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Zusammenfassung

Galaxienhaufen sind die größten durch Gravitation gebundenen Strukturen im Universum,
die aus den seltenen Maxima der primordialen Dichtefluktuationen durch die hierachische
Strukturbildung entstanden sind. Sie bestehen hauptsächlich aus dunkler Materie (80% der
Masse), die tiefe Gravitations-Potentialtöpfe erzeugt. Die baryonische Komponente wird
von einem heißen (T ∼ 10 keV), dünnen (n ∼ 10−3 cm−3) und Röntgenstrahlung emit-
tierendem Plasma dominiert (15 % der Masse), welches das Gravitationspotential ausfüllt.
Dagegen machen Sterne nur einige wenige Prozent der totalen Masse aus. Galaxienhaufen
erlauben es, verschiedenste physikalische Theorien in einer extrem großen Bandbreite an
astrophysikalischen Skalen zu testen. Auf großen Skalen lassen Galaxienhaufen kosmolo-
gische Messungen zu und können benutzt werden, kosmologische Parameter einzugrenzen.
Auf sehr kleinen Skalen, die mehr als zehn Größenordnungen kleiner sind als die Haufen
selbst, finden komplexe Prozesse des Plasmas statt. Diese können trotz des Skalenunter-
schieds großräumige Eigenschaften der Haufen beeinflussen, wie zum Beispiel die effektive
Wärmeleitfähigkeit und Viskosität. Der Nutzen, die Transportprozesse im Intracluster-
Medium (ICM) zu studieren, ist zweifältig. Auf der einen Seite kann dies helfen, einige
rätselhafte beobachtete Merkmale von Galaxienhaufen zu erklären. Diese sind die Bil-
dung von globalen Profilen der Gas-Temperatur, die Stabilität von kalten Kernen, extrem
schmale Kaltfronten und Substrukturen, die in Untersuchungen der Röntgeneigentschaften
und des Sunyaev-Zel’dovich-Effekts gefunden werden. Auf der anderen Seite kann der
Vergleich zwischen Beobachtungen und theoretischen Resultaten Einsichtin die komplexe
Physik der Plasmakinetik geben.

Es ist allgemein akzeptiert, dass das Plasma des ICM magnetisiert ist, was durch Radio-
Beobachtungen (insbesondere durch Messungen der Faraday-Rotation und Synchrotron-
Strahlung) und theoretische Beweise bestätigt wurde. Der Gyrationsradius geladener
Teilchen um die Feldlinien des ICM, der Lamor-Radius, ist äußerst klein verglichen mit
ihrer durchschnittlichen freien Weglänge gegeben durch die Coulomb - Wechselwirkung.
Dies führt zu einer Anisotropie der Wärmeleitung und Viskosität, da die Plasmateilchen
sich hauptsächlich entlang von Magnetfeldlinien bewegen. Darüber hinaus ist das ICM
wahrscheinlich turbulent und zufällige Bewegung führen zu einer Verwirrung des Magnet-
felds. Die volle Problematik der Wärmeleitung in einem turblulenten Plasma mit verwor-
renem Magnetfeld ist enorm kompliziert. In dieser Doktorarbeit spalten wir das Problem
in kleinere Teile auf, um einige davon zu untersuchen.

Der erste Teil dieser Arbeit (Kapitel 2) untersucht einen Korrelationseffekt zwischen



xii Zusammenfassung/Summary

den Temperatur-Gradienten und magnetishen Feldern im Verlauf ihrer Entwicklung in
dem turbulenten Geschwindigkeitsfeld des ICM. Dieser Effekt führt eventuell zu einer
lokalen Unterdrückung der Wärmeleitung auf Skalen von turbulenten Wirbeln, wird je-
doch auf größeren Skalen unwichtig. Er könnte die langlebigen Unterstrukturen der Tem-
peratur erklären, die von Chandra im Großteil des ICM beobachtet werden (Marktevich et
al. 2003). Durch analytische Methoden wird gezeigt, dass zufällige Geschwindigkeits-
felder statistisch dazu neigen, dass sich Temperatur-Gradienten senkrecht zu Magnet-
feldlinien ausrichten. Dies unterdrückt den Wärmefluss entlang des Gradienten, obwohl
diese Verstärkt werden. Dies geschieht, da die Magnetfeldlinien im Gas eingefroren wer-
den und sich die Temperatur in der Anwesenheit von Unterschallbewegungen (M ∼ 0.1)
wie ein passiver Skalar verhält (bei Vernachlässigung der Schichtung und Wärmeleitung
selbst). Obwohl die Annahmen in dem analytischen Model sehr einschränkend sind, zeigt
ein Vergleich mit MHD Simulationen, in denen Gasbewegungen in Galaxienhaufen mit
anisotropischer Wärmeleitung (ZuHone et al., 2013) simuliert werden, dasselbe qualitative
Verhalten von Temperatur-Gradienten und Magnetfeld.

Der zweite Teil der Arbeit (Kapitel 3) untersucht den Unterdrückungseffekt paralleler
Wärmeleitung durch magnetische Spiegel. Diese entstehen auf großen und mikroskopis-
chen Skalen. Auf den mikroskopischen Skalen des Lamor-Radius entstehen sie durch
Veränderungen der Feldstärke im Bereich δB/B ∼ 1, der für magnetishe Spiegelungen
relevant ist. Die Spiegel-Instabilität im ICM resultiert aus der Druck-Anisotropie, die
wiederum durch turbulente Bewegungen mittels Erhaltung adiabatischer Invarianter her-
vorgerufen wird. Da die Spiegelschwankungen räumlich nicht aufgelöst werden können,
werden die Ergebnisse neuester, numerischer Simulationen von Kunz et al. (2014) verwen-
det, um die typischen Eigenschaften des Magnetfelds zu bestimmen. Durch die Kom-
bination aus Monte-Carlo-Simulationen und analytischen Methoden wird die effektive
Wärmeleitfähigkeit in solch einemMagnetfeld berechnet. Der Unterdrückungsfaktor beträgt
Sκ ∼ 1/5, unabhängig von großräumigen Eigenschaften des ICM. Ausserdem wird die
Wärmeleitung in magnetischen Spiegeln, die durch turbulente Bewegungen des Gases
verursacht werden, untersucht. Diese Veränderungen der magnetischen Feldstärke re-
sultieren aus dem ’turbulenten Dynamo’. Dennoch zeigen wir, dass sie keine merkliche
Unterdrückung der Wärmeleitfähigkeit verursachen, da sie auf Skalen auftreten, die hinre-
ichend kleiner sind als die mittlere freie Weglänge der Elektronen. Magnetische Spiegelun-
gen werden auf diesen Skalen wirkungslos.

Im letzten Teil der Arbeit wird ein mögliches Beobachtungsmerkmal der Anisotropie
des Elektronendrucks im ICM untersucht, das sich durch Polarisation der thermischen
Bremsstrahlung zeigt (Kapitel 4). Die Anisotropie wird durch Streckung der Magnetfeldlin-
ien erzeugt, die wiederum durch Wärme- und Plasmaflüsse mittels Erhaltung adiabatischer
Invarianter angetrieben wird. Die Stärke der Anisotropie wird durch die Kollisionsrate der
Elektronen gesteuert. Berücksichtigt wird eine grossräumige kohärente Strömung, die eine
regelmäßige Struktur im Magnetfeld erzeugt, wodurch die Polarisation sich nicht durch
Integration entlang von Sichtlinien aufhebt. Der Grad der Polarisation in kalten Fronten
und entlang von Schocks im ICM wird auf ∼ 0.1% geschätzt, mit Energien ≳ kT . Dieser
Wert ist zu niedrig für die zukünftige Generation von Röntgenpolarimetern, jedoch könnte
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er wichtig für die Prozesse auf extrem kleinen Skalen sein, die nicht räumlich aufgelöst
werden können. Zum Beispiel steht der Polarisationsgrad in direktem Bezug zur Kolli-
sionsrate der Elektronen, die durch kinetische Instabilitäten des Plasmas auf sehr kleinen
Skalen erhöht werden kann. Die Ergebnisse deuten ausserdem darauf hin, dass dieser Effekt
nicht ausschließt, dass Galaxienhaufen als (unpolarisierte) Eichungsquellen für zukünftige
Röntgenpolarimeter (z.B. XIPE, IXPE, PRAXyS) dienen können.
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Summary

Clusters of galaxies are the largest gravitationally bound structures in the Universe formed
from the rare high peaks in the primordial density perturbations by hierarchical clustering.
They mostly consist of dark matter (∼ 80% of the mass) that forms deep gravitational
potential wells. The baryonic component of clusters is dominated (∼ 15% of the mass)
by an X-ray emitting hot (T ∼ 10 keV) tenuous (n ∼ 10−3 cm−3) plasma that fills the
cluster potential, while stars comprise only a few percent of the total mass. Clusters
of galaxies make possible to test various physical theories in an extremely broad range
of astrophysical scales. On large scales, clusters act as cosmological probes and provide
independent constraints on the cosmological parameters. On microscales, more than ten
orders of magnitude smaller than the size of clusters, intricate plasma processes occur that,
despite their scale, are able to affect large-scale properties of clusters, e.g., the effective
thermal conductivity and viscosity. The benefit of studying transport processes in the
intracluster medium (ICM) is twofold. On the one hand, this may help to understand some
of the puzzling observed features of galaxy clusters: formation of global gas temperature
profiles, stability of cool cores, extremely narrow cold fronts, and substructure found in
X-ray and Sunyaev-Zel’dovich effect data. On the other hand, confronting observations
with theoretical results can give an insight into the complicated physics of plasma kinetics.

It is broadly accepted that the ICM plasma is magnetized, which has been confirmed
both by radio observations (Faraday rotation and synchrotron emission measurements) and
theoretical arguments. The radius of gyration of the charged particles around the intraclus-
ter magnetic-field lines, the Larmor radius, is extremely small compared to their Coulomb
collisional mean free path. This renders thermal conduction and viscosity anisotropic, as
the plasma particles mostly travel along the magnetic-field lines. Moreover, the ICM is
likely to be turbulent, and random motions of the gas tangle the magnetic field. The
full problem of thermal conduction in a turbulent plasma with a tangled magnetic field is
enormously complicated. In this work, we break it down into smaller parts to study some
of them separately.

In the first part of the work, we study the correlation between the temperature gradi-
ents and magnetic fields over the course of their evolution in the turbulent velocity field
of the ICM (Chapter 2). This effect may lead to local suppression of thermal conduction
at the scale of turbulent eddies, while becomes unimportant at larger scales. It can po-
tentially explain the apparently long-lived temperature substructures seen by the Chandra
X-ray observatory in the bulk of the ICM (Markevitch et al., 2003). By applying ana-
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lytical methods, we demonstrate that a random velocity field statistically tends to orient
the temperature gradients perpendicular to the magnetic-field lines, suppressing the heat
flux in the direction of the gradient, even though the gradients are amplified. It happens
because the magnetic-field lines are frozen into the gas, and temperature in the presence
of essentially subsonic (M ∼ 0.1) motions behaves as a passive scalar (ignoring stratifi-
cation and thermal conduction itself). Although the assumptions made in the analytical
model appear quite restrictive, comparison with MHD simulations of gas sloshing in galaxy
clusters with anisotropic conduction (ZuHone et al., 2013) testify to the same qualitative
behavior of the temperature gradients and magnetic field.

In the second part, we study the effect of suppression of parallel thermal conduction by
magnetic mirrors (Chapter 3). Magnetic mirrors arise both at large and microscopic scales.
At the microscale of the ion Larmor radius, these are produced by the mirror instability that
generates variations of the field strength of order unity δB/B ∼ 1, relevant for magnetic
mirroring. The mirror instability in the ICM is a result of pressure anisotropy driven
by turbulent motions via the conservation of adiabatic invariants. Because the mirror
fluctuations are impossible to resolve spatially in observations, we use the results of the
recent numerical simulations by Kunz et al. (2014) to obtain the typical magnetic-field
properties. We calculate the effective thermal conductivity in such a field using Monte
Carlo simulations and analytical methods combined. The resulting suppression factor is
Sκ ∼ 1/5, and appears to be independent of large-scale properties of the ICM. We also
study thermal conduction in magnetic mirrors produced by turbulent motions of the gas.
These variations of the magnetic-field strength are an outcome of the turbulent dynamo.
However, we argue that they do not cause a sizable suppression of conductivity, because
they occur at scales sufficiently larger than the electron mean free path, and magnetic
mirroring in this regime becomes inefficient.

In the last part of the work, we investigate a possible observational imprint of electron
pressure anisotropy in the ICM in the form of polarization of thermal bremsstrahlung
emission (Chapter 4). The anisotropy is driven by stretching of the magnetic-field lines by
a plasma flow via adiabatic invariance and by heat fluxes. The level of the anisotropy is
controlled by electron collisionality. We consider the case of a large scale coherent flow that
produces an ordered magnetic-field configuration, and, therefore, for which the polarization
does not cancel out after integrating along the line of sight. Our estimate of the degree
of polarization in cold fronts and along shocks featured in the ICM is ∼ 0.1% at energies
≳ kT . While this value is too low for the forthcoming generation of X-ray polarimeters, it
is potentially an important proxy for the processes taking place at extremely small scales,
which are impossible to resolve spatially. For example, the polarization degree is directly
related to electron collisionality, which can be effectively increased by microscale kinetic
plasma instabilities. Our result also implies that this effect does not preclude the use of
clusters as (unpolarized) calibration sources for the future X-ray polarimeters (e.g., XIPE,
IXPE, PRAXyS) at this level of accuracy.



Chapter 1

Introduction

1.1 Galaxy clusters in a cosmological context

Galaxy clusters are the most massive (with a mass of ∼ 1015 M⊙) gravitationally bound
objects in the present Universe. Similarly to all objects in the Universe, they were formed
from tiny perturbations of density produced during the Universe’s inflation (e.g., Peebles,
1993; Peacock, 1999; Mukhanov, 2005). The formation time of virialized objects depends
only on the initial perturbation amplitude, because linear perturbations grow at the same
rate on all scales. The primordial perturbations have a power spectrum close (with a
spectral index slightly smaller than 1) to the scale-invariant Harrison-Zeldovich spectrum,
for which larger (more massive) objects have a lower amplitude and, therefore, are formed at
later times. Clusters are the largest virialized structures that have formed to date, and they
remain so because of the accelerated expansion of the Universe with dark energy that slows
down and eventually reverses the linear perturbation growth rate. A strong dependence
of cluster properties on the cosmological model makes them a unique tool in imposing
stringent constraints on the dark energy characteristics (e.g., Vikhlinin et al., 2009). The
amplitude of the cluster mass function is exponentially sensitive to the linear amplitude of
matter density perturbations at a given redshift, which allows precision measurements of
their power spectrum and the geometry of the Universe.

The cluster mass is dominated by dark matter (∼ 80%). The deep gravitational well of
a cluster heats up the infalling gas to very high temperatures of order 107 − 108 K, which
makes galaxy clusters powerful sources of X-ray emission. The hot gas comprises ∼ 15%
of the cluster mass, and the processes involving the intracluster gas primarily determine
the evolutionary physics and observational appearance of clusters. Cluster galaxies are
embedded into the intracluster medium (ICM), but represent only a few percent of the
baryonic mass, and play a lesser role in the cluster dynamics.

Even though galaxy clusters are in virial equilibrium, they are far from being static.
Various violent phenomena, such as cluster mergers, gas sloshing, and active galactic nuclei
(AGN) activity, are all characteristic of the intracluster gas. Among the physical processes
that define the state of the ICM are turbulence, shocks, thermal conduction, radiative cool-
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ing, particle acceleration and plasma instabilities, some of which can be observed directly
or indirectly.

1.2 Physics of the intracluster medium

1.2.1 Multi-wavelength perspective

Galaxy clusters are observed across a wide range of wavelengths. First, because the ICM
is a hot tenuous plasma, it emits X-rays, which was first discovered in rocket experiments
in the 60s (Byram et al., 1966; Bradt et al., 1967) and later in the 70s by the UHURU
X-ray observatory (Kellogg et al., 1972; Forman et al., 1972). The main components of
the X-ray emission are thermal bremsstrahlung, recombination continuum, and emission
lines excited by electron collisions. The upper left panel of Fig. 1.1 shows an X-ray map
of the Coma cluster. X-ray observations allow one to measure the distribution of density
and temperature in the ICM, both global radial profiles and local fluctuations at current
level of precision. This is a powerful instrument to probe the gravitational potential and
the mass distribution within a cluster. X-ray astronomy also reveals the violent nature of
the ICM exhibited by AGN activity, bubbles of relativistic plasma, cold fronts, shocks and
turbulence. Studying the fluctuations of X-ray surface brightness makes possible putting
constraints on the amount of turbulence and even estimate the velocity power spectrum
(Churazov et al., 2012; Zhuravleva et al., 2014). Future X-ray observatories, such as Hitomi
(ASTRO-H) and Athena, will possess a much higher energy resolution, which will allow
more precise measurements of cluster turbulence by estimating the shift and broadening
of X-ray lines.

The Sunyaev-Zeldovich effect leads to a decrement in the intensity of the Cosmic Mi-
crowave Background Radiation in the direction of galaxy clusters (Sunyaev & Zeldovich,
1972). Because of that, clusters are seen as cold spots in the microwave band below 218
GHz. An image of the Sunyaev-Zeldovich decrement (with the opposite sign) in the Coma
cluster is shown in the bottom right panel of Fig. 1.1. The observed decrement does
not depend on redshift, and, in combination with thermal X-ray emission measurements,
provides an independent method of estimating the Hubble constant (Gunn, 1978; Silk &
White, 1978; Birkinshaw, 1979; Cavaliere et al., 1979).

Galaxy clusters are also seen in the radio band (e.g., Govoni & Feretti, 2004). The first
diffuse radio source detected in a cluster of galaxies is the giant halo in the Coma cluster
(Large et al., 1959; Willson, 1970). In contrast with obvious radio sources associated
with galaxies, diffuse extended radio sources associated with the ICM are much more
puzzling. These are a clear evidence that the thermal ICM plasma coexists with non-
thermal components, which are produced by synchrotron emission from a population of
relativistic electrons gyrating in large-scale magnetic fields. The existence of magnetic fields
in clusters has also been supported by Faraday rotation measurements (pioneered by the
Cygnus A observations by Dreher et al. 1987; see also, e.g., Taylor & Perley 1993; Feretti
et al. 1999; Govoni et al. 2001). The energy density of the relativistic plasma is only ≲ 1%
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Figure 1.1: The Coma cluster in different wavelengths as observed by XMM-Newton in the
X-ray (upper left), SDSS in optical (upper right), VLA in radio (bottom left), and Planck
in microwave bands (bottom right). Credit: NASA/JPL-Caltech/GSFC/SDSS, ESA/HFI
and LFI consortia.
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relative to the ICM thermal energy density (Prokhorov & Churazov, 2014; Ackermann
et al., 2014), but the relativistic particles can, nevertheless, play an important role in
the evolution of the large-scale structure in the Universe, provide additional pressure, and
undergo acceleration processes. Magnetic fields cause even more profound changes in the
ICM physics through the modification of particle transport and even the gas dynamics. The
mechanism of re-acceleration of the synchrotron-emitting particles in diffuse extended radio
sources still remains an open question, with shocks and turbulence among the probable
candidates (e.g., Ensslin et al., 1998; Brunetti & Lazarian, 2007). The diffuse radio emission
from the Coma cluster is shown in the bottom left panel of Fig. 1.1.

1.2.2 Turbulence

At large scales, the ICM is disturbed, for instance, by infalling galaxies and cluster merg-
ers. It is natural to expect that the kinetic energy of these events cascades down to small
dissipative scales. In cluster cores, turbulence is excited by the rising of bubbles of rela-
tivistic plasma during AGN activity. A striking example of the turmoil produced by an
AGN is an X-ray image of the core of the Perseus cluster (Fig. 1.2). The inflated bubbles
of relativistic plasma (e.g., Boehringer et al., 1993; Churazov et al., 2000; Fabian et al.,
2000), surrounding gravity waves and weak shocks are clearly seen as ripples in the X-ray
brightness. The internal waves generated by the bubbles are likely to be partly transformed
into gas turbulence.

One way to measure cluster turbulence is by analyzing X-ray surface brightness fluctu-
ations. Apart from the velocity-field perturbations, turbulent motions also lead to small
density and pressure fluctuations that can be measured by X-ray telescopes. This method
was first attempted by Schuecker et al. (2004) to estimate the pressure fluctuations in the
Coma cluster from XMM-Newton observations. Later, a similar approach, but using high-
resolution Chandra data, was applied by Churazov et al. (2012) to estimate the relative
density fluctuations in the Coma cluster. They found 5–10% fluctuations generated at
large scales by the perturbations of the gravitational potential by massive cD galaxies and
infalling cold gas, and, likely, turbulence at smaller scales. Recently, the same technique
was also applied to the Perseus cluster by Zhuravleva et al. (2015). They reported density
fluctuations at a ∼ 10% level and gas velocities ∼ 100 km s−1 with a power spectrum in
broad agreement with Kolmogorov turbulence.

The most direct way to measure turbulence in clusters is to measure the broadening of
X-ray spectral lines due to the Doppler shifts produced by the motion of the line-emitting
ions. The broadening is caused both by the thermal motion and turbulence. For sufficiently
heavy ions (iron being the most relevant one), the turbulent broadening becomes of the
order of the thermal broadening or larger, and can be detected, provided that the detector
has sufficient energy resolution.

Measurements of line broadening have been a difficult task due to insufficient energy
resolution of the currently active X-ray observatories. The situation is expected to change
drastically with the recent launch of Hitomi (ASTRO-H) carrying an X-ray microcalorime-
ter on board. The calorimeter will provide about 6-eV spectral resolution that opens a
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Figure 1.2: Chandra X-ray image of the central 100-kpc region of the Perseus cluster
(Fabian et al., 2011).
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possibility to measure turbulent broadening down to 50–100 km s−1.
Another method of measuring cluster turbulence is based on the resonant scattering

of line-emitted photons (Gilfanov et al., 1987). Despite the ICM plasma is optically thin
in continuum, a few of the strongest resonance lines have an optical depth of order unity.
Photons emitted in these lines can be scattered several times before they escape the ICM.
This causes an apparent dimming of a line in the direction of the cluster center due to the
fact that resonant photons are scattered out of the line of sight. The optical depth of the
scattered line depends on the ratio of the turbulent to thermal energy densities of the gas
(Zhuravleva et al., 2011).

Available observational data, along with numerical simulations of cluster formation
(Norman & Bryan, 1999; Sunyaev et al., 2003; Ricker & Sarazin, 2001) and of the buoyant
radio bubbles inflated by AGNs (Churazov et al., 2001; Fujita, 2005), appear to converge
in an estimate of the rms velocities of turbulent flows U ∼ a few 102 km s−1 at the outer
scales L ∼ 102 kpc. By assuming a Kolmogorov-type cascade below L and estimating
viscosity simply as µICM ∼ λmfpvth,i, where λmfp is the particle mean free path, vth,i the
ion thermal speed, one gets fairly low Reinolds numbers Re∼ LU/µICM : ∼ 100 in cluster
cores and only a few in the bulk. To better systemize different cluster properties, some
of which will arise later in this chapter, in the range of conditions present in the ICM, I
organize them in two sets of fiducial parameters: one characteristic of cluster cool cores,
and another characteristic of the bulk of the hot ICM (Table 1.1).

1.2.3 Magnetic fields

Faraday rotation observations

Increasingly detailed radio observations of galaxy clusters made possible a quantitative
study of the ICM magnetic fields. Faraday rotation measurements provide the most de-
tailed information about the cluster magnetic fields. A magnetic field in a plasma sets a
preferential direction for the gyration of electrons, leading to a difference in the refraction
index between left and right circularly polarized radiation. This means that as linearly
polarized light propagates through a magnetized plasma, its polarization plane experiences
rotation, ∆χ = RMλ2, where ∆χ is the change in the position angle of polarization, λ is
the wavelength of the radiation, and RM is the Faraday rotation measure. The rotation
measure is a function of the electron density ne and the component of the magnetic field
along the line of sight B∥ as follows

RM = 812

∫ L

0

neB∥dl radians m
−2, (1.1)

where the integration is carried out along the line of sight, B∥ is measured in µG, ne in
cm−3, and l in kpc.

Synchrotron emission from charged particles gyrating in a magnetic field with ran-
domly distributed pitch angles is known to be linearly polarized. If an astrophysical ra-
dio source (typically, a central radio galaxy) is embedded into the ICM, it can act as a
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Table 1.1: Fiducial ICM parameters (adapted with changes from Schekochihin & Cowley
2006).

Name Notation Expression Cool coresa Hot ICM

temperature T observed 3× 107 K 108 K
particle density n observed 6× 10−2 cm−3 10−3 cm−3

ion thermal speed vth,i (2T/mi)
1/2 700 km s−1 1300 km s−1

ion-ion coll. frequency νii 1.5nT−3/2 b 5× 10−13 s−1 2× 10−15 s−1

mean free path λmfp vth,i/νii 0.05 kpc 30 kpc
parallel kin. viscosity µ∥ vth,iλmfp 1028 cm2 s−1 1031 cm2 s−1

resistivity η 3× 1013 T−3/2 b 200 cm2 s−1 30 cm2 s−1

rms velocity at outer scale U inferred 250 km s−1 300 km s−1

outer scale L inferred 10 kpc 200 kpc
turnover time at outer scale L/U inferred 4× 107 yr 7× 108 yr
hydrodynamic Reynolds num. Re UL/µ∥ 70 2

magnetic Reynolds num. Rm UL/η 4× 1027 6× 1029

viscous scale lvisc LRe−3/4 0.4 kpc 100 kpc

resistive scale lres LRm−1/2 5000 km 8000 km
ion Larmor frequency Ωi eBrms/cmi 0.3 s−1 0.04 s−1

ion Larmor radius ρi vth,i/Ωi 3000 km 30,000 km
rms magnetic field Brms observed 20 µG 2 µG
plasma beta β 8πnT/B2

rms 20 100
magnetic-field corr. length lB observed 2 kpc 10 kpc

aBased on the Hydra A cluster parameters given in Enßlin & Vogt (2006).
bIn these expressions, n is in cm−3, T is in degrees Kelvin.
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background source of linearly polarized radiation that “backlights” the gas. The X-ray
emitting cluster atmosphere then behaves as a Faraday screen, where most of the rotation
measure is produced. While the RM could also be produced by thermal gas mixed with
the radio-emitting plasma, this possibility was ruled out by the absence of depolarization
and precisely quadratical behavior of the observed position angles with wavelength (it
was first demonstrated for Cyg A, Dreher et al. 1987). Employing the simple quadratical
dependence, RM maps can be obtained by multiwavelength polarization measurements.

Extensive measurements of Faraday rotation of the synchrotron emission from intr-
acluster radio sources with the Very Large Array (VLA) made possible to estimate the
magnetic field and its spatial structure in a large number of clusters (e.g., Carilli & Taylor,
2002; Govoni & Feretti, 2004; Laing et al., 2008; Kuchar & Enßlin, 2011). These data re-
vealed magnetic fields with the rms strength of order Brms ∼ 1− 10 µG, randomly tangled
at scales lB ∼ 1 − 10 kpc. A RM map of the Hydra A cluster is shown in Fig. 1.3 as an
example. The evident patchiness of the RM distribution in the map is a direct indicator
of the stochastic topology of the magnetic fields. Furthermore, high-resolution RM mea-
surements of the radio lobes in the cool core of Hydra A opened a possibility to estimate
the power spectrum of the magnetic fluctuations (Vogt & Enßlin, 2005; Kuchar & Enßlin,
2011). The obtained spectrum is consistent with k−5/3 down to the resolution limit k ≂ 10
kpc−1. The presence of a large-scale cut-off at k ≈ 0.5 kpc−1 was found in Vogt & Enßlin
(2005), but, nevertheless, not confirmed in Kuchar & Enßlin (2011).

Radio relics

Another source of information about cluster magnetic fields is polarized diffuse synchrotron
emission in the form of radio relics. Contrary to radio halos, relics are found on the outskirts
of clusters and are strongly polarized (∼ 20−30%). They allow one to probe the component
of the magnetic field perpendicular to the line of sight in the bulk of the ICM. Relics are
assumed to be associated with merger shocks, at which relativistic particles are accelerated.
Although in elongated relics, the magnetic field is predominantly oriented parallel to the
relic due to the amplification of the tangential component of the field at the shock, in some
“roundish” relics, a more complicated field structure is seen (e.g., in Abell 2256, Clarke &
Ensslin 2006). This may provide an insight into off-center cluster magnetic fields, while
Faraday rotation observations only probe cluster cores.

Magnetohydrodynamic description

The simplest description of the ICM on scales much larger than the collisional mean free
path of the particles λmfp is ideal (no viscosity) hydrodynamic. However, using the fiducial
parameters in Table 1.1, it is readily seen that cluster magnetic fields can by dynamically
important. The parameter that quantifies the dynamical importance of magnetic fields is
the plasma β, the ratio of the thermal to magnetic energy densities. For the bulk of the
ICM, β ∼ 100. For subsonic turbulent motions at Mach numbers M ∼ 0.1− 0.2, it results
in the magnetic-energy density of order the kinetic-energy density of the gas. Therefore, for
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5 kpc

Figure 1.3: Faraday rotation measure map of the northern lobe of the Hydra A cluster
(Taylor & Perley, 1993).
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proper physical modelling of the ICM, at the very least, the ideal MHD equations should
be used instead. MHD dynamics is determined by the following equations:

ρ
dv

dt
=

1

4π
(B ·∇)B −∇

(
p+

B2

8π

)
, (1.2)

∂B

∂t
= ∇× (v ×B), (1.3)

where d/dt = ∂/∂t+v ·∇, ρ is the mass density, v the gas velocity, and p the thermal pres-
sure. Here I have neglected the resistive term due to the tiny value of the ICM resistivity
η (see Table 1.1). I have also omitted the gravitational acceleration g on the right-hand
side of equation (1.2) for brevity. The inclusion of the magnetic pressure B2/(8π) and
the magnetic tension 1

4π
(B ·∇)B on the right-hand side of equation (1.2) leads to three

additional wave modes: the fast and slow compressional magnetosonic waves and the shear
Alfvénic wave. Equation (1.3) is the induction equation, which is linked to an important
property of the ideal MHD magnetic field, magnetic flux freezing. Flux freezing means that
the magnetic-field lines move strictly with the gas, i.e., they are frozen into the plasma.

One should be mindful that using equations (1.2) and (1.3) in numerical modelling im-
plies setting Re∼Rm (Re is the hydrodynamic, Rm magnetic Reynolds numbers), because
the hydrodynamic and magnetic numerical viscosities are of the same order. For the typi-
cal cluster properties, however, Rm≫Re, and there is an extremely large scale separation
between the size of a turbulent eddy and the resistive scale. While, qualitatively, a plasma
with Re∼Rm≫1 may behave similarly to the case Rm/Re≫ 1, as shown in numerical
simulations by Schekochihin et al. (2004), cluster turbulence most likely has fairly low
Re∼ 1− 100, for which it might be difficult to reach magnetic-energy density close to the
energy density of the turbulent motions.

Fluctuation dynamo

Cluster magnetic fields must have undergone amplification from the seed fields (Bseed ∼
10−21 − 10−9 G), present in the Universe before structure formation (Gnedin et al., 2000;
Grasso & Rubinstein, 2001), to the currently observed values. The random motions of the
ICM may be capable of accomplishing this task over a time shorter than the typical age of
clusters (a few Gyr). While other mechanisms of generation of µG-strong magnetic fields in
galaxy clusters have been proposed, [for instance, compression of cosmological plasma into
a cluster (e.g., Dolag et al., 2005) or injection of AGN-generated fields into the ICM (e.g.
Kronberg et al., 2001)], amplification by turbulence is a favorable candidate, intuitively
supported by the observational fact that the magnetic-field-energy density is close to the
kinetic-energy density of the plasma motions.

The magnetic field is amplified by the ICM turbulence via the mechanism of the fluc-
tuation (or small-scale) dynamo. The fluctuation dynamo is a series of random stretching
and folding of the magnetic-field lines that leads on average to an exponential growth of
the field (Batchelor, 1950; Zel’dovich et al., 1984; Zeldovich et al., 1990). Let me rewrite
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weak

strong

Figure 1.4: Bottom panel: the physical mechanism of the fluctuation dynamo; a random
linear shear stretches a parcel of plasma in one direction and compresses it in the perpen-
dicular direction, forming a characteristic fold. Upper panels: cross sections of the velocity
amplitude |v| (left) and the magnetic-field strength |B| (right) in the saturated state of a
3D numerical simulation of the turbulent dynamo with Re=100, Rm=1000 (adapted from
Schekochihin & Cowley 2006).



12 1. Introduction

the induction equation (1.3) for an incompressible plasma (valid in the case of subsonic
turbulence) as

1

B

dB

dt
= bb : ∇v ∼ U

L
Re1/2, (1.4)

where b is the unit vector in the direction of the magnetic field, L the injection scale of
the cluster turbulence, U the turbulent velocity at the injection scale. The term bb : ∇v
is the rate of strain (or the stretching rate or shear) of the random flow at the scale
of the viscous eddies. The rate of strain changes stochastically in time, providing a net
exponential growth of the magnetic-energy density (I will demonstrate this mathematically
in Chapter 2). The physics of the fluctuation dynamo is illustrated in the bottom panel
of Fig. 1.4: a random linear shear produces folds of the field lines, along which the field
is amplified, while at the field reversals, it becomes weaker. At some point, the magnetic
field stops growing exponentially and saturates, when the magnetic-energy density becomes
comparable with the kinetic energy of the random motions. However, the folded structure
of the field survives even in the saturated state, as shown in numerical simulations by
Schekochihin et al. (2004). The structure of the saturated field produced by a turbulent
velocity field with Re = 100 and Rm = 1000 is shown in the upper right panel of Fig. 1.4.
The parallel scale of the folded flux sheets l∥ is similar to the scale of the velocity that does
the stretching L, while the field reversal scale l⊥ in the direction perpendicular to itself is
the resistive scale lres = LRm−1/2.

From the view of the folded structure of the field, it is clear that the magnetic-field power
spectrum should peak at the reversal scale l⊥ ∼ lres. However, because the ICM resistivity η
is extremely small, and the corresponding magnetic Reynolds number Rm = UL/η ∼ 1030

is extremely large (see Table 1.1), the resistive scale lres = LRm−1/2 ∼ 10000 km is tiny.
Therefore, there is a clear contradiction between the observed value of lB (the correlation
length of the magnetic field inferred from the position of the peak in the observed power
spectrum) and the prediction of the fluctuation dynamo theory. While lB ∼ 1− 10 kpc is
much smaller than the outer scale L ∼ 10− 100 kpc, it is certainly far from being as small
as the resistive scale.

However, as it turns out, the purely magnetohydrodynamic description of the ICM is
not well justified, because the ICM plasma particles collide far less frequently than their
rate of gyration in the cluster magnetic field. This feature of the plasma has a profound
effect on the ICM physics.

Pressure anisotropies

A key property of the ICM as plasma is that it is only weakly collisional and magnetized,
which means that the collisional mean free path of the plasma particles λmfp ∼ 10 kpc is
much larger than the ion Larmor radius ρi ∼ 104 km. This property leads to conservation
of adiabatic invariants for charged particles moving in a magnetic field. The first adiabatic
invariant is the magnetic moment of a particle µ = v2⊥/(2B), where v⊥ is the component
of the particle’s velocity perpendicular to the field line. Summing up the first adiabatic
invariants of all particles, one gets p⊥/B = const, where p⊥ is the perpendicular pressure.
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Thus, the magnetic-field-strength changes are correlated with changes in the perpendicular
pressure, giving rise to pressure anisotropy.

When the plasma pressure is anisotropic, the dynamics equation (1.2) should be re-
placed by the following equation:

ρ
dv

dt
= −∇

(
p⊥ +

B2

8π

)
+∇ ·

[
bb

(
p⊥ − p∥ +

B2

4π

)]
, (1.5)

which is valid at time scales ≫ Ω−1
i (Ωi = eB/mic is the ion Larmor frequency) and

spatial scales ≫ ρi = vth,i/Ωi. The evolution of p⊥ can be calculated by differentiating the
condition p⊥/B = const and allowing rare collisions to isotropize the pressure:

1

p⊥

dp⊥
dt

∼ 1

B

dB

dt
− νii

p⊥ − p∥
p⊥

, (1.6)

where the second term on the right-hand side represents the relaxation of the pressure
anisotropy at the ion collision rate νii ∼ vth,i/λmfp

1. Using the induction equation (1.4)
for an incompressible plasma and assuming a steady state dp⊥/dt ∼ 0, one gets

∆ ≡
p⊥ − p∥
p⊥

∼ S

νii
, (1.7)

where I have denoted the velocity rate of strain (shear) S ≡ bb : ∇v ∼ (U/L)Re1/2. Equa-
tion (1.7) directly demonstrates how pressure anisotropy ∆ emerges during the magnetic-
field evolution in a velocity field. The energy conservation law that follows from equa-
tions (1.5) and (1.4) is

d

dt

(
⟨v2⟩
2

+
⟨B2⟩
8π

)
= −µ∥⟨|bb : ∇v|2⟩ = −µ∥

⟨(
1

B

dB

dt

)2
⟩
, (1.8)

where µ∥ ∼ p⊥/νii ∼ vth,iλmfp is the “parallel” Braginskii viscosity (Braginskii, 1965). The
role of µ∥ is to only damp such motions that change the strength of the magnetic field,
while motions that do not affect B are allowed at subviscous scales. These motions could
be a cascade of transverse Alfvénic perturbations. However, even equation (1.5) is ill-posed
when |p⊥ − p∥| ≳ B2 because of the development of microscale kinetic instabilities, whose
growth rates happen to peak at the ion Larmor radius scale.

1In all that follows in this chapter, we only consider ion pressure anisotropies, because electron
anisotropies are typically very weak due to the fact that the electron collision frequency νe is (mi/me)

1/2 ≈
40 times larger than νii [see equation (1.7)].
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Microscale instabilities

Firehose instability

Assume first that a parcel of plasma is subjected to a negative linear shear S ≡ bb : ∇v,
and the local magnetic-field strength B is decreasing:

1

B

dB

dt
= S < 0. (1.9)

Then from equation (1.7), the anisotropy ∆ is negative. Let me now introduce a small
transverse (Alfvénic) perturbation to the magnetic field B (see Fig. 1.5). The plasma
particles2 moving along the bend of the field line with curvature radius R at parallel
thermal velocity vth∥ exert a centrifugal force FR = minv

2
th∥/R on the field line. The

centrifugal force is directed outward and tends to bend the field line further. It is resisted
by the force of the perpendicular pressure Fp⊥ = p⊥/R and the magnetic stress of the field
line FB = B2/(4πR). The equilibrium condition is

minv
2
th∥

R
=
p⊥
R

+
B2

4πR
. (1.10)

Using p∥ = nmiv
2
th∥ and notations β⊥ = 8πp⊥/B

2, β∥ = 8πp∥/B
2, one arrives at the

condition for the firehose instability:

β⊥ + 2 < β∥. (1.11)

For small anisotropy, β⊥ ≈ β∥ ≈ β, the condition is

∆ < − 2

β
. (1.12)

For the typical hot ICM parameters taken from Table 1.1, one can estimate |∆| ∼ U/(νiiL) ∼
0.01, while β ∼ 100. It is clear that the cluster plasma can indeed be firehose unstable in
the presence of a random local turbulent shear, despite the anisitropy is small.

The dispersion relation for small Alfvén-wave-polarized perturbations in an anisotropic
plasma can be derived by linearizing equation (1.5). It reads

ω = ±k∥
(
p⊥ − p∥ +

B2

4π

)1/2

, (1.13)

where ω is the circular frequency, k∥ the parallel wavenumber of the perturbation. When
p⊥ − p∥ + B2/(4π) < 0, ω is imaginary, and an instability develops. The growth rate of
the instability is ∝ k∥, so the fastest-growing perturbations are at scales far below the

2We assume them to be ions for simplicity. The firehose and mirror instability conditions depend on
both ion and electron pressure anisotropies. However, the electron anisotropy is normally much smaller
because of the large electron collisionality [see equation (1.7)].
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Figure 1.5: Mechanism of the firehose instability.

mean free path. Therefore, the description of the ICM based on equation (1.5) is ill posed
whenever the instability condition (1.12) is satisfied, and a kinetic description must be
adopted instead. A kinetic treatment of the instability shows that the growth rate peaks
at the ion gyroscale, k∥ρi ∼ 1.

Thus, large-scale randommotions change the magnetic field and drive pressure anisotropy,
which, in turn, triggers the firehose instability. The instability is stabilized when the
magnetic-field becomes strong enough to compensate for the energy of pressure anisotropy,
B2/(4π) > |p⊥ − p∥|, and the firehose fluctuations transform into Alfvén waves, which can
cascade all the way down to the ion gyroscale without being affected by collisions.

Mirror instability

In regions where the magnetic-field strength is increasing, and positive anisotropy p⊥ > p∥
is produced, the mirror instability occurs. The mirror instability is purely kinetic, and
cannot be derived properly from fluid equations.

Let me first study the motion of a charged particle in a static periodic magnetic field,
whose field strength varies between Bmin and Bmax along a field line as B = B(ℓ), where
ℓ is the field-line coordinate. The magnetic field does not change the particle’s energy. If
the field strength changes are smooth (compared with the Larmor radius), the particle also
conserves its magnetic moment (first adiabatic invariant),

µ =
v2⊥
2B

∝ 1− ξ2

B
= const, (1.14)

as it moves along the field line. Here ξ = cos θ, θ is the pitch angle of the particle, so
v∥ = vξ. Then, as the particle travels from location ℓ0 to ℓ1, (1 − ξ20)/B0 = (1 − ξ21)/B1,
where the subscripts correspond to the values at different locations. For ξ1, one gets

ξ21 = 1− B1

B0

(1− ξ20). (1.15)

When the right-hand side of this equation equals zero, the parallel velocity of the particle
changes its sign, and the particle is reflected (“mirrored”) from a region of stronger field
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B1 > B0 and becomes trapped between neighboring regions with B = B1. This effect is
called magnetic trapping. The condition for a particle to be trapped is

ξ0 < ξcrit = (1−B0/Bmax)
1/2. (1.16)

The value of ξcrit determines the so-called loss cone for the particles. Particles that travel
in the loss cone with ξ0 > ξcrit are “passing”. They propagate freely through the field
structure, only changing their parallel velocities in order to conserve the magnetic moment.
Particle outside the loss cone (ξ0 < ξcrit) inevitably become trapped between regions of
strong enough field. For both groups of particles, their parallel motion can be described
in terms of an effective “mirror” force, which can be obtained from the conservation of
magnetic moment expressed as dµ/dℓ = 0:

ξ̇ = −1− ξ2

2B

dB

dℓ
, (1.17)

where the dot denotes the Lagrangian time derivative. Equation (1.17) demonstrates
explicitly that particles are expelled from regions of large magnetic-field strength. This
fact plays a key role in the physics of the mirror instability.

Now, consider a plasma with a bi-Maxwellian distribution function F ,

F (v) = n

(
mi

2πT⊥

)(
mi

2πT∥

)1/2

exp

[
−
(
W⊥

T⊥
+
W∥

T∥

)]
, (1.18)

where W⊥ = miv
2
⊥/2, W∥ = miv

2
∥/2 are the perpendicular and parallel particle’s energy,

and the corresponding temperatures are defined as

T⊥ =
1

n

∫
d3v W⊥F, (1.19)

T∥ =
1

n

∫
d3v 2W∥F, (1.20)

where d3v = 2πv⊥dv⊥dv∥. Consider also a small slowly changing (compared to the ion
Larmor frequency) perturbation of magnetic-field strength along a field line,

δB ∝ exp(ik∥ℓ+ γt), (1.21)

where γ ≪ Ωi. Let me first describe the behavior of particles with v∥ > γ/k∥. These
particles traverse regions of different B faster than the magnetic field changes in time,
so for them, the field is essentially static. They represent the majority of the plasma
particles, because the field changes are slow, and, therefore, we will call them the bulk
particles (following Southwood & Kivelson 1993). The bulk particles almost do not change
their energyW = W∥+W⊥, and it is simply exchanged between perpendicular and parallel
degrees of freedom to conserve the magnetic moment. Hence, the changes in W⊥ and W∥
of such particles, as they travel along the field, can be expressed as

δW⊥ = µδB, (1.22)

δW∥ = δW − µδB, (1.23)
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Figure 1.6: Mechanism of the mirror instability. The white particles represent the bulk of
the plasma: they travel through the field structure as the instability develops. The bulk
particles experience both increasing and decreasing field, while their energy does not change
significantly but shifts back and forth between parallel and perpendicular degrees of free-
dom. If there is a positive temperature anisotropy, the bulk particles’ pressure responds in
antiphase to the magnetic perturbation [equation (1.24)]. The black particles are resonant.
They have close to zero parallel velocities, move little along the field, and “feel” the local
temporal changes of the magnetic-field strength: they heat in the regions of growing field,
and cool in the regions of decreasing field by adjusting their perpendicular velocities to
the field strength as to conserve the magnetic moment (betatron heating/cooling). Their
pressure changes in phase with the magnetic perturbation.

where for the bulk particles, δW → 0. The value of the distribution function F for any
particle remains constant as the particle moves (the Liouville theorem). Then one can use
this fact to find the change in the distribution function of the bulk particles associated
with the spatial variations of the field strength that the particle encounters on its way:

δFb = −δW∥
∂Fb

∂W∥
− δW⊥

∂Fb

∂W⊥
=
µδB

T⊥

(
1− T⊥

T∥

)
Fb. (1.24)

Here δ denotes the Lagrangian variation along the particle’s trajectory. This equation
showcases a peculiar behavior of the bulk particles: their distribution function (and the
corresponding pressure) responses in antiphase to a change in the magnetic field if the
anisotropy of the particles is positive (T⊥ > T∥). This fact eventually leads to an instability,
because in regions of the increasing field strength, the bulk particles’ pressure is dropping.

Now let me study a small fraction of particles with low parallel velocities v∥ < γ/k∥
(pitch angles close to 90◦). These particles “feel” the local temporal change in the magnetic-
field strength. Therefore, they increase/decrease their perpendicular (and total) energy
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and heat/cool in regions where the field strength is rising/dropping via betatron heat-
ing/cooling, in radical contrast with the bulk particles (see Fig. 1.6). For this reason, we
will call them resonant. The energy of a resonant particle,W = W⊥+W∥, changes in phase
with the magnetic perturbation in order to conserve the particle’s magnetic moment:

dW

dt
= µ

∂B

∂t
, (1.25)

where d/dt is the Lagrangian time derivative. Then, integrating (1.25) for a harmonic
perturbation of the field strength [equation (1.21)], I get

δW =
γ

γ + ik∥v∥
µδB. (1.26)

The corresponding variation of the distribution function of the resonant particles is

δFres = −∂Fres

∂W
δW = −∂Fres

∂W∥
δW =

µδB

T∥

γ

γ + ik∥v∥
Fres (1.27)

We can now calculate the total change in the distribution function δF taking account
of both types of particles by combining equations (1.24) and (1.27):

δF = −δW∥
∂F

∂W∥
− δW⊥

∂F

∂W⊥
=

[
µδB

T⊥

(
1− T⊥

T∥

)
+

(
µδB

T∥

γ

γ + ik∥v∥

)]
F. (1.28)

Taking the second moment of δF and imposing the pressure balance condition yields

BδB

4π
+ 2p⊥

(
1− T⊥

T∥

)
δB

B
+ 2

(∫
dv∥

γ2

γ2 + k2∥v
2
∥
F∥

)
T 2
⊥
T∥

δB

B
= 0, (1.29)

where F∥ is the distribution of parallel velocities after integration over the perpendicular
velocities. In equation (1.29), the second term corresponds to the pressure deficit/surplus
of the bulk particles with a positive anisotropy in regions where the field strength is increas-
ing/decreasing [see equation (1.24)]. The first term is the magnetic pressure that resists
compression in regions where the field increases and the bulk particles cause a deficit of
pressure. Lastly, the third term describes the contribution of the resonant particles to
the total pressure: their pressure responds in phase with the magnetic perturbation, in
great contrast with the bulk particles. Thus, the antiphase response of the bulk particles
is balanced by the magnetic pressure and the resonant pressure. Using equation (1.29) in
the limit γ → 0, one arrives at the mirror instability growth rate

γ = −k∥
B2/(8π) + T∥ − T⊥
π(T 2

⊥/T∥)Fres∥
, (1.30)

where Fres∥ = F∥(0). A peculiar feature of the mirror instability is that its growth rate
is inversely proportional to the number of resonant particles, unlike for other resonant
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instabilities. Using F∥(0) = (mi/2πT∥)
1/2, vth∥ = (T∥/mi)

1/2 (parallel thermal velocity), I
can rewrite equation (1.30) as

γ =

(
2

π

)1/2 β∥
β2
⊥

[
β⊥

(
β⊥
β∥

)
− 1

]
k∥vth∥. (1.31)

For small anisotropy typical for the ICM (∆ ∼ 0.01), β⊥ ≈ β∥ ≈ β, and equation (1.31)
becomes considerably simplified

γ =

(
2

π

)1/2 [
∆− 1

β

]
k∥vth∥. (1.32)

The growth rate is positive when

∆ >
1

β
, (1.33)

which is the mirror instability condition. For the typical cluster parameters (∆ ∼ 0.01,
β ∼ 100), it is likely to be triggered by turbulent stretching of the magnetic-field lines
virtually everywhere in the ICM. This conjecture is based on the fact that the fluctuation
dynamo predicts the folded structure of the field lines. In this structure, field reversals,
where the field strength is decreasing and the firehose instability develops, occupy only a
small fraction of the volume, while field-line stretching occurs in most of the plasma.

The mirror instability is saturated in two phases (Kivelson & Southwood, 1996; Schekochi-
hin et al., 2008; Kunz et al., 2014). After the initial exponential growth, the magnetic
field becomes strong enough to drive the plasma to the marginal state ∆ → 1/β. Mag-
netically trapped particles play a crucial role in the saturation mechanism. Their rela-
tive fraction is ∼ (δB/B)1/2 [recall that trapped particles are outside of the loss cone,
ξ < ξcrit = (1− B/Bmax)

1/2 ∼ (δB/B)1/2, see equation (1.16)]. The magnetic field can be
decomposed into two components:

B = ⟨B⟩+ δB. (1.34)

The first component is the mean field amplified by a positive macroscopic linear shear S,
d ln |⟨B⟩|/dt = S. The second is the growing mirror perturbations. Passing particles only
detect the mean growth, while for trapped particles in magnetic wells, the mean growth
is compensated by the deepening of the wells. Therefore, the average amplification of
the magnetic field is compensated by the decreasing field in regions sampled by trapped
particles:

−d|δB|
dt

∼ d|δB|3/2

dt
∼ d ln |⟨B⟩|

dt
= S, (1.35)

where the overbar denotes averaging along particle trajectories (i.e., bounce-averaging for
trapped particles). This leads to a secular growth of the mirror perturbations, ⟨δB2⟩ ∼
(St)4/3. During this phase, particles mostly conserve their magnetic moments, i.e., there is
no anomalous particle scattering off magnetic perturbations. The second phase, the final
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saturation, is caused by particle scattering off sharp bends in the magnetic field, which
occur at the boundaries of the magnetic mirrors. This behavior was recently confirmed in
numerical simulations by Kunz et al. (2014).

The role of instabilities

The main role of the two instabilities is to hold the plasma anisotropy between the two mar-
gins: −2/β < ∆ < 1/β (see, e.g., Melville et al., 2015, and references therein). Recalling
equation (1.7),

|S|
νii

≲ 1/β. (1.36)

This means that in order to hold the plasma in the marginal state, either the rate of
strain S or the scattering rate νii has to be modified by the instabilities (e.g., Mogavero &
Schekochihin, 2014). Both scenarios affect the generation of magnetic field by the fluctua-
tion dynamo (Section 1.2.3).

In the first case, the growth rate of the magnetic field is suppressed, and for a simplified
model, Mogavero & Schekochihin (2014) demonstrated that the fluctuating dynamo is
incapable of amplifying the magnetic field from the seed values of 10−21 − 10−9 µG to the
currently observed strength of ∼ 1 − 10 µG. In the second case, the effective scattering
rate is enhanced (possibly by anomalous particle scattering off Larmor-scale magnetic
perturbations), so the Reynolds number grows larger in equation (1.4). As shown by
Schekochihin & Cowley (2006), this scenario leads to an explosive growth of the magnetic
field, and dynamo is, in fact, self-accelerating. In this case, the fluctuation dynamo is well
capable of bringing the field to the currently observed values in a cosmologically short time.
This result might be important in view of the concerns that the cluster lifetime may not
be sufficient for the unmodified fluctuation dynamo to amplify the magnetic field at low
Reynolds numbers in the bulk of the ICM.

Another potential consequence of the enhanced-collisionality scenario is that in the re-
gions of magnetic-field reversals, where the field is weak, the firehose instability can amplify
the field, thus increasing the scale of the field reversals to ∼ 0.1− 1 kpc (Schekochihin &
Cowley, 2006). This could reconcile the fluctuation dynamo theory, which originally pre-
dicts reversals at the resistive scale, with Faraday rotation observations. Below the reversal
scale, a cascade of Alfvén waves might be set up. Such fluctuations would have a k−5/3

spectrum, as shown by Goldreich & Sridhar (1995), based on the conjecture that at each
scale, the Alfvén frequency is equal to the turbulent decorrelation time. A k−5/3 spectrum
in the Faraday rotation observations of Hydra A (Kuchar & Enßlin, 2011; Vogt & Enßlin,
2005) could be associated with these fluctuations.

More importantly for my work, magnetic perturbations generated by the mirror insta-
bility may dramatically affect transport processes. One could reasonably assume that the
mirror instability occurs in most of the ICM volume, based on the fluctuation dynamo
arguments given above. Then magnetic mirrors formed by the instability can potentially
inhibit thermal conduction by trapping of the heat-conducting electrons. I study this effect
in detail in Chapter 3.
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1.3 Thermal conduction in the intracluster medium

Current active research areas in the physics of galaxy clusters include, but are not limited
to, non-thermal particles, AGN feedback and formation of large-scale structure. Proper
modeling of these phenomena requires a good understanding of the underlying physics of
the instracluster gas. An important ingredient to this understanding is particle transport.
While transport processes cannot be self-consistently modeled in large-scale cluster simu-
lations, they may effect the large-scale properties of clusters, such as temperature profiles.
It is therefore desirable to implement a certain subgrid model that would contain the mi-
croscale physics of particle transport in a handful of numerical parameters. Besides, galaxy
clusters might be unique laboratories to study turbulent high-β plasmas, which are difficult
to produce in ground-based experiments. In this work, I mainly study thermal conduction
in the ICM.

1.3.1 Spitzer thermal conductivity

The ICM is a fully ionized hot tenuous plasma. In such a plasma, the mean free paths of
the particles are determined by Coulomb collisions. It can be shown by a simple calculation
of the small-angle scattering of an electron in the electric field of an ion that the electron-
ion collision frequency νei ∝ n/T 3/2. Let me briefly recap this calculation. Consider an
electron at speed v with impact parameter b scattered by an ion with charge Z (Fig. 1.7).
The electron is scattered at small angle θ, so that its absolute velocity almost does not
change. The electron’s velocity vector is deflected by the component of the Coulomb
force perpendicular to the electron’s motion, F⊥ = b/r × Ze2/r2, which acts over time
∆t ∼ b/v. The change in the perpendicular velocity of the electron is v⊥ = F⊥∆t/me =
Ze2b2/(mevr

3) ∼ Ze2/(mebv). Then the parallel electron’s velocity changes by

∆v∥ = v(1− cos θ) ∼ v
θ2

2
∼ ∆v2⊥

2v
∼ Z2e4

m2
eb

2v3
. (1.37)

Integrating over impact parameters b, one can obtain the change in the parallel momentum
∆P∥ over time ∆t of an electron beam of density n as it is scattered by the ion:

∆P∥

∆t
=

∫ bmax

bmin

db 2πb menv∆v∥ =
Z2e4

mev2
ln
bmax

bmin

. (1.38)

Here ln(bmax/bmin) ≡ ln Λ is the Coulomb logarithm, which is a weak function of the
plasma parameters. For the typical cluster densities and temperatures, ln Λ ∼ 40. The
collision frequency can be defined as the rate of loss of the parallel beam’s momentum,
νei ≡ −P−1

∥ ∆P∥/∆t. Finally, I get

νei ∼
Z2e4n

m2
ev

3
ln Λ. (1.39)
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Figure 1.7: A sketch of a small-angle Coulomb collision.

The cluster plasma is dominated by hydrogen, therefore, Z ∼ 1. For collisions between
thermal particles to within a factor of order unity

νei ∼ νee ∼
ne4

m
1/2
e T 3/2

ln Λ. (1.40)

To obtain the electron-electron collision frequency νee from the electron-ion one, it is only
necessary to replace the electron mass me by the reduced mass me/2, so νee =

√
2νei. The

collisional mean free path is, therefore,

λmfp ∼ T 2

ne4 ln Λ
. (1.41)

The electron and ion mean free paths are equal if both species are at the same temperature
T . A rigorous derivation was performed by Spitzer (1956), whose result is

λmfp =
33/2T 2

4π1/2ne4 ln Λ
. (1.42)

Numerically,

λmfp ≈ 23 kpc

(
T

108 K

)2 ( n

10−3 cm−3

)−1

. (1.43)

Let me now discuss thermal conduction. Because electrons are much faster than ions,
heat is primarily transported by electrons. If one assumes a non-magnetized plasma with
an electron temperature gradient first, then heat is conducted down the gradient. If the
scale length of the temperature gradient is much longer than the mean free path, the heat
flux is

q = −κ∇T. (1.44)

Spitzer (1956) calculated the thermal conductivity κ in a hydrogen plasma taking into
account the effects of the electric field induced by the flow of conducting electrons. His
expression is

κSp = 0.76 nλmfpvth,e ≈ 4.6× 1013
(

T

108 K

)5/2(
ln Λ

40

)−1

ergs s−1 cm−1 K−1. (1.45)
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A very strong dependence of the Spitzer thermal conductivity on temperature is evident.
One can estimate the conduction timescale characteristic of clusters:

tcond ∼ nl2T/κSp ∼ 107
n

10−3 cm−3

(
lT

100 kpc

)2(
T

108 K

)−5/2

yr, (1.46)

where lT is the length scale of the temperature gradient. It is a rather short time compared
with the typical dynamic time scales of the ICM. This means, had thermal conduction
been so efficient, various temperature substructures observed in clusters [cold fronts (e.g.,
Markevitch & Vikhlinin, 2007), filaments (e.g., Fabian et al., 2011), etc.], would not have
survived during cluster evolution.

1.3.2 Braginskii thermal conductivity

At the ICM temperature and density, even a very small dynamically unimportant magnetic
field is capable of completely magnetizing the plasma. Indeed, the electron ion Larmor
radius

ρe ≈ 10−13 kpc

(
T

108 K

)1/2(
B

1 µG

)−1

(1.47)

is extremely small compared to almost any other characteristic length scale in clusters. In
such a plasma, heat flux inevitably becomes strongly anisotropic. A full kinetic calcula-
tion of anisotropic transport coefficients in a magnetized plasma was first carried out by
Braginskii (1965). It is clear, however, that the electron conductivity perpendicular to the
magnetic-field lines κ⊥ is negligible, because κ⊥ ∼ nρ2eνe ∼ n(ρe/λmfp)

2κSp ≪ κSp, where
νe is the electron collision frequency. This is because an electron moves only a perpendic-
ular distance ρe in each scattering. Then the ICM electrons transfer heat predominantly
along the field lines with parallel thermal conductivity κ∥, which is equal to the Spitzer
conductivity [equation (1.45)] if it is not suppressed by any additional physics. The heat
flux in the presence of a magnetic field can be written as

q = κ∥bb ·∇T, (1.48)

where b is the unit vector in the direction of the local magnetic field. This expression
shows that only the component of the temperature gradient parallel to the magnetic field
is effective in driving a heat flux. At the same time, only the component of the resulting
heat flux q∇T parallel to the temperature gradient transports any net energy,

q∇T = cos2 θ κ∥∇T, (1.49)

where θ is the angle between the magnetic field and the temperature gradient. Thus, the
effective heat flux along the gradient is suppressed by the factor cos2 θ.

Nevertheless, the ICM is turbulent, while its magnetic field is frozen into the plasma
because of a very small resistivity. Consequently, it is natural to expect that the topology
of the field lines in the ICM is stochastic. This can also be seen in RM maps (e.g.,
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in the Hydra A cluster core in Fig. 1.3). Thermal conduction in a tangled magnetic
field is a complicated problem on its own, but it is even more aggravated by the temporal
evolution of the field and temperature gradients, which might be important locally (Chapter
2). Moreover, it is not known if the parallel conductivity actually has the Spitzer value,
because various mechanisms of its suppression potentially exist. For instance, magnetic
mirrors at the scale below the mean free path could reduce it (Chapter 3), or scattering off
magnetic perturbations at the electron Larmor scales, presumably produced by electron
kinetic instabilities (Riquelme et al., 2016).

1.3.3 Conduction in tangled magnetic fields

Particle transport in tangled magnetic fields was originally studied as applied to cosmic
rays (Skilling et al., 1974) and Tokamak plasma (Rechester & Rosenbluth, 1978). Here I
briefly describe the Rochester-Rosenbluth theory of conduction in a tangled magnetic field,
based mainly on the work by Chandran & Cowley (1998).

Assume first for simplicity that a stochastic magnetic field has a single scale lB, so
that each field line can be treated as a random-walk path of step length lB. Let me also
consider the field to be static, neglecting all fluid motions. The net displacement of an
electron that has traveled distance l along a field line is δr ∼ (DBl)

1/2, where DB is called
the “magnetic diffusion coefficient”. Because the step of the field-line random walk is lB,
DB ∼ lB. An electron diffuses along a field line with parallel diffusivity D∥, so its parallel
displacement is l ∼ (D∥t)

1/2. If the electron always stays on the same field line, its parallel
diffusive motion is superimposed on the spatial diffusion of the field line, giving the net
displacement δr ∼ t1/4, and there is no spatial diffusion. However, it was demonstrated by
Rechester & Rosenbluth (1978) that small motions perpendicular to field lines can restore
the diffusive behavior of electrons due to the exponential divergence of neighboring field
lines. In a chaotic field, the separation d between two nearby field lines increases on average
with distance l along either field line as

d(l) ∼ d(0)el/LK , (1.50)

where LK is the Kolmogorov-Lyapunov length (Rechester & Rosenbluth, 1978). In general,
LK depends on the magnetic-field spectrum, but since in our case the field is characterized
by only one scale lB, LK ∼ lB.

Suppose a particle is moving from point P toward point Q (see Fig. 1.8) along a field line
(the solid curve). Each time it travels a distance lB, it drifts a distance ∼ ρe perpendicular
to the magnetic field due to the field-line curvature and field strength gradients. Assume,
for the moment, that the electron drifts a distance ρe onto a neighboring line only once.
It then continues its motion along the neighboring line (the dotted curve), which diverges
exponentially from the initial field line. The electron’s perpendicular distance from the
original field line becomes ∼ lB after it has traveled distance LRR along the new line (point
R),

LRR ∼ lB ln
lB
ρe
. (1.51)
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Figure 1.8: Diffusion in a tangled magnetic field (adapted from Chandran & Cowley 1998).

LRR ∼ 30lB (taking lB/ρe ∼ 1013, typical for clusters) is called the Rochster-Rosenbluth
length. Because the electron constantly drifts transverse to the field lines, LRR is slightly
overestimated. After the electron has traveled the distance PR, its subsequent motion is
completely uncorrelated with its initial field line. That means, if at point R, the electron
is reflected by a collision (or a magnetic mirror), it does not return to point P (as it would
have done, had there been no transverse diffusion), but follows along the line segment
RS instead. Thus, a very small amount of perpendicular diffusion restores the electron’s
random walk in space. Let me calculate the diffusion coefficient of such motion.

The three-dimensional net displacement of the electron as it has traveled a distance
LRR along the tangled field line is

δr2 ∼ DBLRR ∼ lBLRR. (1.52)

Because further motion of the particle is uncorrelated with its previous path, δr is the
effective step of the isotropic electron’s random walk in space. Consider first the limit
λmfp ≫ LRR. In this limit, the electron does not collide over a distance LRR, and the time
it takes for it to move LRR along the field line is δt ∼ LRR/vth,e. Then, for t > δt, it diffuses
isotropically in three dimensions with diffusion coefficient 3

D ∼ δr2/δt = vth,elB. (1.53)

So, when λmfp ≫ LRR, the collisional mean free path of particles λmfp is replaced by the
correlation length of the tangled magnetic field lB. In the opposite limit, λmfp ≪ LRR

(which more likely applies to the ICM, because λmfp ∼ 10 kpc, LRR ∼ 30lB ∼ 100 kpc),
the electron diffuses a distance LRR along the field line over time δt ∼ L2

RR/D∥, where

3The diffusivity D is related to the thermal conductivity κ as κ ∼ nD.
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D∥ = 1/3vth,eλmfp is the parallel diffusivity. Then, for t > δt, the effective spatial diffusion
coefficient is

D ∼ δr2/δt ∼ vth,eλmfp
lB

3LRR

∼ 10−2 DSp, (1.54)

whereDSp is the Spitzer diffusivity (κSp = nDSp). The effective transverse electron diffusion
is thus greatly enhanced by the stochasticity of the field lines, while the total diffusion
coefficient is about two orders of magnitude smaller than the Spitzer value.

It should be noted, however, that the cluster magnetic field can be turbulent in a
broad range of scales (taking into account Alfvénic magnetic fluctuations below the viscous
scale). In this case, the Rochester-Rosenbluth length LRR should be corrected accordingly.
Narayan & Medvedev (2001) applied the model of strong MHD turbulence to the chaotic
fluctuations in the ICM and obtained a value of LRR of only ∼ lB. Their estimate of the
effective diffusivity is Dturb ∼ DSp/5.

1.4 Structure of the thesis

This work aims to study some of the effects of magnetic fields on thermal conduction in
the ICM. The work is based on one published and two submitted papers.

In Chapter 2, I investigate the magnetohydrodynamic effect of the correlated evolution
of the magnetic field and temperature gradients in the ICM turbulence. This effect leads to
local suppression of thermal conduction and may explain the long lifetime of temperature
fluctuations in the ICM.

In Chapter 3, I study, with the help of hybrid-kinetic simulations, how the mirror
instability can inhibit electron transport in the ICM via magnetic trapping.

The generation of polarization of thermal bremsstrahlung emission as a result of electron
pressure anisotropy in the ICM is studied in Chapter 4. The small degree of polarization
obtained by my calculation could be a potential estimator of electron collisionality in the
ICM.

Finally, my findings are summarized in Conclusions.
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Chapter 2

Suppression of local heat flux in a
turbulent magnetized intracluster
medium

MNRAS, 2014, 440, 1153
S. V. Komarov, E. M. Churazov, A. A. Schekochihin and J. A. ZuHone

Abstract. X-ray observations of hot gas in galaxy clusters often show steeper temper-
ature gradients across cold fronts – contact discontinuities, driven by the differential gas
motions. These sharp (a few kpc wide) surface brightness/temperature discontinuities
would be quickly smeared out by the electron thermal conduction in unmagnetized plasma,
suggesting significant suppression of the heat flow across the discontinuities. In fact, the
character of the gas flow near cold fronts is favorable for suppression of conduction by align-
ing magnetic field lines along the discontinuities. We argue that a similar mechanism is
operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions
increase the temperature gradients (in some places) and at the same time suppress the
local conduction by aligning the magnetic field lines perpendicular to the local temperature
gradient. We show that the suppression of the effective conductivity in the bulk of the gas
can be linked to the increase of the frozen magnetic field energy density. On average the
rate of decay of the temperature fluctuations d⟨δT 2⟩/dt decreases as ⟨B2⟩−1/5.
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2.1 Introduction

X-ray observations of galaxy clusters reveal significant spatial fluctuations of the gas tem-
perature in a range of spatial scales (e.g. Markevitch et al., 2003). Given a temperature
map with prominent fluctuations, it is possible to calculate an upper limit on the effective
thermal conductivity, provided that the lifetime of the fluctuations can be estimated. It
turns out to be at least an order of magnitude lower than the Spitzer conductivity for
unmagnetized plasma (Ettori & Fabian, 2000; Markevitch et al., 2003).

Heat conduction in the intracluster medium (ICM) is primarily along the field lines
because the Larmor radius of the particles is very small compared to the collisional mean
free path (Braginskii, 1965). The ICM undergoes turbulent motion in a range of spatial
scales (Inogamov & Sunyaev, 2003; Schuecker et al., 2004; Schekochihin & Cowley, 2006;
Subramanian et al., 2006; Zhuravleva et al., 2011). As the magnetic field is, to a good
approximation, frozen into the ICM, the field lines become tangled by gas motions and
their topology changes constantly. Four main effects should be considered. First, parallel
thermal conduction along stochastic magnetic field lines may be reduced because the heat-
conducting electrons become trapped and detrapped between regions of strong magnetic
field (magnetic mirrors; see Chandran & Cowley 1998; Chandran et al. 1999; Malyshkin
& Kulsrud 2001; Albright et al. 2001). Secondly, diffusion in the transverse direction may
be boosted due to spatial divergence of the field lines (Skilling et al., 1974; Rechester &
Rosenbluth, 1978; Chandran & Cowley, 1998; Narayan & Medvedev, 2001; Chandran &
Maron, 2004). Thirdly, there is effective diffusion due to temporal change in the magnetic
field (‘field-line wandering’). Finally, if one is interested in temperature fluctuations and
their diffusion, one must be mindful of the fact that the temporal evolution of the magnetic
field is correlated with the evolution of the temperature field because the field lines and
the temperature are advected by the same turbulent velocity field.

In this chapter, we focus on the last effect. The more conventional approach, often used
to estimate the relaxation of the temperature gradients, is to consider the temperature dis-
tribution as given and study the effect of a tangled magnetic field on the heat conduction.
However, the direction and value of the fluctuating temperature gradients are not statis-
tically independent of the direction of the magnetic-field lines because the latter are also
correlated with the turbulent motions of the medium. We argue that, dynamically, the
fluctuating gradients tend to be oriented perpendicular to the field lines and so heat fluxes
are the more heavily suppressed the stronger the thermal gradients are. We also establish
the relationship between the average conductivity and the growth of the magnetic energy
density.

The structure of the chapter is as follows. In Section 2.2, we provide a qualitative
explanation of the correlation between the temperature gradients and the magnetic-field
direction, accompanied by a number of numerical examples. In Section 2.3, a theoretical
framework for modelling this effect is presented and the joint PDF of the thermal gradi-
ents, the angles between these gradients and the magnetic-field lines and the magnetic-field
strength is derived in the solvable case of a simple model velocity field. The connection
between the effective conductivity and the increase of the magnetic energy density is es-



2.2 Qualitative discussion 33

tablished. Analytical results are supplemented by numerical calculations in Section 2.3.4,
which extrapolate our results to the case of a more general velocity field. In Section 2.4,
we discuss the assumptions that have been necessary to enable analytical treatment, the
consequent limitations on the applicability of our results, and also present some numerical
tests using a global dynamical cluster simulation, which suggest that, at least qualita-
tively, our results survive when most of the simplifying assumptions are relaxed. Finally,
in Section 2.5, we sum up our findings.

2.2 Qualitative discussion

We consider a volume of plasma with high electric conductivity and frozen-in magnetic field
tangled on a scale much greater than the mean free path of the particles. We also assume
the plasma motions to be incompressible, which is a good approximation for subsonic
dynamics. Across the paper we treat the temperature as a passive scalar.

2.2.1 Illustrative example: conduction between converging lay-
ers of magnetised plasma

Consider two parallel layers of an incompressible medium vertically separated by distance
h with temperatures T1 ̸= T2. This is illustrated in Fig. 2.1: the direction of the field
line is shown with the inclined solid line, making an angle θ with the vertical, so cos θ =
h/

√
h2 + l2, where l is the horizontal distance between the footpoints of the field line

anchored in the two layers. An incompressible flow with ∂yuy < 0 reduces h and increases
l so that l × h is conserved (in the absence of tangential shear). Here we are interested in
the heat exchange between the layers, i.e. only the component of the heat flux along the
temperature gradient Q∇T has to be calculated:

Q∇T = χ(b · ∇T ) cos θ = κ
T2 − T1√
h2 + l2

h√
h2 + l2

. (2.1)

Let h(t) = h0f(t) and l(t) = l0/f(t). Then

Q∇T = κ
T2 − T1
h0

f

f 2 + (l0/h0)
2f−2 , (2.2)

where κ is the parallel thermal conductivity coefficient (Braginskii, 1965), which is assumed
constant across the volume for simplicity. Therefore, in the limit of f → 0, Q∇T → 0 if
l0 ̸= 0. Similarly, when f → ∞, Q∇T → 0. The decrease of the heat flux at f > 1 is
simply due to the increase of the distance between the plates and corresponding decrease
of the temperature gradient. The decrease at f < 1 is due to systematic increase of the
angle between the field lines and the direction of the temperature gradient.

If at some moment the field lines are tangled in such a way that all angles θ are equally
probable, then parametrizing compression/stretching along y by the same factor f and
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Figure 2.1: Correlated changes of the temperature gradients and the inclination of the
magnetic-field lines in the case of a converging incompressible flow: plane parallel layers
at different temperatures. Converging flow with ∂yuy < 0 reduces h and increases the
temperature gradient (T2 − T1)/h, but suppresses heat flux. The solid line represents the
direction of the magnetic field. If the medium is incompressible then l× h is conserved (in
the absence of tangential shears).

Figure 2.2: Suppression of the heat flux along the temperature gradient between two
approaching/receding plates as a function of distance f between the plates, when the
medium between the plates is threaded by tangled magnetic field [see equation (2.3)]. At
the initial moment (f = 1), all angles between the magnetic field direction and the plates
are equally probable. The decrease of the heat flux at f > 1 is simply due to the increase
of the distance between the plates and corresponding decrease of the temperature gradient.
The decrease at f < 1 is due to systematic increase of the angle between the field lines
and the direction of the temperature gradient.
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averaging over θ gives us the suppressed heat flux along the temperature gradient:

Q∇T = κ
T2 − T1
h0

2f

f 2 + 1
(see Fig. 2.2). (2.3)

Thus, increasing the temperature gradient by squeezing the layers of the gas does not
boost the heat exchange between them but rather makes it smaller. A qualitatively similar
situation might occur at the cold fronts – contact discontinuities formed by differential gas
motions, a very simple model of which is discussed in the next subsection.

2.2.2 Astrophysical example: model of a cold front

Chandra observations of galaxy clusters often show sharp discontinuities in the surface
brightness of the ICM emission (see review by Markevitch & Vikhlinin, 2007). Most of
these structures have lower-temperature gas on the brighter (higher-density) side of the
discontinuity, suggesting that they are contact discontinuities rather than shocks. In the
literature, these structures are called ‘cold fronts’. Because of the sharp temperature
gradients, the limits on the thermal conduction derived for the observed cold fronts are
strong (see e.g. Ettori & Fabian, 2000; Vikhlinin et al., 2001; Xiang et al., 2007).

In the majority of theoretical models, the formation of a cold front involves relative
motion of cold and hot gases. Here we consider the case of a hot gas flowing around a
colder, gravitationally bound gas cloud, which is a prototypical model of a cold front. For
simplicity, we assume that the velocity field can be approximated with a 2D potential flow
past a cylinder, while the initial temperature is symmetric around the cylinder. The initial
temperature distribution and stream lines of the flow are shown in the left panel of Fig. 2.3.
The middle panel shows the field lines of a random magnetic field superimposed on the
initial temperature distribution. The evolved temperature and magnetic field are shown in
the right panel of Fig. 2.3. Stretching of the fluid elements near the stagnation point along
the front leads to the contraction of the same elements in the direction perpendicular to
the front. This configuration has been considered in a number of studies of the cold fronts
(see e.g. Asai et al., 2007; Churazov & Inogamov, 2004; Roediger et al., 2011; Lyutikov,
2006). Qualitatively, it corresponds to the situation sketched in Section 2.2.1 and Fig. 2.1,
which naturally leads to the field lines orthogonal to the temperature gradient at the front.

2.2.3 Local correlation between the magnetic-field strength and
the heat flux

Let us now discuss the suppression of the local heat flux in more general terms. Consider
the induction equation for an incompressible medium and the advection equation for the
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Figure 2.3: Alignment of the field lines perpendicular to the temperature gradient for the
velocity field characteristic of a cold front. A potential flow past a cylinder is used in
this example. The left panel shows the initial temperature distribution (color image) and
stream lines of the velocity field. The middle panel shows a random tangled magnetic field
superposed on the initial temperature distribution. The right panel shows the time-evolved
temperature map and magnetic-field lines (superposed contours) in such a flow. The flow
boosts the temperature gradient at the cold front and at the same time stretches the field
lines along the lines of constant temperature. In the resulting configuration, the field lines
are essentially perpendicular to the sharp temperature gradient at the front.
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temperature:

dB

dt
= B · ∇u, (2.4)

dT

dt
= 0, (2.5)

where B is the magnetic field, u the velocity field, T temperature and d/dt = ∂/∂t+u ·∇.
We have neglected thermal and magnetic diffusivities. While equation (2.5) is not a full
magnetohydrodynamic energy equation, it is correct in the limit of an incompressible non-
stratified medium (we will further discuss its applicability in Section 2.4). Let g be the unit
vector in the direction of the temperature gradient, b the unit vector in the direction of
the field line, B the magnetic field magnitude and G the temperature gradient magnitude,
so B = Bb, ∇T = Gg. The above equations imply

dG

dt
= −Gg · (∇u) · g, (2.6)

dB

dt
= Bb · (∇u) · b, (2.7)

dµ

dt
= µ[g · (∇u) · g − b · (∇u) · b], (2.8)

where µ = b · g, the cosine of the angle between B and ∇T . From these equations, we can
immediately infer the following equation for b · ∇T = Gµ, a quantity proportional to the
parallel heat flux:

d ln (Gµ)

dt
= −d lnB

dt
. (2.9)

Thus, locally, the heat flux decreases as the field strength grows.

2.2.4 Numerical example: a random 2D velocity field

In this example, we consider a random temperature distribution and a random magnetic
field in a random δ-correlated-in-time (white) Gaussian 2D velocity field (Fig. 2.4). The
temperature T (x, y), the magnetic field B(x, y) and the velocity field u(x, y) (assumed
incompressible, ∇·u = 0) are modelled as superpositions of Fourier harmonics with random
phases and amplitudes. The temperature and the magnetic field are advected according
to equations (2.4) and (2.5). The velocity field is renewed at each time step (white-in-time
field). The initial conditions are shown in the top panel of Fig. 2.4; there is no initial
correlation between the temperature gradients and the orientation of the field lines. With
time, preferential stretching/squeezing of the fluid elements leads to alignment of the field
lines along the iso-temperature lines (see bottom panel in Fig. 2.4). This happens in all
regions where the stretching/squeezing is sufficiently strong. As a result, the field lines
are mostly perpendicular to the direction of the temperature gradient in all regions where
the gradient is large. Intuitively, one expects that in a turbulent conducting medium, this
tendency of local alignment between the magnetic filed and the isotherms will manifest
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itself statistically. In the next section, we work out a simple statistical model of this
process.

2.3 Heat conduction in a stochastic velocity field

Here we treat the suppression of the heat conduction using an analytically solvable model
that allows us to predict the statistical distribution of the cosine of the angle between the
thermal gradient and the field line (µ), the magnitude of the thermal gradient (G) and
the magnetic-field strength (B). After the joint probability distribution function (PDF) of
µ, G and B is derived (Section 2.3.5), we will be in a position to assess how statistically
prevalent the behaviour discussed in Section 2.2.4 is, but we will preface this detailed
calculation with some simpler arguments to quantify the suppression of the heat flux.

2.3.1 Relaxation of temperature fluctuations

Let us restore heat conduction in equation (2.5):

dT

dt
= ∇ · (κbb · ∇T ), (2.10)

where χ is the parallel thermal conductivity coefficient (Braginskii, 1965). Then the
volume-averaged rate of change of the rms temperature fluctuations is

d⟨δT 2⟩
dt

= −2κ⟨|b · ∇δT |2⟩ = −2κ⟨G2µ2⟩. (2.11)

Thus, the average value ofG2µ2 characterizes the rate at which local temperature variations
are wiped out by the thermal conduction.

2.3.2 Kazantsev-Kraichnan model

We consider the magnetic field to be so weak that it does not affect the velocity field. This
condition is only satisfied if the magnetic energy density is much lower than the kinetic
energy density of the plasma motions. This means that our model does not describe
the saturated state, when these energy densities become comparable. The non-saturated
regime could be a common transient situation in the ICM, at least locally, in the sense
that at any given time, the magnetic field is amplified up to the saturation value only in a
small fraction of the volume.

We will wish to calculate the joint PDF p(µ,G,B; t), where µ and G are defined in
Section 2.2, and investigate the evolution of the relevant correlations, viz., ⟨G2µ2⟩ (see
Section 2.3.1). To do that, we need to average the dynamical equations for g, b, G and B
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Figure 2.4: Alignment of the field lines perpendicular to the temperature gradient for a
stochastic δ-correlated-in-time Gaussian incompressible velocity field, modelled as a super-
position of Fourier harmonics with random phases and amplitudes. The top panel shows
the initial random temperature distribution (color) with the field lines of a random mag-
netic field superposed (they are uncorrelated with temperature). The bottom panel shows
the same fields later on in the evolution. In the evolved image, field lines follow the lines
of constant temperature in the regions where the temperature gradient is large.
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over all realizations of the stochastic velocity field. The equations are

dgk

dt
= −(δkm − gkgm)gi∂mu

i,

dbk

dt
= (δki − bkbi)bm∂mu

i,

dG

dt
= −Ggigm∂mui,

dB

dt
= Bbibm∂mu

i, (2.12)

where summation over repeated indices is implied.
This problem is solvable analytically for a Gaussian white-in-time velocity field (Kazant-

sev, 1968):

⟨ui(t,x)uj(t′,x′)⟩ = δ(t− t′)κij(x− x′), (2.13)

where κij is the correlation tensor, whose form can be determined from symmetry and
incompressibility considerations. We may assume the medium to be isotropic and homo-
geneous. Let us restrict our consideration to variation of magnetic field and temperature
on spatial scales much smaller than that of the velocity field. Then, at any arbitrary point
in space, the velocity can be expanded in linear approximation:

ui(t,x) = σi
m(t)x

m, (2.14)

where σi
m(t) = ∂mu

i and we have assumed ui(t, 0) = 0 without loss of generality (otherwise
change the reference frame). Then the velocity gradients satisfy⟨

∂ui

∂xm
(t,x)

∂uj

∂x′n
(t′,x′)

⟩ ∣∣∣∣
x=x′

= ⟨σi
m(t)σ

j
n(t

′)⟩

= δ(t− t′)ϵijmn, (2.15)

where

ϵijmn = −∂
2ϵij(y)

∂ym∂yn

∣∣∣∣
y=0

≡ ϵT ij
mn

and ϵ = 1/τeddy, τeddy being the turnover time of the turbulent eddies and

T ij
mn = δijδmn −

1

D + 1

(
δimδ

j
n + δinδ

j
m

)
(2.16)

is the inevitable tensor form of ϵijmn for an isotropic incompressible medium of dimension D
(= 2, 3). This is the so-called Kazantsev-Kraichnan model, which has been a popular tool
for modelling the properties of small-scale dynamo and passive-scalar advection in turbulent
media (e.g., Chertkov et al., 1999; Balkovsky & Fouxon, 1999; Boldyrev & Schekochihin,
2000; Schekochihin et al., 2002, 2004; Boldyrev & Cattaneo, 2004, and references therein).
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2.3.3 Relation between magnetic-field amplification and suppres-
sion of conduction for the white-in-time velocity field

Before presenting the full statistical calculation, we wish to give a relatively simple one that
establishes the connection between the relaxation rate of the temperature fluctuations and
the magnetic-energy density. The heat flux along the field line Gµ is inversely proportional
to the length of a field-line segment s. Therefore, one can relate the change of the mean
square heat flux ⟨G2µ2⟩, which is also the decay rate of the temperature fluctuations (see
Section 2.3.1), to the growth of the magnetic-energy density as follows:

⟨B2⟩ ∝ ⟨s2⟩, ⟨G2µ2⟩ ∝ ⟨1/s2⟩. (2.17)

As explained in Section 2.3.2, we assume an isotropic linear random velocity field. Let
it be piecewise constant in time over intervals τc and completely uncorrelated for ∆t > τc.
Assume further that the amount of stretching of any fluid element over individual time
intervals of duration ∼ τc is small compared to the size of the element, which amounts to a
model of white-noise field. Under these assumptions, it is easy to obtain the PDF of s as a
function of time t in the limit t/τc ≫ 1. The evolution of each component of the separation
vector x of any two locations frozen into a velocity field constant over time interval τc is

xi(τc) ≈ xi(0) + τcσ
i
jx

j(0) +
1

2
τ 2c σ

i
jσ

j
kx

k(0) +O(τ 3c ), (2.18)

where σi
j is the velocity gradients matrix [see equation (2.14)]. Since we are dealing with

a random isotropic field, we can set x(0) = (1, 0, 0) at t = 0. Then

x1(τc) ≈ 1 + τcσ
1
1 +

1

2
τ 2c σ

1
jσ

j
1 +O(τ 3c ),

xi̸=1(τc) = τcσ
i
1 +O(τ 2c ). (2.19)

We are interested in the time evolution of the ‘stretching factor’ s2 = |x|2. For one ‘act of
stretching’, equation (2.19) implies

ln s2(τc) = 2τcσ
1
1 − 2τ 2c (σ

1
1)

2 + τ 2c σ
j
1σ

j
1 + τ 2c σ

1
jσ

j
1 +O(τ 3c ). (2.20)

For t≫ τc, the calculation of s2(t) reduces to summation ofN = t/τc ≫ 1 such independent
stretching episodes:

ln s2(t) =
∑

ln s2(τc). (2.21)

After applying the central limit theorem to (1/N)
∑

ln s2(τc), one readily gets the PDF of
s2:

P (s2) =
1

s2
1√
2πσ2

s

exp

[
−(ln s2 −ms)

2

2σ2
s

]
, (2.22)
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where

σs = 2

√
T 11
11

t

τeddy
,

ms =

[
−2T 11

11 +
d∑

i=1

(
T ii
11 + T i1

1i

)] t

τeddy
, (2.23)

where τeddy and T ij
mn are defined at the end of Section 2.3.2. We have taken δ(0) = 1/τc in

equation (2.15). Using equation (2.17), we get

⟨B2⟩ ∝ ems+σ2
s/2, ⟨G2µ2⟩ ∝ e−ms+σ2

s/2. (2.24)

This leads to a simple relation between the growing magnetic-energy density and the
evolution of the mean square heat flux:

⟨G2µ2⟩ ∝ ⟨B2⟩p, where p = −ms + σ2
s/2

ms + σ2
s/2

. (2.25)

For an incompressible velocity field in 3D, using equation (2.16), we get p = −1/5. This
is a statistical version of the dynamical equation (2.9). It implies that on average, as
the magnetic-energy density grows, the rate of decay of the temperature fluctuations is
reduced, although the efficiency of this reduction is modest (p is low). This is because
⟨G2µ2⟩ is dominated by regions of low stretching while ⟨B2⟩ by regions of high stretching
[equation (2.17)] and the distribution of these is highly intermittent.

2.3.4 Finite-time-correlated velocity field

How sensitive is this result to the obviously unphysical assumption of zero correlation
time? Here, we numerically calculate the PDF of s in a random incompressible 3D velocity
field evolving according to a Langevin equation with a finite correlation time. This is a
generalization of the δ-correlated case considered in Section 2.3.3.

We consider a large number of independent field-line segments, each one placed in its
own stochastic incompressible velocity field, given by equation (2.14), with the velocity
gradient satisfying

dσi
m

dt
= − 1

τc
σi
m + ∂ma

i, (2.26)

where τc is the correlation time and ai is a stochastic Gaussian acceleration whose gradient
satisfies

⟨∂mai(t)∂naj(t′)⟩ = δ(t− t′)A2T ij
mn. (2.27)

Here A2 is the noise amplitude and the dimensionless tensor T ij
mn is fixed by isotropy and

incompressibility as given by equation (2.16). It is possible to define the effective turn-over
time of turbulent eddies τeddy in much the same way as we we did for the δ-correlated case:∫ ∞

0

⟨σi
m(0)σ

j
n(t)⟩dt =

1

2
A2τ 2c T

ij
mn ≡ 1

2τeddy
, (2.28)



2.3 Heat conduction in a stochastic velocity field 43

Figure 2.5: The decrease of the mean square heat flux ⟨G2µ2⟩ for the time-correlated
velocity field and different ratios τc/τeddy (numerical results). While growth/decay rates
of ⟨B2⟩ and ⟨G2µ2⟩ change with correlation time, their relative behavior is practically the
same: ⟨G2µ2⟩ ∝ ⟨B2⟩−0.2.

where the exact solution of the Langevin equation (2.26) has been substituted. Thus,
τeddy = 1/(τcA)

2.

In view of equation (2.17), the evolution of ⟨G2µ2⟩ and ⟨B2⟩ can be easily calculated
from the distribution of the segment lengths. Here we do this for a range of values of the
ratio τc/τeddy. In Section 2.3.3, we treated the case τc/τeddy → 0 analytically, whereas for a
physically sound case, τc/τeddy ≈ 1 because typically turbulent velocities decorrelate over
their eddy turnover times and fluid elements are stretched by order-unity amounts over
the same time scales. The results are shown in Fig. 2.5. Even though the growth/decay
rates of ⟨B2⟩ and ⟨G2µ2⟩ do change with correlation time, their relative behaviour appears
to be invariant, viz.,

⟨G2µ2⟩ ∝ ⟨B2⟩−1/5, (2.29)

practically the same as for the δ-correlated regime [cf. equation (2.25)].

Thus, finite correlation times do not change the form of the effective conduction-
magnetic-energy-density relation, only modifying the time dependence. This result gives
us some confidence in the Kazantsev-Kraichan velocity as a credible modelling choice.
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2.3.5 Statistics of the heat flux

In this section we will finally derive the full joint statistical distribution of the fluctuating
magnetic fields and temperature gradients and hence the detailed correlations between
the heat flux, the field strength and the relative direction of the magnetic field and the
temperature gradient.

For a velocity field given by equation (2.14), we can write equations (2.12) for g, b, G
and B as follows:

∂tg
k = −(δkm − gkgm)giσi

m,

∂tb
k = (δki − bkbi)bmσi

m,

∂tG = −Ggigmσi
m,

∂tB = Bbibmσi
m. (2.30)

There are no advection terms here due to the homogeneity of the gas [so we can consider
equation (2.12) at x = 0].

The details of the derivation of the equation for the joint PDF p(µ,G,B; t) are presented
in Appendix 2.6. The result is

∂tp =
ϵ

2(D + 1)
[2D(1− µ2)(µ∂µµ∂µ − ∂GGµ∂µ − ∂BBµ∂µ)

+(D − 1)(∂GG∂GG+ ∂BB∂BB) + 2(1− µ2D)∂GG∂BB

+D(D + 1− 2Dµ2)(2µ∂µ − ∂GG− ∂BB) + 2D2(1−Dµ2)]p, (2.31)

where D is the dimension of space. From now on, we only consider D = 3.
Multiplying both sides of equation (2.31) by G2µ2 and integrating, we find

∂t⟨G2µ2⟩ = − ϵ

2
⟨G2µ2⟩, (2.32)

so the mean square heat flux decays exponentially in time. Then, recalling equation (2.11)
for the rate of smoothing of the temperature fluctuations,

d⟨δT 2⟩
dt

∝ −e−ϵt/2 → 0. (2.33)

We observe that the relaxation rate of the temperature fluctuations decreases significantly
on time-scales of the order of the turnover time of the turbulent eddies (ϵ = 1/τeddy).

It is also possible to recover the relation for the mean square heat flux as a function
of the magnetic-energy density [equation (2.25)]. Multiplying equation (2.31) by B2 and
integrating, we obtain the evolution of the magnetic energy density:

∂t⟨B2⟩ = 5

2
ϵ⟨B2⟩. (2.34)

This result, combined with equation (2.32), leads to the relation established in Section 2.3.3:

⟨G2µ2⟩ = ⟨B2⟩−1/5. (2.35)
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We expect that the temperature gradients and the magnetic-field lines will become
perpendicular to each other. Let us then first investigate the limit of µ → 0, in which
equation (2.31) can be solved analytically. Let x = lnµ, y = lnG and z = lnB. Then the
joint PDF of these variables is h(x, y, z; t) = p(µ(x), G(y), B(z); t)ex+y+z, where the last
factor is the Jacobian of the transformation of variables. Taking µ→ 0 in equation (2.31),
we find that h satisfies

∂th =
ϵ

4
[3hxx + hyy + hzz − 3(hxy + hxz) + hyz + 3(2hx − hy − hz)]. (2.36)

Let us now write h in the following form:

h(x, y, z; t) = f(x, y; t)δ(x+ y + z). (2.37)

Substituting this ansatz into equation (2.36), we find that the factorization goes through
and f satisfies

∂tf =
ϵ

4
[3fxx + fyy − 3fxy + 3(2fx − fy)]. (2.38)

This factorization implies that in the limit µ → 0, Gµ ∝ 1/B independently of the initial
conditions. This result was anticipated in Section 2.3.3, where we took the ratio of Gµ and
1/B to be the same for all the segments of the field lines at the initial moment.

Let us make another transformation: ξ = x = lnµ and η = x + 2y = ln (G2µ) to
separate variables in equation (2.38). The joint PDF of these two variables, w(ξ, η; t) =
f(x(ξ), y(ξ, η); t), satisfies

∂tw =
ϵ

4
(3wξξ + wηη + 6wξ). (2.39)

This equation can be readily solved:

w(ξ, η; t) =
1√
3πϵt

∫ +∞

−∞
dξ′dη′ w(ξ′, η′; 0) exp

{
− 1

3ϵt

[
3

2
κt + (ξ − ξ′)

]2}
(2.40)

×exp

{
− 1

ϵt
(η − η′)2

}
. (2.41)

Notice that along with diffusion in both variables, the PDF drifts to ξ → −∞, i.e to
smaller µ. So there is a continued tendency towards mutually perpendicular orientation of
the thermal gradients and the field lines.

If one is interested how the joint PDF of µ and G behaves in the case of µ of order
unity, the full equation (2.31) integrated over B has to be solved. Technically speaking,
we are obliged to do this in order to ascertain that the limit µ→ 0 was the relevant one to
consider, i.e. that the joint distribution of µ and G moves towards smaller µ independently
of initial conditions. Again, to separate variables, we employ the variables ξ = lnµ and
η = ln (G2µ). The PDF of these variables, w(ξ, η; t) =

∫
p(µ(ξ), G(ξ, µ), B; t)e

1
2
(ξ+η)dB,

satisfies
∂tw =

ϵ

4
[3(1− e2ξ)wξξ + (1 + 3e2ξ)wηη + 6(1− 2e2ξ)wξ − 12e2ξw]. (2.42)
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Figure 2.6: Evolution of the joint PDF of µ and G at regular time intervals from t = 0
to t = τeddy (turn-over time of the turbulent eddies) obtained via numerical solution of
the equation (2.43). The maximum of the function drifts to the region where the thermal
gradients and the field lines are perpendicular (µ→ 0).

Figure 2.7: Evolution of the joint PDF in terms of heat flux Gµ = |b · ∇T | and G = |∇T |
at the same times as in Fig. 2.6. Sharper gradients tend to be wiped out slower due to the
smaller corresponding values of the heat flux.
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In order to solve this equation numerically, it is convenient to rewrite it in the divergence
form as follows:

∂tw =
ϵ

4
{∂ξ[2(1− e2ξ) + (1− e2ξ)∂ξ] + ∂η(1 + 3e2ξ)∂η}w. (2.43)

Numerical solution of this equation is presented in Fig. 2.6. With time, the maximum of
the PDF does indeed shift towards smaller µ, demonstrating that the temperature gradient
and the magnetic-field vector are becoming ever more orthogonal to each other. One can
replot this graph in coordinates Gµ (heat flux) and G to observe that the rate of smearing
of the temperature fluctuations in equation (2.11) is correlated with the magnitude of the
temperature gradients (Fig. 2.7) in such a way that sharper gradients on average tend to
be wiped out slower due to smaller corresponding values of Gµ.

2.4 Limitations of our theory and a numerical test

We now discuss the assumptions we have made in our theory and the extent to which they
limit its applicability.

2.4.1 Spatial scales

The ordering of scales in the problem considered in this paper obeys the following relations:

ρe ≪ λmfp ≲ l ≲ λu, (2.44)

where l is the characteristic size of the region we deal with, ρe is the electron Larmor
radius, λmfp is the electron mean-free path and λu is the typical size of a turbulent eddy.

The limit l ≪ λu simplifies the calculation of the field-line stretching because the linear
expansion of the velocity field can be used [equation (2.14)]. This allows for an analytic
treatment of the problem. Note that the kinematic dynamo naturally sets the parallel
correlation length of the magnetic field λB∥ to be ∼ λu (Schekochihin et al., 2002, 2004).

The condition λmpf ≲ l allows us to apply the thermal conduction equation (2.10) at
these spatial scales. Due to the fact that in the kinematic-dynamo regime, λu ∼ λB∥, we
also have λmfp ≲ λB∥. This limit being assumed, we can ignore the magnetic mirroring
effects because the electrons are free to escape magnetic traps via collisional pitch-angle
scattering (Chandran & Cowley, 1998; Chandran et al., 1999).

The typical value of the mean-free path between Coulomb collisions,

λmfp ∼ 8 kpc

(
T

5 KeV

)2 ( ne

10−3 cm−3

)−1

, (2.45)

varies in cluster cores from 0.01 to 20 kpc depending on their temperature and density.
For example, in the core of the Coma cluster, the mean-free path is ∼ 5 kpc (Churazov
et al., 2012); in M87/Virgo, it is much smaller, λmfp ∼ 0.01 kpc, due to lower temperature
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and higher density (Churazov et al., 2008). On the other hand, the value of λu can be
in the range of 10 kpc to 200 kpc (Inogamov & Sunyaev, 2003; Schuecker et al., 2004;
Schekochihin & Cowley, 2006; Subramanian et al., 2006; Zhuravleva et al., 2011; Kunz
et al., 2011). Therefore, our analysis is relevant for temperature fluctuations on scales
in the range 10−1–102 kpc. Some of these scales are directly resolvable with Chandra or
XMM-Newton, suggesting that in observed substructures in the temperature maps, the
isotemperature contours should be roughly aligned with the magnetic-field lines.

2.4.2 Incompressibility

The assumption of incompressibility [needed to use equation (2.16)] for the description of
the velocity field) is valid as long as the gas velocities are subsonic. This is reasonable
for the ICM, except for cases of strong mergers or AGN-driven strong shocks in the very
core of a cluster. The comparison of cluster-mass estimates from X-ray data and lensing
or stellar kinematics (e.g. Churazov et al., 2008) and simulations (e.g. Lau et al., 2009)
suggest that the kinetic energy of the gas motions is at the level of 5-15% of its thermal
energy in relaxed clusters. Slight deviations from incompressibility should not dramatically
alter our results.

2.4.3 Stratification

We have neglected the effects of stratification. It is well known that in the ICM anisotropic
thermal conduction modifies the classical Schwarzschild stability criterion in such a way
that any radial temperature gradient leads to an instability: the magnetothermal instability
(MTI, Balbus 2000) if the thermal gradient and the gravity force are codirectional and the
heat-flux-driven buoyancy instability (HBI, Quataert 2008) if they are oppositely directed.
These instabilities have been extensively studied in numerical simulations (Sharma et al.,
2009; Parrish et al., 2009; Bogdanović et al., 2009; Ruszkowski & Oh, 2010; Ruszkowski
et al., 2011; McCourt et al., 2011; Kunz et al., 2012).

However, the instabilities are driven by large-scale mean gradients and in a turbulent
plasma, at small enough scales, the buoyancy effects are likely to be less important than
turbulent motions (cf. Ruszkowski & Oh, 2010) — essentially because turbulent time-
scales get shorter at shorter spatial scales, while the buoyancy timescale is fixed. Indeed,
the typical turbulent timescale is τturb ∼ λu/u = λu/(Mcs), where u is the (subsonic)
velocity of turbulent motion, M is the Mach number, cs is the speed of sound; in contrast,
the buoyancy time-scale is τbuoy ∼

√
lP,T/g ∼

√
lP,T lP/cs, where g is the gravitational

acceleration caused by the cluster potential, lP is the characteristic length of change of the
pressure profile and lT (in the case of MTI/HBI) is that of the macroscopic temperature
profile. Therefore, τturb ≲ τbuoy if λu ≲ MlP or λu ≲ M

√
lP lT (for MTI/HBI). Let M be

∼ 0.3. For typical cluster core parameters (lP ∼ 100 kpc, lT ∼ 300 kpc), we get λu ≲ 50
kpc; for the bulk (lP ∼ 300 kpc, lT ∼ 1000 kpc), we get λu ≲ 200 kpc.

Thus, our results apply at smaller spatial scales, where the turbulence time-scales are
shorter than the buoyancy time-scale. Obviously, one cannot neglect stratification while
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constructing a full self-consistent model of the ICM, but comparison with global cluster
simulations (Section 2.4.7) suggests that accounting for buoyancy does not eliminate the
phenomenon of local orthogonalization of the field lines and temperature gradients.

2.4.4 Thermal conduction

Our model requires the eddy turnover time to be smaller than the conduction time, which
is quite a serious restriction. Applying the standard formula for the Spitzer thermal con-
duction timescale, one gets

τcond ∼ nekBl
2/κSp ≈ 3× 107

( ne

10−3 cm−3

)( l

100 kpc

)2(
Te

5 KeV

)−5/2

yr, (2.46)

where ne is the electron density, Te the electron temperature and κSp the Spitzer thermal
conductivity. At the same time,

τturb ∼ 5× 108
(

λu
100 kpc

)(
M

0.3

)−1

yr. (2.47)

From this estimate, it is clear that in the cool cores, the conduction time-scale can be
longer than that of the turbulence, but in the hot (∼ 8 KeV) and rarefied ICM outside the
core, the conduction time-scale can instead be much shorter.

Nevertheless, even outside the core the orthogonalization of the temperature gradients
and field lines is likely to take place. Qualitatively, this is because the effect of the orthog-
onalization is to switch off conduction, i.e. effectively lengthen the conduction time-scale
compared to the estimate (2.46). Thus, while gradients codirectional with field lines at
some initial moment may be quickly erased by conduction, the ones that make large an-
gles with the field lines can survive longer and, as turbulence orthogonalizes them further,
conduction will become increasingly inefficient. In other words, the assumption of slow
conduction will become better satisfied as the evolution proceeds. We will see that these
qualitative arguments are indeed corroborated by cluster simulations with anisotropic con-
duction (Section 2.4.7).

2.4.5 Dynamics of the magnetic field

As shown in Section 2.3.3, the evolution of the decay rate of the small-scale (l ≲ λu)
temperature variations can be linked to the amount of stretching of the field lines as
∝ ⟨1/s2⟩. Essentially the decay rate goes down because the field lines, along which the
heat is transported, are stretched.1 The amount of stretching is, of course, limited by
saturation of the magnetic field. This may turn out to be a key effect in the problem, but
it is not analytically treatable as easily as the case of passive field considered here and is

1The effect of the field-line stretching on the suppression of thermal conduction has previously been
studied by Rosner & Tucker 1989 and Tao 1995, but in the case of λB < λmfp and constant macroscopic
thermal gradient.
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best addressed with direct numerical simulations (see Section 2.4.7). Another potentially
important effect we have ignored is the reconnection of the field lines, which may in principle
considerably modify their topology. While we believe the simple model considered in this
paper correctly captures the qualitative picture, direct numerical simulations are required
to confirm this.

2.4.6 Local versus global conduction

We stress again that we have only considered the suppression of local thermal conduction,
as applies to temperature fluctuations on scales l < λu. We have established that the
gradients associated with these fluctuations are predominantly oriented perpendicular to
the magnetic-field lines by the plasma flow. In general, however, if one is interested in the
global heat transport on scales l ≫ λu, other effects start to be important: in particular,
exponential divergence of field lines (Rechester & Rosenbluth, 1978; Narayan & Medvedev,
2001; Chandran & Maron, 2004).

2.4.7 Comparison with global cluster simulations

To back up our qualitative arguments in support of the conclusions of our theoretical model
despite the many simplifying assumptions that were required to make it solvable, we have
employed the data drawn from the simulations reported by ZuHone et al. (2013). These
are global dynamic MHD simulations of a disturbed cluster, which were not specifically
designed to test our model but represent a current state-of-the-art numerical model of
cluster evolution in response to a minor merger. The simulations incorporate all of the
additional physics that we neglected and that is essential for a global model: a range
of spatial and time-scales, compressibility, large-scale stratification, buoyancy, anisotropic
thermal conduction, radiative cooling and dynamic back-reaction of the magnetic field on
the fluid motions.

In these simulations, a massive (M ≈ 1.5 × 1015 M⊙, T ∼ 8 keV), cool-core cluster,
initially in hydrostatic equilibrium, merged with a small (mass ratio R = 5) gasless sub-
cluster, which set off the sloshing of the cool core. The simulation started at a point in
time when the cluster centers had a mutual separation of d = 3 Mpc and an impact pa-
rameter b = 500 kpc. The initial velocities of the subclusters were set up assuming that
the total kinetic energy of the system was set to half of its total potential energy. The
main cluster was set up within a cubical computational domain of width L = 2.4 Mpc on
a side, with the finest cell size on the grid of 2.34 kpc. A random magnetic field was set
up in Fourier space using independent normal random deviates for the real and imaginary
components of the field. The field spectrum corresponded to a Kolmogorov shape with
cut-offs at large (≈ 500 kpc) and small (≈ 40 kpc) linear scales. The initial plasma β
was 400. For the detailed description of these simulations, see ZuHone et al. (2013) and
ZuHone et al. (2011). In the tests reported below, we only considered the central 500 kpc
of the simulated cluster (Fig. 2.8), where the disturbance of the ICM was greatest, leading
to significant local temperature variation and tangled magnetic field.
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Figure 2.8: Central 500-kpc region of the simulation box of ZuHone et al. (2013) at t =
5.5 Gyr used for comparison of our theory with the simulations.
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Figure 2.9: Evolution of the joint PDF of µ = |b · ∇T | and G = |∇T | for the Run S1
of ZuHone et al. (2013) – a global MHD cluster simulation with thermal conduction and
radiative cooling switched off.

First, we examined a simulation with thermal conduction and radiative cooling turned
off – this is the Run S1 from ZuHone et al. (2013). Fig. 2.9 shows the evolution of the joint
PDF(G,µ) analogous to that shown in Fig. 2.6. Initially, the magnetic field orientation was
random as indicated by the flat PDF over µ in the top left frame in Fig. 2.9. With time, the
most probable value of G increased, while the corresponding µ decreased. This behavior
is qualitatively very similar to the evolution of the model PDF shown in Fig. 2.6. Note
that in Fig. 2.8, it is visually manifest that magnetic field lines and surfaces of constant
temperature are aligned in much of the disturbed ICM, including both sharp fronts (cf.
Section 2.2.2) and the more random turbulent regions.

When radiative cooling was switched on, while conduction was still off (Run SX of
ZuHone et al. 2013), the behaviour of the joint PDF of G and µ was qualitatively very
similar to that in pure MHD case described above, except for a small increase of the PDF
at higher gradients independent of the value of µ, which is expected because cooling may
generate temperature gradients from the density gradients regardless of the magnetic-field
orientation.

Finally, consider a simulation identical to the ones used above but with both cooling
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Figure 2.10: Joint PDF of G and µ in a global cluster simulations. Left panel: same case
as in Fig. 2.9. Right panel: identical case except with anisotropic conduction and radiative
cooling switched on (Run SCX1 of ZuHone et al. 2013).

and anisotropic conduction switched on (Run SCX1 of ZuHone et al. 2013). In Fig. 2.10,
the joint PDF of G and µ for the cluster, taken at a late stage in its evolution, is contrasted
to the case without conduction at a similar time. For this hot (T ∼ 8 KeV) simulated
cluster, thermal conduction was strong enough to make a non-trivial impact on the PDF.
Efficient anisotropic conduction quickly eliminated small-scale thermal gradients in the
regions where the field lines and the temperature gradients were aligned in the initial
setup, while the gradients orthogonal to the field survived longer. This process shifted
the PDF to smaller µ and lower G as compared to the case with no conduction (see
Fig. 2.9). At the same time, the high gradients in the regions with small µ were preserved
and enhanced on average by the gas motions. The maximum of the PDF still drifted to
higher gradients and smaller µ so that high temperature gradients ended up associated
with perpendicular orientation of the gradients and the field lines. Clearly, both effects
(one driven by gas motions and another by anisotropic conduction) lead to a similar net
result: large temperature gradients one can expect to find in the ICM are likely associated
with regions where µ is small. Thus, the shape of the PDF derived from the simulation
with cooling and thermal conduction is qualitatively similar to the one in the absence of
cooling and thermal conduction (see Fig. 2.10). We conclude that the effect proposed in
this paper is identifiable even if efficient thermal conduction smears out the initial gradients
on small scales.

At last, let us stress again that these simulations were not specifically tailored for the
problem at hand. For example, in our theoretical model, we assume continuous and spa-
tially homogeneous driving with a well defined eddy turn-over time scale, while in the
simulations, the cluster is perturbed at a specific time and in a special way. Also, on the
numerical side, a precise evaluation of the angle between the field lines and gradients in
the presence of small-scale eddies should have considerable uncertainty, precluding firm
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conclusion on the behavior of the PDF at very small µ. This makes further detailed quan-
titative comparisons between theory and simulations problematic. A bespoke numerical
study would clearly be a worthwhile undertaking and is left for the future. However, it
appears that even on the basis of this limited comparison, we can conclude optimistically
that the correlation between large gradients of T and small values of µ is clearly present in
the numerical model, which does not suffer from the limitations of our theory and contains
much of the physics currently believed to be relevant.2

2.5 Conclusions

We have studied the correlations between the local fluctuating temperature gradients and
the orientation of the frozen-in magnetic-field lines in the turbulent ICM. We have argued
that the mutual orientation between isotherms and magnetic-field lines is not random,
but rather a strong alignment is expected: gas motions tend to increase the temperature
gradients and, at the same time, align the field lines perpendicular to the gradients. Cold
fronts in clusters provide a vivid example of this process on large scales. The net result
of the correlated evolution of the temperature distribution and the magnetic field is the
effective suppression of the local heat flux. We note that global thermal conduction defined
by radial temperature profiles of galaxy clusters (wich is one of the possible solutions to
the cooling flow problem) is beyond the scope of this work.

We have calculated explicitly the joint distribution function of the gradients and the
angles they make relative to the field lines and demonstrated that significant suppression
takes place for generic 3D isotropic incompressible motions. The main conclusions are as
follows:

• Strong correlation of the fluctuating temperature gradients and the local magnetic
field orientation is established on the timescale of the turbulent eddy turnover.

• On average, the decay rate of temperature fluctuations is anti-correlated with the
degree of amplification of the magnetic field by the gas motions. Volume averaged
decay rate decreases with the growth of the magnetic-energy density as ⟨B2⟩−1/5.

• For disturbed clusters, where large-scale clumps of gas are displaced, the largest
observed local gradients should be associated with the largest heat flux suppression.
The estimates of the effective conductivity based on these gradients may not be
characteristic of the bulk of the gas. This conclusion appears to be supported by
global dynamic cluster simulations with and without anisotropic conduction.

2Although it still takes no account of some of the plasma microphysics whose role remains poorly
understood if potentially dramatic (Kunz et al., 2011; Mogavero & Schekochihin, 2013).
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2.6 Appendix: statistical calculation of the joint PDF

of µ, G and B

The general form of the joint PDF of the magnetic field and the temperature gradient is

P (g, b, G,B; t) = ⟨P̃ ⟩, (2.48)

P̃ = δ(g − g(t))δ(b− b(t))δ(G−G(t))δ(B −B(t)), (2.49)

where g, b, G and B are variables and g(t), b(t), G(t) and B(t) are stochastic processes that
are solutions of equations (2.30). Taking time derivative of P̃ and using equations (2.30),
we obtain

∂tP = L̂m
i σ

i
mP̃ , (2.50)

where

L̂m
i =

∂

∂gk
(δkm − gkgm)gi − ∂

∂bk
(δki − bkbi)bm +

∂

∂G
gigmG− ∂

∂B
bibmB. (2.51)

The average of equation (2.50) is

∂tP = L̂m
i ⟨σi

mP̃ ⟩ (2.52)

and we now apply the Furutsu-Novikov formula (Furutsu, 1963; Novikov, 1965) to calculate
the right-hand side:

⟨σi
m(t)P̃ (t)⟩ =

∫
dt′⟨σi

m(t)σ
j
n(t

′)⟩
⟨
δP̃ (t)

δσj
n(t′)

⟩
= ϵT ij

mn

⟨
δP̃ (t)

δσj
n(t)

⟩
(2.53)

where we have used equation (2.15). From equation (2.50),

δP̃ (t)

δσj
n(t)

=

∫ t

−∞
dt′
[
L̂m
i δ

i
jδ

n
mδ(t− t′)P̃ (t′) + L̂m

i σ
i
m(t

′)
δP̃ (t′)

δσj
n(t)

]
=

1

2
L̂n
j P̃ (t). (2.54)

The second term inside the integral vanishes by causality (t′ < t). Using equation (2.54)
in equation (2.53) and substituting into equation (2.52), we arrive at a closed equation for
the desired PDF:

∂tP =
ϵ

2
T ij
mnL̂

m
i L̂

n
jP. (2.55)

Since the medium is isotropic, the PDF only depends on G, B and the angle between
the unit vectors g and b. Therefore, it can be factorized as

P (g, b, G,B; t) =
1

8π2
δ(g2 − 1)δ(b2 − 1)p(µ,G,B; t), (2.56)
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where µ = b · g. The factor 1/8π2 has been introduced in order to keep p(µ,G,B; t)
normalized to unity. Substituting this expression into equation (2.55), we get

L̂m
i L̂

n
jP = δ(g2 − 1)δ(b2 − 1){(bibjbmbn + gigjgmgn − gibjgmbn − bigjbmgn)µ∂µµ∂µ

+(bigjbmgn − gigjgmgn)µ∂µ∂GG+ (gibjgmbn − 2bibjbmbn + bigjbmgn)µ∂µ∂BB

−(gibjgmbn + bigjbmgn)∂GG∂BB + gigjgmgn∂GG∂GG

+[2(D + 1)(bibjbmbn + gigjgmgn)− 2D(gibjgmbn + bigjbmgn)

−bmbnδij − bjbmδin − gignδjm − gigjδmn ]µ∂µ

+[−2(D + 1)gigjgmgn +D(gibjgmbn + bigjbmgn) + gignδjm + gigjδmn ]∂GG

+[−2(D + 1)bibjbmbn +Dgibjgmbn +Dbigjbmgn + bmbnδij + bjbmδjm]∂BB

+D[(D + 2)(bibjbmbn + gigjgmgn)−D(gibjgmbn + bigjbmgn)

−(bmbnδij + bjbmδin + gignδjm + gigjδmn )]}p, (2.57)

where D is the number of spatial dimensions. The PDF is factorized, as it ought to be,
and we only need to solve the equation for p(µ,G,B; t). Substituting equation (2.57) into
equation (2.55), we perform the convolutions involving T ij

mn [see equation (2.16)] using the
identities

T ij
mnb

ibjbmbn =
D − 1

D + 1
,

T ij
mng

ibjgmbn =
µ2 − 1

D + 1
,

T ij
mnb

jbmδin = 0,

T ij
mnb

mbnδij =
(D − 1)(D + 2)

D + 1
,

T ij
mnb

igjbmgn =
µ2 − 1

D + 1
,

T ij
mng

igjgmgn =
D − 1

D + 1
,

T ij
mng

ignδjm = 0,

T ij
mng

igjδmn =
(D − 1)(D − 2)

D + 1
. (2.58)

The result is equation (2.31).
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Chapter 3

Conduction in a mirror-unstable
plasma

MNRAS, 2016, 460, 467

S. V. Komarov, E. M. Churazov, M. W. Kunz and A. A. Schekochihin

Abstract. The plasma of galaxy clusters is subject to firehose and mirror instabilities
at scales of order the ion Larmor radius. The mirror instability generates fluctuations
of magnetic-field strength δB/B ∼ 1. These fluctuations act as magnetic traps for the
heat-conducting electrons, suppressing their transport. We calculate the effective paral-
lel thermal conductivity in the intracluster medium (ICM) in the presence of the mirror
fluctuations for different stages of the evolution of the instability. The mirror fluctuations
are limited in amplitude by the maximum and minimum values of the field strength, with
no large deviations from the mean value. This key property leads to a finite suppression
of thermal conduction at large scales. We find suppression down to ≈ 0.2 of the Spitzer
value for the secular phase of the perturbations’ growth, and ≈ 0.3 for their saturated
phase. The effect operates in addition to other suppression mechanisms and independently
of them. Globally, fluctuations δB/B ∼ 1 can be present on much larger scales, of the
order of the scale of turbulent motions. However, we do not expect large suppression of
thermal conduction by these, because their scale is considerably larger than the collisional
mean free path of the ICM electrons. The obtained suppression of thermal conduction by a
factor of ∼ 5 appears to be characteristic and potentially universal for a weakly collisional
mirror-unstable plasma.

3.1 Introduction

Thermal conduction in a magnetized plasma is a long-standing problem in astrophysics,
dating back to the realization that virtually all astrophysical plasmas possess magnetic
fields (based on both theoretical considerations and observations of synchrotron emission
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and the Faraday rotation). Although these fields are relatively weak (∼ 1− 10 µG in the
bulk of the ICM, see, e.g., Carilli & Taylor 2002 or Feretti et al. 2012 for reviews), they
constrain the motion of charged particles to spiraling along the field lines with Larmor radii
typically very small compared to other physically relevant scales, namely, to the collisional
mean free path and the correlation length of the plasma flows. In such a plasma, the
electrons predominantly transfer heat along the field lines.

In the ICM, the quest for a theory of effective heat conductivity is strongly motivated
by the observations of apparently long-lived temperature substructures (e.g., Markevitch
et al., 2003) and sharp gradients (cold fronts; e.g., Markevitch et al. 2000; Ettori & Fabian
2000; Vikhlinin et al. 2001; Markevitch & Vikhlinin 2007) that would not have survived
had the electron conductivity been determined by the classic Spitzer expression for an
unmagnetized plasma (Spitzer, 1962). Another puzzling topic is the stability of cluster
cool cores, in which the role of thermal conduction is still unclear (e.g., Ruszkowski &
Begelman, 2002; Zakamska & Narayan, 2003; Voigt & Fabian, 2004; Dennis & Chandran,
2005).

The general problem of thermal conduction in an astrophysical plasma is greatly com-
plicated by the fact that the medium is likely turbulent (for the ICM, see, e.g., Inogamov
& Sunyaev 2003; Schuecker et al. 2004; Schekochihin & Cowley 2006; Subramanian et al.
2006; Zhuravleva et al. 2014), and so the magnetic-field lines are randomly tangled. It
is practical to subdivide the problem into more narrowly formulated questions and study
them separately. First, parallel conduction in a static magnetic field of a given structure
can be investigated (e.g., Chandran & Cowley, 1998). The static approximation is reason-
able because electrons stream along magnetic fields faster than these fields are evolved by
turbulence. Next, one can study the effective boost of the transverse conduction across the
field lines due to their exponential divergence (Skilling et al., 1974; Rechester & Rosen-
bluth, 1978; Chandran & Cowley, 1998; Narayan & Medvedev, 2001; Malyshkin, 2001;
Chandran & Maron, 2004). Finally, local heat fluxes at the scale of turbulent eddies are
affected by the correlation between temperature gradients and the magnetic field as they
evolve in the same turbulent velocity field (Komarov et al. 2014; this process occurs on
longer time scales than the other two). In this chapter, we only address the first part of
the problem, parallel thermal conduction, as applied to the ICM.

Parallel conduction can be affected by magnetic trapping of electrons by fluctuations
of the field strength along a field line (Klepach & Ptuskin, 1995; Chandran & Cowley,
1998; Chandran et al., 1999; Malyshkin & Kulsrud, 2001; Albright et al., 2001). These
fluctuations might be produced by various mechanisms. At the scale of turbulent motions,
they can be generated by the small-scale turbulent MHD dynamo as a result of a series of
random stretchings and compressions by the velocity field (e.g., Schekochihin et al., 2002,
2004; Schekochihin & Cowley, 2006, and references therein). At microscales of the order
of the ion Larmor radius, the ICM plasma is subject to kinetic instabilities (Schekochihin
et al., 2005; Schekochihin & Cowley, 2006). As the ion Larmor radius is many orders of
magnitude smaller than the collisional mean free path, the plasma is weakly collisional,
which results in conservation of adiabatic invariants, the first of them being the magnetic
moment of a particle µ = v2⊥/(2B), where v⊥ is the component of the particle velocity
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Figure 3.1: A sketch of the spectrum of the fluctuations of magnetic-field strength in
the ICM. The perturbations δB/B ∼ 1 (relevant for magnetic trapping) generated by
turbulence occupy the region λ ≲ lB, where magnetic trapping is ineffective. The mirror
fluctuations, in contrast, are at the scales comparable to the ion Larmor radius ρi, λ ∼
1013ρi, where magnetic mirrors can suppress electron transport considerably.

perpendicular to the magnetic field. Consequently, the magnetic-field strength changes are
correlated with changes in the perpendicular pressure, giving rise to pressure anisotropy.
In turn, pressure anisotropy triggers firehose and mirror instabilities (Chandrasekhar et al.,
1958; Parker, 1958; Hasegawa, 1969) that hold the degree of anisotropy ∆ = (p⊥−p∥)/p⊥ at
marginal levels |∆| ∼ 1/β, where β is the plasma beta, the ratio of thermal to magnetic en-
ergy density (for observational evidence in the solar wind, see Kasper et al. 2002; Hellinger
et al. 2006; Bale et al. 2009; for theoretical discussion of possible mechanisms of maintain-
ing marginality, see Melville et al. 2016 and references therein). The firehose instability
occurs when ∆ < −2/β, which happens in regions where the field strength is decreas-
ing, near the reversal points of the field lines, and typically generates small (δB⊥/B ≪ 1)
transverse Alfvénic fluctuations of the field direction. The mirror instability (or the ’mirror
mode’) is a resonant instability set off when ∆ > 1/β, which is the case where the field is
amplified along the stretches of the field lines. The mirror mode produces fluctuations of
magnetic-field strength of order unity (δB/B ∼ 1), which form magnetic traps and may, in
principle, inhibit electron transport along the field lines. While field-strength fluctuations
δB/B ∼ 1 can also be generated by turbulent motions, we will argue in Section 3.4 that the
resulting suppression of transport is very moderate, because the electron mean free path
λ is smaller than the parallel correlation length of the magnetic field lB, and the electrons
can escape from magnetic traps relatively easily. Illustratively, the presumed combined
spectrum of magnetic-field strength fluctuations in the ICM is sketched in Fig. 3.1: the
magnetic mirrors capable of efficient suppression of electron transport reside in the region
λ≫ lB.

The mirror magnetic fluctuations are impossible to observe directly in the ICM due to
their extremely small scales, but they can be modeled by numerical simulations. The recent
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hybrid particle-in-cell simulations of the firehose and mirror instabilities in a shearing box
done by Kunz et al. (2014) suit this task well in providing the typical statistical properties
of the magnetic mirror fluctuations. In this paper, we use the mirror fluctuations produced
by their simulations to model the electron motion along the resulting perturbed field lines
and estimate the conductivity.

The chapter is organized as follows. In Section 3.2, we describe a model for parallel
electron diffusion and its Monte Carlo equivalent for numerical calculations. Then, in Sec-
tion 3.3, we apply this model to the mirror magnetic fluctuations taken from the simulations
of Kunz et al. (2014) to infer the suppression of parallel electron diffusivity (Section 3.3.2)
and thermal conductivity (Section 3.3.3). Next, in Section 3.4, we argue that large-scale
turbulent magnetic fluctuations in the ICM, modeled by an isotropic MHD simulation,
do not cause a sizable suppression. Finally, in Section 3.5, we summarize our results and
their relevance to the problem of thermal conduction in the ICM and in turbulent weakly
collisional plasmas in general.

3.2 A model for parallel electron diffusion in a static

magnetic field

For our calculations, we assume the electron diffusion timescale to be smaller than the char-
acteristic times of fluid motions and of the magnetic-field evolution, so that the magnetic
field can be viewed as static. We will assess the validity of this assumption in Section 3.5.

If magnetic fluctuations occur at parallel scales lB much larger than the electron Larmor
radius ρe, which is indeed true for turbulent magnetic fluctuations, as well as for the mirror-
mode perturbations produced at the scale of 1−100 ρi, where ρi = (mi/me)

1/2ρe ∼ 40 ρe is
the ion Larmor radius, and if all fluid motions are neglected, we may use the drift-kinetic
equation

∂f

∂t
+ vξ∇∥f −

∇∥B

B
v
1− ξ2

2

∂f

∂ξ
= ν(v)

∂

∂ξ

1− ξ2

2

∂f

∂ξ
, (3.1)

to evolve the electron distribution function f = f(t,x, v, ξ) (Kulsrud, 1964). Here ∇∥ = b̂ ·
∇ is the derivative taken along the local magnetic field and ξ = b̂·v/v = cos θ, where θ is the
pitch angle. The unit vector b̂ = B/B points in the local magnetic-field direction. The last
term on the left-hand side of equation (3.1) represents the mirror force, which guarantees
conservation of the magnetic moment µ = v2⊥/(2B) = v2(1 − ξ2)/(2B) in the absence of
collisions. Isotropic collisions with collision frequency ν are described by the Lorenz pitch-
angle scattering operator on the right-hand side of equation (3.1). In this section, we
restrict our analysis to monoenergetic electrons, so there is no energy exchange between the
particles. We also neglect the electric field because, close to marginal stability (∆ ∼ 1/β),
the mirror instability generates an electric field of order E∥ ∼ (T/e)(∇∥B/B)(1/β), where
T is the electron temperature, e the absolute electron charge. In astrophysical plasmas, β
is typically large (e.g., ∼ 100 in the ICM), so the electric field can be safely neglected.
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The problem is effectively one-dimensional with respect to the arc length ℓ along a field
line, because all spatial derivatives in equation (3.1) are taken along the local magnetic
field. Thus, we can rewrite equation (3.1) in field-aligned coordinates by normalizing the

distribution function using the Jacobian of this coordinate transformation, f̃(t, ℓ, ξ) = f/B:

∂f̃

∂t
+ ξ

∂f̃

∂ℓ
−M(ℓ)

∂

∂ξ

1− ξ2

2
f̃ =

1

λ

∂

∂ξ

1− ξ2

2

∂f̃

∂ξ
, (3.2)

where M(ℓ) = ∂ lnB/∂ℓ is the mirror force, λ = v/ν is the electron mean free path1, and
time has been rescaled as vt → t. Using ξ = cos θ, the distribution function F (t, ℓ, θ) =

f̃ sin θ satisfies

∂F

∂t
+ cos θ

∂F

∂ℓ
+

∂
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[
1

2
M(ℓ) sin θ +

cot θ

2λ

]
F =

1

2λ

∂2F

∂θ2
. (3.3)

A convenient way to solve this equation by the Monte Carlo method is to treat it as the
Fokker-Planck equation for particles whose equations of motions are

ℓ̇ = cos θ,

θ̇ =
1

2
M(ℓ) sin θ +

cot θ

2λ
+

1√
λ
η(t), (3.4)

where η(t) is a unit Gaussian white noise, ⟨η(t)η(t′)⟩ = δ(t− t′). As clearly seen from these
equations, a particle experiences the mirror force M(ℓ) defined by the static magnetic
field and isotropizing collisions represented by the last two terms on the right-hand side.
Equations (3.4) can be easily solved numerically.

Without collisions, only the particles in the loss cone defined by |ξ| > (1− 2µB/v2)1/2

can travel freely. The rest are reflected by regions of strong field (magnetic mirrors).
Collisions allow trapped particles to get scattered into the loss cone and escape from
magnetic traps. Oppositely, a free particle can be knocked out of the loss cone by collisions
and become trapped. The key parameter that defines the regime of diffusion is the ratio
of the collisional mean free path λ to the parallel correlation length of the magnetic field
lB. If λ/lB ≪ 1, collisions make magnetic trapping ineffective, and the electrons undergo
ordinary diffusion with diffusion coefficient D ∼ λv. In the opposite limit λ/lB ≫ 1,
collisions are very rare, so the pitch angle changes only slightly over the correlation length
of the field. In this regime, the suppression of diffusion is greatest because a certain fraction
of the particles is trapped and, in addition, the passing particles have their mean free paths
effectively reduced as small-angle collisions cause leakage from the loss cone so that a free
particle travels only a fraction of its mean free path before it is scattered out of the loss
cone and becomes trapped (Chandran & Cowley, 1998; Chandran et al., 1999).

1Electron collisionality may be anomalous due to, e.g., scattering off magnetic fluctuations generated
by electron microinstabilities. This could reduce the effective electron mean free path, but our main results
would remain valid as long as the effective mean free path is much larger than the ion Larmor scale.
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3.3 Electron diffusion in a magnetic mirror field

3.3.1 Properties of the mirror field

A description of the numerical code and set-up used to generate the mirror magnetic fluctu-
ations can be found in Kunz et al. (2014). The code (Kunz et al. 2014a) is a hybrid-kinetic
particle-in-cell code, in which the electrons are fluid while the ions are treated kinetically
as quasi-particles. To trigger the mirror instability, a square 2D region of plasma of spatial
extent L = 1152di0, where di0 is the initial ion skin depth, is threaded by a magnetic
field directed at an angle to the y-direction and subjected to a linear shear u0 = −Sxŷ,
which stretches the field lines and, by adiabatic invariance, produces pressure anisotropy.
The initial magnetic field strength is B0, the initial plasma beta of the ions is taken to be
β0 = 200, and the shear is S = 3 × 10−4Ωi, where Ωi is the ion gyrofrequency. The ion
Larmor radius is ρi =

√
βdi. Once the (ion) pressure anisotropy ∆ = p⊥/p∥ − 1 reaches

1/β, the plasma becomes mirror-unstable. Magnetic perturbations grow exponentially un-
til they become large enough to drive the anisotropy back to the marginal level, ∆ → 1/β.
Persistent large-scale driving of the pressure anisotropy, coupled with the requirement for
the plasma to remain marginally stable, leads to a long phase of secular growth of the mir-
ror perturbations. The spatial structure of the perturbations during this phase is shown
in Fig. 3.2. The mirror fluctuations are elongated in the direction of the mean magnetic
field and have δB∥ ≫ δB⊥. During this secular phase, the field grows as δB ∝ t4/3 and the
dominant modes shift towards longer wavelengths (k∥ρi ∼ 10−2) as the pressure anisotropy
asymptotically approaches marginal stability. The marginal stability is achieved and main-
tained during the secular phase by the trapping of ions in magnetic mirrors (see Rincon
et al., 2016; Melville et al., 2016). The final saturation sets in when δB/B0 ∼ 1 at St ≳ 1,
and is caused by the enhanced scattering of ions off sharp (δB∥/B0 ∼ 1, k∥ρi ∼ 1) bends
in the magnetic field at the edges of the mirrors.

We note that the electrons in the code are isothermal with Te = Ti, so we are not
attempting to solve the problem of the electron heat transfer self-consistently (no thermal
gradients and heat fluxes are present). We have extracted two representative magnetic-
field lines from the simulation domain, one during the secular phase (St = 1), and one
during the saturated phase (St ≈ 1.8). Each of these crosses the box eight times (note
that, although the box is shearing-periodic, a field line does not bite its tail and hence
can be followed over several crossings) and has a length of ≈ 18000di0 (we adopt di0 as
our unit of length because di is practically constant in time, while ρi is a function of the
field strength). The variation of the magnetic-field strength B along the lines is shown
in Fig. 3.3. From the analysis of the probability density functions (PDF) of B for the
two field lines (Fig. 3.4), it is clear that in both cases, the PDFs have abrupt cut-offs at
large B ∼ several B0, as well as at small B. Therefore, the field is bounded with no large
deviations from the mean value, in contrast to, e.g., a lognormal stochastic magnetic field
with the same rms (shown by the dotted line in Fig. 3.4 for comparison) with a tail in its
PDF, for which there is always a non-zero probability to find a large deviation at a large
enough scale. This also means that the extracted field lines fully represent the statistics
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Figure 3.2: Spatial structure of the mirror instability (Kunz et al., 2014) during the secular
phase of the perturbations’ growth, after one shear time. The magnetic-field strength
B/⟨B⟩ is shown by color, the field lines are shown by contours. Length is in the units
of the ion skin depth di0 = ρi(St = 0)/

√
β0. At time St = 1, the ion Larmor radius is

ρi ≈ 8.7di0.
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Figure 3.3: Variation of the magnetic-field strength along a field line during the two differ-
ent phases of evolution of the mirror fluctuations (solid: secularly growing fluctuations at
time St = 1; dashed: saturated fluctuations at time St ≈ 1.8). B0 is the initial magnetic-
field strength in the simulation. For convenience, 4000-di0 line segments are shown. The
ion Larmor radii are ρi(St = 1) ≈ 8.7di0 and ρi(St ≈ 1.8) ≈ 6.2di0.

of B (a longer field line would not contain more statistical information). The bounded
PDF(B) is a key property of the mirror magnetic field, which leads to a finite value of
suppression of electron transport at large λ/lB, unlike in the case of stochastic magnetic
fields (lognormal, Gaussian, exponential) that can completely inhibit particle transport in
this limit (Malyshkin & Kulsrud, 2001; Albright et al., 2001).

3.3.2 Electron diffusivity in the limit λ/lB ≫ 1

Results of the Monte Carlo simulations

For the two extracted field lines, we integrate the particles’ trajectories defined by equa-
tions (3.4) numerically. Initially, the particle distribution is isotropic with the particle
density along a field line set to ∝ 1/B, which is a uniform density distribution in real
space [recall the Jacobian of the coordinate transformation to field-aligned coordinates in
equation (3.2)]. Then we trace the evolution of the particles over time t1 = 20 tcoll, where
tcoll = 1/ν is the collision time. The monoenergetic diffusion coefficient D is calculated as

D =
⟨[ℓi(t1)− ℓi(t0)]

2⟩
2(t1 − t0)

, (3.5)

where ℓi are the particles’ displacements. We choose t0 = 5 tcoll in order to allow the
particles to collide a few times until the ballistic regime gives way to diffusion at t ≳
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Figure 3.4: PDFs of the magnetic-field-strength fluctuations generated by the mirror insta-
bility. A lognormal distribution with rms equal to the rms of the logarithm of the saturated
mirror fluctuations is shown by the dotted line for comparison.

tcoll. The same procedure is carried out for several different ratios λ/lB in the range
2 × 10−4 − 5 × 104. The correlation lengths of the field strength along the lines are lB ≈
850di0 ≈ 100ρi(St = 1) for the secular phase and lB ≈ 1430di0 ≈ 230ρi(St ≈ 1.8) for the
saturated phase.

Defining D0 = (1/3)λv, the diffusion coefficient in the absence of the magnetic fields,
we thus obtain the monoenergetic diffusion suppression factor SD = D/D0 as a function of
λ/lB (Fig. 3.5). Averaging the monoenergetic diffusivity D over a thermal distribution of
the electron speeds v introduces only a slight change in the shape of the function SD(λ/lB),
so we only present the monoenergetic diffusion suppression in what follows.

For magnetic mirror fluctuations in the ICM, the limit λ/lB ≫ 1 is the relevant one,
because the ion Larmor radius is many orders of magnitude smaller than the mean free
path:

λ ≈ 20 kpc

(
T

8 KeV

)2 ( n

10−3 cm−3

)−1

, (3.6)

ρi ≈ 5× 10−12 kpc

(
T

8 KeV

)1/2(
B

1 µG

)−1

. (3.7)

In this limit, the suppression factor asymptotically approaches SD ≈ 0.12 during the
secular phase, and SD ≈ 0.19 for the saturated mirrors. The absence of the mean-free-
path dependence at large λ/lB is due to the fact that the mirror fluctuations are bounded,
as we have seen by analyzing their PDF (Fig. 3.4). This is very different from the case
of stochastic magnetic mirrors (see Malyshkin & Kulsrud 2001; we will discuss stochastic
magnetic mirrors in more detail in Section 3.4.1).
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Figure 3.5: Suppression factor of the electron diffusivity SD = D/D0 in the secularly grow-
ing (solid line) and saturated (dashed line) magnetic mirror fluctuations. The correlation
lengths of the field strength along the field lines are lB ≈ 850di0 ≈ 100ρi(St = 1) during
the secular phase and lB ≈ 1430di0 ≈ 230ρi(St ≈ 1.8) for the saturated mirrors. For com-
parison, the dotted line shows suppression in a synthetic lognormal magnetic field with
the same rms value of logB as during the phase of secular growth of the mirror fluctua-
tions, correlation length lB = 850di0 and a Kolmogorov spectrum in space (see its PDF in
Fig. 3.4).
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The role of the PDF(B)

The limiting values of SD in Fig. 3.5 depend only on the PDF(B) along the field lines. This
fact is intuitive because the change in the pitch angle of a passing particle due to collisions
as it travels the correlation length lB of the field is very small, and the order in which the
particle encounters regions of different B plays no role. Therefore, one can rearrange the
mirror magnetic fluctuations (Fig. 3.3) by sorting the array elements in ascending order
over some length L, lB ≲ L ≪ λ, and making the resulting array periodic with period
L (Fig. 3.6). Since the field is bounded, we do not lose statistical information if L is set
to just a few lB. Clearly, this procedure keeps the PDF(B) unchanged, and the resulting
magnetic field produces the same amount of suppression, while having a much simpler
shape. By comparing such simplified shapes of magnetic fluctuations for different field
lines, one can determine which line causes more suppression. The loss cone for a particle
is defined as |ξ| > (1−B/Bmax)

1/2, where B is the magnetic-field strength at the location
of the particle and Bmax is the global maximum of the field strength. The more concave
(or less convex in our case of the mirror fluctuations) the shape is, the more suppression
is produced by magnetic mirroring, because the loss cones of most of the particles become
narrower. The extreme case of this is a field that consists of narrow periodic peaks of
height Bmax−Bmin. This field causes maximum suppression of diffusion for given values of
Bmin and Bmax, because the loss cone for almost all the particles, |ξ| > (1−Bmin/Bmax)

1/2,
is the narrowest it can be for all possible PDF(B). Based on this argument, and noticing
that, in Fig. 3.4, the PDF of the saturated mirror field is more concentrated around the
maximum field strength, one can predict more suppression of electron diffusion by secularly
growing mirrors than by saturated ones, even though Bmax is smaller for the former than
for the latter. Indeed, we see in Fig. 3.5 that the effect of the field shape prevails over the
difference in Bmax, and the diffusion suppression is stronger for the secular phase.

The physical mechanism of the suppression of electron diffusion at large λ/lB

In the limit λ/lB ≫ 1, Chandran et al. (1999) derived an analytic expression for the
suppression of diffusivity of monoenergetic electrons by periodic magnetic mirrors [their
equation (95)]:

SD =
3

⟨1/B′⟩

∫ 1

0

dµ′
1

∫ 1

µ′
1

dµ′
2

1

⟨|ξ(µ′
2)|/B′⟩

, (3.8)

where B′ = B/Bmax is the magnetic-field strength normalized to its global maximum
value, µ′ = µ/µcrit is the magnetic moment of a particle µ = v2(1− ξ2)/(2B) normalized to
µcrit = v2/(2Bmax), the averaging is performed over the period of the magnetic field, and
the integration is carried over the passing particles in the loss cone. As we have discussed in
Section 3.3.2, bounded mirror fluctuations can be replaced by periodic variations with the
same PDF(B) without affecting the suppression factor. This means that equation (3.8),
where the averaging in the angle brackets is done over PDF(B), can be readily applied
to the simulated mirror fluctuations. The asymptotic values of SD calculated by (3.8),
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Figure 3.6: Equivalent representation of the mirror magnetic fluctuations along the field
lines in the case λ/lB ≫ 1. Reordering the magnetic-field strength values over length
L ∼ 2Lbox, lB ≲ L ≪ λ, does not change the PDF(B) and, therefore, the amount of
diffusion suppression.

SD ≈ 0.117 for the secularly growing mirrors and SD ≈ 0.187 for the saturated ones, agree
extremely well with the results of our Monte Carlo simulation (see Fig. 3.5).

We can break down the suppression effect encoded in equation (3.8) into two physical
effects:

SD = Sp
λeff
λ
, (3.9)

where Sp is the suppression of diffusivity due to the fact that only the passing particles
contribute to electron transport, λeff is the effective mean free path of the passing particles,
reduced because a passing particle is scattered out of the loss cone, becomes trapped and
randomizes its direction of motion in only a fraction of its collision time. The parame-
ters Sp and λeff have a very clear physical interpretation in terms of the particle velocity
autocorrelation function.

The electron diffusion coefficient D can be expressed as the integral of the parallel-
velocity autocorrelation function C(t):

D =

∫ ∞

0

⟨v∥(0)v∥(t)⟩dt ≡
∫ ∞

0

C(t)dt. (3.10)

Using the results of our Monte Carlo simulations of monoenergetic diffusion in magnetic
fluctuations generated by the mirror instability, we can calculate the parallel-velocity au-
tocorrelation function, which is, for monoenergetic electrons, the autocorrelation function
of the cosine of the pitch angle ξ = cos θ, namely C(t) = v2⟨ξ(0)ξ(t)⟩. It is plotted in
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Figure 3.7: The parallel velocity autocorrelation functions C(t)/v2 for electron diffusion in
a constant magnetic field (dashed) and in the magnetic field of secularly growing mirrors
(solid), based on the results of the Monte Carlo simulation. The ratio of the electron mean
free path to the correlation length of the magnetic field λ/lB = 100. The narrow peak at
t < lB/v is caused by the bouncing trapped particles, which do not contribute to electron
transport.

Fig. 3.7 for diffusion with no magnetic mirrors (dashed line) and diffusion in the mirror
magnetic field with λ/lB = 100 (solid line). With no mirrors,

C0(t) =
1

3
v2e−νt, (3.11)

where ν = v/λ. Both with or without mirrors, the autocorrelation function is equal to
1/3 at t = 0 due to isotropy (even in the presence of magnetic mirrors, collisions restore
isotropy over times ≫ ν−1). In the mirror field, C(t) has a narrow peak of width ∼ lB/v at
small t, while the rest of the autocorrelation function is an exponential that is well fitted
by

C(t > lB/v) =
1

3
Spv

2e−νeff t, (3.12)

where Sp < 1 and νeff > ν.

The narrow peak of C(t) at small t is caused by the contribution to C(t) of the pop-
ulation of trapped particles, which bounce inside magnetic traps at a typical time scale
∼ lB/v. The physical meaning of the reduction factor Sp < 1 is that only the passing
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particles contribute to transport processes. This factor can be calculated as

Sp = fpass
⟨ξ2⟩pass
⟨ξ2⟩

, (3.13)

where fpass is the fraction of the passing particles, the averaging is performed over the
passing particles in the numerator, and over all particles in the denominator. The value of
Sp is greater than simply the fraction of the passing particles, because they travel in their
loss cones and, therefore, have parallel velocities greater than the mean square parallel
velocity v2⟨ξ2⟩ = v2/3 averaged over all particles.

The physical interpretation of the fact that νeff > ν in equation (3.12) is the reduced
effective mean free path of the passing particles: recall that a passing particle travels only a
fraction of λ before it becomes trapped and, obviously, νeff/ν = λ/λeff . Since the diffusion
coefficient is the integral of C(t) [equation (3.10)], we obtain equation (3.9).

From the above arguments, it follows that a system with magnetic mirrors and λ/lB ≫ 1
can be translated into a system with no mirrors, but with a lower mean square parallel
velocity and an enhanced scattering rate. The lower parallel velocity is related to the fact
that the passing particles become trapped now and then, and while they are trapped, their
effective parallel velocity is zero.

Using the results of our Monte Carlo simulations and the velocity autocorrelation func-
tion analysis described above, we can measure Sp and λeff/λ. For the secularly growing
mirrors, we get Sp ≈ 0.63, λeff/λ ≈ 0.19; for the saturated mirrors, Sp ≈ 0.74, λeff/λ ≈ 0.26.
Substituting these into equation (3.9), we recover SD ≈ 0.12 and SD ≈ 0.19, the same as
was obtained in direct measurement [equation (3.5)] and from equation (3.8).

3.3.3 Electron thermal conductivity in the limit λ/lB ≫ 1

As we have shown above, the effect of magnetic mirrors on scales much larger than the
electron mean free path is the suppression of spatial diffusion via two effects: reduced
fraction and reduced effective mean free path (or, equivalently, an enhanced scattering
rate) of the passing particles participating in transport [see (3.9)]. In a plasma with a
temperature gradient and no mirrors, heat transport is governed not only by pitch-angle
diffusion, but by diffusion in the energy space as well. Magnetic mirrors do not change
a particle’s energy, therefore, one can model their effect on large scales by enhancing
the pitch-angle scattering rate (but not the energy diffusion rate) and, simultaneously,
reducing the effective density of particles carrying energy in order to subtract the trapped
population.

The rates of pitch-angle scattering (perpendicular velocity diffusion) ν⊥ and energy
exchange νε for a test electron in a hydrogen plasma are (Spitzer, 1962)

ν⊥,es = 2[(1− 1/2x)ψ(x) + ψ′(x)]ν0, (3.14)

νε,es = 2[(me/ms)ψ(x)− ψ′(x)]ν0, (3.15)
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where

ν0 =
4πe4 ln Λne

m2
ev

2
, x = v2/v2th,e, (3.16)

ψ(x) =
2√
π

∫ x

0

dt
√
te−t, ψ′(x) =

dψ

dx
, (3.17)

s = e, i is the species of the background particles, vth,e = (2kTe/me)
1/2 is the electron

thermal speed, and lnΛ ∼ 40 is the Coulomb logarithm. Heat is transferred by slightly
superthermal electrons with v ≈ 2.5 vth,e (this rough estimate is based on a simple calcu-
lation of thermal conductivity for a Lorenz gas, when electrons interact only with ions).
At this velocity, ν⊥,ei ≈ 1.5 ν0, ν⊥,ee ≈ 1.8 ν0, νε = νε,ei + νε,ee ≈ νε,ee ≈ 2 ν0. Thus, the
electron energy exchange rate νε is close to the total perpendicular electron diffusion rate
ν⊥ ≈ 3.3 ν0 for the heat-conducting electrons.

At this point, we make a qualitative assumption that the total rate of spatial energy
transfer can be reasonably approximated by the sum of the energy exchange rate and the
pitch-angle scattering rate. This assumption is corroborated by the mathematical fact
that in a plasma with a gradient of a diffusing passive scalar, the flux of the scalar is
inversely proportional to the sum of the rate of spatial diffusion of the particles (or pitch-
angle scattering) and the collisional exchange rate of the passive scalar [see Appendix 3.6,
(3.30)]. The passive scalar in this calculations models temperature, as if every particle
carried an averaged value of thermal energy that did not depend on the particle’s velocity.
Then for the thermal conductivity κ, we use the approximation

κ ∼
v2th,e

νε + ν⊥
. (3.18)

The reduction of the effective density of the heat-conducting electrons affects both
pitch-angle and energy diffusion, while the enhanced scattering rate only affects pitch-angle
diffusion. Thus, the suppression of thermal conduction is smaller than the suppression of
spatial diffusion. A qualitative expression for the suppression of thermal conductivity
Sκ = κ/κ0 in the limit λ/lB ≫ 1 is then

Sκ ∼ Sp
ν⊥ + νε

(λ/λeff)ν⊥ + νε
∼ 2Sp

1 + λ/λeff
, (3.19)

where Sp and λeff are the parameters in (3.9): Sp is related to the fraction of the passing
particles, λeff is the effective mean free path of the passing particles. For a passive scalar
in the limit λ/lB ≫ 1, (3.19) is exact and derived in Appendix 3.6 by establishing a simple
relationship between the amount of suppression of the scalar flux and the parallel-velocity
autocorrelation function. Substituting the values of Sp and λeff/λ calculated at the end
of Section 3.3.2 into (3.19), we obtain the suppression factor of thermal conductivity:
Sκ ∼ 0.2 for the secularly growing mirrors and Sκ ∼ 0.3 for the saturated ones. We see
that heat transport is suppressed by a factor of ∼ 2 less than spatial diffusion, because the
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diffusion in energy space is suppressed much less than the spatial (pitch-angle) diffusion.
Equation (3.19) can only be used when Sp and λeff do not depend on the electron velocity
(or, equivalently, on the electron mean free path λ), which is indeed the case in the limit
λ/lB ≫ 1 (see Fig. 3.5).

3.4 Electron transport in MHD turbulence

As mentioned in Section 3.1, another source of fluctuations of magnetic-field strength in
the ICM is turbulent stretching/compression of the field lines. The turbulent dynamo
produces a stochastic distribution of the field strength along a field line: lognormal during
the kinematic phase, exponential in saturation (see Schekochihin et al., 2004). However, as
we have also noted in Section 3.1, we do not expect much suppression of thermal conduction
by these fields, because the electron mean free path is smaller than the parallel correlation
length of turbulent magnetic fluctuations, and so magnetic mirrors are rare and not very
effective. In this section, we demonstrate this explicitly by means of an isotropic MHD
simulation of turbulent dynamo.

3.4.1 Electron transport in a system of stochastic magnetic mir-
rors

Before we consider the magnetic fields produced by the turbulent MHD dynamo, let us
first illustrate how different diffusion in a stochastic magnetic field is from the case of a
periodic field (characteristic of the mirror fluctuations) by the example of a lognormally
distributed field. A stochastic magnetic field with a long tail in its PDF produces a
larger amount of suppression compared to periodic magnetic fluctuations, because the
dominant suppression is caused by the so-called principal magnetic mirrors of strength
mp = Bp/⟨B⟩ ≫ 1 separated from each other by a distance of order the effective mean free
path (characteristic length that a passing particle travels before it gets scattered out of the
loss cone and becomes trapped) λ/mp (Malyshkin & Kulsrud, 2001). Because λ/mp ≫ lB
(see Malyshkin & Kulsrud 2001 for a calculation of mp), the principal mirrors arise at
scales much larger than lB and therefore are strong deviations of the field strength from
the mean value found in the tail of the PDF.

We generate a lognormal magnetic field with a Kolmogorov spectrum and the same
rms value of the logarithm of the field strength and the same correlation length lB as the
secularly growing mirror fluctuations analyzed in Section 3.3 (the dotted PDF in Fig. 3.4).
The diffusivity suppression factor is obtained by a Monte Carlo simulation and shown in
Fig. 3.5 by the dash-dotted line. Its dependence on λ/lB is much steeper than for the
mirror fields, with no constant asymptotic value at large λ/lB. Qualitatively, it is quite
similar to the effective suppression of conductivity obtained for stochastic distributions by
Malyshkin & Kulsrud (2001, see their Fig. 3).
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3.4.2 Electron transport in a saturated magnetic field produced
by MHD dynamo.

We have demonstrated that the suppression of electron diffusion in a stochastic field may
be considerably larger than in a mirror-like periodic field, most notably if λ≫ lB. However,
this regime is inapplicable to the magnetic fluctuations generated by MHD turbulence in
the ICM, because there λ ≲ lν < Linj ∼ lB, where lν is the viscous scale of turbulent eddies,
Linj the outer (injection) scale of turbulence, and lB is the parallel correlation length of
the magnetic field. While MHD-dynamo-produced magnetic fluctuations decorrelate at
small (resistive) scales, it is the field’s variation perpendicular to itself (direction reversals)
that occurs at those scales, whereas the parallel variation is on scales lB of order the flow
scale Linj ≫ λ (Schekochihin et al., 2002, 2004). In the cool cores of galaxy clusters,
λ ∼ 0.05 kpc, lν ∼ 0.4 kpc, Linj ∼ 10 kpc (based on the parameters for the Hydra
A cluster given by Enßlin & Vogt 2006); in the hot ICM, λ ∼ 20 kpc, lν ∼ 100 kpc,
Linj ∼ 200 kpc. Schematically, the spectrum of magnetic-field-strength fluctuations in the
ICM is shown in Fig. 3.1. In order for magnetic trapping to be effective, magnetic-field-
strength fluctuations δB/B ∼ 1 need to exist at spatial scales below the electron mean
free path. While mirror fluctuations easily satisfy this condition, MHD turbulence capable
of creating parallel magnetic fluctuations occupies scales above λ, so large suppression is
not expected in this case.

In order to estimate an upper limit on the suppression of electron diffusion by MHD
magnetic fluctuations, we use simulations of a turbulent MHD dynamo at different mag-
netic Prandtl numbers Pm = ν/η, where ν is the fluid viscosity, η the magnetic diffusivity.
Our code solves the full set of compressible MHD equations in 3D, and is based on the
unsplit van Leer integrator combined with the constrained transport (CT) method, similar
to the one implemented in ATHENA (Stone & Gardiner 2009). We initiate a 3D 2563 pe-
riodic box of MHD plasma with magnetic fluctuations at the level β = 2000, and stir it by
a random white-in-time nonhelical body force applied at the largest scales (Linj ∼ the box
size). As we noted earlier in this section, the smaller the ratio λ/Linj is, the less effective
magnetic trapping is. In terms of the Reynolds number Re ∼ Linju/λvth,i, it means that
for small Ma/Re, where Ma is the Mach number of the turbulent motions, conduction sup-
pression should be negligible. In the cores of galaxy clusters, Re ∼ 100 (Hydra A), while
in the bulk of the ICM, Re ∼ 1− 10 (ignoring the possible effects of microinstabilities on
the gas viscosity). The typical Mach number in galaxy clusters is believed to be Ma ∼ 0.1
(e.g., Zhuravleva et al., 2015). Because we seek to obtain an upper limit on suppression, we
restrict our analysis to low Re, corresponding to the hot ICM (at such low Re, turbulence
will not have a wide inertial range, but that is irrelevant because turbulent MHD dynamo
only requires a stochastic velocity field, not necessarily a fully developed Kolmogorov tur-
bulence). Namely, in our simulation, we use Re = 3, and Pm = 1000. The simulation
lasts until the magnetic field becomes saturated: ⟨B2⟩/(8π) ∼ ⟨ρv2⟩/2, where ρ is the mass
density, v the turbulent plasma flow velocity (in saturation, β ∼ 50 and Ma ∼ 0.1). The
structure of the magnetic and velocity fields in the saturated state is shown in Fig. 3.8:
magnetic folds are clearly seen at the scale of the box, while the velocity is stochastic but
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B v

Figure 3.8: Central snapshot of cross-sections of a dynamo-generated magnetic-field (left)
and velocity (right) magnitudes during the saturated turbulent MHD state for Pm = 1000,
Re = 3.

smooth, due to low Re. This simulation setup and the properties of the saturated magnetic
field are similar to those of the run ‘S4-sat’ in Schekochihin et al. (2004).

Following the same strategy as in the case of the mirror fields, we have extracted a
magnetic-field line from the box in the saturated state. The extracted field line spans 100
box sizes (again, a field line does not bite its tail, although the box is periodic). This is
necessary to make it statistically representative, because the PDF of the field now has an
exponential tail. A line segment that spans eight boxes is shown in Fig. 3.9. The PDF
of the magnetic-field strength calculated over the whole 3D simulation domain and one
calculated along the field (by multiplying the 3D PDF by the magnetic-field strength) are
shown in Fig. 3.10. They clearly exhibit an exponential shape. We calculate the suppression
of electron diffusion in the same way as we did for the mirror fields in Section 3.3.2. The
suppression factor is shown in Fig. 3.11 as a function of the ratio of the mean free path
λ to the injection scale Linj

2. For the fiducial parameters of the hot ICM with the largest
value of λ, we choose Linj ∼ 200 kpc and λ ∼ 20 kpc. These parameters provide maximum
suppression factor of electron diffusion SD ∼ 0.9. It is shown in Fig. 3.11 by the cross,
the solid line corresponds to the suppression factor at lower λ, while the dashed line shows
this factor for test monoenergetic electrons at higher λ to better exhibit the shape of the
function SD(λ/lB) for the dynamo-generated magnetic field. Though in this case, there
is no simple connection between diffusivity and thermal conductivity [like (3.19)], because
SD now strongly depends on the mean free path (or velocity), the suppression of thermal
conduction for λ ≲ 20 kpc should be essentially insignificant.

2Note that this is a somewhat artificial parameter scan as we do not vary the ion mean free path, i.e.,
the viscosity, in a manner consistent with the electron mean free path.
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Figure 3.9: Variation of the magnetic-field strength along a field line segment that spans
8 boxes (box size = energy injection sale Linj), taken from an MHD simulation of the
saturated state of turbulent dynamo at Pm = 1000, Re = 3.

Figure 3.10: Solid line: the 3D PDF of the magnetic-field strength in saturated state
for Pm = 1000, Re = 3. Dashed line: the PDF of B along the field line (the 3D PDF
multiplied by B).
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Figure 3.11: The suppression factor SD = D/D0 of the electron diffusivity by turbulent-
dynamo-produced magnetic fields. The cross indicates the largest possible suppression for
the fiducial parameters of the hot ICM: Linj ∼ 200 kpc, λ ∼ 20 kpc.

3.5 Discussion

It is well recognized that thermal conduction in the ICM is anisotropic in the presence of
even an extremely weak magnetic field. A popular assumption, adopted in many theoretical
and numerical studies, is that conduction is suppressed across the field, while along the
field, it is equal to the isotropic thermal conduction in an unmagnetized plasma. This
assumption is typically applied to large-scale fields in the ICM, e.g., to scales of order 10
kpc, which correspond to the characteristic field correlation length inferred from Faraday
rotation measurements (e.g., Kuchar & Enßlin, 2011). However, the ICM is likely to be
susceptible to microinstabilities on much smaller scales comparable with the ion Larmor
radius. In particular, the mirror instability can generate fluctuations of the field strength of
large amplitude δB/B ∼ 1, which can partially suppress electron transport along the field
lines. Given that the ion Larmor radius is some 13 orders of magnitude smaller than the
typical macroscopic scales, small-scale magnetic mirrors could potentially modify thermal
conduction in a significant way, provided that mirrors can trap the electrons.

To address this question, we have examined the properties of the field-strength fluc-
tuations in the recent shearing-box simulations of the mirror instability by Kunz et al.
(2014). The striking difference between the magnetic fluctuations produced in these sim-
ulations and a generic random field is that their PDF(B) has sharp cutoffs at both low
and high B, with the ratio of the maximal and minimal field strengths over the field lines
Bmax/Bmin ∼6-7. Since the ratio Bmax/B(ℓ) determines the loss cone for a particle at
the location ℓ along the line, the modest values of Bmax/Bmin already suggest a limited
amount of suppression, although it depends also on the exact shape of the PDF(B) (see
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Section 3.3.2). While we have used 2D simulations, this imposes no obvious qualitative
constraints on the mirror perturbations. The first 3D simulations of a dynamo-generated
magnetic field by Rincon et al. (2016) indeed appear to show qualitatively familiar-looking
mirrors being generated along stretched field lines. While the parallel correlation length of
the mirror fluctuations in our work is not much smaller than the size of the computational
box, this imposes no unphysical constraints on their structure. This is because the box
is shearing-periodic, and the scale of mirrors is set by the distance to marginal stability,
which depends on the shear, not on the box size (see Kunz et al. 2014 and Rincon et al.
2016).

Indeed, in our Monte Carlo simulations, we have found that the electron diffusivity
is suppressed by a factor of ∼ 8 for secularly growing mirrors and by a factor of ∼ 5
for saturated ones. A lognormal magnetic field with the same rms would produce a much
stronger suppression. We further argue that the suppression of thermal conduction relative
to an unmagnetized plasma is a factor of ∼2 less strong due to the fact that mirrors
primarily affect spatial transport of the electrons, and much less the energy equilibration
time. We conclude that microscale magnetic mirrors give rise to a factor of ∼ 5 suppression
of the parallel thermal conductivity.

In this work, we assumed a static magnetic field taken from a region of a plasma
where the field lines are stretched by a linear shear. Though at a given location in the
ICM plasma, the field lines are not constantly stretched, the turbulent dynamo produces
a magnetic-field-line configuration that consists of long folds (regions of amplified field)
and short reversals (regions of decreasing/weak field). This means that mirror fluctuations
may develop almost everywhere along the field lines in a turbulent ICM (see Rincon et al.
2016 for the first numerical evidence of this). We note that it is not yet known how the
mirror and firehose instabilities evolve over multiple correlation times of a turbulent velocity
field. However, the recent results by Melville et al. (2016) indicate that at the values of
β typical for the ICM, the relaxation of pressure anisotropy in a changing macroscale
velocity shear is almost insantaneous compared to the shear time. This may therefore
suggest that the mirror instability does not have time to ever reach the saturated state (at
St ≳ 2 according to Kunz et al. 2014), because the turbulent shear decorrelates earlier (at
St ∼ 1). Thus, secularly growing mirrors are expected to be more common. In any case,
since the results for both phases are similar up to a factor of order unity, we do not expect
large deviations from the described above behavior. We may then argue that the amount
of suppression found using the shearing-box simulations is characteristic for the ICM or
any other turbulent weakly collisional high-β plasma.

When the parallel scale of the field is larger than the particles’ mean free path, the
suppression of conductivity is not strong because collisions are frequent enough to stop
particle trapping. This means that even though macroscopic MHD turbulence can pro-
duce large-scale variations of B, the resulting suppression of parallel conduction should be
negligible. We illustrate this point by carrying out MHD simulations of saturated turbulent
dynamo and explicitly calculating the suppression factor (Section 3.4.2).

Parallel thermal conduction can also be reduced by anomalous pitch-angle scattering
of electrons off magnetic perturbations. Such perturbations can be produced at the scale
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of the electron Larmor radius by the whistler instability triggered by electron pressure
anisotropy (Riquelme et al., 2016). In the ICM, Riquelme et al. (2016) estimate the
resulting effective electron mean free path to be at most a few times smaller than the
Coulomb mean free path, so our results remain valid (the mean free path is still much
larger than the ion Larmor scale). The additional electron scattering will cause additional
suppression of thermal conduction. The suppression by the mirror instability should then
be our factor of SD ∼ 1/5 relative to this whistler-modified conductivity.

In addition to the suppression of parallel thermal conduction, the stochastic topology
of the magnetic-field lines contributes to the total suppression of the global large-scale
thermal conductivity by making the path travelled by an electron longer. When studying
this effect, the effective increase of transverse diffusion due to the exponential divergence
of the stochastic field lines should be taken into account (e.g., Rechester & Rosenbluth,
1978), because it restores the diffusive regime of spatial particle transport. If magnetic
turbulence develops over a range of scales, the suppression effect is quite modest, ∼ 1/5
of the Spitzer value (Narayan & Medvedev, 2001; Chandran & Maron, 2004). Since we
have shown that the parallel conductivity is suppressed by another factor of ∼ 5, we argue
that the global large-scale thermal conduction in the ICM is roughly ∼ 1/20− 1/30 of the
Spitzer value. 3
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3.6 Appendix: transport of a passive scalar

Assume a collisional 1D gas with a linear mean gradient of a scalar quantity a transferred
by the gas particles:

⟨a(x)⟩ = const + αx. (3.20)

Here and below, the angle brackets denote averaging over the particles’ distribution. The
gradient is sustained by fixed boundary conditions (e.g., walls kept at constant a). The
particles can exchange a via collisions. Our goal is to evaluate the flux of a given by

qa = ⟨av∥⟩, (3.21)

where v∥ is particle velocity (that is the parallel electron velocity along a field line in
application to our problem).

Let us first write the Langevin equation for a particle’s velocity:

v̇∥ = −ν1v∥ + η1(t), (3.22)

3And perhaps down by another factor of a few if whistlers are triggered and have the effect predicted
by Riquelme et al. (2016).
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where ν1 is the particle-scattering collision rate, and η1(t) is a Gaussian white noise with
zero mean. Solving for v∥ gives

v∥ = v∥(0)e
−ν1t +

∫ t

0

dt′eν1(t
′−t)η1(t

′), (3.23)

and, integrating again,

x = x(0) +
v∥(0)

ν1
(1− e−ν1t) +

∫ t

0

dt′
∫ t′

0

dt′′eν1(t
′′−t′)η1(t

′′). (3.24)

The Langevin equation for the evolution of a of a given particle due to collisions reads:

ȧ = −ν2(a− ⟨a⟩) + η2(t), (3.25)

where ν2 is the a-exchange collision rate, and η2 is a Gaussian white noise with zero mean.
Solving for a, we get

a = a(0)e−ν2t + ν2

∫ t

0

dt′eν2(t
′−t)⟨a[x(t′)]⟩+

∫ t

0

dt′eν2(t
′−t)η2(t

′). (3.26)

Combining equations (3.20), (3.21) and (3.26), we can calculate the scalar flux qa at
time t:

qa = ⟨a(t)v∥(t)⟩ = ν2

∫ t

0

dt′eν2(t
′−t)⟨⟨a[x(t′)]⟩v∥(t)⟩ = αν2

∫ t

0

dt′eν2(t
′−t)⟨x(t′)v∥(t)⟩. (3.27)

The noise terms do not contribute to the flux because they all have zero mean value. We
can express x(t′) similar to equation (3.24) as

x(t′) = x(t)−
v∥(t)

ν1
[1− eν1(t

′−t)] +

∫ t′

t

dt′′
∫ t′′

t

dt′′′eν1(t
′′′−t′′)η1(t

′′′). (3.28)

Substituting x(t′) into (3.27), we get

qa = −α⟨v2∥(t)⟩
ν2
ν1

∫ t

0

dt′eν2(t
′−t)[1− eν1(t

′−t)] → −α
3

⟨v2⟩
ν1 + ν2

as t→ ∞, (3.29)

where ⟨v2∥(t)⟩ = (1/3)⟨v2⟩. We see that the flux of the passive scalar a is inversely pro-
portional to the sum of the scattering rate of the particles ν1 and the a-exchange rate ν2.
Then the scalar conductivity κa0 is

κa0 =
1

3

⟨v2⟩
ν1 + ν2

. (3.30)

If the particles only exchange a and do not exchange energy, ⟨v2⟩ = v2.
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It is also useful to derive the connection between the scalar flux qa and the velocity
autocorrelation function. Let us first write x(t′) as

x(t′) = x(t)−
∫ t

t′
v∥(t

′′)dt′′ (3.31)

and substitute this into (3.27):

qa = −αν2
∫ t

0

dt′eν2(t
′−t)

∫ t

t′
dt′′⟨v∥(t′′)v∥(t)⟩ = −αν2

∫ t

0

dt′eν2(t
′−t)

∫ 0

t′−t

dτ⟨v∥(t+ τ)v∥(t)⟩

→ −αν2
∫ ∞

0

dt′e−ν2t′
∫ t′

0

dτC(τ) as t→ ∞, (3.32)

where C(τ) = ⟨v∥(0)v∥(τ)⟩ is the parallel-velocity autocorrelation function. For the con-
ductivity κa of the scalar a, we infer

κa = ν2

∫ ∞

0

dt′e−ν2t′
∫ t′

0

dτC(τ). (3.33)

With no magnetic mirrors, C0(τ) = (1/3)v2e−ν1τ , and after substitution of C0 into (3.33),
we recover (3.30).

In Section 3.3.2, we demonstrated that in the limit λ/lB ≫ 1, the parallel velocity au-
tocorrelation function of the monoenergetic electrons in the presence of mirror fluctuations
has the form

C(t) =
1

3
Spv

2e−νeff t. (3.34)

The coefficients Sp and νeff are determined by the Monte Carlo simulations. Now we can
express κa in terms of these two coefficients and the a-exchange rate ν2 by substituting
C(t) into (3.33):

κa =
1

3

Spv
2

νeff + ν2
=

1

3

Spv
2

(λ/λeff)ν1 + ν2
. (3.35)

By combining equations (3.30) and (3.35), we obtain the suppression factor of the scalar
conductivity κa/κa0:

κa
κa0

= Sp
ν1 + ν2

(λ/λeff)ν1 + ν2
. (3.36)

We apply the above formula to relate the suppression of diffusion with the suppression of
thermal conduction qualitatively, by taking a to be the electron temperature.
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Schuecker P., Finoguenov A., Miniati F., Böhringer H., Briel U. G., 2004, A&A, 426, 387

Skilling J., McIvor I., Holmes J. A., 1974, MNRAS, 167, 87P

Spitzer L., 1962, Physics of Fully Ionized Gases. Interscience, New York

Stone J. M., Gardiner T., 2009, New Astron., 14, 139

Subramanian K., Shukurov A., Haugen N. E. L., 2006, MNRAS, 366, 1437



BIBLIOGRAPHY 87

Vikhlinin A., Markevitch M., Murray S. S., 2001, ApJ, 549, L47

Voigt L. M., Fabian A. C., 2004, MNRAS, 347, 1130

Zakamska N. L., Narayan R., 2003, ApJ, 582, 162
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Chapter 4

Polarization of thermal
bremsstrahlung emission due to
electron pressure anisotropy in
galaxy-cluster plasmas

MNRAS, 2016, 461, 2162
S. V. Komarov, I. I. Khabibullin, E. M. Churazov and A. A. Schekochihin

Abstract. Astrophysical plasmas are typically magnetized, with the Larmor radii of the
charged particles many orders of magnitude smaller than their collisional mean free paths.
The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend
on the instabilities driven by the anisotropy of the particle distribution functions and oper-
ating at scales comparable to the Larmor scales. We discuss a possibility that the pressure
anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emis-
sion. In particular, we consider coherent large-scale motions in galaxy clusters to estimate
the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and
by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization
is ∼ 0.1% at energies ≳ kT . While this value is too low for the forthcoming generation of
X-ray polarimeters, it is potentially an important proxy for the processes taking place at
extremely small scales, which are impossible to resolve spatially. The absence of the effect
at the predicted level may set a lower limit on the electron collisionality in the ICM. At the
same time, the small value of the effect implies that it does not preclude the use of clusters
as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.
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4.1 Introduction

For the electrons in a hot tenuous astrophysical plasma, the equilibration time scale due to
Coulomb collisions is often sufficiently long compared to other characteristic time scales to
allow for deviations from thermal equilibrium manifested by anisotropies or non-thermal
tails. The latter typically require a mechanism to accelerate a fraction of particles to high
energies, e.g., magnetic reconnection or diffusive shock acceleration (Krymskii 1977; Axford
et al. 1977; Blandford & Ostriker 1978; Bell 1978). Anisotropies, on the other hand, are
commonly associated with the presence of a magnetic field.

In many astrophysical plasmas, magnetic fields are strong enough to force a charged
particle to orbit around a field line with the Larmor radius many orders of magnitude
smaller than the particle’s collisional mean free path. If the magnetic field is not con-
stant in time, adiabatic invariance compels the perpendicular and parallel components of
the particle’s velocity to adjust to the field magnitude in different ways, thus producing
pressure anisotropy (Chew et al., 1956; Kulsrud, 1964). A heat flux along the field lines
also contributes to anisotropy. Above a certain threshold, pressure anisotropies trigger
kinetic microinstabilities, e.g., firehose and mirror (Chandrasekhar et al., 1958; Parker,
1958; Hasegawa, 1969), which are believed to hold the anisotropy at a marginal level by in-
creasing the effective collision rate via scattering off magnetic perturbations and magnetic
trapping (for observational evidence in the solar wind, see Kasper et al. 2002; Hellinger
et al. 2006; Bale et al. 2009; for theoretical discussion, see, e.g., Melville et al. 2016 and
references therein).

Temporal changes of magnetic-field strength may be caused by random turbulent mo-
tions or by a specific ordered plasma flow, e.g., a flow past a cold dense cloud of gas in
“cold fronts” in the ICM (see, e.g., Markevitch & Vikhlinin, 2007, for a review) or a shear
flow in accretion disks (Sharma et al., 2006). Cold fronts also manifest sharp temperature
gradients at the interface between the cold cloud and the hot ambient plasma. In a hot
rarefied plasma, the electron temperature anisotropy generated by both the magnetic-field
evolution and heat fluxes leaves an imprint in the form of polarization of bremsstrahlung
emission (for an example in solar flares, see, e.g., Haug, 1972). If a flow orients the magnetic
field in some preferential direction, the polarization does not cancel out and potentially
can be observed by X-ray polarimeters.

In this chapter, we examine the possible magnitude and detectability of electron pres-
sure anisotropy in galaxy clusters. We start by describing the theoretical framework for the
problem at hand. Generation of pressure anisotropies in a plasma with evolving magnetic
fields and temperature gradients is discussed in Section 4.2.1. In Section 4.2.2, we derive
the polarization of bremsstrahlung emission for a given anisotropic bi-Maxwellian electron
distribution. Then we proceed with application of our theory to cold fronts and shocks in
the ICM with the help of analytical models and numerical magnetohydrodynamic (MHD)
simulations (Section 4.3). The effects are weak, of the order of 0.1%, but they produce a
characteristic pattern and may provide constraints on the pressure anisotropy and electron
collisionality in the ICM. We briefly discuss the role of the effects for observations of galaxy
clusters with future X-ray calorimeters in Section 4.4. Finally, we summarize our findings



4.2 Theoretical framework 91

in Section 4.5.

4.2 Theoretical framework

4.2.1 Generation of pressure anisotropies in a weakly collisional
plasma

In an astrophysical plasma, the Larmor radii ρs of all particle species are typically much
smaller than their collisional mean free paths λs; equivalently, their collision frequencies νs
are much smaller than the Larmor frequencies Ωs (s = i, e, with e the electrons, i the ions).
If the magnetic-field strength B changes slowly, γ = B−1dB/dt, each particle conserves
its first adiabatic invariant µ = v2⊥s/2B ∝ p⊥s/B, which is the magnetic moment of the
particle, where v⊥s is the component of the particle’s velocity perpendicular to the field
line, p⊥s is the perpendicular pressure. To demonstrate how pressure anisotropy is driven
and sustained by evolving magnetic fields in an incompressible plasma with no heat flux,
we express the assumption that µ is conserved but for rare occasional collision as

1

p⊥s

dp⊥s

dt
∼ 1

B

dB

dt
− νs

p⊥s − p∥s
p⊥s

, (4.1)

where p∥s is the parallel pressure, and the last term corresponds to isotropization of pressure
by collisions. If γ ≪ νs, the pressure anisotropy ∆s can be estimated from the balance
between the collisional relaxation and the rate of change of the magnetic-field:

∆s =
p⊥s − p∥s
p⊥s

∼ 1

νs

1

B

dB

dt
=

γ

νs
. (4.2)

It is clear from this estimate that the electron anisotropy is νe/νi ∼ (mi/me)
1/2 ≈ 40 times

weaker than that of the ions (if the electron and ion temperatures are equal).

The more general form of ∆s taking into account the evolution of the parallel pres-
sure can be obtained from the so-called CGL equations (Chew et al., 1956) with collisions
retained, which are derived by taking the second moments of the kinetic magnetohydro-
dynamics equations (KMHD). The KMHD equations arise after averaging the full kinetic
equation over the gyroangle. The CGL equations read

p⊥s
d

dt
ln
p⊥s

nsB
= ∇ · (q⊥sb)− q⊥s∇ · b − νs(p⊥s − p∥s), (4.3)

p∥s
d

dt
ln
p∥sB

2

n3
s

= ∇ · (q∥sb) + 2q⊥s∇ · b − 2νs(p∥s − p⊥s), (4.4)

where d/dt = ∂/∂t + us · ∇ is the convective derivative associated with species s (us is
the plasma flow velocity), b is the unit vector in the direction of the magnetic field, and
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ns the number densities,

p⊥s =

∫
d3w

msw
2
⊥

2
fs, (4.5)

p∥s =

∫
d3wmsw

2
∥fs (4.6)

are the perpendicular and parallel pressures,

q⊥s =

∫
d3w

msw
2
⊥

2
w∥fs, (4.7)

q∥s =

∫
d3wmsw

3
∥fs, (4.8)

q⊥s and q∥s are heat fluxes (the parallel flux of the “perpendicular internal energy” and the
parallel flux of the “parallel internal energy”, respectively), w the thermal component of a
particle’s velocity, fs the distribution functions of the particles. Subtracting equation (4.4)
from equation (4.3), we get an evolution equation for the pressure anisotropy:

d

dt
(p⊥s − p∥s) = (p⊥s + 2p∥s)

1

B

dB

dt
+ (p⊥s − 3p∥s)

1

ns

dns

dt
−∇ · [(q⊥s − q∥s)b]− 3q⊥s∇ · b

−3νs(p⊥s − p∥s). (4.9)

Assuming that collisions are fast compared to the fluid motions, the pressure anisotropy
is then small, p∥s − p⊥s ≪ p⊥s ≈ p∥s ≈ ps, the collisional heat fluxes are q⊥s ≈ (1/3)q∥s,
and the total heat flux along a field line qs = q⊥s + q∥s/2 = (5/6)q∥s. The value of the
anisotropy is set by the balance between collisional relaxation and various driving terms:

∆s ≈
p⊥s − p∥s

ps
≈ 1

νs

[
1

B

dB

dt
− 2

3

1

ns

dns

dt
+

4∇ · (qsb)− 6qs∇ · b
15ps

]
. (4.10)

Thus, the pressure anisotropy is driven by changing magnetic-field strength, changing
particle density, and by parallel heat fluxes.

It is useful to estimate the degree of anisotropy induced by different driving terms in
(4.10). If we consider fluid motions with velocity u at scale Lu, variations of B at the scale
of the velocity field LB = Lu, and parallel temperature gradient ∇∥Ts ∼ δTs/LT at scale
LT , we can evaluate the contribution ∆B,n;s of changing B and n, and the contribution
∆T ;s of the heat fluxes, to the total anisotropy as

∆B,n;s ∼
u

vth,s

λs
Lu

, (4.11)

∆T ;s ∼
λ2s

LTLu

δTs
Ts

, (4.12)

where we have used the expression for the heat flux qs = −κs∇∥Ts with thermal conduc-
tivity κs ∼ nsvth,sλs, λs the mean free path, vth,s the thermal speed. Assume that the flow
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velocity is nearly sonic, u ∼ vth,i, and that the variations of temperature are of order unity,
δT/T ∼ 1. Then ∆T ∼ λ2/(LuLT ) for both particle species, and ∆B,n;s ∼ λ/Lu×vth,s/vth,i.
Hence, in our ordering, for the ions, the term linked to the magnetic-field changes ∆B,n;i ∼
λ/Lu is dominant if LT ≫ λ (even in astrophysical systems with very sharp tempera-
ture gradients, e.g., cold fronts or buoyant bubbles of relativistic plasma in the ICM, the
magnetic-field lines are typically stretched by the fluid flow in the direction perpendicular
to the gradient (e.g., Komarov et al., 2014), thus significantly increasing the scale of tem-
perature variation along the field lines). For the electrons, ∆B,n;e ∼ 1/40× λ/Lu, and the
two contributions can be of the same order (∆B,n;e ∼ ∆T ;e), depending on the properties of
the flow and the orientation of the magnetic-field lines connecting the hot and cold regions
of the plasma. Note that the total anisotropy ∆tot = ∆e + ∆i is bounded from below by
the firehose instability, ∆tot > −2/β, where β is the ratio of thermal to magnetic-energy
densities. If the positive ion anisotropy dominates (∆i ≫ ∆e), then the mirror instability
compels ∆i to stay below the mirror marginal level, ∆i ≲ 1/β. Therefore, in regions of
high plasma β, either γ (= B−1dB/dt) or νs is modified by the instabilities to keep the
anisotropy between the marginal levels, −2/β < ∆tot < 1/β (e.g., Melville et al., 2016). In
Appendix 4.6, we calculate the ion anisotropy for the simulated cold fronts (Section 4.3)
and mark the regions where the firehose and mirror instabilities could develop. Because
in our work the ion anisotropy is typically dominant, the two instabilities are regulated by
the ions.

In this work, we are primarily interested in electron pressure anisotropy because of
its possible observational imprint in the form of polarization of thermal bremsstrahlung.
From the above estimates, it is clear that in the case of astrophysical systems with large
temperature gradients, the driving term linked to heat fluxes must be taken into account
along with the driving by the magnetic-field changes. We do this in detail for cold fronts
in Section 4.3.

4.2.2 Polarization of bremsstrahlung by electron anisotropy

Consider first the polarization of bremsstrahlung emission from an electron beam deflected
by a single ion. At low energies (compared to the kinetic energy of an electron), photons
produced by small-angle scattering of the electrons off the ion are polarized in the plane
perpendicular to the electron beam due to the mainly perpendicular acceleration that
slightly changes only the direction of the electron velocity. At higher energies, when both
the direction and the magnitude of the electron velocity change significantly, polarization
becomes dominated by the acceleration the electrons experience parallel to the beam.
Below, we demonstrate that the latter regime is of first importance for our problem, because
the degree of polarization is considerably larger at high energies in the case of thermal
bremsstrahlung from a cloud of anisotropic electrons.

Bremsstrahlung emission from a beam of electrons of energy ε is fully described by dif-
ferential cross sections per unit solid angle and photon energy, d2σ⊥(ε, ϵ, θ) and d

2σ∥(ε, ϵ, θ),
for the components perpendicular and parallel to the radiation plane (spanned by an emit-
ted photon’s and an initial electron’s momenta). Here, d2 = d2/(dϵdΩ), ϵ stands for the
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Figure 4.1: The degree of bremsstrahlung polarization P (ϵ, θ) = (d2σ⊥−d2σ∥)/(d2σ⊥+d2σ∥)
from a beam of electrons of energy ε = 8 KeV as a function of the emitted photon’s energy
ϵ and the angle θ between the beam axis and the photon’s momentum.

emitted photon’s energy, and θ the angle between the emitted photon’s momentum and
the beam axis. We use the fully relativistic cross sections calculated by Gluckstern & Hull
(1953) in the first Born approximation, which are appropriate for the problem at hand1.
Because the formulae in the original paper by Gluckstern & Hull (1953), as well as those
given later by Bai & Ramaty (1978), are both subjected to typos, we provide the correct
explicit expressions for the cross sections in Appendix 4.7. The degree of polarization is
P (ϵ, θ) = (d2σ⊥ − d2σ∥)/(d

2σ⊥ + d2σ∥) = d2σ1/d
2σ0, where d

2σ1 is the differential cross
section of the polarized emission, d2σ0 of the total emission. Its dependence on the photon
energy and direction with respect to the beam axis is illustrated in Fig. 4.1. The transition
between the perpendicular and parallel polarization occurs at photon energy ϵ ∼ ε/8. As
noted before, the perpendicular polarization at low energies is produced by small-angle
scattering of the electrons, while the parallel is the result of collisions that significantly
change the electron energy.

Since the differential cross sections presented above are essentially the ’Green’s func-
tions’ of the bremsstrahlung emission, the total and polarized emission from a cloud of elec-
trons can be found by integrating over the electron distribution function. Let us introduce

1The limit of validity of this approximation is given by condition ε′/mec
2 ≫ (Z/137)2 , where Z is

the charge of the scattering ion in atomic units, ε′ the energy of an outgoing electron (Gluckstern & Hull,
1953). For Z = 1, the condition is satisfied for outgoing electrons at energies ε′ ≫ 30 eV.
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a spherical coordinate system and assume that the electron distribution is axisymmetric
with respect to the magnetic-field direction, taken to be the z axis. We denote the unit
vector in the direction of the incoming electron p̂ = (sin θ0 cosϕ0, sin θ0 sinϕ0, cos θ0), and
the direction of the line of sight k̂ = (sin θ, 0, cos θ) (choose ϕ = 0 without loss of general-
ity because the resulting polarization pattern is also axisymmetric). The geometry of the
vectors is illustrated in Fig. 4.2. The polarization directions perpendicular and parallel to
the plane spanned by the vectors p̂ and k̂ (the radiation plane) are, respectively,

ê⊥ =
p̂× k̂

|p̂× k̂|
, (4.13)

ê∥ =
k̂ × (p̂× k̂)

|p̂× k̂|
. (4.14)

Then ê⊥ is rotated by angle χ (see Fig. 4.2) with respect to the y direction, which is
the perpendicular polarization direction in the reference xz plane that contains the line of
sight k̂. The angle χ is expressed as

cosχ = ê⊥y = (sin θ cos θ0 − cos θ sin θ0 cosϕ0)/ sin θ
′, (4.15)

where θ′ is the angle between p̂ and k̂:

cos θ′ = cos θ cos θ0 + sin θ sin θ0 cos θ0. (4.16)

Linear polarization (for unpolarized electrons, bremsstrahlung photons are never circu-
larly polarized) is described by the two independent Stokes parameters P1 and P2: P1

corresponds to the degree of polarization with respect to a given reference plane (xz in
our case); P2 to the degree of polarization with respect to a plane rotated around the line
of sight by π/4 from the reference plane. For a given momentum of the initial electron,
P1 and P2, normalized by the total intensity, are transformed by rotation of the radiation
plane relative to the reference plane as

P1,p̂ = cos 2χ
d2σ1
d2σ0

,

P2,p̂ = sin 2χ
d2σ1
d2σ0

. (4.17)

Thus, knowing the expression for the angle χ [equation (4.15)] between the radiation and
reference planes, we can calculate the degree of polarization of bremsstrahlung emission
from a cloud of electrons P1,2 = I1,2/I0, where I1,2 is the intensity of the polarized emission
and I0 the total intensity, both integrated over the electron distribution F (ε, θ0):

I0(ϵ, θ) = ni

∫ ∞

ϵ

dε

∫ 1

−1

d(cos θ0)

∫ 2π

0

dϕ0 v(ε)F (ε, θ0) d
2σ0(ε, ϵ, θ

′), (4.18)

I1(ϵ, θ) = ni

∫ ∞

ϵ

dε

∫ +1

−1

d(cos θ0)

∫ 2π

0

dϕ0 v(ε)F (ε, θ0) cos 2χ d
2σ1(ε, ϵ, θ

′), (4.19)

I2(ϵ, θ) = ni

∫ ∞

ϵ

dε

∫ +1

−1

d(cos θ0)

∫ 2π

0

dϕ0 v(ε)F (ε, θ0) sin 2χ d
2σ1(ε, ϵ, θ

′). (4.20)
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Figure 4.2: Geometry for the problem of the polarization of bremsstrahlung emission from
a cloud of electrons.

Due to the axisymmetry of the electron distribution function, I2 integrates to zero [see,
e.g., the appendix of Haug (1972) for a mathematical proof of this], and the total degree
of linear polarization is P = I1/I0.

The distribution function F (ε, θ0) is related to the velocity distribution function f(v, θ0)
as

F (ε, θ0) = v2 f(v, θ0)
dv

dε
. (4.21)

For the velocity distribution function, we employ a bi-Maxwellian:

f(v, θ0) = ne

(
me

2πT⊥

)(
me

2πT∥

)1/2

exp

[
−mev

2

2T0

(
T0
T⊥

sin2 θ0 +
T0
T∥

cos2 θ0

)]
. (4.22)

where T0 = (1/3)T∥ + (2/3)T⊥ is the total temperature. If the anisotropy

∆ =
T⊥ − T∥
T0

(4.23)

is small, and ∆mev
2/(2T0) ≪ 1, one can expand the distribution function to the first order

in ∆:
f(v, θ0) = f0(v) + δf∆(v, θ0), (4.24)

where f0(v) is an isotropic Maxwell distribution at temperature T0:

f0(v) = ne

(
me

2πT0

)3/2

exp

(
−mev

2

2T0

)
, (4.25)
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Figure 4.3: The degree of bremsstrahlung polarization from a cloud of electrons with a bi-
Maxwellian distribution at temperature T0 = 8 keV and anisotropy level ∆ = 0.25 [(4.23)]
as a function of the emitted photon energy ϵ and the angle between the axis of anisotropy
and the line of sight. Results in the linear approximation [equations (4.24-(4.25)] are shown
in red for comparison. The polarization degree is plotted with the minus sign to facilitate
comparison with Fig. 4.1. The opposite sign comes from the fact that the electron pressure
anisotropy ∆ is defined to be positive for T⊥ > T∥ [equation (4.23)].
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and the anisotropic perturbation is

δf∆(v, θ0) = ∆
mev

2

2T0

(
1

3
− cos2 θ0

)
f0(v). (4.26)

Using equations (4.20), (4.21), and (4.26), we obtain the degree of polarization of thermal
bremsstrahlung for a small anisotropic perturbation of the electron distribution, when the
linear approximation (expansion in ∆) [equation (4.24)] is applicable:

P (ϵ, T0, θ) = ∆ sin2 θ G(ϵ, T0), (4.27)

where G(ϵ, T0) becomes a function of ϵ/T0 at temperatures T0 ≲ 10 keV. At ϵ ∼ a few T0,
G(ϵ, T0) ∼ 1. The degree of polarization from a cloud of anisotropic electrons with ∆ = 0.25
at T0 = 8 KeV is shown in Fig. 4.3 in black for a general bi-Maxwellian distribution, and
in red in the linear approximation [equation (4.27)]. We see that the linear approximation
holds at least up to ∆ ≈ 0.25.

4.3 Application to cold fronts and shocks in the ICM

4.3.1 Qualitative estimates

Cold fronts are sharp discontinuities of temperature and density seen in X-rays in a number
of clusters (Markevitch et al., 2000; Ettori & Fabian, 2000; Vikhlinin et al., 2001; Marke-
vitch & Vikhlinin, 2007). These are commonly associated with a flow of the hot ambient
ICM plasma around a cold subcluster moving in the host cluster nearly at the virial speed.
The plasma flow produces draping of the frozen-in magnetic-field lines over the cold cloud
(e.g., Lyutikov, 2006; Asai et al., 2007; Dursi & Pfrommer, 2008). Near the front, the
flow is essentially a convergence flow, and the field lines are continuously stretched along
the interface. This leads to perpendicular orientation of the field lines and temperature
gradient and likely inhibits thermal conduction, preserving the sharp gradient between the
cold cloud and hot ICM over dynamically long times (e.g., Vikhlinin & Markevitch, 2002).

The field-line stretching should naturally produce pressure anisotropy. In Section 4.2.1,
we made simple estimates of the degree of pressure anisotropy for a sonic flow of plasma.
These depend on three parameters: the collisional mean free path λ, the characteristic
scales of the flow Lu and the parallel temperature gradient LT . Let us now estimate the
typical electron anisotropy induced by the magnetic-field evolution at the interface of a
cold front. Because the subcluster is moving at around the virial speed, the flow of the
hot ICM in the comoving frame is nearly sonic. From equation (4.11) with u ∼ vth,i, we
get ∆B ∼ (1/40)λ/Lu ∼ 2 × 10−3, where for cold fronts, the electron mean free path
λ ∼ 20 kpc (T ∼ 8 keV), and the flow scale Lu ∼ 200 kpc [of order the size of the
subcluster, e.g., A3667 (Markevitch & Vikhlinin, 2007)]. The degree of polarization is a
few times smaller than the anisotropy level, because the coherently anisotropic plasma
occupies only a fraction of volume of the X-ray emitting ICM. Below, we investigate the
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amount of electron anisotropy, the corresponding bremsstrahlung polarization, and their
spatial patterns in cold fronts first by means of the simplest analytical model of magnetic-
field-line draping (Section 4.3.2), and then by numerical MHD simulations of cold fronts
with anisotropic thermal conduction (Section 4.3.3). We also estimate the ion anisotropy
for the simulated cold fronts in Appendix 4.6.

4.3.2 Analytical model of magnetic-field-line draping

The problem of the stationary MHD flow of a plasma with a frozen-in magnetic field
around a spherical body was first solved analytically by Bernikov & Semenov (1979).
They disregarded the magnetic-field back-reaction and assumed a velocity field described
by the potential flow of an incompressible irrotational fluid around a sphere. Here we
briefly summarize their derivation and use the resulting magnetic field near the body to
calculate the electron pressure anisotropy and thermal bremsstrahlung polarization.

In spherical coordinates with the origin at the center of the sphere of radius R and the
z axis antiparallel to the fluid velocity v0 at infinity, the potential flow around the sphere
is

v = er

(
R3

r3
− 1

)
v0 cos θ + eθ

(
R3

2r3
+ 1

)
v0 sin θ. (4.28)

The magnetic field is obtained by solving the stationary ideal MHD equations

∇× (v ×B) = 0, ∇ ·B = 0, (4.29)

with a homogeneous magnetic field B0 along the y axis at infinity in the left-half space
(z < 0) as the boundary condition. We are primarily interested in the approximate solution
near the sphere (r −R ≪ R), where stretching of the field lines is greatest. It reads

Br =
2

3
B0

√
3(r/R− 1)

sin θ

1 + cos θ
sinϕ,

Bθ = B0
sinϕ√

3(r/R− 1)
,

Bϕ = B0
cosϕ√

3(r/R− 1)
. (4.30)

The velocity and magnetic fields are shown in the left panel of Fig. 4.4.
We can now apply equation (4.10), where only the first term on the right-hand side

has to be kept, to calculate the electron anisotropy ∆. The term ∆n is zero because the
flow is incompressible. The heat-flux contribution to electron anisotropy ∆T is also zero
because in our configuration, the cold cloud is completely isolated from the hot ambient
plasma by the the draped field lines. We choose to ignore the temperature variations of
the incompressible gas outside the sphere and assume homogeneous temperature, because
these variations are clearly overstated due to the artificial assumption of constant density.
Then,

∆ = ∆B =
γ

νe
. (4.31)
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From the induction equation, we obtain the rate of stretching of the field lines γ:

γ ≡ 1

B

dB

dt
= bb : ∇v, (4.32)

where b = B/B is the unit vector in the direction of the magnetic field. The electron
collision frequency (Spitzer, 1962) in a hydrogen plasma is

νe ≈ 3× 10−6 yr−1

(
Te

8 keV

)3/2 ( ne

10−3 cm−3

)−1

. (4.33)

We take the radius of the sphere R = 200 kpc, temperature T0 = 8 keV and particle density
n0 = 10−3 cm−3 as fiducial parameters. Let us set the flow velocity at infinity v0 to the
speed of sound cs0 = (γgasp0/ρ0)

1/2 ≈ 1400 km s−1. Combining equations (4.28)–(4.33),
we can calculate the electron anisotropy ∆. It is shown in the middle panel of Fig. 4.4 in
the central yz cross section. Its value agrees well with the previous qualitative estimate in
Section 4.3.1.

The final step is to obtain the polarization of thermal bremmstrahlung from the linear
approximation (4.27), which is, indeed, satisfied for our typical values of electron anisotropy
∆ ∼ (1−5)×10−3. We only consider the case of sufficiently energetic photons (ϵ ∼ 2−3 Te)
in the hard X-ray range to ignore the photon-energy/electron-temperature dependence and
assume G ∼ 1 in equation (4.27). To obtain the polarization map, we need to integrate
equation (4.27) weighted with the thermal bremsstrahlung emissivity κbr,

κbr ∝ n2
eT

−1/2
e exp(−ϵ/Te), (4.34)

along the line of sight 2, taking into account the rotation of the polarization vectors due to
the changing orientation of the magnetic field. Here, and in what follows, we simply assume
that the X-ray emitting volume is restricted to a cubic region of size 5R = 1 Mpc, ignoring
the effects of the geometry of the host cluster and the location of the cold front inside the
host cluster. This should not change our results qualitatively, only introducing a large-scale
factor of order unity to the anisotropy and polarization degree. Because the plasma flow
is incompressible in our toy model, and its temperature is taken to be homogeneous, the
emissivity is a constant outside the sphere. We choose the x-axis as the direction of the
line of sight, because in this direction, the polarization is greatest, and xy as the reference
plane. We have to integrate both of the independent linear polarization types, P1 and P2,
where P1 is the polarization measured in the vector basis (êy, êz), and P2 measured in the
basis rotated by π/4 from (êy, êz). The local polarizations P1,loc and P2,loc relative to the
reference plane xy are expressed in terms of polarization PB,loc [equation (4.27)] relative
to the plane spanned by the local magnetic-field direction and the line of sight (x-axis):

P1,loc = PB,loc cos(2ζ), (4.35)

P2,loc = PB,loc sin(2ζ), (4.36)

2The exact temperature dependence may be slightly different if the correct form of the gaunt factor is
adopted, but it practically does not affect our results because of small temperature variations outside of
the cold cloud.
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Figure 4.4: Generation of pressure anisotropy and thermal bremsstrahlung polarization
during kinematic draping of magnetic-field lines around a spherical body. The velocity
field is the potential flow of an incompressible fluid around a sphere [equation (4.28)]. The
magnetic field is an approximate solution of the ideal kinematic MHD equations near the
sphere [equations (4.30)]. The left and middle panels are the central yz cross sections.
Left: the magnetic-field strength B (color) in the units of B at infinity, B0; superimposed
are the velocity field stream lines (contours) and the unit vectors in the direction of the
magnetic field (arrows). Middle: the electron pressure anisotropy generated by stretching
of the field lines by the flow. Right: the degree (color) and direction (line segments) of
the polarization of thermal bremsstrahlung in the yz plane (as seen along the line of sight
coincident with the x-axis).
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where ζ the angle between the projection of the magnetic field onto the yz plane and the y
axis. Using equation (4.27) for PB,loc and integrating the local polarization along the line
of sight, we get

P1 =

∫
∆sin2 θ cos(2ζ) κbrdx∫

κbrdx
, (4.37)

P2 =

∫
∆sin2 θ sin(2ζ) κbrdx∫

κbrdx
, (4.38)

where θ is the angle between the local magnetic field and the line of sight [as in equa-
tion (4.27)]. The angles θ and ζ can be expressed in terms of the components of the unit
vector in the direction of the field b:

cos 2ζ = (b2y − b2z)/(b
2
y + b2z), (4.39)

sin2 θ = 1− b2x. (4.40)

The total linear polarization P is

P = (P 2
1 + P 2

2 )
1/2. (4.41)

The polarization position angle relative to êy is set by angle ψ,

ψ =
1

2
atan

P2

P1

. (4.42)

The resulting thermal bremsstrahlung polarization pattern is shown in the right panel
of Fig. 4.4, where color indicates the degree of polarization, and line segments the po-
sition angles [calculated by equation (4.42)] in the yz plane. The characteristic degree
of polarization is ∼ 0.1%. If we integrate the polarization along a line of sight at angle
θ′ ̸= 0 to the x-axis instead, the effect becomes a factor of cos2 θ′ smaller from the form of
equations (4.37) and (4.38).

4.3.3 MHD simulations of cold fronts

Description of the code and setup

To simulate cold fronts for the purpose of this work, we use an MHD code based on the
van Leer integrator combined with the constrained transport (CT) approach (see Stone &
Gardiner 2009 for a description of the numerical method). Anisotropic thermal conduction
was implemented via a semi-implicit directionally split scheme with a monotonized central
(MC) limiter applied to the conductive fluxes to avoid negative temperatures (Sharma &
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Hammett, 2011). The set of equations solved is

∂ρ

∂t
+∇ · (ρv), (4.43)

∂ρv

∂t
+∇ ·

(
ρvv − BB

4π

)
+∇p = ρg, (4.44)

∂E

∂t
+∇ ·

[
v(E + p)− B(v ·B)

4π

]
= ρg · v −∇ ·Q, (4.45)

∂B

∂t
= ∇ · (vB −Bv), (4.46)

where

p = pth +
B2

8π
, (4.47)

E =
ρv2

2
+ ε+

B2

8π
, (4.48)

Q = −κ∥bb : ∇T, (4.49)

where pth is the gas pressure, ε the internal energy of the plasma per unit volume, g the
gravitational acceleration, and Q the heat flux along the field lines with parallel thermal
conductivity κ∥. The plasma is described by an ideal equation of state with γgas = 5/3
and mean molecular weight µ = 0.6. We take the fiducial value of κ∥ = κSp, where κSp is
the Spitzer thermal conductivity for an unmagnetized plasma (Spitzer, 1962). We ignore
any potential mechanisms whereby parallel thermal conduction might be suppressed (e.g.,
magnetic mirrors; Chandran & Cowley 1998; Komarov et al. 2016, or electron kinetic insta-
bilities, Riquelme et al. 2016), as we are looking for an upper estimate of the polarization
effect.

We initialize a 3D region of hot dilute plasma (Tout = 8 keV, nout = 10−3 cm−3) of
spatial extent L = 1 Mpc with a cold spherical subcluster (Tin = 4 keV) of radius R = 200
kpc embedded at the center. The distribution of density inside the cold cloud is described
by a beta model,

nin = nc[1 + (r/rc)
2]−3β′/2, (4.50)

with β′ = 2/3, core radius rc = R/
√
3 ≈ 115 kpc, and central density nc = 8nout. The

gravitational acceleration, g, models the effect of a static dark matter halo at the center
of the computational domain, and is set to balance the initial pressure gradient inside the
subcluster. The edge of the subcluster at r = R is a contact discontinuity: the temperature
experiences a factor of two jump in the direction of the hot ambient plasma, while the
density decreases by a factor of 2 to keep the pressure continuous. The problem is solved
in the frame comoving with the subcluster. Initially, the cold cloud is at rest, while the
velocity of the surrounding gas v0 is set to the sound speed in the hot ambient plasma,
cs0 = (γgaspout/ρout)

1/2 = (γgaskTout/µmp)
1/2 ≈ 1400 km s−1. This setup is similar to the

one used by Asai et al. (2007).
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To make estimates of the bremsstrahlung polarization generated by electron pressure
anisotropy due to stretching of the magnetic-field lines and to heat fluxes, we analyze the
results of two runs with different structure of the magnetic field. In both runs, the initial
plasma β = 200. The first run is initialized with a homogeneous magnetic field along the y-
axis, perpendicular to the cold cloud velocity. The initial magnetic field in the second run is
random with a Gaussian distribution and correlation length lB = L/10 ≈ 100 kpc. We note
that the statistics of magnetic fields in galaxy clusters are unlikely to be Gaussian, and the
reported values of the correlation length inferred from the Faraday rotation observations
are about an order of magnitude smaller (e.g., Vogt & Enßlin, 2005). Therefore, this run
is merely illustrative, and demonstrates only qualitative differences between cases with
uniform and tangled magnetic field.

Results for the case of a homogeneous magnetic field

The central yz cross sections of the plasma temperature T , velocity field v and magnetic
field B are shown in the top-left and middle-top panels of Fig. 4.5 at time t ≈ 0.3 Gyr.
The anisotropy pattern at the cold front interface is similar to the one in the analytical
model of the field-line draping (top-right panel of Fig. 4.5), with the typical magnitude of
the anisotropy ∆ ∼ 10−3. Using the continuity and induction equations, we can express
the degree of anisotropy produced by the field-line stretching and compression of the gas
as

∆B +∆n =
1

νe

(
bb : ∇v − 1

3
∇ · v

)
.

Compression contributes via the divergence of the velocity field ∇ · v. Because ∇ · v
is positive ahead of the subcluster, the electron anisotropy at the interface is reduced
compared to the incompressible model. The sharp boundary of the anisotropy pattern
ahead of the front is due to a discontinuity in the static gravitational acceleration, which is
set to zero outside the sphere of radius R. This does not affect our estimate of the degree
of polarization and of the size of the polarized region. Because the magnetic field points
in the y-direction initially, the heat flux across the interface is fully suppressed, while in
the regions where the orientation of the field lines is not perfectly perpendicular to the
temperature gradients, the heat flux contribution is noticeable (see the bottom-left panel
of Fig. 4.5).

The new features of the simulated cold front, compared to the simplistic analytical
model studied in Section 4.3.2, are the presence of a weak bow shock in front of the
subcluster and the formation of turbulent vortices that efficiently amplify the magnetic
field behind the subcluster. Let us analyze them in more detail.

At the moment of taking the snapshot shown in Fig. 4.5 (t ≈ 0.3 Gyr), the bow shock
is slowly receding from the cold front at the speed ush ≈ 250 km/s. Let us first discuss the
contribution to the anisotropy at the shock brought in by the compression of the gas. The
source of the anisotropy is the jump of the normal velocity and the tangential component
of the magnetic field at the shock close to the z-axis. The passage of the shock amplifies
the y-component of the magnetic field in the downstream flow. From equation (4.51), with
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Figure 4.5: A simulation of a cold front with a homogeneous initial magnetic field along
the y-direction. All the panels except for the bottom right are the central yz cross sections
at time t ≈ 0.3 Gyr. The top-left panel shows the temperature map (color) and the
velocity field (arrows). The magnetic field B is shown in the top-middle panel (color: field
strength; arrows: unit vectors in the magnetic-field direction). The different components of
the electron anisotropy and the total anisotropy are demonstrated in the top-right, bottom-
left, and bottom-middle panels. The bottom-right panel shows the resulting polarization
map integrated along the line of sight (the x-direction).
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bb : ∇v = 0 (close to the z-axis, the velocity only changes in the direction perpendicular
to the field lines), we can estimate the anisotropy ∆B +∆n at the shock:

∆B,sh +∆n,sh ∼ −10−2vz,d − vz,u
cs0

λ

δ
, (4.51)

where vz,u and vz,d are the up- and downstream normal velocities, δ the width of the
shock, and λ the electron mean free path. The normal velocity discontinuity contributes
to the electron anisotropy via the non-zero velocity divergence. The upstream velocity
is the speed of sound, vz,u = v0 = cs0, while the normal velocity jump in the frame of
the shock from the Rankine-Hugoniot conditions (consider the magnetic field dynamically
unimportant) is

vz,d + ush
vz,u + ush

=
(γgas + 1)M2

1

(γgas − 1)M2
1 + 2

≈ 0.8, (4.52)

whereM1 = (vz,u+ush)/cs0 ≈ 1.18 is the Mach number of the upstream gas in the frame of
the shock. Then, we can infer the velocity jump in laboratory frame vz,d/vz,u ≈ 0.8. Taking
the shock width δ ∼ λ, from equation (4.51), we estimate the typical value of anisotropy
at the shock ∆B+n,sh ≂ 2× 10−3. Results of the numerical simulations agree well with this
estimate (see the top-right panel of Fig. 4.5). At angles larger than π/4 from the z-axis,
the term bb : ∇v ≈ b2y∂yvy < 0 starts to dominate at the shock, because there is a jump
in the y-velocity parallel to the field lines, and the magnetic field is compressed along the
y-direction producing negative electron anisotropy.

Close to the z-axis, the magnetic field is perpendicular to the temperature gradient,
and there is no heat flux across the shock. However, away from the z-axis, the magnetic
field only partly impedes thermal conduction. Although the strong parallel conductivity
smears the temperature gradient, a small jump of the temperature and its gradient along
the shock is still left behind. The jump δT/T is of the order of 0.5 %, and the level
of positive anisotropy it generates is of the same order, because, from equation (4.12),
∆T ∼ (λ/LT )

2δT/T (we took Lu = LT because the heat flux changes at the scale of the
shock width, as well as the temperature). The scale of the gradient LT is of the order of the
shock width, which can be approximated by the mean free path λ. Then, the anisotropy
is simply ∆T ∼ δT/T ∼ 0.5 %. This is seen in the bottom-left panel of Fig. 4.5.

Another notable feature of the simulated cold front is the amplification of the magnetic
field behind the subcluster (middle-top panel of Fig. 4.5), previously reported by Asai et al.
(2007). The amplification is caused by stretching of the field lines along the z-direction by
the vortices generated by the flow of the ambient gas around the subcluster. The magnetic
field is amplified more efficiently than at the cold front interface, because the vortices are
smaller than the subcluster, and thus produce a velocity strain rate larger than that ahead
of the subcluster by a factor of the ratio of the subcluster size to the size of the vortices.
Therefore, they are expected to generate more electron anisotropy, which is clearly seen in
the top-right panel of Fig. 4.5.

The total electron anisotropy is shown in the middle-bottom panel of Fig. 4.5. The
corresponding polarization of thermal bremsstrahlung is calculated by equations (4.34)-
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Figure 4.6: A simulation of a cold front with a random Gaussian initial magnetic field with
correlation length lB ≈ 100 kpc. The panels show the same quantities as in Fig. 4.5.

(4.42), now taking account of the spatial variation of the bremsstrahlung emissivity [equa-
tion (4.34)], and demonstrated in the bottom-right panel of Fig. 4.5. The polarization is
generally dominated by stretching of the field lines and the compressibility effects. There
are three regions, where the degree of polarization is at ∼ 0.1% level: (1) at the cold-front
interface due to stretching of the field lines in the y direction; (2) at the bow shock close to
the z axis due to the compressibility term in equation (4.51); and (3) behind the subcluster
due to amplification of the magnetic field along the z direction by the turbulent vortices.

Results for the case of a random magnetic field

It is currently believed (based on numerical and indirect observational evidence) that the
ICM is turbulent (see, e.g., Inogamov & Sunyaev 2003; Schuecker et al. 2004; Schekochihin
& Cowley 2006; Subramanian et al. 2006; Zhuravleva et al. 2014), and therefore, the
magnetic fields in the ICM are tangled by random motions of the plasma. Here, we model
the effect of the random topology of the field lines by generating a random Gaussian
magnetic field with correlation length lB = 100 kpc. The mean plasma β = 2pout/⟨B2⟩ =
200, where ⟨B2⟩ = B2

0 . Analogously to the case of a homogeneous magnetic field, the results
of our simulations are shown in Fig. 4.6. The random field topology diminishes the electron
anisotropy produced by stretching of the field lines at the cold-front interface (top-right
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panel of Fig. 4.6) and almost completely wipes out its contribution to the total polarization
(see the bottom-right panel). We should remark that due to numerical diffusivity, during
compression and stretching of the field-line loops by the convergence flow at the front, the
opposite orientations of the field may reconnect, thus, modifying the field-line topology in
the region where one expects to see electron anisotropy. Therefore, our numerical estimate
in this region might be understated.

Because now the field-line orientation at the bow shock is random, in addition to the
compression term [equation (4.51)], the heat fluxes also positively contribute to the total
anisotropy everywhere across the shock (see the bottom-left panel of Fig. 4.6). The level
of electron anisotropy generated by the turbulent vortices behind the shock is practically
unchanged compared to the simulation with a homogeneous magnetic field. In a random
magnetic field, this mechanism appears to be the most efficient.

The resulting polarization map (bottom-right panel) indicates as follows. (1) Polariza-
tion at the cold-front interface is practically indiscernible. (2) The degree of polarization
at the shock is ∼ 0.05%. (3) The largest polarization, ∼ 0.1%, is achieved behind the cold
cloud via the magnetic-field amplification by the turbulent backflow.

4.4 Discussion

At present, the only astrophysical object from which a polarized signal has been reliably
detected in X-rays below 10 keV is the Crab nebula (Weisskopf et al., 1978), dating back
to the 70s. The progress with the development of the new generation of X-ray polarimeters
(e.g., Soffitta et al., 2013; Weisskopf et al., 2013; Jahoda et al., 2014) has led to a dramatic
increase of the expected sensitivity that could open a new observational window into a
variety of astrophysical objects. Magnetars, radio and accreting X-ray pulsars, reflected
radiation in X-ray binaries or AGNs are all among the promising targets for missions like
XIPE, IXPE and PRAXyS.

In the majority of those objects, polarization is either associated with non-thermal
emission (e.g., synchrotron radiation of relativistic electrons) or with scattering in aspher-
ical geometries. Here, we discuss the polarization of thermal emission from the hot gas
in galaxy clusters. This is an interesting question for at least two reasons: (i) clusters
of galaxies are considered as possible unpolarized targets for calibration purpose and (ii)
weak polarization of thermal bremsstrahlung potentially could serve as a proxy for the
plasma properties on extremely small scales, not directly resolvable with the current or
future X-ray missions.

As we showed in the previous sections, the polarization of thermal bremsstrahlung natu-
rally arises from the anisotropy of the electron distribution function driven by stretching of
the magnetic-field lines and/or temperature gradients along the field. Pitch-angle scatter-
ing of the electrons controls the level of anisotropy, and even if it is set purely by Coulomb
collisions, the anisotropy is always small. Further reduction of the observed polarization
signal is expected if many uncorrelated regions with varying orientation of anisotropy are
present along the line of sight, leading to effective averaging of the signal. From this point
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of view, the most promising are the configurations with a large-scale flow that provides
a coherence of structures and drives the anisotropy. Our qualitative estimates show that
the expected degree of polarization is close to 0.1% for rather idealized configurations that
exhibit shocks and cold fronts.

It is worth noting that aside from polarizing thermal bremsstrahlung electron pressure
anisotropy is also capable of producing a small degree of polarization of the Sunyaev-
Zeldovich (SZ) signal (Sunyaev & Zeldovich, 1980) and the emission in collisionally-excited
X-ray lines (e.g., He-like triplets of silicon, sulphur and iron; see Pal’chikov & Shevelko
1995, and references therein). However, these two effects are both subjected to somewhat
higher possible contamination, coming from the Thomson scattering of cluster central AGN
radio emission and the contribution of the kinetic SZ effect in the first case (Sunyaev &
Zeldovich, 1980; Sazonov & Sunyaev, 1999; Diego et al., 2003), and resonant-scattering-
induced polarization in the latter case (Sazonov et al., 2002; Zhuravleva et al., 2010).

The small degree of polarization makes galaxy clusters a suitable (unpolarized) calibra-
tion target for the forthcoming generation of X-ray polarimeters. We note in passing that
two other mechanisms could also contribute to the polarization of thermal emission of the
hot gas in clusters. One is Thomson scattering of centrally concentrated X-ray emission by
the electrons; another is resonant scattering of emission-line photons (Sazonov et al., 2002;
Zhuravleva et al., 2010). Both effects have a clear signature of the polarization plane being
perpendicular to the direction towards the cluster center and are expected to disappear if
the integrated signal (over a circular region around the cluster center) of a relaxed cluster is
used. Even if an offset region is considered, one can crudely estimate the expected level of
polarization. Given that the Thomson optical depth in clusters is at the level of 10−3, the
scattered thermal emission should not be polarized by more than a fraction of this value.
For resonant lines, the optical depth is larger, but the effect is confined to line photons and
does not affect the continuum. On the whole, clusters are suitable calibration objects for
IXPE, XIPE, or PRAXyS.

Nevertheless, if future polarimeters with capabilities well beyond currently developed
instruments could detect polarization from carefully selected clusters with a large-scale
substructure, it would imply that one has a way to constrain the effective collisionality
of electrons. Of course, clusters of galaxies are not the only objects where polarization
of thermal emission could be present. As an example one could consider hot radiatively
inefficient flows around black holes or neutron stars that might have conditions suitable
for generation of sufficient electron anisotropy. We defer this question to further studies.

4.5 Conclusions

We have studied the effect of polarization of thermal bremsstrahlung emission in a weakly
collisional astrophysical plasma due to (small) electron pressure anisotropy. Stretching of
the magnetic-field lines by a flow of plasma, compression, or the presence of heat fluxes all
lead to generation of pressure anisotropy in a plasma, where the Larmor radii of the charged
particles are much smaller than their mean free paths. In the case of ordered plasma
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motions with a certain preferred direction, electron anisotropies may produce polarization
of thermal bremsstrahlung emission. The degree of polarization is a few times lower than
the anisotropy level (depending on the size of the region of coherently anisotropic electrons
and on the bremsstrahlung photon energy).

We have estimated the upper bounds on the degree of polarization in cold fronts in
the ICM as they represent a perfect example of converging flows and large temperature
gradients. Cold fronts may also be associated with additional features (although not always
observed), such as bow shocks, or turbulent vortices generated behind subclusters. We
have found that a small polarization, at ∼ 0.1% level, can be generated by either the
converging flow, the weak bow shock, or the vortices behind the cold front. Although
at the moment, such a small degree of bremsstrahlung polarization at energies of a few
kT cannot be observed, future observations of this effect might provide a valuable insight
into the generation of pressure anisotropies in astrophysical plasmas. The absence of
polarization at the estimated level could also set lower limits on electron collisionality
in the ICM, which may be enhanced by scattering off microscale magnetic fluctuations
(Riquelme et al., 2016) or magnetic trapping by the mirror instability at the scale of the
ion Larmor radius (Komarov et al., 2016).

4.6 Appendix A: ion anisotropy

Here, for illustrative purposes, we calculate the ion anisotropy ∆i by equation (4.10) for
the two simulated cold fronts with homogeneous and random magnetic fields. As it is
seen in Fig. 4.7, the ion anisotropy is large enough to trigger the firehose and mirror
instabilities all over the computational domain. The plasma is rendered unstable when
|∆i| ≳ 1/β. The instabilities maintain the plasma in the marginal state: ∆i = 1/β for
the mirror, ∆i = −2/β for the firehose instabilities. In some regions, β becomes low and
allows a rather high level of anisotropy, while keeping the plasma stable. In the case of a
homogeneous magnetic field, this is clearly seen in the low-β layer around the cold front
and behind the front, where the magnetic field is amplified by turbulent eddies. In the
case of a random magnetic field, stable regions of high anisotropy form behind the front.

4.7 Appendix B: differential cross sections for rela-

tivistic bremsstrahlung

The expressions for the relativistic bremsstrahlung differential cross sections were first
given by Gluckstern & Hull (1953). After being rearranged in a more convenient way (Bai
& Ramaty, 1978) and corrected for typos, they read

d2σ⊥ = A

(
B⊥ +

L

pp′
C⊥ +

l0
p′Q

D⊥ − E

p2 sin2 θ

)
, (4.53)
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Figure 4.7: The ion anisotropy for the simulated cold fronts. Left panels: the plasma
β. Right panels: the ion anisotropy ∆i, unstable regions are hatched; in the unstable
regions, the plasma is kept marginal: ∆i = 1/β for the mirror, ∆i = −2/β for the firehose
instabilities.
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d2σ∥ = A

(
B̃∥(θ) +

L

pp′
C̃∥(θ) +

l0
p′Q

D∥ +
E

p2 sin2 θ

)
, (4.54)

A =
Z2

8π

r0
2

137

p′

p

1

ϵ
, (4.55)

B⊥ = −5γ2 + 2γγ′ + 1

p2δ2
− p2 − k2

Q2δ2
− 2k

p2δ
, (4.56)

B∥ = −5γ2 + 2γγ′ + 5

p2δ2
− p2 − k2

Q2δ2
+

2(γ + γ′)

p2δ
− 4l

p′δ
, (4.57)

B̃∥(θ) = B∥ +
8(2γ2 + 1)

p2δ4
sin2 θ, (4.58)

C⊥ =
2γ2(γ2 + γ′2)− (5γ2 − 2γγ′ + γ′2)

p2δ2
+
k(γ2 + γγ′ − 2)

p2δ
, (4.59)

C∥ =
2γ2(γ2 + γ′2)− (9γ2 − 4γγ′ + γ′2) + 2

p2δ2
+
k(γ2 + γγ′)

p2δ
, (4.60)

C̃∥(θ) = C∥ +
4γ(3k − p2γ′)

p2δ4
sin2 θ, (4.61)

D⊥ =
k

δ
− k(p2 − k2)

Q2δ
+ 4, (4.62)

D∥ =
4

δ2
− 7k

δ
− k(p2 − k2)

Q2δ
− 4, (4.63)

E =
2L

pp′

(
2γ2 − γγ′ − 1− k

δ

)
− 4l0
p′Q

(δ − γ′)
2 − 2l(δ − γ′)

p′
, (4.64)

where

γ = E/mec
2 + 1; γ′ = γ − ϵ/mec

2; (4.65)

p =
√
γ2 − 1; p′ =

√
γ′2 − 1; k = ϵ/mec

2; (4.66)

Q2 = p2 + k2 − 2pk cos θ; δ = γ − p cos θ; (4.67)

L = 2 ln

(
γγ′ + pp′ − 1

γγ′ − pp′ − 1

)
; l = ln

(
γ′ + p′

γ′ − p′

)
; l0 = ln

(
Q+ p′

Q− p′

)
; (4.68)

r0 = e2/(mec
2) ≈ 2.82× 10−13 cm is the classical electron radius, the rest of the notations

were introduced in Section 4.2.2.
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Chapter 5

Conclusions

The intracluster medium (ICM) is a multiscale turbulent magnetized environment, which
is subjected to a broad range of physical processes. A complete self-consistent description
of the ICM is practically impossible because of an enormous scale separation of the effects
involved. A magnetic field affects the properties of the ICM in several ways. First, it may
alter the plasma dynamics via the Lorenz forces, because the magnetic-energy density in
the ICM, estimated by Faraday rotation measurements, is comparable with the kinetic en-
ergy of turbulent motions, estimated by analyzing the X-ray surface brightness fluctuations
in clusters. Second, magnetic fields dramatically modify transport processes: viscosity and
thermal conduction. Because the charged particles gyrate in the cluster magnetic fields
with the Larmor radii many orders of magnitude smaller than their mean free paths, heat
and momentum transfer become highly anisotropic. Finally, and, perhaps, most impor-
tantly, the ICM is a weakly collisional plasma, in which adiabatic invariance drives pressure
anisotropies. These anisotropies, even at a percent level, inevitably lead to development
of kinetic microinstabilities. The instabilities further modify the ICM particle transport
by particle scattering off Larmor-scale magnetic fluctuations and magnetic trapping. In
this work, I have studied some of the effects of the intracluster magnetic fields on ther-
mal conduction and also investigated how the ICM pressure anisotropies might manifest
themselves observationally in the form of polarization of thermal bremsstrahlung.

Already in the MHD framework, thermal conduction becomes a non-trivial problem
because of the tangled topology of the magnetic-field lines and temporal changes in the
field as it evolves in the cluster turbulence. I have found that temperature fluctuations at
the scale of turbulent eddies may survive over a dynamically long time despite the large
value of the classical Spitzer conductivity in a hot plasma. It happens because the turbulent
velocity field statistically tends to orient the frozen-in magnetic-field lines perpendicular
to the temperature gradients, effectively suppressing the heat flux in the direction of the
gradient, even though the gradients are amplified. I have demonstrated this analytically
by applying the Kazantsev-Kraichnan model for the velocity field. Observationally, this
process should manifest itself by a correlation between temperature maps obtained from
X-ray data and the polarization of synchrotron emission (in regions where it is observed).

Next, I have investigated the effect of the mirror instability on the electron transport in
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the ICM. The mirror instability is likely ubiquitous in galaxy clusters, because it is triggered
anywhere the magnetic-field lines are stretched by the cluster turbulence. It is a resonant
instability capable of generating fluctuations of magnetic-field strength δB/B ∼ 1 at scales
of the order of a hundred ion Larmor radii. These fluctuations act as magnetic mirrors for
the heat-conducting electrons, suppressing their transport. Interestingly, the suppression
effect can be broken down into an effective enhancement of the electron collisionality and
a decrease in the number of freely propagating particles, because a fraction of them is
trapped by the mirrors. The mirror fluctuations are limited in amplitude by the maximum
and minimum values of the field strength, with no large deviations from the mean value,
which leads to a finite suppression of thermal conduction at large scales. I have shown that
the total suppression factor of thermal conductivity is ∼ 1/5. This result should also be
relevant for any magnetized weakly collisional turbulent plasmas, because it mostly does
not depend on the large-scale properties of the plasma.

Finally, I have studied a possibility that electron pressure anisotropies in the ICM
leave an observational imprint in the form of thermal bremsstrahlung polarization. These
anisotropies are driven by plasma motions via adiabatic invariance and heat fluxes. In the
case of coherent plasma flows, the small polarization signal produced by the anisotropic
thermal electrons can potentially be observed. The predicted polarization degree is of
order 0.1%, which is beyond the sensitivity of the planned X-ray polarimeters. This small
polarization does not preclude the use of clusters as (unpolarized) calibration sources for
X-ray polarimeters at this level of accuracy. Nevertheless, a future detection (or a non-
detection) of this effect at the predicted level might put constraints on the collisionality of
the ICM electrons.

For proper physical modelling of the ICM, the magnetic-field effects should be taken
into account, e.g., by way of a highly sought-after subgrid model that would encapsulate
all the intricacies of plasma kinetics. Currently, such model cannot be constructed because
of the lack of understanding of the evolution of microinstabilities in a turbulent plasma.
Conversely, increasingly detailed observations of galaxy clusters: of the ICM turbulence
and magnetic fields, might improve our understanding of the physics of magnetized weakly
collisional plasmas. Without doubt, with the advent of new observatories, clusters of galax-
ies become increasingly more exciting astrophysical objects, which advance our knowledge
about the Universe as a whole, but also give insights into previously unexplored plasma
processes.
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