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Zusammenfassung xiii

Zusammenfassung

Am 4. Juli 2012 wurde am grofien Hadronenbeschleuniger LHC am européischen Kern-
forschungszentrum CERN bei Genf die Entdeckung eines neuen Teilchens bekannt ge-
geben. Die Eigenschaften des Teilchens stimmen, im Rahmen der noch relativ groflen
experimentellen Unsicherheiten, mit denen des lang gesuchten Higgsbosons iiberein.
Teilchenphysiker in aller Welt stellen sich nun die Frage: ,Ist es das Standardmodell
Higgs-Teilchen, das wir beobachten; oder ist es ein anderes Teilchen mit dhnlichen
FEigenschaften?*

Effektive Feldtheorien (EFTs) ermoglichen eine allgemeine, modellunabhéngige Be-
schreibung des Teilchens. Dabei benutzen wir wenige minimale Annahmen — nur
Standardmodell Teilchen als Freiheitsgrade und eine Skalenseparation zur neuen Phy-
sik — welche durch aktuelle experimentelle Ergebnisse gestiitzt werden. Per Kon-
struktion beschreiben effektive Theorien daher ein physikalisches System nur bei einer
bestimmten Energieskala, in unserem Fall der elektroschwachen Skala v. Effekte von
neuer Physik bei hoheren Energien, A, werden durch modifizierte Wechselwirkungen
der leichten Teilchen parametrisiert.

In dieser Dissertation, , Effektive Feldtheorien fiir das Higgs — Systematik und
Anwendung*“, diskutieren wir effektive Feldtheorien fiir das Higgs Teilchen, welches
nicht notwendigerweise das Higgs-Teilchen des Standardmodells ist. Besonderes Au-
genmerk richten wir auf eine systematische und konsistente Entwicklung der EFT.
Diese Systematik ist abhéngig von der Dynamik der neuen Physik. Wir unterscheiden
zwei verschiedene konsistente Entwicklungen. Zum einen effektive Theorien von Mo-
dellen neuer Physik, die bei niedrigen Energien entkoppeln und zum anderen effektive
Beschreibungen von nicht entkoppelnden Modellen. Wir diskutieren den ersten Fall,
die Standardmodell EFT, kurz, da der Fokus dieser Arbeit auf nicht entkoppelnden
effektiven Theorien liegt. Wir erldutern, dass die konsistente Entwicklung im zwei-
ten Fall in Quantenschleifen erfolgen muss und fiithren das dazu dquivalente Konzept
der chiralen Dimensionen ein. Mithilfe der chiralen Dimensionen entwickeln wir die
elektroschwache chirale Lagrangedichte bis einschliefllich néchstfiihrender Ordnung,
O(f?/A?) = O(1/167?). Wir diskutieren auch den Einfluss verschiedener Annahmen
iiber die schiitzende (custodial) Symmetrie im Higgssektor auf die Liste der Ope-
ratoren. Wir beenden die Diskussion iiber die Systematik mit einem Vergleich der
entkoppelnden und nicht entkoppelnden EFT. Wir betrachten dabei auch den Fall,
dass die neue Physik einen nicht entkoppelnden Sektor bei einer Energieskala f be-
sitzt, welcher deutlich iiber der elektroschwachen Skala v liegt. Wir diskutieren die
Relevanz der daraus resultierenden Doppelentwicklung in & = v?/f? und f?/A? fiir
die Datenanalyse am LHC.
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Im zweiten Teil dieser Dissertation diskutieren wir Anwendungen der effektiven
Theorien, insbesondere der elektroschwachen chiralen Lagrangedichte. Als Erstes ver-
binden wir die EFT mit expliziten Modellen fiir neue Physik. Dies illustriert, wie die
Vorhersagen des Entwicklungsschemas in einem konkreten Fall realisiert werden. Wir
zeigen auch an einem Beispiel, wie verschiedene Parameterbereiche derselben Theorie
sowohl eine entkoppelnde als auch eine nicht entkoppelnde EFT generieren.

Als Zweites nutzen wir die effektive Entwicklung in fithrender Ordnung um die ak-
tuellen Higgsdaten des LHCs zu beschreiben. Wir zeigen, dass die aktuelle Parametri-
sierung der Higgsdaten, welche von den Experimentatoren am CERN verwendet wird
(der k-Formalismus), sich durch diese Entwicklung quantenfeld-theoretisch begriinden
lasst. Das Ergebnis eines Fits zeigt daher nicht nur, ob das beobachtete Teilchen das
Standardmodell Higgs-Teilchen ist, sondern auch, sofern sich Abweichungen manifes-
tieren, welche Art von neuer Physik bevorzugt wird. In unserem konkreten Fall nutzen
wir die Daten von 2010-2013. Die effektive Lagrangedichte, die diese Daten beschreibt,
lasst sich auf sechs freie Parameter reduzieren. Das Ergebnis ist konsistent mit dem
Standardmodell, weist aber noch statistische Unsicherheiten von etwa 10% auf.
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Abstract

Researchers of the Large Hadron Collider (LHC) at the European Organization for
Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new
particle. The properties of the particle agree, within the relatively large experimental
uncertainties, with the properties of the long-sought Higgs boson. Particle physicists
around the globe are now wondering, “Is it the Standard Model Higgs that we observe;
or is it another particle with similar properties?”

We employ effective field theories (EFTs) for a general, model-independent descrip-
tion of the particle. We use a few, minimal assumptions — Standard Model (SM)
particle content and a separation of scales to the new physics — which are supported
by current experimental results. By construction, effective field theories describe a
physical system only at a certain energy scale, in our case at the electroweak-scale
v. Effects of new physics from a higher energy-scale, A, are described by modified
interactions of the light particles.

In this thesis, “Higgs Effective Field Theories — Systematics and Applications”,
we discuss effective field theories for the Higgs particle, which is not necessarily the
Higgs of the Standard Model. In particular, we focus on a systematic and consistent
expansion of the EFT. The systematics depends on the dynamics of the new physics.
We distinguish two different consistent expansions. EFTs that describe decoupling
new-physics effects and EFTs that describe non-decoupling new-physics effects. We
briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the
non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in
the second case. We introduce the concept of chiral dimensions, equivalent to the loop
expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian
up to next-to-leading order, O(f?/A?) = O(1/167?). Further, we discuss how differ-
ent assumptions on the custodial symmetry in the Higgs sector influences the list of
operators in the basis. Finally, we compare the decoupling and the non-decoupling
EFT. We also consider scenarios in which the new-physics sector is non-decoupling at

a scale f, far above the electroweak-scale v. We discuss the relevance of the resulting
double expansion in £ = v?/f? and f?/A? for the data analysis at the LHC.

In the second part of this thesis, we discuss the applications of the EFTs, especially
of the electroweak chiral Lagrangian. First, we connect the EFT with explicit models
of new physics. This illustrates how the power counting works in a specific example.
We show how different regions of the parameter space of the same model generate a
decoupling and a non-decoupling EFT.

Second, we use the expansion at leading order to describe the current LHC Higgs
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data. We show how the current parametrization of the Higgs data, which is used
by the experimentalists at CERN (the x-framework), can be justified quantum field
theoretically by the EFT. The result of a fit does therefore not only indicate whether
we observe the SM-Higgs, but also, in case there are deviations, what kind of new
physics is preferred. In this thesis, we fit the data of Run-1 (2010-2013). The effective
Lagrangian describing this data can be reduced to six free parameters. The result of
this fit is consistent with the SM. It has, however, statistical uncertainties of about
ten percent.



1. Introduction

“ ..most of the grand underlying principles have been firmly established |. .. ]
the future truths of physical science are to be looked for in the sizth place of
decimals.”

— Albert A. Michelson (1852-1931), 1894 |1-3]

This statement of Albert A. Michelson from 1894 brings a smile to the faces of
present-day physicists. As it was noted some years ago in an article in “Science” [1],
“the mext three decades proved among the richest in the history of physics”. Planck’s
law for black body radiation (1900), Einstein’s description of the photoelectric effect
(1905), special relativity (1905), general relativity (1915), and the development of
quantum mechanics in the 1920s are some examples of the scientific advances in these
decades. But the progress did not stop after these developments. In 1932, Anderson
discovered the first antiparticle, the positron. Soon, more and more particles and inter-
actions were discovered in accelerator machines. The fundamental constituentd] and
the interactions between them are described in the Standard Model (SM). Together
with General Relativity, the Standard Model can explain almost all experimental data
collected so far. Some of the measurements, however, hint at effects beyond the Stan-
dard Model — often called new physics. Over the years, scientists have built more
and more powerful particle accelerators, to look for these effects and also to precisely
determine the Standard Model parameters.

The currently highest center-of-mass energy reached by a laboratory experiment is
13 TeV(= 2.1-107% J). Tt is reached in proton-proton collisions at the Large Hadron
Collider (LHC) at CERN in Switzerland. In Run-1, from 2010 to 2013, the experiments
ATLAS and CMS each recorded about 5 fb™' of data at 7 TeV and about 23 fb™' of
data at 8 TeV center-of-mass energy [5,/6]. They measured processes and confirmed
the predictions of the Standard Model over multiple orders of magnitude. The cross
section of proton-proton scattering may serve as an example. Figure [4] shows the
experimental results, together with the theory prediction for different final states. The
agreement, between the experimental measurements and the theory prediction of the
Standard Model is remarkable. On top of this confirmation of the Standard Model,
the experimental collaborations announced on July 4, 2012 the observation of a scalar
particle with couplings compatible with the Standard Model Higgs boson [7,[8]. Soon,
its couplings will be known with better precision and we will know if it is the Standard
Model Higgs or only a Higgs-like particle.

lFundamental as of 2016
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Figure 1.1.: Summary of cross section measurements by the CMS experiment [4]. The
agreement between the Standard Model theory prediction and the exper-
imental measurement is remarkable.

Summarizing the experimental results of the LHC, no signs of new physics have been
observed so far. This leads us to a conclusion similar to Michelson’s: What if there is
no new physics to be observed at the LHC? Will we only measure the Standard Model
more accurately? Of course, there are still open questions that the Standard Model
cannot answer, but what if these questions are not answered at the LHC?

Given the historical developments that took place after Michelson’s comment in
1894, there is no need to be pessimistic today. There may be very exciting decades
just ahead of us. The LHC started Run-2 in May 2015 with an increased center-of-mass
energy of 13 TeV and more data are being collected as well as analyzed.

New-physics effects can manifest themselves in two ways in the data. Either new
particles are directly produced and observed at the LHC, or the effects of new physics
show up indirectly, as new interactions or virtual effects of new particles. So far, no
direct observation with more than 5o significance was made. However, there are some
deviations of less than 30 observed [9-12].

Motivated by this absence of direct observations, indirect searches became increas-
ingly popular. The low-energy impact of high-energy new-physics effects are system-
atically studied within effective field theories (EFTs). In particular in the bottom-up



approach, effective field theories provide a model-independent tool for data analysis.

The Higgs particle received special attention in the context of effective field the-
ories. It is a scalar excitation that is predicted by the Brout-Englert-Higgs mecha-
nism [13-18], describing spontaneous breaking of gauge symmetries. The mechanism
was proposed in the 1960s as a way to give masses to gauge bosons in a gauge-invariant
way by introducing a complex scalar doublet that acquires a vacuum expectation value.
This spontaneous breaking of symmetry generates three Goldstone bosons that become
the longitudinal degrees of freedom of the W*/Z gauge bosons. The remaining fourth
degree of freedom is the Higgs particle and it is needed for the unitarity of the theory.
The scalar particle that was observed at the LHC [7,[8] is a good candidate for being
the Higgs particle. However, its couplings are only measured up to a precision of the
order of ten percent or less, because its discovery was only four years ago. Poten-
tially large new-physics effects can hide in these couplings. Many different ways exist
to analyze them. The LHC Higgs Cross Section Working Group (LHCHXSWG) is
currently working on a recommendation for analyzing the Higgs couplings, also using
effective field theories.

The LHCHXSWG was founded in 2010 [19] in order to produce agreements on Stan-
dard Model Higgs observables, like cross sections and branching ratios. It is a joint
project of theorists and experimentalists. Later, the group was restructured to discuss
also measurements, properties, and beyond-the-Standard-Model scenarios related to
the Higgs. Now, in early 2016, the working group is writing the CERN Higgs Yellow
Report 4 [19,20]. Parts of this document are devoted to the use of effective field theo-
ries in Higgs analyses. This shows the important role that effective field theories play
in present-day high-energy physics.

This thesis is based on [21-28] and divided into three parts. In Part I, we review the
basic concepts of the Standard Model, especially spontaneous symmetry breaking. We
then introduce effective field theories (EFTs) in both the top-down and the bottom-up
approach. When applying the concept of bottom-up EFTs to the Standard Model,
two different consistent expansions can be formulated, based on different assumptions.

We explore these two different effective field theories in Part II. We start with the
so-called linear or decoupling EFT, sometimes also referred to as Standard Model
effective field theory (SM-EFT). The focus of Part II, however, is on the non-linear
EFT that is given by the electroweak chiral Lagrangian. In particular, we emphasize
its systematics as non-decoupling EFT and its relation to the linear EFT.

In Part III, we discuss applications of effective field theories. First, we match the
effective descriptions to explicit models of high-energy physics. Thereby we explicitly
illustrate the relation between the two different expansions. Then, we use the effective
Lagrangian to fit data from the LHC. The obtained pattern of coefficients helps us
to infer the theory that is underlying the data — either the Standard Model or some
theory beyond the Standard Model. In this context, the statement of Michelson indeed
becomes true: Using more and more precise measurements, we will find indirect signs
of new physics, and by employing effective field theories, we will be able to infer “the
future truths of physical science”.






Part |I.

Foundations






2. The Standard Model

2.1. The Standard Model Particle Content and Its
Symmetries

The Standard Model (SM) is a consistent model of fundamental particle interactions
that was developed in the second half of the 20" century. It builds on the work
of many authors, most notably [13-18,[29-H41]. The SM is a Quantum Field Theory
(QFT) that is able to describe almost all experimental data of particle physics based
on only 19 input parameters [42]. We discuss the observations that are not described
by the SM in Section [2.3] The SM can be summarized in a condensed form in terms
of the Lagrangian:

1 1 1 @2~
—- __ pv pvN pr\ S uy
Lon = = BuwB" = 5 (W W) = (G G") = 05555 (G G™)

gL DG + il PO + it Dy + id DdE, + iet el
1 A

+ (Duo")(DF ) + §M2¢T¢ - Z(¢T¢)2

- ZiLKﬁ‘ﬁeiz - qiLij¢d{q — QiLYJj(iam*)u% +h.c.

Here, (...) is the trace. In the rest of this section, we will describe the particles and
the symmetry relations they obey in more detail.

Symmetries are very important in QFTs. For each symmetry, there exists a con-
served current J* [43], giving rise to a conserved charge Q@ = [ J°d*z. Further,
invariance under certain symmetries constrains the structure of the particle interac-
tions.

The fields in Lqy, Eq. , can be classified in two groups. Particles of integer
spin (s), bosons, mediate the interactions, with symmetry dictating the interaction’s
structure. The local SU(3)c x SU(2), x U(l)y gauge symmetry of the Standard
Model induces gauge interactions, mediated by the s = 1 gauge fields. In Eq.
they are denoted G for the strong SU(3)c, W for the left-handed SU(2)., and B
for the hypercharge U(1)y interactions. The scalar (s = 0) Higgs field ¢ participates
in the Yukawa interactions together with the fermion fields. These fermions of spin
s = 1/2 form the second group of particles, the matter content of the SM. This group
can further be divided into particles that participate in the strong and electroweak
interactions (called quarks), and the particles that only interact through the elec-
troweak interactions (called leptons). Each fermion is specified by its representation
of the gauge group. Table summarizes the particle content with its corresponding
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representation of the gauge group, i.e. gauge charge. For each representation, three
copies of the fermions exist that only differ by their mass. They are called generations.
The Standard Model, being a chiral theory, distinguishes particles of different chirality

(indicated by the subscripts L/R) by different representations of the gauge group in
Table 211

Particle Representation
. U c t
f 3,2,1/6
qLe{(d)L’ (S)L’ (b)L} (3.2,1/6)
Quarks u% - {UR, CR, tR} (3, 1, 2/3)
d% < {dR,SR,bR} (3,1,—1/3)
ae{() (%) (%)} aa
Leptons €/ \H/)p \T/p
el]é € {eRuuRaTR} (1717_1)
Higgs ¢ (1,2,1/2)

Table 2.1.: Representations of each fermion as well as the Higgs field of the Standard
Model, given as (SU(3)¢, SU(2)r, U(1)y). The subscripts L and R indicate
the chirality.

The covariant derivative is constructed in the usual way. For a generic field ¥ we
have
D,V =0,V +igW,¥ +ig'YyB,V + ig;G,Y, (2.2)

where the gauge fields are contracted with the group generators in the representation
of the field .

The strong interactions of Quantum Chromodynamics (QCD) [39] are governed by
the local symmetry called color SU(3)¢. The quarks and gluons of are useful
degrees of freedom only for energies above Agcp ~ 2 GeV. Far above Aqep, they are
asymptotically free [35,36,141]. At the scale Aqcp, the relevant degrees of freedom
change and light mesons, such as pions and kaons, become the propagating degrees
of freedom. The fundamental quarks and gluons are confined in the hadrons and
only color-neutral states are observed. The electroweak subgroup, SU(2)r x U(1)y,
is at energies at or below the electroweak scale v spontaneously broken to U(1)ggp of
Quantum Electrodynamics (QED). We discuss spontaneous symmetry breaking and
its implications for the SM further in Section

In addition to the local symmetries, Lgy in Eq. (2.1]) also exhibits global symmetries,
some of them being only approximate. For vanishing fermion masses, the three gen-
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erations would be indistinguishable. This introduces a global U(3)? symmetry, called
flavor symmetry [44]. The Yukawa interactions violate this symmetry, leaving only
one U(1) symmetry for the quark sector and one U(1) symmetry for the lepton sector.
These symmetries are called Baryon number B and Lepton number L, counting the
numbers of Baryons and Leptons. If the masses of the neutrinos are vanishing, the
lepton number of each family will be conserved separately. A closer inspection reveals
that both B and L symmetries are anomalous [45], meaning the symmetry is only
conserved at tree-level, but broken by quantum effects. However, the difference B — L
is a true global, anomaly-free symmetry of the Standard Model. This is, however, not
enforced on the Lagrangian. Rather, it is an accidental symmetry. All terms allowed
by gauge and Lorentz symmetry also respect this global symmetry.

The QCD sector of the Lagrangian, given by Eq. in the limit ¢, ¢ — 0 and
Yy — 0, is invariant under a global chiral U(6); x U(6)r symmetry. This is because
for QCD in the limit of vanishing quark masses, there is no distinction between the six
quark flavors. The chiral symmetry group is equivalent to U(1)y x U(1)a x SU(6)r X
SU(6) g, where V(A) refers to the vectorial (axial) combination L *y R. The U(1)y is
again the Baryon number B. The axial U(1)4 is anomalous and thus not a symmetry
of the quantum theory. The axial SU(6), is spontaneously broken by the quark
condensate [46], leaving the SU(6)y as global symmetry of massless QCD. Realistic
values of the quark masses exclude this large symmetry group. However, the three
lightest quarks, u, d, and s, can be considered massless to a good approximation |42],
giving QCD an approximate SU(3), x SU(3)r — SU(3)y global invariance. Similar
constructions can be made for the two lightest quarks only, giving an approximate
SU(2) x SU(2)gp — SU(2)y invariance.

Also the Higgs sector of Lgy has an approximate global symmetry [44]. In order to
see this, consider the Higgs sector of Eq.

1 A
‘CHiggs = (DM¢T)(DM¢) + §M2¢T¢ - Z(¢T¢)2 (23)

Introducing the Higgs bi-doublet ®, composed of the doublet ¢ and the conjugated
doublet ¢; = €;;07, as

@ = 1(5.9) (24)

we can write the Lagrangian as

Lrvs = (D,2)(DFB)) + (01 8) — 2 (210} (25)

The covariant derivative of ® is given by
D,® = 8,® +igT*W;® — ig' B,®T", (2.6)

where T% = ¢%/2 are the generators of SU(2). Written in this form, the SU(2), %
U(1)y transformations act on ¢ as

d — gDyl where g;, € SU(2),, and gy € U(1)y. (2.7)
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In the limit of vanishing hypercharge interactions, ¢ — 0, the Lagrangian Lyjggs iS
invariant under the larger symmetry group SU(2); x SU(2)g. This accidental global
symmetry is broken explicitly by hypercharge interactions and also by the different
Yukawa couplings for up- and down-type quarks. We will come back to this symmetry
after we discussed spontaneous symmetry breaking in the Standard Model.

The product of the discrete symmetries C (charge conjugation), P (parity), and
T (time reversal) is a symmetry of local, hermitean, and Lorentz-invariant Quantum
Field Theories [47,148| and therefore also of the Standard Model. In QED, C, P, and
T are separately conserved. QCD also conserves the three symmetries separately if
6 = 0 in Eq. (2.1). Otherwise, there will be CP violation in the QCD sector. The
electroweak sector violates C and P maximally since particles of left- and right-chirality
are in different representations of the gauge group SU(2), x U(1)y. In addition, there
is a C’P-violating phase in the CKM matrix that we will introduce below.

2.2. The Standard Model in the Mass-Eigenstate Basis

The Lagrangian in Eq. , which we discussed in the previous section, was written
in terms of the gauge interaction eigenstates. They do not always coincide with the
mass eigenstates, which are the propagating degrees of freedom that we observe in
the detectors. To connect our theory predictions to experimental observables, it is
therefore necessary to rotate Eq. to the mass-eigenstate basis. We will do so in
this section. However, for the discussion it is crucial to have a look at the different
fates of symmetries first.

2.2.1. Different Fates of Symmetries

The symmetries of Eq. that we discussed so far have different fates |[42]. Some
of them, such as B — L, are indeed symmetries of the particle interactions. Other
symmetries, like the combination B + L, are anomalous. Even though the Lagrangian
is invariant, the measure of the path integral is not. The symmetry will then be
broken by quantum effects, i.e. by loops. It is also possible that the system has
only an approximate symmetry, meaning it is only a symmetry in a certain limit. In
the full Lagrangian, the symmetry is explicitly broken by a small perturbation. The
small masses of up- and down-quarks break the chiral SU(2), x SU(2)r symmetry
of QCD explicitly. The fourth possible fate of a symmetry of a Lagrangian is that
it is not respected by the ground state of the system. The symmetry is then called
spontaneously broken. Since spontaneous symmetry breaking is responsible for many
phenomena in particle physics, we will discuss it in more detail using the following
example, called the linear sigma model.
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Spontaneous Symmetry Breaking and the Linear Sigma Model

Consider the linear sigma model. We start from a set of N real scalar fields ¢; with
the Lagrangian

1 n lu2 2 A 4
L= 5(0:0)(0"¢i) + 10" = 7 1ol" (2.8)
It is invariant under a global O(N) symmetry of the fields ¢;. The ground state of
this theory is given by the field configuration that minimizes the potential:
2

’¢va0|2 = % UQ- (29)

Physical particles are excitations from this vacuum. Rewriting Eq. (2.8]) in terms of
the physical fields, ¢ = (m1,...,7y_1,v + o), yields

L= %(%m)(@“m) + %(Qﬁ)(@“a) — \?o? — 2(7T2 +02)? — Mo(n? +0%).  (2.10)

We observe N — 1 massless fields, the 7;, and one massive ¢ with mass m, = \/ﬁ,u in
the spectrum. The global O(N) symmetry of Eq. is hidden in the structure of the
interactions in Eq. (2.10)), only the O(N — 1) symmetry of the 7; is explicit. All these
effects are not a coincidence, they appear whenever a global symmetry is spontaneously
broken. This was observed by Goldstone [49] in connection with observations of Nambu
[50-52]. He formulated Goldstone’s Theorem: For each generator of a global symmetry
that is spontaneously broken we observe a massless boson [45]53] with the quantum
numbers of the broken generator. These massless fields are called (Nambu)-Goldstone
bosons. From the (N—1)N/2 generators of O(N) in our example, only (N—1)(N—-2)/2
are unbroken in the vacuum, yielding N — 1 Goldstone bosons. If the spontaneously
broken symmetry is also broken explicitly, the Goldstones become massive. They will
still be light compared to other particles of the spectrum if the explicit breaking of the
symmetry is small. They are called pseudo-(Nambu)-Goldstone bosons in this case.

The Non-Linear Sigma Model

We now consider the non-linear sigma model. We construct it from the linear sigma
model in the limit when the mass of o tends to infinity, while the vacuum expectation
value v remains constant [54]. As it is impossible to excite the o state, the dynamics
of the m; are constrained to be on the vacuum manifold with the O(N — 1) symmetry.
This results in the non-trivial constraint |¢| = v, or equivalently

7+ o0 = —2vo. (2.11)
The Lagrangian then becomes [55]

1 1 (m;0,m;)(m;0"7;)
_ - Nty o TG JO T
L= 2((3“7@)(6 i) + 5 22 . (2.12)
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As the vacuum manifold is non-linear because of the constraint , the model is
called non-linear sigma model. Since the construction of the non-linear sigma model is
only based on the structure of the vacuum manifold, it is only the pattern of symmetry
breaking that enters here. More information on how the symmetry is broken is not
needed for describing the low-energy dynamics of the Goldstone bosons. This makes
it very useful in bottom-up effective field theories that we will discuss in the next
chapter.

The constraint that restricts the Goldstone bosons to be on the vacuum manifold can
be realized in the Lagrangian in many different ways. This basically corresponds to a
choice of coordinate system on the vacuum manifold. The square root representation of
Eq. is therefore not the only possible choice. Another convenient representation
is the exponential representation, where the Goldstone bosons are written as

i, 0

LAY (2.13)

v

U =exp{i

with 7" being the generators of the coset O(N)/O(N — 1) and ¢* are functions of the
m;. The Lagrangian of Eq. (2.12]) then becomes

2
L= UZ(@MUW“U}. (2.14)

All differently looking non-linear representations give the same results for observables,
as they are all related by field redefinitions [42.56-59).

The Higgs Mechanism

The situation changes when instead of a global symmetry a local symmetry is spon-
taneously broken. Consider a complex scalar field ®, gauged under a U(1) symmetry:

1 74
L=~ F,F" + D, @' DO + (20T — \(DTD)? (2.15)

where D, ® = 0,®+1igA,® is the covariant derivative of ®. The vacuum of this theory
is given by the condition |®|*> = p?/(2)\) = v?/2. The expansion around the ground
state is parametrized as ® = (v + h +in)/v/2. The potential from Eq. becomes
now, upon neglecting an unphysical constant,

A
V = \w?h? + Z(172 + 12 + Avh(n? + h?). (2.16)

This is similar to the case of a spontaneously broken global symmetry in Eq. (2.10)).
The difference arises from the covariant derivative in the kinetic term,

1 1
D,®'D"® = 5 (0uh)(9"h) + 5 (9um)(0"n) — gnAu(9"h) + gA.(8"n)(v + h)
. (2.17)
+ %AMA“(UZ + 2vh + h? + 7).
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Again, we have a massless Goldstone boson from spontaneous symmetry breaking, the
71, as well as a massive field, the h. Eq. , however, seems to indicate a kinetic
mixing between the Goldstone and the gauge field. The situation will clear up once we
use the gauge freedom the Lagrangian has. After making the transformations
® — exp {—in/v}® and A, — A}, + 9,n/(gv) we find

2
D, DrY = %(auh)(auh) + %ALA’“(UQ + 20h + ). (2.18)
This particular choice of gauge, called unitary gauge, removes the Goldstone bosons
completely from the spectrum. We are left with a theory of a massive scalar, h, and a
gauge field, A/, that acquired a mass m = gv in Eq. (2.18). The mechanism, in which
gauge fields get a mass from a spontaneously broken local symmetry, is called Brout-
Englert-Higgs mechanism [13H18], or Higgs mechanism for short. The Goldstone boson
from the spontaneous breaking of the global subgroup is “eaten” by the gauge field and
becomes its longitudinal degree of freedom. A complex scalar and a massless gauge
field have 2 + 2 = 4 degrees of freedom before symmetry breaking. After spontaneous
symmetry breaking, we have a massive real scalar and a massive gauge field, giving
1 4+ 3 = 4 degrees of freedom. The total number of degrees of freedom is therefore
unchanged. After seeing the origin of the mass term from spontaneous symmetry
breaking explicitly, we also understand why the Lagrangian containing is still
gauge invariant. A gauge transformation of A4,, i.e. A, = A, + J,c, is compensated
by a transformation of the longitudinal degree of freedom, i.e. n» — n — agv. The
massive gauge field
A=A+ % (2.19)
is then trivially invariant. Equation (2.19) is sometimes called Stiickelberg decompo-
sition [60].

2.2.2. The Standard Model After Spontaneous Symmetry
Breaking

We will now see how spontaneous breaking of SU(2), xU(1)y dictates the phenomenol-
ogy of the Standard Model. This was first described by Glashow [29], Weinberg [31],
and Salam [32], giving this model the name GWS theory.

The Gauge and the Higgs Sector

The Standard Model Higgs potential in Eq. (2.3) has a non-trivial minimum, giving a
vacuum expectation value to the Higgs field

N
(¢'P)vac = 5~ = 5 (2.20)
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The SU(2); invariance allows us to choose ¢y = (0,v/v/2)7. Fluctuations around
the vacuum are parametrized by

m + i
= =) 2.21
o= (415 2

where h is the physical Higgs boson and 7; are the three Goldstone bosons of SU(2), X
U(l)y = U(1)gep- Inserting this back into Eq. (2.3), we find in unitary gauge

1 1
Criiggs =5 (0uh)(0"h) + ¢ W W] (0 + h)?

1 3 3u I pu 2 A oig Aog Ay

+ 8[(9% 9'B.)(gW™ — ¢'B )} (v+ h)* = J0?h? = Joh® — i,

(2.22)

In this expression, we observe a mixing between the Wj’ and the B,. We define the
physical basis, i.e. the mass-eigenstate basis, via

WhxiW?), 7, = ! W3 —¢B
) ju W(Q p 9 u) (2.23)

This gives
1 1ra? 2 2
LHiggS :§(auh)<auh) + 5 %W:W_H + %ZPZ“ (U + h)2
N (2.24)
— ZU h — Z'Uh — Eh s

where we can now read off the masses of the physical W= and Z boson,

my = % and my = g\/QQ + g7 (2.25)

The fourth gauge field, A,, remains massless. It is the messenger of the unbroken
U(1) — the photon of QED. The U(1)ggp is generated by the combination T} + Y
of the generators of SU(2), x U(1l)y, thereby connecting the field’s electric charge
with its hypercharge and its eigenvalue of the third generator of SU(2)., yielding
Qu = T}?”\Ij + Yyg. From this, we find the electric charge

/
e=—29 (2.26)

Since the transformation in Eq. (2.23)) can be understood as a rotation in field space,
it is useful to define the rotation angle, or weak-mixing angle as

(2.27)

g
cos b, = =
/

g*+g
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We can now return to the matrix notation of the Higgs sector, Eq. (2.5). The vacuum
expectation value of ¢ in Eq. (2.20]) gives the vacuum for ® to be

1 /v O
q)vac - 5 (0 U) . (228)

Since @ transforms as
d — grdgh, where g r € SU(2)L R, (2.29)

both symmetries will be broken in the ground state. Only if g, = gg, the vacuum
will be invariant. This gives the pattern of symmetry breaking SU(2);, x SU(2)r —
SU(2)y in the Higgs sector. The SU(2)y symmetry of the vacuum is often called
custodial symmetry [61], as it protects the mass ratio of W* and Z from receiving
large perturbative corrections. Hypercharge and the difference between up- and down-
type Yukawa couplings violate custodial symmetry. Sometimes, violation of custodial
symmetry is defined excluding these sources of explicit breaking [62].

The Yukawa Sector

The expansion of ¢ around its vacuum expectation value, v/v/2, introduces mass terms
for the fermions,

Lyvaiawa = =LY del, — @Y pdl, — G0 Y (i00¢™ )ul, + hec.

- eI (1+) — Y, (14 4) - Y (14 4) + he
(2.30)

Mass terms of Dirac type, m¥; Uy, are not allowed in the Standard Model, as left-
and right-handed fermions are in different representations of the gauge group.

Since there is no restriction on the shape of Y‘f,j , the fermions do not need to be in
the mass-eigenstate basis. A bi-unitary diagonalization can be done using [42]

my,
My,

where there is a unitary transformation U (V') for each left-(right-)handed fermion:
TENE [P and WEMES = e, (2.32)

Applying this transformation to Lgy gives us the Lagrangian in the mass-eigenstate
basis. Kinetic terms, neutral weak-, electromagnetic-, and strong-gauge currents are
diagonal in flavor space. Thus, the unitary matrices cancel to unity and the mass
and gauge basis coincide. The charged gauge currents of the weak interactions are
different, as they connect an upper and a lower component of an SU(2);, doublet.
The unitary matrices will then not cancel, leaving terms like —gWyWUIU, 4.
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In the lepton sector, this rotation can be absorbed by the neutrinos. As they have no
mass term in Eq. , this is not in contradiction to the diagonalization discussed
above. The situation is different in the quark sector. There, we do not have the
freedom to redefine the fields once we go to the mass basis. The charged currents of
the weak interaction will therefore mix the states of different generations. The mixing
matrix, usually applied to down-type quarks, is called CKM matrix [30}40],

Vexu = UlUa. (2.33)

It is in general a 3 x 3, complex-valued matrix. Since it is unitary, it seems to have
nine free parameters. However, five of them can be absorbed in the relative phases of
the quarks as part of the U(3)® transformation discussed above. An overall common
phase does not change the CKM matrix at all [42]. The four remaining free parameters
are three mixing angles and one complex phase. The latter is responsible for the CP
violation in the quark sector of the Standard Model.

The Standard Model Lagrangian in the Mass-Eigenstate Basis

After all the considerations presented above, we can now write down the Lagrangian
of the Standard Model in the mass-eigenstate basis in unitary gauge
L - 1F J - 1Z v _ 1W+ W /;triple 4 Equartic
SM — Z j% Z v 5 uv + gauge gauge
= LaLemy g s (G GP™) + S(0,0)(0"h)
20 B Dt B
+iq, gy + il PO, + ity Pu'y + idg Pdy, + iey Dely
) — m2 B2 A 212 A 3 A 4
L o e N R
—miébel (L+2) —midydy (1+2) —ml abul (1+2) +hee.

v

(2.34)

Here, L0 and L3274 are the non-abelian parts of (W, WW*) after the rotation de-
fined in Eq. (2.23)). The field-strength tensors X, for X € {F,Z, W*} are then only
linear in the gauge fields. The CKM matrix is understood to be implicitly contained

in the covariant derivative of the left-handed quarks.

We conclude this chapter with some general observations concerning the Standard
Model Higgs. Since all of its couplings have the general structure (v 4+ h)", coming
from spontaneous symmetry breaking, the SM-Higgs’ couplings to the massive gauge
fields and fermions are proportional to the masses of the corresponding particles. The
Higgs self-coupling is proportional to the mass of the Higgs.

The Higgs is therefore dominantly produced by either massive vectors in vector
boson fusion (VBF, see Fig. [2.1(a))) and associated production (WH/ZH, see Fig.
2.1(b)) or via heavy quarks. As the parton density function of the latter in the proton
is small at the current experimental energies, these quarks are usually not in the initial
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(a) Vector boson fusion (VBF) (b) Associated production with vector bosons
(WH/ZH)

(c) Associated production with tt-pairs (ttH) (d) Gluon fusion (ggF)

Figure 2.1.: Production modes of the Standard Model Higgs boson. At the LHC for a
center-of-mass energy of y/s = 13 TeV and a Higgs mass m;, = 125 GeV,
the dominant single-Higgs production mode is gluon fusion (ggF). It con-
stitutes 86.1% of the total production [63] cross section. Vector boson
fusion (VBF) contributes 7.3%, whereas associated production with vec-
tor bosons (WH/ZH) and top-quark pairs (ttH) only contribute 4.4% and
1%, respectively [63].

state. Instead, the Higgs is produced in tt-associated production (ttH, see Fig. [2.1(c)))
or in gluon fusion (ggF, see Fig. 2.1(d)). At the LHC, gluon fusion is the dominant

production mode [63].

The Higgs decays at tree level to pairs of fermions and W*/Z vector bosons. Since
the coupling is proportional to each particle’s mass, the branching ratio (BR) is larger
for heavier final states. An upper cutoff to the particle’s mass of the final state is
given by the available energy, ¢.e. one half of the Higgs mass. The dominant decay
channels are therefore to bottom-quark pairs with BR(h — bb) = 57.7%, pairs of W+
with BR(h — WW*) = 21.5%, pairs of tau-leptons with BR(h — 7777) = 6.3%,
and pairs of Z with BR(h — ZZ*) = 2.6% [64]. Similar to the production in gluon
fusion, the Higgs can also decay wvia a loop of heavy fermions. The loop induced final
states include gg, vy and Zv. The decay channel to two photons is of high importance
for the experimental detection of the Higgs. The very clean signature in the detector
compensates for the small branching ratio of BR(h — vy) = 0.2% [64].
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2.3. Open Questions

Even though the Standard Model is tremendously successful in describing experimental
data, there are still motivations for beyond-the-Standard-Model (BSM) physics [65].
These motivations are based on experimental observations and theoretical considera-
tions. In the following section, we present some open questions of the SM.

2.3.1. Experimentally Motivated Hints for Physics Beyond the
Standard Model

The neutrinos of the Standard Model do not get a mass from the Higgs mechanism
and are therefore massless in the SM. Experiments, however, observed an oscillation
of propagating neutrinos from one flavor to another [66-68], indicating that the flavor
basis does not coincide with the basis of propagation, i.e. the mass-eigenstate ba-
sis. This phenomenon is therefore only possible for massive neutrinos. Currently, no
precise value exists for these masses, only upper and lower bounds are reported [69].
Furthermore, also the mass hierarchy of the three generations is not determined by
experiment and a subject of current research [70].

Adding a Yukawa interaction to the Lagrangian of the Standard Model, such that
the neutrinos acquire a mass via the Higgs mechanism, requires to introduce right-
handed neutrinos. This goes beyond the Standard Model. These neutrinos will be
sterile, i.e. they are uncharged under the SU(3)¢ x SU(2)r x U(1)y gauge group.
They can therefore only be detected via mixing or gravitational effects. So far, there
is no conclusive evidence for right-handed neutrinos.

Another explanation for the neutrino masses is a Majorana nature of the neutrinos.
A Majorana fermion is its own antiparticle, in contrast to the Dirac fermions of the
SM that are distinct from their antiparticles. Experimental detection of neutrino-less
double-beta decay would confirm the Majorana nature of the neutrinos. So far, it has
not been observed [71].

Rotational curves of galaxies [72,[73] and gravitational lensing observations [74] sug-
gest the existence of a type of matter that generates a gravitational potential, but
is invisible to electromagnetic radiation. It is called dark matter (DM) and it ac-
counts for approximately 84% [75,/76] of all the matter in the universe. Assuming a
particle-physics explanation for dark matter requires to go beyond the SM, as there is
no appropriate candidate for a dark-matter particle. Left-handed neutrinos, the only
SM particles that have the right quantum numbers, cannot be used to explain dark
matter. Their small mass would yield relativistic (warm/hot) dark matter, in contrast
to observations [65}/75]. Thus, additional particles beyond the Standard Model need
to be introduced.

A third observation concerns the matter-antimatter asymmetry of the universe
[77,/78]. For this to be generated within the Big Bang Theory, the three Sakharov
conditions [79] need to be fulfilled. We need Baryon number B violating processes,
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C- and CP-violating effects, and non-equilibrium conditions. Within the Standard
Model, however, the effects are too small [78] to account for the observed excess of
matter over antimatter.

2.3.2. Theoretically Motivated Hints for Physics Beyond the
Standard Model

Many of the theoretically motivated open questions are connected to the notion of
naturalness. Naturalness means that at any energy scale E a physical parameter
p(E) is only allowed to be small, if replacing p(F) = 0 increases the symmetry of
the system [46]. Recently, this was called “technical naturalness” [80]. The Standard
Model is naively expected to be valid up to the Planck-scale, Ap; ~ 10*° GeV. At these
energies, the quantum corrections to gravitational effects of general relativity become
dominant and a new, so far unknown theory of quantum gravity is needed. With such
a high cutoff, particle masses at the electroweak scale of the SM, v = 246 GeV, seem
very unnatural. Setting the fermion masses to zero, however, introduces the chiral
symmetry discussed in Section , making these masses natural in the sense of [46].
The scalar Higgs, on the other hand, has no symmetry that protects its mass from
corrections of the order of Ap;. These corrections might still cancel to give a value of
the order of v, but it will be unnatural. This problem is called hierarchy problem. The
masses of the gauge bosons do not receive corrections of O(Ap;), but only O(log Ap;),
due to gauge symmetry [45]. The hierarchy problem in the gauge sector is therefore
not as severe as in the Higgs sector.

The Higgs sector of the SM gives further motivations for alternative models of
electroweak symmetry breaking [81]. The renormalization-group (RG) running of
the Higgs self-coupling A might, depending on the numerical values of the other SM
parameters, yield a Landau pole before the new sector of quantum gravity modifies
the dynamics. This so-called triviality problem [82-84] indicates that new physics
must be present before Ap;. In addition, other configurations for the input parameters
would lead to a change of the sign of the self-coupling A. Such a value would make the
electroweak vacuum unstable, naming this the stability problem [83,[84]. The precise
value of the energy scale where this occurs depends strongly on the values of m; and
my. Latest experimental results indicate a meta-stable configuration [69], with the
lifetime larger than the age of the universe.

Solutions to the open questions concerning electroweak symmetry breaking extend
the Standard Model at the electroweak scale v or above, possibly making these scales
natural with respect to Ap;. Yet, there is another scale hierarchy that is highly un-
natural. Astrophysical observations [75] measured the cosmological constant to be
Ao = (1073 eV)* [65], which is 120 orders of magnitude below the Planck-scale.

Apart from the hierarchy problems discussed above, there are other features only
parametrized, but not explained in the Standard Model. The numerical values of
couplings, masses, and mixing angles are input values to the SM. So far, there is no
theory that predicts the observed pattern: The gauge couplings are all of order one,



20 2. The Standard Model (SM)

whereas the Yukawa couplings and therefore the particle’s masses span several orders
of magnitude. The mixing in the quark sector is small [69], but for the neutrinos it is
rather large.

Many solutions for the problems discussed above have been suggested and looked for.
They include proposing new particles, new symmetries, new interactions, unifications
of interactions, unifications of field representations, as well as combinations of these
proposals. Experimentally, none of them has been observed so far. In the next chapter,
we will introduce the concept of effective field theories, which allows us to look for
new-physics effects in a model-independent way.
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3. Effective Field Theories

In particle physics, we have interesting phenomena coming at many different energy
scales, ranging from the sub-eV region of neutrino masses to the TeV region of current
experiments, and likely also beyond. Fortunately, we do not need to know the under-
lying “theory of everything” to describe effects at a given (low) energy. Quantum field
theories that are only valid in a certain range of energies are called effective field the-
ories (EFTs). Scales much lighter than the given energy are treated as zero, heavier
scales are set to infinity to a first approximation [85]. Deviations from this simpli-
fied picture are treated as perturbations, in which the theory can be systematically
expanded.

The influence of heavy particles (UV-physics) on low-energy (IR) observables was
analyzed by Appelquist and Carazzone and led to the “Decoupling Theorem” [86].
It states that for low-energy observables (at scale v) all graphs with internal heavy
(of mass A) fields are suppressed with powers of (v/A) compared to graphs of only
light fields. If the low-energy Lagrangian is renormalizable, the influence of the heavy
particles to low-energy observables decouples in the limit A — oo, apart from the
contribution to renormalization effects. Examples for this decoupling EFT [87] are the
Euler-Heisenberg Lagrangian [88,89] and Fermi’s theory of the weak interaction [90].
However, the resulting theory in the limit A — oo can also be non-renormalizable
at leading order, giving a non-decoupling EFT [87]. Such non-decoupling effects can
arise in the context of spontaneous symmetry breaking, where the heavy and the light
degrees of freedom are connected by symmetry. Also mixing effects can introduce
non-decoupling effects, as we see in Section An example for non-decoupling EFTs
is chiral perturbation theory. We discuss it in Section [3.3] In general, finding a low-
energy effective theory for a given UV model is called top-down EFT [85]. We discuss
it further in Section B.1.1l

The concept of EFTs cannot only be applied in the top-down approach. Look-
ing from the other side, it can also be used for situations in which the UV theory
is unknown, providing a model-independent tool for data analysis. This is the so-
called bottom-up approach [85], which we discuss in Section . We write down
a consistent basis of operators. This enables us to describe effects at a given scale
without needing to know what happens at higher scales. Any model of UV-physics
can be mapped to the Wilson coefficients of the operators in the bottom-up basis,
see e.g. [91]. An example for a decoupling bottom-up EFT will be the SM-EFT that
we discuss in Chapter 4l A bottom-up non-decoupling EFT is the electroweak chiral
Lagrangian, which we discuss in Chapter 5] The bottom-up EFT picture allows us fur-
ther to interpret non-renormalizable Lagrangians physically [92]: For a given accuracy
(a given order in v/A), we will need only a finite number of parameters, making the
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theory predictive [85]. Figure illustrates the top-down and bottom-up approach.

E
A ( UV Model ) ( 777 )
top-down bottom-up
v [ Effective Description } [ Operator Basis }

Figure 3.1.: Top-down vs. bottom-up picture of effective field theories.

3.1. Top-Down and Bottom-Up Approach to Effective
Field Theories

3.1.1. The Top-Down Approach

In the top-down [85] approach to effective field theories, we know the high-energy
(UV) theory and we are interested in low-energy (IR) effects only. The resulting
EFT simplifies the computations a lot — making the computations sometimes even
feasible in the first place. In this section, we follow closely the arguments of [45}/92].
Experiments at energies below an energy scale A never produce particles of mass
A as external states. The only contribution of these particles comes through virtual
effects. To study these effects systematically, we need the generating functional T'[¢] of
one-particle irreducible (1PI) correlation functions. One-particle irreducible diagrams
cannot be broken into two disconnected diagrams via cutting a single internal line. The
1PI generating functional is given by the Legendre transformation of the generating
functional for connected graphs, W[J(¢)]:

Ily] = WlJ(g)] - / e o (3.1)

The mean field ¢ is defined in presence of a source J,

W

= = (0@, (3:2)

¥

The generating functional of connected graphs, W[.J], is defined as

exp (iW]J]) = / Do exp {i / d'z £(6) + T8}, (3.3)
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A general n-point correlation function is then defined as

§miW [ J]
x1)...0J(x,)

(Ofm) o)y = (=)' 53 (3.4)

The generating functional I'[¢] contains all physical predictions of the theory [45]. Its

stationary point g—g = 0 gives the vacuum expectation value of the field ¢. The
J

second derivative of I' gives the inverse propagator, whose zeroes give the masses of

the particles in the theory. Higher derivatives give the 1PI amplitudes that can be

used to compute S-matrix elements.

A convenient way to compute I'[¢] uses the background field method [93,94]. It is
equivalent to the saddle-point approximation for non-gauge fields. Starting from the
definition of W[J] in Eq. (3.3) above, we expand ¢ around its classical solution [45],
¢ = ¢ +n. Here, ¢ is defined as in Eq. (3.2) and 7 are the quantum fluctuations of

the field. Equation (3.3)) now takes the form

. . 4 . 4 oL
exp iW[J]) = [ Dn exp {z dx (L(p)+Jp)+i | dzn(x) 56(2) +J
p=p

U ! 0°L
+§/d xdy n(z)n(y) 50(2)00() ¢:w+...}.

(3.5)

The integration of the first term gives a constant factor. The second term vanishes for
the tree-level approximation of ¢ in presence of the source J, upon using the classical
equations of motion. However, ¢ of Eq. is defined at all orders in perturbation
theory, spoiling the cancellation. Nevertheless, we can write J(z) = Ji(z) 4+ 6J(x),
such that (6£/d¢(z) + J1),_, vanishes exactly [45]. The difference, §.J(x), will start
to contribute at the loop level, similar to a counterterm, see [45]. The third term of
Eq. can be evaluated as a Gaussian, yielding

exp (iW[J]) = exp {i/d4x (£(¢)+Jtp)} (det - . > (14+...). (3.6)

The sign of the exponent of the determinant is (—) for bosonic and (4) for fermionic
fields. From this, we find explicitly for Eq. (3.1)):

1 0°L
F[@]:S[gp]$§logdet {_&W)L +... (3.7)
=p

Comparing this to a diagrammatic way of obtaining I'[¢], we see that the first term,
the action S[p], comes from tree-level contributions. The second term comes from
one-loop diagrams. The dots collect terms of higher order.

Our goal will now be to construct I'[¢] of the UV theory and restrict it to cases
where only light degrees of freedom with low momenta appear as external states. To
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be more precise, consider the case of two types of fields: light fields ¢, coupled to a
source 7, and heavy fields H, coupled to a source J. The 1PI generating functional
of this theory is I'[l, ], where [ = (¢);; and h = (H),;. Having no external H fields
is equivalent to setting J = 0, as we will never vary I" with respect to J. Since
0T /oh = —J, the case of vanishing J is equivalent to evaluating T'[[, h] at the point
h = h(l) where

NN

oh

=0 : (3.8)
h=h

In the low-energy limit, we are also not interested in the high-frequency components
of ¢, as they are also never produced. Therefore, we also require 0I'[l, ]/l = 0, for
the high-frequency components. Let v[l] be the generating functional that satisfies
these conditions. Since there is no explicit heavy field in the description any more,
we say we have “integrated out” the heavy degree of freedom from the theory. The
functional v[l] is the one-light-particle-irreducible generating functional. It generates
1PI graphs for low energetic fields ¢.

The tree-level approximation to 7[l] is now given by S[I, h(l)], where h is given by
Eq. . This means we solve the equations of motion of H (and also the high-energy
modes of £) in terms of the low-energy modes of /.

The one-loop result gets two contributions. First, the functional form of I'[l, h]
changes when the one-loop terms are included. Second, these imply a redefinition of

the stationary point in Eq. (3.8).

’Y[l] = Ftree“; Btree + Bl-loop] + 1—‘1-loop [l, Btree] + ...
oT
oh

(3.9)

= F[la Etree] + Bl-loop : + 1ﬂl-loop [l, Btree] + ...

h:Btree

However, the second term of the second line vanishes at the considered order [92].
Summarizing this, we write the low-energy generating functional as

Y = S[L, hree(D)] + Tiotoop [l Paree (D] + - - (3.10)

In this definition of ~[l], we see that we need to solve the equations of motion of the
heavy field in a first approximation. This amounts to solving

1 0o o2
2N—1
(O + M?) NW(1—W+W—...). (3.11)

From this expansion we see some aspects of the low-energy EFT.

e The non-local interactions involving heavy fields of the full theory become local
interactions in the EFT. This is connected to the uncertainty principle, the high
energies needed to produce the heavy fields are only “available” for very short
times, At ~ 1/AFE, making them local.
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e The effects of the heavy field come with factors of 1/M?. In theories where
the couplings in the equations of motion do not grow in the limit M — oo,
the heavy fields decouple as stated by Appelquist and Carazzone [86]. In the-
ories in which the couplings grow with M, for example because of spontaneous
symmetry breaking or mixing effects, the decoupling does not take place. Rein-
serting the solution of the equation of motion in the Lagrangian generates non-
renormalizable interactions without 1/M suppression. We see this in detail in

Section [T.2

e Symmetries of the light fields in the full theory are still symmetries of the effective
Lagrangian.

Orthogonally to the functional approach we just presented, we can also integrate
out the heavy field by diagrammatic methods. In this approach, we consider the
amplitude of a given process explicitly in the UV theory. Then, we expand in 1/M?
and match to the amplitude of the same process in the low-energy EFT. If we do this
for all processes, we also arrive at Eq. . Otherwise, we are restricted to the given
subset of processes. The aspects of the low-energy EFT discussed above also hold if
we integrate out the field diagrammatically.

The procedure of integrating out a heavy field can also be applied for several dif-
ferent mass scales consecutively [85,91]. Starting at a high scale A, we evolve the
parameters to the scale Ay < A; of the heaviest particle, using the renormalization
group equations (RGE). This particle is then integrated out, either via Eq. or
via the diagrammatic method. The effective theory of the remaining fields is further
evolved using the corresponding RGE until the next threshold As < A, is reached and
particles with masses A3 are integrated out.

If the action is expanded in terms of a small parameter, applying the equations of
motion of a field in v does not change the observables at a given order in the small
parameter. This can be seen from a field redefinition ¢(z) — ¢ = ¢(z) — " f(x). The
action S becomes

~ 08

Sle] = Sl¢l - €”f(x)@

An appropriate choice of f(z) at the order ™ corresponds to applying the equations
of motion in S and further corrections come at order e"*!. In general, canonical field
redefinitions in the action do not change scattering matrix elements [42}56].

+ O™ (3.12)

3.1.2. The Bottom-Up Approach

In the bottom-up approach, the UV theory is either unknown, or it is known but it
is impossible to find its low-energy description in top-down approach. The latter is
the case for QCD, where we have different degrees of freedom at high energies (quarks
and gluons) and at low energies (pions, kaons, etc.). The application of bottom-up
EFTs in cases where the UV is unknown is very convenient, as no commitment to a
specific model and therefore only a few assumptions are made. Instead, the model-
independent bottom-up approach focusses on what we know and what we see at the
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current experimental scale.

From the discussion of the last preceding section, we see that the effects of the high-
energy physics are encoded in a series of operators that are composed of the low-energy
fields and ordered in a systematic expansion [95,/96]. This tells us what we need to
build the bottom-up effective field theory: The particle content at the given energy
scale, the symmetries that these particles obey, and a power counting that defines a
consistent expansion. The coefficients of the operators, called Wilson coefficients, can
be specified for a given model, see [91]. In a model-independent analysis, they are free
parameters to be determined by experiment. The first ingredient of the bottom-up
EFT, the particle content, is rather easily found: We need to specify which degrees of
freedom are present and propagating at the chosen energy scale.

For the symmetries, two different assumptions can be made. Either, we can assume
the low-energy symmetry also holds in the UV, as usually is the case for gauge symme-
tries, or we can assume that the new-physics sector breaks the symmetry. The higher
order operators will therefore also violate the symmetry at some point. CP-symmetry
is an example for the second kind. In any case, the underlying assumptions regarding
the symmetries should be spelled out clearly.

The power counting gives the expected (natural) size of the Wilson coefficient of an
effective operator. Additional symmetries of the UV can suppress some coefficients
below that size. From the general discussion of decoupling and non-decoupling EFTs
we see that there are two different types of power counting. In a decoupling EFT, the
leading-order Lagrangian is renormalizable and the effects form the UV are suppressed
by 1/A. The expansion is therefore given by canonical dimensions. Higher order
operators have a larger canonical dimension and are suppressed by higher powers of
1/A, as the energy dimension of the product of operator and coefficient must always be
equal to four. The scale of suppression, A, is the same for all operators. We identify it
with the lowest-lying scale of new physics. If, in a particular UV-model, the operator
is generated by effects from a higher scale Ay > A, the bottom-up analysis can still
be done in terms of A alone, without loss of generality. The Wilson coefficient of the
corresponding operator is then of O(A/A,).

In non-decoupling EFTs, the leading-order Lagrangian usually contains operators of
canonical dimension larger than four, making it non-renormalizable already at leading
order. Therefore, an expansion in canonical dimensions cannot consistently be done.
Instead, the renormalization procedure gives a guideline for a consistent expansion:
The one-loop diagrams built from leading-order vertices need to be renormalized.
Counterterms that are needed, but not included in the leading-order Lagrangian, will
be included at next-to-leading order. This makes the theory renormalizable order by
order in a loop expansion. In this expansion, the cutoff of the theory, A, is identified
with 47v [97-99], where v is the low-energy scale. This identification puts one-loop
diagrams of leading-order Lagrangian parametrically at the same order as the next-
to-leading order tree-level diagrams, v?/A? = 1/167%. This defines a consistent power
counting for a non-decoupling effective field theory.

We conclude from this discussion that the assumptions on the new physics consis-
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tently define the Lagrangian at leading order and the power counting. Given a set of
assumptions, we cannot simply choose a leading-order Lagrangian or a power counting
at our will. They are always connected, as the power counting is homogenous for the
leading-order Lagrangian in order to have an unambiguously defined expansion.

3.2. A Toy Example

After this formal introduction we would like to illustrate the concept of top-down and
bottom-up effective field theories in the light of an explicit example. Consider the
following Lagrangian of a light scalar ¢ and a heavy scalar H [92].

1 1 1 1
L= —0,00"0 + =0, HO"H — ~m?(* — = M2 H?
e I8 pgps 9 gz Mg 9H g
TR 4 2 31

For experiments at energies £ ~ (m,m) < M we can formulate an effective, low-
energy Lagrangian — a top-down effective field theory. Integrating out the heavy
scalar is in a first approximation given by the first term of Eq. . We therefore
need the equations of motion:

(O+m?) = —%63 - %HH% — lH (3.14a)
(O+ M*)H = —%—71{3 - Q‘%HEQ - %42 - %HMH2 (3.14b)

The second equation can be solved for H, order by order in 1/M?. We find

M ey,

o=-
oM2 T AM*YT T 2M

-0(%) + O(%), (3.15)

by using Eq. (3.11)). Inserting this back into Eq. (3.13)), we find

1 1 ge > Gem? m?
= —0,00"0 — —m20% — g o o — o, 1
Lo = 50u0°0 = 5m TR TVE T (3.16)

The last term, however, is not independent. It can be rewritten using integration by
parts as well as the equations of motion of /.

CPO(0%) = —4029,00"0 = ge?’me (3.17)

Finally, we obtain the effective low-energy Lagrangian for the light fields ¢ [92], up to
terms of O(1/M?®):

1 1 1 m? m2m? m? g qem
Log = =000 — =m0 — — (g, — 32 _4 e —(———)EG 3.18
=50 ST (g‘ M2 ) T g5 16 )0 B8
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Let us now analyze the same scenario in the bottom-up picture. At very low energies,
we have a renormalizable theory of only ¢ fields. Their dynamics are described by

1 1
L= S0,L0" — Sm*0* — %54, (3.19)

which gives the equation of motion for /:

00 = —m? — %63 (3.20)
The indirect effects of the heavy field H are encoded in effective operators. Since the
Lagrangian in Eq. is renormalizable, we have a decoupling EFT with dimen-
sional power counting. The leading new physics effects arise at the level of dimension-
six operators, as dimension-five operators are forbidden by the Z; symmetry of the
field ¢. The building blocks of the operators are just derivatives and the light field /.
We find the following list of operators at this ordelﬂ:

°, (9,.0)(0"0) 02, (00)e?, (O0)(De) (3.21)

Using integration by parts and the equations of motion in Eq. (3.20]), we find only one
independent operator. The next-to-leading order (NLO) Lagrangian is then given by

Lo = Feﬁ. (3.22)

This operator, together with corrections of O(1/A?) of the leading order ¢* interaction
describe the leading effects of new physics on the interactions of the scalar /.

By explicitly comparing the effective Lagrangians of the top-down and the bottom-
up approach, we find the following matching conditions. First, we identify the cutoff
scale A, with the mass of the heavy scalar, M. When the experimental energies reach
this scale, the heavy particle is produced explicitly and the effective description breaks
down. Further, we find an explicit formula for the Wilson coefficient cg as well as for
the shift of g, due to O(1/M?) effects.

. m? (ge gm) m?  m*im?
6 36 16/

= Agy = SW + 4W (3.23)
We can also understand the contributions to the effective Lagrangian diagrammat-
ically. Integrating out a heavy field at tree-level corresponds to drawing tree-level
diagrams with internal heavy fields and then expanding the propagator in terms of
1/M?. The contribution of cg that is proportional to g,z comes, for example, from
the diagram in Fig. . The contribution that is proportional to g, comes from a
tree-level two-to-two diagram wvia a term proportional to [1¢ and applying the equa-
tions of motion of Eq. . The diagrammatic approach also shows why there is
no contribution to cg that comes with a single suppression in 1/M?. In order to have

Derivatives of higher powers of the fields can always be reduced to a combination of operators
where the derivatives act on a single field ¢.
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‘ ¢ y ‘
H H
l l
(a) O(1/M*) contribution to the effective operator (b) Forbidden O(1/M?) contribution to
0. the effective operator £5.

Figure 3.2.: Diagrammatic illustration of some aspects of the example.

such a contribution, we need a diagram with six external ¢ fields and a single heavy
field propagator. Such a diagram is given in Fig. [3.2(b)] Since the involved vertices
violate the Z5 symmetry of the theory, no such contribution can exist. However, the
latter information comes from the specific UV model considered here and goes beyond
a general bottom-up analysis.

3.3. Chiral Perturbation Theory

Due to the strong dynamics of QCD, different approaches to perturbation theory
of quarks and gluons needed to be developed. Below the mass of the p-meson, the
resonance region, the theory can be described in terms of the eight pseudoscalar mesons
7, K and 7, as well as symmetry relations among them [89,[100-103]. These eight
mesons can be identified as an octet of light pseudo-Goldstone bosons, coming from the
spontaneous and explicit breaking of chiral symmetry. The pseudo-Goldstone nature
ensures that they are naturally light compared to the other resonances of the hadronic
spectrum. With the information about the particle spectrum and the symmetries, we
can build an EFT — known as chiral perturbation theory.

The Lagrangian of QCD,

—iGZVGgV + iCjL")/MDqu + i(jR”yuDuqR (324)
exhibits a global SU(3) x SU(3)g chiral symmetry of the three lightest quarks, as
discussed in Section [2.1] The quark condensate in the vacuum spontaneously breaks
[46] this symmetry down to the vectorial subgroup, SU(3).+r. Since we only consider
the Goldstone fields and not the massive excitations, the Goldstone symmetry will
be non-linearly realized. We write the eight Goldstone bosons, associated with the
breaking of this symmetry, as in the non-linear sigma model, in terms of the matrix

P
- — 2
U =exp (ZFW)7 (3.25)

Lqcp =
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where .
s ] + +
8 75 + 786 O7T K
=) g =vV2| 7 - KO (3.26)
a=1 K- k' 2%

and F, is the pion decay constant F, ~ 92 MeV. Under the SU(3);, x SU(3)r
symmetry, the U transforms as

U— gLUg};L, where JdrL.r € SU(3)L7R. (327)

Goldstone bosons with a non-linearly realized symmetry can always be brought to the
exponential representation, as was shown in [57-59]. The A, in Eq. are the
Gell-Mann matrices. They are related to the T, the (traceless) generators of SU(3),
via T, = %)\a and normalized to (T,T},) = %5@. In general, the Goldstones can couple
to external (classical) fields. These can include left-handed (l,) or right-handed (r,)
vector currents or (pseudo) scalar fields (p)s. All of these are hermitean and matrices
in flavor space.

Weinberg showed in [100] that the effective expansion in chiral perturbation theory
is equivalent to an expansion in momenta. The leading-order Lagrangian is of order
p? and can be written as:

F2 F?2
Lio = f(DMUTD“w + f(UTX + X', (3.28)

where x = 2By(5 + ip). The covariant derivative of U is given by

D,U =9,U —il,U+iUr,. (3.29)
Including the U(1) gauge symmetry of QED, the Lagrangian becomes [104-109]
1 v Fi i o Er it oo t
Lio = 1 w Y+ T<D“U DHU) + T<U x +x'U) + C{QUQU"), (3.30)

where gauge fixing terms have been omitted. F),, is the usual abelian field strength
tensor. () is the charge matrix of the quarks, Q = £ diag(2, —1,—1) = § (/\3 + \%Ag)

The covariant derivative of U changes to
DU =0,U —iQA, U +1UQA,. (3.31)

For simplicity, we set the external vector currents to zero. We also neglect the external
pseudoscalar current p. The scalar § reduces to the mass matrix of the quarks, § =
diag(m,,, mg, ms). The last term in Eq. is a potential for the Goldstones that
is induced radiatively by photon loops. Its naive scale A? gets suppressed by a loop
factor of 1/167% [110]. Terms with Q* scale only as (logA)/167? and are therefore
suppressed. Electromagnetism and the quark masses break the chiral symmetry of
Eq. explicitly. The corresponding spurions ) and y transform as

X = 9LXGhs Qr — 91Qrg}, Qr — 9rQrgk, (3.32)
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with the identification Qp = Qr = Q.

The leading-order Lagrangian, Eq. (3.30), is non-renormalizable, as the presence
of the exponential U induces operators at arbitrarily high canonical dimension. The
power counting of the EFT is therefore given by the loop counting of non-decoupling
EFTs.

An L-loop diagram with B external Goldstones, X external gauge fields and A
external x fields scales as [23]

F2 © B F X N CQQ p
D~ [ i F.Q) % [ == p 3.33
where 7(0) gives the number of vertices involving one (two) gauge field(s) and p gives
the number of vertices coming from the Goldstone boson potential. We find this
formula using topological identities [21-23,[111] of Feynman diagrams, such as the

conservation of ends (of lines) and the Euler characteristic of planar graphs. The
power of momentum d, in Eq. (3.33) scales as

dy=2L+2—-X —-2\—7—-25 —2p. (3.34)

It gives the superficial degree of divergence, indicating when a loop diagram might
becomes divergent and requires a counterterm. It is bounded from above, giving a
finite number of counterterms at a given loop order. Since the counterterms are needed
to renormalize the theory at the given (loop) order, we conclude that the NLO basis
should at least contain these operators. Finding the NLO operators therefore amounts
to identifying the counterterms. For consistency, we expect the coefficients of the NLO
operators to be of the same size as the counterterms [97-99], O(F2/A?) = O(1/1672).
This links the cutoff A to the scale of low-energy physics, the decay constant Fi.
From Eq. (3.34), we can identify the classes of one-loop counterterms. When working
in dimensional regularization, we see that d,, yields also the number of derivatives of the
operator. We find the following Lorentz-invariant classes of counterterms (d; X, A, 2p+
T+ 20):

(4;0,0,0) : UD* (2:0,1,0): UD*x

(2,0,0,2) : UD?Q? (0;0,1,2) : Ux@? (3.35)
(0;0,0,4) : UQ* (2;1,0,1): D?UFQ .
(0;0,2,0): Uy (0:2,0,2) : UF?Q?

Here, the labels correspond to the fields being present in the operator to the indicated
power, F' stands for the field strength tensor instead of the field A itself. The only
exception holds for U, where no limit on the power is present. Due to the structure
of the interactions, there needs to be a @) with every F' (or A), whereas additional
powers of () are always possible, due to internal photon lines. Without QED and for
vanishing quark masses, the power counting formula above reduces to d, = 2L + 2,
reflecting the statement that chiral perturbation theory is an expansion in derivatives
or equivalently in momenta [100)].
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The classes of counterterms in Eq. can also be found using the concept of
chiral dimensions [23], which is equivalent to the loop counting. Rewriting Eq. ,
we find

2L +2=d,+ X + 2\ + 7+ 20 + 2p. (3.36)

As the order of the expansion is given by the number of loops, L, the left-hand side
encodes the (chiral) order of the considered operator. The right-hand side tells us
how the different objects in the operator contribute to the chiral order. We assign the
following chiral dimensions [23]:

[Uly =0 [Duly =1 IX]y =2
[Aul =0 Ql, =1 [?fonst.]x =0 (3.37)

These assignments have been used before |104,112-115]. However, they were not de-
rived from a diagrammatical power counting, but rather from a homogenous counting
of the leading-order Lagrangian. We see that [Lio], = 2, using Eq. . Operators
of chiral order four give the classes of NLO operators. This condition yields the same
Lorentz-invariant classes as in Eq. . Within these classes, we construct the op-
erators. In order to arrive at a minimal, non-redundant set, we use the equations of
motion, integration by parts, and SU(3) relations |116]. Further, we assume that the
operators are even under C and P symmetry, as both QED and QCD conserve these
discrete symmetries. We find the following operators [23]:

UD* :

(D, U'D"U)?, (D, U'D,U) (D*U'D"U), (D, U'D*UD,U'D"U)  (3.38)
UD?*Q? :

(UD,UTQrNUDMUTQR) + (UTD,UQ ) U'D*UQ.),
(UD"UTQR)(U'D,UQL),  (D,UDFUQ2) + (D, UD'UTQ%),
(D, UD"UNQLU'QRU), (D"UD, UNUQLU'Qr + QrUQLUT)), (3.39)

UQ*:
({U'QrUQL){UTQrUQL), (3.40)
Ux?
UXTU +xUNUT),  (UXT+ XU (UXT+xUT),
(UxX" = xUNUXT=xUT), (), (3.41)
UD?y :

(DLUDUNYUX +xUT),  (DUDUNUXT + xUT)), (3.42)
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UxQ? :

(UXT+xUNQLUTQRU),  (UX'+xUT+Xx'U +UTX)Q?),
(UxT £ xUNQrRUQLUT) + (U £ X'U)QLUTQRU), (3.43)

D?UFQ :
There is no independent operator in this class.

UF?Q?:
(QLUTQRU)F,, F*. (3.44)

This list of operators is consistent with the results originally obtained in [104]. Op-
erators that renormalize the operators of the leading-order Lagrangian have not been
listed here. The Wilson coefficients of the operators, also called low-energy constants
(LECs), can be obtained from experiment. Once they are determined, the leading and
next-to-leading order Lagrangian can be used to make predictions of further experi-
ments.
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The Standard Model as Effective
Field Theory

Depending on the current situation at the experiments, different strategies for the
analyses are pursued when the experimental results are investigated. At the Large
Electron-Positron Collider (LEP), the underlying model was assumed to be the SM
with only the Higgs missing. The experimental observations were used to fit the SM
parameters and to put constraints on the Higgs mass. The paradigm shifted at the
LHC. A Higgs-like particle was found and the SM seems to be complete. However,
extensions of the SM are still anticipated, as we discussed in Section [2.3] The search
for these extensions can, for example, rely on proposing explicit UV models. This
approach, however, requires many explicit assumptions and the list of available models
is infinite.

We saw in Chapter [3| that we can use bottom-up effective field theories to study
theories with an unknown UV completion in a model-independent way, only relying
on a few, very general assumptions. Using EFTs for these analyses is further justified,
because the experimental collaborations did not find any new particles. This indicates
a mass gap to the UV theory, which is an essential ingredient of any EFT. Thus,
we use the Lagrangian that describes the current experimental observables as the
leading-order Lagrangian of a bottom-up effective field theory. Since we do not know
the couplings of the Higgs-like scalar precisely, we can make different assumptions
about its nature. If we assume it is the SM-Higgs, the SM Lagrangian defines the
leading-order Lagrangian of the EFT. The new physics decouples and the resulting
bottom-up EFT is called SM-EFT. We discuss it in Chapter [l If we assume that
the Higgs-like scalar comes from a strongly-coupled UV or has large mixings with
other scalars, it does not decouple. In this case, it is more appropriate to use the
electroweak chiral Lagrangian as bottom-up EFT. The leading-order Lagrangian is
then more general than the SM. We discuss this in Chapter [5
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4. The Decoupling EFT — the
SM-EFT

Under the assumption that the new physics is decoupling, the scalar particle found at
the LHC is written conveniently as part of the Higgs doublet, and the electroweak sym-
metry is realized linearly. This is analogous to the linear sigma model of Section [2.2]
where also the complete multiplet (the m; and the o) was included in the theory. Even
though the underlying assumption is about the dynamics of the new physics and not
the realization of the symmetry, the bottom-up EFT that we construct here is called
linear EFT. We use the names linear EFT and decoupling EFT interchangeably. The
renormalizable SM defines the leading-order Lagrangian of the EFT, L1o = L35 of
Eq. (2.1). For that reason, the effective theory is also called Standard Model EFT, or
SM-EFT. Because of the renormalizability of the SM, we have a decoupling EFT with
the power counting given by canonical dimensions. This is equivalent to assuming
that the new physics decouples completely from the SM. We use the full Lagrangian

given by
-\ N\ )
£SM-EFT == ESM + Z Z (K> C; Ol . (4.1)
d=5 i

At each order in (v/A), we write down all Lorentz- and gauge-invariant operators.
The approximate symmetries that we discussed in Section might be violated by
these operators. This can lead to a further suppression of the operator’s coefficient,
depending on the specific assumptions employed. Integrating by parts, applying Fierz
identities, and using the equations of motion reduces the set of operators to a minimal
set, 7.e. a basis. However, the choice of a basis is not unique. Which particular basis
we choose is irrelevant for physical observables, but some bases are more convenient
for certain applications. One possible choice reduces the number of derivatives in the
operators as much as possible. In the next section, we discuss the first orders of the
expansion in Eq. (4.1). In general, we observe that the number of operators at each
order increases substantially [117].

4.1. Higher Order Operators

4.1.1. Dimension-Five Operators

At dimension five, we can write down only one operator structure and its hermitean
conjugate |118}/119]. Weinberg discussed this operator first [118], hence, the operator
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is sometimes called “Weinberg operator”.
O, = (616,)7C(d1¢,) + hc. (4.2)

For three generations, the Wilson coefficient ¢}7, is a 3 X 3 matrix carrying 12 inde-
pendent parameters [117]. After symmetry breaking, O,, generates Majorana masses
for the left-handed neutrinos, m’* = ¢'*v?/2A. Compared to the electroweak scale v,
the masses are suppressed by v/A, explaining why neutrinos are lighter than the other
fields of the SM.

An explicit model that generates this operator is given by adding heavy, right-
handed neutrinos to the SM. Their quantum numbers allow a Yukawa interaction as
well as a Majorana mass term. If the latter is very large, the right-handed neutrinos
can be integrated out. The resulting low-energy EFT is given to first order by O, [44].
This mechanism, generating very light left-handed neutrinos by introducing very heavy
right-handed neutrinos, is called seesaw mechanism [120].

Even though the operator is only suppressed by a single power of the new-physics
scale A, the experimental bounds on neutrino masses indicate a strong suppression by
A ~ 10" GeV [65]. Symmetry arguments support this suppression. Since O, gener-
ates a Majorana mass term for the left-handed neutrinos, it violates lepton number L
and also the B — L symmetry. As the latter is a symmetry of the SM, we expect that
B — L-violating effects are strongly suppressed.

4.1.2. Dimension-Six Operators

Operators of mass dimension six are suppressed by two powers of the new-physics
scale. However, they are usually expected to be less suppressed than the dimension-
five operator discussed above, as it is possible to write down operators that respect
all accidental symmetries of the SM as well. In fact, the effects of many new-physics
models arise to first approximation at the level of dimension-six operators [91], making
it a very popular EFT approach for LHC searches of beyond-the-Standard-Model
physics. The LHC Higgs Cross Section Working Group [19] devoted a significant
part of the CERN Higgs Yellow Report 4 to EFT analyses, using the dimension-six
operators to a large extent.

Historically, the subset of the four-fermion interactions was considered first, thereby
focussing on B- or L-violating [118,121H123] as well as B- and L-conserving [124-126]
operators. This was motivated by the fact that a gauge theory in the UV introduces
current-current interactions of four-fermion type, similar to Fermi’s theory of weak
interactions [90]. Later, attempts to find more complete lists were made, the first one
by Buchmiiller and Wyler [127]. Other suggestions followed [128}/129], but it was only
in 2010, when Grzadkowski, Iskrzynski, Misiak, and Rosiek |[119] presented a complete
and non-redundant set of dimension-six operators. Based on the geographical location
of this collaboration, the basis is sometimes called Warsaw basis. It also followed the
guideline of reducing the number of derivatives as much as possible. Table |4.1 and
list the operators of the Warsaw basis, excluding hermitean conjugates.
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X3 ¢% and ¢*D? V2P
Oc | [BOGIGEGsH | o, (¢10)? Ocs | (679)(6per0)
O | FECGIGHGo | O | (6006) | Ow | (610)@ud)
Ow | IKWIWIrWEE | Oy | (1D40)" (6'Du0) | O | (610)(@pdr0)
O | T

X2¢? P2X U?¢*D

Osc | ¢'0GALGY | Oy | (Gomve)r'oWl, | 0% | (4ti Do) (Te,)

O | 10GAG™ | O | (Bowe)oBu | OF | (61 Dlo)(Eyriane,)

Oav | SOWLW™ | O | (@0 T4,)3GA, | Ou | (4'iDyo)(e vﬂer
g | e WLWI | O | (@omu)rdWE, | OR | (6t Do) (@

o bq

O | 610BuB” | Ows | (Go"w)dB. | OF <¢u§7¢>< >
O,5 | 66BuB” | Ouw | (@o"Td)6GA, | O, | (41D, cb)(uw w)
Oswr | STOWLBY | Oy | (G0 d )T o WL, | Opa | (61 Dud) (@ d,)

Ouivn | STOWLB™ | Ou | (3,0"d)0Bu | Opa | (3 Duo)(@n"d,)

Table 4.1.: Dimension-six operators without four-fermion operators, taken from [119].
Indices of chirality are suppressed.

For one generation of fermions, there are 76 operators (including hermitean conju-
gates) that conserve Baryon number B and eight that do not conserve B. For three
generations, the number increases to a total of 2499 independet parameters [117}130]
for B- and L-conserving operators. Usually, additional assumptions are made in or-
der to reduce this large number to a manageable set. In the flavor sector for example,
minimal flavor violation (MFV) assumes that “the dynamics of flavor violation is com-
pletely determined by the structure of the ordinary Yukawa couplings” [131]. Assum-
ing a weakly-coupled, renormalizable UV-completion introduces a further suppression
by explicit loop factors to some of the operators [132,/133]. On top, assumptions about
the approximate symmetries such as CP, custodial, and B/L can be made. Presently,
most of the data analyses use only subsets of the operators. However, global analyses
have also been made |134-{137].

Apart from the Warsaw basis [119], other bases were proposed. Even though the
physics content does not depend on this choice, some computations are more con-
veniently performed by means of a different basis. The most prominent other bases
are the HISZ [128| and the SILH [62,[129] basis. For an easy translation between the
different bases, a computer code called Rosetta [138] was developed.
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(LL)(LL) (RR)(RR) (LL)(RR)
Ou | Gl Trt) | O | (Ener)@nte) | Ow | (@yule)(@yter)
08 | @) @) | Ow | @)@y uw) || Ow | Coyule) (@7 )
0w | @nr'e)@"T'q) | O | ([dyud)(dyd) | Ow | (Gyuly)(diydy)
O | ) (@) || O | @e) (@ u) || Ope | (@yuar) (e
O | (G )@ ') || Oca (epyuer) (dsy"dy) os) (@) (Tsy"uy)
O | (@) (doy'dy) | O | (@D a,) (@A™ T uy)
O | (T u,) (dy TAdy) | O | (@yuar) (dydy)
O | (@ TAq,) (dry" TAdy)
(LR)(RL) and (LR)(LR) B-violating
Oledg (Ge,)(dsa) Oug e*Pe [(d)"Cuf] [(q7)TCly]
Oa | (@u)en(@d) | Oy ey, [(q2)"Cql*] [(u))"Ce]
O <q;TA Dew(@TAdy) | Olgy e jremn [(a37)Ca*] [ Cly]
O, | Beenldhu) | O PN () () mn [(427) T CaP¥] (™) O]
O | (@owe)en(@ o u) | O e [(dg) " Cufl] [(u3)" Ce]

Table 4.2.: Four-fermion operators, taken from [119]. Indices of chirality are sup-
pressed.

4.1.3. Dimension Seven and Above

Operators beyond dimension six have been considered only recently in a systematic
way [139,/140]. Since the number of possible gauge-invariant combinations of SM
fields grows rapidly with the operator dimension, the conventional method of listing
all possible operator structures by hand becomes tedious. Lehman and Martin de-
veloped a general approach to construct these operators in a systematic way, based
on Hilbert-Series techniques [141]. The authors of [117] showed explicitly that there
are 30 (1542) independent operators at dimension seven and 993 (44807) operators
at dimension eight for one (three) generations of fermions. In addition, general state-
ments connecting B and L with the dimension of the operators were shown, e.g. all
odd-dimensional operators violate B — L [142}|143].

In general, operators of dimension larger than six are only sub-leading with respect
to the dimension-six operators and can be neglected at the current phase of LHC
physics. Exceptions can arise in some cases, for example coming from special symmetry
constructions [144]. However, we should keep in mind that it is the square of the
amplitude that enters the observables. Effects from dimension-six operators squared
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are of the same order as the interference effects of dimension-eight operators with the
SM, making the dimension-eight terms important for future precision analyses.

4.2. Loop Corrections and Renormalization Within the
SM-EFT

Introducing operators with dimension higher than four changes the structure of the
theory. When considered in loops, these operators change the renormalization group
equations (RGE) of the SM parameters. Further, non-SM operator structures arise.
However, the theory remains renormalizable order by order in the effective expan-
sion. One-loop diagrams with a single dimension-six insertion are renormalized within
the dimension-six operators, although field-redefinitions and equations of motion are
necessary to express all operators in the original basis.

At first, subsets of operators were considered in specific processes [145,|146]. Later,
the complete set of dimension-six operators in the Warsaw basis was renormalized
at one loop [130}/147-149]. The result can be expressed in terms of the RGE of the

Wilson coefficients: i

dp
where «;; is the anomalous dimension matrix of the Wilson coefficients ¢;. This result
has several important consequences. First, the RG equations give the scale dependence
of the Wilson coefficients. This dependence becomes important when measurements
at low energy (usually the electroweak scale, v) are compared to predictions of UV
models (usually at a scale A > v). In order to match the EFT and the model correctly,
the Wilson coefficients have to be evolved using the renormalization-group equations,
as discussed in Section [3.1.1] Also, a precise determination of Wilson coefficients from
future experimental data, like the high-luminosity phase of the LHC, relies on the
one-loop improved computation |[135].

Some example processes have been computed using the dimension-six basis, explic-
itly taking the one-loop corrections into account [150-154]. However, the size of the
RG effects is expected to be (1/1672) - (v?/A?), which is well below the current pre-
cision of the LHC. Logarithms of the form log A?/m? might enhance the coefficients,
but these effects amount only to one order of magnitude or less for most of the present
applications [130].

The renormalization further introduces a mixing between the dimension-six oper-
ators that occurs when the set is evolved to a different energy using the RGE in
Eq. (4.3). This mixing yields the second important insight. It explicitly shows that
the operator set found in [119] is complete and non-redundant. However, the mixing
also alters the pattern of Wilson coefficients that a UV model introduces. This was
studied for the class of universal theories in [155].

Further, the authors of [156] found that the structure of the anomalous dimen-
sion matrix -;; is approximately holomorphic. This has been interpreted in favor of
supersymmetry as UV completion.

p—=—Ci = 7i;Cj, (4.3)
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5. The Electroweak Chiral Lagrangian

5.1. The Construction of the Leading-Order
Lagrangian

We assume now that the scalar found at the LHC is not the SM-Higgs. Instead, we
assume that it belongs to a new-physics sector that is non-decoupling. Thus, the
leading-order Lagrangian is not given by the SM. However, we cannot remove the
Higgs doublet completely, since the W+ and Z are massive and we therefore need
three Goldstone bosons. Instead, we write the scalar doublet in terms of the physical
A and the three Goldstone bosons as

h 0 0 2T,
o= % U <1> = \/5@(1), where U = exp {z USO } (5.1)

The Goldstone bosons, ¢,, are written in the exponential representation with 7T, be-
ing the generators of SU(2). Without the physical Higgs, h, this construction is
similar to the non-linear sigma model discussed in Section 2.2.1] The structure of
the Lagrangian therefore depends only on the pattern of spontaneous global symme-
try breaking, SU(2), x SU(2)r — SU(2)y. It does not distinguish between cases
of dynamical symmetry breaking [157,/158| (as in chiral perturbation theory with the
identification F, = v) or a scalar obtaining a vacuum expectation value (as in the
SM). The SU(2);, x SU(2)r symmetry is realized non-linearly on ¢,, giving the re-
sulting framework the name “non-linear” Lagrangian. Other representations of the
Goldstones are physically equivalent [42,56-59], as we discussed in the context of the
non-linear sigma model in Section [2.2.1} The exponential representation, however, has
the advantage that the symmetry acts linearly on U:

U— gLUg}T%, where gr. g € SU(2)L g (5.2)

The Lagrangian describing the electroweak interactions and containing the three Gold-
stone bosons but not the Higgs was discussed in the context of heavy Higgs mod-

'We refer to h as the Higgs, even though it is only a scalar and not necessarily the SM-Higgs.
Whenever we mean the latter, we call it “SM-Higgs” explicitly.
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els [157,159-161]. It reads

1 174 1 174
5 (W W) — 2B, B"

+ i(jLZDqL + Z'ngng + ifLRIDuR + iJR]de + iéRlDeR
2
+ % (D, UTDT) — % (@Y UPyqr + @LYaUP_qr + 0,Y.UP_ (g + hc],

4
(5.3)

Higgs

Eheavy _ _ %<G,¢WGHV> _

with
DU = 0,U +igW,U — ig'B,UTs,
(5.4)
Pi:%:tTg, P12:T1+iT2, P21:T1—iT2.

The doublets gr = (ug,dr)” and g = (0,er)” combine the right-handed singlets for
a clearer notation. The projectors Py and P»; will be useful later.

We now include the scalar particle that was found at the LHC [7,8,162,/163]. As-
suming it has the same quantum numbers as the physical SM-Higgs makes it a singlet
under SU(2);, x SU(2)g: h — h. In the SM, h would have couplings to E?EZ;Z that

are fixed by Eq. (2.1) and Eq. (5.1)). Since, by assumption, we relax the connec-

tion between the Goldstone bosons and h, we allow for general O(1) couplings of the
Higgs to Etllfizg [59,/164H168]. Additionally, we allow scenarios in which the Higgs is
a pseudo-Nambu-Goldstone boson of a larger symmetry in the UV (e.g. composite
Higgs models, see Section and |169,/170]). Similarly to the ¢, in the exponential,
U, we allow arbitrary powers of h in the Lagrangian. Since h is a singlet, the interac-
tions with h are general polynomials in h. The scale at which the larger symmetry is
broken and the Higgs is generated is given by f. For the rest of this chapter, however,
we assume that this scale is close to the electroweak scale, f ~ v. We relax this

assumption in Chapter [6]

The resulting Lagrangian is given by [21-23]/164}171]

1 1 1
Lio=— §<GWG‘“’> — §<WWW””> — ZB‘“’BW

+iq g + il Dl + iugPug + idplDdg + iegDer
2

1
+ UZ (DLUTDIU) (14 Fy(h) + 50,h0"h = V (k)

qr (yu_i_Zyu(n) (;) )UP+QR+6]L <Yd+ZYd()<;) )UP—QR
n=1

n=1

()

V2
_ s A"
+y, (K; +y oy (;) ) UP_lg+ hec.

n=1

(5.5)

Even though we motivated the Lagrangian phenomenologically, we can also construct
it systematically unter the following assumptions:
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Particles: We assume SM particle content and we include three Goldstone bosons
for the longitudinal components of the massive W* and Z. We include the Higgs as
scalar singlet, not connected by symmetry to the Goldstone bosons. We do not assume
any other light particle. Heavy particles, at or above the cutoff A = 4nf ~ 4nv,
are integrated out. The latter assumption requires that the transverse gauge bosons
and fermions of the SM are weakly coupled to the electroweak-symmetry-breaking
sector, i.e. the Goldstones and the Higgs. A strong coupling to this sector will
lead to a mass of the order of A, in contradiction to the assumption above. We
assume that other particles of a new-physics sector that is not connected to electroweak
symmetry breaking have masses of O(A) or above. We discuss the case with particles
at an intermediate scale below the cutoff in Section The assumption of a weak
coupling to new physics removes operators of the form X, X* F(h) from the leading
order Lagrangian. We further eliminate operators of the form (9,h)(0*h) F/(h) and
WPV F(h) using field redefinitions without loss of generality [21}22].

Symmetries: We assume SU(3)c x SU(2), x U(1)y gauge invariance and conserva-
tion of B and L. We further assume that the new physics conserves CP, custodial and
flavor symmetry at leading order. This removes the operator Oz (see Eq. ) from
the leading-order Lagrangian. We discuss this below, in Section [5.3.1] The assump-
tions on the (approximate) global symmetries are not needed necessarily, they can
also be relaxed in a more general approach. Currently, they are phenomenologically
motivated.

Power counting: The power counting of this EFT is given by the loop expansion of
non-decoupling EFTs. We discuss it in detail in Section below.

The Lagrangian in Eq. generalizes the Higgs couplings of the SM, while the
gauge and fermion sector remains untouched. The framework therefore allows us to
test the SM-Higgs hypothesis in a systematic way. New physics that modifies the
gauge or fermion sector will be subdominant. The description contains the SM in the
limit

A
Fy(h) = 2=+ .
A A A 5.6)
h) = SuPh? + Sukd + bt (5.
Vih) = k™ + qoh™+ 5gh
Yo =YY, and Y\ =0,

With the generalized couplings, the Lagrangian in this expansion is also called “the
electroweak chiral Lagrangian with a light Higgs” (ewxZL).
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5.2. The Power Counting

For arbitrary couplings in Lo that do not coincide with Eq. (5.6]), the Lagrangian
is non-renormalizable. It is therefore a non-decoupling EFT, very similar to chiral
perturbation theory that we discussed in Section [3.3] The power counting is thus
given by a loop expansion, making the theory renormalizable order by order in the
EFT. Loops of leading order generate divergencies that require counterterms, which
are included at NLO. We expect the counterterms to be of the same size as the
loop diagrams, such that we can write down the loop factors explicitly. The effective
expansion of the Lagrangian is given by [21]

00 1 L
e EE() 0 e
L=1 1

For this expansion, we identify A = 47v ~ M, which comes from naive dimensional
analysis (NDA) [97,/99]. Here, A is the cutoff of the EFT and M is the mass of a
heavy particle, for example a resonance. Differences of O(1) between these scales are
encoded in the Wilson coefficients. The expansion parameter of the EFT in Eq.
is therefore v?/M? ~ v? /A? = 1/167>.

An L-loop diagram with B external Goldstone bosons, H external Higgs fields,
F LI%% external left- /right-handed (anti)fermions, and X external gauge fields, written
in field-strength tensors X, scales as [21}23]

(VY )P (wg)2 242N v B (N oy o (X )T
D~ o (£) (%) b wi o vy

p

vFL+FR—2"

x (Av?)”

Here, p is the number of Yukawa vertices (Y); a()) the number of triple (quartic)
gauge interactions with gauge coupling g; v the number of gauge-fermion interactions;
v the number of vertices from the Higgs potential with coupling A; and 7(9) the
number of vertices with Goldstone bosons, Higgs fields and one (two) gauge fields.
The superficial degree of divergence is

dy=2L+2—-X - L(F,+Fp)—p—20—7—20—a—20— . (5.9)

Again, it is bounded from above and the number of Goldstone bosons does not con-
tribute. Also, the number of Higgs legs does not contribute. As in chiral perturbation
theory, we can rearrange Eq. (5.9)) and find

2L+2=dy+ X+ 35(FL+Fr)+p+20+7+20 +a+ 20+~ = x. (5.10)
We define the chiral dimensions as [23,112115]
Ul = by = [Xulx = 0

[Du]x = [\IJ\IJ]X = [9791798]x = [Y\I’]x =1 (5.11)

[)‘]x = 2
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We further define the chiral order y as the sum of the chiral dimensions of all com-
ponents of a term in the Lagrangian. The leading-order Lagrangian is homogeneously
at chiral order two, [L10], = 2.

While this construction considers only leading-order vertices within the diagrams so
far, we can also generalize it to contain vertices of higher-order operators. Inserting a
local vertex of loop order L; (chiral order 2L; + 2) n; times in the diagram, modifies
the power counting to

2L+2+42Y nLi=dy+ X +3(F+Fr)+p+25+7+20+a+20+7 = x. (5.12)

An operator of chiral order four is therefore either a one-loop (L = 1) graph of leading-
order vertices (L; = 0), or a tree-level diagram (L = 0) with one next-to-leading order
insertion (n; = L; = 1).

Before we apply the chiral dimensions in the construction of the next-to-leading or-
der operators in the next section, we discuss some further implications. If a symmetry
is explicitly broken by a weak interaction (like gauge or Yukawa), the corresponding
spurion will come with a weak coupling and therefore with a chiral dimension. This
is important for the operator Og, which we discuss in Section [5.3.1]

There are other operators that are naively of chiral order two, i.e. leading or-
der. These operators are (VW)? and X W\IIU‘“’\II. The assumption of a weak coupling
between the SM fields and the new physics introduces powers of couplings for the op-
erators, increasing their chiral order to at least four. Phenomenology supports these
assumptions further. Neither four-fermion interactions nor large dipole moments are
observed in nature.

Assigning a chiral dimension to weak couplings is not equivalent to an expansion in
this weak coupling. Instead, the loop counting requires this assignment. An additional
expansion in weak couplings is possible on top of the EFT expansion, if the coupling
is sufficiently small.

Since the counting of chiral dimensions is based on the superficial degree of di-
vergence, we might identify some operators as needed counterterms even though an
explicit computation reveals that the diagram is finite. We nevertheless include these
operators at next-to-leading order in the EFT, as they can receive finite contributions
at the same order, coming from integrating out heavy particles. This justifies the
identification 47v < M in the expansion above.

The assignment of chiral dimensions in Eq. practically yields a suppression
of 1/ f for the strongly-coupled fields, h and ¢; 1/A for D, and gX; and 1/(fv/A) for
U. This is similar to the NDA power counting of [97,/99,|172]. However, the authors
of [97,,99,172] do not assign a counting to the weak couplings, which yields an incorrect
scaling of some operators [23,27].
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5.3. The Operators at Next-to-Leading Order

Operators of chiral order four define the next-to-leading order of the electroweak chiral
Lagrangian. With g, a generic gauge coupling; Y, a Yukawa; and w, any of the two;
the classes of operators are [21,22]: UhD*, ¢ X2Uh, gX D*Uh, w*V*UhD, Y W?UhD?,
gXURWY? w?W4Uh, and the classes of the leading order with two more powers of w.
Subsets of the NLO operators have also been discussed in |168,|173-182].

For a convenient construction of the operators, we define building blocks that trans-
form as the adjoint of the left-handed SU(2), symmetry.

L,=iUD,U" and 7, =UTUT (5.13)

The operator 7;, breaks custodial symmetry explicitly, as it is only invariant under
SU(2), x U(1)y instead of SU(2)r x SU(2)g. In fact, 71, is the only possible spurion
of the breaking of custodial symmetry [24]. We prove this as follows.

A generic spurion s has an even number of SU(2),, indices, as all invariants in the
Lagrangian are built from U, h, gauge fields, and fermion bilinears that all carry an
even number of SU(2),, indices. Without loss of generality, we can write the spurion
as 2 X 2 matrix, S, = codap + cjagb, with complex coefficients ¢;. The spurion must
have one of the following transformation properties under SU(2); x SU(2)r:

a)s — s b)s—)gLng c)s—>gng£

5.14
d)s—>gLsg2 e)s—)gngL ( )

Keeping the spurion at a constant value breaks the symmetry in the desired way.
However, gauge symmetries cannot be broken by any spurion and must remain exact.
The trivial invariant a) does not break custodial symmetry. A spurion that transforms
as b) or ¢) violates the SU(2), gauge symmetry. The scenario d) also breaks this gauge
symmetry, unless s ~ 1, the trivial case. Scenario e) preserves gauge invariance if s ~ 1
or s ~ T3, because only the U(1)y subgroup of SU(2)r is gauged. This gives T and
therefore 77, as the only, non-trivial spurion for the breaking of custodial symmetry,
in contrast to the claims in [62].

We list the next-to-leading operators in the following sections explicitly in Landau
gauge. In this gauge, the Faddeev-Popov ghost Lagrangian coincides with the cor-
responding Lagrangian of the SM |157,/161]. As there are no direct couplings of the
ghosts to the Goldstone bosons, the non-renormalizability of the Goldstone sector does
not affect diagrams with external ghosts. Therefore, there are no ghost fields needed
in the counterterms.

We write the polynomials in h as Fj(h), starting at linear order in the field,

Fi(h) = i:jf (ﬁ) (5.15)

We reduce the list of operators to a minimal set, 7.e. a basis. This basis generalizes the
complete Higgs-less basis of [111]. We list the equations of motion and other relations
for the reduction in Appendix B} The authors of [112/[183] also discussed some of these
relations.
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5.3.1. NLO Operators of the Leading-Order Classes With Two
More Weak Couplings

Almost all operators in this group will renormalize the operators of the leading-order
Lagrangian. We do not list those operators again. The only structure we find that
was previously not present is

Op = ¢*0* (L) (L 71) (1 + Fs(h)). (5.16)

This operator is related to the electroweak T-parameter [184,/185]. It breaks custodial
symmetry. If we assume that the new physics conserves this symmetry, it can only
be broken by SM effects, i.e. hypercharge or Yukawa couplings. The spurion 7, then
comes together with ¢’ or Y2. This gives the operator two more chiral dimensions,
leading to a total chiral order of four and moving it from leading to next-to-leading
order.

5.3.2. NLO Operators of the Class UhD*

The operators of this class generalize the four derivative operators of the Higgs-less
Lagrangian |159}/186]. The CP-even operators are

Op1 = (L, L")? (14 Fpi(h)),

OD2 = <L,LLLV> <LMLV> (1 + FD?(h>>>

Ops = ({1.Ly,) (T L") (1 + Fps(h)), (5.17)
Opy = (L) (T L) (L, L") (1+ Fpa(h)),

Ops = (12.Ly) (tp.Ly) (L*LY) (1 + Fps(h)),

O = i(riLuLy) (r L") a;hu + Fpo(h)), (5.18)

0,h 0" h
OD7 - <L”L‘u> 2 (1 + FD7<h)),
O*h 0" h
Ops = (L,L,) s—(1+ Fps(h)),
v 5 hovh (5.19)
Opy = (11.L,) (T, L) = p (1+ Fpo(h)),
O*h 0" h
Opio = (1.L,) (Tr.L,) 2 (1+ Fpio(h)),
0,h O*h)?
ODll = ( #—> (1 + FDll(h))- (520)
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The CP-odd operators are

v

OD12 = <LNL’M> <7’LL,/> %(1 —|— FD12(h)),
Opis = (LuLy) (20" L2014 Foua(h)),

v wh (5.21)
OD14 = <7—LLM> <TLL“> <TLL,,> (1 + FD14<h)),

v
O*h 0,h 0" h
OD15 = <7—LL,u> T(l -+ FD15<h)).

>

If the leading-order Lagrangian preserves custodial symmetry, only the operators Op;
with ¢ € {1,2,7,8,11} are needed as counterterms. The other operators receive a
further suppression by the weak couplings that accompany the spurions. They might
still be generated with finite contributions at the same, sub-leading, order.

5.3.3. NLO Operators of the Class ¢>X?Uh

The C'P-even operators of this class are
Oxn = ¢° B, B" Fxpni(h),
Oxne = 92<WWWW> FXh2(h)a
Oxnz = 92(GuG") Fxna(h), (5.22)
Oxv1 = §' 9B (W) (L + Fxui(h)),
Oxva = ¢*(Wut)? (1 + Fxua(h)).

There are also C’P-odd operators in this class. They are

Oxha = 9’2€W,\pBWB)‘p FXh4<h)>

Oxns = §°€unp(WH W) Fxps(h),

OXh6 = ggglw)\p<leG>\p> FXh6(h)7 (523)

Oxva = ¢ 9Tt W )YBY (1 + Fxya(h)),

Oxus = §°€unp(TLWH* W, W) (1 + Fxps(h)).
Since all of the operators contain the gauge fields explicitly, they come with two powers
of the corresponding gauge coupling. The operator Ox; has an explicit factor of ¢,
hence there is no need for an additional weak coupling to accompany the spurion in
case of weak custodial symmetry breaking. As the custodial symmetry is respected by

SU(2)p, this argument does not hold for Ox . The operators in this class generalize
the operators discussed in [159,/187].

5.3.4. NLO Operators of the Class ¢ X D>Uh

The comments on the previous class of next-to-leading order operators also apply
here. Operators without explicit B fields, but containing the spurion 7 are further



5.3 The Operators at NLO 53

suppressed if custodial symmetry is only weakly broken. The CP-even operators are

OXU?) = ggul/)\p<Wle>\><TLLp> (1 + FXU3(h))7
Oxyr = ig/B;w<TL [L¥, L¥]) Fxur(h),

5.24
Oxus = ig(Wu[L*, L"]) Fxus(h), (5-24)
Oxug = 9<WWTL><TL[L“, LVD FXUg(h)-
The CP-odd operators are
Oxve = g(Ww L") (1 L") (1 + Fxupe(h)),
@) = i¢'e,un, B (1. [L}, LP]) F h),
XU10 = 19 Epvrp (TL[ ]> XU10( ) (5'25)

Oxui1 = ig%u,\p<WW[LA, LPD FXUll(h>’
Oxuvi2 = i95uu/\p<W“VTL><TL[L/\, Lp]) FXUlz(h)-

The list of operators in this section reduces to the list of [159}/187] in the Higgs-less
case.

5.3.5. NLO Operators of the Class w?W*UhD

Lorentz-invariance allows only vector currents for the fermion bilinears in this class.
The weak couplings w in front of the operators can either be Yukawa or gauge cou-
plings. Since the chirality of the fermions is conserved in vector currents, an even
number of the chirality-changing Yukawa couplings is needed. The operators are:

O¢v1 = — Z(CYL’YuQL) <7'LLu> (1 + Fle(h))>

Oyva = —w* (@ 7oq) (toLy) (14 Fyva(h)),

Oyvs = —w’(Gy"UPU q) (L,UPyU') (14 Fyys(h)),

Oyva = —w*(upy"ur) (toLy) (14 Fyva(h)),

Oyvs = —w*(dry"dr) (TeLy) (1 + Fyvs(h)),

Oupve = —w?(ugy"dg) (LUPuU") (1 + Fyye(h)), (5.26)
Oyvr = —w?((y"y) (TpLy) (14 Fyyz(h)),

Oyvs = —w?((y 1ly) (TpLy) (14 Fyys(h)),

Oyvo = —w’((y"UPwRU L) (L,UPnUY) (1 + Fyyo(h)),

Oyvio = —w’(ery"er) (ToLyu) (1 + Fyvio(h)),

T T T
Ouvs: Opver Oyre
These operators generalize the Higgs-less operators discussed in |[188-190]. We write
the minus sign to be consistent with the operators in [111] in the limit F; — 0.

5.3.6. NLO Operators of the Class Y U2UhD?

The fermion bilinears in this class can be either scalar or tensor currents. Only the
scalar currents are needed as counterterms. However, the operators with tensor cur-
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rents might still receive finite contributions. The operators with scalar currents are:

Oys1 = Y(qLU Pyqr) (L, L") (1 + Fysi(h)),
Oys2 = Y(qLUP-qr) (L, L) (1 + Fysa(h)),
Oyss =Y (qLU Paqr) (T L) (T L) (1 + Fyss(h)),
Oysa =Y (qrUP-qr)(rr. L) (T L") (1 + Fysa(h)),
Oyss = Y (qrU Praqr){t1.L,) (U Py UTLF)Y (1 + Fys5(h)),
Oyss = Y (qLU Parqr){t1.L,) (U PraUT L") (1 + Fys6(h)),
Oyst =Y (LLUP_LR)(L, L") (1 + Fysz(h)),
Oyss = Y (LLUP_LR){(ro L) (T L*) (1 + Fyss(h)),
Oypso = Y (0LUPyolR) (T, L) (U PnUTLMY (1 4 Fyso(h)),
Ousio = Y (@LUPyqr) (7L (92) (1+ Fysuo(h). (5:27)
Oysi1 = Y(qUP-qr)(rrL ) (0"2) (1 + Fysu(h)),
Oysiz = Y(qLU Piagr)(UPsiUTL,,) (0"2) (1 + Fysi2(h)),
Oysiz = Y (LU Pagr)(UPUTL,) (0"2) (14 Fysi3(h)),
Oysia = Y (qLUPrqr) (9,2) (0"2) (1 + Fys1a(R)),
Oys1s =Y (qLUP_qg) (0,2) (8"L) (1 + Fysi5(h)),
Oysie = Y (LLUP_Cr){(trL,) (0"2) (1 + Fysis(h)),
Oysir = Y ({LU Pyolg) (U Py UT L,) (8“h) (14 Fys17(h)),
Oysis =Y ((LUP_CR) (9,2) (0"2) (1 4 Fysis(h)).
The operators with a tensor current are:
Oyr1 = Y(qrouwUPyqr){tL L, Ly ) (1 + Fyri(h)),
Oyra = Y (410w UP-qr) (T Ly Ly) (1 + Fyra(h)),
Oyrs = Y (qr0UPragr) (. L) (U PnUTLY) (1 4 Fyrs(h)),
Oyrs = Y (Gr0,, U Porqr) (T, L) (U PiaUT LYY (1 + Fyra(h)),
Oyrs = Y (010, U Piol ) (7 LMY (U Py UT LYY (1 4 Fyrs(h)),
Oyre = Y (01,0, UP_Lg) (T LyuLy) (1 + Fyre(h)),
Oyr7 = Y(q quUP+QR)<TLLu> (8Vh) (1+ FwT7( )) (5-28)
Oyrs = Y(qrowUP_qr) (T, L") (0"2) (1 + Fyrs(h
Oyry = Y (410, UPaqr)(UPLUTLY) (975) (1 +FwT9(h))
Oyrio =Y (qr UWUP12QR)<UP21UTL“> (8 %) + Fyrio(h)),
Oyrii = Y ({po, UP_LR){(tr, L") (0"2) (1 + Fyri(h)),
Oyriz = Y ((10,,UPialr){(UPxqUTL*) (8°2) (1 + Fyria(h)).

The hermitean conjugates of all the operators are also in the basis, even though we
do not list them. The Yukawa coupling in front of the operator is needed, as the
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operators involve fermions of both chiralities. Some of the operators were discussed in
the Higgs-less case in [191].

5.3.7. NLO Operators of the Class ¢ XUhW¥?

The operators of this class are not required as counterterms because the one-loop
diagrams yielding these structures are finite. However, these operators might still be
generated with finite coefficients. The operators are:

Oyx1 = ¢ (710w UPiqr) B (1 + Fyxi(h)),

Oyx2 = §'(qrouwUP-_qr)B" (1 + Fyxa(h)),

Oyxz = 9(qrouwUPrqr){Tt W) (1 + Fyxs(h)),

Oyxa = 9(qrowUP_qr) (Tt WH) (1 + Fyxa(h)),

Oyxs = 9(7.0uwU Praqr) (U Pn UTWH) (1 4+ Fyxs(h)),
Oyx6 = 9(q10 U Porqr)(UPLUW™) (1 + Fyxe(h)), (5.29)
Oyx7 = 9s(qrow G UPqr)(1 + Fyx7(h)),

Opxs = 9s(qrouw G*" UP_qr)(1 + Fyxs(h)),

Oyx = ¢'(£10,, UP-Lg)B" (1 + Fyxo(h)),

Oyx10 = 9(lLow UP_Lr) (Tt W) (1 + Fyx10(h)),
Oyx11 = g(010,,UPialg) (U Py UTWH*) (1 + Fyxq(h)).

The hermitean conjugates of these operators are also independent operators of the
basis.

5.3.8. NLO Operators of the Class w?¥*Uh

The four-fermion operators can be further grouped according to their chirality struc-
ture. The LLLL operators are

Orr1 = w(quy"qn) (qeyuqe) (1 + Froa(h)),

Orro = w (@ Tqr) (q17.T%qL) (1 + Fria(h)),

Orrs = w*(qy"qr) (o, lr) (1 + Frrs(h)),

Orra = w*(@y"Tqr) Ly, T"0L) (1 + Frra(h)),

Orrs = w*(Cpy*lr) (Cpyulr) (1 + Fris(h)),

Orre = W (@' UT3U qr) (G, UT3U qr) (1 + Fris(h)),

Orrr = w (@ " UTsU qr) (quypae) (1 + Froz(h)),

Orrs = W (o' UT3U 1 5) (G057 UT3U g1 o) (1 + Fris(R)),
Orro = W (Gr.oV" UTsU  qr 8) (Gr.57uqr.0) (1 + Frio(h)),
Orrio = wz( ”UTSUT(]L) (gL%UT?)UwL)( + Frrio(h)),
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Orrn = w*(qy"UT3U ) (Cryulr)(1 + Frrin(h)),

Orriz = w?(qry"qr) Loy, UT3U L) (1 + Frria(h)),

Orriz = W (@ UTU L) (Cry, UTsU qr) (1 + Frris(h)),

Orria = w2(7L’7'uUT3UT£L ZL'YpQL)(l + Frria(h)),
(
(

(5.30)
) (

Orpis = w? (L UTsU L) (Cpy UTsU L) (1 + Frpis(h)),
) (

Orrie = W (" UT3U L) (€, 1) (1 + Frrag(h)).

The RRRR operators are

2

Orpr1 = w™(upY"ur) (tryur)(1 + Frri(h)),

Orra = w*(dpy"dr) (drvudr)(1 + Frra(h)),

Orrs = w>(irY"ur) (drv,dr)(1 + Frrs(h)),

Orra = W (Upy" T ur) (dry,Tdg)(1 + Frra(h)), (5.31)
Orrs = w?(upy"ur) (€rvuer)(1 + Frrs(h)),

Orre = w>(dpy"dr) (€rvuer)(1 + Frre(h)),

Orrr = w*(€py*er) (Ervuer)(1 + Frrr(h)).

The LLRR operators are

(@ qr) (uryuur) (1 + Frri(h)),

(g
Orrs = w (@ T qp) (0, T ur) (1 + Frpa(h)),
Orrs = w(qry"qr) (dryudr)(1 + Frrs(h)),
w (@A T qr) (drr, TAdR) (1 + Frpa(h)),
(@ry"ur) (Cryulr) (L + Frs(h)),
Orre = w*(dry*dg) (C1y,l0)(1 + Frre(h)),
w* (77" qr) (Eryuer) (1 + Frre(h)),
(Cy*lr) (eryuer) (1 + Frrs(h)),
Orry = w*(qry"lr) (ervudr)(1 + Frro(h)),
Orrio = W (@ UTsU qr) (ary,ur) (1 + Frrio(h)), (5.32)
(qr
(ar
(qr
(
(
(ar
(
(qr

OLRl =w

OLR4
2

S

OLRE)

OrLrr =

2
OLRS

2

W (G TAUTU qr) (agy, T ur) (1 + Frpii(h)),
YUT3U q1) (dry,dr) (1 + Frpiz(h)),

OrLris = VTAUTU ) (dR'YuTAdR)<1 + Frms(h)),
Orris = W (agy"ur) (L, UT3U L) (1 + Frria(h)),

>QI

OLRH

2
OLRlQ

2

Orris = w(dpydr) (L, UTsUYL) (14 Frris(h)),
Orris = W (" UTsU ) (€rVuer)(1 + Frpg(h)
Orrir = W (" UTU L) (eryuer) (1 + Frriz(h)

)(1 (h)

2GA'UTU L) (eryudr) (1 + Frpis(h)).

Y

Orrig =w

)
),
)
)
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The LRLR operators are

(@ur) (@1dr)(1 + Fsri(h)),

Osra = weyy (3T ur) (7, TdR)(1 + Fsra(h)),

Osrs = w’eyj (Tur) (Fer)(1+ Fors(h)),

Osra = weij (@10 ug) (E,omer) (1 + Fsra(h)),

Osrs = w*(qLUPyqr) (qLUP-qr)(1 + Fsrs(h)),

Osre = w* (U Paqr) (GLU Pi2qr) (1 + Fsre(h)), (5.33)

Osrr = w(@LUPT"qr) (qrUP-T"qr)(1 + Fsr:(h)),

Osrs = W (qLUPnTqr) (LU PT"qr)(1 + Fsrs(h)),

Osro = w(qLUPyqr) (CLUP_Lr)(1 + Fsro(h)),
(q
(qr
(q

OSTl - UJ AU

Osri0 = W (qLU Parqr) (CLU PiolR) (1 + Fsrio(h)),

ot UP+(]R) (ZLO'MVUP_ER)(]_ + FSTll(h))
10" UPnqr) (010, UPialr)(1 + Fsria(h)

2
OSTU =w

Osri2 = W’ )-
The operators in which the total hypercharge of the fermions is not zero (Y (¢*) = £1),
but compensated by the hypercharge of U, are

Ory1 = w*(GLUPLqr) (GLU Prqr)(1 + Fry1(h)),
Opya = w2 (GLUP T qr) (LU P T*qr)(1 + Frya(h)),
Orys = w(qLUP_qr) (qLUP_qr)(1 + Frys(h)),

w(q
w(q
w(q
w?(LUP-Tqr) (LU P-T"qr)(1 + Frya(h)),
Opys = w(qLUP-_qr) (GrP+U'qr) (1 + Fpys(h)),
Opye = W (qLUP-T"qr) (qrP U T"q) (1 + Frye(h)), (5.34)
w(
w(q
w?(lr,
w (0
w? (€

OFY4 -

Oryr 2(qLUP_qgr) ((LUP_LR)(1 + Fryz(h)),

2 LO'MVUP_(]R) (ZLO'W,UP_ER)(l —f- prg(h))7
2

Orys =
UP_(g) (GrPyU'qr)(1 + Fryo(h)),
UP_lg) (L UP_lg)(1+ Fpy1o(h)),

LUP_qr) (qrPyU0L) (1 + Fpy11(h)).

OFYQ =
2

OFYIO -

2
OFYll =

These operators trivially extend the list of operators in the Higgs-less basis [111], as
there are no derivatives in this class. Some of them were also discussed in [188]. The
operators without the matrix U have also been discussed in the dimension-six basis
of [119]. The weak couplings can either be gauge or Yukawa couplings. Some of
the operators of this class are not needed as counterterms. They can, however, be
generated via tree-level exchange of heavy resonances. Therefore, we keep them in the
list of operators.
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5.4. One-Loop Renormalization

The consistent power counting of the electroweak chiral Lagrangian ensures the renor-
malizability, order by order in the effective expansion. Many authors studied the
renormalization of the chiral Lagrangian, in general and in the context of specific pro-
cesses. Usually, the scattering of longitudinally polarized gauge bosons is analyzed.
The considered processes include: W, W, — Z;Z; analyzed in [192]; VL.V, — V.V,
ViV <+ hh, and hh — hh for V € {Z, W=} in [193]; vy — W, Wy and vy — Z. 71,
in [194]; and V.V, — ¢t in [195]. Using the Goldstone boson equivalence theo-
rem [196},197] simplifies the computation of the scattering of longitudinal components
of gauge bosons. The theorem states that the longitudinal component of the gauge
field is described by the Goldstone boson at energies E above the gauge boson mass
my . Corrections arise at the order O(my /E). The list of processes given previously
therefore yields the one-loop renormalization of the Goldstone boson sector. In these
computations, the authors found agreement between the counterterms listed in Sec-
tion [5.3] and the counterterms needed for the renormalization.

Recently, the authors of [198] considered a subset of the complete electroweak chiral
Lagrangian with a light Higgs for a diagrammatical, one-loop renormalization. In
[199], Guo, Ruiz-Femenia, and Sanz-Cillero considered the complete chiral Lagrangian
with external gauge fields and fermions. In particular, they computed all divergent
contributions of one-loop diagrams with Goldstone and Higgs fields in the loop, using
the background field method [93//94] and the heat-kernel [42]. A geometric approach
to the scalar sector confirms this computation in [200]. Sanz-Cillero et al. found a
generic matrix element to be [201]:

2 r 4
M~ T +( G - mmo L ) 5o+ 00 (5:39)
v NI 167 p ) v
LO (tree) NLO (tree) NLO zlr—loop)

Here, p is the momentum of the process, ¢ is the renormalized next-to-leading order
coupling of the operator k with n Higgs legs, and I'y, encodes the running of the
Wilson coefficients. We see in Eq. that one-loop diagrams of the leading order
Lagrangian contribute at the same order as tree-level diagrams with one single next-
to-leading order vertex. The NLO operators renormalize the one-loop divergences, as
stated by the power counting.

Further, we observe that there is no mixing between the operators at the one-loop
order. The one-loop diagrams with one NLO operator insertion, which introduce a
mixing, are of chiral order six and therefore further suppressed in the electroweak chiral
Lagrangian. This is in contrast to the SM-EFT, where the dimension-six operators
mix at the one-loop level.

The running of the Wilson coefficients can be found from Eq. and is given
by [199]

d Tin

—c, = — . 5.36
:udluck, 16772 ( )
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The effects of the running are important when we match the EFT to a UV model at
a very high scale and want to use the EFT at a lower scale. We discussed this already
in the context of the renormalization within SM-EFT in Section [4.2] However, these
effects are loop suppressed and therefore well below the current experimental precision.
Hence, we do not include them in our analysis. When the experimental precision
reaches the sub-percent level, these corrections start to become important. The explicit
computation of |199] also confirmed the structure of some of the counterterms we
discussed in Section [5.3] Our NLO basis is therefore complete within the subset of
one-loop diagrams considered in [199].

However, the complete renormalization of the electroweak chiral Lagrangian includ-
ing the light Higgs is still missing. It will provide the complete running of the Wilson
coefficients. Further, the complete renormalization gives the full list of counterterms,
which is a subset of the operators that are based on the superficial degree of diver-
gence. Nevertheless, finite contributions to the other operators of our list are always

possible. Therefore, Egs. (5.16)) — (5.34) give the full list of NLO operators.
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6. Relation Between the SM-EFT and
the Electroweak Chiral Lagrangian

6.1. General Considerations — the Double Expansion

We will now combine the two different expansions, which we discussed in Chapters
and b, to obtain a phenomenologically interesting scenario. In particular, we assume
that the Higgs sector is governed by a loop expansion of a non-decoupling EFT. The
scale of new physics, f, that we assumed to be close to the electroweak scale v can
now be much higher. The new-physics sector that is non-decoupling at the scale f
decouples from the electroweak scale in the limit f — oco. In this case, we recover the
SM. However, there are UV models in which we cannot take this limit, for example
when the Higgs is a dilaton [202].

Our theory contains now three scales: the electroweak scale v, the scale of new
physics f, and the cutoff A = 4nf. From these scales, we define two expansion
parameters,

f2 B 1 4 B ’U2
AT Tem N

In general, the EFT is a double expansion in both of these parameters.

(6.1)

d A

10 @ ] | ] ®

8§ @ ] ] ]

6 @ ] ] ]

4 @ ® ® ® >

(=)
-
AV}
W

# loops

Figure 6.1.: A visualization of the EFT’s space of operators [24].
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Figure visualizes the possible expansions. Each black dot in the diagram rep-
resents (classes of) operators or terms in a physical amplitude. They are grouped
according to the loop order at which they arise and the canonical dimension they
have. The renormalizable SM of Eq. (2.1)), for example, is given by the dot in the
lower left corner. The loop expansion along the abscissa is equivalent to the expansion
in chiral dimensions that we introduced in Eq. . The expansion in canonical
dimensions along the ordinate is equivalent to the expansion in . Every power of £
introduces two powers of the new-physics scale f in the denominator. An operator
with canonical dimension d therefore scales as £(4=4/2,

d A
10 @ [ ] [ ] [ )
8 ® [ ) [ ] o NNLO

NLO

LO NLO NNLO

(a) SM-EFT: Expansion in canonical dimen- (b) ewxL: Expansion in loops.
sions.

Figure 6.2.: Different expansions of the EFT.

The SM-EFT, which we discussed in Chapter [4] is an expansion in canonical di-
mensions. This corresponds to an expansion row by row from the bottom to the top
of the diagram, see Fig. [6.2(a)l The electroweak chiral Lagrangian is an expansion in
loops. As we show in Fig. [6.2(b)| it corresponds to an expansion column by column,
from left to right in the diagram. When we consider the EFT to all orders, both
expansions cover the full theory space, i.e. all dots in the diagram of Fig. [6.1] The
two different expansions simply organize the operators in a different way. When we
restrict our analysis to a given order in the EFT, the organisation of the operators
becomes important. Operators that contribute in one expansion at a given order are
not necessarily of the same order in the other expansion.

The double expansion in the parameters of Eq. goes through the diagram of
Fig. in a skewed way. The “angle” depends on the size of £&. The expansion is at
“45°7 if £ is of the order of the loop factor. This is illustrated in Fig. For £ of
order one, ¢ = O(1), we approach the electroweak chiral Lagrangian and the angle
“flattens”. In the limit & — 1, we reach the expansion of Fig. . For small &, the
expansion becomes “steeper” and we approach the expansion in canonical dimensions
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»

3 # loops
LO NLO NNLO

Figure 6.3.: The double expansion in loops (equivalent to an expansion in chiral di-
mensions) and canonical dimensions (equivalent to an expansion in §).

of Fig. [6.2(a)| in the limit & — 0. Which of the scenarios is the most appropriate to
describe nature therefore depends on the scale f.

6.2. Physics at the Scale f

The distinction between the scales f and v gives us many different scenarios that
we summarize in Fig. The case in which f is at the weak scale v gives us the
electroweak chiral Lagrangian, which we discussed in Chapter [ If the scale f is above
the scale v, we can distinguish two scenarios. In one case, we have f > 3 TeV and
therefore £ < 1/1672. The expansion in € and therefore in canonical dimensions is now
more appropriate. In the other case, f lies between v and 3 TeV and the expansion
depends on whether there are states at the scale f or not. Without those states,
we have the electroweak chiral Lagrangian with an additional expansion in &, i.e. the
double expansion of Fig. [6.3] We will discuss this in more detail in Section[6.3] Similar
contributions arise if there are states at f that contribute to the low-energy EFT only
when integrated out at loop level, for example additional fermions. If there are states
at the scale f that can be integrated out at tree level, the situation is more complicated.
Integrating out those states introduces effective operators that are suppressed by 1/ f2
and not connected to the loop counting of the non-decoupling sector. This adds a
dimensional expansion in 1/f2 to the already existing double expansion. We assume
in this case that f is close to the TeV scale or above, as otherwise the experimental
collaborations should have seen the first effects already. If the fluctuation at 750 GeV
in the di-photon channel [9-12] turns out to be a true signal of new physics, it will be
in this category.
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Figure 6.4.: Different assumptions on the scale f.

6.3. The Electroweak Chiral Lagrangian Expanded in
Small ¢

We now assume that we can expand the EFT in terms of the two parameters in
Eq. and that there are no states at the scale f that we can integrate out at
tree level. Any new particle in the theory therefore contributes at the order 1/M? =
1/167%f? = 1/A?. Numerical differences between these scales are encoded in the
Wilson coefficients. Schematically, the expansion is given in Fig. [6.3]

For each operator, we identify its loop order L by chiral dimensions, and its canonical
dimension d. The Wilson coefficient is then of the order (1/f%*) - (1/167?)*. The
authors of [129] discussed the dimension-six operators that describe the low-energy
effects of a strongly-interacting light Higgs (SILH). They give the Lagrangian of the
dimension-six contributions as:

Lot = 5 504(61000,(616) — 55 (610 + (Cj%qﬂqﬁfmm i h)
+ (D) (61 Dy0)

22
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From the point of view of a bottom-up EFT, we would say that Eq. does not
give a consistent low-energy description of a strongly-coupled Higgs [24]. First, the
approximation of keeping only dimension-six operators is justified only if £ is small
and we are close to the decoupling limit. Second, fermionic terms are not discussed in
Eq. . They have been included later to promote Lgii to be a complete dimension-
six basis [62]. Third, in a bottom-up EFT we would not distinguish operators that
are tree-level generated by resonances (O(1/M?)) from operators that are generated
at one-loop level at the scale f (O(1/1672f?)). Such a distinction depends on the
particular UV model that is realized in nature [132,[133,203]. For the purpose of
power counting, we identify the scales 47 f and M. This identification is called naive
dimensional analysis (NDA) [97,99] . With all of this information, we can relate the
operators in Eq. to the dots of Fig. [6.1]

The first line of Eq. , suppressed by 1/f?, corresponds to dimension-six opera-
tors that are part of the leading-order electroweak chiral Lagrangian. The T-parameter
in the second line is written with a 1/f? suppression as well. Depending on what we
assume about custodial symmetry, we would introduce an additional suppression of
this operator, see Section m The last line of Eq. has chiral order six, as three
powers of the field strength tensors would imply also three powers of gauge couplings
by our assumptions of Section [5.1 We therefore expect these operators at the or-
der O(£/(167%)?). The remaining operators are of chiral order four and of the order
O(£/(167?)). To summarize, Lsip contains operators at O(€), some of the operators
at O(£/(167%)) and some operators of O(£/(167%)?).

Phenomenology allows values of £ = O(0.1) [162,/163]. This implies that terms of
O(&?) could be of the same size as the O(1/167%) terms. The operators of O(£/(167%)?)
are negligible compared to the other operators. If we keep the operators of O(1/1672),
we have to introduce at least the operators at O(£?). The Lagrangian that is expanded
consistently in ¢ and the chiral order x is then given by

2 0 1 2
L=L8 4 L8+ L8, + L, + L, + O + O(:) + Oqey)  (6.3)

With the identification of Eq. ((5.1]), we write the doublet ¢ in terms of the Goldstone
matrix U and the physical Higgs, h. The SM Lagrangian of Eq. (2.1)) then gives the
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first term of Eq. (6.3)). The second and third term corresponds to the operators of
dimension-six and dimension-eight that are of leading order in the chiral expansion.
They are

¢l E¢U4 h 6 E¢D “ h 2 - =6 h 3
L'X:2 = 8 1+ o 7&%}@ h{1l+ o vi'\Ile)UP\If 14 o)
& —@52 1+@ 8+5—’“§2a ho*h 1+ﬁ 4— EUYS UPY 1+ﬁ 5
=216 v 2> M v v ve v/)
(6.4)

The indices of the dimension-six Wilson coefficients indicate the operators of the War-
saw basis, see Table 4.1, The dimension-eight operators have a similar structure as
the dimension-six operators, but an additional factor of (¢'¢)/f2. Further, we assume
that custodial symmetry is respected by the new physics.

The term Eiojl corresponds to one-loop corrections of the SM. We do not list these
terms explicitly here, but we keep in mind that they are part of a consistent expansion.
Finally, the term £€ _, corresponds to all operators of Table and Table that
are of chiral order four

For later convenience, we rescale the Wilson coefficients as follows:

2
6¢ = —g)\al,
Con = —az, (6.5)
Cy = —Aby,

ék - bg.

We define a; and b; with an additional factor of the SM-Higgs self-coupling, A, to
ensure that the coefficients a; and b; stay numbers of O(1) without an internal £
dependence. The terms of Eq. that are of chiral order two have to match the
leading order chiral Lagrangian in Eq. . In order to have a canonically normalized
kinetic term, we have to redefine h [21}22],

hon{l=fa (1424 35) + 2 (T4 2+ B+ B () + 5 (4))
—En(3rir (O R0 )

The parameter v should describe the physical vacuum expectation value. We find it by
imposing that the linear term in the potential, after the redefinition above, vanishes.
We find

(6.6)

Yy 2 (3u2&2a3 — 4p2€ay — 4220y + 812)
VA B+ 8a1€ — dasé + £2(3a3 — dayay + 8by — 4by))

_ﬁ<1——5+22 (321 bl)+0(§3)).
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The quadratic term of the potential gives the physical Higgs mass m;,. This condition,
together with Eq. (6.7) enables us to express the bare quantities y and X in terms of
the physical quantities v and my, and the Wilson coefficients:

W= mT%L (14 &(ag — ar) + &(2aT — arag — 2b1 +by) + O (7))
(6.8)

2
A= 2 (1€ (a2 — 2a1) + € (40} — 2a10; = 3by + by) + O (%))

Then, the Lagrangian has the form of Lo in Eq. (5.5). We have explicitly

%mizﬂ (1+€ (51 — Sa2) + & (—Farar + Fa3 + 4by — 3bs — §ay)) (v

V(h) = %thi -
h 4
+ (3 +¢(2a1 — Bao) + & (—daras + Yaj + 8by — 2b, — 4a})) (;>

5
+ (&(ar — a2) + & (=% ayas — 207 + a3 + by — 5by)) (%)

6
+ (§(a1 — ag) + € (—Baray — 3ai + Fa3 + Loy — b)) <%)

h 7 h 8
4 52 (_galag + gag + bl — %bg) <;) + % (—%alag + gag + b1 — %bg) <—) ] s

(6.9)

SHSy

Fy(h) = (2—ag + & (343 — by)) ( + (1 = 2a2€ 4 & (3a3 — 3bs)) (%)2
+ (—&5az + € (Ka3 — 4b,)) %)3+( £2 + & (2a3 —3by)) (%)4 (6.10)

5 6
(Bt = ) () + 5 (Bai 1) (5)

=N
[\ N}

a
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and
5 - ~ h
SOV ()" = (Y + & (278 — $Va0) + € (20Vas — arViy — BV + 173, ))
n=1
h 2
a6 ) 2( 44,V by 10}78)) -
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N R\ >
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Here, Yy, are the Yukawa matrices of L1, and ?& and }7\1% are the ones from the
dimension-six and dimension-eight operators. If they are not diagonal, we have to ro-
tate to the mass-eigenstate basis. However, we do not perform this step here explicitly.
The lowest order term of V(h) and Fy(h) were also discussed in [204].

In ﬁx _4, we find
££1 — B£ 9/2'02 <L T >2 1 + ﬁ ! o CXhlé. g/2B B (1—-11 + ﬁ i
=47 T pr2 wik v 41672 w v

CXh3€ <GMVG“V>

Y N N E 2 (Y
9. 16727 Ve o) | T 2 16m2% "

cxui1é W B (1 h\?  cpvif Y 1 h\?
+ 167 599 (WpwTr) +; + 167 = (0" L) (L) "’;

2 2
LS| €<q v ar) (L) <1+%> —w M(e Her)(LyT) <1+%>

1672 1672
2 2
va4§ h Czpv5€ h
— w? 1672 (ary*ur)(L,TL) (1—1—;) —w? 1672 (dr YWdgr){L,tp) | 1+ "
CwV6§ " h ?
w 1672 (UR’}/ dR)<P21U L U> — +hC
2 2
2 Cyv/ 3 h vazf h
v 167:2Oq(1+5) - 162@( v) Tt e

(6.12)

Here, L4 refers to all four-fermion operators without U-fields and L2 x contains the
operators of Section [5.3.7 Coming from dimension-six operators, the four-fermion
operators contain no Higgs fields. The operators of £,2x come with Fyx;(h) = h/v.
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The coefficients of all of these operators are of the order O(£/167%). Further, we use
the notation

O, = 2(qrey"q){(L,71) + (qU PU W q) (P UL, U) + (qU Py Ut q) (PrUTL,U),
O = 2(Irpy*")(Lur1) + (IUPUAM)(PuUTL,U)Y + (IU Py U1 (PUTLLU).
(6.13)

Therefore, only one linear combination of Oyy2, Oyys, and (’)ng, namely O, enters

at leading order in §. The same is true for Oyys, Oyyg, and (’)ng that form O,. We
also redefined the gauge fields, such that the kinetic terms are canonically normalized.
This subtracts the Higgs-independent part of the three operators Oxp1, Oxne, and
Oxns in Eq. . The redefinition does not change the structure of the covariant
derivatives in the kinetic terms of the matter fields in Eiozg, because the product of
gauge coupling and gauge field is renormalized together. The renormalization of the

field is therefore absorbed by the renormalization of the coupling.

6.4. Phenomenological Implications

The two different EFTs, the decoupling SM-EFT and the non-decoupling chiral La-
grangian, seem like different scenarios, realized in nature. The different assumptions
on the Higgs lead to a different realization of the symmetry in the Goldstone sector.
It is linearly realized in the SM-EFT and non-linearly realized in the electroweak chi-
ral Lagrangian. Some research groups [62}/179, 205, 206] therefore tried to answer
the question: “Is the symmetry linearly or non-linearly realized?” Since the ob-
served Higgs behaves like the SM-Higgs within the experimental uncertainties, most
groups conclude that it is appropriate to assume the linear realization and use the
SM-EFT [135]/136,{150152,207-212]. However, with the discussion of the preceding
sections in mind, we see that the choice is not about how the symmetry is realized.
Rather, it is about whether the new physics is decoupling from the SM or not. Com-
pletely non-decoupling scenarios, like Technicolor [213-215], identify f = v and are
ruled out by the experiments |[69]. The parameter £ is therefore definitely smaller than
one, £ < 1. Hence, the question to ask is: “How small is £7” It is more appropriate
to use the double expansion if € has at least the size of the loop factor. If £ < 1/1672,
it is better to use the SM-EFT. The parameter £ interpolates continuously between
the different scenarios. In the transition region, both expansions have advantages and
disadvantages, so we cannot give a definite recommendation. However, the two limits
€ < 1/1672 and € > 1/1672, have some general implications for observables. If the
experimental measurements show these features, we can decide which of the two ex-
pansions is more appropriate to apply.

Operators of dimension six introduce correlations between different couplings in the
Lagrangian. We can see them for example in Eq. (6.10). At the order O(¢), the cou-
plings between the Goldstones and one Higgs, and between the Goldstones and two
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Higgs fields are modified by the same parameter, ay. They are therefore correlated. If
the new physics is decoupling and ¢ is small, we measure these correlations. Operators
of dimension eight, i.e. effects of order O(£?), break the correlations [204]. Uncorre-
lated couplings would therefore hint at larger values of ¢ and the double expansion.
However, if we measure couplings that seem to follow the predicted pattern of corre-
lations, it is still possible that this comes from a very specific UV model instead of a
small & expansion.

A second general observation comes from the reordering of the terms in the different
effective expansions. At next-to-leading order, the SM-EFT predicts many different
effects in the Higgs and in the gauge-fermion sector to arise at the order O(v?/A?).
The double expansion, on the other hand, predicts larger effects in the Higgs sector
(at O()) than in the gauge-fermion sector (at O(£/167?)). Measuring sizable effects
in the Higgs sector would therefore indicate that the scale of new physics, f, is not too
far above the weak scale and the double expansion is appropriate. The enhancement of
effects in the Higgs sector is larger for operators involving more Higgs fields. All terms
in the polynomials Fj(h) are of the same chiral order, but have increasing canonical
dimension. Therefore, the operators are in different orders of the SM-EFT. However,
even the observation of double Higgs production will be very challenging at the LHC
[216,]217]. Hence, for practical purposes one can only compare the size of the effects
of single Higgs processes to the size of the effects in the gauge-fermion sector in order
to distinguish the two different expansions.

Experimentally, the gauge-fermion sector was measured at the one-percent level by
the experiments at LEP [218-220]. Current limits on single-Higgs couplings are at the
order of ten percent [162]/163], some of the Higgs couplings have not been measured
at all. Thus, there is no reason to assume that the double expansion is not justified
for the current phase of the LHC Higgs analysis.



Part Il1.

The Application of the Effective
Theory






73

7. Specific Models and Their Relation
to the Effective Field Theories

A different approach, complementary to the use of EFTSs, is given by postulating spe-
cific models. They are designed to address current experimental anomalies or open
problems of the SM. We would like to understand electroweak symmetry breaking
and tackle the hierarchy problem of the SM-Higgs sector that we discussed in Sec-
tion [2.3] There are different ways to solve the hierarchy problem. The quantum
corrections to the Higgs mass can be small because a symmetry leads to cancellations
between the large contributions, and the high-energy cutoff is therefore well below the
Planck-scale [80,202]. In all cases, the Higgs sector is modified with respect to the SM.

A very prominent example is Supersymmetry (SUSY). In SUSY, the symmetry
group of the SM is extended by a symmetry that relates the bosonic and fermionic fields
[221-225]. By definition, these fields, called superpartners, have the same quantum
numbers and masses, but a different spin. The quantum corrections from bosonic and
fermionic loops then have the same magnitude, but a different sign. Hence, they cancel.
However, the particle spectrum we observe at the experiments is not supersymmetric.
This implies that SUSY must be broken. A detailed supersymmetric model that is able
to describe the current SM-like observations is the Minimal Supersymmetric Standard
Model (MSSM) [226-228]. Current experimental searches for the MSSM and other
supersymmetric models have not found any new particles [229,[230, and references
therein]. Instead, they only set lower bounds on the masses of the SM superpartners.
Effects of SUSY are in general decoupling and therefore at low energies described by
the SM-EFT [231].

Postulating a confining gauge theory that breaks the electroweak symmetry dynam-
ically also solves the hierarchy problem. A prototype model of this type is Technicolor
(TC). Inspired by the fact that chiral symmetry breaking of QCD also breaks the elec-
troweak symmetry, but predicts gauge boson masses that are three orders of magnitude
too small, the authors of [213-215] introduced a scaled-up version of QCD.

In general, we have an SU (Nt¢) gauge theory with confinement that breaks a global
SU(2)r, x SU(2)r symmetry spontaneously to SU(2)y. The three Goldstone bosons
become the longitudinal components of the W= and Z bosons, as in the SM. However,
in TC there is no physical Higgs particle. Instead, the resonances of SU(Nt¢) restore
the unitarity. TC models of this type are now excluded by experiments. First of
all, CMS [7] and ATLAS [8] observed a Higgs-like scalar particle that is not part of
these TC models. Further, TC predicts [80,(171] large values for the Peskin-Takeuchi S
parameter [184}/185] that is measured to be small [69]. In order to generate masses for
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ggauge ‘

Figure 7.1.: Pattern of symmetry breaking at the scale f in composite Higgs models,
taken from [171].

the quarks, TC has to be extended. These extensions [232] predict also flavor-changing
neutral currents (FCNCs) that are not observed. Therefore, variations of the TC idea
have been proposed. Because of the strongly-coupled nature of the UV-completions,
their effects are in general not decoupling at low energies. Thus, the electroweak chiral
Lagrangian describes the low-energy effects of these types of models.

We focus on this class of models in the following section. First, we introduce com-
posite Higgs models — a variation of TC. Then, we show how they are connected to
the electroweak chiral Lagrangian. If the first hints of new physics that come from
experiments are just deviations of signals from the SM prediction and no new particles
are observed, it is crucial to know which class of models induces which pattern of devi-
ations in observables. In addition, we show that the chiral counting of non-decoupling
EFTs can also be applied in the context of composite Higgs models. In Section
we illustrate how a simple, renormalizable UV-completion induces a decoupling or a
non-decoupling EFT in different regions of the parameter space. This also shows how
an explicit model is matched to the EFTs of Chapters [4] and [5]

7.1. Composite Higgs Models

Composite Higgs models (CHMs) are a class of UV-completion that is inspired by TC.
As in TC, we assume a new, strong interaction that breaks the electroweak symmetry
dynamically. In addition, we assume a pseudo-Nambu-Goldstone boson (pNGB) in
the spectrum that we identify with the Higgs. Kaplan and Georgi first proposed this
idea in [233-237]. The pNGB nature of the Higgs explains why it is much lighter
than the other resonances of the strong sector, similar to the pions in the spectrum
of QCD. The Higgs, now being a composite object, does not receive large quantum
corrections to its mass, as the virtual effects are cut-off at the compositeness scale.
The mass is protected by Goldstone’s symmetry. Fermions and gauge bosons of the
SM are external to this strong sector and elementary in this picture.
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In general, we assume the following scenario [171], which we also illustrate in Fig. :
The strong sector has a global symmetry, G, that is spontaneously broken to H at the
scale f, giving n = (dimG — dim M) Goldstone bosons. A subgroup Ggauge C G is
gauged by external gauge fields. Its subgroup Ggauge N H is the unbroken gauge group
at the scale f, while the remainder Gy, = Ggauge — (Ggauge ) is spontaneously broken.
The spontaneous breaking of the gauge group requires ny,, = dim Gy, of the n Goldstone
bosons. The external gauging of Ggauge also breaks the symmetry G explicitly. This
explicit breaking induces a potential that breaks the electroweak symmetry at one-
loop level, setting the electroweak scale, v, below the scale f. The massive W* and
Z bosons of the SM “eat” three of the n — ny, remaining Goldstone bosons. The
remaining n — ny,, — 3 Goldstone bosons get a mass of O(v) from the explicit breaking
of G, making them pNGBs. We identify the Higgs as one of them.

The Minimal Composite Higgs Model (MCHM)

The authors of [169,|170] proposed a minimal realization of the described pattern of
symmetry breaking based on the coset SO(5)/SO(4). In particular, they considered
G=S50(5)xU(l)x and H = SO(4) x U(1)x. The additional U(1)x is necessary to
get the correct hypercharges of the SM particles. The strong dynamics is conformal
at high energies and corresponds to a weakly-coupled, five-dimensional Anti-de Sitter
(AdS) theory. In this picture, the Higgs is the fifth component of the five-dimensional
gauge field. Agashe et al. computed the form factors of the strongly-coupled four-
dimensional theory from the five-dimensional AdS theory in [169]. They showed that
the flavor problems of TC are solved and the contributions to the electroweak precision
observables are small. However, this model is not renormalizable. Therefore, it is only
an intermediate theory, not valid up to the Planck-scale.

The breaking of G — H generates n = 4 Goldstone bosons, transforming in the
fundamental representation of SO(4). The group SO(4) is isomorphic to SU(2) x
SU(2), which we identify with the global SU(2), x SU(2)g of the Higgs sector in
the SM. The four Goldstone bosons transform therefore also as a complex doublet of
SU(2),. We identify it with the composite Higgs. The gauging of Geauge = Gsm =
SU(2), x U(1)y breaks SO(5) explicitly and generates a potential for the Higgs at
the one-loop level. The generated vacuum, however, tends to preserve Ggy [169,
233-237]. Further contributions from fermion loops misalign the vacua and break
the electroweak symmetry dynamically. Three of the Goldstone bosons become the
longitudinal components of the massive gauge fields, the fourth one is the massive,
Higgs-like scalar. Their masses are of the order of the electroweak scale. Fermions
couple linearly to the operators of the strong sector and get their masses via mixing
effects. This so-called “partial compositeness” [238] avoids the problems of TC with
flavor-changing neutral currents [239-241|. Different possibilities exist to group the SM
fermions into SO(5) multiplets. The authors of [169] used the spinorial representation.
Since this representation is four-dimensional, they called the model MCHM4. The
authors of [170] considered the fundamental, five-dimensional representation and called
the model MCHMS5, as well as the anti-symmetric, ten-dimensional representation that
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they called MCHM10.

In the following, we focus on the bosonic, CP-even sector of these models. We
do not specify the precise mechanism of the SO(5) — SO(4) breaking, instead we
just parametrize the Goldstone bosons of the coset SO(5)/SO(4). As in the chiral
Lagrangians we discussed in Section and Chapter [5] we use the construction of
Coleman et al. [57,58] to parametrize the Goldstones. We write the four Goldstones,
hs (with a =1,...,4), in terms of the SO(5) vector ¥. It is defined as

Y(ha)=U (014> : where U = exp(V/2it%hs/f). (7.1)

Here, t% are the broken generators spanning the coset. We list them in Appendix
explicitly. Expressed in terms of h;, we have

U /1 — (1 —c)hhT ‘ slAz\ (7.2)

U )

where s = sin (|h|/f), ¢ = cos (|h|/f), |h| = Vhaha, and hs = ha/|h|. This yields

[169//171] A
S (ha) = (hds) . (7.3)

As already discussed, quantum effects generate a potential at one loop that breaks
the SO(5) symmetry explicitly. We parametrize this potential using the two SO(5)-
breaking spurions that are consistent with SM gauge invariance, 7 = (0,0,0,0,1)T
and %, defined in Eq. . The vector, 7, conserves custodial symmetry, while ¢3,
breaks it. We assume that this breaking comes from the effects of the SM only. This
implies that % comes with factors of weak couplings, ¢’ or Y. The spurions are related
through in’ =1 — 4313,

This low-energy description of the SO(5)/S0O(4) coset is a bottom-up, non-decoupling
EFT. Its power counting is therefore given by chiral dimensions, as we discussed in
Section [3.3] and Chapter [5] At leading order, chiral order two, we have

2
L10 = 7DMETDME — a4+ 4p XTI (7.4)

The form of the potential depends on the representation of the fermions in SO(5)
[169,/170]. Here, we choose the simplest form that leads to electroweak symmetry
breaking, based on the MCHM4 [169]. The coefficients of the potential, a and /3, are
generated at one-loop level and have therefore chiral order two.

The isomorphism between SO(4) and SU(2), x SU(2)r allows us to relate the
SO(4) vector hy to the SU(2), x SU(2)g bi-doublet ®, defined in Eq. (2.4)),

o hatihs hotihg
\/§q) - <¢7 ¢) - (—(hQ _ Zhl) h4 _ /th) - ha)\a — |h’|U (75)
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Here, we defined \; = (i, 1), fulfilling the relation

NN = 26301 (7.6)
This gives
t (UMY = (TRUND), 8, 5 (UN) = —(UTEND), (7.7)
and .
ha = 5(%\2). (7.8)

We write the Lagrangian of Eq. (7.4) now in terms of the fields of the electroweak
chiral Lagrangian of Chapter 5| We find

1 2
Lo = §8M]h|8“|h| + fz(LuL“)s2 —ac+Bs% (7.9)
The potential exhibits spontaneous symmetry breaking for § > 0 and |o| < 25. It

generates the vacuum expectation value, (|h|), via

. hl) a)?
sin? WDy _ (—) : 7.10
7 2 (7.10)
The mass of the physical scalar, h = |h| — (|h]), is
2802

When we compare Eq. (7.9) to the Goldstone-kinetic term of Lro in Eq. (5.5), we
find [169-171]

RN
f* sin ( 7 )— (1+ Fy(h)). (7.12)

This gives us a relation between v, f, and (|h|),

3 " in? (@) (7.13)

=2l

and the expansion of Fi;(h) |171]:
h3

h h?
Fu(h) =2 1—5(;)+(1—2§) (F)_gé 1—§<§>+... (7.14)
The expression of the coefficients, fy,, of Fyy(h) =Y fun(h/v)" to all orders is [22]
Jun == n—1 (7.15)
Ul JTZE(—46)" T, for nodd.

Also in this explicit model, & controls the degree of decoupling. W, W -scattering am-
plitudes violate perturbative unitarity at a scale A &~ 47 v/+/€ [171]. The new physics

2 {(1 — 25)(—4§)§71, for n even
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decouples in the limit & — 0 (for fixed v) and Fy(h) approaches its SM form. The
SM-Higgs unitarizes the amplitudes alone. A composite Higgs with generic £ € (0, 1)
unitarizes the amplitudes only partly, the other resonances of the strong sector are
needed for a complete unitarization. In the limit & — 1, the Higgs does not contribute
and only the resonances ensure the unitarization. This corresponds to the TC limit.

The authors of [242] discussed the next-to-leading operators of the SO(5)/SO(4)
coset in detail. They defined the building blocks d,, and E, through

—U'DU = dit* + Eit* = d, + E,. (7.16)

The unbroken generators, %, and the broken generators, t*, are given in Appendix
D, = 0, +iA, is the covariant derivative of the most general gauge field, A, =
Azt& + Ajt®, with absorbed gauge coupling. Further, we consider the building blocks

0.E, —0,E, +ilE,, E) = E,, = El, + E, (7.17)
and
fo =UFLU= [, + fh+ fE. (7.18)

Here, the superscripts “L” and “R” refer to the operators that are multiplied with
the ¢ /r generators, while f,, = M‘,;‘it&. The CP-even, next-to-leading order operators
are [242]

O = (d,d")?,

Oy = (dyd, ) {d"d”),

O3 = (B, BM) — (B, B),

Of = ((fu + f)ild",d")), (7.19)
OF = ((f)?)

Oy = ((fu, — f)ild",d"]),

05 = ((fu)* — (fi2)?)-

With the identifications in Eqs. (7.7) and (7.8), we can relate the operators to the
NLO operators of the electroweak chiral Lagrangian, Eqs. (5.16|) — (5.34]). We restrict
the gauging to the SM gauge group and find

2
01 = (Zoulnlerinl + (2,7 )
2 2
Oy = (ﬁ6u|h\8,,|h| + sZ(LuLy>) ,
2 12
Of = —s2(gD,WH" L, — ¢0,B" 1Ly + = (W) + L (B Ts)? — ¢ gBuWHrp),

2
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OFf = (> (Ww)* + 9% (BuT3)* — 2¢' 9B W),

OF = i= (s> + 2)(gW,[L*, L] — ¢/ B [L*, L*])
2
g2 g/2 (720)
+ 2c(gDMW’“’Ll, + g’é?uB“”TLLl, + 3<W‘“’>2 — —(BWT;),)Q),

2
O5 = 20<92(Ww)2 - 9,2(BuvT3)2>-

We note that the operator O3 of Eq. is redundant, O3 = Oy — 20, . This was
also mentioned in |179], where this and other cosets were considered.

From the NLO operators of Section we find Op127811, Oxnie, and Oxyi7s.
Some operators contain the terms D, W* and 0, B"" that are reducible when using
the equations of motion. Further, we have to expand the trigonometric functions, s
and ¢, around (|h|) in order to find the explicit form of the F;(h).

When we rotate Eq. to the physical basis using Eq. (2.23)), we find that
no photon-photon-Higgs- and also no gluon-gluon-Higgs coupling is generated by the
SO(5)/SO(4) model. This was motivated in [129] by a shift symmetry of the pNGB
Higgs. It is true for the bosonic Lagrangian defined at the scale f, as we just derived.
However, at the scale v, we have also integrated out the fermionic states of the scale
f. This induces the operators hG,,G"" and hF,, F*" with coefficients of the order
£/1672, i.e. at next-to-leading order. Additionally, explicit computations with new
states at the scale f confirm the appearance of those operators [241}243].

7.2. The Singlet Extension of the Standard Model

We consider the SM extended with a real scalar singlet [244-249]. This model serves
as a simple, renormalizable UV-completion. Even though this model is not favored
by current experimental data [248,250], it is a useful toy-model that illustrates the
connection between a UV-completion and its low-energy EFTs [21}22, |28 |111]. In
particular, we will see that, depending on the region of parameter space, the heavy
field either decouples at low energies or not. Therefore, the SM-EFT and the ewy L
are both appropriate low-energy descriptions for different parametric limits.

We start with the Lagrangian of the SM, Eq. (2.1), and add a real scalar gauge
singlet S. We further assume an additional Z, symmetry under which S is odd and
all the other fields are even. The full Lagrangian becomes

1 1 1
L= _ZBMVBW - §<VVWWW> - §<GWGW>
+iqy Dy, + 0L D0, + iup Py, + idp Pdy + i€p el (7.21)

+ (D"$)1(Dyo) + 050, — V (¢, S)
— Y 9el — Y, oy — 41,7 (i020)uf, + hic.,
where

2 2
V(9.5) = ~Hloto 25 L Migtop + 2oty Mglosr. (122)
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The potential is bounded from below and has a stable minimum if |250,[251]
A, Ay >0, and My — A3 > 0. (7.23)
Historically, this model is also called “Higgs portal” [244},245/247], as it offers a renor-

malizable portal coupling to a sector that is otherwise not interacting with the SM.
Models of this type are also appealing to describe dark matter sectors [252,253].

7.2.1. The Physical Basis

The potential in Eq. (7.22) has a non-trivial minimum, giving a vacuum expectation
value to both, the Higgs and the scalar singlet:

v+ hy (0) Vs + ho
=——U d S = ) 7.24
o=—57 Ul m N (7.24)

Here, we wrote the Higgs doublet ¢ in terms of the Goldstone boson matrix U and
the Higgs field hy, as before in Eq. (5.1]). The excitations of the vacuum, hy; and hs,
mix kinetically in Eq. ((7.22]). We obtain the physical states after the rotation

h\  [cosx —siny hy
() = (o ) () 72

2300,

with

We restrict the range of y, without loss of generality, to x € [—m/2,7/2]. We see that
the mixing vanishes in the limit A3 — 0, as expected. After this rotation, we find the
masses of the two scalars,

1
mp g = 1 A% 4 Xav? F /(Aw? — \w2)? + 4(/\37)@5)2} . (7.27)

We define m, = m < M = mpy. The five parameters pi1, p2, A1, Ao, and A3 define the
model in the interaction basis in Eqs. (7.21)) and (7.22). We can relate them to five

physical parameters v, m, M, x, and f = /v + v? using the relations (7.26)), (7.27),
and

HEA2 — 33 2 _ o H3h — HiAs

2
=9 =
! s — N2 Y e — N2

(7.28)

We identify m and v with the Higgs mass and the electroweak vacuum expectation
value. The three remaining parameters, M, y, and f, describe the dynamics beyond
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the SM. We use £ = v?/f?, as before. For the reverse transformation, we use

2
A = o (m202 + MQSQ) ,

2 £ 2 2 2.2
— 2 S (m
A2 v21—§< ¢ +m?s%),
2 £
A3 = — cs(M?* —m?),
=\ T o ) (7.29)
1—
pi = (m*c + M*s*) + ¢ ¢ cs(M?* —m?),
s = (M*c +m?s*) + : Eg cs(M?* —m?),

where ¢ = cos y and s = sin .
Expressed in the physical fields, h and H, the scalar part of the Lagrangian of

Eq. (7.21) is
1 1
2 % 2 2 2 2
+ Uy (1+ Sh+ 2 S g 2o (7.30)
4 v v 0?2 02 02
— v (@YuUPsan + @YaUP-qp + L Y.UP (g + hee) |1+ “h+ %H} ,

The potential is

1 1
V(h, H) =5m®h* + SMPH? — il — doh®H — dshH? — d, H?

(7.31)
— 2 h* — 29h*H — 23h®H? — 2yhH? — 25 H* |

where

2w,
2m? + M?
d2 — m21j;5 SC (SU ‘I— C’US) 9
2M2 2
ds = 2U—;m sc(cv — svs)
M2
dy = — (c3v + 831}5) ,
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2] = _81)102 [mz (83U — 0305)2 + M?s%c? (sv + CUS)Q] )

29 = 25223 (sv + cvs) [m2 (531) — cgvs) + M?sc (cv — svs)} ,

23 = _8118—20213 [m? (6sc(sv + cvy)? — 20v,) + M? (6sc(cv — svy)® + 2vv,) ], (7.32)
24 = %;UE(CU — Svy) [M2 (c3v + 331)8) + m?sc (sv + cvs)} ,

25 = _81;@3 [M2 (c3v + 83215)2 +m?s*c? (cv — svs)g] )

So far, this describes the renormalizable SM singlet extension in the physical basis,
without any approximation. However, we are interested in scenarios where M > m,
such that we can integrate out the heavy field. This limit can naturally be realized with
an approximate SO(5) symmetry in the scalar sector, where the four real components
of ¢ and the S transform as a fundamental vector of SO(5). We split the potential
in Eq. in a part that conserves SO(5) and a part that breaks SO(5) weakly,
V = Vo + V1. In the exact SO(5)-limit, we have \; = Ay = X3 = 2M?/f? and
(1 = pe = M. Further, ¢ = sin® ¥ and the light scalar becomes a Goldstone boson,
i.e. m = 0. Expressed in terms of 32 = ¢'¢ + 52, we have

2 A
Vo= —Eln? 4 S (7.33)

Two of the five parameters of the model conserve the SO(5) symmetry. We identify
them with M and f. The symmetry is weakly broken by the spurion S, which respects
the Zy and an SO(4) symmetry. The latter corresponds to the custodial symmetry of
the Higgs sector that we assume to hold. There are three renormalizable operators,
which include the spurion S?, that we write in V;:

M%—M352+/\1+)\2—2)\3S4+>\3—>\1

=3 1 2

DIRCES (7.34)

This explicit breaking introduces a small mass for the light scalar, which becomes a
pseudo-Nambu-Goldstone boson. The Goldstone symmetry keeps m < M, which is
what we need for the effective expansion. We express the deviations from the SO(5)-
limit in terms of
w
3
where w = sin? y. These parameters are small for weak SO(5) breaking, r,§ < 1,
which ensures m < M. The fifth parameter of the model (apart from M, f, J, and r)
is . It also breaks the SO(5) symmetry, but is naturally of order unity, as the vacuum
is degenerate in the strict SO(5)-limit. The small explicit breaking of SO(5) through
0 and r lifts this degeneracy. We can also express the couplings \; in the latter set of

and )

1, (7.35)

ﬂ
Il
Sl%
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Figure 7.2.: Parameter scan of the model for fixed M = 1 TeV. The red area is allowed
by perturbative unitarity [251]. The lines show the SO(5)-limit and small
deviations from it.

parameters:

2M?%r +w(l —7)

E £
OM?1 — w(l —
b =" - ( : 2y (7.36)
Mmoo w(l—w)
A TR sy

When we expand the couplings in Eq. (7.34]) to first order in the small parameters of
Eq. (7.35)), we find

0
2 _ 2 M2
251 25 2(1_€)a
2M? r

)\1 + )\2 - 2)\3 - ?m, (737)
2M? [r J
Al”?’:?(z*m)

This shows that V} in Eq. (7.34) breaks SO(5) weakly for r,§ < 1.
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Figure shows a parameter scan of the model in the &-y-plane for fixed M =
1 TeV. The red area defines the region of the parameter space that is allowed by per-
turbative unitarity. We use the relations for tree-level unitarity from [251]. Additional
lines show the SO(5)-limit and small deviations from it.

7.2.2. The Effective Descriptions

We are interested in the limit of the model where M > m. In this limit, we can
integrate out the heavy scalar and construct a low-energy EFT [28]. Similar setups
are also discussed in [254H260].

With v = 246 GeV, m = 125 GeV, and M > m, the parameter space is still not
fully determined. The couplings A; give the ratio of M and f close to the SO(5)-limit,
see Eq. (7.36). The ratio of v to f is parametrized by . We illustrate the hierarchies
of the scales in Fig. . In particular, we distinguish two different cases:

i) strongly-coupled regime:
|| < 327, m~v~f <M = Lw=0(1) (7.38)
Figure [7.3(b)| illustrates the hierarchy of scales in this case.

ii) weakly-coupled regime:
A =0(1), me~v L f M = fwkl (7.39)
Figure [7.3(c)| illustrates the hierarchy of scales in this case.

We assume that |);| stays below the nominal strong-coupling limit, |A\;] = 3272, which
corresponds to M = 4r f. Otherwise, the perturbative description in terms of a single
particle, H, would not be valid anymore. Independent of the actual size of |\;|, we
still assume that the differences between the couplings in Eq. are small, such
that 6, r < 1.

Case E[) — the Non-Decoupling Limit
In the first case, f is of the order of v; £ = O(1); and the model is strongly coupled.
We write the Lagrangian of H, Eq. (7.30)), as
1
ﬁ:_?ﬂD+MﬂH+LH+bH%hmﬁ+AH% (7.40)

The currents, J;, are
2

v S SC

L:@W+@M+§4MWDWN;+§@—&h
2

ngchh4<@h2+—%%LhUTD“U% (7.41)

J3 = d4 + Z4h,

Jy = zs,
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Figure 7.3.: Schematic picture of the different possible hierarchies.

with
Jo = @Y UP qr+ G1LYaUP_qp + 0,Y.UP_{r + h.c. (7.42)

As we discussed in Section we need to expand the equation of motion of H in
1/M. Tt is therefore necessary to make the M-dependence in Eq. (7.40) explicit and
write

Ji = MJ) + J;,

d; = M*d) + d;, (7.43)

2= M?2) + 7.
The Lagrangian becomes B

L=LM+ L. (7.44)
We insert the expansion,

H=Hy+H +Hy+..., (7.45)
with H,, = O(1/M?"), into the Lagrangian in Eq. (7.44)) and derive the equation of
motion,

6L° Wy
= M ==
om T sH
We solve it order by order in 1/M?. At O(M?), the equation of motion is an algebraic
equation that defines Hy,
6L°
0H

(O+M? —2J,) H+ Jy +3J5H? + 4J,H* = 0. (7.46)

= J) 4+ (=1 +2J9)Hy + 3JYHS + 4J)H = 0. (7.47)

Hy

At O(1), the equation of motion is
62L°

= 0. (7.48)
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We find an equation for H; in terms of Hy,

(=0 +2Jy)Hy + Jy + 3JsHZ + 4J, H3

H, =
! M2(1—2J9 — 6JIH, — 12J9H?)

(7.49)

Inserting Eq. ([7.45)) back into Eq. ((7.44) gives the effective Lagrangian, organized by
an expansion in 1/M?2. To find Hy from Eq. (7.47), we rewrite £° as

1 1 ’
L0 = 3 [HO + 5 <s(s Hy+ch)* + 1%gc(c Hy — sh)2>} : (7.50)

With the auxiliary field

1
R=Hy+5- <s(s Ho + ch)? +\/1&sc(c Ho — sh)2> , (7.51)
the Lagrangian £° becomes
1
L0 = —532. (7.52)
The equation of motion at O(M?), Eq. (7.47)), is

5L°|  6L° 6R

6H |, ~— 6R0Hy 0. (7.53)
There are two different solutions of
5[:0 1 2 13 2
SE= " [Ho—l—%(s(sHo—i—ch) + 4/ gc(cHy — sh) ﬂ =0, (7.54)
and one of
OR B 1 9 € o -
57 = [1—1-%(25 (s Ho + ch) + 2/ s5ec(c Hy — sh) ) | = 0. (7.55)

The Lagrangian with the correct solution inserted for Hy should describe the effects
when H is integrated out at tree level. Diagrammatically, this corresponds to all tree-
level diagrams with only internal H-lines that form the effective Lagrangian for h.
This diagrammatic picture helps us to find the right expansion of Hy.

A general Feynman diagram with I internal H lines, V,, vertices from the interaction
terms J, H" (with n =1,...,4), and L loops fulfills the topological identities

2 = Vi + 2Vh + 3V5 + 4V,

(7.56)
L=T-WVi+Voa+Vs+Vy)+1

For tree-level diagrams, L = 0, we find

Vi=Vs+2V,+2. (7.57)
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Figure 7.4.: Illustration of Eq. (7.57)), the expansion of the effective Lagrangian in
terms of J;.

Figure illustrates Eq. for different values of V;. Since V3,V,; > 0, we have
Vi > 2. The effective, tree-level Lagrangian contains therefore terms with at least two
powers of J;. Thus, the expansion of Hy contains terms with at least one power of
Ji. Since Eq. only depends on the currents J?, which are functions of h only,
we conclude that the expansion of Hy in terms of h starts as JY, i.e. at O(h?). This
singles out one of the three solutions of Eq. (7.53)),

" v+ (s%c— AsW)h \/(v + (s2¢c — 2sW)h)2  (sc? + cs2W)h2
=

s34+ Wes (83 + We3)? S WE
., Row, B3 (7.58)
= —§(cs(c+ SW))F —5 (Ps*(cW = s)(c+ sW)) e
4
- g (Ps*(c+ sW) (5PsW? 4+ W (¢! — 8c?s® + s%) + 5es?)) s REEp

with W = /£/(1 —&). This, of course, also solves Eq. (7.47). In particular, we see

that integrating out H in the strong coupling limit, i.e. when £, w = O(1), generates
polynomials of &, and higher powers of h are not suppressed by 1/M?. The expansion
is therefore not in canonical dimensions, but rather in chiral dimensions, which is
characteristic for the non-decoupling EFT. We discuss this in more detail below.

We now insert the expansion of H, Eq. , back in Eq. and expand the
Lagrangian in 1/M?. Since the solution of Hy in Eq. corresponds to §L°/dR =
—R =0, the Lagrangian at O(M?) cancels, see Eq. (7.52).
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At O(1), we have the leading-order Lagrangian,

s = 8y g (7.59)
oH Ho 0

The first term, the contribution proportional to Hy, vanishes by the equation of motion,
see Eq. (7.47)). We therefore have

SM+S _
ELO - £|HO

1 2 1 - _ _ _
= 5(0h)* - %h2 + b+ A+ S(OHo)? + T Ho + T H + JoH + JiH

2 2 2 h
+ SDUDHUY (14 Z5h+ Sh?) —ody (14— ).
4 v v? v
(7.60)
The kinetic term of h in Eq. ((7.60)) is not yet canonically normalized,
1, 1 A SHo(h)\”
R S(OH)? = = 14 (2200 ). 61
L xin 2(ah) + 2(8 0) 2(8h) ( + ( 5h (7.61)

The field redefinition [21]22]

i- [ ¢ géfg@)zs o

s 9 o 3383 ) 3 4
=h({1l+— (c+sW) h*+ (c+ sW)*(cW — s)h> + O(h%)

6v2 Su3

brings it to the canonically normalized form. The leading-order Lagrangian is then
given by Eq. (5.5)), with

2

(5] 00 () s ()

2 02 vd) 12 vt
s2c? 3 c—sW h’
R 1 —2s%) — — -
ot (s =200~ 20 ) () |
(7.63)
2 45203 3
Fy(h) =2c (%) +c (= W) (%) - 836 (c+Ws)? (%) + ..., (7.64)
and
0 " n h 2 h2
SV ()" = e { (5) — - (Ws+0) (F)
n=1 (7.65)

2.2 h3
—%(Ws +c)(4Wsc+ 1 — 4s?) ($> +.. } :
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We see that the leading-order Lagrangian is consistently at chiral order two. Here,
the Higgs mass counts with chiral dimension one, [m], = 1. The approximate SO(5)
symmetry keeps m small compared to M. The SO(5)-violating couplings, Eq. (7.37)),
are therefore weak and carry chiral dimension.

At O(1/M?), NLO in the EFT, the Lagrangian is

H2  sL°

N Hy, 6L
g 2M2 0 0H
0

H,
e sH

ESM—&-S _ 92 L0 .
Hy M?

NLO — (5H)2

(7.66)

Ho

The second term vanishes again by using the equation of motion, Eq. . We
rewrite the last term using Eq. and find
swus_ 1 0°LY | HP
NLo 2 (6H)? |, M?
(=0 +2J5)Ho + Jy + 3J5HZ + 4J,H3)
2M2(1 —2J9 — 6JYHy — 12J)HE)

(7.67)

These terms are consistently at chiral order four, with the assignment from before.
Equation (|7.67)) contains operators that modify the leading-order operators in Egs.

(7.63)—(7.65)) and some of the NLO operators of Eqgs. (5.16)—(5.34]). In particular, the

model generates

Op1,0p7,0p11; Oysi, Ops2, Opst, Opsia, Opsis, Opsis, (7.68)

the hermitean conjugates of the Oyg; in (7.68)), and four-fermion operators coming
from the square of the Yukawa terms contained in .J;. The latter are

OFYI; OFY37 OFY57 OFY77 OFY97 OFY107 OST57 OST97 OLR17 OLR27 (7 69)

OLR3> OLR4> OLR8> OLR9> OLRlOa OLRlla OLR12> OLR137 OLRI?a OLRIS-

This list is larger than the list that was discussed in [21,22,|111].

So far, we discussed only tree-level effects. One-loop effects introduce additional,
important contributions. We discuss them briefly here and give more details in [28].

Corrections to the effective Lagrangian, defined in Egs. and , arise
when we integrate out H at the one-loop level, as we discussed in Eq. (3.10). Using
the superficial degree of divergence, we find the expected divergence of the one-loop
diagrams [45]. The vertices, defined in Eq. (7.41]), introduce additional factors of M?.
We list the parametric size of various diagrams in Table [7.1] The naive size of the
contributions is M*/167?, which is larger than the leading-order effects, O(v*). Our
model, however, has an approximate SO(5) symmetry that conserves the hierarchy
m < M naturally. Quantum corrections to m must therefore be proportional to the
SO(5)-breaking parameters r and 4, defined in Eq. . These parameters are small,
such that 7M? = O(v?) and M? = O(v?), see (7.37). The contributions we discussed
in Table [7.1] are then of O(v?M?/167%) < O(v?f?) ~ O(v?), which means they are
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Factors of M Total size
Diagram (incl. loop

from momentum integral | from couplings factor)

4
L — M? M? M

1672

h—H)—h 2y log M M4 Moo M
V4 167
B
h : p* NA-2d ek M4
P 1672
h oy h

Table 7.1.: Parametric size of various one-loop diagrams in case .

parametrically of the size of L1o. The approximate SO(5) symmetry is therefore
necessary to have a well-defined model without fine tuning. We see again that M has
to stay below the nominal strong-coupling limit 47 f, as otherwise the model is not
calculable and contributions from all loop orders are equally important.

At NLO of the EFT, O(v?/M?), also the one-loop diagrams of the leading-order La-
grangian become important. We expect the latter effects at O(1/167%) ~ O(£/167%) <
O(v?/M?), i.e. comparable to the NLO effects in Eq. (7.67)).

We see that the one-loop effects are, in general, only slightly suppressed compared
to the tree-level contributions we discussed before. We conclude that tree-level gives
the features of the model only qualitatively. Numerically, the couplings are affected
by one-loop contributions. However, since we work below the nominal strong-coupling
limit, the loop effects are smaller than the tree-level effects.

Case fif) — the Decoupling Limit

In the second case, f is of the order of M; £ < 1; and the model is weakly coupled.
Since vy > v in Eq. ((7.24), we only expand S around its vacuum expectation value,
S = (vyg + H,)/v/?2, and keep ¢ explicit. There is no mixing between the two scalars
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at this level. We find the Lagrangian

L = (D'¢)N(D,¢) + (“1 — A?’UH) o' — —(d)*cﬁ)

1 |
+ 50" H0,H, - 5M?H2 (7.70)
“HA%WH R L
4 160
with 2 )
M2 =2 = ”HQ 2, (7.71)

This Lagrangian is like the Lagrangian in Eq. (7.40]), with the identifications H = Hj,
M = M, and

UH )\3

Ji = o',
(7.72)
Jo — _UH)\Q
3 4 )
A
Ji=—15

The difference to the non-decoupling case and Eq. (7.41)) is that the J; here are not
proportional to the heavy scale M?2. Instead, only J; and .Js are proportional to a

single power of vy, which is of the order of M,;. We solve the equation of motion of
HS7

— (O+4 M2 —2J5) Hy + Jy + 3J5H + 4J,H? =0, (7.73)
order by order in 1/M2. Keeping in mind that vy /M, = O(1) by Eq. (7.71]), we find
. /\3 Vg t t /\3 VH f 3)\2/\% U?{ N2 1
Ho= =@+ (04 3000) 2m00) - TSR0 0r +0 ()

(7.74)

Since the unsuppressed part, H, o, vanishes, we do not generate arbitrary high powers
of the light field ¢ without suppression. Instead, powers of (¢'¢) are systematically
suppressed by 1/M2. The expansion is therefore given by canonical dimensions. When
we insert Eq. into Eq. (7.70] m we find the low-energy Lagrangian

A A A 0F
£ = (D"6) (D) + (“1— 3“’{) 66 - (j—g%) (¢'0)"
1 \2v?

1
b S 6100,60) + 0 ()

in agreement to [254]. We see that only one dimension-six operator, Oy, is generated
(after integrating by parts).

(7.75)
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At low energies, the electroweak symmetry is broken and ¢ acquires a vacuum
expectation value. We write ¢ as in Eq. and perform a field redefinition to bring
the kinetic term of h to its canonically normalized form. These steps are equivalent
to the &-expansion of Section [6.3] with the special choice of parameters

Gp =0y =0, =0, Yy, =Yg, =0,
CGf Mt _ (7.76)
2 Ao

We note that « corresponds to the mixing angle y, defined in Eq. (7.37)), to first order
in v/vy. The effective, low-energy Lagrangian of the scalar sector, up to and including
terms of the order O(1/M?), is then given by L1 in Eq. (5.5) with

@0 RE G,
o’ (—) -% (‘)] |

> 2 h a2 h2 Oé2 h3
— v (”) v [( 2 v 2\ v? 6 \v? (7.79)
As already discussed before, the effective Lagrangian is expanded in canonical dimen-

sions. Therefore, the polynomial Fy; has at most four, V' at most six, and the Yukawa
interaction at most three powers of h. Tree-level corrections to this Lagrangian arise

at O(1/M2).

When we integrate out Hy at the one-loop level, we encounter similar diagrams as
in casel]). However, their parametric size is different, as the couplings in Eq. are
not proportional to M?2. Contributions from J3 are more important than contributions
from Jy, as the former is proportional to vy ~ M,. We show the size of the diagrams
in Table [T.2]

We see that only the corrections to m? are of O(M?/167%) and the contributions to
the potential are further suppressed. We absorb this contribution of O(M?/167?) in
the renormalization of m?. The loop corrections are therefore, in general, suppressed
in the weakly-coupled regime.

The Relation Between the Two Effective Descriptions

We now compare the two low-energy EFTs of case fif) and . In case , ¢ and w are
of O(1) and the model is strongly coupled. The solution of the equation of motion
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Factors of M, Total size
Diagram (incl. loop

from momentum integral | from couplings factor)

@, 4
p

S
s 1672

h%{}h %—Hong M? s log M,

S
s 1672

no g

h pt MA-2d M1 M

b b p2T — M s 1672
h

Table 7.2.: Parametric size of various one-loop diagrams in case .

of the heavy field starts with an unsuppressed term. This yields polynomials of the
light field h in the effective Lagrangian that are not suppressed by the heavy mass M.
The expansion is therefore not given by canonical dimensions, but instead in chiral
dimensions.

In case , ¢ and w are small and the model is weakly coupled. The solution to
the equation of motion of the heavy field starts at O(1/M). Therefore, higher powers
of H are suppressed by higher powers of 1/M and canonical dimensions define this
expansion.

The low-energy limits of this explicit model illustrate the statements we make in
Section about the phenomenological implications of the two expansions.

In the weakly-coupled limit, there is a correlation between the coupling of a single
Higgs to a pair of heavy vector bosons and the coupling of a pair of Higgs to a pair of
heavy vectors. We see this in Eq. ([7.78)). In the strongly-coupled limit, this correlation
does not exist, see Eq. . Figure illustrates the allowed values of the couplings
in the two EFTs, in the SO(5)-limit, and in the SM. We highlight the parameter
region that is allowed by perturbative unitarity in red. We used the formulas of [251]
to find this region. The gap between the two red regions originates from the regions
of parameter space in which x ~ 0. The Higgs couplings have to be close to their SM
values in this case.

We also observe in Eq. that the SM-like coupling structures of A to the other
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Figure 7.5.: Allowed Higgs couplings to a pair of massive vector bosons in the consid-
ered scenarios. The red area is allowed by perturbative unitarity [251].
The couplings are normalized to the SM values.

particles are modified by O(1) effects, whereas new, non-SM-like Lorentz structures
arise at NLO and are therefore suppressed. In general, the polynomials in A that
appear at leading order show that vertices with a high number of Higgs particles are
not suppressed in the strongly-coupled limit.

We introduced in Chapter [6] the parameter £ as the degree of decoupling. The
singlet model also illustrates this. Close to the SO(5)-limit, ¢ is of the same size as w,
see Eq. . We therefore understand the mixing angle as the discriminating factor
between the decoupling and the non-decoupling case. In other words, the transition
from the strongly-coupled to the weakly-coupled regime requires f > v, which means
vs > v. Expanding the Lagrangian in v/vs is then equivalent to expanding in small
X, see Eq. .

In the non-decoupling region, £ and therefore also w are of order unity. Thus,
the heavy mass eigenstate has a significant doublet component. This generates non-
decoupling effects when we integrate out the heavy particle, as the doublet is not a
reasonable approximation of the low-energy degree of freedom. In the weakly-coupled
region, the mixing is small and the heavy particle mostly consists of the singlet.
The corresponding low-energy EFT is well described by the doublet. The authors
of [261] also noted that large mixing effects induce a non-linear Lagrangian, i.e. a
non-decoupling EFT.
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After identifying the mixing angle as the discriminator between the two expansions,
we investigate the transition between them. Starting from Egs. (7.63)—(7.65), we ex-
pand Eff\f +5 up to second order in . At this order, we identify y with « of Eq. .
The resulting expression for Egs. f agree with Egs. 7. This
shows that, in the limit of a small mixing angle, the decoupling EFT at dimension-six
provides a correct description of the leading mixing effects. This is in contrast to the
claims in [254,1259]. When the mixing is larger, the operators at dimension-six, i.e.
at O(v?/v%), are not sufficient to describe all the effects properly and higher order
operators have to be considered. This corresponds precisely to the resummation in &
that we discussed in Chapter [l For v/vy = O(1), i.e. £ = O(1), the non-decoupling
description using the electroweak chiral Lagrangian is more appropriate.

Recently, the authors of [257] introduced a procedure called “v-improved matching”,
to improve the convergence between the decoupling EFT and the full model in cases
where £ is not small. Instead of truncating the effective expansion at O(v?/M?), they
also considered contributions of O(v/M)4>? in the Wilson coefficients of the dimension-
six operators. In the singlet model, this results in finding (2 cos x) instead of (2 — x?)
as first coefficient in Fy(h).

This top-down inspired idea is connected to the non-decoupling EFT in the bottom-
up approach. Adding more powers of (¢'¢)/M? — v2/M? to an operator of the decou-
pling EFT, O, corresponds to adding terms of higher order in £ to the corresponding
operator in the non-decoupling EFT. In the case at hand, adding more powers of
(¢'¢) to Oy modifies the polynomial F3(h) of the operator (9*h)(8,h)Fu(h). Since
¢ is expanded around v, every power of (¢'¢) contributes to the first terms in F,(h),
effectively performing a resummation in ¢&. When the kinetic term is brought to its
canonical normalization using field redefinitions [22] these effects get shifted to all the
Higgs couplings, already of the leading-order Lagrangian. Therefore, using the elec-
troweak chiral Lagrangian for the bottom-up analysis would automatically include the
effects of large ¢ and mixing angles. In this case, no information from the UV side is
needed and the range of application would also cover cases with large mixing effects
and rather strong coupling.
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8. Effective Field Theories in Data
Analysis

We will now discuss the process of data analysis, with emphasis on the use of effective
field theories. We introduce the important ingredients for a fit to LHC-Higgs data and
present the results of such a fit.

8.1. General Aspects of Data Analysis

When data sets of large experimental collaborations are analyzed, the process is usu-
ally split in several steps between experimentalists and theorists. Generally speaking,
the experimentalists transfer the primary quantities, e.g. count rates, from the de-
tectors into quantities that are closer to theory, e.g. cross sections. The theorists
then further analyze the result in light of a given framework, either a model or an
effective field theory. The interfaces between experimentalists and theorists are given
by “pseudo-observables”. To be more precise, a pseudo-observable is defined to be
“any uniquely defined, QFT-consistent, expression giving one number” [262] that is
implementable in any SM deformation. This general definition still gives a lot of free-
dom to the definition of actual pseudo-observables. Currently, the LHC Higgs Cross
Section Working Group [19] discusses different sets of pseudo-observables for the Higgs
analysis [20].

Let us consider the schematic flow of information between data and interpretation
in more detail in Fig. 8.1 The raw data, consisting of count rates in the detectors,
are transformed into fiducial observables. These observables are defined in a fiducial
volume of the detector, usually where the detection efficiency is the highest [263]. How-
ever, fiducial observables only have a limited use for direct analysis. Even though they
have only a small amount of theory dependence [264], coming for example from the
parton distribution functions of the protons, they come along with other difficulties.
For instance, their definition requires a signal definition such that experimental effi-
ciencies are close to production-mode independent [264]. For this reason, the fiducial
observables are then further processed to pseudo-observables. This process introduces
an additional theory dependence, which should be kept at a minimum, as another
motivation of pseudo-observables is their long-term use as experimental legacy. As an
example for the theory dependence, consider the LEP pseudo-observable I'}, [265]. It
represents the decay width of Z to ee™ and is given by the measured value and then
corrected for initial state QED radiation [266].
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Figure 8.1.: Flow of information between data (top) and interpretation (bottom).
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In general, the process of obtaining the pseudo-observables can be formulated as
Fiducial Observable = Pseudo-Observable + Remainder (8.1)

The “Remainder”-term is small and well understood for the cases at hand. The degree
of theory dependence can vary substantially when defining the pseudo-observables, see
the center of Fig. [8.1]

Very close to the experimental side, we have fully integrated pseudo-observables, such
as I'z and my, as well as Ay at LEP [265]. The first results of the LHC Higgs
analyses were presented in terms of signal strengths u. The advantage of these fully
integrated quantities lies in their long-term usefulness. Since they are almost theory-
independent, the analyses do not have to be redone if there are changes on the theory
side, e.g. if higher order corrections become available. Their disadvantage is the
reduced sensitivity to differential distributions of kinematic variables. However, with
a limited amount of data, the distributions will have a large statistical error and the
analyses can only be done using integrated quantities.

Form factors, on the other hand, provide more information on these distributions, as
they parametrize Lorentz-invariant amplitudes. For Higgs production and decay a set
of pseudo-observables was introduced in [267-269], relying on a pole decomposition of
the amplitudes. Even closer to the theory side are pseudo-observables that are defined
in terms of vertices and Feynman diagrams. However, one should be careful using
this approach since not all couplings in a phenomenological Lagrangian are directly
observable without further assumptions [270].

The interpretation of the measurements, for any pseudo-observable, can now be done
as an independent next step. Either a specific UV model or a model-independent
EFT can be used for this. For the fit to Run-1 data presented here, we use the fully
integrated signal strength, which we discuss in the following from an experimental and
a theoretical point-of-view.

8.1.1. The Experimentalists View on the Signal Strength —
Introducing the x-Framework

The expected number of events n in Higgs analyses can be written as [271] n = ung+ny,
where n, is the number of expected events in the SM, n; is the expected background
and p is the signal strength. Since p = 1 corresponds to the SM, we can write it as

g-e-A

oA (8.2)

ILL =
In this relation, ¢ is the total cross section of the process and € - A is the product of
efficiency and acceptance of the selection criteria [271]. Usually, two more assumptions
are made to rewrite Eq. (8.2). First, we assume that the total signal can be written as

a sum of processes that exist for a SM Higgs boson, i.e. 0 = Y o(X)-Br (h = Y).
XY
Here, X is the Higgs production channel of the process and Y is its decay mode, see
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Section [2.2.2] The second assumption we employ is that the product of efficiency and
acceptance is equal to its SM value. We can now express the signal strength p in terms
of “reduced efficiencies” eff(X,Y") [271]:

o(X)-Br (h—Y)
= ZGH(X’Y)(U(X) -Br (h = Y))sum

XY

(8.3)

The experimental search is then carried out for different decay channels. Each of
these analyses is further divided into several event categories, motivated by their
different reduced efficiencies. For a global interpretation of all measured production
and decay channels, we need not only the signal strength for each category, but also
their reduced efficiencies. On top, for a reliable statistical analysis, we need to know all
correlations between the channels. Since the errors cannot be assumed to be Gaussian
in every case, it requires the full likelihood information to be known. Unfortunately,
the experimental collaborations do not publish all these information for all channels.
Therefore, we cannot use the signal strength of Eq. to interpret Higgs data for
all channels.

Another way to interpret experimental data uses the “unfolded” signal strengths
in theory plane. These signal strengths are defined for each production mode X and
decay channel Y as [27]]

o(X)-Br(h—Y)
(0(X)-Br (h—Y))su

WX, Y) = (8.4)

As they are provided by the experimental collaborations directly, they have the advan-
tage that all different efficiencies are correctly taken into account. In addition, they
are published in two-dimensional planes (see e.g. in [272]), so correlations can be read
off in a Gaussian approximation. The unfolded signal strength u(X,Y") of Eq.
can also be computed from a given Lagrangian, as we will see in the next subsection.
Therefore, we choose the p(X,Y’) as pseudo-observables for our analysis at the end of
this chapter.

The k-Framework

For a first interpretation of the measurements, the LHC Higgs Cross Section Working
Group introduced a set of pseudo-observables, the r-framework [64,273]. It is an
interim framework to explore the coupling structure of the Higgs-like scalar, answering
the question: “Do we observe the Standard Model or not?”

Assuming a production similar to the SM-Higgs with a narrow width, we write the
signal strength in Eq. (8.4). We further rewrite the branching ratios in terms of the
individual decay rates,

Br (h—Y)= % (8.5)
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The k; are then defined as the ratio of the extracted production cross sections and
decay widths with respect to their SM value:

o(X — h)
O'(X — h)SM7

I'(h—=Y)

NS P (8.6)

2 2
kx = Ry =

With this definition, we can divide the k; into two categories. In the first category,
we have the k; that correspond to a simple rescaling of the SM couplings. It includes
kw,kz and ky for any fermion f € {t,b,c,s,u,d, e, pu, 7} in production as well as
decay. The second category includes k; that are, for SM topologies, not given by a
single diagram alone. Kygr, Kgq, Ky, and Kz, are in this category.

The signal strength can be written as

2 .9
Rx Ry

2 )

XY) =
wX,Y) P

(8.7)

where k7 = >".T'(h — 4)/> ., I'(h — i)sm. Usually, different assumptions can be
considered: In category one, we can define a single ky for the couplings of Higgs to
W and Z under the assumption of custodial symmetry. We can group the k; of the
Higgs coupled to a pair of fermions ff for up- and down-type quarks, or we assume
a universal ¢ for all fermions, etc. For the x; in category two, we can either assume
they depend only on the x; of category one via the SM-topologies, or they are used
as independent k; to be fitted. In this way they are sensitive to Higgs admixtures
of various types, new fermions in the loop induced processes, or decays to invisible
channels.

Recently, Passarino criticized this framework to be not suitable for LHC Run-2
analyses [274]. First, it only amounts to a rescaling of SM couplings by construction,
so it will only test deviations in event rates rather than the event shapes (i.e. kinematic
distributions). Second, only QCD corrections, being factorizable, can be taken into
account. Electroweak corrections cannot be implemented. The third point of criticism
of [274] states that the s-framework is not QFT compatible, as it violates gauge
symmetry and unitarity by ad-hoc variations of SM couplings. The authors of [91]
made similar statements. We will see in the next section how the k-framework is
related to the electroweak chiral Lagrangian and how this counters the criticism above.

8.1.2. The Theorists View on the Signal Strength — Interpreting
the x-Framework
We can also interpret the signal strengths pu(X,Y) of Eq. (8.4) model-independently

within a well-defined set of assumptions in an effective field theory. For that purpose,
we compute Eq. (8.4]) using the electroweak chiral Lagrangian. We start from Eq. (5.7)),

1
Lewy = Lro + Lyro + O (m) ) (8.8)
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where L1 is given by Eq. (5.5) and the operators of Lypo are given by Eqs. (5.16))—
(5.34). For the available data of Run-1, we only need operators that have one single

Higgs leg. The tree-level couplings to pairs of vectors and fermions are then given by
L10. If we further assume custodial symmetry to hold at leading order, the coupling
of h to a pair of vector bosons is only given by the first term of Fy(h). We do not
consider NLO contributions to h — WW, ZZ, as they are suppressed with respect to
the LO terms [275]. The loop-induced processes h — gg,77, Z are given by one-loop
terms from Lro. However, amplitudes from local Lyro operators are of the same
relative size, O(£/167?). We therefore keep them as well. The resulting Lagrangian
that we can use to interpret Eq. is given by [25]

B 1 h -
L =2y (m%VW:[W *+ §m2ZZ#Z“> i Zf ciYrffh
e? Jh egsind, h g> N
Tomz o Fur™ 5 & g o B g an G G
Here, Y7 is deﬁnedﬂ by the masses of the fermions, Y; = m/v. Similar parametriza-
tions were discussed before, using phenomenological motivations [208,276-281|. In the

normalization of Eq. , we expect the size of the Wilson coefficients ¢; to be

(8.9)
_l’_

Ci:{l—i—@(é) fori=V,t,b,7,¢,8, 1, u,d,e (8.10)

O(¢) for i = gg,vvy, Zv

We compute the contributions to p of Eq. (8.4), using Eq. (8.9). For the differ-
ent production modes X € {9gF,\WH/ZH,VBF,ttH} and decay channels Y €
{WW, ZZ,~v, Zv, ff} we find

o(VH) o(VBF)

oWV 2 oWV BY) 2
c(VH)sy V' o(VBF)sy 7’ (8.11)
o(ttH) _ » o(ggF)  T'(h—gg) '
o(ttH)sy o(geF)sm  T(h— gg)sm
We express the ratio of the branching ratios as
Br(h—Y) Y /T, (8.12)

Br(h—Y)sm  >.(Br (h— j)sw x D9 /Thy)

The tree-level decay rates for h — VV* (VV = WHW~,ZZ) and h — ff get rescaled
compared to the SM by ¢? and c?, respectively. For the loop-induced decays, we
have [282}-284]

2
> 5NeQicqAipa(znbin + 30 gepdia(zy) + evAiaw) + 2¢y,

q f:Tvl/‘?e

> %NCQEAID(%)U(%%}Y) + %A1/2(x‘r) + Ai(zw)

q

P(h—=y)
L(h = v7)sm

2

INote that this definition differs by a factor of /2 from the one of Eq. (5.3)).
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2

> %ch1/2(xq)77(q;jgng + %ng
q

I'(h—g9) _
I'(h = gg)sm S
> %Al/z(fcq)ngj%
q
2 (8.13)
> e NeQpAs(ws, \)nben + ev Aw (@w, Aw) + ¢z
D(h—Zv) |7 aep !
L(h— Z7)sm 2

> NeQrAs(xy, Af) + Aw (zw, Aw)
7

with @; = 4m?/m3, N\; = 4m?/m7%, Q; the electric charge of a fermion, and T' }" the
third component of its weak isospin. The loop functions are

Aijo(x) = g:p 14+ (1—2)f(z)], Ai(z) = -2+ 32+ 32(2 — z) f(x)],

T} — 2Qysin® 0,
sin 0,, cos 0 [y (2, Ap) = L2 (g, Ap)]

Aw (zw, \w) = — cot 0y, [4(3 —tan® 0,) (2w, A\w)

N ((1+%)tan29w _ (5+%)> ]1(xw,)\w)} )

Ap(zg, Ap) = =2

(8.14)
with the definitions
TA T2\2 72\
L) = 5+ e O T W sl () = s ()
and (8.15)
TA
I (1, ) = —m[f(ﬂ A
The functions f(x) and g(z) read
ve—1 eurcsin\/i5 z>1
9(@) = {V?[lnig—iﬂ] r <1
o (8.16)
- arcsin®(1//x) x>1
) = 1 1 1—x . 2
—Z[ln<1f‘/\/;) —m} r <1

At this order, QCD corrections of O(a;) due to the exchange of hard gluons and quarks
in production and decay can be taken into account. The QCD corrections factorize for
tree-level amplitudes of production and decay and therefore cancel in the ratios. How-

ever, they do not cancel for h — ~vv, Z7v, gg, where we included nggch =1+ 1lay/4r
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and ngLh, = ng@g =1 — a,/7 for the top-loop [62283.284]. The effects of QCD cor-
rections on other quark loops are negligibly small. We set n(g’g% =0for f € {e,pu,1}.
We further discuss the impact of QCD corrections on the final result at the end of
Section [8.4.3] Non-factorizing electroweak corrections, which we expect to be small as
well, are not taken into account.

By comparing Eqs. and to Eq. , we see that the k; are equivalent to

the Wilson coefficients ¢; under the following conditions [25]:

o We directly have ¢; = k; for tree-level processes. With the assumption of custo-
dial symmetry, we have cy = Ky = ky = Kz.

e For loop-induced processes, the amplitude is given by the SM topologies scaled
with ¢; plus one contact term. When using the x-framework with independent
Kgg, Kvy and Kz, we have the same number of free parameters and therefore the
two frameworks can be seen as equivalent.

e The xj;, of the total width is given by the SM topologies, but uses the modified
couplings from above. This corresponds to the assumption of no invisible decay
channels.

The correspondence between the x; and the ¢; is not one-to-one in point two above,
since the ¢; are defined on the amplitude level while the k; are defined at the level of
the amplitude squared. Neglecting the small imaginary parts of the loop diagrams,
we can find a linear translation between the two sets. Working directly within the
framework of the electroweak chiral Lagrangian instead of the k; brings several ad-
vantages. Since it is based on a consistent effective field theory, includig higher order
electroweak and QCD corrections is well defined. Also, if experimental precision in-
creases, the extension of the framework to kinematic distributions via higher order
operators in the EFT is straightforward. However, if the Higgs is produced with large
transverse momentum (“boosted” Higgs), already the leading order effects introduce
non-trivial kinematical distributions [285-288]. On top, the interpretation of a non-
SM result in terms of specific models is easier for the ¢;, as the Wilson coefficients
of models are often given in the literature. Having the correspondence of the ¢; and
the x; in mind, we see that the criticism of the k-framework, especially regarding the
consistency within quantum field theory given above [91}274], is not justified.

We can also connect the k-framework to the effective field theory with dimension-six
operators introduced in Chapter . The observables in Egs. and can be
computed using the Lagrangian in Eq. and the k; are given as functions of the
Wilson coefficients ¢; of the SM-EFT. However, since the power counting is different
compared to the electroweak chiral Lagrangian, we do not find the equivalence that we
found previously. The contributions to the decay of h — Z~ may serve as an example.
At leading order in the SM-EFT, we have the SM contributions [289-291| plus tree-
level topologies of only one dimension-six insertion, see the Feynman diagrams in Figs.

8.2(a)|-[8.2(c)l Since the SM loops are not modified, we only have one free parameter,
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Figure 8.2.: Non-exhaustive list of contributions to the process h — Zv in SM-EFT.
The first line corresponds to leading order SM-EFT, the second line to
next-to-leading order. Black squares dennote a dimension-six insertion.

the local hZ~ coupling. At next-to-leading order in the SM-EFT [150-152|154] we also
have one-loop diagrams with one insertion of dimension-six operators, see Figs.
~[B:2(f)] This comes now with more free parameters than needed for the s-framework,
as the Zff vertex is also modified at that order. In addition, there is a hierarchy
between the contribution of Fig. coming at O (v?/A?), and the contributions
of Figs. [8.2(d)|—[8.2(f), coming at O (v?/167?A?). Additional assumptions, such as a
weakly coupled UV completion [132,/133] can be used to bring all contributions to the
same relative order, O(v?/1672A?), but the modified Zff vertex still remains to be
non-absorbable in the x;.

Several different proposals exist in the literature to extend the x-framework to also
be sensitive to kinematical distributions. The inclusion of dimension-six operators at
the one-loop level |[150H152], as discussed before, is one example. However, as already
said, it does not include the original s-framework in a consistent limit. Another
proposal uses the pole decomposition of amplitudes [267-269]. With the justification
of the r-framework, based on a leading-order analysis using the electroweak chiral
Lagrangian presented above, an extension to next-to-leading order [26] would serve as
a natural generalization of the r-framework.
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8.2. Foundations of Bayesian Data Analysis

In this section, we introduce the basic concepts of Bayesian statistics for data analysis
[292,293]. We will see that the Bayesian approach is very useful for the parameter
estimation within effective field theories, as prior knowledge on the size of the Wilson
coefficients from power counting can consistently be taken into account [294,295].

8.2.1. Basics

When analyzing experimental data, we usually face the following problem: We observe
a certain effect, but we do not know the cause(s) of this effect. For example, when we
measure a certain coupling, we would like to know whether the underlying theory is
the SM or some model of new physics. This means that we have to infer causes by
inductive reasoning rather than deductive reasoning, where the cause is known and we
can derive the effects. It appears natural to assign probabilities, ¢.e. numbers between
0 and 1, to different causes. These probabilities, in the Bayesian picture, express
our degree-of-belief in a certain event rather than the long-run-relative-frequency that
the frequentist approach assigns to probabilities. The degree-of-belief always differs
between different observers, as it depends on the prior state of knowledge. This can
be seen in the simple example “What are the chances for rain tonight?” Our answer
will differ, depending on our geographical location, the current appearance of the sky,
whether we saw the weather forecast, etc. However, we would like to make these
subjective statements more objective. Therefore, we will express the probability of an
event X, with explicit background information I given, as prob(X|I). Probabilities
obey by logical consistency the product rule:

prob(X,Y|I) = prob(X|I) - prob(Y|X, I) (8.17)

= prob(Y'|]) - prob(X|Y, I) '
Here, the comma means a logical AND. The second line follows from the fact that the
probability of X and Y being true at the same time is a commutative statement. The
product rule can be visualized using Venn-diagrams, see Fig. [8.3]

prob(X,Y|I) I

Figure 8.3.: A visualization of the product rule for probabilities.
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By reordering Eq. (8.17)), we find Bayes Theorem, which will be of central importance
throughout the remainder of this chapter.

prob(Y'|X, I) - prob(X|I)
prob(Y'|])

prob(X|Y,I) = (8.18)

The significance of this Theorem will be more clear when we replace (X — hypothesis)

and (Y — data) in Eq. (8.18)).

. prob(datalhypothesis, I) - prob(hypothesis|I)
b(hypothesis|data, [) = 1
prob(hypothesis|data, I') brob(datalT) (8.19)

We see that the quantity that we are interested in, prob(hypothesis|data, I') (the so-
called posterior probability density), is given by the product of prob(hypothesis|I)
(called prior) times prob(datalhypothesis, I) (called likelihood) divided by prob(data|l)
(called evidence). For the purpose of the analysis presented here, we write Eq.
as

P = posterior ~ prior X likelihood (8.20)

We replace the equality with a proportionality, as the evidence does not play a role
in parameter estimation. Instead, the evidence is useful for model-selection questions
on which we do not focus our analysis. More details can be found in [292,1293]. We
can determine the constant of proportionality of Eq. from the normalization
condition that all probabilities have to fulfill

/prob(A|I)dA ~1 (8.21)

A very powerful tool that we can derive from the normalization condition is the
marginalization:

prob(A|l) = /prob(A,B|[)dB (8.22)

This relation is also very important for our analysis. It states that we can sum over
all mutually exclusive states B and express the final probability independently of B.
This allows us to include so-called nuisance parameters in our analysis — parameters
that are needed in the model, but are not of our primary interest. These can include
higher order terms of the EFT, parameters of the prior, or even calibration constants of
the experiment. Marginalization also allows us to reduce high-dimensional parameter
spaces to one- and two-dimensional subspaces that we can visualize easily, similar to
a geometric projection. The two-dimensional marginalization shows the correlation
between the two parameters. The one-dimensional marginalized posterior pdf of a
single parameter gives the result of the parameter estimation.

In the following section, we discuss the components of Eq. in more detail.
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8.2.2. Prior Information

The prior quantifies our initial state of knowledge before we analyze the data. In the
case at hand we have an estimation of the size of the Wilson coefficients, based on the
power counting: Deviations from the SM are expected at order O(&). The question
is now, how we can express the qualitative statement of “natural-sized coefficients”
in a quantitative way. The method of maximum entropy [296] provides a possible
prescription to answer this question [294]. It states that the prior probability should
be chosen in a way that the entropy is maximized, while simultaneously all other
necessary constraints are fulfilled. For example, if the prior should have a support
only in a compact volume, & € [amin, Gmax], the method of maximum entropy states
that the prior should be uniform.

prob(X|I) ~ O(X — tmin)O(amax — X) (8.23)

Here, ©(X) is the Heaviside step function. If the parameters are scattered around a
mean value p with a given variance o2, the prior should be a Gaussian. Qualitatively,
we would interpret such a prior as: “we are confident that the value is within p 4+ o”,
and “we are almost certain it is within p+30” [293]. In general, the prior should reflect
where we expect the posterior probability of the parameters to be concentrated, but
also allow longer tails for possible surprises in the data. This introduces an uncertainty
to the prior that can also consistently be taken into account using Bayes Theorem,
Eq. . Parameters of the prior, called hyperparameters, can then be understood
as nuisance parameters and marginalized over.

In a more abstract way, the prior can also determine the details of the analysis itself.
For example, previous experiments measured the violation of custodial symmetry to be
very small. We therefore choose our Lagrangian to respect custodial symmetry.

Appropriate use of the prior also avoids the problem of overfitting and underfit-
ting [295]. Overfitting refers to a very fine-tuned result in an unnatural region of
parameter space. A naturalness requirement on the parameter coming from the prior
as well as a possible marginalization over higher-order terms reduces the risk of over-
fitting [295]. Underfitting on the other side refers to a fit where important features
are not appropriately described by the underlying model, or EFT respectively. Also
in this case a marginalization over higher-order contributions can reduce the risk of
underfitting [295].

8.2.3. Likelihood

The likelihood, prob(datalhypothesis, I'), can be understood as the fraction of a large
set of experiments (for fixed parameters) that gives a result in the considered interval
of the observable [295]. In the past years, the experimental collaborations published
the likelihood of the signal strength, Eq. , in two-dimensional planes for each
decay mode (as e.g. in [272]). For this, the production modes are combined to two
effective production modes figer it and pypryva. This combination is justified for
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the currently available data [271]. In some cases, the one-dimensional likelihood is
published beyond the Gaussian approximation.

For our analysis, we obtain the likelihood from the code Lilith (“Light Likeli-
hood Fit for the Higgs”) [271]. It gives the relevant likelihood for a given input-
signal strength. The likelihood and correlations were extracted previously from the
experimental publications and hard-coded into the program. This extraction uses the
previously explained two-dimensional planes or the full one-dimensional likelihood,
depending on what is published by the collaborations. In the two-dimensional case,
a two-dimensional Gaussian is fitted to the 68% confidence level (CL) interval and
cross-checked for the 95% CL interval [271].

8.2.4. The Posterior

The posterior, P = prob(hypothesis|data, I), contains the full information about the
parameters. This information is usually what we are interested in, but it is also crucial
for propagation of errors and correlations if we want to use the extracted parameters
further. If we can approximate the posterior by a multi-dimensional Gaussian, we
can express the information in only a few numbers. These are the expectation value,
(c); the standard deviation, o., of a parameter ¢; and the covariance, cov(z,y), of two
parameters x and y:

(¢;) = /cip(cl, ey Ciy ey Cp)dC
cov(z,y) = (zy) — (z)(y)

. = +/cov(c, c).

We can compute the correlation matrix p from the covariance and summarize the
correlations between all pairs of parameters,

(8.24)

cov(zx,
Doy = cov(,y) (8.25)

020y
We then understand the one sigma interval as “the parameter ¢ lies to 68% within
(c) £ 0.”. For non-Gaussian posteriors, e.g. with multiple maxima or asymmetries,
these simple parametrizations cannot account for the full information and we have to
use the complete posterior P instead.

The interplay of prior and likelihood leads to posteriors that are either prior or
likelihood dominated. Being dominated by the prior means that the information of
the likelihood does not constrain the parameter and the only information we can
extract is the prior information we put in. In oder to avoid misleading conclusions,
cross-checks with different priors should be made [295].

For a visualization of the multi-dimensional posterior, usually one- or two-dimensional
marginalized posteriors are presented. The one-dimensional posterior contains the
full information that can be inferred for a single parameter. The two-dimensional
marginalized posterior shows the correlation between the two parameters. For a given
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set of n parameters, we collect all (n — 1)n/2 two-dimensional plots and all n one-
dimensional plots in a so-called corner plot [295,297].

8.3. Numerical Methods for Finding the Posterior pdf

When analyzing data with the effective Lagrangian, we are interested in the posterior
probability density, see Eq. (8.20). There are several ways how the posterior can be
computed numerically. The first way is direct computation in a given, fixed grid in
parameter space. The second way uses Markov Chain Monte Carlo techniques.

8.3.1. Fixed Grid Computation of P

In the first way to evaluate Eq (8.20), we provide a fixed grid in parameter space as
input and determine the values of P explicitly. The resulting table of values contains
the posterior for the entire parameter space considered. This approach has the advan-
tage that we find all islands of non-vanishing posterior P. However, if the posterior
is centered in a small region, a large part of the computational power is wasted for
regions that are of no interest. This is especially true for non-flat priors that have a
large support, like for example Gaussian priors. In addition, for certain priors, the
fixed grid comes with yet another disadvantage. Consider as an example the priors
of Fig. below. For a fixed density of points, required by the desired resolution of
the posterior, the flat prior needs the least number of points in the grid. The blue
Gaussian for a = 1 needs about twice as many points to be evaluated. As this applies
to all n dimensions of parameter space, the total number of points scales as 2™ and
can easily be orders of magnitude larger, making it impossible to be used. A variable
density of points increases the complexity of the code a lot. For that reason, we use
a more convenient way of obtaining the posterior in our fit. We discuss it in the next
section.

8.3.2. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods approximate the posterior pdf, P,
efficiently, especially in high-dimensional parameter spaces. In the following sections,
we outline the basic principles of the Markov Chain Monte Carlo algorithm that we use
to perform the fit to the LHC Higgs data. In contrast to the fixed grid computation,
where we obtain the values of the posterior pdf as a table of values, we obtain a set of
points that is distributed according to the posterior pdf P(z). We see the advantage
of this in the following example [293]. The expectation value of a function, (f(z)), is
given by a computationally expensive integral of the form

() = [ )P (8.26)

For a discrete set of points, x;, we can replace the integral with a sum over all points.
In addition, we collect the z; into bins x; of a given size. The probability of being in a
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given bin, P(x), can be approximated via Bernoulli’s Theorem to be P(x;) ~ my/N,
where my, is the number of z; in the bin 2, and N is the total number of points. The
expectation value is then

(@)~ Y T 5 =+ 3 fw). (3.27)

bins

So if we have a set of points that is distributed according to P(x), we just have
to average over all points instead of performing the integral of Eq. in order
to compute expectation values. A set of points that has this distribution is called
Markov Chain. In the following we see different algorithms that construct such a
Markov Chain.

Basics and the Metropolis-Hastings Algorithm

Let us start with a one-dimensional Markov Chain [292]: It is a series of points, where
each point in the chain is given by an iteration based on the previous point. The
distribution of all points in the chain resembles a previously given probability density
m(x) for a large number of steps. The iterations in the Markov Chain are given by
a random walk in the following way. First, a random number generator proposes a
potential next point. This point is then either accepted, i.e. the “walker” goes to
this point, or rejected, i.e. the “walker” stays at its current position. The decision
is based on the assigned probabilities 7 of the original and the proposed point. In
order to reach equilibrium between all possible transitions and therefore a stationary
approximation to the probability density 7(z), we need to enforce a condition called
detailed balance to our algorithm. Detailed balance means that the transition rate
from a state 1 to a state 2 is the same as the transition rate from 2 to 1. This means
that we cannot distinguish if we are going forwards or backwards within our Markov
Chain. The condition of detailed balance is fulfilled if the acceptance rate of 1 — 2
is proportional to 7(2) and the rate 2 — 1 is proportional to m(1), see Fig. 8.4 An

Figure 8.4.: The detailed balance condition [292].

algorithm that generates Markov Chains fulfilling the detailed balance condition is
the Metropolis-Hastings algorithm [298,299]. We explain it in Fig. A proposal
position p is generated from the current position x; in the chain, a random number
q € (0,1) and a search radius r. If w(p) > m(x), the proposal is always accepted, i.e.
ziv1 = p. If w(p) < w(x) the proposal is accepted with the probability w(p)/m(x).
If the proposal is rejected, the chain stays at its current position, i.e. z;,7 = x;.



112 8. Effective Field Theories in Data Analysis

Propose position: p= x; + rq

Check: % >rand (0,1) 7

Yes: No:

Tit1 =P Tit1 = T

Figure 8.5.: The Metropolis-Hastings algorithm [298,1299].

As already indicated in the structogram in Fig. this can easily be extended to
multi-dimensional probability densities. Since the algorithm only depends on the ratio
7(p)/m(x;), there is no need to find the overall normalization of the final probability
density. This avoids another computationally expensive step in the analysis. However,
the convergence of this algorithm is bad if the target density is highly anisotropic. For
example, consider a two-dimensional Gaussian where the two widths differ by some
orders of magnitude [300]. In order to sample the probability distribution efficiently,
the search radius should be of the order of the width. If it is too small, we need
many steps to sample the full parameter space. If it is too large, we are not sensitive
to the distribution. The problem gets even more complicated if the Gaussian with
different widths is not aligned with the coordinate axes. In general, we need to tune
the N(NN + 1)/2 parameters of the covariance matrix by hand to reach a reasonable
convergence time for our Markov Chain. Using sampling algorithms that are affine
invariant avoids this problem.

The Affine Invariant Goodman-Weare Algorithm

Affine invariant algorithms have the same performance if the parameter space is trans-
formed with an affine transformation. Anisotropic and skewed distributions are sam-
pled as efficient as isotropic distributions with such algorithms. Goodman and Weare
proposed an algorithm that is affine invariant in [300]. We explain the algorithm in
Fig.[8.6] It samples a set of L walkers at the same time. The proposed walk of a given
walker X is now based on the position of the other walkers at the same time step. In
detail, the algorithm picks one of the other walkers randomly and performs a “stretch
move” [301]: The proposed new point lies on a line drawn between the two walkers.

p=XY 4+ 7(xH - xU)) (8.28)

The random variable Z is drawn from the distribution

0 otherwise

9(z) = {% itz €[y (8.29)
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For all walkers X with i € [1,..., L] do:

Select random walker X\ from the complementary ensemble

Generate Z from ¢(z), as in Eq. (8.29)
Propose position: p = x9 + Z(Xy(f) — XT(Lj))

Check: ZNfl% >rand (0,1) 7

Yes: No:

Xr(LZJ)A =D X(Zj—l =X

n

Figure 8.6.: The Goodman-Weare algorithm [300}301].

The parameter a can be adjusted by hand, usually one assumes a = 2. The proposal
p is accepted with a probability

¢ = min (1, ZNlﬂzr)(f(z))) , (8.30)

where NN is the dimension of the parameter space. Together, the Eqs. —
ensure the detailed balance condition. The advantage of this affine invariant algorithm
is that now only very few (basically just a in Eq. (8.29)) parameters have to be tuned
by hand. This is in contrast to the N(/N+1)/2 parameters for the Metropolis-Hastings
algorithm.

The Goodman-Weare Algorithm of emcee

For our problem, the sampling of the posterior pdf for the parameters in Eq. ,
we use the python code emcee [301] that uses a variation of the Goodman-Weare
algorithm [300] called “parallel stretch move”. It parallelizes the stretch move of the
Goodman-Weare algorithm by simultaneously evolving the walkers based on the state
of the other walkers. The computationally expensive loop through all walkers is now
evaluated in parallel. However, this modification violates detailed balance [301]. In
order to retain it, the set of walkers needs to be split into two disjoint sets. The
walkers of set 1 are simultaneously evolved based on the state of the walkers in set 2
and vice versa. We give the resulting algorithm in the structogram in Fig.

Testing the Quality of the Sampling

There are several ways in which we can test the performance and convergence of an
algorithm. The authors of [301] suggest the autocorrelation time T, and acceptance
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For each of the two sets of walkers do:

For all walkers X in this set with i € [1,...,L/2] do:

(This loop can now be parallelized for all i.)

Select random walker X,(lj ) from the other set

Generate Z from g(z), as in Eq. (8.29)
Propose position: p = XT(Lj) + Z(Xq(f) — XT(Lj))

Check: ZN-12®_ ~ rand (0,1) ?

(X))
Yes: No:
X = X, = ¢

Figure 8.7.: The algorithm of the program emcee [301].

fraction ay of the sample. The autocorrelation time measures after which time the
correlation between two consecutive points in the chain vanishes. The correlation is

defined as
Cy(T) = lim cov [f(X(t+T)), f(X(2))] (8.31)

t—o00
The autocorrelation time T, is now defined as the time 7" for which the correlation
vanishes.
lim Cp(T)=0 8.32
A Cr(T) (8:32)
It is an affine invariant measure of the performance and related to the number of eval-
uations of the posterior probability density required to produce independent samples

of the target density. The autocorrelation time helps estimating for how many steps
the Markov Chain Monte Carlo code should be evaluated. As a rule of thumb:

Number of steps > 10 - Te,, (8.33)

The acceptance fraction ay is the ratio of accepted walks compared to all proposed
walks. If it is too low (ay ~ 0), the Markov Chain does not represent the target density,
as almost all proposed steps are rejected and the chain contains only a few independent
samples. A very high acceptance fraction (a; ~ 1) means that the chain performs
a random walk without probing the target density. This does also not produce a
representative sample. There seems to be no ideal acceptance fraction, but the authors
of [301] recommend 0.2 < ay < 0.5 as a good range.
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8.4. Fit to LHC Higgs Data

Many groups discussed fits of Higgs data [168,212,280}281,302-308]. Here, we present
the result of a fit to LHC data [26], based on the electroweak chiral Lagrangian. For
that purpose we first discuss our priors and the input we used to obtain the likelihood.
Then, we present and discuss the posterior.

8.4.1. The Prior

Currently, only the decays to the fermions of the third generation as well as to WW, ZZ
and vy are observed at the experiments. For h — pup and h — Z=, only upper
bounds are reported. Since the contribution of the not measured couplings to the
other observables is negligibly small, we do not fit them. This efficiently sets their
prior to zero:

prob(¢;|I) =0, for i € {e,p,u,d,c, s, Zv} (8.34)

This leaves a set of six parameters, {cy, ¢t, ¢, ¢r, Cyy, €49} to be analyzed in the fit. We
discuss the impact of extending the fit with ¢, and ¢z, later on. As already explained
in Eq. (8.10)), we expect the size of the ¢; to be of the size ¢;™ + O(€). A first choice
for a prior incorporating this information is a flat prior in the range ;™ + 1. The
exact numerical value of the range is of course debatable, but the “1” is motivated by
¢ being of O(0.1) [162,/163] and additional factors are of O(1) < 10. We therefore set
the first prior to

prob(ci|Naas = O(c; — M + 1)O(L + ™ — ¢7), for i € {V,t,b,7,77,99} (8.35)

In Section we also discussed the use of Gaussian priors for cases, where the
parameters are scattered around a mean value with a given variance. Since we assume
the parameters are close to the SM with a certain width, related to £, we consequently
use Gaussian priors. We quantified the width of the Gaussian in the following way:
We assume that ¢™ + 1 corresponds to M 4 ao of the Gaussian.

SM

—_ )2
prob(¢;|1), = exp{— Z C#Cz)}, for i € {V,t,b, 7,77, 99} (8.36)

Figure visualizes the priors we use.

8.4.2. The Likelihood via Lilith

We obtain the likelihood from the code Lilith-1.1.3, as described in Section [8.2.3]
We take the branching ratios of the SM, needed in Eq. (8.12)), from [64] for m) =
125 GeV. We use them at the highest available order in QCD, see [309]. For reducing
the effects of higher order QCD corrections [284] we use the pole masses mP?® =
172.5 GeV and mP®® = 4.75 GeV in the gg — h amplitude and the running massei

2The running mass does not coincide with the MS-mass [310,311].
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Figure 8.8.: The different priors used for our analysis.

my = 188.03 GeV and my, = 3.44 GeV in the h — v amplitude, see [284]. We use
the strong coupling constant ag(myz) = 0.1185. We take the experimental input from
a modified version of the Lilith DB 15.09, using the combined ATLAS and CMS
result of Run-1 |162,/163] plus ttH-data from [312-317] that was not resolved in the
combined analysis, as well as the VH dataset from the Tevatron [318].

8.4.3. The Posterior — the Result

We find the posterior with the MCMC code emcee [301] for 500 walkers and 50,000
steps each. We choose the initial points at random around the SM point and then
“burn them in” for 10,000 additional steps. Figures|8.9H8.13|give the results, where we
produced the corner plots using the code corner.py [295,297]. We obtain the mean
values and correlation matrices in the caption of the figures as discussed in Eqgs.
and . The mean values and asymmetric errors given in the corner plot are based
on the 68% quantiles of the shown histograms of the final distribution. For symmetric,
single-modal Gaussian distributions, they should agree with the numbers of the figure
captions.

The quality of the MCMC sampling is good, as the autocorrelation time is T, = 80
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and the acceptance fraction is ay = 0.5 for the flat prior. For the Gaussian priors, we
have 60 < T < 100 and ay ~ 0.4.

We see that the data are compatible with the SM at one to two standard deviations,
independent of the chosen prior. However, deviations of O(10%) are still allowed, as
the errors are large. This is somehow expected, as the analyses of the experimental
collaborations [162,/163] is based on the same data. In the results we see a particularly
strong correlation between ¢,y and ¢;. This comes from the fact that the bounds on ¢,
from ttH production are still loose compared to ggF', where both ¢y, and ¢; enter, see
Eq. (8.11)). The correlation between ¢y and ¢, is of experimental origin, as the decay
h — bb can only be measured in associated production with vector bosons (VH). In
other production modes the QCD bb background is too large.

We also see the influence of the different priors. For increasing a, the best fit point
moves closer to the SM. For a = 0.5, we see large differences between the mean
values computed by corner.py and with Eq. (8.24). This is because the prior is non-
vanishing at ¢; = —c?™. These points come with a high likelihood as Egs. and
are invariant under a global flip of all signs. In this case, the posterior has
two distinct maxima and the analysis in terms of Eqs. and cannot give
reliable results. However, from power counting we do not expect the ¢; to have such
values. The Gaussian prior with a = 0.5 is therefore probably poorly chosen. A more
reliable choice of priors from this point of view is therefore a = 1 or a = 2. As already
said, they give very similar results compared to each other and the flat prior, showing
that the result is likelihood- and therefore data-dominated.

Further cross-checks were made regarding the impact of QCD corrections. For that
purpose, 1gep Was set to one and its value at O(a,) accuracy. The changes in the fit
result are only at the percent level. Also, setting 77(3013 = 2 changes the result only
slightly.

The best fit results can also be translated to the s framework and compared to
the results published in [163]. This should be equal to the result of our fit using
a flat prior. Unfortunately, |[163] did not assume custodial symmetry. x; and ky
were fitted separately. This makes a direct comparison slightly more complicated. To
see the difference between fitting the ¢; and fitting the k;, we perform the fit also
in the parametrization of the x;. When neglecting the imaginary parts of the loop
functions in Eq. , we find a linear transformation between the two parameter
sets. The obtained results agree within the error bars, but neglecting the imaginary
parts introduces small differences.

In the last paragraph, we address the stability of the fit upon extending it with the
so far neglected parameters ¢;, for i € {e, u,u,d, c, s, Zv}. For the parameters that are
not constrained by data at all (i € {e,u,d, ¢, s}) the posterior only consists of the prior.
Putting an unreasonably large prior, or no prior at all, leads to overfitting [295]. The fit
is driven to a very unnatural region of parameter space and the resulting marginalized
posterior pdf of ¢; (i € {V,t,b,7,77,gg}) is different, i.e. the fit is unstable. A
reasonable prior, based on power counting, avoids this and gives a posterior similar
to the previously obtained one. For ¢, and cz,, the situation is different. Data
give an upper bound of a few times the SM value on the corresponding observables,
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effectively only allowing natural values for ¢, and cz,. The marginalized posteriors
for ¢; (1 € {V,t,b,7,77,gg}) are close to the ones reported before and the fit is stable.
However, in all cases, no additional information apart from the prior can be extracted
for the unconstrained c;.
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Figure 8.9.: Posterior probability density corner plot for the flat prior of Eq. .
The red solid (yellow dashed) contours indicate the 68% (95%) credibility
intervals, the star is at the SM point. The mean values and their
correlations, computed from Eqgs. , are below. We discuss

their relation to the parameters given in the plot in the main text.

cy 0.98 = 0.09 1.0 0.01 0.67 037 041 0.10
¢ 1.34 +0.19 . 1.0 0.02 —0.04 —0.36 —0.84
o | | 079+0.18 .. 10 o058 002 o037
e | 7| 0924014 |- rP=1 . .10 —0.05 0.26
Cr —0.2440.37 A . 1.0 031

Cag —0.30 +0.16 S . . 1.0



120 8. Effective Field Theories in Data Analysis

oy = 0.9870% ; i

v =098 om Gaussian prior, a = 0.5
o d L ¢, = —0.167 )5
Q(?’

2 : — o = L300
© 1E
"
10 <
=
Q‘b 1k |
= ]
Q 1T _'_._|j 4
- 0.43
RS : : : : e €y = =0.28%077
2t
Q.Q t 1 *
< 0 [T
= +0.20
2® ) _.0'74.’“'3“.
©
N
g 1r 1T
IS8 *
o0 | OO0
> ] ]
[Ne S 3 F
+0.14
Q c, = 0927
A T T T T
o
N
S 1t
®; > OO &

Na: 1r
>
S 1t

© © © ©

o o Y AP 40 AP NI S S AR AN PN 2 o 2 D X o AY RD A0 X YL

Figure 8.10.: Posterior probability density corner plot for the Gaussian prior of
Eq. with @ = 0.5. The red solid (yellow dashed) contours indicate
the 68% (95%) credibility intervals, the star is at the SM point. The
mean values and their correlations, computed from Egs. ,
are below. We discuss their relation to the parameters given in the plot
in the main text.
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9. Conclusions and Qutlook

The LHC has confirmed the SM to very good accuracy at its Run-1, from 2010 to
2013. So far, no direct signs for new physics have been observed. This absence of new
particles up to the TeV-scale indicates a mass gap, which is an essential ingredient for
effective field theories. Applied in the bottom-up approach, EFTs provide a systematic
and model-independent framework to look for new physics. Therefore, they are a
powerful tool for the current phase of the LHC.

We discussed the EFTs for physics beyond the SM, emphasizing the systematics
and the assumptions behind the expansions. Based on the underlying dynamics of
the new physics, we distinguished two types of effective field theories: decoupling and
non-decoupling EFTs. Motivated by the experimental situation, in which we have
uncertainties in the Higgs couplings of ten percent or more on the one hand [162,/163],
and the electroweak precision observables of the LEP experiment at the percent level
on the other hand [218-220], we studied the electroweak chiral Lagrangian as a non-
decoupling EFT. The electroweak chiral Lagrangian describes large, i.e. leading order,
effects in the Higgs couplings, whereas corrections to the gauge-fermion interactions
arise at next-to-leading order. It is therefore the natural framework to test the SM-
Higgs hypothesis effectively.

The power counting is essential for finding the complete basis of operators in bottom-
up EFTs, which is crucial for a consistent analysis. We studied the power counting
of non-decoupling EFTs and derived that they are expanded in chiral dimensions,
a concept based on a loop expansion [23]. Using the chiral dimensions, we explicitly
constructed the operators of the electroweak chiral Lagrangian at next-to-leading order
[21,]22]. We also discussed how different assumptions on custodial symmetry assign
weak couplings, and therefore chiral dimensions, to the spurions of custodial symmetry
breaking |24]. We discussed how this reduces the number of operators in the basis at
next-to-leading order.

Using the electroweak chiral Lagrangian, we gave a quantum field theoretical jus-
tification of the s-formalism [25]. The r-formalism was introduced as interim para-
metrization of Higgs couplings [64,273]. Having an EFT at the core of the analysis
framework allows us not only to find out if we observe the SM-Higgs or not — it
also allows us to systematically interpret deviations from the SM. Further, we can
consistently include radiative QCD corrections in the leading-order analysis. Also,
the extension of the x-formalism is straightforward and well-defined within the elec-
troweak chiral Lagrangian [25,26]. Such an extension is currently discussed in the
LHC Higgs cross section working group, as it is possible to measure new observables,
like kinematical distributions, with an increasing amount of data in the near future.
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Chiral dimensions have a wide range of applications, as they describe the expansion
of effective theories, where a strongly-coupled Goldstone sector is weakly coupled to
external fermions and gauge fields. We showed the application of chiral dimensions in
chiral perturbation theory coupled to QED [23,27] and the minimal composite Higgs
model based on the coset SO(5)/SO(4) [24]. The extension of chiral perturbation
theory and the electroweak chiral Lagrangian by resonances of the strong sector also
uses chiral dimensions as a tool for power counting [319-322).

We further discussed the power counting if the scale of the non-decoupling physics,
f, is above the weak scale, v. The EFT becomes a double expansion in canonical
dimensions (i.e. factors of £ = v?/f?) and chiral dimensions (i.e. loop-factors of
1/167%) [24] in this case.

For moderate values of &, 1/1672 < ¢ < 1, this is an appealing framework for
the ongoing analyses at the LHC: Current phenomenology indicates that the scale of
new physics is above the electroweak-scale, but non-decoupling models give a natural
solution to the hierarchy problem. Using this information, we performed a Bayesian
fit [26] of the leading EFT effects to the LHC-Higgs data of Run-1. The Bayesian
framework is perfect for the EFT based analysis. We used the information from the
power counting as prior information for the parameters. This reduces the risk of
over- and underfitting. Based on the list of observed processes, the number of free
parameters reduced to a manageable set of six. We found that the SM describes the
data within one to two standard deviations. This corresponds to an uncertainty in
the Higgs couplings of ten to twenty percent. Statistical uncertainties dominate in the
data of Run-1. Future runs will increase the amount of available data, reducing the
statistical uncertainties and therefore the uncertainties in the Higgs couplings. The
electroweak chiral Lagrangian can also easily incorporate additional observables, like
further decay channels. In this case, the number of free parameters increases slightly.

The double expansion also helps to understand the relation between the decou-
pling SM-EFT and the non-decoupling electroweak chiral Lagrangian: In the limit of
¢ < 1/167%, the expansion approaches the SM-EFT; for ¢ = O(1), the electroweak
chiral Lagrangian. We illustrated this explicitly using a renormalizable model, the
SM extended with a scalar singlet [2§]. Also in this toy-model, the parameter £ inter-
polates continuously between the different EFT regimes. Regions of parameter space
with rather strong coupling induce the non-decoupling EFT, whereas regions with
weak couplings induce the decoupling EFT. This observation is also true for other
models that are analyzed at the LHC.

In general, a double expansion of this type describes the EFT of a non-decoupling
sector that decouples from the low-energy scale. This insight is not only applicable
in the electroweak-symmetry-breaking sector of the SM, but also in other scenarios
where decoupling and non-decoupling sectors interact.

Our analysis showed that using only the SM-EFT is not the best framework for
the current analyses at the LHC. A consistent treatment to describe deviations from
the SM within the SM-EFT requires more free parameters and the analysis loses its
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statistical significance. In addition, all effects beyond the SM start to contribute in
the SM-EFT at next-to-leading order and there is no distinction between the Higgs
and the gauge sector. We therefore expect the various effects of new physics to be of
comparable size, O(v?/A?), and we cannot test the SM-Higgs hypothesis as efficient
as with the chiral Lagrangian. We also showed that the decoupling SM-EFT describes
the low-energy effects of some UV-completions only in parts of the parameter space.
In any case, the electroweak chiral Lagrangian describes large effects in the Higgs cou-
plings. If the data of future runs of the LHC reveals only deviations at the percent
level or below, the SM-EFT will be more appropriate to use.

To summarize, the electroweak chiral Lagrangian is a suitable framework for the
current stage of LHC physics. The power counting that we introduced for the elec-
troweak chiral Lagrangian is crucial for a consistent application and interpretation
of the EFT in data analysis. Further steps in the development of the electroweak
chiral Lagrangian are therefore necessary. One of these steps is a study of the com-
plete one-loop renormalization. This computation will confirm the completeness of
the operator basis and provide the running of the Wilson coefficients. The extension
of the observables to kinematic distributions requires an extension of the fits to next-
to-leading order in the EFT. Even if the size of these effects are, by power counting,
expected to be small, it is another important step in the EFT application to LHC data.

The upcoming runs of the LHC will collect more data and help to shed light on
the dynamics behind electroweak symmetry breaking. If no new states are directly
observed, Michelson’s pessimistic statement, “the future truths of physical science are
to be looked for in the sizth place of decimals” [1H3], seems to become true. These
measurements, however, will reveal indirect signs of new physics and not just more
and more digits of fundamental constants. By using effective field theories we will
then be able to infer “the future truths of physical science.”
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A. Generators of SO(5)

The SO(5) symmetry has ten generators. Six of them are also generators of an SO(4)
subgroup. Since SO(4) is isomorphic to SU(2) x SU(2), we decompose the six gener-
ators into the generators of the SU(2).- and SU(2)g-subgroup they generate. In the
fundamental representation, the generators are [171]

0 0 010 00 0 —1 0

o 0o 100 o0 1 0 0

th=—2l0 -1 000|, th=-2]0 -1 0 0 0],

-1 0 000 1 0 0 0 0

0 0 000 00 0 0 0

00 —1 00 00 -1 0 0

o0 0 10 oo 0 -10
2=-il1 0 0 00|, Z=-4l10 0 0 0f, (A.1)

0 -1 0 00 01 0 0 0

00 0 00 00 0 0 0

01 0 00 0 10 0 0

[-10 0 00 -1 00 0 0

=10 0 0 10|, h==210 00 -1 0

00 -100 001 0 0

00 0 00 000 0 0

The remaining four generators span the coset SO(5)/SO(4). They are

0 0001 0 0 000

) 0 0 00O 0 0 0 01

i_ i 5 i

t=-7 0 00O0O0f, t#= -7 0 0 00 0],
0 0 00O 0 0 000
-1 0 0 0 0 0 -1 0 00

(A.2)

00 0 0O 000 0 O

) 00 0 0O 000 0 O

3_ i_ i

th=—7 00 0 01}, t*t= -7 000 0 O
00 0 00 000 0 1
00 -1 00 000 —-120

The generators are normalized to

Further relations involving the generators are discussed in [242].
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B. Useful Relations for Operator
Building

In order to reduce the NLO operators of Section to a minimal set, we use the
equations of motion, integration by parts, and some SU(2) trace identities. Some of
them were discussed in [22,/111,[112/183]. Here, we list these relations. We consider
the electroweak chiral Lagrangian at leading order, Eq. . The equation of motion
of his

2 o n—1
_v tpugn Ofu(h) oV(h) 1 |- m (P
Ch 1 (D, U'D*U) 57 5h 7 qr n§:1nYu . UP,qr

+q Yy nY," (;) UP_qp+10,) nY!™ (;) UP_lg+ hec.
n=1

n=1

(B.1)

The equations of motion of the fermions are
. v [ > (n) h " > (n) h "
iPar = —= [ | Yu+ D V(=) |UPwar+ (Ya+ D V" (=~ ) |UPan
\/5 n=1 v n=1 v
i 00 h n 0o h n
T T (O t T ()t [
P.U (Y“Jrnzlyu (U> )qL+P_U (Yd+;Yd (v) )QL]>

v
V2

il = 2 Ye+zy(n) (ﬁ) ) UP_lg
V2 c v ’
v

Y

iDqr =

n=1
iDlp = —=P U Y] + iyw (ﬁ)n lr.
\/5 ‘ n=1 ‘ v
(B.2)
The equations of motion of the gauge fields are
2
OB = 3 JUPYel+ g (L) (14 Fy(h),
We{fermions}
_ ) U2 )
[DW™i= Y gy T, - gE(TZL”) (1+ Fy(h)), (B.3)

We{fermions}
[D,G"™a= ) gIyTT.
We{quarks}

We find the equation of motion of the Goldstone bosons by requiring that the variation
of the action vanishes, S = 0, under the additional constraint detU = e —

e v?"¥") = 1. The variations 6U and 6U' are not independent,

SUL, = Ul sU .U}, (B.4)
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The equation of motion of the Goldstone bosons is then [21]

2

0= % D, (iL" (1 + Fy(h))),,

(% b h n o0 . h n
—— | [ Y+ D v (—) (UP+qr)a + Qrp YCg+ZK,§)(—) (UP_qR)a
\/§ n=1 v n=1 v

_ © A"
+00p (Ye + nzl Y™ (;) ) (UP_lR)e — h.Copq
+—= @ Y+ij<"> V) vPen+a Yd+§jy<"> V) vpan

\/§ U — U v + et d ’U —
+ Y+§:Y(”) NYUP g - e |2

L e pa e v —LR .C. 5 .

(B.5)

The equations of motion reduce to the equations of motion of the SM, if the polyno-
mials of the Higgs couplings have the form of Eq. (5.6]).

The traces of two and three generators of SU(2) are
5ab

(LL) =% and (TJ@):%MC. (B.6)

We can express traces of higher numbers of generators through products of the two
traces above. For example, consider

<TaTchTd> = % (<TaTb><Tch> - <TaTc> <TdTb> + <TaTd><Tch>) : (B7)
Further, we use
<TLAB> <TLC> = %<ABC> - <TLBC> <TLA> + <TLAC> <7’LB>7 (B8)

with A, B,C € {W,,, 71, L,}. We reduce covariant derivatives that act on the building
blocks 77, and L, using
D,L,— D,L, = gW,, — ¢ Bt +iL,, L],
D;LTL = i[L,ua TL]v (Bg)
[Duv D,,]Lp = ig[Wuw Lp]-

Operators containing the projectors P2 and Py of Eq. (5.4) can also be written in
terms of 7, and L,. We use

2(r,L,L,) = (UPy UL, UPU'L,) — (UPU'L,)(UPyU'L,) (B.10)
and

(L,L,) = (UPyU'LYUPU'L,) + (UPLU'L)Y(UPxU'L,) + 2{r,L,){t.L,).
(B.11)
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