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Zusammenfassung

Diese Arbeit beschäftigt sich mit statistischen Algorithmen zur Ausreißererkennung in
Zeitreihen von Zähldaten, insbesondere in den Fallzahlen von Infektionskrankheiten. Das
Ziel dieser Doktorarbeit war die Entwicklung und Anwendung von modernen statisti-
schen Algorithmen zur Ausbrucherkennung in routinemäßig gemeldeten Fallberichten. Die-
se stammten aus Surveillance-Daten des Robert Koch-Instituts (RKI), dem deutschen na-
tionalen Institut für öffentliche Gesundheit, welches für die Surveillance von menschlichen
Infektionskrankheiten zuständig ist, und wo diese Arbeit angefertigt wurde. Obwohl bereits
viele Algorithmen zur Ausreißererkennung in routinemäßig gesammelten Daten im Bereich
der öffentlichen Gesundheit veröffentlicht wurden, haben sich diese neueren Methoden in
der Praxis noch nicht durchgesetzt. Diese Doktorarbeit leistet Beiträge in drei Bereichen
zur Erweiterung der Anwendung von statistischen Algorithmen zur Ausreißererkennung.

Erstens wurden die Open-Source-Implementierungen von statistischen Algorithmen zur
Ausreißererkennung in dem R-Paket surveillance und ihre Dokumentierung zusammen
mit der Vorstellung der dazuzugehörigen Theorie durchgeführt. Zweitens wurde im Rahmen
dieser Doktorarbeit ein neuer Ausbrucherkennungsalgorithmus entwickelt, der das Problem
der Rechtstrunkierung der Daten behandelt. Diese Anforderung war insbesondere durch das
deutsche Surveillancesystem motiviert, wo ein zeitlicher Verzug zwischen der Erkrankung
und dem Eingang der Fallmeldung am RKI zu beobachten ist. Schließlich unterstützte
die vorliegende Doktorarbeit die Gestaltung und Entwicklung eines Surveillancesystems,
das die Arbeit der Epidemiologen und Epidemiologinnen unterstützt, indem es automati-
sche Berichte mit Signalen aus der Anwendung moderner Ausbruchserkennungsalgorithmen
produziert.

In dieser Doktorarbeit wurden Statistische Algorithmen für Ausbrucherkennung bevor-
zugt, die auf Regressionsmodellen basieren. Dies erlaubt die solide Berücksichtigung der
Schätz- und Beobachtungsunsicherheit. Diese Arbeit konzentriert sich dabei auf generali-
sierte lineare Modelle (GLM), sowie generalisierte additive Modelle (GAM), die gewählt
wurden, da vor allem solche Modelle auf die Zähldatenstruktur der Zeitreihen eingehen
können.

In dieser Dissertation werden sowohl neue theoretische, als auch praktische Entwicklun-
gen vorgestellt. Die Struktur ist wie folgt: Kapitel 1 gibt eine Einleitung zum statistischen
und praktischen Kontext dieser Arbeit und stellt den generellen Rahmen von Zähldaten-
zeitreihen und passenden Analysemethoden, die auf Regressionsmodellen basieren, vor.
Im Kapitel 2 werden statistische Ausreißererkennung und dann eine Auswahl von stati-
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stischen Algorithmen zur Ausreißererkennung vorgestellt, die in der Routinesurveillance
schon implementiert sind oder implementiert werden könnten. Kapitel 3 befasst sich mit
dem Problem der Rechtstrunkierung von Daten. In diesem Kapitel werden existierende
Methoden für Nowcasting und Ausreißererkennung bei bestehenden Übermittlungs- und
Meldeverzügen präsentiert. Anschließend wird für dieses Problem ein neuer Bayesianischen
Algorithmus vorgestellt, der in Simulationstudien untersucht wurde, auf der Zeitreihe von
wöchentlichen Fallzahlen von Salmonella Newport aufgewandt wurde und für die Routi-
neanwendung am RKI zum Zeitpunkt der Fertigstellung der Dissertation getestet wird.
Kapitel 4 beschreibt den Beitrag der Dissertation für die Routineanwendung von stati-
stischen Algorithmen zur Ausreißererkennung: das Kapitel stellt das neue automatisierte
Surveillancesystem für Infektionskrankheiten am RKI vor, das zusammen mit Informati-
kern und Epidemiologen gestaltet und entwickelt wurde, und erklärt, wie man mit dem
R-Paket surveillance ein einfacheres Surveillancesystem entwickeln könnte. Kapitel 5
gibt einen Ausblick über mögliche methodische Weiterentwicklungen zur Ausreißererken-
nung. Abschließend werden in Kapitel 6 die Resultate dieser Dissertation zusammengefasst
und diskutiert.



Summary

This thesis deals with statistical algorithms for aberration detection in time series of counts,
in particular counts of reported cases of infectious diseases. The goal was to develop and
apply modern statistical algorithms for the detection of outbreaks in routinely reported case
notifications, utilizing surveillance data from the Robert Koch Institute (RKI), which is the
German national public health institute in charge of the surveillance of human infectious
diseases, and where this PhD work was conducted. A multitude of different outbreak
detection algorithms for routinely collected public health data has already been published,
but their routine application is not entirely successful yet. This thesis brings three different
types of contributions for extending the practical use of statistical algorithms for outbreak
detection.

First, we contributed to the open-source implementation of aberration detection algo-
rithms in the R package surveillance and to their documentation along with the descrip-
tion of the corresponding theory. Furthermore, we provided a methodological development
for a commonly encountered issue: we made a regression based proposal for handling right-
truncation of the data. This is motivated by the German surveillance system for infectious
diseases, where there is a delay between disease onset and arrival of the case report at the
RKI. Lastly, we participated to the design and development of a new system for automatic
outbreak detection at the RKI which now produces automatic reports with alarms from
modern aberration algorithms for supporting epidemiologists’ work.

Importantly, in this thesis we advocate for regression-based aberration detection: most
algorithms for outbreak detection as presented in this thesis are based on regression mod-
els. This allows a solid treatment of the estimation and observation uncertainty inherent
to such models when used for prediction. The present work mainly concentrates on algo-
rithms based on regression models for count data, Generalized Linear Models (GLMs) and
Generalized Additive Models (GAMs). We chose such models because they adequately
handle the count nature of surveillance data.

In the thesis, both the theoretical and practical advances for statistical outbreak detec-
tion brought by this work are presented. The structure is as follows. Chapter 1 contains
an introduction to the statistical and practical context of applied disease surveillance, and
presents the framework of count time series as well as suitable analysis methods using
regression models. Chapter 2 introduces the statistical framework for outbreak detection,
before exposing chosen algorithms for outbreak detection that are or could be applied
to routine outbreak detection, including two algorithms whose implementation has been



viii Abstract

added to the surveillance package during this work. Chapter 3 deals with the problem
of right-truncation of the data: after offering a short review of existing methods for now-
casting and outbreak detection in the presence of reporting delays, this Chapter presents
a novel Bayesian algorithm that was tested in simulation studies and applied to the time
series of the number of weekly cases of Salmonella Newport in Germany, and that is cur-
rently being evaluated at the Robert Koch Institute for routine application. Chapter 4 is
a complete synthesis of our practical work in favour of routine application of state-of-the-
art statistical algorithms for outbreak detection: this Chapter presents the new automatic
surveillance system at the RKI that was designed and developped along with informati-
cians and epidemiologists, and provides guidance for implementing a simpler surveillance
system using the R package surveillance. Chapter 5 contains an outlook of possible
future methodological developments for aberration detection. Finally, Chapter 6 concludes
the thesis.
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Chapter 1

Introduction
The fight against infectious diseases nowadays does not only require treating patients

and setting up measures for prevention once an outbreak has taken its toll. It also demands
the timely recognition of emerging outbreaks in order to avoid their expansion. Along these
lines, German public health authorities collect and store information about the occurrence
of notifiable diseases – typically represented as individual case reports. This data collection,
which is regulated by the 2001 Infection Protection Act (Niemer, 2001; Heudorf et al., 2013),
enables situational awareness in general and in particular the timely detection of aberrant
counts: for any specific aggregation of characteristics of events, such as adults becoming
sick with salmonellosis in Germany, data can be represented as time series of counts with
e.g. weeks as time units of the aggregation. Abnormally high or low values at a given time
point can reveal critical issues such as an outbreak of the disease or a malfunction of data
transmission. Thus, identifying aberrations in the collected data is decisive.
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Figure 1.1: Weekly number of cases of enterohemorrhagic E. coli in Saxony aggregated
by week of report, 2004-2013. One can see the outbreak in 2011 (Altmann et al., 2011;
Bernard et al., 2014) and more cases afterwards compared to before the outbreak.
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This thesis deals with modern statistical methods for aberration detection in count
time series, also called integer valued time series, of surveillance data. For this purpose we
mostly consider algorithms based on generalized linear or additive models, with inference
performed in frequentist or Bayesian frameworks. We restrict our analysis to univariate
time surveillance, in contrast to multivariate time surveillance and to (multivariate) space-
time surveillance. However, the developments brought by this work could be the basis of
improvements in (multivariate) space-time surveillance. We moreover focus on the detec-
tion on aberrations that are high counts, disregarding the detection of counts that are lower
than expected, since our primary motivation is to detect outbreaks of infectious diseases
rather than problems of data transmission or of diagnosis.

Beside presenting suitable statistical methods dealing with both estimation and obser-
vation uncertainties we put an emphasis on the the implementation of such methods in a
public health institution. This work was performed at the Robert Koch Institute which is
the German national public health institute in charge of the surveillance of human infec-
tious diseases. Nevertheless, our developments could be generalized to other countries and
surveillance systems.

Within this introduction we first give a brief outline of the public health context of
this work including an overview of the methodological interest and aims of this thesis.
Afterwards we provide a condensed review of the statistical framework of this thesis. The
outline of the present thesis will conclude this introduction.
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Figure 1.2: Weekly number of cases of Salmonella in Germany aggregated by date of
disease onset, 2004-2013. The seasonality and a negative trend over time are quite easy to
spot.
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1.1 Public health context and methodological scope

of this work

The work on thesis was funded by the Robert Koch Institute with the aim to improve its
outbreak detection system, and to provide general developments for aberration detection
in count time series that can be used in other institutions and contexts. In this section we
explain what outbreak detection at an institute such as the Robert Koch Institute is, and
present the the practical and scientifical goals of this work.
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Figure 1.3: Weekly number of cases of S. Newport in Germany aggregated by week of
report, 2004-2013. There was a known outbreak in 2011 (Bayer et al., 2014).

1.1.1 Statistical aberration detection at a public health institute

Cases of notifiable infectious diseases can be aggregated into univariate time series
according to their date of declaration or of diagnosis. One thus gets a time series of, say,
the weekly number of reported cases of enterohemorrhagic E. coli in Saxony or of Salmonella
in Germany as shown, respectively, in Figure 1.1 and in Figure 1.2. Defining time series for
all notifiable pathogens of a country, and for subsets such as pathogen subtypes or federal
states where the case was diagnosed, creates many time series. Figure 1.3 shows the weekly
number of reported cases of the Salmonella Newport serotype, and Figure 1.4 shows this
weekly number for the federal states of Bavaria and Berlin on their own. An institute such
as the Robert Koch Institute in Berlin needs to use such time series on the one hand to
increase situational awareness – for instance having a rough idea of the counts when the
situation is in control – and on the other hand to detect outbreaks early. Because they
are more than 80 reporting categories in Germany, with many possible different analysis
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levels such as age-groups, sex or places, aberration detection has to be made automatic,
and therefore supported by sound statistical methods.

1.1.2 Ambitions of this work

The surveillance time series created at a national public health institute display diversity
in their patterns of seasonality, mean number of cases, etc. (Enki et al., 2013), as one
can already see in the four Figures 1.1, 1.2, 1.3 and 1.4. This diversity complicates the
development of algorithms for outbreak detection. One could either choose to develop a
model for each time series or to develop a model that works fairly well for all time series.
This approach called one size fits all is the one that is currently often chosen (Noufaily
et al., 2013). The present work has a strong focus on methods that can be used on a
multitude of time series without fine-tuning and without too much computing time.
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Figure 1.4: Weekly count of S. Newport in the German federal states (a) Bavaria and (b)
Berlin aggregated by week of report, 2004-2013. Both time series display small counts.

This work puts an emphasis on implementation of methods for outbreak detection in
practice, for getting automatic tools for recognizing and thus fighting against outbreaks
early on. Systems for automatic aberration detection are implemented in several European
countries (Hulth et al., 2010) where they help to get aware of unusual numbers of cases
possibly indicating emerging outbreaks of infectious diseases. The Robert Koch Institute
receives reports of notifiable infectious diseases that are transmitted from local health
authorities via federal state health authorities. The Robert Koch Institute wanted to
improve its system for outbreak detection which is why this work was funded. Part of the
tasks related to this thesis was offering statistical counseling for a new automatic system



1.1 Public health context and methodological scope of this work 5

Date of onset of symptoms 

Arrival 
from 

clinician 

Arrival 
from 

laboratory 

Arrival 
from 

others 

Date of health event reported to state public health agency 

Date of health event reported to national public health agency 

 
 

Diagnosis 
by clinician 

Laboratory 
diagnosis 

Diagnosis 
by other Date of diagnosis 

Date of arrival at 
LPHA 

delay to diagnose  

Date of infection 

delay to transmit (state) 

delay to transmit (local)  

delay to act 

Incubation time 
Infection 
of next 
Individual 

Local public health 
agency (LPHA) 

State public health 
agency 

National public 
health agency 

delays to notify 

Figure 1.5: German reporting system, figure taken from Schumacher et al. (2016).

for outbreak detection at the Robert Koch Institute, that was created during the work on
this thesis (Salmon et al., 2016) and that will be the topic of Chapter 4.

Moreover, we intented to be receptive to common complications of routine surveillance
and therefore developed an algorithm for aberration detection taking reporting delays into
account. Figure 1.5 that was taken from Schumacher et al. (2016) shows the German
reporting system. Each case needs to first be diagnosed by a clinician, a laboratory or other,
depending on the case definition. The information about the case needs to be transmitted
to the local public health authority. Once this is done the case will be transmitted first to
the State public health agency and then to the national public health agency, the Robert
Koch Institute. Outbreak detection and case management are performed at the local,
state and national public health agency, but each agency only sees cases diagnosed on
its territory, which makes the role of the national public health agency crucial in that it
receives information about cases from the whole country. Figure 1.5 thus illustrates delays
due to diagnosis and transmission. Because of these delays, information about cases is not
available right away at any level of the reporting system. Therefore, the observed current
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number of count is not complete yet. Every local and federal state health authority does
some sort of data analysis, including automatic tools in some institutions (Läubrich et al.,
2011), but we concentrate on aberration detection performed at the national level at the
Robert Koch Institute. Only when cases information arrives at the RKI can one notice a
country-wide outbreak since each federal state only has information about cases diagnosed
on its territory.

There was already work aiming at predicting the current number of count despite re-
porting delays, the so-called nowcasting (Höhle and an der Heiden, 2014), but no statistical
framework for producing a threshold for an incomplete current count. To our knowledge,
the only other statistical work reporting such an effort was found in Noufaily et al. (2015).
Taking right-truncation of the data into account when defining the decision threshold de-
mands adding a new time dimension: not only do we have time of e.g diagnosis but also
time of e.g. report. For dealing with this difficulty, we used statistical literature in the field
of epidemiology (Lawless, 1994; Höhle and an der Heiden, 2014) but also borrowed concepts
from the field of insurance mathematics (Schmidt and Wünsche, 1998). We describe the
algorithm thus created during this doctoral work in Chapter 3, along with an evaluation
study on simulated data.

Beside the routine implementation of methods at the Robert Koch Institute, this work
also was motivated by the perspective of simplifying the comparison and use of state-of-
the-art algorithms for outbreak detection in general. Therefore, a strong effort was put
on adding algorithms into the R package surveillance which offers tools for outbreak
detection and on documenting them. We chose the statistical programming language R (R
Core Team, 2015) for all implementations because it is an open-source software with many
dedicated statistical tools. Part of the work of this thesis was moreover directed at writ-
ing an article that covers theoretical and practical aspects of the package use (Salmon
et al., 2016). The manuscript is a condense introduction to aberration detection based
on regression models, with a strong focus on explaining the use of code and the routine
implementation of such methods. Therefore, this work does not only support outbreak
detection at the Robert Koch Institute but also contributes to open-source software for
aberration detection.

1.2 Count time series models for monitoring

In this section we lay out the theoretical framework of the work performed in this
thesis. We will first give a short introduction to the model-based approach of aberration
detection, and then present the characteristics of count time series as the ones found in the
context of the surveillance of infectious diseases, and also present the corresponding sta-
tistical distributions before introducing regression models adapted to these characteristics.
Using such regression models, we want to build control charts for aberration detection, e.g.
defining an aberrant count as any count above a quantile of the predictive distribution of
the current count. First attempts to review and compare aberration detection methods
by dividing each method into two subsequent steps (first forecasting and then detection)
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can be found in Murphy and Burkom (2008), and, with an even greater decomposition –
starting from ”getting baseline data” and ”transforming data” – in Buckeridge et al. (2008).
Such a review approach is different from, the one in Unkel et al. (2012).

1.2.1 Motivation for a regression-based approach for aberration
detection

Using appropriate regression models to make predictions for aberration detection is a
quite recent development in the field since traditional methods such as Stroup’s method
introduced in Stroup et al. (1989) or EARS methods explained in Fricker et al. (2008) do
not rely on such techniques. We assume that observations {yt, t = 1, 2, . . .} are realizations
of random variables that follow the same parametric distribution but with different param-
eters, e.g. in the case when they have different means. We shall use regression, with time
being one of the covariates, for handling time trends and dependences. Therefore, we deem
the aforementioned methods, Stroup’s method and EARS methods, to be less statistically
correct: in this thesis we advocate for regression-based aberration detection. Some current
surveillance systems still use very basic methods for calculating the threshold, for instance
the mean of historic values plus two standard deviations in Abat et al. (2015).

We believe that aberration detection should be supported by using regression models
adapted to count time series in the frequent cases when the surveillance time series display
autocorrelation, seasonality, time trends and presence of past outbreaks in the records.
Regression itself needs to be performed on historic values of the time series, that we assume
to be informative regarding the normal and abnormal behaviours of the time series.

1.2.2 Statistical distributions for count time series

Surveillance count time series display various characteristics that should be taken into
account when modelling them. They are time series of non-zero integers and often overdis-
persed: in empirical data one would often notice that the variance is higher than their mean.
They can display, as we previously mentioned, autocorrelation, seasonality, a time trend,
and past outbreaks or aberrations in the records. A count time series can be represented
as a Poisson or negative binomial distributed variable with a time-varying mean and real-
izations {yt, t = 1, 2, . . .}. Thus we either assume that yt ∼ Po(µt) or that yt ∼ NB(µt, ν).
The probability mass function (pmf) of a Poisson variable with mean µt is

P (yt = k) =
µkt
k!
e−µt

so that E(yt) = Var(yt) = µt. The pmf of a negative binomial distributed variable with
mean µt and overdispersion parameter ν is

P (yt = k) =
Γ(k + ν)

Γ(ν) · k!
· µkt · νν

(µt + ν)k+ν
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so that E(yt) = µt and Var(yt) = µt(1 + µt/ν). The negative binomial distribution is
called NBII model in Hilbe (2011) because the variance depends on the squared mean.
The negative binomial distribution allows to account for overdispersion in the data. The
Poisson distribution, and the negative binomial distribution with fixed ν are distributions
belonging to the one-parameter exponential family. In this thesis we do not consider
the variations of the Poisson or negative binomial distributions such as the zero-inflated
distributions (Hilbe, 2011).

1.2.3 Regression models for count time series

In this thesis, we concentrate on algorithms based on regression models that offer the
possibilities of accounting for the characteristics of count time series. Such models then
easily form the basis of various control charts (Höhle and Paul, 2008; Noufaily et al., 2013;
Manitz and Höhle, 2013). The review of models for count time series in Jung and Tremayne
(2011) states that no complete nomenclature of the models exists. A classical nomenclature
is to define observation- vs. parameter-driven models following Cox et al. (1981). However,
in this thesis, we rather differentiate models regarding how they represent overdispersion,
seasonality, past outbreaks and time trends.

We are interested in regression models such that

yt ∼ Po(µt)

or

yt ∼ NB(µt, ν)

and

g(µt) = ηt

where g is a known link function, often chosen to be log for count time series and ηt is
called the linear predictor. We therefore use (quasi) Generalized Linear Models (GLMs)
and Generalized Additive Models (GAMs) (Fahrmeir et al., 2013). The difference between
GLMs and GAMs is that in a GAM the linear predictor ηt can be linear to smooth functions
of some continuous covariates, e.g. ηt = β0 +f(t) where f is a smooth function. In contrast
to the linear predictor of a GLM, this linear predictor would be able to describe linear trend
more complex than a log-linear one, which can for instance come in handy when there was
first an increase and then a decrease in counts over the time period for which one applies
the regression. The linear predictor can include auto-regression on previous values of the
mean or of the observation (Liboschik et al., 2016) or a time-varying intercept to account
for auto-regression (Heisterkamp et al., 2006; Manitz and Höhle, 2013). Seasonality can be
modelled e.g. as a sum of sinusoidal components (Höhle and Paul, 2008) or as a possibly
penalized spline (Noufaily et al., 2013; Manitz and Höhle, 2013).

On top of the negative binomial distribution, as another extension of the GLM and
GAM framework one can use the quasi-Poisson family which is a Poisson regression but
with a supplementary parameter φ defined so that Var(yt) = φ · µt (Hilbe, 2011). This
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model is called NBI model in Hilbe (2011). There is no such thing as a quasi-Poisson
distribution. Nonetheless, one can parameterize a negative binomial variable such that it
matches the quasi-Poisson specification of the mean and variance and hence could be used
to sample quantiles with the mean-variance relationship corresponding to the quasi-Poisson
model.

We do not use models defining transitions between unobserved states, such as state-
space models (De Jong, 1988; Dunsmuir and Scott, 2015) and hidden Markov models as
used for influenza surveillance in Mart́ınez-Beneito et al. (2008); Conesa et al. (2015), or
models that make a regression on other distribution parameters than the mean (Rigby and
Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007).

1.2.4 Model inference

In this thesis we describe algorithms whose model inference is performed either in a
frequentist or in a Bayesian framework. We are not interested in point-predictions, but
rather in probabilistic predictions. A very important aspect we want to underline here
is uncertainty: Inference for aberration detection should take sources of uncertainty into
account. Thus, the decision regarding whether an observed count is aberrant can have a
higher specificity. We include two sources of uncertainties: the estimation uncertainty and
the observation uncertainty. In this work, we indeed choose to disregard the uncertainty
related to the choice of the regression model. The observation uncertainty is often taken
into account by defining a threshold for the current count as a quantile of its predictive
distribution. The estimation uncertainty is disregarded by some existing algorithms (Höhle
and Paul, 2008; Noufaily et al., 2013) but can be taken into account very naturally by
Bayesian methods (Manitz and Höhle, 2013; Salmon et al., 2015). Disregarding estimation
uncertainty makes aberration detection less specific. In this section, we shortly introduce
the main inference methods used in this thesis. In this thesis we describe algorithms
whose model inference is performed either in a frequentist or in a Bayesian framework. We
are not interested in point-predictions, but rather in probabilistic predictions. A very
important aspect we want to underline is uncertainty: Inference for aberration detection
should take sources of uncertainty into account. Thus, the decision regarding whether an
observed count is aberrant can be more specific. We include two sources of uncertainties:
the estimation uncertainty and the observation uncertainty. In this work, we indeed choose
to disregard the uncertainty related to the choice of the regression model. The observation
uncertainty is often taken into account by defining a threshold for the current count as
a quantile of its predictive distribution. The estimation uncertainty is disregarded by
some existing algorithms (Höhle and Paul, 2008; Noufaily et al., 2013) but can be taken
into account very naturally by Bayesian methods (Manitz and Höhle, 2013; Salmon et al.,
2015). Disregarding estimation uncertainty makes aberration detection less specific. In
this section, we shortly introduce the main inference methods used in this thesis.

In the case of the Poisson GLM, for which we have ηt = βX with X the matrix
of independent variables and β the vector of parameters, the regression parameters are
estimated by Maximum Likelihood using the Iterative Weighted Least Squares (IWLS)
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algorithm (Zeileis et al., 2008). When using a quasi-Poisson family, the overdispersion
parameter is estimated separately in a second step as

φ =
1

n− p

n∑
i=1

(yi − µ̂i)2

µ̂i

where n is the sample size, p the number of estimated parameters and µ̂i the Maximum
Likelihood Estimator of µi (calculated based on X and on β̂). The model inference is no
longer a likelihood but instead a quasi-likelihood approach (Fahrmeir et al., 2013). We
have to write extended GLMs because the inference is different from the one for e.g. the
Poisson model. In R, frequentist GLM of the Poisson and quasi-Poisson families can be
fitted using the glm function of the stats package (R Core Team, 2015) and GAM using
the gam package (Hastie, 2015).

The log-likelihood of a negative binomial extended GLM depending on the observations
and the parameters β and ν is

l =
n∑
i=1

(
yi log(µi) + νlog(ν)− (ν + yi) log(ν + µi) + log

(
Γ(ν + yi)

Γ(ν)

)
− log(yi!)

)
.

The regression coefficients of the linear predictor of log(µt) and ν can be iteratively esti-
mated separately (Zeileis et al., 2008) based on the first derivatives of the log-likelihood
that are (Lawless, 1987)

δl

δβr
=

n∑
i=1

xir(yi − µi)
1 + µi/ν

, r = 1, . . . , p

with X the matrix of independent variables, p the number of parameters and β the pa-
rameters vector; and

δl

δν
=

n∑
i=1

(
ψ(ν + µi)− ψ(ν) + log(ν)− log(ν + µi)−

ν + yi
ν + µi

+ 1

)
,

where ψ is the digamma function, i.e

ψ(x) =
d

dx
ln Γ(x) =

Γ ′(x)

Γ(x)
.

More precisely, the iterative process is such that

1. β is estimated for a fixed value of ν using a standard GLM fit (with a fixed ν
the negative binomial distribution belongs to a one-parameter exponential family
exponential family);

2. then for a fixed β ν is estimated with a Newton-Raphson iterative scheme.
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These steps are repeated until convergence is obtained. It was proven that β and ν are
asymptotically independent (Lawless, 1987) so that the standard errors are correctly esti-
mated by the iterative procedure. The negative binomial extended GLMs and GAMs can
be fitted in a frequentist framework using the MASS package (Venables and Ripley, 2002)
and the gam package, respectively.

In this thesis, for Bayesian inference of GLMs and GAMs we use integrated nested
Laplace approximations (INLA) as described in Rue et al. (2009) and implemented in the
INLA package (Rue et al., 2015). We actually do not fit GAMs in a frequentist framework
in this work. Here we briefly present the principle of INLA, which is an Bayesian infer-
ence method much faster than Markov chain Monte Carlo (MCMC). INLA is an inference
method for latent Gaussian models. A negative binomial GLM can be viewed as a latent
Gaussian model. The parameters β are then described as a p-dimensional Gaussian field
(with p the number of parameters). The likelihood model for yi|β is the negative binomial
likelihood that is controlled by the unknown hyperparameter ν. The marginal posterior
density of each of the parameters is:

π(βi|y) =

∫
ν

π(βi|ν, y)π(ν|y)dν.

The INLA method consists in using Laplace approximations for both π(ν|y) and π(βi|ν, y),
which explains the name of the method, and in approximating the integral by a sum. More
details are given in Rue et al. (2009). In this work, we use INLA inference in Section 2.4
and Chapter 3.

Past outbreaks or aberrations can have a very high influence on inference. This can
be accounted for by including a covariate for past outbreaks when they are known, e.g.
as a binary variable with additive effect on ηt (Manitz and Höhle, 2013). In Fried et al.
(2015) outliers are detected and modelled explicitely in a Bayesian framework. Or one can
use standardized Anscombe residuals of a first fit of the model to down-weight outlying
observations in a second fit of the model, which is the makeshift solution used in Farrington
et al. (1996) and Noufaily et al. (2013). A future development of count time series model
would be to offer robust inference such as Aeberhard et al. (2014) for the negative binomial
distribution, but tailored to the auto-regression structure of some time series models (El-
saied and Fried, 2014). These investigations were not part of this thesis but such inference
methods could easily replace the current ones in existing control charts as described and
used in this work.

1.2.5 Model assessment

In this section, we shortly discuss how regression models as those presented in this
thesis can be assessed, without, however, aiming at providing an exhaustive review of
model selection. Good references on this subject are e.g. Fahrmeir et al. (2013) and Held
and Sabanés Bové (2014). In this thesis, we are more particularly interested in assessing
probabilistic predictions offered by a regression model. In this regard, two important
notions are calibration and sharpness. Calibration means, roughly said, that we wish
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the predictive distribution to give a high probability to the observed count: a very bad
predictive distribution would classify all observed counts as extreme values. Sharpness
means that the predictive distribution should be concentrated: this property, contrary to
the calibration, does not depend on the observed counts. Obviously, one looks for a trade-
off between calibration and sharpness: having a high sharpness is tantamount to betting
everything on a value, which can be very wrong.

Regression models for count time series can be assessed using standard tools such as
the AIC (Akaike’s Information Criterion) or the BIC (Bayesian Information Criterion) that
take into account the likelihood of the observations but also the number of parameters. The
predictive capabilities of regression models for count time series can be also assessed using
proper scoring rules (Christou and Fokianos, 2015; Czado et al., 2009). Scoring rules are a
function of the predictive distribution and of the observed count; they often are reported
as a mean of this function over all observed counts. In Jung and Tremayne (2011) a proper
scoring rule is defined: it is a scoring rule that gives best scores for forecasters when they
predict ”according to their true belief about the predictive distribution”. Thus, the better
the score, the better the prediction. In Czado et al. (2009) it is explained that a proper
scoring rule is proper when the score given to the true predictive distribution is always
higher that or equal to the score given to any other predictive distribution. Strictly proper
scoring rules are the ones for which one can write higher than instead of higher that or
equal to. Czado et al. (2009) argue that scoring rules allow to investigate calibration and
sharpness of a predictive distribution. There exist tests based on scoring rules such as the
permutation test in Paul and Held (2011) that outputs a Monte Carlo p-value which helps
making a decision about which model to use for a time series. Other tests, though only
defined for independent forecasts, are presented in Wei and Held (2014). In any case, it is
best to use several scoring rules when assessing models (Czado et al., 2009).

Beside AIC, BIC and scoring rules using predictions, an important step when assessing
a model for count time series is to look at the ACF (auto-correlation function) of the
transformed or untransformed residuals in order to judge whether the regression model
accounts for the autoregression structure of the data. Offering a general comparison of
possible models for count time series, and assessing them on many time series, is beyond
the scope of this thesis. However, in Section 5.1.1 we show an example of assessment of
several models based on ACF and proper scoring rules. The methodological development
presented in Chapter 3 could actually be used with another regression model than the one
we applied.

1.3 Outline of the thesis and contributions

This thesis is structured as follows. Chapter 2 offers an overview of representative
algorithms for outbreak detection that illustrate well the state of the art in aberration
detection. Chapter 3 presents the main methodological advance brought by this work:
an algorithm for outbreak detection that accounts for right-truncation of the data while
including both estimation and observation uncertainty. Chapter 4 is a description of the
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design choices and of the implementation of a routine system for aberration detection
at the Robert Koch Institute. In Chapter 5 we present possible future methodological
developments of algorithms described in the thesis and mention remaining challenges for
aberration detection at a national public health institute. Lastly, Chapter 6 summarizes
the thesis.

Part of the work presented in the thesis has been submitted and accepted for publication
in peer-reviewed scientific journals. They form the basis of several chapters and sections.
For this thesis the respective manuscripts were adapted in order to obtain a consistent
notation and to eliminate redundancy. The articles are:

� M. Salmon, D. Schumacher, M. Höhle. Monitoring Count Time Series in R: Aberra-
tion Detection in Public Health Surveillance, Journal of Statistical Software, accepted
for publication.

Michael Höhle created and maintains the package surveillance of which Maëlle
Salmon has been an active contributer: three algorithms and two functions for
simulating time series with reporting delays were added to surveillance as a result
of her work. Maëlle Salmon conceived and prepared the manuscript. Maëlle
Salmon wrote the manuscript with contributions from Dirk Schumacher and Michael
Höhle. Maëlle Salmon, Dirk Schumacher and Michael Höhle edited the manuscript.

Chapter 2 is mostly based on this article, with more details e.g. about standardized
Anscombe residuals in Section 2.3 and about a detection algorithm in Section 2.5.1
and a whole new section, Section 2.2. Moreover, the last part of the JSS manuscript,
which explains how to set up a simple surveillance system using the package, is used
for Section 4.4.

� M. Salmon, D. Schumacher, K. Stark, M. Höhle. Bayesian Outbreak Detection in
the Presence of Reporting Delays, Biometrical Journal, 57 (6), 1051-1067, 2015.

Maëlle Salmon conceived and implemented the proposed algorithm. Maëlle Salmon,
together with Dirk Schumacher and Michael Höhle, designed the simulation study and
prepared the manuscript. Maëlle Salmon wrote the manuscript. Maëlle Salmon,
Dirk Schumacher, Klaus Stark and Michael Höhle edited the manuscript.

The first sections of Chapter 3 are based on this paper, but Section 3.5, the description
of the proof in 3.3.1, and Section 3.6 are new content compared to the article, and
present the code created for this part of the thesis and a related method published
by other authors in Noufaily et al. (2015), respectively.

� M. Salmon, D. Schumacher, H. Burmann, C. Frank, H. Claus, M. Höhle. A system
for automated outbreak detection of communicable diseases in Germany, Eurosurveil-
lance, accepted for publication.

Dirk Schumacher implemented the system, of which Hendrik Burmann is the new
maintainer and developer. Maëlle Salmon participated to the system design, was
involved in meetings with users, and has provided statistical counseling during the
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system development and afterwards, including for testing the new algorithm tak-
ing reporting delays into account developped during this work. Dirk Schumacher
prepared and wrote the first version of the manuscript with the help of Maëlle
Salmon. Maëlle Salmon revised the manuscript. Maëlle Salmon, Dirk Schu-
macher, Christina Frank, Hermann Claus and Michael Höhle edited both versions of
the manuscript.

The first sections of Chapter 4 are based on this manuscript, while Section 4.4 is
based on the JSS manuscript, but Section 4.3 presents ongoing work started after the
publication of both manuscripts.

The manuscripts will be cited again at the beginnings of the respective sections.



Chapter 2

Count Time Series Monitoring for
Infectious Diseases Surveillance

In this chapter we aim at presenting the statistical framework for aberration detection,
while underlining that it is based on statistical prediction. Our first goal is to offer a
critical survey of the field, pointing at weaknesses and strengths of existing methods. Our
second goal is to present implementation aspects of algorithms, including code that we
have written and added to a public open-source software package. We shall present a
representative set of methods for aberration detection that are or could be used in public
health surveillance.

Note that this chapter is an extended version of the article M. Salmon, D. Schu-
macher, M. Höhle. Monitoring Count Time Series in R: Aberration Detection in Public
Health Surveillance, Journal of Statistical Software, accepted for publication, of which it
partially uses text passages.

2.1 Statistical framework for aberration detection

We introduce the framework for aberration detection by considering an univariate time
series of counts with observations {yt, t = 1, 2, . . .}. Surveillance aims at prospectively – as
opposed to retrospectively – detecting an aberration, that is to say, an important change in
the process occurring at an unknown time τ . The prospective aspect of monitoring means
that the decision made at timepoint s is solely based on the counts {yt, t < s}. This
change can be a step increase of the counts of cases or a more gradual change (Sonesson
and Bock, 2003): one could imagine a surge in salmonellosis cases based on the punctual
availability of an infected food item on the market, or a slower and more persistent increase
of measles numbers due to decreasing vaccination rates. Based on the possibility of such a
change, for each time t we want to differentiate between the two states in-control and out-
of-control, which actually is a classification problem. At any timepoint s ≥ 1, the available
information – i.e., past counts – is defined as ys = {yt ; t ≤ s}. Detection is based on a
statistic r(·) with resulting alarm time TA = min {s ≥ 1 : r(ys) > g} where g is a known
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threshold. Functions for aberration detection use past data to compute r(ys), and compare
it to the threshold g, above which the current count can be considered as suspicious and
thus doomed as out-of-control. Note that an important distinction to be made is between
one timepoint detection and detection over several timepoints. In the former, only (a
transformation of) the current value of yt is compared to a threshold, whereas in the
latter, detection can be based on accumulated deviation of subsequent response variables
compared to an expectation. All methods presented in this thesis except the CUSUM
of Höhle and Paul (2008) perform one-timepoint detection.

Aberration detection in public health surveillance has the same goal as aberration detec-
tion in industrial contexts: detecting a change in a monitored process, such as a surge in the
number of defect items in a production line. Therefore, public health surveillance uses tools
from Statistical Process Control (SPC) which is a field aiming at creating control charts
that actually are algorithms for aberration detection, originally for the industry (Unkel
et al., 2012). Both fields, public health surveillance and SPC, also have independent devel-
opments due to different characteristics of the data, but can enrich each other (Woodall,
2006). A review of SPC methods for count time series, however disregarding recent work
such as Liboschik et al. (2014) and Höhle and Paul (2008), can be found in Weiß and Lu
(2015). A very simple control chart is the Shewart control chart (Shewhart, 1931) that is
actually very close to the method we shall present in the next paragraphs.

We will illustrate the basic principle of aberration detection by using the earsC algo-
rithm that implements the EARS (Early Aberration Detection System) methods of the
CDC (Center for Disease Control and Prevention of the USA) as described in Fricker et al.
(2008). We start the chapter by introducing this algorithm for didactical reasons: even if
the method is flawed, it illustrates the decision process of prospective aberration detection
and is commonly used. This algorithm is especially convenient in situations when little
historic information is available. It offers three variants called C1, C2 and C3. Here we
shall focus on C1 for which the baseline are the 7 timepoints before the assessed timepoint
s, that is to say (ys−7, . . . , ys−1). The expected value is the mean of the baseline. The
method is based on a statistic called Cs defined as Cs = (ys−ȳs)/ss, where

ȳs =
1

7
·
s−1∑
i=s−7

yi and s2
s =

1

7− 1
·
s−1∑
i=s−7

(yi − ȳs)2 .

Under the null hypothesis of no outbreak, it is assumed that Cs
H0∼ N(0, 1). This is

tantamount to assuming a normal distribution of the disease counts which is an oxymoron
since the normal distribution is a continuous distribution. Moreover, the method assumes
that the distribution of the number of cases has a constant distribution from the timepoints
s − 7 to s which would hardly be the case for any seasonal disease or, in case of a daily
aggegation, in any disease with day-of-the-week effects on diagnosis.

The upperbound Us is defined by the (1−α)-quantile of the normal distribution of the
disease count yt, t ≤ s: Us = ȳs + z1−αss where z1−α is the (1−α)-quantile of the standard
normal distribution. An alarm is raised if ys > Us. In Fricker et al. (2008) it is stated
that an alarm is raised if Cs is higher than 3, which roughly corresponds to α = 0.001.
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Figure 2.1: Weekly reports of S. Newport in Germany in 2011 monitored by the EARS
C1 method. The line represents the upperbound calculated by the prospective algorithm.
Triangles indicate alarms that are the timepoints where the observed number of counts is
higher than the upperbound.

We implemented the three methods C1, C2 and C3 in the R package surveillance as the
function earsC in which one can choose which method to apply to the time series stored
in a sts-object, which range of timepoints to monitor, and which confidence level α to
use (Salmon et al., 2016). Below is R code where one monitors the counts of Salmonella
Newport for Germany, salmNewportGermany, chooses the range of timepoints to monitor
as in2011, specifies this range in control along with the chosen method, C1, and the
chosen value for α, 0.05. The output of the earsC function is stored in the sts-object surv
shown in Figure 2.1.

# Aggregate counts over Germany

R> salmNewportGermany <- aggregate(salmNewport, by = "unit")

# Range for the monitoring

R> in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011)

# Choose parameters

R> control <- list(range = in2011, method = "C1", alpha = 0.05)

# Apply earsC function

R> surv <- earsC(salmNewportGermany, control = control)

Figure 2.1 shows the upperbound as a solid line and the alarms – timepoints where the
upperbound has been exceeded – as triangles. The four last alarms correspond to a known
outbreak in 2011 due to sprouts (Bayer et al., 2014). One sees that the upperbound right
after the outbreak is affected by the outbreak: it is very high, so that a smaller outbreak
would not be detected.
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The EARS methods C1, C2 and C3 are simple in that they only use information from
the very recent past. This is appropriate when data has only been collected for a short
time or when one expects the count to be fairly constant. However, data from the less
recent past often encompasses relevant information about e.g., seasonality and time trend,
that one should take into account when estimating the expected count and the associated
threshold. For instance, ignoring an decreasing time trend due to reasons other than
an outbreak could decrease sensitivity. Inversely, overlooking an annual surge in counts
during the summer could decrease specificity. Therefore, it is advisable to use detection
methods whose underlying models incorporate essential characteristics of time series of
disease count data such as overdispersion, seasonality, time trend and presence of past
outbreaks in the records (Unkel et al., 2012; Shmueli and Burkom, 2010). Moreover, the
EARS methods do not compute a proper prediction interval for the current count, as the
upperbound is based on the assumption that the number of cases is normally distributed.
However, since these methods were already implemented in surveillance systems (Fricker
et al., 2008) our implementation can be useful for comparing newer methods to these
commonly used methods. Moreover, it is the first implementation of these methods that
is widely available. Sounder statistical methods will be reviewed in this chapter, after we
explain how aberration detection algorithms can be evaluated.

2.2 Evaluation of detection

2.2.1 Measures of performance

Statistical algorithms for aberration detection can be evaluated with respect to their
capacity to detect the most real aberrations (sensitivity), to produce the least amount of
false alarms (specificity) and to do this quickly, e.g. detecting the begin rather than the
peak of an outbreak (timeliness). Measures of performance necessitate the knowledge or
assumption of timepoints corresponding to in-control or out-of-control situations, that is,
knowing whether the count in each week corresponds to an outbreak. Only when having
this information, one can know whether an alarm is a false alarm. Each measure can be
defined for each time series to be monitored. In a public health institute as the RKI,
epidemiologists tend to think at the scale of a pathogen, so that they would like to have
given values of measures of specificity, sensitivity and timeliness for a given pathogen.

Specificity can be characterized by the false positive rate (FPR) defined in Noufaily
et al. (2013) as the number of alarms in weeks without outbreaks divided by the number
of weeks in the monitored period. An equivalent measure in statistical process control lit-
erature is the ARL0, the average run length of the algorithm in absence of any aberration
before it gives an alarm. The longer the ARL0, the more specific the algorithm. Conversely,
sensitivity can be characterized by the probability of detection (POD) which is the number
of detected outbreaks divided by the number of outbreaks in the monitored time series.
An outbreak is deemed detected is there is at least an alarm corresponding to one of the
outbreak weeks. Sensitivity can also be characterized by the ARL1, the average run length



2.2 Evaluation of detection 19

of the algorithm in the presence of an aberration before it gives an alarm. The shorter the
ARL1, the more sensitive the algorithm. Note that in real life, one hardly knows the distri-
bution of e.g. changepoints so that any value of a measure actually is an average of values
of the measure over several monitored time series with different characteristics, instead
of an expectation which would be their mathematical definition as explained in (Frisén,
2003). At the RKI, epidemiologists rather use POD and FPR than ARL0 and ARL1 which
are measures from the field of SPC. Lastly, measures of sensitivity and specificity could be
combined for producing positive or negative predictive values similar to the ones defined
for diagnostic tests, or for producing utility functions if one were to define costs associated
to missed outbreaks and false alarms (Frisén, 2003). These are not issues that we shall
pursue in this thesis.

Timeliness could be defined as the time after the beginning of an outbreak at which an
alarm was produced if an alarm was produced (Salmon et al., 2015) or as binary variable
indicating whether an alarm was produced in a pre-defined time (Unkel et al., 2012).

2.2.2 Data for evaluation

Evaluating an algorithm for aberration detection does not simply demand the definition
of performance measures but also the use of time series on which to apply the methods to
be compared. Finding data for assessing an algorithm is not straightforward, as discussed
in Unkel et al. (2012). On the one hand simulated time series do not necessarily reproduce
all features of real time series, including the form of outbreaks, but on the other hand in real
time series one does not know any or all outbreaks. When using simulated time series, one
tends to pre-validate given assumptions of the methods one wants to test: in Fricker et al.
(2008) data are simulated from continuous distributions for testing the EARS C methods
disregarding the count nature of surveillance data, in Noufaily et al. (2013) and Salmon
et al. (2015) data are simulated without autocorrelation for testing algorithms disregarding
autocorrelation. This is quite logical: if a researcher knows a characteristics of surveillance
data and deems it to be important, they are more likely to include them in the aberra-
tion detection algorithm. Using real time series and adding simulated outbreaks is also
suggested in Unkel et al. (2012); Buckeridge et al. (2008) but simulated outbreaks still
are simulated and the real time series used as in-control baseline may contain outbreaks.
Therefore, there is no ideal solution. In any case, any study assessing an algorithm should
thoroughly present the data used and, if applicable, simulation mechanisms, since their
characteristics can partly explain the measured performance of any algorithm.

There is up to now no public data set that would serve as a reference for method
developers. The data used in Hutwagner et al. (2005) was no longer available online at
the link provided in the corresponding article at the time we did the work of Chapter 3.
However, the dataset is actually downloadable from an archive website1. But tracing the
dataset was not straightforward, therefore it would be hard to establish this dataset as a

1https://web.archive.org/web/20130503125219/http:/www.bt.cdc.gov/surveillance/ears/

datasets.asp

https://web.archive.org/web/20130503125219/http:/www.bt.cdc.gov/surveillance/ears/datasets.asp
https://web.archive.org/web/20130503125219/http:/www.bt.cdc.gov/surveillance/ears/datasets.asp
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reference. The website of the Project Mimic that aimed at ”making realistic biosurveillance
data available for researchers and to enable others to do the same” has not been updated
since 20082. The data used in Noufaily et al. (2013) and slightly modified in Salmon et al.
(2015) represents a diversity of time series but disregard autocorrelation when simulating
the time series. In conclusion, there is a lack of reference surveillance data sets.

Assessing algorithms does not simply serve the role of determining how a new method
compares to previous methods but can also guide the choice of parameters values, as
shall be seen in Section 2.5. Moreover, these assessment criteria characterize the signals
produced by an algorithm, but algorithms for aberration detection only make a difference
in practice if they are implemented in a system offering good communication of the signals.
An algorithm can be very good, but if its code is not easy to reproduce and/or not available,
it will not be used. Moreover, even if an algorithm is very good and freely available, it will
hardly make a difference in practice if it is not integrated into a system encompassing data
queries, computation of signals, and delivery of reports to persons, e.g. epidemiologists,
that can interpret the signals and act upon them. See Chapter 4 for a presentation and
discussion of such a system.

In the following parts of this chapter, we present a set of representative algorithms,
which are already in routine application at several public health institutions or which we
think have the potential to become so. First we describe the Farrington method intro-
duced by Farrington et al. (1996) together with the improvements proposed by Noufaily
et al. (2013). As a Bayesian counterpart to these methods we present the BODA method
published by Manitz and Höhle (2013) which allows the easy integration of covariates. All
these methods perform one-timepoint detection in that they detect aberrations only when
the count at the currently monitored timepoint is above the computed threshold, with-
out memory of the comparison of the counts at the previous timepoints to corresponding
thresholds. Hence, no accumulation of evidence takes place. As an extension, we introduce
an implementation of the negative binomial cumulative sum (CUSUM) of Höhle and Paul
(2008) that allows the detection of sustained shifts by accumulating evidence over several
timepoints.

2.3 One size fits them all for count time series

The Farrington method (Farrington et al., 1996) along with its improved version (No-
ufaily et al., 2013) are currently the methods of choice at European public health insti-
tutes (Hulth et al., 2010; Enki et al., 2013; Salmon et al., 2016). Both methods are imple-
mented in the R package surveillance. First, the 1996 method as described in Farrington
et al. (1996) is implemented as the function farrington. Its use was already described
in Höhle (2007) and in Höhle and Mazick (2010). Now, the newly implemented function
farringtonFlexible that we added to the surveillance package supports the use of this
original method as well as of the improved method built on suggestions made by Noufaily

2http://www.projectmimic.com/

http://www.projectmimic.com/
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Figure 2.2: Construction of the noPeriods-level factor to account for seasonality, depending
on the value of the half-window size w and of the freq of the data. Here the number of
years to go back in the past b is 2. Each level of the factor variable corresponds to a period
delimited by ticks and is denoted by a character. The windows around s are respectively
of size 2w + 1, 2w + 1 and w + 1. The segments between them are divided into the other
periods so that they have the same length up to rounding.

et al. (2013) for improving the specificity without reducing the sensitivity.

2.3.1 Definition of the GLM

In both cases the steps of the algorithm are the same. In a first step, an overdis-
persed Poisson generalized linear model with log link is fitted to the reference data ys ⊆
{yt ; t ≤ s}, where E(yt) = µt with log µt = α + βt and Var(yt) = φ · µt and where φ ≥ 1
is ensured. The original method took seasonality into account by using a subset of the
available data as reference data for fitting the GLM: w timepoints centred around the time-
point located 1, 2, . . . , b years before s, amounting to a total b · (2w + 1) reference values.
However, Noufaily et al. (2013) found that the algorithm performs better when using more
historical data. In order to do so while taking seasonality into account, the authors in-
troduced a zero order spline with 11 knots, which can be conveniently represented as a
10-level factor. We have extended this idea in our implementation so that one can choose
an arbitrary number of periods in each year. Thus, log µt = α + βt + γc(t) where γc(t) are
the coefficients of a zero order spline with noPeriods+ 1 knots, which can be conveniently
represented as a noPeriods-level factor that reflects seasonality. Here, c(t) is a function
indicating to which season or period of the year t belongs.

The algorithm uses the parameters w, b and noPeriods to deduce the length of periods
so they have the same length up to rounding. An exception is the reference window centred
around s. Figure 2.2 shows an example, where each character corresponds to a different
period. Note that setting noPeriods = 1 corresponds to using the original method with
only a subset of the data: there is only one period defined per year, the reference window
around s and other timepoints are not included in the model. Moreover, Noufaily et al.
(2013) found that it is better to exclude the last 26 weeks before s from the baseline in
order to avoid reducing sensitivity when an outbreak has started recently before s. In the
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farringtonFlexible function, one controls this by specifying pastWeeksNotIncluded,
which is the number of last timepoints before s that are not to be used. The default value
is 26.

2.3.2 Definition of the threshold

In a second step, the expected number of counts µs is estimated for the current timepoint
s using this GLM. An upperbound Us is calculated based on this estimated value and its
variance. The two versions of the algorithm make different assumptions for this calculation.

The original method assumes that a transformation of the prediction error g (ys − µ̂s)
is normally distributed. There is an optional power-transformation for skewness correction
and variance stabilisation. When using the identity transformation g(x) = x one obtains

ys − µ̂0 ∼ N (0,Var(ys − µ̂0)).

The upperbound of the prediction interval is then calculated based on this distribution.
First we have that

Var(ys − µ̂s) = Var(ys) + Var(µ̂s) = φµ0 + Var(µ̂s)

with Var(ys) being the variance of an observation and Var(µ̂s) being the variance of the
estimate. The threshold, defined as the upperbound of a one-sided (1−α) ·100% prediction
interval, is then

Us = µ̂0 + z1−αV̂ar(ys − µ̂s).
However, a weakness of this procedure is the normality assumption itself, so that an alterna-
tive was presented in Noufaily et al. (2013). The central assumption of this approach is that,
although using a quasi-Poisson GLM, Noufaily et al. (2013) assume that ys ∼ NB (µs, ν),
with µs the mean of the distribution and ν = µs/φ−1 its overdispersion parameter. In this
parameterization, we still have E(yt) = µt and Var(yt) = φ · µt with φ > 1 – otherwise
a Poisson distribution is assumed for the observed count. The threshold is defined as a
quantile of the negative binomial distribution with plug-in estimates µ̂s and φ̂. Only minor
differences in performance were noticed in Noufaily et al. (2013) when using a negative
binomial GLM. Note that the plug-in definition of the threshold disregards the estimation
uncertainty in µ̂s and φ̂.

As a consequence, we implemented a third method in the farringtonFlexible func-
tion, called with the value muan (mu for µ and an for asymptotic normal) for the thresh-

oldMethod, that tries to solve the problem by using the asymptotic normal distribution
of (α̂, β̂) to derive the upper (1 − α)-quantile of the asymptotic normal distribution of
µ̂s = α̂ + β̂s. Note that this does not reflect all estimation uncertainty because it disre-
gards the estimation uncertainty of φ̂. Note also that for time series where the variance of
the estimator is large, the upperbound also ends up being very large. Thus, the method
described by Noufaily et al. (2013) for calculating the threshold seems to provide informa-
tion that is easier to interpret by epidemiologists but with the one we proposed being more
statistically correct.
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Figure 2.3: S. Newport in Germany in 2011 monitored by (a) the original method and (b)
the improved method. In both cases we turned off the option that the threshold is only
computed if there were more than 5 cases during the 4 last timepoints including s.

2.3.3 Inference and monitoring

In a last step, the observed count ys is compared to the upperbound Us and an alarm
is raised if ys > Us. In both cases the fitting of the GLM involves three important steps.
First, the significance of the time trend is checked. The time trend is included only when
significant at a chosen level, when there are more than three years reference data and if no
overextrapolation occurs because of the time trend. Then, past outbreaks are reweighted
based on their standardized Anscombe residuals. The Anscombe residual associated to the
observation yt with estimated mean µt is (Anscombe, 1953; McCullagh and Nelder, 1983):

rt =
A(yt)− A(µt)

A′(µt)
√
V (µt)

, A(µt) =

∫ µt

x=0

V (x)−1/3dx

where V is the variance function and where A′(µt) is the derivative of A(µt) with respect to
µt. For standardizing them, one has to divide them by

√
φ(1− htt) where htt is a diagonal

element of the hat matrix of the regression.
For a quasi-Poisson GLM, since we have V (µt) = φµt, we get

rt =
3

2

y
2/3
t − µ

2/3
t

µ
1/6
t

√
φ(1− htt)

·

In farringtonFlexible the limit Lr for reweighting past counts can be specified by the
user. If the standardized Anscombe residual of a count is higher than the limit it is
reweighted accordingly in a second fitting of the GLM. More mathematically, in the second
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fit a weight wt is associated to each observation yt depending on its standardized Anscombe
residual rt from the first fit:

wt = γr
−21(rt>Lr)
t , γ =

N∑N
i=1 r

−2I(rt>Lr)
t

where 1 is the indicator function and with N the number of observations used for fitting
the model. Farrington et al. (1996) used Lr = 1 whereas Noufaily et al. (2013) advise a
value of Lr = 2.56 so that the reweighting procedure is less drastic, because it also shrinks
the variance of the observations. In our case, as we want to get a quantile of the predictive
distribution of the current count, estimating the overdispersion adequately is quite crucial.
Therefore, this reweighting procedure could be replaced by directly using robust inference
in a single fit of the model (Aeberhard et al., 2014; Elsaied and Fried, 2014). Lastly,
note that as a protection against alarms related to small counts that are unlikely to be
interesting to epidemiologists, the threshold is only computed if there were more than 5
cases during the 4 last timepoints including s.

2.3.4 Implementation of the algorithm

In the function farringtonFlexible that we implemented during this thesis work,
one can choose to use the original method or the improved method by specification of
appropriate options in the control slot. In the example below, control1 corresponds
to the use of the original method and control2 indicates the options for the improved
method.

R> control1 <- list(range = in2011, noPeriods = 1, b = 4, w = 3,

weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05,

thresholdMethod = "delta")

R> control2 <- list(range = in2011, noPeriods = 10, b = 4, w = 3,

weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1,

thresholdMethod = "nbPlugin")

R> salm.farrington <- farringtonFlexible(salmNewportGermany, control1)

R> salm.noufaily <- farringtonFlexible(salmNewportGermany, control2)

Note that in the new implementation a population offset can be included in the GLM
by setting populationBool to TRUE and supplying the possibly time-varying population
size in the population slot of the sts-object, but this will not be discussed further here.
A good offset in the example of monitoring the weekly number of salmonellosis cases could
be the weekly number of diagnosis tests performed, if it were known.

2.3.5 Practical usage of the algorithm

The original method is widely used in public health surveillance (Hulth et al., 2010).
It is implemented at the Robert Koch Institute in the automatic system for outbreak
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detection (Salmon et al., 2016) described in Chapter 4. The reason for its success is
primarily that it does not need to be fine-tuned for each specific pathogen. It is hence
easy to implement it for scanning data for many different pathogens. Furthermore, it does
tackle classical issues of surveillance data: overdispersion, presence of past outbreaks that
are reweighted, seasonality that is taken into account differently in the two methods. An
example of use of the function is shown in Fig. 2.3. Note that the newer method uses more
data in the regression, and produces integer threshold values. One gets less alarms with
the most recent method and still does not miss the outbreak in the summer. Simulations
performed by Noufaily et al. (2013) support the use of the improved method instead of the
original method.

2.4 An algorithm based on a Bayesian GAM

The next algorithm we shall present has several interesting features, in that it is
more tailored at the time series aspect of monitoring, and in that its model is defined
in a Bayesian framework. It is called BODA (boda in the R package surveillance) for
Bayesian outbreak detection algorithm. It is a regression-based method where the regres-
sion model is a GAM fitted with integrated nested Laplace approximations (INLA) (Rue
et al., 2009; Rue et al., 2015), and was presented in Manitz and Höhle (2013).

2.4.1 Definition of the GAM

The GAM in BODA is based on the negative binomial distribution with time-varying
expectation and time constant overdispersion parameter, i.e., the parameterization is such
that

yt ∼ NB(µt, ν)

with µt the mean of the distribution and ν the dispersion parameter (Lawless, 1987). The
density of the distribution is P (yt = x) = Γ(x+ν)/(Γ(ν)x!)pν(1−p)x where p = ν/(ν+µt).
One can interpret yt as the number of failures occurring in a sequence of Bernoulli trials
with probability of success p before a target number of successes, ν, is reached, although
ν does not need to be an integer.

Hence, we have E(yt) = µt and Var(yt) = µt · (1 + µt/ν). The linear predictor of the
GAM is given by

log(µt) = α0t + βt+ γt + x>t δ + ξzt, t = 1, . . . , s.

Here, the time-varying intercept α0t is described by a random walk. Three models are pro-
posed for describing the random walk prior with precision λα such that α0t ∼ N(gm(t), λ−1

α ):

� stationary model gm(t) = α0,

� neighbour model gm(t) = α0,t−1,
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� linear model gm(t) = 2α0,t−1 − α0,t−2.

The time-varying intercept in the neighbour and the linear models was inspired by the work
of Heisterkamp et al. (2006) on hierarchical time series models, and accounts for temporal
autocorrelation which is ignored in the Farrington method.

Then, γt denotes a seasonal effect (as implemented in INLA) with period s equal to the
periodicity of the data, defined such that

∑s−1
i=0 γi ∼ N(0, λ−1

γ ) with λ−1
γ the precision of the

seasonality effect. Furthermore, β characterizes the effect of a possible linear trend (on the
log-scale) and ξ is the effect of previous outbreaks which one can include if one knows for
each timepoint if there was an outbreak at this timepoint. Typically, zt is a binary process
denoting if there was an outbreak in week t, but more involved adaptive and non-binary
forms are imaginable. Finally, xt denotes a vector of possibly time-varying covariates,
which influence the expected number of cases. For instance, if we expected the number
of influenza cases to be naturally driven by temperature, we could add temperature as a
covariate in order to monitor the excess cases of influenza instead of both temperature-
related and excess influenza cases.

2.4.2 Definition of the threshold

As before, data from the previous timepoints 1, . . . , s − 1 is used to determine the
posterior distribution of all model parameters and subsequently the posterior predictive
distribution of ys is computed. If the actual observed value of ys is above the (1 − α)-
quantile of the predictive posterior distribution an alarm is flagged for s. Using the posterior
predictive distribution of ys allows to take into account both estimation and observation
uncertainty. Inference for the posterior is performed with INLA as described in Rue et al.
(2009) using the R INLA package (Rue et al., 2015).

The example in Manitz and Höhle (2013) is the time series of weekly reported Campy-
lobacter cases in Germany as represented in Figure 2.4. The authors state that there is a
strong association between the number of cases and humidity so that humidity was added
to the model as a covariate to control for its effect on the number of cases. If one were
not sure whether the seasonality in the number of cases is induced by the seasonality in
humidity, one could decompose the time series of humidity so that one only includes the
season-adjusted time series in the model, as proposed by Erbas and Hyndman (2000).
Then one would not get a spurious relationship between the response variable (number of
cases, or number of hospital admissions in Erbas and Hyndman (2000)) and a dependent
variable that originally has a collinear seasonality component. For decomposing time series
of dependent variables, Erbas and Hyndman (2000) use the R function stl that applies
the Loess smoother for decomposing the time series in trend, season and irregular compo-
nent. Note that such an analysis is beyond the scope of this thesis. Moreover, Manitz
and Höhle (2013) did not question the relation between the time series of weekly reported
Campylobacter cases and the time series of humidity, including seasonality.

Other covariates are three binary variables. The first one indicates whether the time-
point is during the 2011 STEC O104:H4 outbreak. The motivation to do so is that for all
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Figure 2.4: In black are shown the weekly number of reported campylobacteriosis cases
in Germany 2002-2011 as vertical bars. In addition, the corresponding mean absolute
humidity time series is shown as a white curve.

gastro-intestinal diseases there were more diagnosed cases in this period, probably because
of increased awareness and testing (Bernard et al., 2014). The authors add two other bi-
nary variables indicating whether the timepoint is situated during the two last weeks of the
year or the two first week of the years. The later two variables are needed, because there
is a systematically changed reporting behaviour at the turn of each year due to holidays
delaying visits to the doctor to the beginning of the following year: one does not want to
get alarms for an usual peak whose origin is known. In this model, no additional correction
for past outbreaks is made since there is no reliable information about this. We show the
results of this monitoring, with a stationary model for the intercept, on Figure 2.5.

2.4.3 A Bayesian algorithm

This algorithm uses a Bayesian GAM and outputs a threshold taking both estimation
and observation uncertainty into account, thus being a step towards more Bayesian think-
ing in the field of aberration detection. In the SPC literature, works such as Lee and Apley
(2011) or Psarakis et al. (2014) also support the use of Bayesian methods for taking esti-
mation uncertainty into account, thus reducing the rate of false alarms in control charts.
Taking estimation uncertainty into account makes monitoring more conservative, since
the predictive posterior distribution is wider than it would be if disregarding estimation
uncertainty.

However, this algorithm could take even more advantage of Bayesian methodological
developments. We are going to cite two examples. Inference could be made sequential so
that the threshold calculation at each timepoint would not be made from scratch, following
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Figure 2.5: Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the
BODA method with covariates. The line represents the upperbound calculated by the
algorithm. Triangles indicate alarms, i.e., timepoints where the observed number of counts
is higher than the upperbound.

approaches such as the one described by Bhattacharya and Wilson (2015) that is not
advanced enough yet to tackle the inference of a model with as many parameters as the
one we presented here. Then, one could reformulate the decision making with the use of
utility or loss functions (Berger, 2013). Such developments are, though, beyond the scope
of this thesis.

2.4.4 Practical usage of the algorithm

The BODA method is to be seen as a step towards more Bayesian thinking in aberration
detection. However, it has two prohibitive characteristics as regards routine application:
one would need to carefully choose an appropriate model for each time series and the
procedure is quite slow even if INLA is faster than MCMC inference for example. As a
response Salmon et al. (2015) introduce a method which has two advantages: it allows
to adjust outbreak detection for reporting delays and includes an approximate inference
method much faster than the INLA inference method. However, its linear predictor is more
in the style of Noufaily et al. (2013) not allowing for additional covariates or time-varying
intercept. We present this other method in Chapter 3.
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2.5 An algorithm that goes beyond one-timepoint de-

tection

The GLMs or GAMs used in the Farrington or the BODA method are suitable for the
purpose of aberration detection since their regression approach adjusts counts for known
phenomena such as trend or seasonality in surveillance data. Nevertheless, they only
perform one-timepoint detection. In some contexts it can be more relevant to detect
sustained shifts early, e.g., an outbreak could be characterized at first by counts slightly
higher than usual in subsequent weeks without each weekly count being flagged by one-
timepoint detection methods. We shall first present a method implemented at the CDC,
before moving on to a more modern and statistically sounder method.

2.5.1 A simple but flawed method

The EARS C3 method allows to perform three-timepoint detection. It is quite different
from the two other methods – C1 defined in Section 2.1 and C2. For C3, the baseline are
timepoints t-11 to t-3.

The statistic C3(t) is the sum of discrepancies between observations and predictions.

C3(t) =
t−2∑
i=t

max(0, C2(i)− 1).

C2(i) is defined by

C2(i) =
y(i)− ȳ2(i)

S2(i)
,

where

ȳ2(i) =
1

7

i−9∑
j=i−3

y(j)

and

S2
2(i) =

1

6

i−9∑
j=i−3

[y(j)− ȳ2(j)]2.

The fact that one adds C2(i)−1 instead of C2(i) must be due to the parallel that Hutwagner
et al. (2003) draw between the C3 method and a method based on a statistic At such that

At = max

(
0, At−1 +

yt − (ȳt + kSt)

St

)
where k is called ”the detectable shift from the mean”. Thus, the 1 in the formula of
C3(t) could correspond to k = 1, although C3 only has memory of deviations from the
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Figure 2.6: Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C3
method.

expectation over 3 timepoints, whereas a CUSUM generally adds deviations until one gets
an alarm. Please note that the EARS methods are not very well documented.

Then, under the null hypothesis of no outbreak, one assumes that

C3(t) ∼ N(0, 1).

An alarm is raised if C3(t) ≥ z1−α, with z1−α the (1− α)-quantile of the centered reduced
normal law. The upperbound U3(t) is then defined by:

U3(t) = ȳ2(t) + S2(t)

(
z1−α −

t−2∑
i=t−1

max(0, C2(i)− 1)

)
.

An example is shown on Figure 2.6. This method does indeed go beyond one-timepoint
detection which is a wish often expressed by epidemiologists, and has a quite intuitive
interpretation: how different from the moving average are the observations of the last
three timepoints. Yet, beside having the downsides of EARS methods mentioned at the
beginning of the chapter such as using only little information from the past, disregarding
time trend and seasonality and and using a normal distribution to describe the outcome of a
count variable, it uses an arbitrary number of timepoints over which to cumulate deviations
from an expectation, which is not optimal. Therefore, we now present a sounder method
created by Höhle and Paul (2008).

2.5.2 Definition of a modern method based on a control chart

Cumulative control charts inspired by statistical process control (SPC) e.g., cumulative
sums (CUSUM), would allow the detection of sustained shifts. A control chart defined
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in Hawkings and Olwell (1998) was already created for overdispersed count data {yt, t =
1, 2, . . .} following the negative binomial distribution parameterized by the parameters r
and c so that its mean is µ = r/c and so that is variance is Var(yt) = µ(1+1/c). Hawkings
and Olwell (1998) assume that ν is constant and monitor c for detecting a change from level
c0 to level c1. Here we shall concentrate on the downward shifts of c since they indicate a
surge in counts. One has to estimate c0 and to choose c1. The authors define a CUSUM
in recursive form

l0 = 0 and ln = max(0, ln−1 + yn + k−), n ≥ 1,

where

k− =
ν log

(
c1(1+c0)
c0(1+c1)

)
log
(

1+c0
1+c1

) ·

The stopping time for alarm is given by

N = inf {n : ln ≥ c.ARL}

where c.ARL is chosen to ensure a given ARL0.
Yet this control chart is not tailored to the specific characteristics of surveillance data

including a time-varying mean because of e.g. seasonality. The method presented in Höhle
and Paul (2008) conducts a synthesis of both worlds, i.e., traditional surveillance methods
and SPC. The method is implemented in the package as the function glrnb. It allows to
monitor a negative binomial variable with time-varying mean but constant ν overdispersion
parameter as in the previous method from Hawkings and Olwell (1998). However, here
the monitored parameter is µt, not c.

For the control chart, two distributions are defined, one for each of the two states of
the system: in-control and out-of-control. The in-control distribution fθ0(yt|zt) with the
covariates zt is formulated by a GLM of the Poisson or negative binomial family with a
log link, depending on the overdispersion of the data. In this context, the standard model
for the in-control mean is

log µ0,t = β0 + β1t+
S∑
s=1

[
β2s cos

(
2πst

Period

)
+ β2s+1 sin

(
2πst

Period

)]
,

where S is the number of harmonic waves to use and Period is the period of the data,
for instance 52 for weekly data. However, more flexible linear predictors, e.g., containing
splines, concurrent covariates or an offset could be used on the right hand-side of the
equation. The GLM could therefore be made very similar to the one used by Noufaily
et al. (2013), with reweighting of past outbreaks and various criteria for including the time
trend, or one could use elements from time series models with feedback mechanism as
proposed by Liboschik et al. (2014) for better accounting for autocorrelation in the time
series.
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The parameters of the in-control and out-of-control models are respectively given by θ0

and θ1. The out-of-control mean is defined as a function of the in-control mean, either with
a multiplicative shift (additive on the log-scale) whose size κ can be given as an input or
re-estimated at each timepoint t > 1, µ1,t = µ0,t ·exp(κ), or with an unknown autoregressive
component as in Held et al. (2005), µ1,t = µ0,t + λyt−1 with unknown λ > 0.

Timepoints are divided into two intervals: phase 1 and phase 2. The in-control mean
and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance
operates on phase 2 data. When λ is fixed, one uses a likelihood-ratio (LR) and defines
the stopping time for alarm as

N = min

{
s ≥ 1 : max

1≤t≤s

[
s∑
u=t

log

{
fθ1(yu|zu)
fθ0(yu|zu)

}]
≥ c.ARL

}
,

where c.ARL is the threshold of the CUSUM. This formula can be given in a recursiv form

l0 = 0 and ln = max(0, ln+1 + log

{
fθ1(yn)

fθ0(yn)

}
), n ≥ 1,

with stopping rule
N = inf {n : ln ≥ c.ARL} .

When λ is unknown and with the autoregressive component one has to use a generalized
likelihood ration (GLR) with the following stopping rule to estimate them on the fly at
each time point so that

NG = min

{
s ≥ 1 : max

1≤t≤s
sup
θ∈Θ

[
s∑
u=t

log

{
fθ(yu|zu)
fθ0(yu|zu)

}]
≥ c.ARL

}
.

Thus, one does not make any hypothesis about the specific value of the change to detect,
but this GLR is more computationally intensive than the LR.

2.5.3 Practical usage of the algorithm

For using such an algorithm one has two choices to make. First, one has to choose an
in-control model that will be fitted on phase 1 data. The choice of the exact in-control
model depends on the data under surveillance. Performing model selection is a compulsory
step in practical applications. Then, one needs to tune the surveillance function itself,
for one of the two possible change forms. One can choose either to set theta to a given
value and thus perform LR instead of GLR. The value of theta has to be adapted to the
specific context in which the algorithm is applied: how big are shifts one wants to detect
optimally? Is it better not to specify any and use GLR instead?

The threshold c.ARL also has to be specified by the user. As explained in Höhle and
Mazick (2010) one can compute the threshold for a desired run-length in control through
direct Monte Carlo simulation or a Markov chain approximation. Lastly, as mentioned in
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Figure 2.7: S. Newport in Germany in 2011 monitored by the glrnb function.

Höhle and Paul (2008), a window-limited approach of surveillance, instead of looking at
all the timepoints until the first observation, can make computation faster.

In Salmon et al. (2016) we applied glrnb to the time series of report counts of Salmonella
Newport in Germany by assuming a known multiplicative shift of factor 2 and an in-control
model with one harmonic for seasonality and a trend. This model is refitted after each
alarm, but first we used data from the years before 2011 as reference or phase1, and the
data from 2011 as data to be monitored or phase2. The threshold c.ARL was chosen to be
4, as it was found with the same Monte Carlo approach as Höhle and Mazick (2010) that
it made the probability of a false alarm within one year smaller than 0.1. This approach
means drawing observations from the estimated in-control distributions and performing
monitoring using different possible values of c.ARL over a grid, storing results for several
draws at each value of c.ARL. Of course, it would be computationally intensive to perform
such a Monte Carlo study for each time series monitored at a public health institute, so
that one would maybe extrapolate a value for c.ARL from analyses of time series with
similar characteristics. Figure 2.7 shows the results of this monitoring with c.ARL equal to
4.

The implementation of glrnb on individual time series was already thoroughly ex-
plained in Höhle and Mazick (2010). In Salmon et al. (2016) we moreover provide practical
tips for the implementation of this function on huge amounts of data in public health
surveillance applications. Issues of computational speed become important in such a con-
text with thousands of time series. Our proposal to reduce the computational burden in-
curred by this algorithm is to compute the in-control model for each time serie (pathogen,
subtype, subtype in a given location, etc.) only once a year and to use this estimation
for the computation of a threshold for each time series. An idea to avoid starting with an
initial value of zero in the CUSUM is to use either (1/2) · c.ARL as a starting value (fast
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initial response CUSUM as presented in Lucas and Crosier (1982)) or to let surveillance
run with the new in-control model during a buffer period and use the resulting CUSUM as
an initial value. One could also choose the maximum of these two possible starting values
as a starting value. During the buffer period alarms would be generated with the model
from the previous year. Lastly, using GLR is much more computationally intensive than
using LR, whereas LR performs reasonably well on shifts different from the one indicated
by theta as seen in the simulation studies of Höhle and Paul (2008). Therefore one should
use LR with a reasonable predefined theta. The amount of historical data used each year
to update the model, the length of the buffer period and the value of theta have to be
fixed for each specific application, e.g., using simulations and/or discussion with experts.

It is worth noting that even if it is well adapted for surveillance time series, the method
that we have just presented is very different from the other ones presented in this chapter.
Not only does it detect prolonged shifts instead of one-timepoint aberrations, but it is also
based on a likelihood-ratio and calibrated for obtaining a given ARL0 rather than a given
sensitivity. Thus, it stands out at a SPC method adapted to surveillance data.

2.6 Conclusion

In this chapter, we presented aberration detection and three methods that are represen-
tative of the state-of-the-art in the field of aberration detection: using generalized models
tailored to time series for making predictions, taking both estimation and observation un-
certainties into account, adapting tools from statistical process control. These methods are
aimed at aberration detection in practice, e.g. in public health institutes.

Criteria for selecting a specific method in practice do not only include its perfor-
mance and of the availability of an implementation, but also numerous other practical
factors (Salmon et al., 2016). First one needs to ponder on the amount of historical data
at hand – for instance the EARS methods (Fricker et al., 2008) only need data for the last
timepoints whereas the Farrington and Noufaily methods (Noufaily et al., 2013; Farrington
et al., 1996) use data up to b years in the past. Then one should consider the amount of
past data used by the algorithm – historical reference methods use only a subset of the past
data, namely the timepoints located around the same timepoint in the past years, whereas
other methods use all past data included in the reference data. This can be a criterion of
choice since one can prefer using all available data. It is also important to decide whether
one wants to detect large and potentially short aberrations within one timepoint or whether
one wants to be able to detect smaller and more prolonged shifts. Moreover, running time
per time series is an important issue when analysing thousands of time series. Lastly, an
important criterion is how much work needs to be done for finetuning the algorithm for
each specific time series. Note that this decision must be coupled to planning the data
queries and signal communication associated to the algorithm implementation in practice,
because without such a system, output from any algorithm is useless. In Chapter 4 we
present the system for routine aberration detection in place at the RKI.

On top of these practical considerations, methodological challenges remain for improv-
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ing existing aberration detection algorithms, such as adding feedback mechanisms in GLMs
used for monitoring to account for autocorrelation and adding even more Bayesian think-
ing in the field. Theoretical topics of aberration detection for count time series such as
autocorrelation are discussed in Chapter 5. In the next chapter, Chapter 3, we present an
extension of this work for dealing with another common problem of surveillance data, that
is right-truncation because of reporting delays.
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Chapter 3

Delay Correction for Monitoring of
Infectious Diseases Counts

This chapter up to Sect. 3.4.1 corresponds to the work presented in the article M.
Salmon, D. Schumacher, K. Stark, M. Höhle. Bayesian Outbreak Detection in the Pres-
ence of Reporting Delays, Biometrical Journal, 57 (6), 1051-1067, 2015.

Since 2001 the Protection against Infection Act regulates which infectious diseases are
notifiable in Germany so that anonymised information about each diagnosed case is sent
from local health authorities to the Robert Koch Institute (RKI) via federal health au-
thorities (Faensen et al., 2006; Krause et al., 2007). The resulting database does not only
support the exploration of disease counts for situational awareness and yearly summaries
for health statistics, but also the detection of emerging outbreaks by an automated data
analysis system (Salmon et al., 2016). However, case reports do not arrive immediately
at the RKI because of inherent reporting delays, due to a time lag between disease onset
and reporting date as well as to the decentralized structure of the reporting system. This
can be a hindrance to the timely detection of outbreaks. For example Jones et al. (2014)
and Noufaily et al. (2014) have analysed reporting delays in European reporting systems,
respectively for Salmonella in France and 12 infections in the UK. Furthermore, Altmann
et al. (2011) and Höhle and an der Heiden (2014) have analysed reporting delays during the
German EHEC O104:H4 outbreak in particular, while Schumacher et al. (2016) have anal-
ysed the effect of a law change on transmission time. In this chapter, we investigate how to
improve the real-time automated outbreak detection by adequately addressing reporting
delays.

The available notification reports can be aggregated over time units (e.g. weeks) and
other sublevels (e.g. pathogen subtype or age group) in order to obtain time series of
reported incidence counts, which often display characteristics such as seasonality, overdis-
persion and presence of past outbreaks. Statistical algorithms for aberration detection can
fit adequate models to these time series of counts and thus derive a predictive distribution
for the current count. If the observed current count lies above a suitable quantile of this
distribution, an alarm is flagged, prompting further checks by epidemiologists. A variety
of statistical algorithms for aberration detection exist: see e.g., the reviews in Buckeridge
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et al. (2005) and Unkel et al. (2012) and the selection presented in Chapter 2. Nearly
all of them are of frequentist nature, but recently more Bayesian oriented proposals have
emerged (Höhle, 2007; Mart́ınez-Beneito et al., 2008; Conesa et al., 2015; Manitz and Höhle,
2013). One advantage of a Bayesian approach when calculating a predictive distribution
is that this distribution takes into account both the uncertainty from estimation and the
stochasticity of the model, that is on the one hand the uncertainty in the model parame-
ters which we estimate based on a limited sample, and on the other hand the uncertainty
resulting from natural fluctuations of the number of cases. In the present work, we shall
build upon these strengths and hence try to move towards Bayesian thinking in the field
of outbreak detection, especially because prediction is natural in a Bayesian framework.

The RKI automated system for aberration detection (Salmon et al., 2016), which will be
the main motivation of our work, helps uncovering outbreaks of infectious diseases based on
the German mandatory reporting data. In this system, aberration detection is performed
on a daily basis for the weekly disease counts of hundreds thousands of time series and
is based on the state-of-the-art algorithm proposed by Noufaily et al. (2013) which is an
improvement of the widely adopted algorithm by Farrington et al. (1996) and which was
presented in Section 2.3. Nevertheless, the response time of the system when there is
an outbreak, a.k.a. the system’s timeliness, does not only depend on the implemented
algorithm but also on data quality. In Germany, each new case of a notifiable infectious
disease has to pass several stages before arriving at the RKI database. This includes onset
of disease symptoms in the patient, the patient’s visit to the doctor, a diagnostic laboratory
analysis and a report of the case to the local health authority followed by its notification
to the federal health authority before it is finally notified at the RKI (see Figure 1.5).
Moreover, each step within the reporting system requires the fulfilment of certain quality
criteria before further transmission. Although technical, legal and managerial efforts are
made in order to reduce these delays, reporting delays remain an issue.

Adjusting time series of public health events for reporting delays became important
in biostatistics as part of modelling of the AIDS epidemic (Brookmeyer and Damiano,
1989; Kalbfleisch and Lawless, 1989; Zeger et al., 1989), but applications are also found in
non-infectious modelling such as cancer registry data (Midthune et al., 2005) or mortality
monitoring (Lin et al., 2008). Moreover, the adjustment for such occurred-but-not-yet-
reported events (Lawless, 1994) has strong links to actuarial sciences, where it is part of
claims reserve modelling (England and Verrall, 2002; Hess and Schmidt, 2002). Recently,
such adjustments have re-emerged in public health settings under the name of nowcast-
ing (Donker et al., 2011; Höhle and an der Heiden, 2014). In outbreak detection, we aim at
comparing the current number of cases to a threshold computed from past data in order to
see if the current number of cases is unexpectedly high. Using nowcasting would allow us to
correct the current number of cases before the comparison to a threshold (Gergonne et al.,
2011; Heisterkamp et al., 2006). In the present work we choose an alternative approach: we
correct the threshold for reporting delays and hence compare the observed current number
of cases to this threshold. This approach allows to have all sources of estimation uncertain-
ties – from the prediction error as well as from the delay correction – on the same side of the
comparison rather than to have on the one side a nowcasted number of observed cases with
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its uncertainty and on the other side a predicted number of cases with its own uncertainty,
possibly correlated with each other. Additionally, the use of the actual observed number,
rather than of some hypothetical estimate associated with uncertainty, is psychologically
advantageous since epidemiologists do not need to make further investigations about the
imaginary cases that a nowcasted number of cases automatically entails. Another recent
work, which we shall present in Section 3.6, also follows this strategy of correcting the
threshold, and uses a statistical test on a cumulative sum of discrepancies between the
observed number of counts and a threshold corrected for reporting delays (Noufaily et al.,
2015).

Altogether, our blueprint for a Bayesian outbreak detection algorithm taking report-
ing delays into account is a synthesis of the outbreak detection algorithms of Noufaily
et al. (2013) and Manitz and Höhle (2013) where we extend the regression approach to
the so-called reporting triangle, in which information about reporting delays is stored.
The structure of the chapter is as follows. First, we state the problem of reporting de-
lays in routine surveillance data, introduce adequate notation and illustrate it using RKI
salmonellosis data in Sect. 3.2. The proposed algorithm, including numerical aspects of its
implementation, is explained in Sect. 3.3 before being tested on simulated data in Sect. 3.4.1
and illustrated on real data in Sect. 3.4.2. We then present the R implementation of the
algorithm in Sect. 3.5. Finally, we present another algorithm aiming at solving the same
problem in Sect. 3.6, and a discussion in Sect. 3.7 rounds off the chapter.

3.1 Introducing reporting delays
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Figure 3.1: Weekly time series for all Salmonella Newport cases reported in Germany
2002-2013 by onset of disease (as available now in retrospect).

Throughout our work, we shall use notification data for Salmonella enterica subsp.



40 3. Delay Correction for Monitoring

enterica serovar Newport (Salmonella Newport) to illustrate matters. Salmonellosis is
a bacterial caused gastrointestinal disease, with symptoms such as diarrhea, fever and
vomiting (Sánchez-Vargas et al., 2011). The Newport serovar is rather uncommon in
Germany: in 2010 only 0.3% of all 25,307 notified Salmonella infections were of this serovar.
Nevertheless, during the winter of 2011 there was a strong increase in the number of
reported cases as shown in Fig. 3.1, which was due to an outbreak linked to mung bean
sprouts (Bayer et al., 2014). We shall use this outbreak as illustration and motivation
throughout our work.

Currently, monitoring at the RKI is performed on time series aggregated by date of
report arrival at the local health authority. Nonetheless, as a supplement, there is an in-
terest in monitoring cases based on their symptoms onset date: for Salmonella this would
typically be the onset of diarrhea. One advantage is that onset dates, despite being self-
reported by patients, provide a more precise description of the temporal extension of a
possible outbreak. Unlike dates of report they escape noise introduced by delays, i.e. due
to patients going to the doctor, shipping of samples to laboratories, as well as reporting
artefacts such as the late discovery of cases through interviews of other cases. In the
RKI S. Newport data, onset date is available for about 80% of all cases. Because of the
additional delay between symptoms onset and reporting to local health authority, taking
reporting delays into account becomes even more important when trying to monitor avail-
able time series based on this data. Hence, only a delay adjustment method could justify
the additional costs incurred by this supplementary monitoring. For a case report i let
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Figure 3.2: Median reporting delay between symptoms onset and arrival at the RKI (as
well as 0.1 and 0.9 quantiles) of the smoothed empirical delay distribution as a function of
time of occurrence, for all Salmonella Newport cases reported in Germany 2002-2013 (as
available now in retrospect).

the tuple
(
tEi , t

R
i

)
denote the time of the event of interest (e.g. disease onset or receipt

of case information at local health authority) and the time the notification of this event
arrives at the RKI, respectively. Let di = tRi − tEi be the delay between these two events.
We place our analysis in a discrete time setting, with units being, e.g., days or weeks and
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assume that the di are independent variables drawn from a distribution with probability
mass function fd that has support {0, 1, 2, . . . , D}, where D is the maximal relevant delay.
This can for example be the delay after which sufficiently many of the observations have
become available or the maximum delay back in time where interventions are still relevant.
Reports with a delay larger than D are ignored. For the convenience of the analysis, we
shall furthermore assume that the delay distribution is stable over time. This means we
ignore increase or decrease of the delays during, e.g., past outbreaks. For an outbreak to
be detected, the delay can thus be assumed to be the same as for non-outbreak situations,
since no awareness of the outbreak exists yet. Fig. 3.2 contains an illustration of the weekly
median as well as the 0.1 and 0.9 quantiles of the smoothed empirical delay distribution
for Salmonella Newport cases in Germany, obtained from tabulating all cases occurring
within a moving window of t− 4, . . . , t+ 4 weeks. The distribution can be assumed stable
until March 2013 where an amendment to the Protection against Infection Act made it
compulsory to notify cases on a daily basis to the RKI.

Delay

Time

n0,0 n0,T − t

nt,0

n0,1 n0,D n0,T

nT,D

nT − D,D

nt,0 nt,T − t nt,D

nT,0

N(t,∞)−N(t,T)

N(t, T)

OT

UT

Figure 3.3: Reporting triangle at time T . Available observations are those in the right-
angled trapezoid OT spanned by n0,0, nT,0, nT−D,D and n0,D. Occurred-but-not-yet-
reported events are those in the triangle UT spanned by nT,1, nT−D+1,D and nT,D.
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At fixed observation time T = now which in our context is a specific week, we only
observe a case occurred at time t if it was reported with a delay at most equal to T − t: the
data is thus right-truncated. Following the notation from Lawless (1994), let nt,d be the
number of cases of the disease occurred at time t and reported with a delay of d time units.
Not all nt,d for t ∈ {0, . . . , T} and d ∈ {0, . . . , D} are available at time T . This is illustrated
in Fig. 3.3: each row represents counts of cases occurred at time t, counts for cells located
to the right of min(T,D − t) are not available at time T . For the subsequent analysis we
define three index sets: AT = {(t, d) : 0 ≤ t ≤ T, 0 ≤ d ≤ D} contains indices for all obser-
vations nt,d while OT = {(t, d) : 0 ≤ t ≤ T, 0 ≤ d ≤ min(D,T − t)} only contains indices
for observed nt,d at time T and UT = AT \ OT only contains indices for occurred-but-not-
yet-reported nt,d at time T . Note that OT and UT respectively are indicated as the light
grey trapezoid and as the darker grey triangle on Fig. 3.3. Counts corresponding to those
index sets are denoted by nOT

and nUT
, respectively. At time T , we only observe events

reported by time T so that N(t, T ) =
∑min(D,T−t)

d=0 nt,d.
For situational awareness at time T , we would like to know the row sum Nt =

∑∞
d=0 nt,d,

i.e. the total number of cases occurred at time t, where 0 ≤ t ≤ T . One would eventually
observe Nt after waiting for an infinite time or for at least a time equal to the maximal
possible delay D. Because of right truncation, N(t, T ) is possibly still smaller than Nt at
time T < t+D, as seen in Fig. 3.3.
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Figure 3.4: Weekly counts N(t, T ) of Salmonella Newport cases in the RKI database
aggregated by date of disease onset at different observation times T during the outbreak.
The six plots show t = W40-48 in 2011 as of T = W43-48 in 2011. The grey ’+’ symbols
indicate the three outbreak weeks.

The practical consequences of this right truncation for the S. Newport outbreak associ-
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ated with sprouts are illustrated on Fig. 3.4: at week 45 of 2011 the RKI could only observe
34 cases for week 43, i.e. N(W43-2011,W45-2011) = 34, but the occurred number of cases
that week was 63, i.e. NW43-2011 = 63. Such incomplete observations during monitoring
are an obstacle to situational awareness and outbreak detection.

3.2 Statistical treatment of reporting delays

In the context of aberration detection, we want to compare to a threshold the available
number of events N(s, T ) occurred at time s ≤ T and observed at fixed time T = now.
Typically, s is the current week, i.e. s = T .

When D > 0, the right truncation of the data creates two complications. On the
one hand, for each observation time T the counts from the previous time units can have
increased due to reporting delays and become aberrant so that one should not only monitor
the current timepoint s = T but also timepoints before T . For s < T − D, we have
N(s, T ) = Ns so that these counts do not change anymore and hence do not need to
be monitored again. Assume therefore, than in the presence of reporting delays, at each
observation timepoint T we monitor the set of timepoints MT = {T −D, . . . , T}. If this is
repeated for several subsequent observation timepoints then each timepoint gets monitored
D + 1 times. This is illustrated in Fig. 3.5.

s = TT−D

s TT−D

s TT−D

s TT−D

s = T − D T

Time

Figure 3.5: Sets of timepoints MT monitored for five subsequent observation times T ,
among which we see a fixed timepoint s. In this illustration, D = 4. From top to bottom
time goes by so that at the end the timepoint s has been monitored D + 1 = 5 times.

On the other hand, one needs to adjust the detection algorithm for the incomplete
observations because otherwise incomplete counts are compared to complete counts. When
D > 0 the use of the predictive distribution for Ns in control is meaningful only if s ≤ T−D
so that the observations for s are complete. Otherwise, we make a biased comparison, at
the risk of not getting any alarm in the cases where N(s, T ) is smaller than the threshold
not because Ns itself is smaller than the threshold, but simply because of reporting delays.
Current algorithms for aberration detection output the same threshold Qs,T no matter
how close s is to T . When correcting for right-truncation in the threshold calculation we
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thus hope to be able to spot aberrations for time s at an earlier observation timepoint T .
We do this as follows: we aim at inferring a predictive distribution for N(s, T ), instead
of a predictive distribution for Ns. The actually observed N(s, T ) is then compared to a
quantile Qs,T from this distribution and an alarm is flagged if this threshold is exceeded,
i.e. as,T = I (N(s, T ) > Qs,T ).

3.3 Proposal of an algorithm for aberration detection

in presence of reporting delays

Our model is a synthesis of the modelling presented by Manitz and Höhle (2013) and of
the modelling of Noufaily et al. (2013) now extended to account for reporting delays while
keeping the treatment in a Bayesian framework. From the HIV/AIDS literature it is well
known that the observations in the reporting triangle can be formulated as an inference
problem in an incomplete contingency table (Zeger et al., 1989; Kalbfleisch and Lawless,
1989).

3.3.1 Distributional assumptions

The model we define is inspired by the so-called multinomial model for claim counts (Schmidt
and Wünsche, 1998), i.e. we assume the following hierarchical model:

Nt ∼ NB(µt, ν), 0 ≤ t ≤ T, (3.1)

(nt,0, nt,1, . . . , nt,D) |Nt,p ∼ M(Nt,p),

with E(Nt) = µt and Var(Nt) = µt(1 + µt/ν). Furthermore, M(Nt,p) is the multinomial
distribution with size parameterNt and p = (p0, p1, . . . , pD) is the probability mass function
(pmf) of the delay distribution. Then, from Schmidt and Wünsche (1998) we know that
the marginal distribution of the nt,d is

nt,d ∼ NB(µt · pd, ν), (t, d) ∈ Os. (3.2)

The distribution of the nt,d|Nt,p stems from Lemma 1, where the negative binomial
distribution is parameterized with size and probability parameters instead of mean and
size.

Lemma 1. If

Nt ∼ NB(ν, υt)

with size parameter ν and probability υt so that µt = νυt/(1 − υt) and Var(Nt) = µt(1 +
µt/ν), and

(nt,0, nt,1, . . . , nt,D) |Nt,p ∼ M(Nt,p),
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then for any tuple of integers (i, j) with 0 ≤ i ≤ j ≤ D,

P

[
j⋂
d=i

{nt,d = yt,d}

]
=

Γ(ν +
∑j

d=i yt,d)

Γ(ν)
∏j

d=i yt,d!

(
1− υt

1− υt +
∑j

l=i υtpl

)ν j∏
d=i

(
υtpd

1− υt +
∑j

l=i υtpl

)yt,d

.

The proof for the case where the nt,d are binomial variables in Schmidt (2006), who
writes that the proof for the negative binomial distribution is very similar. Here, we
make this claim more explicit, because Lemma 1 plays a central role in our algorithm, as
we will see in Section 3.3.1 where we discuss its consequences for our regression model.
The proof will be in two parts: first we shall prove Lemma 1 for a tuple of integers
(i, j) = (0, D) and then prove the recurrence relation: if we assume Lemma 1 to be true
for (i, j) ∈ {0, 1, . . . , D} with i < j then it is true for (i, j − 1) (the proof of the Lemma
then being true for (i + 1, j) would be similar). The two parts together will have proven
Lemma 1 in the negative binomial case. Afterwards, we will discuss the consequences of
Lemma 1 for our algorithm, before giving an urn problem representation of Lemma 1.

Proof. First we prove Lemma 1 for a tuple of integers (i, j) = (0, D), for which we have,
as written in Schmidt (2006):

P

[
D⋂
d=0

{nt,d = yt,d}

]
= P

[
D⋂
d=0

{nt,d = yt,d} ∩ {Nt = nt}

]

= P

[
D⋂
d=0

{nt,d = yt,d} | {Nt = nt}

]
· P [{Nt = nt}]

=

(
nt!∏D

d=0 yt,d!

D∏
d=0

p
yt,d
d

)
· P [{Nt = nt}] ,

where nt is a realization of Nt. Because of the definition of a negative binomial distri-
bution parameterized with size parameter ν and probability υt, then

P [{Nt = nt}] =
Γ(ν + nt)

nt!Γ(ν)
(1− υt)νυnt

t ·

Thus,

P

[
D⋂
d=0

{nt,d = yt,d}

]
=

(
nt!∏D

d=0 yt,d!

D∏
d=0

p
yt,d
d

)
· Γ(ν + nt)

nt!Γ(ν)
(1− υt)νυnt

t

=
Γ(ν + nt)

Γ(ν)
∏D

d=0 yt,d!

(
D∏
d=0

p
yt,d
d

)
υnt
t (1− υt)ν ·
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Note that

(
D∏
d=0

p
yt,d
d

)
υnt
t (1− υt)ν = (1− υt)ν

D∏
d=0

(pdυt)
yt,d ,

since

nt =
D∑
d=0

yt,d.

So we get

P

[
D⋂
d=0

{nt,d = yt,d}

]
=

Γ(ν + nt)

Γ(ν)
∏D

d=0 yt,d!
(1− υt)ν

D∏
d=0

(pdυt)
yt,d ,

which proves Lemma 1 for (i, j) = (0, D), since

D∑
d=0

υtpd = υt.

The proof is now based on a recurrence relation. Let us assume that Lemma 1 is true
for (i, j) ∈ {0, 1, . . . , D} with i < j. Now we are going to prove it for (i, j − 1). We can
write that

P

[
j−1⋂
d=i

{nt,d = yt,d}

]

=
∞∑

yt,j=0

P

[
j⋂
d=i

{nt,d = yt,d}

]

=
∞∑

yt,j=0

Γ(ν +
∑j

d=i yt,d)

Γ(ν)
∏j

d=i yt,d!

(
1− υt

1− υt +
∑j

l=i υtpl

)ν j∏
d=i

(
υtpd

1− υt +
∑j

l=i υtpl

)yt,d

(3.3)

since we assume Lemma 1 to be true for (i, j).
In order to prove Lemma 1 for (i, j − 1) we shall re-write Equation 3.3. This will show

that if Lemma 1 is true for (i, j) then it is true for (i, j − 1). We shall decompose the
formula in several parts and re-write them separately, before putting the parts together
again.

So first let us write that

Γ(ν +
∑j

d=i yt,d)∏j
d=i yt,d!

=
Γ(ν +

∑j
d=i yt,d)∏j

d=i yt,d!
·

∏j−1
d=i yt,d!

Γ(ν +
∑j−1

d=i yt,d)
· Γ(ν +

∑j−1
d=i yt,d)∏j−1

d=i yt,d!︸ ︷︷ ︸
=1

,
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where we see that

Γ(ν +
∑j

d=i yt,d)∏j
d=i yt,d!

·
∏j−1

d=i yt,d!

Γ(ν +
∑j−1

d=i yt,d)
=

Γ(ν +
∑j

d=i yt,d)

yt,j!Γ(ν +
∑j−1

d=i yt,d)
,

so that

Γ(ν +
∑j

d=i yt,d)∏j
d=i yt,d!

=
Γ(ν +

∑j
d=i yt,d)

yt,j!Γ(ν +
∑j−1

d=i yt,d)

Γ(ν +
∑j−1

d=i yt,d)∏j−1
d=i yt,d!

.

Furthermore, in Equation 3.3, we also have(
1− υt

1− υt +
∑j

l=i υtpl

)ν

=

(
1− υt

1− υt +
∑j

l=i υtpl

)ν

·

(
1− υt +

∑j−1
l=i υtpl

1− υt +
∑j−1

l=i υtpl

)ν

︸ ︷︷ ︸
=1

=

(
1− υt

1− υt +
∑j−1

l=i υtpl

)ν

·

(
1− υt +

∑j−1
l=i υtpl

1− υt +
∑j

l=i υtpl

)ν

.

Moreover, in Equation 3.3, we have

j∏
d=i

(
υtpd

1− υt +
∑j

l=i υtpl

)yt,d

=

(
j−1∏
d=i

(
υtpd

1− υt +
∑j−1

l=i υtpl

)yt,d
)
·

(
υtpj

1− υt +
∑j

l=i υtpl

)yt,j

·

(
1− υt +

∑j−1
l=i υtpl

1− υt +
∑j

l=i υtpl

)∑j−1
d=i yt,j

.

All in all, for Equation 3.3 we now have

P

[
j−1⋂
d=i

{nt,d = yt,d}

]

=
∞∑

yt,j=0

Γ(ν +
∑j

d=i yt,d)

yt,j!Γ(ν +
∑j−1

d=i yt,d)

(
υtpj

1− υt +
∑j

l=i υtpl

)yt,j

·

(
1− υt +

∑j−1
l=i υtpl

1− υt +
∑j

l=i υtpl

)ν+
∑j−1

d=i yt,j

·

Γ(ν +
∑j−1

d=i yt,d)

Γ(ν)
∏j−1

d=i yt,d!

(
1− υt

1− υt +
∑j−1

l=i υtpl

)ν j−1∏
d=i

(
υtpd

1− υt +
∑j−1

l=i υtpl

)yt,d

,

where

∞∑
yt,j=0

Γ(ν +
∑j

d=i yt,d)

yt,j!Γ(ν +
∑j−1

d=i yt,d)

(
υtpj

1− υt +
∑j

l=i υtpl

)yt,j

·

(
1− υt +

∑j−1
l=i υtpl

1− υt +
∑j

l=i υtpl

)∑j−1
d=i yt,j
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is the sum of the pmf for all possible values of a negative binomial variable with size ν and
probability parameter

υtpj

1− υt +
∑j

l=i υtpl

and is thus equal to 1. Therefore,

P

[
j−1⋂
d=i

{nt,d = yt,d}

]
=

Γ(ν +
∑j−1

d=i yt,d)

Γ(ν)
∏j−1

d=i yt,d!

(
1− υt

1− υt +
∑j−1

l=i υtpl

)ν j−1∏
d=i

(
υtpd

1− υt +
∑j−1

l=i υtpl

)yt,d

,

which proves Lemma 1 for (i, j−1). We have thus proven Lemma 1 in the negative binomial
case.

Consequence of Lemma 1

Let us assume that i = j = d. Then we have

P [nt,d = yt,d] =
Γ(ν + yt,d)

Γ(ν)yt,d!

(
1− υt

1− υt + υtyt,d

)ν (
υtpd

1− υt + υtpd

)yt,d
which means that nt,d has a negative binomial distribution with parameters size ν and
probability

υtpd
1− υt + υtpd

.

Moreover, because of the grouping property of the multinomial distribution, we know
that (N(t, T ), Nt − N(t, T )) is a multinomial (binomial) variable. It is therefore straight-
forward that N(t, T ) has a negative binomial distribution with parameters size ν and
probability

υt
∑min(T−t,D)

0 pd

1− υt + υt
∑min(T−t,D)

0 pd
.

We write this with the mean-size parameterization of the negative-binomial distribution:

N(t, T ) ∼ NB

min(T−t,D)∑
d=0

pdµt, ν

 .

Interpretation of Lemma 1 On top of the previous mathematical proof that the nt,d
marginally have a negative binomial distribution with the same size parameter, we come
up with an urn problem representation of the corresponding binomial experiment, when ν,
νυt/(1− υt) and pdνυt/(1− υt) are integers for all d, 0 ≤ d ≤ D.

Let us say we have an urn with ν white balls and νυt/(1 − υt) balls of D different
colours. The number of balls of each colour d is pdνυt/(1 − υt). All balls have the same
probability of being drawn.
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The experiment that represents the arrival and number of cases corresponds to drawing
a ball from the urn, writing its colour, putting it back and drawing again until one has
gotten ν white balls. Coloured balls are cases, each colour corresponding to a specific delay.

The number of colour balls one has gotten in the meanwhile is a negative binomial
variable of size ν and of probability of failure (getting a colour ball) υt.

What about the distribution of the number of, say, d colour, e.g. green balls? If we
are only interested in the number of green balls, we could say that we do not write down
the colour of the ball if it is not either white or green. Thus, balls of other colours are
non-existent for us. Therefore, in practice we only have ν(1+pdυt/1−υt) balls, which gives
us a Bernoulli experiment where the events (getting a white ball, getting a green ball) have
respective probabilities

1− υt
1− υt + υtpd

and
υtpd

1− υt + υtpd
,

adding up to 1. Hence the number of green balls is a negative binomial variable of size ν
and of probability of failure

υtpd
1− υt + υtpd

.

For illustrating this idealized mental exercise with numbers, let us assume that:

� We have ν = 2 white balls,

� D = 1, υt = 0.75, p0 = 1/3 and p1 = 2/3. Therefore we have p0νυt/(1 − υt) = 2
green balls and p1νυt/(1− υt) = 4 purple balls.

We represent the urn problem in Figure 3.6, for the case when one is interested in the
marginal distribution of nt,0. One draws a ball out of the urn. If it is purple, one simply
puts it back into the urn. If it is white or green, one counts the draw before putting it
back into the urn. The experiment stops when one has drawn ν = 2 white balls, nt,0 is the
number of green balls one has gotten before the end of the experiment. It is a negative
binomial variable with size ν = 2 and probability parameter

υtpd
1− υt + υtpd

= 0.5.

Now that we have presented the main distributional assumptions of the hierachical
model we use, we shall present its structure and inference.

3.3.2 Model structure

Synthesizing the elements of Noufaily et al. (2013) for the modelling of log(µt) in the
above we obtain

log(µt) = β0 + β1 · t+ γc(t).
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(a) (b) (c)

Figure 3.6: Urn problem representation of the marginal distribution of the nt,d. Cases are
coloured balls, reported with no delay (green – dark – balls) or the maximal delay of one
week (purple – light – balls).

We parametrize the delay on 0, . . . , D as log(pd) = αd. Altogether, the parameter vector
for the linear predictor is θ = (β0, β1, γ0, . . . , γS−1, α0, . . . , αD)′ and the whole parameter
vector is ψ = (θ, ν)′. Hence, we can write that

log(µt · pd) = ηt,d = z′t,dθ

with zt,d the vector of covariates corresponding to the linear predictor ηt,d. As in Manitz
and Höhle (2013) we assume the observations nt,d given the model structure (3.2) are
independent, so that the likelihood becomes

f(nOs |ψ) =
∏

(t,d)∈Os

f(nt,d |ψ),

where f(nt,d | ψ) is the probability mass function of the negative binomial distribution
presented in equation 3.2. From this, using Bayes’ theorem, we get

f(ψ | nOs) ∝ f(nOs |ψ) · π(ψ).

For infering the predictive posterior distribution we now propose two methods: a fully
Bayesian method using integrated nested Laplace approximations (INLA) (Rue et al.,
2009), and a method using an asymptotic normal approximation for the posterior that is
much faster and thus better adapted to future routine applications of the algorithm.

3.3.3 Inference of the predictive posterior distribution with INLA

Priors are chosen as in Manitz and Höhle (2013) where possible. This means, e.g.,
βi ∼ N(0, λ−1

βi
), i = 1, 2, where the λβi ’s indicate precision parameters. We choose ν ∼

logN(0, 100) for not imposing a too high constraint on overdispersion. For the period effects



3.3 Proposal of an algorithm 51

we use independent priors, i.e. γi ∼ N(0, λ−1
γi

). Furthermore, for each level αd of the factor
variable accounting for delay we use independent priors αd ∼ N(0, λ−1

αd
). For ensuring

identifiability we add two corner constraints for the blocks of parameters for season and
delay: α0 = 0 and γ0 = 0. For all fixed effects, we used the default value for the precision,
0.001. Finally, we assume independence of the priors so that the prior π(ψ) is the product
of the parameters’ priors. Inference for the posterior is then performed with INLA as
described in Rue et al. (2009) and Rue et al. (2015).

3.3.4 Asymptotic inference of the predictive posterior distribu-
tion

In this method, we first fit a negative binomial GLM type regression model with log-
link to the data in Os according to equation 3.2, providing a frequentist estimation of the
parameters. This results in the estimators (η̂t,d, ν̂)′. We then use the asymptotic normal
distribution of the parameters for approximating the posterior f(ψ |nOs). As explained in,
e.g., Held and Sabanés Bové (2014) the posterior distribution is under suitable regularity
conditions asymptotically Gaussian with mean equal to the maximum-likelihood estimator
and covariance equal to the inverse observed Fisher information matrix, no matter the
prior choice:

ψ | nOs

a∼ N(ψ̂, I(ψ̂)−1).

Moreover, due to the estimation method of the negative binomial model, we assume
that ηt,d and ν are information-orthogonal. With these assumptions, ηt,d is the linear
combination of Gaussian variables so that we can write that

ηt,d
a∼ N

(
z′t,dθ̂ , z

′
t,dI(θ̂)−1zt,d

)
,

where I(θ̂) is the block related to θ̂ in I(ψ̂). Note that with b = 4 years data, S = 10 and
D = 10 we have over 150 · (D + 1) observations for inference, that is to say there are over
1600 elements in Os for the 24 parameters to be estimated. We hence expect the difference
between the asymptotic method and the INLA method to be small.

3.3.5 Predictive posterior distribution integration and threshold
calculation

One can directly compute the posterior marginal distribution of N(t, T ) from the in-
ferred distribution of the parameters, because marginally

N(t, T ) |Nt,p ∼ Bin

Nt,

min(T−t,D)∑
d=0

pd

 .
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Therefore, as Nt is a negative binomial variable, we obtain (Schmidt and Wünsche, 1998),

N(t, T ) ∼ NB

min(T−t,D)∑
d=0

pdµt, ν

 .

The joint posterior distribution of the current observations and of the parameter θT can
then be computed. For getting the predictive posterior distribution for the nt,d we have to
integrate with respect to ψ,

f(N(s, T ) | nOs) =

∫
f(N(s, T ),ψ | nOs)dψ

=

∫
f(N(s, T ) |ψ)f(ψ | nOs)dψ.

The threshold Qs,T is defined as the (1−α)-quantile from this distribution. Then the alarm
indicator is as,T = I (N(s, T ) > Qs,T ). This comparison encompasses both estimation and
observation uncertainties. Independent of whether the INLA or asymptotic method was
used we shall proceed as in Manitz and Höhle (2013) and use Monte Carlo simulation to
obtain the desired quantile of the posterior predictive, as explained in Algorithm 1.

Data: nOs

Result: Q̂s,T

Determine f(ψ | nOs) using either the INLA method or the asymptotic method.
for 1 ≤ r ≤ R do

Sample ψ(r) ∼ f(ψ | nOs).
Sample the N(s, T )(r) ∼ f(N(s, T ) |ψ(r)).

end

Determine Q̂s,T as the empirical (1− α)-quantile of the responses
N(s, T )(r), r ∈ {1, . . . , R}.
Algorithm 1: Algorithm for computing the threshold in the Bayesian setting.

3.4 Application of the proposed algorithm

3.4.1 Simulation study

This section explores the performance of the proposed delay-adjusting algorithm by first
using simulated data. Section 3.4.2 contains an analysis on the S. Newport surveillance
time series.

Simulated data

We used simulated time series built as follows to evaluate the algorithm: Baseline counts
Bt are drawn from a negative binomial distribution with size parameter ν and mean µt for
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each timepoint. The structure for the mean is the same as in Noufaily et al. (2013), i.e.

log(µt) = β0 + β1t+
m∑
j=1

{
γ2j−1 cos

(
2πjt

52

)
+ γ2j sin

(
2πjt

52

)}
.

In this expression β0 is the baseline frequency of reports, β1 is the time trend, and if
m > 0 then the γ’s specify the annual (m = 1) and biannual (m = 2) seasonality with
γ1 = γ3 and γ2 = γ4. We used the 42 scenarios of Noufaily et al. (2013) but had to
change their parameterisation of the variance which was Var(Bt) = φµt, i.e. the variance
structure adapted to a quasi-Poisson regression model. In order to keep the variety of the
scenarios and to have comparable scenarios, we chose the values for ν so that the variance
obtained for µ∗ = exp(β0) would be the same in both cases. This gives, for each scenario,
ν = µ∗/(φ− 1).

Outbreaks were added as in Noufaily et al. (2013). Their size is fixed by the parameter
σ, the outbreak size coefficient, so that the total number of cases of the outbreak starting at
t is Po(σ ·Var (Bt)). The outbreak cases are distributed in time according to a discretized
lognormal distribution with mean 0 and standard deviation 0.5. At each timepoint, we
have Nt = Bt +Kt with Kt the outbreaK count which is possibly zero.

We also simulated the reporting of these cases with the delay distributed according to
the empirical distribution of reporting delays of Salmonella cases to the RKI in 2011 and
with maximal delay set to D = 10 weeks. Cases with delays longer than 10 are assigned the
maximal delay. The probability associated with each possible value of the delay from 0 to
10 is given by p = (0.035, 0.369, 0.357, 0.139, 0.049, 0.020, 0.01, 0.005, 0.004, 0.002, 0.009)′.
Using this delay distribution we are able to generate the reporting triangles and hence the
partial time series at a given timepoint T , i.e. N(t, T ) instead of Nt.

The functions we have written for simulating the time series in R are presented in
Section 3.5.3.

Specification of the algorithms

We compare the algorithm of Noufaily et al. (2013) and the algorithm proposed in
Sect. 3.3 with and without delay correction, i.e. using D = 10 and D = 0. In all cases
we use S = 10 periods for the seasonal effect, b = 4 and w = 3. We generate time
series of 350 weeks. Since we wish to study an algorithm correcting for reporting delays
we need to monitor each timepoint at different dates as shown in Fig. 3.5: for each time
series monitored, each timepoint is monitored D + 1 = 11 times. This means that our
simulation study involves many more computations than studies ignoring reporting delays
and only monitoring complete counts. For methods that do not correct for reporting delays,
all upperbounds for a fixed s are equal – although the proposed method with D = 0
can produce slightly different thresholds because of sampling uncertainty. Thus, when
using a non-reporting delay adjusting method for monitoring, if as,T = 1 then as,T+1 = 1,
i.e. alarms do not disappear.
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Figure 3.7: Example of a simulated time series with outbreaks of size coefficient σ = 2 and
σ = 5 starting at week 13 of 2008 and at week 38 of 2011, respectively. The code used for
simulating such time series is presented in Section 3.5.3.

Evaluation measurements

We used the same evaluation measurements as in Noufaily et al. (2013): the probability
of detection (POD) and the false positive rate (FPR). The FPR is the number of alarms
in weeks without outbreaks divided by the number of weeks in the monitored period.
The POD is estimated as the number of detected outbreaks, that is to say when a alarm
corresponds to one of the outbreak weeks, divided by the number of outbreaks. Since
we only include one outbreak in the monitored period of time, each simulation gives a
value of either 1 or 0 for a given algorithm, whose mean among several simulations gives
the POD. Note that the POD and the FPR do not measure timeliness. Therefore, for
each tested algorithm, we calculate the POD and the FPR for each possible value of
T − s ∈ {0, . . . , D}. In methods that do not correct for reporting delays, the threshold is
only valid for complete observations so that we expect the FPR to be controlled only for
the N(s, T ) with s = T −D. Moreover, as the methods that do not correct for reporting
delays make the same guess for every N(s, T ) no matter how close s is to T , they are also
less likely to detect an outbreak for small T − s. Thus we expect our algorithm to have a
fairly constant FPR over different values of T −s and to detect outbreaks for smaller T −s
in comparison with methods that do not correct for reporting delays.

We also introduce a measure of timeliness: the reaction time (RT) needed for the
algorithm to produce an alarm for an outbreak after its beginning if the outbreak was
detected. In other words, if there is an alarm for the outbreak starting at tout and spanning
over lout time units, RT(tout, lout) is the difference between tout and the smallest observation
time T at which we get an alarm for any s ∈ {tout, . . . , tout + lout}. If the outbreak is not
detected at all we set RT(tout, lout) to NA.
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Results

We start by comparing the results of the two methods of inference as regards estimation
of the posterior ψ. In Fig. 3.8 we show two contourplot examples for two randomly selected
simulation scenarios. Ideally one should use the INLA method for performing full Bayesian
inference, but as our goal was the creation of an algorithm also suitable for routine use, we
chose to evaluate the asymptotic method which is 15 times faster than the INLA approach.
In Section 3.4.2 we also compare the alarm threshold of the two methods for the S. Newport
data.
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Figure 3.8: Contourplots of the sampled posterior for (ηt,d, ν)′ obtained from the negative
binomial model for the 212’th timepoint of a time series simulated with the scenarios (a)
12 and (b) 25 of the simulation study and d = 1, with data available as of the 350’th
timepoint of the time series. True values of the parameters are represented with a cross,
while the mean values of the posterior distributions of the parameters are represented with
a triangle and a circle respectively for the INLA method and the asymptotic method.

In a first study of the efficiency of the algorithm, we explore the specificity of the
new algorithm and thus only simulate time series with no outbreak. We generate 10 time
series for each of the 42 scenarios and monitor each of them over one year, i.e. 52 weeks.
Our goal with this study is to explore the FPR of our method compared to the same
algorithm without reporting delays correction and compared to the established Noufaily
algorithm. We performed the exploration of the FPR of our algorithm with α = 0.05. As
the algorithm proposed by Noufaily et al. (2013) uses a (1−α/2)-quantile, we used α = 0.1
for this algorithm.

The results are shown in Fig. 3.9 with the mean of the FPR obtained over all 420
time series, and the standard deviation of the mean of FPR over the 42 scenarios, for
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each possible value of T − s. One cannot deduce from Fig. 3.9 that the FPR does vary
with the scenario since we only had 10 time series for each scenario. One would need
more repetitions by scenario to be able to see whether different scenarios lead to different
performance of the algorithms. This may be due to the fact that how well the parameters
are estimated depends on the parameters values (Lloyd-Smith, 2007). As expected the new
method adjusting for delay (D = 10) has a higher FPR for small values of T −s. The FPR
of the two other methods is smaller for these small values of T − s because the threshold of
the two other methods, defined for complete counts, is nearly always too high for having
false alarms on very incomplete counts. For all three methods, the average FPR is never
higher than the nominal level.
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Figure 3.9: FPR for the 11 possible values of T − s ∈ {0, . . . , D} for the three algorithms
tested and using α = 0.05. The horizontal bars represent the mean of the FPR ± its
standard deviation over the 42 scenarios.

In a second series of simulations, we investigated how the three methods compare at
detecting outbreaks. For this, we again use α = 0.05. We generated 420 time series, 10 per
scenario, and added outbreaks as in Noufaily et al. (2013) but with only 3 outbreaks in the
baseline of size coefficient σ ∈ {2, 3, 5, 10}, and an outbreak in the monitored weeks with
size coefficient σ ∈ {1, . . . , 10}. The starting dates of the outbreaks were randomly drawn.
We only monitored the weeks where the outbreak was and record whether an alarm was
produced by the algorithm and if so for which s and which T .

Fig. 3.11 shows the reaction time RT for the three methods. One sees that outbreaks
are detected earlier with the proposed algorithm with D = 10 than with the other methods.
The associated POD are represented on Fig. 3.10. With the delay distribution we use, after
3 weeks the new method with D = 10 offers no advantage to the algorithm developped
by Noufaily et al. (2013). Note that with the chosen delay distribution, after 3 weeks about
76% of the cases have already been reported.
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Figure 3.10: POD for the 11 possible values of T − s ∈ {0, . . . , D} for the three algorithms
tested and using α = 0.05. The horizontal bars represent the mean of the POD ± its
standard deviation over the 42 scenarios.
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Figure 3.11: Histogram of the reaction time RT for the three compared methods measured
on 420 time series with simulated outbreaks. The RT can only be calculated if the outbreak
was indeed detected. The medians are respectively 1, 2 and 2 days.

3.4.2 Application to S. Newport

As an illustration of how the proposed algorithms operate we applied them to the
time series of Salmonella Newport cases shown in Sec. 3.2. We used data available as of
T = W43-2011,W44-2011,W45-2011 (shown in Fig. 3.12), with cases aggregated by date of
disease onset as in Fig. 3.4. We present the results for the method of Noufaily et al. (2013)
and for the proposed algorithm with D = 10 for the two inference methods. When using the
method of Noufaily et al. (2013) the threshold is not adjusted for delay and does not change
depending on the observation time: for each observation time T we get a new threshold
value for s = T while the threshold values for monitored timepoints s < T do not change. In
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contrast, the threshold computed by delay-adjusting algorithms (D=10) can change for all
timepoints s ≤ T : in Fig. 3.12 one sees for instance that when T = W43-2011 the threshold
for week s = W42-2011 is 1 with both inference methods, and when T = W44-2011 it is
2 with the asymptotic approximation and 3 with the INLA inference method. In other
words, the threshold was adapted to the number of cases we could have expected to see
for this week (s = W42-2011) by then (T = W43-2011, T = W44-2011). Adjusting the
threshold for right-truncation could make the alarm being sounded sooner: a one week
earlier detection could already make a difference for an outbreak.
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Figure 3.12: Weekly counts N(s, T ) of Salmonella Newport cases in the RKI database
aggregated by date of disease onset at different observation times T = W43-W45 2011
during the 2011 outbreak and for s = W40-46 2011. The three plots correspond to different
values of T whose position is indicated on the x-axis by a black triangle. We present the
results for the Noufaily method and for the proposed method with D = 10 using both
inference methods.

A slightly disappointing result is that for this specific outbreak, the new methods ad-
justing for delay do not provide an earlier alarm: for all three methods considered, the first
time that the number of observed cases is higher than the threshold is week 44. The num-
ber of cases reported during week 44 was so high that N(W43-2011,W44-2011) was above
the threshold computed by all investigated methods, whereas N(W42-2011,W43-2011) and
N(W43-2011,W43-2011) were not above the threshold computed by any of the investigated
methods – even the ones adjusting for delay. The only difference between the three alarms
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for N(W43-2011,W44-2011) is that the threshold of the methods correcting for delay is
smaller, so that if one were to compute a probability for the current count, it would be
smaller, so that the alarm would be bigger. However, at present alarms are often only
binary indicators. Back in 2011, the outbreak was manually detected by the National Ref-
erence Centre for Salmonella because of a cluster of S. Newport isolates from a clinic in
Northern Germany, not by automatic outbreak detection. These algorithms were not as
thoroughly implemented then as compared to now. Hence, the example shows more the
virtue of automatic detection and not so much the added value of adjustment for reporting
delays. Furthermore, the peak was huge so that despite reporting delays the number of
cases was quickly high enough to be detected by any algorithm. However, with another
pattern of cases diagnosis and reporting for an outbreak, delay adjustment could have
made the difference for getting an earlier alarm. The present example thus shows that the
usefulness of the method depends on the pattern of cases reporting, on the form of the
outbreak but also on the baseline counts.

As regards the comparison of the two inference methods for D = 10, the two thresholds
computed are very similar. On our computer the inference using INLA needed 170 seconds
for providing the results for T = W45-2011, whereas the other method only needed 11
seconds, which is about 15 times faster. This makes the implementation of the algorithm
based on the asymptotic approximation more realistic for practical routine use.

3.5 Presentation of the R implementation of the algo-

rithm

As part of this thesis work we have implemented the algorithm presented in Section 3.3
as a function, bodaDelay, which has become part of the surveillance package. It performs
Bayesian inference either by assuming Gaussian posteriors, or, like the boda function that
corresponds to the work of Manitz and Höhle (2013), by using integrated nested Laplace
approximations, which are implemented in the R INLA package (Rue et al., 2015). In
this Section we will first explain the use of the bodaDelay function, then compare it to
the boda function, and finally we will present other smaller functions implemented in the
surveillance package for doing the work presented in Section 3.4.1.

3.5.1 How to use bodaDelay

The function bodaDelay works like the other surveillance functions presented in
Chapter 2: it takes a sts-object as an input, and outputs another one with threshold and
alarm values computed using the options given in control. The only difference with other
algorithms provided in the package is that it demands that the input sts-object contains
an additional data.frame describing the arrival of the cases that got sick at time t, i.e
all nt,d instead of only Nt. We shall illustrate the function by using data for the reported
number of cases of Salmonella in Germany 2001-2014 aggregated by data of disease onset.
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# Aggregate counts over Germany

R> data(salmAllOnset)

The additional data.frame giving the nt,d has the structure shown below in Table 3.1.

R> head(salmAllOnset@control$reportingTriangle$n, n = 12)

d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
2001-01-01 0 0 0 0 377 52 62 37 13 68 45
2001-01-08 0 0 0 315 88 81 18 20 81 57 15
2001-01-15 0 0 158 147 152 29 35 88 41 16 3
2001-01-22 0 24 92 190 83 51 78 33 17 5 18
2001-01-29 2 22 121 131 136 118 52 28 8 19 2
2001-02-05 3 27 68 189 196 48 46 12 11 4 2
2001-02-12 1 13 133 334 133 90 25 28 4 5 5
2001-02-19 1 25 210 191 163 54 44 10 7 8 5
2001-02-26 1 53 146 286 124 56 26 12 22 4 7
2001-03-05 9 32 136 220 142 50 13 18 5 6 14
2001-03-12 6 44 175 224 100 42 25 11 12 18 8
2001-03-19 3 43 175 163 116 60 29 13 24 10 4

Table 3.1: nt,d for Salmonella cases in Germany, aggregated by week of disease onset t, for
the first weeks of 2001. The left column indicates t as the date of the Monday of the week.

Each line corresponds to the division of the Nt by delay. The Nt corresponding to the
data.frame above are

R> head(observed(salmAllOnset), n = 12)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12
observed1 654 675 669 591 639 606 771 718 737 645 665 640

We can actually check that the sum of each row of this data.frame is equal to Nt. The
following command outputs ”TRUE”.

R> all(rowSums(salmAllOnset@control$reportingTriangle$n)

== observed(salmAllOnset), na.rm = TRUE)

Now that we have shown the structure of the data our algorithm works with, we shall
present an example of its use. In the code below we produce two sts-object based on
the same input data, using the normal approximation for the posterior distribution of
the parameters, for weeks 410 to 412. The first output ignores delays – delay=FALSE –
while the second output makes full use of our methodological development – delay=TRUE.
Figure 3.12 was produced with such a code.
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R> rangeTest <- 410:412

R> alpha <- 0.05

# Control slot for the proposed algorithm with D=0 correction

R> controlNoDelay <- list(range = rangeTest, b = 4, w = 3,

R> pastAberrations = TRUE, mc.munu=10, mc.y=10,

R> verbose = FALSE,

R> alpha = alpha, trend = TRUE,

R> limit54=c(0,50),

R> noPeriods = 10, pastWeeksNotIncluded = 26,

R> delay = FALSE, inferenceMethod = "asym")

# Control slot for the proposed algorithm with D=10 correction

R> controlDelay <- list(range = rangeTest, b = 4, w = 3,

R> pastAberrations = TRUE, mc.munu = 10, mc.y = 10,

R> verbose = FALSE,

R> alpha = alpha, trend = TRUE,

R> limit54=c(0,50),

R> noPeriods = 10, pastWeeksNotIncluded = 26,

R> delay = TRUE, inferenceMethod = "asym")

R> salm <- bodaDelay(salmAllOnset, controlNoDelay)

R> salm.delay <- bodaDelay(salmAllOnset, controlDelay)

R> par(mfrow=c(1,2))

R> plot(salm.Normal)

R> plot(salm.delay)

Now that we have explained how to use bodaDelay we shall compare this function with
the boda function that corresponds to the work of Manitz and Höhle (2013) and that was
implemented by the authors of the method.

3.5.2 Differences between boda and bodaDelay

The function bodaDelay we added to the package is not only an extension of boda

to account for reporting delays in surveillance data. Indeed, it currently has a simpler
intercept but one could add a time-varying intercept to bodaDelay in future releases of
the surveillance package. There are three main advantages of bodaDelay over boda

as regards implementation. First, we make better use of INLA. In the first versions of
boda, the Monte Carlo computing of the threshold contained drawing from the parameters
marginals instead of their joint posterior distribution. When the parameters indeed are
independent, such sampling is fine, but in the case where µt and ν are dependent, it
is better to sample from their joint posterior distribution. Since writing the code for
bodaDelay, we modified the code of boda so that when one chooses the option joint as
sampling method, parameters values are drawn from the joint posterior distribution of the
parameters. Another difference between the two algorithms is that bodaDelay offers a much
faster inference method based on the asymptotic normal approximation for the posterior
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distributions of the parameters, using the R MASS package. This asymptotic method would
allow for routine applications of the algorithm thanks to the gain in computing time. Last,
but not least, the code of bodaDelay is more modular than the code of boda. There are two
functions in boda, one main function and one for fitting the GLM, whereas bodaDelay is
composed of five functions: one main function as well, one for preparing the data.frame of
data for regression from the provided sts-object, one for writing the formula for the GLM,
one for fitting the GLM and one for computing the threshold. This makes bodaDelay

easier to test with unit tests. Moreover, we think that a modular code is easier to read and
understand, which also supports checks or further developments of the algorithm by new
contributers. Furthermore, pieces of a modular code can more easily be copied and pasted
into new code. We therefore think that our implementation bodaDelay constitutes original
work that allows to use our methodological developments thanks to sound code. We present
an improvement of both boda and bodaDelay, which makes the quantile computation faster,
in Section 5.2.1.

3.5.3 Other functions written as part of this work

As of the work on the Bayesian algorithm taking reporting delays into account, we have
also written two functions for the simulation study presented in Section 3.4.1, sts_creation
that simulates time series of counts that follow a negative binomial distribution with op-
tional seasonality and time trend, and sts_observation that takes a sts-object with all
nt,d as input and outputs a sts-object corresponding to the same time series observed
earlier in time.

Below we first illustrate the use of sts_creation. We start by fixing the random seed
for reproducibility. One then has to provide the parameters of the time series, the vector
of dates at which observations are to be created.

R> set.seed(12345)

# Time series parameters

R> scenario4 <- c(1.6,0,0.4,0.5,2)

R> theta <- 1.6

R> beta <- 0

R> gamma1 <- 0.4

R> gamma2 <- 0.5

R> overdispersion <- 2

R> m <- 1

# Dates

R> firstDate <- "2006-01-01"

R> lengthT=350

R> dates <- as.Date(firstDate,origin='1970-01-01') + 7 * 0:(lengthT - 1)

One then prepares information about the delay distribution.
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# Maximal delay in weeks

R> D <- 10

# Delay distribution

R> data("salmAllOnset")

R> in2011 <- which(formatDate(epoch(salmAllOnset), "%G") == 2011)

R> rT2011 <- control(salmAllOnset)$reportingTriangle$n[in2011,]

R> densityDelay <- apply(rT2011,2,sum, na.rm = TRUE)/sum(rT2011,

R> na.rm = TRUE)

The next step is defining the starting dates and sizes of the outbreaks that will be
added to the baseline. Note that these dates and sizes could be randomly drawn as in our
simulation study.

# Dates and sizes of the outbreaks

R> datesOutbreak <- c(as.Date("2008-03-30"),

R> as.Date("2011-09-25", origin = "1970-01-01"))

R> sizesOutbreak <- c(2,5)

# alpha for the threshold

R> alpha <- 0.05

The last step is providing all these parameters as arguments of the sts-creation

function, for getting a sts-object that one can e.g. plot which would reproduce Figure 3.7.

# Create the sts with the full time series

R> stsSim <- sts_creation(theta = theta,beta = beta,

R> gamma1 = gamma1, gamma2 = gamma2,

R> m = m, overdispersion = overdispersion,

R> dates = dates, sizesOutbreak = sizesOutbreak,

R> datesOutbreak = datesOutbreak,

R> delayMax = D,

R> densityDelay = densityDelay,

R> alpha = alpha)

R> plot(stsSim)

The function sts_observation only has three arguments: the sts-object that has to
be truncated, the new date of observation – that has to be smaller or equal to the last
date of the time series – and a Boolean indicating if the timepoints located after the new
date of observations should be simply erased or keeped and filled with NA, which could be
useful for plotting purposes for instance.
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R> data("salmAllOnset")

R> salmAllOnsety2013m01d20 <- sts_observation(salmAllOnset,

R> dateObservation = "2014-01-20", cut = FALSE)

Using such a code, one can create illustrative figures such as Figure 3.4. Thanks to these
two functions added to the R package surveillance, one can better understand, reproduce
or extend our simulation study. We feel that making these two functions available was an
important step towards reproducibility.

Before concluding this chapter and reflect on our own contribution, we shall present
the contribution of other researchers to the issue of aberration detection in the presence of
reporting delays.

3.6 Another algorithm correcting for reporting delays

Noufaily et al. (2015) proposed another algorithm for aberration detection tailored to
dealing with right-truncated data, defined in a frequentist framework. In this Section, we
present the rationale of their method in a condense form, while using our own notation for
simplifying the comparison. They propose to use the following test statistic:

Q =
T∑

t=T−m

N(t, T )− ζT (m)

where m is the size of a moving window and where

ζT (m) =
T∑

t=T−m

µt min(D,T−t)∑
d=0

pd

 .

Figure 3.13 shows the zone used for calculating Q: Q is the difference between the
observations nt,d and the estimator of their mean in the triangle of counts for event time
and delay respectively spanning between t = T and d = 0, t = T −m and d = 0, and t−m
and min(D,m).

They estimate µt using a quasi-Poisson GLM similar to the one used in Farrington’s
and Noufaily’s method (Farrington et al., 1996; Noufaily et al., 2013) with overdispersion
parameter φ. They assume that the delay is overdispersed with respect with a multinomial
distribution of parameters p0, p1, . . . , pD so that the variance of nt,d is ψNtpd(1 − pd) and
so that the covariance of nt,d and nt,d′ is −ψNtpdpd′ . For the delays they use a quasi-
multinomial model.

With these assumptions they obtain

Var(Q) = ψζT (m) + (φ− ψ)δT (m)
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Figure 3.13: Reporting triangle at time T , similar to Figure 3.3 except this one shows the
zone used for calculating Q in the method presented in Section 3.6: the triangle of counts
for event time and delay respectively spanning between t = T and d = 0, t = T −m and
d = 0, and t = T −m and min(D,m).

where

δT (m) =
T∑

t=T−m

µt

min(D,T−t)∑
d=0

pd

2

·

They advocate for a 2/3 power-transformation so that they actually use

Q∗ =

(
T∑

t=T−m

N(t, T )

) 2
3

− ζT (m)
2
3

as a test statistic, and assume it is normally distributed with

Var(Q∗) ' 4

9
ζT (m)

1
3

{
ψ +

(φ− ψ)δT (m) + Var(ζT (m))

ζT (m)

}
·
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Finally they define the exceedance score Z∗ as

Z∗ =
T ∗

zα {Var(T ∗)}
1
2

where zα is the (1−α)-quantile of the standard normal density. An alarm is defined for T
if Z∗ > 1.

They describe how to choose m in order to ensure good specificity, sensitivity and
timeliness, and then proceed on to testing the algorithm on simulated time series with
known injected outbreaks first with a constant mean µt = µ0 and then with seasonality
so that µt = exp(β0 + β2 sin((2πt)/52 + β3)); and lastly on real time series from the UK
national surveillance system of infectious diseases. These time series contain unknown
outbreaks.

On top of taking reporting delays and their possible overdispersion into account, the
method of Noufaily et al. (2015) has the advantage of summing deviations over several
timepoints, but m has to be chosen and is fixed. Moreover, the delay distribution and the
baseline counts are estimated separately, although this has the advantage of allowing to use
less old counts for estimating the delay distribution. This might make the method more
robust to changes in the delay distribution, which was not tested in Noufaily et al. (2015).
Lastly, this algorithm however a strong disadvantage: it disregards estimation uncertainty.
This could lead to a higher FPR which is known to lead to user fatigue.

Since there was no implementation of the method available, we could not compare its
performance to our method. This could be the goal of further work.

3.7 Conclusion

In this Chapter, we introduced a novel regression based statistical algorithm for aber-
ration detection in public health surveillance data if reporting delays are present. For
dealing with the issue of reporting delays, our method corrects the alarm threshold, rather
than the observed counts, which we think is a better way of communicating the delay
adjustment. Moreover, we developped our method in a Bayesian framework, so that the
derivation of the decision-supporting threshold encompasses both estimation and obser-
vation uncertainty. Finally, the proposed algorithm was implemented in the R package
surveillance (Höhle, 2007; Salmon et al., 2015) as the function bodaDelay.

In our simulation study the suggested method did detect outbreaks earlier without pro-
ducing more false alarms than the nominal level. However, further work remains to be done
regarding the application of our algorithm in practice, including tests at a public health
institute, which we present in Section 4.3.1. If adjusting aberration detection for reporting
delays in routine use, for each time unit of aggregation (week, day) to be monitored one
could get many alarms in a row. This can be quite cumbersome: each time unit is mon-
itored until no new case is reported for this week, i.e. D + 1 times. We reckon that one
must develop an efficient routine so that the alarms that have already been marked once
do not lead to user fatigue, while at the same time accounting for the possible increase of
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evidence for an aberration. Lastly, a possible improvement could be a correction for delay
at the daily level, but this would make the workload even higher. Such an improvement
would have to take day-of-the-week effects into account.

Besides, the way we simulate (annual and biannual) seasonality with sinus-cosinus func-
tions may be quite artificial, but we chose this model because it was used successfully
by Noufaily et al. (2013) and we think that it does not invalidate our comparison of algo-
rithms with and without delay corrections. We hope that with real data, the seasonality
model of the algorithm itself, which is a 10-level factor variable, would capture more com-
plicated annual seasonality. However, we think the inclusion of more realistic models for
seasonality in the simulations as well as in the detection algorithm itself should be the goal
of future research.

The use of a Bayesian framework offered a very flexible framework since the right-
truncation can be viewed as a missing data problem and there is no fundamental distinction
between parameters and data in Bayesian settings. This would also allow for the integration
of more flexible delay distribution models in case this is needed. In the future, we aim at
exploring two features of such models: how feasible and how much an improvement it is to
integrate time-dependent delay distributions, and how the maximal delay chosen and the
number of classes in the multinomial distribution of delay impact the results. Furthermore,
we currently do not try to on-line identify aberrant past counts, which is a feature one could
later add for increasing the probability of detection. In Manitz and Höhle (2013) this was
handled by having an outbreak indicator in the model, for which one has to either know
which time units contained outbreaks, or to spot outliers. Since one rarely knows all past
outbreaks, one could spot outliers based on the predictive mid-p value instead, which was
recommended for count data in Held et al. (2010), or use the same approach as Fried et al.
(2015) for spotting outliers.

It is worth pointing out that reporting delays do not only include cases being notified
later but also information such as pathogen subtype to be informed later than other case
details. We think that including such features of case reports, possibly by the use of multi-
state models, would be yet another step in bringing a more statistical modelling perspective
into the analysis of the data transmission mechanisms underlying surveillance systems. In
the next Chapter, we present the application of aberration detection algorithms at the
Robert Koch Institute.
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Chapter 4

Routine Aberration Detection at the
Robert Koch Institute

This chapter except Section 4.3 and 4.4 corresponds to the description of the RKI aberration
detection system in the article M. Salmon, D. Schumacher, H. Burmann, C. Frank, H.
Claus, M. Höhle. A system for automated outbreak detection of communicable diseases
in Germany, Eurosurveillance, accepted for publication. Section 4.3 is original work, and
Section 4.4 corresponds to a Section of the article M. Salmon, D. Schumacher, M. Höhle.
Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance,
Journal of Statistical Software, accepted for publication.

In recent years, more and more data has been collected for the routine surveillance of in-
fectious diseases. For instance, in Germany the Robert Koch Institute (RKI) implemented
a national electronic surveillance system (SurvNet@RKI) in 2001 as a response to the then
newly enacted Protection against Infection Act that requires regular data collection on a
number of notifiable diseases (Faensen et al., 2006). Cases are first reported by laboratories
or physicians to local health authorities that may perform further investigations, and then
transmitted to the RKI via federal state health authorities.

In addition to increasing data collection, a multitude of different outbreak detection al-
gorithms for routinely collected public health data has been published (Unkel et al., 2012).
Nonetheless, the added value of applying statistical methods for aberration detection at
public health institutions is still subject to discussion because of several challenges, among
which automating the data analysis and identifying signals without producing a plethora
of signals. For instance, as of October 2015 the SurvNet@RKI database contained approx-
imately 6.0 million case notifications in 88 different reporting categories such as Salmonella
or Norovirus, while outbreaks often become apparent when inspecting certain subsets of
the data, e.g., within a specific geographical area or even a specific age group (Koch et al.,
2005). The problem is therefore to promptly identify these relevant subsets in the haystack
of data. One statistical approach to this problem is to regularly analyse the data as multiple
univariate time series in order to detect unexpected aberrations in specific subsets.

Nowadays, in many public health institutions, a semi-automatic monitoring system is
in operation (for examples in Europe see Hulth et al. (2010)). But because of too many
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signals or because of a misalignment between users’ needs and signal presentation, the
system output often has little impact on the practical work of these institutions. First
attempts to focus more on the user perspective of monitoring systems are, however, found
in Cakici et al. (2010) and Kling et al. (2012). Our goal was to develop and establish an
automatic information system that supports epidemiologists at the RKI in timely detecting
potential outbreaks of communicable diseases.

In this chapter, we present the implementation of a novel automated monitoring system
at the Robert Koch Institute in Germany. The new system is now in routine use at the RKI
for most of the reporting categories. In the following, we shall describe the architecture of
the system and our design decisions in the first section. Its functioning and first results
with its routine use are reported in the next section. Finally, we round off with a discussion
of current and future improvements. In sharing our experiences we aim to provide valuable
information to others working on similar surveillance systems.

4.1 System design

4.1.1 Defining features of the system

Altogether, we wanted to obtain constant quality results as well as a standard procedure
for the routine surveillance workflow in our organisation. This objective lead to specific
requirements for the system that were largely in line with the checklist for computer-
supported outbreak detection systems formulated by Hulth et al. (2010). This article
contains a dozen recommendations such as user-friendliness and tight integeration with
the database. The development of the system and the refinements of the requirements
were then conducted iteratively. Based on the rapid prototyping philosophy we initially
focused on building a first prototype for one reporting category, namely Salmonella with
its many serotypes.

Once the prototypes of the components had produced first results, we started discussing
the output of the system with a few users for Salmonella. Once the system produced
satisfactory results for this reporting category, we progressively scaled up the system to
48 reporting categories which account for roughly 80% of all received cases. Our goal has
always been to create a general system for a variety of diseases instead of highly disease-
specific solutions. In addition to the one-on-one discussions with the system users, we
received more and more feedback and feature requests as the system grew.

4.1.2 System design

The system consists of two components: an automatic component routinely monitors
the data and a manual component enriches data queries with ad hoc aberration detection;
Figure 4.1 depicts this structure.
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Figure 4.1: Structural overview of the automatic surveillance system.

4.1.3 Automated analytical process

As shown in Figure 4.1, the automatic component consists of three subsystems: an
analytical process, a signal database and a signal interface. The analytical process analyses
the data with aberration detection algorithms and in case of an unusually high number of
cases produces signals which are stored in the signal database and communicated to the
user through the signal interface.

The analytical process monitors the SurvNet@RKI case counts of the last weeks on a
daily basis for all reporting categories selected for aberration detection. Since outbreaks can
occur within specific subsets of the population, e.g., at a specific location and within an age
group, we monitor in parallel numerous time series corresponding to the respective subsets
of the population in order to be able to see signals that would be invisible when analysing
the whole population. In particular, we stratify the time series by pathogen subtype (e.g.
Salmonella serotype such as Salmonella (S.) Infantis) or symptom (e.g. pneumonia), loca-
tion (federal states, counties), age group, sex, place of exposure and mortality status. This
stratification yields a set of univariate time series for each reporting category aggregated
on a weekly or monthly scale. The number of (negative) diagnostic tests performed – bio-
logical samples analyzed for looking for instance for Salmonella but whose analysis in the
laboratory revealed no Salmonella presence – is not part of the mandatory reporting sys-
tem. Therefore, the analysis of the numbers is sensitive to variations due to, e.g., changes
in laboratory procedures or doctor requesting patterns.

The system applies the algorithm of Noufaily et al. (2013) to each time series for getting
a threshold for each observed count. The last four years of historic data are used as reference
values for the algorithm, which accounts for seasonality, time trend and presence of past
outbreaks in the record, to provide a threshold specific to each monitored week. A signal
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is generated for time t0 if the observed number of cases exceeds the threshold. We refer
to Noufaily et al. (2013) or Section 2.3 of this thesis for a more detailed description of the
algorithm. To address reporting delay we monitor the last six weeks, i.e. it is possible to
obtain a signal for one of the last weeks given the current data.

The automated analytical process was initially implemented solely in the statistical
programming language R using the surveillance package (Höhle, 2007; Salmon et al.,
2016) for the detection part and other R packages (Ripley and Lapsley, 2012; Dowle et al.,
2013; Wickham, 2013) for the data pre- and post-processing steps as well as support for
behaviour driven software development. As in other systems (Reis et al., 2007; Cakici et al.,
2010), the automated component was built in a modular way so the detection component
can incorporate different detection algorithms. R was chosen over other programming
languages as it allowed us to directly use a variety of statistical detection algorithms and
visualization procedures out of the box and because of its ability to rapidly prototype
statistical procedures. During subsequent developments we ported large parts of the data
management components to the programming language C# to harmonize the system with
existing IT infrastructure at the RKI.

4.1.4 Signal database

The signal database stores signals generated by the analytical process. A signal corre-
sponds to statistical evidence that the case count in a given subset of the data is higher
than we would expect it to be based on historic data. A signal combines two types of
information. On the one hand, a signal contains information about that data segment in
which case counts were detected by a statistical algorithm, i.e. a filter on the data with a
set of attributes; for example ”Hepatitis A; Week 25 of 2013”. On the other hand, a signals
contains about the algorithm itself, its configuration and its output, e.g. the detection
threshold.

This definition can be used directly to store the signals in the signal database and en-
ables subsequent processing of the signals. This has several direct advantages over analysis
and communication as a combined step: the signals can have an age, they can be more or
less important, they can be similar to each other and they can disappear over time due to
new data being received. In addition, signals can be communicated differently based on
aspects such as user preferences.

4.1.5 Signal interface and communication

Signals are communicated to the user through predefined report templates for each
reporting category. The respective reports display relevant signals found for that category
within a given period. In addition to these main reports, several small reports display new
signals found recently, line lists and a spatial visualisation of the cases. The main reports
are archived as Microsoft Excel files once a day and are sent by email to epidemiologists in
charge of specific reporting categories once a week. Such a push/pull principle of commu-
nication was inspired by other monitoring systems such as the one described in Reis et al.
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(2007).
The signal interface uses Microsoft SQL Server Reporting Services (Microsoft Corp.,

2012) as a technological basis, mainly because it is already used at the RKI for various
other tasks. It allows quick development of the reports that can be accessed from the
Intranet through a web-browser and supports the exportation of the reports as Microsoft
Excel files. Furthermore, in order to support the decision on whether a signal is relevant,
the user can click on any case count in the report to directly see the associated list of cases
from the SurvNet@RKI database (line list).

4.1.6 Signal abstraction

However, during reporting a problem arises due to the monitoring of the many time
series aggregated in different ways for a reporting category: given a set of closely related
signals, what signals should be shown to the user? Closely related signals could be signals
for Salmonella in week 22 in Bavaria, for Salmonella in week 22 in Munich, for Salmonella
in week 22 in Munich for males. We developed a method to reduce the number of signals
for reporting categories with a high number of signals, such as Salmonella.

The procedure utilizes the fact that each signal is associated with a filter which has
a set of attributes, e.g. geographic location, temporal location, sex and age group. Now,
given a set of signals that is available for reporting, first we determine similar signals by
partitioning the original set of signals into a set of signal groups. All signals within a specific
group have equal values for a number of filter attributes. For example, we could group all
signals by week so that each signal group consists of signals with the same reporting week;
e.g. 2013 week 42. In the system at the RKI we group by all attributes except for sex,
age group and reporting location of the signal. Thus all signals within a group will not
necessarily have the same values for sex, age group and location.

In a second step, within each of these groups we filter out signals which do not add much
information to the report. This filtering is done by so called filter-relations, which allow
us to rank and compare signals according to a predefined metric. We use three different
relations: more specific than, more general than and more specific on the location and more
general on age and sex. The user can select between having no reduction, one of the three
relations or a combination of the first two relations. In our example the most general signal
would be the signal for Salmonella in week 22 in Bavaria, whereas the most specific signal
would be the signal for Salmonella in week 22 in Munich for males. It is hence possible
to focus the analysis of the signals on specific aspects, e.g. locating a centre of a possible
outbreak by displaying only the most specific signals in terms of their filter attributes.

4.1.7 Manual analytical component

In addition to the automatic tool for outbreak detection we also implemented a detection
tool that can be applied to almost any subset of the data defined by the user, allowing
users to screen very specific time series on demand, which was a wish expressed during our
meetings. This component monitors specific subsets of the data, for example case counts
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Figure 4.2: Excerpt of the Salmonella report for weeks 41-46 of 2013: Time series analysis
on the national level and cluster analysis.

of Hepatitis A in Berlin within the last 6 weeks, through the comparison of the current
counts to past data, using a method similar to the algorithm of Stroup et al. (1989).

4.2 System use

4.2.1 Report interface

As of October 2015, 62 users within the RKI and federal state health authorities receive
weekly reports from the automated component and interact with the reports.

The tables on Figure 4.2 correspond to an excerpt of the Excel based report for
Salmonella reported cases from weeks 41 - 46 of 2013. The report contains two data
tables with a similar structure. For each week t we report the number of cases yt, the esti-
mated expected case count µt, the threshold Ut and the number cases that were manually
marked as being part of an outbreak ot in the SurvNet@RKI database. Cases are some-
times identified as a cluster by local health authorities, e.g., a cluster of Norovirus cases
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Figure 4.3: Example of the results of a dynamic data query in Microsoft Excel with aber-
ration detection of hepatitis A cases associated with the country of exposure in 2012.

after a common meal. Coloured cells indicate signals for the respective week. Signals that
were detected seven or more days ago are marked orange while newer signals are marked
red. The first table of the report, as illustrated in Figure 4.2 (table 1), corresponds to
the reported number of cases per serotype for the last 6 weeks with e.g. a signal for S.
Infantis in week 41, while the second table, as illustrated in Figure 4.2 (table 2), displays
the results of the stratified analysis described in the previous section. In this example we
see a cluster of female S. Manhattan cases in week 41. Some of these signals prompt further
checks by epidemiologists, helped by a direct link between the signal and the corresponding
cases (line list). The number of signals in a report is an interplay between the number of
filters with cases for the disease, the algorithm settings for the disease, and whether signal
reduction is performed. From January to October 2015, the median number of signals over
all filters in the weekly Salmonella report was 62.

Figure 4.3 shows an example output of the manual component for a query of hepatitis A
cases for the year 2012 by country of exposure, which is not a time series routinely analysed
by the automatic component, but could be of interest in particular situations. The table
displays weeks of 2012 and countries where the number of cases exceeds the upper limit of
the prediction interval.

4.2.2 Experiences from operation

Since 2013 the monitoring system has been widely adopted within the RKI. Although
it has not been formally evaluated yet, we can observe a positive user acceptance. Further-
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Figure 4.4: Distribution of delay for hepatitis A from date of disease onset to date of report
arrival at the RKI.

more, the system already helped to trigger several outbreak investigations. For example, it
detected a large local outbreak of cryptosporidiosis in August 2013 (Gertler et al., 2015).
Apart from outbreak detection, we also experienced that the tool helped to provide situ-
ational awareness to the epidemiologists, especially those monitoring trends in frequently
notified infections prone to causing outbreaks. Moreover, the aberration detection tool for
dynamic data queries on case counts is well appreciated since it is not always straightfor-
ward to visually assess whether the numbers of a time series plot are higher than usual.
The manual component now provides a statistically informed decision for this

4.3 Current work and remaining challenges

4.3.1 Testing a new algorithm

Since the current system is now in operation and appreciated by epidemiologists at the
Robert Koch Institute and in federal states and local health authorities, it became possible
to add new features. We have started to test bodaDelay that was presented in Chapter 3,
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first on a single disease, hepatitis A. Starting the test on only one disease is the same
strategy as the one used for implementing the system itself at first. We wanted to see
which data queries were needed for testing bodaDelay and how this new tool was received
by epidemiologists before broadening its use. We can already report on some steps that
had to be performed and shed light into what should be taken into account when using
bodaDelay in practice.

When applying the algorithm on a new pathogen one has to decide which date should
be chosen for aggregating the cases and which value to give to the maximal delay D. In
the current system, cases are aggregated by date of report which is the date at which a
case was reported to the local health authority. Indeed this date is known for all cases and
there is only a short delay between date of report and date of arrival of the information
at the Robert Koch Institute (Schumacher et al., 2016). However, a date such as the date
of disease onset might make more sense for epidemiological investigations. Thus, when
deploying bodaDelay for a test implementaiton, there was interest in using it for analysing
time series where cases are aggregated by date of disease onset. For hepatitis A, date of
disease onset is unknown for 31% of all cases. The two epidemiologists in charge of hepatitis
A deemed that it was however reasonable to use this date as an aggregation date. Note
that during the test the other surveillance reports using Noufaily’s method (Noufaily et al.,
2013) and the date of report as aggregation date were still produced so that eventually all
reported cases were monitored anyway. When applying the algorithm on a new pathogen
one has to decide which date should be chosen for aggregating the cases and which value
to give to the maximal delay D. In the current system, cases are aggregated by date
of report which is the date at which a case was reported to the local health authority.
Indeed this date is known for all cases and there is only a short delay between date of
report and date of arrival of the information at the Robert Koch Institute (Schumacher
et al., 2016). However, a date such as the date of disease onset might make more sense for
epidemiological investigations. Thus, when deploying bodaDelay for a test implementaiton,
there was interest in using it for analysing time series where cases are aggregated by date
of disease onset. For hepatitis A, date of disease onset is unknown for 31% of all cases. The
two epidemiologists in charge of hepatitis A deemed that it was however reasonable to use
this date as an aggregation date. Note that during the test the other surveillance reports
using Noufaily’s method (Noufaily et al., 2013) and the date of report as aggregation date
were still produced so that eventually all reported cases were monitored anyway.

In real life, there is no real maximal delay, since sometimes cases are still reported a
very long time after disease onset, e.g. if the report was lost. These are, however, rare
occurrences. Moreover, in any case, one needs to define a maximal delay D. This is
important for not having too many columns in the report sent to epidemiologists. It is
justified to ignore cases that arrive after a time longer than D weeks if the distribution of
delays is such that a quite high proportion of cases has a delay smaller or equal to D; and
also because an alarm for cases that were diagnosed or became ill a very long time ago
can be considered irrelevant as regards outbreak investigations or management measures.
On Figure 4.4 we show the delay distribution for hepatitis A. 91% of all cases for which
a date of disease onset is known have a delay smaller or equal to 6 weeks. Therefore, the
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Figure 4.5: Running time for analysing all time series for hepatitis A in the RKI system
with farringtonFlexible (grey) or bodaDelay (blue)

epidemiologists decided to test bodaDelay with D = 6 weeks. Since cases with a delay
greater than 6 weeks are thus ignored, and since we only know the date of disease onset for
79% of cases, 72% of reported cases are monitored by the algorithm correcting for reporting
delays.

There are other factors to weigh in when using bodaDelay. One is the running time.
The running time of bodaDelay is higher than the running time of farringtonFlexible,
as illustrated in Figure 4.5. This is due to the subdivision of counts according to delay
that makes both time series generation from the database and computing by the algorithm
itself longer. Using bodaDelay instead of or on top of farringtonFlexible therefore uses
more computing resources. Another important factor are human resources if one decides
to make two algorithms run in parallel: epidemiologists then need more time because they
have to analyse two reports.

The test of bodaDelay on hepatitis A was not very conclusive, since the epidemiologists
preferred to work with the default report produced with the algorithm of Noufaily et al.
(2013) which they deemed more sensitive. A first positive result was however that the
new algorithm is now working with the appropriate data query from the RKI database.
Moreover, epidemiologists are interested in the results. A next step will be to expand its
test on other diseases, which might happen in the course of the renewal of the surveillance
system through the project DEMIS (German electronic reporting system for infectious
diseases).
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4.3.2 How to include several algorithms into one system?

Right now, the whole RKI system uses only one algorithm for aberration detection,
presented in Section 2.3. But as routine aberration detection is now well established, there
is interest into including new algorithms in the system, such as bodaDelay with tests going
on as described in the previous Section, or the algorithm presented in Section 2.5 since
epidemiologists express the wish to get a CUSUM method. This leads to the question of
defining a strategy for using several algorithms in one surveillance system. How to include
several algorithms into one system? Questions related to this issue are e.g.: should one
have several algorithms running on the same time series, or choose one best or preferred
method for each time series or pathogen? How should results be presented to avoid users
fatigue in the presence of many signals originating from different algorithms?

In the CASE system implemented in the Swedish national public health institute, sev-
eral algorithms can be applied to the same pathogen (Cakici et al., 2010). Having the
same algorithm(s) for all time series corresponding to one pathogen may on the one hand
seem very reasonable, since often one person will review all these signals and may wish
to get signals corresponding to the same detection method. On the other hand, though,
the regression model for the mean in the algorithm may have to be different for, say, the
time series of Salmonella Typhimurium (very frequent subtype of Salmonella) in whole
Germany and the time series of Salmonella Agona (rarer subtype) in the (rather small)
federal state of Hamburg.

If one were to choose a very specific algorithm for a pathogen, or each subtype, or
any category of time series, how should the decision be made? One could use model
selection based on the tools presented in Section 1.2.5, and exemplified in Section 5.1.1, for
choosing the best regression model. As regards the detection method itself, Bayesian vs.
frequentist or single-timepoint vs. CUSUM, this could be decided upon users preferences
and/or measures of performance of the algorithms on the considered time series, maybe
with superimposed simulated outbreaks, which is the subject of Section 2.2. This selection
could e.g. be made once a year so that all reports from one year can be comparable.

Last, but not least, if one is to apply several algorithms to the same time series, one
will get more signals including false alarms. This demands a very good presentation of the
reports and makes the link to the cases database even more important since users cannot
spend much time analysing each signal. How exactly should an ideal presentation look like
could be a further research issue, although one could be guided by the Swedish experience
desbribed in Cakici et al. (2010). Sorting signals based on e.g. the posterior probability
of the observed time count could be a way to make reports readable, but how do such
probabilities originating from different algorithms compare?

These are all open questions to which there are probably no right or wrong answers.
These thoughts should rather guide a discussion with the epidemiologists when adding
new algorithms. The development of the RKI system until now provides a good example
of users involvement: statistical counseling was provided as part of this thesis work to
explain possibilities and limitations of algorithms to users. Furthermore, the design and
development of the system were supported by informatic counseling so that the best profit
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was taken from epidemiology, statistics and informatics.

4.4 A simpler surveillance system

In this Section we reproduce a part of the article M. Salmon, D. Schumacher, M.
Höhle. Monitoring Count Time Series in R: Aberration Detection in Public Health Surveil-
lance, Journal of Statistical Software, accepted for publication, where we explain how to
build a surveillance system with little resources. This text shows our efforts towards the
wide applicability of algorithms for aberration detection.

Suppose you have a database with surveillance time series but little resources to build
a surveillance system encompassing all the above stages. Using R and Sweave or knitr for
LATEX you can still set up a simple surveillance analysis without having to do everything by
hand. You only need to input the data into R and create sts-objects for each time series
of interest as explained thoroughly in Höhle and Mazick (2010). Then, after choosing
a surveillance algorithm, say farringtonFlexible, and feeding it with the appropriate
control argument, you can get a sts-object with upperbounds and alarms for each of
your time series of interest over the range supplied in control. For defining the range
automatically one could use the R-function SysDate() to get today’s date. These steps
can be introduced as a chunk in a Sweave or knitr document that will be translated it
into a report that you can send to the epidemiologists in charge of the respective pathogen
whose cases are monitored.

Below is an example of a short segment showing the analysis of the S. Newport weekly
counts of cases in the German federal states Baden-Württemberg and North Rhine-Westpha-
lia with the improved method implemented in farringtonFlexible. The package provides
a toLatex method for sts objects that produces a table with the observed number of
counts and upperbound for each column in observed, where alarms can be highlighted by
for instance bold text. The resulting table is shown in Tab. 4.1.

R> data("salmNewport")

R> today <- which(epoch(salmNewport) == as.Date("2013-12-23"))

R> rangeAnalysis <- (today - 4):today

R> in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013)

R> algoParameters <- list(range = rangeAnalysis, noPeriods = 10,

populationBool = FALSE,

b = 4, w = 3, weightsThreshold = 2.58,

pastWeeksNotIncluded = 26, pThresholdTrend = 1,

thresholdMethod = "nbPlugin", alpha = 0.05,

limit54 = c(0, 50))

R> results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg",

"North.Rhine.Westphalia")],

control = algoParameters)

R> start <- isoWeekYear(epoch(salmNewport)[range(range)[1]])
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R> end <- isoWeekYear(epoch(salmNewport)[range(range)[2]])

R> caption <- paste("Results of the analysis of reported S. Newport

counts in two German federal states for the weeks W-",

start$ISOWeek, "-", start$ISOYear, " - W-", end$ISOWeek,

"-", end$ISOYear, " performed on ", Sys.Date(),

". Bold upperbounds (UB) indicate weeks with alarms.",

sep="")

R> toLatex(results, caption = caption)

Year Week Baden-Wuerttemberg Threshold North-Rhine-Westphalen Threshold
2013 48 0 5 0 4
2013 49 1 3 0 3
2013 50 1 3 0 3
2013 51 2 3 0 3
2013 52 3 2 1 3

Table 4.1: Results of the analysis of reported S. Newport counts in two German federal
states for the weeks W-48 2013 - W-52 2013 performed on 2015-06-04. Bold upperbounds
(thresholds) indicate weeks with alarms.

The advantage of this approach is that it can be made automatic. The downside of such
a system is that the report is not interactive, for instance one cannot click on the cases and
get the linelist. Nevertheless, this is a workable solution in many cases – especially when
human and financial resources are narrow. The RKI was able to build a more elaborate
system. Nonetheless, part of the work related to this thesis was contributing to free software
and the associated documentation in order to allow anyone to take advantage of state-of-
the-art detection algorithms, instead of having to resort to e.g. building interactive Excel
files from scratch.

4.5 Conclusion

We developed a system that provides results that are fairly easy to understand and
to use, while being based on sound statistical methods, with disease- and user-specific
adjustments. The implemented system was the result of an interdisciplinary collabora-
tion between computer scientists, statisticians and epidemiologists combining the best of
their respective worlds (user focused system design, proper treatment of uncertainty and
infectious disease knowledge) to obtain a decision support tool useful for everyday prac-
tice. Targeting the users helped designing the software and will help sustaining it while
institutionalising knowledge about routine aberration.

Although the system already produces valuable results for the routine work at the
RKI, a number of future improvements could be tackled. We could work on the problem
of comparing frequently incomplete first-version data (e.g. where a pathogen subtype and
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a possible travel history of the case may now be known yet) to historic more complete
last-version data (e.g. where subtype and likely country of infection have been added).
Moreover, we could handle reporting delays with specific detection algorithms (Noufaily
et al., 2015; Salmon et al., 2015). Furthermore, we are currently only able to detect
outbreaks when case numbers are above the threshold in at least one week; i.e. if an
outbreak emerges very slowly over several weeks it might not be detected quickly. Here,
CUSUM-oriented procedures could be better at picking up the signal (Höhle and Paul,
2008). On a geographical level, only a fixed set of regions is monitored: Germany as a whole,
federal states, counties, and each county together with its adjacent neighbours (which may
overlap state borders). Thus we are also only able to geographically detect outbreaks that
are visible in one of these predefined county clusters. However, the architecture of the
system would allow us to include more sophisticated space-time methods such as in the
works of Tango et al. (2011); Neill (2012); Kulldorff (1997) into the surveillance process.
Additionally, performing multiple tests on overlapping data leads to a high number of
false alarms. Currently, we accept rather high rates of false positive signals, but offer the
epidemiologists tools to delve deeper into the data generating the signals in order to better
understand the context. A framework for controlling overall false alarm rates for each user
in combination with the signal abstractions could further improve user acceptance.

We think that these accounts of successful implementations at public health institutions
are an important contribution to the surveillance of infectious diseases, because automatic
detection systems are much needed in the current big data environments arising from rou-
tine surveillance data collection. Our aim is to explain the RKI development strategy and
user-focus in order to gain acceptance. Finally, a more technical article about the R package
surveillance describing the algorithmic functionality of the package exists (Salmon et al.,
2016), which more technically inclined readers of the Eurosurveillance manuscript might
seek for details. Chapter 2 and Section 4.4 of this thesis were based on this manuscript.

The amount of data held by public health institutes will certainly continue to grow
in the near future. As a consequence, automatic outbreak detection systems, as the one
presented here, are becoming increasingly important. At the same time, care is needed to
integrate such a system into the workflow and hence take further steps towards actual user
acceptance. From an organisational point of view, a challenge here is to design effective
guidelines on how the generated signals are to be handled in a standardized way. This
could range from signals being considered only as an additional resource for surveillance to
a procedure where each signal has to be explicitly checked by an epidemiologist. Here, the
resources available for such investigations play an important role. With a tool in place it
becomes possible to tailor the detection even more to the needs of the users, e.g., by actively
including user feedback in the statistical detection algorithms. Including user feedback
could start by collecting appropriate data about users’ reaction to each signal. As of now,
our article provided enough insight into our own experience with an automatic surveillance
system to motivate the development and maintenance of similar decision support tools in
other countries. Moreover, this Chapter completed the article by showing how to build a
simpler surveillance system, and by presenting the current work on the system at the RKI,
which should always remain a work in progress. In the next Chapter, we discuss remaining
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theoretical challenges for outbreak detection algorithms.
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Chapter 5

Future methodological challenges for
outbreak detection

In this Chapter, we give an outlook on potential and ongoing future research topics
within the scope of count time series monitoring, in particular aimed at public health
surveillance. We first present two main challenges for regression models when applied
to surveillance count time series: autocorrelation and the need for robust distributional
assumptions. After this, we focus on issues related to computing the decision-threshold
for monitoring: we propose a faster method for computing the quantile of the posterior
predictive distribution for the algorithms presented in Sect. 2.4 and 3.3, before presenting
a novel way of defining the decision-threshold. In the last Section, we give an overview of
our current work for evaluating algorithms at a German national public health institute.

5.1 Better regression models?

In this section we critically look back on the regression models used in this thesis. In
particular, we consider their treatment of autogression in the time series, and the conse-
quences of the distributional assumptions that they entail.

5.1.1 Autoregression in count data time series

Count time series originating from public health surveillance data often display auto-
correlation – even in the absence of outbreaks. One cause of auto-correlation can be
seasonality, possibly due to climatic factors influencing diseases, for instance see Figure 2.4
with time series of counts of campylobacteriosis cases and of humidity in Germany. So far,
regression models have been our main tool for handling such influences. If the regression
model one uses for defining a quantile does not account for all factors, residuals may be auto-
correlated, which is a symptom of a model misspecification (Fahrmeir et al., 2013). Auto-
correlation in the residuals may therefore indicate that our prediction is inadequate. This
may lead to higher false positive rate (FPR) or smaller probability of detection (POD) in
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the outbreak detection algorithms because of wrongly estimated quantiles of the predictive
distribution of the current count. Therefore, checking auto-correlation in the residuals is an
important step for validating the selected models. In this section, we start by showing an
example of a time series, then we present models that could account for the autocorrelation,
and finally we explain how one could tackle serial dependence present in surveillance data.

The example we use is the time series of weekly number of reported disease cases
caused by Escherichia coli in the federal state of North Rhine-Westphalia (Germany) from
January 2001 to May 2013, excluding cases of EHEC and HUS, as provided in the R
package tscount (Liboschik et al., 2016) and shown in Figure 5.1. We chose these data for
comparability with a first version of Liboschik et al. (2015). We shall fit count regression
models with log link to the weeks W50-2000 to W52-2006:

� Model 1, a negative binomial regression model similar to the one used in Noufaily
et al. (2013), which does not explicitely address auto-correlation;

� Models 2 to 4, three models corresponding to the three different intercept specifica-
tions of the algorithm presented in Section 2.4;

� Model 5, a model from Liboschik et al. (2016) with inclusion of a regression on the
previous mean and observation of the process,

� and finally Model 6, a two-component model (Held et al., 2005).

We then compare ACF plots of the resulting residuals from the models and discuss
consequences of residuals auto-correlation on prediction.

For all the fitted regression models, we assume that yt ∼ NB(µt, ν) and in each model
we include a time trend (linear on the log scale) and a general seasonality term, defined by

seas(t) =
1∑
s=0

[
β2s cos

(
2πst

52

)
+ β2s+1 sin

(
2πst

52

)]
, t = 50, . . . , 365,

where (β0, β1, β2, β3) are seasonality parameters to be estimated.

Model 1

Linear predictor The most simple model that we fit to the data, inspired by Noufaily
et al. (2013), is such that

log(µt) = β0 + β1t+ seas(t).

Inference and software We fit this model using the R package MASS (Venables and
Ripley, 2002), with the likelihood-based inference method as explained in Section 1.2.4:
the regression parameters on one side and the overdispersion parameter on the other side
are iteratively fixed and estimated until convergence is obtained.
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Figure 5.1: Weekly number of reported disease cases caused by Escherichia coli in the
federal state of North Rhine-Westphalia (Germany) from January 2001 to May 2013, ex-
cluding cases of EHEC and HUS, as provided in the R package tscount (Liboschik et al.,
2016). One notices the 2011 outbreak (Altmann et al., 2011; Bernard et al., 2014).

Models 2 to 4

Linear predictor We also fit three models as presented in Section 2.4,

log(µt) = β0,t + β1t+ seas(t),

with three different specifications for the time-varying intercept β0,t, see Section 2.4 for
more details. The stationary model for the intercept gives a regression model that is
similar to Model 1, while the neighbour and linear models account for autoregression on
the previous counts (on top of seasonality).

Inference and software For this model, the inference is Bayesian. We use the INLA
method for inference (Rue et al., 2009), as implemented in the R package INLA (Rue et al.,
2015). We briefly presented INLA in Section 1.2.4. Priors are chosen as in Manitz and
Höhle (2013) and in Salmon et al. (2015). This means, e.g., βi ∼ N(0, λ−1

βi
), i = 1, 2, where

the λβi ’s indicate precision parameters.

Model 5

Linear predictor The next model we fit to the data has the following linear predic-
tor (Liboschik et al., 2016):

log(µt) = β0 + β1t+ seas(t) + δ log(yt−1) + α log(µt−1)
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that is, it contains log-transformed versions of both the previous observation yt−1 and the
previous mean µt−1, hence it takes auto-correlation into account. In this predictor, the
constraints are |δ| < 1, |α| < 1 and |δ + α| < 1.

Inference and software We fit this model using the R package tscount. The inference
method is quite different from the one used for Model 1: it is a quasi-likelihood inference
method introduced in Christou and Fokianos (2014). As in the inference for the quasi-
Poisson model presented in Section 1.2.4, the regression parameters are estimated first,
and after that the overdispersion parameter is estimated. Moreover, in this model the
estimated overdispersion parameter is 1/ν.

Model 6

Linear predictor The last model we fit to the data contains an AR(1)-like regression
on the previous observation. It is a two-component model introduced in Held et al. (2005)
such that µt = ηt + λyt−1 with

log(ηt) = β0 + β1t+ seas(t).

Inference and software This models does not fit in the GLM framework but is fitted
using a generic optimization of the likelihood using quasi-Newton methods (Held et al.,
2005). The method is implemented as the function hhh4 in the R package surveillance.

The aim of the illustrative analysis in this Section is to look at how much residual
auto-correlation there is after fitting these regression models, and if so, how the presence of
residual auto-correlation leads to different (probabilistic) predictions of the counts in the
weeks W1-2007 to W1-2009. Residuals are defined as ri = yi− µ̂i where µ̂i is the estimator
of the mean in the corresponding model. For the sake of the comparison of Models 2
to 4 with the other models that are not Bayesian and for keeping things simple in this
illustrative example, we define µ̂t as the mean of the posterior distribution of µt and used
this point-estimate to compute residuals. We calculated the empirical auto-correlation
function (ACF) of the residuals at different lags using the R function acf(). We chose 104
as a maximal lag, because it is equal to twice the period of the time series. We show the
ACF plots of the residuals of the six models in Figure 5.2. One sees that Model 1 contains
substantial residual autocorrelation at lag 1. This is also the case of Model 2 which has a
constant intercept. The other models show nearly no serial dependence in the residuals.

We then concentrate on the model without auto-correlation fitted with MASS, i.e. Model
1, and fitted with tscount, Model 7, and on the model with auto-correlation on the past
mean and on the past observation fitted with tscount, Model 5. Models 1 and 7 are thus
models with the same linear predictor and likelihood but with different inference methods.
We calculate point-predictions of the counts in the weeks W1-2007 to W1-2009, along with
0.95 quantiles of the predictive distribution with plug-in estimates of µt and ν, which are
shown in Fig. 5.3. For assessing the predictive capabilities of the three models, we calculate
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Figure 5.2: Autocorrelation plots of the residuals of the models explained in Section 5.1.1.
Models 3 to 6 explicitely account for auto-regression on the previous observed count.

scoring rules as defined in Czado et al. (2009) and presented in Section 1.2.5 for these out-
of-sample observed counts and performed permutation tests (Paul and Held, 2011) for each
of them for comparing the three models. Here we use three scoring rules. Two of them
are examples of two strictly proper scoring rules and one is an example of a proper scoring
rules. Say ft is the predictive distribution of yt. The logarithmic score is (Czado et al.,
2009)

logs(ft, yt) = − log(f(yt)).

The ranked probability score is (Czado et al., 2009)

rps(ft, yt) =
∞∑
k=0

(ft(yt)− 1(yt ≤ k))2

where 1 is the indicator function. The RPS-score has an interpretation in terms of expec-
tations if the expectations are assumed to be finite. Let us define Yt and Y ′t as independent
copies of a random variable with distribution ft. The score is
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rps(ft, yt) = Ef |Yt − yt| − 0.5Ef |Yt − Y ′t |.

This formulation helps understanding the score: the smaller this difference is, the closer the
realizations of Yt and yt expectedly are compared to realizations of Yt and Y ′t , which means
a better calibration. The two scores we have just presented are strictly proper scoring
rules. We also use a not-strictly proper scoring rule that is the normalized squared error
score (Czado et al., 2009),

nses(ft, yt) =

(
yt − µ̂t
σ̂t

)2

,

where µ̂t is the mean of ft and σ̂t its variance.
The value which one then actually uses for assessing a predictive distribution ft,1 against

another predictive distribution ft,2 is a mean of the difference between scores over m out-
of-sample observed values, i.e.

1

m

n+m∑
i=n+1

rps(ft,1, yi)− rps(ft,2, yi).

The results are shown in Table 5.1. The smaller the scoring rule, the better the pre-
dictive distribution. The table moreover provides p-values for the permutation tests per-
formed as suggested in Paul and Held (2011). All three considered scoring rules give the
same ranking of the three models, with small p-values: One observes that the model with
auto-regression, Model 5, performs better than the two other ones, Models 1 and 7. Based
on these results we hence conclude that Model 5 could be more appropriate for aberration
detection – further simulation studies would be needed for a conclusive answer on that
matter. One also sees that the two similar Models 1 and 7 have different scores, which
could be because tscount makes inference on 1/ν whereas MASS makes inference on ν.
Actually in Aeberhard et al. (2014) ν is said to have a less numerically stable estimator.
Another explanation could be that the quasi-inference method presented in Christou and
Fokianos (2014) is better than the inference method presented in Lawless (1987) and Zeileis
et al. (2008) and explained in Section 1.2.4. However, a better performance of one inference
method vs. the other inference method would have to be checked on more than one time
series. A futher difference between the two inference methods for this negative binomial
regression model is computing time: fitting Model 7 was 16 times longer than fitting Model
1.

Based on the results we hence conclude that for time series like the one we analysed
here, algorithms for aberration detection should be based on a regression model accounting
for autocorrelation. Another possibility is that finding a better model for seasonality could
make residual autocorrelation disappear in some cases. In any case, the performance of the
different models as regards their predictive distributions should be compared. Moreoever,
it would be of utmost importance to characterize the degree of autocorrelation in different
representative sets of surveillance time series.
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Figure 5.3: Weekly number of reported disease cases caused by Escherichia coli in the
federal state of North Rhine-Westphalia (Germany) in the weeks W1-2007 to W1-2009
with point-predictions (bottom lines) and 0.95 quantiles (upper lines) provided by three
models 1, 7 and 5.

In a study of mean-variance relationships in UK surveillance data, Enki et al. (2016)
produced correlograms for all 1737 investigated time series after seasonality correction,
and moreover applied Ljung-Box portmanteau tests (Ljung and Box, 1978) to them, using
the p-value of this test as a measure of auto-correlation. Although the residuals of regres-
sion models for count time series are not normally or even symmetrically distributed, one
can still use the Ljung-Box p-value as a measure of autocorrelation. In UK surveillance
data, Enki et al. (2016) found that only a few pathogens display serial dependence after
correction for time trend and seasonality, which according to them could be different in
other surveillance systems, though.

If we were to look for residual autocorrelation – on top of seasonality – in surveillance
data with the aim of taking it into account in regression models, we could not visually
inspect every correlogram. Indeed, we would rather store e.g. the Ljung-Box p-values. We
would need simulation studies or studies involving real data where we concurrently look
at scoring rules of regression models with and without auto-correlation and at values of
the Ljung-Box p-value of the residuals. This would help us define rules for automatically
choosing the right regression model based not only on the values of the Ljung-Box p-value,
but also on the autocorrelation for each lag for identifying which lag(s) to use in the
regression. Or maybe a different model for seasonality might prove sufficient to suppress
auto-correlation in the residuals, but the selection of a good form for seasonality is also an
interesting issue for future research. Simulation studies might moreover indicate how much
prediction is improved by proper treatment of autocorrelation and how the consequences
on the predictive distribution translate into performance measures of aberration detection
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logS RPS NSES
Model 1 (NB GLM) 3.68 4.76 1.51

Model 5 (tscount, AR) 3.52 4.25 1.37
Model 7 (tscount, NO AR) 3.64 4.64 1.45

p-value 1 vs 5 0.0002 0.0002 0.017
p-value 1 vs 7 0.0002 0.0001 0.0001

Table 5.1: Scoring rules from the three models (logS: logarithmic score, RPS: ranked
probability score, NSES: normalized squared error score), and p-values of permutation
tests for each of these scoring rules.

such as probability of detection and false positive rate. Finally, it would show whether
the computing time induced by choosing the most appropriate regression model for a time
series is worth it.

5.1.2 Validity of the distributional assumptions

Most methods we have presented in this thesis, and most importantly the one we devel-
opped and explained in Chapter 3, make parametric assumptions about the distributions
of the counts. In this Section, we aim at explaining how one could test the robustness of
an algorithm when the distributional assumptions are violated, and how one could improve
algorithms accordingly.

Negative binomial distribution of yt

The number of reported cases in a week is modelled as a random variable with support
on 0, 1, 2, . . .. Since in actual data we often observe overdispersion when applying regression
models, one needs to resort to regression models with families allowing overdispersion on
top of the typical modelling of seasonality, time trend, and presence of past outbreaks as
part of the expectations. The parametric family we chose in Chapter 3 is the negative
binomial family. As a reminder, if yt ∼ NB(µt, ν) then Var(yt) = µt(1 +µt/ν). In Noufaily
et al. (2013) the regression model is of the quasi-Poisson kind, i.e. they assume that
Var(yt) = φµt. One could imagine many more relationships between the mean and the
variance in the presence of overdispersion. If one defined an arbitrary relationship between
the mean and the variance, one would not be able to use many existing inference methods
and/or implementations. Therefore, there is interest in using the gold standard negative
binomial distribution.

However, an important question is: how robust is the estimation of a quantile of the
distribution of yt if the regression model assumes a wrong mean-variance relationship?
In Figure 5.4 we show, as an illustration, the true and estimated means as well as 0.95
quantiles of a negative binomial variable yt defined such that

log(µt) = log(10) + 0.25 cos

(
2πt

52

)
+ 0.25 sin

(
2πt

52

)
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and ν = µt/4 which gives

Var(yt) = 5µt.

For each simulation we fit a negative binomial model to the data, and for each timepoint t
we deduce a plug-in estimate of the 0.95 quantile: the 0.95 quantile of the negative binomial
distribution with plug-in estimates µ̂t and ν̂. A first result one can notice in Figure 5.4 is
that the mean is quite well estimated by the model, but the quantile appears too high at
the peak of the season and too low when they are the least cases. In this case, a quasi-
Poisson regression would be more appropriate – which is obvious here given the way we
simulated the time series.

In their analyse of UK surveillance data, Enki et al. (2013) started looking at rela-
tionships between the mean and the variance in the time series to be monitored. In Enki
et al. (2016) they investigate them further and underline the importance of taking the real
relationship of the variance and the mean into account when defining regression models
for estimating quantiles. Such an analysis with surveillance data from a public health in-
stitute would be quite useful, in order to see how the relationship between the mean and
the variance is in the monitored data, and whether it differs much from the assumptions
implied by negative binomial distribution.
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Figure 5.4: Values yt of a simulated variable of mean µt including seasonality, and of
variance Var(yt) = 5µt. Solid lines show the true and estimated means µt and µ̂t while
dotted lines show the true and estimated 0.95 quantiles.

A method for aberration detection without distributional assumptions

The work of Guillou et al. (2014) presents a method based on Extreme Value Theory
(EVT) that does not require any assumption about the underlying distribution of the
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counts. The idea of their method is to associate a return period Ts to every possible
observation ys. This return period is defined such that

E

(
Ts∑
i=1

I(yt > ys)

)
= c

where I is the indicator function and c a chosen level. When c = 1 one can interpret the
Ts in the following way: we expect that on average, the value ys will be exceeded every
Ts time units. The choice of actual value of c, that influences sensitivity and specificity, is
subject to current research by the authors of the method. Once return periods are defined,
for every new observation ys one looks backward to see if the same value of the number of
cases is to be found in the time interval (s−Ts, s). If this is the case, or if Ts is larger than
the sample length, then an alarm is raised for s.

The method proposed in Guillou et al. (2014) uses data from the same periods in the
previous years in order to account for seasonality, as it was done in Farrington et al. (1996).
This means not using all reference data that one could use. Still, this is an interesting work,
since no assumption about the underlying distribution of the counts is needed. However,
it remains to be compared with existing methods: the authors underline that their article
should be followed by studies comparing the monitoring performance of their algorithm
with more established methods.

Assumptions about the delay distribution

In our work presented in Chapter 3, we assumed that the delays follow a multinomial
distribution M(Nt,p) with time-constant probability vector p. This assumption coupled
with the assumption that the number of cases follows a negative binomial distribution
NB(µt, ν) allowed us to use the so-called multinomial model for claim counts (Schmidt
and Wünsche, 1998) and to estimate a quantile of the predictive distribution based on a
negative binomial regression model. What if the delays follow a different distribution? In
this case, our algorithm may not be as efficient as when analyzing simulated data that
follow the assumptions we made. We explore two possible violations of the assumptions:
the presence of overdispersion in the distribution of the delays, and a time-varying delay
distribution instead of a constant one.

For illustrating the possible consequences of a violation of the distributional assumption
regarding delays, we simulate vectors (nt,0, . . . , nt,D) in a situation where the number of
cases Nt follows a negative binomial distribution µ, ν, that is with constant mean. We
choose µ = 100, ν = 2 and D = 4. For modelling overdispersion in the distribution of
delays we use a compound Dirichlet-multinomial distribution (Fahrmeir and Tutz, 2013),
in which the delays follow a multinomial distribution with size Nt and probability vector
(p0, p1, p2, p3, p4) and (p0, p1, p2, p3, p4) follows a Dirichlet distribution Dir(2, 1, 1, 1, 1).

We draw 500 observations, i.e. Nt ∼ NB(µ, ν), t = 1, . . . , 500. We then simulate the
arrival of cases for each timepoint,

M1. with a multinomial distribution with constant probability vector 1
6
(2, 1, 1, 1, 1);
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M2. with a compound Dirichlet-multinomial distribution whose probability vector follows
a Dirichlet distribution Dir(2, 1, 1, 1, 1) for simulating overdispersion in the delay
distribution;

M3. with a multinomial distribution whose probability vector is (1/3−1/6 ·exp(−t/1000),
1/6 + 1/6 · exp(−t/1000), 1/6, 1/6, 1/6), t = 1, . . . , 500, that is, a time-varying delay
distribution. We show the corresponding cumulative distribution function of delay
in Figure 5.5.

0 1 2 3 4

0.
2

0.
4

0.
6

0.
8

1.
0

Delay d

C
D

F
 o

f 
th

e 
de

la
y

t=1
t=250
t=500

Figure 5.5: Delay distribution at three timepoints for M3.

We show an example of a resulting time series for nt,0 in Figure 5.6. We then fit a
negative binomial regression model to the data, using the R formula response ∼ 1 +

delay, similar to what we did in Chapter 3. For this we use the R package MASS.

R> library("MASS")

R> formulaGLM <- as.formula("response ~ 1 + as.factor(delay)")

R> model1 <- glm.nb(formulaGLM, dataGLM1,

R> control = list(epsilon = 1e-8, maxit = 200,

R> trace = FALSE))

We show the estimates of the parameters in Table 5.2.
What we observe is that the overdispersion parameter of the negative binomial and the

probability vector of multinomial distribution of M1 are quite well estimated, which is logi-
cal since in this case the data follow the distribution assumptions of the multinomial model
for claim counts (Schmidt and Wünsche, 1998). With the data from M2, the parameters
were all well estimated except ν which was under-estimated because of the overdispersion
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Simulation µ̂ p̂0 p̂1 p̂2 p̂3 p̂4 ν̂
True parameters 100 0.33 0.17 0.17 0.17 0.17 2.00
M1 101.2 0.24 0.19 0.19 0.19 0.19 2.03
M2 100.9 0.24 0.19 0.19 0.19 0.19 0.81
M3 98.8 0.20 0.23 0.19 0.19 0.19 2.05

Table 5.2: Output from the three models

in the delay distribution which increases the variance of the nt,d and which our regression
model does not tackle. Worringly, a consequence of a too small ν value are overestimated
quantiles of Nt. Therefore, the surveillance algorithm presented in Chapter 3 is not ro-
bust to the presence of overdispersion in the delay distribution, that would make it too
conservative. In consequence, finding a suitable model for dealing with overdispersion in
the delay distribution would be important. As regards the data from M3, in this case all
parameters but the one related to the delay distribution are well estimated. Actually the
structure of the linear predictor does not allow the estimation of a time-varying distribu-
tion, so the obtained estimates are a mean of the delay distribution over time. It is possible
that real surveillance data contains a time-varying delay distribution for given organisms,
especially if one uses a long baseline for computing a threshold. Looking for traces of time-
variability in the distribution of delays, and modifying the linear predictor of the model so
that it accounts for a time-varying delay distribution, should also be done in the future.
If a non-linear evolution of the probability distribution over time were needed, eventually
one would resort to GAMs instead of GLMs. One should note that this violation of the
assumptions we made in Chapter 3 is less worrying as regards the so-called multinomial
model for claim counts (Schmidt and Wünsche, 1998), since at each timepoint t one would
still have Nt ∼ NB(µt, ν) and (nt,0, nt,1, . . . , nt,D) |Nt,pt ∼ M(Nt,pt) which is sufficient for
having nt,d ∼ NB(µt · pd,t, ν).

Note that in this Section we ignore other complications brought to the surveillance
algorithm presented in Chapter 3 if the number of cases were not a negative binomial
variable, if ν were not constant, or if the delays were not independent from the total
number of cases. In this case, we would of course also no longer be able to use the so-
called multinomial model for claim counts (Schmidt and Wünsche, 1998). Therefore, when
applying the algorithm presented in 3 on many time series, checking its robustness would
be an important first step, and complications of real time series may demand further
developments of the algorithm in the future.

5.2 Issues related to the decision threshold in one-

timepoint detection

In this section, we discuss two possible modifications of the computation of the decision
threshold in one-timepoint detection: first we explain how the algorithms presented in
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Figure 5.6: Weekly count of the simulated nt,0, 0 ≤ t ≤ 500 corresponding, from left to
right, to cases M1, M2 and M3 of the simulation presented in Section 5.1.2, with the
empirical mean and variance of nt,0, 0 ≤ t ≤ 500.

Section 2.4 and Chapter 3 could be made faster, and then in Section 5.2.2 we present
a different definition of the threshold that may be more adapted to the count nature of
surveillance time series than the current definition.

5.2.1 Faster computation of the quantile of a predictive posterior
distribution

We are interested in finding the (1−α)-quantile of the predictive posterior distribution of
N(s, T ), for using it as a decision-threshold. We start by explaining the method presented
in Section 3.3, in which the threshold is computed by a Monte Carlo sampling method
involving many draws. Let us write that

f(N(s, T ) | nOs) =

∫
f(N(s, T ) |ψ)f(ψ | nOs)dψ

≈ 1

R

R∑
r=1

f(N(s, T ) |ψ(r)),ψ(r) ∼ f(ψ | nOs),

with R being the number of Monte Carlo samples. First, we sample R vectors ψ(r), 1 ≤
r ≤ R from f(ψ |nOs) and for each of them, R′ values from f(N(s, T ),ψ(r) |nOs). We then
use the empirical (1− α)-quantile of the sample of R ·R′ values as a decision-threshold.

Actually, we could do with less computations using a different method that we would
like to present in this Section. The cumulative distribution function (CDF) of the predictive
posterior distribution is
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FN(s,T )(y|nOs) = P (N(s, T ) ≤ y|nOs) =

y∑
x=0

f(N(s, T ) = x|nOs)

≈
y∑

x=0

1

R

R∑
r=1

f(N(s, T ) = x|ψ(r)) =
1

R

R∑
r=1

y∑
x=0

f(N(s, T ) = x|ψ(r))

=
1

R

R∑
r=1

FN(s,T )(y|ψ(r)),

where FN(s,T )(y|ψ(r)) is the CDF of the Negative Binomial response distribution with
expectation and dispersion parameter calculated from ψ(r). The (1 − α)-quantile is the
smallest y value such that

FN(s,T )(y|nOs) ≥ 1− α.

Now, for any value y it is quite straightforward to calculate FN(s,T )(y|nOs). In order to
efficiently find the quantile based on the CDF from the mixture, one can use a bisectioning
method. We implemented this new approach for the two algorithms bodaDelay presented in
Chapter 3 and boda presented in Section 2.4. In the two functions bodaDelay and boda, if
one chooses the optionMM (for Mixture Model) for the control argument quantileMethod,
the threshold is computed as the (1 − α)-quantile of the mixture distribution obtained
by sampling R vectors from the (joint) posterior distribution of the parameters. More
precisely, the quantile is searched by bisectionning, with the most possible extreme values
as initial brackets:

� the lower initial bracket is the quantile obtained for the smallest sampled mean,
min(µ

(r)
t ), r ∈ {1, . . . , R} and the highest sampled overdispersion parameter, max(ν(r)),

r ∈ {1, . . . , R}, and

� the upper initial bracket is the quantile obtained for the highest sampled mean,
max(µ

(r)
t ), r ∈ {1, . . . , R} and the smallest sampled overdispersion parameter, min(ν(r)),

r ∈ {1, . . . , R}.

Below we exemplify the use of the bodaDelay algorithm with the two different methods for
computing the quantile, that is, the one presented in Chapter 3 and Salmon et al. (2015),
and the one presented in this Section.

# Control slot with D=0 correction and Monte Carlo sampling

R> controlMC <- list(range = 410:412, b = 4, w = 3,

R> mc.munu = 1000, mc.y = 1000,

R> quantileMethod = "MC",

R> alpha = 0.05, trend = TRUE,

R> limit54 = c(0,50),
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R> noPeriods = 10, pastWeeksNotIncluded = 26,

R> delay = FALSE,inferenceMethod = "asym")

# Control slot with D = 10 correction and Monte Carlo sampling

R> controlDelayMC <- modifyList(controlMC, list(delay = TRUE),

R> keep.null=TRUE)

# Control slot with D=0 correction and mixture model

R> controlMM <- modifyList(controlMC, list(quantileMethod = "MM"),

R> keep.null = TRUE)

# Control slot with D=10 correction and mixture model

R> controlDelayMM <- modifyList(controlMM, list(delay = TRUE),

R> keep.null = TRUE)

# Calculations

R> salmMC <- bodaDelay(salmAllOnset, controlMC)

R> salm.delay.MC <- bodaDelay(salmAllOnset, controlDelayMC)

R> salmMM <- bodaDelay(salmAllOnset, controlMM)

R> salm.delay.MM <- bodaDelay(salmAllOnset, controlDelayMM)

So in each case, mc.munu=1000 samples are drawn from the joint posterior distribution
of the parameters. When quantileMethod is MC, mc.y=1000 response values are drawn
from the corresponding 1000 distributions and the threshold is the empirical (1 − α)-
quantile of the obtained sample of 106 values. When quantileMethod is MM, the quantile is
the (1− α)-quantile of the mixture distribution, computed using a bisectionning method.
The values obtained are very similar, see below.

R> t(salmMC@upperbound)

[,1] [,2] [,3]

observed1 1104 1016 963

R> t(salmMM@upperbound)

[,1] [,2] [,3]

observed1 1104 1016 963

R> t(salm.delay.MC@upperbound)

[,1] [,2] [,3]

observed1 1345 1274 1226

R> t(salm.delay.MM@upperbound)

[,1] [,2] [,3]

observed1 1346 1274 1225

The corresponding computing times were 3.36 and 0.48 seconds (without delay cor-
rection) and 4.35 and 1.62 seconds (with delay correction), respectively, for the original
and the new method for computing the quantile, which is a considerable time gain. The
algorithm for the method presented in Sect. 2.4 has been extended to perform quantile
inference by this method. This smarter computation scheme makes both algorithms faster,
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although using INLA for inference still slow them down a lot. Maybe further work on the
algorithms could help make inference faster without loosing precision.

5.2.2 A quantile based on mid-p-value as threshold?

The methods presented in this thesis are tailored at the discrete count nature of the
surveillance data and use a quantile based on P (ys > x) to compute the decision-treshold.
The quantile we use, x, is such that x is the smallest value for which P (ys > x) < α,
or, if we were to formulate the problem using the cumulative distribution function F , the
smallest value for which F (x) ≥ 1 − α. This search also corresponds to a one-sided test,
where H0 is ”ys follows the estimated predictive distribution”, and where the type I error
should be α: if ys follows the estimated predictive distribution, the probability of its being
higher than x is less than α. Therefore, one can see a parallel between P (ys > x) and a
p-value. Of course, with discrete variables one cannot exactly control the type I error rate
α because P (yt > x) = α often does not have an exact solution x.

A problem one encounters when using P (yt > x) for detecting aberrations in discrete
data is that this probability does not have a uniform distribution under H0: Berry and Ar-
mitage (1995) recommend to use mid-p-values instead, because under H0 the mid-p-values
have a distribution closer to an uniform distribution U(0, 1), which the authors deem as
desirable for any significance test. This is also advised by Ma et al. (2011) and Spiegelhalter
et al. (2012). The mid-p-value is defined by

mid-p(x) = P (ys < x)1(x>0) +
1

2
P (ys = x),

where 1x>0 is the indicator variable, equal to 1 if x > 0.
For illustrating purposes we drew 105 values from the distribution NB(µ, ν) with µ = 10

and ν = 2. We show the corresponding quantile-quantile plots in Figure 5.7 where empirical
quantiles from the distribution of the (mid)-p-values of the sample are plotted against
quantiles from the uniform distribution U(0, 1). It shows that the mid-p-values have a
distribution closer to the uniform distribution than the p-values, although neither of them
can have an uniform distribution since we are dealing with count data. This departure
seems to depend on the value x: the higher the values of x, the smaller the departure from
the uniform distribution.

Probability 0.95 0.99 0.995
p-value-based quantile 25 35 40
Mid-p-value-based quantile 26 36 40

Table 5.3: Quantiles obtained in the simulations using the two computation methods.

For these distributions, the 0.95, 0.99 and 0.995 quantiles based on the p-value and on
the mid-p-value are shown in Table 5.3. They are not very different but one should however
define upperbounds as quantiles based on mid-p-values in the future, sometimes called mid-
quantiles. Finding efficient implementations of the search of such quantiles based on the
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Figure 5.7: Quantile-quantile plots of mid-p-values (a) and of p-values (b) of a sample of
105 values from the distribution NB(µ, ν) with µ = 10 and ν = 2 against quantiles from
the uniform distribution N(0, 1).

parameters of the negative binomial distribution for the method presented in Section 2.3,
or on a sample e.g. for the method presented in Section 3.3, would be very important
for allowing use of mid-quantiles in aberration detection. The R package Qtools (Geraci,
2016) contains functions for calculating mid-cumulative probabilities and mid-quantiles,
based on the work of Parzen (2004) and Ma et al. (2011). Furthermore, Jentsch and
Leucht (2015) look at the properties of bootstrapping for constructing confidence interval
of sample mid-quantiles of discrete data. Therefore mid-quantiles are interesting items to
investigate in potential future work involving the computation of the quantile of a discrete
distribution as a decision-threshold in count time series monitoring.

5.3 Evaluation of routine applications

After having presented an outlook on theoretical topics of aberration detection for count
time series, this Section presents two issues related to routine application of detection
algorithms in a public health institute with many time series to monitor, e.g. as motivated
by our experience at the Robert Koch Institute. While being problems inspired by routine
application, they still have a theoretical interest.

5.3.1 Does signal mean alarm?

When evaluating an algorithm as we did in Section 3.4.1, we defined alarms for time-
points for which the observed number of counts was higher than the (1 − α)-quantile of
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the predictive posterior distribution of the count. This definition did not take into account
the behaviour of epidemiologists when confronted with a weekly surveillance report: what
we need for evaluating routine application is a more realistic representation of the actual
epidemiological workflow. For an ongoing research project at the RKI on the timeliness
of Listeria surveillance in Germany, we started defining what an actual alarm is. We call
a signal the fact that the observed number of counts is higher than the (1 − α)-quantile
of the predictive posterior distribution of the count, and alarm a sequence of signals that
triggers actions such as the epidemiologist contacting a federal state health authority in
order to investigate further. Our motivation is that evaluating sensitivity, specificity and
timeliness based on signals instead of alarms might be erroneous. Indeed, not every signal
is an alarm. For instance, a signal related to very few cases might trigger a ”wait and see”
behaviour of the epidemiologist rather than actual investigation measures. Therefore, we
decided to define signals and alarms while trying to mimic the epidemiologists behaviour.

Epidemiologists act according to the size of the signal and to their experience. An ideal
study of an algorithm would be to confront experts with reports and ask them wich signals
they consider as alarms. Using such subjective opinion is a quite rare method of evaluation
of a system (Drewe et al., 2012) and would cost large human resources for evaluating signals
in a big simulation study. Therefore, we need to imitate epidemiologists rather than to
have them review signals. Moreover, if one wants to evaluate an algorithm concerning a
given pathogen, one cannot use the criteria of decision used by epidemiologists for signals
regarding other pathogens, because they might be different. Thus, our definition of alarms
had to be validated by epidemiologists experienced in Listeria surveillance at the RKI.

We decided to define two types of signals, based on their size. Medium signals are
signals associated to the (1 − α)-quantile but not to the (1 − α′)-quantile with α′ < α,
whereas high signals are associated to the the (1 − α′)-quantile. For instance one could
choose α = 0.05 and α′ = 0.01. Please note that we use the notation of Section 3.1: N(t, T )
is the number of cases diagnosed at time t and known (reported) by time T .

Each week, when receiving a surveillance report from the RKI surveillance system
presented in Chapter 4, epidemiologists only see the signals corresponding to the same
observation timepoint T . However, they might remember signals from previous weeks that
increased their awareness. Moreover, as seen in Figure 4.2, if there was a signal for N(t, T1)
and then again for N(t, T2) with T2 > T1, then the cell is coloured orange instead of red
in the weekly report so that epidemiologists know that week t was already flagged for a
previous observation timepoint.

We define alarms as any of the following sequences:

D1. a high signal,

D2. at least three medium signals for observed counts having the same observation time-
point and subsequent weeks of disease onset: N(t, T ), N(t+ 1, T ) and N(t+ 2, T ),

D3. at least two medium signals for observed counts having the same observation time-
point and subsequent weeks of disease onset when for one of these weeks of disease
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onset there was a medium signal before, e.g, a medium signal for N(t1, T1) and then
medium signals for N(t1, T1 + 1) and N(t1 + 1, T1 + 1).

These definitions were validated by epidemiologists used to review Listeria weekly
surveillance reports at the RKI. Definition D2 is supported by the fact that epidemiol-
ogists report looking at subsequent weeks to notice patterns. Definition D3 was created
because a signal may make the epidemiologist be more alert when receiving the reports in
the subsequent weeks.

The next step of the project will be to evaluate algorithms using this very heuristic
definition of signals and alarms, but also using signals as alarms, in order to see how much
our defining more complicated sequences of signals as alarms would change the measures
of performance of algorithms. We look forward to the first results of this work.

5.3.2 Multiple testing

During generation of weekly reports, many time series are monitored simultaneously,
which constitutes a multiple testing problem. Moreover, some of these time series are time
series for subgroups of other time series, e.g. time series for different age groups of patients.
Because time series analysed correspond to different aggregation of several characteristics
such as age, sex, location, their hierarchical structure is quite complicated. Taking this
structure into account for controlling e.g. the false positive rate (Benjamini and Hochberg,
1995) should be a further development and may help decreasing the number of false alarms
than can lead to user fatigue. Such an improvement would increase the users satisfaction
with the system and would make the detection and investigation of real outbreaks more
likely.

In Besag and Newell (1991) the authors present a detection method for cluster of
diseases where no adjustment is made for multiple testing because ”this might exclude
clusters that are epidemiologically important.” This is a valid argument but in the case of
a routine monitoring system the amount of signals that can be checked by epidemiologists
is limited.

Another improvement to signal presentation could be to output signals not only as
binary variables but to also associate each of them with a (corrected) predictive probability
for the observed count, and even to sort signals accordingly.

5.4 Conclusion

In this Chapter, we have mostly listed ideas for future research in count time series
monitoring and its applications. We have presented the limitations of most current models
used in aberration detection, due to ignoring residual auto-correlation in the time series,
and to distributional assumptions regarding the counts and their right-truncation. We have
also commented on the definition and computation of the threshold in the case of single-
timepoint detection. Regarding the practical applications of algorithms for aberration
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detection, we have introduced a possible way of mimicking real behaviour for the evaluation
of algorithms, and underlined the need for considering multiple testing. All these issues
constitute possible directions for future research beyond the work presented in this thesis.
In the next Chapter, we conclude this thesis.



Chapter 6

Conclusion

After presenting possible future and current challenges for statistical aberration detec-
tion in Chapter 5, this Chapter concludes the thesis: we aimed at improving statistical
aberration detection for routine surveillance of infectious diseases, both from a method-
ological point-of-view and as concerns their application in practice, in particular at the
RKI, where this work was conducted. This goal led to a main methodological development
for aberration detection and to the design and development of a new automatic surveillance
system at the RKI. Contributions were made to open-source software and the correspond-
ing documentation to enable others to use the methods. These three aspects, developping
better methods for routine surveillance, supporting their application and making their
implementations widely available, are intertwined and necessary for improving aberration
detection. In this conclusion, we summarize the results of the thesis for each of these
aspects and give future possible directions for research and recommendations.

6.1 Improvement of statistical aberration algorithms

In this Section, we state the methodological results brought by this thesis, including a
novel method for outbreak detection and the discussion of existing methods, and discuss
future theoretical challenges for aberration detection in count time series.

6.1.1 Summary of methodological results

In Chapter 1 we introduced the statistical and practical context of the work and pre-
sented the general framework of count time series. This included a presentation of the
Poisson and negative binomial distributions that we used throughout the thesis, and of
suitable regression models, i.e. GLMs and GAMs. We also briefly explained how to make
inference for such models and how to assess the goodness of fit of such models. Throughout
the whole thesis, we focused on the use of aberration detection algorithms based on Gen-
eralized Linear Models (GLMs) or Generalized Additive Models (GAMs) as flexible tools
that can take into account the (overdispersed) count distribution of surveillance count
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time series, their characteristics such as seasonality, time trend and possible dependence
on concurrent covariate processes.

Chapter 2 presented the statistical framework for outbreak detection and chosen al-
gorithms for outbreak detection that are, or could be, used in routine surveillance. The
presented methods included a frequentist method based on a GLM, a Bayesian algorithm
based on a GAM including a time-varying intercept acounting for autocorrelation in the
time series and using the INLA approximations for fast inference, and a method for moni-
toring of more than one timepoint. We therefore presented a representative set of statistical
algorithms for outbreak detection, with different sources of inspiration: traditional surveil-
lance methods, Bayesian hierarchical time series models and statistical process control.

In Chapter 3 we presented the main methodological statistical development of this
thesis. The chapter dealt with the problem of right-truncation of the reporting data: it
offered a short review of existing methods for nowcasting and outbreak detection in the
presence of reporting delays, and presented a novel Bayesian algorithm that was tested in
simulation studies and applied to the time series of weekly counts of Salmonella Newport
cases in Germany. The method is currently being tested for routine application at the
Robert Koch Institute. The Chapter was an enriched version of the article M. Salmon,
D. Schumacher, K. Stark, M. Höhle. Bayesian Outbreak Detection in the Presence of
Reporting Delays, Biometrical Journal, 57 (6), 1051-1067, 2015. Compared with the
article, we made the proof of a lemma that is central for our algorithm more explicit and
we presented the implementation of the algorithm in R. Furthermore, we also presented
an alternative approach to the problem of right-truncation of the data that was recently
published in Noufaily et al. (2015) but whose implementation is not available.

6.1.2 Remaining methodological challenges

Chapter 5 contained an outlook of future methodological developments for aberration
detection. The first issues presented were related to the regression models used, both
regarding residual auto-correlation and regarding the validity of distributional assumptions.
Improving existing detection algorithms with regard to these challenges could improve their
monitoring performance. However every improvement needs to be evaluated and tested in
order to see whether it really brings an increase of performance, and at which computational
cost. As a further topic we considered switching the definition of the threshold for single
timepoint detection, from a quantile of the predictive distribution corresponding to a p-
value based quantile, to a quantile based on the mid-p-value. Such mid-quantiles might
be more appropriate for count time series. Furthermore, we introduced a change of the
sampling method for finding a quantile of the posterior predictive distribution for the
two Bayesian detection algorithms presented in Sections 2.4 and 3.3. This could lead to
higher speed of calculation, which is an important factor if the method is to be applied in
routine surveillance systems in which many time series have to be monitored simultaneously.
Another important subject of research that we did not mention would be the areas of space-
time and multivariate surveillance, that can at least partly be seen as extensions of methods
presented in this thesis.
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An important aspect we want to underline in this conclusion is the interdisciplinary
aspect of methodological issues encountered in statistical aberration detection in count time
series of infectious diseases surveillance. Our work was motivated by routine surveillance
data of infectious diseases in Germany, but could be useful in many other contexts as
well: properties such as overdispersion, low counts, presence of past outbreaks, apply to
a wide range of count and categorical time series in other surveillance contexts such as
financial surveillance (Frisén, 2008), occupational safety monitoring (Schuh et al., 2014) or
environmental surveillance (Luo et al., 2012). Furthermore, work such as Höhle and Paul
(2008) was an effort at conducing a synthesis of traditional surveillance methods using
GLMs and statistical process control. Moreover, our novel algorithm presented in Chapter 3
builds on both the aberration detection algorithm of Manitz and Höhle (2013), on the
nowcasting method of Höhle and an der Heiden (2014), and on the work of Schmidt (2006)
in insurance mathematics, thus offering a synthesis of two fields, statistical aberration
detection and loss reserving. Altogether, this means that any development in one of these
fields could be useful in any of the other fields.

However, in our experience such a mutual enrichment is slowed down by partial ig-
norance of others’ work, which is exemplified by the review of Weiß and Lu (2015) from
the SPC field, that disregards recent work such as Liboschik et al. (2014) and Höhle and
Paul (2008). Another obstacle to improvement of methods is the use of different notation
and terminology. The run-off triangle in Schmidt and Wünsche (1998) describes a process
similar to the reporting triangle in Lawless (1994); Höhle and an der Heiden (2014), but
it has a different name and a partially different representation of right-truncation in the
data. Our recommendation to researchers of any field where count time series with possi-
ble right-truncation are monitored is to strive to be on top of the literature in other fields,
and to cite articles from, say loss reserving literature, when writing an outbreak detection
article, thus making links between methodological developments easier to detect.

Breaking a practical problem or process down into components such as compound
distributions, regression models, etc. beyond the use of field-specific technical terms is
actually what is to be expected of a statistician, and can catalyse the development of
modern methods for aberration detection.

6.2 Routine aberration detection

In this Section, we discuss our contribution to the improvement of the German surveil-
lance system of infectious diseases.

6.2.1 Summary of the practical results

During this work, we participated to the development and use of the system for routine
monitoring of infectious diseases at the RKI, for which we provided statistical counsel-
ing. Chapter 4 presented the routine surveillance application at the RKI, along with the
challenges encountered. We explained the design strategy and decisions behind the im-
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plementation of the system, its structure and its acceptance by the users. The work is
explained in the article M. Salmon, D. Schumacher, H. Burmann, C. Frank, H. Claus,
M. Höhle. A system for automated outbreak detection of communicable diseases in Ger-
many, Eurosurveillance, accepted for publication. The system was developped together
with the computer scientists and epidemiologists at the RKI. The inclusion of end-users –
epidemiologists – in the design and development of the surveillance system is in our opinion
the best way to take into account important practical factors such as workload, user fatigue
and to weigh these issues against a systematic insurance for not missing outbreaks.

In Section 4.4 we moreover provided guidance for implementing a simpler surveillance
system supported by the surveillance. This shows that setting up automatical aberration
detection does not need much infrastructure and thus can be applied in a variety of contexts.
Even such a such simple system would be a significant improvement compared to not
analysing the data at all, or having to do large parts of the analysis by hand.

6.2.2 Recommendations and future research

We also presented ongoing extensions of the RKI automatic surveillance system in
Chapter 4: the ongoing test of the algorithm presented in Chapter 3 and thoughts about
the possible parallel use of several algorithms for aberration detection in the same system.
In our opinion, any surveillance system in a public health institute needs continuous input
of statisticians, even after the initial set-up, to ensure the presence of a contact person
for statistical questions asked by the users, and the possibility to extend the system us-
ing the latest algorithmic developments. The current renewal of the German surveillance
system through the project DEMIS (German electronic reporting system for infectious dis-
eases) will bring further opportunities to make methodological improvement to the existing
automatic surveillance system.

In Section 5.3.1, we discussed a new scheme for evaluating an algorithm that is more
adapted to its use in a real surveillance system by differentiating signals and alarms for
tentatively mimicking epidemiologists’ behaviour. A better evaluation of the routine au-
tomatic surveillance system of infectious diseases in Germany would produce interesting
epidemiological results for the country and similar systems in other countries. Such an
evaluation would first need the definition of adapted performance measures. Section 5.3.1
was a first effort in this regard. In Section 5.3.2 we furthermore presented considerations
regarding multiple testing, which is an important issue in real surveillance systems moni-
toring many time series at once, and which would deserve further research.

6.3 Open-source implementation of algorithms

In this Section, we reflect on the open-source contributions of this work: we proposed
methodological developments and provided the corresponding implementations in order to
facilitate both their comparison with existing methods and their routine use. During this
work, we added algorithms to the R package surveillance, including the methodological
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advance presented in Chapter 3. Others algorithms added to the package during this
work are farringtonFlexible presented in Section 2.3, earsC presented in Sections 2.1
and 2.5.1, and bodaDelay presented in Section 3.5.

All functionality of the package comes only at the cost of learning how to use the
R statistical programming language. To support application by others, Chapter 2 was
an enhanced version of the article M. Salmon, D. Schumacher, M. Höhle. Monitoring
Count Time Series in R: Aberration Detection in Public Health Surveillance, Journal of
Statistical Software, accepted for publication. Here, we explained the use of the R package
surveillance.

Our work in favour of open-source software for aberration detection will hopefully also
serve future methodological developments for aberration detection, since any new method
can easily be compared to the ones we implemented, and since researchers could re-use
code instead of re-inventing the wheel. At the same time, our implementation efforts will
support the routine use of state-of-the-art method such as the ones presented in Section 2.4
– whose implementation we improved, and Chapter 3 – that we created and implemented.
In contrast, the method of Noufaily et al. (2015) presented in Section 3.6 was published
without available implementation which in our opinion is a strong obstacle to its use and
benchmarking.

Overall, in this thesis, we have made methodological improvements of statistical algorithms
for aberration detection in count time series, taking estimation and observation uncertainty
into account. Our work also provided a well documented and open-source implementation
of such methods. Moreover, we offered statistical counseling for the development and use of
a routine surveillance system. Our work allowed the enormous quantities of data collected
in the German surveillance system for infectious diseases to get even more informational and
managerial value: the output from monitoring algorithms increases awareness and alertness
of epidemiologists. Therefore, we would like to transform the quote ”Let my dataset change
your mindset” of the Swedish statistician Hans Rosling1 into ”Let my toolset change your
mindset about your dataset”.

1Hans Rosling’s TED talk ”Let my dataset change your mindset”, 2009, https://www.ted.com/talks/
hans_rosling_at_state/transcript.

https://www.ted.com/talks/hans_rosling_at_state/transcript
https://www.ted.com/talks/hans_rosling_at_state/transcript
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Danke an Florian Stallmann für Deine Hilfe in München und an Anna Loenenbach, die
meinen Lebenslauf auf deutsche Rechtschreibung geprüft hat.
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