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ABSTRACT

According to current climate projections, Mediterranean countries are at high risk for an
even pronounced susceptibility to changes in the hydrological budget and extremes.
These changes are expected to have severe direct impacts on the management of water
resources, agricultural productivity and drinking water supply. The different regions of
the Mediterranean landscape are already experiencing and expecting a broad range of
natural and man-made threats to water security. Current projections of future hydrolog-
ical change, based on regional climate model results and subsequent hydrological
modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San
Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The catch-
ment has a size of 472.5 km®. The catchment was already affected by multi-drought
periods (1990-2000) (Piras et al. 2014).

The process-based Water Simulation Model (WaSiM) was set up to model current and
future hydrological conditions. The availability of measured meteorological and hydro-
logical data is poor as it is common for many Mediterranean catchments. The lack of
available measured input data hampers the calibration of the model setup and the
validation of model outputs. A soil sampling campaign was conducted together with the
department of Geography of the University of Kiel to assess more precisely the physical
properties of the top soil (30cm depth) at 239 locations in the Rio Mannu catchment.
Different deterministic and hybrid geostatistical regionalization methods like Multi-
Linear Regression, Inverse Distance Weighting, Ordinary Kriging and Regression Kriging
(Odeh et al. 1995) were used to calculate spatially distributed maps of particular lab-
analyzed soil information. The applied regionalization methods were then tested on the
prediction performance. The best performing prediction method was used to calculate a
new classified soil texture map for the catchment. Soil hydrological properties were

assigned to the soil texture classes by pedo-transfer functions.

WaSiM was then parameterized in 2 different settings. One setting (WASiM-ARU) used
the standard available soil information of Aru et al. (1990) and the other (WASiM-RKS)
the improved new soil information. The WaSiM-ARU setting was used for calibration and
validation. WaSiM-ARU was calibrated and validated with spatially distributed evapo-

transpiration rates derived with the triangle method (Jiang and Islam, 1999) and soil
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moisture records, due to missing adequate gauging information in the catchment. The
modeled evapotranspiration result girds using WaSiM-RKS setup with the improved soil
model setup show a better fit especially for the growing season to those derived from
remote sensing without further calibration. Both WaSiM setups were driven with the
meteorological forcing taken from 4 different ENSEMBLES climate projections for a
reference (1971-2000) and a future (2041-2070) times series. The climate change impact
was assessed based on differences between reference and future time series and with
climate change indices like the standardized difference precipitation index, the evapo-
transpiration index and by the number of consecutive flow conditions. Furthermore

long-term annual and monthly mean changes were analyzed.

The simulated results show a reduction of all hydrological quantities in the future.
Furthermore simulation results reveal an earlier onset of dry conditions in the catch-
ment. The comparison of modeling results shows that the quality of the soil model setup

has a major impact on the spatial distribution of modeling outputs.

Finally runoff modeling results of both WaSiM setups were compared to other modeling
results which were processed with other hydrological models in the test site within
CLIMB. Those models used a very similar setup as WaSiM-ARU. The comparison shows a
significant uncertainty in the processed results based on to the applied hydrological
model. Especially in ungauged catchments like the Rio Mannu those uncertainties need
to be considered in the climate change impact assessment analysis, the resulting adap-
tion strategies and for the policy decision making. However, findings also show that the
quality of soil input and parametrization creates uncertainties when using WaSiM that
are in the same range as the uncertainties produced by the different applied hydrologi-

cal models.

The study shows that the combination of sophisticated climate model downscaling and
bias correction techniques, improved hydrological model parametrization with improved
soil information, and validation with in-situ and remote sensing measurements, has a

high potential to improve environmental impact assessment in data scarce regions.
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1. INTRODUCTION

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
summarizes an increasing air temperature throughout the 21* century. Those projec-
tions are a robust feature across climate models and the temperature increase is nearly
the same for all Representative Concentration Pathway (RCP) scenarios (Collins et al.
2013).

Higher uncertainties are expected for the projected future change of precipitation sums,
distributions and intensities. However, there is a scientific consensus that precipitation
patterns and sums are expected to change by the end of the century (Christensen et al.
2007). In contrast to the great number of climate change and climate model downscal-
ing studies that have been published in recent time, the amount of studies focusing on
regional hydrological impact assessment of climate change is manageable (Raposo et al.
2013). Climate change is expected to have a distinct impact on the European continent.
Many studies, summarized in the IPCC report 2007, indicate a strong north-south impact

gradient for Europe.

It is likely that winter temperatures will increase more in northern Europe than in
central and southern Europe. In contrast to that summer temperatures are projected to
increase more in the Mediterranean and central Europe (Christensen et al. 2013). While
for northern Europe an increase of precipitation, runoff, and floods is projected with a
medium confidence, southern Europe is expected to be more severely affected by
droughts due to a warmer and drier climate (Alacamo et al. 2007, Christensen et al.
2013). In a climate analysis of 20 GCMs using up to 3 IPCC emission scenarios (A1B, A2,
B1), Giorgi (2006) found that the Mediterranean area is one of the most prominent “hot-
spots” with regards to climate change by the end of 21* century. Christensen et al.
(2013) shows that the recent (1981-2012) trends in annual mean air temperature raise
in the Mediterranean area exceed the global mean land trend. The uncertainty assess-

ment of a large ensemble of regional and general climate models (RCM & GCM) in this
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region shows that the temperature response of the models is robust even for the 2021-

2051 time frame (Déqué et al. 2012).

70N

60N

S0N

40N

60N

50N

40N

30N

JJA

CMIP3 MME A1B (24)

CMIP5 MME RCP4.5 (39) MRI-AGCM3.2H A1B (12)

- : __\ _(;,
e
: i

A

DJF

CMIP5 MME RCP4.5 (39) MRI-AGCM3.2H A1B (12)

i

<

/0N

6ON

SON

40N

30N

60E

70N

60N

50N

40N

30N

T
x RN N
E 40E 6

[1]3
(mm day™' °C™")

40 0 20E 40E 0

1 1 1 1 ¥
-1.6-1.2-08-0.4-02-01 0 0.1 0.2 0.4 08 1.2 1.6

20

Figure 1: Maps of precipitation changes for Europe and Mediterranean in 2080-2099 with
respect to 1986-2005 in June to August (above) and December to February (below) in the SRES
A1B scenario with 24 CMIP3 models (left), and in the RCP4.5 scenario with 39 CMIP5 models
(middle). Right figures are the precipitation changes in 2075-2099 with respect to 1979-2003 in
the SRES A1B scenario with the 12 member 60 km mesh Meteorological Research Institute
(MRI)-Atmospheric General Circulation Model 3.2 (AGCM3.2) multi-physics, multi-sea surface
temperature (SST) ensembles (Endo et al., 2012). Precipitation changes are normalized by the
global annual mean surface air temperature changes in each scenario. Light hatching denotes
where more than 66% of models (or members) have the same sign with the ensemble mean
changes, while dense hatching denotes where more than 90% of models (or members) have the
same sign with the ensemble mean changes (Fig. source: Christensen et al. 2013).

Thus there are strong signs that longer lasting dry periods, will lead to an increased risk
of droughts, interrupted by extreme intense precipitation (Christensen et al. 2007, Zollo
et al. 2012, and Raposo et al. 2013). Arnell (1999), Alacamo et al. (2007), Falloon & Betts

(2010) and other authors showed that for the Mediterranean countries a significant
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reduction of precipitation, runoff and ground water recharge is projected. Raposo et al.
(2013) found that the recharge of water bodies may concentrate in the winter season
and dramatically decrease in the summer—autumn season leading to an increased dry
season duration, which is exacerbating the current problems in water supply. In sum-
mary there is a high confidence in model predictions of mean air temperature in this
region and is very likely that temperatures will continue to increase throughout the 21st

century (Christensen et al. 2013).

Temporal water scarcity is on the one hand a natural phenomenon in semi-arid regions,
which forced people long time ago to adapt the agricultural activity to those temporal
conditions. Over exploitation of water resources and climate change impacts on the
other hand already imply a threat to agricultural productivity, with a possible increasing
trend in the future. The Italian island of Sardinia is one example for a region that is
already facing temporal water scarcity problems. Sardinia was recently affected by
water shortage, due to very dry conditions in the second half of the year 2014. L’Ente
acque della Sardegna (ENAS) reported that the water reservoirs of the island were only
filled by 56.3% in the beginning of 2015. Due to this fact water supply for agriculture
irrigation was prohibited in the time of 19.02.-30.04.2015 in the northern part of the
island. The recent water resource issues are not only a consequence of the recent very
dry climate conditions, in fact the quantity of fresh water resources is affected further-
more by a combination of factors like eutrophication, water losses due to a poor
infrastructure system (storage capacity and efficiency of networks) and fragmented
water management (Sannitu 2006). Furthermore the Water Plan presented under
Sardinian Renewable Program in 1988 shows that there is a large mismatch between
water supply and water demand leading to a water deficit of -280 million m3/a in
southern Sardinia and -543 million m3/a for the whole island. The total demand of
southern Sardinian is 511 mio. m3/a, from which the agricultural sector claims the
highest quota (346 mio. m3/a) followed by domestic users (140 mio. m3/a) and industry
(25 mio. m3/a). The average yearly supply on the other hand is only 232 mio. m3/a. The
resource availability is further reduced by a drop in rain fall of 50-60% within the last 20
years (Sannitu 2006). The severe fresh water resource situation might be even more
exacerbated by climate change. To face current and future water resource problems in
the region a holistic water management, which implies the quantification of future

climate change impacts is needed.
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In order to quantify climate change effects on a catchment scale, Xu et al. (2005) sug-

gests performing the following three steps:
1. Choose the outputs of different climate projections from GCMs or RCMs.

2. Find and apply downscaling techniques to the GCMs & RCMs outputs, to match

those with the scales needed for the impact assessment modeling.

3. Apply the downscaled data into a hydrological model, to model and study future

changes in the hydrological budgets in the study area.

With this procedure a spatial feasibility for hydrological impact modeling can be
achieved, but it comes together with the confinement that the uncertainties of the
modeling results will increase. For a more precise assessment of current and future
hydrological conditions on the climatological timescale, a complex modeling chain is
required (Muerth et al. 2012).

In a hydrological climate impact assessment study of the French coastal catchments,
Lespinas et al. (2014) simulated a mean reduction of discharge by 55% (A2) and 46% (B2)
for the summer season of the time series 2070-2100, by forcing the hydrological model
GR2M with different PRUDENCE RCMs. In contrast to the work of Lespinas et al. (2014)
and Raposo et al. (2013), most of the few studies that have been published on regional
hydrological climate change impact assessment in the Mediterranean, use simple
average annual climate data (Molina-Navarro et al. 2014). Furthermore projections of
future hydrological changes based on regional climate modeling results are very uncer-
tain and modeling schemes often poorly validated (Ludwig et al. 2010a). In many
Mediterranean catchments long-term time series of recorded discharge and climate
variables that are needed to calibrate and validate process-based hydrological models
are not available. The lack of information is one reason why the amount of studies
focusing on regional hydrological impact assessment of climate change is low (Raposo et
al. 2013). Thus, in order to meet the needs of policy makers and stakeholders for the
adaptation to climate change, hydrological modeling capabilities must be adapted and

improved to overcome existing limitations, (Ludwig et al. 2010a).

Process-based hydrological models require numerous soil (-hydraulic), terrain and
vegetation parameters in an appropriate spatial and temporal resolution. Although it is

known that the response of those models is sensitive to the quality of soil data, ade-
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guate soil information is missing in many cases. Spatially explicit data of soil properties
are needed to link catchment characteristics and distributed hydrological model param-
eterization (Gotzinger & Bardossy 2007), as well as understanding and predicting plant
water responses to changing climate conditions (Browning & Duniway 2011). The inquiry
of soil properties based on field surveys is time consuming and costly, but on the other
hand there is a worldwide increasing demand of high resolution soil data to meet the
data requirements of sophisticated environmental and hydrological models. The main
limiting factor of the modeling projection quality is the quality model input data which is
especially true for spatially highly distributed soil information (Sumfleth 2008). Com-
monly available high-resolution soil maps have a resolution of 1:25.000 to 1:50.000, but
the resolution is often much coarser, thus hampering the spatially modeling quality and
increases uncertainties in modeled projections. Behrens & Scholten (2006) and Dutt-
mann & Sumfleth (2007) agree that the development of new cost effective, soil property
regionalization techniques is meaningful. Hydrologist can benefit from those develop-
ments and might want to integrate those existing and solid regionalization techniques to
improve the quality of model input soil data. Solid regionalization techniques that have
been tested by soil scientists on their prediction performance in many studies are multi-
linear regressions (MLR), inverse distance weighting (IDW), ordinary kriging (OK) and
regression kriging (RK) (Piccini et al. 2014, Yoa et al. 2013, Adhikari et al. 2013, Eldeiry &
Garcia 2010, Herbst et al. 2006).

1.1 Motivation

The lack of knowledge on climate change impacts on the hydrology in the Mediterrane-
an region is a common problem for present and future water management. Physically
based hydrological models, like the Water balance Simulation Model (WaSiM) presented
in section 5, are needed to simulate the non-linear climate change impacts on the
hydrological quantities catchment scale. Thus, the analysis of those simulations can help
to improving the knowledge of future hydrological impacts and is a prerequisite for a
sophisticated water management, as well for adaption strategies and policy making. The
lack of spatially distributed soil information needed for a solid model parametrization
hampers the quality of hydrological modeling results and might cause high differences

(uncertainties) in the produced simulation results. The reduction or at least the identifi-




Introduction

cation of uncertainties that are coming from different sources is important to improve
and value the quality of modeling results. Especially in ungauged catchments a sophisti-
cated model setup is needed, since a normal case calibration and validation with
recorded discharge data cannot be executed. The survey of such soil information is on
the one hand costly but can be on the other executed in rather a short time compared
to long-term discharge monitoring. Different and easy to apply regionalization schemes,
like MLR, IDW, OK and RK, have the potential to improve the hydrological modeling
results or at least show a range of uncertainties that are related to soil model parametri-

zation of physically based spatially distributed hydrological models like WaSiM.
Thus, the following hypothesizes will be tested in this thesis:

I Hydrological resources and the agricultural production are endangered by

climate change impacts in the Mediterranean semi-arid area.

. A solid soil physical parametrization of physically based fully distributed hy-
drological models hydrological models is crucial to simulate reliable

modeling results for the spatial and temporal domain.

M. Different regionalization methods applied to soil physical data will lead to

different spatial distributions of soil textures in the catchment.

V. Setting up WaSiM’s soil model with soil information coming from different
sources will have a considerable impact on the hydrological modeling re-

sults.

V. The hydrological climate change impact assessment implies high uncertain-
ties coming from different sources, like climate model input meteorology,

the structural setup and the architecture of different hydrological models.

1.2 Work flow

The European FP-7 project CLIMB aimed to project climate induced changes on the
hydrology of the Mediterranean Basins by investigating 7 test sites located in the
countries ltaly, France, Turkey, Tunisia, Gaza, and Egypt. CLIMB employed a combination

of novel geophysical field monitoring concepts, remote sensing techniques and integrat-
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ed hydrological modeling to improve process descriptions and understandings and to
quantify existing uncertainties in climate change impact analysis (http://www.climb-

fp7.eu).

The presented study was conducted in one CLIMB study site named Rio Mannu di San
Sperate on the Italian island of Sardinia; a catchment located approximately 30km north
of the island’s capital Cagliari. The catchment was already affected by multi-drought
periods between 1990 and 2000 (Piras et al. 2014). Due to water scarcity, a water plan

was developed under the “Sardinia Renewable Program” and presented in 1988.

Long-term records of hydrologic quantities like discharge as well as reliable soil texture
information were not available for the catchment. This lack of observed data hampers a
solid setup and parameterization of process-based hydrologic models and increases
uncertainties in the modeling results. A prediction of hydrological quantities in un-
gauged basins is one of the grand challenges in hydrology. To tackle this challenge
hydrological modeling needs to accept and integrate multi-scale heterogeneity of
climate, vegetation, soil and topography within the basin and needs to learn about
interactions of those parameters from field observations and patterns behind the data
Sivapalan (2003).

For this study the following workflow was applied:

(i) A soil sampling campaign was conducted in the Rio Mannu (large scale)
to gain knowledge about soil properties and heterogeneity within the

basin.

(ii) Different deterministic and hybrid geostatistical interpolation methods
like Multi-Linear Regression, Inverse Distance Weighting, Ordinary
Kriging, and Regression Kriging (Odeh et al. 1995) tested for the predict-

ed performance of the different regionalization models.

(iii) The best performing interpolation model was used to calculate a classi-
fied soil texture map for the catchment to better represent the true soil

heterogeneity.

(iv) The climate change impacts were analyzed on the water resources in

the catchment by driving the process-based fully distributed hydrologi-
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cal model WaSiM (Schulla 2012) with a downscaled bias-corrected RCM
ensemble that consists of 4 different GCM-RCM combinations (Deidda et
al. 2013) for the time series 2041-2070.

(v) WaSiM was run with two different soil model setups and the sensitivity

to modeling outputs was tested.

(vi) Finally, spatial grids of actual evapotranspiration from remote sensing
data were calculated with the Triangle-Method (Jiang & Islam 1999) to

validate WaSiM'’s actual evapotranspiration output grids.

(vii) Hydrological climate change impact indices like evapotranspiration index
(ETI), change of soil water (CSM) and number of consecutive low flow

days were calculated and compared.

(viii)  Hydrological climate change impact on discharge was compared to
modeling results coming from different hydrological models to estimate

model architecture and model input applied uncertainties.

1.3 State of the art regionalization of soil properties

Due to the constantly increasing computational speed within the last 25 years, different
approaches and methods have been developed to regionalize soil surface properties.
Those deterministic and (geo-) statistic methods are named with different synonyms,
which imply Digital Soil Mapping (Mc Bratney 2003), Pedometric Mapping, and Predic-
tive Soil Mapping (Scull et al. 2003) and are summarized with the name Pedometrics
(McBratney et al. 2000, Webster 1994). Up to date there is no explicit definition for the
term Pedometrics. The best approach to define Pedometric in one sentence is given by
Heuvelink (2003): “Pedometrics is the application of mathematical and statistical
methods for the study of the distribution and genesis of soils.” In this scientific field
various approaches are used to predict soil properties or classes including univariate and
multi-variate statistical, geostatistical and hybrid methods and process-based models
(Grundwald 2010). Hengl et al. (2002) generally understand Pedometric Mapping as a

guantified inventory of soil attributes expressed over continuous spatial fields.
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Jenny’s equation (Jenny 1941) is one out of many ways to quantify soil information and
still is the conceptual prerequisite to many soil regionalization methods. In this approach
a single soil property is described as a conceptualized function of environmental factors
which imply climate (CL), organisms (O), relief (R), its parent material (P), and time (T)
(CLORPT). The CLORPT-approach was modified by McBratney et al. (2003) and applied to
digital soil mapping to explain relationships of soil properties and other spatially distrib-
uted environmental quantities (co-variables) (Moonjun et al. 2010). In the SCORPAN
model McBratney et al. (2003) added the factors S: Soil, T was replaced by A: Age and N:
Space, spatial position. With this modification the prediction was made temporally and
geographically explicit (Grunwald 2010). These spatially distributed quantities or co-
variables are normally available in higher spatial resolutions than the surveyed soil
samples. A model that implies a solid relationship between a target variable (sampled
soil properties) and spatially high distributed co-variables allows a continuously distrib-
uted prediction of soil properties at unsampled locations in the spatial resolution of the
co-variable and with a certain degree of significance. Improving the relationship of
target and co-variables is still a state of the art research field in Digital Soil Mapping.
Grunwald (2010) gives an overview of commonly used co-variables, which imply Digital
Elevation Model (DEM), primary and secondary terrain attributes (deviations of the
DEM), like Slope, Aspect, Analytical Hill shading, Topographic Wetness Index etc.,
satellite and air borne, active and passive remote sensing products (optical and micro-
wave remote sensing), as well as products from ground based geophysical remote
sensing applications like electromagnetic induction (EMI) and gamma ray emission
sensors. Hengl (2009) summarized three groups of statistical models based on correla-
tions between target and co-variables, which imply classification-based models (Boolean
or Fuzzy classification rules), tree-based models (decision tree), and regression models

(Generalized Linear Models and General Additive Models).

Pure mathematical approaches like inverse distance weighting (IDW) splines and kriging
do not consider functional relationships between soil properties and soil forming
environmental factors. Kriging has been a synonym for geostatistical interpolation for
many decades (Hengl 2009). Kriging is a geostatistical method that was introduced by
Krige in 1951 and further improved by Matheron (1963). Kriging is a linear predictor that
uses the spatial autocorrelation of a target variable. Those models estimate the values
by a weighted averaging of nearby samples (Ahmed et al. 2010) by a semi-variogram

model. Kriging is an exact and robust interpolation method and was used in many
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studies. The advantage of kriging compared to other pure mathematically based soil
prediction methods is that it is an unbiased prediction method (predicted values are the
same as target variable values at sampled locations) and that it provides a spatially
distributed measure of uncertainty based on the prediction variance i.e. the estimated
variance of the prediction error (Hengl 2009). The most commonly used method in
digital soil mapping is Ordinary kriging (OK) (Adhikari et al. 2013). A disadvantage of
purely mathematical interpolation models is that predicted maps often show patterns
that appear unnatural. Kriging tends to under-estimate large values and overestimate

small values at unsampled locations (Oliver & Webster 2015).

A solution to avoid these problems is to use multivariate prediction techniques that
include co-variables in the geostatistical prediction model (Adhikari et al. 2013). So-
called hybrid methods are able to overcome disadvantages of pure mathematically
based or pure CLORPT & SCORPAN based models and are able to combine advantages of
both. Examples of multivariate geostatistical models used for the prediction soil proper-
ties are for example cokriging used by Gallichand & Marcotte (1993), Odeh et al. (2003),
Eldeiryand & Garcia (2010), neural networks used by Zhao et al. (2009), and regression
kriging (RK) applied by von Knotters et al. (1995), Odeh et al. (1995), Dobos et al. (2000),
Odeh & McBratney (2000), Hengl et al. (2004), Ahmed et al. (2010), Adhikari et al. (2013)
and Stockmann et al. (2015). The terms cokriging, regression kriging and kriging with
external drift refer to a family of hybrid regionalization methods that are only slightly
different. Other methodologies used are neural network (Behrens et al. 2005, Malone et
al. 2009 and Guo et al. 2013, Blaschek 2015), imply genetic programming, simulation of
gaussian fields, Markov Chain Random Fields or mechanistic models, but require a
profound mathematical expertise (Grunwald 2010). Minasy & McBratney (2007) sum-
marize that RK appears to be a robust technique to predict soil properties in various soil
regions and suggest this method for practical applications. RK is a combination of a
multivariate deterministic regression model and the stochastic kriging model, was first
introduced by Odeh et al. (1995) and is also called kriging with external drift. RK involves
various combinations of different regression and kriging models (Ahmed et al. 2010).
The so called regression kriging approach of Odeh et al. (1995) uses a multi linear
regression model to predict the target variable based on the applied co-variables. In a
second step the residuals of sampled locations will be applied into an Ordinary Kriging
(OK) approach. In the last step both resulting maps will be summed up. A major limita-

tion, however, of these (MLR and RK) approaches is that the relationship between target
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and covariates is assumed to be stationary across the space (Kumar 2015). This assump-
tion might lead to misleading information especially if the target variable shows a spatial
trend. Seo et al. (2015) found that hybrid regionalization models including RK outper-

form pure stochastic approaches like OK, simple kriging and universal kriging.

1.4 State of the art hydrological modeling

Climate change impacts on water resources are assessed by hydrologist by applying a
variety of different hydrological models (Leavesley 1999). According to Moradkhani and
Sorooshian (2008) all Rainfall-Runoff models and hydrological models represent a
simplified characterization of the real world. These models are used to understand and
predict system behavior and various hydrological processes (Devia et al. 2015). It can be
defined as a coherent bundle of equations which helps to estimate runoff as a function
of various parameters used for describing watershed characteristics (Devia et al. 2015).
Models use and have parameters, which are numerical measures of a property or
characteristics that are constant under certain conditions (Wheater et al. 2007). Most
important input data sets for those models are climate records, for a defined drainage
area, along with the characteristics of the watershed, like soil properties, vegetation

cover and its characteristics, topography, and soil moisture content (Devia et al. 2015).

Hydrological models can be grouped into various categories upon the modeling ap-
proaches used (Daniel et al. 2011). They can be distinguished for example on their
spatial (lumped over semi-distributed to fully distributed watershed discretization),
temporal (event based to continuous time steps) and physical (empirically to physically
based) and mathematical (deterministic or stochastic) complexity. The differences and
the field of application of those hydrological models has been discussed and reviewed in
many scientific publications for example in Devia et al. (2015), Sood and Smakhtin
(2015), Golmohammadi et al. (2014), Daniel et al. (2011), Rochester (2010), Beckers et
al. (2009), Moradkhani and Sorooshian (2008), Wheater et al. (2007) and many more.

In areas where hydrological records are lacking hydrologists may favor to use less
complex lumped and/or empirical models (Daniel et al. 2011). Those data driven models
try to find a function relationship between inputs and outputs, based on regressions

and/or correlation, without considering the features and processes in a hydrological
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system Devia et al. (2015). Due to that they are only valid within defined boundaries.
Modeling detailed hydrological processes can be challenging since it involves highly non-
linear processes, complex interactions and high spatial variabilities within the basin
(Islam 2011). However, as soon as more detailed results are needed, a fully distributed
and/or physically based hydrological model might be necessary and it may be necessary

to collect detailed data to apply the model Beckers et al. (2009).

The Rio Mannu catchment in Sardinia Italy is the test site used for this study and was
one major test site of the CLIMB project. This Mediterranean catchment is characterized
by complex hydrological response due to the non-uniform and seasonal variation of
precipitation events and strong inter-annual variability (Moussa et al. 2007). The terrain
is furthermore characterized by highly heterogeneous land and surface properties
(Mascaro et al. 2013) such as complex soil type and geological distribution, which is
described in more detail in section 2. Those features have a controlling process and may
include a strong non-linear dependency on antecedent wetness. Based on those initial
conditions, storm events with the same quantity and intensity of precipitation can either
produce a major flood or just a few millimeters of runoff (Beven et al. 2002). Modeling
such complex systems in a continuous fashion to manage and plan water resources as
well as to predict hydrological extremes is a difficult task (Mascaro et al. 2013) and due
to that asking for the application of physically based fully distributed hydrological

models.

Physically-based models are a mathematically idealized representation (Devia et al.
2015) of real hydrological system. In such models mass, transfer, momentum and energy
are simulated using differential equations. Those equations are solved using various
numerical methods such as the Richards equation for the unsaturated zone flow or the
Penman-Monteith equation for the evaporation Daniel et al. (2011). Those models are
capable to quantify the vertical and lateral water fluxes for continuous time steps in a
spatially explicit manner (Mascaro et al. 2013). As a result physically based hydrological
models are more capable to represent the strongly non-linear precipitation-runoff

relationship of the hydrological system.

For this study the physically based fully distributed hydrological model WaSiM (Water
Simulation Model) Version2 Richard-equation (Schulla 1997) was applied.
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State of the art research fields using physically based hydrological models are the
improvement of input data and parametrization of such models, by using remote
sensing techniques and products, field survey, generic and geostatistical interpolation
approaches and GIS applications. Beckers et al. (2011) stated that the better quantifica-
tion of climate change impact on hydrology is one key area of computational

improvements in hydrological modeling.

For example Daniel et al. (2011) points out that the distribution of soil types and its
linked hydrological properties need to be improved by using remote sensing techniques,
GIS applications and genetic algorithms. Rotzer et al. (2014) used WaSiM to compare
modeled and upscale soil moisture content with derived soil moisture of (SMOS and

ASCAT) radar remote sensing products.

WaSiM was applied successfully for many hydrological climate change impact assess-
ment studies, for example by Gampe et al. (2015), Meyer et al. (2016), Cornelissen et al.
(2013), Gadecke et al. (2013), Muerth et al. (2013), Ott et al. (2013), Velazquez, et al.
(2013) and many more. Those studies showed successfully that WaSiM is capable to
reproduce non-linear hydrological surface processes and that it is an up to date physical-
ly based fully distributed hydrological model. Therefore it was chosen to study the non-

linear impacts of climate change on the hydrology in the Rio Mannu basin.
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Study site characterization

2. STUDY SITE
CHARACTERIZATION

The presented study was conducted in the Rio Mannu di San Sperate catchment, located
in the southern part of the Italian island Sardinia. This catchment is, as already men-
tioned in the introduction, affected by temporarily water scarcity conditions based on its
semi-arid climate and the drop of rainfall of 50-60% in the last 20 years (Sannitu 2006)
indicates that the hydrology of this catchment is already affected by climate change. The
CLIMB-Project partner institution AGRIS Sardegna runs an agricultural research facility
located close to the village Ussana, in the south western part of the catchment. Since in
the CLIMB-Project hydrological quantities were investigated on different scales the basin
was found to be an ideal test site and used for more intensive research than others test
sides within CLIMB.

2.1 Rio Mannu di San Sperate

The basin drains an area of approximately 472.5 km? (Figure 2). The Rio Mannu has its
headwaters in the north of the catchment. The basins outlet is close to the city Mo-
nastir. Here a dam was constructed in the nineteen-sixties. Since that time the Rio
Mannu fills this artificial reservoir (10000m?3). The basin ranges in elevation from 67m to
966 m above sea level with an average of 295m. The catchment is characterized by a
mountainous region in the eastern part and a plain valley area (campidano plain) in the
south-western part. The headwater of the main river channel is located in the moun-
tains of Sette Fratelli (south-east of the basin), an area with higher elevation (up to 800
m.a.s.l.) and rugged terrain. The lower areas, closer to the outlet, have more gentle
topography and are part of the Campidano plain. The flat downstream areas have been
drained artificially through a system of channels since the 20" century. This was done to

convert the former swampy land into fertile agricultural fields (Mascaro et al. 2013).
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Intensive agricultural activity is still the main economic activity in this region (De Giro-
lamo et al. 2010).
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Figure 2: Location of the Rio Mannu di San Sperate catchment with locations of streams and
information.

2.1.1 Land use

Figure 3 reports the land use in the Rio Mannu catchment based on CORINE 2006 (EEA
2007) land use land cover information. The most important crops grown are wheat
(durum wheat), corn silage, aslike clover, beans and artichokes, which are cultivated in
these flat valley areas. These areas are classified in the CORINE 2006 land use map as
non-irrigated arable land and dominate the campidano plain. The eastern mountainous
areas of the catchment are covered by grass land, vineyards, olive trees, broad leaf
forest, and coniferous forest and in higher elevations by Sclerophyllous vegetation
(maquis shrub land or Macchia mediterranea). Due to a project internal model harmoni-
zation strategy land use classes were aggregated to 6 main land use classes for the

hydrological modeling (methodologies section 5.2.3.1).
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Land principally occupied by agriculture
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Figure 3: CORINE 2006 land use map of the Rio Mannu catchment.

2.1.2 Geology

Plate tectonics is the primary control on the geodynamic evolution of the Western
Central Mediterranean (Carmignani et al. 2015). The geological structure of Sardinia is
linked to the collision of Africa, Eurasia and the smaller Adriatic and Iberian plates active
since the Mesozoic (Casula et al. 2001). Sardinia is the only sector of the outcropping
Hercyian orogeny in Italy that is not superimposed by Alpine or Apennistic thrust belt
(Doglioni & Flores 1997). It was part of a large Pallaeozoic mountain system, which was
built 480-250 Ma ago from the diachronic collision of two continents (Laurentia—Baltica
to the NW and Gondwana to the SE). Sardinia is part of the Amorica micro continent
that was detached from Gondwana docked onto Laurentia and Baltica (Rossi et al.
2009). During the Mesozoic and Paleocene Sardinia separated from the European plate
and drifted into its current position during the Burdigalian in a counter-clockwise

rotation together with Corsica (Casula et al. 2001).
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Figure 4 reports the simplified geological structure of southern part Sardinia together
with the location of the Rio Mannu catchment. The main geological units, reported in

Carmignani et al. (2015), in whole of Sardinia and in the southern part of the island are:

1. The Variscan basement composed of anchizonal to high grade meta-morphic

rocks and Permo-Carboniferous batholith.

2. The Permian to Oligocene sedimentary succession, which was built when Sardin-
ia was part of southern Europe, with a deposition of a widespread carbonate
platform and clastic and marine deposition of small out crops of Lower Eocene

limestones.

3. The Oligocene to Miocene volcano-sedimentary succession deposited in several

basins of the so called Sardinian Rift.

4. The Campidano half graben, which developed during Tortonian and Messinian
times from a carbonate-mixed siliciclastic deposition in shallow marine and tran-

sitional environments.

The Rio Mannu catchment covers all four main geological units. The south-western part
of the catchment covers the Campidano, which is predominantly characterized by Plio-
Quaternary continental deposit. The Campidano plain is a graben area up to 600m deep
that was filled most recently with post-Variscan quaternary and tertiary sediments
(Doglioni & Flores 1997). The mountainous eastern parts of the catchment are part of
the Paleozoic or Variscan basement and are characterized by Paleozoic substratum and
related Mesozoic-Eocene marine sedimentary covers. The Miocene marine deposits in
the center of the catchment are surrounded by the former two geological units in a
north-western direction from the city Cagliari to the city Oristano. The smallest unit in
the catchment in the southern part of the catchment is characterized as Plio-Quaternary

alkaline volcanic (compare Murru et al. 2015).

Based on the geological map 1:25,000 map published by the geoportal of the Autono-
mous Region of Sardinia the main geological features can be identified: In the most
northern part of the catchment predominantly sandstones and conglomerates of the
burdigalian are present and followed by an area in the south-west characterized by
alternating layers of silty marls and sandstone developed from coarse to fine volcanic

sediments. The Gerrei area, in the eastern mountainous part of the catchment (Figure
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4), is characterized by metasandstones and metasiltstones from the middle Cambrian.
The transition of the former two geological units consists of Holocene deposits of sand
with underling silts and clays. Close to the present stream network, coarse to medium
alluvial deposits of Holocene graves are dominant. Based on the Ussana formation main
geological processes that took place in the Rio Mannu catchment in history can be

illustrated.
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Figure 4: Simplified geological features of southern Sardinia (source: Carmignani et al. (2015)
changed, the black rectangle shows the geological features of the Rio Mannu catchment).

Casula et al. 2001 describes the historical process during the Burdigalian horsts, grabens
and titled blocks formed controlled by tectonics and volcanic morphology. The uplift
occurred along the campidano margins and was linked to strong erosion with the
development of mega-breccias, breccias and continental conglomerates clasts (Casula et
al. 2001). Those formed deposits of a red violaceous, sandy clayey matrix at the foot of
the fault escarpments with a centimeter to several meter thickness. The Ussana for-

mation is covered by a layer of mainly fine-grained sediment succession (Mancosu
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2013). No significant Pliocene erosion occurred in the southern Campidano. In the
Pliocene the Samassi Formation developed by the erosion of redeposited Miocene
sediments from the eastern flanks. The Samassi formation consists of continental marls
and silts, with occasional sand and pebble beds in layers of clay. This sedimentation
process continued until the Quaternary (Casula et al. 2001). The geology in this area is
rather complex and certain geodynamic settings and structural evolutions, like Miocene
volcano-sedimentary succession are still debated in literature (Carmignani et al. 2015).
This shows that the Sardinian landscape morphology is rather complex and its develop-

ment processes are not fully understood up to now.

2.1.3 Soil information

The so called Mediterranean soils will by definition form under a Mediterranean climate
(Verheye de la Rosa 2006). This forming climate is characterized by wet winters with
some months of excess rainfall over evapotranspiration and by dry and hot summers,
with decreased soil moisture content (Yaalon 1997). The second important soil forming
factor is the parent material, which is in the case study not easy to determine as shown

in section 2.1.2.

In the Mediterranean the soil forming process is characterized by an effective dissolu-
tion and leaching of calcium carbonate and other soluble elements. This process is most
active in the rainy winter time (Verheye & de la Rosa 2006). Most important parent
materials in the Mediterranean are carbonaceous rock, which are dominated by relative-
ly soluble CaCO; fraction. Verheye & de la Rosa 2006 indicate that the speed of the
development of Mediterranean soils over limestone is strongly influenced by: (I) the
dilution speed of the carbonate fraction; (ll) the amount of precipitation that infiltrates
into the soil and (lll) the initial CaCO; content. Those soils when developing over lime
stone have a reddish color (Terra Rossa) and a high content of clays and silty-clay
material (Durn 2003). Terra Rossa in the Mediterranean are characterized by silica
enrichment and by clay mineral assemblages which are often dominated by less weath-
ered clay minerals such as smectite (Lucke 2014). The development of many soils in the
Mediterranean area is also affected significantly by dust that coming from the Sahara
desert. It was proven by using stable isotopes that most of the fine silt fractions in the

climax soils developed over Terra Rossa are of aeolian origin (Yaalon 1997). The more
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hilly landscapes are stronger affected to erosional processes, which is leading to rejuve-
nated soils on slopes and accumulation of soil material at lower positions (Blaschek
2015).

The spatial distribution of soil properties varies strongly within the catchment and
influenced by the parent rock material and in fertile areas by the 1000 year lasting
agricultural activity (Fanni et al. 2004). Following the FAO classification ambisols, reg-
osols, and vertisols or marls, sandstones and conglomerates characterize the soils in the
valley part of the catchment, while cambisols and lithosols on crystalline schists and
guartzite are present in the rocky mountainous region. In the area close to the village
Ussana, regic anthrosols and calcaric regosols are present with slightly alkaline condi-
tions. The flood plain consists mainly of alluvial soils, predominantly gravelly or sandy
gravelly (Aru et al. 1990). Following the USDA classification major soil types in the
catchment are typic dystrict, Lithic Xerorthents (clay-loam, deep), Lithic Xerochrepts
(sandy-loam to loamy-clay, deep), and Lithic Xerorthents (sandy-loam, to loamy clay,
shallow) (De Girolamo et al. 2010, Aru et al. 1990).

In a field campaign together with a team from the University of Kiel (CAU) 3 soil profiles
were investigated at the Azienda di San Michele in March 2011. The Azienda San
Michele is an agricultural research farm that is operated by the CLIMB-Project partner
ARGIS. Two more soil profiles were investigated by the CAU at the Azienda di San
Michele in March 2013 additionally. The profiles were classified following the German
soil classification system of the soil mapping manual of Sponagel (2005) (AG Boden
2005). The 5 soil profiles were classified and described in Blaschek (2015). The five bullet
points below are a summary of this description. A detailed description of those profiles
is given in Blaschek (2015)

1. Calcaric Regosol (Ap, Ck1, Ck2, Ck3) located on top of a hill, significantly affected
by erosion. In the first 100cm the soil textures class is clay and has high calcium

carbonate (CaCO?®) content. The soil developed over calcareous sand stone.

2. Calcaric Regosol (Ap, Ck1, Ck2, Ck3), located at a lower position, but also affected
by erosion. The soil formed over calcareous sand stone. Like in profile 1, the upper

layers are classified as clay, and change to clay loam in the Ck3 horizon.
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3. Regic Anthrosol (Apl, Ap2, Bwl, Bw2) located at a different field close to a
weather station that was installed during the CLIMB-Project. The first two layers
are strongly influenced by anthropogenic erosion (Ap1, Ap2). The underlying Bw1
and Bw2 horizons are well developed with high CaCO3 content. The soil texture of

all horizons was classified as clay-loam.

4. Chromic Cambisol (Apl1, Ap2, Bwl, Bw2). This profile was located in a small de-
pression and due to that less affected by erosion. Compared to the other
horizons, no clear clay migration is visible in the Bw1 and Bw2 and most horizons
are classified as sandy-clay-loam. The soil has a reddish color due to iron oxidiza-

tion, which is stronger developed in the upper horizons.

5. Haplic Luvisol (Ap, E, Bt1, Bt2, Btk, C). This mature soil shows a strong clay illuvia-
tion in the tree Bt horizons. All horizons except for the last Bt are almost CaCO?
free. In the last Bt CaCO’ reaches a value of 56%. The first horizons are classified
as sand clay loam. The clay illuviation results in a clay classified texture for the Bt2
and Btk horizons. The profile formed dominantly by alluvial deposits up to a depth
of 160cm and contains pebbly components from the surrounding metamorphic

granitic Paleozoic hills. A detailed description is given in Blaschek (2015).

2.2 Historical data precipitation and runoff data

The investigated area is characterized by a semi-arid climate, with a cold winter period
from October to April and very dry and hot summer months. The mean annual air
temperature is 17 °C. The annual precipitation ranges from about 400 to 700 mm (Figure
5) and occurs almost entirely in the winter season (Vacca et al. 2000). Delitala et al.
(2000) show that the yearly mean precipitation sums can vary highly on the Sardinian
island and show a clear correlation of wet and dry years with the NAO (North Atlantic
Oscillation). Rainfall events are unevenly distributed, as they are rather short but intense
and exert a great amount of influence on the flow regime (De Girolamo et al. 2010).

Besides the temporal variance, precipitation sums can vary highly within short distances

22



Study site characterization

on the island.
a) Long-term monthly mean precipitation b) Long-term monthly mean precipitation
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Figure 5: a) Recorded long-term monthly mean precipitation sums of selected gauging stations
and b) precipitation map interpolated from recorded long-term annual precipitation sums of 12
gauging stations for the time series 1925 to 1935 using inverse distance weighting. The map
was overlaid with a transparent hill shading layer to give an impression of the topography.

The identification and collection of available geographical, hydrological, and climatologi-
cal data of each CLIMB case study and the distribution of this data to CLIMB partners

was one of the first working steps at the beginning of the project.

A set with daily precipitation rates of 76 rain gauging stations of southern Sardinia
during the period from 1922 to 1996, a dataset with maximum and minimum air tem-
peratures for Cagliari and recorded discharge of the Rio Mannu di San Sperate Basin
(RMB) at the Monastir gauging station for the time series 1925-1935 was delivered by
the CLIMB partner CINFAI.
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The daily mean precipitation dataset unfortunately contained long lasting data gaps.
Only 12 gauging stations were consistent for time series >10 years and only two gauging
stations in Serrenti and S. Andrea de Frius recorded a nearly consistent time series of 30
years. Figure 5a reports the long-term monthly mean precipitation rates of these two
stations in comparison with monthly mean precipitation rates of Cagliari (30km south of
the case study) for the equivalent time series and the CLIMB reference time series 1971-
2000 (downloaded from KNMI climate explorer 2013). The monthly mean precipitation
rates of the three stations show a strong deviation. While in S. Andrea des Frius annual
mean of 658mm was recorded for the time series 1959-1988, only 80% of this rate
(528mm/a) were recorded in Serrenti for the Time series 1951-1989. The gauging
station located in Cagliari recorded 419mm/a for the CLIMB reference time series 1971-
2000. This is only 64% of the value of S. Andrea de Frius. This strong deviation in record-
ed precipitation is most likely explainable due to the differences in elevation of the two
gauging stations. Sannitu (2006) pointed out that the precipitation rate in southern
Sardinia was reduced by 50-60% in the last 20 years. This reduction is at least not visible

in the recorded annual precipitation sums for Cagliari until the year 2000.

Figure 5b reports the inverse distance weighting interpolated recorded data of 12
gauging stations for the time series 1925-1935. The map was overlaid on a Hill shading
layer to give an impression of the catchments topography. The map shows a clear trend
of lower precipitation rates in the valley area in the western part of the catchment to
strongly increasing precipitation rates in the mountainous eastern part of the catch-
ment. The daily precipitation data of 1925-1935 were aggregated to long-term monthly

mean sums to get an impression of how precipitation is transformed into discharge.

Figure 6 reports the long-term monthly mean and median discharge of the Rio Mannu
catchment for the time series 1925-1935. This time series was the only discharge

information that was available in a daily mean temporal resolution.

Highest discharge is generated in the months December to February, with a mean peak
in January and a median peak in February. The strong deviation between mean and
median values indicates that mean high flow conditions are affected by single short time
extreme events and that the histogram of discharge is heavily left skewed for this time
of the year. The median value of February for example reaches only 47% of the mean

discharge. The months March to June and November are transition months in which the
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discharge curve is dropping and increasing strongest. Lowest flows are present from July
to October. Median and mean discharge values show only minor deviation from May to
October. This indicates that the discharge is only slightly affected by extreme precipita-

tion event in this time of the year.

2.2.1 Flow duration curve and number of flow conditions of the
recorded historical discharge in the Rio Mannu di San Sperate
Basin

Flow duration curves (FDC) were calculated from the historical recorded discharge of
1925-1936. A flow duration curve measures in X-axis direction from high to low flow and
the Y-axis gives the discharge quantity for each percent exceedance value (1-100%).
Based on the derived FDCs of the recorded discharge as well as for the hydrological
modeling discharge results, threshold values for the different flow conditions were

determined. A detailed overview of this method is given in section 5.3.1.

Figure 6 reports the average number of low, dry, mid-range, wet and high flow condition

days per month, based on the thresholds of the FDC in Figure 25.

Low flows are defined as 90%-100% flow exceedance percent (0.0349-0 m?3/s), dry
conditions are in the range 90%-60% flow exceedance percent (0.035-0.299 m3/s), mid-
range flows are in the range 60%-40% flow exceedance percent (0.3-0.619 m3/s), wet
conditions are in the range 40%-10% flow exceedance percent (3.38-0.62 m3/s) and high

flow conditions are in the range 0%-10% flow exceedance percent (Q > 3.39 m3/s).

In the recorded discharge time series dry conditions with more than 15 days per month
are dominant from July to October. The transition months from March to May are
dominated by days with wet conditions. As soon as the mid-range flow conditions are
increasing discharge is significantly dropping in May. The small number (<5 days) of high
flow conditions in March and April has a significant impact on the mean discharge,
which is about 1.5m>/s higher compared to May, where days with wet conditions are

about the same.
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Figure 6: Long-term monthly mean and median of recorded discharge data and mean number
of days with low, dry, mid-range, wet and high flow in the Rio Mannu di San Sperate catchment
(Gauging station Monastir 1925-1935). The total number of days for 1925-1935 is presented in
the brackets.

In January and February the mean discharge has the highest values, those month are
mainly characterized by days with wet conditions and high flows. Note that the analysis
of the flow conditions also shows some errors in the recorded time series in March and
April, where days with low flows are present but no dry conditions. The recorded
discharge drops from 28.02.1928 to 01.03.1928 from 0.89 m3/s to 0 m3/s. The value
stays at the 0 m3/s level for the total March and April 1928 and at 1% of May 1928

increases to 1.1 m3/s. This is obviously an error or gap in the recorded time series.
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3. METHODOLOGIES OF THE
REGIONALIZATION OF SOIL
PROPERTIES

3.1 Soil information and soil sampling campaign

The quality of the hydrological model setup of WaSiM is strongly dependent on the
available soil information (Rieger et al. 2010). WaSiM has to be set up in this version by
linking grid values of the soil texture map with lookup tables, which describe the hydro-
logical properties of each soil texture class. This means that distributed soil information

of good quality is crucial to the successful setup of the hydrological model.

The available soil texture information of Aru et al. (1990) in the catchment was rather
unreliable, since its spatial units do not represent a unique classification of soil texture
classes. Instead the spatial units of the soil map represent ranges of soil texture classes.
Using this kind of soil information to setup a hydrological model is a problematic obsta-
cle, since for example the determination of hydrological properties based on pedo-
transfer function is nearly impossible. However, it was used for the official hydrological
modeling in the CLIMB-project. In the CLIMB-Project three different hydrological models
were applied in the Rio Mannu catchment. Not all of those applied models were able to
handle high resolution soil information. The available regional soil map (Aru et al. 1990)
was aggregated to 6 classes for the standard hydrological model setup. In this map, soil
texture information was still present in ranges of soil texture classes per soil region
polygon. Due to this, a distinct linking of soil type and soil grid value of the soil map was
not possible. Since, every class still included a range of different soil texture classes; the

weighted average soil texture of every class was used. With this procedure it was
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possible to set up the soil model lookup tables in WaSiM with six unique soil texture

classes following the German classification system of Sponagel (2005).

First hydrological modeling tests backed the assumption that the Aru et al. (1990) soil
information seemed rather inaccurate, additional soil texture information was surveyed
by collecting a total of 239 soil samples in the catchment during two field campaigns.
Soil samples were taken following a design-based, stratified, two-stage sampling (de
Gruijter et al. 2006) in early October 2010 and in March 2011. The selection sampling
locations was done by University of Kiel. The stratification was based on quantiles of the
two land-surface parameters, topographic wetness index and potential incoming solar
radiation, which were derived from a Digital Elevation Model (DEM) as well as the four
main geological units coming from a 1:25000 geological map. The random selection of
target polygons for each strata has been repeated ten times and was only permitted for

polygons greater than one hectare.
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Figure 7: Soil sampling location Rio Mannu (N=239) catchment and Rio Costara sub-catchment
(N=168).
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The final sampling scheme was chosen in a way that the geographical spread was
maximal. The sampling was done on two scales. A spatially very dense sampling ap-
proach for a 16km? sub-basin (Rio di Costara catchment) within the Rio Mannu
catchment were chosen to sample small scale variability. This information was used by
hydrological models that were applied on a very fine scale (30m) in this sub-basin and
was used in the doctoral thesis of Michael Blaschek who developed, applied and tested
Neural Network interpolation approach to regionalize the soil properties of this sub-
catchment. A number of 50 additional soil samples were collected for the larger Rio
Mannu catchment. Both sample sets, small and large scale were used to provide spatial
soil information for the hydrological modeling on the large scale. Composite soil samples
from a depth of 30cm were taken using a gouge auger of the type Plirckhauer. An
overview on sampling designs as well as a detailed description of the sampling approach
is given in his thesis Blaschek (2015).

3.2 Laboratory analysis

At certain sampling locations bulk density and soil moisture was determined using
sample rings with a volume of 100cm?, which were weighed field fresh, dried 24hours at
105°C and weighted again. This was done at the laboratories of the Azienda San Michele

research facility in Italy.

All other lab-analysis was done by the Department of Geography of the University of
Kiel. Soil samples were analyzed for grain size distribution, calcium carbonate content
(CaC0s3), organic content, Soil pH, exchangeable cations, available potassium and

phosphorus content, free iron oxides and amorphous iron oxides.

The main interest of this study is the grain size distribution, the bulk density and the
organic content at sampling location. Those soil properties were regionalized (section 4)
and applied into a pedo-transfer function to derive the soil hydraulic properties for the
hydrological model WaSiM (section 5.2.3.4).

The grain size distribution was analyzed based on the sieve-pipette method of Kéhn (din
standard; DIN I1SO 11277). For this study soil samples were dried and sieved to fraction

smaller 2mm to eliminate gravel fractions. The resulting fine fractions of the samples
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were treated with different chemicals to eliminate organic matter, iron oxides and
carbonate and to remove coatings of the soil particles. The treated samples were
dispersed using sodium pyrophosphate (NasP,0;) and the sand fractions were separated
using the wet sieving method to classes of (2000-630, 630-200 and 200-63 um). The final
step was the separation of the silt and clay classes. A defined amount of the diluted
fraction smaller 63um gets extracted after certain sedimentation time steps. The
extracted amount of liquid was after dried. The different silt fractions (63-20, 20-6.3 and
6.3-2um) and the clay fraction (<2um) were after determined by weighing the dried
extractions. Finally seven fractions of sand, silt and clay content were available in weight
percent. The single fraction of sand and silt were afterwards aggregated to single

classes, to finally have a dataset with the sand silt and clay distribution for each location.

The C/N ratio was analyzed using the EURO EA Element Analyzer, which is a gas chro-
matograph from the HEKA-tech company. The SOC was determined from the disparity of
total and the inorganic carbon content of the CaCO3. A detailed description of the lab-
analysis of soil properties which were not used in this study, can be found in Blaschek
(2015)

All sample point locations were georeferenced using a Trimble Juno SB handheld with a
positional accuracy of about 2-5 m and identified by a unique id. For the regionalization

of the soil properties on the Rio Mannu scale, position accuracy was neglected.

3.3 DEM data and digital terrain analysis

One set of auxiliary variables was extracted from a digital elevation model of 10m
resolution (published under the Italian Open Data License in version 2 by the geoportal
of the Autonomous Region of Sardinia). The DEM was resampled to a pixel resolution of

208m for the Rio Mannu catchment, following the approach of Hengl (2006):

x= |obs*A+2%100 + 0.0005, (1)
p n

where A is the catchment area in km?, n is the number of samples and obs equals 2.5

observations per cm? on the map Hengl (2006)
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Terrain attributes were computed in SAGA-GIS by a 3*3 window. First the primary
terrain attributes aspect (A), Slope (B [rad]), plan curvature (Ch), profile curvature (Cv),
divergence/convergence index (CDI), specific catchment area (SCA), and afterwards the
secondary terrain attributes stream power index (Q), topographic wetness index (TWI),
and the SAGA wetness index (SWI) were processed using terrain analysis modules of
SAGA GIS (SAGA User Group Association 2011). Each calculated variable represents
terrain attributes that can be linked to the intensity of natural processes that are

influencing the soil forming processes, which means more specific:

The B quantifies the maximum rate of change from each cell to its neighbor in the DEM
and controls overland subsurface flow velocity as well as runoff rate. Increasing B angles
normally increase the runoff speed, which results in higher erosion rates in those areas
(Scheffer & Schachtschabel 2002). The B has a major impact on the thickness of soil
horizons, the nutrient availability, as well as the soil texture composition. Areas with
high B angles are often characterized by a thin soil horizons thickness, a poor nutrient
availability and coarser soil texture composition. Low angles indicate deep soil layers, a
higher nutrient availability and finer soil texture compositions (Gessler et a. 2000,
Schauppenlehner 2008). The spatial distribution of the slope angle in the catchment is
presented in Figure 10. The slope angle in this figure was recalculated to degree (°) to

increase the readability.

Aspect (A) defines the cardinal direction in 0-360° that a surface is facing. The A of a
slope can influence the local (micro)-climate (exposure to sun light, precipitation and
wind etc.), and often shows correlations with soil moisture content, the distribution of
vegetation, soil organic matter and soil texture compositions. In the northern hemi-
sphere south-facing slopes (south aspects) are normally warmer and drier due to a
higher solar radiation than north-facing slopes (north aspects). The warmer tempera-
tures on south facing slopes speed up most chemical reactions and increases soil genesis

and the evaporation of water from the soil profiles (USDA 2015).

The curvature of a slope can be described in horizontal and vertical direction. The profile
curvature (Cv) is rate at which surface slope changes in the vertical direction. Cv in
geomorphometry defines curvatures as negative for concavities and positive for convex-
ities. Plan curvature (Ch) is the rate at which flow direction changes following a contour

line. Ch is negative for valleys and positive for ridges (Peckham 2011).

31



Methodologies of the regionalization of soil properties

The curvature affects the run off direction and erosion potential and by that the soil

moisture patterns of a slope (Souza et al. 2006).

Plan curvature
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Figure 8: Slope described by combinations of profile and plan curvature (Schauppenlehner 2008
(modified)).

The convergence divergence index (CDI) is a relative measure in percent of flow direc-
tion vectors of neighboring pixels that point into the direction or away from the central
pixel. A CDI of 100% means complete divergence (all neighboring pixels point away from
the central pixel, Figure 9a), while a CDI of -100% means complete convergence (like a
sink, all neighboring pixels point into the direction of the central pixel, Figure 9c). A CDI
of 0% would say that the same number of vectors that point into the direction of the

central point away from it (Figure 9b).

For the channel network base level the vertical distance to the local channel network
base level is calculated. The channel base level is the elevation at the channel bottom at
the point where all runoff from the watershed leaves the watershed. The algorithm
calculates the CNBL two major steps: First the channel network base level elevation is
interpolated, and afterwards this base level is subtracted from the original elevations

(Conrad 2002).
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Figure 9: Convergence / Divergence Index (Kéthe & Lohmeier 1993).

SAGA uses the multiple flow direction algorithm of Freeman (1991) to calculate specific
catchment area (SCA).This algorithm calculates for every pixel the up slope drainage

area. It is a prerequisite to calculate the SAGA wetness index.

The TWI (Beven and Kirkby 1979) was derived by the equation TWI = In(a/tan B), where
a is local upslope contributing area and B is the local slope. It is commonly used to
guantify topographic controlled hydrological processes (Sgrensen et al. 2006). In this
case for each grid cell the catchment area is defined as the discharge contributing
upslope area of each grid cell. The specific catchment area, defined as the corresponding
drainage area per unit contour width, was computed using the multiple flow direction
method (Bohner et al. 2006). The index is used to identify soil moisture patterns within a
catchment, which have a strong relation to soil forming processes. However, in rather
flat areas of a catchment differences in altitude cause random like flow pattern, which
distinctly limit the predictive capacity. The SAGA wetness index modifies the specific
catchment area SCAy, of each grid cell in iterations as a function of slope angle B and the
neighboring maximum values SCA,,. unless results remain unchanged (Bohner et al.
2006)

1 ),Bexp(15'3)

1 Bexp(15F)
SCAy = SCAmax (= )

for SCA < SCAmax (=2

(2)

The SAGA wetness index is then computed as a tangent function of slope and SCAy,
(Bohner et al. 2006).

swi = in (34) 3)
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Figure 10: Selection of applied terrain attributes (Co-Variables).

Figure 10 reports the calculated TWI and SWI for the Rio Mannu catchment. Both indices
characterize the valley part consequently with a higher wetness index. The patterns of
the TWI are clearer drawn and differences in the index are strongly related to the
distance to streams. The SWI on the other hand is characterized by more smooth
patterns. Detailed information regarding the terrain analysis procedure of SAGA GIS can
be found in Olaya (2004), Conrad (2006) and Hengl (2009).

3.4 Data handling

The GPS information and the ID identifier of the soil samples (section 3.1) were used to
create a geo-database and lab-analyzed information about grain size distribution and

organic content.
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Regionalization methods like Multi-Linear-Regressions, Regression Kriging use secondary
information (e.g. DEM, SLOPE, ASPCET etc.) to predict the target variable at unknown
locations. This is often done by a linear regression model, which is developed based on
the relationship of target variable and secondary information at sampled locations, as
illustrated in sections (1.3, 3.5 and 3.7). The R-gstat library (Pebesma 2004) was used to
read out and apply the pixel values of the terrain attributes (section 3.3) for each soil
sampling location. The geo-database was the basis to proceed with the (geo-) statistical

analysis and interpolation of soil physical properties.

3.5 Applied deterministic soil regionalization models

3.5.1 Multiple linear regression (MLR)

The multi linear regression is a widespread statistical analytical method to predict a
target variable Z by one or a set of independent coefficients or co-variable(s), by the

assumption that the conditional mean function is linear.

Z(So) = Bo + B1BX1(So) + -+ BaBXq(So) + €, (4)

where B, is the intercept, 4, ..., g are the regression coefficients for the independent

information (explanatory factors) and € is the residual error.

The multiple linear regression equations were determined by applying the data of the

soil physical data and the terrain attributes into the MLR model:

Zo1s(So) = Z,I;O Bredi(so) (5)

Where qy(so) are the values of the p covariates and By are coefficients that have to be

estimated using the Ordinary Least Squares (OLS) with,

B=(q"xq) txq" xz, (6)

where g is the matrix of predictors (n*p+1) and z is the vector of sampled observation.
The prediction error (residuals) was calculated by determining the mean square error

(MSE) around the regression line (Hengl 2009).
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In order to estimate Z with a minimum number of independent co-variables getting in
the appropriate final regression equations, a backward stepwise procedure was used.
Only those auxiliary variables that were significantly correlated with any particular
target variable regarding spearman rank correlation coefficients have been considered

as initial regressors.

3.5.2 Inverse Distance Weighting (IDW)

As a second interpolation method an inverse distance weighting (IDW) interpolation
model (Shepard 1968) was applied to the soil physical properties. This technique has
been widely used in the past and is probably one of the oldest spatial prediction meth-
ods (Hengl 2009). In an IDW interpolation model the weighted average is used to derive

the value of a target variable at new location:
2(s0) = Xiz1 Ai (s9) * 2(S) (7)

Where A; is the weight of neighbor i. The interpolation is unbiased as long as the sum of
weights sum up to one. The inverse distances of all sample points relative to the new

point are used to determine the weights:

1
B .
Ai(se) = =220 s B> 1 (8)

=04B (50,5

Where d(S,, S;) is the distance between sampled points and f is the coefficient that is
used to adjust the weights. By this method sampled points that are close to the un-
known location will obtain high weights, while those points that are far away will
influence the interpolated value only with small weights. The term 3, in some literature
referred as power, is used to emphasize spatial similarity. A popular choice of f is two
(Webster and Oliver, 2007) S but should be adjusted in the way, that it reflects the true

strength of the autocorrelation of the feature space (Hengl 2009).
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3.6 Geostatistical interpolation models (Kriging)

Geostatistics have its origin in the gold mining industry and got popular with the re-
search of the engineer Krige (1951), who developed a stochastic approach to predict
gold deposits. Since that time this basic (Kriging) approach was further developed,
modified and improved along with the evolution of computational performance. This
field of applied mathematics deals with the description and prediction of natural phe-
nomena in space and time (Akin & Siemes 1988). Today different geostatistical kriging
approaches are applied widely and with increasing sophistication in petroleum engineer-
ing, mining and geology, meteorology, hydrology, soil science, precision agriculture,
pollution control, public health, fishery, plant and animal ecology, and remote sensing
(Webster & Oliver 2015).

The value of a natural variable z can change in space and time completely random or
discontinuous or more or less continuous. This fact reveals the problem that a complete
and true mathematical description of the variance of z is neither possible by statistics
nor by a deterministic formula. However, a functional description of local variance can
be made, by the fact that in natural systems values of neighboring points are normally
more common than those at larger distances. Matheron (1965) improved the idea of
Krige (1951) by treating the variation of z as though it were random. In this case z at the
location x (z(x)) is one realization of infinity values of a random variable Z(x). The set of
random values at all such places, again infinity in number, in a region is a random
process, and also denoted Z(x). The random variable is spatially correlated at some scale
(Webster & Oliver 2015). Since a set of measured values are only single realization of the
total process, one cannot calculate statistics for a certain point. A model of local vari-
ance can be formulated anyway by the assumption of the stationarity process and the

intrinsic hypothesis. The assumption of stationarity is fulfilled if,

I. avariable with an expected mean (u) exists and is not dependent from the loca-

tion (x),
II. the covariance exists for every pair of random variables,

lll. the covariance is only dependent on the distance of points.
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The covariance cannot exist when the mean is not constant, which leads to the assump-
tion of the intrinsic hypothesis of Matheron (1965). Here the covariance is replaced by
half of the variance of differences the so called semi-variance. This function of distance

is described mathematically as:
y(h) =S E[{Z(x) - Z(x + h)}*] (9)

Where h is the separation in both distance and direction, Z(x) and Z(x+h) are the values
of Z at places x and x+h and E denotes the expectation. On grounds of the semi-variance
function one can calculate the experimental variogram from the sampled data points

z(xi):

P(h) = Zml(h) Z;.Z(f){z(xj) —z(x; + h)}?, (10)

where m(h) is the number of paired comparisons at lag h. The semi-variances at un-
known locations can then be computed by fitting a smoothing curve to the experimental
variogram points and create a theoretical variogram model (Figure 11). Now a semi-

variance value can be identified for every location in feature space.
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Figure 11: Scheme of a theoretical variogram model.
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In this study the theoretically variograms were determined by using the isotropic
spherical-plus-nugget model, which is the most popular variogram function (Webster &
Oliver 2015).

3
y(h)=CO+C{%—%(%)}f0r0<hSr (11)
=Cop+Cforh>0 (12)
=0forh=0 (13)

Where h=[h/ is the lag distance, C, the nugget variance, C the spatially correlated

variance, and a the range, which is the limit of the spatial correlation.

The total of sampled points of N=239 for Rio Mannu catchment were applied into the
variogram analysis as a prerequisite for the applied Ordinary Kriging interpolation
(section 3.6.1). The same was done with the residuals of the MLR and is a prerequisite
for the Regression Kriging (section3.7). The single soil physical properties and the
residuals of the MLR were tested on normal distribution and second order stationarity
before. Variogram models were computed automatically using an automated R-script
and the R-statistic packages “gstat” (Pebesma 2004) and automap (Hiemstra et al.
2008). Oliver and Webster (2014) strongly recommend to not fit variograms by eye
anymore, since the results are unreliable. They instead recommend for the variogram
modeling a method that is implement in the automap R-library. The algorithm uses
initial values. The initial sill value is estimated as the mean of the max and the median of
the semi-variance and the initial range is defined as 0.10 times the diagonal of the
bounding box of the data. The “autofitVariogram” function in “automap” iterates over
possible variogram models and picks the model that has the smallest residual sum of
squares with the sample variogram (Hiemstra 2008). The results of the kriging ap-
proaches presented in sections 3.6.1 and 3.7 are heavily dependent on the applied

variogram model.

3.6.1 Ordinary Kriging (OK)

Kriging is a generic term for a range of least-squares methods to provide, in terms of

minimum variance, the best linear unbiased prediction (BULP) (Webster & Oliver 2015) a
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standard version of kriging is Ordinary Kriging (OK) (Matheron 1965), in which the

prediction are based on the Model:
Z(s) =p+e(s) (14)

Where | is the constant stationary function (mean of the total sampled target variable)
and £'(s) is the spatially correlated stochastic part of the variation. The predictions are

made using,
ZOK(SO) = Xt 4i(So) * Z(S) = AE *Z, (15)

Where 17 is the vector of the kriging weights 1; and Z is the vector of n observations at

primary location (Hengl 2009).

The weights of the kriging predictor are determined for a point S in the way that the
prediction error is zero, the variance of the prediction error in minimal and the sum of
weight a (1;) is one. The variance error is minimized by introducing the lag-range
multiplier which leads to an equation that can be solved:

Y (h) = {Z?zl iv(Sj = Si) + LESOA) - )/1(Sj —Sp)j=1,..,n 16)

where y(Sj — Si) is the semivariance between data points i and j and y(Sj — S,) is the

semivariance between the target point S, and the lag-range multiplier Y(S,).

OK is the most popular and referred as the “work horse” of geostatistical interpolation
methods since it serves well in most situations with its assumptions easily satisfied. OK
solves a set of linear equations in the kriging system, and needs for this the semi-

variances that come from the fitted variogram model (Webster & Oliver 2015).

The OK interpolation was applied on the sampled soil properties as well as on the

residuals of the MLR and then applied into the Regression Kriging model (section 3.7).
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3.7 Hybrid Interpolation Model — Regression Kriging
(RK)

A disadvantage of pure deterministic or pure stochastic interpolation models is that
predicted maps often show patterns that appear unnatural. Kriging tends to under-
estimate large values and overestimate small values at unsampled locations (Oliver &
Webster 2015).

A solution to avoid these problems is, to use multivariate prediction techniques that
include co-variables in the geostatistical prediction model (Adhikari et al. 2013). So
called hybrid methods are able to overcome disadvantages of pure mathematically
based or pure CLORPT & SCORPAN based models and are able to combine advantages of
both. RK is a combination of a multivariate deterministic regression model and the
stochastic kriging model. It was first introduced by Odeh et al. (1995) and is also called
kriging with external drift.

Due to inaccurate measurements and limited process knowledge the modeling of spatial
data is often based on stochastic considerations. Following the notation of Hengl (2007),
it denotes a gaussian spatial process Z(s) that can be decomposed in a deterministic part
(section 3.5) and a stochastic part (section 3.6), which can be modeled independently.
RK is a hybrid method that combines the advantages of the deterministic and stochastic

part in model so we obtain:
Zok(So) = M(Sp) + 6(So) =Xheeo Br * qi(So) + Xi1 ;i * e(S;) (17)

where (Sy) is the fitted deterministic part, é(S,) is the interpolated residual, f, are
estimated deterministic model coefficients (8, is the estimated intercept), A; are kriging
weights determined by the spatial dependence structure of the residual and where

e(S;) is the residual at locations S; (Hengle 2009).

The regression coefficients 3, were estimated in this study by a MRL (section 3.5) which
was applied to the soil physical properties and the terrain attributes (section 3.3) and
fitted using ordinary least squares (OLS) method. A backward stepwise procedure was
used to reduce the amount of co-variables and getting an appropriate final regression

equation. Only those auxiliary variables that were significantly correlated with the

41



Methodologies of the regionalization of soil properties

particular target variable regarding Pearson’s correlation coefficients were considered as
initial regressors. The applied co-variables of the final regression model were finally
tested on multicollinearity (Hengl et al., 2004). The final regression models were deter-
mined, by relating the soil properties with the pixel values of the terrain attributes at the
sampled location. With this procedure a single deterministic grid Zpr* for every soil
texture was interpolated. The resulting residuals of the final regression models, based
on the sampling locations, were applied into a variogram analysis (section 3.6) and
finally interpolated using the OK interpolation (section 3.6.1). With this procedure a grid
of the MLR residual error (¢ *) had been interpolated for every soil texture. The final RK
prediction result map was calculated by the sum of the Zpr* and &* grid for every soil

texture (Figure 12).

The advantage of the RK model compared to the pure deterministic and pure stochastic
model is that the deterministic part allows the application of secondary information that
is normally available in higher resolution then the target variable. The stochastic part
respects and applies the interpolation error of the deterministic model spatially distrib-
uted. RK involves various combinations of different regression and kriging models
(Ahmed et al. 2010). Seo et al. (2015) found that hybrid regionalization models including

RK outperform pure stochastic approaches like OK, simple kriging and universal kriging.
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Figure 12: Scheme of the applied regression kriging model (after Odeh et al. 1995).

3.8 Validation of the model performance

The prediction performance of applied interpolation models was tested against the
sampled soil physical properties. The model performance was assessed using a leave-
one-out cross-validation (Isaaks & Srivastava 1989). Both the root mean square error
(RMSE) and the mean absolute error (MAE) are regularly employed in model evaluation
studies. But if the error distribution is expected to be Gaussian, than RMSE is more

appropriate to represent model performance than the MAE (Chai and Draxler 2014).

Due to that the accuracy of each model run was compared with the Root Mean Square
Error RMSE = [1/n Y™ ,(2; — z)]Y?, (18)

with Z; and z; being the predicted and measured values, respectively.
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4. RESULTS AND DISCUSSION OF
THE REGIONALIZED SOIL
PHYSICAL PROPERTIES

4.1 Results soil sampling and lab analysis Rio Mannu

The descriptive statistics of the collected 239 soil samples are summarized in Table 1.
The sand content is increasing with higher elevation while for clay it is the opposite. The
samples show highest clay values of up to 50% in the north-western part of the catch-
ment, while sand fractions are dominant in the middle and eastern part of the
catchment. Silt is the dominant fraction in a small area in the southern middle and in the
southeastern part of the catchment. The standard deviation (SD) of silt 6.85 is signifi-

cantly lower compared to sand 13.48.

Table 1: Descriptive statistics of collected and lab-analyzed soil samples; Rio Mannu (N=239).

TARGET Min Max Mean Median SD cv Skewness Kurtosis

Rio Mannu, N=239

CLAY % 5.20 63.19 31.00 31.87 11.29 36.42 0.05 -0.60
SILT % 6.16 50.23 26.32 26.57 6.85 26.01 0.11 0.84
SAND % 6.89 88.64 42.68 40.65 13.48 31.58 0.54 0.69

Figure 13 reports the sampling locations and the classified soil textures following the
German KA5 (Sponagel 2005) and the United States Department of Agriculture (USDA)
classification system. Note that the class breaks of the German classification system in

soil texture triangle are black, while those of the USDA system are red. Sampled soil
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textures are dominated by more than 40% clay in the northern-western part and in the
denser sampled Riu Costara sub-catchment (KA5 = Lts, Lt3, Tu2, Ts2 and Tl; USDA = Cl).
This area is followed in the south by a band directing from northeast to southwest, that
is dominated by clay loam, sandy clay loam and loam (USDA = ClLo, SaCllLo, Lo). Those
soil texture classes are also very dominant close to the basin outlet in the southwest.
The mountainous region in the east is whether covered by loam or sany loam ( KA5 =
Ls3, Ls4, Sl4; USDA = Lo, Salo).

The relative higher sand content in those exposed areas indicates that finer fractions
were already eroded and transported in to the lower areas of the catchment. The rather
low variance of silt might be an indication the spatial distribution is strongly influenced

by Aeolian processes and as indicated already in section 2.1.3.
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Figure 13: Soil sampling locations in the Rio Mannu di San Sperate, and sampled texture classes classified after the German classification system (KA5 of Sponagel 2005) and the United
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4.2 Selection of Co-Variables for the Rio Mannu

catchment

The relief often has a strong influence on the pedo-genisis since it controls and impacts
the local gravity, climate, water and living environment (Scheffer & Schachtschabel
2002). This hypothesis was tested for the sampled soil data by correlating the soil
textural fractions with the primariy and secondary terrain attributes presented in

section 3.3.

The Pearson coefficients of correlation (r) for each soil texture fraction and the co-
variables are presented in Table 2. For both methods correlation coefficient are low.
Highest values but still low correlations are visible for the fraction sand and clay. Both
fractions show highest correlation with digital elevation model (DEM). The positive r of
sand and the negative r of clay with the DEM confirm the influence of the relief on the

distribution of soil textural fractions in the catchment.

Table 2: Pearson coefficients of correlation surveyed soil samples and the primary and second-
ary terrain attributes presented in section 3.3.

Pearson N=239

Co-Variable CLAY SILT SAND

A -0.01 -0.15 0.12
8 -0.27 0.08 0.21
CcDI 0.03 -0.06 0.03
Ch 0.02 -0.03 0.03
Cv -0.03 -0.03 0.07
DEM -0.34 -0.10 0.36
LS -0.30 0.09 0.24
SPI -0.22 0.12 0.13
sSwi 0.33 -0.08 -0.28
TWI 0.17 -0.04 -0.15

The same, but in an opposite manner, is true for the correlation of both fractions with
the Saga-Wetness-Index (SWI). This reveals that at locations with high clay content in
the catchment the specific catchment area is larger than at locations with a high sand

content. However, the low correlation of all terrain attributes reveal that important
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processes which significantly influence the distribution of the soil properties can’t be
explained by the terrain attributes. This is especially true for the fraction silt. This
confirms the assumption that the silt distribution is dominated by other processes like
wind deposition. The significantly lower correlation of silt fit to the low coefficients of

variation and the low standard deviation presented in Table 1.

The very low correlation of all fractions to the terrain attributes Cv, Ch & CDI reveal the
shape of slope does not have a significant influence on the soil forming process. The low
correlations to the stream power Index (SPI) indicate that local gully erosion only has

minor influence on the distribution of the soil textures clay and sand.

The low correlation might also be a result of the large scale of the case study. Kriiger
(2008) showed that the correlation coefficients between soil properties and terrain
attributes were significantly reduced on the regional scale compared to the field scale.
The very strong heterogeneity in the catchment supports the plausibility of this hypoth-

esis.

The co-variables of the terrain attributes were used as predictors in a stepwise (back-
ward and forward) Multi Linear Regression (MLR) and Regression Kriging (RK) model. A
maximum of 4 predictors (B;) were applied into the MLR and RK following Hengl et al.

(2007). The derived MLR equations for clay, silt and sand are as followed:

Clay =7.10 + (-0.02*DEM) + (0.06*CDI) +(1.63*SWI); (19)
(R?=0.2; p £0.001)

Silt =22.62 + (0.41*TWI) + (-0.01*A) + (18.32*B); (20)
(R?=0.1; p < 0.001)

Sand = 75.00+ (0.03*DEM) + (-0.07*CDI) + (-2.13*SWI) + (-32.58*R) (21)
(R?=0.1; p < 0.001)

where A is aspect, f8 is slope, SWI is the SAGA wetness index, DEM is the elevation TW/ is

the topographic wetness index and CDI/ is the convergence-divergence-index.

Even though there are no strong correlations visible for the terrain attributes CDI (with

clay and sand) and TWI (with silt), surprisingly these terrain attributes found entrance
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into the final MLR model. The final MLR equations were used on the grid of the terrain

attributes to derive the spatial distribution of the single textures and the resulting

residual errors at sampling location were applied into the variogram analysis.

4.3 Variogram analysis

The collected and lab-analyzed soil samples were automatically interpolated following

the equations introduced in the sections 3.5 & 3.6 by using the R package “automap” of

Hiemstra et al. (2008) (section 3.5). Variogram models were calculated for the target

textures clay, silt and sand (Figure 14a) and for the residuals derived from the MLR (4.2)

for each texture, respectively (Figure 14b). All variogram models were calculated using

the spherical model. Figure 14a presents the experimental and theoretical variogram

model of the soil properties clay, silt, sand, and their residuals, while Table 3 reports the

derived parameters of the theoretical variogram models.
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Figure 14: Variogram modeling for a) the soil textures clay, silt and sand and b) the correspond-

ing residuals for each fraction.

The sand fraction shows the highest nugget variance (), partial sill (Cs) and the largest

range for the target variable as well as for the residual error of the MLR (Figure 14a).

The nugget to sill ratio enables the comparison of the relative magnitude of the nugget

effect of soil properties (Zhao et al. 2012). The theoretical variogram models of soil

properties show a medium spatial dependence with a nugget to nugget sill ratio (NSR) of
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<25% to >75%. The low NSR of 26% of the sand fraction indicate the strongest spatial
dependence. The low NSR and the high semi-variance fit well the findings in sections 4.1
& 4.2. The variogram model of the silt fraction in comparison is rather flat, and the NSR
of 51% percent indicates a much lower spatial dependence for this soil property. The
same is true for the variogram of residuals of the silt fraction. The shortest ranges are
visible for the clay fraction as well as for the clay residuals. The relatively high nugget
variance of clay as well as the short range, indicate that this fraction varies strongly in
short distances and that a lot of small scale variance is not covered by the collected soil

samples. In comparison to that is the NSR of the clay residual lower as for clay.

Table 3: Derived theoretical variogram-model parameters of the target variables clay, silt and
sand and the residuals (clay,.,, silt..s and sand,.).

Rio Mannu N=239

Soil Theoretical Nugget Partial sill Range NSR
properties Model Co Cs (m) (%)
CLAY Spherical 48 123 2113 39
SILT Spherical 27 53 4292 51
SAND Spherical 58 226 5485 26
CLAY s Spherical 56 113 3880 50
SILT es Spherical 24 52 5037 46
SAND s Spherical 62 208 6648 30

The semi-variance in the experimental variogram of the clay fraction is increasing after
reaching sill at a range of approximately 5000m to 10000m and then dropping again
strongly. Dual scale processes might be present due to the fact that the natural soil
texture distribution (large scale) is different by the agricultural management, on the field
scale (small scale). An automatic variogram fitting on anisotropy target variables is not
possible in the used R-package “automap”. The variogram models of the target variables
and of the residuals were applied into an Ordinary Kriging (OK) and Regression Kriging
(RK) model (Odeh et al. 1999), respectively.
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4.4 Predicted soil physical properties

Figure 17, Figure 16 & Figure 17 report the result maps with the spatial distribution of
the soil properties clay, silt and sand using the applied interpolations methods (sections
3.5,3.6 &3.7).

The distribution of the target soil properties is roughly similar. The clay fraction (Figure
17) shows higher relative percentages in the north-western part of the catchment and a
little spot with increased clay values in the south-western part of the watershed, while
the mountainous parts are lower in clay content. The opposite can be recognized from
the distribution of the sand fraction, with high values in the eastern part and in the
center of the catchment. Especially the result maps of sand and clay derived by OK, look
like inverted maps of each other. The silt fraction (Figure 16) shows the lowest range of
30%. Highest values up to 42% can be recognized in a small band that reaches from the
southern-center to eastern center and two spots of high silt content are visible at the

catchment boundary in the western center and in the southeast.

The local patterns of high and low values of the textures in the predicted maps, on the
other hand, are very different. One can clearly recognize that the maps show typical

spatial patterns depending on the applied regionalization method.

The result maps derived with the MLR show similar patterns. Here the strongest predic-
tor applied in the regression model dominates the spatial distribution of regionalization
results. For clay and sand the pattern of the derived MLR maps follow the DEM, which is
the strongest predictor in the MLR equation (section 4.2) and for the MLR silt results can

recognize the pattern of the slope grid (Figure 10).

52



Results and discussion of the regionalized soil physical properties

a) MLR b) IDW
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Figure 15: Spatial distributed prediction results of the soil property clay using a a)Multi-Linear
Regression, b) Inverse Distance Weighting, c) Ordinary Kriging and d) a Regression Kriging
interpolation approach.

The result maps determined with IDW show another extreme spatial distribution. In all
IDW maps the typical “bulls eye effect” is visible. These restricted areas are character-
ized by extreme high or low values within a short range. This well-known effect makes
the maps look rather unnatural and patchy. The comparison of the IDW and MLR maps
shows the limitations of the MLR method for the soil texture prediction. The MLR silt
prediction shows a large patch of high values in the south-eastern part of the catchment
which are not visible in the IDW and OK prediction. This patch seems to be wrong and is
a result of the rather poor correlations of silt and the applied predictors, as shown in
section 4.2. The spatial prediction of MLR silt map follows strongly the positive spatial
correlation with the slope grid. The maps of the OK predictions also show the “bulls eye
effect” but less strong compared to IDW predictions. The transition of areas with high
and low values in the OK predictions appear much smoother compared to IDW. This
smoother appearance is a well-known problem of the OK prediction for example report-
ed in Rezaee et al. (2011) and Yamamoto (2005).
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a) MLR b) IDW *
SILT [%]

c) OK d) RK - 42

Figure 16: Spatial distributed prediction results of the soil property silt using a) Multi-Linear
Regression, b) Inverse Distance Weighting, c) Ordinary Kriging and d) Regression Kriging
interpolation approach.

The Regression Kriging maps appear to have the most naturally looking patterns. On the
one hand one can clearly identify areas with extreme value as visible in the IDW and OK
prediction maps, but on the other also the influence of the MLR prediction. This is quiet

subjective impression but the distribution appears to be less artificially constructed.

Table 5 compares the descriptive statistics of the sampled fractions to those of the
interpolated soil property maps. Sampled extreme values of all fractions are not repre-
sented by any prediction method. For the clay fraction MLR is closest to the minimum
value of 5.2% while the OK is closest to the sampled maximum value and IDW fits best
the recorded mean and median values. The differences between the sampled mean and
median values compared to the interpolation methods are quiet high. For the mean IDW
performs best while RK performs worst. This is astonishing, since the Root Mean Square

Error (RMSE) presented in Table 5 identifies RK as the best performing prediction
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method (RMSE= 8.82), while IDW is less precise and MLR shows the strongest deviation

between measured and predicted samples.

a) MLR b) IDW ]
SAND[%]
o

c) OK . d) RK . 54

Figure 17: Spatial distributed prediction results of the soil property sand using a a) Multi-Linear
Regression, b) Inverse Distance Weighting, c )Ordinary Kriging and d) a Regression Kriging
interpolation approach.

The sample mean and median values of the silt predictions are better represented by
the different regionalization methods. Deviation of sampled und predicted mean and
median are less than 1 Vol.-% for all regionalization methods. The representation of the
total sampled range on the other hand is a different story. Here the prediction results of
the IDW are closest to the sampled extreme values. The RK regionalization shows again

best prediction performance, but is only slightly better than OK.
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Table 4: Descriptive statistics of the predicted soil property maps.

CLAY Sampled MLR IDW OK RK
Min. 52 64 114 94 104
Max. 63.2 41.2 56.7 50.2 482
Mean 31 26.3 298 26.2 25.7
Median 319 26.4 289 226 232

SILT Sampled MLR IDW OK RK
Min. 6.2 218 116 16.1 15.6
Max. 50.2 36.0 443 356 389
Mean 263 27.2 259 263 265
Median 26.6 26.6 26.0 264 26.3

SAND Sampled MLR IDW OK RK
Min. 69 314 89 171 20.7
Max. 88.6 693 749 745 69.7
Mean 42.7 46.5 443 475 478
Median 40.7 46.5 45.1 51.1 50.5

The lowest RMSE in predicting the sand fraction are achieved by the OK regionalization,
even though sampled mean and median are worst represented by this method. The
range of sampled values is best represented by IDW. Highest prediction errors of RMSE
10.7-12.8% are visible for the sand fraction, while the RMSE of silt is the lowest of all

applied regionalization methods.

Table 5: Cross-validation results of the soil texture regionalization.

CLAY SILT  SAND

RMSE MLR 10.21 6.71 12.85
RMSE IDW 9.18 5.96 10.77
RMSE OK 9.02 591 10.51
RMSE RK 8.82 5.77 10.68

RMSE=root mean square error, MLR Multi-Linear Regression, IDW=Inverse Distance Weighting,

OK= Ordinary Kriging, RK= Regression Kriging

From all applied interpolation techniques the stochastic Ordinary Kriging (OK) model and
hybrid Regression Kriging (RK) model showed the best prediction performance with
lowest RMSE. But IDW, OK and RK produce nearly the same RMSE results for the silt and

sand fraction with only minor differences. RK shows the best performance for the clay
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and silt fraction, but the prediction performance is just minor improving the prediction
results compared to OK. The opposite result is true for the sand fraction. This indicates
that the variance of the target variables is more represented by stochastic total random
model and the deterministic explanation is rather small. This hypothesis corresponds to
the high (semi-)variances in the variogram models of the residuals of the multi-linear-
regressions (MLR) and the high RMSE in the prediction of the MLR model for all target
variables (Figure 14 & Table 5).

4.5 Classified soil texture result maps

The three interpolated texture grids of the fractions clay, silt, and sand were used to
create new classified soil texture maps for each applied regionalization method. There-
fore the German classification system of Sponagel (2005) was applied to the soil texture
result maps presented in section 4.4. Figure 18a shows the soil information used in the
CLIMB-project based on the soil map of Aru et al. (1990) (ARU map).

Figure 18b-e report the results and differences of the soil maps that were calculated
based on the applied interpolation techniques. While in the map of IDW the typical local
hotspots or bulls eyes can still be observed, even after the classification, OK shows a
smoothing effect. The IDW map appears to be very unrealistic since most of the catch-
ment is heterogeneously covered by sandy-clay-loam (Lts), and only at a few restricted

areas different soil texture classes are visible.

In the maps of the MLR typical patterns of the predictor maps are visible (DEM & SLOPE
GIRD). The soil maps, that were interpolated based on the soil sampling survey, draw in
general a more distinct picture of the spatial soil texture distribution in the catchment
compared to the Aru et al. (1990) soil map (ARU map). In the ARU map only 6 soil
texture classes are present, while the interpolated maps distinguishes up to 16 soil
texture classes. This indicates clearly a more natural spatial representation of soil
properties in the catchment, since the composition of soil textures naturally varies

highly in spatial extent.
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Figure 18: Distribution of soil texture classes in the Rio Mannu catchment a) Official CLIMB soil
map based on Aru et al. 1990, b) Inverse Distance Weighting model, c) Ordinary Kriging model,
d) Multi-Linear-Regression, e) Hybrid Regression Kriging model and f) Composite soil texture
classification triangle following the German and the USDA classification system with sampled
textures.

The ARU map seems to overestimate the clay (Tl) fraction in the north western part of
the catchment. The regionalized soil maps show in comparison to that only small spots
of Tl, while the majority is classified as sandy-clay-loam or Lts. A large area in the south
western part of the catchment is classified as sandy loam (SI4) in the ARU map. This
texture class is only visible in small patches in the IDW, OK and RK soil maps, but is
relatively large in the MLR map. This indicates the ARU map was maybe derived based
on a MLR regionalization approach. In all predicted maps Lts and Ls4 are the most
dominant soil textural classes in the catchment. Surprisingly the LTS soil textural class

doesn’t even appear in the ARU map.
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4.6 Closing discussion of the soil texture regionaliza-
tion

State of the art filed monitoring techniques were used to collect soil texture information
and applied geostatistical interpolation models like Regression Kriging (Odeh et al. 1995)

to interpolate recorded sampling results at catchment scale.

If the spatial information of soil textural properties were significantly improved com-
pared to available soil information of Aru et al. (1990), cannot be stated since the base
sampling information of the Aru et al. (1990) soil map was not available for comparison.
But what can be clearly stated is that the patterns of the derived RK soil maps appear
much more natural looking, compared to the Aru et al. (1990) map. The quality of the
soil texture maps based on the root mean square error (RMSE) is a similar range to other
studies. 77 soil samples, of the Rio Mannu data set used in this study, were applied by
Ehlers et al. (2015) into a kriging model to predict top soil texture in the test site. The
prediction errors of the resulting soil texture maps of this study are in good correspond-
ence or in some cases even outperform their results. The RMSE of the predicted clay
texture map RMSE = 8.8 % (Regression Kriging approach) is below the results of Sun et
al. (2012) RMSE = 16.1%, Odeh & McBratney (2000) RMSE = 10.2% and Ehlers et a.
(2015) RMSE = 9.9% but slightly higher than in McBratney et al. (2000) RMSE = 6.1%. The
lowest RMSE for the clay prediction was found in Sumfleth & Duttmann (2008) RMSE =
4.6%. Only two studies where RK was used to predict silt were found in literature. The
prediction error RMSE = 5.36% of Sumfleth & Duttmann (2008) is similar to the RMSE of
the silt prediction in this study RMSE = 5.8% and outperform the prediction results of
Ehlers eta al. (2015) RMSE = 7.4%. The prediction error of the sand fraction RMSE =
10.7% is significantly lower compared to the studies of Ge et al. (2007) (RMSE = 19.8%)
and Ciampalini et al. (2012) (RMSE = 16.8%) and Ehlers et al. (2015) RMSE =13.6%.

The high Nugget values of the sand and clay fractions (CO clay=48 and CO sand=58 (Table
3)) indicate that a lot of small-scale variability (semi-variance) is not represented in the
field data. The Nugget value and the coefficient of variation of the silt fraction are much
lower. This is leading to better spatial prediction and lower prediction error. The low

NSR of 51% furthermore indicates that the silt fraction has a minor spatial dependence.
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The produced maps of the soil physical properties as well as the maps of the classified
soil textures show patterns that are strongly influenced by the applied prediction
method. From all applied prediction methods OK and RK show the best performance
(sections 4.4 and 4.5). The soil texture maps that were processed using RK have the
most naturally looking patterns, since this interpolation methods accounts for both, the

natural patterns in the deterministic model and the model error in the stochastic part.

On the one hand the RMSE of the applied regionalization models reveal only minor
differences in the prediction power of the regionalization methods, but on the other
hand if one compares the different soil textural maps (Figure 15, Figure 16 & Figure 17)
and the classified maps (Figure 18), significant differences in the spatial distribution of
predicted soil properties can be noticed. Applying these different soil maps might cause
uncertainties in the hydrological modeling. Since the RK prediction results performed
best for two textural classes (clay and silt), the derived textural soil map was used for
further investigations and tested in the physically based hydrological model WaSiM. The
influence of the soil physical input was investigated using two different WaSiM model
setups. One WaSiM model was set up with the Regression Kriging soil map (WaSiM-RKS)
and one was setup with the official CLIMB soil physical information derived from the Aru
et al. (1990) soil map (WaSiM-ARU). Hydrological simulation results of both soil model

setups were compared and changes were assessed (section 5).
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5. METHODOLOGIES
HYDROLOGICAL MODELING

5.1 Water balance Simulation Model (WaSiM)

The fully distributed process-based Water balance Simulation Model (WaSiM) (Schulla
1997) was applied in the test site to perform the hydrological simulations. WaSiM is
available in two different versions. Version 1 uses the more empirical based Topmodel
approach to calculate the fluxes within the unsaturated zone, while version 2 uses the
more physical based Richards-equation. In this study the WaSiM version 2 (Richards-

equation) was applied.

WaSiM was applied successfully for many hydrological climate change impact assess-
ment studies for example by Cornelissen et al. (2013), Gadecke et al. (2013), Muerth et
al. (2013), Ott et al. (2013), Veladzquez, et al. (2013) and many more. WaSiM is a distrib-
uted, deterministic, and mainly physically based hydrological model which runs in
constant time steps in a grid-based structure and uses the Richards equation to calculate
water flux within the unsaturated zone. WaSiM is composed in sub-modules (Figure 19)
which are processed for each time step and one by one for the entire catchment grid
(Schulla 2012). The complexity of used sub-modules can be adjusted depending on the
catchment characteristics and data availability. The different modules calculate various
hydrological variables like interception, discharge, runoff, snow melt, evapotranspiration

etc.
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Figure 19: Structure of the hydrological model WaSiM (Schulla 2014).

5.1.1 Water fluxes of the unsaturated zone

The applied WaSiM version uses the RIDCHARDS-equation for modeling fluxes within the
unsaturated soil zone. This is done one-dimensional in the vertical direction using a soil
with several numerical layers (Schulla 2015). In WaSiM the soil profiles are typically
formatted in multiple horizons, of different thicknesses each. If the groundwater module
is used in WaSiM, the thickness of these numerical layers has to be larger than the
“thickness of the uppermost (first) groundwater aquifer” to avoid the groundwater table

from falling below the deepest soil layer.

The continuity equation for this type of problem is given by:
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80 _9q _ 0 ( I¥(0)
E T 9z az( k(@) 0z ) (22)

0 water content (m3/3)

t time (s)

k hydraulic conductivity (m/s)

Y hydraulic head as sum of the suction ¥ and geodetic altitude h (m)
q specific flux (m/s)

z vertical coordinate (m)

The discretized RICHARDS-equation is given by:

A® _ Aq
At Az Qin — out (23)
with

q;, inflow into the actual soil layer (m/s)

q,, outflow from the actual soil layer (including interflow and artificial
drainage)

The hydraulic properties are dependent on the water content of the soil. In the soil
model this is considered in a discrete manner. The flux between 2 numerical layers with

indices u (upper) and [ (lower) is then given by:

hp(©4)—hr(©]) . 1 dy 1 di 4 1

q = Kepr * 0.5+(dy+d)) with kopp | ditdy K0 ditdy K©D (24)
with ¢ specific flux (m/s)
kess  effective hydraulic conductivity (m/s)
hy, hydraulic head, dependent on the water content and given as sum of
suction ¥(0©) and geodetic altitude hg,, (m)
d thickness of the layers under consideration (m)

The effective conductivity is the harmonic average of the conductivities of both layers. It

is possible to use layers with any thickness in this approach (Schulla 2013).
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5.1.2 Calculating real evapotranspiration

Actual evapotranspiration (ETR) is modeled according to available soil water, which is
determined by the Richards equation, with the actual capillary pressure as given by the
Van Gnuchten parameters. ETR is calculated as a fraction of the potential evapotranspi-
ration (ETP) after Penman-Monteith, if the soil water content undercuts the permanent
wilting point and the soil is not saturated. If the actual suction exceeds the permanent
wilting point, ETR is set to zero by the model. If the pressure head undercuts the satu-

rated status, ETR is equal to ETP. Besides a reduction as a result of dry soils ((E)(‘P) <
@wg) also the impact of too wet soils (1 * O, < O(W) < O4,;)is considered.

ETR:=0 0(¥) <0,, (25
ETR=ETP* (O(W) — 0,)/(Owg —Oup)  Oup < O(W) < Oy,  (26)
ETR= ETP; Oyg <1 * Oy (26)
ETRi= ETP* (Osat - G)(lpi))/(@sat —-—n* G)sat) nx* Osat < G(IP) < Osat
(27)
with i index of the soil layer (5.1.1)

ETR real evaporation

ETP potential evaporation

O(¥) actual relative soil water content at suction ¥(-)

WY(-)  actual suction (capillary pressure) (m)

n maximum relative water content without partly or total anaerobe
conditions (~0.9...0.95)

O, Saturation water content of the soil (-)

Oyg  soil water content at a given suction ¥'g

O,,  water content of the soil at permanent wilting point

(¥ = 1.5 MPa = 150m)

The parameters of the equation above are given as suction for each crop type to respect
land use variations. Due to this ETR depends on soil and crop type and can easily be

converted into a time dependent parameter as well (Schulla 2015).

A multiple land use table can be implemented. Therefore, the parameterization of
vegetation within the model can be arranged in Julian Days. For each defined Julian Day
and each crop type, varying stomatal behavior, root depth, leaf area index (LAl) and
Albedo can be defined. The days in between two defined Julian Days are automatically

linearly interpolated to simulate the full vegetation cycle each year. Sensitivity studies
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by Schulla and Jasper (2007) showed that the resistance parameters rs and ra in the
Penman-Monteith equation are very sensitive to the resulting evapotranspiration. These
two parameters can be calibrated in the land use table, and serve as a fitting parameter
within WaSiM, since in situ measurements of stomatal conductance, or resistances in

consequence, which are time intensive and hardly transferable at catchment scale.

To run the WaSiM V.2 (Richards-Equation) using the Penman-Monteith evapotranspira-
tion the availability of several climate input parameters in a daily temporal resolution is
necessary. These parameters are precipitation, air temperature, humidity, wind speed,
& global radiation (Schulla 2015).

5.1.3 Runoff generation

WaSiM generates base flow, interflow and surface flow. Base flow is generated only by
exfiltration of ground water into the channel network. The model was applied in this
study without using the groundwater model. In this case the base flow is generated
similar to the TOPMODEL-approach:

Qp=0Q,*Kq* e(hGW_hgen,O)/kB (28)
with
Qp base flow (m/s)
Q, scaling factor for base flow (or maximum base flow if the soil is
saturated) (-)
K, saturated hydraulic conductivity (m/s)
hew  groundwater table (m a.s.l.)
hgeoo geodetic altitude of the soil surface (upper limit 1* layer) (m a.s.l.)
kg recession constant for base flow (m)

The approach is applied to each grid cell of the model modeling domain.

Interflow is generated at soil layer boundaries if the slope angle is > 0 and a drop in
hydraulic conductivity is present. Interflow calculation starts from the last completely
saturated layer, down to the groundwater layer. Interflow is generated if the suction in a
layer holds <3.45m water column. In this condition the maximum possible drainable
water content of the actual layer is calculated and interflow as a result of conductivity

river density and hydraulic gradient is generated. The smaller result of that calculation
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determines the interflow g;,;. WaSiM considers also interflow generation by exfiltration
into infiltration from rivers and lakes. Interflow is calculated by a one dimensional
vertical finite difference scheme. Interflow will be translated by the model to the sub-
basin outlet using a flow time histogram (isochronic method). A more comprehensive
description of runoff generation is given in Schulla (2015). Finally surface runoff is ether
generated if the infiltration rate is below the precipitation rate or if the ground water

table rises up to the surface or above (full saturation of the unsaturated zone).

5.2 Setup hydrological model

This section describes the applied climate model simulations and the detailed para-

metrization and setup of hydrological WaSiM simulations.

5.2.1 Applied regional climate model (RCM) ensemble

In this study WaSiM was operated at a daily time step. To run WaSiM using the Penman-
Monteith-equation the meteorological input of five different climate variables is needed
(precipitation (mm), air-temperature (°C), relative humidity (%), wind speed (m/s), and
global radiation (W/m?)).

The climate variables were provided by different General Climate Model (GCM) —
Regional Climate Model (RCM) combinations of the EU FP-6 ENSEMBLES project. One
first skill measure of a climate simulation is to reproduce the climatology in a certain
area, for example like a hydrological basin. To ensure that the needed climate model
inputs fulfill those criteria, Deidda et al. (2013) investigated different hydrological basins
of the “EU FP-7 CLIMB-Project” with the ENSEMBLES RCMs in an A1B emission scenario.

IPCC emission scenarios of the Al family reflect a 21st century future world character-
ized by a rapid economic growth, a global population growth that peaks in the mid-
century and declines thereafter and a rapid introduction of new and more efficient
technologies. The Al scenario family develops into 3 groups that describe alternative
directions of technological change in energy systems: The fossil-insensitive (A1Fl), non-

fossil energy sources (A1T), and a balance across all sources (A1B) (Christensen et al.
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2007). In this study the climate projections are based on greenhouse gas and aerosol
concentrations from the A1B emission scenario, which are considered the most realistic
(Nakiceovi¢ et al. 2000), and which are the most complete data sets in the ENSEMBLES
data base (Deidda et al. 2013).

CRU E-OBS reference observation datasets were used to test the suitability of the RCMs
in representing the climatology in the Rio Mannu di San Sperate catchment and in the
other CLIMB test sites. Based on this investigation the four best performing RCMs were
chosen. The historical meteorological situation in the RMB, with respect to the state of
the art CRU E-OBS reference datasets for the control period of 1951-2010 (Bird et al.
2015), was best reproduced by the ENSEMBLES RCMs ECHAM-5 REMo (ECH-REM),
ECHAM-5 RacMO (ECH-RMO), ECHAM-5 RCA 3 (ECH-RCA) and HadleyCM3 RCA (HCH-
RCA).

Since even the best performing RMCs showed quite a deviation to the observed clima-
tology, a large scale bias correction of precipitation and air temperature fields was
applied to the four chosen RCMs using the E-OBS data sets, by applying the daily transla-
tion method (Piras et al. 2014).

The bias correction uses a monthly cumulative distribution function (CDF) of observed
(Fops) and simulated (F,) daily variables. The unbiased daily value for precipitation and

temperature were calculated by:

x* = Fops[Foim (¥)] (29)
with  x* unbiased value
X daily biased climate variable value

F,ps CDF of observed daily variable
Fsim  CDF of simulated daily variable
F,L istheinverse of F,

Fobs and Fgn, were derived on a monthly mean basis pooling together all daily observa-

tions for each month (Piras et al. 2014).

The E-OBS bias corrected precipitation was downscaled using multifractal cascades
starting from areal averages of daily precipitation (Deidda et al. 2013). For the Rio
Mannu basin a total of 800 precipitation events were used to derive model parameter

and identify the calibration relations as a function of R for the study area. Detailed
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information on the applied downscaling methods can be found in Mascaro et al. (2013)
and Deidda et al. (2013). Finally remaining local biases were corrected based on the
observation data of 13 precipitation gauging stations within the catchment over a period
of 1951-2008 Piras et al. (2014). Air temperatures from the ENSEMBLE RCMs were

downscaled based on the procedure described in Liston and Elder (2006).

Simulations were performed for a reference time period (REF) (1971-2000) and a
projection time period (FUT) (2041-2070).

5.2.2 Modeling scheme

Figure 20 summarizes the scheme of the applied climate change impact modeling chain
in the Rio Mannu catchment. Two WaSiM setups (WaSiM-ARU and WaSiM-RKS) were
driven with 4 regional climate models (section 5.2.1) for a reference time series (1971-

2000) and for a future projection (2041-2070) following the scheme in Figure 20.

Climate model auditing of EU-FP6 ENSEMBLES-Project Regional Climate Models
(Deidda et al. 2013)

L

ECHAM-5 ECHAM-5 ECHAM-5 Hadley CM3
REMo RacMO RCA3 RCA

downscaling (1km?) & bias correction

-

Reference time series Scenario time series
(1971-2000) (2041-2070)
Hydrological modeling WaSiM- Hydrological modeling WaSiM-
Richards Vers. - soil model set up Richards Vers. - soil model set up

with Aru et al. (1990) with Regression Kriging C map

~_~ ~

Climate change impact and model set up analysis

Figure 20: Model parametrization and hydrological climate change impact assessment scheme.

68



Methodologies hydrological modeling

5.2.3 CLIMB model harmonization strategy

Within all seven case study sites of the CLIMB project a variety of hydrological models
were used to quantify the impact of climate change and associated risks on hydrological
budgets and extremes. In the Rio Mannu catchment the three different hydrological
models WaSiM, tRIBS, mGROWA, and SWAT were applied and results compared to
investigate model based uncertainties in the hydrological climate impact assessment. To
investigate the model internal uncertainties, hydrological model input data as well as
the model parametrization of the catchment were harmonized as far as this was possi-
ble for the three different model architectures. Models were setup with the same land
use information (section 5.2.3.1.) and the same Aru et al. (1990) soil information (sec-
tion 5.2.3.3). Unique parameters were applied for the land use classes and soil types as

far as the different model architectures allowed this.

WaSiM was set up with a grid resolution of 250m, reflecting a compromise to ensure
acceptable computational performance, as well as the spatial representation of the
landscape heterogeneity. Difficulties in the parametrization of the model can results
from too coarse resolutions. Due to that Schulla (2012) suggest using resolutions smaller
than 500m to consider variation in surface or soil properties. Topographic features such
as catchment delineation, slope, aspect, stream orders, flow distances etc. were derived

from the Digital Elevation Model (DEM), aggregated to a 250m resolution.

5.2.3.1 Aggregation and parametrization of land use information

The land use land cover (LULC) map of 2008 (Figure 3) was aggregated to 8 major land
use classes: The LULC map was aggregated by the CLIMB partner institution CINFAI
following the CLIMB harmonization strategy. The major LULC classes in the aggregated
LULC map are agriculture (48%) (comprising main crops like wheat, corn and artichoke),
sparse vegetation (26%), olive yards (8%), forest (7%), pastures (5%), urban areas (3%),
vine yards (2%), and water bodies (1%). Land use specific model parameters like leaf
area index (LAIl), root depth, and stomatal resistance were collected from literature
(Cermak et al. 2007, Schulla 2007, Villalobos et al. 2005, Winkel & Rabal 1993). Irrigated

agriculture is only present in a small north western part of the catchment. Due to
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missing information of irrigation water quantities, irrigation was neglected in the model

setup.

- Agriculture
- Forest
:| Olives
:| Pasture -
- Shurbs/Macchia

Figure 21: Land use information of the Rio Mannu basin, which was applied in the WaSiM
model.

The plant parameters of Table 6 have been parameterized in the WaSiM control file in
look up tables based on Julian days (JD). In between two JDs parameters WaSiM interpo-

lates the parameter linear automatically.

For the major land use classes agriculture and pasture low LA, root depth (RD), vegeta-
tion cover fraction (VCF) and aerodynamic roughness (Z0) values are parameterized for
the months of July, August, and September, before increasing slowly and reaching the
peak in April and May. In comparison to that, Forrest, Olives, Macchia / shrub vegeta-
tion, and vineyards, were parametrized with still high LAI, VCF, Z0 and RD. Woody land
use classes were parametrized with only little change over the year since due to the
deeper root depth plant available water is longer present. Peak values of high LAI, VCF,
Z0 and RD are set for the months of August and September, while low values were set

from November to the beginning of March.
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Table 6: Plant parameters used for modeling in WaSiM.

Rooting  Stomata Aerodyn.

LULC classes LAl VCF depths resistance roughness
[m?/m?] [-] [m] [s/m] [m]

Agriculture 04-3 0.1-095 0.1-0.5 60 - 120 0.3-0.4
Forest 3-7 0.7-0.95 2 50-110 1.8
Olives 3.5 0.88 2 116 0.013
Pasture 0.1-2.1 02-09 0.2-04 35-80 0.03-0.04
Macchia / Shrubs 4-5 0.95 2 30- 150 1.82
Settlements 0 0.3 0 100 100-150
Vineyards 0-1.48  0.35-0.59 1.2 70 - 155 1.82
Water 0 0 0 0 0.3

5.2.3.2 Parametrization of the soil model

The soil model of the physically based hydrological model WaSiM, uses the RICHARDS-
equation to model the water fluxes in the unsaturated soil zone in a one-dimensional
vertical direction (Schulla 2012). The parametrization is done using lookup tables for
each soil type. Based on soil textural information the van Gnuchten method (van Gnuch-

ten 1976) is applied to calculate the actual water content per modeled time step.

1 m
0 =0, + 0 — ) (5mm) - (30)

where, { is the suction (m), a ,n and m are empirical parameters (with m=1-1/n), 0 is
the actual water content, Or is the residual water content and Bs is the saturated water

content.

Soil physical properties of WaSiM’s soil module, such as saturated hydraulic conductivity
(ksat), the residual water content (®r) and the saturated water content (Ds) and the van
Gnuchten parameter n and a, were assigned to the two different soil maps. The parame-
terization was done using the pedo-transfer-function (PTF) of Worsten et al. (1999). A

constant soil depth of 10m was assumed for the whole catchment, which is indeed not
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realistic especially for mountainous regions. This depth was chosen for the different
hydrological models (section 5.2.3 ) applied in the test site within the CLIMB project to
investigate hydrological model dependent uncertainties in the climate change impact
assessment. To do so, every applied model had to have a setup, with maximum similari-
ty. The different layers within the soil horizons were parameterized uniformly for all
layers. The recession parameter k.. controls the reduction of ks, with increasing soil
depth. K, is reduced by ke in the layers up to a soil depth of 2 m. Below 2 m soil depth
ksst Stays constant to the value of the 2 m layer. The drainage density (d,) and k. control
the generation of interflow. WaSiM produces no interflow by setting d, = 0 or by setting
krec =1 (Schulla 2012). A combination of k.. = 0.8 and a dr = 10 was found to be best for
this study. This is obviously a very simple approach considering real changes in porosity
ksa: and interflow generation with increasing soil depth, but since soil information was
only present for the top soil layer, this appeared to be a practical parametrization
approach, also recommended in Schulla (2012). Changes of soil texture composition,
bulk density, organic matter, macro pores reduction with increasing soil depth and soil
compaction of the plow horizon as done by Rieger et al. (2010) were not considered in
the soil model parametrization. An explicit parameter sensitivity assessment of sub-soil

parametrization was not considered in this study.

5.2.3.3 Setup of the ARU soil model (WaSiM-ARU)

As already pointed out in section 3.1, the only soil information available in the basin was
a soil type map of Aru et al. (1990). This map was aggregated to 6 soil textural classes by
the Sardinian CLIMB partner University of Cagliari. The aggregated soil type result map
still did not give distinct information about the spatial distribution of soil textural classes
in the basin. Each of the 6 soil type polygons consisted of a range of different soil

textures. WaSiM soil model needs to be setup with van Gnuchten parameters.
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Figure 22: Van Gnuchten parameters a) “PHI SAT” = saturated water content, b) “PHI RES” =
residual water content, c) “Ksat” = hydraulic conductivity, d) “VG Par. A” = Van Gnuchten a, e)
“VG Pa. n” = Van Gnuchten n, which were derived from the ARU soil texture map in f).

Van Gnuchten parameters can be either determined by literature sources or directly
based on so called pedo transfer function PTF, but soil textural information is a necessity
either way. The average weighted mean soil texture of the range of soil textural classes
for each soil type was taken to determine a distinct soil texture class for polygon in the
ARU map. Figure 18a) & Figure 22f) report the ARU soil map with a distinct soil textural
classification. With this distinct soil texture information it was possible to determine the
van Gnuchten parameters based on literature sources of Sponagel (2005). The deter-
mined parameters are presented in Figure 22a-e). The presented hydrological properties
of Figure 22a-e) were transferred for each soil texture class into one distinct soil look

table for each soil texture class in the WaSiM control files.

The soil model was setup with two horizons. The first horizon (H1) consisted of 5 layers
of 0.2 meter thickness for every soil texture class (total of depth 1m). The second
horizon (H2) consisted of 5 layers of 1.8 m thickness each (total of 9 m) (Note that the

number of layers has to be same for each horizon due to numerical reasons (Schulla
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2012)). Based on the CLIMB model harmonization strategy the soil depth was set to 10
meters for all soil texture look up tables. To investigate the model internal uncertainties
of the different hydrological models, this rather unnatural soil depth parametrization

had been applied to all models which were used in this test site within CLIMB.

5.2.3.4 Setup of the RKS soil model (WaSiM-RKS)

The regionalization of the derived soil samples brought new information on the spatial
structure of soil textures in the catchment (4.5). This soil textural map was only applied
in the WaSiM-RKS model. WaSiM’s parameterization was done by using the pedo-
transfer-function (PTF) of Worsten et al. (1999) and Vereecken et al. (1989). The PTF of
Vereecken et al. (1989) was only used to calculate residual soil water content ¥r. This
decision was made since in the approach of Wosten et al. (1999) the residual water
content is fixed to 1 Vol-% or 2.5 Vol.-%. This very low residual water content value is

unrealistic, due to that Vereecken et al. (1989) was applied to calculate Or.

Os= 0.7919 + 0.001691 * C - 0.29619 * dB-0.000001491 * U* + 0.0000821 * Corg’ +
0.02427 /C +0.01113 / U + 0.01472 * log(U) - 0.0000733 * C,,y * C - 0.000619 *
dB *C-0.001183 *dB * C,y - 0.0001664 * 1 *U, (Worsten et al. 1999) (31)

Or= 0.015+0.005 * clay + 0.014 * Coy, (Vereecken et al. 1989)

ket=  exp(7.755 + 0.0352 * U + 0.93 * 1 - 0.967 * (dB? - 0.000484 * (C?) - 0.000322 *
(U?) +0.001 / U -0.0748 / Cory - 0.643 * log(U) - 0.01398 * dB * C - 0.1673 * dB *
Corg + 0.02986 * 1 * C-0.03305 * 1 * U), (Wérsten et al. 1999) (32)

o= exp( -14.96 + 0.03135 * C + 0.0351 * U + 0.646 * Cory +15.29 * dB - 0.192 * 1 -
4.671 * dB? - 0.000781 * C? - 0.00687 * Cory? + 0.0449 / C,ry + 0.0663 * log(U) +
0.1482* log(Corg) - 0.04546 * dB * U - 0.4852 * dB * Coy + 0.00673 * 1 * (),
(Worsten et al. 1999) (33)

n= 1+exp(-25.23-0.02195 * C + 0.0074 * U - 0.1940* C,z + 45.5 * dB - 7.24 * dB? +
0.0003658 * C? + 0.002885 * Coy -12.81 * dB™ - 0.1524 * U™ - 0.01958 * C,\y ™ -
0.2876 * log(U) - 0.0709 * log(C,,y) - 44.6 * log(dB) - 0.02264 * (dB * C) + 0.0896
*(dB * Corg) + 0.00718 * (1 * C)), (Worsten et al. 1999) (34)
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where C = clay(%), U =silt(%), S = sand(%), Corg = total organic carbon content(%) and dB
= bulk density(g/cm3)k...= saturated hydraulic(cm/h) conductivity, @ & n dimensionless

van Gnuchten parameter

SOIL DEPTH m C-org %
B 5.00 ; B 055
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18.3 1.93 . -
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Figure 23: Spatially distributed maps of soil depth (m), C-org = organic carbon content (%) and
dB = bulk density (g/cm’).

For each soil textural class of the RK result map (Figure 18d) the median soil textures of
clay (Figure 15e), silt (Figure 16e) and sand (Figure 17e), as well as for the soil depth, the
organic content (Cor), and the bulk density (Figure 23) were calculated and applied in
the PTF of Wosten et al. (1999) and Vereecken et al. (1989). Figure 24 reports the
hydrological parameters that were applied to the WaSiM soil table.

The soil in WaSiM-RKS was parameterized in 3 horizons. The first horizon was sub-
divided into 5 layers; note that the number of layers has to be the same for all each
horizon due to numerical reasons (Schulla 2012), with a layer depth (H1,5ye ) of 0.2 meter

for each layer, so that the total depth is 1m.

Y(hsoi )—-1
H2y0yer = u' (35)

Niayers

where nygyerse =layer depth second horizon, hg,; = depth of soil per soil texture class

and niuyers = NUmMber of layers in the second soil horizon.
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Figure 24: Van Gnuchten parameters a) “PHI SAT” = saturated water content, b) “PHI RES” =
residual water content, c) “Ksat” = hydraulic conductivity, d) “VG Par. a” = Van Gnuchten a, e)
“VG Pa. n” = Van Gnuchten n, which were derived from the Regression Kriging map in f).

The second horizon consist also of 5 layers, but here again the median depth of each soil

textural class was calculated and the depth divided by:

The last horizon consisted of 8 layers with H3;,y., = 0.5m (total horizon depth = 4m).
This Horizon was parameterized as rock, with values taken from the standard soil table
of WaSiM.

Except for the parameter described in the sections 5.2.3.3 & 5.2.3.4 the WaSiM setup of
the WaSiM-ARU and the WaSiM-RKS were the same.
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5.3 Calibration of WaSiM modeling results

5.3.1 Flow duration curve (FDC)

Flow duration curves were calculated from the historical recorded discharge as well as in
a later step of this study for the hydrological modeling outputs. Flow duration curves are
widely used in different areas of hydrology. A flow duration curve is a cumulative
frequency curve showing the percent of time or probability, specific discharges were
equal of exceeding a certain value during a given time period (Searcy 1959, USEPA

2011). The flow duration curves were derived as followed:

l. Acquire stream flow data (in this study measured and modeled daily mean dis-

charge),
. arrange data,
1. rank flow data,
V. obtain frequency of occurrence (exceedance probability)

The frequency of occurrence is obtained as follows:
R
F=100%— (36)
N+1
Where,

F is the frequency of occurrence (expressed in % of time a particular flow value is
equaled or exceeded), R is the Rank, and N is the Number of observations (USEPA 2011)

A flow duration curve measures in X-axis direction from high to low flow and the Y-axis
gives the discharge quantity for each percent exceedance value (1-100%). Based on the
derived FDCs of the recorded discharge as well as for the hydrological modeling dis-

charge results, threshold values for the different flow conditions were determined.
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Flow duration curve (FDC) Rio Mannu Observed 1925-1935
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Figure 25: Example of a flow duration curve (FDC). Different discharge behaviors are marked
based on the percent-exceedance range.

In this study the WaSiM-ARU setup was used to calibrate WaSiM based on the flow
duration curves. Since the recorded discharge is not overlapping with the reference time
of the WaSiM inputs runoff calibration was only performed based on the probabilities of

flow conditions.

This setup was afterwards transferred to the WaSiM-RKS setup except the soil model
parametrization. The mean flow duration curves of the WaSiM-ARU and the WaSiM-RKS
ensemble for the reference time series were used to determine the threshold values for
high flows-, wet conditions, mid-range flows, dry conditions and low flows. This was
done for both the WaSiM-ARU and WaSiM-RKS ensemble reference period.
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5.3.2 Comparison of modeled soil water content (SWC) with rec-

orded SWC

Soil moisture content was recorded using Frequency Domain Reflectometry (FDR) with
four “ThetaProbe ML2x"” probes on a pasture field at the Azienda St. Michele in the Rio
Costara catchment (location WGS-84 UTM 32N EAST: 508589, NORTH: 4362827, 150m
above sea level). SWC was recorded at two different points (10m distance to each other)
for each at 10cm and 20cm depth below surface. SWC recording started on October 5th
2010 and ended on January 5th 2012, with a recording interval of 10 min. The recorded
SWC was averaged to monthly mean values and compared to WaSiM SWC modeling

results for the pixel at which the SWC probes were located.

5.3.3 Evapotranspiration Patterns

Assimilating remote sensing data is especially important for ungauged catchments
(Hrachowitz et al. 2013). For example Mohamed et al. (2006), Winsemius et al. (2008)
used evaporation products derived from remote sensing applications to improve the

hydrological model parameterization.

In this study spatial patterns of real evapotranspiration (ETR) from optical and thermal
satellite imagery were derived using the Triangle Method. The method was introduced
by Price (1990) and further developed by Jiang & Islam (1999). The approach is based on
the surface energy balance. The actual evapotranspiration is equivalent to the surface

latent heat flux. The surface latent heat flux was calculated as followed:
AE=R,—G—H, (37)

where AE is the latent heat flux , R, the net radiation, G the soil heat flux and H the

sensible heat.

Since the estimation of H and to a lesser extent as well R, and G involves high uncertain-
ties (Huber Garcia 2013), regional grids of ETR patterns as well as EF were calculated by

using the simplified Priestley-Taylor formulation (Priestley & Taylor, 1972).
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AE = 0(Ry = ) * 7, (38)

where ¢ is the Priestley-Taylor parameter [-], A is the slope of the saturated vapor

pressure at air temperature [kPaK-']and ythe psychrometric constant [kPaK-']

An advantage of this simplified approach is that all variables on the right side of the
equation can be calculated independently from remote sensing data and AE can be

determined by the evaporative fraction (EF) (Tang et al. 2010).

AE

EF = Rn_—G' (39)
and gives

A
EF = ¢+ |5, (40)

The method uses the feature space of land surface temperature plotted against the
Normalized Difference Vegetation Index (NDVI) derived from thermal and optical
remote sensing data respectively. The resulting triangle NDVI-LST scatterplot is analyzed
to determine quantitatively a dry and a wet edge of the feature space, representing the
limiting factors of soil water content (Figure 26c). The scatterplot shows the heterogene-
ity in the catchment, since now for every NDVI pixel (Figure 26a) a range of different LST
values (Figure 26b) can be attributed (Jiang & Islam 1999). The variance of LST for each
NDVI value is caused by the evaporative cooling effect and is strongly related to plant
available soil water content. Thus, the higher the soil water content, the higher the
evaporation rate and the lower the LST. Dots close to the blue line in the example
scatter plot (Figure 26¢) represent pixel with potentially evapotranspiration rates. The
dry edge (red line in the scatter plot Figure 26c) is the soil moisture limiting factor. Dots
close to this line represent pixels with high temperature. Since temperature is high the
evapotranspiration rate is zero. In reality evapotranspiration is barely zero for vegetated
pixels as plants can get water from the root zone even the surface soil is dry. (Stisen et
al. 2008; Huber Garcia 2013). Due to that zero transpiration is not represented by the
dry edge but by the true dry edge (Figure 26c). Based on the borders of the triangle ¢
was scaled. For pixels with the lowest NDVI and highest LST, ¢,;,; Was set to 0 and is
representing the global minimum (Huber Garcia 2013). The global maximum &, .was
set fixed to 1.26 following the method of Barta eta al. (2006). The dots that are close to
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the point where the wet edge intersects the dry edge (Figure 26c¢) represent the pixels
with the highest NDVI and at the same time lowest LST. After the definition of the global
¢ boundary conditions, the Jiang and Islam (1999) interpolation approach slightly
modified by Stisen et al. (2008), was applied to obtain ¢ values for each pixel. This is
done in a two-step process by determining first the lower bound ¢i, min (eq. 42) and
after upper bound with (eq. 43). The upper bound of ¢ (§; ;mqx) cOrresponds to the wet
edge. As it is constant regardless of the land surface, §; pqy it is equal to ¢ ;4,=1:26
independently of the NDVI value (Stisen et al. 2008). By applying a linear equation with
the slope of the dry edge and the temperature of the wet edge as y-intercept to the
NDVI values, the maximum LST for every NDVI, equal to the dry edge was determined
(Huber Garcia 2013). For the calculation of the evaporative fraction (eq. 40) now the
slopes of the saturated vapor pressure at air temperature [kPaK-'] A and the psychro-
metric constant ¥ [kPaK-'] have to be obtained. Where, A and y were determined by the
approach of Allen et al. (1998) (eq. 44). This approach is based on the Penman-Monteith
equation and is mainly dependent on the air temperature. Since no air temperature
observations at the sensors overflight time (always 10-11 a.m.) were available, the mean
daily temperature of meteorological station Cagliari at each overflight day was chosen.
This data was downloaded from KNMI climate explorer database. To solve eq. 45, the
atmospheric pressure (P) needs to be calculated. This was done using eq. 46 of Huber
Garcia (2013). This approach is an extension to the one of Wang et al. (2008). P is in this
approach, instead of using an average elevation for the total field of observation,
calculated for each pixel of the satellite data with a certain elevation taken from a digital
elevation model. Air Temperature T was applied similar to eq. 45. To finally solve eq. 38
Rn was and applied using an average value for the field of observation. Rn was estimat-
ed on a very simple approach in which Rn is about 55% of the global radiation (Davies
1967). Global radiation values acquired from the SoDa database (Solar Energy Services
for Professionals) were used for each day of available satellite images. G was estimated
from Rn following the approach of Gragoa and Brutsaert (1996) and is about 7% of the
global radiation. With the now full set of needed quantities to solve eq. 38 AE was
estimated. Further information on the Triangle-Method can be found in Jiang &lslam
(1999), Wang et al. (2006), Tang et al. (2010) Huber Garcia (2013) and Gampe et al.
(2015).

The processing scheme to determine the evaporative patterns is as follows:
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Conversion of Landsat TM/ETM radiances in LST (°C or K) for each pixel
(Figure 26 yellow box) and calculation of the Normalized Difference Vegeta-
tion Index (NDVI)

NDVI = (NIR-Red) _ (LTM Waveband4—LTM Waveband3)
" NIR+Red) ~ (LTM Waveband4+LTM Waveband3)’

(41)

where LTM waveband 3 = Red (630-690nm) and LTM waveband 4= Very

Near-Infrared (760-900nm) in planetary reflections

calculate and scale ¢ with,

NDVIi—NDVImin]Z (42)

$i, min = ¢pmax [
NDVI;=NDVImqay

where NDVI; is the NDVI of the actual pixel NDVI,,;, is the minimum ob-
served NDVI value of vegetation (generally set to 0.1.) and NDVI,,, the

maximum observed value (Figure 26 purple box).

Define the boundary conditions with the triangle and calculate ¢i for each
pixel (Figure 26 green boxes),with

d) _ LSTi’max—LSTi
; o ymax Tt

T LSTimax—LSTimin * (¢max - ¢i,min) + ¢i,min (43)

Calculation of slopes of the saturated vapor pressure at air temperature
[kPaK-'] A and the psychrometric constant y [kPaK-'] (Figure 26 grey boxes)
with,

3 4098*[0.6108*exp(;:’2237;2)]

A= (T+237.3)2 (44)

where T is the air temperature[°C] (Allen et al. 1998). In this study the mean
catchment air temperature at observation day was chosen.

__ CpxP

- (45)

where Cp is the specific heat at constant P(1.013*10° MJ°C* kg!), P is the
atmospheric pressure [kPa], € is the ratio between molecular weight of water
vapor and dry air (0.662) and A is latent heat vaporization (2.45 MJkg™) (Allen
et al. 1998)
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Figure 26: Processing scheme to calculate the remote sensing evapotranspiration pat-
terns.

P was determined by means of a temperature dependent variation of the

barometric formula after Roedel (1994)

P =P, * exp (—%) * Z (46)

where Py is the standard atmospheric pressure at sea level (1013.15 hPa), M
is the mean molar mass of the earth’s air (28.97 gmol™), g is the mean gravi-

tational acceleration (9:81 ms?), R is the universal gas constant for air (8.315
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WsK’lmoI’l), T is the air temperature in [K] and z is the elevation a.s.l. [m]
(Huber Garcia 2013).

IV.  Calculation of the AE for pixel by applying the results of steps | and Il for each
pixel into using eq. 38 (Figure 26 red boxes)

V. Transformation of AE [W/m?] to [mm/d] for each pixel (Figure 26 red boxes)

VI.  Calculation of average evapotranspiration for each month of the year based
on available satellite data (Table 7) and upscaling to monthly mean values by

multiplication with the number of days per month.

Application to the Landsat satellite images

Evapotranspiration sums derived by the Triangle method will be indicated as (ETR-TRI).
The Triangle Method was applied to optical/thermal satellite imagery from LANDSAT 5
Thematic Mapper (TM) and LANDSAT 7 Enhanced Thematic Mapper. Available images
covered a period from 1984 to 2003. For each image spatially distributed grids of daily
mean ETR (mm/d) were calculated. The grids were normalized by averaging monthly,
then multiplying by a number of 28-31 days depending of the length of the particular
month. Satellite data coverage was best for summer months, due to the fact that only
cloud free scenes are applicable in this procedure. In total 12 Landsat TM and 16 Landsat
(ETM) scenes of the catchment were available and used to derive one evapotranspira-
tion grid (ETR-TRI) for every month of the year. For each image evapotranspiration
patterns are calculated and images belonging to a certain month of the year were
averaged in order to derive mean information for each month of the year in the Rio

Mannu catchment.

Table 7 summarizes the available satellite scenes that were used to calculate the daily
actual evapotranspiration (ETR). A second validation source for ETR was found in a study
of Montaldo et al. (2013). In this study ETR rates over grass land were derived in the
neighbor catchment Flumendosa River using the eddy covariance method (Montaldo et
al. 2013). Since there are different land use land cover types located in the Rio Mannu
catchment and in the model set up the actual evapotranspiration over grassland can

only be used as a validation source in a limited manner.
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Table 7: Cloud free Landsat TM & ETM satellite scenes available for the Rio Mannu di San
Sperate catchment (1984-2010).

MM  Date LS Date LS Date LS Date LS No

JAN  07.01.2002 ETM 1
FEB  02.02.2002 ETM 1
MAR  25.05.2002 ETM 09.03.2003 ETM 2
APR  06.04.1987 TM 1
MAY | 21.05.1986 TM 1
JUN  25.06.1987 TM  20.06.2000 ETM 07.06.2001 ETM 18.06.2002 TM 4
JUL 27.07.1987 TM  22.07.2000 ETM 25.07.2001 ETM 07.07.2003 TM 4
AUG 21.08.1999 ETM 26.08.2001 ETM 08.08.2003 TM  24.08.2003 TM 4
SEP  04.09.1984 TM 13.09.1987 TM  08.09.1991 TM  24.09.1991 TM 4
OCT 10.10.2000 ETM 13.10.2001 ETM 16.10.2002 ETM 3
NOV  09.11.1999 ETM 11.11.2000 ETM 2
DEC  19.12.2002 ETM 1

5.4 Indices of the hydrological climate change im-

pact assessment

In the following sub-section three different indices for the climate change impact
assessment will be introduced. Those indices were used in the CLIMB-Project on the one
hand to better compare climate change impacts among the project’s different case
studies in the Mediterranean, to assess the uncertainties of results that come from the
different applied hydrological models and on the other they were intended to give a

more easy to digest information on climate change impacts on the hydrology.

The Standardized Precipitation Index is used to analyze changes in the main hydrological
input precipitation. It shows the climate change impact on precipitation in the basin
from different temporal points of view. In comparison to the other two indices, changes
of this hydrological quantity are only forced by the applied RCM. The range of results
and the magnitude of projected climate change impacts are only dependent on the
applied RCM.

The other two quantities were determined by using results of the hydrological modeling.

The results are influenced by the climate model and the applied hydrological model. The
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results of those indices are especially good to analyze the uncertainty that is applied to

the results by the hydrological models.

The changes in number of different flow conditions will give information if and if yes

how the flow regime and flow extremes are projected to change in the future.

The evapotranspiration index will give spatially distributed information about the plant

available water and shows indirectly possible plant water stress.

5.4.1 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) developed by Mc Kee et al. (1993; 1995) to
improve the representation of abnormal wetness and dryness, is a spatially invariant
probability based indicator. It takes respect to the importance of the time scale in the
analysis of the water availability and water use (Guttman 1999). Due to its adaptability
for the analysis of drought on any given time scale, it can be used to monitor agricultural

as well as hydrological drought (Waseem et al. 2015).
The SPI was determined as followed:

l. determine the probability density function of the long term time series of pre-

cipitation
Il. determine the cumulative probability or the observed precipitation

Il. transform the cumulative probability based on equal probability to a normal dis-

tribution with mean zero and a standard deviation of one.

One can expect these values to be within one standard deviation approximately 68% of
the time, within two standard deviations 95% of the time, and within three standard
deviations 99% of the time, because SPI values fit a typical normal distribution. A related
interpretation would be that an SPI value of less than -1.0 occurs 16 times in 100 years,
an SPI of less than -2.0 occurs two to three times in 100 years, and an SPI of less than -
3.0 occurs once in approximately 200 years (Hayes et al. 1999). McKee et al. (1993)

suggest the following classification scale of the SPI: +2 and above = (extremely wet), +1.5
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to + 1.99 = very wet, +1.0 to +1.49 = moderately wet, -0.99 to +0.99 = near normal, -1.0
to -1.49 = moderately dry, -1.5 to - 1.99 = severely dry and -2 and less = (extremely dry).

The SPI has the advantage that precipitation data is the only input parameter. It can be
computed for different time scales (1, 3, 6, 12, 24, 48 month), provides an early warning
of drought, helps assessing drought severity and is less complex as for example the
Palmer Drought Severity Index and many others (WMO 2012). It has the disadvantage
that it only quantifies the precipitation deficit. No soil water-balance component, thus
no ratios of evapotranspiration/potential evapotranspiration (ETR/ETP) can be calculat-
ed. This is a key limiting factor of this index for climate change analysis, since air
temperature is not considered (WMO 2012).

The SPI was calculated in this study for the reference and future precipitation modeling
inputs of WaSiM.

5.4.2 Number of days with low flows, dry conditions, mid-range
flows, moist conditions and high flows

Discharge can be classified into different conditions from high to low flows based on the
exceedance probability (5.3.1). Each modeled daily mean discharge was counted based
on this classification (low flows (LF), dry conditions (DC), mid-range flows (MRF), moist
conditions (MC) and high flows (HF)) for every modeled hydrological year for the refer-
ence (REF) and future time series (FUT). Threshold values for the classification ranges
given in Figure 25 were calculated based on the FDC (section 5.3.1) mean values of the
REF data sets. For example WaSiM-ARU was driven with 4 different RCM in the REF. For
each run a FDC was calculated based daily mean discharge values of the total modeling
period. Each FDC has different 90, 90-60, 60-40, etc.-% exceedance discharge values.
The mean values of the 4 REF runs were calculated and used to classify low to high flow
conditions. Afterwards daily mean discharge values belonging to each class were count-

ed, for every model run and every hydrological year separately for the REF and FUT.
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5.4.3 Evapotranspiration Index (ETI)

The ETI, was calculated to derive the real Evapotranspiration (ETR) share in the potential
Evapotranspiration (ETP).
ETI ETR
~ ETP
Where, ETR is the actual evapotranspiration and ETP is the potential evapotranspira-

tion.

The index describes the missing percentage to full plant water availability. This index
gives an indication about plant water stress at times, when plant cover is present. A
value of 1 indicates that plants have perfect water availability and the soil is fully satu-

rated. Values close to zero indicate extreme drought conditions.

5.5 WaSiM parameter sensitivity and calibration

approach in the Rio Mannu basin

In this chapter the calibration and validation efforts for the WaSiM model in the Rio
Mannu basin are documented. The official CLIMB model calibration and validation

procedure was based on two independent observations.

5.5.1 Sensitivity of WaSiM parameters

The soil model of WaSiM version2 has less sensitive parametrization parameters com-
pared to the version 1, due to the more physical based nature of the model and soil
properties in particular the porosities should be understood as fixed values that should
not be calibrated. Only three parameters of the soil model in WaSiM should be calibrat-

ed, which are:
e The recession constant k.. for the saturated hydraulic conductivity Ks with depth

e The interflow drainage density d,
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e For this study the base flow parameters Qg and Kgsqo Since the groundwater
module was disabled due to missing information about groundwater levels and

groundwater flow directions.

The recession constant k... considers the decreasing hydraulic conductivity with increas-
ing depth. The value reduces the conductivities downward up to a soil depth of 2m
(fixed model internal parameter). Below depth of 2m d, remains constant with the 2m
value (Schulla 2014).

The interflow drainage density d; considers the stream density per grid cell and is an

effective parameter to linearly affect the amount interflow.

The most sensitive parameters of the evapotranspiration model the surface resistance
rsc, but this parameter is only effective if resistances are much higher or lower than the

optimum value (Schulla 2014).

Since snow fall only occurs very seldom in the mountainous parts of the catchment, the
snow model of WaSiM was disabled and calibration parameters of the snow model were

not considered for the calibration.

5.5.2 Calibration of WaSiM parameters

From a hydrological perspective the catchments needs to be classified as an ungauged
catchment, even though a short time series of recorded discharge data was available.
Stream flow data in a daily resolution was measured at the river outlet in Monsatir in
the years of 1925-1935, but unfortunately no recorded discharge data was available for
the reference period (1971-2000). To run WaSiM V.2 (Richards-Equation) the availability
of several climate input parameters in a daily temporal resolution is necessary (section
5.1). Since for the observed discharge time series 1925-1935, those required data were
not observed in the test site, it was not possible and meaningful to calibrate and validate
WaSiM on recorded discharge data in a daily temporal resolution. Furthermore a dam
was installed in the Rio Mannu catchment in the 1960s and the steam network has been
heavily modified in the last 80 years. Due to the strong artificial modifications of the
steam network it can be expected that the discharge behavior is significantly different

nowadays compared to the recorded discharge of 1925-1935. For ungauged catchments
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Bléschl (2005) suggested calibrating hydrological models based on recorded data of
neighboring catchments. Patil and Stieglitz (2011) showed that good predictability of
runoff in ungauged catchments from characteristics of nearby catchments is more likely
in humid regions than in dry regions. Perrin et al. (2007) also showed that stable param-
eterizations are more problematic to obtain in catchments characterized by dry climate

than in humid climates.

Since neighboring catchment characteristics, especially the soil properties are known to
be significantly different to the Rio Mannu catchment and the catchment is located in a
dry evaporation dominated climate, this approach was refused. To overcome the issues
described above, WaSiM-ARU was calibrated by driving it with the downscaled and bias
corrected climate model forcing of the reference time series (1971-2000) which were
delivered by Deidda et al. (2013). WaSiM’s computed discharge outputs (1971-2000)
were then compared with the recorded discharge of 1925-1935 as long-term monthly

means (see Figure 28) and by the calculation of flow duration curves (FDC) (Figure 29).

The parameters d, and k., that control the amount of interflow, were used to calibrate
WaSiM'’s soil model. The parameters dr and K. are affecting each other. For example no
interflow can be generated by whether setting d,=0 or K...=1, while setting K... very close
to zero and d, very high would result in the production of nearly pure direct runoff. Due
to this a cross calibration procedure was used to find the best parameter set. This was

done manually, since WaSiM does not have an automated calibration algorithm.

The calibration of those parameters was done in a 250m spatial resolution using the
outputs for the total Rio Mannu catchment area. The soil model was setup with the soil
information of the Aru et al. (1990) soil map. The parameter combination of dr= 10 and
Krec =0.8 was found to fit best the observation of 1925-1935 on a long-term monthly
mean basis (Figure 28). This parameter set was then transferred to all WaSiM model

runs in the Rio Mannu.

The surface resistance parameter r,. of the evapotranspiration module was found to be
relatively insensitive to changes. Due to that the parameters were set and left to values
that were found in literature. WaSiM'’s spatial evapotranspiration outputs were com-
pared to spatial reference evapotranspiration that was derived by LANDSAT satellite

imagery.
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6. RESULTS AND DISCUSSION
HYDROLOGICAL MODELING
AND PROJECTED CHANGES

6.1 Calibration results of the WaSiM model

This section presents the comparison of recorded field data with hydrological model
outputs when driven with the climate model meteorology of the reference time series
1972-2000 (REF) and shows the calibration approaches for the data scarce Rio Mannu di

San Sperate catchment.

6.1.1 Comparison of model outputs and recorded discharge data of

1925-1935

Figure 28 reports the long-term monthly mean discharge values of the WaSiM simula-
tions in comparison to the observed long-term monthly mean of 1925-1935. The model
outputs were computed using the reference climatology of the 4 regional climate
models (RCMs) provided, by Deidda et al. (2013). Daily model outputs were aggregated

to long-term monthly mean discharge.

The simulation results in comparison to the observations show, that the general annual
distribution of the runoff (high flows from November to February, mean flows in Oct,
March-May and low flows from June-September) is well represented in the model

outputs using the current model setup with regional climate model forcing.
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Also general trends of simulation output errors are visible. While autumn and winter
discharge are overestimated in the simulations, spring and summer discharge are
underestimated. Those errors in the simulations might occur by different uncertain
sources, since the reference climatology of the RCMs cannot be expected to fully

represent the climate conditions of the recorded time series of 1925 to 1935.
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Figure 27: Comparison of long-term monthly mean precipitation rates of the regional climate
model inputs for the reference time series (1971-2000) and the recoded gauging station data
(1925-1935).

Especially the daily precipitation rates and the discharge behavior of the stream network
for the observation time series might be highly different to the ones of the reference
period and already strongly impacted by the changing climate. For example Sannitu
(2006) pointed out the precipitation rate was reduced by 50-60% within the last 20 years
in this region. In Figure 27 long-term monthly mean precipitation sums of the RCMs for
the reference time series are compared to the long-term monthly mean precipitation
sums recorded by 12 precipitation gauging stations of 1925-1935, which were located in
and close to the catchment. The annual precipitation sums of the RCM climate forcing of

the reference time series reach only 82%-89% of the interpolated Rio Mannu precipita-

92




Results and discussion hydrological modeling and projected changes

tion sum of 1925-1935 (Figure 5 & Figure 27). The calibration results using the Flow
Duration Curves (FDC) (Figure 29) show that the WaSiM outputs represent a good fit of
modeled and recorded flows that are above 1m3/s while the reproduction of extreme
mid-range to low flows under 1m3/s shows a distinct picture. The dry to low flow
conditions under 0.1 m3/s might imply a relative higher measurement error. For those
conditions modeling uncertainties seem to be very high. The gap between observed and
modeled mid-range flow conditions (0.1-0.6m3/s) might be caused by the difference
between precipitation inputs of 1925-1935 and the RCM precipitation inputs of 1971-
2000, which meet only 85% of the rate of 1925-1935. To have an approximation of how
much runoff should be produced by the catchment, Figure 30 presents the precipitation
runoff transformation for different catchments as well as for the total island of Sardinia
after Sannitu (2006). Based on the annual climate model ensemble input precipitations,
WaSiM’s model runoff outputs (73-106 mm per year) fit well the expected runoff from

the transformation scheme.

e ECHAM-5 RCA —— Mean WaSiM-ARU
ECHAM-5 REMO - —-- Mean WaSiM-RKS
ECHAM-5 RACMO e==s Range WaSiM-ARU

e HadCM3 RCA ==== Range WaSiM-RKS

O  WaSiM-ARU -3 - RM-1925-1935
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Figure 28: Rio Mannu - Run off observed (1925-1935) vs. WaSiM run off (1971-2000).
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Figure 29: Rio Mannu - Flow duration curves of observations (1925-1935) and WaSiM simula-
tions of the reference time series (1971-2000).
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Figure 30: Precipitation runoff transformation for selected catchments in Sardinia and for the
total island. (Data source: Sannitu 2006).
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In Table 8 the root mean square erros (RMSE) of WaSiM-ARU FDCs in comaprison to the
observation FDC of 1925-1935 using the best WaSiM setup forced with regional climate
model inputs provided by WP4 are shown.

The root mean square errors are presented following the FDC classification scheme in
Figure 29. With the current WaSiM-ARU model setup, best results for high flows were
achived using the HadCM3-RCA climate inputs while the ECHAM-5 REMO forcing shows
the highest error for high flows. Moist conditions on the other hand have the lowest
error for the ECHAM-5 REMO run. The Mid-flow to low flows RMSEs are very similar for
all climate model inputs. Especially for the low flow conditions the RMSE is nearly as
high as the flow range. This model error might be a consequence of significantly lower
climate model precipitation input, compared to the precipitation of 1925-1935, in the

season (March-July) where the majority mid to low flows are generated.

After the calibration WaSiM generated plausible discharge and runoff outputs.
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Table 8: Root mean square error of WaSiM-ARU simulations (1971-2000) vs. observations (1925-1935).

ECHAM-5 RCA (1971-2000) ECHAM-5 REMO (1971-2000) ECHAM-5 RACMO (1971-2000) HadCM-3 RCA (1971-2000)

(m’/s) (m’/s) (m’/s) (m’/s)

RMSE flow range RMSE flow range RMSE flow range RMSE flow range
High f. 7.88 21.69-6.27 8.71 19.47-4.93 6.23 26.90-5.8 3.61 36.37-5.67
Moist cond.  0.58 6.26-0.5 0.29 4.92-0.34 0.38 5.79-0.40 0.45 5.66-0.41
Mid-range f. 0.24 0.49-0.16 0.29 0.33-0.14 0.27 0.39-0.15 0.26 0.40-0.15
Dry cond. 0.07 0.16-0.12 0.08 0.14-0.11 0.07 0.15-0.11 0.07 0.15-0.11
Low 0.10 0.12-0.09 0.09 0.11-0.09 0.09 0.11-0.09 0.09 0.11-0.09
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6.1.2 Comparison of evapotranspiration model outputs and derived
evapotranspiration patterns

The second criterion of the calibration/validation strategy is a comparison of patterns of
actual evapotranspiration, which were simulated in the WaSiM model with patterns
derived from remote sensing imagery. This step was done on the optimized WaSiM

model after the calibration on observed discharge was conducted.

The WaSiM simulation results in the Rio Mannu of the reference are only for certain
months in good correspondence with derived act. Triangle evapotranspiration (ETR-TRI)
and reference grass evapotranspiration of Montaldo et al. (2013) (Figure 31). Little
deviations between reference ETR over grass (Montaldo et a. 2013) and modeling
results are visible for the months of January, February, March, August, Sep, Oct, Nov,
and Dec. But a high mismatch is visible for the months of April, May, June, and July. The
monthly mean sums of the ETR patterns do not fit the modeling results but also do not
fit to the reference ETR over grass. The ETR-TRI patterns do fit the monthly mean sums
only for the months of March (WaSiM-ARU) and April (WaSiM-RKS). The reference ETR

over grass and the ETR-TRI do match also only for the months of June and January.

There are several reasons for differences between simulated and observed evapotran-
spiration patterns. One reason for the mismatch might occur from the problem that
remote sensing imagery features only a short snapshot of a particular situation, which
may not display long-term characteristics for this region. This is especially true for the
months of December to March where only one remote sensing image per month was
available. A better temporal cover was available for the months June to September with
4 satellite images per month, while November and March are covered by two and
October by 3 images. The mismatch modeling results might be intensified by the too low

precipitation climate model inputs in this season.
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Figure 31: Observed grass evapotranspiration (ETR) after Montaldo et al, (2013) and derived
Triangle Method evapotranspiration (ETR-TRI) versus simulated ETR outputs of WaSiM driven
with the RCM climatology for the reference time series (1971-2000).

Exemplary derived ETR-TRI patterns as spatially distributed grids in comparison to the
WaSiM-ARU and WaSiM-RKS hydrological modeling results are shown in Figure 32, for
the months May and June. The derived ETR sums from the ETR-TRI patterns show a
mean evapotranspiration sum of 94 mm for May and 79 mm for June. A gradient can be
detected from minimum values in the lower southwestern valley areas, where agricul-
tural land use is dominant, to higher values in the more mountainous regions,

characterized by olive trees and macchia vegetation.
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Figure 32: a) & d) Triangle Method Evapotranspiration pattern (ETR-TRI) versus spatially
distributed b) & e) ETR results maps of WaSiM-ARU and c) & f) WaSiM-RKS.

The gradient is even larger in June. During this month, many agricultural crops are
already harvested (Bird et al. 2015) and it can be assumed that soil moisture content is
rapidly dropping to values close to permanent wilting point in the lower valley region.
The higher ETR values in the mountainous regions can be explained by the lower air
temperatures and higher humidity in higher elevations and by the fact that the domi-
nant land uses — olive trees and macchia plants — can extract water from deeper soil
horizons of the unsaturated zone. The comparison of the two WaSiM soil model setups
shows that WaSiM-RKS outputs fit better the derived ETR-TRI patterns (Figure 33).
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The Aru et al. (1990) soil map also used in the study of Piras et al. (2014) seems to less
well represent the true distribution in the catchment. The WaSiM-ARU setups show very
high values of ETR in the southwestern part of the Rio Mannu basin (Figure 18b & e).
The distinct boundaries of this pattern look untrustworthy, as they relate almost per-
fectly to the ARU soil texture class loamy clay (TI) in the Aru et al. (1990) based soil
texture map (Figure 18). In the RKS soil model, the same soil texture class is only present
as a small spot in the south. As a consequence of the different texture distributions,
hydrological model properties are quite different between the two soil model setups in
this region. Resulting ETR sums of Piras et al. (2014) are much higher for the months July
and August. Another explanation for the underestimated evapotranspiration in the dry
months of the year might be that irrigation is not considered in the current WaSiM
setup. From the study of the Landsat remote sensing imagery, it gets clear that in the
north-eastern part of the catchment irrigation is applied in the dry season, but unfortu-
nately it was not possible to get any information about the length of irrigated days, nor
about the total amount of irrigation water used in this region. The scarce information
about irrigation activities in the test site made a consideration in the model set up
infeasible. For future WaSiM setups this information is vulnerable to improve the fit of

observations and simulations.

The R? of scatterplot results of WaSiM-RKS in Figure 33ii) & iv) reveal a better match
with the derived ETR-TRI patterns. The comparison shows on the one hand for both
hydrologic model setups a very low to low R?, but on the other hand an improved R? for
WaSiM-RKS setup of 0.06 (250m) & 0.05 (30m) for May and 0.18 (250m) & 0.18 (30m)
for June. Nearly no correlation is visible for the WaSiM-ARU setup with very little R? of
0.01 (250m & 30m) for May and 0.09 (250m) & 0.09 (30m) for June, in a negative

relation.
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Figure 33: Scatter plot comparison of ETR-TRI and WaSiM-ETR results, i) WaSiM-ARU May
referring to Figure 32 a) & b), ii) WaSiM-RKS-May referring to Figure 32 a) & c), iii) WaSiM-ARU
June referring to Figure 32 d) & e) and iv) WaSiM-RKS June referring to Figure 32 d) & f).

6.1.3 Modeled vs. recorded soil water content (SWC)

Finally, considering point measurements for validation, WaSiM’s SWC model results
were compared with recorded soil water content from 2010-2012 (section 5.3.2). In

Figure 34 field observed SWC is compared to model results using WaSiM-ARU (a) and
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WaSiM-RKS (b). The recorded SWC reaches maximum values in February, with a monthly
mean close to 35 vol.-%. SWC reaches minimum values in August but does not drop

below 15 vol.-%.
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Figure 34: Recorded soil moisture from 2010-2012 in comparison to WaSiM modeling results of
a) the WaSiM-ARU model setup, b) the WaSiM-RKS model setup.

Measured minimum values are about 7 vol.-% higher as compared to observations made
by Cassiani et al. (2012) using electric resistivity tomography and electromagnetic

induction.
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The SWC outputs of both soil model setups match, in principle, the seasonal regime of
the recorded SWC, however with considerable biases when using the conventional soil
map. The WaSiM-ARU SWC stays below the 20 vol.-% all over the year, much too dry
even for a semi-arid climate. The absolute monthly means of simulated SWC using the
WaSiM-RKS SWC match much better with observations. The deviation between modeled
and recorded SWC is below 1 vol.-% in February and March. Higher negative deviations
(-9 to -7 vol-%) can be observed in the dry season from June to September and positive
deviations of 6 vol.% in January. For the rest of the year, deviations are below 4 vol.%.
Those results reveal strong improvements in reproducing SWC behavior using the
WaSiM-RKS soil setup. Furthermore it is shown that the soil parametrization is one

major source of uncertainty in modeling SWC.

6.2 Modeling results and hydrological climate

change impact

In this section the outputs of WaSiM for a reference (1971-2000) and future (2041-2070)
time series were compared and analyzed. The comparison was first made based on
changes of annual mean hydrological modeling results. This was done for both soil
model setups (WaSiM-ARU & WaSiM-RKS). Afterwards inter-annual changes were
quantified in a comparison of long-term monthly means. Finally WaSiM’s spatial evapo-
transpiration output grids were compared with grids of evapotranspiration patterns that

were derived from LANDSAT satellite images (section 6.1.2).

6.2.1 Annual hydrological modeling results

Table 9 quantifies the WaSiM outputs for the major water balance components on an
annual mean basis for the REF and FUT. Part b) of Table 9 summarizes the annual mean
relative changes in the single water balance components for the future time series.
Columns 1-3 represent the annual modeling results that are independent from the soil
model setup of WaSiM.
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For all regional climate forcings, annual precipitation rates are dropping in the future
time series. The decline ranges from -39mm or -7% (ECHAM-5 REMO) to -124mm or -
21% (HadleyCM3 RCA) per year. The applied RCMs show an increase in air temperature
of 1.8°C (ECHAM-5 RCA & RACMO) up to 3.1 °C (HadleyCM3 RCA).

The range of modeled potential evaporation (ETP) outputs fit well the annual value of
1500 mm/as published by the EEA (2013). Highest values for the REF were modeled by
WaSiM when applying the ECHAM-5 REMO. All future model outputs show increased
ETP values from 182 mm (ECHAM-5 RCA) up to 338 mm (HadleyCM3 RCA) per year. This
is mainly caused by rising temperatures. These results show that in terms of climate
change impact within the A1B emission scenario the HadleyCM3 RCA is a more pessimis-
tic climate forcing while the ECHAM-5 driven RCMs show a more moderate future

climate change projection.

Note that Table 9 shows WaSiM results of the same water balance components (runoff
(Q), actual evapotranspiration (ETR) and soil water content (SWC)) using two different
soil model setups. Projections show that the hydrological parameters Q, ETR and SWC
are expected to decline for at least 3 hydrological projections in the future. The range of
changes depends strongly on the applied RCM. While results of WaSiM driven with the
(ECHAM-5 RACMO and REMO) show only moderate hydrological changes of Q (-5% to -
20%), significant annual changes of up to -37% for WaSiM-ARU and up to -46% for
WaSiM-RKS are revealed when driven with the HadleyCM3. WaSiM-RKS driven with
ECHAM-5 RACMO shows even a Q increase of 2%.
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Table 9: Modeled hydrological a) quantities and b) projected annual changes in the water balance budgets of the Rio Mannu di San Sperate
catchment by driving WaSiM-ARU & WaSiM-RKS with the regional climate model ensemble.

a) Modeled long-term annual hydrological quantaties in the Rio Mannu Basin
Soil model setup independent . . . o .
: Results with Aru soil setup Regression Kriging C soil setup
quantaties
ET, ET, ET,
Climate forcing i N P a s aQ Ek

{mm)} (°C) {mm)} (mm) (mmy} (vol.-%) (mmy} {mm) (vol.-%)
ECHAM-5 RCA (REF) 570.10 15.50 1308.40 57.50 476.60 17.10 47.950 534.10 21.30
ECHAM-5 REMO (REF) 339.10 15.80 1612.40 73.70 492.00 15.80 28.40 345.530 19.60
ECHAM-5 RACMO (REF)  532.50 15.80 1339.30 87.70 452.90 16.80 43.80 503.90 20.90
HadleyCM3 RCA (REF) 578.70 15.40 1441.90 105.50 476.10 16.60 59.90 528.90 21.00
ECHAM-5 RCA (FUT) 500.50 17.70 1450.40 78.20 428.30 15.50 38.10 a77.70 15.70
ECHAM-5 REMO (FUT) 515.80 17.60 1802.30 64.60 460.60 14.70 26.20 506.50 18.50
ECHAM-5 RACMO (FUT)  490.70 17.60 1331.30 83.70 409.80 15.70 44.70 435.30 19.80
HadleyCM3 RCA (FUT) 454,90 18.50 1779.90 66.40 394.60 13.90 32.50 436.60 18.00
b) Maodelled long-term hydrological changes &

Soil model setup independent changes Changes with ARU et al. soil setup Changes with Regression Kriging soil setup

AP AP AT AT AET, AET,  aQ aQ LET, AET, ASWC ASWC  AQ  AQ  AET,  AET,  ASWC ASWC
(mm) (%) ("C) (%) (mm) (%) _(mm) (%) (mm) (%) (vol-%) (%) _(mm) (%) (mm) (%) (vol-%) (%)
ECHAM-5 RCA {FUT} -69.20 -12% 1.80 11% 182.10 14% -19.20 -20% -48.30 -10% -1.50 -9% -9.70 -20% -56.40 -11% -1.60 -8%
ECHAM-5 REMO (FUT) -39.30 -7% 1.80 11% 189.90 12% -9.10 -12% -31.50 -6% -1.10 -7% -2.20 -8% -39.00 -7% -1.10 -6%
ECHAM-5 RACMO (FUT) -41.70  -8% 1.80 11% 192.00 14% -4.00 -5% -43.10 -10% -1.10 -7% 0.90 2% -48.40 -10% -1.10 -5%
HadleyCM3 RCA (FUT) -123.80 -21% 3.10 20% 338.00 23% -39.60 -37% -81.50 -17% -2.70 -16% -27.40 -46% -92.30 -17% -3.00 -14%
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Annual quantities of modeled Q using WaSiM-ARU fit well the results of Piras et al.
(2014), who applied the same ARU et al. (1990) soil map and the same regional climate
model ensemble to drive the hydrological model tRIBS in the RMB. However, the
projected WaSiM-ARU as well as WaSiM-RKS AQ is somewhat lower compared with the
findings of Piras et al. (2014), who found a Q reduction of -17% to -50%, for the future

time series.

The WaSiM-RKS results compared to WaSiM-ARU for Q are significantly lower (41-61%
in the REF), while outputs for ETR (11-12%) and SWC (24-27%) are higher in the REF. This
shows that the soil setup is less important for projected long-term annual changes, but
has a major impact on the modeled total quantities of the main hydrological parame-
ters. Depending on the applied climate forcing, SWC is reduced in a range of -7% to -16%
for WaSiM-ARU and -5 to -14% for WaSiM-RKS.

T is projected to increase for all months between 1°C to 3°C in FUT. The fluctuation in T
of the applied RCM ensemble shows just a minor variation for REF as well as for the FUT
period. Little variation is visible between the different RCMs for the months of March,
April, and June. It is not astonishing that P (Figure 36), in contrast, shows a much strong-
er variation in both REF and FUT. The monthly mean P-sum represents well the
Mediterranean nature of the catchment with high P-sums in the winter months and very
little P-sums in the summer months. The comparison of the REF and FUT time series
shows a slight increase of P-sums for the month January, while for the rest of the year;
mean P-sums of the RCM ensemble are projected to decline. The low p-values derived
from a T-test between REF and FUT indicate a significant climate change impact for the
months March (p<0.002), April (p<0.001), and May (p<0.001).
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6.2.2 Monthly mean hydrological modeling results and climate
change impacts

WaSiM'’s hydrological outputs based on long-term monthly means were analyzed to
investigate inter-annual changes in the catchment. Furthermore, the sensitivity of
modeling results was tested, based on the applied soil model setup. WaSiM’s long-term
monthly mean air temperature (T) and precipitation (P) inputs for the REF and FUT are

compared for hydrological years (September-August) in Figure 35 and Figure 36.

Air Teperature (°C)

o — WaSiM-ARU mean ensemble REF WaSiM-ARU ECHAM-5 RCA FUT
< = = WaSiM-ARU mean ensemble FUT WaSiM-ARU ECHAM-5 REMO FUT
WaSiM-ARU ECHAM-5 RCA REF _ --»- WaSiM-ARU ECHAM-5 RACMO FUT
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Figure 35: Modeled air temperature (°C) Rio Mannu for the reference (1971-2000) and scenario
period (2041-2070).

Spatially distributed WaSiM outputs of P when driven with ECHAM-5 RCA and HadCM3
for the IPCC seasons December, January, February (DJF; winter), March, April, May
(MAM; spring), June, July, August (JJA, summer), September, October, November (SON,
autumn) are presented in Figure 37 for the REF and FUT. High P sums are present in the
mountainous eastern areas of the catchment and lower values are generated in the

valley areas, for the FUT as well as for the REF. Only in the summer season no spatial
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variability is observable, due to very low P sums in this season. This spatial distribution

appears to be plausible.

Precipitation
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WaSiM-ARU ECHAM-5 RCA REF  --¢-- WaSiM-ARU ECHAM-5 RACMO FUT
—=— WaSiM-ARU ECHAM-5 REMO REF --e-- WaSiM-ARU HadCM3 RCA FUT
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Figure 36: Modeled precipitation (mm) Rio Mannu for the reference (1971-2000) and scenario
period (2041-2070).

P sums are projected to decline in the FUT for the spring, summer and autumn seasons
and slightly increase in winter. Little deviation (7mm) in the annual total P sums and
distribution is visible for both applied RCMs in the REF. In contrast to that is the annual
deviation of 47mm highly increased between the two applied RCMs in FUT. The HadCM3
RCA is in comparison to ECHAM-5 RCA the more extreme climate projection since it
processes highest P sums in winter and the lowest P sums in summer of all applied
RCMS (Appendix 1). Highest deviations of the P sums in the FUT are present in autumn,
where HadCM3 RCA is about 30% lower than ECHAM-5 RCA.
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Figure 37: Spatially distributed precipitation of ECHAM-5 RCA and HadCM3 RCA for the IPCC
seasons a) REF and b) FUT period.
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6.2.3 Standardized Precipitation Index (SPI)

In this study the 6-months SPI (SPI-6) and 12-month SPI (SPI-12) are presented in Figure
38 and Figure 39, respectively. The 4 upper graphs of the figures belong to the REF
model precipitation while the lower 4 graphs belong to the precipitation for the FUT of
the same climate models. The 6-month SPI compares the precipitation for that period
with the same 6 months over the historical record, while the 12-month SPI is the same
for 12 consecutive months. The 6-month SPI indicates seasonal to mid-term trends in
precipitation. It is supposed to be very effective in showing precipitation over distinct
seasons. It is especially good to analyze drought seasons in the very important wet
Mediterranean season (October to March). Its information can be associated with the
beginning of anomalous stream flows and reservoir levels. The 12-month SPI long-term
reflect precipitation patterns. It tends to gravitate towards zero unless a distinct wet or
dry trend is taking place (WMO 2012). The behavior can be good observed by comparing
the REF of Figure 38 and Figure 39. White space (zero) is much more present in the SPI-
12 than in the SPI-6. In both figures the FUT is characterized by a higher number of
extremely dry events (value = -2). The ECHAM-5 REMO (ERE) precipitation also shows a
higher number of extreme wet events in the FUT. Severely dry and extremely dry
periods increase from March to July SPI-6 FUT. Those projection results reveal that the
wet seasons (October to March (SPI-6 March)) and the wet to growing seasons (January
to July (SPI-6 July)) will be more effected by severe droughts in the future. In those
seasons all climate models precipitation inputs point in the same direction of change.
Furthermore FUT results show that drought events are supposed to last longer than in
the REF. This can be very clearly observed from the HadCM3 RCA (HCH) FUT precipita-
tion where extremely dry conditions projected for the years 2051-2053 and 2064-2067.
The latter period is also confirmed in parts (2064-2066) by the ECHAM-5 driven RCMs.
The SPI-6 change to more severe droughts in the FUT is significantly confirmed by the
SPI-12 increase in Figure 39 and by the increased number of months with severely dry
conditions in Figure 40. In the long-term SPI-12 one can find patterns for example in
2055 that are present in all ECHAM-5 driven RCMs. This indicates that the applied RCM
does have less importance when observing the long-term drought trends. For the short
term analysis on the other hand the RCM seems to have a larger influence and one can

see that the drought patterns of the ECHM-5 driven RCM are much more diverse.
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Figure 38: Standardized Precipitation Index for the 06 month interval (SPI 6)of the hydrological modeling inputs for the FUT and REF. RCM
abbreviation: ERC = ECHAM-5 RCA, ERE = ECHAM-5 REMo, ERM = ECHAM-5 RACMO and HRC = HadleyCM3 RCA. The values represent: +2 and
above = (extremely wet), +1.5 to + 1.99 = very wet, +1.0 to +1.49 = moderately wet, -0.99 to +0.99 = near normal, -1.0 to -1.49 = moderately dry, -
1.5 to - 1.99 = severely dry and -2 and less = (extremely dry).
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Figure 39: Standardized Precipitation Index for the 12 month interval (SPI 12) of the hydrological modeling for the FUT and REF. RCM abbrevia-
tion: ERC = ECHAM-5 RCA, ERE = ECHAM-5 REMo, ERM = ECHAM-5 RACMO and HRC = HadleyCM3 RCA. The values represent: +2 and above =
(extremely wet), +1.5 to + 1.99 = very wet, +1.0 to +1.49 = moderately wet, -0.99 to +0.99 = near normal, -1.0 to -1.49 = moderately dry, -1.5 to -
1.99 = severely dry and -2 and less = (extremely dry).
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Figure 40: Number of months per year with Standardized Precipitation Index - 12 below -1.5
(severely dry) in the REF (blue) and FUT (red).

6.2.4 Soil moisture content

WaSiM-ARU and WaSiM-RKS soil moisture outputs are presented in Figure 41 and Figure
42 respectively on a long-term monthly mean basis for the REF and FUT. The SWC
outputs of WaSiM-ARU reveal a plausible distribution within the course of the year, with

low values in the dry summer season and a peak SWC in the winter season in February.
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A very narrow range of hydrological model outputs is visible in autumn for all applied
RCMs of the REF. The widest range on the other hand can be observed in the spring
season in May. The range of model outputs of the FUT is for most months of the year
higher compared to the REF. The long-term total ensemble mean is reduced in the FUT
for all months of the year. SWC is, except for ECHAM-5 RACMO in January, reduced for
all months of the year. WaSiM-ARU processes the highest reduction of SWC in the FUT
when driven with HadCM3 RCA and lowest reduction when driven with ECHAM-5
RACMO. The strongest SWC reduction of the mean hydrological model ensemble can be

observed in May.
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Figure 41: WaSiM-ARU outputs of long-term monthly mean SWC for the REF and FUT.
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Figure 42: WaSiM-RKS outputs of long-term monthly mean SWC for the REF and FUT.

This behavior is the same for the WaSiM-RKS. The outline of the produced SWC outputs
of both soil model setup look very similar over the course of the year. The major differ-
ence of the WaSiM-RKS setup is that SWC outputs are significantly higher compared to
the WaSiM-ARU setup for the REF as well as for the FUT (Figure 34, Figure 41 & Figure
42).

While SWC outputs of the WaSiM-RKS are never below 12.9 vol.-% for all applied RCMs,
very low SWC values below 10 vol.-% are processed in the summer season with WaSiM-
RKS for the REF as well as for the FUT. The deviation of absolute SWC outputs between
the two soil model setups is even higher in the wet winter season; here WaSiM RKS is

processing about a 5 vol.-% higher SWC per month.

Table 10 reports the relative SWC changes of WaSiM-ARU and WaSiM-RKS for all applied
RCMs as well as for the ensemble mean between REF and FUT. Except for January,

relative soil moisture change in the future is negative for all SWC outputs of WaSiM-ARU
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& -RKS. For January a slight increased trend of 1% is visible for ECHAM-5 RACMO applied
to WaSiM-ARU and no change is processed when applied to WaSiM-RKS. The SWC
outputs of both soil model setups show a significant mean ensemble reduction of -10%

or more for the months of October, November, and April to May.

Table 10: Comparison of relative SWC change % of the WaSiM-ARU and WaSiM-RKS modeling
outputs; Note the green upward arrow = 25 - 100%, green upward arrow tip = 1 - 24%, orange
sideward arrow = 0%, downward red arrow tip = -1 - -24% and downward red arrow = -25 - -
100% change.

Change of atc. soil water content SWC (%)

ECHAM-5 RCA ECHAM-5 REMO ECHAM-5 RACMO HadCM3-RCA Ensemble Mean

ARU RKS ARU RKS ARU RKS ARU RKS ARU RKS
Sep ¥ -7 ¥ -5 - -8 v -5 ¥ -10 ¥ -6 ¥ -5 ¥ -6 - -8 ¥ -6
Qct ¥ -11 + -8 ¥ -10 + -6 ¥-14 - -9 ¥ -23 T-18 ¥ -15 " -10
Nov ¢ -7 - -5 -1 - -9 ¥ -6 v -5 v -24 w20 v -12 - -10
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Spatially distributed long-term mean SWC outputs of WaSiM-ARU and WaSiM-RKS for
the IPCC season are reported in Figure 43 and Figure 44, respectively. Distinct north-
western and southeastern SWC pattern can be observed in the processed maps, which
strongly follow the classified soil texture classes of the applied ARU soil texture map
(Figure 18 a)). For the winter and spring season high soil SWC values are present in the
northwestern pattern. This pattern is classified as pure clay in the ARU soil texture map.
The southeastern pattern, which is mainly classified as sandy-loam in the ARU map, is
characterized by much lower SWC. As soon as the SWC is dropping in the catchment, in
the dry summer and autumn season, those very distinct patterns fade. This is especially

true in the FUT projection, where the distributed pattern appear more random.

Figure 45 reports the relative climate change impact based on the relative SWC change

(CSM) of the hydrological ensemble using WaSiM-ARU. CSM also follows patterns but
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not as distinct as for the absolute SWC in Figure 43. The modeling results reveal a strong
relative SWC reduction in the northwestern lower elevated areas for all applied RCMs
and over all seasons. The strongest relative SWC reduction can be observed in the spring
and autumn season, where SWC only reaches 91-81% and 90-80%, respectively of the
REF level. A slight increase of soil moisture is visible for the all RCMs in the mountainous
southeastern part of the RMB. Pixel covered by urban and pasture land are affected

strongest by the SWC reduction.

WaSiM-RKS SWC and CSM results are presented in Figure 44 and Figure 46, respectively.
The spatial distribution of SWC using WaSiM-RKS also follows strongly the applied soil
texture map and its associated soil model parametrization (Figure 24), but this is less
obvious compared to WaSiM-ARU. In general pixel in the WaSiM-RKS SWC outputs maps
hold higher SWC compared to WaSiM-RKS. Low SWC values below 22 are present only in
more elevated areas in winter and spring season. The summer and autumn season are
characterized by significantly lower SWC values and pixel covered by urban and pasture
land use hold the lowest SWC similar to WaSiM-ARU. In the FUT projection SWC is
reduced for all IPCC seasons and all applied RCMs. The WaSiM-RKS CMS results are

presented in Figure 46.

The strongest relative SWC reduction can be observed in the spring and autumn season,
where SWC only reaches 93-82% and 94-86%, respectively of the REF level. While
WaSiM-RKS CSM results reveal for all RCMs the strongest CC impact for the spring
season, WaSiM-ARU driven with ECH-5 REMO, -RACMO and HadCM3 RCA projects this

for the autumn season.
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Figure 43: Spatially distributed soil water content (SWC) WaSiM-ARU driven with ECHAM-5 RCA
and HadCM3 RCA for the IPCC seasons a) in the REF and b) in the FUT period.
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Figure 44: Spatially distributed soil water content (SWC) WaSiM-RKS driven with ECHAM-5 RCA
and HadCM3 RCA for the IPCC season in the s a) REF and b) FUT period.
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a) WaSiM-ARU ECHAM-5 RCA b) WaSiM-ARU ECHAM-5 REMO
Change Soll Water Content (FUT/REF)*100 Rio Mannu 2041 - 2070 Change Sod Water Content (FUT/REF)*100 Rio Mannu 2041 - 2070
500000 E1D000  E20000 WO0OU  EW000 E20000
O [ PO (RN L i o o (e Pt P GRS WS T TN RS W T S Tkl P B 110
DJF | 95.9 (% of REF) MAM | 87.8 (% of REF) DJF | 95.8 (% of REF)[MAM | 90.8 (% of REF)
4285000 -] 4 : ‘; B 4382000 | T - 105
4380000 - 1 - 4300000 ] ! ; 3 -
100
- 4378000 < L
4370000 : A T - 4370000 - 95
4305000 - 4382000 < L 90
4380000 4360000 = o
85
- 4355000
JJA | 95.1 (% of REF) 80
- s228000 B E
- 4380000 . 75
- 4375000 | 70
- s370000 .
65
- 4385000 e
- £300000 . 60
— T T T T AT T T T T 55
500000 510000 530000 500000 E10000 520000
Change REFFUT, CM: ECHAM-5 RCA (A1B) BDM, HM: Wa SiM, Res: 250, Inst: LM Change REFIFUT, CM: ECHAM-5 REMO [A18) BOM, HM: Wa SiM, Res: 250, inst: LMU
c) WaSiM-ARU ECHAM-5 RACMO d) WaSiM-ARU HadCM3 RCA
Change Soll Water Content (FUT/REF)*100 Rio Mannu 2041 - 2070 Change Sod Water Content (FUT/REF)*100 Rio Mannu 2041 - 2070
800000  B10000 520000 500000 810000 820000
1 1 L i 1 1 A L L L L 1 L 1 L L L L L 1 L 1 1 i
DJF | 99.2 (% of REF) MAM | 90.5 (% of REF) DJF | 88.6 (% of REF)| MAM | 81 (% of REF)
JJA | B6.5 (% of REF) [SON | 80.1 (% of REF)
- s385000 £y
- +3s0000
- 4378000
- 4370000
5 "._ - 4305060
- 4380000
T T T T T T T T T T T T - 4200000 T T T T T T
200000  S10000 520000 200000 210000 220000
Change REFFUT, CM: ECHAM-5 RACMO (A1B) BDM, HM: WaSiM, Res: 250, Inst: L Change REFFUT, CM: HadCM3 RCA (A1B) BOM, HM: WaSiM, Res: 250, inst: LMU

Figure 45: Spatially distributed soil moisture change [%] (CSM) using WaSiM-ARU driven with a)
ECHAM-5 RCA, b) ECHAM-5 REMO, c) ECHAM-5 RACMO and d) HadCM3 RCA for the IPCC
seasons of the FUT period.

120



Results and discussion hydrological modeling and projected changes
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Figure 46: Spatially distributed soil moisture change (CSM) using WaSiM-RKS driven with a)

ECHAM-5 RCA, b) ECHAM-5 REMO, c) ECHAM-5 RACMO and d) HadCM3 RCA for the IPCC

seasons of the FUT period.
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6.3 Actual evapotranspiration

In this section WaSiM’s actual Evapotranspiration (ETR) outputs are compared for the

ARU soil setup and the RKS soil setup and hydrological climate change impacts are

assessed.
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Figure 47: WaSiM-ARU outputs of long-term monthly mean ETR for the REF and FUT.

The ETR outputs using WaSiM-ARU driven with the climate ensemble for the REF and
FUT are presented in Figure 47. The distribution of ETR outputs with in the course of the
year shows lowest values in the summer months July to Octobert, peak values in the
spring season March to June and moderate slowly increasing values from November to
February. Deviations of the WaSiM-ARU model outputs are strongly dependent on the
applied RCM. The range is not smiliar over the course of the year. The highest long-term
mean deviations can be observed in December and January for the REF and FUT, while
the range is smallest for the REF in May it is smallest in the FUT in April. This is indicating

a higher confidence of the modelling outputs for those months.
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The distribution of long-term monthly mean ETR results shows a very similar extent for
the WaSiM-ARU and the WaSiM-RKS soil model setup (compare Figure 47 & Figure 48),
but the ETR rates of the WaSiM-RKS setup are about 5-10mm higher per month
compared to the WaSi-ARU setup.
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Figure 48: WaSiM-RKS outputs of long-term monthly mean ETR for the REF and FUT.

Also the peak month of the REF changed from May in the WaSiM-ARU to April in the
WaSiM-RKS. Both WaSiM setups produce reduced ETR rates for the months of May to
October, slightly increased rates for December and January and slightly decreased rates
for November and February to April, when driven with the FUT climate projections.
Table 11 reports the relative changes of WaSiM-Aru & WaSiM-RKS ETR outputs between
the REF and FUT period for all applies RCMs. The model results reveal the strongest
guantitative mean reduction of ETR in May (WaSiM-RKS; —15mm) and in June (WaSiM-
ARU; -13mm). The relative change, presented in Table 11 on the other hand is strongest
in July (-28% WaSiM-ARU & -30% WaSiM-RKS) for both model setups but this is repre-
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senting a less strong total reduction of — 9mm for both hydrological model setups.
WaSiM-RKS driven with HadCM3 RCA produces the lowest ETR rates of all applied FUT
climate forcings over the year and for most of the month, with a relative reduction of up
to 41% in July. The applied ECHAM-5 driven RCMs produce less negative ETR outputs.
HadCM3 RCA produces an interesting deviation between the two soil setups for the
months of December and January. Only WaSiM-ARU in combination with HadCM3 RCA

shows a reduction of ETR for those months.

Table 11: Comparison relative ETR change in % of the WaSiM-ARU and WaSiM-RKS model
outputs; Note the green upward arrow= 25 - 100%, green upward arrow tip = 1 - 24%, orange
sideward arrow = 0%, downward red arrow tip = -1 - -24% and downward red arrow = -25 - -
100% change.
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Spatially distributed ETR modeling results of WaSiM driven with ECHAM-5 RCA and
HaCNC3 RCA are presented in Figure 49 (WaSiM-ARU) and Figure 50 (WaSiM-RKS) for
the IPCC seasons. The seasonal absolute results of WaSiM of both applied soil model
setups follow roughly the ETR distribution presented in Figure 47 and & Figure 48. The
ETR result maps of WaSiM-ARU show a similar spatial pattern like for the SWC, with high
ETR rates (spring 241-276mm) in the northwestern part of basin and lower rates in the

southeastern part (spring 172-206mm).
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Figure 49: Modeled spatially distributed evapotranspiration outputs of WaSiM-ARU driven with
ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT period.
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Figure 50: Modeled spatially distributed evapotranspiration outputs of WaSiM-RKS driven with
ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT period.

One can also observe for those outputs that the high values in the spring and summer

season strongly follow the applied soil texture map. The WaSiM-RKS results on the other

hand do not show this distinct distribution. ETR rates of WaSiM-RKS are more homoge-

nously distributed in the basin and show a range of 206-241mm for most pixels in spring
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season. WaSiM-RKS processes higher ETR rates compared to WaSiM-ARU in all seasons
and for all applied RCMs.

Table 12: a) Difference of ETI results depending on the applied soil model. Comparison of
WaSiM-ARU and WaSiM-RKS. b) Climate change impact on ETI results in the FUT by using
WaSiM-ARU. c) Climate change impact on ETI results in the FUT by using WaSiM-RKS.

a) Difference of mean ETI results between WASIM-ARU and WaSiM-RKS
IPCC ECHAM-5 RCA ECHAM-5 REMO ECHAM-5 RACMO HadCM3 RCA
SEASON REF FUT REF FUT REF FUT REF FUT
DJF 0.11 0.12 0.11 0.1 0.11 0.12 0.12 0.13
MAM 0.09 0.06 0.07 0.04 0.09 0.07 0.07 0.04
A 0.01 0.01 0.01 0 0 0 0.01 0.01
SON 0.09 0.08 0.09 0.07 0.09 0.1 0.1 0.06
b)
IPCC Climate change impact on mean ETI results (FUT-REF) using WaSiM-ARU
SEASON ECHAM-5 RCA ECHAM-5 REMO ECHAM-5 RACMO HadCM3 RCA
DJF -0.04 -0.04 -0.03 -0.08
MAM -0.11 -0.09 -0.1 -0.16
A -0.07 -0.03 -0.07 -0.09
SON -0.05 -0.05 -0.06 -0.12
c)
IPCC Climate change impact on mean ETI results (FUT-REF) using WaSiM-RKS
SEASON ECHAM-5 RCA ECHAM-5 REMO ECHAM-5 RACMO HadCM3 RCA
DJF -0.03 -0.05 -0.02 -0.07
MAM -0.14 -0.12 -0.12 -0.19
A -0.07 -0.02 -0.07 -0.09
SON -0.06 -0.07 -0.05 -0.16

The evapotranspiration index (ETI), which is the ETR share in the potential Evapotranspi-
ration (ETP), is presented in Figure 51 (WaSiM-ARU) and Figure 52 (WaSiM-RKS). The ETI
results of the hydrological ensemble for both WaSiM-ARU and WaSiM-RKS reveal
maximum values in winter, moderate values in spring, low values in autumn and a
minimum in summer. ETl is a drought stress indicator (Jasper et al. 2006) and defined by

the thresholds 0.3 (severe) and 0.5 (moderate) of plant available water as a critical level.
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Figure 51: Modeled spatially distributed evapotranspiration index (ETI) outputs of WaSiM-ARU
driven with ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT
period.
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a) WaSiM-RKS ECHAM-5 RCA; ETI
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Figure 52: Modeled spatially distributed evapotranspiration index (ETI) output of WaSiM-RKS
driven with ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT

period.
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The FUT hydrological results reveal a decreasing ETI trend for all months of the year,
with a maximum decrease in spring (-0.11 to -0.19) and minimum decrease in winter (-
0.02 to -0.08) for both soil model setups (Table 12). The number of pixels having values

below the critical 0.5 threshold is especially in the future spring season increased.

The absolute differences of WaSiM-ARU and WaSiM-RKS ETI results in winter are higher
(+/- 0.11 to 0.13) than the CC impact signal (-0.04 to -0.08). This reveals that the soil
model setup has a higher impact on the total modeling results than the applied RCM in

winter when it’s wet and minor impact in the dry summer season.

6.3.1 Ground water recharge

WaSiM’s spatially distributed ground water recharge (GWR) results are shown in Figure
53 (WaSiM-ARU) and Figure 54 (WaSiM-RKS). GWR is positive for both soil model setups
in the REF for the wet winter season and in the spring season and negative in the
summer and autumn seasons. The catchment average positive GWR is for both WaSiM
setups very similar. The patterns of increased GWR on the other hand are very different
between the two WaSiM setups. The result maps of the WaSiM-RKS setup show in-
creased GWR in a large area in the southwestern part of the catchment. The area of
increased GWR in the WaSiM-ARU setup is smaller, but the total GWR rate for those
pixels is higher. This is also true for the GWR reduction, which are caused by capillary
uptake. The WaSiM-ARU results are in limited areas more extreme than the WaSiM-RKS.
GWR is declining for all IPCC season and for all model setups in the FUT. The WaSiM-RKS
results show a negative annual GWR for the REF when driven with ECHAM5 RCA and for
all future scenarios. The WaSiM-ARU results on the other hand are positive for all REF
and FUT scenarios. The relative change of GWR is strongly dependent on the applied soil
texture information. For the applied HadCM3 RCA projection WaSiM-RKS results indi-
cate a strong decrease in the northwestern part of the catchment, which is not present
in the WaSiM-ARU GWR results. This result alone indicates that a precise future
groundwater resource projection is highly dependent on high quality soil texture infor-

mation.

130



Results and discussion hydrological modeling and projected changes

a) WaSiM-ARU ECHAM-5 RCA; GWR
Ground-Waler-Recharge (mm) Rio Mannu 1971 - 2000 £ =6

800000 820000
N

" DJF | 8.5 (mm) MAM | 2.7 (mm)_
- b2 I
—— . !
4378000 - o
— i
4385000 - [
| I
SON | -1.3 (mm)

] e

4 |- 43800

B o ‘3 I 43700

R 2 5?'.__‘_ . I 43800

e

1971-2000, CM: ECHAM.-5 RCA (A18) BDM, HM: WaSiM, Res: 250, Inst: LM

b) WaSiM-ARU ECHAM-5 RCA, GWR

Ground-Water-Recharge (mm) Rio Mannu 2041-2070 =47

S R
" DJF 73 (mm) | MAM] 1.8 (mm)
e ] I
4380000 - -
4375000 : ; o "
4370000 pe- . I
4285000 4 N L
sl s L
4385000 - 2 -
JJA | -3.3 (mm) SON | -1.1 (mm)
4 i [ asm000
- [~ 4380000
==
I 4370000
[~ 4388000
. [~ 4380000
: . r . - . r T T 1 - - [~ 4355000
g e e e

20412070, CM: ECHAM.5 RCA (A18) BOM, HM: WaSill, Res: 250, inst: LMU

WaSiM-ARU HadCM3 RCA; GWR

Ground-Walter-Recharge (mm) Rio Mannu 1971-2000 . £=65

£00000 £10000 520000
PSS T AR NN Rl . o Sy i Wisuns [ ]|
DJF | 9.3 (mm) MAM | 2.9 (mm)
4385000 - I'.i_-'_ L
*
380000 +
«a7s000 | 4 L
wmwe 4 By -
4365000 - -
380000 -
4as5000 - L
SON | -0.9 (mm)

« - 4382000

- i~ 4380000

E - s37m000

- 4370000

. - <3e2000

g - 4300000

-1 - 4355000

R e e S pe S s R ma S
E00000 0000 £20000

1871-2000, CM: HadCM3 RCA (A18) BDM, HM: WaSiM, Res: 250, inst: LMU

WaSiM-ARU HadCM3 RCA; GWR

Ground-Water-Recharge (mm) Rio Mannu 2041 -2070 £=43

ssaoss  eioosn  m3s000
" DJF159(mm) | MAM[2(mm)
4385000 - |"-' : -
4380000 - -
4375000 - ..-Z o
4370000 - e i
el L
4300000 | |
4355000 - -
JJA | -2.5 (mm) SON |-1.1 (mm) |
J ; - asamaco
.| - 4380000
- i . - 4379000
q . |- 4308000
J "'t‘\‘- ; - «200000
- . . . r y . T T - . 1 . - 4352000
mosse  smeos 20000

2041.2070, CM: HadCM3 RCA (A1B) BDM, HM: Wa5iM, Res: 250, Inst: LMU

Figure 53: Modeled spatially distributed ground water recharge (GWR) using WaSiM-ARU
driven with ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT

period.
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Figure 54: Modeled spatially distributed ground water recharge (GWR) using WaSiM-RKS
driven with ECHAM-5 RCA and HadCM3 RCA for the IPCC seasons in the a) REF and b) FUT

period.
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6.3.2 Climate change impact on discharge and runoff

The long-term monthly mean Q modeling outputs of WaSiM-ARU are reported in Figure
55. All applied climate forcings of the REF are resulting in a modeled peak flow of Q in
December. A second peak of Q in February in the results is visible for applied Hadley
CM3 climate forcing. The modeling outputs reveal low flow conditions, with Q rates
under 0.5 m*/s, for the months June to September for all applied climate forcings in the
REF and FUT. The ensemble average mean Q modeling results of the future scenarios
reveal, a decrease of Q rates except for January and February for all months the year.
The slightly increasing Q in January and February fit well the slight increase of precipita-

tion rates in the FUT for those months.

Discharge (m/s)

Q| S {|— WaSiM-ARU mean ensemble REF WaSiM-ARU ECHAM-5 RCA FUT
N~ | i|= = WaSiM-ARU mean ensemble FUT -+ WaSiM-ARU ECHAM-5 REMO FUT
i ; WaSiM-ARU ECHAM-5 RCA REF -~ WaSiM-ARU ECHAM-5 RACMO FUT
i[~== WaSiM-ARU ECHAM-5 REMO REF --e-- WaSiM-ARU HadCM3 RCA FUT
o : i[~*= WaSiM-ARU ECHAM-5 RACMO REF B Range REF
o T i|-= WaSiM-ARU HadCM3 RCA REF W Rang FUT
o —
(9}
Ao. _
D <
"’E |
\./O
O
|
AN
<
-
o
o

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
Month

WaSiM-ARU simulations DIS

Figure 55: Long-term monthly mean Q outputs of the WaSiM-ARU.

A significant reduction of Q in the FUT outputs is visible for the months of April and May

for all applied climate model forcings. A significant mean Q reduction is also noticeable
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for the months of November and December, but this is only true for 3 of the for applied
climate model forcings. WaSiM generates with the applied ECHAM-5 RACMO forcing,
very similar Q outputs in the REF and FUT for those two months. The range of WaSiM
model outputs show a much stronger deviation for the REF compared to the FUT from
February to May. A similar difference in model output variation is visible for the WaSiM-

RKS Q outputs in those months Figure 56.
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Figure 56: Long-term monthly mean Q outputs of the WaSiM-RKS.

But the WaSiM-RKS Q outputs reveal also strong differences compared to the WaSiM-
ARU outputs. The Q outputs of WaSiM-RKS are strongly reduced for all months of the
year compared to the WaSiM-ARU setup. Especially the mean peak flow in December is
significantly lower compared to WaSiM-ARU. The mean Q peak of the WaSiM-RKS setup

has nearly the same values of about 1.5 m*/s for the months December to February in
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the REF, this is about 2 m?/s less than the long-term mean flow of the WaSiM-ARU setup

in December.

The mean hydrological ensemble Q outputs reveal also for the WaSiM-RKS setup a
reduction of Q for all months except for January and February. Since the WaSiM-RKS
setup produces less total discharge, the reduction of the total quantities is less com-
pared to the WaSiM-Aru setup. The model outputs reveal still a strong reduction in
Figure 56 in the spring and autumn seasons, but the reduction appears not as dramati-
cally as in the WaSiM-ARU results in Figure 55.

Table 13 reports the relative changes of the FUT modeling outputs compared to the REF
for both hydrological modeling setups. For most months and applied climate forcings
model results of WaSiM-ARU and WaSiM-RKS point into the same direction of change.
The hydrological modeling outputs of both soil model outputs differ in the direction of
change only for the ECHAM-5 RACMO climate forcing for the months of March, July, and
August and for the ECHAM-5 REMO for the month of March. All modeling outputs
project a decreasing Q trend for the months of September, October, December, May,
and July with a strong negative gradient in October and May. The increasing mean
ensemble Q trend for February is only visible for the ECHAM-5 driven RCMs, while the
Hadley driven RCM shows a decreasing Q trend for all months of the year. Very interest-
ing hydrological modeling results are visible for January, since modeling results of two
different climate forcings show a negative trend (ECHAM-5 RCA & HADCM3-RCA) and
two show a positive trend (ECHAM-5 REMO & ECHAM-5 RACMO).

The results reveal that the trend of the modeled future Q outputs are mainly controlled
by the applied climate forcings, the strength of this trend on the other hand is for many
months strongly influenced by the soil model parametrization. This is visible for example
for the ECHAM-5 RCA in January, for the ECHAM-5 REMO for the months of January,
June, and August, for the ECHAM-5 RACMO for the months of September, November,
December, February, and June and for the HadCM3-RCA for the months of September,

February, March, May to August, with deviations of 10% or more.
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Table 13: Comparison of relative Q change in % of the WaSiM-ARU and WaSiM-RKS model
outputs; Note the green upward arrow = 50 - 100%, green upward arrow tip = 1 - 49%, orange
sideward arrow = 0%, downward red arrow tip = -1 - -49% and downward red arrow =-50 - -
100% change.

Change of discharge Q (%)

ECHAM-5 RCA ECHAM-5 REMO ECHAM-5 RACMO HadCM3-RCA Ensemble Mean

ARU RKS ARU RKS ARU RKS ARU RKS ARU RKS
Sep ¥-24 w20 ¥-35 W32 w29 W9 W27 V47 w-29 527
Ot ¥-36 v-42 w-38 v-38 452 wvae $-75 75 L -50 50
Nov ¥-14 w-17 w-21 ¥-23 & 2 a23 64 67 w-24 21
Dec ¥-27 ¥-32 w27 ¥-35 W7 - v-11 v-48 {57 w26 v-34
lan - -3 = -15 a7 2 16 & 12 a7 ¥ -5 - -5 & 3 a1
Feb a4 6 414 4&a27 aAa49 a24 {65 -2 w41 A 9 a2
Mar v 98 w4 w27 ¥-3 b0 &3 w29 w45 F-16 720
Apr 59 5 w15 b 0 -3 w-30 $55 58 oAl 36
May 9+ 65 59 w-44 w38 L-72 H$63 +w-49 P59 JP-58 J55
Jun $50 w41 w15 w25 w-32 w-10 50 He8 w37 36
Wl ¥ 9 w23 w-13 w-20 ¥ -5 a5 w-25 5 w-13 24
Aug ¥ -7 26 -9 w19 w-13 a3 w16 53 w11 w24

50 a1 o0 w1 50

The spatially distributed runoff results are presented in Appendix 7 (WaSiM-ARU) and
Appendix 8 (WaSiM-RKS), respectively. In the WaSiM-ARU setup runoff is generated in
the southeastern part of the catchment, where sandy loam soil textures are present.
The northwestern part which is covered by clay textures generates low runoff for all
IPCC seasons (compare Figure 18). One can clearly recognize the unnatural appearing
patterns of the ARU soil texture map in the runoff grids, for the wet season. The spatial
patterns of the WaSiM-RKS setup appear differently. The runoff generation is in general
lower, especially in the spring and autumn season. This lower runoff generation has a
strong link to the high SWC of the generated by WaSiM-RKS. The runoff generation is
low at locations where SWC is high in both soil model setups. The runoff generation
seems to be improved in the WaSiM-RKS, based on the calibration results in section 3.8;
Figure 33; Figure 34 and based on the more natural appearing spatial runoff patterns in

Appendix 8.

Finally the number of low flow days (LF), days of dry conditions (DC), days of mid-range
flows (MRF), moist conditions (MC) and high flows (HF) have been calculated (5.4.2).
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Figure 57 compares those days of classified flow conditions for the REF and FUT as well
as for the two applied WaSiM-ARU and WaSiM-RKS version. Furthermore the mean

trend of an increase or decrease of each flow class is reported.

In the REF nearly no trend is visible for the number of high flow days, a decreasing trend
is visible for the days with MC and MRF and the number is increasing for days with DC
and LF. The highest decreasing trend is visible for the WaSiM-ARU results in the MRF,
while for WaSiM-RKS days with MC decrease most. LF are increasing mostly in both
WaSiM setups with a trend of +1.1 days/per year (WaSiM-ARU) to +2.2 days/per year
(WaSiM-RKS) in the REF and those trends are strongly increasing to +3.9 days/per year
(WaSiM-ARU) and +6.07 days per years (WaSiM-RKS) in the FUT.

The results of both WaSiM versions show a decreasing trend for all the other flow
conditions in the FUT. Note that the trend of both WaSiM setups is reversed for the DC
class in the FUT. The gain of days in the LF class using the WaSiM-ARU results in the FUT
comes mainly from the DC, and the MDF classes, while they mainly come from MC and
the MDF classes when using the WaSiM-RKS results. The two applied soil model setups

are deviating especially in the extreme flows.
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Figure 57: Number of days of low flows, dry, mid-range flow, wet and high flow conditions
determined from WaSiM-ARU and WaSiM-RKS discharge outputs of the REF and FUT .
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/. DISCUSSION

Model setup and calibration

In this study the physically based fully distributed hydrological model WaSiM was driven
by a downscaled and bias-corrected regional climate model ensemble (RCM) to quantify
climate change impacts on the water resources in the Mediterranean Rio Mannu

catchment located on the island of Sardinia, Italy.

WaSiM had to be calibrated based on a historically recorded time series of discharge,
derived Landsat evapotranspiration patterns and a short time series of record soil
moisture, due to the scarce filed data situation in the catchment. All results of the
applied calibration attempts have to be considered with caution. The available discharge
time series was recorded from 1925-1935. The hydrological basin has been heavily
modified since that time and a significant historical climate change impact already
affected the basin as reported by Sannitu (2006). Thus the real hydrological situation of
the considered reference time (1971-2000) might be significantly different compared to

the available discharge record.

A solid soil model parametrization of WaSiM requires an enormous and reliable data
collection and an intensive effort in pre-processing Rieger et al. (2010). These physically
based parameters should be identified in a reasonable range before calibration Rieger et
al. (2010).

Spatially distributed soil physical information was only available based on the presented
Aru et al. (1990) map with nearly no mandatory information. Based on this map high
ranges of different soil physical properties for each process pixel are possible, which
leads to a very high spatial uncertainty in the model parametrization. But even after a
very careful and precise soil parametrization using pedo-transfer functions, as conduct-
ed in this study, uncertainties in a range of 10% only based on the applied pedo-transfer

function have to be expected (Rieger et al. 2010).
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Ranges of even higher uncertainties might be expected for sub soil layers. Since the soil
information was only collected for the top soil up to a depth of 30cm sub soil properties
were parameterized based on the same soil physical properties, except for the saturated
hydrological conductivity. This parameter was parameterized based on a recession

constant.

This simplification does not consider changes in soil organic matter, bulk density and
processes like clay leaching into sub soil layers. But those parameters can change
significantly the hydrological properties of the soil layer, for example clay horizons based
on clay leaching will increase the accumulation of soil water in the top soil layers,

increase surface runoff and decrease the infiltration rate.

However, based on the available information the soil physical parametrization of both
WaSiM setups in this study can be stated as solid. The physical and conceptual parame-
ters of both WaSiM versions are the same except for the soil model. The significant
differences in the outputs of both applied WaSiM versions show that the soil parametri-
zation has a major impact on modeling results and also on the projected climate change

impact.

The calibration outputs of soil moisture content and actual evapotranspiration of
WaSiM-RKS setup outperform those of the WaSiM-ARU, while the WaSiM-ARU setup
seems to better match the historical discharge. However, none of the applied calibration
approaches are able to replace the quality of a calibration with a long-term record of
discharge and the corresponding meteorology (air temperature, precipitation, global
radiation, wind speed and rel. humidity) of the reference time series. In the conducted
study calibration criteria with less accuracy have been applied since data scarcity like in
the test side are common in the many Mediterranean catchments. But this unfortunate
data situation should not detain hydrological climate change impact assessment re-
search in those regions, since as shown in paragraph 1.3 climate change is already
significantly affecting those regions. This means all available resources of calibration

data sets need to be taken into account, even if they might also imply high uncertainties.

For example the applied ETR-TRI results must be handled with caution, as the remote
sensing data shows only a snap shot of up to 4 different days in the RMB. Kalma et al.
(2008) points out those measurement errors can reach levels of 15-30%. Compared to

long-term point measurements this method has the disadvantage that the evapotranspi-
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ration process is not recorded constantly and as soon as clouds are present in the
catchment, measurements are strongly deteriorated. Constant point estimation, such as
eddy covariance or Bowen ratio, has the disadvantage that it is only valid for the specific
combination of land use and soil type. The Triangle method is advantageous when
spatially distributed information is required for heterogeneous land use classes. Under
these conditions, the ETR-TRI measurements can be a very attractive validation source
for data scarce regions. By comparing the spatial pattern of the ETR-TRI results with the
modeling outputs. The WaSiM-RKS setup shows a clear improvement compared to
WaSiM-ARU setup.

The soil moisture calibration data set on the other hand is rather precise in terms of
absolute values (3 %), but this measurement is limited to one point of the catchment.
In this study the point information was compared to a 250m*250m modeled pixel at the
same location. The average soil physical properties of the 250m pixel and the point
measure might be completely different. However, this available data should be consid-
ered at least in terms of plausibility. Here once again the WaSiM-RKS outputs
outperform the WaSiM-ARU outputs and show that high quality soil information can

improve certain modeled hydrological quantities SWC significantly.

The comparison of the ETR, soil moisture and discharge calibration results reveal a
paradox situation in spring and summer time, since all modeled outputs in this time of
the year are lower than the reference datasets. But here one needs to consider that
none of the data sets covers the same time series, which means that every reference
dataset is affected by a different meteorology. Furthermore the meteorology of each of
the calibration dataset is different to the meteorology of the reference climate model
data applied for the calibration. This problem for example can be observed in Figure 21.
The recorded precipitation 1925-1935 is higher compared to the reference climate
model precipitation for the months of May, June, and July. In this case it makes sense

that the modeled reference discharge is lower than the recorded one of 1925-1935.
Climate change impact of the RCM input

In this section the WaSiM modeling results using the WaSiM-ARU and the WaSiM-RKS
will be discussed with those of Piras et al. (2014), Piras (2013) and Ehlers (2014). In those
studies the same climate model inputs were applied to the hydrological models TIN-
based Real-time Integrated Basin Simulator (tRIBS) of Vivoni et al. (2000) and mGROWA,
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of Kunkel & Wendland (2002), respectively. The parametrization of the tRIBS model and
the mMGROWA model are similar to the WaSiM-ARU set up. All three models where
parametrized based on the CLIMB model harmonization strategy (section 5.2.3) and
both models used the same climate model inputs and the Aru et al. (1990) soil texture

map for the soil model parametrization.

The hydrological modeling results and climate change impact on the hydrology present-
ed in section 6 draw a future picture of decreasing water resources in the Rio Mannu
basin. The hydrological quantities, evapotranspiration, soil water content, discharge and
ground water recharge are projected to decrease in the basin. This decrease is mainly
related to the projected dropping of precipitation sums and rising air temperature in the

future time series.

The annual and monthly mean relative changes are in good correspondence with the
studies of Piras et al. (2014), Ehlers (2014) and the one conducted by Senatore et al.
(2011) in southern Italy. The total modeled hydrological quantities on the other hand

differentiate significantly compared to the other studies and seem to be more uncertain.

The comparison of climate model input data in the sections 6.2.1 and 6.2.2 show a
decrease in annual precipitation of -7% (ECHAM-5 REMO) to -21% (HadleyCM 3 RCA)
and an increase of air temperature of 1.8°C (ECHAM-5 REMO) to 3.1 °C (HadleyCM 3
RCA).

The average decrease of precipitation is similar to Piras et al. (2014), who pointed out
that the uncertainty in this trend is low, since all climate change trends in all four climate
projections are similar. Temperature is projected to increase for all climate forcings.
Uncertainties in this trend are especially low since all RCMs indicate this trend. The
degrees of change indicate that the RCM temperature change in the future is strongly
influenced by the GCM, since all ECHAM-5 driven RCMs show a temperature increase of
the region by 1.8°C while the HadleyCM3 driven RCM is increasingly stronger. Those

results are also similar to Piras et al. (2014) and Ehlers (2014).

WaSiM'’s annual reference potential evaporation ETP (Table 9) fits well the ETP of Saadi
et al. (2015) and Todorovic et al. (2013) (1300-1500mm/a) and is about 100-200mm/a

higher compared to the results of Ehlers (2014). Based on the increased air temperature
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in all future climate projections modeled ETP increased, too. The future relative AETP

increase in the WaSiM outputs is up to 10% higher compared to Piras et al. (2014).
Actual Evapotranspiration (ETR)

The shape of the WaSiM-ARU and —RKS ETR results (Figure 47 & Figure 48) presented in
section 6.3 are corresponding well to the results of Senatore et al. (2011) and Maselli et
al. (2014), with peak ETR in May and with increasing water stress from August to Sep-
tember. ETR is dropping to the minimum value which lasting up to December. The
harvesting date of the model was set in June and July, which is the common harvesting
season in the catchment (Bird et al. 2015). The time between August and December is
also characterized by limited vegetation growth, due to limited plant available water and
most agricultural fields are free of crops. The presented monthly mean results of the
reference time series (Figure 47, 46, 47 & 48) fit well those of Maselli et al. (2014) and
Ehlers (2014). The results of Piras et al. (2014) on the other hand show a mismatch in
the reference series and are significantly below the WaSiM results between December

and May and are higher for the very dry months of July, August, and September.

The modeled evapotranspiration reduction in the future is in good correspondence with
the results of Senatore et al. (2011), who also found a slight increase of evapotranspira-
tion in the winter season and a decrease of up to 40% in summer and autumn. Results of
Piras et al. (2014) project lower changes of up to 10%. The percentage change of ETR in
future springtime might not seem to be as dramatic as in spring, but one should note
that ETR reduction in terms of absolute quantities is largest in May and June. Especially
changes in the months April to June indicate a high threat to the agricultural productivi-
ty, since an earlier reduction of ETR indicates that crops suffer earlier from water stress.
This is also indicated by the fact that the peak ETR in the future changes from May in the
reference to April. This assumption is further confirmed by the ETI results in Table 12,
Figure 51, Figure 52 and the ground water recharge results presented in Figure 53 and
Figure 54. ETI drops below the moderate threshold value of 0.5 in the spring season in
the future scenario for most of the low land areas in the catchment. Those areas, mainly
used for agricultural production, are affected by the strongest GWR reduction in the
future scenario, but GWR results indicated a high uncertainty depending on the applied
soil model setup. Note that those results have been processed with a very simplified

groundwater modeling approach of WaSiM’s unsaturated zone module. WaSiM’s
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groundwater module was not used due to missing GWR measurements for validation.

Due to that results may imply a high error.
Modeled soil water content

Modeled monthly mean soil water content (SWC) results of WaSiM-ARU, WaSiM-RKS
and tRIBS produce a similar shape over the course of the year, with high soil moisture
values in the winter season and low values in the summer season. However, strong
deviations are visible in the absolute values. The ensemble mean maximum SWC out-
puts of 27 vol.-% in tRIBS are processed in December and the minimum of 23 vol.-% are
processed in August for the reference time series. The SWC of both WaSiM outputs
show a much higher range over the course of the year with a maximum in February
(WaSiM-ARU = 22.5 vol.-% and WaSiM-RKS = 27 vol.-%) and a minimum in August
(WaSiM-ARU = 11 vol.-% and WaSiM-RKS = 13 vol.-%). The projected average decrease
of SWC of WaSiM outputs (WaSiM-ARU = -10.75 vol.-% and WaSiM-RKS = -9.25%) is
higher for tRIBS projection (tRIBS = -5.39%) and lower for the projection of Senatore et
al. (2011) with a projected reduction of about = -20%. Both WaSiM and tRIBS model
outputs show the largest projected SWC decline in the spring time (WaSiM-ARU = -13%,
WaSiM-RKS = -12%, tRIBS = -7%). The comparison of WaSiM and tRIBS results and the
results of Senatore et al. (2011) shows that based on the applied climate model projec-

tions a decrease of plant available water in the future is confident.

Hydrological modeling results of Piras et al. (2014) further confirm the spatially distrib-
uted SWC change of WaSiM-ARU (Figure 45). Both modeling results show the strongest
relative decrease of SWC in the northwestern part of the catchment. However, this

pattern is less dominant in the WaSiM-RKS SWC output grids.

Very uncertain on the other hand is the total modeled soil water content. Here the tRIBS
model produces significantly different total amounts of SWC than both WaSiM setups.
Both WaSiM setups seem to produce more plausible SWC outputs, since SWC of the
tRIBS outputs never drop under permanent wilting point even in the summer months
and also do not fit well to the results of Senatore et al. (2011). Due to that the tRIBS
SWC modeling result seems to be very unlikely for a semi-arid region. The soil textures
of the WaSiM-RKS setup have in average a higher threshold of permanent wilting point
and point of saturation compared to the WaSiM-ARU setup. This explains the total
higher SWC values of the WaSiM-RKS outputs, since the soil water storage is higher and
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release in dry conditions in terms of runoff and evaporation is less. The higher water
content in wet and warm conditions (growing season WaSiM-RKS), increases the tran-
spiration and evapotranspiration in this season. The WaSiM-ARU results of this study
were used in the study of Bird et al. (2015) using the AquaCrop model to determine the
threat of having lower yields in the future projection in the Rio Mannu basin. Based on
the WaSiM-ARU results there is a 53% chance that the value of the wheat harvest is 75%
of less of the current mean value in the future time series. This is a significant decrease
in value (Bird et al. 2015). Plant available water mainly depends in the total soil water
content in combination with the corresponding soil texture class at a given location. This
value on the other hand is not similar for all locations in the catchment where wheat is
grown, since it is heavily dependent on the given soil texture at each wheat location.
This means a poor quality of soil information in a catchment increases the uncertainty of
determining the climate change induced threats to agricultural production in the Rio
Mannu. The higher SWC outputs of the WaSiM-RKS soil moisture outputs and the lower
relative change in the modeled future results indicate that the probability of yield lost
based on the WaSiM-RKS values is lower compared to the WaSiM-ARU results.

Modeled runoff and discharge

The simulation of projected Q changes involves the highest uncertainties, since it is
depending strongly on the RCM input. Future Q changes range from an increase of 2%
(ECHAM-5 RACMO) to a decrease of -46% (HadleyCM3 RCA). Furthermore, WaSiM’s
modeling results of the REF and FUT discharge and runoff show the largest response to
the soil model parameterization. The WaSiM-RKS results for the REF and FUT are signifi-
cantly lower compared to the WaSiM-ARU results. This shows that the soil physical
setup has a strong influence on the modeled Q outputs as well as the climate change
impact prediction of Q (Figure 55, Figure 56, Figure 57and Figure 58). Which of those
two reference time series modeling results is more likely to represent the true hydrolog-
ical situation in the catchment stays unclear. A satisfying answer to this question would
need a long-term discharge record together with a sufficient record of WaSiM’s meteor-
ological inputs. The results in sections 6.2.1 and 6.3.2 proved that the soil inputs source
and parameterization can have a major impact on the modeled Q outputs as well as on
the spatial distribution of runoff generation in the catchment. Since now reliable Q

record is available in the catchment WaSiM-ARU and —RKS Q outputs will be discussed
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and compared in this section to the Q results of other hydrological models applied in the

catchment.

Those four hydrological modeling results conducted with WaSiM, SWAT and tRIBS in the
Rio Mannu catchment within the CLIB-Project are presented in Figure 58. All models
were driven with the same climate model meteorology presented in section 5.2.1 and
WaSiM-ARU, SWAT and tRIBS used the same land use, soil information and catchment
setup based on the CLIMB model harmonization presented in section 5.2.3. Only
WaSiM-RKS uses a different soil information input as presented in section 5.2.3.4. The
applied models are all physically based and range from semi-distributed (SWAT) to fully
distributed (tRIBS & WaSiM). The modeling results are very diverse for many months of
the year. This is especially true for seasons (winter and spring) in which more Q is
generated (Figure 58a). In December and January of the REF WaSiM-ARU processes a
considerable higher amount of runoff compared to SWAT and tRIBS. From May to
August WaSiM-ARU, -RKS and SWAT correspond well, while tRIBS processes higher Q
from April to August in the REF and FUT. The hydrological models WaSiM-ARI, -RKS and
SWAT respond to the REF annual precipitation peak in December with a peak flow for
the same month, while tRIBS Q peak is in February. SWAT is the only model responding
with a second Q peak to the second precipitation peak in February. This is indicating a

higher sensitivity of the precipitation input for SWAT.

The Figure 59 compares the Q modeling outputs of the different models by standard
deviation (SD). One graph show the SD of all models, one of all models using the Aru et
al. (1990) soil information and one compares the results of WaSiM-ARU against WaSiM-
RKS for each month of the year. The range of monthly mean Q and the SD presented in
Figure 59 indicates a significant uncertainty related to the applied hydrological models.
They confirm the findings of Veldzquez et al. (2013) and Muerth et al.(2013), that not
only climate model related uncertainties need to be considered, also the hydrological

models apply a significant uncertainties to total Q generation.
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Figure 58: Comparison of modeled runoff [mm] of 4 different hydrological modeling results (WaSiM-ARU, WaSiM-RKS , SWAT conducted by the
center for advanced studies, research and development in Sardinia CRS4 (SWA) and tRIBS conducted by Piras (2013) (TRI)) using the same
climate model input meteorology and a harmonized model parametrization and applied in the Rio Mannu catchment for a) the reference time
series (1971-200) and b) the future time series (2041-2070). The modeling was conducted within CLIMB.
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Figure 59: Standard Deviation (SD) of monthly mean runoff ensemble comparing all models (WaSiM-ARU, WaSiM-RKS, tRIBS, SWAT), WaSiM-
ARU and WaSiM-RKS and the models with the Aru et al. (1990) soil texture information (WaSiM-ARU, tRIBS, SWAT).
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Especially in ungauged catchment like the Rio Mannu those uncertainties need to be
considered in the climate change impact assessment analysis, the resulting adaption
strategies and for the policy decision making. However, findings also show that the
quality of soil input and parametrization creates uncertainties when using WaSiM that
are in the same range as the uncertainties produced by the different applied hydrologi-
cal models. This is especially true for the wet months of December and January where
the SD between the WaSiM-ARU and —RKS is higher than the SD between the hydrologi-

cal model that are using the Aru et al. (1990) soil information (Figure 59).

Table 14: Projected annual runoff change in the Rio Mannu for the future time series using 3
different models with harmonized setup (WaSiM-ARU, SWAT, tRIBS ) compared to the WaSiM-
RKS setup.

Relative annual runoff change for the 2041-2070 period

Applied regional climate model

Hydrological

model ECHAM-5 ECHAM-5 ECHAM-5 HadleyCM3
RCA REMO RACMO RCA

WaSiM-ARU -20% -12% -5% -37%

WaSiM-RKS -20% -8% 2% -46%

SWAT -18% 2% 5% -16%

tRIBS -35% -16% -23% -52%

The magnitude in uncertainty of average total modeled Q outputs for the different
applied models as well as for the soil input increases for the high flow (winter) and wet
conditions (spring), in this low flow dominated catchment. Those findings are contrary
to those of Velazquez et al. (2013) who demonstrated an increasing uncertainty of
hydrological model Q outputs for low flow conditions. However, their findings are based
on a study made in catchments with humid and snowmelt dominated runoff regimes
and due to that not fully comparable to the findings made in this study. Those uncertain-
ties and the non-linear nature of hydrological modeling results are further reflected by
the projected annual climate change impact on AQ as presented in Table 14. AQ is
projected to decline for all WaSiM-ARU and tRIBS simulations, while for WaSiM-RKS &
SWAT driven with ECHAM-5 RACMO and SWAT driven with ECHAM-5 REMO is projected
to increase slightly. The most pessimistic AQ results are processed by WaSiM-ARU,
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WaSiM-RKS and tRIBS when driven with HadleyCM3 RCA, while for SWAT this is the case
when driven with ECHAM-5 RCA. The slightly positive increasing trend of AQ for WaSiM-
RK (ECHAM-5 RACMO) compared to the negative trend of WaSiM-ARU (ECHAM-5
RACMO) and the more pessimistic negative trend of WaSiM-RKS (HadleyCM3 RCA)
compared to WaSiM-ARU (HadleyCM3 RCA), shows the non-linear behavior of WaSiM to
the combination meteorological and structural model inputs like soil texture infor-
mation. Those results confirm on the one hand that in a climate change impact
assessment uncertainties related to other aspects of the assessment procedure includ-
ing the structural uncertainty of the hydrological model itself need to be taken into
account (Honti et al. 2014) and on the other hand the findings of Ruelland et al. (2015)
that,

l. “in non-stationary conditions, additional uncertainties arise from parameter
instability due to possible changes in the physical basin characteristics and in

the dominant processes”

1. “the hydrological uncertainty is very significant and that the lack of robust-
ness of the hydrological model (due to its model structure and/or to the
wrong estimate of its inputs) is a major source of variability among stream-

flow projections under future climate conditions.”

Despite the propagation of those uncertainties, all applied hydrological modeling results
agreed on a decrease AQ of -17% to -50% (WaSiM-ARU -25% to -39%; WaSiM-RKS -20%
to -50%;) for the spring season (MAM) in future scenario. Also the SD of Q (Figure 59)
between the different applied models is lower compared to the wet winter season and
indicating a higher confidence in the hydrological impact projection for this season. This
confirms the significant runoff reduction, based on CORDEX RCM projections found by
Ruelland et al. (2015) for the same season. The reduction of Q indicates a major threat

to water availability for the months with the highest agricultural productivity.
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8. CONCLUSIONS

Climate change impacts were quantified by comparing models of water resources of the
reference time series to those of the projection time series for the RMB. The available
soil texture information needed to setup WaSiM and applied for the hydrological
modeling within CLIMB appeared to be of poor quality. New soil information physical
was surveyed in the catchment at 239 locations and regionalized by different determin-
istic, geo-statistic, and hybrid methods. The soil texture results maps of section 4 clearly
confirms the hypothesis Il in section 1.1 that “Different regionalization methods applied
to soil physical data will lead to different spatial distributions of soil textures in the
catchment”. Regression kriging outperformed the other applied regionalization meth-
ods. The RMSE of the regression kriging results were found in the same range or better
compared to other studies found in literature and discussed in section 4.6. However, the
relation between co-variable and target variables was found to be low. This confirms the
findings of Minasy & McBratney (2007) that RK appears to be robust to predict soil
properties in various soil regions and suggest this method for practical applications, but
has a major limitation, if the relationship between target and covariates is low. The
assumed stationary condition across the space (Kumar 2015) is not always valid and a
major limitation of this method. Despite the low relationship between target and co-
variable regression kriging delivered the best performance and proved to be a solid and
relatively easy to apply regionalization method. An improvement of those results might
be possible by implementing different co-variables from airborne and infield remote
sensing techniques, like synthetic aperture radar (Meyer 2009) or geophysical remote
sensing like (gamma ray spectrometry, electromagnetic resistivity, or time domain
reflectance) as used in Cassiani et al. (2012). In data scarce regions like the Rio Mannu
Basin (RMB) this approach improves the knowledge of the soil physical setting in the
catchment significantly and should be applied by hydrologists in the region with scarce

soil texture information.
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Simulated WaSiM results project a clear reduction of P, Q, ETR, and SWC, especially in
the growing season (March to June). ETR rates are significantly reduced from April to
October for the future time series in all simulation results. The reduction of ETR is
caused by lower soil water content, where even the permanent wilting point is reached
at an earlier time of the year in the future scenarios. Sufficient water availability for
plants is crucial for the agricultural production in this season, being the main source of
income in the RMB. The earlier onset of dry conditions in the catchment is a threat to
agricultural production in the future, asking for the development of an adaptation
strategy, such as a water resources management plan which takes such simulations into
account. These findings clearly confirm hypothesis | in section 1.1 that “Hydrological
resources and the agricultural production are endangered by climate change impacts in
the Mediterranean semi-arid area.” The quality quantification of future threats to
agricultural productivity, as done by Bird et al. (2015), is highly dependent on solid
hydrological modeling results. The study shows that in ungauged data scarce catch-
ments the provision of certain hydrological climate change impact projections is strongly
hampered and involves high uncertainties coming from different sources (e.g. climate
model input, different hydrological model setups and architectures). Those uncertainties
have to be assessed to quantify the full range possible future threats to water availabil-

ity and agricultural productivity.

It is also visible that the total sums of modeled hydrological quantities show a noticeable
dependency from the applied soil model parameterization. The WaSiM-ARU setup
produces significantly higher amounts of runoff and low SWC outputs, while this obser-
vation is reversed for the WaSiM-RKS setup. The bias of modeled Q produced with the
difference soil texture parametrizations (WaSiM-ARU & WaSiM-RKS) is in the range or
even higher than the Q bias compared to other hydrological modeling results presented
by Piras et al. (2014) using tRIBS and processed by CRS4 using SWAT, respectively. With
those findings the two hypothesizes IV “Setting up WaSiM’s soil model with soil infor-
mation coming from different sources will have a considerable impact on the
hydrological modeling results” and V “I.The hydrological climate change impact assess-
ment implies high uncertainties coming from different sources, like climate model input
meteorology, the structural setup and the architecture of different hydrological models”

in section 1.1 can be confirmed.
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Beside the climate model input related uncertainties, hydrological climate change
impact assessment needs to consider the structural, parametrization, and hydrological
model related uncertainties. This confirms hypothesis Il in section 1.1, that “ll. “A  solid
soil physical parametrization of physically based fully distributed hydrological models
hydrological models is crucial to simulate reliable modeling results for the spatial and
temporal domain”. Accordingly, water planners and stakeholders should be very careful
in managing water resources in ungauged basins based on the total modeled hydrologi-

cal quantities.

The delta of the climate change impact on the hydrological quantities on the other hand
implies lower model induced uncertainties and might give a better and reasonable
orientation of future changes in the RMB. However, an improved management of water
resources, adaptive to climate change impacts, will be strongly hampered as long as no
reliable knowledge of the status quo of the total hydrological quantities in the catch-

ment is available.

The spatially-explicit model outputs, as shown in the comparison to the derived ETR-TRI
grids are better captured, when applying the WaSiM-RKS map. Even though correlations
of the hydrological modeling ETR results of WaSiM-ARU and WaSiM-RKS with the ETR-
TRI grids remain poor in both attempts, the WaSiM ETR results were adjusted from a
negative correlation (WaSiM-ARU), to a positive correlation (WaSiM-RKS) for the month
of June. It is noteworthy that the patterns of the WaSiM-RKS ETR grids appear plausible

overall.

The combination of soil sampling, hybrid regionalization methods and ETR measure-
ments, e.g. by means of the Triangle method, improves knowledge about spatially
distributed key quantities of the hydrological cycle within a basin. This information can
be obtained within a relatively short time, a clear advantage compared to long-time Q

measurements, especially in data scarce regions.

The Mediterranean region is expected to be affected by climate change more negatively

than other regions which leads to the controversial situation that,

l. based on the future climate projections the impact on the water resources is

projected to be more negative than in other regions on the planet
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1. based future climate projections water resource management and planning

is more important than in other regions and needs to be very precise

M. due to the poor availability and quality of long-term hydrological quantity
records, hydrological impact assessment is more affected by uncertainties
especially in the structural model setup, parametrization and validation,

than in catchments that are well monitored and sampled.

In order to reduce the massive prevailing uncertainties, especially in ungauged basins,
any possible data source or validation method has to be taken into account to improve
process understanding and the overall robustness of model results related to the

assessment of future hydrological impact of climate change.

Especially in ungauged catchments hydrological climate change impact assessment is
asking for a holistic approach, in which the close collaboration of the disciplines clima-
tology, pedology, remote sensing, and hydrology reduces uncertainties as far as
possible. The combination of sophisticated climate model downscaling and bias correc-
tion techniques, improved hydrological model parametrization with improved soil
information, and validation with in-situ and remote sensing measurements, as shown in
this study, has a high potential to improve environmental impact assessment in data

scarce regions.
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Appendix

10. APPENDIX

a. Additional figures
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Appendix 1: Spatially distributed precipitation (PRC) WaSiM-ARU outputs driven with ECHAM-5
-RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the REF projec-
tion.
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Appendix 2: Spatially distributed precipitation (PRC) WaSiM-ARU outputs driven with ECHAM-5
-RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the FUT projec-
tion.
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Appendix 3: Spatially distributed evapotranspiration (ETR) WaSiM-ARU outputs driven with
ECHAM-5 -RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the REF

project

ion.
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Appendix 4: Spatially distributed evapotranspiration (ETR) WaSiM-ARU outputs driven with
ECHAM-5 -RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the FUT
projection.
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Appendix 5: Spatially distributed evapotranspiration (ETR) WaSiM-RKS outputs driven with
ECHAM-5 -RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the REF
projection.
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Appendix 6: Spatially distributed evapotranspiration (ETR) WaSiM-RKS outputs driven with

ECHAM-5 -RCA, -REMO, RACMO and HadCM3 RCA respectively for the IPCC seasons for the FUT
projection.
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Appendix 7: Spatially distributed runoff (RUN) WaSiM-ARU driven with ECHAM-5 RCA and
HadCM3 RCA for the IPCC seasons a) REF and b) FUT period.
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Appendix 8: Spatially distributed runoff (RUN) WaSiM-ARU driven with ECHAM-5 RCA and
HadCM3 RCA for the IPCC seasons a) REF and b) FUT period.
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GCM

RCP =

RCM

ECHAM-5 RCA & ECH-RCA =

ECHAM-5 REMO & ECH-REM =

ECHAM-5 RACMO & ECH-RMO =

HadCM3-RCA & HCH-RCA=

IPCC
IPCC

b. List of important abbreviations

1. Climate modeling related abbreviations

= General Circulation Model
Representative Concentration Pathway
= Regional Climate Model

Regional Climate Model RCA of the Swedish Meteorological

and Hydrological Institute (SMHI) driven with General Circu-

lation Model

Meteorologie (MPI)

Max-Planck-Institut

fir

Regional Climate Model REMO Max-Planck-Institut fur

Meteorologie (MPI) driven with General Circulation Model
ECHAM-5 of Max-Planck-Institut fir Meteorologie (MPI)

Regional Climate Model RACMO of the Koninklijk Neder-

lands Meteorologisch Instituut (KNMI) driven with General
Circulation Model ECHAM-5 of Max-Planck-Institut fir Me-

teorologie (MPI)

Regional Climate Model RCA of the Swedish Meteorological

and Hydrological Institute (SMHI) driven with the coupled
atmosphere-ocean general circulation model Hadley Centre

Coupled Model, version3.

= Intergovernmental Panel on Climate Change

seasons

DJF =

MAM =

JA=

SON =

IPCC Emission Scenarios IPCC - Fourth Assessment Report (uncomplete)

Winter season (December, January, February)

Summer season (June, July, August)

Spring season (March, April, May)

Fall season (September, October, November)

Al=

AlB =

The A1 scenarios are of a more integrated world. Character-
ized by: Rapid economic growth. A global population that
reaches 9 billion in 2050 and then gradually declines. The
quick spread of new and efficient technologies. A conver-
gent world - income and way of life converge between
regions. Extensive social and cultural interactions world-

wide.

sources.

Subset of scenario Al. A balanced emphasis on all energy
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A2 =

B1=

B2=

The A2 scenarios are of a more divided world. Characterized
by: A world of independently operating, self-reliant nations.
Continuously increasing population. Regionally oriented
economic development.

The B1 scenarios are of a world more integrated, and more
ecologically friendly. Characterized by: Rapid economic
growth as in A1, but with rapid changes towards a service
and information economy. Population rising to 9 billion in
2050 and then declining as in A1l. Reductions in material in-
tensity and the introduction of clean and resource efficient
technologies. An emphasis on global solutions to economic,

social and environmental stability.

The B2 scenarios are of a world more divided, but more
ecologically friendly. Characterized by: Continuously increas-
ing population, but at a slower rate than in A2. Emphasis on
local rather than global solutions to economic, social and
environmental stability. Intermediate levels of economic de-
velopment. Less rapid and more fragmented technological
change than in A1 and B1.

2. Soil survey and soil regionalization related abbreviations

CDI =

Cv=
DEM =
LS =

SCA =
Q& SPI =
SWI =
TWI =

CSM =

DEM =
IDW =
Max =
Min =
MLR =
NSR =
OK =
OLS =
RK =
RMSE =

SOC=
EMI =

Aspect

Slope

Convergence Divergence Index
Plan Curvature

Profile Curvature

Digital Elevation Model
Slope length factor

Specific Catchment Area
Stream Power Index

Saga Wetness Index
Topographic Wetness Index

Change of Soil Moisture
Coefficient of Variation
Digital Elevation Model
Inverse Distance Weighting
Maximum

Minimum

Multi-Linear Regression
Nugget to Sill Ratio
Ordinary Kriging

Ordinary Least Squares
Regression Kriging

Root Mean Square Error
Standard Deviation

Soil Organic Carbon
Electromagnetic Induction
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3. Hydrological modeling related abbreviations

ETI=
ETP =
ETR =
ETR-TRI =
FDC=
FP-7=
FUT=
USDA =
Q=

REF =
SWAT =
tRIBS =

WaSiM =
WaSiM-ARU =

WaSiM-RKS =

Evapotranspiration Index

Potential Evaporation

Actual Evapotranspiration

Actual Evapotranspiration derived by the Triangle Method
Flow Duration Curve

EU 7" Framework Programme for Research

Projected time series 2041-2007

U.S. Department of Agriculture

Discharge

Reference time series 1971-2000

Soil Water Assessment Tool

TIN-based Real-time Integrated Basin Simulator of Vivoni et
al. (2000)

Water Flow and Balance Simulation Model

WaSiM setup with the soil information of the Aru et al.
(1990) soil map

WaSiM setup with the soil information derived in a field
servey within CLIMB and regionalized by applying regres-
sion kriging.
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