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“Ipse manus hausta victrices abluit unda, anguiferumque caput dura ne laedat harena, 

mollit humum foliis natasque sub aequore virgas sternit et inponit Phorcynidos ora 

Medusae. Virga recens bibulaque etiamnum viva medulla vim rapuit monstri tactuque 

induruit huius percepitque novum ramis et fronde rigorem. At pelagi nymphae factum 

mirabile temptant pluribus in virgis et idem contingere gaudent seminaque ex illis 

iterant iactata per undas: nunc quoque curaliis eadem natura remansit, duritiam tacto 

capiant ut ab aere quodque vimen in aequore erat, fiat super aequora saxum” 

(Ovidio, Metamorphoseon 4, 740-752) 
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Summary 
 

Shallow-water octocorals are among the most abundant macro-benthic organisms 

inhabiting tropical subtropical and temperate communities. In spite of being worldwide 

distributed and highly diverse, the systematics of many octocorals remains controversial 

and the understanding of the processes who led to their diversification is largely 

unexplored. This study includes five chapters, each dealing with different aspects of the 

systematics, phylogeny and evolution of six soft coral genera such as Lobophytum, 

Sarcophyton, Paramuricea, Leptogorgia, Muricea and Pacifigorgia. One of the main 

goals of the study was to explore, through the use of molecular methods, the genetic 

variation within species notoriously difficult to identify. Besides the use of standard 

molecular methods for phylogenetic reconstruction and species delimitation, the 

effectiveness of Next Generation Sequencing (NGS) technologies was tested for 

mitogenomic and genotyping analyses. 

In the first chapter the use of single-locus markers (e.g. COI, mtMutS and 28S rDNA) 

was investigated and different automated species delimitation methods (e.g. ABGD, 

bPTP) were employed to assess species richness among soft coral genera from Western 

Australia. The methods used appeared suitable for preliminary and rapid diversity 

assessments especially in the presence of species-rich genera such as Lobophytum and 

Sarcophyton where morphological identification is particularly difficult and time 

consuming. 

In the second chapter, along with the sequencing of complete mitogenomes of 

Mediterranean Paramuricea species (P. clavata and P. macrospina), the biogeography 

of the genus was investigated. The results revealed nucleotide and genome size 

polymorphisms, while the biogeographic predictions suggested that the Mediterranean 

species have resulted from independent speciation events, explaining in part the high 

phylogenetic divergence detected. 

In the third chapter, the sequencing of complete mitogenomes of five Leptogorgia 

species from different geographic areas (eastern Pacific, eastern Atlantic and 

Mediterranean) was followed by phylogenetic reconstructions based on an extended 

mtMutS dataset. The phylogenetic tree recovered Leptogorgia polyphyletic with a clear 

segregation between the eastern Pacific and eastern Atlantic forms. A time calibrated 

phylogeny provided insights into the evolution of the genus. 
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In chapter four, using NGS approaches, the complete mitochondrial genome of two 

eastern Pacific Muricea species (M. crassa and M. purpurea) has been sequenced. The 

recovery of complete mitogenomes allowed to evaluate the presence of variable and 

informative regions and to infer a more robust phylogeny. Overall, the results showed 

high nucleotide diversity in the intergenic spacers, making these regions new potential 

molecular markers for species-level identifications. 

In the last chapter a genome-wide Single Nucleotide Polymorphisms (SNPs) and a 

Bayes Factor Delimitation method were used to infer the genetic relationships within 

species of the genus Pacifigorgia. The data obtained showed incongruence between 

molecular and morphological investigations suggesting the possibility of alternative 

taxonomic assignments for these species. 

This study provides information on the evolution and speciation of ecologically 

important soft corals, which distribution range from the littoral and sublittoral zones of 

the Mediterranean to the tropical and subtropical reefs of Western Australia (WA) and 

eastern Pacific (EP). The use of mitochondrial markers such as MutS allowed to shed 

some light on the biogeography and evolutionary history of widespread gorgonians with 

special emphasis on the Mediterranean endemics and the Atlantic species. Concerning 

the Western Australia, the obtained results will support the management and 

conservation of under-investigated marine biodiversity hotspots and potentially species-

rich localities such as the Kimberley. In terms of species delimitation, the application of 

genome-wide SNPs and the use of NGS technologies showed a higher resolution when 

compared with the traditional methods based on DNA barcoding and single-locus 

phylogenies. The data generated have been used to clarify the systematics of the species 

investigated and will be considered as a baseline for future studies on population 

genetics with a closer look on the adaptive processes. 
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Introduction 

 
Octocorallia: general information 

 
The subclass Octocorallia (Cnidaria, Anthozoa) includes more than 3000 species 

(Daly et al. 2007; Cairns, 2007) and is further divided in three orders: Alcyonacea 

(Lamouroux, 1812), Helioporacea (Bock, 1938) and Pennatulacea (Verrill, 1865). All 

octocorals typically have polyps with eight pinnulate tentacles and a gastro-vascular 

cavity (coelenteron) divided by complete mesenteries into eight compartments (Figure 

0.1). Within alcyonaceans, the majority of the species are colonial, which means that the 

polyps of a single individual are linked by protoplasmic connections (gastro-vascular 

canals) and each polyp is connected to the coelenteron allowing constant water 

circulation. The gastro-vascular canals are surrounded by an organic matrix, which 

forms the coenenchyme. This tissue is covered by the ectoderm and is further connected 

to the polyps. The gastro-vascular canals, coenenchyme and polyps constitute the 

cenosarc (Figure 0.1). 

 

 

Figure 0.1: Schematic view of octocoral anatomy. A: longitudinal section (from Reader’s Digest, 1990). 

B:  Octocoral structure with the principal anatomical components, As: axial skeleton; Co: cortex; Gc: 

gastrovascular cavity; P: polyp; S: septa; Sc: sclerites; T: tentacle (modified from Luther and Fiedler, 

1988). 
  

Alcyonaceans have been divided into six subordinal groups (Alcyoniina, 

Protoalcyonaria, Stolononifera, Calcaxonia, Holaxonia and Scleraxonia) according to 

the presence/absence of central axis, the presence of small calcium carbonate (CaCO3) 

components (sclerites) and the consistence of the coenenchyme. Among the suborders, 

members of Alcyoniina are commonly known as soft corals due to the lack of rigid 
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skeletons and the presence of calcareous sclerites in the tissues. Protoalcyonaria 

includes a restricted number of species mainly distributed in the deep-sea. These 

organisms are characterised by a cylindrical soft body, which base is enriched in elastic 

filaments that allow anchoring to the substrata. Stolonifera, on the other hand, 

comprises more than 150 species characterised by big pinnulate polyps connected by 

exclusive elastic canals called stolons and in some species, like Tubipora musica, 

sclerites may be fused to form a rigid calcareous skeleton. Members of the suborders 

Calcaxonia, Holaxonia and Scleraxonia are also known as gorgonians due to the fact 

that they were formerly assigned to Order Gorgonacea (Lamouroux, 1816). All 

gorgonians have a colony axis separated into two distinct portions: (1) coenenchyme 

and (2) sclerax. The sclerax is further divided into an inner portion (medulla) and an 

outer part (cortex), which is made of gorgonin and provides flexibility to the colony. 

The cortex can be reinforced by CaCO3 components such as concentric lamellae, solid 

calcareous material or simply by sclerites (Figure 0.2). 

 
Figure 0.2: Morphological structure of the colony and skeleton in different gorgonian suborders. A: 

bamboo coral (SO: Calcaxonia) (copyright of the Mountains in the Sea Research Team; IFE; and 

NOAA), skeleton characterised by CaCO3 concentric lamellae with nodes made by gorgonin; B: 

Corallium rubrum (SO: Scleraxonia), skeleton characterised by the presence of fused sclerites; C: 

Leptogorgia capverdensis (SO: Holaxonia) skeleton composed of gorgonin and characterised by the 

presence of rare sclerites and a chambered central core without concentric lamellae. On the bottom side of 

the figure, schematic transversal section of the skeleton. 

 

Unlike alcyonaceans, helioporaceans have a massive skeleton whose composition is 

similar to that of scleractinians. The order Helioporacea, formerly called Coenothecalia 
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(Bourne, 1895), includes only few species geographically restricted to the tropics. 

Among these, Heliopora coerulea (Pallas, 1776) and the recently described Nanipora 

kamurai (Miyazaki and Reimer, 2015) have a massive aragonite skeleton and are 

characterised by the lack of sclerites. The order Pennatulacea includes organisms 

commonly known as sea pens due to their body shape, which resemble quill pens. 

Overall, the central stalk of these organisms consists of a lower portion (peduncle) that 

anchors the colony to the soft bottom and an upper part (rachis) including polyps or 

branches bearing polyps. These organisms have a broad distribution and can be found 

down to deep-sea waters up to 7,000 m (Williams, 2011). 

 

Origin of octocorals and fossil records 

 
Recent multidisciplinary studies of putative fossils (Maloof et al. 2010; Brain et al. 

2012), “ancient” biomarkers (see Cryogenian fossil steroids in Love et al. 2009) and 

molecular clocks (Erwin et al. 2011) agree on a pre-Ediacaran (1300-600 Mya) origin 

of metazoans. Within cnidarians, Menon et al. (2013) found discoidal fossils resembling 

modern scyphozoans in the ca. 560 Mya Fermeuse Formation of Newfoundland 

(Canada) and proposed that their appearance may be dated back to the Ediacaran (635-

541 Mya). In the class Anthozoa, soft body organisms such as octocorals have high 

post-mortem degradation and their presence in the fossil records is infrequent 

(Schlagintweit and Gawlick, 2009; Whittle et al. 2014). Although fossils may 

potentially show how species have changed across space and time providing 

evolutionary insights, their identification is difficult and is often restricted to high 

taxonomic levels (Bayer, 1956; Kokurco and Kokurco, 1992). In this respect, the 

earliest known octocoral (Echmatocrinus brachiatus) was found in the third series of 

the Cambrian (509-500 Mya) but its taxonomy is to date widely debated (see Sprinkle, 

1973; Sprinkle and Collins, 1995, 1998; Ausich and Babcock, 1998, 2000). According 

to recent paleontological findings (see Cope, 2005), the earliest undisputed octocoral 

fossil is an alcyonacean of the genus Petilavenula. This was found in the Ogof Hên 

Formation (UK) and was dated back to the Lower Ordovician (480-475 Mya). Other 

alcyonacean fossils were also described from the upper Landoverian to the lower 

Wenlockian (435-430 Mya) and from the Campanian-Maastrichtian (83-66 Mya) (see 

Bengston, 1981; Reich and Kutscher, 2011). In terms of diversity, the fossil assemblage 

discovered from the Red Bluff Formation in Mississippi (Lower Oligocene, 28.4-33.9 
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Mya) represents one of the most diverse collections with about 1000 well-preserved 

sclerites found from a single location (Kocurko and Kocurko, 1992). Among others, 

fossils of blue corals (Lozouet and Molodtsova, 2008) and sea-pens (Reich and 

Kutscher, 2011) have been also described in the last decades (Figure 0.3). For instance, 

fossils of Epiphaxum (Lonsdale, 1850) were found from the Aquitane Basin in South-

West of France and their dating ranges from 37 to 16 Mya (Lozouet and Molodtsova, 

2008). Another helioporacean, Heliopora coerulea, was known form the early 

Cretaceous (145-100 Mya) and its general morphology endured unchanged for more 

than 100 million years, making this species a perfect keystone for evolutionary studies. 

 
Figure 0.3: Fossil octocorals (left side of each panel) and comparison with the modern forms (right side 

of each panel). A: sclerites of different plexaurids and gorgoniids (modified from Kokurco and Kokurco, 

1992); B: Pennatulacea, left: Pennalina sp. (Cope, 2005), right: extant sea pen (photo of Mr. Vittorio 

Durante); C: aragonite skeleton of helioporaceans, from the left: Epiphaxum arbuscula (modify from 

Lozouet and Molodtsova, 2008) and Nanipora kamurai (from Miyazaki and Reimer, 2015). 

 

Pywackia baileyi, dated back to the late Cambrian (497-485 Mya), was supposed to 

be a precursor of the Pennatulacea lineage (Taylor et al. 2013), while Landing et al. 

(2015) proposed for this species a high affinity with the phylum Bryozoa (Ehrenberg, 

1831). Due to their body shape, pennatulid-like fossils have been often misinterpreted 

as belemnites (Reich and Kutscher, 2011), therefore their origin is still debated. Among 

the few undisputed records, fossils of Pennatulacea were described from the Campanian 

(72-84 Mya) and several traces of calcareous sclerites were described from the upper 

Cretaceous (Helm and Schülche, 2003). 
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Ecology and symbioses 

 
Octocorals have a worldwide distribution and a broad bathymetric occurrence 

ranging from intertidal to abyssal waters (Bayer, 1961). These organisms are among the 

most abundant components of littoral benthic communities in tropical and temperate 

seas (True, 1970; Loya, 1972) and can be ecologically important members of coral reefs 

(Dinesen, 1983; Fabricius and Alderslade, 2001). Octocoral communities play a key-

role in trophic ecology influencing coastal biogeochemical cycles (Cocito et al. 2013; 

Leal et al. 2014). Indeed, thanks to the interception of organic and particulate matter 

and due to the release of metabolic products such as mucus, they may affect the carbon 

and nitrogen cycle in the water column (Gili and Coma, 1998; Wild et al. 2004). 

Although many octocorals are suspension feeders—organisms feeding on material 

suspended in the water column—their feeding strategies may be linked to both 

physiological and environmental aspects (Lasker et al. 1983; Ribes et al. 1999). For 

instance, some gorgonians capture zooplanktonic preys (Leversee, 1976; Lasker, 1981; 

Coma et al. 1994), whereas members of the genus Sarcophyton are capable of using 

food sources produced by symbiotic zooxanthellae (e.g. photosynthates) (Muscatine and 

Hand, 1958). Beside Sarcophyton species, several calcaxonian, holaxonian, 

scleraxonian and stoloniferan species live in symbiosis with unicellular photosynthetic 

dinoflagellates of the genus Symbiodinium, commonly known as zooxanthellae (see van 

Oppen et al. 2005). Symbiodinium includes at least nine (A–I) divergent clades each 

with multiple subclades (Stat et al. 2006). Specific Symbiodinium clades associated with 

a particular coral apparently affect its growth rate and its tolerance to thermal stress 

(Jones et al. 2008; Yuyama and Higuchi, 2014). Therefore, the study of the diversity of 

Symbiodinium represents the first step towards understanding the ecological importance 

of the host-symbiont association and the impact of symbiont lost. In particular, the loss 

of photosymbionts due to changes in environmental conditions (e.g. heat stress, light 

stress, CO2 increment) represents a serious threat to reef communities as it negatively 

affects the host health and may lead to the loss of critical habitat for coral associated 

biota (Coffroth et al. 2010). 

Unlike octocoral-algal symbiosis, which has been widely investigated, the microbial 

assemblage and their diversity in octocorals is poorly known. Preliminary studies on the 

bacteria community in the Caribbean gorgonians revealed high diversity and the 

predominance of Gammaproteobacteria ( r ck et al. 2007; Santiago-Vázquez et al. 
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2007). Assuming that environmental factors can directly or indirectly affect the 

microbiota and/or the host physiologies, variation in microbial diversity should be 

further investigated exploring the effects of climate changes on holobionts.  

 

Reproductive strategies 

 

Both, asexual and sexual reproduction are known in octocorals, however most of the 

species reproduce only sexually (Kahng et al. 2011). Although hermaphroditism has 

been observed in some soft corals (Benayahu, 1997), most of the species are 

gonochoristic and they can basically reproduce in two different ways: (1) broadcast 

spawning and (2) brooding. The second strategy may be further divided into internal 

fertilization with the planulae brooded in specific compartments in the endoderm and 

internal fertilization with planulae brooded in the external surface of the polyps. The 

reproductive strategies used by different octocorals seem to vary among species and 

according to the environmental conditions (e.g. tropical, temperate). Interestingly, Coll 

et al. (1995) documented that within gorgonians, brooding strategies are preferred to 

spawning, which is instead quite common among alcyoniids. Independently from the 

strategy adopted, the spawning of eggs into the water column or the release of planulae 

allows larvae dispersion. It has been shown that larvae may require up to a week before 

settling (Babcock and Heyward 1986; Harrison and Wallace, 1990) and that the 

competency period —span of time before larvae settle onto substrata— may last for 

several weeks (Wilson and Harrison, 1998). Although brooding species have a shorter 

competency period (Harrison and Wallace, 1990) and a limited recruitment range (Ayre 

and Dufty 1994; Benzie et al. 1995), variations in larva dispersion may be linked to 

physiological and reproductive aspects and to the different environmental conditions of 

each habitat. 

 

Classification and systematics 

 
Classification and identification of octocorals is traditionally based on different 

morphological aspects of the colony including: (1) the shape and size, (2) pattern of 

branching, (3) distribution of the polyps, (4) structure of the axis and (5) colour (Bayer, 

1961). However, for classification at higher taxonomic ranks (e.g. order, suborder) 

additional histological features of the coelenteron and the sclerax are also considered. 
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Except for sea-pens (Pennatulacea) and blue corals (Helioporacea), which were 

assigned to different orders since the beginning of the last century (Hickson, 1906), the 

majority of octocorals (soft corals and gorgonians) underwent different taxonomic 

revisions. For instance, Kükenthal (1925) and Medsen (1944) divided the soft corals 

and gorgonians into two and six orders respectively, while Hickson (1930) split them 

into four orders (Alcyonacea, Gorgonacea, Stolonifera and Telestacea). Later Bayer 

(1981) recognized a three-order system (Alcyonacea, Helioporacea and Pennatulacea) 

that is currently followed by most octocoral taxonomists (Fabricius and Alderslade, 

2001). Based on the skeletal structure and composition, alcyonaceans have been further 

divided into six sub ordinal groups (Alcyoniina, Calcaxonia, Holaxonia, 

Protoalcyonaria, Scleraxonia and Stolonifera) but their taxonomic separation has not 

been corroborated by molecular analyses yet (Berntson et al. 2001; McFadden et al. 

2006). 

Species-level identification in octocorals is not a trivial procedure and is often 

hampered by the lack of diagnostic characters (Bayer, 1961; Sánchez, 2007) and the 

high morphological homogeneity (Prada et al. 2008) (Figure 0.4). The most suitable 

characters employed to distinguish octocoral genera and species is the study of the form 

of sclerites (Bayer, 1956, 1961). Among taxonomists, Valenciennes (1855) was the first 

to investigate sclerite diversity for species identification, later Kölliker (1865) 

confirmed the value of this character and proposed a new classification scheme based 

on the presence/absence and the shape of the different sclerites. Surprisingly, after 150 

years and despite the use of new integrative approaches, the comparative assessment of 

sclerite diversity for species-level identification remains a valid strategy among 

octocoral taxonomists. Nevertheless, the use of DNA barcoding —identification of 

biological species by comparing different DNA sequences chosen from a standard 

region of the genome— became an alternative as well as a compulsory method for a 

better investigation of the taxonomic relationships within morphologically difficult 

groups (McFadden et al. 2006, 2014; Vargas et al. 2014). 
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Figure 0.4: Different types of sclerites. Sclerites can be roughly grouped into mono-axial forms (rods, 

spindles and capstans) and flattered forms (scales, plates). Credits: rods: van Ofwegen and 

Hermanlimianto, 2014; spindles: DeVictor and Morton, 2007; capstans: van Ofwegen and 

Hermanlimianto, 2014; scales: courtesy of Dr. Peter Etnoyer (NOAA); plates: DeVictor and Morton, 

2007. 

 

Molecular markers and phylogeny 

 
A fragment of the mitochondrial cytochrome c oxidase subunit I (COI) was proposed 

as standard marker for metazoans (Hebert et al. 2003). Although this molecular marker 

has been widely used to discriminate species in many taxa, there are still evident 

limitations in other groups. In comparison to other animals, anthozoans have slow 

mitochondrial genome evolution rates (Shearer et al. 2002), making the use of COI, as a 

species-specific marker, unsuitable for this group (). In octocorals, the mitochondrial 

locus mtMutS, a mutS homolog that is exclusively found in the mitochondrial genome 

of octocorals (Pont-Kingdom et al. 1995, 1998; Culligan et al. 2000; France and 

Hoover, 2001) has been extensively used for molecular and phylogenetic analyses 

providng significant insights into the taxonomy of the subclass. Interestingly, Chen et 

al. (2009) reported that nuclear genome of some cnidarians evolves up to five times 

faster than their mitochondrial-genome, suggesting the necessity to consider nuclear 

markers for a better resolution. Nuclear markers such as the Internal Transcribed 

Spacers (ITSs), the ATP Synthetase Subunit  (ATPS) and the 28S ribosomal gene 
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have been recently used for taxonomy in different octocoral taxa (Haverkort-Yeh et al. 

2013; McFadden et al. 2012; 2012b). 

The phylogenetic studies so far published, which are mainly based on a restricted 

number of mitochondrial and nuclear loci, have shown a certain degree of 

incongruence. For instance, Berntson et al. (2001), using 18S rRNA, recovered 

Pennatulacea polyphyletic, in contrast McFadden et al. (2006) analysing two 

mitochondrial protein-coding genes (Nad2 and mtMutS) found Pennatulacea 

monophyletic and deeply nested within alcyonaceans. In the same study, McFadden and 

colleagues (2006) recovered polyphyly within each of the alcyonacean suborders. 

Similarly, recent works on deep-sea calcaxonians (Pante et al. 2012), South African 

stoloniferans (McFadden and van Ofwegen, 2012) and shallow-water scleraxonians 

(Cairns and Wirshing, 2015) corroborated McFadden’s results, suggesting that many 

octocoral groups require extensive taxonomic revisions. 

Although molecular analyses are nowadays considered standard procedures in 

taxonomy, methods such as DNA barcoding and Sanger sequencing will be quickly 

replaced by new high-throughput sequencing technologies (e.g. Next Generation 

Sequencing, NGS) which will allow to generate, in short periods, large datasets. Recent 

applications of NGS in systematics include the recovery of hundreds complete 

mitochondrial genomes (Maricic et al. 2010) and the identification of thousands of 

informative nuclear loci for shallow-scale phylogeny (Lemmon and Moriarty-Lemmon, 

2012). Similar approaches should be considered to investigate the systematics of the 

whole subclass Octocorallia, aiming to better understand the phylogenetic relationships 

at different taxonomic levels. 

 

Aims of the study 

 
In this study the species-level diversity of widespread shallow-water alcyonaceans 

was investigated using molecular approaches. In addition to the traditional methods 

(DNA barcoding) technologies such as Next Generation Sequencing (NGS) were 

employed to investigate the genetic variation within taxonomically difficult genera. 

Besides the use of standard molecular barcodes (e.g. COI, mtMutS and 28S rDNA), the 

complete mitogenome of different gorgonian genera has been sequenced and alternative 

variable traits such as the intergenic regions (IGRs) have been proposed for molecular 
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species identification. Genome-wide markers like Single Nucleotide Polymorphisms 

(SNPs) were also tested to delimit morphologically similar species and infer phylogeny. 

According to the Australian Department of the Environment 

(https://www.environment.gov.au/biodiversity/conservation/hotspots) eight out of 

fifteen national biodiversity hotspots are in Western Australia (WA). Although several 

biodiversity surveys have been recently performed, the octocoral diversity of the WA 

reefs remains poorly studied. Using Western Australian taxa as a case in point, was 

estimated the species richness and phylodiversity of ecologically important soft corals. 

In particular, the species-level diversity of species-rich genera such as Lobophytum and 

Sarcophyton was assessed using different molecular markers and species delimitation 

methods (Chapter 1). 

The Mediterranean Sea is considered a marine biodiversity hotspot. Despite the fact 

that 30% of the octocoral species are endemics little is known about their evolutionary 

history. In Chapter 2, the gorgonians Paramuricea clavata and P. macrospina were 

analysed to evaluate the mitogenomic variation and the intraspecific diversity in relation 

to the Atlantic congeners. The mitochondrial sequences obtained were used to 

reconstruct the biogegraphic history of the genus with particular attention to the 

Mediterranean endemics. 

In Chapter 3, the complete mitochondrial genome of the Mediterranean Leptogorgia 

sarmentosa and that of some of the Atlantic and eastern Pacific congeners were 

sequenced aiming to investigate the intarspecific diversity and nucleotide variation 

within the genus. In order to better understand the evolutionary history of the genus, a 

time-calibrated phylogeny was performed. 

Given the high species richness recently shown in the Gulf of Chiriquí (eastern 

Pacific, EP), the phylognetic relationships of shallow-water genera such as Muricea and 

Pacifigorgia have been tested using NGS tecnologies. In particular, the nucleotide 

diversity and the species-level identificstion within Muricea was explored in Chapter 4. 

Using Single Nucleotide Polymorphisms (SNPs), the delimitation of species boundaries 

and the phylogenetic relationships between Pacifigorgia species were addressed in 

Chapter 5. 
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Abstract 

The zooxanthellate octocoral genera, Lobophytum and Sarcophyton are dominant in 

many Indo-Pacific and Red Sea benthic communities. They occupy large portions of the 

primary substrate forming, in some localities, reef-like structures. High intra-specific 

morphological variability is common among these organisms making many species 

difficult to identify. As such, the use of molecular methods is attractive as 

complementary sources of taxonomic information. We used three molecular markers, 

mtMutS, a mismatch repair protein exclusively found in the mitochondrial genome of 

octocorals, the COI and the 28S rDNA. Two different species delimitation methods 

were utilised, the Automatic Barcode Gap Discovery (ABGD) and Bayesian Poisson 

Tree Processes (BPTP), to rapidly assess the species richness of the taxonomically 

challenging genera, Lobophytum and Sarcophyton along the coast of north Western 

Australia. Using these markers we also provide a phylogenetic analysis and explore 

their phylodiversity. Based on a non-coding region of the plastid psbA minicircle 

(psbA
ncr

) we assessed the molecular diversity of the zooxanthellae (Symbiodinium) 

associated with Lobophytum and Sarcophyton in this region. Our phylogenetic results 

were in agreement with previous studies in which Sarcophyton and Lobophytum species 

were divided into three main clades. Number of estimated entities varied according to 

the molecular marker and delimitation method used. Overall, the amount of hypothetical 
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species inferred with the BPTP method resulted higher than that derived by the ABGD. 

Finally, among the samples collected we found a high phylogenetic diversity and our 

analyses on the Symbiodinium diversity do not showed any specific association between 

the symbiont and their hosts. 

 

Chapter 2: 
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Abstract 

Among the Mediterranean plexaurids, four species are endemics and despite their 

ecological importance comprehensive studies on the evolution and biogeography of 

these organisms are lacking. Here we explore the mitogenomic variability of two 

endemic, ecologically important Mediterranean Paramuricea species. We assess their 

phylogenetic relationships and provide first insights into their evolution and 

biogeography. Complete mitogenome sequences of Paramuricea clavata and 

Paramuricea macrospina were obtained using long range PCR, primer-walking and 

Sanger sequencing. For an enlarge sample of Paramuricea species, maximum 

likelihood and Bayesian phylogenetic trees of the mitochondrial gene mtMutS were 

obtained and used to study the biogeographic history of Paramuricea through a 

statistical Dispersal-Vicariance method (S-DIVA). Divergence time was estimated 

under a strict molecular clock model in BEAST using published octocoral mutation 

rates. Our results revealed high nucleotide diversity (2.6%) among the two 

Mediterranean endemics; the highest mutation rates were found in the mtMutS, Nad4 

and Nad5. In addition, we found length polymorphisms in several intergenic regions 

and diversity in mitochondrial genome size. The red gorgonian Paramuricea clavata 



13 
 

was closely related to the eastern Atlantic P. grayi rather than its Mediterranean 

congener, P. macrospina. Our biogeographic results provide evidence for the 

independent speciation of the Mediterranean species and point to a Miocene origin of 

the two endemics, highlighting the role played by the Messinian Salinity Crisis in the 

evolutionary history of Mediterranean Paramuricea. 

 

Chapter 3: 
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(Gorgoniidae) 

Authors: Angelo Poliseno, Christian Feregrino, Gert Wörheide, Sergio Vargas 
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Abstract 

Molecular analyses of the ecologically important gorgonian genus Leptogorgia are 

scant and mostly dealing with few species from restricted geographical regions. Here 

we explore the phylogenetic relationships and the evolutionary history of Leptogorgia 

using the complete mitochondrial genomes of five Leptogorgia species from different 

localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera 

of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific 

diversity, variable nucleotide substitution rates and, for some species, novel genomic 

features such as ORFs of unknown function. The phylogenetic analyses using complete 

mitogenomes and an extended mtMutS dataset recovered Leptogorgia polyphyletic and 

the species considered in the analyses were split into two defined groups corresponding 

to different geographic regions, namely the eastern Pacific and the Atlantic-

Mediterranean. A time-calibrated phylogeny showed that the separation of eastern 

Pacific and western Atlantic species started ca. 15 Mya and suggested a recent 

divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. This last 

speciation event could be related to the reopening of the Gibraltar Strait after the end of 

the Messinian crisis (5.96-5.33 Mya). Our results also revealed high inter-specific 

diversity among eastern Atlantic species highlighting a potential role of the 
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geographical diversification processes and geological events occurring during the last 

30 Ma in the Atlantic on the evolutionary history of these organisms. 
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Abstract 

We sequenced the complete mitogenomes of two eastern tropical Pacific gorgonians, 

Muricea crassa and Muricea purpurea, using NGS technologies. The assembled 

mitogenomes of M. crassa and M. purpurea were 19,586 bp and 19,358 bp in length, 

with a GC-content ranging from 36.0% to 36.1%, respectively. The two mitogenomes 

had the same gene arrangement consisting of 14 protein-coding genes, two rRNAs and 

one tRNA. Mitogenome identity was 98.5%. The intergenic regions between COB and 

NAD6 and between NAD5 and NAD4 were polymorphic in length with a high level of 

nucleotide diversity. Based on a concatenated dataset of 14 mitochondrial protein-

coding genes we inferred the phylogeny of 26 octocoral species. 
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reagents/materials/analysis tools: GW, HMG, SV. Wrote the paper: AP. Revised the 

paper: GW, SV. 

This chapter will be submitted as a standalone publication to the Journal “Molecular 

Ecology” 

 

Abstract 

Systematics and classification of octocorals is traditionally based on the analysis of 

morphological characters, which are often conserved and taxonomically ambiguous for 

species delimitation. As such, the use of short-DNA fragments (molecular barcodes) 

became a standard procedure for the taxonomy of these organisms. Two-third of the 

~12,000 octocoral sequences publicly released in the last twenty years were obtained 

using Sanger-based methods and the majority concern mitochondrial DNA. In contrast, 

the genomic data available are still limited and the number of nuclear loci investigated 

for most of the families is poor. The application of molecular technologies such as Next 

Generation Sequencing (NGS) has revolutionised the experimental approaches, 

allowing, even in non-model organisms, to recover large datasets. The vast amount of 

data generated by NGS is a potential source of sequences for phylogenetic studies. In 

particular the use of a variety of nuclear loci may be useful to better explore the 

phylogenetic relatedness among morphological homogeneous organisms such as 

gorgonians (Octocorallia: Gorgoniidae). Using a Genotyping by Sequencing (GBS) 

method, we investigate the phylogenetic relationships among nine eastern Pacific 

gorgonian species of the genus Pacifigorgia. Based on genome-wide Single Nucleotide 

Polymorphisms (SNPs) we delimit species and infer phylogeny. Besides the SNPs 

recovered, the mitochondrial reads obtained for each of the Pacifigorgia specimens 

were also utilised to infer mitochondrial phylogeny. Similar to what has been recently 

shown in other octocoral genera (e.g. Chrysogorgia and Paragorgia), our results 

showed divergence between the phylogenetic trees inferred from SNPs and 

mitochondrial data,. The species delimitation carried out on a set of ca. 500 SNPs using 

Bayes Factor Delimitation (BFD*) methods disagree with the taxonomy of the genus 

and suggests a possible presence of cryptic species boundaries as the result of adaptive 

speciation. The low interspecific variation detected among Pacifigorgia species may 

have been driven by rapid radiation events recently occurred in the Gulf of Chiriquí 

(eastern Pacific). 
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Chapter 1 

 

Rapid molecular phylodiversity survey of Western 

Australian soft-corals: Lobophytum and Sarcophyton 

species delimitation and symbiont diversity 

 
 

1.1 Introduction 

Soft corals are structural components of coral reef communities (Tursch and Tursch, 

1982; McFadden et al. 2010) and are among the most important contributors to the total 

biomass of Indo-Pacific coral reef systems where they may cover up to 25% of the total 

reef substratum (Dinesen 1983; Fabricius and Alderslade, 2001). Some groups, such as 

the alcyoniid genus Sinularia, are active reef-builders, incorporating calcareous sclerites 

into the rock layers (Jeng et al. 2011). Despite their ecological importance, the diversity 

of octocorals remains poorly known and new species, genera and families are still 

discovered and described (e.g. Breedy et al. 2012; McFadden and van Ofwegen, 2013; 

Bryce et al. 2015). 

Among octocorals, species within the genera Lobophytum, Sarcophyton and 

Sinularia are zooxanthellate and, despite their slow growth, often cover large portions 

of substrate in shallow reefs (Benayahu and Loya, 1981; Fabricius, 1995, 1997; 

Fabricius and Dommisse, 2000; Bastidas et al. 2004). Taxonomic identification in these 

genera involves the dissection of the colonies, a difficult and time consuming process 

and hence morphological identification is often restricted to genus-level determination 

only. In addition, intra-specific variability and the high number of described species 

hamper species level identification creating uncertainty in the taxonomy (McFadden et 

al. 2006, 2009, 2011). Despite these difficulties, identification is essential for 

biodiversity assessment and conservation management (Jamison and Lasker, 2008), 

especially in under-sampled areas with potentially high numbers of endemic and new 

species. 
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DNA barcoding and Sanger sequencing (Hebert et al. 2003; Hebert and Gregory, 

2005; Stoeckle and Hebert, 2008) have been widely used as rapid methods for first level 

taxonomic screening due to: (i) their cost effectiveness, (ii) quick implementation and 

execution, and (iii) the lack of specific taxonomic skills required to increase the rate of 

specimen identification. Taxonomic determinations and phylogenetic studies in 

octocorals, in particular, have used multilocus DNA barcodes (i.e. Cob, COI, mtMutS, 

Nad2 ITS2 and 28S rDNA) (Sánchez et al. 2003; McFadden et al. 2006; McFadden and 

van Ofwegen, 2013; Vargas et al. 2014; Wirshing and Baker, 2015). Furthermore, DNA 

barcoding-based taxon identification and species delimitation have been successfully 

applied to Red Sea and Palauan octocorals (Haverkort-Yeh et al. 2013; McFadden et al. 

2014). Here we investigate the diversity of two soft coral genera from different 

locations in north Western Australia (WA) using a molecular approach that includes the 

sequencing of partial mtMutS, COI and 28S rDNA genes. We use the Automatic 

Barcode Gap Discovery (ABGD) method (Puillandre et al. 2011) to estimate primary 

species hypotheses (PSHs) and the Poisson Tree Processes (PTP) model (Zhang et al. 

2013) to infer putative species boundaries, otherwise difficult to assess due to the lack 

of morphological descriptions. Finally, we compare the phylogenetic diversity within 

Kimberley locations and among different geographical areas (e.g. WA and Palau) and 

analyse the Symbiodinium diversity between genetically different Lobophytum and 

Sarcophyton sampled from different Western Australian reefs. Our results provide a 

first assessment of the molecular phylogenetic diversity of the important shallow reef 

octocoral genera Sarcophyton and Lobophytum from WA and attempt to delimit their 

species using molecular barcodes. In addition, our study provides first insights into the 

symbiont diversity of these diverse and abundant soft coral genera. 

 

1.2 Material and Methods 

 

1.2.1 Sample collection and identification 

Lobophytum and Sarcophyton specimens were collected as part of a Western 

Australian Museum, multi-year biodiversity survey of the Pilbara and Kimberley 

regions of WA. Collections were made intertidally and by SCUBA, at depths ranging 

from 0–20 meters at the Montebello and Murion Islands (Pilbara) and from the 

Kimberley at Hibernia, Long and Ashmore Reefs, at Rowley, Heywood, Eugene 
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McDermott and Vulcan Shoals, and at Cassini Island. Specimens were photographed in 

situ and on deck, and then preserved in 70% ethanol with subsamples for DNA analysis 

fixed in absolute ethanol and stored at room temperature until further examination. All 

collected specimens were sorted in the field based on a rapid morphological 

examination and assigned either to Lobophytum or Sarcophyton. Further analyses were 

performed independently using a molecular approach based on DNA barcoding. 

 

1.2.2 Molecular analysis 

One hundred and two (102) specimens were available for molecular work. DNA 

extraction was carried out using either 96-well plates following a modified Ivanova et 

al. (2006) protocol (see Vargas et al. 2012), a modified CTAB phenol-chloroform 

protocol (Porebsky et al. 1997) or the Macherey-Nagel NucleoSpin
® 

Tissue kit (M&N, 

Düren, Germany). The quality of the DNA extracts was assessed visually on 1.0% 

agarose gels and the DNA concentration (ng/µL) was measured on a Nanodrop 1000. 

Subsequently, the 5’ end of the mitochondrial gene mtMutS was amplified using primers 

ND4-2599F and MUT-3458R (Sánchez et al. 2003). Primers COII8068F (McFadden et 

al. 2004) and COIOCTr (France and Hoover, 2001) were used to amplify the COII-igr-

COI region. Additionally, a fragment of about 800 bp of the 28S rDNA was amplified 

using the conserved forward primer 28S-C2-fwd (Chombard et al. 1998) and a specific 

reverse primer for metazoa (5’-CATCGCCAGTTCTGCTTAC-3’) (Voigt et al. 2012). 

In order to assess the zooxanthellae diversity associated with the Sarcophyton and 

Lobophytum samples, the non-coding region of the plastid psbA minicircle (psbA
ncr

) of 

the soft coral endosymbionts (Symbiodinium sp.) was amplified using the primer pairs 

7.4-Forw, 7.8-Rev (LaJeunesse and Thornhill 2011). Amplifications were performed 

using 3-step PCR in 12.5 µL volumes containing 2.5 µL of 5X Green GoTaq
®
 Flexi 

Buffer, 1.5 µL of 25 mM MgCl2, 0.5 µL of 10 mM dNTP, 0.5 µL of each primers, 0.1 

µL of 5 U x µL
-1

 GoTaq
®
 DNA Polymerase (Promega, Madison, WI, USA). PCR 

products were purified by precipitation with one volume of 20% (w/v) 

polyethyleneglycol 8000 in 2.5molL
-1

 NaCl and were sequenced directly using the 

BigDye 3.1 chemistry (Applied Biosystems, Foster City, CA, USA) with the same 

primers as for PCR. Sequences were assembled into contigs, edited and aligned using 

the program GENEIOUS 6.0.5 (Kearse et al. 2012). Soft corals sequences will be 

deposited in the European Nucleotide Archive. 
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1.2.3 Phylogenetic analyses 

MtMutS sequences were assembled, aligned and compared against those analysed by 

McFadden et al. (2006, 2009, 2014), Haverkort-Yeh et al. (2013) and Benayahu et al. 

(2012) using the program GENEIOUS 6.0.5. Due to the limited number of publicly 

available Lobophyton and Sarcophyton COI and 28S rDNA sequences, the sequences 

obtained were only compared against those analysed by McFadden et al. (2014). 

Reduced datasets, including sequences obtained from Western Australian material, were 

generated for each molecular marker and exclusively used for species delimitation (see 

below). A further reduced mtMutS dataset, including sequences obtained from WA and 

Palau (McFadden et al. 2014), was generated to assess the phylogenetic diversity 

between these areas (see below). All the sequences, for each dataset, were aligned in 

MUSCLE with default options using Seaview 4.5.3 (Gouy et al. 2010). The 

mitochondrial alignments generated (i.e. COI and MutS) were first analysed 

independently and then concatenated in a single mitochondrial dataset consisting of 

about 1,600 nucleotide positions. The concatenated (COI+mtMutS) and the 28S 

alignments were finally used to infer mitochondrial and nuclear gene phylogenies, 

respectively. All the alignments used in this study will be deposited in the Open Data 

LMU. The best-fit substitution models for the above-mentioned alignments (see 

Appendix 1.5.1) were selected with the Akaike Information Criterion (AIC) in 

jModeltest 2.1.3 (Darriba et al. 2012). The ML and Bayesian phylogenies were obtained 

with RAxML 7.2.8 (Stamatakis, 2006) and MrBayes 3.2.5 (Ronquist and Huelsenbeck, 

2003), respectively. Maximum Likelihood analyses were performed under the 

GTRGAMMA substitution model, rate variation was modelled using a discrete gamma 

distribution with 4 categories (Yang, 1994) and 1000 pseudo-replicates were included 

for bootstrap analyses. For the Bayesian analyses the Markov Chain Monte Carlo 

(MCMC) was ran for 10 000 000 generations, sampling trees at 500-generation intervals 

until convergence between runs was achieved. A standard deviation of the split 

frequencies <0.009 was assumed to indicate convergence. For each analysis, 

convergence to the stationary distributions was additionally assessed in Tracer 1.6.0 

(Rambaut et al. 2014). Upon completion, 25% of the sampled trees were discarded as 

burn-in. 
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1.2.4 Species delimitation 

Species delimitation was performed using two independent methods, the Automatic 

Barcode Gap Discovery (ABGD) (Puillandre et al. 2011) and the Poisson Tree 

Processes (PTP) (Zhang et al. 2013). The ABGD method relies on genetic distances to 

sort DNA sequences into primary species hypotheses (PSHs) using a priori defined 

threshold (i.e. the “barcode gap”). The  ayesian PTP infers putative species boundary 

starting from a phylogenetic tree and counting the number of substitutions inferred by 

the length of the branches. Although the ABGD and the Bayesian PTP use different 

input information (i.e. sequence alignments and phylogenetic trees, respectively) to 

delimit species, both methods provide information on the number of different 

candidate/hypothetical species in a collection of sequences. For the ABGD method we 

ran the analysis online (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) with 

default options using the Kimura 2-parameters as an evolutionary model. Bayesian PTP 

analysis was performed in the bPTP web server (http://species.h-its.org/ptp/) using the 

rooted “best tree” generated by RAxML. The analysis was run for 500,000 generations 

using a random number seed and a thinning of 100. A quarter of the sampled trees were 

discarded as burn-in. Species delimitation probability values were calculated with the 

Bayesian method by considering the frequency of the nodes across the sampling. 

 

1.2.5 Phylodiversity 

The mtMutS Maximum Likelihood topology was used to estimate and compare the 

inclusive phylogenetic diversity (PDI) (Lewis and Lewis, 2005) of Kimberley (Ashmore 

Reef; Rowley Shoals), Pilbara (Montebello Islands) and Palau. The inclusive 

phylogenetic diversity corresponds to the length of the path starting at the root of the 

tree and leading to all branches connecting the members of a specific group (Lewis and 

Lewis, 2005; Vargas et al. 2014, 2015). Samples included in the dataset used for PDI 

analyses were collected across a broad geographic range, however the PDI was only 

estimated for Kimberley, Pilbara and Palau, as the number of samples from other 

regions was typically low. In order to account for different sampling efforts across 

areas, PDI values obtained for each location were compared using rarefaction (Sanders, 

1968). A python script for tree-based rarefaction analysis was provided by Vargas et al. 

(2014). 

 

http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://species.h-its.org/ptp/
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1.3 Results 

 

1.3.1 DNA Sequences and alignments 

Among the 102 specimens analysed we obtained 82 sequences for mtMutS, 78 for 

COI and 72 for 28S rDNA (see Appendix 1.5.2 for detailed list of the samples). MtMutS 

sequences were used for phylogenetic analyses, species delimitation and phylodiversity 

investigations, while COI and 28S sequences were considered only for phylogenetic and 

species delimitation analyses. We obtained both COI and mtMutS for 57 specimens and 

these were aligned with those available from Palau (McFadden et al. 2014). A 

concatenated alignment (COI+MutS) including 126 taxa and 1,642 nucleotide positions 

was further used for phylogenetic analyses and for comparison against the nuclear (28S) 

phylogeny. A clear length polymorphism was observed in the 28S sequences with some 

of the Palauan specimens having a shorter sequence (140 bp) compared to other 

specimens. The 28S dataset consisted of 142 taxa and 624 nucleotide positions. 

Within the 102 specimens analysed we obtained 41 Symbiodinium sequences, 19 

derived from Lobophytum specimens, 21 from Sarcophyton and one from Sinularia 

originating from six Kimberley and two Pilbara reefs.  Amplification of the non-coding 

region of psbA
ncr

 was not possible for the majority of the samples collected from 

Cassini Island and Long Reef. However, the blast sequence analyses performed on the 

obtained non-ambiguous and unique sequences revealed that the majority of WA 

Lobophytum and Sarcophyton assemblages investigated are dominated by 

Symbiodinium clade C3, while only one specimen (GW8669) harboured a different 

Symbiodinium lineage (S. goreaui). 

 

1.3.2 MtMutS phylogeny 

The phylogenetic trees obtained by Maximum Likelihood and Bayesian methods 

have the same topology, differing only in the support values reported for some 

branches. The topology was consistent with previous studies (McFadden et al. 2006) 

and included three well supported clades, namely Sarcophyton (S), Lobophytum (L) and 

Mixed (M) (see Figure 1.1). Except for three specimens (GW8639, GW8651 and 

GW8652) grouping in a small, well-supported clade (Clade 1) and also including 

Lobophytum crassocaule and Lobophytum sp. (DQ280951), the remaining specimens 

were split into the S, L and M clades of McFadden et al. (2006). Unexpectedly, one 
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sample analysed (GW8680) was sister to Sinularia digitata and Sinularia finitima and 

this clade was used to re-root the tree. Among the 82 specimens analysed, 34 were 

placed in the Sarcophyton clade and were split into two main clades further divided in 

subclades with slight differences in the support values of some internal nodes in both 

analyses. The phylogenetic relationships within these clades were well defined and each 

of the sub-clades included several specimens assigned to a restricted number of species 

(Figure 1.1). The Bayesian tree reported higher support for the shallower nodes, yet the 

phylogenetic placement of some samples remained unresolved (e.g. GW8637 and 

GW8689). 

Figure 1.1 Phylogenetic tree of mtMutS. Western Australia specimens are in bold. Colours highlight the 

three main clades of the tree (green, S=Sarcophyton; blue, L=Lobophytum and red, M=Mixed) and the 

clade including S. crassocaule (clade 1). Circles at the nodes indicate bootstrap (BP) and posterior 

probability (PP) values; filled black circles indicate high support for both ML ( P ≥70) and  ayesian (PP 

≥0.95) analyses. Split circles indicate high support for one analysis only (black: high support; grey: low 

support); the left and right half of the circles refer to ML and Bayesian analyses, respectively. 
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Notably, Sarcophyton glaucum grouped in five distinct genetic sub-groups, four of 

which also included Western Australian specimens. The Lobophytum clade was divided 

into three sub-clades, supported only in the Bayesian analysis. The internal structure of 

these was well defined. Twenty-six specimens from WA were included in this clade and 

were distributed in each of the Lobophytum subclades. L. cryptocormum, L. pauciflorum 

(KF915646-48), GW8621 and GW8626 were considerably different from all other 

samples in this clade. We found high genetic variability among specimens assigned to 

Lobophytum crassum, which formed four genetically distinct sub-groups. The third 

main clade, the mixed clade (M), was sister to Sarcophyton and Lobophytum clades 

with high support values in both analyses and included 18 WA specimens. L. patulum 

and GW8688 were remarkably different from the other species grouped in this clade. 

Specimens GW24354, GW24356 and GW8655 grouped in a clade, supported only by 

the Bayesian analysis, including also a specimen of L. sarcophytoides (DQ280579). 

Two S. ehrenbergi specimens (DQ280513, DQ280515) were sister to S. auritum and 

GW8646, whereas the remaining specimens assigned to S. ehrenbergi had identical 

sequences. 

 

1.3.3 Mitochondrial and nuclear phylogenies 

Some discrepancies can be observed between the phylogenies derived from the 

analyses of mitochondrial (COI+MutS) and nuclear (28S) genes (Appendix 1.5.3 and 

Figure S2). In the mitochondrial phylogeny, the relationship between S and L clades 

was not resolved. Nodes with bootstrap values <70 and posterior probabilities <0.95 

were collapsed into polytomies and, as a result, those specimens formerly included into 

S and/or L clades were placed in a single main clade (S+L) (see Appendix 1.5.3). 

Within S+L clade, 55 Sarcophyton and 34 Lobophytum specimens grouped into five and 

three clades, respectively. These specimens were sister to a well-supported clade (M) 

including 27 specimens. Sarcophyton and Lobophytum specimens were divided into two 

major clades in the nuclear phylogeny. One clade was further split into three main 

clades (S, L and L1) and two smaller groups (clade 1 and clade 2), which included three 

specimens respectively (Appendix 1.5.4). A second well-supported clade (M) consisted 

of 23 Sarcophyton and nine Lobophytum specimens. As in the mitochondrial phylogeny 

(MutS+COI), sample GW8688 resulted remarkably different from the other species 

grouped in the Mixed clade. 
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Notably, specimens included in clade 1, which were sister to the Sarcophyton and 

Lobophytum clades in the mitochondrial trees, were not closely related in the 28S 

phylogeny. The position of sample GW8660 was also dissimilar; this sample nested 

within the S+L clade in the mitochondrial phylogeny, but in the 28S tree was included 

in a well-supported clade (clade 2) together with GW24352 and GW8667. Interestingly, 

the nuclear phylogeny showed a clear separation between the WA and Palauan 

specimens included in the Sarcophyton clade. 

 

1.3.4 Species delimitation 

The Automatic Barcode Gap Discovery and the Bayesian Poisson Tree Processes 

analyses yielded different numbers of putative species. For mtMutS, the ABGD method 

recovered a total of 30 PSHs (Figure 1.2 and Appendix 1.5.5) with an intra-specific 

divergence threshold of 0.001. For the Bayesian PTP analysis, the most supported 

partition identified using a simple heuristic search resulted in 35 putative species. 

Except for GW8680 and clade 1 formed by GW8639, GW8651 and GW8652, the 

remaining specimens were divided into different groups and/or candidate species within 

the three main clades (see Figure 1.2 and Appendix 1.5.5). Estimation of hypothetical 

species was different according to the methods used, varying in both composition and 

the number of specimens included in each PSH cluster. Overall, the BPTP method 

recovered a higher number of putative species. In the Mixed clade, for 18 specimens the 

ABGD and BPTP analyses recognised 12 and 11 different PSHs, respectively. Within 

Sarcophyton, 34 specimens were split into four (ABGD) and ten candidate species 

(BPTP). Twenty-six samples included into the Lobophytum clade were assigned to 12 

and 14 putative species, respectively. Except for four putative species, which reported 

posterior delimitation probability values ≥0.95, the remaining were poorly supported. 

Regardless of the method used to delimit species, only nine specimens out of 85 (10%) 

were assigned to the same hypothetical species clusters (Appendix 1.5.5). Species 

delimitation using COI and 28S recovered 37 and 31 PSHs with ABGD and 62 and 46 

putative species with BPTP. Among the markers used for species delimitation, the 

number of hypothetical species recovered using COI was the highest. 
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Figure 1.2 Phylogenetic tree of mtMutS based on Maximum Likelihood analysis and species delimitation 

inferred with the Automatic Barcode Gap Discovery (black columns) and Bayesian Poisson Tree 

Processes (blue columns). Black numbers on the right side of the tree correspond to the Primary Species 

Hypothesis clusters (ABGD) and putative species (BPTP), respectively. Nodes with low support values 

(BP <70) have been collapsed into polytomies. 
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1.3.5 Phylodiversity 

The PDI analyses revealed high variation within the Western Australian locations 

(Figure 1.3). Ashmore Reef was the most diverse, while Rowley Shoals had the lowest 

PDI values. Overall, the Montebello Islands and Ashmore Reef had higher 

phylodiversity than Palau at the comparable sampling efforts. Interestingly, the 

phylogenetic diversity in the two ocean regions (WA and Palau) kept constantly 

growing in relation to the accumulated number of samples. 

 

 
Figure 1.3 Inclusive phylogenetic diversity of Lobophytum and Sarcophyton specimens from Palau and 

from three WA locations (Ashmore Reef, Rowley Shoals and Montebello Islands). 
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1.3.6 Symbiodinium phylogeny 

The phylogenetic tree of the non-coding region psbA
ncr

 was largely unresolved and 

the majority of the branches were not supported (Figure 1.4). We did not find any 

specific association between the Symbiodinium type and their hosts, but genetic 

variation (i.e. nucleotide substitutions and indels) was found among the sequenced 

symbionts. This variation was not explained by geographic segregation, as no 

phylogeographic pattern could be observed in the analyses. 

Figure 1.4 Phylogenetic reconstruction of Symbiodinium spp. A: phylogenetic tree of psbA
ncr

 including 

different Symbiodinium clades (A, B, C, D, G); Symbiodinium types C3 and C1 are enclosed in grey and 

brown boxes respectively. B: sampling sites along Western Australia. C: phylogenetic relationships 

within the Symbiodinium sp. C3 harbored by WA Lobophythum and Sarcophyton. 

1.4 Discussion 

 

1.4.1 Phylogeny, phylodiversity and species delimitation 

Mitochondrial tree topologies (MutS and COI+MutS) were consistent with those 

obtained in previous studies (McFadden et al. 2006; Aratake et al. 2012) and show the 

separation of Sarcophyton and Lobophytum in three main clades with a fourth well-

supported group (clade 1), including S. crassocaule and one unidentified Lobophytum 

species from Okinawa (DQ280591). The phylogenetic placement of GW8639, GW8651 

and GW8652 outside the three main clades has significant implications for the 

taxonomy of these genera as already proposed for Sarcophyton crassocaule. In this 

respect, based on the colony shape, S. crassocaule has been described as a typical 
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Sarcophyton-clade species, while its interior basal sclerites, to some degree, resembled 

those of Lobophytum (McFadden et al. 2006). Similarly, GW8639 appears 

morphologically to be a typical Sarcophyton-clade species with a smooth disc distinct 

from a stalk, while in the interior thick spindles with girdles of warts, typical for 

Lobophytum, are present. Based on the colony shape, GW8651 and GW8652 conform 

to the Mixed clade. They have massive, flat colonies with discs not distinct from the 

stalk and with low, rounded ridges. The sclerites have Lobophytum-clade characters 

with surface clubs between 0.10-0.27 mm long and the interior sclerites being ovals, 

0.20-0.32 mm long, and with two to three girdles of warts. Why these morphologically 

different species are united within the same clade cannot be explained at this stage. In 

order to better understand the phylogenetic relationships among S. crassocaule and 

related samples, further molecular and morphological analyses will be required to 

clarify the taxonomy of those specimens that seem to neither belong to the Lobophytum 

or Sarcophyton clades. 

Concerning the mtMutS phylogeny, the Western Australian specimens were spread 

across the tree and some (e.g. GW8637 in Sarcophyton clade, GW8688 in the Mixed 

clade) were, in terms of genetic distance, markedly distinct from the other samples 

included in the tree. The colony of GW8637 consists of a smooth disc with an 

extremely convoluted margin and a distinct stalk and sclerites typical for the 

Sarcophyton-clade. No obvious morphological cues suggest why it is distinctly different 

from the other Sarcophyton specimens as genetic distance indicates. GW8688 clearly 

fits morphologically into the Mixed clade. The colony has a smooth disc, which is not 

distinct from the stalk, and superficially resembles a Lobophytum with a flat surface. 

The sclerites of the surface of the polypary are small, well-formed clubs and the colony 

interior contains long sticks and distinct spindles. These specimens deserve further 

taxonomic investigations as they may represent undescribed, endemic species. Detailed 

morphological determinations, involving sclerite analyses from five different parts of 

the colony will be necessary for detailed species descriptions and to complement the 

genetic findings. The use of mtMutS has been criticised because of the lack of resolution 

for species-level identification (McFadden et al. 2011). However, by using this marker 

we were capable of inferring a restricted number of putative species, which can be 

considered as a baseline for detailed morphological species determinations. MtMutS, 

despite its limitations, appears to be a powerful tool for the rapid sorting of specimens 

collected from potentially species-rich localities. 
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We would also like to comment on the use of nuclear markers (e.g. 28S rDNA) as a 

complementary source for molecular studies and DNA barcoding. A ~800 bp fragment 

of the 28S nuclear ribosomal gene has been recently used to reconstruct the 

phylogenetic relationships of different octocoral groups (McFadden and van Ofwegen, 

2012; Bryce et al. 2015; Cairns and Wirshing, 2015). Nevertheless, its application for 

phylogenetic studies and species delimitation in specious genera in need of taxonomic 

revisions, such as Lobophytum and Sarcophyton, has so far been ignored. Overall, the 

genetic distances of 28S gene sequences obtained among and within the three main 

clades (data not shown) were higher than those obtained with the mitochondrial loci. 

This, in addition to the high genetic divergence between WA and Palauan Sarcophyton 

species, suggests that 28S rDNA can be more extensively applied to resolve species-

level questions. However, the current limited taxon sampling of 28S sequences from 

octocorals, unlike the mtMutS, at present do not allow comprehensive phylogenetic 

reconstructions. Our results demonstrate the importance of a multi-gene approach, 

including both mitochondrial and nuclear genes that typically have different mutation 

rates, to enhance our understanding of the diverse octocorals. 

Regarding the WA Lobophytum and Sarcophyton species richness, our estimates lead 

to a number of primary species hypotheses ranging from 30 (mtMutS) to 37 (COI) with 

the ABGD method, and from 35 (mtMutS) to 62 (COI) with the Bayesian PTP analyses. 

Cross-comparisons between PSHs obtained by using different molecular markers were 

not possible due to the different number of specimens considered among the samples 

used for species delimitation. However, the number of hypothetical species derived by 

BPTP was generally higher than obtained with ABGD. Based on material deposited at 

the Western Australian Museum, Bryce and Sampey (2014) identified 20 Sarcophyton 

and Lobophytum species collected from the Kimberley area. Thus, the number of 

species inferred by the Bayesian PTP method could be inflated and the ABGD 

prediction might be more realistic and most likely reflect the real diversity of the area. 

Species delimitation methods exclusively based on DNA sequences can provide 

accurate approximations to the species richness estimated using classical methodologies 

and can be used to canalize efforts to investigate the morphology and ecology of 

octocorals. 

Finally, we observed that the phylogenetic diversity of Western Australian areas 

sampled was higher than that of Palau. In particular, among the Western Australian 

locations sampled, Ashmore Reef reported the highest PDI values. This result is in 
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agreement with Bryce and Sampey (2014) finding that WA octocoral diversity appears 

to be higher at offshore sites, like Ashmore Reef, than at inshore and coastline locations. 

The high biodiversity of Ashmore Reef in the North West Shelf bioregion can be 

attributed to the high habitat diversity and the close proximity and biogeographic 

affinity with the species-rich Central Indo-West Pacific region (Wilson, 2013). 

 

1.4.2 Symbiodinium diversity and ecological evidences 

The multi-copy internal transcribed spacer 2 (ITS2) has been formerly used to 

compare the Symbiodinium diversity among coral populations inhabiting different reefs 

(Stat et al. 2011; Arif et al. 2014). Both psbA
ncr 

and ITS2 show high intragenomic 

variation. However, psbA
ncr

, considered the fastest evolving genomic marker so far 

known for Symbiodinium (LaJunesse and Thornhill 2011), has less overlap between 

intragenomic, inter-individual and inter-species diversity than ITS2, resulting in a 

suitable marker to infer phylogenetic relationships on close-related species. In addition, 

the rapidly evolving plastid marker has a higher diversity on broad geographic distances 

(LaJunesse and Thornhill 2011). PCR amplification, using specific primers for 

Symbiodinium clade C psbA
ncr

 haplotypes, was successful for the majority of the 

samples suggesting a high level of symbiont specificity for WA Lobophytum and 

Sarcophyton species. However, ~23% of the sequences obtained show several 

ambiguous nucleotides and double peaks, most likely due to the presence of mixed 

community symbionts as already proposed for the scleractinian coral, Montipora 

capitata (Stat et al. 2011) or intragenomic variation. On the other hand, the paucity of 

positive amplification for those specimens collected from Cassini Island and Long Reef 

suggests a possible presence of multiple Symbiodinium clades. However, this needs to 

be further validated by testing different primer pairs and screening additional samples. 

Beyond the lack of phylogeographic structure and host specificity, we reported on 

noteworthy ecological data. For instance, the sample collected from Vulcan Shoals 

(GW8669) was the only one to host a distinct Symbiodinium lineage (C1). 

Symbiodinium types C1 and D appear to have a higher tolerance to environmental 

stresses than type C3 (see Abrego et al. 2008; Jones et al. 2008). Although our data 

requires further corroboration with analysis of a larger sample size from a broader area, 

the discovered symbiont diversity may be due to intensive pollution events such as the 

72 days of gas and oil spillage from the Montara wellhead disaster combined with 

changes in sea-water temperature that recently occurred off Vulcan Shoals. 
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In conclusion, with the present study we highlighted the importance of biodiversity 

surveys and rapid, DNA-based species delimitation analyses to explore the diversity of 

ecologically important soft coral communities distributed along WA. We estimated 

species richness and assessed the phylogenetic diversity of different Kimberley 

locations and compared these locations with Palau Archipelago, a known biodiversity 

hot-spot. We also investigated the genetic diversity of the symbionts hosted by different 

Sarcophyton and Lobophytum species. Our study provides an example of the exclusive 

use of DNA-based classification tools to analyse the diversity of abundant soft coral 

communities across a geographic range. We hope our contribution helps supporting 

management and conservation plans of under-investigated marine Western Australian 

regions. 

 

1.5 Appendix 

Appendix 1.5.1 List of best-fit substitution models for Bayesian analyses 

Appendix 1.5.2 List of Western Australian specimens used in our analyses 

Appendix 1.5.3 Mitochondrial phylogenetic tree (COI+mtMutS) 

Appendix 1.5.4 Nuclear phylogenetic tree (28S rDNA) 

Appendix 1.5.5 Species delimitation and number of estimated entities obtained for the 

mitochondrial (mtMutS and COI) and nuclear (28S) markers 
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Appendix 1.5.1 List of best-fit substitution models for Bayesian analyses 

Dataset  
Model 

Selected fA fC fG fT R [AC] R [AG] R [AT] R [CG] R [CT] R [GT] 
gamma shape 

(Γ) p-inv (I) 

mtMutS TPM1uf+G 0.31 0.17 0.18 0.34 1.00 8.80 0.74 0.74 8.80 1.00 0.47  

COI+mtMutS TPM3uf+I+G 0.29 0.17 0.18 0.36 1.51 6.99 1.00 1.51 6.99 1.00 0.65 0.53 

28S rDNA TIM3+G 0.22 0.29 0.32 0.17 0.41 2.00 1.00 0.41 4.75 1.00 0.35  
 

Best-fit substitution models for the Bayesian analyses selected with the Akaike Information Criterion in jModeltest. 

 

Appendix 1.5.2 List of Western Australian specimens used in our analyses  

Museum Voucher Genus Species GW number WA region Location mtMutS COI 28S psbA 

WAM Z59656 Sarcophyton  sp. GW24212  Kimberley Cassini island     

WAM Z59657 Sarcophyton  sp. GW24213  Kimberley Cassini island     
WAM Z59663 Sarcophyton  sp. GW24219  Kimberley Cassini island     

WAM Z59669 Sarcophyton  sp. GW24225  Kimberley Cassini island     

WAM Z59697 Sarcophyton  sp. GW24259  Kimberley Cassini island     

WAM Z59742 Sarcophyton  sp. GW24296  Kimberley Cassini island     

WAM Z59738 Lobophytum sp. GW24308  Kimberley Cassini island     

WAM Z59749 Lobophytum sp. GW24309  Kimberley Cassini island     

WAM Z59756 Sarcophyton  sp. GW24310  Kimberley Cassini island     

WAM Z59762 Sarcophyton  sp. GW24318  Kimberley Cassini island     

WAM Z59767 Lobophytum sp. GW24323  Kimberley Cassini island     

WAM Z59792 Lobophytum sp. GW24348  Kimberley Long reef     

WAM Z59795 Sarcophyton  sp. GW24351  Kimberley Long reef     

WAM Z69796 Lobophytum sp. GW24352  Kimberley Long reef     

WAM Z59798 Lobophytum sp. GW24354  Kimberley Long reef     
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WAM Z50800 Lobophytum sp. GW24356  Kimberley Long reef     

WAM Z59803 Lobophytum sp. GW24359  Kimberley Long reef     

WAM Z59804 Sarcophyton  sp. GW24360  Kimberley Long reef     

WAM Z59817 Sarcophyton  sp. GW24373  Kimberley Long reef     

WAM Z59831 Sarcophyton  sp. GW24378  Kimberley Long reef     

WAM Z59840 Lobophytum sp. GW24395  Kimberley Cassini island     

WAM Z59839 Lobophytum sp. GW24396  Kimberley Cassini island     
WAM Z67215 Lobophytum sp. GW8617  Kimberley Rowley shoals     
WAM Z67236 Lobophytum sp. GW8618  Kimberley Rowley shoals     
WAM Z67237 Lobophytum sp. GW8619  Kimberley Rowley shoals     
WAM Z67270 Lobophytum sp. GW8620  Kimberley Rowley shoals     
WAM Z67310 Lobophytum sp. GW8621  Kimberley Rowley shoals     
WAM Z67312 Lobophytum sp. GW8622  Kimberley Rowley shoals     
WAM Z67314 Lobophytum sp. GW8623  Kimberley Rowley shoals     
WAM Z67315 Lobophytum sp. GW8624  Kimberley Rowley shoals     
WAM Z67321 Lobophytum sp. GW8625  Kimberley Rowley shoals     
WAM Z67332 Lobophytum sp. GW8626  Kimberley Rowley shoals     
WAM Z67392 Lobophytum sp. GW8627  Kimberley Rowley shoals     
WAM Z67394 Lobophytum sp. GW8628  Kimberley Rowley shoals     
WAM Z67416 Lobophytum sp. GW8629  Kimberley Rowley shoals     
WAM Z67420 Lobophytum sp. GW8630  Kimberley Rowley shoals     
WAM Z67238 Sarcophyton sp. GW8631  Kimberley Rowley shoals     
WAM Z67264 Sarcophyton sp. GW8632  Kimberley Rowley shoals     
WAM Z67210 Sarcophyton sp. GW8633  Kimberley Rowley shoals     
WAM Z67218 Sarcophyton sp. GW8634  Kimberley Rowley shoals     
WAM Z67246 Sarcophyton sp. GW8635  Kimberley Rowley shoals     
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WAM Z67248 Sarcophyton sp. GW8636  Kimberley Rowley shoals     
WAM Z67263 Sarcophyton sp. GW8637  Kimberley Rowley shoals     
WAM Z67265 Sarcophyton sp. GW8638  Kimberley Rowley shoals     
WAM Z67266 Sarcophyton sp. GW8639  Kimberley Rowley shoals     
WAM Z67306 Sarcophyton sp. GW8640  Kimberley Rowley shoals     
WAM Z67307 Sarcophyton sp. GW8641  Kimberley Rowley shoals     
WAM Z67308 Sarcophyton sp. GW8642  Kimberley Rowley shoals     
WAM Z67311 Sarcophyton sp. GW8643  Kimberley Rowley shoals     
WAM Z67320 Sarcophyton sp. GW8644  Kimberley Rowley shoals     
WAM Z67386 Sarcophyton sp. GW8645  Kimberley Rowley shoals     
WAM Z67390 Sarcophyton sp. GW8646  Kimberley Rowley shoals     
WAM Z67414 Sarcophyton sp. GW8647  Kimberley Rowley shoals     
WAM Z67052 Lobophytum sp. GW8648  Kimberley Ashmore reef     
WAM Z67083 Lobophytum  sp. GW8649  Kimberley Ashmore reef     
WAM Z66921 Lobophytum  sp. GW8650  Kimberley Ashmore reef      
WAM Z67004 Lobophytum  sp. GW8651  Kimberley Ashmore reef     
WAM Z66922 Lobophytum  sp. GW8652  Kimberley Ashmore reef     
WAM Z67051 Lobophytum sp. GW8653  Kimberley Ashmore reef     
WAM Z67132 Lobophytum  sp. GW8654  Kimberley Eugene McDermott shoals      
WAM Z66995 Lobophytum  sp. GW8655  Kimberley Ashmore reef      
WAM Z67105 Lobophytum  sp. GW8656  Kimberley Hibernia reef     
WAM Z66911 Sarcophyton sp. GW8657  Kimberley Ashmore reef     
WAM Z66912 Sarcophyton sp. GW8658  Kimberley Ashmore reef     
WAM Z66914 Sarcophyton sp. GW8659  Kimberley Ashmore reef     
WAM Z66916 Sinularia sp. GW8660  Kimberley Ashmore reef     
WAM Z66972 Sarcophyton sp. GW8661  Kimberley Ashmore reef     
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WAM Z66984 Sarcophyton sp. GW8662  Kimberley Ashmore reef     
WAM Z66988 Sarcophyton sp. GW8663  Kimberley Ashmore reef     
WAM Z66989 Sarcophyton sp. GW8664  Kimberley Ashmore reef     
WAM Z67021 Sarcophyton sp. GW8665  Kimberley Ashmore reef     
WAM Z67025 Sarcophyton sp. GW8666  Kimberley Ashmore reef     
WAM Z67061 Sarcophyton sp. GW8667  Kimberley Ashmore reef     
WAM Z67081 Sarcophyton sp. GW8668  Kimberley Ashmore reef     
WAM Z67121 Sarcophyton sp. GW8669  Kimberley Vulcan shoals     
WAM Z67133 Sarcophyton sp. GW8670  Kimberley Eugene McDermott shoals     
WAM Z67139 Sarcophyton sp. GW8671  Kimberley Eugene McDermott shoals     
WAM Z67147 Sarcophyton sp. GW8672  Kimberley Heywood shoals     
WAM Z67148 Sarcophyton sp. GW8673  Kimberley Heywood shoals     
WAM Z67151 Sarcophyton sp. GW8674  Kimberley Heywood shoals     
WAM Z67517 Sarcophyton sp. GW8675 Pilbara Montebello islands     
WAM Z67522 Sarcophyton sp. GW8676 Pilbara Montebello islands     
WAM Z67523 Sarcophyton sp. GW8677 Pilbara Montebello islands     
WAM Z67531 Lobophytum sp. GW8678 Pilbara Montebello islands     
WAM Z67554 Sarcophyton sp. GW8679 Pilbara Montebello islands     
WAM Z67555 Lobophytum sp. GW8680 Pilbara Montebello islands     
WAM Z67557 Lobophytum sp. GW8681 Pilbara Montebello islands     
WAM Z67560 Lobophytum sp. GW8682 Pilbara Montebello islands     
WAM Z67561 Sarcophyton sp. GW8683 Pilbara Montebello islands     
WAM Z67566 Lobophytum sp. GW8684 Pilbara Montebello islands     
WAM Z67569 Sarcophyton sp. GW8685 Pilbara Montebello islands     
WAM Z67573 Lobophytum sp. GW8686 Pilbara Montebello islands     
WAM Z67585 Sarcophyton sp. GW8687 Pilbara Montebello islands     
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WAM Z67590 Sarcophyton sp. GW8688 Pilbara Montebello islands     
WAM Z67596 Sarcophyton sp. GW8689 Pilbara Montebello islands     
WAM Z67615 Lobophytum sp. GW8690 Pilbara Montebello islands     
WAM Z67624 Sarcophyton sp. GW8691 Pilbara Montebello islands     
WAM Z67626 Sarcophyton sp. GW8692 Pilbara Montebello islands     
WAM Z67627 Lobophytum sp. GW8693 Pilbara Montebello islands     
WAM Z67628 Lobophytum sp. GW8694 Pilbara Montebello islands     
WAM Z67630 Sarcophyton sp. GW8695 Pilbara Murion island     
WAM Z67639 Lobophytum sp. GW8696 Pilbara Murion island     
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Appendix 1.5.3 Mitochondrial phylogenetic tree (COI+mtMutS) 

 

Maximum Likelihood tree obtained from a concatenated mitochondrial dataset (COI+mtMutS). Nodes with low 

support (bootstrap <70) have been collapsed into polytomies. Letters and numbers at the nodes indicate the main 

clades (S= Sarcophyton; L= Lobophytum; M= Mixed). 
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Appendix 1.5.4 Nuclear phylogenetic tree (28S rDNA) 

 

Maximum Likelihood tree obtained from 28S rDNA. Nodes with low support (bootstrap <70) have been 

collapsed into polytomies. Letters and numbers at the nodes indicate the main clades (S= Sarcophyton; L and 

L1= Lobophytum; M= Mixed). 
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Appendix 1.5.5 Species delimitation and number of estimated entities obtained for the 

mitochondrial (MutS and COI) and nuclear (28S) markers 

 

Species delimitation and number of estimated entities obtained for the mitochondrial (MutS and COI) and nuclear 

(28S) markers. The black columns indicate the Primary Species Hypothesis inferred with the ABGD, while the 

blue columns indicate the putative species derived from the BPTP. White numbers correspond to the PSH 

clusters (ABGD) and putative species (BPTP), respectively. Numbers at the bottom indicate the amount of 

candidate species for each marker and delimitation method used. 
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Chapter 2 

 

Historical biogeography and mitogenomics of two 

endemic Mediterranean gorgonians (Holaxonia, 

Plexauridae) 

 
 

2.1 Introduction 

The Mediterranean Sea, the largest semi-enclosed sea on Earth, is characterized by unique 

oceanographic conditions (e.g. limited water exchange, distinctive subsurface-water 

circulation and deep overturning circulation; see Pinardi et al. 2006; Tanhua et al. 2013) and 

strong environmental gradients (Danovaro et al. 1999). This wide range of climatic and 

hydrological conditions within the Mediterranean sea have been used to define up to 10 

biogeographical regions based on the combination of different geological, physical and 

biological parameters (Bianchi and Morri 2000) and results in the coexistence of temperate 

and sub-tropical organisms in this basin (Coll et al. 2010). 

The Mediterranean is considered a hot spot of marine biodiversity with a high percentage 

of endemic species (Bianchi and Morri 2000; Boudouresque 2004). The Mediterranean marine 

biota is closely related to that of the Atlantic Ocean (Sarà 1985; Bianchi and Morri 2000) and 

its evolutionary history has been shaped by episodes of isolation and reconnection with the 

Atlantic. In this regard, evidence for a radiation after the Messinian Salinity Crisis (5.2 Ma) —

the isolation and restriction of the Mediterranean due to the closure of marine gateways 

between the Atlantic ocean and the Mediterranean Sea— have been reported for invertebrates 

(Sanna et al. 2013) and vertebrates (e.g. Carreras-Carbonell et al. 2005). A second event, the 

Gelasian Crisis occurred 2.6 Ma (Dov Por 2009) likely affecting the Mediterranean biota and 

changing its general composition and diversity patterns. Although a wealth of oceanographic 

and ecological data exist for the Mediterranean Sea (e.g. Sarà 1985; Pinardi et al. 2006; Bas 

2009) little is known about the evolutionary history of different Mediterranean taxonomic 

groups. Among octocorals in particular, the few studies so far published have been mostly 

focused on the population genetics of economically and/or ecologically relevant species in the 
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region such as the precious coral Corallium rubrum (Costantini et al. 2013; Pratlong et al. 

2015) and the red gorgonian, Paramuricea clavata (see Angell et al. 2009; Moktar-Jamaï et al. 

2011). 

The genus Paramuricea (Koelliker 1865) has been reported from different latitudes 

including the Gulf of Mexico (Doughty et al. 2014), North-Western Atlantic (Thoma et al. 

2009), Mediterranean (Bo et al. 2012; Angeletti et al. 2014) and South Eastern Australia 

(Alderslade et al. 2014). The genus currently includes more than 20 species, two of which, P. 

clavata and P. macrospina are endemic to the Mediterranean. P. clavata is one of the most 

common gorgonians dwelling the coralligenous assemblages of the Mediterranean. P. 

macrospina has a more restricted distribution occurring mainly in detritic or sandy deep-sea 

bottoms up to 200 m deep (Carpine and Grasshoff 1975) and is also common in the 

oligotrophic Sea of Marmara (Topçu and Öztürk 2015). Despite their ecological importance 

and their widespread distribution across the Mediterranean basin, the phylogenetic affinities of 

the Mediterranean Paramuricea and their historical biogeography remain largely unstudied. In 

order to shed light on the molecular (phylo)diversity of the Mediterranean Paramuricea and 

on the evolutionary processes leading to the diversification of these species, here we (I) 

sequence the complete mitochondrial genome of the two Mediterranean endemic species, (II) 

assess their phylogenetic relationships with other members of this widespread genus and (III) 

infer the biogeographic history of Paramuricea to clarify the processes involved in the 

diversification of the Mediterranean species and shed light on the possible historical events 

that shaped the evolutionary history of this genus in the Mediterranean. 

 

2.2 Materials and methods 

 

2.2.1 Study area, sampling and taxonomic identification 

Paramuricea macrospina (LT576168, LT576169) and P. clavata (LT576167) were collected 

in the Mediterranean, whereas P. grayi was sampled in Galicia (LT576170) and the Bay of 

Biscay (LT576171) (North-Eastern Atlantic). All the samples were collected by SCUBA 

diving at depths ranging from 10 to 90 m and were preserved in absolute ethanol for molecular 

analyses. Species assignments done in the field were further corroborated by the 

morphological analysis of the colony and sclerome.  
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2.2.2 Molecular analyses 

Genomic DNA was extracted following three different protocols. The Macherey-Nagel 

NucleoSpin
®
 Tissue kit (M&N, Düren, Germany), a modified CTAB phenol-chloroform 

(Doyle and Doyle 1987) and a salting out extraction methods (Aljanabi and Martinez 1997) 

were used to obtain high molecular weight DNA. The quality of the DNA was assessed on a 

1.5% agarose gel. Mitochondrial DNA fragments of different sizes (500-4000 bp) were 

amplified using published octocoral specific primers (i.e. France and Hoover 2002; Sánchez et 

al. 2003; McFadden et al. 2004) as well as additional primers designed to bind regions 

conserved in the octocoral mitochondrial genomes available to date (see Supplementary Table 

1). For P. grayi and P. macrospina (LT576169) the 5’ end of mtMutS was amplified using the 

primers ND42599F (France and Hoover 2002) and Mut-3458R (Sánchez et al. 2003) 

following previously published protocols. PCR products were purified using a polyethylene 

glycol (PEG)-NaCl precipitation and were sequenced with different internal primers (see 

Supplementary Table 1) using the BigDye
® 

Terminator v3.1 chemistry in an ABI PRISM
®

 

3700 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The mitochondrial 

genomes were assembled, edited and annotated using Geneious 6.0.5 (Kearse et al. 2012). 

This program was also used to estimate GC-content and to annotate and create a graphical 

map of the genomes. Nucleotide diversity (π) between genomes was calculated in DnaSP 

5.10.1 using a sliding window of 500bp  (Librado and Rozas 2009). The complete 

mitochondrial DNA sequences were deposited in the European Nucleotide Archive (ENA 

accession numbers: LT576167-LT576171). 

 

2.2.3 Extended Phylogenetic analyses 

A fragment of about 750 bp of the octocoral mitochondrial gene mtMutS was extracted 

from the mitochondrial genome of the two Mediterranean species and was aligned with the 

sequences of P. grayi here generated and with sequences of other plexaurids deposited in 

public sequence repositories. A dataset consisting of 166 taxa of which 150 belong to the 

genus Paramuricea, was used to assess the phylogeny of the genus Paramuricea. This dataset 

contained many identical genotypes. Thus a second, reduced dataset  (see Supplementary 

Table 2 for the list of species used) was generated including only 26 Paramuricea 

representative species. This dataset was used for phylogenetic inference and Dispersal-

Vicariance analyses (S-DIVA, see below). All sequences were aligned in MUSCLE (Edgar 

2004) with the default options available through Seaview 4.5.3 (Gouy et al. 2010). Alignments 



 

49 
 

used in this study are available at OpenDataLMU (DOI: 

http://dx.doi.org/10.5282/ubm/data.89). 

A maximum likelihood tree was inferred in RAxML 7.2.8 (Stamatakis 2006) under the 

GTR + Γ model (General Time Reversible + Gamma). Branch support was assessed through a 

rapid bootstrap analysis (Stamatakis et al. 2008) with a random seed number and 1000 pseudo-

replicates. For the Bayesian analyses we used BEAST 2.3.1 (Bouckaert et al. 2014) under the 

best-fit substitution model selected using the AIC (i.e. GTR + Γ + I) in the program jModeltest 

2.1.3 (Darriba et al. 2012). The Markov chain Monte Carlo was run for 10,000,000
 
generations 

sampling every 1000 generations. Convergence of the Markov chains was assessed in Tracer 

1.6 (Rambaut and Drummond 2009). One tenth of the sampled trees (i.e. 1000 trees) were 

discarded as burn-in and the species: Eunicea fusca, Muricea elongata, Plexaura homomalla 

and Pseudoplexaura porosa were used as outgroup. 

 

2.2.4 Biogeographic analyses 

The geographic distribution of the species was based on collection localities gathered from 

the literature (Sánchez et al. 2003; Wirshing et al. 2005; McFadden et al. 2006, 2011; Thoma 

et al. 2009; Doughty et al. 2014; Vargas et al. 2014). Seven biogeographical areas were 

considered: (A) Eastern Pacific (Panama and Galapagos); (B) Caribbean; (C) North-West 

Atlantic; (D) Eastern Atlantic (Gulf of Biscay); (E) Mediterranean; (F) Central Indo-Pacific 

(Indonesia, Papua New Guinea, Palau, Western Australia and Philippines) and (G) South-

West Pacific (Supplementary Table 2). For simplicity the Gulf of Mexico and the Caribbean 

were included in a single geographic area (B). Ancestral distributions were reconstructed with 

the Statistical DIVA (S-DIVA; implemented in RASP 3.2, Yu et al. 2014) method. S-DIVA is 

an extension of classical DIVA (see Ronquist 1997, 2001) that reconstructs ancestral areas 

using sets of trees (e.g. those sample by the Markov Chain in Bayesian analyses) instead of a 

fixed topology (Yan et al. 2010). Hence, S-DIVA treats tree topology as a nuisance parameter 

and allows to account for the effect of uncertainty in tree topology on ancestral area 

optimization. The method is of special interest in groups, such as octocorals (e.g. Wirshing 

and Baker 2015; see also Supplementary Fig. 1 and Supplementary Fig. 2), where 

phylogenetic signal is weak at shallow scales and topological uncertainty is high. In these 

groups, integrating over a set of possible topologies allows to extract the biogeographic signal 

that is present in the set of trees independently of whether the summary of the trees (e.g. the 

consensus) is highly supported or not. For the reconstruction of the biogeographic history of 

Paramuricea we used a set of 10,000 trees generated for the Bayesian analysis and sampled 
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1000 random trees from the posterior tree space. 10% of the total sampled trees were 

discarded as burn-in and the Maximum Clade Credibility tree (MCC) from the BEAST 

analysis was used as the summary tree to display ancestral area reconstruction. The maximum 

number of areas allowed per node was four. 

 

2.2.5 Molecular dating 

For many soft-bodied organisms such as octocorals, with little or no fossil remains, the 

estimation of divergence times among lineages rely on the use of geological events or 

mutation rates to calibrate the molecular clock and provide taxon-ages. We used the Bayesian 

MCMC analysis implemented in BEAST 2.3.1 (Bouckaert et al. 2014) under a GTR + Γ + I 

substitution model and a strict molecular clock model to date the mtMutS tree here inferred 

(see above). We assumed that the general mutation rate of mtMutS ranges between 0.14% and 

0.25% Myr
 -1

 (see Lepard 2003 in Thoma et al. 2009 and Pante et al. 2015) and tested both 

rates to derive a conservative (assuming 0.14% mutation rate) and a speculative (assuming 

0.25% mutation rate) molecular dating for Paramuricea. For each molecular clock analysis 

the Markov chain was run for 10 million generations, sampling every 1000 generations. The 

Effective Sample Size (ESS) of each parameter was assessed using Tracer 1.6 (Rambaut and 

Drummond 2009). Ten percent of the trees were discarded as burn-in and the remaining set of 

trees was visualised using DensiTree 2.0 (Bouckaert 2010) (Supplementary Fig. 1 and 

Supplementary Fig. 2). The maximum clade credibility (MCC) tree with mean divergence 

times and 95% highest posterior density (HPD) interval was summarised in TreeAnnotator. 

 

2.3 Results 

 

2.3.1 Mitochondrial genomes 

The mitogenomes of P. clavata and P. macrospina were 18,669 base pairs (bp) and 18,921 

bp respectively (Fig. 1a). The architecture of the two genomes, in terms of genome content 

and gene order was consistent with that of other octocorals with genome arrangement A (see 

Brockman & McFadden, 2012). Both genomes contained all 14 mitochondrial protein-coding 

genes reported in octocorals, the 12S rDNA (SSU) and 16S rDNA (LSU) and one tRNA gene 

(tRNA
Met

). GC-content was 37% in P. macrospina and 37.3% in P. clavata. Except for Nad2 

and Nad4, which overlapped by 13 bp, the remaining genes were separated by intergenic 

regions (IGRs) of variable length. In both species the shortest IGRs were 12S rDNA-Nad1 and 
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16S rDNA-Nad2, which were 4 bp long. The longest IGR was located between Cox1 and 12S 

rDNA (150 bp) in P. clavata and between Nad5 and Nad4 (208 bp) in P. macrospina. In total, 

non-coding regions spanned about 4% of the genome in P. clavata and 5.4% in P. 

macrospina. Among the intergenic regions, the highest variability in terms of sequence length 

was observed between Cob and Nad6 (13 bp and 178 bp in P. clavata and P. macrospina 

respectively). Between Nad5 and Nad4 we found a variable IGR with single base substitutions 

and insertion/deletion (Fig. 1b). Sequence variability across the two genomes was 2.6%, 

excluding gaps. The highest level of nucleotide diversity (π) was found within Nad4 (3.59%), 

mtMutS (3.46%) and Nad5 (2.75%). The least variable gene was Atp8 (0.46%) and other 

conserved regions were identified within Nad1, Cox3 and Atp6 (Fig. 1b). 

 

Figure 2.1 Mitochondrial genome structure and genes variability. (a) Mitogenomes of Paramuricea clavata and 

Paramuricea macrospina with genome size and genes annotation. GC-content and AT-content are shown in blue 

and green on the inner and outer surface of the ring, respectively. (b) Sliding window analysis of the complete 

mitochondrial genomes of P. clavata and P. macrospina. The black line indicates nucleotide diversity across the 

miogenome in a window of 500 bp (10 bp steps). Coding protein genes are in grey, white boundaries represent 

rDNA genes, tRNA gene and 14 intergenic regions (IGRs). The IGRs between Cob-Nad6 and Nad5-Nad4 are 

highlighted in yellow and blue, respectively, alignments are showed in the two panels below. 
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2.3.2 Molecular phylogeny 

The phylogenetic tree of the partial mtMutS gene (~750 nt) showed that the 17 

Paramuricea species sampled grouped in a clade supported by high bootstrap (BP=89) and 

posterior probability (PP=0.95) values and that the closest related genera were Echinomuricea, 

Menella and Placogorgia (Fig. 2). Among Paramuricea, most of the shallow nodes are poorly 

supported (BP <70; PP <0.95) and the phylogenetic relationships within NW Atlantic 

specimens were not resolved. Twenty-six Paramuricea specimens were divided in three 

clades: the first (I) includes P. clavata and P. grayi, the second (II) groups Paramuricea sp. 

(DQ297420), P. nr. biscaya (KF856184)  and three different Paramuricea sp. types (C, G, H) 

and the third (III) consists of P. macrospina, P. multispina, P. biscaya, P. nr. biscaya 

(KF856209), P. nr. grandis, and five different Paramuricea sp. types (e.g. A, B, D, E, F). 

 

2.3.3 Historical biogeography of Mediterranean Paramuricea species 

According to our S-DIVA analysis, a total of six dispersal and eight vicariance events 

occurred during the evolutionary history of the genus Paramuricea (Fig. 2). Node 1 included 

all 26 Paramuricea specimens from four main geographic areas (e.g. Caribbean, North-West 

Atlantic, East Atlantic and Mediterranean). S-DIVA assigns this node, the ancestor of 

Paramuricea, to four different ancestral area reconstructions with similar frequency: NW 

Atlantic + Mediterranean (30%), NW Atlantic + E Atlantic (25%), NW Atlantic + E Atlantic 

+ Mediterranean (25%) and Mediterranean (19%). The most probable ancestral range at node 

2 (i.e. P. clavata + P. grayi ancestor) is E Atlantic + Mediterranean with an occurrence 

frequency of 100%. This reconstruction suggests that P. clavata and P. grayi originated 

through vicariance of this Atlanto-Mediterranean ancestor. S-DIVA reconstructs a Caribbean 

+ NW Atlantic as the ancestral area of node 3 with an occurrence frequency of 100%. This 

node is further split in two lineages with distributions in the North Atlantic (Node 4) and the 

Caribbean (Paramuricea sp. H). For node 5 (i.e. the ancestor of the clade including P. 

macrospina) S-DIVA postulates a NW Atlantic + Mediterranean ancestral range with an 

occurrence frequency of 93%. This ancestral distributions implies a vicariance led to the 

separation of P. macrospina in the Mediterranean and the ancestor of clades 6 and 7 in the 

NW Atlantic. These nodes (i.e. 6 and 7) are predicted to have two possible ancestral ranges: 

Caribbean (61%) and Caribbean + NW Atlantic (39%), and NW Atlantic (72%) and 

Caribbean + NW Atlantic (28%) respectively. 
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Figure 2.2 Phylogenetic relationships, divergence times and ancestral area reconstructions of the genus 

Paramuricea. The tree is a chronogram inferred using a strict molecular clock and conservative mutation rate 

(0.14% per million years) based on a BEAST Markov chain Monte Carlo (MCMC) analysis. Numbers above and 

below the nodes represent posterior probability (PP) and bootstrap (BP) values, respectively. Dashed lines 

indicate branches which lead to nodes with PP <0.95 and BP <70. Roman numbers indicate the three main groups 

within the genus Paramuricea and the Eastern Atlantic and Mediterranean species analysed in this study are 

shown in bold. The pie charts indicate the ancestral area reconstruction of a given node based on seven pre-

assigned geographic distribution (A-G) for the S-DIVA analysis. The biogeographic regions considered for the 

analysis are the following: (A) E Pacific (Panama and Galapagos); (B) Caribbean; (C) NW Atlantic; (D) NE 

Atlantic; (E) Mediterranean Sea; (F) Central Indo-Pacific (Indonesia, Papua New Guinea, Palau, Western 

Australia and Philippines) and (G) South-West Pacific. Node bares indicate 95% HPD age ranges. The time-

event curves for dispersal (red) and vicariance (red) events obtained with RASP are shown on the bottom side of 

the chronogram. The scale bar in million years. 
 

2.3.4 Molecular dating 

Using either a conservative or a speculative molecular rate (see Fig. 2 and Supplementary 

Fig. 3), molecular dating resulted in a divergence time of 4.6 Ma (95% HPD: 3-7 Ma) or 2.6 

Ma (95% HPD: 1-4 Ma), respectively, for Paramuricea clavata. The speciation event leading 

to the diversification of Paramuricea macrospina from a NW Atlantic + Mediterranean 

ancestor was dated at 5.8 Ma (95% HPD: 3-8 Ma) or 3.2 Ma (95% HPD: 2-5 Ma). 
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2.4 DISCUSSION 

 

2.4.1 Mitogenomics, phylogeny and evolution of Paramuricea 

The genus Paramuricea is restricted in the Mediterranean to two endemic species that 

according to our phylogenetic analyses are not closely related.  The level of mitochondrial 

sequence divergence between these two species was high (~2.6%), well above the 1% 

threshold proposed for mtMutS-based species delimitation in octocorals (McFadden et al. 

2011). Intrageneric nucleotide diversity in octocorals changes according to the taxonomic 

group considered and the molecular marker used. In the Mediterranean Paramuricea the Nad5 

and Nad4 showed the highest mutation rate among mitochondrial protein coding genes, and 

the intergenic region between these two genes was remarkably different in terms of size (100-

500bp). For members of Paramuricea, this particular mitogenomic region (Nad5-igr-Nad4) 

may be of interest as a complementary barcode to the mtMutS and Cox1 regions and should be 

further investigated. Differences in the length of IGRs in non-bilaterian metazoans (i.e. 

Cnidaria, Ctenophora, Placozoa and Porifera) contribute wide range of size variation observed 

in the mitochondrial genomes of these animals and is mainly caused by the presence of 

repetitive elements such as hairpin-forming elements, palindromes and duplicated segmental 

DNA (Erpenbeck et al. 2009; Lavrov 2010; Park et al. 2011). Octocorals display a wide range 

of mitochondrial genome sizes —between 18,668 bp and 20,246 bp among sequenced 

members of Holaxonia reported in GenBank and the two genomes obtained in this study. 

Interestingly, neither direct variant repeats (DVRs) or duplicated segmental DNA, as it has 

been reported in Calicogorgia granulosa (for details see Park et al. 2011), were found in any 

of the other published octocoral mitochondrial genomes or those sequenced here leaving open 

questions about the molecular mechanisms responsible for mitochondrial genome 

expansion/contraction in octocorals. A broader sampling effort across the subclass may help to 

better understand mitochondrial genome evolution among octocorals. 

Concerning our phylogenetic results, they showed the shallow-water P. clavata sister to E 

Atlantic P. grayi, and P. macrospina closely related to deep-sea congeners from the Gulf of 

Mexico and NW Atlantic. Our analyses also revealed a close genetic relation between the 

genera Paramuricea, Echinomuricea and Placogorgia, in agreement with previous studies 

(see Wirshing et al. 2005; McFadden et al. 2011). The genus Echinomuricea includes 

approximately 30 species with a broad geographic distribution, but generally is regarded as 

limited to the Indo-West Pacific (Williams and Chen 2014). Grasshoff (1977) reassigned the 
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Mediterranean endemic Echinomuricea klavereni to Spinimuricea and the status of the 

Echinomuricea species from the West Indies and the Gulf of Mexico is not clear and needs 

revision. Similarly, Placogorgia represents another poorly known group in need of taxonomic 

and systematic treatment. It is interesting to note that these three genera as well as those with 

thorn-scale sclerites (i.e. Muriceides, Thesea, Villogorgia) were grouped into the same family 

(Paramuriceidae) by Bayer (1956). The phylogenetic affinity of paramuriceids (sensu Bayer 

1956) with similar sclerites highlights the importance of morphological characters in 

evolutionary studies. For instance the thorn-scale sclerites, reported in the family 

Paramuriceidae, represent a synapomorphic character that was likely present in the most 

recent common ancestor of this family. 

 

2.4.2 Historical biogeography, vicariance and speciation 

Paramuricea and most members of the family Paramuriceidae occur in different 

biogeographic provinces such as Atlantic, Pacific and Mediterranean. Due to their broad 

geographic distribution, a Tethyan common ancestor has been proposed for this family (Bayer 

1961; Vargas et al. 2010). The Mediterranean is considered to be the evolutionary centre of 

Tethys fauna remnants (Dov Por 2009) and putative Tethyan relicts have been found in 

different groups of organisms in this region (Pérès and Picard 1964; Boury-Esnault et al. 1992; 

Dov Por 2009). These relicts are thought to have survived the Messinian and Gelasian crises 

(5.2 and 2.6 Ma), during which a dramatic decrease in the number of marine species occurred 

due to the extreme geological and climatic changes driven by the closing of the strait of 

Gibraltar and the following desiccation of the Mediterranean Sea (Hsü et al. 1973). 

Among octocorals, the existence of early Miocene (~20 Ma) fossils belonging the family 

Corallidae (Vertino et al. 2014) suggests that a Mediterranean ancestor of this group survived 

the Messinian crisis 5.2 Ma. In the case of gorgonians, where fossils are lacking, it is hard to 

establish whether Mediterranean species are derived from an Atlantic ancestor (i.e. they 

speciated after an ancestral range expansion into the Mediterranean Pérès 1985; Sarà 1985) or 

speciated in situ from a wide spread Atlanto-Mediterranean ancestor. In historical 

biogeography, however, the distribution of extant species can be used to reconstruct ancestral 

distributions and clarify the speciation process of taxa when other information sources are 

lacking. Our biogeographic analysis suggests that the two Mediterranean endemic species 

originated from two independent vicariance events and we pose that these events are related to 

the Messinian and Gelasian crises. Interestingly, our molecular clock estimates are in line with 

this hypothesis. Based on conservative or speculative mutation rates, the divergence estimates 
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of 4.6 Ma and 2.6 Ma for P. clavata and 5.8 and 3.2 Ma for P. macrospina match the 

geological age of these crises. Hence, the origin of the Mediterranean Paramuricea seems to 

be in agreement with the canonical hypothesis about the role played by the Mesinian (and 

Gelasian) crisis in shaping the evolutionary history of the marine fauna of the Mediterranean. 

Indeed, after the Messinian crisis the Mediterranean Sea was “refilled” with Atlantic water 

(Garcia-Castellanos et al. 2009). According to our results, this event could have provided the 

conditions for the ancestral vicariance event we detected leading to the diversification of the 

“new” Mediterranean biota due to the new environmental conditions offered by this basin.  

Our results also demonstrate the importance of vicariance as a driving-force for speciation in 

the ocean. In this respect, recent studies on the evolution and speciation of Mediterranean 

organisms (e.g. Domingues et al. 2005; Tougard et al. 2014) reveal that the endemic species 

are either the result of inter-basin speciation after the Messinian Salinity Crisis or derived 

from Atlantic ancestor populations which became extinct after the “colonization” of the 

Mediterranean. 

Despite our phylogenetic trees included some branches with uncertainty, the majority of the 

deep nodes are well supported and the ancestral reconstruction analysis seems to be robust to 

topological uncertainty. In this regard, the high occurrence frequency values obtained by S-

DIVA indicate that the underlying biogeographic signal is strong enough to overcome the 

topological uncertainty present in the phylogeny of Paramuricea at shallow levels. Finally we 

would like to highlight the somewhat unexpected high phylodiversity of the Mediterranean 

Paramuricea, which represent two highly divergent lineages resulting from independent 

speciation events. Interestingly, this diversity is also reflected in the ecology of the endemic 

Paramuricea species with the red gorgonian occurring along the littoral and P. macrospina 

restricted to the deeper habitats. 

We hope our study provides further information on the genus Paramuricea in the 

Mediterranean that can be used to guide conservation planning and decision making in the 

area by taking into account the evolutionary and biogeographic history of these organisms. 
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2.5 Appendix 

Appendix 2.5.1 List of the primers used for PCRs and sequencing 

Appendix 2.5.2 List of the samples used for phylogenetic and biogeographic analyses 

Appendix 2.5.3 Set of trees inferred from BEAST under a strict molecular clock model with a 

mutation rate of 0.14% per million years 

Appendix 2.5.4 Set of trees inferred from BEAST under a strict molecular clock model with a 

mutation rate of 0.25% per million years 

Appendix 2.5.5 Chronogram of the maximum clade credibility tree estimated with a mutation 

rate of 0.14% per million years 
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Appendix 2.5.1 List of primers 

 

Primer name Sequence (5'-3') Gene 

Atp6F_17483 ATTATACCCCCCATTATCCGAACTAC Atp6 

Atp6R_16992 GGGTTCGCAATGATTAGTAATGGAATGT Atp6 

Atp8F_17634 GAAGTATACTACAGGAAGAGG Atp8 

CYTBR_4157 GCTCCCCAAAAGGACATTTGTC Cob 

CobOcto-4266F
 (3) TACTACGCTCTATACCGAACA Cob 

COI_smlF TAATTYTVCCRGGATTTGG Cox1 

LIT_1273F AATMTAACTTTCTTYCCTCAAC Cox1 

Cox1R_1123 CATAGTGGAAGTGAGCTACTAC Cox1 

COX2F_18105 
(1) GGTTGAAGGTCACTCGTAGGTATC Cox2 

IGSR_18590 
(8) GTCAGCAAAGTAACAGGGCTAGAG Cox2 

COX3R_16003 
(7) GTATTTACTGGTGGGGCTCTTAGC Cox3 

Octo_Cox3r GTTGGTGTAGAAGTGTTAGA Cox3 

12SF_1828 
(2) GGGTTTCACACTGAGGTCTGTCTA 12S rDNA 

12SR_2484 
(1) GGAACGCTCTACTTCCCGATTAC 12S rDNA 

12SF_2457 TGATAGTAATCGGGAAGTAGAG 12S rDNA 

Octo_12S AGGTAAGGTGACACGCGGAT 12S rDNA 

16SF_9372 GAGAAAGTACCGTGAGGGAAAGAC 16S rDNA 

16SF_10386 
(6) CACGAGGGTCTTACTGTCTCAAG 16S rDNA 

16SR_9395 GTCTTTCCCTCACGGTACTTTCTC 16S rDNA 

16S R_10798 
(5) CACTGTCCTCGATAAGAACTCTCC 16S rDNA 

16S-647F 
(*) ACACAGCTCGGTTTCTATCTACCA 16S rDNA 

NAD1F_3556 GAATGAGATATGACCAACTTATGT Nad1 

ND1-56fw TAGCWTATTTAACWTTRGC Nad1 

NAD2F_12137 TGCAGGAATTCCCCCTTTAATT Nad2 

ND2-1418R 
(*) ACATCGGGAGCCCACATA Nad2 

NAD2R_12371 CCCTATTAATATTGCCTTGCCT Nad2 
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ND3-2126R CACATTCATAGACCGACACTT Nad3 

NAD3R_5855 
(2) CCACTCTAAGCCTCCTTCTATCCAC Nad3 

NAD4R_14476 
(6) CAGAGACCACTCTAACGCTTGCTG Nad4 

NAD4F_14772 CAACATTAGATCTGTTAATATT Nad4 

ND4Octo-15848 GGTTCAACTCCTGCCTCTAC Nad4 

Octo_Nad4r GCGTCTACCTGTCTGCAAGT Nad4 

NAD4lR_6135 GCTCGAACAGCAATTGTACCA Nad4L 

ND42599F
 (4) (^) GCCATTATGGTTAACTATTAC Nad4L 

NAD5F_14079 
(7) GGAAGTTCGGCCATTTTGTGTC Nad5 

NAD5F_12933 ACTTTTGGTTTACGCGTATACA Nad5 

NAD5R_13922 AGAGACCATTGTGGGCACAAGC Nad5 

ND6-1487F 
(*) TTTGGTTAGTTATTGCCTTT Nad6 

5' mutSR 
(3) CCGGGTTACTTTGTCCCTGTCCG mtMutS 

3' mutSF 
(5) GCATTAAGCGGGGCTATTGCGG mtMutS 

Sin_mutSF_3'a GCCCTCTCAATATGGCATTG mtMutS 

Sin_mutSF_3'b TGATTCGCCAGTTCGGTGCT mtMutS 

MutSR_8309 
(4) AAGTAGATTTGCCCGCACCA mtMutS 

tRNA-Met_15925 
(8) CGTTAGTTGACCCTACAAGCTGAG tRNA

Met
  

* (McFadden et al., 2004); ^ (France and Hoover, 2002) 

Primers used for long range PCR are in bold, the numbers in brackets indicate those primer 

pairs used to amplify across gene junctions. The remaining primers were used for sequencing 
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Supplementary Table 2 

List of the specimens used for phylogenetic and biogeographic analyses. Columns from left to right: accession numbers, locality of sampling and distribution. Biogeographic 

regions: (A) Eastern Pacific (Panama and Galapagos); (B) Caribbean; (C) North West Atlantic; (D) North-Eastern Atlantic; (E) Mediterranean Sea; (F) Central Indo-Pacific 

(Indonesia, Papua New Guinea, Palau, Western Australia and Philippines) and (G) South-West Pacific 

 

Species Accession Number Collection locality Distribution 

Anthomuricea sp. DQ302855 Tasman Sea G 

Bebryce sp. AY683070 Bahamas B 

Bebryce sp. AY683071 Galapagos A 

Echinomuricea sp. AY683076 Bahamas B 

Echinomuricea sp. AY683079 Phlippines F 

Lepidomuricea sp. DQ302857 Tasman Sea G 

Lytreia sp. AY683072 Jamaica B 

Menella sp. AY683080 Indonesia F 

Muriceides sp. AY683075 Florida Keys B 

Paracis sp. AY683074 Palau F 

Paracis sp. DQ302860 Tasman Sea G 

Paramuricea biscaya KC710772 Gulf of Mexico B 

Paramuricea biscaya KC710784 Gulf of Mexico B 

Paramuricea nr. biscaya KF856184 NW Atlantic C 

Paramuricea nr. biscaya KF856209 NW Atlantic C 

Paramuricea clavata LT576167* Mediterranean E 

Paramuricea clavata KF856181 Mediterranean E 

Paramuricea nr. grandis KF856206 NW Atlantic C 

Paramuricea gayi LT576170 Galicia D 

Paramuricea gayi LT576171 Bay of Biscay D 
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Paramuricea macrospina LT576168* Mediterranean E 

Paramuricea macrospina LT576169 Mediterranean E 

Paramuricea multispina AY683077 Curacao B 

Paramuricea sp. DQ297420 NW Atlantic C 

Paramuricea sp. A GQ413973 NW Atlantic C 

Paramuricea sp. B GQ413976 NW Atlantic C 

Paramuricea sp. B GQ413978 NW Atlantic C 

Paramuricea sp. C GQ413988 NW Atlantic C 

Paramuricea sp. C GQ413990 NW Atlantic C 

Paramuricea sp. D GQ413996 NW Atlantic C 

Paramuricea sp. D GQ413997 NW Atlantic C 

Paramuricea sp. E GQ413998 NW Atlantic C 

Paramuricea sp. E KC710742 Gulf of Mexico B 

Paramuricea sp. E KC710743 Gulf of Mexico B 

Paramuricea sp. F GQ413999 NW Atlantic C 

Paramuricea sp. G GQ414000 NW Atlantic C 

Paramuricea sp. H KC710741 Gulf of Mexico B 

Placogorgia sp. AY683078 Panama Pacific A 

Villogorgia sp. AY683073 Virgin Island B 

Eunicea fusca AY126407 Bahamas B 

Muricea elongata AY683063 Florida B 

Plexaura homomalla AY683056 Bahamas B 

Pseudoplexaura porosa AY683062 Bahamas B 

*partial mtMutS sequence extracted from the complete mitochondrial genome
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Supplementary Figure 1 

Topology uncertainty among the different clades shown by a set of trees (10,000) obtained from BEAST. 

The analyses were run under a strict molecular clock model with a “conservative” mutation rate of 0.14% 

per million years 
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Supplementary Figure 2 

Topology uncertainty among the different clades shown by a set of trees (10,000) obtained from BEAST. 

The analyses were run under a strict molecular clock model with a “speculative” mutation rate of 0.25% 

per million years 
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Supplementary Figure 3 
Chronogram of the maximum clade credibility tree estimated with a speculative mutation rate of 0.25% 

per million years. Bars at the nodes indicate 95% highest posterior density intervals. Filled circles 

indicate high support for both ML ( P ≥70) and  ayesian (PP ≥0.95) analyses. Split circles indicate high 

support for one analysis only (black: high support; grey: low support); the left and right half of the circles 

refer to ML and Bayesian analyses, respectively. Samples sequenced in this study are in bold. Scale bar in 

million years 
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Chapter 3 

Comparative mitogenomics, phylogeny and 

evolutionary history of Leptogorgia (Gorgoniidae) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter will be submitted as a standalone publication to the Journal “Molecular 

Phylogenetics and Evolution” 
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Chapter 3 

 

Comparative mitogenomics, phylogeny and 

evolutionary history of Leptogorgia (Gorgoniidae) 

 

 

3.1 Introduction 

The genus Leptogorgia includes more than 50 valid species with a wide geographic 

and bathymetric distribution. One third of the species is distributed in the eastern 

Pacific, EP (Breedy and Guzman, 2007), more than 30 species  were reported in the 

Atlantic (Grasshoff, 1988) and only two species have been described from the 

Mediterranean (Carpine and Grasshoff, 1975) and subarctic (Williams and Lindo, 

1997). The identification and classification of Leptogorgia is extremely difficult due to 

their morphological homogeneity (Prada et al. 2008), the phenotypic plasticity observed 

in the genus (West et al., 1993; Breedy and Guzman, 2007) and the lack of distinct 

diagnostic morphological characters (Bayer, 1961; Sánchez, 2007) that can be used to 

differentiate between species. In addition, the systematic history of the genus is 

complex. The current concept of Leptogorgia includes species formerly classified as 

Lophogorgia (Milne Edwards and Haime, 1857) or Leptogorgia (Milne Edwards and 

Haime, 1857); two genera that have been synonimized and segregated multiple times by 

different authors (Verrill, Bayer, Grasshoff). According to Bayer (1961), Leptogorgia 

included species with short disk-spindles in the outer portion of coenenchyme and 

uniformly sculptured spindles in the inner part, mostly restricted to the Caribbean and 

Western Atlantic. Lophogorgia was used to group species with symmetrical sculptured 

spindles that are not fused into a disk-like form and anthocodial sclerites usually flat 

rods, distributed in the eastern Atlantic-Mediterranean and the eastern Pacific. However, 

the morphological distinction between Lophogorgia and Leptogorgia was later 

questioned by Grasshoff (1988) based on his observation of transitional forms between 

the two genera. 
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Molecular studies on gorgoniid octocorals have shown phylogenetic divergence 

between eastern Pacific and Caribbean species of Leptogorgia (Aguilar and Sánchez, 

2007; Vargas et al. 2014; Ament-Velásquez et al. 2016) pointing towards a possible 

separation of these species groups in agreement with previous morphological 

hypotheses. Moreover, analyses including eastern Atlantic (EA) Leptogorgia 

representatives (Sánchez, 2007) clearly indicated the need of a systematic revaluation of 

the genus. Molecular methods such as DNA barcoding have been widely used to 

complement octocoral traditional taxonomy (Sánchez, 2007; Breedy et al. 2012; 

McFadden and van Ofwegen, 2012, 2013; Bryce et al. 2015) and to provide an 

independent source of evidence that can be used to test morphology-based systematic 

hypotheses (see e.g. Wirshing et al. 2005; Vargas et al. 2010, 2014). Single 

mitochondrial protein-coding genes, especially partial mtMutS sequences, are among the 

most commonly used molecular markers for phylogenetic inference in octocorals 

(McFadden et al. 2006, 2011). Yet the resolution of these markers is known to be low 

among members of this  group, and in general among non-bilaterian metazoans (Huang 

et al. 2008). Despite the relative simplicity in obtaining complete mitochondrial 

genomes (mitogenomics) using Next Generation Sequencing (NGS)technologies 

(Maricic et al. 2010; Timmermans et al. 2010), the recovery of mitogenomes for 

phylogenetic research remains only superficially explored in octocorals. Indeed, only 

30% of the complete mitochondrial genomes publicly available belong to invertebrates 

(Bernt et al. 2013) and among the ca. 3000 octocoral species described to date only 1% 

have been considered in mitogenomic analyses (Park et al. 2011, 2012; Brockman and 

McFadden, 2012; Figueroa and Baco, 2015). Here, we present the complete 

mitochondrial genome of five Leptogorgia species from the eastern Pacific, 

Mediterranean and eastern Atlantic and use them to infer a robust phylogeny of the 

genus to clarify its systematics. We also use an extended dataset based on the mtMutS 

marker to provide divergence time estimates for the different lineages of Leptogorgia 

and discuss the potential role of different geological events that could have played a role 

on the diversification of this genus through history. 

 

3.2 Material and Methods 

 

3.2.1 Sampling, DNA extraction, amplification and sequencing 
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Samples were collected by SCUBA diving from shallow waters in the 

Mediterranean, eastern Atlantic and eastern Pacific. Genomic DNA was extracted from 

the tissue of a single individual using a modified CTAB method (Porebski et al. 1997). 

Except for Eunicella cavolini, Muricea crassa and Muricea purpurea, for which 

complete mitochondrial genomes were obtained from the sequencing of short-insert 

libraries, the remaining mitogenomes (i.e. Eugorgia mutabilis, Eunicella albicans, 

Pacifigorgia cairnsi, Leptogorgia alba, Leptogorgia capverdensis, Leptogorgia gaini, 

Leptogorgia sarmentosa and Leptogorgia palma) were sequenced using standard primer 

walking procedures. Depending on the quality and yield of the extracted DNA, 

amplification was performed using two-step or three-step PCRs. The primers utilised 

for the amplification of complete mitochondrial genomes are available in the Appendix 

2.5.1. Specific primers were designed in order to bridge the gaps in some mitochondrial 

intergenic spacers (e.g. Nad5-Nad4) and protein coding genes (i.e. Nad2 and mtMutS) in 

Eunicella albicans and Pacifigorgia cairnsi (see Appendix 3.6.1). For standard three-

step PCR, the annealing temperature and the extension time were adjusted according to 

the primer pairs used and the expected amplicon lengths. PCR was performed in 12.5 

µL volumes following the GoTaq
®
 G2 Flexi DNA Polymerase (Promega, Madison, WI, 

USA) or the Crimson LongAmp
TM

 Taq DNA Polymerase (New England BioLabs) 

protocols. PCR products were purified by precipitation with one volume 20% (w/v) 

polyethyleneglycol 8000 in 2.5molL
-1

 NaCl and sequenced directly using the BigDye 

3.1 chemistry (Applied Biosystems, Foster City, CA, USA) with same primers used for 

PCR or by primer walking. All mitogenome sequences will be submitted to the 

European nucleotide archive. 

 

3.2.2 Mitogenomes assembly, annotation and comparison 

Sequences were checked, assembled and annotated using GENEIOUS 6.0.5 (Kearse 

et al. 2012). Nucleotide composition, GC content and pairwise genetic distances were 

calculated in MEGA 6.06 (Tamura et al. 2013). Nucleotide diversity in the coding-

protein genes was assessed with DnaSP 5.10.1 (Librado and Rozas, 2009). The presence 

of DNA tandem repeats was detected with the Tandem Repeats Finder server 4.08 

(Benson, 1999) available at https://tandem.bu.edu/trf/trf.html. 
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3.2.3 NGS and mitogenome assembly 

Genomic DNA libraries for Eunicella cavolini, Muricea crassa and Muricea 

purpurea were prepared using standard library preparation procedures for Illumina 

sequencing. Libraries were multiplexed and sequenced in a single lane of an Illumina 

HiSeq (100bp pairs end) at the Gene Center of the Ludwig Maximilians Universität. 

Quality was assessed with FastQC (Andrews, 2010). Low quality reads and Illumina 

TruSeq adaptors were trimmed with Trimmomatic 0.3.2 using Trinity RNA-Seq 2.0.6 

(Grabherr et al. 2011) and the same program was utilised for de novo assembly of the 

mitogenomes. 

 

3.2.4 Phylogenetic analyses of the mitogenomic dataset 

The complete mitochondrial genomes obtained were aligned with those of other 

octocorals available in Genbank using MUSCLE with default parameters (Edgar, 2004). 

Due to the existence of different mitochondrial gene arrangements in Octocorallia, 

protein-coding genes were extracted from each mitochondrial genome and aligned to 

produce single gene matrices that were concatenated to produce an alignment including 

14 mitochondrial protein-coding genes. Sequence annotation was not consistent within 

the downloaded mitogenomes and some differences were reported in the Coding DNA 

Sequences (CDSs). Therefore, before concatenation, all the alignments were visually 

inspected and in some cases, the mitochondrial protein-coding genes were trimmed at 

one or both their 5’ and 3’ ends. The concatenated alignment was used for mito-

phylogenetic analyses of the subclass Octocorallia. Maximum Likelihood (ML) and 

Bayesian analyses were performed in RAxML 7.2.8 and MrBayes 3.2.5 (Ronquist and 

Huelsenbeck, 2003) respectively.  The ML tree was inferred under the GTRGAMMA 

substitution model, using 1000 bootstrap pseudo-replicates. Under Bayesian analysis the 

best-fit substitution model (GTR+I+G) was selected using the Akaike Information 

Criterion (AIC) in jModeltest 2.1.3 (Darriba et al. 2012). The Metropolis-coupled 

Markov chain Monte Carlo (MCMCMC) was run for 10,000,000 generations, sampling 

every 500 steps, and 25% of the sampled trees were discarded as burn-in. The analysis 

was allowed to run until the average standard deviation of the split frequencies 

(ASDSF) was below 0.009. In addition, MCMCMC convergence was assessed with 

Tracer 1.6 (Rambaut et al. 2014). The resulting mitogenomic phylogeny was rooted 

using the Calcaxonian-Pennatulacea species as outgroup. All the alignments used in this 

study will be available at OpenDataLMU.
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3.2.5 Bayesian analyses, fossil calibration and divergence time estimation 

We used a dataset including 64 mtMutS sequences (59 gorgoniids and 5 plexaurids) 

and 725 nucleotide positions (see Appendix 3.6.2 for the list of samples used). All the 

sequences were aligned with MUSCLE using the default options; the alignment 

generated will be available at OpenDataLMU. Divergence time estimation was done 

using an uncorrelated lognormal relaxed clock model as  implemented in BEAST 2.3.2 

(Bouckaert et al. 2014). The best-fit substitution model (HKY+G) was selected with the 

AIC in jModelTest, while the Yule tree prior speciation model was choose for 

divergence time estimation analyses using inter-species sequences (Aldous, 2001; 

Gernhard, 2008). For molecular dating, the age of crown Eunicella was constrained 

using a lognormal prior distribution with an offset of 28.4 Ma, mean = 1 and standard 

deviation = 1. 

Among gorgonians, fossils are rare and those found are difficult to assign to genera 

with confidence due to the lack of diagnostic characters among sclerites (Kocurko and 

Kocurko, 1992). Gorgonian fossils have been reported from Texas (Middle Eocene) 

(Giammona and Robert, 1980), Poland (Upper Cretaceous) (Malecki, 1982), Mississippi 

(Lower Oligocene) (Kocurko and Kocurko, 1992) and recently from Wales (Lower 

Ordovician) (Cope, 2005). The fossil assemblages from the Red Bluff Formation in 

Mississippi —dated to the Lower Oligocene (28.4-33.9 Mya) —represent one of the 

most diverse collections found from a single location with about 1000 well-preserved 

sclerites. The majority of the sclerites described belong to Plexauridae and Gorgoniidae 

genera and among them balloon-club sclerites, belonging the genus Eunicella, can be 

clearly identified (Kocurko and Kocurko, 1992). Fossil of Eunicella sclerites was used 

as a single calibration point in our molecular dating analyses. For molecular dating, the 

MCMC ran for 10 million generations, sampling every 1000 generations, until the 

Effective Sample Size (ESS) for all parameters was >200. ESS and convergence onto 

the posterior distribution were assessed using Tracer 1.6 (Rambaut et al. 2014). Among 

the 10000 trees obtained, 10% were discarded as burn-in and the maximum clade 

credibility (MCC) tree with mean divergence times for the nodes was summarized in 

TreeAnnotator. 
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3.3 Results 

 

3.3.1 Mitogenomes 

Mitogenome size in Leptogorgia species ranged between 18,722 bp in L. sarmentosa 

and L. capverdsensis to 19,681 bp in L. gaini. All species investigated have the same 

gene arrangement including 14 protein-coding genes, 2 ribosomal RNA subunits (12S 

and 16S) and one methionine tRNA gene (tRNA
Met

). Among the protein-coding genes, 

four were encoded in the light strand (Cox2, Atp8, Atp6 and Cox3) and ten in the heavy 

strand (Cox1, Nad1, Cob, Nad6, Nad3, Nad4L, MutS, Nad2, Nad5 and Nad4). For L. 

sarmentosa and L. alba the CDS span 79.09% and 78.52% of the mitogenome, whereas 

CDS for L. capverdensis, L. gaini and L. palma were 79.33%, 75.20% and 78.95%, 

respectively. GC content ranged from 36.8% (L. alba, L. capverdensis and L. 

sarmentosa) to 37.1% (L. gaini) (Figure 3.1A). Only one case of gene overlap was 

observed, with the loci Nad2 and Nad5 overlapping by 13 bp. All the other genes were 

separated by intergenic regions (IGRs). The length of the non-coding regions was 

different, for L. sarmentosa and L. alba the longest IGRs were located between Cox1 

and 12S rRNA (134 bp) and between Nad5 and Nad4 (204 bp) respectively. In L. gaini 

the longest IGR was between Cob and Nad6 (1041 bp), this region included a tandem 

repeat and an unidentified putative open reading frame (ORF) for which the blastx 

search of NCBI did not provide any high score hits. For L. alba, L. sarmentosa and L. 

gaini the shortest IGR (4 bp) occurred between 12S rRNA and Nad1. L. capverdensis 

and L. palma had a mitogenomic structure similar to that of L. sarmentosa and L. alba. 

In particular, the mitogenomes of L. capverdensis and L. sarmentosa were almost 

identical with a genetic distance lower than 0.05%. Polymorphic sites (excluding gaps 

or missing data) in the mitochondrial coding sequences of the five Leptogorgia species 

were ~5% of the total and the following genes: Nad5, Nad4, Cob and mtMutS were the 

most variable (see Figure 3.1B). The start codon ATG was the same for all the protein-

coding genes, stop codons TAA and TAG were predominant with the exception of Cox1 

which terminates with an incomplete stop codon (TA).  Amino acids frequencies were 

consistent across the five Leptogorgia species and four amino acids (i.e. Leucine, 

Isoleucine, Valine, Glycine and Alanine) accounted for about half of the total amino 

acid composition (Figure 3.1C). The complete mitogenomes of Eugorgia mutabilis, 

Eunicella albicans, Eunicella cavolini and Pacifigorgia cairni are described in the 
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Appendix 3.6.3. The complete mitogenomes of Muricea crassa and Muricea purpurea 

have been communicated elsewhere (Poliseno et al. 2016). 

 

Figure 3.1 Nucleotide and amino acid comparisons between the five Leptogorgia mitogenomes. A: 

Comparative mitogenomics including information on mitogenome size (red) and length (bp) of Coding 

DNA Sequence (orange), 12S rRNA and 16S rRNA genes (yellow), intergenic regions (green) and GC-

content (grey). B: Sliding window analysis on mitochondrial protein-coding genes. The black line 

indicates nucleotide diversity across the 14 protein-coding genes in a window of 500 bp (10 bp steps). C: 

Codon usage of the 21 amino acids. 
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3.3.2 Mito-phylogeny 

The trees obtained with ML and Bayesian methods have the same topology and the 

separation of the species into two main groups is supported. One (I) clade conteins the 

scleraxonian genera (Corallium, Paracorallium, Paragorgia and Sibobagorgia) and the 

alcyonaceans Anthomastus sp. and Paraminabea aldersladei. The second one (II) 

comprised Briareum asbestimum and 25 alcyoniina specimens further divided into the 

Alcyoniidae, Nephtheidae, and “gorgonian” groups (Figure 3.2). The “Gorgonian 

group” includes members of the families Gorgoniidae and Plexauridae. Leptogorgia 

was split into two clades (1 and 2). L. sarmentosa and the eastern Atlantic species (L. 

gaini, L. capverdensis and L. palma) formed a well-supported clade (1) sister to a clade 

(2) including Pseudopterogorgia bipinnata, Pacifigorgia cairnsi, Eugorgia mutabilis 

and Leptogorgia alba. 

 

Figure 3.2 Phylogenetic tree of the subclass Octocorallia obtained using complete mitogenomes. Roman 

numbers indicate the two main clades. Red letters on the branches refer to the mitochondrial gene 

arrangement according to Brockman and McFadden (2012). Asterisks at the nodes indicate bootstrap 

values ≥70 (left) and posterior probabilities ≥0.95 (right), respectively.  lack arrows and numbers 

correspond to the two main groups of the family Gorgoniidae. Grey boxes include species belonging 

different families such as Alcyoniidae and Nephthidae. Gorgoniidae and Plexauridae members have been 

simplify under the general name of “gorgonians”. Newly sequenced samples are in bold. 
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3.3.3. MtMutS phylogeny and pairwise genetic distances 

The maximum clade credibility tree obtained from BEAST recovered a polyphyletic 

Leptogorgia divided in four main groups (Figure 3.3). 

 

Figure 3.3 Chronogram of the maximum clade credibility tree performed using BEAST. Node bars show 

95% highest posterior density intervals (HPD). Asterisks indicate those nodes with posterior probabilities 

≥0.95 (right) and bootsrap values ≥70 (left). Numbers from 1 to 4 refer to the main Leptogorgia groups. 

Red circle indicates fossil calibration node. Scale bar on the bottom of the tree refers to million years. 

Western Atlantic and eastern Pacific Leptogorgia are included in yellow and red boxes, respectively. 

Those collected from eastern Atlantic and Mediterranean are included in light blue and green boxes, 

respectively. Pictures of sclerites correspond to: A: balloon-club fossil of Eunicella sp. (from Kocurko 

and Kocurko, 1992) and B: balloon-club of Eunicella singularis (from Gori et al. 2012). 
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The western Atlantic species (e.g. L. violacea, L. punicea, L. virgulata and L. gracilis) 

were divided into two well-supported clades (1 and 2). All eastern Pacific species (i.e. 

L. alba, L. cuspidata, L. rigida, L. ramulus, L. styx, L. cofrini and L. chilensis) grouped 

in a well-supported clade (3). Western Atlantic and eastern Pacific Leptogorgia species 

were sister to Eugorgia, which was not monophyletic due to the exclusion of E. rubens. 

This clade was sister to Pacifigorgia. Eastern Atlantic Leptogorgia species formed a 

clade (4) with Leptogorgia palma sister to the remaining species. This branch had a low 

posterior probability (PP=0.92). Among the remaining species, the Mediterranean L. 

sarmentosa was closely related to L. capverdensis and both were sister to a clade 

including L. pulcherrima, L. gaini, L. piccola, L. dichotoma and L. violetta. 

Pairwise genetic distances among the eastern Pacific Leptogorgia species ranged 

from 0 to 0.01%. The genetic distances between western Atlantic and eastern Pacific 

Leptogorgia species ranged from 0.01 to 0.02 (Appendix 3.6.4). Genetic distances 

between western and eastern Atlantic species are overall high ranging from 0.04 to 0.06. 

Among eastern Atlantic species, the greatest genetic distance (0.04%) was reported 

between L. palma and the following species: L. capverdensis, L. pulcherrima, L. 

sarmentosa and L. violetta, whereas L. sarmentosa and L. capverdensis shared identical 

haplotypes. The mean pairwise genetic distances within the eastern Atlantic species was 

0.02%, five times higher than that within eastern Pacific species, and two time higher 

than the distance between eastern Pacific and western Atlantic congeners. 

 

3.3.4 Molecular dating 

According to our molecular dating analyses, the divergence time between the WA 

Leptogorgia groups, L. violacea-L. punicea and L. virgulata-L. gracilis, and EP 

Leptogorgia was 28.97 Mya (95% HPD: 13-39 Mya) and 16.17 Mya (95% HPD: 9-30 

Mya), respectively (see Fig. 3). Separation within EP Leptogorgia species groups 

occurred 9.46 Mya (95% HPD: 18-54 Mya) and the divergence time between species 

typically confined to the Central-Pacific America (e.g. L. alba, L. cofrini, L. cuspidata) 

and the widespread EP Leptogorgia chilensis was estimated ~9 Mya. The estimated date 

for divergence between Eugorgia (e.g. E. daniana, E. multifida and E. mutabilis) and 

Leptogorgia from both WA and EP was 31.63 Mya (95% HPD: 17-49 Mya), whereas 

the separation between these to genera and Pacifigorgia was estimated around 51 Mya 

(95% HPD: 27-73 Mya). When considering the eastern Atlantic Leptogorgia, 

divergence from other gorgonians was ~80 Mya (95% HPD: 46-108 Mya). Within EA 



 

77 
 

species, separation among L. palma and congeners was estimated at ~68 Mya (95% 

HPD: 31-84 Mya), while divergence time between L. sarmentosa, L. capverdensis and 

the other EA species (e.g. L. pulcherrima, L. gaini, L. piccola, L. dichotoma and L. 

violetta) was estimated 37.53 Mya (95% HPD: 14-47 Mya). According to our analyses, 

estimation of divergence time between L. capverdensis and L. sarmentosa ranges 

between 0 and 4 Mya. Similarly, separation between L. gaini and L. pulcherrima 

occurred 2.18 Mya (95% HPD: 1-9 Mya). 

 

3.4 Discussion 

Our mitogenomic analyses on five Leptogorgia species revealed the presence of 

polymorphic and highly variable traits in the non-coding region between Cob and Nad6. 

The complete mitochondrial genomes obtained have been also successfully exploited to 

assess the phylogenetic relationships within Leptogorgia, in fact our analysis recovered 

a fully resolved and highly supported phylogeny which shows divergence between L. 

alba and the Mediterranean and eastern Atlantic congeners. In particular, our results 

support previously suggested relationships, in which EA Leptogorgia species typically 

characterised by long, spiny and asymmetrical spindles are genetically distinct form the 

eastern Pacific congeners (Vargas et al. 2014; Ament-Velásquez et al. 2016). Based on 

ITS2, Aguilar and Sánchez (2007) demonstrated that some of the western African taxa 

formerly classified as Leptogorgia spp. were split from the WA-Caribbean congeners 

and Sánchez (2007) proposed for them a taxonomic reallocation into the genus 

Filigorgia. Despite the lack of morphological divergence between EA and EP 

Leptogorgia, our phylogenetic results point the need of a taxonomic revision for the 

eastern Atlantic species, remarking the possibility of erecting a new genus. 

The taxonomic separation into Leptogorgia and Lophogorgia species according to 

the presence/absence of symmetrical, asymmetrical and disk-spindle sclerites, as 

proposed by Bayer (1956, 1961), seems to work only for the West Indies (western 

Atlantic-Caribbean) taxa but not for the eastern Pacific (Breedy and Guzman, 2007). In 

addition, the presence of “intermediate” forms in the western Africa fauna (Grassoff, 

1988) and the phylogenetic segregation of Leptogorgia lineages, may indicate 

convergent morphological evolution as recently shown for the colony-shape (e.g. whip-

like) among eastern Pacific species (Ament-Velásquez et al. 2016). Concerning our 

phylogenetic analyses, the mtMutS phylogeny corroborated the polyphyly of 
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Leptogorgia found in the mitogenomic phylogeny. This analysis also resulted in distinct 

clades that corresponded to geographical regions (i.e. Mediterranean-eastern Atlantic, 

eastern Pacific and western Atlantic). Our fossil-calibrated divergence time estimation 

pointed to a late Cretaceous (~77 Mya)  separation of the eastern and western Atlantic 

gorgonians, likely related to changes in the spreading geometry within the Central and 

South Atlantic Ocean (see e.g. Cande et al. 1988; Bosworth, 1992; Guiraud et al. 1992) 

and a possible decrease in gene flow between the ancestral Atlantic populations. 

Interestingly, the low genetic distances among the eastern Pacific Leptogorgia species is 

probably due to their recent divergence, estimated between ~3 to 0.8 Mya, which 

contrasts with the eastern Atlantic fauna long evolutionary history (~68 Mya). We 

interpret this result as evidence for the existence of multiple old lineages deserving 

generic status among eastern Atlantic 'Leptogorgia', something remarkable given the 

morphological heterogeneity observed among these species and in general in 

Leptogorgia. 

Based on shape and size of the colony, and on sclerite composition, Grasshoff (1992) 

divided the eastern Atlantic species of Leptogorgia into seven main groups. These 

groups were not supported in our phylogenetic analyses. For instance, L. piccola was 

also included by Grasshoff (1992) in the L. sarmentosa group, in our phylogeny L. 

piccola was found sister to the L. gaini-L. pulcherrima clade. These last two species 

also belong to different morphological groups with L. pulcherrima assigned to its own 

group and L. gaini forming part, together with L. dichotoma, of the L. vimminalis group. 

Leptogorgia violetta was included in the L. dakarensis group. Our phylogenetic results 

clearly show that these morphological groups are artificial. Interestingly, molecular 

analyses using the mtMutS marker have offered support for morphologically defined 

groups among eastern Pacific Leptogorgia species (Vargas et al. 2014, Ament-

Velásquez et al. 2016). In the case of the eastern Atlantic fauna, the discrepancies 

detected here between Grasshoff's morphological grouping scheme, mainly based on 

colony branching pattern and sclerome composition, and the results of our molecular 

analyses provide another example of the homoplasic nature of these characters at 

shallow level (i.e. intragenus; see Ament-Velásquez et al. 2016). In agreement with 

Grasshoff (1992), L. sarmentosa and L. capverdensis were found to be sister with high 

support in our analyses. Our molecular dating analysis suggests a recent divergence (~3 

Mya) for L. sarmentosa and L. capverdensis postdating the re-opening of the Gibraltar 

strait after the Messinian Salinity Crisis (5.96-5.33 Mya) (Krijgsman et al. 1999; 
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Garcia-Castellanos and Villaseñor, 2011). The separation between L. capverdensis-L. 

sarmentosa and their central-south African congeners (~16 Mya) roughly correspond 

with intense volcanism associated to the formation of the Cape Verdean archipelago 

(see Mitchell et al. 1983; Pim et al. 2008). 

Finally, it the only representative of the south-African 'Leptogorgia' species included 

in our phylogenies (i.e. L. barnardi, L. capensis, L. gilchristi and L. palma; Grasshoff, 

1992) was sister to other eastern Atlantic Leptogorgia species and the divergence time 

estimation for this split was inferred at ~68 Mya (95% HPD 31-84 Mya). Although we 

acknowledge that the poor taxon sampling among these species, and in general among 

African 'Leptogorgia' may lead to biased phylogenetic relationships and branch lengths, 

the younger age (~30 Mya) coincides with the enhancement of the Antarctic 

Circumpolar Current (ACC) an event that caused climate fluctuations and changes in 

the sea-surface temperatures (Chase and Meadows, 2007) that could be speculated to be  

responsible for the separation between the south and north African 'Leptogorgia'. A 

better taxon sampling will allow a more accurate divergence time estimation for the 

separation of south and north African 'Leptogorgia' species and will allow to test 

whether in fact this divergence can be related to the enhancement of the ACC in the 

early Oligocene. 

 

3.5 Conclusions 

This study showed a deep divergence among morphological similar but 

geographically restricted octocoral lineages currently included in the genus 

Leptogorgia. East Atlantic and West Atlantic octocoral clades diverged in the late 

Cretaceous, likely due to the spreading of the Atlantic ocean. Eastern Atlantic-

Mediterranean species of 'Leptogorgia' represent an old lineage not closely related to 

western Atlantic-eastern Pacific 'Leptogorgia', which diverged and diversified recently. 

The levels of sequence divergence observed within the eastern Atlantic 'Leptogorgia' 

match divergence levels observed between eastern Pacific genera suggesting the 

existence of multiple lineages deserving generic status in the eastern Atlantic. A 

revision and reappraisal of these fauna is thus necessary. 
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3.6 Appendix 

Appendix 3.6.1 List of specific primers used for PCR and/or Sanger sequencing in 

Eunicella albicans and Pacifigorgia cairnsi 

Appendix 3.6.2 List of species used for phylogenetic and molecular dating analyses  

Appendix 3.6.3 Description of the complete mitogenome of Eugorgia mutabilis, 

Eunicella albicans, Eunicella cavolini and Pacifigorgia cairnsi 

Appendix 3.6.4 Matrix of pairwise genetic distances
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Appendix 3.6.1 List of specific primers used for PCR and/or Sanger sequencing in Eunicella albicans and Pacifigorgia cairnsi 

 

Primer name Sequence (5'-3') Gene(s) 

NAD3_7813F CTGGGCTGTTACATATATGGGCT Nad3 

MutS_10383R GCCTGCTCCATTTACCGAGA mtMutS 

MutS_10364F TCTCGGTAAATGGAGCAGGC mtMutS 

16S_13089R GCATCGCTGAGACCATTCCT 16S  

NAD2_14268F ATCTTGGCAGCTGTTGGTCA Nad2 

NAD4_17062R CCGAGCTCCCCATACTCCTA Nad4 

IGR10R ATACATAATTAGCTAGTAAGC Nad5-igr-Nad4 
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Appendix 3.6.2 List of species used for phylogenetic and molecular dating analyses 

 

Taxon Geographic Area mtMutS Voucher # - ID number References 

Gorgoniidae         

Antillogorgia acerosa WA JX152763 CAS 097785 Williams and Chen, 2012 
Antillogorgia sp. Car JX152764 CAS 100661 Williams and Chen, 2012 
Eugorgia daniana EP HG917048 HMG93 Vargas et al. 2014 
Eugorgia multifida N/A GQ342494 N/A unbablished 
Eugorgia mutabilis EP  GW1806 this study 
Eugorgia rubens N/A JN866557 34213-094 unbablished 
Eunicella albicans EA  GW1815 this study 

Eunicella cavolini Med JQ397290 Gori41 Gori et al. 2012 
Eunicella cavolini Med  GW4597 this study 
Eunicella singularis  Med JQ397296 Gori36 Gori et al., 2012 
Eunicella sp. Med JQ397310 Gori49 Gori et al., 2012 
Eunicella tricoronata EA JX203795 RMNH Coel.40814 McFadden and van Ofwegen, 2012 
Eunicella verrucosa Med JQ397300 Gori3 Gori et al. 2012 
Gorgonia flabellum Car AY126427 16

1 Sánchez et al. 2003 

Gorgonia mariae Car AY126426 1007505 Sánchez et al. 2003 
Gorgonia ventalina Car AY126425 1007421 Sánchez et al. 2003 
Leptogorgia alba N/A AY268452 N/A unpublished 
Leptogorgia alba EP  GW4709 Vargas et al. 2014 
Leptogorgia alba EP HG917034 HMG07 Vargas et al. 2014 
Leptogorgia alba EP HG917035 HMG35 Vargas et al. 2014 
Leptogorgia alba EP HG917036 HMG71 Vargas et al. 2014 

Leptogorgia capverdensis EA  GW1780 this study 
Leptogorgia chilensis EP JN866554 N/A unpublished 
Leptogorgia cofrini EP HG917038 HMG32 Vargas et al. 2014 
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Leptogorgia cofrini EP HG917037 HMG17 Vargas et al. 2014 
Leptogorgia cuspidata EP AY268450 N/A Unpublished 
Leptogorgia cuspidata EP HG917047 HMG97 Vargas et al. 2014 
Leptogorgia dichotoma EA AY268445 N/A Unpublished 

Leptogorgia gaini EA  GW1777 this study 
Leptogorgia gracilis WA AY268454 N/A Unpublished 
Leptogorgia palma EA  GW1810 this study 
Leptogorgia piccola EA AY268444 N/A Unpublished 
Leptogorgia pulcherrima EA AY268443 N/A Unpublished 
Leptogorgia punicea WA AY268449 N/A Unpublished 
Leptogorgia ramulus EP AY268451 N/A Unpublished 

Leptogorgia rigida EP GQ342496 N/A Unpublished 
Leptogorgia sarmentosa Med  GW4737 this study 
Leptogorgia styx EP AY268453 N/A Unpublished 
Leptogorgia violacea WA AY268448 N/A Unpublished 
Leptogorgia violetta EA AY268446 N/A Unpublished 
Leptogorgia virgulata WA AY126418 1007414 Sánchez et al. 2003 
Pacifigorgia bayeri EP HG917044 HMG77 Vargas et al. 2014 

Pacifigorgia cairnsi EP HG917041 HMG23 Vargas et al. 2014 
Pacifigorgia cairnsi EP  GW4656 this study 
Pacifigorgia cf. cairnsi EP HG917021 HMG20 Vargas et al. 2014 
Pacifigorgia cf. cairnsi EP HG917046 HMG106 Vargas et al. 2014 
Pacifigorgia catedralensis EP HG917019 HMG109 Vargas et al. 2014 
Pacifigorgia firma EP HG917022 HMG53 Vargas et al. 2014 
Pacifigorgia Irene EP HG917024 HMG10 Vargas et al. 2014 

Pacifigorgia media EP GQ342497 N/A Unpublished 
Pacifigorgia rubicunda EP HG917027 HMG74 Vargas et al. 2014 
Pacifigorgia stenobrochis EP AY126420 27

1 Sánchez et al. 2003 
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Pacifigorgia stenobrochis EP HG917018 HMG04 Vargas et al. 2014 
Pacifigorgia smithsoniana EP HG917023 HMG59 Vargas et al. 2014 
Phyllogorgia dilatata WA AY126428 4336

2 Sánchez et al. 2003 
Pseudopterogorgia acerosa Car AY126421 1007413 Sánchez et al. 2003 

Pseudopterogorgia americana Car AY126423 1007391 Sánchez et al. 2003 
Pseudopterogorgia bipinnata Car AY126424 1007374 Sánchez et al. 2003 
Pseudopterogorgia elisabethae WA AY126422 1007390 Sánchez et al. 2003 

Plexauridae     
Swiftia pacifica N/A JN866547 N/A Unpublished 
Swiftia sp. N/A AY683088 NSUOC-JSL I 3685 Wirshing et al. 2005 
Psammogorgia cf. arbuscula EP HG917042 HMG15 Vargas et al. 2014 

Psammogorgia sp. EP HG917045 HMG84 Vargas et al. 2014 
Psammogorgia cf. arbuscula EP HG917043 HMG38 Vargas et al. 2014 

 

1
 J.A. Sánchez, personal collection; 

2
 Museu Nacional do Rio de Janeiro (MNRJ) 

 

List of species used for phylogenetic and molecular dating analyses. Additional information such as geographic area, Genbank accession 

numbers, sample vouchers and references are also reported. Car: Caribbean; EA: Eastern Atlantic; EP: Eastern Pacific; Med: Mediterranea and 

WA: Western Atlantic. N/A: not available. 
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Appendix 3.6.3 Description of the complete mitogenome of Eugorgia mutabilis, Eunicella 

albicans, Eunicella cavolini and Pacifigorgia cairnsi 

 

Complete mitogenomes of Eugorgia, Eunicella and Pacifigorgia 

 

Eugorgia mutabilis and Pacifigorgia cairnsi had a mitogenome size of 19,157 bp and 

19,156 bp respectively, whereas the complete mitochondrial genome of the two Eunicella 

species ranged from 19,175 bp (E. albicans) to 19,316 bp (E. cavolini). All species have 

the ancestral gene arrangement (type A) and include 14 protein-coding genes, 2 ribosomal 

RNA subunits (12S and 16S) and one methionine tRNA gene (tRNA
Met

). GC-content 

ranged from 37.2% of E. mutabilis to 37.4% of E. albicans and E. cavolini. The protein-

coding genes were identified spanning 76.61% and 77.25% of the complete mitochondrial 

genomes in E. cavolini and E. albicans, respectively. The percentage of protein-coding 

genes in the mitogenome of E. mutabilis and P. cairnsi was 77.30% and 77.41%, 

respectively. The nucleotide composition and length of the different intergenic regions 

(IGRs) were variable among species. For instance the longest IGR, for all species, was 

located between Nad5 and Nad4 but its length ranged from 515 bp (Pacifigorgia cairnsi) 

to 699 bp (Eunicella cavolini). The shortest IGRs (4 bp), for all species, were those 

between 12S rRNA and Nad1 and between 16S rRNA and Nad2. The start codon ATG 

was the same for all the protein-coding genes. Except for Cox1, which had an incomplete 

stop codon (TA) the other termination codons were either TAA or TAG.



 

86 
 

Appendix 3.6.4 Pairwise uncorrected genetic distance (P) matrix 

 

Species 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

1. JQ397290_Eunicella cavolini

2. JQ397296_Eunicella singularis 0,00

3. JQ397300_Eunicella verrucosa 0,00 0,00

4. JQ397310_Eunicella  sp. 0,00 0,00 0,00

5. AY126422_Pseudopterogorgia elisabethae 0,07 0,07 0,07 0,07

6. AY126426_Gorgonia mariae 0,07 0,07 0,07 0,07 0,00

7. AY126424_Pseudopterogorgia bipinnata 0,06 0,06 0,06 0,06 0,02 0,02

8. JX152764_Antillogorgia  sp. 0,06 0,06 0,06 0,06 0,02 0,02 0,00

9. AY126428_Phyllogorgia dilatata 0,07 0,07 0,07 0,07 0,04 0,04 0,03 0,03

10. AY126425_Gorgonia ventalina 0,07 0,07 0,07 0,07 0,03 0,03 0,03 0,03 0,02

11. AY126427_Gorgonia flabellum 0,07 0,07 0,07 0,07 0,03 0,03 0,03 0,03 0,02 0,00

12. JX152763_Antillogorgia acerosa 0,07 0,07 0,07 0,07 0,03 0,03 0,02 0,02 0,02 0,01 0,01

13. AY126421_Pseudopterogorgia acerosa 0,06 0,06 0,06 0,06 0,02 0,02 0,02 0,02 0,02 0,01 0,01 0,00

14. AY126423_Pseudopterogorgia americana 0,06 0,06 0,06 0,06 0,02 0,02 0,02 0,02 0,02 0,01 0,01 0,00 0,00

15. HG917019_Pacifigorgia catedralensis 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03

16. HG917021_Pacifigorgia  cf. cairnsi 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00

17. HG917044_Pacifigorgia bayeri 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00 0,00

18. AY126420_Pacifigorgia stenobrochis 0,06 0,06 0,06 0,06 0,04 0,04 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,01 0,01 0,01

19. HG917018_Pacifigorgia stenobrochis 0,06 0,06 0,06 0,06 0,04 0,04 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,01 0,01 0,01 0,00

20. HG917022_Pacifigorgia firma 0,06 0,06 0,06 0,06 0,04 0,04 0,03 0,03 0,05 0,04 0,04 0,04 0,04 0,04 0,01 0,01 0,01 0,01 0,01

21. HG917023_Pacifigorgia smithsoniana 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00 0,00 0,00 0,01 0,01 0,00

22. HG917024_Pacifigorgia irene 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00 0,00 0,00 0,01 0,01 0,00 0,00

23. HG917041_Pacifigorgia cairnsi 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,00

24. GW4656_Pacifigorgia cairnsi 0,06 0,06 0,06 0,06 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,01 0,01 0,01 0,01 0,01 0,00 0,00 0,00 0,00

25. HG917046_Pacifigorgia  cf. cairnsi 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,00 0,00 0,00

26. GQ342497_Pacifigorgia media 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

27. HG917027_Pacifigorgia rubicunda 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,03 0,03 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00

28. GQ342494_Eugorgia multifida 0,07 0,07 0,07 0,07 0,06 0,06 0,06 0,06 0,07 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05

29. HG917048_Eugorgia daniana 0,07 0,07 0,07 0,07 0,06 0,06 0,06 0,06 0,07 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,00

30. GW1806_Eugorgia mutabilis 0,07 0,07 0,07 0,07 0,06 0,06 0,06 0,06 0,07 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,00 0,00

31. AY268448_Leptogorgia violacea 0,06 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,06 0,06 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,03

32. AY268449_Leptogorgia punicea 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,01

33. AY126418_Leptogorgia virgulata 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02

34. AY268454_Leptogorgia gracilis 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02

35. JN866557_Eugorgia rubens 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 
 

…continue 
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Species 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62.

1. JQ397290_Eunicella cavolini

2. JQ397296_Eunicella singularis 

3. JQ397300_Eunicella verrucosa

4. JQ397310_Eunicella  sp.

5. AY126422_Pseudopterogorgia elisabethae

6. AY126426_Gorgonia mariae

7. AY126424_Pseudopterogorgia bipinnata

8. JX152764_Antillogorgia  sp.

9. AY126428_Phyllogorgia dilatata

10. AY126425_Gorgonia ventalina

11. AY126427_Gorgonia flabellum

12. JX152763_Antillogorgia acerosa

13. AY126421_Pseudopterogorgia acerosa

14. AY126423_Pseudopterogorgia americana

15. HG917019_Pacifigorgia catedralensis

16. HG917021_Pacifigorgia  cf. cairnsi

17. HG917044_Pacifigorgia bayeri

18. AY126420_Pacifigorgia stenobrochis

19. HG917018_Pacifigorgia stenobrochis

20. HG917022_Pacifigorgia firma

21. HG917023_Pacifigorgia smithsoniana

22. HG917024_Pacifigorgia irene

23. HG917041_Pacifigorgia cairnsi

24. GW4656_Pacifigorgia cairnsi

25. HG917046_Pacifigorgia  cf. cairnsi

26. GQ342497_Pacifigorgia media

27. HG917027_Pacifigorgia rubicunda

28. GQ342494_Eugorgia multifida

29. HG917048_Eugorgia daniana

30. GW1806_Eugorgia mutabilis

31. AY268448_Leptogorgia violacea

32. AY268449_Leptogorgia punicea

33. AY126418_Leptogorgia virgulata 0,02

34. AY268454_Leptogorgia gracilis 0,02 0,00

35. JN866557_Eugorgia rubens 0,02 0,01 0,01  
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Species 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

36. AY268452_Leptogorgia alba 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

37. AY268453_Leptogorgia styx 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

38. GW4709_Leptogorgia alba 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

39. HG917034_Leptogorgia alba 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

40. HG917035_Leptogorgia alba 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

41. HG917036_Leptogorgia alba 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

42. HG917038_Leptogorgia cofrini 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

43. HG917037_Leptogorgia cofrini 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

44. JN866554_Leptogorgia chilensis 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,03 0,03 0,03 0,02 0,02 0,02 0,02

45. AY268451_Leptogorgia ramulus 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

46. AY268450_Leptogorgia cuspidata 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

47. GQ342496_Leptogorgia rigida 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

48. HG917047_Leptogorgia cuspidata 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02

49. GW4737_Leptogorgia sarmentosa 0,07 0,07 0,07 0,07 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,07 0,07 0,07 0,06

50. AY268443_Leptogorgia pulcherrima 0,07 0,07 0,07 0,07 0,06 0,06 0,05 0,05 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,04 0,04 0,07 0,07 0,07 0,06

51. AY268446_Leptogorgia violetta 0,07 0,07 0,07 0,07 0,05 0,05 0,05 0,05 0,06 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,06 0,06 0,06 0,06

52. AY268444_Leptogorgia piccola 0,07 0,07 0,07 0,07 0,05 0,05 0,04 0,04 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,06 0,06 0,06 0,06

53. AY268445_Leptogorgia dichotoma 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,04 0,04 0,04 0,06 0,06 0,06 0,06

54. JN866547_Swiftia pacifica 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,07 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,06

55. AY683088_Swiftia  sp. 0,05 0,05 0,05 0,05 0,06 0,06 0,05 0,05 0,06 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,06 0,06 0,06 0,05

56. HG917042_Psammogorgia  cf. arbuscula 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,05

57. HG917045_Psammogorgia  sp. 0,04 0,04 0,04 0,04 0,05 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,04 0,04 0,04 0,04 0,04 0,04 0,05

58. HG917043_Psammogorgia  cf. arbuscula 0,04 0,04 0,04 0,04 0,05 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,04 0,04 0,04 0,04 0,04 0,04 0,05

59. GW1810_Leptogorgia palma 0,06 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,04 0,04 0,04 0,06 0,06 0,06 0,05

60. GW1815_Eunicella albicans 0,03 0,03 0,03 0,03 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,07 0,07 0,07 0,06

61. GW1777_Leptogorgia gaini 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,06 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,06 0,06 0,06 0,06

62. GW1780_Leptogorgia capverdensis 0,07 0,07 0,07 0,07 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,07 0,07 0,07 0,06

63. JX203795_Eunicella tricoronata 0,02 0,02 0,02 0,02 0,06 0,06 0,05 0,05 0,06 0,06 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,06

64. GW4597_Eunicella cavolini 0,00 0,00 0,00 0,00 0,07 0,07 0,06 0,06 0,07 0,07 0,07 0,07 0,06 0,06 0,05 0,05 0,05 0,06 0,06 0,06 0,05 0,05 0,05 0,06 0,05 0,05 0,05 0,07 0,07 0,07 0,06 
 

 

 

 

 

 

…continue 



 

89 
 

32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62.

36. AY268452_Leptogorgia alba 0,02 0,01 0,01 0,01

37. AY268453_Leptogorgia styx 0,02 0,01 0,01 0,01 0,00

38. GW4709_Leptogorgia alba 0,02 0,01 0,01 0,01 0,00 0,00

39. HG917034_Leptogorgia alba 0,02 0,01 0,01 0,01 0,00 0,00 0,00

40. HG917035_Leptogorgia alba 0,02 0,01 0,01 0,01 0,00 0,00 0,00 0,00

41. HG917036_Leptogorgia alba 0,02 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00

42. HG917038_Leptogorgia cofrini 0,02 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00

43. HG917037_Leptogorgia cofrini 0,02 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00

44. JN866554_Leptogorgia chilensis 0,01 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

45. AY268451_Leptogorgia ramulus 0,01 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

46. AY268450_Leptogorgia cuspidata 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00

47. GQ342496_Leptogorgia rigida 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,00

48. HG917047_Leptogorgia cuspidata 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,00 0,00

49. GW4737_Leptogorgia sarmentosa 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05

50. AY268443_Leptogorgia pulcherrima 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,06 0,06 0,06 0,03

51. AY268446_Leptogorgia violetta 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,02 0,02

52. AY268444_Leptogorgia piccola 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,05 0,02 0,01 0,01

53. AY268445_Leptogorgia dichotoma 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,04 0,05 0,05 0,05 0,02 0,02 0,00 0,01

54. JN866547_Swiftia pacifica 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,05 0,05 0,06 0,05 0,05 0,04

55. AY683088_Swiftia  sp. 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,05 0,04 0,03

56. HG917042_Psammogorgia  cf. arbuscula 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,04 0,04 0,04 0,04 0,05 0,05 0,04 0,04 0,04 0,03 0,02

57. HG917045_Psammogorgia  sp. 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,02 0,00

58. HG917043_Psammogorgia  cf. arbuscula 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,02 0,00 0,00

59. GW1810_Leptogorgia palma 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,03 0,03 0,04 0,04 0,04 0,03 0,03

60. GW1815_Eunicella albicans 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,05 0,06 0,04 0,04 0,04 0,04 0,05

61. GW1777_Leptogorgia gaini 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,03 0,00 0,01 0,01 0,01 0,05 0,05 0,04 0,04 0,04 0,04 0,06

62. GW1780_Leptogorgia capverdensis 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,00 0,03 0,02 0,02 0,02 0,05 0,05 0,05 0,04 0,04 0,04 0,05 0,03

63. JX203795_Eunicella tricoronata 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,05 0,06 0,06 0,05 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,00 0,05 0,05

64. GW4597_Eunicella cavolini 0,06 0,05 0,05 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,05 0,05 0,06 0,06 0,06 0,07 0,07 0,07 0,07 0,06 0,06 0,05 0,05 0,04 0,04 0,06 0,03 0,06 0,07  
 

Pairwise genetic distances. Western Atlantic and eastern Pacific Leptogorgia are highlighted in yellow and red, respectively. Those collected 

from eastern Atlantic and Mediterranean are highlighted in light blue and green, respectively.
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This chapter has been published online as a standalone publication to the “Cold Spring 

Harbor Laboratory BioRxiv”. DOI: http://dx.doi.org/10.1101/042945. 
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Chapter 4 

 

Complete mitochondrial genome of Muricea crassa 

and Muricea purpurea (Anthozoa: Octocorallia) 

from the eastern tropical Pacific 

 

 

 

Muricea crassa (Verrill, 1869) and Muricea purpurea (Verrill, 1864) are two shallow 

water gorgonians of the family Plexauridae. Their distribution is limited to the eastern 

tropical Pacific where they are abundant members of coral communities and littoral zones 

(Guzman et al., 2004). Samples were collected as part of an ecological and biodiversity 

survey undertaken in the Coiba National Park (Panama). Genomic DNA was extracted 

from ethanol-preserved samples and was used to construct genomic libraries using the 

Accel-NGS 1S DNA Library kit (Swift Biosciences, Ann Arbor, MI, USA) following the 

manufacturers instructions. These libraries were sequenced (100bp PE) on an Illumina 

HiSeq (Illumina Inc., San Diego, CA, USA). The quality of the reads obtained was 

assessed with FastQC (Andrews, 2010), low quality reads and Illumina adaptors were 

trimmed using Trimmomatic 0.3.2 called from Trinity RNA-Seq 2.0.6 (Grabherr et al. 

2011). Despite its original purpose, the Trinity RNA-Seq assembler was used after 

normalization to 50X coverage for de-novo mitogenome assembly. The assembly resulted 

in a single mitochondrial contig in both species. Initial annotation was performed with the 

ORF finder function implemented in Geneious 8.1.7 (Kearse et al. 2012) and was 

corroborated by comparison with published octocoral mitogenomes. The presence of DNA 

repeats was assessed with the tandem repeats finder server 4.08 available at 

https://tandem.bu.edu/trf/trf.html (Benson, 1999). The complete mitogenomes of M. crassa 

(LT174652) and M. purpurea (LT174653) were 19,586 bp and 19,358 bp long, with a GC-

content of 36.0% (M. purpurea) and 36.1% (M. crassa), respectively. Both mitogenomes 

had gene arrangement of type “A” (see  rockman and McFadden, 2012). In total, the 

Coding DNA Sequences (CDSs) spanned about 76% of the mitogenome in both species. 

Among protein-coding genes, the highest level of nucleotide diversity (0.4%) was found in 
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NAD1, NAD6 and COX2, whereas no nucleotide substitutions were found in NAD3, ATP6 

and ATP8. Except for NAD2 and NAD5 (13bp overlap), the other protein-coding genes 

were separated by intergenic regions (IGRs) of different lengths. In both species, the 

shortest IGRs were those located between 12S rRNA and NAD1 and between 16S rRNA 

and NAD2, while the longest was found between NAD5 and NAD4. The latter IGR was 

also the most diverse region with a nucleotide diversity of 6.2%. Length polymorphism 

was found in the COB-NAD6 IGR, which was 184bp shorter in M. purpurea than in M. 

crassa. Sequencing of indel-rich IGRs such as that between COB and NAD6 may result 

useful for molecular species-identification in the genus Muricea. Finally, we found a 37 bp 

tandem repeat in the IGR between NAD4 and tRNA of M. crassa. 

The two newly sequenced complete mitogenomes were used to assess the phylogenetic 

relationships among 26 different octocoral species. A concatenated nucleotide alignment of 

14 protein-coding genes (15,249 bp in total) for 41 taxa was generated with MUSCLE 

(Edgar, 2004) using the default options provided in Seaview (Gouy et al. 2010). The 

maximum likelihood tree was inferred in RaxML 7.2.8 (Stamatakis, 2006) under the 

GTRGAMMA substitution model. Node support was estimated using 1000 bootstrap 

pseudoreplicates.

 

Figure 4.1 Phylogenetic tree of 41 octocorals based on a concatenated alignment of 14 mitochondrial 

protein-coding genes. The calcaxonians (Keratoisidinae sp., Acanella eburnea, Narella hawaiinensis and 

Junceella fragilis) and pennatulaceans (Renilla muelleri and Stylatula elongata) were used to re-root the tree 

but are not shown here. Numbers at the nodes indicate bootstrap values. 
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The phylogenetic tree (Figure 4.1) was re-rooted using three calcaxonians and two 

pennatulaceans as outgroup (not shown in Figure 4.1). Tree topology is consistent with 

recently published studies (Figueroa and Baco, 2015), however the phylogenetic placement 

of Muricea spp. sister to Nephtheidae (Dendronephthya spp. and Scleronephthya spp.) is 

likely an artefact caused by poor taxon sampling in the family Plexauridae. 
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Chapter 5 

Species delimitation and phylogeny of the tropical 

eastern Pacific gorgonian Pacifigorgia using Single 

Nucleotide Polymorphisms (SNPs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter will be submitted as a standalone publication to the Journal “Molecular 

Ecology Resources” 
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Chapter 5 

 

Species delimitation and phylogeny of the tropical 

eastern Pacific gorgonian Pacifigorgia using Single 

Nucleotide Polymorphisms (SNPs) 

 

 

 

5.1 Introduction 
 

Delimitation of species boundaries is a challenging process, which often requires 

multidisciplinary information including taxonomical, ecological and molecular data 

(Dayrat, 2005; Ruiz-Sanchez & Sosa, 2010; Cornetti et al. 2015). The number of studies 

on species delimitation has increased over the last few years and new methods and 

programs were recently developed for the analysis of morphological and molecular 

datasets (see e.g. Yang & Rannala 2010; Fujita et al. 2011; Zapata & Jiménez 2012; Zhang 

et al. 2013). Although DNA sequences have largely been used for species identification 

(Hebert et al. 2003), their application for species delimitation is still controversial. 

Delimitation of species based on DNA sequences is sometimes influenced by the number 

of loci analysed (Dupuis et al. 2012) and the methods applied (Carstens et al. 2013). On 

the other hand, integrated approaches based on different morphological characters and 

molecular data may also lead to divergent results (see e.g. Wiens & Penkrot 2002; 

Debiasse & Hellberg 2015). This incongruence could stem from hybridisation events and 

interspecific gene flow that might occur among closely related species (Linnen & Farrell 

2007; Arnolg & Fogarty 2009). About 10% of the animal species are involved in 

hybridisation events (Mallet 2005) and it has been shown that introgression of a few loci 

can speed-up the speciation processes (Abbott et al. 2010). Although hybridisation was 

considered one of the possible processes underpinning octocoral diversification 

(McFadden & Hutchinson 2004; Prada et al. 2008; Wirshing & Baker 2015), its real 

influence in speciation is difficult to estimate. 
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The genus Pacifigorgia includes 35 valid species, mainly distributed in the eastern 

Pacific (Breedy & Guzman 2002, 2003). A high number of species is distributed in the 

Panamic province —from ~16° N to ~3° N— and six species are endemic of the Gulf of 

Chiriquí off Panama (Guzman et al. 2004; Vargas et al. 2008). Species delimitation and 

taxonomy in Pacifigorgia is typically based on the diversity of small calcium carbonate 

components (sclerites) that are embedded in the soft tissues (Vargas et al. 2010a; Carlo et 

al. 2011). Additional morphological traits such as branching thickness, mesh pattern and 

form of the colony have been also considered, resulting, however, in a lack of resolution 

for species-level identification (Vargas et al. 2010b). Similarly, the use of mitochondrial 

(mtMutS) and high-variable nuclear markers such as SRP54 failed to resolve the 

phylogenetic relationships at species level (Vargas et al. 2014). The systematic uncertainty 

faced during the last decade raises important evolutionary questions which may be briefly 

summarized as follows: (1) is the high endemism of the Gulf of Chiriquí the result of 

adaptive genetic diversity? (2) is hybridisation contributing to speciation, due to 

reproductive isolation? (3) is there any correlation between the geological formation of the 

Gulf of Chiriquí and the specieation  events occurred in the eastern Pacific? In order to 

address these questions and to explore the diversity among different Pacifigorgia species 

we analysed wide-genome regions using Next Generation Sequencing (NGS) technologies. 

We investigate the phylogenetic relationships within nine Pacifigorgia species based on 

single nucleotide polymorphisms (SNPs) using Genotyping by Sequencing (GBS). We 

assess species boundaries using Marginal Likelihood Estimation (MLE) and a Bayes 

Factor Delimitation (BFD) method and we also survey the genetic diversity comparing 30 

short-DNA sequences (<300 bp) spread over the mitochondrial genome of different 

species. The present study represents the first attempt to delimit, through a NGS approach, 

morphologically ambiguous species and to shed light on the evolutionary processes that 

shaped the diversity of a taxonomically complicated genus. 

 

5.2.Material and methods 

 

5.2.1 Sampling and morphological identification 

 

Eighty-two (82) Pacifigorgia specimens belonging nine species (P. bayeri, P. cairnsi, 

P. eximia, P. ferruginea, P. firma, P. pumila, P. rubicunda, P. smithsoniana and P. 
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stenobrochis) were collected by SCUBA from six different locations off Panama in the 

National Park of Coiba (Appendix 5.5.1). Sampling depths range from 8 m to 24 m. All 

samples were preliminary sorted in the field and were morphologically identified based on 

sclerites. For each of the specimens, different sub-samples were preserved in 75% ethanol, 

RNA-later, or silica gel and were further stored at -20°C for molecular investigations. 

 

5.2.2 DNA extraction and library preparation 

Genomic DNA of ethanol-preserved sub-samples was extracted with a modified CTAB 

protocol (Porebski et al. 1997). DNA quality was visually checked on 1.5% agarose gel, 

while DNA yield and purity were assessed using a NanoDrop
TM

 spectrophotometer. RNA 

contaminants were removed from the DNA extracts by digestion with ribonuclease A 

(RNase A), followed by precipitation with 1/10 volume of 3M sodium acetate pH 5.2. 

Samples with degraded DNA were excluded from the analyses and, among the 82 

specimens originally considered, only 40 samples —at least two specimens per species —

were further used for Illumina sequencing. Multiplexed GBS libraries were prepared 

following Elshire et al. (2011). Briefly, for each sample ~150ng of gDNA were digested 

with ApekI (cut site CWGC) for two hours at 75°C and were ligated with a common 

adapter (CWGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG) and one barcode 

adapter (see Appendix 5.5.2) for one hour at 22°C, followed by half hour at 65°C. PCR 

amplification of the restriction fragments was performed for 15 cycles with annealing 

temperature of 65°C and extension time of 30s using the following primers: GBS_PrimerA 

(AATGATACGGCGACCACCGAGATCTACACTCTTTC-

CCTACACGACGCTCTTCCGATCT) and one of the twelve Index primers Illumina 

compatible  (see Appendix 5.5.2 for a detailed list of the “Ilmn_Id” primers used). These 

primers contain complementary sequences for amplifying restriction fragments with 

ligated adapters, compatible with the Illumina terminator chemistry (Bentley et al. 2008). 

In order to remove primer and adapter dimmers, PCR products were purified with the 

Agencourt AMPure XP PCR-purification kit (Beckman Coulter, Inc.) using 1.1 volume of 

AMPure XP reagent. The purified PCR products were quantified with a QUBit
®

 2.0 using 

a dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA) and were pooled in a final library, 

whose quality was assessed using a Bioanalyzer 2100 (Agilent, Santa Clara, CA). The 

library was sequenced twice in a 100bp single-end run on Illumina HiSeq 2000 (Illumina, 

San Diego, CA) at the Gene Center of the Ludwig Maximilians Universität. 
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5.2.3 Data assembly, sequence reads filtering and clustering 

Raw data of the two independent runs were pooled resulting in a total of ~300x10
6 

sequence reads obtained. Sequence reads were de-multiplexed with Stacks 1.35 (Catchen 

et al. 2013) and the same program was used to trim the barcode (6 bp) and Illumina 

adapters, reads with ambiguities were excluded. Four different programs implemented in 

the Stacks pipeline (ustacks, cstacks, sstacks and populations) were utilised for additional 

filtering and clustering of the de-multiplexed reads using default options. The unique 

stacks program (ustacks) was used to align a set of short read-sequences into a so-called 

“stacks” and to generate a set of loci by comparing the different stacks. SNPs detection at 

each of the loci recovered was performed using the Maximum Likelihood framework 

(Hohenlohe et al. 2010). Cstacks and sstacks were used to build a catalogue of loci, and for 

matching every sample against the catalogue, respectively. The populations module was 

run assuming that the 40 specimens analysed belong to a single population and considering 

a minimum of 80% of individuals per population (-r 0.80) and a minimum stack depth per 

individuals at locus of 10 (-m 10). The final output file was generated in a Variant Call 

Format (VCF) and consisted of ~30,000 SNPs. In order to infer a phylogeny (see below), 

we converted our output file into nexus format using a pearl script available in the 

Supplementary material. The same script was also used to retain only those SNPs that 

occurred in a percentage of samples a priori decided. For our analyses we used a 12.5% 

threshold, which means that SNPs with less than 35 taxa were excluded. The final dataset 

consisted of 538 SNPs. 

 

5.2.4 Phylogenetic and species delimitation analyses 

A set of 538 SNPs was analysed with a multispecies coalescent program called SNAPP 

(Bryant et al. 2012) which, using a MCMC sampler, estimates the species tree and delimits 

species using biallelic data. For species delimitation we used a modified Bayes Factor 

Delimitation method (Grummer et al. 2013) that can handle genome-wide SNP data 

(BFD*). The BFD* method uses a marginal likelihood estimation approach and was run 

through the program SNAPP (Leaché et al. 2014). Although species number and sample 

assignments can be predefined, our delimitation analysis (BFD*) was run without 

taxonomic constraints. Unlike BFD*, the species tree estimation analysis was run in 

SNAPP including species assignments (see Appendix 5.5.1 for a complete list of the 

samples). The program SNAPP requires a lot of computational memory and time, hence 

for both analyses a reduced dataset consisting of 27 taxa was generated. Except for P. 
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firma, for which only two specimens were considered, for all  other species at least three 

specimens were considered. SNAPP analyses were performed using default prior options 

for the coalescent and mutation rates. The Markov chain Monte Carlo ran for 1,000,000 

generations or until Effective Samples Size (ESS) reached values >150, with sampling 

trees at 100 generations interval. ESS and convergence for all runs were checked in Tracer 

1.6 (Rambaut et al. 2014). The final set of trees generated for each analysis was visualised 

in DensiTree and a Maximum Clade Credibility Tree (MCC) was summarised in 

TreAnnotator with 10% of the trees discarded as burn-in. 

 

5.2.5 Mitogenomic reads and phylogeny 

The sequence reads obtained for each of the 27 specimens used in the BFD* and species 

tree estimation analyses, were mapped to the complete mitogenome of Pacifigorgia cairnsi 

(GW4656) using Geneious 8.1 (Kearse et al. 2012). Overall, the percentage of the 

mitochondrial reads was <1%, the average length of the reads was ~70 bp and the mapped 

reads spanned over 25 regions of the mitochondrial genome. The mean depth of coverage 

varied according to the specimens and the mitogenomic regions considered, however only 

those reads occurring in at least 50% of the specimens (14) and with a coverage depth of 

10X or higher were retained for further analyses. For each mitochondrial region a 

consensus sequence was extracted and used for the mitochondrial alignment. Twenty-

seven (27) sets of sequences were concatenated and aligned with MUSCLE using default 

options in Seaview 4.5.3 (Gouy et al. 2010) and the resulting alignment, consisting of 

~3,800 nucleotide positions and 27 taxa, was utilised to infer a phylogeny. The maximum 

likelihood tree was inferred in RaxML 7.2.8 (Stamatakis, 2006) under GTRGAMMA 

substitution model and the branch support was assessed with a rapid bootstrap analysis 

(Stamatakis et al. 2008) using 1000 pseudoreplicates. 

 

5.3 Results 

 

5.3.1 Bayes factor delimitation 

Species delimitation and phylogenetic reconstruction based on 538 SNPs, showed the 

27 Pacifigorgia specimens divided into seven main groups (Figure 5.1). The phylogenetic 

relationships within these groups were poorly resolved as highlighted by the topological 

uncertainty. Except for the group including Pacifigorgia eximia (1), which had high 
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posterior probability value (pp=1), all others were poorly supported and most of the 

support values were well below 50%. In spite of being poorly resolved, our analysis 

grouped P. stenobrochis and P. rubicunda into two different groups (2 and 3). Two of the 

specimens assigned to P. cairnsi (GW4649, GW4662) and P. pumila (GW4661, GW4671) 

were split into two different groups (4 and 5). GW4696 (P. pumila) and GW4631 (P. 

stenobrochis) nested within the P. cairnsi and P. pumila groups, respectively. 

 

Figure 5.1 Set of trees obtained using a set of 538 SNPs with the Bayes Factor Delimitation (BFD*) method 

implemented in SNAPP. Numbers on the right side of the trees represent the putative species groups as 

inferred by the BFD*. The consensus tree is shown in blue and the numbers at the nodes indicate the 

posterior probability values. 
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Surprisingly, the two P. firma specimens were separated from the rest of the samples and 

were included in a “mixed” group, which comprises P. bayeri, P. ferruginea and P. 

smithsoniana, among others. 

 

5.3.2 SNPs and mito-phylogeny 

The phylogenetic tree obtained with a set of 538 SNPs, using predefined taxonomic 

assignments, recovered P. eximia sister to all the other species (Figure 5.2). P. pumila was 

sister of P. stenobrochis with a fairly low support value (pp=0.84), while the phylogenetic 

relationships between P. cairnsi and P. rubucanda were unresolved. P. bayeri and P. 

ferruginea were sister species (pp=1) and were further included in a well-supported group 

(pp=1) which also included P. smithsoniana and P. firma. 

 

Figure 5.2 Species tree estimation obtained using a set of 538 SNPs. Consensus tree (left) and set of trees 

(right) inferded with SNAPP are shown on the left and right side, respectively. Number of species and 

species assignments were a priori defined based on preliminary morphological predictions (see Appendix 

5.5.1). The numbers at the nodes indicate posterior probability values. 
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Concerning the mitochondrial phylogeny, the maximum likelihood tree obtained 

separated 18 specimens into four main groups (see Figure 5.3). 

 

Figure 5.3 Unrooted maximum likelihood tree obtained from a datset consisting of ~3,800 mitochondrial 

nucleotide positions and 27 taxa. The different colours highlight the four main clades recovered. 

 

Among these, only one group included a single species (e.g. P. eximia), whereas the 

others comprised either two or three different species. Two P. rubicunda and two P. 

cairnsi specimens were grouped together (BP=91) and another group comprised three P. 

bayeri, two P. ferrugina (GW4628, GW4630) and one P. firma sample (GW4648) with 

high a bootstrap value (BP=92). Similarly, P. stenobrochis and P. pumila (two specimens 

each) were included in a single group (BP=80). The remaining specimens were distributed 

across the tree and some of them grouped in poorly supported clades. For instance, two of 
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the P. smithsoniana samples (GW4686, GW4690) grouped with P. stenobrochis 

(GW4645) and P. cairnsi (GW4655) and GW4688 (P. smithsoniana) and GW4696 (P. 

pumila) were not closely related to their conspecifics. 

Overall, the phylogenies obtained using the mitochondrial and SNPs datasets were 

consistent and only slight discrepancies were observed (see Figure 5.1 and Figure 5.3). For 

example, in the mitochondrial phylogeny, P. rubicunda (GW4626) was sister to P. cairnsi 

(GW4649, GW4662) and two conspecific species (GW4650, GW4639). In the SNPs 

phylogeny P. rubicunda (GW4626) was included in a clade consisting of P. ferruginea 

(GW4628, GW4630), P. bayeri and P. smithsoniana (GW4688). Pacifigorgia stenobrochis 

(GW4631) and P. pumila (GW4661, GW4671), which grouped together in the SNPs 

phylogeny, were splint into different subclades in the mitchondrial tree (see Figure 5.1 and 

Figure 5.3). In the mitochondrial phylogeny Pacifigorgia ferruginea (GW4633) was sister 

to P. firma (GW4652), whereas in the tree obtained using SNPs was included into a 

different clade (Figure 5.1) with low support (posterior probability <0.60). 

 

5.4 Discussion 

Single Nucleotide Polymorphisms (SNPs) were recently proposed as a promising 

marker for species delimitation due to the low level of homoplasy (Brumfield et al. 2003). 

SNPs were also considered a valid and alternative molecular marker for delimiting closely 

related and recently derived species (Shaffer & Thomson 2007). However, our species 

delimitation and phylogenetic analyses performed on a pool of different Pacifigorgia 

species using a set of ~500 SNPs showed an overall uncertainty and incongruence with the 

morphological predictions. Using both SNPs and mitochondrial loci, we found P. eximia to 

be the only species phylogenetically distinct from the others. In terms of morphology, P. 

eximia can be recognised from congenerics by the shape of the spindle sclerites, which 

typically have acute ends, and by the colony network and its mesh (Breedy & Guzman 

2003). In contrast, most of the recently described species (e.g. P. bayeri, P. cairnsi, P. 

ferruginea, P. firma, P. rubicunda and P. smithsoniana) did not show any phylogenetic 

relatedness, in agreement with morphology, which revealed remarkably low interspecific 

variation and high similarities in the branching pattern of the colony and sclerite 

composition. 

For instance, P. smithsoniana and P. ferruginea can be only identified based on the 

shape and size of the anthocodial rods (see Breedy & Guzman 2004). Although a high 
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morphological affinity of both species has been only partially confirmed by our species 

delimitation based on SNPs analyses, the low support values recovered suggest that our 

outcomes should be considered with caution. Due to the high plasticity and taxonomic 

difficulties caused by the lack of defined morphological characters, some of the specimens 

may have been wrongly identified, therefore further morphological investigations are 

necessary, but beyond the scope of this study. The phylogenetic placement in the 

mitochondrial tree of P. ferruginea together with P. bayeri showed a certain degree of 

incongruence compared to the phylogeny obtained using SNPs. Similarly, Pante et al. 

(2014) and Herrera & Shank (2015) documented incongruence between the phylogenetic 

trees inferred from RAD-Seq and mitochondrial data in the octocoral genera Crysogorgia 

and Paragorgia, respectively. The phylogenetic discrepancy between mitochondrial and 

biallelic markers (e.g. AFLP, SNPs) has been associated with to the hybridisation events 

that occurred among species coexisting in the same habitat (see e.g. Koblmüller et al. 

2007). 

The mitochondrial phylogeny showed high affinity between three P. rubicunda and two 

P. cairnsi specimens. These species are commonly found along vertical walls of rocky 

reefs and they often occur in the same habitat (Breedy & Guzman 2003). Indeed, the 

samples here analysed were collected from the Jacaron Island and Pta. Catedral in the 

Southern-West region of the Chiriquí National Park, where the two species coexist. In 

order to better explore the evolutionary processes that (do not) shape the morphological 

and genetic variation of these organisms, additional population level studies are required. 

Concerning P. stenobrochis, our results showed remarkable intra-specific variation, which 

was in agreement with recent molecular studies (Vargas et al. 2014). In terms of 

morphology, taxonomists suggested that many P. stenobrochis specimens are usually 

characterised by diverse sclerite-forms, different colony shapes and variable colours 

(Breedy & Guzman 2004). The high plasticity observed in the colony shape can be due to 

the process of adaptation to the different environmental niches, as already shown for other 

gorgonians exposed to different environmental conditions (see e.g. Pseudopterogorgia in 

Sánchez et al. 2007). We also found phylogentic affinity between P. stenobrochis and P. 

pumila, confirming what has been recently proposed on the taxonomic re-assignment of 

Leptogorgia pumila to the genus Pacifigorgia (Ament-Velásquez et al. 2016). 

The low genetic variation found among the Pacifigorgia species could be the 

consequence of recent radiation events that occurred in the eastern Pacific as suggested by 

Vargas et al. (2014). Kolarsky & Mann (1995) demonstrated that between the Late 
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Pliocene (3.6-2.58 Mya) and Early Pleistocene (2.58-0.78 Mya) a subduction and collision 

between the Cocos Ridge and Costa Rica caused the detachment of the “Chiriquí block” 

from the Panama Arc. During the same period, the region encontered sea-level oscillations 

(Cortés 1986) and temperature changes (Glynn & Stewart 1973), which have probably 

shaped the diversity and distribution of several sessile organisms, including cnidarians. 

These geological and environmental changes occurred in the Pleistocene and are consistent 

with the hypothesis here proposed, according to which the high species richness found in 

the Coiba National Park would be the result of recent speciation. However, as stated by 

D’Croz & O’Dea (2007, 2009) the exceptional and unique hydrological and environmental 

conditions of the Gulf of Chiriquí —surface waters constantly warm and poor of nutrient 

with short seasonal upwelling promoted by thermocline migrations and advection— 

contribute to make this an hotspot of diversity, with several endemic and ecologically 

restricted species. The different ecological conditions experienced by the diverse 

populations may have generated reproductive isolation (e.g. ecological speciation), thereby 

accelerating speciation (Schluter, 2001; Rundle & Nosil, 2005). Laland et al. (2014) in a 

recent study claimed that: “…plasticity not only allows organisms to cope in new 

environmental conditions but to generate traits that are well-suited to them. In other words, 

often it is the trait that comes first; genes that cement it follow, sometimes several 

generations later…” The fact the many Pacifigorgia species have been only described 

based on the colony shape rather than their molecular variation points out the need to 

reconsider plasticity. Although this study provides preliminary insights for a better 

understanding of the genetic diversity and speciation processes in a taxonomic difficult 

genus, additional studies, including molecular dating and population genetics, are 

necessarily to shed light on the evolution of these organisms. 

 

5.5 Appendix 

Appendix 5.5.1 List of specimens 

Appendix 5.5.2 List of the barcode and Illumina adapters used for GBS 
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Appendix 5.5.1 List of Pacifigorgia specimens collected in the National Park of Coiba (Panama) with information on sampling locations and 

depths. All the samples used for Genotyping by Sequencing (GBS) are in bold. The barcode and Ilumina adapters used for each of the specimens 

analysed are reported on the right side of the table. 

 

Sample ID number Species  Location Depth Barcode Adapter Illumina Adapter 

GW4711 Pacifigorgia eximia Twin Peaks, Pta. Cirilo 12-17 m A1 Ilmn_Id10 

GW4710 Pacifigorgia cairnsi Twin Peaks, Pta. Cirilo 12-17 m A6 Ilmn_Id11 

GW4700 Pacifigorgia rubicunda Twin Peaks, Pta. Cirilo 12-17 m   

GW4699 Pacifigorgia rubicunda Twin Peaks, Pta. Cirilo 12-17 m   

GW4698 Pacifigorgia stenobrochis Twin Peaks, Pta. Cirilo 12-17 m   

GW4697 Pacifigorgia stenobrochis Twin Peaks, Pta. Cirilo 12-17 m   

GW4696 Pacifigorgia pumila Twin Peaks, Pta. Cirilo 12-17 m A7 Ilmn_Id8 

GW4695 Pacifigorgia rubicunda Twin Peaks, Pta. Cirilo 12-17 m A8 Ilmn_Id12 

GW4694 Pacifigorgia rubicunda Twin Peaks, Pta. Cirilo 12-17 m A6 Ilmn_Id10 

GW4693 Pacifigorgia stenobrochis Twin Peaks, Pta. Cirilo 12-17 m   

GW4692 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m   

GW4691 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m   

GW4690 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m A2 Ilmn_Id11 

GW4689 Pacifigorgia stenobrochis Twin Peaks, Pta. Cirilo 12-17 m A8 Ilmn_Id8 

GW4688 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m A3  Ilmn_Id11 

GW4687 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m   
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GW4686 Pacifigorgia smithsoniana Twin Peaks, Pta. Cirilo 12-17 m A3 Ilmn_Id10 

GW4685 Pacifigorgia rubicunda Twin Peaks, Pta. Cirilo 12-17 m   

GW4684 Pacifigorgia cairnsi Twin Peaks, Pta. Cirilo 12-17 m   

GW4683 Pacifigorgia cairnsi Twin Peaks, Pta. Cirilo 12-17 m   

GW4682 Pacifigorgia cairnsi Twin Peaks, Pta. Cirilo 12-17 m   

GW4681 Pacifigorgia bayeri Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4680 Pacifigorgia bayeri Piedra Hacha, zona Jicarita/Jicaron 8-20 m A7 Ilmn_Id10 

GW4679 Pacifigorgia bayeri Piedra Hacha, zona Jicarita/Jicaron 8-20 m A4 Ilmn_Id10 

GW4678 Pacifigorgia bayeri Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4677 Pacifigorgia bayeri Piedra Hacha, zona Jicarita/Jicaron 8-20 m A5 Ilmn_Id10 

GW4676 Pacifigorgia eximia Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4675 Pacifigorgia stenobrochis Piedra Hacha, zona Jicarita/Jicaron 8-20 m A4 Ilm_Indx9 

GW4674 Pacifigorgia rubicunda Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4673 Pacifigorgia cairnsi Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4672 Pacifigorgia rubicunda Piedra Hacha, zona Jicarita/Jicaron 8-20 m A8 Ilmn_Id10 

GW4671 Pacifigorgia pumila Piedra Hacha, zona Jicarita/Jicaron 8-20 m A5 Ilmn_Id9 

GW4670 Pacifigorgia firma Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4669 Pacifigorgia rubicunda Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4668 Pacifigorgia cairnsi Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4667 Pacifigorgia cairnsi Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4666 Pacifigorgia firma Piedra Hacha, zona Jicarita/Jicaron 8-20 m   
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GW4665 Pacifigorgia cairnsi Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4664 Pacifigorgia eximia Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4663 Pacifigorgia eximia Piedra Hacha, zona Jicarita/Jicaron 8-20 m A1 Ilmn_Id12 

GW4662 Pacifigorgia cairnsi Piedra Hacha, zona Jicarita/Jicaron 8-20 m A4 Ilmn_Id8 

GW4661 Pacifigorgia pumila Piedra Hacha, zona Jicarita/Jicaron 8-20 m A6 Ilmn_Id9 

GW4660 Pacifigorgia pumila Piedra Hacha, zona Jicarita/Jicaron 8-20 m A7 Ilmn_Id9 

GW4659 Pacifigorgia eximia Piedra Hacha, zona Jicarita/Jicaron 8-20 m A1 Ilmn_Id11 

GW4658 Pacifigorgia stenobrochis Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4657 Pacifigorgia stenobrochis Piedra Hacha, zona Jicarita/Jicaron 8-20 m   

GW4656 Pacifigorgia cairnsi Pta. Catedral 10-20 m A4 Ilmn_Id11 

GW4655 Pacifigorgia cairnsi Pta. Catedral 10-20 m A3 Ilmn_Id9 

GW4654 Pacifigorgia cairnsi Pta. Catedral 10-20 m   

GW4653 Pacifigorgia stenobrochis Pta. Catedral 10-20 m A5  Ilmn_Id11 

GW4652 Pacifigorgia firma Pta. Catedral 10-20 m A6 Ilmn_Id8 

GW4651 Pacifigorgia cairnsi Pta. Catedral 10-20 m A2 Ilmn_Id12 

GW4650 Pacifigorgia rubicunda Pta. Catedral 10-20 m A6  Ilmn_Id12 

GW4649 Pacifigorgia cairnsi Pta. Catedral 10-20 m A5 Ilmn_Id8 

GW4648 Pacifigorgia firma Pta. Catedral 10-20 m A3 Ilmn_Id12 

GW4647 Pacifigorgia stenobrochis La Nevera, Islas Copntreras 11-18 m A4 Ilmn_Id12 

GW4646 Pacifigorgia stenobrochis La Nevera, Islas Copntreras 11-18 m A5 Ilmn_Id12 

GW4645 Pacifigorgia stenobrochis La Nevera, Islas Copntreras 11-18 m A8 Ilmn_Id9 
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GW4644 Pacifigorgia cairnsi La Nevera, Islas Copntreras 11-18 m   

GW4643 Pacifigorgia cairnsi La Nevera, Islas Copntreras 11-18 m   

GW4642 Pacifigorgia cairnsi La Nevera, Islas Copntreras 11-18 m   

GW4641 Pacifigorgia rubicunda La Nevera, Islas Copntreras 11-18 m   

GW4640 Pacifigorgia rubicunda La Nevera, Islas Copntreras 11-18 m   

GW4639 Pacifigorgia rubicunda La Nevera, Islas Copntreras 11-18 m A7  Ilmn_Id12 

GW4638 Pacifigorgia eximia La Nevera, Islas Copntreras 11-18 m A2 Ilmn_Id10 

GW4637 Pacifigorgia eximia La Nevera, Islas Copntreras 11-18 m A3 Ilmn_Id8 

GW4636 Pacifigorgia eximia La Nevera, Islas Copntreras 11-18 m A2 Ilmn_Id9 

GW4635 Pacifigorgia eximia La Nevera, Islas Copntreras 11-18 m   

GW4634 Pacifigorgia ferruginea Montaña rusa, Bricano Norte 12-24 m   

GW4633 Pacifigorgia ferruginea Montaña rusa, Bricano Norte 12-24 m A1 Ilmn_Id8 

GW4632 Pacifigorgia stenobrochis Montaña rusa, Bricano Norte 12-24 m   

GW4631 Pacifigorgia stenobrochis Montaña rusa, Bricano Norte 12-24 m A7 Ilmn_Id11 

GW4630 Pacifigorgia ferruginea Dedo, Islas Contreras 10-18 m A2 Ilmn_Id8 

GW4629 Pacifigorgia smithsoniana Dedo, Islas Contreras 10-18 m   

GW4628 Pacifigorgia ferruginea Dedo, Islas Contreras 10-18 m A1 Ilmn_Id9 

GW4627 Pacifigorgia stenobrochis Dedo, Islas Contreras 10-18 m   

GW4626 Pacifigorgia rubicunda Piedra Hacha, zona Jicarita/Jicaron 8-20 m A8  Ilmn_Id11 
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Appendix 5.5.2 List of the barcode and Illumina adapters used for Genotyping by Sequencing (GBS). The barcode and index sequences are 

reported for each of the adapters. 

 

Barcode Adapter Illumina Adapter 

Adapter name Barcode sequence* Adapter name Index sequence° 

GBS_Apek1_A1 AACAGT Ilmn_Id1 ATCACG 

GBS_Apek1_A2 CCAGTA Ilmn_Id2 CGATGT 

GBS_Apek1_A3 TTGCAC Ilmn_Id3 TTAGGC 

GBS_Apek1_A4 GGTTCA Ilmn_Id4 TGACCA 

GBS_Apek1_A5 AACGTC Ilmn_Id5 ACAGTG 

GBS_Apek1_A6 CCAAGT Ilmn_Id6 GCCAAT 

GBS_Apek1_A7 TTGTCA Ilmn_Id7 CAGATC 

GBS_Apek1_A8 GGTCAC Ilmn_Id8 ACTTGA 

  Ilmn_Id9 GATCAG 

  Ilmn_Id10 TAGCTT 

  Ilmn_Id11 GGCTAC 

  Ilmn_Id12 CTTGTA 

    

Barcode Adapter ACACTCTTTCCCTACACGACGCTCTTCCGATCT(*) 

Illumina Adapter CAAGCAGAAGACGGCATACGAGAT(°)GTGACTGGAGTTCAGACGTGTGC 
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Conclusive discussion 

One of the goals of this study was to identify and delimit octocoral species in 

taxonomically difficult alcyonacean genera using several cases as examples. Although our 

analyses highlighted the overall limitations of COI and mtMutS for species delimitation in 

Lobophytum and Sarcophyton, the remarkable diversity found within the genus 

Sarcophyton using 28S rDNA indicates the need of considering a multi-locus approach. 

While the polymorphism detected in terms of sequence length makes 28S rDNA a suitable 

alternative to the standard barcodes (e.g. COI), the presence of indel-rich regions, probably 

due to the existence of pseudogenes, may significantly distort the phylogenetic signal. 

Therefore, before considering 28S rDNA for molecular identifications of Lobophytum and 

Sarcophyton species, the presence of putative pseudogenes should be in future explored. 

The number of hypothetical Lobophytum and Sarcophyton species estimated in the 

Kimberley region varied according to the marker and method used, however the large 

number recovered is most likely an artefact caused by the low inter-specific variation. 

Despite the fact that mtMutS demonstrated a general lack of resolution for species level 

identification, rapid assessment of species richness and diversity in the Kimberley was 

possible. The obtained results showed that using standard molecular procedures is possible, 

without specific taxonomic skills, in a short time and with reduced costs, to preliminary 

identify a restricted number of putative species.  

The recent developments in library preparation methodologies and Next Generation 

Sequencing (NGS) technologies have made genomic studies more accessible for the 

analysis of non-model organisms such as octocorals. In this study, beside the use of partial 

mitochondrial protein-coding genes, were tested genome-wide Single Nucleotide 

Polymorphisms (SNPs) to explore the phylogenetic relationships among morphologically 

cryptic species. The species discrimination and the phylogeny inferred with a set of SNPs 

showed uncertainty and incongruence when compared to the morphological predictions 

based on the colony and sclerite morphology. A degree of divergence was also detected 

between the mitochondrial and SNP phylogenies, suggesting that hybridisation events may 

have contributed to the diversification of these organisms. The data generated 

demonstrated that traditional taxonomy could benefit from integrative approaches based on 

molecular methods, especially in presence of morphological homogeneus taxa and species 

with high penotypic plasticity. The high number of Pacificorgia species recently described 

in the eastern Pacific and the morphological diversity shown by the specimens collected in 
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the Panamic province, is only partly corroborated by the molecular results. In particular, 

the low inter-specific variation found could be related to recent speciation, which may be 

associated to the Pleistocenic tectonic events that shaped the geological profile of the 

central eastern Pacific. A better taxon sampling along with population level studies will be 

essential to better understand the evolutionary processes that lead to the diversification of 

these organisms. 

Concerning the Mediterranean soft corals, this study represented the first attempt to 

reconstruct the phylogeny, biogeography and evolutionary history of some, among the 

most abundant, Mediterranean gorgonians. In particular, the unexpected phylogenetic 

divergence detected between the two endemic Mediterranean Paramuricea species has 

been here associated to independent speciation events that, according to the molecular 

clock estimates, may be linked to the geological changes occurred in the Mediterranean 

during the Messinian (~5.2 Mya) and Gelasian (~2.6 Mya) crises. In addition, the 

biogeographic analyses performed using an extended mtMutS dataset including species 

distributed in the Atlantic and Mediterranean, pointed to the importance of vicariance for 

faunal diversification across these basins. Similar to the red gorgonian (P. clavata), which 

was sister to the Atlantic P. grayi rather than its Mediterranean congeners, Leptogorgia 

sarmentosa was found to be closely related to Atlantic members and molecular dating 

analyses suggested for these organisms a recent divergence (~3 Mya). These findings 

support the hypothesis for the Mediterranean gorgonians L. sarmentosa and P. clavata of 

an Atlantic ancestor in agreement with a post-Mesinian Crisis model of colonization as 

proposed for several Mediterranean marine invertebrates. 

Using either traditional molecular methods (PCR, Sanger sequencing) or NGS 

technologies 13 complete mitogenomes were sequenced, triplicating the number of 

complete mitochondrial genomes available for gorgonians. The mitogenomic comparison 

between closely related species showed novel genomic features (e.g. ORF of unknown 

function) and high nucleotide variation. The highest mutation rate was that found in the 

intergenic spacers suggesting that these regions can be used in future for molecular 

identification at species-level. In agreement with previous studies, mainly based on a 

handful of mitochondrial loci, the mitogenome phylogeny clearly supported the paraphyly 

of the family Plexauridae and within Gorgoniidae, the polyphyly of the genus Leptogorgia. 

In particular, the phylogenetic segregation among eastern Atlantic and eastern Pacific 

Leptogorgia species, which was also confirmed by the mtMutS phylogeny, indicated the 

existence of multiple lineages in need of taxonomic revision. 
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This study has broaden our understanding on the evolution and systematics of 

ecologically important soft corals providing new and additional insights on the 

phylogenomics of these organisms. 
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