equations (D.12), (D.13) subject to the boundary

condition

an,s(s1, s2; b1, b2, b12) = 0, for b1 < 0 or b2 < 0 or b1 + b2 > n. (D.14)

More precisely, we express the unknown coefficients in terms of an,s(s1, s2; 0, 0, n). For

brevity, in the following we will keep only the arguments b1 and b2 of an,s explicit.

First, we consider (D.12) for b2 = 0. In this case the recursion relation simplifies,

since the boundary condition causes the second term to drop out. We can then express

a(b1, 0) with arbitrary b1 in terms of a(0, 0)

a(b1, 0) = (−1)b1
n!

b1!b2!

(∆2 + s2 + n− b1)b1(∆1 + s+ n)b1
2b1(∆1 + 1− h)b1(∆1 + s1 + n)b1

a(0, 0). (D.15)

To establish the b2-dependence, we use (D.13): First, for any b1 we express a(b1, 1) in

terms of a(b1, 0) and a(b1 − 1, 0), which are known. We then solve for a(b1, 2) in terms

of a(b1, 1) and a(b1 − 1, 1), which were determined in the previous step. This process

can be continued to express a(b1, b2) for any b2 in terms of a(0, 0). We find

a(b1, b2) =

(
−1

2

)b1+b2 n!

b1!b2!b12!

× (∆1 + s+ n)b1(∆2 + s+ n− b1)b2
(∆1 + 1− h)b1(∆2 + 1− h)b2(∆1 + s1 + n)b1−b2(∆2 + s2 + n)b2−b1

×
b2∑
k=0

b2!

k!(b2 − k)!

(b1 − k + 1)k(∆1 + b1 − h− k + 1)k
(∆2 + s+ n− b1)k(∆1 + s+ n+ b1 − k)k

a(0, 0). (D.16)

It can be checked that (D.16) satisfies (D.12) and (D.13).
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Combining the s- and b-dependences, we obtain the final result

an,s(s1, s2; b1, b2, b12) =
(−1)s2+b1+b2

2b1+b2

s!

s1!s2!

(∆1 + s1 + 2b1 + b12)s2
(∆2 + 2b2 + b12)s2

× n!

b1!b2!b12!

(∆1 + s+ n)b1(∆2 + s+ n− b1)b2
(∆1 + 1− h)b1(∆2 + 1− h)b2(∆1 + s1 + n)b1−b2(∆2 + s2 + n)b2−b1

×
b2∑
k=0

b2!

k!(b2 − k)!

(b1 − k + 1)k(∆1 + b1 − h− k + 1)k
(∆2 + s+ n− b1)k(∆1 + s+ n+ b1 − k)k

an,s(s, 0; 0, 0, n) ,

(D.17)

where an,s(s, 0; 0, 0, n) is an arbitrary factor.



Appendix E

Trace structure of spinning

propagators

With the freedom to remove gradients within the propagators (5.48) and (5.59) already

derived, it should be possible to bring them into the form

Πs =

[s/2]∑
k=0

∫ ∞
−∞

dν gs,k (ν)
(
u2

1

)k (
u2

2

)k
Ων,s−2k, (E.1)

by making gauge transformations. This is the goal of this section. We refer to this

as the “manifest trace gauge”, because here the propagator is presented as a sum of

terms, each being essentially a product of certain number of background metrics and a

harmonic function Ω, which is traceless and transverse.

To reach the form (E.1), naively one might expect that, for example in (5.59), one can

gauge away all the terms except the one for which ` = 0. However, closer inspection

reveals that this is not the case: According to our conventions, contractions with W

implicitly make a projection onto the traceless part, so a generic term in (5.59) is of

the form {
(u1 · ∇1)` (u2 · ∇2)` Ων,s−`(u1, x1, u2, x2)

}
. (E.2)
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For a general rank-s tensor Ts, the explicit action of the operator that implements the

traceless projection {•}, is

{Ts(x, u)} =

[s/2]∑
j=0

(−1)j

4jj!(d
2

+ s− 3/2)j
(u2)j(∂u · ∂u)jTs(x, u), (E.3)

which makes various contractions of its argument Ts. It is then clear that for non-zero

` there are terms in (E.2) which cannot be gauged away. For example, terms in which

all ∇’s are contracted because then no gradients will be present. In fact, the story is

even more complicated because for other terms in the projection the commutators of

derivatives that appear yield extra lower derivative terms, some of which are also not

pure gauge. To summarise, eliminating pure gradient terms is non-trivial, and our aim

in the following is to compute (E.2) explicitly modulo such gradient terms. We do this

by studying the details of the contractions under (E.3).

It is straightforward to see that when ` is odd, (E.2) can be gauged away since it is a

gradient. Let us then consider examples for when ` is even:

• ` = 2

Using (E.3), the explicit form of the traceless projection for ` = 2 is

{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

}
(E.4)

=

(
1− u2

1(∂u1 · ∂u1)

2(d+ 2s− 3)

)(
1− u2

2(∂u2 · ∂u2)

2(d+ 2s− 3)

)
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2).

Dropping gradient terms, it is straightforward to compute that

(∂u1 · ∂u1)(u1 · ∇1)2Ων,n(u1, u2) ∼ 2 (�1 − n(d+ n− 1)) Ων,n(u1, u2), (E.5)

where we used the fact that Ω traceless and divergence-less.1 Therefore the only

1The dropping of gradient terms is denoted by “ ∼ ”. Note that in appendix F.2 we also use this
notation to instead indicate that equalities hold modulo gradients and traces.
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terms that are not pure gradient in (E.4) come from the product of the second

terms in each of the brackets:

u2
1(∂u1 · ∂u1)

2(d+ 2s− 3)
(u1 · ∇1)2 u

2
2(∂u2 · ∂u2)

2(d+ 2s− 3)
(u2 · ∇2)2Ων,s−2(u1, u2)

∼ u2
1u

2
2

(
�1 − (s− 2)(d+ s− 3)

d+ 2s− 3

)2

Ων,s−2(u1, u2), (E.6)

Finally, employing the equation of motion (C.2) for Ω we find

{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

}
∼ u2

1u
2
2

(
ν2 + (d

2
+ s− 2)2

d+ 2s− 3

)2

Ων,s−2(u1, u2).

(E.7)

• ` = 4 Explicitly, traceless projection in this case is

{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

}
=
(

1− u2
1(∂u1 · ∂u1)

2(d+ 2s− 3)
+

u4
1(∂u1 · ∂u1)2

8(d+ 2s− 3)(d+ 2s− 5)

)(
1↔ 2

)
(E.8)

× (u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2).

In order to evaluate the traces in the above, a tedious but straightforward com-

putation shows that

(∂u1 · ∂u1)(u1 · ∇1)4Ων,n(u1, u2) = 2
(

6(u1 · ∇1)2�1

− 2(3n2 + 3dn+ 4d+ 5n+ 2)(u1 · ∇1)2 + 4u2
1�1 − 4n(d+ n− 1)u2

1

)
Ων,n(u1, u2),

(E.9)

and

(∂u1 · ∂u1)2(u1 · ∇1)4Ων,n(u1, u2) ∼ 4
(

6�2
1 − 4(d+ 3dn− n− 3n2)�1
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+ 2n(d+ n− 1)(2d+ n+ 3dn+ n2)
)

Ων,n(u1, u2).

(E.10)

Modulo gradient terms, each bracket in (E.8) therefore produces a second order

polynomial in �. Using the equations of motion (C.2), this eventually gives

{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

}
∼
(
u2

1

)2 (
u2

2

)2
32

(
ν2 + (d

2
+ s− 2)2

d+ 2s− 3

)2 (
ν2 + (d

2
+ s− 4)2

d+ 2s− 5

)2

Ων,s−4(u1, u2).

(E.11)

• ` = 2k

After studying explicitly cases the ` = 2k with k = 1, 2 above, we conjecture that

{
(u1 · ∇1)2k (u2 · ∇2)2k Ων,s−2k(u1, x1, u2, x2)

}
(E.12)

= (N (k, s))2 (u2
1)k(u2

2)k

(
4k

(
d
2

+ s− 2k + iν

2

)
k

(
d
2

+ s− 2k − iν
2

)
k

)2

+ (u1 · ∇1)(. . . ) + (u2 · ∇2)(. . . ),

where

N(k, s) =
(2k)!

4kk!(d
2

+ s− k − 1/2)k
(E.13)

and (a)r = Γ (a+ r) /Γ (a) is the rising Pochhammer symbol.

Let us note that in spite of the fact that equation (E.12) is a conjecture, the pre-factor

N(k, s) is determined exactly. We explain how in the following. The combinatorial fac-

tor N(k, s) can be derived by studying only the contractions that produce the maximal

power of �. The issue of non-commutativity of covariant derivatives for this computa-

tion is irrelevant. Indeed, let us consider an analogous computation in the flat space.
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Then in (E.5) one has only a �-term so that instead of (E.6) we find

{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

} ∣∣∣
flat
∼ u2

1u
2
2

(
�

d+ 2s− 3

)2

Ων,s−2(u1, u2). (E.14)

Analogously, for the ` = 4 flat case one finds

{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

} ∣∣∣
flat

∼
(
u2

1

)2 (
u2

2

)2
32

(
�2

(d+ 2s− 3)(d+ 2s− 5)

)2

Ων,s−4(u1, u2).

(E.15)

This computation can be easily generalised to the case of any ` = 2k, and the result is

{
(u1 · ∇1)2k (u2 · ∇2)2k Ων,s−2k(u1, u2)

} ∣∣∣
flat
∼
(
u2

1

)k (
u2

2

)k
N(k, s) �2kΩν,s−2k(u1, u2),

(E.16)

with N(k, s) given in (E.13). In fact, this justifies its explicit form.

On the other hand, in AdS the �2k-term will receive lower derivative corrections, which

originate from the non-commutativity of the covariant derivatives. By generalising the

k = 1, 2 cases, what we conjecture is that these lower derivative terms are such that

after evaluating � on Ων,s−2k one finds

(
(ν2 + (d

2
+ s− 2)2)(ν2 + (d

2
+ s− 4)2) . . . (ν2 + (d

2
+ s− 2k)2)

)2
.

Combining this with the pre-factor found previously, one obtains (E.12).
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Appendix F

Higher-spin conserved currents in AdS

F.1 Single trace of the currents

In this appendix, we show how a single trace of the spin-s current

Js (x, u) =
s∑

k=0

(−1)k

s! (s− k)!
(u · ∇)k ϕ0 (x) (u · ∇)s−k ϕ0 (x) + Λu2 (...) , (F.1)

can be expressed in terms of currents of the same form, but with lower spin. For

simplicity we work in ambient space, with the necessary ingredients reviewed below.

Scalar fields in AdS

Since the currents (F.1) are bi-linear in the bulk scalar, we first recall the representa-

tion of scalar fields in AdS and their ambient formulation. The lowest weight unitary

irreducible scalar representations of so(d, 2)

�ϕ0(x)−m2ϕ0(x) = 0, m2 ≡ ∆(∆− d) (F.2)
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can be realised as the evaluation ϕ0(x) on AdSd+1 of ambient homogeneous harmonic

functions Φ0(X)

(∂X · ∂X)Φ0(X) = 0, Φ0(X) =
(
X2
)−∆

2 ϕ0(x). (F.3)

For later use, let us denote

Φ†0(X) =
(
X2
)−∆−

2 ϕ0(x), (F.4)

where ∆− = d−∆, and we assume ∆ ≥ ∆−. Throughout, ∆ will often be referred to

as ∆+.

The currents

Towards an ambient representation of the currents (F.1) on AdS, it is instructive to

consider analogous conserved currents in the flat ambient space. I.e. bi-linear currents

conserved with respect to the flat ambient derivative.

It is straightforward to verify that for any ambient massive scalar fields Φ1(X) and

Φ2(X) of the same mass M

(∂X · ∂X −M2)Φ1(X) = 0 = (∂X · ∂X −M2)Φ2(X), (F.5)

the currents, given by the generating function [104,297]

I(X,U) = Φ1(X + U)Φ2(X − U), (F.6)

are conserved with respect to flat ambient space derivative

(∂X · ∂U)I(X,U) = 0. (F.7)
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Explicitly, the rank-s current generating function is given by

Is(X,U) =
s∑

k=0

(−1)k

k!(s− k)!
(U · ∂X)s−kΦ1(X)(U · ∂X)kΦ2(X), (F.8)

which is obtained by extracting from (F.6) the O (U s) coefficient. I.e.

I (X,U) =
∑
s

1

s!
IA1...AsU

A1 ...UAs , Is (X,U) =
1

s!
IA1...AsU

A1 ...UAs . (F.9)

However, a conserved current in the flat ambient space does not necessarily define a

conserved current on AdS. In other words, the pull-back of (F.6) onto the AdS manifold

is not in general conserved with respect to the covariant derivative on AdS. To do so,

it must satisfy some additional constraints, which we specify in the following.

We require (F.6) to be conserved with respect to the ambient representative (A.20) of

the covariant derivative, ∇ = P ◦ ∂ ◦ P . First, the projection of the ambient current

onto AdS is of the form

P I(X,U) = I(X,U) + (X · U)L(X,U) (F.10)

for some L(X,U). Further, the commutation relation

[(∂X · ∂U), X · U ] = X · ∂X + U · ∂U + d+ 2

implies that

(∂X · ∂U)P I(X,U) = (X · U) (∂X · ∂U)L(X,U) + (X · ∂X + U · ∂U + d+ 2)L(X,U).

(F.11)

The first term in (F.11) is transversal to Hd+1, so it drops out upon application of the

second projection in the covariant derivative (A.20). We then demand that I (X,U) is
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conserved in AdS,

(∇ · ∂U) I (X,U) = 0, (F.12)

which yields the condition:

(X · ∂X + U · ∂U + d+ 2)L(X,U) = 0.

This can be satisfied by imposing the following homogeneity condition on the current

(X · ∂X + U · ∂U + d) I(X,U) = 0. (F.13)

The demonstrate that the current (F.6) is conserved in AdS if it obeys (F.13). In

particular for Φ1 = Φ, and Φ2 = Φ† as introduced in (F.4), the current

J(X,U) = Φ(X + U)Φ†(X − U) (F.14)

is conserved on AdS. Note that the more familiar form (F.1), intrinsic to AdS, can be

obtained from the above by expressing the ambient partial derivatives in terms of AdS

covariant derivatives and the metric.

Trace of the currents

We are now ready to proceed in ambient space to express the trace of the current (F.1)

in terms of those of lower ranks. The formula we want to establish generalises to AdS

the expression

(∂u · ∂u) I(x, u) =
(
−� + 4M2

)
I(x, u), (F.15)

for the trace in flat space.

On AdS, the trace is given by

(∂u · ∂u)J(X,U) ≡
(
∂U · ∂U + (X · ∂U)2

)
J(X,U)
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=
(
−∂X · ∂X + (X · ∂U)2

)
J(X,U), (F.16)

where on the first line we expressed the intrinsic AdS trace in terms of ambient quan-

tities, and in the second equality we used that

(∂X · ∂X + ∂U · ∂U)J(X,U) = 0, (F.17)

taking into account that the ambient scalar Φ0 is massless (F.3).

The next step is to rewrite the RHS of (F.16),

(∂u · ∂u)J(X,U) =
(
−∂X · ∂X + (X · ∂U)2

)
J(X,U),

in terms of the ambient representatives of AdS covariant operators: The Laplacian �,

rank of the current (U ·∂U), multiplication by the metric U2 and the covariant gradient

(U · ∇):

1. We first focus on the term (X · ∂U)2 J (X,U). We may eliminate (X ·∂U) in favour

of (U · ∂X), using that

(X · ∂U) + (U · ∂X) = X+∂+ −X−∂−.

This gives1

(X · ∂U)J = (∆+ −∆− − (U · ∂X))J. (F.18)

Applying this twice, we find

(X · ∂U)2J = (X · ∂U)(∆+ −∆− − (U · ∂X))J

= (∆+ −∆− − (U · ∂X))(X · ∂U)J − [(X · ∂U), (U · ∂X)]J

= (∆+ −∆− − (U · ∂X))2J − (X · ∂X − U · ∂U)J.

1Let us note that the identity above can be used only when (X · ∂U ) acts directly on the current.
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The (X · ∂X) can be expressed in terms of (U · ∂U) via (F.13),

(X · ∂X)J = −((U · ∂U) + d)J. (F.19)

As a final step, we express (U · ∂X) in terms of covariant gradients (U · ∇), using

(U · ∇) = U2(X · ∂U) + (U · ∂X).

Together with (F.18), this yields

(U · ∂X)J =
1

1− U2

(
(U · ∇)− U2(∆+ −∆−)

)
J, (F.20)

where the fraction should be understood as a power series

1

1− U2
= 1 + U2 + U4 + . . . .

We finally arrive to,

(U · ∂X)2J =

(
1

1− U2

(
(U · ∇)− U2(∆+ −∆−)

))2

J − U2

1− U2
(X∂X − U∂U)J.

(F.21)

2. To express (∂X · ∂X) J (X,U) in terms of AdS covariant quantities, we need only

employ

� = ∂X · ∂X + (X · ∂X) ((X · ∂X) + d− 1)− (U · ∂U) + 2(U · ∂X)(X · ∂U) + U2(X · ∂U)2,

(F.22)

in combination with the above results.

The generalisation of (F.15) to AdS is thus

(∂u · ∂u) J =
(
−� + (u · ∂u + 1)(u · ∂u + d)
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+
1

1− u2

(
(∆+ −∆−)2 − (u · ∇)2

) )
J. (F.23)

Recalling that

J (X,U) =
∞∑
s=0

Js (X,U) , (F.24)

i.e. it is the generating function of conserved currents, equation (F.23) serves as a

starting point to express the trace of a current of given spin in terms of other currents.

F.2 Multiple traces of the currents

In this appendix we compute τs,k (ν) in (5.96). To this end, we take repeated traces of

(F.23). This allows us to express a k-fold trace of rank-s current Js in terms of lower

degree traces of lower-spin currents

(∂u · ∂u)kJs → (∂u · ∂u)k−1Js−2, (∂u · ∂u)k−2Js−4, . . . , Js−2k (F.25)

and terms of the form

(u · ∇)(. . . ) or u2 · (. . . ). (F.26)

The relation (F.25) can then be iteratively applied to eliminate all the traces, thereby

expressing (∂u ·∂u)kJs in terms of Js−2k and terms of the form (F.26). Our main goal is

to compute the four-point spin-s exchange §5.4.2, so it is enough to know (∂u · ∂u)kJs
modulo terms which vanish upon contraction against the traceless and divergence-free

Ωs−2k. These are precisely the terms in (F.26). We will often drop such terms where

they are unimportant. Equalities that hold modulo these terms will be denoted by “∼”.
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We shall employ the following useful identities

(∂u · ∂u)i
(
u2
)k
Jl =

i∑
n=0

4i−n
i!

n!(i− n)!
(k − i+ n+ 1)i−n

× (d+1
2

+ k + l − i)i−n
(
u2
)k−i+n

(∂u · ∂u)n Jl, (F.27)

and

(∂u · ∂u)m(u · ∇)2Jk = 2m · k − 2m+ 2

k − 2m+ 3
(∂u · ∇)(u · ∇)(∂u · ∂u)m−1Jk

+ 2m � (∂u · ∂u)m−1Jk + (u · ∇)2(∂u · ∂u)mJk. (F.28)

Here and throughout we use that the current is conserved. To commute divergence and

gradient in (F.28), we employ

1

n+ 1
(∂u · ∇)(u · ∇)Jn =

1

n
(u · ∇)(∂u · ∇)Jn − (n+ d)Jn +

1

n
u2(∂u · ∂u)Jn, (F.29)

which entails

(∂u · ∂u)m(u · ∇)2Jk ∼ 2m (�− (k − 2m− 2)(k − 2m+ d+ 1)) (∂u · ∂u)m−1Jk. (F.30)

With these formulas at hand, we are prepared to compute the i-fold trace (∂u · ∂u)i of

both sides of (F.23). Using (F.27), keeping only terms with k − i+ n = 0, we obtain

(∂u · ∂u)i+1Js+2 ∼ − � (∂u · ∂u)iJs + (s+ 1)(s+ d)(∂u · ∂u)iJs

+
i∑

k=0

i!

(i− k)!
4k ((d+ 1)/2 + s− i− k)k (∂u · ∂u)i−k

(
(∆+ −∆−)2Js−2k − (u · ∇)2Js−2k−2

)
.

Which, employing (F.30), becomes

(∂u · ∂u)i+1Js+2 ∼ − �(∂u · ∂u)iJs + (s+ 1)(s+ d)(∂u · ∂u)iJs
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+
i∑

k=0

(∂u · ∂u)i−k(∆+ −∆−)2Js−2k
i!

(i− k)!
4k
(
d+1

2
+ s− i− k

)
k

−
i−1∑
k=0

(�− (s− 2i)(s− 2i+ d− 1)) (∂u · ∂u)i−k−1Js−2k−2

× i!

(i− k − 1)!
4k+1

(
d+1

2
+ s− i− k

)
k+1

. (F.31)

The crucial observation is that applying (F.31) to the right combination of (∂u·∂u)i+1Js+2

and (∂u · ∂u)iJs, the tails of terms on the right hand side cancel. To wit,

(∂u · ∂u)i+1Js+2 − 2i(d+ 2s− 2i− 1)(∂u · ∂u)iJs (F.32)

∼
(
(∆+ −∆−)2 −� + (s+ 1)(s+ d)

)
(∂u · ∂u)iJs

− 2i (�− (s− 2i)(s− 2i+ d− 1)) (∂u · ∂u)i−1Js−2

− 2i(d+ 2s− 2i− 1) (�− (s− 1)(s+ d− 2)) (∂u · ∂u)i−1Js−2.

To deal with the � terms, from this point onwards we assume that both sides of (F.32)

are integrated against the traceless and divergenceless harmonic function Ωs−2k. Then

one can integrate by parts all �’s that appear on the right hand side of (F.32), thus

making them act on Ωs−2k. We can then use the equation of motion (C.2) for Ωs−2k to

eliminate all �’s. This establishes the following iterative equation

(∂u · ∂u)i+1Js+2 ∼ f(i, s)(∂u · ∂u)iJs + g(i, s)(∂u · ∂u)i−1Js−2, (F.33)

where

f(i, s) = (2∆− d− 1)(2∆− d+ 1) +
(
ν2 + (d

2
+ (s− 2i) + 1)2

)
+ 8i(d

2
+ (s− 2i) + i),

g(i, s) = −4i(d
2

+ (s− 2i) + i− 1)
((
ν2 + (d

2
+ (s− 2i) + 1)2

)
+ 4(i− 1)(d

2
+ (s− 2i) + i)

)
.

As “boundary conditions” we take (∂u ·∂u)−1Js−2k−2 ≡ 0 and assume that Js−2k is given.

Then the iterative equation (F.33) allows to express (∂u · ∂u)kJs in terms of Js−2k. The



198 F. Higher-spin conserved currents in AdS

result is

(∂u · ∂u)kJs ∼ τs,k (ν) Js−2k,

with

τs,k (ν) =

k∑
m=0

22k · k!

m!(k −m)!
(∆− d

2 − k +m+ 1/2)k−m

(
d
2 + s− 2m+ 1 + iν

2

)
m

(
d
2 + s− 2m+ 1− iν

2

)
m

.



Appendix G

Intrinsic expressions for vertices

In this appendix we give the recipe of how to express vertices in ambient space in

intrinsic AdS terms. In §6.2.1 we used holography to fix the cubic vertices of minimal

bosnic higher-spin theory on AdSd+1 in terms of the ambient structures

In1,n2,n3
s1,s2,s3

(ϕsi) = Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3 (G.1)

×Hn1
1 Hn2

2 Hn3
3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3)

∣∣∣
Xi=X

.

where we used point splitting, and introduced

Y1 = ∂U1 · ∂X2 , Y2 = ∂U2 · ∂X3 , Y3 = ∂U3 · ∂X1 , (G.2)

H1 = ∂U2 · ∂U3 , H2 = ∂U3 · ∂U1 , H3 = ∂U1 · ∂U2 . (G.3)

While this representation allowed for a more straightforward manipulation of tensor

structures, since they are vertices for a theory on AdS naturally one would like to

express them in terms intrinsic to the AdS manifold. In other words, in terms of

contractions of the form

Ỹ1 = ∂U1 · ∇2 , Ỹ2 = ∂U2 · ∇3 , Ỹ3 = ∂U3 · ∇1 . (G.4)
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In order to achieve this, we consider the structure

In1,n2,n3,m1,m2,m3

l1,l2,l3,k1,k2,k3
(ϕsi) ≡ H

n1
1 Hn2

2 Hn3
3 Y l11 Y l22 Y l33 Ỹk1

1 Ỹk2
2 Ỹk3

3

× (X2
1 )−m1(X2

2 )−m2(X2
3 )−m3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3), (G.5)

where

In1,n2,n3,0,0,0
s1−n2−n3,s2−n1−n3,s3−n1−n2,0,0,0

(ϕsi) = In1,n2,n3
s1,s2,s3

(ϕsi). (G.6)

Employing the commutation relations (A.42), one can establish the following recursion

relations1

In1,n2,n3,m1,0,0
l1,l2,l3,0,0,k3

= In1,n2,n3,m1,0,0
l1,l2,l3−1,0,0,k3+1− l2(∆1−k3−n2−2m1) In1+1,n2,n3,m1+1,0,0

l1,l2−1,l3−1,0,0,k3
(G.8a)

−n3(l3−1) In1+1,n2+1,n3−1,m1+1,0,0
l1,l2,l3−2,0,0,k3

− l1(∆2−l1−n3−l3+2) In1,n2+1,n3,m1+1,0,0
l1−1,l2,l3−1,0,0,k3

+λ l1l2(l3 − 1) In1+1,n2+1,n3,m1+1,0,0
l1−1,l2−1,l3−2,0,0,k3

,

In1,n2,n3,m1,0,m3

l1,l2,0,0,k2,k3
= In1,n2,n3,m1,0,m3

l1,l2−1,0,0,k2+1,k3
− l1(∆3−k2−n1−2m3) In1,n2,n3+1,m1,0,m3+1

l1−1,l2−1,l3,0,k2,k3

− n2(l2−1) In1+1,n2−1,n3+1,m1,0,m3+1
l1,l2−2,l3,0,k2,k3

(G.8b)

In1,n2,n3,m1,m2,m3

l1,0,0,k1,k2,k3
= In1,n2,n3,m1,m2,m3

l1−1,0,0,k1+1,k2,k3
− n1(l1−1) In1−1,n2+1,n3+1,m1,m2+1,m3

l1−2,0,0,k1,k2,k3
, (G.8c)

which can be solved in terms of the intrinsic structures

In1,n2,n3,0,0,0
0,0,0,k1,k2,k3

(ϕsi) = Hn1
1 Hn2

2 Hn3
3 Ỹk1

1 Ỹk2
2 Ỹk3

3 ϕs1(X1, U1)ϕs2(X2, U2)ϕs3(X3, U3). (G.9)

1Recall that ∆i is the homogeneity degree of the field ϕsi , and λ is an auxiliary variable to be
replaced at the very end of the recursion procedure as follows:

λn ≡ (−1)n(∆ + d)(∆ + d− 2) . . . (∆ + d− 2n+ 2) , (G.7)

where ∆ is the total degree of homogeneity of the given term of the vertex. The reason λ appears is
that in order to establish the recursion relations one has to integrate by parts in ambient space (see
e.g. [30]).
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Starting with the original basis (G.2) for the vertices, with the above recursions their

intrinsic forms can therefore be established.

Below we give some examples obtained by implementing the above recursion relations

in Mathematica for massless fields (∆i = 2− d− si)

Y1Y2 = Ỹ1Ỹ2 − (d− 2)H3 , (G.10a)

Y1Y2Y3 = Ỹ1Ỹ2Ỹ3 − (d− 1)(H1Ỹ1 +H2Ỹ2 +H3Ỹ3) ,

Y2
1Y2

2Y2
3 = Ỹ2

1 Ỹ2
2 Ỹ2

3 − 2(2d+ 1)H1Ỹ2
1 Ỹ2Ỹ3 − 2(2d+ 3)H2Ỹ1Ỹ2

2 Ỹ3 − 2(2d+ 1)H3Ỹ1Ỹ2Ỹ2
3

+ 2d(d+ 2)H2
1Ỹ2

1 + 2d(d+ 2)H2
3Ỹ2

3 + 2d(d+ 2)H2
2Ỹ2

2

+ 8
(
d2 + 2d+ 2

)
H1H2Ỹ1Ỹ2 + 2

(
4d2 + 4d− 1

)
H1H3Ỹ1Ỹ3

+ 4(d+ 1)(2d+ 1)H2H3Ỹ2Ỹ3 − 8
(
d3 + 2d2 + d+ 1

)
H1H2H3 , (G.10b)

Y3
1Y3

2Y3
3 = Ỹ3

1 Ỹ3
2 Ỹ3

3

− 9(d+ 2)H1Ỹ3
1 Ỹ2

2 Ỹ2
3 − 9(d+ 4)H2Ỹ2

1 Ỹ3
2 Ỹ2

3

− 9(d+ 2)H3Ỹ2
1 Ỹ2

2 Ỹ3
3 + 18

(
d2 + 5d+ 5

)
H2

1Ỹ3
1 Ỹ2Ỹ3

+ 27
(
2d2 + 12d+ 21

)
H1H2Ỹ2

1 Ỹ2
2 Ỹ3

+ 18
(
d2 + 7d+ 11

)
H2

2Ỹ1Ỹ3
2 Ỹ3 + 18

(
d2 + 5d+ 5

)
H2

3Ỹ1Ỹ2Ỹ3
3

+ 54(d+ 1)(d+ 3)H1H3Ỹ2
1 Ỹ2Ỹ2

3 + 27(d+ 2)(2d+ 7)H2H3Ỹ1Ỹ2
2 Ỹ2

3

− 54(d+ 3)
(
d2 + 6d+ 10

)
H2

1H2Ỹ2
1 Ỹ2 − 54(d+ 3)

(
d2 + 6d+ 10

)
H1H2

2Ỹ1Ỹ2
2

− 54(2d+ 7)
(
2d2 + 8d+ 9

)
H1H2H3Ỹ1Ỹ2Ỹ3 − 54(d+ 4)

(
d2 + 3d+ 1

)
H1H2

3Ỹ1Ỹ2
3

− 27
(
2d3 + 14d2 + 28d+ 11

)
H2

1H3Ỹ2
1 Ỹ3 − 27

(
2d3 + 16d2 + 38d+ 25

)
H2

2H3Ỹ2
2 Ỹ3

− 54
(
d3 + 8d2 + 21d+ 17

)
H2H2

3Ỹ2Ỹ2
3 − 6(d+ 1)(d+ 3)(d+ 5)H3

1Ỹ3
1

− 6(d+ 1)(d+ 3)(d+ 5)H3
2Ỹ3

2 − 6(d+ 1)(d+ 3)(d+ 5)H3
3Ỹ3

3

+ 54(d+ 3)
(
2d3 + 15d2 + 34d+ 27

)
H2

1H2H3Ỹ1

+ 54(d+ 3)
(
2d3 + 14d2 + 28d+ 19

)
H1H2

2H3Ỹ2

+ 54(d+ 3)
(
2d3 + 14d2 + 29d+ 19

)
H1H2H2

3Ỹ3 . (G.10c)



202 G. Intrinsic expressions for vertices



Appendix H

Basis of quartic vertices

In this appendix we demonstrate completeness of the basis (5.109) of quartic scalar

self-interactions.

A given vertex can be brought into different forms via integration by parts. For our

purposes, we need only find a complete set of quartic vertices which are independent

on-free-shell. We therefore need to take into account all possible relations between such

vertices via integration by parts and using the free equations of motion. In counting

the number of independent on-shell vertices, it is simpler to consider the equivalent

problem of counting the associated four-point amplitudes. This is how we proceed in

the following. For simplicity, following the approach of [298] we carry out this analysis

in flat space.

As shown in [298], a complete non-redundant basis of flat space four-point amplitudes

is given by the set monomials of the form

sktkum with integers k ≥ m ≥ 0 , (H.1)
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where s, t and u are the Mandelstam variables

s = (p1 + p2)2, t = (p1 + p3)2, u = (p2 + p3)2 .

For massless particles p2
i = 0, one has

s = 2 p1 · p2 = 2 p3 · p4, t = 2 p1 · p3 = 2 p2 · p4, u = 2 p2 · p3 = 2 p1 · p4 . (H.2)

Our goal is to replace the basis (H.1) with an equivalent one, that is better suited

to our purposes - i.e. in terms of amplitudes generated by quartic vertices built from

conserved currents. Let us first consider such vertices in position space

�m
12Jµ1···µ`

(
ϕ0(x1), ϕ0(x2)

)
Jµ1···µ`

(
ϕ0(x3), ϕ0(x4)

)
, (H.3)

with �12 = (∂x1 + ∂x2)2 and

Jµ1···µ`
(
ϕ0(x1), ϕ0(x2)

)
≡ ϕ0(x1)

↔
∂µ1 ...

↔
∂µ` ϕ0(x2) , (H.4)

are the conserved currents of [299], with
↔
∂ =
←−
∂ x1−

−→
∂ x2 . The amplitude in momentum

space associated to the vertex (H.3) reads

(p1 + p2)m [(p1 − p2) · (p3 − p4)]l = sm(t− u)`. (H.5)

For ` = 2k, this amplitude contains a term smtkuk. Up to a Bose symmetry trans-

formation, this reproduces the form of the vertices (H.1). We therefore conclude that

vertices (H.3) with ` = 2k and k ≥ m ≥ 0 generate the basis of quartic vertices.

For our purposes it is more convenient to use the traceless improvement of (H.4), given
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in [300]1

J̃µ1...µ`

(
ϕ0(x1), ϕ0(x2)

)
(H.6)

=

√
π Γ (d+ s− 2)

2s+d−3Γ
(
d−1

2

)
Γ
(
s+ d

2
− 1
) l∑
k=0

ak ∂µ1 ...∂µkϕ0(x1)∂µk+1
...∂µ`ϕ0(x2)− traces,

where

ak = (−1)k
l!

k!(l − k)!

(d
2
− 1)l

(d
2
− 1)k(

d
2
− 1)l−k

.

The improvement (H.6) can always be obtained from (H.4) when the scalar field is

conformal.

Analogously to (H.3), the flat space amplitude corresponding to a vertex

Vm,` ≡ �m
12 J̃µ1...µ`

(
ϕ0(x1), ϕ0(x2)

)
J̃µ1...µ`

(
ϕ0(x3), ϕ0(x4)

)
(H.7)

with ` = 2k generates a term smtkuk. Thus, vertices (H.7) with ` = 2k and k ≥ m ≥ 0

may be used as a basis for quartic interactions.

1Note that the normalisation here is such that it is consistent with the normalisation of (H.4).
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