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1. General Introduction 

Over the past two centuries, the discoveries made in organic chemistry have led us to a world 

with vastly increased life expectancy due to the medical wonder drugs we are now able to 

produce. 

Organometallic chemistry is at the same time an old and a new branch of chemistry. It is old 

because the first organometallic compound was prepared about 250 years ago; organometallic 

chemistry is new, since in the last 60 years organometallic compounds have become a subject 

of general interest, and the field is now recognized as an independent branch of chemistry.1 

The history of organometallic chemistry could be described as a one of unexpected 

discoveries.2 The first organometallic compound prepared was in 1760 by Louis Claude 

Cadet,3 who worked on synthetic inks based on cobalt salts. He used cobalt minerals, which 

also contain arsenic. Reaction of arsenic(III) oxide and potassium acetate gave “Cadet´s 

fuming liquid”, which contains cacodyloxide [(CH3)2As]2O. Later, in 1840, R. W. Bunsen 

investigated these kind of compounds, which he called “alkarsines” more closely.4 

The first olefin complex was prepared by William Christopher Zeise,5 a Danish chemist, in 

1827 by the reaction of ethanol with a mixture of PtCl2 and PtCl4 in the presence of KCl. It is 

interesting to mention that this was about at the same time as the first successful synthesis of 

urea in 1828 by F. Wöhler6 and 40 years prior to the proposal of the Periodic Table by A. D. 

Mendeleev in 1869, who later, used organometallic compounds as the test cases for his 

Periodic Table.  

The compound prepared and formulated as PtCl2(C2H4)·KCl·H2O by Zeise must have been 

regarded as quite bizarre at that time. How can ethylene, a gaseous compound under ordinary 

conditions combine with platinum? It is no wonder, that when the synthesis of this compound 

was reported, some of his contemporaries criticised Zeise. 

The first organometallic compound having a direct metal-to-alkyl σ-bond was synthesized by 

E. Frankland,7 a student of Bunsen´s at Marburg, in 1849. What Frankland was trying to 

prove, was the existence of organic radicals. Reasoning that abstraction of iodine from ethyl 

                                                             
1 Basic Organometallic Chemistry, I. Haiduc, J. J. Zuckerman, Walter de Gruyter, Berlin, 1985. 
2 Organotransition metal Chemistry. Fundemental Concepts and Applications;  A. Yamamoto, Wiley-VCH: 
Weinheim, 1986. 
3 L. C. Cadet de Gassicourt, Mem. Mat. Phys. 1760, 3, 363. 
4 R. Bunsen, Liebigs Ann. Chem. 1837, 24, 471. 
5 W. C. Zeise, Pogg. Ann. 1827, 9, 632. 
6 F. Wöhler, Annalen der Physik und Chemie 1828, 88, 253. 
7 E. Frankland, Liebigs Ann. Chem. 1849, 71, 171. 
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iodide by zinc should give an ethyl radical, he heated a mixture of ethyl iodide and zinc. He 

obtained a volatile, colorless liquid and first thought that he had demonstrated the occurrence 

of a radical. However, the determination of the molecular weight showed that it was not an 

ethyl radical, but butane that was formed by the decomposition of an ethylzinc compound 

generated by the reaction of zinc with ethyl iodide. 

This experiment, which was called “the most fruitful failure”, led to a method for preparing 

alkylzinc compounds. A number of discoveries of different organometallic compounds such 

as bis-alkylmercury, bis-alkyltin, bis-alkylboron, allylaluminum iodides, organochlosilanes, 

halide-free magnesium alkyls passed by, until P. Barbier in 1890 replaced zinc with 

magnesium in reactions with alkyl iodides.8 His student V. Grignard went on with this 

investigation and expanded significantly the usage of organo-magnesium reagents,9 which 

were subsequently named Grignard reagents. Since then, Grignard reagents became a 

powerful tool in organic synthesis (Scheme 1). 

 

 

Scheme 1. Some important discoveries in the history of organometallic chemistry 

 

                                                             
8 P. A. Barbier, C. R. Acad. Sci. 1899, 128, 110. 
9 V. Grignard, C. R. Acad. Sci. 1900, 130, 1322. 
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The history of organometallic chemistry continues with the discovery by Paul Sabatier in 

1910, who showed that finely divided metals such as nickel, palladium or platinum could 

catalyze the hydrogenation of alkenes. This discovery was a great advance for the use of 

transition metals in organic synthesis.10 However, a real turning point was the determination 

of the structure of ferrocene by Wilkinson and Fischer11 many years later. A clear image and 

the high stability of ferrocene gave chemists the possibility of studying and better 

understanding these kind of organometallic compounds. These discoveries coupled with 

tremendous advances such as nuclear magnetic resonance (NMR)12 and X-ray 

crystallography13 paved the way for the investigation of transition-metal complexes, their 

reactivity and usage in synthetic chemistry. The era of transition metal-catalyzed chemistry 

had begun.  

The work of Nobel Laureates such as Sharpless,14 Noyori15 and Knowles16 (2001), Grubbs17, 

Schrock18 and Chawin19 (2005) and, most recently, Heck,20 Negishi21 and Suzuki22 (2010), 

made the approaches of this area one of the most applicable in synthetic organic chemistry. 

Transition metal-catalyzed cross-coupling type reactions represent one of the most powerful 

tools for the synthesis of any desired molecular structures.  

Over the last decades, Pd, Ni and Cu-catalyzed cross-couplings were widely applied due to 

the generality and high functional-group tolerance. A great number of natural products, 

building blocks for supramolecular chemistry and self-assembly, organic materials and 

polymers were produced using these metals as catalysts in cross-coupling reactions.23 Most of 

the palladium or nickel-catalyzed reactions are believed to follow a similar catalytic cycle 

(Scheme 2).  

                                                             
10 Organic Synthesis Using Transition Metals; Bates, R. John Wiley & Sons Ltd., United Kingdom 2012. 
11 Wilkinson, J. Am. Chem. Soc. 1954, 76, 209. 
12 Nuclear Magnetic Resonance; Hore, P.J.  Oxford University Press, Oxford, 1995. 
13 Understanding Single-Crystal X-ray Crystallography; Bennett, D. W. Wiley-VCH: Weinheim, 2010. 
14 Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. 
15 a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Douchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 
102, 7932; b) Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 
7117. 
16 Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 
1977, 99, 5946. 
17 Dias, E. L.; Nqyuyen, S. T.; Grubbs, R. H.  J. Am. Chem. Soc. 1997, 119, 3887. 
18 McCullough, L. G.; Schrock, R. R. J. Am. Chem. Soc. 1984, 106, 4067. 
19 Martinato, A.; Chauvin, Y.; Lefebvre, G. Compt. Rend. 1964, 258, 4271. 
20 Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518. 
21 Baba, S., Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. 
22 Suzuki, A. Pure Appl. Chem. 1991, 63, 419. 
23 Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.; Diederich, F. Wiley-VCH: Weinheim, 2004. 
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Scheme 2. General mechanism for palladium- or nickel-catalyzed cross-coupling reactions 

 

The first step of the catalysis includes the in situ reduction of the precatalyst M1(II)L 4 and the 

generation of the active species of the catalyst M1(0)L2, due to the excess of the 

organometallic reagent R2-M2. Next, the oxidative addition of the C-X bond of the 

electrophile R1-X to M1(0)L2  leads to the formation of the complex 1. As a consequence of 

transmetalation, R2 goes to M1 and the complex 2 is created. The last step is a reductive 

elimination, whereby the cross-coupling product R1-R2 is produced and the catalyst M1(0)L2 

is regenerated.24  

The catalytic species can be formed in situ using metal sources such as Pd2(dba)3, Pd(OAc)2 

or Ni(dppe)Cl2 in the presence of an appropriate ligand. It also can be introduced as a 

performed catalyst such as Pd(Ph3)4, Pd(PtBu3)2 or Ni(COD)2. 

Many ligand families for palladium or nickel are available today. Electron-rich phosphine 

ligands facilitate the oxidative addition through increasing the electron density of the 

catalyst´s active complex. Electron-poor ligands facilitate transmetalation as well as reductive 

elimination. The choice of the ligand depends on which step of catalytic cycle is rate limiting. 

The oxidative addition of aryliodides usually proceeds fast; thereby electron-poor ligands are 

                                                             
24 a) Handbook of Functionalized Organometallics, (Hrsg.: P. Knochel), Wiley-VCH, Weinheim, 2005; b) Metal 
Catalyzed Cross-Coupling Reactions, 2nd Ed., (Hrsg.: A. de Meijere, F. Diederich), Wiley-VCH: Weinheim, 
2004; c) Handbook of Organopalladium Chemistry for Organic Synthesis, (Hrsg.: E. Negishi), Wiley-
Interscience, New York, 2002; d) Transition Metal for Organic Synthesis, 2nd Ed., (Hrsg.: M. Beller, C. Bolm), 
Wiley-VCH, Weincheim, 2004 
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mostly used. Whereas the cross-coupling reaction with arylchlorides commonly requires 

electron-rich ligands to accelerate the oxidative addition. 

Coupled with the right ligand, palladium and nickel catalyzed cross-coupling reactions 

represent a powerful tool in synthetic organic chemistry today. However, due to economic and 

ecological disadvantages there is still exists a need for the examination of alternative 

catalysts. It is not a secret that the price of the most applicable palladium –catalyst, also for 

the large scale reactions, is around $300 per ounce. At the same time, the toxicity of nickel 

prevents application of nickel-catalyzed processes for consumer goods and health-care 

products.25 Moreover, both palladium and nickel catalitic systems require the addition of 

complicated and expensive ligands.  

2. Iron-Catalyzed Cross-Coupling Reactions 

Iron catalysts have recently received a lot of attention due to a number of advantages, which 

this metal brings. For instance, for $100 one can buy 0.5 g of ruthenium, 2.0 g of platinum, 

2.2 g of gold, 5571 g of nickel, 15 000 g of copper and, finally, 500 000 g of iron.26 Iron is the 

most abundant metal in the universe and the second-most abundant metal in the earth´s crust. 

Furthermore, iron is the most abundant transition metal in the human body (4g/person) and it 

is an essential metal in the life cycle of all living things. This factor actually represents a big 

advantage for using iron catalysts in health-care related chemistry, since no severe toxicity 

and side effects exist.  

The environmentally friendly properties and moderate price make iron the catalyst of the 

future and therefore provide ample motivation for further developments in the field of iron-

catalyzed cross-coupling. 

The first iron-catalyzed homo-coupling reaction of aryl Grignard reagents was described by 

Kharash and Fields as far back as 1941.27 Although, the true epoch started in the 1970´s, 

predating the palladium and nickel relatives, with Kochi investigating the reaction between 

alkenyl halides and Grignard reagents.28 Kochi also proposed the first mechanistic rationale 

for iron-catalyzed cross-coupling with an analogy to palladium and nickel catalytic cycles. 

This mechanistic rationale includes the formation of a reduced iron complex, which 

                                                             
25 a) Handbook of the Toxicity of Metals;  Friberg L.; Nordberg, G. F.; Vouk, V. B. Elsevier, Amsterdam, 1986; 
b) Hughes, M. N. Compr. Coord, Chem. 1987, 67, 643; c) Nickel and the Skin: Absorbtion, Immunology, 
Epidemiology, and Metallurgy; Hostynek, J. J.; Maibach, H. I. CRC Press, Boca Raton, 2002. 
26For prices of the metals see: http://www.boerse-go.de. 
27 Kharash, M. S., Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316. 
28 a) Kumada, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487; b) Kochi, J. K.; Acc. Chem. Res. 1974, 7, 351. 
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undergoes oxidative addition of the organohalide, with subsequent transmetalation from the 

organomagnesium species and reductive elimination to give the cross-coupling product. 

During 1990´s, iron-catalyzed cross-couplings (with the exception of a few publications) 

received little attention, until in the early 2000´s Fürstner and Leitner breathed new life into 

the development of this field. They reported a highly selective iron-catalyzed cross-coupling 

of aryl halides and alkyl Grignard reagents in the presence of NMP as co-solvent.29 This work 

paved the way for a number of publications, which continue to increase each year. All these 

discoveries made a strong foundation for a better development of iron-catalyzed cross-

couplings, which today represent an effective tool for the C-C and C-X-bond formation with 

good tolerance of functional groups. 

2.1 Cross-Coupling of Alkenyl Electrophiles with Grignard Reagents 

 

In 1971 Kochi reported that an excess of alken-1-yl halides react with Grignard reagents in 

the presence of catalytic amount of FeCl3 to give at 0 °C or 25 °C the cross-coupling products 

in good yields (up to 89 %) and stereoselectivity after several hours (see Scheme 3).28  

 

Scheme 3. Example of first iron-catalyzed cross-coupling of vinyl bromides with primary 

Grignard reagents by Kochi et al. 

 

In the same year, the Kochi group extended this cross-coupling reaction to secondary and 

tertiary alkyl and aryl Grignard reagents and tested different iron complexes for the catalytic 

activity.30 Furthermore, Kochi proposed the active iron catalyst as an iron(I) species formed 

by the facile reduction of the iron(III) by the Grignard reagent. These species are metastable 

and probably are deactivated by aggregation over a length of time. One can say that iron(I) 

species consist of a d7 electron configuration, isoelectronic with manganese(0) and cobalt(II). 

Based on the kinetic studies and electron paramagnetic resonance investigations, Kochi 

suggested a mechanism of iron-catalyzed cross-coupling reaction of vinyl bromides with 

Grignard reagents. This mechanism, presented in Scheme 4, includes (a) an oxidative addition 

                                                             
29 Fürstner, A.; Leitner, A. Angew. Chem. Int. Ed. 2002, 41, 609. 
30 a) Kochi, J. K.; Tamura, M. Synthesis 1971, 303; b) Tamura, M.; Kochi, J. K. Bull. Chem. Soc. Jpn. 1971, 44, 
3063. 
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of 1-bromopropene to iron(I) followed by (b) an exchange with ethylmagnesium bromide and 

(c) a reductive elimination.31 

 

Scheme 4. Proposed mechanism for the iron-catalyzed cross-coupling reactions by Kochi et 

al. 

 

Previously, Kochi and co-workers studied the mechanism of iron-catalyzed cross-coupling 

reactions of alkyl halides with alkyl Grignard reagents. Interestingly, the kinetic results show 

that this type of reaction is largely independent of the concentration of the alkylmagnesium 

halide and the rate is first-order in both alkyl halide and iron catalyst. A catalytic cycle with 

the following aspects was proposed, first - the oxidation of the iron species by alkyl halides 

takes place, second - regeneration of the catalyst by decomposition of alkyliron intermediates 

and the last aspect is the role of alkyl radicals in the chain process (see Scheme 5).  

 

Scheme 5. Tentatively proposed mechanism for iron-catalyzed cross-coupling reactions of 

alkyl halides and alkyl Grignard reagents by Kochi et al. 

 

                                                             
31 Smith, R. S.; Kochi, J. K. J. Org. Chem. 1976, 41, 502. 
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The kinetics support oxidative addition as the rate-limiting step in the catalytic process. The 

reaction proceeds most readily with mononuclear iron species and to a lesser degree with iron 

aggregates. Kochi proposed that the aggregation to a less active polynuclear iron species 

occurred with the liberation of Grignard reagents and ethereal ligands; he also observed the 

same deactivation effect for iron catalyst in the presence of high concentrations of 

triphenylphosphine.32  

 

Scheme 6. Proposed aggregation of the iron species by Kochi et al. 

 

Returning to cross-couplings with alkenyl electrophiles, in 1978 Felkin and Meunier 

published a stereoselective cross-coupling between alkenyl bromides and phenyl Grignard 

reagents using iron-phosphine catalysts.33 The cross-coupling product is formed in 84 % yield 

in the presence of 5 % of the iron-catalyst. Julia and co-workers described that vinyl sulfones 

react with Grignard reagents, forming trisubstituted olefins of defined stereochemistry in good 

yields (see Scheme 7).34  

R2

R1O2SR

+ RMgX

R2

R1R

R = t-Bu, Ph

R1 = R2 = H, CH3

R3 = Ph, n-C8H17, n-C4H9

yields up to 63 %
E/Z = up to 100/0

Fe(acac)3 (1 %)

 

Scheme 7. Cross-coupling reaction of vinyl sulfones with Grignard reagents by Julia et al. 

 

Later, the stereoselective synthesis of 2-isopropyl-1,4-dienes through the iron-catalyzed cross-

coupling reaction of 2-benzenesulfonyl-1,4-dienes and isopropylmagnesium chloride was also 

published by the Julia group.35  

Molander and co-workers further studied the cross-coupling reaction of alkenyl halides with 

aryl Grignard reagents, described first by Kochi.36 The Molander group found that the use of 

                                                             
32 Tamura, M.; Kochi, J. J. Org. Chem. 1971, 31, 289. 
33 Felkin, H.; Meunier, B. J. Organomet. Chem. 1978, 146, 169. 
34 Fabre, J.-L.; Julia, M.; Verpeaux, J.-N. Tetrahedron Lett. 1982, 23, 2469. 
35 a) Alvarez, E.; Cuvigny, T.; du Penhoat, C. H.; Julia, M. Tetrahedron 1988, 44, 111; b)  Alvarez, E.; Cuvigny, 
T.; du Penhoat, C. H.; Julia, M. Tetrahedron 1988, 44, 119. 
36 Neumann, S. M.; Kochi, J. K. J. Org. Chem. 1975, 40, 599. 
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DME as a solvent and a lower reaction temperature (-20 °C) consistently provided highest 

yields and no excess of alkenyl halide was required (Scheme 8).37 

 

Scheme 8. Cross-coupling reaction between alkenyl halides and Grignard reagents by 

Molander et al. 

 

Naso and co-workers described a stereospecific cross-coupling reaction of secondary alkyl 

Grignard reagents with Z or E-1-bromo-2-phenylthioethene in the presence of an iron catalyst. 

Different iron compounds such as FeCl3, Fe(acac)3, Fe(DBM)3, Fe(DPM)3 were found to be 

effective catalysts and cross-coupling products were obtained in up to 80 % yield at -78 °C 

after 8 to 12 h with high chemo- and stereoselectivity.38 

In 1998, Cahiez and co-workers reported, that in the presence of Fe(acac)3, Grignard reagents 

react readily with alkenyl halides in a THF/NMP mixture to give the cross-coupling products 

in high yields with excellent stereoselectivity of up to 90 %.39 Numerous functional groups 

were tolerated (Scheme 9).  

 

Scheme 9. Iron-catalyzed alkenylation of organomagnesium compounds by Cahiez et al. 

                                                             
37 Molander, G. A.; Rahn, B. J.; Shubert, D. C. Tetrahedron Lett. 1983, 24, 5449. 
38 Fiandanese, V.; Miccoli, G.; Naso, F.; Ronzini, L. J. Organomet. Chem. 1986, 312, 343. 
39 Cahiez, G; Avedissian, H. Synthesis 1998, 1199. 
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A solvent screening including DMPU, DMF, DMA, diethyl carbonate, sulfolane, 

tetramethylurea and DME, showed that 9 equivalents of DMF had the best co-solvent effect. 

The nature of iron salts was not essential as no difference was observed when Fe(dpm)3, 

Fe(dpb)3 or FeCl3 was used instead of Fe(acac)3. In some cases the catalyst amount could be 

lowered to 0.01 %. Enol phosphates could also be used as electrophile in the reaction with 

butylmagnesium chloride. 

A collaboration work between the Knochel and the Cahiez groups in 2001 showed that 

alkenyl halides undergo cross-coupling reaction with functionalized arylmagnesium 

compounds, using 5 % of Fe(acac)3 as catalyst at -20 °C. Functional groups such as ester, 

cyano, nonaflates and trialkylsiloxy could be tolerated and the cross-coupling products were 

formed in satisfactory yields. Excellent yields could be achieved by performing the cross-

coupling reaction on the solid phase by generating the Grignard reagent on Wang resin 

(Scheme 10).40  

 

Scheme 10. Iron-catalyzed cross-coupling between functionalized arylmagnesium compounds 

by Cahiez and Knochel 

 

Begtrup and co-workers applied the NMP-protocol described by Cahiez as one of the steps of 

the synthesis of 3-substituted pyrrolidines.41 Hoffmann and co-workers published the 

Kumada-Corriu coupling of Grignard reagents with vinyl bromides, probed with a chiral 

Grignard reagent, using transition metals catalysts. Investigations showed that Ni(II)- and 

                                                             
40 Dohle, W.; Kopp, F.; Cahiez, G.; Knochel, P. Synlett 2001, 1901. 
41 Østergaard, N.; Pedersen, B. T.; Skjærbæk, N.; Vedsø, P.; Begtrup, M. Synlett 2002, 1889.  
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Pd(II)-catalyzed reactions proceed with essentially full retention of configuration, whereas 

when low-valent Fe or Co generated from Fe(acac)3 or Co(acac)2 were used, the enantiomeric 

excess  of the coupling product was significantly reduced. The authors proposed that partial 

racemization could take place due to single electron transfer (SET) processes involved in the 

transmetallation step.42 Itami and Yoshida described iron-catalyzed cross-couplings of alkenyl 

sulfides with Grignard reagents. Aryl and alkyl Grignard reagents are applicable and cross-

coupling proceeds efficiently at alkenyl-S bonds, but almost no cross-coupling takes place at 

aryl-S bonds. An addition/elimination mechanism was proposed.43  

In 2004, Fürstner and co-workers reported selective iron-catalyzed cross-coupling reactions of 

Grignard reagents with alkenyl triflates. A variety of alkenyl triflates derived from ketones, β-

keto esters or cyclic 1,3-diketones could undergo a cross-coupling reactions in the presence of 

5 % of Fe(acac)3 in THF/NMP at -30 °C, yielding the desired products in good to excellent 

yields (Scheme 11).44 

 

Scheme 11. Iron-catalyzed cross-coupling reaction of alkenyl triflates with Grignard reagents 

by Fürstner 

 

This methodology, which also works with enol triflates as electrophiles, was applied in a 

number of natural product syntheses.45 

 Fürstner and co-workers published the preparation, structure and reactivity of nonstabilized 

organoiron compounds and the implications for iron-catalyzed cross-coupling reactions.46 

                                                             
42 Hölzer, B.; Hoffmann, R. W. Chem. Commun. 2003, 732. 
43 Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J.-I. Org. Lett. 2005, 7, 1220. 
44 Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3943. 
45 a) Fürstner, A; De Souzy, D.; Parra-Rapado, L.; Jensen, J. T. Angew. Chem. Int. Ed. 2003, 42, 5358; b) 
Fürstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006; c) Camacho-Dávilla, A. A. Synth. Commun. 2008, 38, 
3823; d) Hamajima, A.; Isobe, M. Org. Lett. 2006, 8, 1205; e) Maulide, N.; Vanherck, J.-C.; Marrkó, I. E. Eur. J. 
Org. Chem. 2004, 3962; f) Fürstner, A.; Schleker, A. Chem. Eur. J. 2008, 14, 9181.  
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Two distinctly different mechanisms were proposed, depending on the nature of the Grignard 

reagent. When MeMgX or PhMgX were used for cross-coupling, the reaction was proposed to 

proceed through the formation of discrete organoferrate complexes as reactive intermediates. 

EtMgCl and higher homologues generate a low-valent iron cluster species (step A of Scheme 

12) that activates the electrophile. The authors assumed that the reaction of [Fe(MgX)2]n  with 

an organic halide (step B of Scheme 12) sets up a σ-bond metathesis rather than an oxidative 

insertion. Also, such a process does not generate an oraganoiron halide, which means that the 

reaction with RMgX must occure by alkylation rather than by transmetalation of the 

intermediate primarily produced (step C of Scheme 12). Finally, the formed diorganoiron 

species undergoes reductive elimination to generate the desired product and regenerates the 

catalyst (step D, see Scheme 12). 

This hypothesis about such a difference in mechanism was based on conclusions made by 

Bogdanović and co-workers, who suggested that anhydrous FeX2 reacts with RMgX to give 

bimetallic clusters [Fe(MgX)2]n, provided that the R group of the chosen Grignard reagent is 

able to undergo β-hydroelimination followed by formation of an “inorganic Grignard reagent” 

(Scheme 12).47 

 

Scheme 12. Proposed basic scenarios for iron-catalyzed cross-coupling reactions by Fürstner 

et al. 

 

                                                                                                                                                                                              
46 Fürstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 
8773. 
47 Bogdanović, B.; Schwickardi, M. Angew. Chem. Int. Ed. 2000, 39, 4610. 
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The iron center in this intermediate is distinguished by a “formally negative” oxidation state - 

Fe(-2) (see Scheme 13). Since MeMgX or PhMgX cannot follow the Bogdanović activation 

pathway due to their inability to undergo β-hydroelimination, these compounds would 

generate metastable “iron-ate” complexes, which rapidly reduce Fe(3+) to Fe(2+) and then 

exhaustively alkylate or arylate the metal center (Scheme 13).  

FeX2

R
MgX

2

-2MgX2

R
Fe

R

+2
R

R
Fe

H

R

Fe

0 R
MgX

2

R + R

Fe·(MgX)2

-2

 

Scheme 13. Proposed elementary steps leading to the formation of an “inorganic Grignard 

reagent” of iron 

 

In order to confirm these assumptions a number of iron complexes such as 

[(Me4Fe)(MeLi)][Li(OEt2)]2, [Ph4Fe][Li(OEt2)]4, [Ph4Fe][Li(OEt2)]4[Li(1,4-dioxane)] were 

prepared, analyzed and tested for catalytic activity also with alkenyl electrophiles (Scheme 

14).  

MeLi + FeCl35 [(Me4Fe)(MeLi)][Li(OEt2)]2

-70 °C, Et2O

+ 3 LiCl + 1/2 ethane

O

TfO
[(Me4Fe)(MeLi)][Li(OEt2)]2

O

Me

yield 70 %

THF, -40 °C to -30 °C

TfO [(Me4Fe)(MeLi)][Li(OEt2)]2

THF, -40 °C to -30 °C

Me

yield 80 %
 

Scheme 14. [(Me4Fe)(MeLi)][Li(OEt2)]2-catalyzed cross-coupling reactions with alkenyl 

elecrophiles by Fürstner et al. 
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Fürstner and co-workers also showed that the cyclobutenyl iodides could be further 

functionalized under iron catalysis.48 Figadère and Alami published an iron-catalyzed 

coupling reaction between 1,1-dichloro-1-alkenes and Grignard reagents. This reaction led 

mainly to the coupled products in good to excellent yields. When c-hexyl Grignard reagent 

was used in reaction with quinoline derivatives, the mono-coupled adduct was obtained 

(Scheme 15).49  

N

c-HexMgBr (3 equiv)

Fe(acac)3 (10 %),

THF, -30 °C, 3 h
NCl

Cl Cl

yield 64 % (5:1)

N

RMgBr (3 equiv)

Fe(acac)3 (10 %),

THF, -30 °C, 1.5 h-3 h
Cl

Cl

N R

R

R = Bu, Et, p-MePh, 2-Thienyl

yields 70 % - 80 %

 

Scheme 15. Iron-catalyzed cross-coupling with 1,1-dichloro-1-alkenes by Figadère and Alami  

 

Knochel showed that arylcopper compounds prepared from Grignard reagents could also be 

applicable in iron-catalyzed cross-coupling reactions with alkenyl and dienyl sulfonates 

(Scheme 16).50  

 

Scheme 16. Cross-coupling between alkenyl and dienyl sulfonates with arylcopper 

compounds prepared from Grignard reagents, by Knochel et al. 

 

                                                             
48 Fürstner, A.; Schleker, A.; Lehmann, C. W. Chem. Commun. 2007, 4277.  
49 Dos Santos, M.; Franck, X.; Hocquemiller, R.; Figadère, B.; Peyrat, J.-O., Provot, O.; Brion, J.-D.; Alami, M. 
Tetrahedron Lett. 2004, 45, 1881.  
50 Dunet, G.; Knochel, P. Synlett 2006, 407. 
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Olsson and co-workers reported an iron catalyzed cross-coupling of imidoyl chlorides with 

Grignard reagents under mild conditions. Functionalities such as aryl chloride or ester were 

well tolerated. This protocol represents a good alternative for the synthesis of imines due to 

mild reaction conditions (Scheme 17).51 

 

Scheme 17. Synthesis of Clozapine analogues by Olsson et al. 

 

Syntheses of substituted quinolines by iron-catalyzed coupling reactions between 

chloroenynes and Grignard reagents were performed by Figadère and Alami in 2004.52 

Several functional groups such as propargyl acetate, ethyl benzoate, aryl bromide and 

hydroxyl were tolerated (Scheme 18).  

 

Scheme 18. Cross-coupling reactions with chloroenynes and Grignard reagents by Figadère 

and Alami 

 

Nakamura and co-workers published an iron-catalyzed enyne cross-coupling reaction. This 

type of cross-coupling proceeds in the presence of 0.5-1 % of FeCl3 and stoichiometric 

amounts of LiBr as a crucial additive in high to excellent yields.53 Alkenyl Grignard reagents 

                                                             
51 Ottesen, L. K.; Ek, F.; Olsson, R. Org. Lett. 2006, 8, 1771. 
52 Seck, M.; Franck, X.; Hocquemiller, R.; Figadère, B.; Peyrat, J.-F.; Provot, O.; Brion, J.-D.; Alami, M. 
Tetrahedron Lett. 2004, 45, 1881. 
53 Hatakeyama, T.; Yoshimoto, Y.; Gabriel, T; Nakamura, Masaharu Org. Lett. 2008, 10, 5341. 
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were prepared from the corresponding alkynes and methylmagnesium bromide. Various 

terminal alkynes and alkenyl electrophiles were well tolerated (Scheme 19). 

R1 H

1) MeMgBr (1.2 equiv)
LiBr (1.2 equiv)

2) FeBr3 (0.5 - 1 %)

THF, 60 °C

X

R2

R3

R1
R2

R3

X = Br, OTf

yield up to 99 %

Selected Examples:

PhTBDMSO

yield 82 %

TMS

yield 91 %

C6H13

yield 76 %  

Scheme 19. Iron-catalyzed enyne cross-coupling reaction by Nakamura et al. 

 

The mechanism proposed by the authors is shown in Scheme 20. It is based on initial 

formation of the diyne upon mixing the alkynyl organometalic species and the precatalyst 

FeCl3. The authors assumed that the trivalent iron would possibly first be reduced to a low-

valent state (A), such as Fe(0) or Fe(I), which probably possesses one or more alkynyl groups. 

The presence of LiBr is probably important due to the notable stability of Fe(II) alkenyl-ate 

complexes, which could make the initial reduction more difficult. The oxidative addition of an 

alkenyl bromide to a low-valent ferrat complex A provides the higher-valent complex B, 

which could undergo the reductive elimination to furnish the desired enyne. Ferrate complex 

C would react with alkenyl  Grignard reagent to generate A. The authors also noticed that the 

particular loss of the stereochemical purity of E- and Z-propenylbromides indicates the likely 

involvement of an electron transfer process at the oxidative addition step. 
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Scheme 20. Possible mechanism of iron-catalyzed enyne coupling by Nakamura et al. 

 

2.2 Cross-Coupling of Aryl Electrophiles with Grignard Reagents 

 

2.2.1 Alkyl Grignard Reagents  
 

In 1989, Pridgen and co-workers described a transition metal catalyzed cross-coupling of 

ortho-halogenated aryl imines and Grignard reagents, where Fe(acac)3 shows a better 

tolerance to the “reducing” Grignard reagents, containing β-hydrogen atoms, than Ni(acac)2 

(see Scheme 21).54 

 

Scheme 21. Cross-coupling with ortho-halogenated aryl imines by Pridgen et al. 

 

Fürstner et al deeply investigated iron-ctalyzed cross-coupling reactions with aryl or 

heteroaryl electrophiles and alkyl Grignard reagents.55 High yields of the desired products 

                                                             
54 Pridgen, L. N.; Snyder, L.; Prol, J. J. Org. Chem. 1989, 54, 1523. 
55 Fürstner, A.; Leitner, A; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. 
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were obtained using Fe(acac)3 or Fe(salen)Cl complex as a catalysts in THF/NMP solvent 

mixtures. A number of functional groups such as ether, sulfonate or nitrile were also tolerated. 

 

Scheme 22. Cross-coupling of alkyl Grignard reagents with aryl and heteroaryl chlorides, 

tosylates and triflates by Fürstner et al. 

 

In order to elucidate the mechanism of this iron-catalyzed process, the reaction between 4-

chlorobenzoic acid methyl ester and n-tetradecylmagnesium bromide in the presence of 5 % 

of FeClx (x = 2, 3) as a precatalyst was investigated. The cross-coupling product was obtained 

in a quantitative yield (>95 % GC-yield) within 5 min at ambient temperature, when FeCl3 

was used. In striking contrast, highly dispersed and nonpassivated iron metal Fe(0)* powder 

prepared by reduction of FeCl3 with potassium does not insert at all into this substrate at 20 

°C and reacts only after several hours under more harsh conditions. However the suspension 

of finely dispersed Fe(0)* particles in THF slowly dissolves on treatment with n-C14H29MgBr. 

The resulting mixture could catalyze this cross-coupling reaction. This fact means that during 

the cross-coupling reaction, the iron species get reduced by the Grignard reagent, but this 

process does not stop at Fe(0), it probably goes on generating a soluble complex, which likely 

contains iron in a formal oxidation state < 0, as postulated for the “inorganic Grignard 

reagent” [Fe(MgX)2] (see Scheme 23). This iron complex participates in the catalytic cycle 

for iron-catalyzed cross-coupling reactions with alkyl Grignard reagents, proposed by 

Fürstner (see Scheme 12).46  
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Scheme 23. Investigation of possible catalytically active iron species by Fürstner et al. 

 

This procedure for iron-catalyzed aryl-alkyl cross-couplings could be applied in the synthesis 

of natural products, which was demonstrated by Fürstner in the total synthesis of (R)-(+)-

Muscopyridine.56 Nagano and Hayashi published the functionalization of aryl triflates using 

Fe(acac)3 in Et2O under reflux conditions.57 The Hocek group examined the regioselectivity 

of iron-catalyzed cross-coupling reactions of 2,6-dichloropurines and 6,8-dichloropurines 

with the methyl Grignard reagent.58 Fürstner and co-workers also reported the selective iron-

catalyzed mono-substitution of dichloro-substituted arenes and heteroarenes.44 

 

2.2.2 Aryl Grignard Reagents  
 

The first aryl-aryl homo-coupling reaction was already described by Kharash and Fields in 

1941 (Scheme 24).27  

Br MgBr FeCl3 (5 %)

Et2O, 35 °C, 1 h

+

yield 47 %  

Scheme 24. Iron-catalyzed biaryl coupling by Kharash et al. 

 

Bromobenzene was used as an oxidizing agent in converting the phenylmagnesium bromide 

to biphenyl as shown in Scheme 24. The authors proposed the following chain mechanism for 

cobalt chloride, but they admitted that iron could act in the same manner. The essential feature 

                                                             
56 Fürstner, A.; Leitner, A. Angew. Chem. Int. Ed. 2003, 42, 308. 
57 Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297. 
58 a) Hocek,M.; Dvoȓȧkovȧ, H. J. Org. Chem. 2003, 68, 5773; b) Hocek, M.; Hockova, D.; Dvoȓȧkovȧ, H 
Syntheis 2004, 889; c) Hocek, M.; Pohl, R. Synthesis 2004, 2869. 
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of this mechanism is that the reaction proceeds through the agency of a cobalt or iron 

subhalide, the active chain carrier. The biaryl is formed exclusively from the aryl Grignard 

reagent and the bromine atom of the phenyl bromide is converted into a bromide ion by the 

cobalt or iron subhalide (see Scheme 25).59 

 

Scheme 25. Chain mechanism proposed by Kharash et al.59 

 

Fürstner and co-workers reported a cross-coupling reaction of aryl Grignard reagents and 

heteroaryl chlorides using 5 % of Fe(acac)3 in THF. Electron-rich aryl halides tended to fail, 

giving only rise to the homo-coupling of the ArMgX, but various electron-deficient 

heterocycles could be used giving the desired cross-coupling products in good yields. 

However, the authors admitted that in all cases varying amounts of biphenyl were formed as 

byproducts. Sterically hindered Grignard reagents like mesitylmagnesium bromide failed in 

this cross-coupling, whereas 2-thienylmagnesium bromide and pyridine-3-magnesium 

bromide showed good results (see Scheme 26).55 

 

                                                             
59 Scheme 25 represents a mechanism described for CoCl2, like it was in the original paper from Kharash and 
Fields, but since authors suggested the same mechanism for FeCl3, it makes sense to point it out here. 
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Scheme 26. Cross-coupling reactions using heteroaryl chlorides by Fürstner et al. 

 

Figadère and co-workers studied iron-catalyzed arylations of heteroaryl halides by Grignard 

reagents. Iron salts such as Fe(acac)3, FeCl3 and FeCl2 were tested for the catalytic activity in 

the reaction of 3-bromoquinoline with PhMgBr.60 The effect of different additives like NMP, 

DMPU, CH3CN, bipyridine, Ph3P, MnCl2, ZnCl2 and CuCN was also investigated. The 

optimum conditions were determined to be Fe(acac)3 in THF at -30 °C, 3-phenylquinoline 

could be achieved in 45 % yield. These conditions were applied to cross-coupling reactions 

with 2-chloroquinoline and 2-bromoquinoline with PhMgBr (see Scheme 27).  

 

Scheme 27. Iron-catalyzed arylation of heteroaryl halides with PhMgBr by Figadère et al. 

 

                                                             
60 Quintin, J.; Franck, X.; Hocquemiller, R.; Figadère Tetrahedron Lett. 2002, 43, 3547. 
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Pie and co-workers described iron-catalyzed cross-coupling reactions of pyridine or diazine 

chlorides with aryl Grignard reagents. The synthesis of various unsymmetrical polyaryl or 

polyheteroaryl products was achieved.61    

The Knochel group successfully used iron powder as a catalyst for the cross-coupling reaction 

of 2-chloroquinoline with PhMgCl, producing the desired product after 12 h in 86 % yield 

(see Scheme 28).62 

 

Scheme 28. Cross-coupling with catalytic iron powder by Knochel et al. 

 

Several protocols for homo-coupling reactions of Grignard reagents under iron-catalysis were 

reported, using oxidizing agents such as 1,2-dichloroethane or oxygen.63 The combination of 

the catalytic system of the Fe(acac)3 or Fe(DBM)3 with 2 equivalent of Mg in the absence of 

an oxidizing agent also furnishes homo-coupling products.64 

Later, Knochel et al showed that the homo-coupling of the Grignard reagent could be 

suppressed if the arylmagnesium compound is transmetalated to the corresponding arylcopper 

reagent, using stoichiometric amounts of CuCN·2LiCl, prior to the iron-catalyzed cross-

coupling reaction with aryl halides.65   

                                                             
61 Boully, L.; Darabantu, M.; Turck, A., Pié, N. J. Heterocycl. Chem. 2005, 42, 1423. 
62 Korn, T. J.; Cahiez, G.; Knochel, P. Synlett 2003, 1892. 
63 a) Nagano, T; Hayashi, T. Org. Lett. 2005, 7, 491; b) Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. 
Chem. Soc. 2007, 129, 13788. 
64 Xu, X.; Cheng, D.; Pei, W. J. Org. Chem. 2006, 71, 6637. 
65 Sapountzis, I.; Lin, W.; Kofink, C. C.; Despotopoulou, C.; Knochel, P. Angew. Chem. Int. Ed. 2005, 44, 1654. 
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Scheme 29. Iron-catalyzed aryl-aryl cross-coupling with magnesium-derived copper reagents 

by Knochel et al. 

 

In 2007, Nakamura reported a novel combination of iron fluoride salts with a N-heterocyclic 

carbene (NHC) ligand, which specifically suppressed homo-coupling reactions. The optimum 

conditions include 3 % of FeF3·H2O and 9 % of SIPr·HCl (NHC ligand). Ferrous fluoride 

(FeF2·4H2O) showed comparable catalytic activity, indicating that the in situ reduction of 

FeF2·4H2O or FeF3·H2O probably gives the same catalytically active iron species. The authors 

assumed that the water or hydroxide could react with the solid surface of FeF3 and make it 

partially soluble in THF to promote the generation of catalytically active species to some 

extent.66 In 2009, Nakamura continued the investigation of this “fluorine effect”, expanded 

the scope of this methodology. They also proposed a mechanism for this cross-coupling 

reaction, based on DFT-calculations.67 The authors found that EtMgBr could be used as a 

base in order to deprotonate the NHC precursors and hydrates of iron fluorides. Electron-rich 

arylhalides as well as electron-deficient ones could be tolerated in this cross-coupling 

reactions and gave the desired products in good yields. Heteroaromatic electrophiles undergo 

cross-coupling reactions using this catalytic system, although compared to other catalytic 

systems discussed before, a higher temperature (80 °C to 100 °C) and a longer reaction time 

(8 h to 24 h) was required.  

                                                             
66 Hatakayama, T; Nakamura, M J. Am. Chem. Soc. 2007, 129, 9844. 
67 Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949. 
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Scheme 30.  Aryl-aryl cross-coupling using catalytic system of FeF3·H2O with NHC ligand    

by Nakamura et al. 

 

Two possible catalytic cycles, the “(II)-(IV)” and the “(0)-(II)”, were proposed by Nakamura 

et al. The first cycle includes the formation of a heteroleptic metal (II)-ate complex A 

(Scheme 31) from a divalent fluoride and an arylmagnesium reagent (Ar1MgX). The complex 

A undergoes oxidative addition with the aryl halide to generate an elusive higher-valent 

(formally IV oxidation state) species B having Ar1 and Ar2. Reductive elimination would give 

unsymmetrical biaryl Ar1-Ar2 and iron (II) complex C bearing two fluorides and one halogen 

ligand derived from Ar2X on the metal center. Subsequent reaction of C with Ar1MgX would 

regenerate species A.  

The “(0)-(II) mechanism” involves oxidative addition of the aryl halide to the iron (0) 

intermediate D, transmetalation between aryliron halide E and Ar1MgX and reductive 

elimination of Ar1-Ar2 from diaryliron(II) F. The authors assumed that the described cross-

coupling reaction proceeds via the higher-valent iron intermediate of the first catalytic cycle 

“(II)-(IV)”, this statement was supported by DFT calculations. 
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Scheme 31.  Proposed mechanisms involving a metal-fluoride-ate complex as reactive 

intermediate by Nakamura et al. 

 

Von Wangelin and co-workers recently described an iron-catalyzed hetero-biaryl coupling 

reaction using chlorostyrenes.68 The authors assumed that the mechanism of this 

transformation involves the coordination of the vinyl substituent to the iron catalyst and the 

subsequent haptotropic migration to the site of C-Cl bond activation is decisive. The general 

procedure is quite practical (THF/NMP, 20-30 °C, 2 h) and based on Fe(acac)3 (1-5 %) as a 

precatalyst (Scheme 32). 

 

Scheme 32.  Chlorostyrenes in iron-catalyzed biaryl coupling reactions by von Wangelin et 

al. 

                                                             
68 Gülak, S.; von Wangelin, A. J. Angew. Chem. Int. Ed. 2012, 51, 1357. 
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3. Chromium-Catalyzed Cross-Coupling Reactions 

The first chromium reagent was prepared from the phenyl Grignard reagent with CrCl3 in 

Et2O by Hein as far back as 1919,69 although the correct interpretation of the structure of this 

compound was described later.70 In 1986, Kishi et al71 and Nozaki et al72 independently 

discovered that traces of nickel salts exert a catalytic effect on the formation of the C-Cr(III) 

bond. This finding became a standard tool when less reactive substrates such as alkenyl and 

aryl halides or triflates have to be used for Barbier type addition reactions. Many applications 

using stoichiometric amounts or excess of chromium salts for various coupling reactions were 

published.73  

In 1996, Fürstner and co-workers reported a method, which allowed, the Nozaki-Hiyama-

Kishi reaction to be performed with catalytic quantities of chromium. The catalytic system 

includes 7 – 15 % of CrCl2 or CrCl3 doped with NiCl2, Mn powder as a stoichiometric 

reductive agent and chlorosilane as an additive for ligand exchange (see Scheme 33). Other 

chromium sources such as Cp2Cr or CpCrCl2·THF also could be applied as a “pre-catalyst”.  

 

Scheme 33. Nozaki-Hiyama-Kishi reactions with a catalytic amount of CrCl2 by Fürstner et al 

                                                             
69 Hein, F. Ber. Dtsch. Chem. Ges. 1919, 52, 195. 
70 Zeiss, H. H.; Tsutsui, M. J. Am. Chem. Soc. 1957, 79, 3062. 
71 Jin, H.; Uenishi, J.-i.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. 
72 Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 
6048. 
73 Selected publications for application of stehiometric amount of chromium salts:  a) Okude, Y.; Hirano, S.; 
Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1976, 99, 3179; b) Okude, Y.; Hiyama, T.; Nozaki, H. Tetrahedron 
Lett. 1977, 3829; c) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki H. Tetrahedron Lett. 1983, 24, 5281; 
d) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem. Int. Ed. 1998, 37, 152; e) Takai, K.; 
Toshikawa, S.; Inoue, A.; Kokumai, R.; Hirano, M. J. Organomet. Chem. 2007, 692, 520; f) Fürstner, A. Chem. 
Rev. 1999, 99, 991. 
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A possible catalytic cycle for this transformation is shown in Scheme 34. It starts with the 

reaction of the organo halide with 2 CrCl2. Since Cr+2 is a one-electron donor, 2 mol of this 

reagent/mol of halide are required for the formation of an oraganochromium nuchleophile A 

and CrX3. Species A then adds to the aldehyde with formation of chromium alkoxide B. At 

this point, the higher stability of its O-Cr3+ bond impedes the ability of undertaking this 

reaction with a catalytic amount of chromium. Therefore, the addition of chlorosilane 

provides the ligand exchange with B and such an σ-bond metathesis would afford the silyl 

ether of the desired product C and liberate the second mol of CrX3, which could be then 

reduced to CrX2 with reductive agent (Mn powder) and participate again in the catalytic 

cycle.74 

 

Scheme 34.  Likely mechanism with a catalytic amount of CrCl2 using chlorosilane as an 

additive by Fürstner et al. 

 

However, one of the limiting features of this method is the incomplete ligand exchange 

between the chromium alkoxide and admixed chlorosilane. 

In 2007, Yorimitsu, Oshima and co-workers reported the chromium-catalyzed 

arylmagnesiation of unfunctionalized alkynes in the presence of pivalic acid. The 

arylmagnesium intermediate reacted with various electrophiles to afford the corresponding 

tetrasubstituted olefins in good yields (Scheme 35).75 

                                                             
74 Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349. 
75 Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569.  
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Scheme 35.  Chromium-catalyzed arylmagnesiation of alkynes by Yorimitsu et al. 

 

This procedure seems to be a highly effective manner to construct multisubstituted ethene 

units. 

To our knowledge there are no protocols described for chromium-catalyzed cross-coupling 

reactions. Therefore, this field represents a new extension of the chromium chemistry and 

brings new features to the transition metal-catalyzed cross-coupling. 
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4. C-H Bond Activation Reactions Using Alternative Transition Metals 

 

The direct transformation of C-H bonds into C-C bonds makes the prefunctionalization of 

starting materials unnecessary and therefore represents a more environmentally friendly way 

of performing the desirable molecular core then cross-coupling reactions.  

However, in order to let a C-H bond activation occure selectively, one of the all C-H bonds in 

the organic molecule should be activated more than the others. The solution would be to have 

a directing group in the molecule. Some important directing groups are presented in Scheme 

36. 

 

 

Scheme 36.  Some important functional groups that act as directing group 

 

Over the last decades C-H bond activation has widely been developed.76 Transition metals 

such as Pd77, Ru78 and Rh79 were extensively applied as catalysts for this type of reaction. But 

due to the high prices and toxicity the replacement of these salts is highly desired.  

                                                             
76 For reviews about C-H bond activation see: a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731; 
b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; c) Ackermann, L.; Vicente, R.; Kapdi, A. 
R. Angew. Chem. Int. Ed. 2009, 48, 9792; d) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087; e) Chen, X.; 
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094; f) Modern Arylation Methods; 
Ackermann, L.; Woley-VCH: Weinheim, 2009; g) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147; h) 
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; i) Kuhl, N.; Hopkinson, M. N.; 
Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236; j) Rouquet, G.; Chatani, N. Angew. 
Chem. Int. Ed. 2013, 52, 11726. 
77 For palladium-catalyzed C-H bond activation see: a) Zhou, C.; Larock, R. C.  J. Am. Chem. Soc. 2004, 126, 
2302; b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. . J. Am. Chem. Soc. 2005, 127, 7330; c) Wang, 
D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676; d) Zhou, W.; Li, H.; Wang, L. Org. Lett. 2012, 
14, 4594. 
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In 2008 Nakamura et al published an iron-catalyzed arylation through directed C-H bond 

activation.80 The authors showed that benzo[h]quinoline could be arylated at position 10 using 

10 % of Fe(acac)3 with 6 equivalents of  PhMgBr in the presence of 3 equivalents 

ZnCl2·TMEDA and 2 equivalents of 1,2-dichloro-2-methylpropane (as an oxidant). 1,10-

Phenantroline was used as a ligand. Other phenylsubstituted heterocycles such as 2-

phenylpyridines gave mixtures of mono- and disubstituted products, except 2-(o-

tolyl)pyridine, which was arylated exclusively on the side opposite to the methyl group, 

probably due to steric hindrance (Scheme 37). All the reactions were carried out at 0 °C with 

reaction times of 6 – 48 h. 
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Scheme 37. Iron-catalyzed direct arylation through directed C-H bond activation by 

Nakamura et al. 

                                                                                                                                                                                              
78 For ruthenium-catalyzed C-H bond activation see: a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; 
Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529; b) Harris, P. W. R.; Rickard, C. E. F.; Woodgate, 
P. D. J. of Organom. Chem., 1999, 589, 168; c) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chantani, N. 
Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858; d) Muralirajan, K.; Parthasarathy, K; Cheng, C.-H. Org. Lett. 
2012, 14, 4262; e) Ogiwara, Y.; Kochi, T.; Kakiuchi, F. Chem. Lett. 2014, 43, 667. 
79 For rhodium-catalyzed C-H bond activation see: a) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H. Angew. 
Chem. Int. Ed. 2011, 50, 4969; b) Patureau, F. W.; Nimphius, C.; Glorius, F. Org. Lett. 2011, 13, 6343; c) 
Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154. 
80 Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858. 
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Later, Nakamura et al extended this type of reaction to a C-H bond activation for the ortho-

arylation of imines with Grignard reagents.81 

In 2011, the Yoshikai group described a cobalt-catalyzed hydroarylation of alkynes through 

chelation-assisted C-H bond activation (Scheme 38).82 This addition reaction of arylpyridines 

and imines to internal alkynes gave olefins with high regio- and stereoselectivities using 10 % 

of CoBr2 with 20 % of PMePh2 (as a ligand) and 2.5 equivalent of an appropriate alkyne. 

MeMgCl (1.0 equiv) was used as a reducing agent. Reactions using arylpyridines were carried 

out at 100 °C for 12 – 24 h. Aryl imines were also amenable to hydroarylation reactions using 

a catalytic system which involved CoBr2 (5 %), P(3-ClC6H4)3 (10 %) as a ligand, 

tBuCH2MgBr (50 %) as a reducing agent and pyridine (80 %) as an additive.  
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Scheme 38.  Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C-H bond 

activation by Yoshikai et al. 

                                                             
81 Yoshikai, N.; Asako, S.; Yamakawa, T.; Ilies, L.; Nakamura, E. Chem. Asian J. 2011, 6, 3059. 
82 Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132, 12249. 
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In the same year, the Yoshikai group published a cobalt-catalyzed addition of azoles to 

alkynes.83 The authors reported that the ternary catalytic system consisting of a cobalt salt, a 

diphosphine ligand, and the Grignard reagent promotes syn-addition of the azole C(2)-H bond 

across an unactivated internal alkyne with high chemo-, regio-, and stereoselectivities under 

mild conditions (Scheme 39). Mechanistic experiments suggest that the reaction involves 

oxidative addition of the oxazolyl C-H bond to the cobalt center, alkyne insertion into Co-H 

bond, and reductive elimination of the resulting diorganocobalt species.  

 

 

Scheme 39.  Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C-H bond 

activation by Yoshikai et al. 

 

The Yoshikai group also achieved a similar cobalt-catalyzed addition of aromatic imines to 

alkynes via directed C-H bond activation.84  

Nakamura and Yoshikai described a cobalt-catalyzed coupling of alkyl Grignard reagents 

with benzamide and 2-phenylpyridine derivatives through directed C-H bond activation 

(Scheme 40). The authors showed that aromatic carboxamides and 2-phenylpyridine 

derivatives could be ortho-alkylated with Grignard reagents in the presence of a cobalt 

catalyst and DMPU as a ligand, using air as a sole oxidant at 25 °C in THF.85  

                                                             
83 Ding, Z.; Yoshikai, N. Org. Lett. 2010, 12, 4180. 
84 Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 17283. 
85 Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13, 3232. 
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Scheme 40.  Cobalt-catalyzed oxidative alkylation of aromatic carboxamides and 

arylpyridines with Grignard reagents by Nakamura and Yoshikai 

 

In 2011, Nakamura described an iron-catalyzed stereospecific activation of olefinic C-H 

bonds with Grignard reagents for the synthesis of substituted olefins.86 Arylated products 

were synthesized in good yields (up to 99 %), using 10 % of Fe(acac)3, 15 % of dtbpy and 2 

equivalents of 1,2-dichloro-2-methylpropane in PhCl with slow addition of 3.2 equivalents of 

ArMgBr in THF at 0 °C over 5 min. 

Wang and Shi reported the direct cross-coupling of C-H bonds with Grignard reagents 

through cobalt catalysis (Scheme 41).87 Various arylated benzo[h]quinolines could be 

produced in good yields (up to 92 %). Reaction conditions included 10 % of Co(acac)3 with 1 

equivalent of TMEDA and 1.5 equivalent of 2,3-dichlorobutane (as an oxidant).  

                                                             
86 Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 7672. 
87

 Li, B.; Wu, Z.-H.; Gu, Y.-F.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. Angew. Chem. Int. Ed. 2011, 50, 1109. 
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Scheme 41.  Directed cross-coupling of C-H bonds with Grignard reagents through cobalt 

catalysis by Wang and Shi 

 

In 2013, the Yoshikai group described another example for cobalt-catalyzed ortho-alkylation 

reaction of aromatic imines with primary and secondary alkyl halides.88,89 A cobalt-N-

heterocyclic carbene (NHC) catalyst system allowed the authors to perform alkylations of 

aromatic imines at 23 °C with reaction times of 4 – 24 h. 

The You group showed that the iron-catalyzed oxidative C-H/C-H cross-coupling could be an 

efficient route to α-amino acid derivatives.90 

Nakamura and Ilies reported the iron-catalyzed ortho-allylation of aromatic carboxamides 

with allyl ethers.91 They found that substrates bearing a bidentate directing group, N-

(quinolin-8-yl)benzamide selectively afford the allylation products in good yields (up to 99 

%). 

In 2014, DeBoef et al found out that iron-catalyzed arylation of heterocycles via directed C-H 

bond activation could be successfully carried out on a variety of N-, S-, and O-containing 

                                                             

88
 Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 9279. 

89
 Gao, K.; Yosikai, N. Acc. Chem. Res. 2014, 47, 1208. 

90
 Li, K., Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem. Int. Ed. 2013, 52, 12942. 

91
 Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755. 
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heterocycles at 0 °C over 15 min.92 A number of heterocyclic arylated imines or aldehydes 

were synthesized with yields up to 88 %. 

The group of Ackermann showed that C(sp2)-H and C(sp3)-H arylation could be achieved by 

triazole assistance (Scheme 42).93  

 

 

Scheme 42.  Iron-catalyzed C(sp2)-H and C(sp3)-H arylation by triazole assistance by 

Ackermann and et al. 

 

Among alternatives of the catalytic systems for the C-H bond activation reaction, iron and 

cobalt salts are predominant. To our knowledge, no chromium-catalyzed C-H bond activation 

has been described in the literature so far. 

 

 

 

 

 

 

 

 

                                                             

92
 Sirois, J. J.; Davis, R.; DeBoef, B. Org. Lett. 2014, 16, 868. 

93
 Gu, Q.; Al Mamari, H.H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem. Int. Ed. 2014, 53, 3868. 

 



38 

5. Objectives  

Transition-metal-catalyzed cross-coupling reactions are one of the most used C-C bond 

forming reactions, where palladium and nickel catalysts play a main role. However, the 

constantly increasing world market price of palladium, the toxicity of nickel salts, and the 

laborious synthesis of arylboronic acids are prompting the search for powerful alternatives, 

also for industrial process. Therefore, the development of alternative transition metal catalysts 

for cross-coupling reactions represents our general goal.  

Iron-catalysts have received a lot of attention in the area of cross-coupling reactions due to 

environmentally friendly properties of iron salts combined with their moderate prices and 

absence of air-sensitive expensive ligands. Alkyl-aryl, alkyl-alkenyl, aryl-alkenyl, and 

alkynyl-coupling reactions are well documented. The corresponding aryl-aryl cross-couplings 

are much more challenging due to the formation of homo-coupling side-products. Therefore, 

our next aim would be to find simple and practical reaction conditions for sp2-sp2 type cross-

coupling reactions using iron as a catalyst. Particularly, the cross-coupling between N-

heterocyclic halides (chlorides or bromides) with arylmagnesium reagents should be 

investigated due to the potential biological activity of the resulting arylated heterocycles 

(Scheme 43). 

 

Scheme 43.  Iron-catalyzed cross-coupling reactions of N-heterocyclic halides with Grignard 

reagents 

 

Other transition metals salts such as CoCl2, MnCl2, VCl3, VCl4 and eventually CrCl2 should 

be tested for catalytic activity in cross-coupling reactions of aryl or alkenyl halides with 

arylmagnesium reagents (Scheme 44). 

 

 

Scheme 44.  Alternative metal-catalyzed cross-coupling reactions of aryl or alkenyl halides 

with Grignard reagents 
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In addition, mechanistic insights should not be neglected. 

Over the last decades, the direct coupling of C-H bonds via C-H bond activation has 

developed from an exotic phenomenon to an indispensable tool for organic chemists. Pd-, Rh- 

and Ru-catalysts are the metals of choice, if one aims to perform direct coupling reactions. As 

discussed above, the replacement of these metals by readily available and less-toxic salts is 

highly desirable.  

One further task of this work is to investigate the ability of Cr-salts to catalyze directed C-H 

bond activation reactions. Benzo[h]quinoline, 2-phenylpyridine, phenyloxazoline and imines 

should be tested in Cr-catalyzed C-H arylations with Grignard reagents (Scheme 45). 

 

 

Scheme 45.  Chromium-catalyzed C-H bond activation using arylmagnesium reagents 
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1. Iron-Catalyzed Cross-Coupling of N-Heterocyclic Halides with 
Grignard Reagents. 

 

1.1 Introduction  

 

In 1941, Kharash described the first iron-catalyzed reaction of PhMgCl, which provided the 

homo-coupling product biphenyl.27 This discovery paved the way for the field of iron-

catalyzed coupling reactions, but it also demonstrated the big challenge of performance of 

cross-coupling reactions between Csp2-Csp2 precursors due to the formation of the undesired 

homo-coupling side-products of the Grignard reagent such as biphenyl. 

The use of iron fluorides in combination with carbene ligands improves such aryl-aryl cross-

coupling dramatically as shown by Nakamura et al.66 Although, long reaction time (8 - 48 h) 

and additional heat (60 – 100 °C) were required.  

To our knowledge, only few examples of cross-coupling of N-heterocyclic halides with 

arylmagnesium reagents are described in the literature and no general methodology have been 

established.55,56,61,62 The scope of Grignard reagents, which were used for this kind of 

transformation, also seems to be limited. 

1.2 Results and Discussion 

 

1.2.1 Optimization of reaction conditions    
 

In preliminary experiments, we examined the cross-coupling between 2-chloropyridine (1a) 

and PhMgCl (2a) (see Sheme 46). 

 

 

Scheme 46.  Cross-coupling of pyridyl chloride (1a) with PhMgCl (2a) in the presence of 

various Fe-salts 
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We investigated the effect of catalytic amounts (5 %) of various iron salts, which are 

represented in Table 1. Surprisingly, the common Fe(acac)2 or Fe(acac)3 in THF gave only 46 

% and 55 % (GC-yield) of the desired 2-phenylpyridine (3a) respectively at room temperature 

(entries 1 and 2). The related iron salt Fe(TMHD)3 (TMHD = 2,2,6,6-tetramethyl-3,5-

heptanedionate) provided 53 % of the desired product 3a after 2 h at room temperature (entry 

3). Different iron halides such as FeCl2, FeCl3, FeBr2 or FeBr3 (entries 4 – 7) as well as 

Fe(OTf)3 (entry 8) gave only moderate yields of cross-coupling product 3a. As expected, iron 

fluorides gave only traces of product apparently due to insolubility in THF (entry 9 and 10) as 

well as FeI2 (entry 11). We have to admit that polar co-solvents such as NMP (N-

methylpyrrolidone) hampered the cross-coupling, since the reaction of the Grignard reagent 

and NMP was dominant (entry 12).  

 

Table 1. Optimization of the conditions for the reaction of pyridyl chloride (1a) with PhMgCl 

(2a) catalyzed by iron salts 

Entry Fe-salta Reaction timeb Yield (%) c 

1 Fe(acac)2 2 h 46 

2 Fe(acac)3 2 h 55 

3 Fe(TMHD)3 2 h 53 

4 FeCl2 5 h 56 

5 FeCl3 2 h 55 

6 FeBr2 2 h 62 

7 FeBr3 1.5 h 63 

8 Fe(OTf)3 5 h 60 

9 FeF2 20 h tracesd 

10 FeF3 20 h tracesd 

11 FeI2 20 h tracesd 

12 FeBr3 2 h tracese 

13 FeBr3·3LiCl 1.5 h 51 

14 FeBr3·3LiBr 1.5 h 56 

15 Fe(acac)3·3LiCl 1.5 h 50 

(a) 5 % of Fe-salt was used. (b) Reaction time until reaction completion according to GC 

analysis. (c) Calibrated GC-yield using undecane (C11H24) as internal standard. (d) Starting 
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material was not consumed even after 20 h. (e) A mixture of THF/NMP (5:1) was used. The 

reaction of PhMgCl with NMP was dominant. 

 

Solutions of iron salts in THF prepared in the presence of LiCl or LiBr such as FeBr3·3LiCl, 

FeBr3·3LiBr or Fe(acac)3·3LiCl were tested as well, but did not provide significant 

improvements (entries 13 – 15). 

We noticed that the use of Fe(II) or Fe(III) salt led to similar results. Reducing the Fe(III) 

catalyst in situ with i-PrMgCl prior to cross-coupling deactivated the catalytic system and 

hampered the coupling reaction.  

We also investigated the influence of different Lewis acids, since they showed good results in 

the cross-coupling of pyridines with aryl bromides via metalation with TMPZnCl·LiCl base, 

reported by Knochel et al.94 Results represented in Table 2 indicate that none of Lewis acids 

improved the yield of the cross-coupling product 3a. 

 

Table 2. Influence of various Lewis acids for cross-coupling reaction of 2-chloropyridine (1a) 

with PhMgCl (2a) 

 

Entry Lewis acid Fe-salta Yield (%) b 

1 without Fe(acac)3 55 

2 BF3·OEt2 Fe(acac)3 37 

3 BF3·OEt2 FeBr3 3 

4 Sc(OTf)3 Fe(acac)3 20 

5 Sc(OTf)3 FeBr3 34 

6 (CF3SO3)3Yb Fe(acac)3 28 

7 (CF3SO3)3Yb FeBr3 31 

(a) The reaction was carried out using 5 % of Fe-salt, 2.3 equivalents of PhMgCl and THF as 

a solvent at 0 °C to 23 °C for 24 h. (b) Calibrated GC-yield using undecane (C11H24) as an 

internal standard. 

 

                                                             
94 Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 7686. 
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Based on the screening of various iron salts we decided to use FeBr3 in the subsequent 

reactions, since it showed the best result in THF (see Table 1) at 23 °C. We observed that 

carrying out the coupling reaction between 2-chloropyridine (1a) and 2.3 equivalents PhMgCl 

(2a) in the presence of 5 % FeBr3 at  -70 °C, -30 °C and 0 °C showed 4 %, 21 % and 30 % 

GC-yield of the desired product respectively after 1.5 h. The amount of the Grignard reagent 

was also screened. The use of 2.3 equivalents of 2a have shown to be reasonable, since the 

employment of 1.2 equivalent of the Grignard reagent 2a gave less good results; on the other 

hand 3 equivalents of the reagent 2a did not improve the yield significantly.  

Next, we screened different solvents in order to examine solvent effects for this kind of 

transformation. Nonpolar solvents like n-hexane or toluene, did not display any considerable 

improvements in comparison to THF (entries 1-3, Table 3). The use of acetonitril led to only 

14 % yield of the desired product due to a side reaction of this solvent and PhMgCl (2a; entry 

4). However, the usage of ethereal solvents such as diethylether or tBuOMe allowed us to 

dramatically improve the yield and reach full conversion of the starting material. Thus, we 

isolated the desired product 3a using Et2O or t-BuOMe in 84 % and 82 % yield respectively 

(entries 7 - 8). Dibutylether also showed good results (entry 9) in contrast with dimethylether, 

which provided only 28 % of 2-phenylpyridine (3a, entry 6). A reasonable GC-yield was 

achieved using MCPE (methoxycyclopentane) as a solvent. Only 58 % yield of the cross-

coupling product 3a was determined using 2-Me-THF (2-methyltetrohydrofurane) (entry 11). 

Since comparably good yields were obtained using tBuOMe or Et2O, we have pursued our 

investigations using the industry-friendly solvent tBuOMe. 

 

Table 3. Solvent screening for the cross-coupling reaction of 2-chloropyridine (1a) with 

PhMgCl (2a) 

 

Entry a Solvent Reaction timeb Yield (%) c 

1 THF 1.5 h 63 

2 n-hexane 2 h 53 

3 toluene 1.5 h 14 

4 CH3CN 1.5 h 18 

5 1,2-dioxane 3 h 49 
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6 DME 2 h 48 

7 Et2O 1.5 h 73, 87,d (84)d 

8 t-BuOMe 1.5 h 75, 87,d (82)d 

9 Bu2O 1.5 h 72 

10 CPME 5 h 80d 

11 2-Me-THF 1.5 h 58d 

(a) 5 % of Fe-salt was used. (b) The reaction time until reaction completion according to GC 

analysis. (c) Calibrated GC-yield using undecane (C11H24) as internal standard. Numbers in 

brackets indicate isolated yields. (d) 3 % of FeBr3 was used. 

 

Based on the results obtained after optimization of the reaction conditions, we went on with 

our investigations using 3 % of FeBr3, 2.3 equivalent of the Grignard reagent and tBuOMe as 

solvent at 23 °C.  

 

1.2.2 Investigation of the reaction scope 
 

The use of ethereal solvents proved to be a key determinant and allowed us to extend this 

cross-coupling to various other N-heterocycles. In order to study the reaction scope we have, 

first varied the N-heterocyclic chlorides or bromides and investigated their reactions with 

PhMgCl (2a) in tBuOMe at 23 °C. Since PhMgCl as well as all Grignard reagents, which we 

used, were prepared in THF, the cross-coupling reactions in fact performed in a mixture of 

THF and tBuOMe (ca 2:5). 

Therefore, we observed that 2-bromopyridine (1b) reacted with PhMgCl (2a) at a faster rate 

for completion than 2-chloropyridine (1a) (70 min instead of 90 min) and produced 3a in the 

same yield (83 %, entry 2 of Table 4). Substituted bromo- or chloro-pyridines such as 2-

chloro-4-picoline (1c) and 2-bromo-5-chloropyridine (1d) reacted smoothly with similar 

reaction times leading to the pyridines 3b and 3c in 78 – 84 % yield (entries 3 and 4). 

Table 4. Scope of iron-catalyzed cross-coupling of N-heteroarylchlorides/-bromides (1a – j ) 

with PhMgCl (2a) 

Entry a Substrate Reaction time Product Yield (%) b 

 

 

 

 

 

1 1a: X = Cl 1.5 h 3a 82 
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2 1b: X = Br 70 min 3a 83 

 

 

 

 

 

3 1c 2 h 3b 84 

 

 

 

 

 

4 1d 70 min 3c 78 

 

 

 

 

 

5 1e 5 min 3d 60 

 

 

 

 

 

6 1f 5 min 3e 88 

 

 

 

 

 

7 1g 5 min 3f 90 

 

 

 

 

 

8 1h 2 h 3g 76 

 

 

 

 

 

9 1i 5 h 3h 22c 

 

 

 

 

 

10 1j 3 h 3i 24c 

(a) The reaction was performed on a 1 mmol scale with 3 mol% of FeBr3 in THF:tBuOMe (ca. 
2:5) at room temperature. (b) Isolated yield. (c) GC-yield. 

 

Interestingly, the presence of a tert-butoxycarbonyl group in position 3 (1e) dramatically 

increased the reaction rate leading to full conversion within 5 min (entry 5). The cross-

coupling product 3d was isolated in 60 % yield. No starting chloride 1e was detected, and the 

relatively moderate yield may be due to a polymerization of 1e. The annulation of the 

pyridine ring with a benzene moiety also accelerated the reaction rate, and the cross-coupling 
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of PhMgCl (2a) with 2-chloroquinoline (1f) or 1-chloroisoquinoline (1g) were completed in 5 

min and gave the expected phenylated N-heterocycles 3e and 3f in 88 – 90 % yield (entries 6 

and 7). Diazines were also tested for cross-coupling reactions. For instance, 2-

chloropyrimidine derivative 1h reacted with PhMgCl (2a) within 2 h providing the arylated 

pyrimidine 3g in 76 % yield (entry 8). The more sensitive chloropyridazine 1i and –pyrazine 

1j required 3 - 5 h for the full conversion of starting material, but led to the phenylated 

products 3h - i in only 22 – 24 % yields (entries 9 and 10). Unfortunately, the use of other 

heterocyclic halides, such as 3- and 4-chloropyridine, 2-chlorothiophene, or 2-bromofuran, as 

well as standard haloarenes resulted in only low yields.  

Thereafter, we have varied the nature of the Grignard reagent, using typical N-heterocyclic 

chlorides and bromides (1b, 1f and 1g) as electrophiles (Table 5).  

 

Table 5. Iron-catalyzed cross-coupling of N-heteroarylchlorides/-bromides 1b, 1g and 1f with 

various Grignard reagents 

Entry a Grignard reagent Substrate; 

Reaction time 

Product; Yieldb 

  

m-TolMgBr·LiCl  
 

1 2b 1b; 1.5 h 3j; 80% 

  

 

 

p-TolMgBr·LiCl 
 

 

2 2c 1g; 2 min 3k; 93% 

  

o-TolMgBr·LiCl  
 

3 2d 1f; 45 min 3l; 84% 

 

 
 

 
 

4 2e 1f; 15 min 3m; 92% 
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5 2e 1b; 2 h 3n; 66% 

  

 

 

  

6 2f 1g; 5 h 3o; 75% 

 

  
 

7 2g 1b; 5 min 3p; 68% 

  
 

 

8 2g 1g; 5 min 3q; 90% 

 
  

 

9 2h 1f; 5 min 3r; 84% 

 
  

 

10 2i 1b; 10 min 3s; 82% 

  
 

 

11 2i 1f; 5 min 3t; 87% 

 

  
 

12 2j 1g; 5 min 3u; 71% 
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13 2k 1f; 5min 3v; 81% 

 

   

14 2l 1g; 15 min 3w; 80% 

 

   

15 2m 1f; 15 min 3x; 84% 

 

   

16 2n 1f; 5 min 3y; 82% 

(a) The reaction was performed on a 1 mmol scale with 3 mol% of FeBr3 in THF:tBuOMe (ca. 

2:5) at room temperature. (b) Isolated yield. 

 

In all cases presented in Table 5, the Fe-catalyzed cross-couplings were relatively fast and led 

to full conversion of the starting material. Both electron-rich and -poor Grignard reagents 

could be tolerated. For steric hindrance reasons, we first examined the substitution pattern of 

the arylmagnesium reagent. We have found that ortho-, meta-, and para-substituted Grignard 

reagents can be applied. Whereas m-TolMgBr·LiCl (2b) and p-TolMgBr·LiCl (2c) react at 

similar rates as the unsubstituted magnesium reagent, the presence of an ortho-methyl 

substituents in o-TolMgBr·LiCl (2d) reduced the reaction rate (compare entry 3 of Table 5 

with entry 6 of Table 4). However, in all cases excellent yields (80 – 93 %; entries 1 – 3 of 

Table 5) were obtained.  

Various electron-poor substituted Grignard reagents were examined and proved to be 

applicable in this kind of transformation. Therefore, substituents such as a trifluoromethyl 

group (as in 3-trifluoromethyl-magnesium bromide 2e and in 3,5-ditrifluoromethyl-

magnesium bromide 2f; entries 4-6), a fluorine group (as in 4-fluorophenylmagnesium 

bromide 2g; entries 7 and 8), and a chlorine group (as in 2h; entry 9) were well tolerated in 

the cross-coupling providing the desired products 3m – r  in 66 – 92 % yields (entries 4 – 9). 

Remarkably, electron-rich substituents were also compatible with rapid iron-catalyzed cross-

couplings. Thus, methoxy-, methylenedioxy- as well as pivalate-functionalized Grignard 

reagents 2i – l undergo cross-coupling reactions giving 71 – 87 % yields of the expected 
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products 3s - w (entries 10 – 14 of Table 5). More sensitive Boc-protected Grignard reagent 

2m also smoothly underwent cross-coupling with 2-chloroquinoline (1f) leading to the 2-

arylated quinoline 3x in 84 % yield (entry 15).  

We were interested to test the amino-substituted Grignard reagent due to its potential 

importance in the drug´s structures. We observed that a di-alkylated amino substituent did not 

disturb the cross-coupling, and the Grignard reagent 2n reacted with 1f within 5 min 

providing the product 3y in 82 % yield (entry 16).    
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2. Ligand-Accelerated Iron- and Cobalt-Catalyzed Cross-Coupling 
between N-Heterocyclic Halides and Aryl Magnesium Reagents. 

 

2.1 Introduction  

 

In order to further optimize our reaction conditions, we looked more close at possible 

additives or ligands for iron-catalyzed cross-coupling between Csp2-Csp2 centers. 

Nakamura and co-workers have shown that N-heterocyclic carbene (NHC) ligands can 

suppress the homo-coupling reaction to less than 5 %.67 Although this is a large improvement, 

NHC ligands are expensive, and even optimized conditions, elevated temperatures and long 

reaction times are often required to complete the coupling reaction. Clearly, there is a need to 

discover new classes of ligands for Fe catalysis.  

During the course of our work, we have made the serendipitous discovery that quinoline or 

isoquinoline could be used as ligands to promote Fe-catalyzed cross-coupling, improving both 

the yield and reaction rate. Moreover, these new ligand-accelerated cross-coupling reactions 

could be extended to Co catalysts.  

Thus, cross-coupling of 2-chloroquinoline (1f) with PhMgCl (2a) in the presence of 3 % 

FeBr3 in tBuOMe/THF was completed at 25 °C in 5 min (producing the phenylated product 3e 

in 90 % yield; Scheme 47). Cross-coupling of the 2-chloropyrimidine 1h under the same 

reaction conditions requires 2 h for completion and provides the arylated pyrimidine 3g in 76 

% yield.  

 

 

Scheme 47. Rate acceleration and improved yield of Fe-catalyzed cross-coupling in the 

presence of quinoline 
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However, carrying out the same reaction in the presence of 7 % of quinoline leads to a 

reaction completion within 5 min (about 50 times faster) and an increased yield of 3g (89 % 

yield of isolated product; Scheme 47). 

 

2.2 Results and Discussion 

 

Prompted by the rate acceleration effect observed with quinoline, we screened other ligands. 

We observed that NMP and TMEDA, which have been traditionally used for iron catalysis, 

had a detrimental effect under our conditions (compare entries 1-4 of Table 6).29  We 

systematically examined substituted quinolines. Erosion of the rate enhancement occurs when 

a methyl group is attached to either the 2- or 8-position (entries 5 and 6), and only a slight 

improvement can be observed when a methyl group is placed at position 6 (entry 7) 

Benzo[h]quinoline and acridine led even to a decrease in yield (entries 8 and 9). Remarkably, 

electron-donating groups have a positive effect while electron-withdrawing groups decrease 

the catalytic activity of the quinoline core (compare entries 10-14). Finally, it was discovered 

that isoquinoline gave the best results with 92% yield after 15 min (entry 15). 1-Methyl 

isoquinoline had a similar catalytic activity as isoquinoline, but surprisingly, electron-rich 1-

benzyl-6,7-dimethoxyisoquinoline performed very poorly (compare entries 16 and 17). Two 

nitrogen-containing heterocycles hindered the reaction (entries 18 and 19).  

In 2002, Knochel and coworkers have shown that 4-fluorostyrene promotes Co-catalyzed 

coupling reactions.95 

However, styrene had no effect (entry 20), and various substituted styrene derivatives caused 

only a moderate rate enhancement (entries 21-23).  

Additionally, the amount of isoquinoline was varied from 1-100% and it was found that 10% 

of the ligand was optimum. Pleasingly, isoquinoline (or quinoline) was not consumed during 

the cross-coupling according to the GC-analysis.  

Using isoquinoline, we tested the ability of other metallic salts to undergo rate-enhanced 

cross-coupling reactions. In response to the current debate as to whether trace impurities of 

                                                             
95 a) Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79; b) Rohbogner, C. J.; Diène, C. R.; Korn, T. J.; 
Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 18. 
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Cu in commercial samples of Fe salts can be the cause of catalytic activity,96 CuBr2 was tested 

and none to minimal activity was found (compare entries 1-2 with 3-4 of Table 7).  

 

Table 6. Screening different additives for the Fe-catalyzed cross-coupling reaction of 2-

chloropyridine (1a) with PhMgCl (2a) 

 

Entry Additive  Yield of 3a (%)a 

1 without additive 40 

2 quinoline 75 

3 NMP 0 

4 TMEDA 32 

5 2-methylquinoline 67 

6 8-methylquinoline 48 

7 6-methylquinoline 82 

8 benzo[h]quinoline 30 

9 acridine 32 

10 4-methoxyquinoline 73 

11 6-methoxyquinoline 82 

12 4-((tert-butyldimethylsilyl)oxy)quinoline 75 

13 6-((tert-butyldimethylsilyl)oxy)quinoline 83 

14 quinoline-3-carbonitrile 43 

15 isoquinoline 92 (89)b 

16 1-methylisoquinoline 91 

17 1-benzyl-6,7-dimethoxyisoquinoline 28 

18 2,9-diphenyl-1,10-phenanthroline 27 

19 4-(dimethylamino)pyridine 25 

20 styrene 40 

21 1-methoxy-3-vinylbenzene 67 

22 1-methoxy-4-vinylbenzene 68 

                                                             
96 For the role of metal contaminants in iron catalysis, see: a) Buchwald, S. L.; Bolm, C. Angew. Chem. Int. Ed. 
2009, 48, 5586. (b) Larsson, P.-F.; Correa, A.; Carril, M.; Norrby, P.-O.; Bolm, C. Angew. Chem., Int. Ed. 2009, 
48, 5691. (c) Thomé, I.; Nijs, A.; Bolm, C. Chem. Soc. Rev. 2012, 41, 979. 
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23 2-vinylpyridine 37 

(a) Yield determined after 15 min by integration of a GC-chromatogram and comparison 

against undecane as a calibrated internal standard. (b) Isolated yield after purification by flash 

column chromatography 

 

A mixture of FeBr3 and CuBr2 displayed no synergistic benefit, as the yield was essentially 

the same as when no Cu is added (entry 5). Vanadium salts also had very little catalytic 

activity (entries 6 - 9). Finally, we were pleased to find that isoquinoline can also be used as a 

ligand to accelerate Co-catalyzed reactions (entries 12 and 13 of Table 7). 

 

Table 7. Performance of different transition metals with isoquinoline-promoted cross-

coupling 

 

Entry Metal salt  Isoquinoline (mol%) Yield of 3a (%)a 

1 FeBr3 0 40 

2 FeBr3 10 92 (89)b 

3 CuBr2c 0 0 

4 CuBr2 10 2 

5 FeBr3 + CuBr2 10 89 

6 VCl3 0 0 

7 VCl3 10 2 

8 VCl4 0 5 

9 VCl4 10 9 

10 MnCl2 0 28 

11 MnCl2 10 14 

12 CoCl2 0 46 

13 CoCl2 10 90 

(a) Yield determined after 15 min by integration of a GC-chromatogram and comparison 

against undecane as a calibrated internal standard. (b) Isolated yield after purification by flash 

column chromatography. (c) Cu2O was also used and gave the same results. 

 



    B.Results and Discussion 

                                                                                                                                                                                        57 

Since both Fe and Co had a similar activity, both of these transition metals were used, while 

exploring the scope of this new catalytic system. 

Using isoquinoline as a ligand (10 %), it is possible to obtain the expected cross-coupled 

products with a variety of chloro- or bromo-substituted pyridines as well as with a fair range 

of Grignard reagents. Good yields of the substituted pyridines 5a - f (65 - 91 %) were 

obtained especially with electron-rich Grignard reagents (entries 1 - 6 of Table 8) as well as 

with electron-poor 4-fluorophenylmagnesium bromide 2g to give pyridine 54g (77 - 79 % 

yield, entry 7). It is possible to couple the polyfunctional pyridine 4h with the sensitive ester- 

substituted Grignard compound 2l to produce pyridine 5h in 65 % yield (entry 8). Often both 

Co- and Fe-catalyzed couplings proceed with comparable yield, and it is difficult to propose 

that one metallic salt is a superior catalyst for all substrates. Pyrimidines, which are common 

motifs in pharmaceuticals, can be obtained from the same set of Grignard reagents to yield 

functionalized N-heterocycles 5k - n in 60 - 95 % yield (entries 11 - 14). Triazines are of great 

importance as material building blocks and as agrochemicals. This new method allows 

various chlorotriazines to be cross-coupled with magnesium reagents, leading to the desired 

products (5o - r ) in 61 - 84 % yield (entries 15 - 18). 

 

Table 8. Scope of Co- and Fe-catalyzed cross-coupling reactions utilizing isoquinoline as a 

ligand 

N X

ArMgX LiCl

(2; 2 equiv),

FeBr3 or CoCl2 (3 %)

10 % isoquinoline

tBuOMe/THF

23 °C, 15 min

R

N Ar

R

4 5
 

Entry  Starting material  Grignard reagent Producta 

  

 

 

  

1 4a 2i 5a; Fe: 91 % 

           Co: 85 % 

  

 

 

 
 

2 4b 2n 5b; Fe: 82 % 
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            Co: 77 % 

 

 

 

 

  

3 4c 2o 5c; Fe: 65 % 

            Co: 70 % 

 

 

 

 

 

 

 

  

4 4d 2p 5d; Fe: 71 % 

            Co: 79 % 

 

 

 

 

 

 

  

5b 4e 2q 5e; Co: 82 % 

  

 

 

 
 

6c 4f 2r 5f; Co: 65 % 

 

 
 

 

7 4g 2g 5g; Fe: 77 % 

            Co: 79 % 

 

 

 

 

 

 

  



    B.Results and Discussion 

                                                                                                                                                                                        59 

8 4h 2l 5h; Fe: 65 % 

 

 
 

 

9 4i 2i 5i; Co: 78 % 

 

 

 

  

10 4j 2g 5j ; Fe: 82 % 

           Co: 67 % 

 

 
 

 

11d 1h 2s 5k; Fe: 78 % 

           Co: 63 % 

 

 

 

 

 

  

12e 4k 2p 5l; Fe: 95 % 

 

 

 

 

 

 

  

13 4l 2t 5m; Co: 68 % 

 

   

14 4m 2u 5n; Fe: 61% 

            Co: 60 % 
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15 4n 2i 5o; Fe: 81 % 

            Co: 79 % 

 

   

16f 4o 2a 5p; Fe: 76 % 

 

   

17g 4p 2v 5q; Fe: 84 % 

            Co: 79 % 

 

   

18 4q 2t 5r; Fe: 61 % 

(a) Isolated yield after purification by flash column chromatography. (b) Reaction run at 23 

°C for 5 h. (c) Reaction run at 23 °C for 1 h. d) Reaction run at 23 °C for 30 min. (e) 4 

equivalent of 2p were used. (f) Reaction run at 50 °C for 12 h. (g) Reaction run at 23 °C for 

12 h. 

 

The synthesis of heteroaryl-heteroaryl coupling products is often challenging. In the case of 

Pd- or Ni-catalysis, deactivation of the catalyst is observed due to chelation of the product 

with the catalyst.97 However, it was noted that both Fe- and Co-catalysts promoted by 10 % 

isoquinoline allow smooth cross-couplings with either the 3-magnesiated benzothiophene 2w 

or the 2-magnesiated heterocycle 2x to afford heterobyaryls 5s and 5t in 61 - 66 % isolated 

yield (Scheme 48).  

                                                             
97 a) Hanan, G. S.; Schubert, U. S.; Volkmer, D.; Rivière, E.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. Can. J. 
Chem. 1997, 75, 169 ; b) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553; c) Bedel, S.; Ulrich, 
G.; Picard, C.; Tisnès, P. Synthesis 2002, 1564; d) Comprehensive Coordination Chemistry II, Vol 1; 
McCleverty, J. A.; Meyer, T. J.; Eds.; Elsevier, Oxford, 2004, 1. 
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N Br

TMS

4a

N

TMS

5s

N Br

TMS

4a

N

TMS

5t

S

S

Fe: 64 %
Co: 66 %

2w (2 equiv)

FeBr3 or CoCl2 (3 %)

isoquinoline (10 %)

tBuOMe/THF

23 ºC, 24 h

2x (2 equiv)

FeBr3 or CoCl2 (3 %)

isoquinoline (10 %)

tBuOMe/THF

23 ºC, 12 h

Fe: 61 %a

Co: 66 %

S

MgBr·LiCl

S

MgCl·LiCl

(a) reaction run at 50 °C  

Scheme 48. Heteroaryl-heteroaryl cross-coupling reactions between bromopyridine 4a and 

benzothiophenes 2w and 2x  

 

Delicate functional groups, such as alkynes, which could undergo carbometallation under iron 

catalysis,98 provide poor yields of the desired product. Nevertheless, we observed that the use 

of 3 % CoCl2 and 10 % isoquinoline improved the yield and allows the isolation of pyridine 

5u in 62 % yield (Scheme 49). 

 

 

Scheme 49. Cross-coupling reactions of acetylene-containing pyridines  

 

To probe the mechanism of Fe- and Co-catalyzed cross-coupling reactions, we prepared the 

radical clock 4s.99 Treatment of this unsaturated pyridine 4s with PhMgCl (2a), using either 

                                                             
98 a) ) Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.; Hosomi, A. Angew. Chem. Int. Ed. 2001, 40, 
621; b) Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2006, 128, 15050; c) Shirakawa, E.; Ikeda, D.; Masui, S.; 
Yoshida, M.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 272; d) Ilies, L.; Yoshida, T.; Nakamura, E. J. Am. 
Chem. Soc. 2012, 134, 16951.  
99 a) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374; b) Ohmiya, H.; 
Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886; c) Manolikakes, G.; Knochel, P. Angew. Chem. 
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FeBr3 or CoCl2, produces a 4:1 mixture of the expected cross-coupling product 5v and the 

cyclized pyridine 6 indicative of a radical intermediate. The addition of isoquinoline did not 

change the product ratio, but as expected, it improved the yields (compare entries 1-4 of Table 

9). These results indicate that both Fe- and Co-catalyzed cross-couplings undergo the radical 

pathway, at least partially. Interestingly, the corresponding Pd- and Ni-catalyzed cross-

couplings, using 3 % Pd(Ph3P)4 or 3 % NiCl2(dppe) provided much less, if any, of the 

cyclized product. 

 

Table 9. Scope of Co- and Fe-catalyzed cross-coupling reactions utilizing isoquinoline as a 

ligand 

 

Entry Catalyst  5v:6 Yield (%)a 

1 FeBr3 80:20 47 

2 FeBr3 /isoquinoline 80:20 62 

3 CoCl2 80:20 72 

4 CoCl2 /isoquinoline 80:20 78 

5b Pd(Ph3P)4 100:0 64 

6 NiCl2(dppe) 95:5 67 

(a) Isolated yield after purification by flash column chromatography. (b) Reaction was 

performed at 50 °C. 

 

In spite of remarkable results, which we obtained using isoquinoline in Fe- and Co-catalyzed 

coupling reactions, we aimed to further optimize the reaction conditions. Therefore, we went 

on with our hunt for appropriate ligands using coupling between 2-chloropyridine (1a) and 

PhMgCl (2a) as a standard reaction. 

First of all, we tested various quinoline derivatives. Vinyl-substituted quinolines did not have 

any effect (entries 2 and 3 of Table 10). 2,3´-Biquinoline (7c) provided no improvement and 

even slowed down the reaction (17 % yield after 15 min; entry 4). Polycyclic compounds 

                                                                                                                                                                                              

Int. Ed. 2009, 48, 205; d) Guisán-Ceinos, M.; Tato, F.; Bunuel, E.; Calle, P.; Cárdenas, D. J. Chem. Sci. 2013, 4, 
109 
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contained two nitrogens, such as cinnoline (7d) and quinoxaline (7e) hampered the reaction 

(entries 5 and 6). The quinoline derivative having a methoxy group in position eight (7f) 

demonstrated no acceleration effect (entry 7). 6-Chloroquinoline (7g) slightly promoted the 

reaction (58 % yield; entry 9), whereas 6-bromoquinoline (7h) gave a good yield already after 

15 min (73 % yield; entries 8). Previously we observed that quinoline having a methoxy 

group in position six resulted in a positive effect. However, papaverin (7i) led to only 59 % 

GC-Yield of cross-coupling product 3a (entry 10). Various six-membered ring N-heterocycles 

7j – l demonstrated moderate activity (entries 11 – 13). 

 

Table 10. Screening different additives for the Fe-catalyzed cross-coupling reaction of 2-

chloropyridine (1a) with PhMgCl (2a) 

 

 

Entry Additive  Additive 

Number 

Time, h GC-Yield of 3a 

(%)  

1 

 

without additive 

 

 15 min 

1.5 h 

40 

78 

2 

 

 N  

7a 15 min 

1.5 h 

43 

70 

 

3 

 

  

7b 15 min 

1.5 h 

38 

63 

 

4 

 

  

7c 15 min 

1.5 h 

17 

61 

 

5 

  

7d 15 min 

1.5 h 

18 

33 

6 

 

  

7e 15 min 

1.5 h 

14 

35 
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7 

 

  

7f 15 min 

1.5 h 

 

40 

69 

 

8 

 

 
 

7h 15 min 

1.5 h 

73 

74 

 

9 

 

 

 
 

 

7g 15 min 

1.5 h 

58 

76 

 

 

10 

 

 

 

  

7i 15 min 

1.5 h 

59 

62 

 

 

 

11 

 

  

7j 15 min 

1.5 h 

66 

67 

 

12 

 

  

7k 15 min 

1.5 h 

22 

61 

 

13 

 

  

7l 15 min 

1.5 h 

60 

71 

 

14 

 

 

 

  

7m 15 min 

1.5 h 

35 

62 

 

 

 

15 

 

 

 

  

7n 15 min 

1.5 h 

19 

40 
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Bis(imino)pyridine ligand  7m is often used for iron-catalyzed polymerization100 reactions or 

as hydrogenation and hydrosilylation catalyst.101 Recently, it has been also used in 

regioselective syntheses of α-aryl carboxylic acids. 102 Nevertheless, in our cross-coupling 

reaction this ligand 7m did not show any activity (entry 14). The tetradentate amine complex 

with Co 7n, hampered the reaction between 2-chloropyridine (1a) and PhMgCl (2a) (entry 

15).103 

Based on this small screenshot of all tested ligands, the following trend could be highlighted. 

The quinoline or isoquinoline core seemed to be the most reactive in this kind of coupling 

reactions. Electron-donating substituents of quinoline showed better results than electron-

withdrawing ones. The second positions of quinoline should not have any residues besides 

hydrogen. A positive trend was observed when the electron-rich groups were placed in the 

sixth position of quinoline. Finally, chelating ligands disprove their activity in this kind of 

coupling reactions, probably due to aggregation and therefore deactivation of the iron catalyst. 

  

 

 

Scheme 50. Positive effect of quinoline for reduced iron-species 

                                                             
100 a) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, 
A. J. P.; Williams, D. J. Chem. Commun. 1998, 849; b) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. 
Chem. Soc. 1998, 120, 4049. 
101 a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794. b) Tondreau, A. M.; Atienza, 
C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567. 
102 Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900. 
103

 This salen ligand was previously used for the reductive cross-coupling of vinyl halides and Grignard reagents 
Le Bailly, B. A. F.; Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2012, 48, 1580.  
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Bedford and coworkers described the catalytic activity of iron nano-particles in cross-

coupling reactions. Therefore, we aimed to investigate reduced iron(0)-species in the coupling 

reaction between N-heterocyclic halides and aromatic Grignard reagents. Iron(0)-species, 

produced via in situ reduction of FeBr3 with nBuLi showed no catalytic activity in reaction 

between 2-chloropyridine (1a) and PhMgCl (2a). The addition of 7 % of quinoline to this 

reaction significantly improved this reaction, yielding the desired product 3a in 70 % (GC-

Yield) after 1 h reaction time. It can be concluded that quinoline forms catalytically active 

species with in situ reduced iron(0) (Scheme 50). 
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3. Efficient Chromium(II)-Catalyzed Cross-Coupling Reactions 

 

3.1 Introduction  

 

On the way of our search for alternative metal catalysts having an acceptably low toxicity, we 

have examined the potential use of chromium salts.104 

Palladium and nickel-catalyzed cross-coupling reactions between aromatic and 

heteroaromatic groups are well established and have many applications.105 Although CrVI is 

highly toxic (ORL-RAT LD50 = 50-150 mg/kg), CrII has a much lower toxicity (ORL-RAT 

LD50 = 1870 mg/kg), also compared to other metals: ORL-RAT LD50(NiCl2) = 105 mg/kg, 

(PdCl2) = 2700 mg/kg, (CoCl2) = 766 mg/kg, (MnCl2) =1480 mg/kg, (FeCl2) = 450 mg/kg.106 

 

3.2 Results and Discussion 

 

Preliminary experiments showed that chromium-catalyzed cross-couplings between Csp2-

centers proceed quite smoothly and lead to significantly lower amounts of homo-coupled 

side-products compared to iron or cobalt. Thus, the reaction of 2-chloropyridine (1a, 1.0 

equiv) with PhMgCl (2a, 2.3 equiv) in THF in the presence of 3 % CrCl2 (purity 99.99 %) is 

complete within 15 min at 23 °C, affording the desired cross-coupled product 3a in 90% 

yield. GC-analysis of the crude reaction mixture indicated that less than 1 % of the homo-

coupling product (biphenyl) is obtained (Scheme 51). Performing the same reaction with 3 % 

FeBr3 or 3 % CoCl2 under optimized conditions leads to about 15 % of the homo-coupled 

                                                             
104 For key coupling reactions using chromium(II) salts, see: a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. 
Am. Chem. Soc. 1977, 99, 3179; b) Okude, Y.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1977, 3829; c) Takai, 
K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281; d) Jin, H.; Uenishi, J.-I.; 
Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644; e) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; 
Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048; f) Matsubara, S.; Horiuchi, M.; Takai, K.; Utimoto, 
K. Chem. Lett. 1995, 259; g) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349; h) Takai, K.; 
Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem. Int. Ed. Engl. 1998, 37, 152; i) Fürstner, A. Chem. Rev. 
1999, 99, 991; j) Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R. J. Am. Chem. Soc. 2003, 125, 12990; k) 
Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R.; Hirano, M. J. Organomet. Chem. 2007, 692, 520; l) 
Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569; m) Holzwarth, M. S.; Plietker, 
B. ChemCatChem 2013, 5, 1650. 
105 a) Cross-Coupling Reactions. A Practical Guide; Miyara, N., Ed.; Springer: Berlin, 2002; b) Metal-Catalyzed 
Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; c) 
Organotrasition Metal Chemistry; Harwig, J. F., Ed.; University Scienca Books: Sausalito, CA, 2010. 
106 according to IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung; July 2013). 
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product. A solvent screening (THF, n-hexane, toluene and tBuOMe) showed that THF was 

the optimal solvent. The optimization of the reagent stoichiometry indicated that only a small 

excess of Grignard reagent (1.2 equiv) was required. For all subsequent reactions standard 

grade CrCl2 (purity 97 %) was used, since no difference with CrCl2 (purity 99.99 %) was 

observed. Also, performing the cross-coupling with 5 % MnCl2 leads, under optimum 

conditions, to only 58 % yield of 3a107 compared to 90 % yield obtained with 3 % CrCl2. 

The reaction scope of this new cross-coupling proved to be quite broad. Thus, a range of      

N-heterocyclic chlorides and bromides can be readily used (Table 11). PhMgCl (2a) also 

undergoes a smooth cross-coupling with 2-bromo-3-(but-3-en-1-yl)pyridine (4s; 23 °C 15 

min), leading to the 2,3-disubstituted pyridine 5v in 95 % yield (entry 1). Interestingly, no 

radical cyclization product is observed in this cross-coupling (similar iron and cobalt cross-

couplings produce 20 % of the radical cyclization product). Both electron-rich and electron-

poor Grignard reagents can be used for such cross-couplings. Thus, the sterically hindered 

bromo-pyridine 4b reacts with 4-N,N-dimethyl-aminophenylmagnesium bromide (2n) within 

1.5 h at 23 °C, producing the 2,3-diarylated pyridine 5b (80 % yield; entry 2). 

 

 

Scheme 51. Chromium-catalyzed cross-coupling between 2-chloropyridine (1a) and PhMgCl 

(2a) 

 

Also, the electron-poor Grignard reagent 2y reacts with 2-bromo-3-chloropyridine (4t) in 15 

min at 23 °C, leading to the pyridine 8a in 76 % yield (entry 3). A similar cross-coupling 

performed with 3 % of FeBr3 gives only traces of product and significant amounts of homo-

coupling. 2-Chloro-5-fluoropyridine (4u) also undergoes the cross-coupling reaction with the 

sensitive ester-substituted Grignard reagent 2l to give the pyridine 8b in 66 % yield (entry 4). 

Further N-heterocyclic halides such as the 2-chloroquinoline 4j and the 4-chloroquinoline 4v, 

react well with Grignard reagents 2k and 2n, affording the expected products 8c and 8d (74 - 

78 %; entries 5 and 6). In contrast, the corresponding iron-catalyzed cross-coupling with the 

4-chloroquinoline 4v fails, indicating that this Cr(II)-catalyzed cross-coupling may have a 

                                                             
107 Rueping, M.; Ieawsuwan, W. Synlett 2007, 247. 
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broader reaction scope than the corresponding Fe- and Co-catalyzed cross-couplings. 

Halogenated diazenes, such as the 2-chloropyrimidines 1h and 4m as well as the 2-

chloropyrazine 1j, rapidly react with the magnesium organometallics 2z, 2p and 2i to provide 

the substituted diazenes 8e-g (71 - 85 %; entries 7 - 9). 

 

Table 11. Room-temperature Cr-catalyzed cross-coupling reactions between N-heterocyclic 

halides and arylmagnesium reagents 

 

Entry  Starting material  Grignard reagent Producta 

  

 

 

 
 

1 4s 2a 5v; 95 %; 15 min 

  

 

 

  

2 4b 2n 5b; 80 %; 90 min 

 
 

 

 

 

 

 

3 4t 2y 8a; 76 %; 15 min 

 

 

 

 

 

  

4 4u 2l 8b; 66 %; 15 min 

 

 

 

 

 

 
 

5 4j 2k 8c; 74 %; 1 h 
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6 4v 2n 8d; 78 %; 15 min 

 

 

 

  

7 1h 2z 8e; 71 %; 2 h 

 

 

 

 

 

 

  

8 4m 2p 8f; 85 %; 15 min 

 
  

 

9 1j 2i 8g; 72 %; 30 min 

(a) Isolated yield after purification by flash column chromatography. 

 

Table 12. Cr-catalyzed cross-coupling reactions between 2-chlorobenzophenone (9) and 

phenylmagnesium reagents 

 

Entry  Grignard reagent Product Yielda 

  

 
 

 

1 10a 11a 79 %; 15 min 
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2b 10b 11b 71 %; 2 h 

 
 

 

 

 

 

 

3 2y 11c 93 %; 15 min 

 

 

 

 
 

 

4 2n 11d 94 %; 15 min 

 

 

 

 
 

 

5c 2w 11e 89 %; 2 h 

(a) Isolated yields after purification by flash column chromatography. (b) 0.7 equiv of 10b 

were used. (c) Reaction run at 50 °C for 2 h. 

 

Remarkably, 2-halogenated aromatic ketones also undergo the chromium-catalyzed cross-

coupling at room temperature within 15 min to 2 h (Table 12).108 Thus, 2-

chlorobenzophenone (9) reacts with a range of aryl- and heteroaryl-magnesium reagents (2n, 

2w, 2y, 10a, 10b) yielding the corresponding polyfunctional ketones 11a-e (71-94%; entries 

1-5 of Table 12). 

Interestingly, the (2-bromophenyl)(6-chloropyridin-3-yl)-methanone (12) reacts with the 

Grignard reagent 2a with complete regioselectivity (no chloride-substitution occurs) and gives 

the pyridyl ketone 13 in 72% yield (Scheme 52). Heterocyclic ketones, such as 14, also 

couple well with 3-thienylmagnesium chloride 10b affording the new ketone 15 in 90% yield 

(Scheme 52). These reactions show a remarkable functional group tolerance, since ester, 

                                                             

108
 For related Mn-catalyzed reactions see: (a) Cahiez, G.; Lepifre, F.; Ramiandrasoa, P. Synthesis 1999, 2138. 

(b) Cahiez, G.; Luart, D.; Lecomte, F. Org. Lett. 2004, 6, 4395. 
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nitriles and ketones are compatible with this Cr-catalyzed cross-coupling. Interestingly, the 

imine-protected 2-chlorobenzaldehyde 16 reacts readily with various Grignard reagents (2a, 

2i, 10c) at 23 °C, which after acidic work-up provides the aldehydes 17a-c in 69-84% yield 

(Scheme 53). 

The presence of the sulfur-containing Grignard reagent 10c considerably extends the reaction-

rate and a 16 h reaction time is required to complete the cross-coupling leading to 17c.  

 

 

Scheme 52. Cr-catalyzed cross-coupling reactions between heteroaryl-substituted ketones and 

Grignard reagents 

 

Thus, this cross-coupling constitutes a simple way for functionalizing aromatic aldehydes in 

the ortho-position. 

 

 

Scheme 53. Cr-catalyzed cross-coupling reactions between imine-protected aldehyde 16 and 

Grignard reagent 

 

Alkenyl iodides, such as 18, also undergo a fast stereoselective chromium-catalyzed arylation 

with a range of Grignard reagents (2i, 2n, 2p, 2t), affording in all cases the functionalized 
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styrenes 19a-d in 69 - 80% yield with an E:Z ratio better than 99:1. Remarkably, all reactions 

were performed at 23 °C and were completed within 15 min (Scheme 54).  

 

 

Scheme 54. Cr-catalyzed cross-coupling reactions between alkenyl iodide 18 and Grignard 

reagents 

 

Furthermore, such chromium(II)-catalyzed cross-coupling reactions could be performed using 

alkyl Grignard reagents (Scheme 55). 2-Chloroquinoline (1f) reacts with alkylmagnesium 

reagents 20a – c affording after 15 min at 23 °C alkylated heterocycles 21a – c in 74 – 82 % 

yield.  

 

 

 

Scheme 55. Cr-catalyzed cross-coupling reactions of 2-chloroquinoline (1f) with alkyl 

Grignard reagents 
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4. Room-Temperature Chromium(II)-Catalyzed Direct Aryl ation of 
Pyridines, Aryl Oxazolines and Imines 

 

4.1 Introduction  

 

The formation of C-C bond involving a transition-metal catalyzed C-H activation has been 

widely developed in recent years.76 A range of transition metals such as Pd, Ru, Rh,77-79 Co 

and Fe catalyze these cross-couplings. Iron-catalysts and to some extend cobalt-catalysts are 

of special interest due to the moderate price of these metals. Iron salts are furthermore of low 

toxicity and the pioneering work of Nakamura and Yoshikai has attracted much attention.80-86 

Although very attractive, the large amounts of Grignard reagents required to reach full 

conversion, long reaction times87,93 and the addition of appropriate ligands (such as cis-1,2-

bis(diphenylphosphino)ethylene, 1,10-phenantroline, 4,4´-di-tert-2,2´-bipyridiyl or N-

heterocyclic carbenes)80,87-89,91 are drawbacks and improvements are still desirable.  

Preliminary experiments showed that CrCl2 is an excellent catalyst for performing cross-

couplings between aryl or heteroaryl halides and Grignard reagents.109  

The key feature of this cross-coupling is the very small amount of the homo-coupling product 

formed, implying that almost no excess of Grignard reagent is required. Furthermore, these 

chromium(II)-catalyzed cross-couplings are very fast reactions. In this context it was of 

interest to examine directed C-H bond activation reactions involving CrCl2. This Cr-catalyzed 

directed arylation could be performed with N-heterocyles, 77b,77d,78c,78e,80,82,85,87 aryl 

oxazolines78c,78e and aryl imines.84,86,88-89,92 

 

4.2 Results and Discussion  

 

The optimization of the reaction conditions was done using the reaction of the 

benzo[h]quinoline (22) with PhMgBr (2a, 1.5 – 4 equiv.) with catalytic amounts of CrCl2 and 

an oxidant at 23 °C for 24 h (Table 13). In the absence of the CrCl2-catalyst, no 10-

phenylbenzo[h]quinoline (23) is formed (entry 1). The use of 5 mol % of CrCl2 (99.99 % 

                                                             
109 Steib, A. K.; Kuzmina, O. M.; Fernandez, S.; Flubacher, D.; Knochel P. J. Am. Chem. Soc. 2013, 135, 15346-
15349. 
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pure) led to the desired phenylated product 23 in 57 % yield, using 2,3-dichlorobutane (DCB) 

(entry 2). Using 10 mol % of CrCl2 increased the yield of 23 to 98 % (calibrated GC-yield) 

(entry 3). Lowering the amount of Grignard reagent to 1.5 equiv or 2.5 equiv (instead of 4 

equiv) decreased the yield to 19 % and 63 %, respectively (entries 4 and 5). Changing the 

nature of the oxidant (from DCB to 1,2-dichloroethane or 1,2-dichloro-2-methylpropane) led 

to lower yields (45 – 87 %; entries 6 and 7). In the absence of an oxidant, only 10 % of 

product 23 was observed (entry 8 of Table 13).   

 

Table 13. Optimization of the conditions for reaction of benzo[h]quinoline (22) with PhMgBr 

(2a) catalyzed by CrCl2 

 

Entry CrCl 2  

(%) 

PhMgBr (2a) 

(equiv) 

Oxidant  

(1.5 equiv) 

Yield of 

23 (%)a 

1 0 4 DCB 0 

2 5 4 DCB 57 

3 10 4 DCB 98 (95) b 

4 10 1.5 DCB 19 

5 10 2.5 DCB 63 

6 10 4 1,2-dichloroethane 45 

7 10 4 1,2-dichloro-2-

methylpropane 

87 

8 10 4 without 10 

(a) Yield determined after 24 h by integration of a GC-chromatogram and comparison against 

undecane as a calibrated internal standard. (b) Yield of isolated product after purification by 

flash column chromatography.  

 

Treatment of benzo[h]quinoline (22) with PhMgBr (2a; 4 equiv) with the optimized 

conditions provides the arylated heterocycle 23 in 95 % isolated yield (entry 3 of Table 13). 

Similarly other arylmagnesium reagents either donor or acceptor undergo a high yield 

arylation at position 10 furnishing the arylated benzo[h]quinolines 23b - f in 66 - 90 % yield 
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(Table 14). Using the same conditions, it was also possible to arylate the 2-(2-

trimethylsilylphenyl)pyridine (24) with various arylmagnesium reagents affording the 

expected pyridines 25a-e in 79 - 92 % yield. Interestingly, these chromium(II)-catalyzed 

arylations proceed within a few hours at 23 ºC (Table 14).  

 

Table 14. Chromium-catalyzed arylation of benzo[h]quinoline (22) and 2-(2-

trimethylsilylphenyl)pyridine (24) 

N

H

N

Ar

ArMgX
(4 equiv)

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C

24 - 38 h
22 23a - f

N

TMS

H

N

TMS

Ar

ArMgX
(4 equiv)

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C

3 - 4 h
24 25a - e

 

Entry  Substrate ArMgX Reaction 

Time (h) 

Product;  

Yield (%) a 

  

 

 

 

 

 

 

 

 

1 22 PhMgBr (2a) 24 23a: Ar = Ph; 95 % 

2 22 3-MeO-C6H4MgBr (10d) 24 23b: Ar = 3-MeO-C6H4; 90 % 

3 22 4- Me2N-C6H4MgBr (2n) 24 23c: Ar = 4-Me2N-C6H4; 87 % 

   

 

 

 

 

4 22 2k 24 23d: 67 % 

5 22 4- F3C-C6H4MgBr (2y) 38 23e: Ar = 4-F3C-C6H4; 66 % 

6 22 4-F-C6H4MgBr (2g) 24 23f: Ar = 4-F-C6H4; 86 % 
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7 24 PhMgBr (2a) 3 25a: Ar = Ph; 92 % 

8 24 3-MeO-C6H4MgBr (10d) 3 25b: Ar = 3-MeO-C6H4; 79 % 

9 24 4- Me2N-C6H4MgBr (2u) 4 25c: Ar = 4-Me2N-C6H4; 85 % 

11 24 3-OTBS-C6H4MgBr (2p) 3 25d: Ar = 3-OTBS-C6H4; 83 % 

12 24 4-F-C6H4MgBr (2g) 3 25e: Ar = 4-F-C6H4; 84 % 

(a) Yield of the isolated product after purification by flash column chromatography.  

 

The role of the TMS-group (TMS = trimethylsilyl) at position 2 is to avoid double arylation. 

Interestingly, this group can be further used to introduce a second different aryl substituent as 

shown in Scheme 49. Thus, the treatment of 24 with 3-tolylmagnesium bromide (2b) in the 

presence of 10 % CrCl2 and DCB (1.5 equiv) afforded the arylated product 25f in 89 % yield. 

Treatment with ICl in refluxing CH2Cl2 (12 h), followed by Negishi cross-coupling110 with 

the cyano-substituted phenylzinc derivative 26 in the presence of 3 % Pd(dba)2 (dba = 

dibenzylideneacetone) and 6 % tfp (tri(2-furyl)phosphine) at 50 ºC for 15 h furnishes the bis-

arylated pyridine 27 in 63 % yield over two steps (Scheme 56). 

 

 

Scheme 56. Selective bis-arylation of the phenylpyridine 24 using chromium and palladium 

catalysts 

 

The oxazoline directing group is a very popular group for directed C-H bond activation. Using 

the 2-TMS-phenyl oxazoline 28, we have achieved an efficient C-H activation and arylation 

with various Grignard reagents as shown in Scheme 57. Functional groups such as methoxy, 

                                                             
110 (a) Negishi, E.-I. Metal-Catalyzed Cross-Coupling Reactions (Eds.: Diederich, F.; Stang, P. J.) Woley, New 
York, 1998, chap. 1; (b) Negishi, E.-i.; Valente, L. F.; Kobayashi, M.  Am. Chem. Soc. 1980, 102, 3298; (c) 
Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340. 
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dimethylamino or TBS-protected alcohol could be tolerated well and the arylated oxazolines 

29a – d were synthesized in 72 – 91 % yield. 

 

ArMgBr (4 equiv)
THF, 23 °C
3 - 15 h

TMS H

ON

Me Me

+
TMS Ar

ON

Me Me

29a-d

CrCl2 (10 %)

DCB (1.5 equiv)

2a: Ar=Ph

10d: Ar=3-MeO-C6H4

2n: =4-Me2N-C6H4

2p: =3-OTBS-C6H4
28

TMS

ON

Me Me

29a: 91 %, 3 h

TMS

ON

Me Me

29b: 85 %, 5 h

OMe

TMS

ON

Me Me

29c: 72 %, 15 h

NMe2

TMS

ON

Me Me

OTBS

29d: 78 %, 12 h  

Scheme 57. Chromium-catalyzed arylation of 2-(2-(trimethylsilyl)phenyl)oxazoline 28 with 

Grignard reagents  

 

In order to transform the TMS-group into a second aryl substituent, the oxazoline 29e was 

synthesized using 10 % of the CrCl2 and DCB (1.5 equiv) in 87 % yield. Treatment with ICl 

in refluxing CH2Cl2 (6 h), and subsequent Negishi cross-coupling reaction with the ester-

substituted phenylzinc derivative 30 in the presence of 3 % Pd(dba)2 and 6 % tfp at 50 ºC for 

15 h furnishes the bis-arylated pyridine 31 in 89 % yield over two steps (Scheme 58). 

 

 

Scheme 58. Selective bis-arylation of the 2-(2-(trimethylsilyl)phenyl)oxazoline 28 using 

chromium and palladium catalysts 
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Imine-protected aldehydes undergo chromium-catalyzed C-H bond activation reaction, 

furnishing compounds 34aa - ad and 34ba - bd in 61 – 88 % yield (Scheme 59). 

Interestingly, the reaction time was strongly dependent on the nature of the imine protection 

group. When p-methoxyphenyl imine 32 was used, chromium-catalyzed arylation reactions 

proceeded with reaction times of 16 – 25 h (34aa - ad). N-Butyl imine 33 reacted with the 

Grignard reagents 2n, 2g, 2z and 10f at faster rates (1.5 h – 3h) giving after acidic work up the 

arylated aldehydes 34ba - bd in 73 – 88 % yield.  

 

H

OTMS

Ar

N

TMS

H

OMe

N
n-Bu

TMS

H

ArMgBr
(4 equiv)

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C

16 - 25 h

ArMgBr
(4 equiv)

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C

1.5 - 3 h

H

OTMS

NMe2

32 34 33

34aa: 76 %, 16 h

(from 32)

H

OTMS

34ad: 67%, 16 h

(from 32)

O
O

H

OTMS

CF3

Cl

34ac: 75%, 25 h

(from 32)

H

OTMS

F

34ab: 61 %, 16 h

(from 32)

H

OTMS

NMe2

34ba: 73%, 3 h
(from 33)

H

OTMS

OCF3

34bc: 75%, 3 h
(from 33)

H

OTMS

F

34bb: 88%, 2 h
(from 33)

H

OTMS

34bd: 74 %, 1.5 h
(from 33)

2n: Ar =4-Me2N-C6H4

2g: =4-F-C6H4

10e: =4-CF3-3-Cl-C6H3

2z: =4-OCF3-C6H4

10f: =4-tBu-C6H4

2k: =

O
O

tBu

 

Scheme 59. Chromium-Catalyzed Arylation of Imines 32 and 33 with Grignard Reagents 

 

In order to show the practicability of our chromium-methodology, we aimed to perform bi-

arylation of the imine-protected 2-chloro-benzaldehyde 35 via a one-pot Cr-catalyzed cross-

coupling with subsequent Cr-catalyzed C-H bond activation (Scheme 60). In the first step, 35 

undergoes a Cr-catalyzed coupling reaction with the Grignard reagent 2i to yield the arylated 
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product 36, which undergoes subsequent Cr-catalyzed direct C-H arylation with the Grignard 

reagent 2g to produce, after acetic work-up, bis-arylated aldehyde 37 in a one-pot fashion in 

65% yield. 

 

 

Scheme 60. One pot bis-arylation of aldehyde 37 using chromium catalyzed cross-coupling 

reaction and C-H bond activation reaction 
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5. Summary 

5.1  Iron-Catalyzed Cross-Coupling of N-Heterocyclic Halides with Grignard 

Reagents 

A simple and practical iron-catalyzed cross-coupling of N-heterocyclic chlorides and 

bromides with arylmagnesium reagents was developed. The reactions were performed at room 

temperature and proceeded at fast rates. The desired substituted N-heterocyclic products were 

obtained in high yields and various functional groups like electron-withdrawing groups such 

as trifluoromethyl-, fluoro- and pivalate-functions, as well as electron-donating groups like 

methoxy-, methylenedioxy- and dimethylamino-moieties were well tolerated.  

The addition of an ethereal co-solvent like diethyl ether or tert-butyl methyl ether was found 

to be essential to prevent homocoupling and to obtain high yields (Scheme 61). 

 

 

Scheme 61. Iron-catalyzed cross-coupling reactions between N-hetrocyclic halides and aryl 

Grignard reagents 
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5.2  Ligand-Accelerated Iron- and Cobalt-Catalyzed Cross-Coupling between 

N-Heterocyclic Halides and Aryl Magnesium Reagents 

The cross-coupling of N-heterocyclic halides and Grignard reagents was further investigated. 

It was found that isoquinoline (and quinoline) has an ability to act as a new ligand for iron- 

but also for cobalt-catalyzed cross-coupling reactions. The rate and yield of iron- or cobalt-

catalyzed cross-coupling reactions were dramatically increased while simultaneously 

decreasing the amount of homocoupling. With this new method, it was possible to widen the 

scope of these reactions considerably to couple a variety of functionalized Grignard reagents 

with an assortment of N-heterocycles.   

 

Most important advances:  

 

• Increased reaction rate and yield 

 

 

• Functionalized Grignard reagents could be used 
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• An extension to the formation of heteroaryl-heteroaryl bonds was performed 

 

N

N

N

Cl

OEt

EtO

N

N

N

OEt

EtO
S

N Br

TMS

N

TMS

S

66 % yield

(2 equiv)

CoCl2 (3 %)

isoquinoline (10 %)

tBuOMe/THF

23 ºC, 24 h

(2 equiv)

FeBr3 (3 %)

isoquinoline (10 %)

tBuOMe/THF

23 ºC, 12 h

S MgCl
S

MgCl

84 % yield

In the case of FeBr3 In the case of CoCl2

 

• A mechanistic study indicates that radical intermediates are involved 

 

 

 

5.3  Efficient Chromium(II) -Catalyzed Cross-Coupling Reactions 

An efficient chromium(II)-catalyzed cross-coupling reaction between heterocyclic and 

aromatic Grignard reagents and various aromatic and N-heterocyclic halides was investigated. 

This new cross-coupling reaction does not require additional ligands, proceeds at 25 °C within 

15 min to 2 h and produces the desired cross-coupled products in good yields. Homo-coupling 

side-products were produced in much lower amounts compared to Fe-, Co- or even Mn-cross-

couplings. As electrophiles, various halogenated N-heterocycles (chlorides and bromides), 

aromatic halogenated ketones or imines and alkenyl iodides could be used. Against common 

wisdom, toxicological data indicate that CrCl2 is a chromium-salt of low toxicity, as it is sold 

as a low-toxic chemical by major international suppliers (compare LD50 values of CrCl2 (1870 

mg/kg), FeCl2 (450 mg/kg) and CoCl2 (766 mg/kg)). 
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Features of the method:  
 

• N-Heterocyclic bromides and chlorides undergo CrCl2-catalyzed cross-couplings 

without the formation of homo-coupling side-products 

 

 

 

• Aromatic chloro-and bromo-ketones as well as chloro-imines react smoothly  
 

 

 

• E-Alkenyl iodides undergo stereoselective Cr(II)-catalyzed cross-couplings 
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• Cr(II)-catalyzed cross-coupling between Csp2-Csp3 centers also could be achieved 
 

 

 

5.4  Room-Temperature Chromium(II) -Catalyzed Direct Arylation of Pyridines, 

Aryl Oxazolines and Imines  

Direct C-H bond activation reactions with aromatic Grignard reagents catalyzed by CrCl2 

were examined. This type of reaction proceeds usually rapidly at 23 °C and does not require 

any additional ligands. Different compounds such as benzo[h]quinoline, 2-phenylpyridine, 

phenyloxazoline and imines were successfully arylated in good yields.  

A TMS-group was used to avoid double arylation, which after treatment with ICl was further 

used to introduce a second aryl substituent.  

 

Most important advances:  

 

• Benzo[h]quinoline and 2-(2-trimethylsilylphenyl)pyridine could be arylated 
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• 2-(2-(Trimethylsilyl)phenyl)oxazoline underwent mild chromium(II)-catalyzed C-H 

bond activations in relatively fast rates. 

 

ArMgBr
(4 equiv) THF, 23 °C

3 - 15 h

TMS H

ON

Me Me

+
TMS Ar

ON

Me Me

CrCl2 (10 %)

DCB (1.5 equiv)

TMS

ON

Me Me

87 % yield; 3 h

TMS

ON

Me Me

85 % yield; 5 h

OMe

TMS

ON

Me Me

72 % yield; 15 h

NMe2

TMS

ON

Me Me

OTBS

78 % yield; 12 h

up to 91 % yield

F

 

 

• Arylated aldehydes could be furnished in good yields, wherein imine B reacted in 

faster rates than imine A. 
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• The TMS-group could be further transformed to iodide and used in Negishi cross-

coupling reactions. 

 

N

TMS

H

N

TMS

Me

3-TolMgBr
(4 equiv)

2) 3-CN-PhZnCl (1.5 equiv)

Pd(dba)2 (3 %)

tfp (6 %), THF, 50 °C, 15 h

N

Me

CN

89 % yield

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C, 4 h

1) ICl (3.5 equiv)

CH2Cl2, reflux, 12 h

63 % yield
(over two steps)

4-F-C6H4MgBr

(4 equiv)

2) 3-CO2Et-C6H4ZnCl

(1.5 equiv)

Pd(dba)2 (3 %)

tfp (6 %), THF 50 °C, 15 h
87 % yield

CrCl2 (10 %)

DCB (1.5 equiv)

THF, 23 °C, 3 h

1) ICl (3.5 equiv)

CH2Cl2, reflux, 6 h

TMS H

ON

Me Me

TMS

ON

Me Me

F

89 % yield
(over two steps)

ON

Me Me

F

CO2Et

 

 

• The One pot bis-arylation of aldehydes could be achieved using a chromium catalyzed 

cross-coupling reaction and a C-H bond activation reaction  
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1. General Considerations 

 

All reactions were carried out with magnetic stirring and, if the reagents were air or moisture 

sensitive, in flame-dried glassware under argon. Syringes which were used to transfer 

reagents and solvents were purged with argon prior to use.  

 

1.1 Solvents  

 

Solvents were dried according to standard procedures by distillation over drying agents and 

stored under argon. 

tBuOMe was continuously refluxed and freshly distilled from sodium benzophenone ketyl 

under nitrogen. 

CPME was predried over CaCl2 and distilled from CaH2. 

Et2O was predried over CaH2 and dried with the solvent purification system SPS-400-2 from 

INNOVATIVE TECHNOLOGIES INC. 

Hexane was continuously refluxed and freshly distilled from sodium benzophenone ketyl 

under nitrogen. 

NEP was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

NMP was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

THF  was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen. 

Toluene was predried over CaCl2 and distilled from CaH2. 

DCM was predried over CaCl2 and distilled from CaH2. 

CH3CN was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

1,2-dioxane was continuously refluxed and freshly distilled from sodium benzophenone ketyl 

under nitrogen. 

Bu2O was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen. 

DME  was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen. 

Solvents for column chromatography were distilled prior to use. 
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1.2 Reagents 

 

All reagents were obtained from commercial sources and used without further purification 

unless otherwise stated.  

CoCl2 was dried under high vacuum at 150 °C for 2 min prior reactions (until the colour 

turned blue). 

CrCl 2 was dried under high vacuum at 150 °C for 2 min prior reactions (until the colour 

turned white-grey). 

BF3·OEt2 was distilled under Ar prior to use. 

nBuLi  solution in hexane was purchased from Rockwood Lithium GmbH. 

iPrMgCl·LiCl  solution in THF was purchased from Rockwood Lithium GmbH. 

PhMgCl solution in THF was purchased from Rockwood Lithium GmbH. 

TMSCl was distilled under Ar prior to use. 

ZnCl 2 solution (1.0 M) was prepared by drying ZnCl2 (100 mmol, 13.6 g) in a Schlenk-flask 

under vacuum at 140 °C for 5 h. After cooling, 100 mL dry THF were added and stirring was 

continued until the salt was dissolved. 

TMPH was distilled under Ar prior to use. 

TMPMgCl·LiCl  was prepared in the following way:  

A dry and argon flushed 250 mL flask, equipped with a magnetic stirrer and a septum, was 

charged with freshly titrated iPrMgCl·LiCl (100 mL, 1.2 M in THF, 120 mmol). TMPH) 

(19.8 g, 126 mmol, 1.05 equiv) was added dropwise at room temperature. The reaction 

mixture was stirred at r.t. until gas evolution was completed (ca. 48 h). The freshly prepared 

TMPMgCl·LiCl solution was titrated prior to use at 25 °C with benzoic acid using 4-

(phenylazo)diphenylamine as indicator. A concentration of ca. 1.1 M in THF was obtained. 

Grignard reagents 2b - u, 2w, 2y - z, 10d - f, 21a - c were prepared via LiCl-assisted Mg-

insertion into the corresponding aromatic halides.111 

Grignard reagents 2v, 2x, 10a - c were prepared via halogen-magnesium exchange 

reaction.112 

Aryl Zn-compounds 26 and 30 were prepared via LiCl-assisted Zn-insertion into the 

corresponding aromatic halides113 or via Mg/Zn transmetalation reaction using ZnCl2 (1.0 M 

in THF). 

                                                             
111 Piller, F. M.;  Metzger, A. ; Schade, M. A.; Haag, B. A.;  Gavryushin, A.; Knochel, P.  Chem. Eur. J., 2009, 
15, 7192. 
112 a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; b) A. Krasovskiy, B. F. Straub, P. 
Knochel,  Angew. Chem. Int. Ed. 2006, 45, 159. 
113 Krasovskiy, A.; Malakhov, V.; Gavryushin; A. Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040. 
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1.3 Content Determination of Organometallic Reagents 

 

Organzinc and organomagnesium reagents were titrated against I2 in THF. 

Organolithium  reagents were titrated against menthol using 1,10-phenanthroline as indicator 

in THF. 

 

1.4 Chromotography 

 

Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm) from 

Merck.  

Thin layer chromatography was performed using SiO2 pre-coated aluminium plates (Merck 

60, F-254). The chromatograms were examined under UV light at 254 nm and/or by staining 

of the TLC plate with one of the solutions given below followed by heating with a heat gun: 

- KMnO4 (3.0 g), 5 drops of conc. H2SO4 in water (300 mL). 

- Phosphomolybdic acid (5.0 g), Ce(SO4)2 (2.0 g) and conc. H2SO4 (12 mL) in water 

(230 mL). 

 

1.5 Analytical Data 

 

NMR  spectra were recorded on VARIAN Mercury 200, BRUKER AXR 300, VARIAN VXR 

400 S and BRUKER AMX 600 instruments. Chemical shifts are reported as δ-values in ppm 

relative to the residual solvent peak of CHCl3 (δH : 7.25, δC : 77.0). For the characterization of 

the observed signal multiplicities the following abbreviations were used: s (singlet), d 

(doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) as well as br 

(broad). 

Mass spectroscopy: High resolution (HRMS) and low resolution (MS) spectra were recorded 

on a FINNIGAN MAT 95Q instrument. Electron impact ionization (EI) was conducted with 

an electron energy of 70 eV.  

 

For the combination of gas chromatography with mass spectroscopic detection, a GC/MS 

from Hewlett-Packard HP 6890 / MSD 5973 was used.  
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Infrared  spectra (IR) were recorded from 4500 cm-1 to 650 cm-1 on a PERKIN ELMER 

Spectrum BX-59343 instrument. For detection a SMITHS DETECTION DuraSamplIR II 

Diamond ATR sensor was used. The absorption bands are reported in wavenumbers (cm-1) 

Melting points (M.p.) were determined on a BÜCHI B-540 apparatus and are uncorrected. 

2. Typical Procedures (TP) 

 

2.1 Typical Procedure for Fe-Catalyzed Cross-Coupling Reactions of N-Heterocyclic 
Chlorides and Bromides with Arylmagnesium Reagents (TP1) 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, the appropriate halogenated N-heterocycle (1.0 mmol, 1.0 equiv) and iron(III) 

bromide (4.4 mg, 0.015 mmol, 0.03 equiv) were dissolved in dry tBuOMe (5 mL). Then, the 

appropriate Grignard reagent (2.3 mmol, 2.3 equiv) dissolved in THF was added dropwise at 

room temperature while stirring the reaction mixture. When the conversion was complete it 

was quenched with brine or with a mixture of aqueous saturated solution of NH4Cl and 

ammonia (10:1) and extracted with EtOAc. The organic phase was separated and dried over 

Na2SO4. The product was obtained after purification by flash chromatography. 

 

2.2 Typical Procedure for Ligand-Accelerated Iron- and Cobalt-Catalyzed Cross-
Coupling Reactions between N-Heteroaryl Halides and Aryl Magnesium 
Reagents (TP2) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the identity of the Grignard reagent, 1.0 mmol, 2.0 equiv) was added dropwise to a suspension 

of FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and the aryl halide (0.5 mmol, 1.0 equiv) in 

tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C for the indicated time before 

being quenched with NaHCO3 sat. aq. The mixture was diluted with CH2Cl2 and an EDTA 

(1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, before being 

filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, NaCl sat. 

aq. was added, and the mixture was extracted with CH2Cl2. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield the final compound as an analytically pure substance. 
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2.3 Typical Procedure for Efficient Chromium(II)-Cataly zed Cross-Coupling 
Reactions between Aryl Halides and Aryl or Alkyl Grignard Reagents (TP3) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the nature of the Grignard reagent, 1.2 mmol, 1.2 equiv) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv.; 97% purity) and the aryl halide (1 mmol,      

1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for the indicated time 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield the final compound as an analytically pure substance. 

 

2.4 Typical Procedure for Efficient Chromium(II)-Cataly zed Cross-Coupling 
Reactions between Imine Halide 16 and Aryl Grignard Reagents (TP4) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the nature of the Grignard reagent, 1.2 mmol, 1.2 equiv) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and imine 16 (1 mmol,     

1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for the indicated time 

before being quenched with an aq. solution of HCl (2M) and extracted with EtOAc. The 

organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude 

compound, which was purified by column chromatography to yield the final compound as an 

analytically pure substance. 

 

2.5 Typical Procedure for Efficient Chromium(II)-Cataly zed Cross-Coupling 
Reactions between Alkenyl Iodide 18 and Aryl Grignard Reagents (TP5) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the nature of the Grignard reagent, 1.5 mmol, 1.5 equiv) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and alkenyl iodide 18         

(1 mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for the 

indicated time before being quenched with brine and extracted with EtOAc. The organic layer 

was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield the final compound as an analytically 

pure substance. 
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2.6 Typical Procedure for Room-Temperature Chromium(II)-Catalyzed Direct 
Arylation of Pyridines and Aryl Oxazolines (TP6) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the nature of the Grignard reagent, 2 mmol, 4 equiv) was added dropwise to a mixture of 

anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv; 97% purity) and the appropriate aryl 

compound (0.5 mmol, 1.0 equiv) at 23 °C. 2,3-Dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) 

was added dropwise at 23 °C. The suspension was stirred at 23 °C for the indicated time 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield the final compound as an analytically pure substance. 

 

2.7 Typical Procedure for Room-Temperature Chromium(II)-Catalyzed Direct 
Arylation of Imines (TP7) 

 

A solution of the appropriate Grignard reagent (concentration in THF varying depending on 

the nature of the Grignard reagent, 2 mmol, 4 equiv) was added dropwise to a mixture of 

anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv; 97% purity) and the appropriate aryl imine 

(0.5 mmol, 1.0 equiv) at 23 °C. 2,3-Dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv.) was 

added dropwise at 23 °C. The suspension was stirred at 23 °C for the indicated time before 

being quenched with an aq. solution of HCl (2M) and extracted with EtOAc. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield the final compound as an analytically 

pure substance. 
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3. Fe-Catalyzed Cross-Coupling Reactions of N-heterocyclic Chlorides 
and Bromides with Arylmagnesium Reagents 

 

3.1 Preparation of Cross-Coupling Products Using TP1  

 

Synthesis of 2-phenylpyridine (3a): 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloro- or 2-bromo-pyridine (1a or 1b; 1.0 mmol, 1.0 equiv) and iron (III) bromide 

(3 mol %) were dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium 

chloride (2a; 2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 1.5 h (for 2-chloropyridine) or 70 min (for 2-

bromopyridine). The reaction mixture was quenched with brine and extracted with EtOAc. 

The organic phase was separated and dried over Na2SO4. The product was obtained in 82 % 

yield (for 2-chloropyridine) or in 83 % yield (for 2-bromopyridine) as a colorless oil after 

purification by flash chromatography (silica gel, 6:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.23 (m, 1 H), 7.45 (m, 3 H), 7.75 (m, 2 H), 8.01 (m, 2 

H), 8.70 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 120.60, 122.10, 126.92, 128.74, 128.99, 136.84, 139.24, 

149.53, 157.39. 

MS (70 eV, EI) m/z (%): 155 (100) [M]+, 154 (60), 128 (10), 127 (10), 77 (9), 59 (10), 43 

(7). 

IR ATR νννν (cm-1): 3062, 3036, 3008, 2927, 1586, 1580, 1564, 1468, 1449, 1424, 1293, 1152, 

1074, 1020, 988, 800, 737, 692. 

HRMS (EI) for C11H9N (155.1735) [M] +: 155.1731. 

 

Synthesis of 4-methyl-2-phenylpyridine (3b): 
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In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloro-4-methylpyridine (1c; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol 

%) were dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium chloride 

(2a; 2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature while 

stirring the reaction mixture for 2 h. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The product 

was obtained in 84 % yield as a colorless oil after purification by flash chromatography (silica 

gel, 6:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.41 (s, 3 H), 7.06 (d, J=4.1 Hz, 1 H), 7.44 (m, 3 H), 

7.55 (s, 1 H), 7.98 (d, J=7.2 Hz, 2 H), 8.55 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 21.24, 121.59, 123.14, 126.94, 128.68, 128.88, 139.26, 

147.99, 149.18, 157.21. 

MS (70 eV, EI) m/z (%): 169 (100) [M]+, 168 (38), 128 (10), 167 (18), 154 (27), 115 (6), 77 

(3). 

IR ATR νννν (cm-1): 3058, 2921, 1601, 1582, 1557, 1472, 1446, 1400, 1386, 1377, 1073, 1030, 

989, 866, 826, 774, 734, 692. 

HRMS (EI) for C12H11N (169.0891) [M] +: 169.0884. 

 

Synthesis of 5-chloro-2-phenylpyridine (3c): 

N

Cl

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-bromo-5-chloropyridine (1d; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) 

were dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium chloride (2a; 

2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature while stirring 

the reaction mixture for 70 min. The reaction mixture was quenched with brine and extracted 

with EtOAc. The organic phase was separated and dried over Na2SO4. The product was 

obtained in 78 % yield as a white solid after purification by flash chromatography (silica gel, 

30:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 
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m.p.: 65.1 – 66.8 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.47 (m, 3 H), 7.71 (m, 2 H), 7.95 (s, 1 H), 7.98 (d, 

J=1.4 Hz, 1 H), 8.65 (d, J=1.9 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 121.17, 126.82, 128.85, 129.33, 130.63, 136.60, 138.00, 

148.34, 155.48. 

MS (70 eV, EI) m/z (%): 189 (100) [M]+, 188 (18), 154 (37), 153 (8), 127 (13), 126 (7), 77 

(8). 

IR ATR νννν (cm-1): 3059, 3033, 2921, 1573, 1554, 1459, 1442, 1365, 1290, 1136, 1111, 1074, 

1006, 920, 835, 774, 730, 691. 

HRMS (EI) for C11H8ClN (189.0345) [M] +: 189.0339. 

 

Synthesis of tert-butyl 2-phenylnicotinate (3d): 

N

Ot-Bu

O

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, tert-butyl 2-chloronicotinate (1e; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol 

%) were dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium chloride 

(2a; 2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature while 

stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The product 

was obtained in 60% yield as a white solid after purification by flash chromatography (silica 

gel, 8:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 70.2 – 72.2 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.29 (s, 9 H), 7.31 (dd, J=7.7, 4.7 Hz, 1 H), 7.42 (m, 3 

H), 7.52 (m, 2 H), 8.07 (dd, J=7.7, 1.7 Hz, 1 H), 8.73 (dd, J=5.0, 1.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 27.51, 82.17, 121.54, 128.03, 128.38, 128.67, 128.93, 

137.73, 140.64, 150.68, 158.75, 167.20. 

MS (70 eV, EI) m/z (%): 255 (19) [M]+ , 200 (23), 199 (100), 198 (40), 182 (28), 155 (62), 

154 (26), 127 (16), 57 (10). 

IR ATR νννν (cm-1): 2977, 2362, 2349, 1701, 1580, 1560, 1428, 1369, 1311, 1293, 1255, 1168, 

1128, 1077, 1056, 850, 792, 755, 732, 701. 
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HRMS (EI) for C16H17NO2 (255.1259) [M] +: 255.1247. 

 

Synthesis of 2-phenylquinoline (3e): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium chloride (2a;        

2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature while stirring 

the reaction mixture for 5 min. The reaction mixture was quenched with brine and extracted 

with EtOAc. The organic phase was separated and dried over Na2SO4. The product was 

obtained in 88 % yield as a beige solid after purification by flash chromatography (silica gel, 

10:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 81.9 – 83.6 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.50 (m, 4 H), 7.75 (m, 1 H), 7.86 (m, 2 H), 8.22 (m, 4 

H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 119.04, 126.38, 127.18, 127.45, 127.65, 128.85, 129.44, 

129.52, 129.81, 137.03, 139.35, 147.98, 157.27. 

MS (70 eV, EI) m/z (%): 206 (20), 205 (100) [M]+, 204 (70), 203 (13), 175 (12), 169 (15), 

102 (9), 84 (8), 44 (27). 

IR ATR νννν (cm-1): 2923, 2853, 2362, 1740, 1596, 1490, 1446, 1318, 1240, 1213, 1186, 1126, 

1050, 1024, 923, 829, 770, 747, 690, 676. 

HRMS (EI) for C15H11N (205.0891) [M] +: 205.0884. 

 

Synthesis of 1-phenylisoquinoline (3f): 

N

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 
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dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium chloride (2a; 2.3 

equiv, 1.7 M) dissolved in THF was added dropwise at room temperature while stirring the 

reaction mixture for 5 min. The reaction mixture was quenched with brine and extracted with 

EtOAc. The organic phase was separated and dried over Na2SO4. The product was obtained in 

90% yield as a white solid after purification by flash chromatography (silica gel, 10:1 i-

hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 97.6 – 99.5 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.53 (m, 4 H), 7.69 (m, 4 H), 7.89 (d, J=8.3 Hz, 1 H), 

8.12 (d, J=8.6 Hz, 1 H), 8.62 (d, J=5.5 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 120.01, 126.68, 126.99, 127.26, 127.64, 128.36, 128.69, 

129.93, 130.16, 136.93, 139.23, 141.86, 160.60. 

MS (70 eV, EI) m/z (%): 206 (7), 205 (46) [M]+, 204 (100), 203 (13), 176 (7), 102 (8).  

IR ATR νννν (cm-1): 3053, 2921, 2364, 2337, 1618, 1582, 1552, 1500, 1440, 1380, 1352, 1319, 

1304, 1167, 1020, 973, 954, 875, 823, 803, 798, 767, 754, 706, 699, 675. 

HRMS (EI) for C15H11N (205.0891) [M] +: 205.0864. 

 

Synthesis of 4,6-dimethyl-2-phenylpyrimidine (3g): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloro-4,6-dimethylpyrimidine (1h; 1.0 mmol, 1.0 equiv) and iron (III) bromide       

(3 mol%) were dissolved in dry t-BuOMe (5 mL) following TP1. Then, phenylmagnesium 

chloride (2a; 2.3 equiv, 1.7 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 2 h. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The product 

was obtained in 76 % yield as a white solid after purification by flash chromatography (silica 

gel, 10:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 82.8 – 84.0 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.54 (s, 6 H), 6.92 (s, 1 H), 7.47 (m, 3 H), 8.43 (d, J=1.9 

Hz, 1 H), 8.45 (d, J=4.4 Hz, 1 H).  
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13C NMR (75 MHz, CDCl3) δ/ppm: 24.11, 117.97, 128.24, 128.42, 130.31, 137.94, 164.06, 

166.77. 

MS (70 eV, EI) m/z (%): 185 (16), 184 (100) [M]+ , 169 (20), 104 (19), 103 (27), 77 (6). 

IR ATR νννν (cm-1): 3068, 2924, 2853, 2361, 1595, 1574, 1550, 1534, 1442, 1434, 1379, 1364, 

1342, 1173, 1025, 932, 854, 749, 693, 662. 

HRMS (EI) for C12H12N2 (184.1000) [M] +: 184.0995. 

 

Synthesis of 2-(m-tolyl)pyridine (3j): 

N
CH3

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-bromopyridine (1b; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, m-tolyl-magnesium bromide (2b;      

2.3 equiv, 1.1 M) dissolved in THF was added dropwise at room temperature while stirring 

the reaction mixture for 1.5 h. The reaction mixture was quenched with brine and extracted 

with EtOAc. The organic phase was separated and dried over Na2SO4. The product was 

obtained in 80% yield as a yellow oil after purification by flash chromatography (silica gel, 

5:1 i-hexane/ethyl acetate + 0.5% triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.44 (s, 3 H), 7.22 (m, 2 H), 7.37 (t, J=7.6 Hz, 1 H), 

7.73 (m, 3 H), 7.85 (s, 1 H), 8.69 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 21.51, 120.61, 121.61, 123.99, 127.64, 128.62, 129.70, 

136.67, 138.39, 139.35, 149.58, 157.63. 

MS (70 eV, EI) m/z (%): 170 (14), 168 (52), 167 (23), 154 (10), 115 (5). 

IR ATR νννν (cm-1): 3049, 3008, 2918, 2860, 1584, 1565, 1473, 1460, 1431, 1302, 1293, 1152, 

1087, 1043, 991, 883, 804, 762, 742, 724, 694. 

HRMS (EI) for C12H11N (169.0891) [M+H] +: 169.0886. 
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Synthesis of 1-(p-tolyl)isoquinoline (3k): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, p-tolyl-magnesium bromide (2b; 2.3 

equiv, 1.2 M) dissolved in THF was added dropwise at room temperature while stirring the 

reaction mixture for 2 min. The reaction mixture was quenched with brine and extracted with 

EtOAc. The organic phase was separated and dried over Na2SO4. The product was obtained in 

93 % yield as a yellow oil after purification by flash chromatography (silica gel, 12:1 i-

hexane/ethyl acetate + 0.5 % triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.47 (s, 3 H), 7.35 (d, J=8.0 Hz, 2 H), 7.54 (t, J=7.6 Hz, 

1 H), 7.66 (m, 4 H), 7.88 (d, J=8.0 Hz, 1 H), 8.14 (d, J=8.6 Hz, 1 H), 8.61 (d, J=5.8 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 21.35, 119.77, 126.72, 126.96, 127.13, 127.74, 129.04, 

129.87, 130.07, 136.37, 136.94, 138.58, 141.86, 160.66. 

MS (70 eV, EI) m/z (%): 219 (80) [M]+, 218 (100), 217 (21), 216 (20), 205 (11), 204 (59), 

203 (11), 175 (9), 108 (13), 43 (13). 

IR ATR νννν (cm-1): 3049, 2919, 2852, 1618, 1583, 1552, 1497, 1452, 1384, 1355, 1320, 1305, 

1182, 1166, 1138, 1111, 1021, 974, 873, 848, 821, 799, 787, 749, 722, 677. 

HRMS (EI) for C16H13N (219.1048) [M] +: 219.1023. 

 

Synthesis of 2-(o-tolyl)quinoline (3l): 

N

CH3

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, o-tolyl-magnesium bromide (2b;       

2.3 equiv, 0.9 M) dissolved in THF was added dropwise at room temperature while stirring 

the reaction mixture for 45 min. The reaction mixture was quenched with brine and extracted 
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with EtOAc. The organic phase was separated and dried over Na2SO4. The product was 

obtained in 84 % yield as a beige solid after purification by flash chromatography (silica gel, 

5:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 78.3 – 80.4 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.43 (s, 3 H), 7.34 (s, 3 H), 7.54 (m, 3 H), 7.75 (t, J=7.7 

Hz, 1 H), 7.87 (d, J=8.3 Hz, 1 H), 8.21 (m, 2 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 20.34, 122.37, 126.01, 126.44, 126.73, 127.49, 128.54, 

129.50, 129.68, 129.70, 130.86, 136.00, 136.18, 140.56, 147.75, 160.22. 

MS (70 eV, EI) m/z (%): 218 (100) [M-H]+, 217 (27), 216 (8), 85 (27), 83 (35). 

IR ATR νννν (cm-1): 2951, 2921, 2852, 1740, 1602, 1592, 1553, 1501, 1485, 1455, 1420, 1378, 

1334, 1311, 1276, 1264, 1238, 1217, 1204, 1118, 1037, 1014, 976, 941, 836, 798, 772, 762, 

754, 722, 688, 674. 

HRMS (EI) for C16H13N (219.1048) [M+H] +: 219.0957. 

 

Synthesis of 2-(3-(trifluoromethyl)phenyl)quinoline (3m): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (3-( 

trifluoromethyl)phenyl)magnesium bromide (2e; 2.3 equiv, 0.9 M) dissolved in THF was 

added dropwise at room temperature while stirring the reaction mixture for 15 min. The 

reaction mixture was quenched with brine and extracted with EtOAc. The organic phase was 

separated and dried over Na2SO4. The product was obtained in 92 % yield as a beige solid 

after purification by flash chromatography (silica gel, 5:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

m.p.: 76.5 – 78.5 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.56 (t, J=7.5 Hz, 1 H), 7.64 (t, J=7.7 Hz, 1 H), 7.75 (m, 

2 H), 7.86 (m, 2 H), 8.22 (dd, J=15.5, 8.6 Hz, 2 H), 8.36 (d, J=7.7 Hz, 1 H), 8.48 (s, 1 H).  
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13C NMR (75 MHz, CDCl3) δ/ppm: 118.52, 124.16 (q, J=272.65 Hz), 124.39 (q, J=3.92 Hz), 

125.84 (q, J=3.93 Hz), 126.74, 127.37, 127.48, 129.27, 129.81, 129.94, 130.66, 131.23 (q, 

J=32.26 Hz), 137.11, 140.35, 148.24, 155.52. 

MS (70 eV, EI) m/z (%): 274 (19), 273 (100) [M]+, 272 (29), 252 (10), 204 (21), 203 (6). 

IR ATR νννν (cm-1): 3060, 2362, 1741, 1592, 1509, 1483, 1466, 1428, 1336, 1274, 1261, 1236, 

1168, 1142, 1115, 1096, 1074, 1051, 806, 786, 757, 704, 693, 652. 

HRMS (EI) for C16H10F3N (273.0765) [M] +: 273.0763. 

 

Synthesis of 2-(3-(trifluoromethyl)phenyl)pyridine (3n): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-bromopyridine (1b; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (3-

(trifluoromethyl)phenyl)magnesium bromide (2e; 2.3 equiv, 0.9 M) dissolved in THF was 

added dropwise at room temperature while stirring the reaction mixture for 2 h. The reaction 

mixture was quenched with brine and extracted with EtOAc. The organic phase was separated 

and dried over Na2SO4. The product was obtained in 66 % yield as a yellow oil after 

purification by flash chromatography (silica gel, 5:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.28 (m, 1 H), 7.58 (t, J=7.7 Hz, 1 H), 7.67 (m, 1 H), 

7.78 (m, 2 H), 8.18 (d, J=7.7 Hz, 1 H), 8.29 (s, 1 H), 8.72 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 120.55, 122.79, 123.76 (q, J=3.93 Hz), 124.16 (q, 

J=272.36 Hz), 125.50 (q, J=3.93 Hz), 129.18, 130.01, 131.20 (q, J=32.54 Hz), 136.95, 

140.10, 149.86, 155.81. 

MS (70 eV, EI) m/z (%): 224 (10), 223 (100) [M]+, 222 (12), 202 (7), 154 (21). 

IR ATR νννν (cm-1): 3074, 3054, 3011, 1586, 1464, 1437, 1418, 1333, 1272, 1262, 1163, 1117, 

1094, 1073, 1064, 1040, 991, 919, 826, 811, 773, 739, 696, 662. 

HRMS (EI) for C12H8F3N (223.0609) [M] +: 223.0609. 
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Synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)isoquinoline (3o): 

N

F3C CF3  

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (3,5-

bis(trifluoromethyl)phenyl)magnesium bromide (2f; 2.3 equiv, 1.0 M) dissolved in THF was 

added dropwise at room temperature while stirring the reaction mixture for 5 h. The reaction 

mixture was quenched with brine and extracted with EtOAc. The organic phase was separated 

and dried over Na2SO4. The product was obtained in 75 % yield as a beige solid after 

purification by flash chromatography (silica gel, 10:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

m.p.: 75.0 – 76.6 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.63 (t, J=7.9 Hz, 1 H), 7.76 (m, 2 H), 7.95 (d, J=8.3 

Hz, 2 H), 8.03 (s, 1 H), 8.20 (s, 2 H), 8.65 (d, J=5.8 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 121.17, 122.38, 123.27 (q, J=272.72 Hz), 126.07, 

126.32, 127.44, 128.19, 130.14, 130.52, 131.83 (q, J=37.59 Hz), 136.95, 141.56, 142.29, 

157.22. 

MS (70 eV, EI) m/z (%): 342 (62), 341 (100) [M]+ , 320 (8), 272 (15), 271 (7). 

IR ATR νννν (cm-1): 3059, 2360, 1623, 1567, 1368, 1335, 1275, 1184, 1164, 1123, 1107, 1069, 

898, 877, 846, 829, 746, 714, 703, 690, 678. 

HRMS (EI) for C17H9F6N (341. 0639) [M] +: 341.0549. 

 

Synthesis of 2-(4-fluorophenyl)pyridine (3p): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-bromopyridine (1b; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-fluorophenyl)magnesium bromide 
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(2g; 2.3 equiv, 1.0 M) dissolved in THF was added dropwise at room temperature while 

stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The product 

was obtained in 68% yield as a beige solid after purification by flash chromatography (silica 

gel, 6:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 40.6 – 41.8 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.20 (m, 3 H), 7.72 (m, 2 H), 7.98 (m, 2 H), 8.67 (d, 

J=4.4 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 115.62 (d, J=21.63 Hz), 120.17, 122.00, 128.65 (d, 

J=8.26 Hz), 135.54 (d, J=4.4 Hz), 136.77, 149.66, 156.44, 163.47 (d, J=248.25 Hz). 

MS (70 eV, EI) m/z (%): 174 (11), 173 (100) [M]+, 172 (50), 146 (7), 145 (5). 

IR ATR νννν (cm-1): 3053, 2924, 2854, 1599, 1584, 1567, 1510, 1466, 1434, 1409, 1393, 1297, 

1219, 1160, 1152, 1098, 989, 844, 826, 818, 773, 737, 724, 706. 

HRMS (EI) for C11H8FN (173.0641) [M] +: 173.0641. 

  

Synthesis of 1-(4-fluorophenyl)isoquinoline (3q): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, ((4-fluorophenyl)magnesium 

bromide (2g; 2.3 equiv, 1.0 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 90 % yield as a beige solid after purification by flash chromatography 

(silica gel, 8:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 79.8 – 81.5 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.22 (t, J=8.7 Hz, 2 H), 7.54 (t, J=7.6 Hz, 1 H), 7.68 (m, 

4 H), 7.88 (d, J=8.3 Hz, 1 H), 8.06 (d, J=8.6 Hz, 1 H), 8.60 (d, J=5.8 Hz, 1 H).  
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13C NMR (75 MHz, CDCl3) δ/ppm: 115.37 (d, J=21.64 Hz), 120.00, 126.64, 127.06, 127.24, 

127.30, 130.06, 131.70 (d, J=8.26 Hz), 135.65 (d, J=3.41 Hz), 136.88, 142.17, 159.59, 163.08 

(d, J=247.96 Hz). 

MS (70 eV, EI) m/z (%): 223 (100) [M+H]+, 202 (7), 194 (4), 111 (3), 83 (22). 

IR ATR νννν (cm-1): 3056, 2924, 2854, 1795, 1604, 1582, 1553, 1509, 1498, 1384, 1353, 1233, 

1221, 1159, 975, 877, 844, 834, 804, 798, 757, 724, 674. 

HRMS (EI) for C15H10FN (223.0797) [M+H] +: 223.0701. 

 

Synthesis of 2-(4-chlorophenyl)quinoline (3r): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-chlorophenyl)magnesium bromide 

(2h; 2.3 equiv, 1.2 M) dissolved in THF was added dropwise at room temperature while 

stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The product 

was obtained in 84 % yield as a white solid after purification by flash chromatography (silica 

gel, 10:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 114.8 – 116.2 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.52 (m, 3 H), 7.76 (m, 3 H), 8.15 (m, 4 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 118.49, 126.47, 127.20, 127.47, 128.79, 129.99, 129.70, 

129.81, 135.53, 136.91, 138.02, 148.22, 155.93. 

MS (70 eV, EI) m/z (%): 241 (5), 239 (100) [M]+, 203 (2), 102 (1). 

IR ATR νννν (cm-1): 3055, 2361, 2338, 1596, 1588, 1577, 1552, 1486, 1430, 1399, 1285, 1089, 

1050, 1008, 939, 815, 788, 770, 752, 732, 715, 672, 652. 

HRMS (EI) for C15H10ClN (239.0502) [M] +: 239.0507. 

 

Synthesis of 2-(4-methoxyphenyl)pyridine (3s): 

 



C.Experimental Section 
 

                                                                                                                                                                                        109 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-bromopyridine (1b; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-methoxyphenyl)magnesium 

bromide (2i; 2.3 equiv, 1.3 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 10 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 82 % yield as a white solid after purification by flash 

chromatography (silica gel, 5:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 58.7 – 60.4 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.86 (s, 3 H), 7.00 (d, J=8.8 Hz, 2 H), 7.18 (m, 1 H), 

7.71 (m, 2 H), 7.95 (d, J=8.8 Hz, 2 H), 8.66 (d, J=4.4 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 55.34, 114.14, 119.91, 121.42, 128.21, 131.71, 136.87, 

149.28, 156.98, 160.53. 

MS (70 eV, EI) m/z (%): 186 (13), 185 (100) [M]+, 142 (26), 141 (16), 115 (5). 

IR ATR νννν (cm-1): 3062, 2997, 2963, 2837, 1601, 1586, 1579, 1562, 1513, 1458, 1431, 1407, 

1306, 1302, 1272, 1243, 1176, 1151, 1113, 1058, 1036, 1021, 1005, 838, 776, 736, 718. 

HRMS (EI) for C12H11NO (185.0841) [M] +: 185.0840. 

 

Synthesis of 2-(4-methoxyphenyl)quinoline (3t): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-methoxyphenyl)magnesium 

bromide (2i; 2.3 equiv, 1.3 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 87 % yield as a white solid after purification by flash 

chromatography (silica gel, 7:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 
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m.p.: 123.7 – 125.6 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.87 (s, 3 H), 7.05 (d, J=8.8 Hz, 2 H), 7.49 (t, J=7.5 Hz, 

1 H), 7.75 (m, 3 H), 8.16 (m, 4 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 55.37, 114.23, 118.51, 125.90, 126.90, 127.43, 128.89, 

129.49, 129.57, 132.18, 136.63, 148.24, 156.85, 160.84. 

MS (70 eV, EI) m/z (%): 235 (100) [M]+, 220 (18), 192 (17), 191 (18), 95 (3). 

IR ATR νννν (cm-1): 3047, 2961, 2841, 1603, 1595, 1582, 1497, 1468, 1430, 1321, 1290, 1284, 

1247, 1175, 1156, 1124, 1112, 1028, 1013, 948, 847, 834, 816, 789, 770, 761, 748, 726, 678. 

HRMS (EI) for C16H13NO (235.0997) [M] +: 235. 0993. 

 

Synthesis of 1-(3,5-dimethoxyphenyl)isoquinoline (3u): 

N

OMeMeO  

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (3,5-dimethoxyphenyl)magnesium 

bromide (2j; 2.3 equiv, 1.2 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 71 % yield as a yellow oil after purification by flash chromatography 

(silica gel, 10:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.84 (s, 6 H), 6.61 (t, J=2.3 Hz, 1 H), 6.83 (d, J=2.4 Hz, 

2 H), 7.52 (m, 1 H), 7.67 (m, 2 H), 7.86 (d, J=8.3 Hz, 1 H), 8.14 (d, J=8.6 Hz, 1 H), 8.59 (d, 

J=5.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 55.48, 101.04, 107.98, 120.08, 126.66, 126.91, 127.18, 

127.57, 130.05, 136.80, 141.39, 141.99, 160.55, 160.66. 

MS (70 eV, EI) m/z (%): 266 (13), 265 (100) [M]+, 264 (91), 250 (19), 235 (14), 234 (22), 

206 (11), 191 (13). 

IR ATR νννν (cm-1): 3051, 3000, 2936, 2838, 1591, 1585, 1557, 1453, 1424, 1383, 1358, 1318, 

1203, 1151, 1061, 1051, 1003, 927, 824, 799, 775, 750, 700, 686, 654. 
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HRMS (EI) for C17H15NO2 (265.1103) [M] +: 265.1090. 

 

Synthesis of 2-(benzo[d][1,3]dioxol-5-yl)quinoline (3v): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, benzo[d][1,3]dioxol-5-ylmagnesium 

bromide (2k; 2.3 equiv, 1.2 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 5 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 81 % yield as a white solid after purification by flash 

chromatography (silica gel, 10:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

 

m.p.: 97.9 – 99.1 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 6.03 (s, 2 H), 6.95 (d, J=8.3 Hz, 1 H), 7.50 (t, J=7.0 Hz, 

1 H), 7.72 (m, 5 H), 8.14 (dd, J=8.4, 4.0 Hz, 2 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 101.35, 107.91, 108.45, 118.56, 121.73, 126.03, 126.98, 

127.39, 129.54, 129.62, 134.11, 136.64, 148.17, 148.38, 148.82, 156.62. 

MS (70 eV, EI) m/z (%): 250 (15), 249 (100) [M]+, 248 (15), 191 (12), 190 (9), 163 (2). 

IR ATR νννν (cm-1): 3051, 3008, 2895, 2780, 1594, 1494, 1486, 1454, 1443, 1425, 1353, 1290, 

1251, 1245, 1233, 1222, 1206, 1116, 1108, 1097, 1035, 930, 916, 906, 892, 837, 826, 813, 

799, 782, 742, 718, 682. 

HRMS (EI) for C16H11NO2 (249. 0790) [M] +: 249.0782. 

 

Synthesis of 4-(isoquinolin-1-yl)phenyl pivalate (3w): 
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In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 1-chloroisoquinoline (1g; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-(pivaloyloxy)phenyl)magnesium 

bromide (2l; 2.3 equiv, 0.8 M) dissolved in THF was added dropwise at room temperature 

while stirring the reaction mixture for 15 min. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was separated and dried over Na2SO4. The 

product was obtained in 80 % yield as a white solid after purification by flash 

chromatography (silica gel, 4:1 i-hexane/ethyl acetate + 0.5 % triethylamine). 

m.p.: 97.1 – 96.3 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.41 (s, 9 H), 7.25 (d, J=8.6 Hz, 2 H), 7.54 (t, J=7.2 Hz, 

1 H), 7.70 (m, 4 H), 7.88 (d, J=8.0 Hz, 1 H), 8.11 (d, J=8.3 Hz, 1 H), 8.60 (d, J=5.5 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 27.16, 39.17, 120.19, 121.50, 126.71, 127.01, 127.39, 

127.52, 130.23, 131.01, 136.59, 136.93, 141.80, 151.58, 159.77, 177.00. 

MS (70 eV, EI) m/z (%): 305 (68) [M]+ , 222 (12), 221 (70), 220 (100), 204 (22), 192 (20), 

191 (35), 110 (26), 57 (32). 

IR ATR νννν (cm-1): 3469, 2974, 2872, 1749, 1740, 1554, 1498, 1478, 1457, 1384, 1354, 1275, 

1199, 1164, 1111, 1026, 1016, 974, 900, 882, 858, 844, 834, 820, 798, 788, 754, 726, 678. 

HRMS (EI) for C20H19NO2 (305. 1416) [M] +: 305. 1409. 

 

Synthesis of tert-butyl 3-(quinolin-2-yl)phenyl carbonate (3x): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (3-(tert-

butoxycarbonyloxy)phenyl)magnesium bromide (2m; 2.3 equiv, 0.7 M) dissolved in THF was 

added dropwise at room temperature while stirring the reaction mixture for 15 min. The 

reaction mixture was quenched with brine and extracted with EtOAc. The organic phase was 

separated and dried over Na2SO4. The product was obtained in 84 % yield as a white solid 

after purification by flash chromatography (silica gel, 4:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

m.p.: 95.1 – 96.3 ºC. 
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1H NMR (300 MHz, CDCl3) δ/ppm: 1.60 (s, 9 H), 7.29 (m, 1 H), 7.53 (t, J=7.9 Hz, 2 H), 

7.73 (m, 1 H), 7.83 (m, 2 H), 8.04 (dd, J=4.1, 2.2 Hz, 2 H), 8.19 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 27.75, 83.58, 118.80, 120.43, 122.23, 124.80, 126.50, 

127.30, 127.45, 129.71, 129.77, 136.93, 141.13, 148.12, 151.67, 151.83, 156.03. 

MS (70 eV, EI) m/z (%): 321 (9) [M]+, 222 (13), 221 (100), 220 (82), 204 (22), 191 (16), 57 

(26). 

IR ATR νννν (cm-1): 3496, 3076, 2982, 1747, 1598, 1454, 1445, 1369, 1295, 1274, 1264, 1252, 

1242, 1183, 1142, 1083, 1047, 928, 869, 825, 804, 787, 780, 769, 742, 692, 686. 

HRMS (EI) for C20H19NO3 (321. 1365) [M] +: 321. 1360. 

 

N,N-dimethyl-4-(quinolin-2-yl)aniline (3y) (CAS Number: 16032-41-0): 

 

 

In a dry and argon flushed 10 mL Schlenk-tube, equipped with a magnetic stirring bar and a 

septum, 2-chloroquinoline (1f; 1.0 mmol, 1.0 equiv) and iron (III) bromide (3 mol %) were 

dissolved in dry t-BuOMe (5 mL) following TP1. Then, (4-

(dimethylamino)phenyl)magnesium bromide (2n; 2.3 equiv, 1.3 M) dissolved in THF was 

added dropwise at room temperature while stirring the reaction mixture for 5 min. The 

reaction mixture was quenched with brine and extracted with EtOAc. The organic phase was 

separated and dried over Na2SO4. The product was obtained in 82 % yield as a red solid after 

purification by flash chromatography (silica gel, 9:1 i-hexane/ethyl acetate + 0.5 % 

triethylamine). 

 

m.p.: 175.8 – 177.5 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.04 (s, 6 H), 6.84 (d, J=8.8 Hz, 2 H), 7.46 (t, J=7.2 Hz, 

1 H), 7.69 (m, 1 H), 7.77 (d, J=7.9 Hz, 1 H), 7.83 (d, J=8.6 Hz, 1 H), 8.12 (dd, J=8.5, 6.6 Hz, 

4 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 40.34, 112.24, 118.26, 125.33, 126.69, 127.33, 127.37, 

128.46, 129.33, 136.26, 148.41, 151.35, 157.33. 

MS (70 eV, EI) m/z (%): 248 (100) [M]+, 247 (35), 204 (11), 124 (4). 

IR ATR νννν (cm-1): 3058, 2887, 2809, 1595, 1564, 1545, 1539, 1498, 1434, 1360, 1326, 1286, 

1226, 1198, 1168, 1140, 1130, 1120, 947, 811, 789, 762. 
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HRMS (EI) for C17H16N2 (248. 1313) [M] +: 248.1309. 

 

4. Ligand-Accelerated Iron- and Cobalt-Catalyzed Cross-Coupling 
Reactions between N-Heterocyclic Halides and Aryl Magnesium 
Reagents 

 

4.1 Preparation of Starting Materials  

 

Substance 7a was prepared according to the procedure described in the literature.114 

Substance 7b was prepared according to the procedure described in the literature.115 

 

Synthesis of 2-bromo-3-(4-chlorophenyl)pyridine (4b): 

 

 

Diisopropylamine (1.0 equiv, 20 mmol) in THF (50 mL) was cooled to -78 °C, and n-BuLi       

(1.0 equiv, 20 mmol) was added dropwise at -78 °C. The reaction mixture was stirred for     

15 min at -78 °C, slowly warmed up to -5 °C and then cooled to -95 °C. A solution of 2-

bromo-pyridine (1.0 equiv, 20 mmol) in THF (20 mL) was added dropwise, and the reaction 

mixture was stirred for 4 h at -95 °C. A solution of ZnCl2 (1.1 equiv, 22 mmol, 1 M in THF) 

was added dropwise and the reaction mixture was warmed up to 23 °C. 1-Chloro-4-

iodobenzene (0.75 equiv, 15 mmol) and Pd(Ph3P)4 (5 mol%) were added and the reaction 

mixture was heated to 50 °C for 2 h. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was dried with Na2SO4 and the crude material was 

purified by column chromatography (silica gel, 10:1 i-hexane/ethyl acetate) to furnish 2.01 g 

(50%) of the product as a pink solid. 

 

m.p.: 136 – 139 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.29 - 7.48 (m, 5 H), 7.59 (dd, J=7.46, 1.66 Hz, 1 H), 

8.38 (dd, J=4.56, 1.52 Hz, 1 H). 

                                                             
114 Rodriguez, J. G., Benito, Y. J. Heterocycl. Chem. 1988, 25, 819. 
115 Joucla, L.; Cusati, G.; Pinel, C.; Djakovitch, L. Applied Catalysis 2009, 360, 145. 
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13C NMR (75 MHz, CDCl3) δ/ppm: 122.74, 128.56, 130.62, 134.56, 137.24, 138.60, 138.90, 

142.21, 149.01. 

MS (70 eV, EI) m/z (%): 267 (48), 190 (27), 188 (100), 153 (52), 152 (27), 126 (15). 

IR ATR νννν (cm-1): 3045, 3036, 2000, 1911, 1572, 1554, 1494, 1442, 1408, 1376, 1301, 1098, 

1090, 1053, 1020, 997, 833, 822, 803, 778, 744, 715, 700. 

HRMS (EI) for C11H7BrClN (266.9450) [M]+: 266.9444. 

 

Synthesis of 2-bromo-4-(3-bromophenyl)-5-chloropyridine (4e): 

 

 

Diisopropylamine (1.1 equiv, 16.5 mmol) in THF (24 mL) was cooled to -78 °C and n-BuLi      

(1.1 equiv, 16.5 mmol) was added dropwise at -78 °C. The reaction mixture was stirred for 15 

minutes at -78 °C, slowly warmed up to -5 °C and then cooled to -78 °C. A solution of 2-

bromo-5-chloropyridine (1.0 equiv, 15 mmol) in THF (7 mL) was added dropwise, and the 

reaction mixture was stirred for 2 h. A solution of ZnCl2 (1.2 equiv, 18 mmol, 1 M in THF) 

was added at -78 °C and the reaction mixture was allowed to warm up to 23 °C. 1-Bromo-3-

iodobenzene (1.1 equiv, 16.5 mmol) and Pd(Ph3P)4 (5 mol%) were added, and the reaction 

mixture was heated to 50 °C over night. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was dried with Na2SO4 and the crude material was 

purified by column chromatography (silica gel, 11:1 i-hexane/ethyl acetate) to furnish 3.6 g 

(68%) of the product as a yellow solid.  

 

m.p.: 109 – 111 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.34 - 7.42 (m, 2 H), 7.47 (s, 1 H), 7.58 - 7.65 (m, 2 H), 

8.45 (s, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 122.60, 127.47, 129.13, 129.74, 130.11, 131.68, 132.45, 

137.09, 140.03, 148.61, 150.05. 

MS (70 eV, EI) m/z (%): 345 (18), 268 (20), 267 (16), 187 (47), 152 (12). 

IR ATR νννν (cm-1): 3045, 2361, 1564, 1512, 1443, 1412, 1322, 1282, 1112, 1095, 1067, 1023, 

995, 920, 890, 880, 784, 746, 730, 691, 664. 

HRMS (EI) for C11H6Br2ClN (344.8556) [M]+: 344.8541. 
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Synthesis of 2-bromo-5-chloro-4-(4-fluorophenyl)pyridine (4h): 

 

 

Diisopropylamine (1.1 equiv, 16.5 mmol) in THF (24 mL) was cooled to -78 °C and n-BuLi       

(1.1 equiv, 16.5 mmol) was added dropwise at -78 °C. The reaction mixture was stirred for        

15 minutes at -78 °C, slowly warmed up to -5 °C and then cooled to -78 °C. A solution of 2-

bromo-5-chloropyridine (1.0 equiv, 15 mmol) in THF (7 mL) was added dropwise, and the 

reaction mixture was stirred for 2 h. A solution of ZnCl2 (1.2 equiv, 18 mmol, 1 M in THF) 

was added at -78 °C and reaction mixture was allowed to warm up to 23 °C. 1-Fluoro-4-

iodobenzene (1.1 equiv, 16.5 mmol) and Pd(Ph3P)4 (5 mol%) were added. The reaction 

mixture was heated to 50 °C over night. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was dried with Na2SO4 and the crude material was 

purified by column chromatography (silica gel, 10:1 i-hexane/ethyl acetate) to furnish 3 g 

(70%) of the product as a white solid. 

 

m.p.: 130 – 132 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 11.25 (t, J=8.67 Hz, 2 H), 11.51 - 11.56 (m, 3 H), 12.50 

(s, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 115.78 (d, J=21.88 Hz, 1 C) 129.22, 129.83, 130.82 (d, 

J=8.45 Hz, 1 C), 131.18 (d, J=3.07 Hz, 1 C), 139.99, 149.15, 149.99, 163.30 (d, J=250.29 Hz, 

1 C). 

MS (70 eV, EI) m/z (%): 285 (34), 206 (37), 171 (50), 144 (13), 73 (29), 61 (100). 

IR ATR νννν (cm-1): 3076, 3041, 2362, 1907, 1773, 1604, 1569, 1507, 1446, 1334, 1234, 1223, 

1159, 1109, 1098, 1020, 886, 843, 832. 

HRMS (EI) for C11H6BrClFN (284.9356) [M]+: 284.9332. 

 

Synthesis of 2-bromo-3-(4-methoxyphenyl)quinoline (4i): 
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Diisopropylamine (1.1 equiv, 8.8 mmol) in THF (13 mL) was cooled to -78 °C and n-BuLi        

(1.1 equiv, 8.8 mmol) was added dropwise at -78 °C. The reaction mixture was stirred for          

15 minutes at -78 °C, slowly warmed up to -5 °C and then cooled to -90 °C. A solution of 2-

bromoquinoline (1.0 equiv, 8 mmol) in THF (4 mL) was added dropwise, and the reaction 

mixture was stirred for 4 h. A Solution of ZnCl2 (1.2 equiv, 9.6 mmol, 1 M in THF) was 

added at -90 °C and reaction mixture was allowed to warm up to 25 °C. 1-Iodo-4-

methoxybenzene (1.1 equiv,   8.8 mmol) and Pd(Ph3P)4 (5 mol%) were added. The reaction 

mixture was heated to 50 °C over night. The reaction mixture was quenched with brine and 

extracted with EtOAc. The organic phase was dried with Na2SO4, and the crude material was 

purified by column chromatography (silica gel, 12:1 i-hexane/ethyl acetate) to produce 0.5 g 

(20%) of the product as a white solid. 

 

m.p.: 91 – 95 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.89 (s, 3 H), 7.01 (m, 2 H), 7.44 (m, 2 H), 7.58 (ddd, 

J=8.11, 6.91, 1.19 Hz, 1 H), 7.73 (ddd, J=8.52, 6.97, 1.43 Hz, 1 H), 7.81 (dd, J=8.11, 1.19 Hz, 

1 H), 8.03 (s, 1 H), 8.06 - 8.12 (m, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 55.34, 113.64, 127.32, 127.34, 127.52, 128.41, 130.22, 

130.94, 131.39, 136.77, 137.80, 143.23, 147.35, 159.67. 

MS (70 eV, EI) m/z (%): 313 (31), 234 (22), 219 (14), 191 (11), 190 (14). 

IR ATR νννν (cm-1): 3044, 2965, 2914, 2839, 1608, 1584, 1512, 1484, 1390, 1340, 1285, 1238, 

1177, 1133, 1078, 1027, 1014, 958, 878, 827, 810, 794, 781, 767, 656. 

HRMS (EI) for C16H12BrNO (313.0102) [M]+: 313.0091. 

 

Synthesis of 2-bromo-4-(4-chloro-2-fluorophenyl)pyrimidine (4l): 

 

 

2-Bromopyridine (1.0 equiv, 6 mmol) in THF (6 mL) was reacted with a solution of 

TMPMgCl⋅LiCl (1.1 equiv, 6.6 mmol, 1.00 M in THF) at -55 °C for 1.5 h. A solution of 

ZnCl2 (1.2 equiv, 7.2 mmol, 1 M in THF) was added, and the reaction mixture was allowed to 

warm up to 25 °C. 4-Chloro-2-fluoro-1-iodobenzene (1.3 equiv, 7.8 mmol), Pd(dba)2            

(3 mol%) and P(o-furyl)3 (6 mol%) were added, and the reaction mixture was heated to 50 °C 
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over night. The reaction mixture was quenched with brine and extracted with EtOAc. The 

organic phase was dried with Na2SO4 and the crude material was purified by column 

chromatography (silica gel, 5:1 i-hexane/ethyl acetate) to furnish 1.7 g (78%) of the product 

as a white solid. 

 

m.p.: 125 - 127 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.22 - 7.35 (m, 2 H), 7.83 (dd, J=5.36, 1.55 Hz, 1 H), 

8.23 (t, J=8.46 Hz, 1 H), 8.62 (d, J=5.25 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 117.32 (d, J=26.37 Hz, 1 C), 119.33 (d, J=13.46 Hz, 1 

C), 125.55, 131.84, 138.74 (d, J=10.94 Hz, 1 C), 153.29, 159.84, 161.19 (d, J=256.93 Hz), 

161.63, 161.68. 

MS (70 eV, EI) m/z (%): 285 (1), 88 (5), 73 (5), 70 (10), 61 (17). 

IR ATR νννν (cm-1): 3112, 3101, 3032, 2360, 1612, 1561, 1527, 1483, 1418, 1402, 1348, 1345, 

1340, 1212, 1191, 1172, 1086, 901, 858, 845, 820, 788, 771, 706, 661. 

HRMS (EI) for C10H5BrClFN 2 (285.9309) [M]+: 285.9307. 

 

Synthesis of 2-bromo-4-(4-(trifluoromethyl)phenyl)pyrimidine (4m): 

 

 

2-Bromopyridine (1.0 equiv, 6 mmol) in THF (6 mL) was reacted with a solution of 

TMPMgCl⋅LiCl (1.1 equiv, 6.6 mmol, 1.00 M in THF) at -55 °C for 1.5 h. A solution of 

ZnCl2 (1.2 equiv., 7.2 mmol, 1 M in THF) was added and the reaction mixture was allowed to 

warm up to 23 °C. 1-Iodo-4-(trifluoromethyl)benzene (1.3 equiv, 7.8 mmol), Pd(dba)2          

(3 mol%) and P(o-furyl)3 (6 mol%) were added and the reaction mixture was heated to 50 °C 

over night. The reaction mixture was quenched with brine and extracted with EtOAc. The 

organic phase was dried with Na2SO4 and the crude material was purified by column 

chromatography (silica gel, 4:1 i-hexane/ethyl acetate) to furnish 1.3 g (70%) of the product 

as a white solid. 

 

m.p.: 89 – 93 °C. 
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1H NMR (300 MHz, CDCl3) δ/ppm: 7.73 (d, J=5.24 Hz, 1 H), 7.78 (m, J=8.23 Hz, 2 H), 

8.20 (m, J=8.04 Hz, 2 H), 8.65 (d, J=5.05 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 115.87, 123.67 (q, J=272.36 Hz, 1 C), 126.07 (q, J=3.93 

Hz, 1 C), 127.80, 133.46 (q, J=32.82 Hz, 1 C), 138.27, 153.80, 160.03, 165.32. 

MS (70 eV, EI) m/z (%): 223 (4), 171 (1), 88 (4), 73 (4), 70 (9). 

IR ATR νννν (cm-1): 3132, 3060, 2362, 2332, 1563, 1430, 1320, 1180, 1171, 1162, 1119, 1077, 

1055, 1018, 982, 842, 830, 816, 770, 764, 740, 702. 

HRMS (EI) for C11H6BrF3N2 (301.9666) [M]+: 303.9646. 

 

Synthesis of 2-chloro-4,6-bis(ethylthio)-1,3,5-triazine (4q): 

 

 

nBuLi (2.2 equiv, 475 mmol) was added to a solution of EtSH (2.5 equiv, 534 mmol) in THF 

(200 mL) at -78 °C.  The mixture was immediately warmed to 23 °C. The milky-white 

mixture was transferred via syringe to a solution of cyanuric chloride (1.0 equiv, 216 mmol) 

in THF (50 mL) at -78 °C. The mixture was immediately warmed to 23 °C and quenched with 

NH4Cl sat. aq. The mixture was extracted with Et2O, dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude substance as an orange oil, which was composed of 

the title compound mixed with 2,4,6-tris(ethylthio)-1,3,5-triazine. Purification was 

accomplished using vacuum distillation (bp 97-98 °C, 0.001 mbar) to provide the titled 

compound as a pale yellow oil that was 18.7 g (37%) pure by GC analysis. 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.35 (td, J=7.26, 2.90 Hz, 6 H), 2.93 - 3.26 (m, J=7.36, 

7.36, 7.26, 2.90 Hz, 4 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 14.03, 25.13, 167.95, 182.82. 

MS (70 eV, EI) m/z (%): 235 (100), 206 (18), 202 (23), 172 (40), 146 (60), 88 (30). 

IR ATR νννν (cm-1): 2972, 2930, 2873, 1499, 1453, 1412, 1374, 1279, 1233, 1152, 1135, 1056, 

966, 838, 787, 750. 

HRMS (EI) for C7H10ClN3S2 (235.0005) [M]+: 234.9994. 
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Synthesis of 2-bromo-4-((trimethylsilyl)ethynyl)pyridine (4r): 

 

 

Triethylamine (60 mL) and toluene (30 mL) were added to 2-bromo-4-iodopyridine (1 equiv,      

9 mmol). Pd(Ph3P)4 (5 mol%) and CuI (10 mol%) were added and the reaction mixture was 

cooled to 0 °C. Trimethylsilylacetylene (1 equiv, 9 mmol) was added and the reaction mixture 

was stirred at room temperature over night. The reaction mixture was quenched with brine 

and extracted with EtOAc. The organic phase was dried with Na2SO4 and the crude material 

was purified by column chromatography (silica gel, 9:1 i-hexane/ethyl acetate) to furnish  

1.37 g (60%) of the product as a slightly yellow liquid. 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.26 (s, 9 H), 7.24 (dd, J=5.11, 1.24 Hz, 1 H), 7.51 (s, 1 

H), 8.30 (d, J=4.98 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: -0.43, 100.32, 101.96, 124.71, 130.03, 133.74, 142.13, 

149.82. 

MS (70 eV, EI) m/z (%): 252 (5), 240 (63), 239 (10), 144 (5), 131 (4), 80 (9). 

IR ATR νννν (cm-1): 2960, 2900, 2172, 1580, 1570, 1518, 1456, 1365, 1250, 1112, 1077, 983, 

873, 835, 759, 710. 

HRMS (EI) for C10H12BrNSi (252.9922) [M+H]+: 253.9824. 

 

Synthesis of 2-bromo-3-(but-3-en-1-yl)pyridine (4s): 

 

 

2-Bromo-3-(bromomethyl)pyridine (1.0 equiv, 1 mmol) was dissolved in THF (3 mL) and a 

solution of allyl magnesium chloride (1.1 equiv, 1.1 mmol, 1.2 M in THF) was added 

dropwise at -78 °C. The reaction mixture was allowed to warm up to room temperature over 

night. The reaction mixture was quenched with brine and extracted with EtOAc. The organic 

phase was dried with Na2SO4 and the crude material was purified by column chromatography 

(silica gel, 6:1 i-hexane/ethyl acetate) to furnish 81 mg (38%) of the product as a colorless 

liquid. 
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1H NMR (300 MHz, CDCl3) δ/ppm: 2.40 (q, J=7.31 Hz, 2 H), 2.81 (t, J=7.75 Hz, 2 H), 4.84 

- 5.22 (m, 2 H), 5.73 - 5.96 (m, 1 H), 7.18 (dd, J=7.39, 4.77 Hz, 1 H), 7.48 (dd, J=7.39, 1.43 

Hz, 1 H), 8.21 (dd, J=4.53, 1.67 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 33.08, 34.59, 115.86, 122.72, 136.82, 138.18, 138.32, 

144.37, 147.63. 

MS (70 eV, EI) m/z (%): 170 (100), 132 (82), 131 (39), 91 (24), 90 (18). 

IR ATR νννν (cm-1): 3077, 2979, 2930, 2862, 1641, 1578, 1557, 1446, 1401, 1180, 1088, 1064, 

1049, 994, 912, 796, 740, 674, 659. 

HRMS (EI) for C9H10BrN (210.9997) [M]+: 211.0013. 

 

4.2 Preparation of Cross-Coupling Products Using TP2  

 

Synthesis of 4,6-dimethyl-2-phenylpyrimidine (3g): 

 

 

A solution of 2a in THF (1.0 mmol, 2.0 equiv, 1.7 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

1h (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 

for 5 min before being quenched with sat. aq. NaHCO3. The mixture was diluted with CH2Cl2 

and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, 

before being filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, 

sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 3g as a white powder. 

 

Isolated yield: with FeBr3: 89 % (82 mg). 

Reaction time: 5 min. 

Solvent for purification:  10:1 i-hexane/ethyl acetate + 0.5 % triethylamine.  

m.p.: 82.8 – 84.0 ºC. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.54 (s, 6 H), 6.92 (s, 1 H), 7.47 (m, 3 H), 8.43 (d, J=1.9 

Hz, 1 H), 8.45 (d, J=4.4 Hz, 1 H).  
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13C NMR (75 MHz, CDCl3) δ/ppm: 24.11, 117.97, 128.24, 128.42, 130.31, 137.94, 164.06, 

166.77. 

MS (70 eV, EI) m/z (%): 185 (16), 184 (100) [M]+ , 169 (20), 104 (19), 103 (27), 77 (6). 

IR ATR νννν (cm-1): 3068, 2924, 2853, 2361, 1595, 1574, 1550, 1534, 1442, 1434, 1379, 1364, 

1342, 1173, 1025, 932, 854, 749, 693, 662. 

HRMS (EI) for C12H12N2 (184.1000) [M] +: 184.0995. 

 

Synthesis of 2-phenylpyridine (3a): 

 

A solution of 2a in THF (1.0 mmol, 2.0 equiv, 1.7 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

1a (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 

for 15 min before being quenched with NaHCO3 sat. aq. The mixture was diluted with CH2Cl2 

and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, 

before being filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, 

sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 3a as a colorless oil. 

 

Isolated yield: with FeBr3: 89 % (69 mg). 

Reaction time: 15 min. 

Solvent for purification:  6:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.23 (m, 1 H), 7.45 (m, 3 H), 7.75 (m, 2 H), 8.01 (m, 2 

H), 8.70 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 120.60, 122.10, 126.92, 128.74, 128.99, 136.84, 139.24, 

149.53, 157.39. 

MS (70 eV, EI) m/z (%): 155 (100) [M]+, 154 (60), 128 (10), 127 (10), 77 (9), 59 (10), 43 

(7). 

IR ATR νννν (cm-1): 3062, 3036, 3008, 2927, 1586, 1580, 1564, 1468, 1449, 1424, 1293, 1152, 

1074, 1020, 988, 800, 737, 692. 

HRMS (EI) for C11H9N (155.1735) [M] +: 155.1731. 
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Synthesis of 2-(4-methoxyphenyl)-3-(trimethylsilyl)pyridine (5a): 

 

 

A solution of 32i in THF (1.0 mmol, 2.0 equiv, 1.3 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4a (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5a as a colorless oil. 

 

Isolated yield: with FeBr3: 91 % (117 mg). 

                         with CoCl2: 85 % (109 mg). 

Reaction time: 15 min. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.05 (s, 9 H), 3.84 (s, 3 H), 6.94 (m, J=8.85 Hz, 2 H), 

7.20 (dd, J=7.46, 4.70 Hz, 1 H), 7.34 (m, J=8.57 Hz, 2 H), 7.89 (dd, J=7.60, 1.80 Hz, 1 H), 

8.59 (dd, J=4.70, 1.94 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 0.25, 55.29, 113.29, 121.02, 130.11, 133.30, 136.29, 

143.17, 148.91, 159.62, 165.10. 

MS (70 eV, EI) m/z (%): 257 (91), 242 (100), 227 (23), 211 (6), 199 (13). 

IR ATR νννν (cm-1): 3045, 2954, 2898, 2836, 1609, 1548, 1515, 1402, 1298, 1245, 1172, 1038, 

1025, 832, 809, 787, 753, 731, 688, 656. 

HRMS (EI) for C15H19NOSi (257.1236) [M]+: 257.1222. 

 

Synthesis of 4-(3-(4-chlorophenyl)pyridin-2-yl)-N,N-dimethylaniline (5b): 
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A solution of 2n in THF (1.0 mmol, 2.0 equiv, 1.2 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4b (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5b as a slightly yellow oil. 

 

Isolated yield: with FeBr3: 82 % (127 mg) 

                         with CoCl2: 77 % (119 mg) 

Reaction time: 15 min. 

Solvent for purification:  9:1 dichloromethane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.95 (s, 6 H), 6.59 (d, J=8.85 Hz, 2 H), 7.08 - 7.35 (m, 7 

H), 7.61 (dd, J=7.74, 1.66 Hz, 1 H), 8.65 (dd, J=4.70, 1.66 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 40.28, 111.63, 120.91, 127.49, 128.56, 130.75, 130.85, 

132.97, 133.96, 138.32, 139.32, 148.51, 150.10, 157.19. 

MS (70 eV, EI) m/z (%): 308 (100), 307 (45), 291 (19), 153 (9), 136 (12). 

IR ATR νννν (cm-1): 3037, 2885, 2855, 2801, 1606, 1576, 1524, 1489, 1425, 1394, 1353, 1193, 

1168, 1090, 999, 945, 834, 821, 799, 778, 758, 728, 718, 704. 

HRMS (EI) for C19H17ClN2 (308.1080) [M]+: 308.1060. 

 

4-(thiophen-2-yl)-2-(4-(trimethylsilyl)phenyl)pyrid ine (5c): 

 

 

A solution of 2o in THF (1.0 mmol, 2.0 equiv, 1.2 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4c (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 
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aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5c as a slightly yellow oil. 

 

Isolated yield: with FeBr3: 65 % (101 mg). 

                         with CoCl2: 70 % (108 mg). 

Reaction time: 15 min. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.33 (s, 9 H), 7.17 (dd, J=5.13, 3.70 Hz, 1 H), 7.44 (d, 

J=5.25 Hz, 2 H), 7.54 - 7.60 (m, 1 H), 7.67 (m, J=8.11 Hz, 2 H), 7.92 (s, 1 H), 8.02 (m, 

J=8.11 Hz, 2 H), 8.68 (d, J=5.01 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: -1.12, 117.00, 118.52, 125.31, 126.19, 127.10, 128.43, 

133.79, 139.57, 141.53, 141.67, 142.16, 150.26, 158.32. 

MS (70 eV, EI) m/z (%): 309 (20), 296 (9), 295 (27), 294 (100). 

IR ATR νννν (cm-1): 3073, 3021, 2953, 2895, 1593, 1554, 1467, 1405, 1246, 1107, 989, 837, 

815, 799, 785, 759, 754, 720, 699, 679. 

HRMS (EI) for C18H19NSSi (309.1007) [M]+: 309.0977. 

 

Synthesis of 2-(3-((tert-butyldimethylsilyl)oxy)phenyl)-4-(4-fluorophenyl)pyridine (5d): 

N

F

OTBS

 

 

A solution of 2p in THF (1.0 mmol, 2.0 equiv, 1.05 M) was added dropwise to a suspension 

of FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4d (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 
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Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5d as a slightly yellow oil. 

 

Isolated yield: with FeBr3: 71 % (131 mg). 

                         with CoCl2: 79 % (145 mg). 

Reaction time: 15 min. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.26 (s, 6 H), 1.03 (s, 9 H), 6.93 (dd, J=7.99, 1.79 Hz, 1 

H), 7.21 (t, J=8.58 Hz, 2 H), 7.31 - 7.44 (m, 2 H), 7.54 (d, J=2.15 Hz, 1 H), 7.58 - 7.74 (m, 3 

H), 7.84 (s, 1 H), 8.73 (d, J=5.25 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm:  -4.32, 18.23, 25.73, 116.15 (d, J=21.60 Hz, 1 C), 

118.63, 118.88, 120.08, 120.69, 128.85 (d, J=8.41 Hz, 1 C), 129.70, 134.63, 134.68, 140.94, 

148.18, 150.11, 156.15, 157.99, 163.42 (d, J=249.08 Hz, 1 C). 

MS (70 eV, EI) m/z (%): 322 (100), 281 (41), 209 (13), 207 (83), 97 (12). 

IR ATR νννν (cm-1): 3064, 2955, 2930, 2895, 2858, 1597, 1581, 1512, 1464, 1444, 1270, 1253, 

1233, 1204, 1160, 948, 825, 779, 724, 693, 666. 

HRMS (EI) for C23H26FNOSi (379.1768) [M]+: 379.1756. 

 

Synthesis of 4-(3-bromophenyl)-5-chloro-2-mesitylpyridine (5e): 

 

 

A solution of 2q in THF (1.0 mmol, 2.0 equiv, 1.1 M) was added dropwise to a suspension of 

CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4e (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 

for 5 h before being quenched with sat. aq. NaHCO3. The mixture was diluted with CH2Cl2 

and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, 

before being filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, 

sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic layer was 
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dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 5e as a slightly yellow oil. 

 

Isolated yield: with CoCl2: 82 % (159 mg). 

Reaction time: 5 h. 

Solvent for purification:  10:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.04 - 2.13 (m, 6 H), 2.34 (s, 3 H), 6.95 (s, 2 H), 7.21 - 

7.24 (m, 1 H), 7.33 - 7.41 (m, 1 H), 7.44 - 7.51 (m, 1 H), 7.55 - 7.65 (m, 1 H), 7.65 - 7.73 (m, 

1 H), 8.76 - 8.81 (m, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 20.33, 21.18, 122.53, 126.20, 127.80, 128.01, 128.54, 

130.06, 132.01, 135.59, 135.69, 136.29, 137.98, 138.58, 146.11, 150.09, 158.85. 

MS (70 eV, EI) m/z (%): 386 (100), 384 (74), 255 (5), 230 (24), 127 (8). 

IR ATR νννν (cm-1): 2966, 2918, 2858, 1612, 1577, 1563, 1525, 1478, 1455, 1355, 1106, 1093, 

1073, 1025, 996, 907, 881, 851, 840, 786, 732, 697, 679, 658. 

HRMS (EI) for C20H17BrClN (385.0233) [M]+:384.0152. 

 

Synthesis of 5-(6-methoxypyridin-2-yl)-1-methyl-1H-indole (5f): 

 

 

A solution of 2r in THF (1.0 mmol, 2.0 equiv, 0.9 M) was added dropwise to a suspension of 

CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4f (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 25 °C. The suspension was stirred at 23 °C 

for 1 h before being quenched with sat. aq. NaHCO3. The mixture was diluted with CH2Cl2 

and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, 

before being filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, 

sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 5f as a slightly yellow solid. 

 

Isolated yield: with CoCl2: 65 % (77 mg). 

Reaction time: 1 h. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 
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m.p.: 99 – 108 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.83 (s, 3 H), 4.10 (s, 3 H), 6.59 (dd, J=3.04, 0.83 Hz, 1 

H), 6.65 (dd, J=8.16, 0.69 Hz, 1 H), 7.09 (d, J=3.04 Hz, 1 H), 7.37 - 7.43 (m, 2 H), 7.63 (dd, 

J=8.02, 7.46 Hz, 1 H), 7.99 (dd, J=8.57, 1.66 Hz, 1 H), 8.37 (dd, J=1.66, 0.55 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 32.93, 53.17, 101.85, 107.76, 109.18, 112.39, 119.54, 

120.79, 128.77, 129.51, 130.75, 137.32, 139.04, 156.15, 163.63. 

MS (70 eV, EI) m/z (%): 238 (64), 237 (48), 209 (12), 207 (13), 104 (5). 

IR ATR νννν (cm-1): 3001, 2944, 1591, 1580, 1566, 1463, 1446, 1428, 1419, 1410, 1335, 1321, 

1278, 1243, 1178, 1150, 1081, 1061, 1020, 986, 940, 893, 859, 788, 767, 735, 726, 662. 

HRMS (EI) for C15H14N2O (238.1106) [M]+:238.1097. 

 

Synthesis of 2-(4-fluorophenyl)-3-(2-methoxyphenyl)pyridine (5g): 

 

 

A solution of 2g in THF (1.0 mmol, 2.0 equiv, 1.05 M) was added dropwise to a suspension 

of FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4g (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5g as a slightly yellow oil. 

 

Isolated yield: with FeBr3: 77 % (108 mg). 

                         with CoCl2: 79 % (110 mg). 

Reaction time: 15 min. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 
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1H NMR (300 MHz, CDCl3) δ/ppm: 3.42 (s, 3 H), 6.78 (d, J=8.22 Hz, 1 H), 6.84 - 7.05 (m, 3 

H), 7.16 (dd, J=7.40, 1.53 Hz, 1 H), 7.23 - 7.41 (m, 4 H), 7.69 (dd, J=7.63, 1.53 Hz, 1 H), 

8.67 (dd, J=4.75, 1.47 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 54.96, 111.05, 114.42 (d, J=21.35 Hz, 1 C), 120.84, 

121.87, 128.75, 129.36, 130.54 (d, J=8.26 Hz, 1 C), 131.14, 132.73, 137.06, 139.10, 148.21, 

155.98, 157.02, 162.36 (d, J=246.54 Hz, 1 C). 

MS (70 eV, EI) m/z (%): 279 (15), 278 (15), 264 (4), 248 (9), 235 (4). 

IR ATR νννν (cm-1): 3050, 2958, 2936, 2836, 1895, 1599, 1580, 1510, 1495, 1462, 1436, 1420, 

1273, 1220, 1181, 1157, 1124, 1107, 1094, 1050, 1025, 1015, 999, 839, 824, 811, 802, 780, 

751, 718, 678. 

HRMS (EI) for C18H14FNO (279.1059) [M]+: 278.0958. 

 

Synthesis of 4-(5-chloro-4-(4-fluorophenyl)pyridin-2-yl)phenyl pivalate (5h): 

 

 

A solution of 2l in THF (1.0 mmol, 2.0 equiv, 0.8 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4h (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 25 °C. The suspension was stirred at 23 °C 

for 15 min before being quenched with sat. aq. NaHCO3. The mixture was diluted with 

CH2Cl2 and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 

15 min, before being filtered through a pad of Celite®. After washing the pad of Celite® with 

CH2Cl2, sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 5h as a white thick oil. 

 

Isolated yield: with FeBr3: 65 % (125 mg). 

Reaction time: 15 min. 

Solvent for purification:  15:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.39 (s, 9 H), 7.12 - 7.25 (m, 4 H), 7.48 - 7.56 (m, 2 H), 

7.64 - 7.69 (m, 1 H), 8.02 (d, J=8.57 Hz, 2 H), 8.72 (s, 1 H). 
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13C NMR (75 MHz, CDCl3) δ/ppm: 27.13, 39.15, 115.60 (d, J=21.64 Hz, 1 C), 121.93, 

127.45, 127.91, 128.03, 128.71, 130.86 (d, J=8.26 Hz, 1 C), 132.74, 132.79, 135.47, 147.19, 

149.83, 152.19, 155.15, 163.07 (d, J=249.10 Hz, 1 C), 176.88. 

MS (70 eV, EI) m/z (%): 383 (14), 300 (18), 299 (100), 264 (11), 85 (14). 

IR ATR νννν (cm-1): 2975, 2874, 1747, 1606, 1507, 1480, 1460, 1366, 1276, 1231, 1200, 1163, 

1102, 1022, 1014, 908, 895, 856, 836, 816, 800, 788, 757, 729. 

HRMS (EI) for C22H19ClFNO2 (383.1088) [M]+: 383.1083. 

 

Synthesis of 2,3-bis(4-methoxyphenyl)quinoline (5i): 

N

OMe

OMe  

 

A solution of 2i in THF (1.0 mmol, 2.0 equiv, 1.3 M) was added dropwise to a suspension of 

CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4i (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 

for 15 min before being quenched with sat. aq. NaHCO3. The mixture was diluted with 

CH2Cl2 and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 

15 min, before being filtered through a pad of Celite®. After washing the pad of Celite® with 

CH2Cl2, sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 5i as a slightly yellow oil. 

 

Isolated yield: with CoCl2: 78 % (133 mg). 

Reaction time: 15 min. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.81 (s, 3 H), 3.82 (s, 3 H), 6.77 - 6.90 (m, 5H), 7.16 - 

7.19 (m, 2 H), 7.42 - 7.44 (m, 2 H), 7.54 (ddd, J=8.04, 6.97, 1.17 Hz, 1 H), 7.70 - 7.75 (m, 1 

H), 7.84 (dd, J=8.19, 1.17 Hz, 1 H), 8.14 (s, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 59.35, 59.42, 117.57, 117.90, 130.74, 131.28, 131.42, 

132.80, 133.76, 134.89, 135.63, 136.24, 137.00, 138.23, 141.91, 147.53, 159.32, 163.00, 

163.84. 

MS (70 eV, EI) m/z (%): 340 (100), 326 (11), 297 (14), 254 (12), 163 (5). 
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IR ATR νννν (cm-1): 2999, 2955, 2945, 2917, 2835, 1607, 1511, 1483, 1463, 1455, 1422, 1402, 

1370, 1289, 1242, 1173, 1144, 1109, 1027, 965, 829, 809, 792, 782, 757, 746, 731, 714, 666. 

HRMS (EI) for C23H19NO2 (340.1338) [M-H]+:340.1336. 

 

Synthesis of 2-(4-fluorophenyl)-6,7-dimethoxy-4-methylquinoline (5j): 

 

 

A solution of 2g in THF (1.0 mmol, 2.0 equiv, 1.05 M) was added dropwise to a suspension 

of FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4j (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5j as a slightly yellow solid. 

 

Isolated yield: with FeBr3: 82 % (122 mg). 

                         with CoCl2: 67 % (100 mg). 

Reaction time: 15 min. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 164 – 168 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.70 (s, 3 H), 4.05 (s, 3 H), 4.06 (s, 3 H), 7.12 - 7.23 (m, 

3 H), 7.54 (d, J=2.76 Hz, 2 H), 8.09 (dd, J=8.98, 5.39 Hz, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 19.26, 56.02, 56.17, 101.46, 108.56, 115.64 (d, J=21.64 

Hz, 1 C), 117.99, 122.38, 129.06 (d, J=8.54 Hz, 1 C), 135.88, 143.36, 144.79, 149.46, 152.36, 

153.96, 163.48 (d, J=247.96 Hz, 1 C). 

MS (70 eV, EI) m/z (%): 297 (100), 282 (14), 254 (24), 252 (6), 211 (10). 

IR ATR νννν (cm-1): 2923, 2854, 2833, 1623, 1597, 1503, 1489, 1465, 1433, 1422, 1399, 1353, 

1260, 1246, 1208, 1189, 1166, 1150, 1096, 1065, 1034, 1014, 1000, 994, 910, 862, 850, 836, 

808, 771, 726, 668. 
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HRMS (EI) for C18H16FNO2 (297.1165) [M]+:297.1165. 

 

Synthesis of 3-(4,6-dimethylpyrimidin-2-yl)-N,N-dimethylaniline (5k): 

 

 

A solution of 2s in THF (1.0 mmol, 2.0 equiv, 1.15 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 1h (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 30 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5k as a brownish solid. 

 

Isolated yield: with FeBr3: 78 % (89 mg). 

                         with CoCl2: 63 % (72 mg). 

Reaction time: 30 min. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 105 – 108 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.54 (s, 6 H), 3.05 (s, 6 H), 6.92 (s, 2 H), 7.35 (t, J=7.88 

Hz, 1 H), 7.77 - 7.92 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 24.18, 40.91, 112.49, 114.95, 117.16, 117.79, 129.13, 

138.86, 150.82, 164.71, 166.57. 

MS (70 eV, EI) m/z (%): 227 (100), 212 (53), 184 (18), 114 (7), 43 (55). 

IR ATR νννν (cm-1): 2986, 2918, 2887, 2800, 1600, 1586, 1570, 1539, 1494, 1486, 1436, 1414, 

1396, 1362, 1345, 1319, 1233, 1177, 1064, 996, 955, 864, 775, 766, 697. 

HRMS (EI) for C14H17N3 (227.1422) [M]+:227.1417. 
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Synthesis of 4,6-bis(3-((tert-butyldimethylsilyl)oxy)phenyl)pyrimidine (5l): 

 

 

A solution of 2p in THF (2.0 mmol, 4.0 equiv, 1.1 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4k (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 

for 15 min before being quenched with sat. aq. NaHCO3. The mixture was diluted with 

CH2Cl2 and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 

15 min, before being filtered through a pad of Celite®. After washing the pad of Celite® with 

CH2Cl2, sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 5l as a red liquid. 

 

Isolated yield: with FeBr3: 95 % (234 mg). 

Reaction time: 15 min, using 4 equiv of Grignard reagent. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

MS (70 eV, EI) m/z (%): 492 (11), 436 (36), 435 (100), 393 (19), 379 (9), 189 (23). 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.27 (s, 12 H), 1.03 (s, 18 H), 7.01 (dd, J=7.87, 1.83 Hz, 

2 H), 7.40 (t, J=7.97 Hz, 2 H), 7.65 (d, J=1.83 Hz, 2 H), 7.72 (d, J=7.87 Hz, 2 H), 8.02 (s, 1 

H), 9.32 (s, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: -4.32, 18.24, 25.72, 112.98, 118.89, 120.17, 122.56, 

129.99, 138.58, 156.37, 159.14, 164.47. 

IR ATR νννν (cm-1): 2955, 2943, 2886, 2858, 1572, 1521, 1491, 1471, 1461, 1277, 1252, 1229, 

1199, 1001, 968, 939, 870, 833, 777, 734, 708, 687, 666. 

HRMS (EI) for C28H40N2O2Si2 (492.2628) [M]+:492.2615. 
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Synthesis of 4-(4-chloro-2-fluorophenyl)-2-(4-(dimethoxymethyl)phenyl)pyrimidine 

(5m): 

 

 

A solution of 2t in THF (1.0 mmol, 2.0 equiv, 0.9 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4l (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5m as a white solid. 

 

Isolated yield: with CoCl2: 68 % (122 mg). 

Reaction time: 15 min. 

Purification:  purified by HPLC with a column Chromolith SemiPrep RP-18e, 100-10 nm;  

15 % H2O/85 % CH3CN; flow rate 8 ml/min. 

m.p.: 89 – 91 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.36 (s, 6 H), 5.49 (s, 1 H), 7.18 - 7.30 (m, 1 H), 7.34 

(dddd, J=8.48, 6.38, 2.00, 0.68 Hz, 1 H), 7.60 (d, J=8.19 Hz, 1 H), 7.66 - 7.81 (m, 1 H), 7.95 - 

8.09 (m, 1 H), 8.36 (td, J=8.38, 2.53 Hz, 1 H), 8.48 - 8.59 (m, 1 H), 8.65 - 8.76 (m, 1 H), 8.87 

(dd, J=17.45, 5.36 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 52.61, 102.69, 117.24 (d, J=21.77 Hz, 1C), 125.39, 

127.02, 128.11, 128.76, 129.88, 137.75, 140.72, 142.91, 158.15, 159.27, 161.31 (d, J=255.47 

Hz, 1C), 163.38, 164.26. 

MS (70 eV, EI) m/z (%): 358 (1), 327 (100), 311 (18), 283 (8), 154 (1), 130(5). 
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IR ATR νννν (cm-1): 2980, 2959, 2932, 2830, 1607, 1584, 1576, 1558, 1548, 1484, 1432, 1407, 

1380, 1348, 1286, 1207, 1189, 1099, 1078, 1050, 1018, 982, 900, 851, 822, 810, 786, 738, 

722, 712, 665. 

HRMS (EI) for C19H16ClFN2O2 (358.0884) [M]+:358.0872. 

 

Synthesis of 2-(4-chloro-2-fluorophenyl)-4-(4-(trifluoromethyl)phenyl)pyrimidine (5n): 

 

 

A solution of 2u in THF (1.0 mmol, 2.0 equiv, 1.0 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4m (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5n as a white solid. 

 

Isolated yield: with FeBr3: 61 % (108 mg). 

                         with CoCl2: 60 % (106 mg). 

Reaction time: 15 min. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 120 – 122 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.24 - 7.32 (m, 2 H), 7.67 (d, J=5.28 Hz, 1 H), 7.79 (m, 

J=8.14 Hz, 2 H), 8.20 (t, J=8.36 Hz, 1 H), 8.30 (m, J=8.14 Hz, 2 H), 8.94 (d, J=5.28 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 114.93, 117.71 (d, J=26.19 Hz), 123.86 (q, J=272.44), 

124.64 (d, J=3.99 Hz), 124.92 (d, J=8.83 Hz), 125.96 (q, J=3.70 Hz), 127.60, 132.71, 132.75, 

132.81 (q, J=32.74 Hz), 137.12 (d, J= 10.25 Hz,), 139.83 (q, J=1.14 Hz), 158.28, 161.33 (d, 

J=260.48 Hz), 162.60, 162.75, 162.82. 
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MS (70 eV, EI) m/z (%): 354 (31), 352 (100), 197 (34), 170 (36), 157 (10). 

IR ATR νννν (cm-1): 1607, 1576, 1558, 1550, 1488, 1414, 1374, 1323, 1308, 1285, 1278, 1218, 

1191, 1172, 1142, 1106, 1087, 1065, 1038, 1014, 902, 854, 838, 820, 792, 768, 718, 711. 

HRMS (EI) for C17H9ClF4N2 (352.0390) [M]+:352.0383. 

 

Synthesis of 2-(4-methoxyphenyl)-4,6-diphenyl-1,3,5-triazine (5o): 

N

N

N

Ph

Ph

OMe  

 

A solution of 2i in THF (1.0 mmol, 2.0 equiv, 1.3 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4n (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5o as a white solid. 

 

Isolated yield: with FeBr3: 81 % (137 mg). 

                         with CoCl2: 79 % (134 mg). 

Reaction time: 15 min. 

Solvent for purification:  10:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 144 – 146 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.94 (s, 3 H), 7.08 (d, J=8.79 Hz, 2 H), 7.39 - 7.81 (m, 6 

H), 8.62 - 9.07 (m, 6 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 55.45, 113.94, 128.55, 128.77, 128.87, 130.85, 132.31, 

136.40, 163.31, 171.18, 171.38. 

MS (70 eV, EI) m/z (%): 339 (63), 214 (44), 199 (35), 171 (12), 133 (41), 103 (24). 

IR ATR νννν (cm-1): 3312, 3038, 3015, 2958, 2840, 2362, 2331, 1605, 1499, 1438, 1274, 1249, 

1183, 1040, 1012, 823, 809, 781, 770, 690. 

HRMS (EI) for C22H17N3O (339.1372) [M]+:339.1366. 
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2-phenyl-4,6-di(pyrrolidin-1-yl)-1,3,5-triazine (5p): 

 

 

A solution of 2a in THF (1.0 mmol, 2.0 equiv, 1.7 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4o (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 50 °C 

for 12 h before being quenched with sat. aq. NaHCO3. The mixture was diluted with CH2Cl2 

and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 15 min, 

before being filtered through a pad of Celite®. After washing the pad of Celite® with CH2Cl2, 

sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 5p as a white solid. 

 

Isolated yield: with FeBr3: 76 % (112 mg). 

Reaction time: 12 h at 50 °C. 

Solvent for purification:  10:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 137 – 139 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.96 (ddd, J=6.28, 3.48, 3.26 Hz, 8 H), 3.61 (br. s., 4 

H), 3.72 (br. s., 4 H), 7.35 - 7.52 (m, 3 H), 8.38 - 8.50 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 25.35, 45.98, 127.97, 128.21, 130.69, 138.07, 163.62, 

169.50. 

MS (70 eV, EI) m/z (%): 295 (88), 267 (100), 253 (25), 239 (19), 226 (39), 197 (13). 

IR ATR νννν (cm-1): 2969, 2871, 2361, 1557, 1540, 1507, 1491, 1471, 1454, 1383, 1338, 1293, 

1279, 1238, 1221, 1180, 1167, 1154, 1008, 863, 815, 795, 780, 702. 

HRMS (EI) for C17H21N5 (295.1797) [M]+:295.1792. 

 

Synthesis of 2,4-diethoxy-6-(thiophen-2-yl)-1,3,5-triazine (5q): 
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A solution of 2v in THF (1.0 mmol, 2.0 equiv, 0.8 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4p (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 12 h before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5q as a yellow solid. 

 

Isolated yield: with FeBr3: 84 % (105 mg). 

                         with CoCl2: 79 % (99 mg). 

Reaction time: 12 h. 

Solvent for purification:  10:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

m.p.: 79 – 81 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.33 - 1.55 (m, 6 H), 4.52 (q, J=7.08 Hz, 4 H), 7.14 (dd, 

J=4.97, 3.80 Hz, 1 H), 7.56 (dd, J=4.97, 1.27 Hz, 1 H), 8.14 (dd, J=3.80, 1.27 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 14.29, 64.22, 128.27, 131.71, 132.29, 140.81, 170.59, 

172.03. 

MS (70 eV, EI) m/z (%): 251 (6), 207 (6), 110 (10), 71 (35), 61 (14). 

IR ATR νννν (cm-1): 3102, 2983, 2927, 1531, 1490, 1466, 1439, 1416, 1378, 1346, 1324, 1290, 

1233, 1218, 1121, 1100, 1078, 1044, 1034, 1008, 866, 841, 811, 754, 714, 692, 671. 

HRMS (EI) for C11H13N3O2S (251.0728) [M]+:251.0725. 

 

Synthesis of 2-(4-(dimethoxymethyl)phenyl)-4,6-bis(ethylthio)-1,3,5-triazine (5r): 

 

 

A solution of 2t in THF (1.0 mmol, 2.0 equiv, 0.9 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv), isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 

4q (0.5 mmol, 1.0 equiv) in tBuOMe (2.5 mL) at 23 °C. The suspension was stirred at 23 °C 
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for 15 min before being quenched with sat. aq. NaHCO3. The mixture was diluted with 

CH2Cl2 and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 

15 min, before being filtered through a pad of Celite®. After washing the pad of Celite® with 

CH2Cl2, sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 5r as a colorless oil. 

 

Isolated yield: with FeBr3: 61 % (107 mg). 

Reaction time: 15 min. 

Solvent for purification:  6:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.45 (t, J=7.46 Hz, 6 H), 3.22 (q, J=7.46 Hz, 4 H), 3.34 

(s, 6 H), 5.47 (s, 1 H), 7.56 (d, J=8.29 Hz, 2 H), 8.45 (d, J=8.57 Hz, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 14.39, 24.85, 52.63, 102.51, 126.95, 128.88, 135.21, 

142.59, 167.94, 181.30. 

MS (70 eV, EI) m/z (%): 351 (43), 320 (53), 230 (6), 146 (11), 75 (11). 

IR ATR νννν (cm-1): 2962, 2947, 2829, 1483, 1410, 1377, 1348, 1309, 1284, 1235, 1205, 1098, 

1051, 1018, 984, 971, 912, 898, 847, 832, 796, 751, 733, 690. 

HRMS (EI) for C16H21N3O2S2 (351.1075) [M]+:351.1061. 

 

Synthesis of 2-(benzo[b]thiophen-3-yl)-3-(trimethylsilyl)pyridine (5s): 

 

 

A solution of 2w in THF (1.0 mmol, 2.0 equiv, 0.8 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4a (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 24 h before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5s as a yellow oil. 
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Isolated yield: with FeBr3: 64 % (90 mg). 

                         with CoCl2: 66 % (93 mg). 

Reaction time: 24 h. 

Solvent for purification:  9:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.00 (s, 9 H), 7.28 - 7.42 (m, 4 H), 7.49 - 7.55 (m, 1 H), 

7.87 - 7.93 (m, 1 H), 7.99 (dt, J=7.74, 1.52 Hz, 1 H), 8.72 (dt, J=3.04, 1.52 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: -0.15, 121.89, 122.43, 123.43, 124.42, 124.55, 125.39, 

135.44, 138.94, 139.48, 139.68, 143.21, 149.46, 159.75. 

MS (70 eV, EI) m/z (%): 283 (36), 268 (100), 250 (10), 227 (21), 126 (14). 

IR ATR νννν (cm-1): 3051, 3028, 2952, 2896, 1564, 1550, 1458, 1431, 1399, 1338, 1262, 1248, 

1221, 1041, 953, 833, 797, 782, 752, 731, 712, 696. 

HRMS (EI) for C16H17NSSi (283.0851) [M]+:283.0840. 

 

Synthesis of 2-(benzo[b]thiophen-2-yl)-3-(trimethylsilyl)pyridine (5t): 

 

 

A solution of 2x in THF (1.0 mmol, 2.0 equiv, 0.8 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4a (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 50 °C for 12 h (for FeBr3) or at 23 °C for   12 h 

(for CoCl2) before being quenched with sat. aq. NaHCO3. The mixture was diluted with 

CH2Cl2 and an EDTA (1.0 M, H2O) solution was added. The mixture was stirred at 23 °C for 

15 min, before being filtered through a pad of Celite®. After washing the pad of Celite® with 

CH2Cl2, sat. aq. NaCl was added, and the mixture was extracted with CH2Cl2. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 5t as a yellow oil. 

 

Isolated yield: with FeBr3: 61 % (86 mg). 

                         with CoCl2: 66 % (93 mg). 

Reaction time: for FeBr3: 12 h at 50 °C. 

                          for CoCl2: 12 h at 25 °C. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 
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1H NMR (300 MHz, CDCl3) δ/ppm: 0.23 (s, 9 H), 7.25 - 7.30 (m, 1 H), 7.35 - 7.41 (m, 2 H), 

7.42 (s, 1 H), 7.78 - 7.84 (m, 1 H), 7.86 - 7.91 (m, 1 H), 7.96 (dd, J=9.40, 1.11 Hz, 1 H), 8.66 

(dd, J=3.04, 1.11 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 0.28, 122.01, 122.29, 123.88, 124.20, 124.37, 124.71, 

134.24, 139.61, 140.62, 143.54, 145.80, 149.23, 158.26. 

MS (70 eV, EI) m/z (%): 283 (32), 270 (10), 268 (100), 252 (8), 238 (19), 127 (7). 

IR ATR νννν (cm-1): 3052, 3027, 2953, 2896, 1561, 1548, 1458, 1391, 1248, 1166, 1156, 1129, 

1041, 958, 835, 829, 798, 783, 743, 725, 709, 685. 

HRMS (EI) for C16H17NSSi (283.0851) [M]+:283.0837. 

 

Synthesis of 2-(4-methoxyphenyl)-4-((trimethylsilyl)ethynyl)pyridine (5u): 

 

 

A solution of 2i in THF (1.0 mmol, 2.0 equiv, 1.3 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4r (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 30 min before being quenched with sat. 

aq. NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5u as a slightly yellow oil. 

 

Isolated yield: with FeBr3: 38 % (53 mg). 

                         with CoCl2: 62 % (87 mg). 

Reaction time: 30 min. 

Solvent for purification:  8:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.29 (s, 9 H), 3.86 (s, 3 H), 6.98 (dd, J=8.82, 1.19 Hz, 2 

H), 7.18 (dt, J=5.01, 1.43 Hz, 1 H), 7.70 (d, J=0.72 Hz, 1 H), 7.95 (dd, J=8.58, 1.19 Hz, 2 H), 

8.58 (d, J=5.01 Hz, 1 H). 
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13C NMR (75 MHz, CDCl3) δ/ppm: -0.26, 55.34, 99.26, 102.51, 114.12, 122.00, 123.33, 

128.17, 131.31, 131.72, 149.43, 157.15, 160.68. 

MS (70 eV, EI) m/z (%): 281 (68), 266 (100), 251 (6), 223 (8), 133 (12). 

IR ATR νννν (cm-1): 2958, 2900, 2837, 2160, 1609, 1592, 1578, 1535, 1514, 1466, 1422, 1385, 

1274, 1247, 1219, 1196, 1174, 1112, 1031, 890, 839, 826, 800, 758, 728, 700. 

HRMS (EI) for C17H19NOSi (281.1236) [M]+:281.1220. 

 

Synthesis of 3-(but-3-en-1-yl)-2-phenylpyridine (5v): 

 

 

A solution of 2a in THF (1.0 mmol, 2.0 equiv, 1.7 M) was added dropwise to a suspension of 

FeBr3 (4.4 mg, 0.015 mmol, 0.03 equiv) or CoCl2 (1.9 mg, 0.015 mmol, 0.03 equiv), 

isoquinoline (6.5 mg, 0.05 mmol, 0.10 equiv), and 4s (0.5 mmol, 1.0 equiv) in tBuOMe   (2.5 

mL) at 23 °C. The suspension was stirred at 23 °C for 1 h before being quenched with sat. aq. 

NaHCO3. The mixture was diluted with CH2Cl2 and an EDTA (1.0 M, H2O) solution was 

added. The mixture was stirred at 23 °C for 15 min, before being filtered through a pad of 

Celite®. After washing the pad of Celite® with CH2Cl2, sat. aq. NaCl was added, and the 

mixture was extracted with CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5v as a colorless oil. 

 

Isolated yield: with FeBr3: 62 % (65 mg). 

                         with CoCl2: 78 % (81 mg). 

Reaction time: 1 h. 

Solvent for purification:  4:1 i-hexane/ethyl acetate + 0.5 % triethylamine. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.18 - 2.34 (m, 2 H), 2.71 - 2.83 (m, 2 H), 4.81 - 5.02 

(m, 2 H), 5.63 - 5.79 (m, 1 H), 7.21 - 7.28 (m, 1 H), 7.36 - 7.52 (m, 5 H), 7.61 (dd, J=7.88, 

1.80 Hz, 1 H), 8.53 (dd, J=4.70, 1.66 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 31.81, 34.57, 115.34, 122.13, 127.84, 128.17, 128.78, 

129.09, 134.60, 137.30, 140.62, 146.97, 158.97. 

MS (70 eV, EI) m/z (%): 209 (42), 208 (51), 180 (15), 168 (25). 167 (100),  
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IR ATR νννν (cm-1): 3060, 3027, 2977, 2925, 2860, 1640, 1579, 1564, 1495, 1453, 1433, 1421, 

1019, 995, 912, 791, 749, 732, 699. 

HRMS (EI) for C15H15N (209.1204) [M]+:208.1126. 

 

5. Efficient Chromium(II)-Catalyzed Cross-Coupling Reactions between 
Csp2 Centers  

 

5.1 Preparation of Cross-Coupling Products Using TP3 

 

Synthesis of 2-phenylpyridine (3a): 

 

 

A solution of 2a in THF (1.2 mmol, 1.2 equiv, 1.7 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 1a (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 3a as a colorless oil. 

 

Isolated yield: 90 % (140 mg)  

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 6:1 (+0.5 % NEt3). 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.23 (m, 1 H), 7.45 (m, 3 H), 7.75 (m, 2 H), 8.01 (m, 2 

H), 8.70 (d, J=4.7 Hz, 1 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 120.6, 122.1, 126.9, 128.7, 128.9, 136.8, 139.2, 149.5, 

157.4. 

MS (70 eV, EI) m/z (%): 155 (100) [M]+, 154 (60), 128 (10), 127 (10), 77 (9), 59 (10), 43 

(7). 

IR ATR νννν (cm-1): 3062, 3036, 3008, 2927, 1586, 1580, 1564, 1468, 1449, 1424, 1293, 1152, 

1074, 1020, 988, 800, 737, 692. 

HRMS (EI) for C11H9N (155.1735) [M] +: 155.1731. 
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Synthesis of 3-(but-3-en-1-yl)-2-phenylpyridine (5v): 

 

 

A solution of 2a in THF (1.2 mmol, 1.2 equiv, 1.7 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 4s (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 5v as a colorless oil. 

 

Isolated yield: 95 % (199 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 6:1 (+0.5 % NEt3). 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.18 - 2.32 (m, 2 H), 2.68 - 2.84 (m, 2 H), 4.86 - 5.00 

(m, 2 H), 5.63 - 5.80 (m, 1 H), 7.21 (dd, J=7.76, 4.77 Hz, 1 H), 7.32 - 7.54 (m, 5 H), 7.57 - 

7.64 (m, 1 H), 8.53 (dd, J=4.86, 1.31 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 31.8, 34.6, 115.4, 122.1, 127.9, 128.2, 128.8, 134.6, 

137.3, 140.6, 147.0, 159.0. 

MS (70 eV, EI) m/z (%): 209 (42), 208 (51), 180 (15), 168 (25). 167 (100). 

IR ATR νννν (cm-1): 3060, 3027, 2977, 2925, 2860, 1640, 1579, 1564, 1495, 1453, 1433, 1421, 

1019, 995, 912, 791, 749, 732, 699. 

HRMS (EI) for C15H15N (209.1204) [M]+:209.1191. 

 

Synthesis of 4-(3-(4-chlorophenyl)pyridin-2-yl)-N,N-dimethylaniline (5b): 

 

 

A solution of 2n in THF (1.2 mmol, 1.2 equiv, 1.2 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 4b (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 90 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 
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concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8b as a slightly yellow oil. 

 

Isolated yield: 80 % (247 mg). 

Reaction time: 90 min. 

Solvent for purification:  dichloromethane/ethyl acetate 9:1 (+0.5 % NEt3). 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.95 (s, 6 H), 6.59 (d, J=8.85 Hz, 2 H), 7.08 - 7.35 (m, 7 

H), 7.61 (dd, J=7.74, 1.66 Hz, 1 H), 8.65 (dd, J=4.70, 1.66 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 40.3, 111.6, 120.9, 127.5, 128.6, 130.8, 130.9, 132.9, 

133.9, 138.3, 139.3, 148.5, 150.1, 157.2. 

MS (70 eV, EI) m/z (%): 308 (100), 307 (45), 291 (19), 153 (9), 136 (12). 

IR ATR νννν (cm-1): 3037, 2885, 2855, 2801, 1606, 1576, 1524, 1489, 1425, 1394, 1353, 1193, 

1168, 1090, 999, 945, 834, 821, 799, 778, 758, 728, 718, 704. 

HRMS (EI) for C19H17ClN2 (308.1080) [M]+: 308.1060. 

 

Synthesis of 3-chloro-2-(4-(trifluoromethyl)phenyl)pyridine (8a): 

 

 

A solution of 2y in THF (1.2 mmol, 1.2 equiv, 0.9 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 4t (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8a as a white solid. 

 

Isolated yield: 76 % (195 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 8:1 (+0.5 % NEt3). 

m.p.: 53.0-54.0 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.27 (dd, J=8.02, 4.70 Hz, 1 H), 7.69 - 7.78 (m, 2 H), 

7.79 - 7.92 (m, 3 H), 8.62 (dd, J=4.70, 1.66 Hz, 1 H). 
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13C NMR (75 MHz, CDCl3) δ/ppm: 123.7, 124.0 (q, J=272.1 Hz), 125.0 (q, J=3.9 Hz), 

129.8, 130.3, 130.8 (q, J=32.5 Hz), 138.3, 141.6, 147.8, 155.1. 

MS (70 eV, EI) m/z (%): 257 (46), 237 (28), 222 (98), 81 (13), 71 (16), 43 (100). 

IR ATR νννν (cm-1): 3052, 1616, 1564, 1436, 1428, 1402, 1324, 1164, 1132, 1108, 1090, 1066, 

1040, 1026, 1012, 848, 792, 768, 758, 736, 690. 

HRMS (EI) for C12H7ClF3N (257.0219) [M]+: 257.0219. 

 

Synthesis of 4-(5-fluoropyridin-2-yl)phenyl pivalate (8b): 

 

 

A solution of 2l in THF (1.2 mmol, 1.2 equiv, 0.8 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 4u (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8b as a white solid. 

 

Isolated yield: 66 % (180 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 6:1 (+0.5 % NEt3). 

m.p.: 76.6-76.8 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 1.38 (s, 9 H), 7.16 (m, 2 H), 7.46 (td, J=8.43, 3.32 Hz, 1 

H), 7.69 (dd, J=8.85, 4.42 Hz, 1 H), 7.95 (m, 2 H), 8.53 (d, J=2.76 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 27.1, 39.1, 121.1, 121.2, 121.8, 123.5, 123.7, 127.8, 

135.8, 137.5, 137.8, 151.8, 152.9, 152.9, 157.1, 160.5, 176.9. 

MS (70 eV, EI) m/z (%): 273 (9), 190 (11), 189 (100), 160 (4), 159 (3). 

IR ATR νννν (cm-1): 2982, 2966, 2932, 2908, 2890, 1750, 1742, 1600, 1470, 1416, 1396, 1382, 

1368, 1276, 1264, 1224, 1198, 1166, 1112, 1026, 1010, 974, 960, 942, 924, 898, 834, 826, 

810, 796, 750.  

HRMS (EI) for C16H16FNO2 (273.1165) [M]+: 273.1154. 
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Synthesis of 2-(benzo[d][1,3]dioxol-5-yl)-6,7-dimethoxy-4-methylquinoline (8c): 

 

 

A solution of 2k in THF (1.2 mmol, 1.2 equiv, 1.1 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 4j (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 1 h before being quenched with 

brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8c as a yellow solid. 

 

Isolated yield: 74 % (239 mg). 

Reaction time: 1 h. 

Solvent for purification:  i-hexane/ethyl acetate 3:1 (+0.5 % NEt3). 

m.p.: 195-221 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.67 (s, 3 H), 4.04 (d, J=5.53 Hz, 6 H), 6.02 (s, 2 H), 

6.92 (d, J=8.29 Hz, 1 H), 7.13 (s, 1 H), 7.50 (d, J=5.81 Hz, 2 H), 7.59 (dd, J=8.16, 1.80 Hz, 1 

H), 7.65 (d, J=1.94 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 19.2, 56.0, 56.1, 101.2, 101.5, 107.7, 108.4, 108.6, 

117.9, 121.3, 122.2, 134.3, 143.0, 144.8, 148.2, 148.4, 149.3, 152.2, 154.5. 

MS (70 eV, EI) m/z (%): 323 (100), 308 (18), 280 (15), 278 (6), 161 (9). 

IR ATR νννν (cm-1): 2922, 2898, 2834, 1618, 1604, 1592, 1494, 1486, 1476, 1466, 1450, 1432, 

1416, 1382, 1352, 1336, 1240, 1222, 1206, 1166, 1138, 1114, 1066, 1048, 1028, 998, 926, 

876, 862, 852, 834, 808. 

HRMS (EI) for C19H17NO4 (323.1158) [M]+: 323.1149. 

 

Synthesis of N,N-dimethyl-4-(2-phenylquinolin-4-yl)aniline (8d): 
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A solution of 2n in THF (1.2 mmol, 1.2 equiv, 1.1 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 4v (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8d as a red solid. 

 

Isolated yield: 78 % (253 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 8:1 (+0.5 % NEt3). 

m.p.: 152.0-154.0 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.06 (s, 6 H), 6.89 (dd, J=8.71, 1.80 Hz, 2 H), 7.43 - 

7.59 (m, 6 H), 7.70 - 7.77 (m, 1 H), 7.83 (d, J=1.66 Hz, 1 H), 8.09 (d, J=8.29 Hz, 1 H), 8.19 - 

8.30 (m, 3 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 40.4, 112.2, 113.1, 119.1, 125.9, 126.1, 127.0, 127.6, 

128.8, 129.2, 129.3, 130.0, 130.6, 139.9, 148.9, 149.5, 150.6, 156.9. 

MS (70 eV, EI) m/z (%): 324 (100), 323 (42), 307 (16), 280 (13), 240 (63), 225 (23), 161 

(15), 119 (14). 

IR ATR νννν (cm-1): 2922, 2866, 2806, 1610, 1592, 1542, 1524, 1504, 1492, 1460, 1442, 1424, 

1414, 1402, 1356, 1226, 1196, 1162, 1138, 1120, 1064, 944, 818, 808, 788, 772, 762, 694, 

680. 

HRMS (EI) for C23H20N2 (324.1626) [M]+: 324.1621. 

 

Synthesis of 4,6-dimethyl-2-(4-(trifluoromethoxy)phenyl)pyrimidine (8e): 

 

 

A solution of 2z in THF (1.2 mmol, 1.2 equiv, 0.8 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 1h (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 2 h before being quenched with 

brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8e as a white solid. 
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Isolated yield: 71 % (190 mg). 

Reaction time: 2 h. 

Solvent for purification:  i-hexane/ethyl acetate 6:1 (+0.5 % NEt3). 

m.p.: 66.0-67.4 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 2.53 (s, 6 H), 6.93 (s, 1 H), 7.29 (d, J=8.29 Hz, 2 H), 

8.48 (d, J=8.57 Hz, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 24.1, 118.2, 120.5, 120.5 (q, J=257.6 Hz), 129.9, 136.6, 

150.9, 162.8, 166.9. 

MS (70 eV, EI) m/z (%): 269 (13), 268 (100), 253 (12), 189 (15), 187 (20). 

IR ATR νννν (cm-1): 1602, 1582, 1544, 1504, 1434, 1368, 1288, 1256, 1196, 1148, 1102, 1030, 

1012, 958, 920, 874, 866, 852, 810, 786, 734, 680. 

HRMS (EI) for C13H11F3N2O (268.0823) [M]+: 268.0803. 

 

Synthesis of 2-(3-((tert-butyldimethylsilyl)oxy)phenyl)-4-(4-(trifluoromethyl)-phenyl)-

pyrimidine (8f): 

 

 

A solution of 2p in THF (1.2 mmol, 1.2 equiv, 1.0 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 4m (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8f as a slightly yellow oil. 

 

Isolated yield: 80 % (366 mg)  

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 8:1 (+0.5 % NEt3). 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.29 (s, 6 H), 1.05 (s, 9 H), 7.02 (dd, J=7.60, 2.07 Hz, 1 

H), 7.40 (t, J=7.88 Hz, 1 H), 7.63 (d, J=5.25 Hz, 1 H), 7.81 (m, J=8.02 Hz, 2 H), 8.08 (dd, 
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J=2.21, 1.66 Hz, 1 H), 8.17 - 8.22 (m, J=7.78, 1.11, 0.81, 0.81 Hz, 1 H), 8.33 (m, J=8.02 Hz, 

2 H), 8.90 (d, J=5.25 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: -4.3, 18.3, 25.7, 107.6, 108.4, 112.6, 114.8, 119.9, 121.4, 

122.9, 123.9 (q, J=272.6 Hz), 125.9 (q, J=3.9 Hz), 127.6, 129.6, 129.9, 132.4, 140.3, 156.1, 

156.7, 158.0, 162.5, 164.5. 

MS (70 eV, EI) m/z (%): 430 (7), 374 (26), 373 (100), 224 (4), 167 (23). 

IR ATR νννν (cm-1): 2958, 2932, 2860, 1712, 1566, 1550, 1452, 1426, 1410, 1382, 1362, 1326, 

1284, 1272, 1256, 1220, 1168, 1146, 1128, 1094, 1070, 950, 838, 810, 784. 

HRMS (EI) for C23H25F3N2OSi (430.1688) [M]+: 430.1682. 

 

Synthesis of 2-(4-methoxyphenyl)pyrazine (8g): 

 

 

A solution of 2i in THF (1.2 mmol, 1.2 equiv, 1.3 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 1j (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 30 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 8g as a white solid. 

 

Isolated yield: 72 % (134 mg). 

Reaction time: 30 min. 

Solvent for purification:  i-hexane/ethyl acetate 6:1 (+0.5 % NEt3). 

m.p.: 93.8-95.2 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 3.87 (s, 3 H), 6.98 - 7.07 (m, 2 H), 7.95 - 8.01 (m, 2 H), 

8.43 (d, J=2.49 Hz, 1 H), 8.58 (dd, J=2.49, 1.38 Hz, 1 H), 8.97 (d, J=1.38 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 55.4, 114.5, 128.3, 128.8, 141.5, 141.9, 144.0, 152.5, 

161.2. 

MS (70 eV, EI) m/z (%): 186 (19), 149 (7), 133 (7), 109 (6), 83 (8), 71 (8), 69 (24). 

IR ATR νννν (cm-1): 2956, 2914, 2836, 1604, 1586, 1516, 1474, 1458, 1424, 1400, 1302, 1246, 

1178, 1148, 1108, 1078, 1034, 1014, 834, 818, 750. 

HRMS (EI) for C11H10N2O (186.0793) [M]+: 186.0785. 
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Synthesis of Ethyl 2'-benzoyl-[1,1'-biphenyl]-3-carboxylate (11a): 

 

 

A solution of 10a in THF (1.2 mmol, 1.2 equiv, 0.8 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 9 (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 11a as a white solid. 

 

Isolated yield: 79 % (261 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/diethyl ether 9:1. 

m.p.: 65.1-66.7 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.98 (t, J=1.7 Hz, 1 H), 7.85 (dt, J=7.8, 1.5 Hz, 1 H), 

7.69 – 7.38 (m, 8 H), 7.32 - 7.23 (m, 3 H), 4.32 (q, J=7.2 Hz, 2 H), 1.33 (t, J=7.1 Hz, 3 H).  

13C NMR (75 MHz, CDCl3) δ/ppm: 198.3, 166.1, 140.3, 140.2, 138.9, 137.3, 133.3, 132.9, 

130.5, 130.5, 130.1, 129.9, 129.8, 128.9, 128.4, 128.2, 128.1, 127.4, 60.9, 14.2. 

MS (70 eV, EI) m/z (%): 330 (100), 285 (37), 257 (53), 253 (30), 207 (97), 152 (30), 105 

(83), 77 (45). 

IR ATR νννν (cm-1): 3054, 2971, 2912, 1714, 1662, 1595, 1580, 1567, 1447, 1440, 1428, 1306, 

1283, 1264, 1238, 1180, 1167, 1153, 1120, 1112, 1106, 1075, 1054, 1033, 1023, 1000, 937, 

923, 894, 882, 861, 805, 768, 747, 712, 704, 695, 669. 

HRMS (EI) for C22H18O3 (330.1256) [M]+: 330.1247. 

 

Synthesis of 2'-benzoyl-[1,1'-biphenyl]-3-carbonitrile (11b):  
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A solution of 10b in THF (0.7 mmol, 0.7 equiv, 0.5 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 9 (1 mmol, 1.0 equiv) 

in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 2 h before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 11b as colorless oil. 

 

Isolated yield: 71 % (261 mg). 

Reaction time: 2 h. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.68 – 7.51 (m, 6H), 7.50 – 7.41 (m, 4H), 7.39 – 7.22 

(m, 3H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 197.8, 141.5, 138.9, 138.8, 137.2, 133.4, 133.3, 132.2, 

130.9, 130.8, 130.1, 129.9, 129.2, 129.0, 128.4, 128.0, 118.5, 112.5. 

MS (70 eV, EI) m/z (%): 283 (98), 282 (28), 206 (79), 151 (25), 105 (100), 77 (53). 

IR ATR νννν (cm-1): 3061, 3028, 2230, 1661, 1595, 1579, 1470, 1448, 1412, 1314, 1284, 1276, 

1264, 1177, 1152, 1110, 1074, 1026, 1000, 928, 905, 846, 802, 757, 727, 707, 690. 

HRMS (EI) for C20H13NO (283.0997) [M]+: 283.0988. 

 

Synthesis of phenyl(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methanone (11c):  

 

 

A solution of 2y in THF (1.2 mmol, 1.2 equiv, 0.9 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 9 (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 11c as colorless oil. 

 

Isolated yield: 93 % (305 mg). 

Reaction time: 15 min. 



C.Experimental Section 
 

                                                                                                                                                                                        153 

Solvent for purification:  i-hexane/ethyl acetate 96:4. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.71 - 7.66 (m, 2 H), 7.65 - 7.43 (m, 7 H), 7.42 - 7.26 

(m, 4 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 198.1, 143.9, 139.9, 138.9, 137.3, 133.2, 130.6, 130.1, 

129.9, 129.4 (q, J=32.5 Hz), 129.3, 128.9, 128.3, 127.7, 125.2 (q, J=3.9 Hz), 124.1 (q, 

J=272.1 Hz). 

MS (70 eV, EI) m/z (%): 326 (100), 325 (27), 249 (91), 201 (34), 152 (24), 105 (74), 77 (42). 

IR ATR νννν (cm-1): 3063, 1663, 1618, 1597, 1581, 1450, 1405, 1322, 1281, 1260, 1162, 1120, 

1114, 1068, 1020, 1006, 926, 843, 806, 764, 737, 709, 698. 

HRMS (EI) for C20H13F3O (326.0918) [M]+: 326.0904. 

 

Synthesis of (4'-(dimethylamino)-[1,1'-biphenyl]-2-yl)(phenyl)methanone  (11d): 

 

 

A solution of 2n in THF (1.2 mmol, 1.2 equiv, 1.1 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 9 (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 11d as an orange solid. 

 

Isolated yield: 94 % (282 mg). 

Reaction conditions: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 97:3 (+ 4 % Et3N). 

m.p.: 112.4-113.8 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.75 - 7.68 (m, 2 H), 7.58 - 7.45 (m, 3 H), 7.44 - 7.35 

(m, 2 H), 7.33 - 7.24 (m, 2 H), 7.21 - 7.14 (m, 2 H), 6.62 - 6.53 (m, 2 H), 2.87 (s, 6 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 199.3, 149.7, 141.2, 138.6, 137.5, 132.7, 130.2, 129.9, 

129.8, 129.8, 128.6, 128.1, 128.1, 126.0, 112.3, 40.4. 

MS (70 eV, EI) m/z (%): 302 (21), 301 (100), 300 (36), 77 (12). 



154 

IR ATR νννν (cm-1): 2924, 2854, 2802, 1663, 1611, 1594, 1580, 1570, 1525, 1479, 1447, 1349, 

1315, 1293, 1281, 1247, 1222, 1204, 1168, 1161, 1150, 1130, 1104, 1062, 1028, 945, 938, 

932, 921, 879, 823, 804, 775, 766, 726, 720, 703, 690, 676. 

HRMS (EI) for C21H19NO (301.1467) [M]+: 301.1452. 

 

Synthesis of (2-(benzo[b]thiophen-3-yl)phenyl)(phenyl)methanone (11e):  

 

 

A solution of 2w in THF (1.2 mmol, 1.2 equiv, 0.9 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 9 (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 50 °C for 2 h before being quenched with 

brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 11e as a red solid. 

 

Isolated yield: 89 % (305 mg). 

Reaction conditions: 2 h, 50 °C. 

Solvent for purification:  i-hexane/ethyl acetate 96:4. 

m.p.: 121.2-123.1 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.75 - 7.49 (m, 8 H), 7.38 - 7.20 (m, 3 H), 7.18 (s, 1 H), 

7.05 - 7.13 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 198.5, 140.1, 139.9, 138.3, 137.2, 135.6, 134.5, 132.4, 

130.4, 130.3, 129.1, 129.1, 127.8, 127.7, 126.0, 124.3, 124.3, 122.7, 122.5. 

MS (70 eV, EI) m/z (%): 314 (100), 313 (21), 285 (19), 234 (76), 165 (30), 105 (21), 77 (27). 

IR ATR νννν (cm-1): 1663, 1593, 1577, 1448, 1424, 1316, 1285, 1270, 1255, 1210, 1183, 1163, 

1147, 1062, 944, 926, 836, 808, 764, 758, 733, 717, 704. 

HRMS (EI) for C21H14OS (314.0765) [M]+: 314.0755. 
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Synthesis of [1,1'-biphenyl]-2-yl(6-chloropyridin-3-yl)methanone (13): 

 

 

A solution of 2a in THF (1.2 mmol, 1.2 equiv, 1.7 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 12 (1 mmol, 1.0 equiv) in 

THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being quenched 

with brine and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 13 as white crystals. 

 

Isolated yield: 72 % (211 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/diethyl ether 2:1. 

m.p.: 108.6-111.2 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 8.42 (dd, J=2.5, 0.6 Hz, 1 H), 7.81 (dd, J=8.3, 2.5 Hz, 1 

H), 7.68 - 7.48 (m, 4 H), 7.24 - 7.12 (m, 6 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 196.3, 154.8, 151.2, 141.2, 139.6, 138.9, 137.6, 131.8, 

131.4, 130.1, 129.1, 129.0, 128.6, 127.8, 127.7, 123.8. 

MS (70 eV, EI) m/z (%): 293 (97), 292 (100), 266 (11), 264 (26), 182 (10), 153 (30), 152 

(50), 151 (13), 140 (18). 

IR ATR νννν (cm-1): 1671, 1594, 1576, 1564, 1478, 1460, 1448, 1433, 1376, 1363, 1289, 1276, 

1266, 1251, 1139, 1115, 1100, 1076, 1052, 1041, 1020, 1008, 970, 961, 926, 918, 884, 844, 

786, 774, 752, 744, 715, 699. 

HRMS (EI) for C18H12ClNO (293.0613) [M]+: 293.0569. 

 

Synthesis of thiophen-2-yl(2-(thiophen-3-yl)phenyl)methanone (15):  
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A solution of 10c in THF (1.2 mmol, 1.2 equiv, 0.8 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97% purity) and 14 (1 mmol, 1.0 equiv) 

in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being 

quenched with brine and extracted with EtOAc. The organic layer was dried with MgSO4, 

filtered, and concentrated in vacuo to yield the crude compound, which was purified by 

column chromatography to yield 15 as a brownish solid. 

 

Isolated yield: 90 % (165 mg). 

Reaction conditions: 15 min. 

Solvent for purification:  i-hexane/diethyl ether 9:1. 

m.p.: 68.8-70.2 °C. 

1H NMR (300 MHz, CDCl3) δ/ppm: 7.65 - 7.47 (m, 4 H), 7.45 - 7.38 (m, 1 H), 7.28 - 7.17 

(m, 3 H), 7.09 (dd, J=4.8, 1.5 Hz, 1 H), 6.94 (dd, J=4.8, 3.7 Hz, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 190.8, 144.5, 140.5, 138.7, 135.2, 134.8, 134.7, 130.3, 

129.7, 128.2, 128.1, 127.9, 127.0, 125.9, 123.4. 

MS (70 eV, EI) m/z (%): 270 (100), 269 (33), 241 (32), 237 (85), 115 (31), 111 (38). 

IR ATR νννν (cm-1): 3094, 2923, 2853, 1628, 1595, 1567, 1511, 1481, 1443, 1407, 1366, 1354, 

1295, 1268, 1258, 1231, 1195, 1164, 1149, 1106, 1085, 1052, 1042, 1026, 889, 859, 842, 804, 

795, 779, 756, 748, 728, 723, 706, 697, 669. 

HRMS (EI) for C15H10OS2 (270.0173) [M]+: 270.0169. 

 

5.2 Preparation of Cross-Coupling Products Using TP4 

 

Synthesis of [1,1'-biphenyl]-2-carbaldehyde (17a):  

 

 

A solution of 2a in THF (1.2 mmol, 1.2 equiv, 1.7 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and imine 16 (1 mmol, 1.0 

equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before being 

quenched with an aq. solution of HCl (2 M) and extracted with EtOAc. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 17a as a yellow oil. 
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Isolated yield: 84 % (152 mg). 

Reaction conditions: 15 min. 

Solvent for purification:  i-hexane/diethyl ether 9:1. 

1H NMR (300 MHz, CDCl3) δ/ppm: 10.00 (d, J=0.8 Hz, 1 H), 8.04 (dd, J=7.7, 1.4 Hz, 1 H), 

7.64 (td, J=7.5, 1.5 Hz, 1 H), 7.52 - 7.43 (m, 5 H), 7.41 - 7.37 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 192.4, 146.0, 137.7, 133.7, 133.5, 130.8, 130.1, 128.4, 

128.1, 127.8, 127.6. 

MS (70 eV, EI) m/z (%): 182 (72), 181 (100), 154 (19), 153 (41), 152 (49), 76 (13). 

IR ATR νννν (cm-1): 3060, 3028, 2845, 2752, 1688, 1655, 1596, 1498, 1473, 1453, 1437, 1392, 

1301, 1252, 1194, 1160, 1101, 1075, 1048, 1033, 1008, 919, 827, 778, 756, 745, 700. 

HRMS (EI) for C13H10O (182.0732) [M]+: 182.0701. 

 

Synthesis of 4'-methoxy-[1,1'-biphenyl]-2-carbaldehyde (17b):  

 

 

A solution of 2i in THF (1.2 mmol, 1.2 equiv, 1.3 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and imine 16 (1 mmol,          

1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min before 

being quenched with an aq. solution of HCl (2 M) and extracted with EtOAc. The organic 

layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 17b as a yellow oil. 

 

Isolated yield: 69 % (152 mg). 

Reaction conditions: 15 min. 

Solvent for purification:  i-hexane/diethyl ether 95:5. 

1H NMR (300 MHz, CDCl3) δ/ppm: 10.00 (t, J=0.7 Hz, 1 H), 8.00 (dt, J=7.8, 0.7 Hz, 1 H), 

7.65 - 7.57 (m, 1 H), 7.49 - 7.40 (m, 2 H), 7.34 - 7.25 (m, 2 H), 7.04 - 6.97 (m, 2 H), 3.87 (d, 

J=0.8 Hz, 3 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 192.6, 159.7, 145.6, 133.8, 133.5, 131.3, 130.8, 130.0, 

127.6, 127.3, 113.9, 55.4. 

MS (70 eV, EI) m/z (%): 212 (100), 211 (30), 197 (20), 181 (27), 169 (59), 168 (19), 152 

(21), 140 (20), 139 (51), 115 (57). 
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IR ATR νννν (cm-1): 3031, 2957, 2935, 2837, 2750, 1688, 1657, 1609, 1596, 1578, 1514, 1474, 

1449, 1442, 1391, 1297, 1271, 1243, 1192, 1177, 1160, 1112, 1100, 1047, 1033, 1016, 1000, 

833, 803, 763, 742, 713. 

HRMS (EI) for C14H12O2: (212.0837) [M]+: 212.0838. 

 

Synthesis of 2-(thiophen-3-yl)benzaldehyde (17c):  

 

 

A solution of 10c in THF (1.2 mmol, 1.2 equiv, 0.8 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and imine 16 (1 mmol,          

1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 16 h before being 

quenched with an aq. solution of HCl (2 M) and extracted with EtOAc. The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which 

was purified by column chromatography to yield 17c as a yellow oil. 

 

Isolated yield: 75 % (140 mg). 

Reaction conditions: 16 h. 

Solvent for purification:  i-hexane/diethyl ether 95:5. 

1H NMR (300 MHz, CDCl3) δ/ppm: 10.10 (d, J=0.6 Hz, 1 H), 8.03 - 7.97 (m, 1 H), 7.65 - 

7.58 (m, 1 H), 7.51 - 7.42 (m, 3 H), 7.29 (dd, J=2.9, 1.2 Hz, 1 H), 7.21 - 7.17 (m, 1 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 192.3, 140.4, 138.3, 134.0, 133.6, 130.6, 129.3, 127.8, 

127.6, 126.3, 125.0. 

MS (70 eV, EI) m/z (%): 188 (100), 160 (100), 159 (24), 158 (21), 116 (20), 115 (85), 43 

(31). 

IR ATR νννν (cm-1): 3099, 2847, 2750, 1683, 1596, 1570, 1474, 1447, 1406, 1389, 1362, 1270, 

1243, 1194, 1160, 1100, 1082, 1047, 1028, 859, 830, 813, 792, 756, 731, 684, 653. 

HRMS (EI) for C11H8OS: (188.0296) [M]+: 188.0300. 
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5.3 Preparation of Cross-Coupling Products Using TP5 

 

Synthesis of (E)-N,N-dimethyl-4-(oct-1-en-1-yl)aniline (19a): 

 

 

A solution of 2n in THF (1.5 mmol, 1.5 equiv, 1.2 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and alkenyl iodide 18 (1 

mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 19a as a slightly yellow oil. 

 

Isolated yield: 70 % (162 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 9:1. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.84 - 0.96 (m, 3 H), 1.23 - 1.52 (m, 8 H), 2.10 - 2.26 

(m, 2 H), 2.95 (s, 6 H), 5.97 - 6.10 (m, 1 H), 6.30 (d, J=16.03 Hz, 1 H), 6.66 - 6.74 (m, 2 H), 

7.21 - 7.29 (m, 2 H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 14.1, 22.7, 28.9, 29.7, 31.8, 33.1, 40.7, 112.8, 126.7, 

127.2, 129.4, 149.6. 

MS (70 eV, EI) m/z (%): 232 (15), 231 (100), 161 (26), 160 (40), 145 (14), 134 (30). 

IR ATR νννν (cm-1): 2954, 2923, 2871, 2852, 2801, 1610, 1519, 1480, 1466, 1454, 1444, 1348, 

1221, 1187, 1164, 1129, 1061, 961, 947, 831, 801, 725. 

HRMS (EI) for C16H25N (231.1987) [M]+: 231.1964. 

 

Synthesis of (E)-1-methoxy-4-(oct-1-en-1-yl)benzene (19b): 

 

 

A solution of 2i in THF (1.5 mmol, 1.5 equiv, 1.3 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and alkenyl iodide 18 (1 

mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 
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MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 19b as a colorless oil. 

 

Isolated yield: 75 % (164 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 20:1. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.87 - 0.99 (m, 3 H), 1.28 - 1.52 (m, 8 H), 2.14 - 2.27 

(m, 2 H), 3.81 (s, 3 H), 6.04 - 6.17 (m, 1 H), 6.29 - 6.39 (m, 1 H), 6.85 (m, 2 H), 7.29 (m, 2 

H). 

13C NMR (75 MHz, CDCl3) δ/ppm: 14.1, 22.7, 28.9, 29.5, 31.8, 33.0, 55.3, 113.9, 126.9, 

129.0, 129.1, 130.8, 158.6. 

MS (70 eV, EI) m/z (%): 218 (27), 148 (14), 147 (100), 134 (19), 121 (24), 115 (10), 91 (16).  

IR ATR νννν (cm-1): 2955, 2924, 2871, 2854, 2836, 1608, 1510, 1465, 1441, 1287, 1244, 1174, 

1105, 1037, 963, 840, 803, 758, 724. 

HRMS (EI) for C15H22O (218.1671) [M]+: 218.1666. 

 

Synthesis of (E)-tert-butyldimethyl(3-(oct-1-en-1-yl)phenoxy)silane (19c): 

 

 

A solution of 2p in THF (1.5 mmol, 1.5 equiv, 1.0 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and alkenyl iodide 18 (1 

mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 19c as a colorless oil. 

 

Isolated yield: 80 % (255 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane. 

1H NMR (300 MHz, CDCl3) δ/ppm: 0.22 (s, 6 H), 0.87 - 0.97 (m, 3 H), 1.02 (s, 9 H), 1.22 - 

1.58 (m, 8 H), 2.22 (q, J=7.28 Hz, 2 H), 6.15 - 6.26 (m, 1 H), 6.30 - 6.38 (m, 1 H), 6.70 (dd, 

J=8.02, 2.21 Hz, 1 H), 6.94 - 7.00 (m, 1 H), 7.12 - 7.28 (m, 2 H). 
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13C NMR (75 MHz, CDCl3) δ/ppm: -4.4, 14.1, 18.2, 22.6, 25.7, 28.9, 29.3, 31.8, 33.0, 117.5, 

118.5, 119.1, 120.1, 129.5, 131.3, 139.5, 155.8. 

MS (70 eV, EI) m/z (%): 318 (13), 262 (20), 261 (100), 163 (9), 151 (6). 

IR ATR νννν (cm-1): 2956, 2928, 2857, 1597, 1578, 1490, 1472, 1464, 1439, 1277, 1252, 1170, 

1156, 1001, 965, 939, 916, 876, 837, 778, 713, 688, 665.  

HRMS (EI) for C20H34OSi (318.2379) [M]+: 318.2376. 

 

Synthesis of (E)-1-(dimethoxymethyl)-4-(oct-1-en-1-yl)benzene (19d): 

 

 

A solution of 2t in THF (1.5 mmol, 1.5 equiv, 0.9 M) was added dropwise to a suspension of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and alkenyl iodide 18 (1 

mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 19d as a colorless oil. 

 

Isolated yield: 69 % (181 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 20:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.81 - 0.87 (m, 3 H), 1.23 - 1.32 (m, 6 H), 1.36 - 1.45 

(m, 2 H), 2.15 (q, J=6.63 Hz, 2 H), 3.32 (s, 6 H), 5.33 (s, 1 H), 6.24 - 6.39 (m, 2 H), 7.28 (m, 

2 H), 7.36 (m, 2 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 14.4, 22.5, 28.8, 29.2, 31.6, 32.9, 52.8, 102.9, 125.9, 

127.2, 129.6, 131.7, 137.1, 137.9. 

MS (70 eV, EI) m/z (%): 216 (24), 133 (11), 132 (100), 131 (30), 117 (66), 91 (24). 

IR ATR νννν (cm-1): 2954, 2927, 2856, 1689, 1609, 1577, 1466, 1422, 1379, 1286, 1268, 1208, 

1170, 1107, 1016, 893, 856, 828, 804, 790, 762, 733, 724, 702. 

HRMS (EI) for C17H26O2 (262.1933) [M]+: 262.1916. 

 

Synthesis of 2-octylquinoline (21a): 
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A solution of 20a in THF (1.5 mmol, 1.5 equiv, 0.9 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 2-chloroquinoline (1f) 

(1 mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 21a as a brown oil. 

 

Isolated yield: 77 % (185 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.87 (t, J=6.63 Hz, 3 H), 1.10 - 1.51 (m, 10 H), 1.81 

(dt, J=15.20, 7.60 Hz, 2 H), 2.88 - 3.05 (m, 2 H), 7.24 - 7.32 (m, 1 H), 7.47 (t, J=7.46 Hz, 1 

H), 7.59 - 7.83 (m, 2 H), 8.06 (dd, J=8.29, 3.87 Hz, 2 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 14.07, 22.63, 29.20, 29.47, 29.55, 30.05, 31.83, 39.26, 

121.34, 125.66, 126.69, 127.44, 128.67, 129.36, 136.29, 147.69, 163.06. 

MS (70 eV, EI) m/z (%): 241 (13), 212 (12), 198 (22), 184 (14), 169 (57), 155 (100), 144 

(59), 128 (35), 115 (19). 

IR ATR νννν (cm-1): 2951, 2921, 1618, 1600, 1562, 1503, 1425, 1309, 1140, 1116, 825, 823, 

768, 753, 751, 721. 

HRMS (EI) for C17H23N (241.1830) [M]+: 241.1829. 

 

Synthesis of 2-octylquinoline (21b): 

 

 

A solution of 20b in THF (1.5 mmol, 1.5 equiv, 0.9 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 2-chloroquinoline (1f) 

(1 mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 21b as yellowish crystals. 

 

Isolated yield: 74 % (261 mg). 

Reaction time: 15 min. 
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Solvent for purification:  i-hexane/ethyl acetate 95:5. 

m.p.: 49.4 – 51.2 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.88 (t, J=6.50 Hz, 3 H), 1.25 (s, 21 H), 1.29 - 1.40 (m, 

5 H), 1.82 (dt, J=15.00, 7.57 Hz, 2 H), 2.95 - 3.04 (m, 2 H), 7.25 - 7.33 (m, 1 H), 7.49 (t, 

J=7.19 Hz, 1 H), 7.65 - 7.80 (m, 2 H), 8.05 - 8.15 (m, 2 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 14.09, 22.67, 29.34, 29.50, 29.53, 29.61, 29.64, 29.67, 

30.04, 31.90, 39.06, 121.35, 125.81, 126.70, 127.45, 128.42, 129.55, 136.61, 147.31, 163.00. 

MS (70 eV, EI) m/z (%): 353 (22), 352 (37), 310 (10), 212 (14), 198 (16), 184 (13), 170 (46), 

157 (23), 156 (100), 144 (63), 128 (16). 

IR ATR νννν (cm-1): 2953, 2914, 2848, 1616, 1600, 1560, 1502, 1471, 1426, 831, 781, 758, 

716. 

HRMS (EI) for C25H38N (352.3004) [M-1]+: 352.3003 

 

Synthesis of 2-octylquinoline (21c): 

 

 

A solution of 20c in THF (1.5 mmol, 1.5 equiv, 0.9 M) was added dropwise to a suspension 

of anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv; 97 % purity) and 2-chloroquinoline (1f) 

(1 mmol, 1.0 equiv) in THF (5 mL) at 23 °C. The suspension was stirred at 23 °C for 15 min 

before being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 21c as brown oil. 

 

Isolated yield: 82 % (261 mg). 

Reaction time: 15 min. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, DMSO) δ/ppm: 3.10 - 3.24 (m, 2 H), 3.26 - 3.37 (m, 2 H), 7.15 - 7.37 

(m, 6 H), 7.50 (t, J=7.46 Hz, 1 H), 7.65 - 7.83 (m, 2 H), 8.05 (d, J=8.57 Hz, 1 H), 8.12 (d, 

J=8.57 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ ppm 35.92, 40.87, 121.57, 125.86, 126.01, 126.81, 127.53, 

128.40, 128.52, 128.75, 129.48, 136.35, 141.47, 147.83, 161.76. 

MS (70 eV, EI) m/z (%): 260 (10), 234 (28), 233 (100), 232 (93), 230 (34), 217 (15), 156 

(37), 128 (16), 115 (15), 105 (11), 91 (22). 
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IR ATR νννν (cm-1): 3054, 3924, 2917, 1618, 1598, 1592, 1498, 1495, 1452, 1425, 1309, 1139, 

1114, 1075, 841, 818, 747, 721, 696. 

HRMS (EI) for C17H15N (233.1204) [M]+: 233.1197. 

 

6. Room-Temperature Chromium(II)-Catalyzed Direct Aryl ation of 
Pyridines, Aryl Oxazolines and Imines. 

 

6.1 Preparation of Starting Materials  

 

2-(Trimethylsilyl)benzaldehyde was prepared according to the methods describe in the 

literature.116 

Starting materials 22 is commercially available. 

 

Synthesis of 2-(2-(trimethylsilyl)phenyl)pyridine (24):117 

 

 

A solution of TMPMgCl·LiCl in THF (4 mmol, 2 equiv, 1.2 M) was added dropwise to a 

solution of 2-phenylpyridine (3a) (310 mg, 2 mmol, 1.0 equiv) in THF (10 ml). The reaction 

mixture was heated to 55 °C for 50 h. Then, the reaction mixture was cooled down to -30 °C 

and a solution of TMSCN (0.397 mg, 4 mmol, 2 equiv) in THF (4 ml) was added and slowly 

warmed up to 23 °C. Reaction mixture was quenched with brine and extracted with EtOAc. 

The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield the 

crude compound, which was purified by column chromatography to yield 24 as a colorless 

oil. 

 

Isolated yield: 54 % (245 mg). 

Solvent for purification:  i-hexane/ethyl acetate 15:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.08 (s, 9 H), 7.25 - 7.30 (m, 1 H), 7.37 - 7.53 (m, 4 H), 

7.68 - 7.80 (m, 2 H), 8.65 (d, J=4.70 Hz, 1 H). 

                                                             
116 So, S., S.; Burkett, J. A.; Mattson, A. E. Org. Lett. 2011, 13, 716. 
117 Jaric, M.; Haag, B. A.; Unsinn, A.; Karaghiosoff, K.; Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 5451. 
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13C NMR (75 MHz, DMSO) δ/ppm: 0.81, 122.01, 123.09, 127.48, 128.61, 128.75, 135.46, 

136.53, 139.35, 146.74, 148.28, 161.22  

MS (70 eV, EI) m/z (%): 212 (100), 213 (19), 182 (34), 98 (9), 44 (42), 43 (12), 41 (6). 

IR ATR νννν (cm-1): 3050, 2946, 1586, 1569, 1556, 1477, 1423, 1295, 1242, 1150, 1123, 1101, 

1021, 990, 832, 797, 747, 726, 680. 

HRMS (EI) for C14H17NSi (226.1052) [M-H]+: 226.1058. 

 

Synthesis of 4,4-dimethyl-2-(2-(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28):  

 

 

A solution of nBuLi in nhexane (6 mmol, 1 equiv, 2.55 M) was added dropwise to a solution 

of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (1051 mg, 6 mmol, 1 equiv) in Et2O (6 ml) at 0 

°C. The reaction mixture was stirred 15 min at 0 °C and 30 min at 23 °C. Then a solution of 

TMSCl (761 mg, 6 mmol, 1 equiv) in Et2O (30 ml) was added, and the reaction mixture was 

reflux for 3 h. After cooling down to 23 °C, the reaction mixture was quenched with brine and 

and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 28 as a colorless oil. 

 

Isolated yield: 56% (829 mg). 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 31 (s, 9 H), 1.38 (s, 6 H), 4.08 (s, 2 H), 7.34 - 7.41 (m, 

2 H), 7.59 - 7.64 (m, 1 H), 7.86 (dd, J=7.19, 1.66 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.66, 28.49, 67.79, 79.06, 128.63, 129.50, 129.69, 

133.82, 135.15, 140.17, 163.58.  

MS (70 eV, EI) m/z (%): 247 (14), 232 (86), 160 (56), 137 (28), 125 (30), 111 (66), 97 (84), 

85 (59), 71 (75), 57 (100), 55 (70). 

IR ATR νννν (cm-1): 2971, 2958, 2894, 1655, 1462, 1355, 1349, 1307, 1241, 1187, 1128, 1092, 

1057, 1038, 989, 966, 923, 834, 779, 730, 687. 

HRMS (EI) for C14H21NOSi (247.1392) [M]+: 247.1379. 
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Synthesis of 4-methoxy-N-(2-(trimethylsilyl)benzylidene)aniline (32):  

 

 

A mixture of 2-(trimethylsilyl)benzaldehyde116 (891 mg, 5 mmol, 1 equiv), anisidine (616 mg, 

5 mmol, 1 equiv), Na2SO4 (53 mg) and molecular sieves (53 mg) in DCM (5 ml) was stirred at 

23 °C for 12 h. The reaction mixture was then filtrated through a pad of Celite®. After 

washing the pad of Celite® with Et2O, the crude mixture was purifired using Kugelrohr 

destillation to yield the desired compound 32 as a light yellow oil. 

 

Isolated yield: 92% (166 mg). 

1H NMR (300 MHz, DMSO) δ/ppm: 0.40 (s, 9 H), 3.84 (s, 3 H), 6.96 (d, J=8.85 Hz, 2 H), 

7.24 (d, J=8.57 Hz, 2 H), 7.44 (t, J=8.29 Hz, 2 H), 7.65 (d, J=7.46 Hz, 1 H), 8.08 (d, J=7.19 

Hz, 1 H), 8.77 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ ppm 1.00, 55.49, 114.50, 114.83, 116.62, 122.12, 128.38, 

129.35, 129.80, 130.59, 135.02, 141.05, 141.51, 144.75, 158.26, 158.95, 172.65. 

MS (70 eV, EI) m/z (%): 283 (5), 270 (6), 269 (20), 268 (100), 253 (6), 134 (7), 123 (13). 

IR ATR νννν (cm-1): 2952, 2890, 1692, 1681, 1615, 1592, 1510, 1503, 1465, 1437, 1296, 1240, 

1179, 1116, 1073, 1031, 825, 754, 725, 689. 

HRMS (EI) for C17H21NOSi (283.1392) [M]+: 283.1388. 

 

Synthesis of N-(2-(trimethylsilyl)benzylidene)butan-1-amine (33):  

 

 

A mixture of 2-(trimethylsilyl)benzaldehyde116 (891 mg, 5 mmol, 1 equiv), butan-1-amine 

(365 mg, 5 mmol, 1 equiv), Na2SO4 (53 mg) and molecular sieves (53 mg) in DCM (5 ml) 

was stirred at 23 °C for 12 h.  The reaction mixture was, then, filtrated through a pad of 

Celite®. After washing the pad of Celite® with Et2O, the crude mixture was purifired using 

Kugelrohr destillation to yield the desired compound 33 as a colorless oil. 

 

Isolated yield: 94% (166 mg). 
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1H NMR (300 MHz, DMSO) δ/ppm: 0.36 (s, 9 H), 0.96 (t, J=7.33 Hz, 3 H), 1.34 - 1.48 (m, 2 

H), 1.65 - 1.79 (m, J=7.36, 7.36, 7.26, 7.05 Hz, 2 H), 3.63 (t, J=6.91 Hz, 2 H), 7.39 (quin, 

J=6.43 Hz, 2 H), 7.58 (d, J=6.63 Hz, 1 H), 7.92 (d, J=6.91 Hz, 1 H), 8.59 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.82, 13.88, 20.50, 32.85, 61.48, 127.47, 129.21, 

129.28, 134.60, 140.05, 141.57, 161.41. 

MS (70 eV, EI) m/z (%): 218 (90), 190 (54), 163 (78), 162 (48), 253 (6), 161 (100), 111 (41), 

97 (59), 83 (71), 69 (72), 55 (70), 43 (57). 

IR ATR νννν (cm-1): 2957, 2928, 2874, 1656, 1639, 1465, 1433, 1376, 1250, 1241, 1120, 1077, 

975, 832, 753, 721, 689. 

HRMS (EI) for C14H22NSi (233.1600) [M-H]+: 233.1512. 

 

Synthesis of N-(2-(trimethylsilyl)benzylidene)butan-1-amine (35):  

 

 

A mixture of 2-chlorobenzaldehyde (703 mg, 5 mmol, 1 equiv), butan-1-amine (365 mg, 5 

mmol, 1 equiv), Na2SO4 (53 mg) and molecular sieves (53 mg) in DCM (5 ml) was stirred at 

23 °C for 12 h. The reaction mixture was, then, filtrated through a pad of Celite®. After 

washing the pad of Celite® with Et2O, the crude mixture was purifired using Kugelrohr 

destillation to yield the desired compound 35 as a colorless oil. 

 

Isolated yield: 87 % (170 mg). 

1H NMR (300 MHz, DMSO) δ/ppm: 0.95 (t, J=7.33 Hz, 3 H) 1.40 (dq, J=14.89, 7.38 Hz, 2 

H) 1.58 - 1.78 (m, J=7.36, 7.36, 7.26, 7.05 Hz, 2 H) 3.65 (t, J=6.91 Hz, 2 H) 7.20 - 7.39 (m, 3 

H) 8.01 (dd, J=7.19, 1.93 Hz, 1 H) 8.69 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 13.85, 20.42, 32.92, 61.56, 126.92, 128.26, 129.68, 

131.21, 133.40, 134.88, 157.44. 

MS (70 eV, EI) m/z (%): 196 (100), 148 (4), 140 (7), 102 (3), 89 (8). 

IR ATR νννν (cm-1): 2955, 2928, 2871, 2827, 1637, 1593, 1567, 1467, 1439, 1372, 1273, 1210, 

1122, 1050, 1028, 899, 867, 751, 705. 

HRMS (EI) for C11H15ClN (196.0893) [M+H]+: 196.0885. 
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6.2 Preparation of Arylated Products Using TP6 

 

Synthesis of 10-phenylbenzo[h]quinoline (23a):  

 

 

According to TP6, a solution of PhMgCl (2a) in THF (1.12 mmol, 4 equiv, 1.62 M) was 

added dropwise to a mixture of anhydrous CrCl2 (3.4 mg, 0.028 mmol, 0.1 equiv) and 

benzo[h]quinoline (22) (50 mg, 0.28 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (5.3 

mg, 0.42 mmol, 1.5 equiv) was added dropwise at 23 °C. Reaction mixture was stirred at 23 

°C for 24 h, before being quenched with brine and extracted with EtOAc. The organic layer 

was dried with MgSO4, filtered, and concentrated in vacuo to yield the crude compound, 

which was purified by column chromatography to yield 23a as a colorless oil. 

 

Isolated yield: 95 %. 

Solvent for purification:  i-hexane, than toluene. 

1H NMR (300 MHz, DMSO) δ/ppm: 7.15 - 7.49 (m, 6 H), 7.57 (dd, J=7.33, 1.24 Hz, 1 H), 

7.61 - 7.77 (m, 2 H), 7.78 - 8.00 (m, 2 H), 8.10 (dd, J=8.02, 1.94 Hz, 1 H), 8.45 (dd, J=4.28, 

1.80 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 121.06, 125.71, 125.88, 127.07, 127.23, 127.38, 127.93, 

128.32, 128.72, 128.89, 131.49, 134.99, 135.29, 141.68, 146.29, 146.67, 146.79. 

MS (70 eV, EI) m/z (%): 255 (25), 254 (100), 127 (16), 127 (6), 126 (12), 45 (5), 42 (30). 

IR ATR νννν (cm-1): 3046, 3023, 2957, 2928, 2859, 1619, 1587, 1565, 1509, 1492, 1442, 1416, 

1393, 1323, 1181, 1132, 1081, 1026, 1014, 989, 960, 924, 833, 756, 729, 696. 

HRMS (EI) for C19H12N (254.0970) [M-H]+: 254.0964. 

 

Synthesis of 10-phenylbenzo[h]quinoline (23b):  

 

 

According to TP6, solution of 10d in THF (1.12 mmol, 4 equiv, 1.62 M) was added dropwise 

to a mixture of anhydrous CrCl2 (3.4 mg, 0.028 mmol, 0.1 equiv) and benzo[h]quinoline (22) 
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(50 mg, 0.28 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (5.3 mg, 0.42 mmol, 1.5 

equiv) was added dropwise at 23 °C. Reaction mixture was stirred at 23 °C for 24 h, before 

being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 23b as a colorless oil. 

 

Isolated yield: 90 %. 

Solvent for purification:  i-hexane, than toluene. 

1H NMR (300 MHz, DMSO) δ/ppm: 3.81 (s, 3 H), 6.89 - 7.03 (m, 3 H,) 7.28 - 7.39 (m, 2 H), 

7.59 (d, J=7.19 Hz, 1 H), 7.63 - 7.74 (m, 2 H), 7.86 (d, J=8.85 Hz, 1 H), 7.93 (d, J=7.74 Hz, 1 

H), 8.08 (dd, J=7.88, 1.52 Hz, 1 H), 8.49 (dd, J=4.15, 1.66 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ ppm 55.24, 111.49, 114.39, 121.08, 121.47, 125.94, 127.00, 

127.21, 128.00, 128.23, 128.30, 129.01, 131.30, 134.96, 135.13, 141.46, 146.73, 146.95, 

147.84, 159.02. 

MS (70 eV, EI) m/z (%): 285 (35), 284 (100), 270 (11), 268 (7), 242 (11), 241 (31), 239 (4), 

120 (14). 

IR ATR νννν (cm-1): 3045, 2931, 1598, 1577, 1481, 1450, 1410, 1316, 1284, 1218, 1165, 1130, 

1047, 1038, 859, 830, 777, 748, 728, 698, 666. 

HRMS (EI) for C20H15NO (284.1075) [M-H]+: 284.1069 

 

Synthesis of 4-(benzo[h]quinolin-10-yl)-N,N-dimethylaniline (23c):  

 

 

According to TP6, a solution of 2n in THF (2 mmol, 4 equiv, 0.76 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and benzo[h]quinoline (22) (90 

mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) 

was added dropwise at 23 °C.  The reaction mixture was stirred at 23 °C for 24 h, before 

being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 23c as a light brownish oil. 

 

Isolated yield: 87 %. 
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Solvent for purification:  i-hexane, than toluene. 

1H NMR (300 MHz, DMSO) δ/ppm: 3.04 (s, 6 H), 6.83 (d, J=8.57 Hz, 2 H), 7.23 - 7.35 (m, 

3 H), 7.55 - 7.61 (m, 1 H), 7.62 - 7.70 (m, 2 H), 7.85 (t, J=8.71 Hz, 2 H), 8.07 (dd, J=7.88, 

1.52 Hz, 1 H), 8.53 (dd, J=4.15, 1.66 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 40.95, 112.04, 120.90, 125.75, 127.06, 127.13, 127.31, 

128.36, 129.17, 129.57, 131.80, 135.01, 135.13, 135.17, 141.94, 146.86, 147.22, 149.08. 

MS (70 eV, EI) m/z (%): 299 (13), 298(62), 297 (100), 281 (32), 252 (16), 149 (16), 126 

(10). 

IR ATR νννν (cm-1): 3037, 2856, 2794, 1608, 1518, 1439, 1415, 1340, 1323, 1221, 1194, 1163, 

1131, 1081, 1057, 945, 906, 836, 810, 760, 731. 

HRMS (EI) for C21H17N2 (297.1392) [M-H]+: 297.1385. 

 

Synthesis of 10-(benzo[d][1,3]dioxol-5-yl)benzo[h]quinoline (23d):  

 

 

According to TP6, a solution of 2k in THF (2 mmol, 4 equiv, 0.82 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and benzo[h]quinoline (22) (90 

mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) 

was added dropwise at 23 °C. Reaction mixture was stirred at 23 °C for 24 h, before being 

quenched with brine and extracted with EtOAc. The organic layer was dried with MgSO4, 

filtered, and concentrated in vacuo to yield the crude compound, which was purified by 

column chromatography to yield 23d as a yellow crystals. 

 

Isolated yield: 67 % 

Solvent for purification:  i-hexane, than toluene. 

m.p.: 134.8 – 136.4 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 6.04 (br. s., 2 H), 6.81 - 6.94 (m, 2 H), 7.38 (dd, 

J=8.02, 4.42 Hz, 2 H), 7.56 (dd, J=7.33, 1.24 Hz, 1 H), 7.61 - 7.75 (m, 2 H), 7.81 - 7.96 (m, 2 

H), 8.13 (dd, J=8.02, 1.66 Hz, 1 H), 8.60 (dd, J=4.42, 1.66 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 100.79, 107.70, 110.02, 121.14, 121.56, 125.86, 127.22, 

127.36, 127.98, 128.47, 128.64, 131.62, 135.09, 135.76, 139.93, 141.13, 145.94, 146.27, 

146.81, 146.94. 
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 MS (70 eV, EI) m/z (%): 299 (36), 298(100), 241 (9), 240 (10), 239 (9), 120 (11), 119 (6). 

IR ATR νννν (cm-1): 2920, 1447, 1332, 1220, 1181, 1033, 931, 836, 805, 766, 731. 

HRMS (EI) for C20H12NO2 (298.0868) [M-H]+: 298.0865. 

 

Synthesis of 10-(4-(trifluoromethyl)phenyl)benzo[h]quinoline (23e):  

 

 

According to TP6, a solution of 2y in THF (2 mmol, 4 equiv, 0.90 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and benzo[h]quinoline (22) (90 

mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) 

was added dropwise at 23 °C. The reaction mixture was stirred at 23 °C for 38 h, before being 

quenched with brine and extracted with EtOAc. The organic layer was dried with MgSO4, 

filtered, and concentrated in vacuo to yield the crude compound, which was purified by 

column chromatography to yield 23e as beige crystals. 

 

Isolated yield: 66 % 

Solvent for purification:  i-hexane, than toluene. 

m.p.: 101.3 – 103.1 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 7.35 (dd, J=8.02, 4.15 Hz, 1 H) 7.40 - 7.57 (m, 3 H) 

7.57 - 7.78 (m, 4 H) 7.89 (d, J=8.57 Hz, 1 H) 7.98 (d, J=7.74 Hz, 1 H) 8.12 (dd, J=8.02, 1.66 

Hz, 1 H) 8.42 (dd, J=4.28, 1.52 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 121.27, 124.29 (q, J=3.65 Hz), 124.76 (q, J=271.80 

Hz), 126.08, 127.14, 127.31, 127.83 (J=31.98 Hz), 128.28, 128.52, 128.68, 129.01, 131.14, 

134.97, 135.50, 140.17, 146.16, 146.79, 150.02. 

MS (70 eV, EI) m/z (%): 323 (34), 322 (100), 352 (17), 161 (5), 151 (5), 126 (9), 43 (15). 

IR ATR νννν (cm-1): 3048, 2962, 2923, 1615, 1590, 1567, 1508, 1421, 1403, 1320, 1151, 1103, 

1061, 1014, 833, 827, 761, 729, 679. 

HRMS (EI) for C20H11NO2 (322.0844) [M-H]+: 322.0843. 
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Synthesis of 10-(4-fluorophenyl)benzo[h]quinoline (23f):  

 

 

According to TP6, a solution of 2g in THF (2 mmol, 4 equiv, 1.05 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and benzo[h]quinoline (22) (90 

mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) 

was added dropwise at 23 °C. The reaction mixture was stirred at 23 °C for 24 h, before being 

quenched with brine and extracted with EtOAc. The organic layer was dried with MgSO4, 

filtered, and concentrated in vacuo to yield the crude compound, which was purified by 

column chromatography to yield 23f as beige crystals. 

 

Isolated yield: 86 %. 

Solvent for purification:  i-hexane, than toluene. 

m.p.: 117.7 – 119.3 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 7.10 (t, J=8.71 Hz, 1 H), 7.19 - 7.47 (m, 4 H), 7.53 (d, 

J=7.19 Hz, 1 H), 7.60 - 7.79 (m, 2 H), 7.86 (d, J=8.85 Hz, 1 H), 7.94 (d, J=7.74 Hz, 1 H), 

8.09 (d, J=8.02 Hz, 1 H), 8.40 - 8.50 (m, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 113.96, 114.25, 121.13, 125.99, 127.02, 127.26, 128.13, 

128.29, 129.00, 130.09, 130.20, 131.49, 135.01, 135.30, 140.65, 142.18, 142.23, 146.70, 

146.83, 159.95, 163.17. 

MS (70 eV, EI) m/z (%): 323 (34), 322 (100), 352 (17), 161 (5), 151 (5), 126 (9), 43 (15). 

IR ATR νννν (cm-1): 3048, 2923, 2847, 1587, 1513, 1502, 1420, 1209, 1156, 1132, 1090, 1015, 

829, 810, 758, 730. 

HRMS (EI) for C19H11N1F1 (272.0876) [M-H]+: 272.0867. 

 

Synthesis of 2-(3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)pyridine (25a):  
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According to TP6, a solution of 2a in THF (2 mmol, 4 equiv, 1.66 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25a as white 

crystals. 

 

Isolated yield: 92 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

m.p.: 84.8 – 86.8 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: -0.01 (s, 9 H), 6.90 (d, J=7.74 Hz, 1 H), 6.95 - 7.29 (m, 

6 H), 7.32 - 7.53 (m, 3 H), 7.70 (dd, J=7.19, 1.38 Hz, 1 H), 8.62 (d, J=4.42 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.31, 121.78, 126.26, 126.36, 127.54, 127.58, 129.81, 

130.81, 134.11, 135.40, 139.89, 140.80, 141.66, 145.16, 148.12, 160.67. 

MS (70 eV, EI) m/z (%): 290 (6), 289 (23), 288 (100), 258 (18), 149 (6), 135 (4). 

IR ATR νννν (cm-1): 2948, 2923, 1726, 1584, 1471, 1402, 1239, 1142, 1054, 1021, 854, 833, 

751, 699. 

HRMS (EI) for C20H20NSi (302.1365) [M-H]+: 302.1359. 

 

Synthesis of 2-(3'-methoxy-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)pyridine (25b):  

 

 

According to TP6, a solution of 10d in THF (2 mmol, 4 equiv, 1.09 M) was added dropwise 

to a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 



174 

the crude compound, which was purified by column chromatography to yield 25b as a 

colorless oil. 

 

Isolated yield: 79 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

1H NMR (300 MHz, DMSO) δ/ppm: -0.01 (s, 9 H), 3.59 (s, 3 H), 6.58 (d, J=1.66 Hz, 1 H), 

6.64 - 6.74 (m, 2 H), 6.92 (d, J=7.74 Hz, 1 H), 7.01 - 7.18 (m, 2 H), 7.35 - 7.50 (m, 3 H), 7.70 

(dd, J=6.77, 2.07 Hz, 1 H), 8.63 (d, J=4.42 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.31, 55.08, 112.87, 114.81, 121.77, 122.29, 126.28, 

127.49, 128.60, 130.66, 134.19, 135.39, 139.91, 140.62, 143.05, 145.25, 148.15, 158.78, 

160.84. 

MS (70 eV, EI) m/z (%): 320 (6), 319 (30), 318 (100), 302 (15), 274 (16), 244 (6), 158 (5). 

IR ATR νννν (cm-1): 3057, 2949, 1599, 1585, 1564, 1487, 1474, 1463, 1430, 1400, 1315, 1299, 

1245, 1222, 1178, 1146, 1037, 989, 887, 834, 762, 747, 702. 

HRMS (EI) for C21H23NOSi (333.1549) [M]+: 333.1552. 

 

Synthesis of N,N-dimethyl-2'-(pyridin-2-yl)-3'-(tri methylsilyl)-[1,1'-biphenyl]-4-amine 
(25c):  

 

 

According to TP6, a solution of 2u in THF (2 mmol, 4 equiv, 1.10 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 4 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25c as redish 

crystals.  

 

Isolated yield: 85 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

m.p.: 138.5 – 140.2 °C. 
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1H NMR (300 MHz, DMSO) δ/ppm: -0.02 (s, 9 H), 2.89 (s, 6 H), 6.56 (d, J=8.57 Hz, 2 H), 

6.89 - 6.97 (m, 3 H), 7.12 (dd, J=6.36, 4.98 Hz, 1 H), 7.37 - 7.47 (m, 3 H), 7.64 (dd, J=6.63, 

2.21 Hz, 1 H), 8.63 (d, J=4.15 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.34, 40.71, 112.12, 121.55, 126.33, 127.44, 130.42, 

130.60, 130.92, 133.42, 135.20, 139.77, 140.66, 145.37, 148.35, 148.59, 161.35. 

MS (70 eV, EI) m/z (%): 333 (8), 332 (25), 331 (100), 317 (8), 316 (6), 315 (27), 165 (15), 

43 (31). 

IR ATR νννν (cm-1): 2949, 2928, 1610, 1587, 1522, 1477, 1401, 1350, 1239, 1194, 1155, 1057, 

990, 946, 846, 836, 799, 762, 749. 

HRMS (EI) for C22H26N2Si (346.1865) [M]+: 346.1852. 

 

Synthesis of 2-(3'-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-
yl)pyridine (25d):  

 

 

According to TP6, a solution of 2p in THF (2 mmol, 4 equiv, 0.80 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25d as white 

crystals.  

 

Isolated yield: 83 %. 

Solvent for purification:  i-hexane/ethyl acetate 15:1. 

m.p.: 60.8 – 62.5 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: -0.02 (s, 9 H), 0.08 (s, 6 H), 0.93 (s, 9 H), 6.53 - 6.74 

(m, 3 H), 6.91 (d, J=7.99 Hz, 1 H), 7.00 (t, J=7.80 Hz, 1 H), 7.08 - 7.15 (m, 1 H), 7.36 - 7.40 

(m, 2 H), 7.45 (t, J=7.51 Hz, 1 H), 7.69 (dd, J=7.41, 1.36 Hz, 1 H), 8.61 (d, J=4.09 Hz, 1 H). 
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13C NMR (75 MHz, DMSO) δ/ppm: -4.43, 0.33, 18.13, 25.65, 118.15, 121.70, 121.74, 

123.18, 126.14, 127.34, 128.49, 130.72, 134.17, 135.11, 139.89, 140.57, 143.21, 145.40, 

148.42, 154.91, 160.82. 

MS (70 eV, EI) m/z (%): 420 (14), 419 (37), 418 (100), 402 (6), 180 (14), 73 (13). 

IR ATR νννν (cm-1): 2955, 2929, 2853, 1599, 1583, 1563, 1483, 1471, 1454, 1398, 1299, 1250, 

1213, 1191, 1160, 1051, 939, 881, 833, 776, 749, 675. 

HRMS (EI) for C26H35NOSi2 (433.2257) [M]+: 433.2235. 

 

Synthesis of 2-(4'-fluoro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)pyridine (25e):  

 

 

According to TP6, a solution of 2g in THF (2 mmol, 4 equiv., 0.80 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25e as white 

crystals.  

 

Isolated yield: 84 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

m.p.: 72.0 – 73.8 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: -0.02 (s, 9 H), 6.78 - 6.91 (m, 3 H), 7.03 (dd, J=8.57, 

5.53 Hz, 2 H), 7.13 (dd, J=6.91, 5.25 Hz, 1 H), 7.36 - 7.49 (m, 3 H), 7.70 (d, J=7.46 Hz, 1 H), 

8.61 (d, J=4.70 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.28, 114.33, 114.61, 121.76, 126.18, 127.48, 130.69, 

131.23, 134.18, 135.23, 137.73, 139.74, 139.98, 145.60, 148.48, 159.90, 160.74, 163.16. 

MS (70 eV, EI) m/z (%): 308 (7), 307 (25), 306 (100), 276 (21), 153 (2). 

IR ATR νννν (cm-1): 2949, 2925, 1584, 1508, 1474, 1416, 1245, 1237, 1219, 1157, 1093, 1044, 

1013, 856, 836, 805, 793, 749, 686. 
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HRMS (EI) for C20H20FNSi (321.1349) [M]+: 321.1321. 

 

Synthesis of 2-(3'-methyl-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)pyridine (25f):  

 

 

According to TP6, a solution of 2b in THF (2 mmol, 4 equiv, 0.90 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(2-

(trimethylsilyl)phenyl)pyridine (24) (113.5 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 6 h, before being quenched with brine and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25f as a 

colorless oil. 

 

Isolated yield: 89 %. 

Solvent for purification:  i-hexane/ethyl acetate 15:1. 

1H NMR (300 MHz, DMSO) δ/ppm: -0.03 (s, 9 H), 2.18 (s, 3 H), 6.79 - 7.15 (m, 6 H), 7.31 - 

7.48 (m, 3 H), 7.67 (dd, J=6.91, 1.94 Hz, 1 H), 8.60 (d, J=4.42 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.32, 21.22, 121.59, 126.19, 126.84, 126.91, 127.36, 

127.38, 130.71, 130.76, 133.97, 135.00, 137.06, 139.79, 140.80, 141.60, 145.59, 148.35, 

161.03. 

MS (70 eV, EI) m/z (%): 316 (10), 306 (17), 304 (23), 303 (27), 302 (100), 272 (16), 245 

(22), 244 (66), 127 (14), 105 (11), 57 (15), 44 (22). 

IR ATR νννν (cm-1): 3053, 2948, 1604, 1586, 1564, 1474, 1400, 1260, 1244, 1144, 1062, 1021, 

989, 882, 834, 781, 761, 744, 706, 671. 

HRMS (EI) for C21H22NSi (316.1522) [M-H]+: 316.1524 
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Synthesis of 2-(3-iodo-3'-methyl-[1,1'-biphenyl]-2-yl)pyridine (25fa):  

 

 

To a solution of 25f (317.5 mg, 1 mmol, 1.0 equiv) in CH2Cl2 (5 ml) was added dropwise ICl 

(496 mg, 3.5 mmol, 3.5 equiv) at 0 °C. Reaction mixture was warm up to 23 °C and then was 

stirred under reflux for 12 h, before being quenched with sat. aq. Na2S2O3 and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 25fa as a 

colourless oil. 

 

Isolated yield: 56 %. 

Solvent for purification:  i-hexane/ethyl acetate 15:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 2.18 (s, 3 H) 6.74 - 7.05 (m, 5 H) 7.07 - 7.19 (m, 2 H) 

7.39 (d, J=7.74 Hz, 1 H) 7.50 (td, J=7.67, 1.52 Hz, 1 H) 7.95 (d, J=7.74 Hz, 1 H) 8.62 (d, 

J=4.42 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 21.20, 99.24, 122.06, 125.26, 126.42, 127.46, 127.47, 

129.66, 129.91, 130.22, 135.78, 137.22, 138.26, 140.68, 142.78, 143.62, 148.65, 161.31. 

MS (70 eV, EI) m/z (%): 372 (16), 371 (96), 370 (100), 244 (41), 243 (67), 242 (31), 149 

(22), 71 (23), 43 (28). 

IR ATR νννν (cm-1): 2956, 2918, 2856, 1722, 1587, 1564, 1547, 1445, 1418, 1270, 1126, 1121, 

1072, 1020, 989, 960, 776, 744, 704. 

HRMS (EI) for C18H14IN (370.0093) [M-1]+: 370.0081. 

 

Synthesis of 3''-methyl-2'-(pyridin-2-yl)-[1,1':3',1''-terphenyl]-3-carbonitrile (27):  
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A solution of 26 in THF (0.45 mmol, 1.5 equiv, 0.31 M) was added dropwise to a mixture of 

Pd(dba)2 (4.7 mg, 0.009 mmol, 0.03 equiv), tris(2-furyl)phosphine (4.2 mg, 0.018 mmol, 0.06 

equiv) and 2-(3-iodo-3'-methyl-[1,1'-biphenyl]-2-yl)pyridine (25fa) (111.4 mg, 0.3 mmol, 1 

equiv) in THF (0.3 ml) at 23 °C. The reaction mixture was stirred at 50 °C for 15 h, before 

being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 27 as white crystals. 

 

Isolated yield: 70 %. 

Solvent for purification:  i-hexane/ethyl acetate 15:1. 

m.p.: 125.5-127.2 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 2.20 (s, 3 H), 6.75 - 6.89 (m, 2 H), 6.89 - 7.14 (m, 4 H), 

7.17 - 7.45 (m, 6 H), 7.46 - 7.58 (m, 2 H), 8.32 (d, J=4.70 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 21.22, 111.78, 118.68, 121.24, 126.59, 126.70, 127.27, 

127.55, 128.39, 128.42, 128.99, 129.91, 130.28, 130.43, 132.98, 133.95, 135.19, 137.32, 

138.44, 139.53, 140.84, 142.20, 142.96, 148.60, 158.18. 

MS (70 eV, EI) m/z (%): 379 (7), 347 (9), 346 (51), 345 (100), 343 (6), 303 (2), 172 (4), 165 

(5). 

IR ATR νννν (cm-1): 3051, 2919, 1590, 1575, 1473, 1436, 1401, 805, 780, 758, 734, 706, 698, 

681. 

HRMS (EI) for C25H17N2 (345.1392) [M-1]+: 345.1387. 

 

Synthesis of 4,4-dimethyl-2-(3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole 
(29a):  

 

 

According to TP6, a solution of 2a in THF (2 mmol, 4 equiv, 1.10 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 4,4-dimethyl-2-(2-

(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28) (123.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted 
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with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to 

yield the crude compound, which was purified by column chromatography to yield 29a as a 

colorless oil.  

 

Isolated yield: 91 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.35 (s, 9 H), 1.10 (s, 6 H), 3.81 (s, 2 H), 7.28 - 7.45 

(m, 7 H), 7.55 - 7.59 (m, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.21, 27.97, 67.87, 78.82, 125.80, 126.99, 127.66, 

128.11, 128.45, 129.07, 130.49, 133.38, 134.03, 139.20, 141.30, 142.26, 162.77  

MS (70 eV, EI) m/z (%): 323 (29), 322 (100), 308 (30), 252 (8), 236 (19), 220 (10), 42 (11). 

IR ATR νννν (cm-1): 3054, 2965, 2892, 1659, 1462, 1443, 1413, 1363, 1344, 1286, 1246, 1210, 

1183, 1146, 1097, 1033, 961, 920, 854, 836, 760, 751, 697. 

HRMS (EI) for C20H24NOSi (322.1627) [M-H]+: 322.1631. 

 

Synthesis of 2-(3'-methoxy-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5-
dihydrooxazole (29b):  

 

 

According to TP6, a solution of 10d in THF (2 mmol, 4 equiv, 0.84 M) was added dropwise 

to a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 4,4-dimethyl-2-(2-

(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28) (123.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 5 h, before being quenched with brine and extracted 

with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to 

yield the crude compound, which was purified by column chromatography to yield 29b as a 

beij oil.  

 

Isolated yield: 85 %. 

Solvent for purification:  i-hexane/ethyl acetate 6:1. 
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1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 1.11 (s, 6 H), 3.79 (s, 3 H), 3.84 (s, 2 H), 

6.85 (d, J=8.23 Hz, 1 H), 6.94 (br. s., 1 H), 6.97 (d, J=7.68 Hz, 1 H), 7.24 (t, J=7.68 Hz, 1 H), 

7.31 (d, J=7.41 Hz, 1 H), 7.40 (t, J=7.41 Hz, 1 H), 7.56 (d, J=7.41 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.20, 27.93, 55.25, 67.82, 78.92, 112.96, 114.49, 

121.66, 128.47, 128.67, 130.39, 133.45, 133.83, 139.23, 142.14, 142.60, 158.99, 162.83. 

MS (70 eV, EI) m/z (%): 353 (17), 352 (58), 338 (18), 281 (17), 266 (42), 236 (16), 126 (59), 

61 (16). 

IR ATR νννν (cm-1): 3056, 2960, 2926, 1664, 1636, 1599, 1574, 1493, 1461, 1363, 1321, 1288, 

1223, 1216, 1174, 1094, 1035, 960, 918, 868, 775, 759, 697. 

HRMS (EI) for C21H26NO2Si (352.1733) [M-H]+: 352.1725. 

 

Synthesis of 2'-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-N,N-dimethyl-3'-(trimethylsilyl)-
[1,1'-biphenyl]-4-amine (29c):  

 

 

According to TP6, a solution of 2n in THF (2 mmol, 4 equiv, 1.10 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 4,4-dimethyl-2-(2-

(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28) (123.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 15 h, before being quenched with brine and extracted 

with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to 

yield the crude compound, which was purified by column chromatography to yield 29c as 

dark violet crystals. 

 

Isolated yield: 72 %. 

Solvent for purification:  i-hexane/ethyl acetate 7:1, then 4:1. 

m.p.: 162.8 – 164.6 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 1.19 (s, 6 H), 2.96 (s, 6 H), 3.86 (s, 2 H), 

6.76 (d, J=8.29 Hz, 2 H), 7.25 - 7.32 (m, 3 H), 7.38 (t, J=7.60 Hz, 1 H), 7.49 - 7.54 (m, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.28, 28.13, 29.68, 40.91, 67.82, 78.90, 112.28, 128.46, 

129.75, 130.81, 132.76, 134.04, 139.07, 142.23, 149.56, 163.28. 

MS (70 eV, EI) m/z (%): 366 (18), 365 (13), 352 (29), 351 (100), 279 (9), 139 (7). 
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IR ATR νννν (cm-1): 2959, 2919, 2855, 1659, 1608, 1523, 1461, 1355, 1292, 1280, 1250, 1240, 

1193, 1164, 1096, 1053, 1035, 961, 942, 920, 835, 813, 767. 

HRMS (EI) for C22H30N2OSi (366.2127) [M]+: 366.2130. 

 

Synthesis of 2-(3'-((tert-butyldimethylsilyl)oxy)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)-
4,4-dimethyl-4,5-dihydrooxazole (29d):  

 

 

According to TP6, a solution of 2p in THF (2 mmol, 4 equiv, 0.77 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 4,4-dimethyl-2-(2-

(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28) (123.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 12 h, before being quenched with brine and extracted 

with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to 

yield the crude compound, which was purified by column chromatography to yield 29d as a 

colorless oil.  

 

Isolated yield: 78 %. 

Solvent for purification:  i-hexane/ethyl acetate 9:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.19 (s, 6 H), 0.35 (s, 9 H), 0.98 (s, 9 H), 1.15 (s, 6 H), 

3.83 (s, 2 H), 6.79 (dd, J=8.02, 1.38 Hz, 1 H), 6.90 (t, J=1.80 Hz, 1 H), 6.98 (d, J=7.74 Hz, 1 

H), 7.18 (t, J=8.02 Hz, 1 H), 7.24 - 7.32 (m, 1 H), 7.40 (t, J=7.60 Hz, 1 H), 7.53 - 7.59 (m, 1 

H). 

13C NMR (75 MHz, DMSO) δ/ppm: -4.40, 0.24, 18.14, 25.66, 28.00, 67.89, 78.90, 118.38, 

120.94, 122.31, 128.43, 128.53, 130.40, 133.39, 139.19, 142.00, 142.70, 149.57, 155.02, 

162.78. 

MS (70 eV, EI) m/z (%): 454 (18), 453 (43), 452 (100), 439 (14), 438 (34), 308 (10), 73 (28). 

IR ATR νννν (cm-1): 2957, 2929, 2984, 2857, 1660, 1602, 1580, 1484, 1462, 1301, 1285, 1248, 

1222, 1211, 1096, 1035, 949, 919, 830, 778, 763, 698. 

HRMS (EI) for C26H38NO2Si2 (452.2441) [M-H]+: 452.2429. 
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Synthesis of 2-(4'-fluoro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5-
dihydrooxazole (29e):  

 

 

According to TP6, a solution of 2g in THF (2 mmol, 4 equiv, 0.77 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 4,4-dimethyl-2-(2-

(trimethylsilyl)phenyl)-4,5-dihydrooxazole (28) (123.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 3 h, before being quenched with brine and extracted 

with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to 

yield the crude compound, which was purified by column chromatography to yield 29e as a 

colorless oil.  

 

Isolated yield: 87 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 1.12 (s, 6 H), 3.84 (s, 2 H), 7.03 (t, 

J=8.77 Hz, 2 H), 7.25 - 7.30 (m, 1 H), 7.31 - 7.44 (m, 3 H), 7.57 (dd, J=7.51, 1.07 Hz, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.17, 28.01, 67.86, 78.91, 114.42, 114.63, 128.57, 

130.53, 130.68, 130.75, 133.58, 137.18, 137.21, 139.39, 141.16, 160.95, 163.39. 

MS (70 eV, EI) m/z (%): 342 (8), 341 (32), 340 (100), 327 (15), 326 (53), 255 (10), 254 (17), 

165 (8). 

IR ATR νννν (cm-1): 2966, 2894, 1659, 1602, 1511, 1462, 1451, 1421, 1364, 1344, 1286, 1246, 

1220, 1158, 1093, 1046, 1034, 1015, 985, 961, 920, 857, 834, 796, 762, 711. 

HRMS (EI) for C20H23FNOSi (340.1533) [M-H]+: 340.1529. 

 

Synthesis of 2-(4'-fluoro-3-iodo-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5-dihydrooxazole 
(29ea):  
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To a solution of 29e (341.5 mg, 1 mmol, 1 equiv) in DCM (0.2 M) was added dropwise ICl 

(568.3 mg, 3.5 mmol, 3.5 equiv) at 0 °C. Reaction mixture was warmed up to 23 °C and then 

heated under reflux for 6 h, before being quenched with sat. aq. Na2S2O3 and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 29ea as light 

yellow crystals. 

 

Isolated yield: 86 %. 

Solvent for purification:  i-hexane/ethyl acetate 10:1, then 3:1. 

m.p.: 101.5 – 102.6 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 1.18 (s, 6 H), 3.93 (s, 2 H), 7.04 (t, J=8.51 Hz, 2 H), 

7.12 (t, J=7.82 Hz, 1 H), 7.29 (d, J=7.68 Hz, 1 H), 7.31 - 7.41 (m, 2 H), 7.83 (d, J=7.96 Hz, 1 

H). 

13C NMR (75 MHz, DMSO) δ/ppm: 27.61, 68.00, 79.47, 96.83, 114.77, 114.91, 129.32, 

130.44, 130.49, 130.89, 134.05, 135.85, 135.87, 138.08, 142.54, 161.69, 162.38, 163.33. 

MS (70 eV, EI) m/z (%): 394 (85), 308 (22), 252 (11), 197 (15), 191 (12), 126 (45), 70 (14), 

61 (18), 57 (17), 44 (97), 43 (100). 

IR ATR νννν (cm-1): 2970, 2960, 1673, 1604, 1595, 1509, 1449, 1363, 1347, 1289, 1211, 1160, 

1094, 1039, 1024, 961, 922, 836, 784, 747. 

HRMS (EI) for C17H14FNOI (394.0104) [M-H]+: 394.0092. 

 

Synthesis of ethyl 2'-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-4''-fluoro-[1,1':3',1''-
terphenyl]-3-carboxylate (31):  

 

 

A solution of 30 in THF (0.45 mmol, 1.5 equiv, 0.71 M) was added dropwise to a mixture of 

Pd(dba)2 (4.7 mg, 0.009 mmol, 0.03 equiv), tris(2-furyl)phosphine (4.2 mg, 0.018 mmol, 0.06 

equiv) and 2-(3-iodo-3'-methyl-[1,1'-biphenyl]-2-yl)pyridine (29ea) (118.0 mg, 0.3 mmol, 1 

equiv) in THF (0.3 ml) at 23 °C. The reaction mixture was stirred at 50 °C for 15 h, before 

being quenched with brine and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 31 as a yellowish oil. 
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Isolated yield: 92 %. 

Solvent for purification:  i-hexane/ethyl acetate 4:1, then 3:1. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.90 (s, 6 H), 1.35 (t, J=7.19 Hz, 3 H), 3.60 (s, 2 H), 

4.35 (q, J=7.19 Hz, 2 H), 7.05 (t, J=8.71 Hz, 2 H), 7.32 - 7.53 (m, 6 H), 7.64 (d, J=7.74 Hz, 1 

H), 8.03 (d, J=7.74 Hz, 1 H), 8.13 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 14.34, 27.38, 61.00, 67.67, 79.01, 114.63, 114.91, 

127.90, 128.06, 128.60, 128.76, 129.02, 129.55, 129.80, 130.22, 130.48, 130.59, 130.86, 

133.31, 136.47, 136.51, 140.73, 141.25, 141.31, 160.99, 166.40. 

MS (70 eV, EI) m/z (%): 417 (29), 416 (100), 316 (4), 272 (10), 257 (5), 149 (9), 55 (10), 40 

(4). 

IR ATR νννν (cm-1): 2966, 2926, 1716, 1664, 1606, 1512, 1460, 1365, 1288, 1256, 1236, 1159, 

1125, 1104, 1034, 960, 840, 802, 755, 696. 

HRMS (EI) for C26H23FNO3 (416.1662) [M-H]+: 416.1656. 

 

6.3 Preparation of Arylated Products Using TP7 

 

Synthesis of 4'-(dimethylamino)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-carbaldehyde (34aa 
and 34ba):  

 

 

According to TP7, a solution of 2n in THF (2 mmol, 4 equiv, 1.1 M) was added dropwise to a 

mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(4-

methoxystyryl)phenyl)trimethylsilane (32) (141.2 mg, 0.5 mmol, 1 equiv) or N-(2-

(trimethylsilyl)benzylidene)butan-1-amine (33) (116.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 16 h (34aa) or 3 h (34ba), before being quenched 

with an aq. solution of HCl (2M) and extracted with EtOAc. The organic layer was washed 

with brine and dried with MgSO4, filtered, and concentrated in vacuo to yield the crude 

compound, which was purified by column chromatography to yield 34aa or 34ba as a redish 

oil.  
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Isolated yield of 34aa: 76 %  

                            34ba: 73 % 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.35 (s, 9 H), 3.04 (s, 6 H), 6.85 (d, J=7.74 Hz, 2 H), 

7.24 - 7.29 (m, 2 H), 7.42 - 7.47 (m, 1 H), 7.55 (t, J=7.46 Hz, 1 H), 7.70 (d, J=7.19 Hz, 1 H), 

9.99 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.33, 40.70, 112.35, 131.17, 131.79, 131.86, 132.08, 

134.19, 138.32, 142.20, 147.32, 149.82, 194.47. 

MS (70 eV, EI) m/z (%): 297 (26), 283 (23), 282 (100), 266 (8), 237 (11), 208 (12), 165 (8), 

141 (10), 140 (18). 

IR ATR νννν (cm-1): 2946, 2923, 2851, 1680, 1607, 1571, 1523, 1453, 1445, 1381, 1353, 1244, 

1195, 1179, 1143, 1049, 946, 860, 837, 820, 795, 763, 671. 

HRMS (EI) for C18H23NOSi (297.1549) [M]+: 297.1549. 

 

Synthesis of 4'-fluoro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-carbaldehyde (34ab and 34bb):  

 

 

According to TP7, a solution of 2g in THF (2 mmol, 4 equiv., 1.02 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv.) and 2-(4-

methoxystyryl)phenyl)trimethylsilane (32) (141.2 mg, 0.5 mmol, 1 equiv.) or N-(2-

(trimethylsilyl)benzylidene)butan-1-amine (33) (116.7 mg, 0.5 mmol, 1 equiv.) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv.) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 16 h (34ab) or 2 h (34bb), before being quenched 

with an aq. solution of HCl (2M) and extracted with EtOAc. The organic layer was dried with 

MgSO4, filtered, and concentrated in vacuo to yield the crude compound, which was purified 

by column chromatography to yield 34ab or 34bb as white crystals.  

 

Isolated yield of 34ab: 61 %. 

                            34ab: 88 %. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

m.p.: 65.3 – 66.9 °C. 
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1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 7.15 (t, J=8.57 Hz, 2 H), 7.30 - 7.43 (m, 3 

H), 7.58 (t, J=7.60 Hz, 1 H), 7.77 (d, J=7.46 Hz, 1 H), 9.95 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.23, 115.18, 115.46, 131.60, 131.71, 132.01, 134.98, 

135.19, 138.37, 142.62, 145.99, 161.00, 164.28, 193.65. 

MS (70 eV, EI) m/z (%): 258 (23), 257 (100), 196 (3), 183 (22), 165 (4). 

IR ATR νννν (cm-1): 2950, 2860, 1686, 1599, 1503, 1379, 1245, 1228, 848, 839, 800, 763. 

HRMS (EI) for C15H14OFSi (257.0798) [M-CH3]+: 257.0786. 

 

Synthesis of 3'-chloro-4'-(trifluoromethyl)-3-(trim ethylsilyl)-[1,1'-biphenyl]-2-
carbaldehyde (34ac):  

 

According to TP7, a solution of 10e in THF (2 mmol, 4 equiv, 1.01 M) was added dropwise 

to a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(4-

methoxystyryl)phenyl)trimethylsilane (32) (141.2 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 25 h, before being quenched with an aq. solution of HCl (2M) 

and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 34ac as a yellow oil.  

 

Isolated yield: 75 %. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.35 (s, 9 H), 7.38 (d, J=7.74 Hz, 1 H), 7.47 (dd, 

J=8.16, 1.80 Hz, 1 H), 7.57 - 7.66 (m, 2 H), 7.71 (d, J=1.94 Hz, 1 H), 7.82 (d, J=7.46 Hz, 1 

H), 9.96 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.19, 122.59 (q, J=273.58 Hz), 128.32, 128.61 (q, 

J=5.41 Hz), 131.36, 131.53, 132.21 (q, J=1.99 Hz), 132.25, 134.21, 135.70, 135.95, 138.22, 

143.34, 144.11, 192.71. 

MS (70 eV, EI) m/z (%): 343 (35), 342 (21), 341 (100), 307 (5), 170 (4). 

IR ATR νννν (cm-1): 2946, 2853, 1696, 1571, 1482, 1402, 1379, 1323, 1285, 1245, 1175, 1136, 

1130, 1110, 1035, 906, 872, 835, 798, 764, 703, 672, 662. 
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HRMS (EI) for C16H13OClF3Si (341.0376) [M-CH3]+: 341.0382. 

 

Synthesis of 2-(benzo[d][1,3]dioxol-5-yl)-6-(trimethylsilyl)benzaldehyde (34ad):  

H

OTMS

O

O

 

 

According to TP7, a solution of 2k in THF (2 mmol, 4 equiv, 1.10 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and 2-(4-

methoxystyryl)phenyl)trimethylsilane (32) (141.2 mg, 0.5 mmol, 1 equiv) at 23 °C. Then, 2,3-

dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The reaction 

mixture was stirred at 23 °C for 16 h, before being quenched with an aq. solution of HCl (2M) 

and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 34ad as a yellow viscous oil.  

 

Isolated yield: 67 %. 

Solvent for purification:  i-hexane/ethyl acetate 95:5. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 6.04 (s, 2 H), 6.71 - 7.04 (m, 3 H), 7.36 - 

7.45 (m, 1 H), 7.56 (t, J=7.46 Hz, 1 H), 7.73 (d, J=7.46 Hz, 1 H), 9.97 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.25, 101.36, 108.09, 110.34, 124.08, 131.67, 131.90, 

132.82, 134.87, 138.52, 142.40, 146.69, 147.58, 147.73, 193.93. 

MS (70 eV, EI) m/z (%): 284 (24), 283 (100), 253 (12), 242 (11), 209 (10), 165 (7), 141 (10). 

IR ATR νννν (cm-1): 2949, 2894, 1693, 1680, 1502, 1488, 1455, 1437, 1386, 1336, 1243, 1222, 

1180, 1105, 1038, 1031, 936, 907, 838, 795, 763, 673. 

HRMS (EI) for C17H18O3Si (298.1025) [M]+: 298.1019. 

 

Synthesis of 4'-(trifluoromethoxy)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-carbaldehyde 
(34bc):  
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According to TP7, a solution of 2z in THF (2 mmol, 4 equiv, 1.10 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and N-(2-

(trimethylsilyl)benzylidene)butan-1-amine (33) (116.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 3 h, before being quenched with an aq. solution of 

HCl (2M) and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 34bc as white crystals. 

Isolated yield: 75 %. 

Solvent for purification:  i-hexane/ethyl acetate 100:1, then 30:1. 

m.p.: 65.8 – 67.6 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 7.27 - 7.33 (m, 2 H), 7.39 (d, J=8.29 Hz, 

3 H), 7.59 (t, J=7.46 Hz, 1 H), 7.78 (d, J=7.46 Hz, 1 H), 9.95 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.19, 120.45 (J=157.50 Hz), 120.70, 131.40, 131.60, 

132.05, 135.44, 137.73, 138.30, 142.77, 145.54, 149.05, 193.40. 

MS (70 eV, EI) m/z (%): 324 (18), 323 (100), 249 (11), 165 (10), 82 (10), 69 (16), 44 (21). 

IR ATR νννν (cm-1): 2949, 2894, 1693, 1680, 1502, 1488, 1455, 1437, 1386, 1336, 1243, 1222, 

1180, 1105, 1038, 936, 907, 838, 795, 763, 673. 

HRMS (EI) for C16H14F3O2Si (323.0715) [M-CH3]+: 323.0710. 

 

Synthesis of 4'-(trifluoromethoxy)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-carbaldehyde 
(34bd):  

 

 

According to TP7, a solution of 10f in THF (2 mmol, 4 equiv, 0.94 M) was added dropwise to 

a mixture of anhydrous CrCl2 (6.1 mg, 0.05 mmol, 0.1 equiv) and N-(2-

(trimethylsilyl)benzylidene)butan-1-amine (33) (116.7 mg, 0.5 mmol, 1 equiv) at 23 °C. 

Then, 2,3-dichlorobutane (9.5 mg, 0.75 mmol, 1.5 equiv) was added dropwise at 23 °C. The 

reaction mixture was stirred at 23 °C for 1.5 h, before being quenched with an aq. solution of 

HCl (2M) and extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to yield the crude compound, which was purified by column 

chromatography to yield 34bd as white crystals. 
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Isolated yield: 74 %. 

Solvent for purification:  i-hexane/ethyl acetate 200:1. 

m.p.: 76.3 - 78.3 °C. 

1H NMR (300 MHz, DMSO) δ/ppm: 0.34 (s, 9 H), 1.38 (s, 9 H), 7.30 (d, J=8.29 Hz, 2 H), 

7.39 - 7.51 (m, 3 H), 7.57 (t, J=7.46 Hz, 1 H), 7.74 (d, J=7.19 Hz, 1 H), 9.97 (s, 1 H). 

13C NMR (75 MHz, DMSO) δ/ppm: 0.27, 31.34, 34.63, 125.21, 129.87, 131.76, 131.89, 

134.81, 135.95, 138.38, 142.23, 147.20, 150.95, 194.20. 

MS (70 eV, EI) m/z (%): 296 (25), 295 (100), 239 (5), 221 (4), 179 (3), 165 (6), 126 (14), 57 

(11). 

IR ATR νννν (cm-1): 2962, 2886, 1669, 1569, 1456, 1406, 1246, 1182, 1113, 1082, 1016, 859, 

836, 796, 748, 669, 668. 

HRMS (EI) for C19H23OSi (295.1518) [M-CH3]+: 295.1525. 

 

Synthesis of 4'-(trifluoromethoxy)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-carbaldehyde (37):  

 

 

A solution of 2i in THF (2 mmol, 4 equiv, 1.0 M) was added dropwise to a mixture of 

anhydrous CrCl2 (3.7 mg, 0.03 mmol, 0.03 equiv) and 35 (116.7 mg, 0.5 mmol, 1 equiv) at 23 

°C. The suspension was stirred at 23 °C for 2 h. Then anhydrous CrCl2 (12.2 mg, 0.1 mmol, 

0.1 equiv) and a solution of 2g were added followed by the dropwise addition of 2,3-

dichlorobutane (190 mg, 1.5 mmol, 1.5 equiv). The reaction mixture was stirred at 23 °C for 

addtional 1 h, before being quenched with an aq. solution of HCl (2M) and extracted with 

EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo to yield 

the crude compound, which was purified by column chromatography to yield 37 as light 

yellow crystals. 

 

Isolated yield: 65 %. 

Solvent for purification:  i-hexane/ethyl acetate 100:1, then 10:1 

m.p.: 83.0 – 84.8 °C. 
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1H NMR (300 MHz, DMSO) δ/ppm: 3.86 (s, 3 H), 6.97 (d, J=8.57 Hz, 2 H), 7.10 (t, J=8.71 

Hz, 2 H), 7.23 - 7.34 (m, 5 H), 7.40 (d, J=7.74 Hz, 1 H), 7.56 (t, J=7.60 Hz, 1 H), 9.93 (s, 1 

H). 

13C NMR (75 MHz, DMSO) δ/ppm: 55.31, 113.77, 114.85, 115.14, 130.16, 130.42, 130.94, 

131.01, 131.12, 131.31, 131.54, 133.14, 135.91, 135.96, 142.71, 144.54, 159.46, 160.73, 

164.00, 193.54. 

MS (70 eV, EI) m/z (%): 306 (100), 275 (27), 263 (11), 233 (20), 207 (5), 170 (7), 139 (4). 

IR ATR νννν (cm-1): 2923, 2845, 1699, 1604, 1507, 1456, 1292, 1253, 1213, 1172, 1038, 1017, 

835, 805, 744, 677. 

HRMS (EI) for C20H15FO2 (306.1056) [M]+: 306.1050. 


