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Every aspect of Nature reveals a deep mystery and touches our
sense of wonder and awe. Those afraid of the universe as it
really is, those who pretend to nonexistent knowledge and
envision a Cosmos centered on human beings will prefer the
fleeting comforts of superstition. They avoid rather than
confront the world. But those with the courage to explore the
weave and structure of the Cosmos, even where it differs
profoundly from their wishes and prejudices, will penetrate its
deepest mysteries.

CARL SAGAN, Cosmos
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Summary

Meteorites potentially record the magnetic fields present during the nascent for-
mation of the early solar system. However, the interpretation of the magnetic
records contained within them is complicated by a myriad of variables includ-
ing poorly understood magnetic minerals and events occurring after the lock-in
of the original magnetization such as shock, decompression and low-temperature
cycling from space to the Earth’s surface. This dissertation attempts to place
constraints on how some of these factors influence paleomagnetic recording in
meteorites. Through the development of a pressure cell, we show that even low
pressures (<2 GPa) will lower the remanent magnetization intensity in rocks. The
magnetic field strength determined from shocked or decompressed material can be
appreciably underestimated and should only be taken as a lower limit. Monoclinic
pyrrhotite is is commonly found in certain achondritic meteorites, especially those
from Mars. Monoclinic pyrrhotite undergoes a magnetic phase transition at ca.
30 K, called the Besnus transition, whose mechanism is poorly understood and
highly debated. We provide evidence that this magnetic phase transition is due
to a crystallographic reorientation in symmetry. Furthermore, our experiments
show that low temperature cycling from their thermal equilibrium temperature
in space to ambient surface temperatures on Earth will not significantly alter the
paleointensity value recorded in pyrrhotite-bearing meteorites. The most com-
mon magnetic mineral in meteorites are body centered cubic iron-nickel alloys;
however, the magnetic properties of these alloys as a function of grain size is
virtually unknown. As grain size bears drastically on the ability to carry and
retain magnetic remanence, filling this gap in our knowledge is crucial to prop-
erly interpret the paleomagnetic recording of FeNi alloys that are so ubiquitous
in nature. For this reason, we initiated a research program to synthesize FeNi
alloys with well constrained compositions and grain size distributions through
mechanical alloying. Mechanically alloyed powders show similar magnetic prop-
erties to published results on metal bearing meteorites, but the size threshold for
stable single domain particles– the domain state essential for paleomagnetism–
was never identified. Finally, the design, building and implementation of a unique
paleomagnetic thermal demagnetizing oven is presented.
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Introduction and Outline

Meteorites are among the oldest known materials in our solar system. They
originate from primordial matter and early solar system planetary bodies and
thus contain unique information on the early solar system, its composition and
its formation. During the late 50s [Stacey & Lovering, 1959] it was recognized
that the magnetic information stored in them could help in reconstructing the
history of early solar system.

Meteorites are classified into 4 types, chondrites, achondrites, irons and stony
irons [Anders, 1971] (fig. 0.1). These classes can generally be described as differ-
ent stages of planetary formation with chondrites being the oldest. It is believed
that chondrites are formed by melting of primordial material in the accretionary
disk of the solar nebular [Acton et al., 2007]. Even though evidence for dynamo
generated fields have been found in the carbonaceous chondrite Allende, it is
generally believed that the chondrite parent body is undifferentiated [Carporzen
et al., 2011]. These primitive stony meteorites contain chondrules, millimeter
sized spherical silicate droplets, that often contain inclusions of iron-nickel min-
erals. Recent studies have found that these inclusions could well carry a stable
magnetization and thus retain information of pre-accretionary magnetic fields [Fu
et al., 2014, Lappe et al., 2011, Uehara & Nakamura, 2006, Van de Moortèle et al.,
2007].

The other meteorite classes are of planetary (Martian) or asteroidal origin and
originate from different depths on their parent body. Large-scale compositional
structures of planets are primarily established during early differentiation. Thus
it is generally believed that iron meteorites represent material from planetary
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or asteroidal cores and stony irons originate from the mantle of a planetesimal
(fig. 0.1)[Tarduno et al., 2012, Weiss et al., 2010]. Advances in analytical geochem-
istry, the increasing diversity of extraterrestrial samples, and new paleomagnetic
data help our understanding of the nature and timing of these early melting pro-
cesses. Differentiation of a planetary body can lead to the convection of material
and formation of a core dynamo.

One of the main goals of extraterrestrial magnetism is to quantify the intensities
of these planetary bodies and has shown that even small planetesimals may pos-
sess core dynamos [Nichols et al., 2016]. In particular, recent studies of a group
of basaltic achondrites, called angrites, coupled with new theoretical insights into
the possibility of dynamo generation on small bodies, indicate that some me-
teorites might retain primary records of internally generated fields [Weiss et al.,
2008a, 2009, 2010]. The emerging results indicate that some planetesimals formed
metallic cores and early dynamos within just a few million years of solar system
formation. Similarly, paleointensity values from other meteorite classes yield in-
sight into the dynamo process of the terrestrial planets–notably Mars [Gattacceca
& Rochette, 2004, Rochette et al., 2001, Weiss et al., 2008b, 2002].

Several methods have been developed to determine the intensity of the ancient
magnetic field. Thellier & Thellier [1959] established a physically rigorous tech-
nique, based on Néel theory, to determine paleo-field intensities that is widely
(with variants) used today. The Thellier technique compares the thermal demag-
netization spectra of a rock’s natural remanent magnetization (NRM) with the
acquisition of an artificial thermoremanence (TRM) by cooling the sample in a
known laboratory field. If the two are proportional, then the sum of NRM lost +
TRM gained should remain constant as a function of temperature, and the slope
of NRM lost to TRM gained normalized by the laboratory field yields the pale-
ointensity value. This technique is only rigorously valid for rocks bearing solely
single domain magnetic particles and will only yield linear slopes if no change
in the magnetomineralogy occurs since lock-in of the thermal remanence. The
presence of multidomain grains will produce non-linear slopes, rendering ambigu-
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4 Introduction

ous data interpretation. Despite these potential pitfalls, the Thellier method has
been applied to meteorites, and the data were interpreted as evidence for the ex-
istence of Earth-like paleo-fields in the early solar system (fig. 0.3) [e.g. Banerjee
& Hargraves, 1972, Butler, 1972, Morden, 1992, Nagata, 1979b, Stacey, 1976].
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Figure 0.2.: Compilation of data for NRM against the saturation isothermal remanent mag-
netization (SIRM) for diferent meteorite types. H (high iron, red triangles), L (low iron, green
squares), LL (very low iron, blue circles) [Sugiura & Strangway, 1988], L (low iron, open squares)
[Wasilewski et al., 2002], and CV (blue triangles) [Emmerton et al., 2011] chondrite meteorites.
The diagonal lines show the NRM/SIRM ratio (REM).

As the classic Thellier method is not well suited to study meteorites due to
thermo-chemical alteration, several workers use relative paleointensity experi-
ments to determine intensity estimates [e.g. Acton et al., 2007, Emmerton et al.,
2011, Gattacceca et al., 2007, Wasilewski et al., 2002, Weiss et al., 2008a]. Several
different relative methods exist. The REM method uses the ratio of the natural re-
manent magnetization to saturating isothermal remanent magnetization (SIRM)
acquired in a strong field at room temperature (fig. 0.2) to estimate the paleoin-
tensity [Cisowski et al., 1975, Lappe et al., 2013, Yu, 2010] (NRM/SIRM=REM),
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while the REM’ method is based on the derivative of alternating field demagne-
tizations of the NRM and SIRM [Gattacceca & Rochette, 2004]. These methods
have the disadvantage that they are mineral specific and require calibration mea-
surements to calculate the paleointensity [Fuller & Cisowski, 1987, Kletetschka
et al., 2004a, Yu, 2006, 2010]. Calibration measurements have been done on many
minerals commonly found on Earth [Gattacceca & Rochette, 2004] but those for
extraterrestrial material are still sparse.
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Figure 0.3.: Histograms of estimated paleointensities determined by REM methods from previ-
ous studies [Acton et al., 2007, Brecher et al., 1977, Emmerton et al., 2011, Gattacceca & Ro-
chette, 2004, Wasilewski et al., 2002, Wasilewski, 1981b, Weiss et al., 2008a] for several meteorite
classes. C, CV, CK, H, LL, R are chondritic meteorites. Angrites are among the oldest meteorites
from differentiated planetesimals. SNC (shergottite, nakhlite, and chassigny) are three types of
meteorites believed to originate from Mars. Line shows the mean Earth field in the past 5 million
years with two standard deviations (shaded region) (data obtained from Pint database [Biggin
et al., 2009]).

Meteorite magnetism faces several challenges, which cause skepticism within the
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community towards field strengths determined from extraterrestrial materials and
their interpretations. Paleointensities tend to have large margins of error and val-
ues can span several orders of magnitude [Gattacceca & Rochette, 2004]. This
often leads to widely different paleointensity estimates within a group of mete-
orites (fig. 0.3) and even within one specimen. The intention of this work is to
tackle some of the problems faced by paleointensity determinations on meteorites,
to check their validity and to help build a solid foundation on which future studies
can be built upon.

Geological settings of terrestrial rocks are generally well known, but for mete-
oritic material, this information is rarely available. With the exception of the
howardite-eucrite-diogenite (HED) clan and lunar and Martian meteorites, nei-
ther the parent body nor the precise depth of origin or thermal and shock history
of a meteorite is known [Weiss et al., 2010]. Meteorites often experienced a
complicated strain history, from shock, decompression from depth in the orig-
inal parent body, etc. Shock and static pressures are well known to modify
the saturation remanent magnetization direction, coercivity, susceptibility, and
anisotropy of susceptibility and remanence [Funaki & Syono, 2008, Gattacceca
et al., 2007, Gilder & Le Goff, 2008, Gilder et al., 2004, Kapicka, 1983, Louzada
et al., 2007, 2010, Nishioka et al., 2007, Pohl & Eckstaller, 1981]. Prior to the
last few years, nearly all paleointensity experiments largely ignored the possibil-
ity that shock might affect paleointensity estimates. Indeed evidence for shock
is commonly found in meteorites and is categorized into 5 classes ranging from
S0 (no shock) to S5 (shock > 80 GPa) [Sharp & DeCarli, 2006, Stöffler et al.,
1991]. However, petrographic shock barometers can only distinguish shock events
with pressures above 4-5 GPa, which leaves events below 5 GPa (S0 to S1) void
of evidence [Weiss et al., 2010]. Even low pressures (< 0.5 GPa) act to decrease
the NRM moment or even completely erase the remanent magnetization [Bezaeva
et al., 2007, Gattacceca et al., 2006, Gilder et al., 2006], in a manner analogous
to alternating field demagnetization [Dunlop et al., 1969]. On the other hand,
pressure applied in the presence of an ambient field leads to an enhancement of
the remanence-carrying capacity of both single and multidomain grains, called
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piezoremanence [Gattacceca et al., 2008, Gilder & Le Goff, 2008, Gilder et al.,
2004, Pohl et al., 1975, Pohl & Eckstaller, 1981]. Both effects can change the
slope of Thellier experiments and influence the paleointensity.

The first chapter of this thesis reports experiments on the effects of static pres-
sure on absolute paleointensities. Thellier-type experiments were carried out on
40 samples whose magnetic remanence is carried by pseudo-single domain, low
Ti titanomagnetite–typically found in some achondritic meteorites [Weiss et al.,
2010]. The initial (zero pressure) experiment correctly reproduced the laboratory
field imparted on the samples. The samples were given a new thermo-remanent
magnetization, encased in a Teflon cup, and pressurized in a stainless steel pres-
sure vessel, which was specifically designed and built to withstand pressures of
1.8 GPa. Pressure cycling to a maximum pressure of 1.8 GPa using salt as
non-hydrostatic and silicone oil as hydrostatic pressure medium provoked a pres-
sure demagnetization effect that reduced the room-temperature thermo-remanent
magnetization. The degree of magnetization loss depends on the level of hydro-
staticity: hydrostatic pressure decreases the NRM moment by 10%/GPa while
non-hydrostatic pressure has a four times greater effect (40%/GPa). The recorded
paleointensity was decreased 10 %/GPa under hydrostatic stress and 20 %/GPa
under non-hydrostatic stress, showing for the first time that paleointensity results
from meteorites may be appreciably underestimated. For the work described in
this chapter I designed the experiments and the high pressure cell required to
execute them. I conducted all the experiments and analysis. The results of this
study are currently in revision.

Volk, M. W. & Gilder, S. A. (2016). Effect of static pressure on absolute pa-
leointensity recording with implications for meteorites. Journal of Geophysical
Research: Solid Earth, in revision

An equally serious difficulty, related to the interpretation of the paleomagnetic
record of meteorites is the presence of unusual ferro- and ferrimagnetic minerals
and their poorly understood remanence carrying capabilities [Rochette et al.,
2009]. The following two chapters are concerned with studying the magnetic
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properties of some of those minerals.

Monoclinic pyrrhotite, is a mineral often found in Martian as well as certain chon-
dritic meteorites [Cournede et al., 2015, Rochette et al., 2001]. It crystallizes in
a monoclinic (pseudo-hexagonal) crystal structure. It owes its ferrimagnetism to
the ordered structure of Fe vacancies and undergoes a poorly understood mag-
netic / crystallographic phase transition at 30-35 K (Besnus transition). It is
know that cooling pyrrhotite bearing samples causes a low temperature demag-
netization of the remanent moment especially at the transition. Paleointensity
experiments, however rely on an undisturbed natural remanent magnetization.
Meteorites in space are cooled significantly (120-135 K) below their Curie tem-
peratures [Weiss et al., 2010] and then warmed back to 300 K when they fall to
Earth. A question that has thus far not been answered is how low temperature
demagnetization of pyrrhotite influences the remanent magnetization and hence,
on paleointensity results.

Chapter two concerns the low temperature magnetic properties of monoclinic
pyrrhotite. It describes low temperature experiments on pyrrhotite bearing rocks
with different domain states (pseudo-single to multidomain). The samples were
given a saturating isothermal remanent magnetization (SIRM) at room tempera-
ture in a 1 T field. Using a vibrating sample magnetometer, the magnetic moment
during low temperature cycling to successively lower temperatures was measured.
Demagnetization of the SIRM was determined as a function of temperature. The
experiments show that demagnetization after cooling to 150 K is largely depen-
dent on grain-size with little demagnetization (< 10 %) for small grain sizes and
twice as much for larger ones. Furthermore, the nature of the magnetic transition
(Besnus transition) was investigated on an oriented single crystal of monoclinic
pyrrhotite. Hysteresis loops and backfield curves were measured at 21 tempera-
tures spanning the transition in 5◦ steps (10◦ for backfield) in the crystallographic
basal plane of the crystal. The experiments showed that during the transition,
hysteresis parameters change drastically and the large (2.6 mm) crystal becomes
more single domain-like below the transition. At 50K the crystal developed a sec-
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ond inflection in the hysteresis loops measured in between the crystallographic
a-axes, which revealed a sixfold symmetry. At temperatures below the transi-
tion this pattern disappears, to be replaced by a fourfold symmetry. Since these
changes are linked to the crystal structure, our results indicate that the Besnus
transition is of crystallographic origin. For this part I have designed and con-
ducted the experiments. Part of the work was done during a visiting fellowship
at the Institute for Rock Magnetism (IRM), University of Minnesota, USA. The
results of this study are in preparation for publication in the Geophysical Journal
International.

Even though Fe,Ni alloys are among the most common minerals in many classes
of meteorites (e.g., kamacite and taenite) their magnetic properties and their de-
pendence on particle size (single domain - multidomain) are not well understood.
Such knowledge is indispensable to properly interpret relative paleointensity data
and to unravel the magnetic signals in meteorites. In the third chapter, magnetic
measurements on mechanically alloyed FeNi particles of different compositions
are presented. Hysteresis and backfield curves show a dependence on milling
time and energy so that the alloying process can be directly observed in the mag-
netic parameters. Unfortunately, even though grain-sizes down to ≈10 nm were
achieved, the single domain to multidomain threshold could not be determined
due to strong magnetic interactions. The dependence of the hysteresis param-
eters on nickel concentration, however suggests a change in SD/MD threshold
with increasing Ni. I designed the experiments, synthesized the samples together
with a student helper and measured most of the data, in part during the visit-
ing fellowship at the Institute for Rock Magnetism. We are currently preparing
a manuscript describing the changes in magnetic properties during milling and
their dependence on milling intensity for submission to the Journal of Magnetism
and Magnetic Materials. It will be submitted in the coming months.

The final chapter describes my work to develop and test a large thermal demag-
netization furnace commonly needed in paleomagnetic studies. The oven com-
plements the institute’s automatic measurement system with a sample capacity
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of 96 samples and maximum temperature of 700◦C. It consists of two chambers
(heating and cooling), giving the possibility to heat and cool two different sam-
ple holders at the same time, thereby reducing heating+cooling times by nearly
half. The heating chamber is divided into three independently controlled sections
to minimize thermal gradients. magovencontrol a python software controls the
furnace and alerts the user via email, as soon as a heating run is finished. The
software also allows for dynamic temperature offset control and real time display
of temperatures at both ends and the center of the sample region. To our knowl-
edge this is the first software controlled and the largest paleomagnetic furnace. I
designed the furnace and created technical drawings for every part using Solid-
Works (CAD software). I helped in the building process wherever I could. The
final testing was done by me with the help of other PhD students. The software
for the furnace was written by Michael Wack.



1. Effect of static pressure on
absolute paleointensity recording
with implications for meteorites

The work in the following chapter has been submitted to Journal of Geophysical
Research and is currently in review.

Volk, M. W. & Gilder, S. A. (2016). Effect of static pressure on absolute pa-
leointensity recording with implications for meteorites. Journal of Geophysical
Research: Solid Earth, in revision

Abstract

We investigated the influence of hydrostatic and non-hydrostatic stress on the
recording process of magnetic field intensity with particular relevance for mete-
orites that experienced pressures lower than 5 GPa corresponding to the lowest
shock stage classification (S1) in meteorites. Thermal remanent magnetizations
were imparted on natural obsidian samples containing pseudo-single domain ti-
tanomagnetite, analogous to some achondritic meteorites. Thellier-type paleoin-
tensity experiments were carried out at ambient conditions after pressure cycling
to 0.6, 1.2 and 1.8 GPa. Each experiment used ten samples to assess reproducibil-
ity, which is better than ± 5 %. The recorded paleointensity decreased 10 %/GPa
under hydrostatic stress and 20 %/GPa under non-hydrostatic stress, leading to
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the fundamental conclusion that paleointensity results from meteorites may be
appreciably underestimated. Pressure cycling shifts the blocking and unblocking
spectra, thereby producing more linear slopes on an Arai diagram with increasing
strain. We explain why, for samples with a single magnetization component that
does not alter, a two-step paleointensity protocol sufficiently resolves the true
paleointensity. Moreover, we propose that pressure cycling of multidomain and
pseudo-single domain bearing samples will remove the inherent curvature of the
Arai slope, thereby allowing one to obtain a more accurate estimate of the true
paleointensity. Conversely, linear trends on Arai plots in meteorites might have
their origin in a pressure effect that does not necessarily reflect the ubiquitous
presence of single domain particles.

1.1. Introduction

Meteorites serve as windows to the early solar system. Their remanent magneti-
zations store information concerning the magnetic fields present during the initial
stages of proto-planetary formation and the extinct dynamos once present in plan-
ets or moons. Different meteorite types lend insight into the diverse processes on
how the solar system formed.

Chondritic meteorites stem from undifferentiated bodies created when primor-
dial matter assembled 4.5 billion years ago. They potentially retain evidence
of the interplanetary magnetic fields in the solar nebula [Banerjee & Hargraves,
1972]. Wardle [2007] calculated that magnetic field intensities on the order of 1-
100 µT are needed to transport mass and redistribute angular momentum in the
protoplanetary cloud, while sun formation during the T-Tauri stage generated
100 µT fields at a distance of 0.1 AU [Weiss & Elkins-Tanton, 2013], with some
workers proposing fields as strong as 400 µT [Acton et al., 2007]. Paleointensity
measurements on the extensively studied carbonaceous chondrite Allende yielded
field estimates ranging from 10 to 110 µT [Banerjee & Hargraves, 1972, Butler,
1972, Nagata, 1979a, Wasilewski, 1981b]. Work on other chondritic meteorites
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that specifically focused on chondrules found slightly lower yet comparable inten-
sities ranging from 1 to 56 µT [Acton et al., 2007, Fu et al., 2014, Gattacceca &
Rochette, 2004].

Incipient planets formed when chondritic material coalesced and underwent full
or partial melting and subsequent differentiation to form Fe-rich cores and Mg-
Fe-rich silicate mantles. Fe-Ni alloy inclusions in olivine crystals from stony-iron
meteorites (pallasites) thought to originate from planetesimals ≈200 km in ra-
dius, yielded Thellier-based paleointensities of 70-130 µT [Tarduno et al., 2012].
Basaltic achondrites, especially those in the angrite group with a narrow age
range of 4564 to 4558 Ma, are thought to be the remains of the first differentiated
planetoids [Mittlefehldt et al., 2002]. This meteorite class also lends insight into
planetary formation and helps constrain boundary conditions for dynamo gen-
eration processes. The angrite group is especially well suited for paleointensity
determinations because their main magnetic carrier, titanium-poor magnetite,
is one of the best understood magnetic remanence carriers. Using a so-called
relative paleointensity technique, Weiss et al. [2008a] found field intensities of 10-
20 µT recorded within the angrite parent body, which falls within the range (6 to
37 µT) of paleointensity values obtained from other achondritic meteorite classes
[Gattacceca & Rochette, 2004, Hood & Cisowski, 1983] that were determined
using both absolute and relative paleointensity techniques. These findings are
compatible with theoretical calculations suggesting even small bodies ≈ 100 km
in radius can generate fields ≥ 20 µT at their surface [Weiss et al., 2010].

The Thellier paleointensity method and its variants are commonly used to mea-
sure the magnetic field strength in material that acquired its remanence when
cooling through the Curie temperature; i.e., a thermal remanent magnetization
(TRM) [Thellier & Thellier, 1959]. Based on Néel [1949] theory, the Thellier
method attempts to mimic the process in which the original (natural) remanent
magnetization (NRM) was acquired. This consists of stepwise thermal demagneti-
zation in a zero field to successively remove the NRM followed by stepwise remag-
netization in a known laboratory field at the same temperature steps. The NRM
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remaining during demagnetization is plotted against the acquired magnetization
for each temperature interval in a so-called Arai diagram (fig. 1.1) [Nagata et al.,
1963]. Provided that the in-field blocking of the remanence linearly correlates
with the zero-field unblocking, the data will define a negative slope proportional
to the paleofield strength and the known laboratory field (black line in fig. 1.1).
The absolute value of the slope (NRM/TRM) multiplied by the laboratory field
(Blab) gives the paleointensity (Bpaleo)

Bpaleo =
∣∣∣∣∣NRM
TRM

∣∣∣∣∣ × Blab.
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Figure 1.1.: The effect of pressure demagnetization and piezoremanent magnetization on abso-
lute paleointensity experiments. Changes are normalized relative to the ideal case (black line and
black points). Stress demagnetization (green dashed line and green points) leads to a decrease in
the natural remanent magnetization (NRM), which lowers the slope (paleointensity) by 40% from
the original value in this example. Piezoremanence (red line and red points) acts to increase the
remanence acquisition efficiency of the grains, which leads to an increase in TRM gained (20% in
this example) and a further decrease (50% in this example) in the slope (paleointensity = Bpaleo).

Several factors lead to non-linear remanence acquisition during Thellier exper-
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iments, with the biggest culprit being the creation or destruction of magnetic
mineral phases through alteration or exsolution during heating. Remanence ac-
quisition is also grain size dependent [Dunlop & Argyle, 1997], with multidomain
grain sizes leading to non-linearity. Cooling rate and magnetic anisotropy can
also bias paleointensity data [Leonhardt et al., 2006].

A largely unexplored problem of special concern to meteorites pertains to the
effect of pressure (strain), including decompression (tension) on paleointensity
determinations. For achondrites, one rarely knows where (how deep) or the size
of the parent body in which the meteorite originated. The consequence is that the
meteorite potentially acquired its magnetic remanence at depth and decompressed
when the planetesimal broke apart. Other scenarios where pressure plays a role
is when a rock became ejected from its place of genesis into space from collision
(shock), collisions between bodies in space, or when the meteorite struck its host
planet or moon. Six shock stages (S1-S6) are recognizable by microscopy based on
mechanical de- formation experiments on olivine and plagioclase [Stöffler et al.,
1991]. S1, the lowest stage, corresponds to peak pressures lower than 4-5 GPa.
Visible effects such as planar deformation features in olivine, mechanical twinning
in pyroxene, etc., commence at stage S2 where shock pressures correspond to 5-10
GPa; pressures exceed 50 GPa for S6.

The problem addressed here concerns the effect of pressure on paleointensity
recording in meteorites that experienced shock or static stress below 5 GPa (S1
stage). Indeed, it has been well established that both compression and decom-
pression below 5 GPa influence both the remanent magnetization as well as the
intrinsic magnetic properties of magnetic minerals [Cisowski & Fuller, 1978, Gat-
tacceca et al., 2007, Gilder & Le Goff, 2008, Gilder et al., 2006, 2004, Kletetschka
et al., 2004b, Louzada et al., 2007, Pohl et al., 1975]. Yet how such effects influ-
ence paleointensity values has been largely ignored.

Relative paleointensity methods might be favored over the absolute Thellier pa-
leointensity method because they are less time consuming and do not require
heating, despite the dis- advantage that the paleointensity estimates can have
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uncertainties exceeding an order of magnitude. Regardless of the high uncer-
tainty, order-of-magnitude estimates may be more useful than null data from a
Thellier protocol and/or destruction/alteration of the sample from the repeated
heating steps. For this reason, we also performed pressure cycling experiments
on samples whose moments were acquired with a direct current field (isothermal)
remanence, which forms the basis of some relative paleointensity techniques. The
results are compared against the pressure cycling experiments on the same rocks
possessing thermal remanences.

Even in the presence of an Earth-like field (50 µT), both compression and de-
compression act to demagnetize the NRM of rocks (pressure demagnetization) in
a manner analogous to alternating field demagnetization [Dunlop et al., 1969].
Pressure demagnetization experiments on a wide range of materials universally
show a reduction of the NRM even at pressures < 1 GPa with a greater ef-
fect for uniaxial than hydrostatic pressures [Bezaeva et al., 2010, Gilder et al.,
2006]. A reduction of the original NRM from pressure demagnetization would
lower the slope obtained in a Thellier experiment, leading to an underestimate
of the true paleointensity (green arrow and points in fig. 1.1). In the simplest
case, when considering the change in moment (∆M) due to pressure demagne-
tization [∆M = NRM(P0) − NRM(Pn)], the formula for paleointensity becomes
Bpaleo= |[(NRM(P0) − ∆M)/TRM(P0)]| × Blab.

Strain can also increase the remanence carrying capacity of a magnetic mineral
beyond that of its non-strained counterpart, called piezoremanent magnetiza-
tion [Gilder & Le Goff, 2008]. This would affect the in-field steps in a Thel-
lier experiment where the magnetic carriers would acquire greater thermore-
manent magnetizations (TRM) than that in a like field in the original, non-
strained host. The net effect would be a further reduction of the slope in a
Thellier experiment, again leading to an underestimate of the true paleointensity
(red arrow and points in fig. 1.1). Taking both piezoremanent magnetization
[MPRM = TRM(Pn) − TRM(P0)] and pressure demagnetization into account, the
paleointensity can be calculated using
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Bpal =
∣∣∣∣∣
[

NRM(P0) − ∆M

TRM(P0) + MPRM

]∣∣∣∣∣ × Blab,

which shows that both effects lead to an underestimation of the paleointensity.
For example, both a 10% demagnetization of the original NRM moment and a
10% increase in moment due to piezoremanence causes the intensity to be lowered
by 18%. Because the likelihood that meteorites escaped pressure cycling during
their long histories in the solar system seems remote, we carried out experiments
to test the effect of pressure cycling up to 2 GPa on paleointensity recording.

1.2. Materials, methods and results

1.2.1. Samples

Although well grounded in physics and acknowledged as giving the most pre-
cise paleointensity estimates, the Thellier method often yields null results due to
chemical alteration and exsolution of the magnetic carriers during repeat thermal
cycling up to Curie point temperatures. We therefore selected an obsidian from
the Rocche Rosse (Italy) flow known for its high thermal stability [Leonhardt
et al., 2006], and because it possesses low Ti magnetite similar to some angrite
type achondritic meteorites [Mittlefehldt et al., 1998].

Curie temperatures were measured with a Petersen Instruments, variable field
translation balance in a 50 mTfield in air (fig. 1.2). Thermal cycling to increas-
ingly higher temperatures shows a high degree of reversibility with no significant
alteration. Four samples define an average Curie temperature of 538 ± 4◦C in-
dicative of titanomagnetite with 1.75 wt.% Ti. Magnetic hysteresis loops and
backfield curves were measured on 20 samples. The magnetic hysteresis param-
eters lie within the pseudo-single domain field on a Day diagram (fig. 1.2) with
average remanence ratios of 0.15 ± 0.02 and average coercivity ratios of 3.1 ± 0.3
shifted towards higher coercivity ratios away from the mixing lines [Day et al.,
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1977, Dunlop, 2002a]. There are several possible reasons, which can cause this
behavior. One explanation is a bimodal distribution of SD and large MD grains
[Dunlop, 2002b]. The presence of a multidomain fraction causes samples to gain
a magnetization above their unblocking temperature (high temperature tails)
[Fabian, 2001]. The magnetization tail can be measured by repeated demag-
netization of pTRM acquisition steps [Riisager & Riisager, 2001]. The average
high temperature tail present in the samples is δTR = 1.4% indicating little
multidomain presence. Low temperature cycling can cause irreversible loss of
magnetization due to the denucleation of domain walls [Muxworthy et al., 2003].
Inappreciable changes in magnetization (< 3%) occurred before and after low
temperature cycling the samples in liquid N2. Further the average coercivity
Bc = 72.8 ± 5 mT value is too high to support the presence of a significant MD
contribution. A more likely explanation for the high coercivity ratios is the pres-
ence of super paramagnetic, single domain and pseudo-single domain particles.
The sum of the rock magnetic data suggests these obsidian samples are quite
suitable for Thellier- type experiments [Shcherbakov & Shcherbakova, 2001].

1.2.2. Methods

Absolute paleointensity experiments followed the Coe [1967] modified Thellier-
Thellier method using the [Leonhardt et al., 2006] protocol with partial TRM
(pTRM) checks, additivity checks and pTRM-tail checks. pTRM checks were
measured in-field, parallel to the remanence direction following the correspond-
ing demagnetization step. Paleointensity calculations and statistics reported here
follow [Paterson et al., 2014]. Magnetic remanence measurements were done with
a 2G Enterprises Inc., three axis cryogenic magnetometer housed in a magneti-
cally shielded room using the Cryomag program package [Wack, 2010].

A shock wave from a meteorite impact induces both hydrostatic and deviatoric
stresses inside the material [Pohl et al., 1975]; the more non-hydrostatic the
pressure, the greater the influence on the remanence [Nagata, 1966, Pearce &
Karson, 1981]. Thus, one goal of our experiments was to subject the samples
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Figure 1.2.: a) Magnetization in a 50 mT applied field as a function of temperature. The sample
was subjected to temperature cycling to 200, 450 and 600◦C. Red lines show heating curves, blue
lines are cooling curves. b) Normalized magnetic hysteresis curve. Samples in both diagrams were
measured with a Petersen Instruments, variable field translation balance. c) Day plot for all 20
Hx+Hz samples showing the predominantly pseudo-single domain (PSD) character of the samples
(MD = multidomain). Mixing lines for SD-MD and single domain and superparamagnetic (SP)
from Dunlop [2002a] are shown as dashed lines.

to both hydrostatic (H) and non-hydrostatic (nH) pressures to test the role of
non-hydrostatic strain on paleointensity recording. Pressure was applied by load-
ing the samples individually into Teflon cups together with a pressure medium.
Silicone oil was used in the hydrostatic (H) experiments and NaCl in the non-
hydrostatic (nH) ones. The pressure cell was made of demagnetized stainless and
hardened steel components with dimensions similar to the one used by [Beza-
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eva et al., 2010]. Pressure was generated using a SpecAC Atlas manual 15-ton
hydraulic press at room temperature. Pressure buildup and release times lasted
approximately 30 seconds with peak pressure held for 10 seconds. Pressure was
calculated as the applied force from the press per area of the Teflon cup which
fit snuggly into the pressure chamber. All pressure cycles were done in the am-
bient Earths field. We tested whether the cell magnetized the sample during
pressure cycling and/or whether samples acquired a remanence during pressure
cycling in the Earths field by compressing fully demagnetized samples to 2 GPa.
Magnetization measured before and after cycling remained constant, meaning the
remanence state of the samples was neither influenced by the cell nor the ambient
magnetic field during the experiments.

The direction of the applied stress with respect to the remanence direction also in-
fluences the level of stress demagnetization or piezoremanence acquisition [Gilder
& Le Goff, 2008, Kean et al., 1976]. So each H or nH experiment was carried
out in duplicate, with the maximum compression axis applied perpendicular or
parallel to the magnetization direction, which was in the x or z axis direction
of the cylindrical sample, with the z-axis being parallel to the core axis and the
x-axis perpendicular to the core axis. The four groups (Hx, Hz, nHx and nHz),
each comprising ten cylindrical samples 6 mm in diameter and 5.4 mm in height,
underwent the same experimental protocol.

First, all 40 samples were given thermal remanent magnetizations (TRM) by
heating and cooling from 560◦C to room temperature in a 35.0 ± 0.2 µT lab-
oratory field using a Magnetic Measurements MMTD20 oven. They were then
subjected to a round of Thellier paleointensity experiments (0 GPa) and then
were given a new TRM in a 35.0 ± 0.2 µT field. After measuring their remanent
magnetizations, the samples were pressurized to 0.6 GPa, and then underwent
a new round of paleointensity measurements. They were again given a TRM,
pressurized to the next pressure level, etc. In the end, the paleointensity for ten
samples from each of the four groups were measured at 0 GPa and after pressure
cycling to 0.6 GPa. Both of the hydrostatic groups (Hx and Hz) were studied



1.2 Materials, methods and results 21

again at 1.2 and 1.8 GPa; only one pressure step (0.6 GPa) was used in the nH
experiments because the samples disintegrated at higher pressures.

Relative paleointensity methods often compare the spectra of moments from step-
wise alternating field demagnetization of the NRM with the demagnetization
spectra after applying a direct current magnetic field at room temperature [Fuller
et al., 1988, Gattacceca & Rochette, 2004]. If the two spectra are proportional,
e.g., if the normalized spectra are similar, then one can assume proportionality be-
tween the two acquisition mechanisms and establish a relative paleointensity. For
this reason, we compared how pressure cycling affects the magnetic recording of a
sample whose remanence was acquired thermally (TRM) and with a strong mag-
netic field, called an isothermal remanent magnetization (IRM). All experiments
described herein were carried out at Ludwig Maximilians Universität, Munich.

1.2.3. Results

Zero-pressure paleointensity experiments

All samples show narrow unblocking temperature distributions between 500◦C
and 550◦C with less than 3% of the magnetization lost below 400◦C (fig. 1.3).
The 13 temperature steps in the Thellier experiments were chosen to optimize
the coverage of the unblocking-blocking spectrum. Intensity determinations were
based on all steps and yield an overall mean of 34.1 ± 1.3 µT (N= 40) (table 1.1)
that matches the expected value (35.0 ± 0.2 µT) within 1σ uncertainty limits.
They have exceptionally high average quality factors (q) of 27 ± 2, which con-
siders the relative scatter of the best-fit line, the percentage of the NRM used for
the fit and the spacing of the data [Coe et al., 1978]. Selection criteria for pale-
ointensity studies commonly set a q threshold of 1-5 as acceptable with values of
10-20 considered very good [Paterson et al., 2015]. pTRM checks of 1.4% suggest
multidomain tails are insignificant [Leonhardt et al., 2004].

Curvature of the Arai diagram arises from grains that unblock below their block-



22 1. Effect of static pressure on absolute paleointensity recording

Table
1.1.:Results

from
the

paleointensity
experim

ents
in

this
study

forindividualsam
ples

and
group

averages.
Abbreviations

are:
H

,hy-
drostatic;nH

,non-hydrostatic;x,the
m

axim
um

com
pression

axis
was

applied
perpendicularto

the
m

agnetization
direction;z,the

m
axim

um
com

pression
axis

was
applied

parallelto
the

m
agnetization

direction;B
paleo ,the

calculated
paleointensity;q,the

quality
factor,and

∆
M

,the
am

ount
ofTRM

m
om

ent
lost

afterpressure
cycling

divided
by

N
RM

P0
(in

percent).
B

P
aleo

[µT
]

q
B

P
aleo

[µT
]

q
∆

M
[%

]
B

P
aleo

[µT
]

q
∆

M
[%

]
B

P
aleo

[µT
]

q
∆

M
[%

]
0.0

G
P

a
0.6

G
P

a
1.2

G
P

a
1.8

G
P

a
H

x00
35.4±

1.4
23.7

33.9±
1.0

29.8
-3.65

30.5±
0.7

39.6
-12.21

H
x01

35.9±
1.4

23.1
34.3±

0.9
34.1

-6.06
32.9±

0.6
52.8

-10.89
H

x02
32.9±

1.1
25.4

32.1±
0.8

35.6
-7.02

30.4±
0.8

34.7
-12.50

H
x03

33.7±
1.1

26.6
32.4±

0.9
33.3

-6.98
29.9±

0.7
35.7

-11.70
28.1±

0.6
40.6

-18.93
H

x04
34.2±

1.1
29.2

34.1±
0.9

32.6
-6.93

28.9±
0.7

37.9
-14.48

28.5±
0.6

39.6
-16.33

H
x05

33.5±
1.2

27.4
33.3±

0.8
35.4

-7.03
30.3±

0.7
40.7

-13.14
28.3±

0.6
36.7

-18.89
H

x06
36.9±

1.1
30.9

33.1±
0.8

36.7
-6.80

29.8±
0.6

42.0
-12.84

30.9±
0.6

39.7
-16.44

H
x07

34.8±
1.1

27.5
34.3±

1.0
31.3

-5.73
31.8±

0.6
48.8

-11.54
29.1±

0.6
44.2

-17.05
H

x08
35.1±

1.2
25.9

34.4±
0.9

35.9
-5.55

30.4±
0.6

48.3
-12.25

30.9±
0.7

35.3
-16.86

H
x09

34.5±
1.1

27.4
34.2±

1.0
32.5

-5.52
31.5±

0.6
45.5

-11.62
28.8±

0.6
37.8

-16.14
H

z00
33.8±

1.1
28.4

32.2±
0.8

37.6
-7.47

30.0±
0.5

52.4
-14.39

29.6±
0.5

45.9
-16.46

H
z01

34.8±
1.1

28.3
32.7±

0.9
33.9

-7.12
30.0±

0.5
56.3

-14.85
29.3±

0.6
40.9

-15.44
H

z02
34.5±

1.2
27.4

33.3±
0.9

32.4
-5.71

29.8±
0.5

51.4
-16.77

28.2±
0.5

49.0
-19.64

H
z03

34.9±
1.3

25.8
33.7±

1.0
29.8

-5.49
30.6±

0.6
46.7

-13.99
28.9±

0.5
45.0

-18.63
H

z04
34.5±

1.2
27.8

33.5±
0.9

32.6
-6.64

30.1±
0.5

49.5
-15.16

29.1±
0.5

48.1
-18.26

H
z05

35.4±
1.2

27.5
33.7±

0.9
33.6

-3.83
30.6±

0.6
48.0

-12.22
28.7±

0.4
53.8

-20.53
H

z06
34.4±

1.1
28.2

33.6±
0.9

35.9
-5.41

30.8±
0.5

53.0
-14.51

28.4±
0.4

69.8
-20.22

H
z07

34.9±
1.1

27.9
34.6±

0.9
35.0

-4.85
30.6±

0.5
54.8

-14.15
29.3±

0.5
51.9

-16.28
H

z08
35.4±

1.2
27.8

33.4±
0.9

33.7
-7.15

30.0±
0.4

59.1
-17.59

28.7±
0.4

61.1
-22.50

H
z09

35.4±
1.3

24.6
33.6±

1.0
32.3

-5.50
30.6±

0.5
50.0

-13.89
29.2±

0.5
50.6

-18.82
nH

x00
34.9±

1.1
28.3

29.5±
0.9

29.0
-29.06

nH
x01

37.1±
1.3

26.8
32.6±

1.3
22.3

-4.71
nH

x02
34.5±

1.2
27.0

25.3±
1.1

17.9
-34.75

nH
x03

33.8±
0.9

33.4
32.0±

1.2
22.8

-15.98
nH

x04
32.6±

1.2
24.6

29.4±
0.7

37.3
-16.44

nH
x05

35.1±
1.0

31.4
27.5±

0.7
34.8

-21.27
nH

x06
35.2±

1.1
27.9

36.5±
1.1

29.1
-19.22

nH
x07

35.2±
1.3

25.0
30.8±

1.2
22.4

-21.22
nH

x08
32.4±

1.0
29.3

29.8±
1.0

21.7
-27.97

nH
x09

34.9±
1.4

23.3
26.8±

1.2
18.2

-18.02
nH

z00
33.3±

1.1
27.3

30.8±
0.6

47.3
-27.93

nH
z01

33.9±
1.2

25.7
30.0±

0.6
42.0

-23.92
nH

z02
35.0±

1.3
24.9

30.1±
0.7

37.6
-31.02

nH
z03

32.3±
1.1

27.8
30.0±

0.6
39.1

-42.96
nH

z04
32.1±

1.0
28.2

30.8±
0.6

41.1
-30.12

nH
z05

32.7±
1.1

27.9
30.0±

0.6
44.7

-22.95
nH

z06
32.9±

1.1
27.1

28.8±
0.6

33.9
-30.26

nH
z07

35.2±
1.3

24.8
28.8±

0.8
30.2

-28.05
nH

z08
35.1±

1.4
24.2

29.1±
0.7

32.6
-27.01

nH
z09

33.3±
1.2

24.9
29.2±

0.8
31.6

-27.41
H

34.7±
0.9

27.0±
1.8

33.5±
0.7

33.7±
2.1

-6.0±
1.1

30.5±
0.8

47.4±
6.8

-13.5±
1.7

29.0±
0.8

46.5±
8.9

-18.1±
1.9

H
x

34.7±
1.1

26.7±
2.2

33.6±
0.8

33.7±
2.1

-6.1±
1.0

30.6±
1.1

42.6±
5.7

-12.3±
1.0

29.2±
1.1

39.1±
2.7

-17.2±
1.1

H
z

34.8±
0.5

27.4±
1.2

33.4±
0.6

33.7±
2.0

-5.9±
1.1

30.3±
0.3

52.1±
3.6

-14.8±
1.4

28.9±
0.4

51.6±
8.0

-18.7±
2.1

nH
34.1±

1.3
27.0±

2.4
29.9±

2.2
31.8±

8.6
-25.0±

7.9
nH

x
34.6±

1.3
27.7±

2.9
30.0±

3.0
25.6±

6.3
-20.9±

7.9
nH

z
33.6±

1.1
26.3±

1.4
29.8±

0.7
38.0±

5.5
-29.2±

5.2



1.2 Materials, methods and results 23

PaleoPaleo

Paleo Paleo

Figure 1.3.: Arai diagrams for a sample at ambient pressure (0 GPa) and then after pressure
cycling to 0.6, 1.2 and 1.8 GPa. The sample was given a thermal remanent magnetization in a
35.0 ± 0.2 µT field before pressure cycling and implementation of the Thellier-type paleointensity
experiment. Temperature in ◦C listed for select steps.

ing temperature [Fabian, 2001], which commonly afflicts multidomain as well as
pseudo-single domain sized particles. The pseudo-single domain character of the
samples (fig. 1.2) causes some curvature in the Arai plot, which leads to an am-
biguity on how to fit the line segment. If only the 510◦C to 560◦C unblocking
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portion on the Arai diagram is used for the calculation, the quality factor in-
creases from 27 ± 2 to 36 ± 12, yet the average paleointensity of 30.6 ± 1.1 µT
underestimates the true value by 13%, thus we used the entire demagnetization
spectrum to determine the paleointensity values.

1.2.4. Paleointensity experiments after pressure cycling
(hydrostatic stress)

Following the initial (0 GPa) paleointensity experiments, a new TRM was im-
parted on the samples in the x (N = 10) or z (N = 10) direction. The samples
were pressure cycled to 0.6 GPa, then the paleointensity experiments were per-
formed. This process was repeated using peak pressures of 1.2 and 1.8 GPa.
With some caveats described below, we found no significant difference between
Hx and Hz so all 20 results were averaged together (table 1.1). There are two
ways to analyze the data (fig. 1.4). The conventional approach would be to nor-
malize the magnetic moments to the NRM. Here, the NRM would be the initial
moment obtained, whether it was the 0 GPa value [NRM(P0)] or the NRM value
after pressure cycling to Pn[NRM(Pn)] (fig. 1.4a and 1.4b). Plotted in this way,
the data exhibit piezoremanence, with an increase in acquired remanence in the
high temperature part of the blocking spectrum as pressure increases. The total
acquired magnetization grows by 5, 15 and 21% of the original NRM moment at
0.6, 1.2 and 1.8 GPa, respectively. This coincides with a systematic decrease in
paleointensity values from 34.8 ± 0.9 µT to 33.5 ± 0.7 µT (-3.7 %) at 0.6 GPa,
to 30.5 ± 0.8 µT (-12.3 %) at 1.2 GPa and 29.1 ± 0.8 µT (-16.4%) at 1.8 GPa
due to an apparent piezoremanence effect.

A second approach is to normalize the paleointensity runs by the initial, pre-
pressurized magnetization [NRM(P0)] (fig. 1.4a and b), thus illustrating the
changes relative to the start- ing condition. In other words, if one had a pri-
ori information about the initial, pre-strained TRM, which of course one does
not know, this approach best reflects the effect of strain. Viewed in this way,
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Figure 1.4.: Average thermal demagnetization and acquisition for all 20 hydrostatic experiments
a,b) normalized to the NRM(Pn) magnetization and c,d) normalized to the initial, pre-pressurized
NRM(P0). b) and d) are the Arai plots corresponding to a) and c), respectively; uncertainties are
single standard deviations.

one observes a pressure demagnetization effect that mostly influences the lower
temperature part of the unblocking spectrum, consistent with experiments by
Tikoo et al. [2015]. NRM(Pn) values decrease with increasing pressure, which
systematically lowers the paleointensities the same amount as in the first case
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because the slopes are lowered in a reciprocal manner.

A third way of analyzing the data would be to normalize the NRM by the mag-
netization value acquired at the end of the last, in-field paleointensity step, and
not to the non-pressure cycled NRM(P0). This approach likely yields the most
precise understanding of the effect of pressure demagnetization on paleointensity,
as it describes the changes relative to the prior pressure step and not to the ini-
tial step, e.g., it tracks the incremental changes since the pressures are applied
incrementally. Because the samples already experienced one or more pressure
cycles, the cumulative demagnetization effect from multiple pressure cycling to
some peak pressure would be greater than a single pressure step to the same
peak pressure, as analogous to alternating field demagnetization. However, there
is only a very slight difference with respect to the second method, so we show
only the data normalized by unstressed (initial) NRM(P0) value (fig. 1.4c and d).

Paleointensity experiments after pressure cycling (non-hydrostatic stress)

Non-hydrostatic pressures impart deviatoric stresses, which facilitate greater changes
in initial to post pressure magnetization beyond that of hydrostatic pressure. Fig-
ure 1.5 shows the thermal demagnetization and pTRM acquisition curves and the
corresponding Arai-Nagata diagram for the nH experiments. The demagnetiza-
tion effect can be readily seen in the thermal decay of the NRM normalized to
NRM(P0) (fig. 1.5a). Small pieces broke off at the rims of most samples during
pressure cycling, so we weighed them again to account for the loss in mass when
normalizing the magnetizations.

After pressure cycling to 0.6 GPa, the nHx and nHz samples lost 20.9 ± 7.9%
and 29.2 ± 5.2% of the pre-pressurized NRM moment, respectively (table 1.1).
However, the magnetizations in the nHz group recover 4.3 ± 0.8% upon heating
to 300◦C, and above 450◦C the thermal decay of nHx and nHz follow very sim-
ilar paths (fig. 1.5a). These results demonstrate that stress demagnetization is
more effective when the magnetic moment parallels the maximum compression
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Figure 1.5.: a) Thermal demagnetization and pTRM acquisition when normalized to the initial
pre-pressure NRM(P0) and b) the corresponding Arai-Nagata diagrams for non-hydrostatically
(nH) pressure cycled samples either when the maximum stress axis was applied parallel (z) or per-
pendicular (x) to the magnetization direction. Shaded area and error bars represent one standard
deviation. Pressure demagnetization is clearly visible in a) which results in a shallowing of the
slope and hence, the paleointensity value b).

axis rather than perpendicular to it, whereas pTRM acquisition occurs indepen-
dently of the compression axis direction relative to the magnetization direction.
Paleointensity decreases with pressure (fig. 1.5b), going from 34.6 ± 1.0 µT at 0
GPa to 30.0 ± 3.0 µT at 0.6 GPa (-13.2 ± 1.3%) for nHx and from 33.6 ± 1.0
µT at 0 GPa to 29.8 ± 1.0 µT at 0.6 GPa (-11.3 ± 0.2%) for nHz. However, the
reduction in paleointensity at 0.6 GPa (-12.5%) is only about half the decrease
in NRM moment from stress demagnetization (-25%). Although stress demagne-
tization exhibits a strong directional dependence, the effect on paleointensity is
small due to the recovery of the magnetic moment upon heating in the nHz sam-
ples – an effect likely related to thermal annealing. In most cases, q improves with
increasing pressure as the curvature becomes less pronounced (fig. 1.5, table 1.1).
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Numerical modeling of the pressure cycled paleointensity data

The effect of pressure cycling on thermoremanence can be better understood
by plotting the change in magnetization [M(Pn,Ti) - M(P0,Ti)] relative to the
room temperature values of NRM(Pn) or NRM(P0) for the hydrostatic results
(averages and standard deviation envelopes of N= 20 shown in fig. 1.6). The
data in fig. 1.6a and 1.6b represent the differences between the black (P0) and
the colored (Pn) curves in fig. 1.4a and 1.4c, respectively. Figure 1.6a shows the
moment normalized to the NRM(Pn) value, which yields the apparent change
in unblocking distribution with pressure due to pressure demagnetization (solid
lines) and piezoremanence (dashed lines). Figure 1.6c represents the average
unblocking spectra from the 0 and 1.8 GPa runs. It is the relative differences
between these two curves that yield the thin red curve in fig. 1.6a. The pressure
demagnetization curves increase linearly up to 450◦C with a maximum change in
unblocking behavior around 500◦C and then a decrease above 500◦C where after
the thermal decay gradually converges with the zero pressure curve near 100%
unblocking. Differences become exacerbated with pressure.

Normalization by NRM(P0) shows a different facet of the data (fig. 1.6b). Nega-
tive (positive) relative differences mean that the magnetic moment after pressure-
cycling is lower (higher) than the initial case, again displaying a clear pressure
dependency. As fig. 1.6b shows, the differences between the Pn(1.8 GPa) and
P0(0 GPa) curves best reflect the change in blocking behavior (pTRM acquisi-
tion) due to strain. Because the grains begin in a demagnetized state, changes
in the blocking behavior are associated with irreversible changes, such as going
from more multidomain to more single domain-like behavior. pTRM acquisition
is pressure independent below 500◦C whereas significant changes occur above
500◦C for all three pressure steps. The lowest pressure (0.6 GPa) provokes the
smallest difference, while the two higher pressure steps (1.2 and 1.8 GPa) are
fairly similar except for a sharp increase in the 1.2 GPa curve at 530◦C which
we attribute to an error when setting the temperature on the controller since
all samples show the same effect (e.g., the spike arises from all samples and not
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Figure 1.6.: Relative differences between pressure cycled and zero pressure data, calculated from
the averages of all hydrostatic samples (N= 20). Data are normalized to NRM(Pn) in a) and to
NRM(P0) in b). Dashed lines and open symbols represent the differences of the pTRM acquisi-
tion data (blocking) while solid lines represent zero field heating steps (unblocking). c) and d)
show the data used for modeling with points representing the measured data and the lines repre-
senting the model, black lines and points show data/model for zero pressure, red is data/model
for 1.8 GPa. Plots e) represent pTRM acquisition and thermal demagnetization curves calculated
from skewed Gaussian distributions of blocking/unblocking temperatures with mean temperature
[TB], distribution width [σ(TB)] and skewness [skew] and the calculated relative difference of the
three cases.

a single outlier). On the other hand, the high degree of similarity between the
curves suggests the differences have physical meaning and temperature control is
generally precise.

Figure 1.6e represents a simple model explaining the origin of the relative differ-
ences by assuming both the blocking and unblocking temperatures follow skewed
normal distributions. The curvature in the Arai diagrams indicates that the
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Figure 1.7: Magnetic moment nor-
malized to the TRM(Pn) value af-
ter pressure demagnetization for
both hydrostatic (H) and non-
hydrostatic (nH) stresses where
the maximum compression axis was
applied parallel (z) or perpendicular
(x) to the magnetization direction.
Stars represent the average values
(N=20). Uncertainties on pressure
are ±10%
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blocking and unblocking mechanisms follow separate laws, so they should be
treated individually [Fabian, 2001]. Figure 1.6e shows how shifts in the blocking
or unblocking spectra influence the thermal decay or pTRM acquisition data.
Three cases are presented: Case 1 to shift the mean blocking temperature [TB],
Case 2 to broaden or narrow the width of the unblocking temperature distribution
[σ(TB)], and Case 3 to alter the skewness [skew] of the unblocking temperature
distribution. Each case produces relative differences in the temperature spectra
(fig. 1.6e). For Case 1, lowering (raising) the mean blocking temperature results
in a positive (negative) relative difference in magnetization with larger ampli-
tudes for larger shifts in temperature. For Case 2, narrowing the unblocking
distribution about a constant mean causes a positive-negative peak doublet cen-
tered on the mean unblocking temperature of the distribution; the narrower the
distribution, the higher the amplitude. For Case 3, skewing the spectra towards
higher unblocking temperatures (negative skewness) results in a positive peak
centered on the mean unblocking temperature. Skewing toward lower unblock-
ing temperatures (positive skewness) yields the same result except the peaks are
negative.
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We used a combination of the three cases to model the 1.8 GPa data relative to the
0 GPa hydrostatic data. For this we assume that the sample consists of a single
a skewed normal distribution for both the TB and TUB spectra. Although the
samples show narrow blocking and unblocking spectra, it is likely that several
different grain populations can describe it. We added a linear component to
explain the loss (gain) of magnetic moment in the lower un-blocking (blocking)
temperatures. In the first iteration, we fit the cumulative distribution of a skewed
normal distribution together with a linear component to the mean of the raw 0
GPa data for thermal demagnetization and pTRM acquisition. This procedure
was repeated for the raw data at 1.8 GPa. We then calculated the relative
differences. A visual comparison of the fit with the data showed the need for
further adjustments of the model. In a second iteration we adjusted the values
to better match difference curves in fig. 1.6a and 1.6b. The parameter of the
baseline distribution (0 GPa) for thermal decay are TUB = 520◦C, σ(TUB) = 20◦C,
skew = -3 and a constant of -2.3%/100◦C while pTRM acquisition was fit with
TB = 523◦C, σ(TB) = 18◦C, skew = -3 and constant of +1.5%/100◦C. These led
to the black lines (model) connecting the black data points in fig. 1.6c and 1.6d.
The same operation was performed for the 1.8 GPa data leading to the red lines
(model) connecting the red, measured data points in fig. 1.6c and 1.6d. Although
fairly crude, the model provides a simple way to explain changes in the blocking
and unblocking spectra, thereby giving a first-order indication of the processes
involved.

The modeled differences between the 1.8 and 0 GPa data are plotted as thick red
lines over the original data (thin red lines) in fig. 1.6a and 1.6b. For pTRM acqui-
sition, the relative differences between the 1.8 and 0 GPa can be described using
case 1 with a -3.0◦C shift in blocking temperatures (thick red line in fig. 1.6b).
This indicates that pressure cycling causes irreversible changes in the samples
blocking spectrum by shifting it toward slightly lower temperatures. Lowering
the mean blocking temperature so that it converges with the mean unblocking
temperature eliminates curvature of the Arai diagram [Fabian, 2001], consistent
with our data (fig. 1.4d and 1.5b). The relative differences of the thermal decay
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can be described using a combination of cases 2 and 3, which narrows the distri-
bution width by 1.0◦C, decreases skewness by 2, and has a constant linear change
of +1.1%/100◦C. This suggests two processes are involved in stress demagne-
tization: one that affects the entire spectrum of unblocking temperatures and
a second that mainly skews the population with lower unblocking temperatures
while tightening the spread.

Irreversible changes in thermal remanent acquisition can be quantified by com-
paring the final pTRM acquisition step of one Thellier experiment with the new
TRM imposed before pressurization for the next step. The TRM moment after
pressure cycling to 0.6 GPa is 3% and 5% greater than that of the 0 GPa TRM
moment [TRM(P0.6) / TRM(P0) = 1.03 and 1.05] for the hydrostatic and non-
hydrostatic groups, respectively. The increase in magnetic remanence acquisition
efficiency likely owes its origin to a reduction in domain state, introduction of
crystal defects, and/or permanent strain of the crystal lattice as previously pos-
tulated [Gilder & Le Goff, 2008]. High reciprocity of the moment as a function
of temperature dis- counts chemical alteration as a viable explanation.

1.2.5. Stress effect on remanent magnetizations acquired in
strong magnetic fields

Thellier-type paleointensity experiments often produce alteration and are thus
avoided in meteorite studies. Instead, relative, non-destructive paleointensity
techniques are employed, which rely on giving a sample an artificial magneti-
zation at room temperature, such as a saturation isothermal (direct current)
remanent magnetization (SIRM), and then comparing the alternating field de-
magnetization spectra between the SIRM and the (supposed) TRM [Fuller et al.,
1988, Gattacceca & Rochette, 2004]. The paleointensity is derived by assuming
a proportionality constant between the two. Whereas Thellier-derived paleoin-
tensities are based on physical (Néel) theory, relative paleointensities based on
SIRM are not, so comparison between the two should be made with caution. But
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because Thellier-based results are more difficult to obtain, relative paleointensity
techniques, although inaccurate, may be preferred over no result as an order of
magnitude estimate.

Quantifying the stress demagnetization effect on SIRM-bearing samples was done
by exposing samples to a 1.2 T field, measuring their magnetizations, stress
cycling the samples under hydrostatic conditions with the piston axis oriented
parallel to the magnetization direction (z), and then measuring their magnetiza-
tions again1. The amount of magnetization lost was compared against the stress
demagnetized data from TRM-bearing samples for both the hydrostatic and non-
hydrostatic cases (fig. 1.7). Demagnetization of the SIRM moment decreases
42.8%/GPa, comparable to demagnetization levels measured on several different
rock types with similar domain states [Bezaeva et al., 2007]. This is four times
greater than for TRM (- 10.3%/GPa) under like conditions, which is not surpris-
ing since a SIRM on single domain and pseudo-single domain grains is also more
easily demagnetized than a like population having a TRM [Halgedahl, 1998]. Of
interest is that non-hydrostatic stress demagnetization of a TRM is essentially
equivalent to that of the hydrostatic stress demagnetization of a SIRM (fig. 1.7),
likely because the strain gradient from non-hydrostatic stresses produces a greater
effect than hydrostatic stress on one hand and IRM-based magnetizations are
more strain sensitive on the other. This implies that pressure demagnetization
experiments based on SIRM can be used as an end-member analogy for strain
effects on TRM-bearing samples.

1.3. Discussion and Conclusions

Figure 1.8 summarizes the results of the paleointensity experiments. The degree
of magnetization loss depends on the level of hydrostaticity: hydrostatic pressure
decreases the NRM moment by 10%/GPa while non-hydrostatic pressure has a

1Alternating field demagnetization of an SIRM moment after pressure cycling can be seen in
the Appendix fig. A.1
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Figure 1.8: Change in paleointensity as a func-
tion of pressure relative to the initial measured
value for both hydrostatic and non-hydrostatic
stresses where the maximum compression axis
was applied parallel (z) or perpendicular (x)
to the magnetization direction. Uncertainties
are ±10% for pressure; single standard devi-
ation for paleointensity. Stars represent the
average paleointensity for each group: red for
non-hydrostatic (N=20), blue for hydrostatic
(N=20). Small symbols represent paleointensity
result for individual samples; large symbols show
the averages for x and z separately. Slopes were
calculated from least squares fit of the averages.
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four times greater effect (40%/GPa). This degree of loss translates into corre-
spondingly lower paleointensity estimates by 10%/GPa for hydrostatic stress and
20%/GPa for non-hydrostatic stress (fig. 1.8). When extrapolated to higher pres-
sures, one would conclude that shock or static pressure above ca. 5 GPa should
effectively demagnetize most samples. However, experiments employing stresses
well above our peak pressure of 1.8 GPa show the magnetization generally de-
cays with the inverse of pressure [Gattacceca et al., 2007, Gilder et al., 2006], so
it remains possible that meteorites exhibiting shock stages above S1 can retain
some remanence.

Why the decrease in paleointensity is proportional to stress demagnetization for
the hydrostatic case, but only half that for the non-hydrostatic case, can only
be partly attributed to recovery of the moment during heating. Although the
degree of demagnetization for non-hydrostatic stresses is sensitive to the relative
orientation between the maximum compression axis and the remanent magne-
tization direction, the paleointensity result, and hence the modification in the
unblocking/blocking spectra, is not. The fundamental conclusion is that paleoin-
tensity results from S1 unshocked meteorites may be appreciably underestimated
and should be considered as lower limits. This is particularly clear for hyperve-
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locity impacts, which eject material from the host body into space, since they
have non-negligible and highly variable deviatoric stress components [Pohl et al.,
1975].

Thermal decay curves for pressurized and non-pressurized samples are nearly in-
distinguishable when normalized by NRM(Pn) (fig. 1.4a); however, normalizing
by NRM(P0) clearly reveals the stress demagnetization effect (fig. 1.4c). The
opposite is true for the piezoremanence effect (fig. 1.4b and 1.4d). Modeling the
relative differences with skewed Gaussian distributions together with linear com-
ponents indicates two distinct processes influence the un- blocking spectra: one
that affects the entire spectrum of unblocking temperatures and a second that
mainly tightens the spread of the fraction with lower unblocking temperatures.
Stress demagnetization has a greater influence on the portion of remanence carri-
ers with lower un-blocking temperatures, which is increasingly exacerbated with
pressure and serves as an indication for the onset of irreversible changes in the
remanence carriers. In contrast, the blocking temperature spectrum is much less
affected. The net effect lowers the difference between blocking and unblocking
thereby reducing the curvature of the Arai diagram.

Besides implications for paleointensity recording in meteorites, our study explains
a commonly observed phenomena in paleointensity data on unshocked terrestrial
material – namely that one obtains the correct paleointensity result merely by
fitting a line on the Arai slope between the first (NRM) and last (full pTRM)
points for samples that (1) have only one magnetization component, (2) exhibit no
or only a low propensity for alteration, and (3) have curved blocking-unblocking
spectra due to the presence of multidomain and/or pseudo-single domain grains
[Chauvin et al., 2005, Dunlop, 2005]. The reason for this can be seen in fig. 1.6
where the relative differences in unblocking and unblocking temperature become
unity for the fraction with the highest temperatures. As long as the NRM moment
has remained constant since remanent acquisition, a paleointensity slope based
on the first and final points should yield the correct answer.

Pressure cycling can also be used to correct curved paleointensity data for sam-
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ples that have a single magnetization component, do not significantly alter dur-
ing heating near the Curie temperature and contain a significant proportion of
pseudo-single and/or multidomain grains. In such cases, one would measure the
NRM, compress the sample to ca. 2 GPa, and then carry out a Thellier ex-
periment. One then normalizes the data by R(Pn) = NRM(Pn)/NRM(P0) and
then calculates the slopes on the normalized curves [BPal = Blab × |slope| ×
R(Pn−1)]. We performed this exercise on the hydrostatically-stressed samples,
which resulted in corrected paleointensity values of 35.7 ± 0.6, 35.3 ± 0.8 and
35.5 ± 0.9 µT for the 0.6, 1.2 and 1.8 GPa results, respectively – well matching
the laboratory field of 35.0 ± 0.2 µT. Although encouraging, the method should
be further tested on magnetite samples with well-defined size distributions to
verify its general applicability.

It would be interesting to repeat the experiments herein on thermally-stable sam-
ples possessing different types of remanence carriers (i.e., hematite). Measuring
the effect on paleointensity when imposing pressure at elevated temperature, as
analogous to basement rocks in meteorite impact craters, may also bear inter-
esting results. Moreover, rocks (terrestrial or extra-terrestrial) displaying linear
trends on Arai plots might have their origin in a pressure effect that does not
necessarily reflect the ubiquitous presence of single domain particles. In other
words, evidence for the presence of large, multidomain grains in a sample yield-
ing linear Arai plots could suggest the sample experienced some degree of stress
cycling. An example comes from diamonds with millimeter-sized pyrrhotite in-
clusions, which one would assume are in the multi-domain range, yet they exhibit
single domain-like magnetic properties [Clement et al., 2008]. High-pressure ex-
periments on pyrrhotite show that the effect of strain is to make multi- domain
pyrrhotite more single domain-like [Gilder et al., 2011]. These workers calculated
that differences in bulk moduli between diamond and pyrrhotite leads to an over-
pressure of the pyrrhotite inclusions when the diamonds reach the Earths surface
from the mantle. The same could be true for Fe-Ni metal inclusions in olivine,
like in the pallasite meteorites described by Tarduno et al. [2012].



2. Low temperature magnetic
properties of monoclinic
pyrrhotite with particular
relevance to the Besnus
transition

Abstract

Monoclinic pyrrhotite (Fe7S8) owes its ferrimagnetism to an ordered array of Fe
vacancies. Its magnetic properties change markedly around 30 K, in what is
known as the Besnus transition. Plausible explanations for the Besnus transition
are either due to changes in crystalline anisotropy from a reduction in crystal
symmetry or from the establishment of a two-phase system with magnetic inter-
action between the two phases. To help resolve this discrepancy, we measured
hysteresis loops every 5◦ and back field curves every 10◦ in the basal plane of an
oriented single crystal of monoclinic pyrrhotite at 300 K and at 21 temperature
steps from 50 K through the Besnus transition until 20 K. Between 50 and 30 K,
hysteresis loops possess double inflections between crystallographic a-axes and
only a single inflection parallel to the a-axes. Magnetization energy calculations
and relative differences of the loops show a six-fold symmetry in this tempera-
ture range. We propose that the inflections stem from magnetic axis switching,
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which is both field and temperature dependent, in a manner somewhat analo-
gous to an isotropic point where magnetocrystalline constants change their sign.
The Besnus transition is best characterized by changes in magnetic remanence
and coercivity over a 6◦ temperature span with a maximum rate of change at
30 K. A surprising yet puzzling finding is that the coercivity ratio becomes less
than unity below the transition when four-fold symmetry arises. Because the
changes in magnetic parameters are linked to the crystal structure, we conclude
the Besnus transition owes its origin to a distortion of the crystallographic axes
rather than an apparition of a two-phase system. The saturation magnetization
of natural pyrrhotite cycled from room temperature to successively lower tem-
peratures through the Besnus transition decreases 2-4 times less than equivalent
grain sizes of magnetite, with less than a 10% loss in remanence between 300 K
and 150 K in pseudo-single domain pyrrhotite. As pseudo-single domain mono-
clinic pyrrhotite carries the magnetic remanence in some meteorites, it is likely
that low temperature cycling in space to the Earth’s surface will have only a
minor influence on paleointensity values derived from those meteorites.

2.1. Introduction

Pyrrhotite refers to a group of non-stoichiometric iron sulfides, Fe1-xS with 0.08
< x < 0.125, that are important carriers of magnetic remanence in some ter-
restrial and extraterrestrial rocks. The mineral group has a hexagonal (NiAs
type) crystal structure consisting of alternating Fe and S layers. A slight distor-
tion (β from 90◦ to ≈ 90.4◦) of the crystal lattice in Fe7S8 lowers the symmetry
from hexagonal to monoclinic, so it is commonly referred to as pseudo-hexagonal
[Martin-Hernandez et al., 2008]. Vacancies in the Fe layers lead to different su-
perstructures [Morimoto et al., 1970], with the most iron deficient pyrrhotite (4C)
having alternating layers of completely filled Fe sites and layers containing ordered
vacancies at an Fe site [Bertaut, 1953]. Sublattice moments couple ferromagneti-
cally within the basal plane while adjacent Fe-layers couple antiferromagnetically.
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Regular ordering of vacancies in the basal plane and unequal sublattice moments
give rise to ferrimagnetism in monoclinic pyrrhotite [Bertaut, 1953, Néel, 1952,
O’Reilly, 1984]. Hexagonal pyrrhotite (Fe11S12 - Fe9S10) has equal but opposite
sublattice moments at room temperature. Around 220◦C, hexagonal pyrrhotite
undergoes the so-called lambda transition characterized by a reordering of the va-
cancy structure that transforms the crystal into a ferrimagnetic monoclinic form
with a sharp increase in magnetization [Schwarz & Vaughan, 1972]. Monoclinic
pyrrhotite exhibits no lambda transition.

Vacancy ordering produces a strong magnetocrystalline anisotropy in Fe7S8 [Bin
& Pauthenet, 1963, Martin-Hernandez et al., 2008, Mikami et al., 1959, Sato
et al., 1964]. At room temperature, the hard magnetic axis parallels the c-axis
while the easy direction resides within the basal plane [Bin & Pauthenet, 1963,
Kind et al., 2013]. Magnetic domain observations mainly show 180◦ domain walls
[Halgedahl & Fuller, 1981, Soffel, 1981]. The multidomain (MD) threshold occurs
at grain sizes > 100 µm while particles smaller than 2 µm are single domain (SD)
[Soffel, 1977]; most magnetic parameters show grain size dependencies [Dekkers,
1988, 1989, Menyeh & O’Reilly, 1997].

Monoclinic pyrrhotite undergoes a magnetic phase transition around 30-34 K,
called the Besnus transition (TBes) [Besnus & Meyer, 1964, Dekkers et al., 1989,
Fillion & Rochette, 1988]. When cooled in zero field, the transition is marked
by a sudden loss of remanent magnetization as well as changes in other mag-
netic parameters [Dekkers et al., 1989, Kind et al., 2013, Koulialias et al., 2015].
Why the transition occurs is debated. Some workers propose a crystallographic
transformation from monoclinic to triclinic [Fillion & Rochette, 1988, Rochette
et al., 2011, Wolfers et al., 2011], while others argue for a reorientation of domain
structure due to interacting superstructures independent of the 4C superstruc-
ture [Charilaou et al., 2015, Kind et al., 2013, Koulialias et al., 2015]. To help
elucidate this problem we studied magnetic hysteresis and backfield curves on a
single crystal of monoclinic (Fe7S8) pyrrhotite in 72 discrete angles at 22 discrete
temperatures above, during and below TBes.
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Another reason to study magnetic properties of monoclinic pyrrhotite at low
temperatures is that it constitutes a major magnetic mineral in certain types
of achondritic meteorites, including Martian meteorites, that potentially carries
a record of the ancient magnetic fields on those bodies [Gattacceca & Rochette,
2004, Rochette et al., 2008, 2001, Weiss et al., 2008b, 2002]. A largely unexplored
problem is how low temperature cycling in space influences the remanent magne-
tization of pyrrhotite, which may in turn bias the interpretation of paleointensity
data. Weiss et al. [2010] estimated the equilibrium temperature of a rotating
meteorite at a distance of 3.5 AU to be ≈150-130 K. Thus, we question how tem-
perature cycling will affect paleointensity estimates if a rock obtained a thermal
remanent magnetization by cooling through the Curie temperature down to an
equilibrium temperature of ≈150 K then subsequently arrived on the Earth’s sur-
face and warmed to ≈300 K. Dunlop [2003] carried out low temperature cycling
experiments on nine size fractions of magnetite (Fe3O4) where it was found the
amount of demagnetization strongly depends on particle size. We followed this
example by studying the low temperature cycling of natural pyrrhotite bearing
rocks with different magnetic domain states to assess the potential implications
for meteorites.

2.2. Materials, Methods and Results

2.2.1. Samples

The Munich Mineralogical State Collection (Mineralogische Staatssammlung Mün-
chen) provided us with a single crystal of monoclinic pyrrhotite (sample MSM17591)
to study the Besnus transition. It yielded a Curie temperature of 311 ◦C (Pe-
tersen Instruments, variable field translation balance, Univ. Munich) with no
trace of a lambda transition. We drilled a disk from the single crystal measuring
2.6 mm in diameter and 0.75 mm in height – paying close attention that the disk
was as circular as possible.
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A JEOL 6500 field emission gun outfitted with an HKL electron backscatter
diffraction detector (Univ. Minnesota) determined the sample’s crystallography
using an operating voltage of 20 kV and a working distance of 14.8 mm. Diffrac-
tion patterns were indexed using Channel 5 software with a monoclinic crystal
structure described by Tokonami et al. [1972] and Powell et al. [2004]. Crystal-
lographic solutions were accepted only if the mean angular deviation value was
less than 1.4◦. Measurements of elemental abundances were collected using an
accelerating voltage of 15 kV at a working distance of 10.0 mm. Spot energy
dispersive spectroscopy measurements were collected with a Thermo-Noran Van-
tage microanalysis system. The diameter of the interaction volume for elemental
measurements is ca. 2.0 µm for oxide and sulfide minerals. Matrix correction co-
efficients (Z, A and F) were calculated using the Phi(Rho*z) method of Pouchou
& Pichoir [1984] and Bastin & Heijligers [1991]. X-ray spectra were collected
using counting times of 60 s and a probe current of 20 nA.

The electron backscatter diffraction data show the c-axis of the MSM17951 pyrrho-
tite is oriented almost normal (77◦) to the sample’s surface. We arbitrarily de-
fined one of the a-axes to be a1=0◦. With reference to this axis, the c-axis trends
286◦ and the two other a-axes lie close to expected pseudo hexagonal structure
directions that trend a2= 57◦ and a3= 116◦ with respect to a1. There is no evi-
dence for twining, intergrowths or mineral inclusions. Nine spot energy dispersive
spectra yield an average composition of 47.4±0.7 at% Fe and 52.6±0.7 at% S,
corresponding to a bulk chemical composition of Fe7.2±0.2S8.

The samples used for the temperature cycling experiments comprise three pyrrho-
tite-bearing gneiss samples from the Kirchzarten deep drilling project in the Black
Forest, Germany [Pucher & Fromm, 1985] and a pure polycrystalline pyrrhotite
sample (MSM73410) courtesy of the Mineralogical State Collection. Mössbauer
spectra, magnetic hysteresis, Curie and Besnus temperature measurements for
MSM73410 were reported in Gilder et al. [2011]. Thermomagnetic curves mea-
sured with a Petersen Instruments variable field translation balance define Curie
temperatures of 319±5◦C for the three samples from the gneisses and 322◦C for
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MSM73410, typical of pure monoclinic pyrrhotite [Dunlop & Özdemir, 1997]. No
lambda-transition or Curie temperatures corresponding to magnetic phases other
than pyrrhotite were detected.

2.2.2. Rock Magnetic Measurements

Magnetic hysteresis loops and backfield curves were measured to maximum fields
of 1.5 T with a Princeton Instruments vibrating sample magnetometer to obtain
remanent saturation magnetization (Mrs), saturation magnetization (Ms), bulk
coercive force (Bc) and the coercivity of remanence (Bcr) (fig. 2.1; table 2.1).
Figure 2.1c plots the room temperature (300 K) remanence (Mrs/Ms) and coer-
civity (Bcr/Bc) ratios together with specific size fractions of pyrrhotite studied
by Dekkers [1988]. The three samples from the deep bore hole have relatively
high remanence ratios ≈0.4 and low coercivity ratios (<1.5) typical of pseudo
single domain pyrrhotite with grain sizes <35 µm. MSM73410 and MSM17591
have lower Mrs/Ms and higher Bcr/Bc characteristic of multidomain pyrrhotite
with grain sizes >200 µm [Dekkers, 1988]. Grain sizes listed in Table 1 for the
multidomain-rich pyrrhotite was estimated by extrapolating the Dekkers [1988]
data.

Hysteresis parameters are markedly different above and below TBes (table 2.1;
fig. 2.1), consistent with previous work [Dekkers et al., 1989, Kind et al., 2013].
At low temperatures the multidomain crystals act more single domain like. From
our limited data, there seems to be a linear relationship between the remanence
ratio and Bc with respect to grain size (fig. 2.1d inset).

For the low temperature demagnetization experiments, each sample was initially
magnetized in a 1 T magnetic field to produce a room temperature (T0= 300
K) saturating isothermal remanent magnetization (SIRM). The specimens were
cycled from T0 to approximately one of eight temperatures (Ti= 200, 150, 120,
90, 60, 40, 30 and 20 K) and then warmed back to T0. Magnetic moments were
measured in 5 K intervals in a null field. For each cycle, magnetization decreases
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Figure 2.1.: Hysteresis loops measured at 300 K and 20 K for samples that are a) pseudo-single
domain (P167) and b) multidomain (MSM73410) rich pyrrhotite after correction for paramagnetic
contribution. c) Day et al. [1977] plot for pyrrhotite measured at 300 K. Ellipses represent fields
measured from constrained size populations (as indicated, two standard deviations) of pyrrhotite
powder from Dekkers [1988]. b) Comparison of the remanence ratio (Mrs/Ms) vs. bulk coercivity
(Bc) measured at 300 K (red points) and 20 K (blue points). Inset shows the relative change in
Bc and Mrs/Ms as a function of grain size.

a few percent upon initial cooling from 300 K and then slightly increases before
decreasing again upon further cooling (fig. 2.2). A positive inflection coincides
with changes in crystalline anisotropy constants that achieve maximum values
around 200 K [Bin & Pauthenet, 1963].
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Figure 2.2.: Continuous cooling/warming measurements for a) pseudo-single domain rich
pyrrhotite and b) multidomain rich pyrrhotite. Blue lines are cooling paths from T0(=300 K)
→ Ti; red lines show warming back to 300 K.

The main difference between pseudo-single domain and multidomain-dominated
samples upon low temperature cycling is the relative loss in magnetization, which
is significantly less in pseudo-single domain than in multidomain bearing samples
(fig. 2.2). In contrast to magnetite, the curves are not reversible and do not
follow the previous warming path when cycling to a lower temperature [Dunlop,
2003]. The greatest loss in remanence occurs at the Besnus transition (TBes).
Defined by the maximum in dM/dB calculated from the cooling path of the final
T0 → T(20 K) cycle, TBes averages 29.8 ± 0.6 K (table 2.1), consistent with
reported values (30-34 K) [e.g. Rochette et al., 1990].

Figure 2.3 plots the remaining fraction of initial magnetization after cycling from
T0 → Ti → T0 as a function of Ti, again showing that demagnetization levels are
grain size dependent. Linear regression of the magnetization loss for Ti > TBes

for the pseudo-single domain samples averages -7%/100◦C whereas that for the
multidomain sample is roughly four times greater (-27.8%/100◦C). For temper-
ature cycling to 150 K from 300 K, pseudo-single and multidomain magnetite
lose much more magnetization (45% and 55%, respectively; [Dunlop, 2003]) in
comparison to pyrrhotite (10% and 25%). Moreover, thermal remanent magne-
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Figure 2.3: Stepwise demagnetization of sat-
urating isothermal remanent magnetization
(SIRM). A room temperature SIRM was cycled
from T0 → Ti → T0. The recovered magne-
tization at room temperature is plotted as a
function of Ti. Shaded area shows likely equilib-
rium temperatures of a rotating meteorite at 3.5
AU distance from the sun.
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tization in pseudo-single domain magnetite is harder (demagnetizes less than)
to low temperature demagnetization than an SIRM [Dunlop, 2003]. If the same
is true for pyrrhotite, then paleointensity estimates from meteorites whose mag-
netizations are carried by single to pseudo-single domain pyrrhotite should be
lowered by less than 10% when temperature cycled to 150 K.

A pronounced inflection is visible in the demagnetization curves at the Besnus
transition. Dekkers et al. [1989] cooled several differently sized pyrrhotite crys-
tals to 4.2 K through the Besnus transition – and warmed them back to room
temperature. They calculated the ratio Rrec defined as the recovered remanence
at 300 K after a full 4.2 K cycle. They found the magnetization retained after
cooling to be grain size dependent, with smaller particles retaining more magne-
tization than larger ones. Comparing the remanence recovered after cycling to
20 K, the rock samples show a similar recovery than the range of < 35 µm. The
large crystal however recovers less than the largest sample studied by Dekkers
et al. [1989]. For a sample that had been cycled through the transition, and then
cycled a second time, the recovery could be erroneously interpreted as a sign of
a sample rich in single or pseudo-single domain particles.
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2.2.3. Hysteresis parameters as a function of direction and
temperature

In order to better understand the mechanism controlling the Besnus transition,
we measured hysteresis loops and backfield curves at one or two degree intervals
from 50 to 20 K as well as at 300 K along 72 directions in the basal plane of the sin-
gle crystal. Hysteresis loops were corrected for field and moment offsets following
von von Dobeneck [1996]. In order to remove potential bias from misalignment or
field offsets inside the magnetometer, we assumed that the measurements along
antipodal directions (±180◦) were equal and averaged their moments. The sam-
ple was never removed from the magnetometer during the entire course of the
experiments in order to avoid potential sample misalignment.

When measured along one of the crystallographic a-axes at 300 K, the moment
sharply increases below 25 mT then gradually approaches saturation in a fairly
curved manner (blue curve in fig. 2.4a). Rotating the sample 30◦ in-between
two a-axes (green curve in fig. 2.4a) results in a lower initial rise < 25 mT in
moment followed by a steeper approach to saturation. That Msis not identical in
all directions at some temperatures suggests 1.5 T does not always fully saturate
the sample; hence, the moment at 1.5 T will be referred to as pseudo-Ms (Ms*).
The lowest and highest values for Ms* (20.8 and 21.2 Am2/kg) at 300 K lie within
the range of reported values (18.3-21.2 Am2/kg) [Kind et al., 2013, O’Reilly et al.,
2000]. Except for the steep initial rise in moment <25 mT that persists at all
temperatures, the character of the hysteresis loops change considerably within
the basal plane above (fig. 2.4b), during (fig. 2.4c) or below (fig. 2.4d) TBes. Each
case is discussed separately below.

2.2.4. Temperatures above TBes (> 34 K)

The curvature in the hysteresis loops along the a-axes diminishes considerably
approaching TBes (blue curve in fig. 2.4b) whereas an intriguing double inflection
arises between a-axes (green curve in fig. 2.4b). Loops with double inflections
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Figure 2.4.: Hysteresis loops of MSM17591 at a) 300 K, b) 40 K, c) 32 K and d) 20 K measured
along the crystallographic a-axis (blue) and at an angle 30◦ away from the a-axis (green).

appear with six-fold symmetry between a-axes, although one direction (160◦-340◦)
is more pronounced than the other two. The closer the measurement direction is
to an a-axis, the higher the field at which the inflection appears (Binf) and the
less pronounced it becomes. Defining Binf by the peak in dM/dB of the downfield
branch shows Binf increases from 740 mT at 50 K to 780 mT at 40 K. Below 40
K, the peak rapidly disappears with a progressive decrease in Binf from 700 mT
at 36 K to 300 mT at 33 K before disappearing at 32 K. Ms* is higher where
the double inflection is most pronounced (fig. 2.4b). Koulialias et al. [2015] also
found a double inflection in a single crystal of Fe7S8; however, they measured
their sample only in one direction, most likely between a-axes, which made it
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impossible to see the directional dependence of the inflection. Koulialias et al.
[2015] noted a shift in Binf from 500 mT at 200 K to 750 mT at 40 K, the latter
being consistent with our new results.

Normalizing the hysteresis parameters to their maximum and minimum values
more clearly shows their expression as a function of measurement angle (fig. 2.5).
At 50 ≥ T > TBes all maxima in hysteresis parameters fall between crystallo-
graphic axes. Ms* peaks at 155◦, 25◦ away from a crystallographic a-axis, similar
to the findings of Wolfers et al. [2011]; the minimum in Ms* lies at 120◦, nearest
to the a-axis that projects in the c-axis direction (106◦). All local minima in Ms*
trend close to crystallographic a-axes, with six-fold symmetry. Between 300 and
34 K the six fold symmetry persists and the average Ms* stays constant although
the maxima and minima are more pronounced at 50 K then below according to
the standard deviation of 36 Ms* values (table 2.2). The maximum in bulk coer-
civity (Bc) (2.0 mT) occurs near the Ms* maximum while the minimum in Bc (1.2
mT) is orthogonal with a uniaxial expression. Bc and Bcr maxima nearly coincide
at 300 K. At 50 K and below, Bc and Bcr maxima diverge, with Bc trending nearly
parallel to Ms* while Bcr maximizes at the a-axis that coincides nearest to the
c-axis with a second maxima in another a-axis direction. Saturation remanence
(Mrs) defines two maxima at 300 K: a sub-maximum (1.18 Am2/kg) parallel to
the c-axis and the maximum (1.28 Am2/kg) orthogonal to it. By 50 K and below,
the sub-maximum in Mrs disappears and lies squarely between two a-axes.

2.2.5. Temperatures within TBes (34-28 K)

Hysteresis loops and hysteresis parameters, except for Ms* and Brh (the median
destructive field of remanent hysteresis [von Dobeneck, 1996]), change markedly
between 34 and 28 K (table 2.2; fig. 2.4c and 2.6). Ms* slightly, yet almost imper-
ceptibly, increases through the transition with a minimum in standard deviation
at 34 K; the standard deviation for Brh is lowest at 31 K. Bc and Mrs increase
prominently across TBes, which best define the transition temperature region with
both dBc/dT and dMrs/dT showing maxima at 30 K for all angles. We conclude
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Figure 2.5.: Magnetic hysteresis and backfield parameters normalized by their minimum and
maximum values at four discrete temperatures. Arrows point towards the maxima or sub-maxima
of each parameter at a given temperature. Black and grey dashed lines indicate the crystallo-
graphic a-axes measured at 300 K. These lines become grey at 29 K and 20 K as the six-fold
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temperatures can be found in the appendix (fig. A.3 and A.4)

that these two parameters best define the transition temperature yet the transi-
tion itself spans about 6 K. Within the transition, maxima in Bcr and Bc parallel
each other between two a-axes; Ms rotates ca. 60◦, closer into coincidence with
Mrs (fig. 2.5).
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Besnus transition temperature range as defined in the text. Dashed line shows SIRM (= Mrs)
values calculated from the backfield measurements, uncertainty envelope omitted for clarity. Coer-
civities (Bc, Bcr, Brh) are plotted on a log scale.

Surprisingly Bc increases faster than Bcr, and by 30 K, Bcr actually becomes lower
than Bc thereby reducing the coercivity ratio below unity. To our knowledge,
this is the first time a coercivity ratio below unity has been reported, which leads
one to question whether it is due to an experimental artifact. However, this
observation is highly reproducible, being based on 360 backfield measurements
with corresponding hysteresis loops. Although an offset in field or magnetic
moment could lower Bcr values, the bias would have to be very large (up to 20%
Bcr) to underestimate a field of ≈ 11 mT at 20 K.
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Another possible explanation is a faulty temperature measurement. To test this,
we measured hysteresis loops and backfield curves in different sequences but still
found lower Bcr values. Moreover, measurements between 20 and 29 K in two
different angles on a vibrating sample magnetometer at the University of Munich
yielded the same conclusion: coercivity ratios below unity.

Backfield curves of a non-saturated sample could lead to an underestimate of
Bcr. Although the value for Mrs obtained from backfield measurements (dashed
red line in fig. 2.6) is slightly lower than Mrs calculated from hysteresis loops
below 33 K, correcting the backfield curve for this difference cannot account for
the coercivity ratio lying below unity. In many cases the backfield curve would
have to be corrected by such a large amount (40% at 20 K), that Mrs determined
from backfield measurements would well exceed (ca. 25% at 20 K) Mrs derived
from hysteresis loops. Furthermore, the high field susceptibility (χhf), calculated
from a linear regression of the moments at |B| ≥1.3 T decreases at 33 K which
indicates that the sample is closer to saturation than at temperatures above the
transition (fig. 2.6). In sum, we find no experimental grounds to explain away
the observation that Bcr/Bc is less than 1 below TBes .

2.2.6. Temperature below TBes (< 28 K)

Hysteresis loops widen appreciably below TBes as Bc increases markedly (fig. 2.4d)
and the symmetry changes from six to four fold (see below). Measurement direc-
tions in between two a-axes lose the double inflection and show a more gradual
approach to saturation. Maxima in Bc and Bcr remain parallel, yet lie nearly or-
thogonal to their pre-TBes directions and exhibit distinct sub-maxima (fig. 2.5).
Both develop a second peak at ≈80◦. The maxima of Ms* aligns perpendicular
to the c-axis projection. Saturation remanence continues to increase below 28 K,
but at a lower rate than during the transition (fig. 2.6), while coercivity increases
linearly when plotted on log scale.
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Table 2.2.: Mean results calculated from all measurement directions. N=72 for Ms, Mrs, Bc and
n=36 for Bcr. Backfield curves have not been measured for temperatures > 40 K. Errors are one
standard deviation.

T (K) Mrs Ms Mrs/Ms Bcr Bc Bcr/Bc

300 1.16±0.04 20.96±0.11 0.06±0.002 2.92±0.34 1.52±0.29 1.96±0.24
50 1.79±0.08 20.73±0.53 0.09±0.004 3.24±0.48
48 1.73±0.07 20.66±0.53 0.08±0.004 3.18±0.47
46 1.58±0.05 20.72±0.52 0.08±0.003 3.13±0.49
44 1.58±0.04 20.74±0.51 0.08±0.003 3.18±0.51
42 1.58±0.04 20.70±0.48 0.08±0.003 3.23±0.51
40 1.58±0.04 20.72±0.43 0.08±0.003 7.79±0.32 3.28±0.52 2.44±0.45
38 1.59±0.05 20.79±0.36 0.08±0.003 7.94±0.42 3.33±0.53 2.44±0.43
36 1.60±0.04 20.87±0.26 0.08±0.002 8.12±0.38 3.39±0.54 2.45±0.42
35 1.62±0.05 20.97±0.19 0.08±0.002 8.10±0.38 3.46±0.55 2.40±0.40
34 1.64±0.05 20.97±0.16 0.08±0.002 8.27±0.37 3.53±0.56 2.39±0.38
33 1.77±0.05 21.11±0.20 0.08±0.003 8.58±0.36 3.80±0.59 2.30±0.33
32 2.24±0.08 21.20±0.24 0.11±0.004 9.13±0.46 4.72±0.66 1.96±0.19
31 4.00±0.18 21.30±0.25 0.19±0.009 9.96±0.94 7.15±0.63 1.39±0.05
30 7.61±0.38 21.24±0.28 0.36±0.019 12.04±1.13 12.38±0.64 0.97±0.05
29 10.39±0.54 21.22±0.32 0.49±0.028 15.54±1.01 16.94±0.80 0.92±0.02
28 11.77±0.57 21.09±0.36 0.56±0.031 17.71±1.02 19.95±1.12 0.89±0.02
27 12.24±0.54 21.08±0.38 0.58±0.031 19.10±1.09 21.58±1.26 0.89±0.02
26 12.87±0.64 21.01±0.41 0.61±0.034 21.28±1.27 24.56±1.42 0.87±0.02
24 13.86±0.73 20.95±0.44 0.66±0.037 27.44±1.75 33.09±1.95 0.83±0.01
22 14.51±0.77 20.91±0.46 0.69±0.037 35.04±1.94 43.96±2.39 0.80±0.01
20 15.00±0.77 20.87±0.47 0.72±0.036 46.75±2.48 57.11±2.72 0.82±0.01

2.2.7. Symmetry considerations

The magnetic easy and hard axes corresponds to the direction with the lowest
and highest magnetization energies [Dunlop & Özdemir, 1997]. In order to cal-
culate the crystalline anisotropy, the maximum applied field during the course
of a hysteresis loop should exceed the anisotropy field, otherwise the crystal will
not become fully saturated. Although 1.5 T does not quite saturate the crys-
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Figure 2.7: Normalized magnetiz-
ing energy calculated by integrating
over all moments of the descend-
ing branch at positive fields. Lines
show the crystallographic a-axes
with respect to the a1-axis at 0◦.
The dashed line shows the projec-
tion of the crystallographic c-axis
on the basal plane. Room temper-
ature values in blue. Unnormalized
magnetizing enrgies can be seen
in fig. 2.10 in the appendix of this
chapter
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tal, we calculated the magnetizing energy (EMag =
∫ M∗

s
0 B dM) from the positive

downfield branch for all angles and temperatures. Figure 2.7 plots the normal-
ized magnetizing energy as a function of angle in the basal plane; Supplemental
fig. 2.10 (in appendix of this chapter) shows the unnormalized values. While these
energies cannot be used to calculate the anisotropy constants, they can indicate
the position of the easy axis within the basal plane when the energy attains a
minimum. The maximum energy does not indicate the hard axis as it lies per-
pendicular to the basal plane– at least above TBes [Bin & Pauthenet, 1963]. Only
one dominant easy axis exists above the transition, trending about 20◦ away from
the a2-axis. Ms is directionally independent in a fully saturated sample; however,
it is interesting that the maximum energy coincides with the maximum of Ms*
and Bc at 160◦. The easy axis stays constant to within ±5◦ until 30 K and then
abruptly rotates 25◦. Both the mean energy as well as the difference between
minimum and maximum energy states decrease. The location of the minimum
energy at 300 K converts at 30 K into a local maximum with two local minima
occurring below TBes, likely indicative of two, orthogonal easy axes.

The rotational symmetry of the second inflection in the hysteresis loops (fig. 2.4b)
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Figure 2.8.: Angular dependence of the first derivative of the ascending branches of the hystere-
sis loops at four temperatures. Radial distance corresponds to the field value in T. The central
area (B < 40 mT) was omitted for clarity. White dashed lines indicate the crystallographic a-axes.
Pointed line and square represent the c-axis and its projection on the basal plane. A hexagonal
pattern is apparent in the data between 50 and 34 K with the second inflections aligned between
a-axes.

can be best visualized using the first derivative of the ascending branches (fig. 2.81).
As above, the second inflection is not visible at room temperature in accordance
with Koulialias et al. [2015]. A gap between 300 and 50 K in our study precludes
the onset temperature for the second inflection; however, at 50 K, local maxima
in the dM/dB curves clearly show a six-fold symmetry dictated by the a-axes.

1A visualization of all temperatures can be seen in fig. A.5 in the appendix
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Not only are the directions consistent with Ms* maxima, but also their magni-
tudes, with the strongest inflection coincident with the greatest Ms*. The peaks
in the derivative show a V-shaped pattern aligned with the crystal structure. A
likely explanation for the origin of the second inflection is a field induced flipping
of the easy axis as suggested by Bin & Pauthenet [1963], who measured the crys-
talline anisotropy of a spherical Fe7S8 crystal. Their calculations of the crystalline
anisotropy broke down below 60 K, which they attributed to field induced change
in the easy axis direction. The hexagonal pattern disappears around 33 K and
then a four-fold symmetry appears below 29 K.

Using the descending branch at positive fields of the hysteresis measured along
the dominant axis (ϕ0 = 75◦) at room temperature as a reference (M(T0, B+, ϕ0))
we calculated the relative differences to it for all branches measured along other
directions (ϕn) with:

∆M(T, B+, ϕn) =
[
M(T, B+, ϕn)/M(T0, B+, ϕ0)

]
− 1

in percent (fig. 2.9). Blue colors show regions where the magnetization of the
hysteresis branch when measured along ϕn is smaller than ϕ0 for a given field,
while red colors show higher moments (M(T, B+, ϕn) > M(T0, B+, ϕ0)). In other
words, blue colors indicate harder than average magnetization energies and red,
lower. Similar to the derivatives, the relative differences show a hexagonal pattern
at temperatures above the Besnus transition. They also show that the moments
measured along the magnetic hard axis (160◦) is larger than when measured along
the easy axis at fields >0.6 T. This is even more apparent at temperatures (from
50 K to TBes) and coincides with the second inflections as seen in the derivatives.
At T<34 K the hexagonal pattern starts to disappear. At 20 K, the six-fold
symmetry has completely disappeared and is replaced by four maxima.
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Figure 2.9.: Relative difference of the positive down field branch of each measurement direc-
tion with respect to the easy direction at room temperature (ϕ0=75◦) for selected temperatures.
Arrow points along ϕ0. Red colors show a positive, blue colors show negative lower magnetic mo-
ments. Radial distances correspond to the magnetic field in T.

2.3. Discussion and Conclusions

Repetitive cycling of monoclinic pyrrhotite from 300 K to subsequently lower tem-
peratures until going below the Besnus transition confirms the work of Dekkers
et al. [1989] that the amount of magnetization lost is grain size dependent.
Pseudo-single domain-rich pyrrhotite loses only ≈10% of a room temperature
SIRM at 150 K while multidomain-rich pyrrhotite loses ≈28% at 150 K. The rel-
ative amount of magnetization lost is much less than like grain sizes of magnetite
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[Dunlop, 2003]. Dunlop [2003] and Halgedahl [1998] showed that thermoremanent
magnetizations generally demagnetizes less than SIRM upon low temperature cy-
cling. If also true for single to pseudo-single domain pyrrhotite, then meteorites
that thermally equilibrated in space after acquiring a thermal remanence likely
retain most of their original magnetization; paleointensity measurements on them
would only slightly underestimate their true intensity. With more temperature
cycling experiments, it may be possible to develop a space thermometer to esti-
mate the coldest temperature a meteorite experienced.

From at least 50 K to the Besnus transition, two end-members types of hystere-
sis loops exist: (1) those resembling magnetic easy axes that quickly saturate
by 25 mT and lie parallel to crystallographic a-axes and (2) those that show
a double inflection with a maximum change in inflection occurring around 750
mT in-between crystallographic a-axes. These latter curves more closely resem-
ble magnetic hard axes. Although the pattern of hard and easy axis directions
mimics six fold symmetry, magnetic energy calculations show one of the axes is
relatively easier (lower energy) and one harder (higher energy) than the others
(fig. 2.7). The pattern breaks down at TBes, suggesting independency of the two,
just like the isotropic point in magnetite when the two crystalline anisotropy con-
stants change sign is independent of, and ca. 10◦ higher in temperature than the
Verwey transition. Indeed the analogy is intriguing except that in pyrrhotite the
”apparent isotropic” point would be temperature and field dependent with the
added complication that these dependencies vary with the relative orientation
between the crystallographic and applied field directions.

The Besnus transition is characterized by an increase in Mrs, Bc and Bcr in the 34
to 28 K range, with the most rapid change in Mrs or coercivity occurring at 30 K,
similar to previous findings [Dekkers et al., 1989, Fillion & Rochette, 1988, Kind
et al., 2013, Koulialias et al., 2015, Rochette et al., 1990]. Ms* remains virtually
constant through TBes from 40 to 20 K.

While a magneto-physical description through TBes seems clear, the mechanism
causing TBes does not. Likely the most important observation lies in fig. 2.9 where
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a clear change from six-fold to four-fold anisotropy occurs. This is further con-
firmed by the derivative of the loops (fig. 2.8). The most likely cause for change
in magnetic symmetry originates in a lowering of the crystallographic symme-
try from hexagonal to monoclinic or triclinic. This is consistent with neutron
diffraction and magnetic torque measurements that led [Wolfers et al., 2011] to
also suggest TBes arises from a change in crystallography from pseudo hexago-
nal (slightly monoclinic) to triclinic. We observe one axis of easy magnetization
in the magnetizing energy above and two easy directions below TBes, which is
compatible with their findings.

An opposing view of the cause of TBes interprets the second inflection in the hys-
teresis loops as evidence for a two phase system [Koulialias et al., 2015]. Koulialias
et al. [2015] suggested that interactions between the 5C* and 4C magnetic sub-
lattices cause the transition. Our new findings clearly demonstrate a directional
dependency of the inflection and its link to the crystallographic a-axes, which ar-
gue the phenomenon is related to the crystal lattice. These patterns disappear at
the Besnus transition and could be interpreted as field induced switching of easy
axis as proposed by Bin & Pauthenet [1963]. We therefore conclude that TBes

owes its origin to changes in crystallographic symmetry and anisotropy rather
than interacting superstructures.
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Figure 2.10.: Unnormalized magnetizing energy calculated by integrating over all moments of
the descending branch at positive fields. Lines show the crystallographic a-axes with respect to
the a1-axis at 0◦. The dashed line shows the projection of the crystallographic c-axis on the basal
plane. Room temperature values in blue.



3. Magnetic Properties of
Fe(100-x)Nix with x from 2 - 20

3.1. Introduction

Meteorites generally form under different conditions and through other processes
than terrestrial rocks found at the surface of the Earth. Chondrites, the most
abundant type of meteorites (> 80%), are formed by high-temperature processes
such as condensation and evaporation in the solar nebular [Krot et al., 2007].
Other meteorite classes are fragments of asteroids and planetesimals that were
ejected by meteorite impacts [Stacey, 1976, Weiss et al., 2010]. They represent
the only material to be found on earth, which has been exposed and potentially
recorded magnetic fields in the early solar system.

While the magnetic remanence in terrestrial rocks is mostly carried by iron oxides,
iron oxides rarely exist in extraterrestrial materials [Dunlop & Özdemir, 1997].
The dominant magnetic carriers in meteorites, lunar rocks and lunar soil are iron-
nickel alloys [Nagata, 1979b, Rochette, 2003, Rochette et al., 2008, 2009]. Iron
meteorites are almost completely composed of iron–nickel alloys with an average
Ni content of 5 - 12 wt.% [Albertsen et al., 1983]. Chondrites are predominantly
stony and contain grains of metal with similar compositions to iron meteorites
[Rochette, 2003, Rochette et al., 2008, Stacey, 1976]. The metal content in stony
achondrites is typically nickel poor (<6 at.%) and varies according to their geo-
chemical class (8-20 wt.%) [Rochette et al., 2009].
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(a) body centered cubic (bcc) structure (b) face centered cubic (fcc) structure

Figure 3.1.: Schematic of the different crystal structures for kamacite (bcc) and taenite (fcc).
Lines are guides for the eye.

Some chondrites, with their typical spherical chondrules carry Fe-Ni as tiny inclu-
sions in olivine crystals (dusty olivines) [Fu et al., 2014, Lappe et al., 2011, Van de
Moortèle et al., 2007]. These inclusions may not be of primary origin but rather
shock induced subsolidus formations from iron-rich olivine [Van de Moortèle et al.,
2007]. Similar inclusions have also been reported in other types of meteorites [e.g.
Pallasite (stony iron) Tarduno et al., 2012]. The Fe-rich particles often are only
several nm in size and can show single domain behavior [Van de Moortèle et al.,
2007]. For this reason they have been proposed as suitable carriers for early solar
system magnetic fields and have frequently been studied in order to determine
the magnetic field strength in the early solar system [e.g. Emmerton et al., 2011,
Fu et al., 2014, Uehara & Nakamura, 2006].

The binary iron-nickel system has two equilibrium phases at room temperature.
The low nickel (< 6 at.%) α phase with a body centered cubic (bcc, fig. 3.1a)
crystal structure is called kamacite [Dunlop & Özdemir, 1997]. Taenite (γ-Fe),
the other major phase commonly encountered in meteorites is Ni-rich, crystallizes
in a face centered cubic (fcc, fig. 3.1b) structure and is non-magnetic [Dunlop &
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Özdemir, 1997]. The Fe,Ni system is an eutectic system, where subsolidus un-
mixing of α-Fe and γ-Fe happens at temperatures above 349◦C [Swartzendruber
et al., 1991]. Therefore, certain compositions (> 6% Ni) unmix from a single
phase into two phases below their Curie temperature (TC , fig. 3.2).
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Figure 3.2.: Simplified phase diagram for the iron-nickel system. a) for the complete composi-
tional range for nickel b) enlarged (0-30%) shows the transformations from α → γ and γ → α.
After Dunlop & Özdemir [1997]

Assuming a sample with a Ni content of 20 at.% is heated (arrow in fig. 3.2b)
from room temperature (1 in fig. 3.2b) to elevated temperatures (2), it would
continuously transform from the α-Fe into the non-magnetic γ-Fe phase [Dunlop
& Özdemir, 1997]. This so called austenite (α → γ) transitions is completed
at around 600◦C for Fe80Ni20 [Wasilewski, 1981a]. Cooling this sample to room
temperature transforms the γ-Fe phase back into the α-Fe phase at the martensite
transition (blue line in fig. 3.2b). Since the austenite (α → γ) transition occurs
at a higher temperature than the martensite (γ → α) transition, a wide thermal
hysteresis is visible in thermomagnetic measurements [Butler, 1972]. It also leads
to intergrowths of phases with Ni enriched and depleted parts, compared to the
bulk Ni content [Nagata, 1979b].

These transformation complicate the interpretation of magnetic signals in me-
teorites [Wasilewski, 1974a,b]. The natural remanent magnetization (NRM) is
often assumed to be of thermal origin. In this case a mineral is cooled through its
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Curie temperature in a magnetic field and records that field. In the case of Fe,Ni
alloys the assumption that the magnetization of a meteorite is a thermomagnetic
remanence (TRM) may not hold for some Fe,Ni phases [Wasilewski, 1974a, Weiss
et al., 2010]. Since atomic rearrangements of the crystal structure happen at
temperatures below the Curie point the remanence that was acquired in a mag-
netic field is of chemical origin. It is typically referred to as a thermo chemical
or martensitic remanent magnetization rather than a TRM [Stacey, 1976]. Even
though the minerals of the iron nickel system play an important role in mete-
orite magnetism and industry, their magnetic properties, their dependence on
composition and grain size and thermomagnetic behavior are poorly known.

Rock magnetism is concerned with the magnetic domain state of a sample. Do-
main configurations for a given mineral change depending on the size of the
particle. Very small particles (< 30 nm for magnetite) are in the so called su-
perparamagnetic (SP) state [Muxworthy & Williams, 2015]. These particles are
not magnetically stable (fig. 3.3) because the thermal energy at room tempera-
ture can cause the spontaneous reversal of the particle’s magnetization [Dunlop
& Özdemir, 1997]. Larger grains (25-60 nm for magnetite) are stable to thermal
fluctuations due to their higher energy barrier so that spontaneous reversals are
unlikely [Butler & Banerjee, 1975]. These particles are composed of only one uni-
formly magnetized domain (single domain or SD) and are characterized by a high
remanence and coercivity [Newell & Merrill, 1999]. As particles get even larger,
it is energetically favorable to diverge somewhat from a strictly parallel spin ar-
rangement [Dunlop & Özdemir, 1997]. Grains in this state behave in a similar
way as single domain grains; they are referred to as pseudo-single domain or PSD
[Shcherbakova et al., 2000]. Eventually, the particle is divided into complex pat-
terns of two or more magnetic regions (domains) (>20 µm for magnetite). They
are divided by domain walls and therefore these particles are called multidomain
(MD). The presence of these structures lower the remanent magnetization and
coercivities of a particle [Fabian, 2003].

Néel [1955] showed that single domain particles are especially important for pa-
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Figure 3.3: Illustration of the
changes in coercivity with grain size
and domain state for magnetite.
After Dunlop [1981], Moskowitz
[1991]

leomagnetism because of the stability of their remanent magnetization against
thermal fluctuations. These fluctuations can cause a spontaneous reorientation
of the magnetic vector in the particle. The relaxation time (τ) is the average
time between these magnetization reversals [Mørup et al., 2011].

τ = f−1
0 exp

(
vHcMs

kBT

)
(3.1)

where f0 is the frequency factor (≈ 10−9/s), v is the grain volume , Hc is the
particle’s coercive force, Ms is the saturation magnetization, kB is the Boltzmann
constant, and T is the absolute temperature [Butler, 1972]. Section 3.1 explains
why the magnetization of very small particles (SP) is unstable. The relaxation
time of a superparamagnetic particle is short enough for the magnetization to
flip within the timeframe of a measurement. Thus no remanence can be retained.
On the other hand, large multidomain particles have very low Hc values and can
lose some of their magnetic moment due to thermal relaxation [Muxworthy &
Williams, 2006, Williams & Muxworthy, 2006]. This is of particular importance
when dealing with magnetizations that are acquired during the formation of the
early solar system and have to be stable for > 4 billion years.

Pullaiah et al. [1975] calculated the relaxation times for magnetite and hematite
single domain particles and showed that their magnetic moments can be stable
for billions of years. Similar calculations were made for pure iron [Garrick-Bethell
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& Weiss, 2010]. The super paramagnetic (SP) to SD threshold for spherical iron
particles was calculated using Néel’s relaxation equation by Butler & Banerjee
[1975]. They showed that spherical iron particles may not possess a stable single
domain state and that only a narrow range of very elongate grains between 15 nm
and 60 nm will be stable. More recently Muxworthy & Williams [2015] reexam-
ined their findings using micromagnetic modeling and found stable single domain
for particles < 25 nm. Snoeck et al. [2008] confirmed that the spin structure
of 30 nm particles were in a vortex state and thus in the pseudo single domain
(PSD) realm, which is larger than single domain. Besides pure Fe, the single
domain threshold for Fe–Ni alloys has yet to be determined and experimentally
verified.

Domain state can be estimated by measuring hysteresis loops and backfield
curves. In a typical hysteresis measurement, a sample is exposed to a mag-
netic field. The magnetic moment M(B) is measured while the field is swept
from a maximum positive (e.g. 1T) to a negative minimum and back [Dunlop &
Özdemir, 1997]. The magnetic moment of the sample is normalized by its mass
and plotted against the magnetic field to produce the typical hysteresis loop. If
the upper (+B → -B) and the lower branch (-B → +B) coincide, the hysteresis
is ”closed” and the sample does not carry a remanence. Otherwise, the hysteresis
is called ”open”. From this measurement several parameters can be used to char-
acterize the sample. The saturation magnetization Ms is the maximum magnetic
moment achievable in a magnetic field (M(B → ∞) and a material constant
[Dunlop & Özdemir, 1997]. The saturation remanence Mrs is the magnetic mo-
ment that is retained by the sample when the field is switched off, after reaching
saturation (B = 0). The field at which the magnetization in a field is zero is
called coercivity (Bc).

In a backfield curve a strong positive field is used to saturate the sample. This
saturation remanence (Mrs) is successively demagnetized by increasing negative
fields and the remanence is measured without an applied field after each step.
The field that had to be applied for the remanence to be fully demagnetized is
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called the remanence coercivity Bcr Dunlop & Özdemir [1997]. An important
distinction between the coercivity Bc determined from a hysteresis loop and the
remanence coercivity Bcr calculated from a backfield curve is that Bc is mea-
sured in a magnetic field, while Bcr is not. Several processes such as domain
wall displacements and magnetic viscosity can cause Bc ̸= Bcr. Therefore these
parameters can be used to characterize the mineralogy of a sample.

The ratio of saturation remanent magnetization to saturation magnetization
(Mrs/Ms) as well as remanent coercivity and coercivity ratio (Bcr/Bc) can be used
to determine whether a sample is single domain [Day et al., 1977, Dunlop, 2002a].
These ratios are well known for most of the terrestrial magnetic materials [e.g.
Dunlop, 2002b, Peters & Dekkers, 2003], but less well known for Fe,Ni alloys. A
sample containing a randomly oriented assemblage of single domain particles with
uniaxial anisotropy has a remanence ratio of Mrs/Ms = 0.5 [Dunlop & Özdemir,
1997]. In a compilation of several dozen lunar samples, Wasilewski [1981a] showed
that the coercivity ratio of lunar samples rarely is below Bcr/Bc = 3 and Mrs/Ms

typically does not exceed 0.1.

3.2. Mechanical alloying

Chemical synthesis of fine particles of these minerals is difficult and traditional
alloying techniques have several shortcomings. Slow diffusion rates often result
in inhomogeneous samples [Crangle & Hallam, 1963]. Material is melted at high
temperatures making it vulnerable to oxidation and needs to be quenched in order
to inhibit the unmixing of the phases. Finally the material has to be reduced to
grain sizes of a few nanometers. After a thorough literature review, we decided
to generate nano particles via mechanical alloying.

Mechanical alloying is a technique that works by repeated cold welding, fracturing
and re-welding of elementary powders to create very fine particles (fig. 3.4). It
is commonly used in industry. In contrast to conventional techniques, it can
produce non-equilibrium phases such as α-Fe,Ni alloys that have not unmixed
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Figure 3.4: Workings of a planetary
ball mill. Bowl and planetary disk (not
shown) rotate in opposite directions.
The centrifugal force causes the grind-
ing medium (balls) to accelerate (≤ 95
G) and powder caught between balls
to be fractured / cold welded. After
Suryanarayana [2001]
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[Suryanarayana, 2001].

The planetary ball mill is commonly used for MA. It consists of a planetary disk
where the milling bowls can be attached. Disk (fig. 3.5a) and bowls (fig. 3.5b)
rotate in opposite directions creating centrifugal forces up to ≈ 100 G that accel-
erate the grinding balls (fig. 3.5c). Whenever two balls collide, a small amount
of powder is trapped in between them and is fractured and cold welded [Surya-
narayana, 2001]. The repeated shocks cause a grain size reduction of the parti-
cles and the transformation of the different starting powders into a single crystal
structure. This method can produce homogeneous alloys with crystallites of of a
few nm [Suryanarayana, 2001].

The results of the milling process rely on many factors [Moys, 2015]. Higher
rotation speeds generate stronger centrifugal forces and the milling medium is
accelerated to higher velocities. Friction and shock energies depend on the ratio
of planetary disk rotation speed (Ω) compared to that of the bowls (ω) [Gaffet
et al., 2004]. While large ω/Ω results in increased frictional energy a reduced
ratio tends to increase shock energies and reduces the particle size faster. The
size of the milling balls as well as the powder to ball ratio will also influence the
resulting sample [Koch, 1997, Suryanarayana, 2001].

When the powder is suspended in liquid (e.g. water or ethanol) during milling
the process is referred to as wet milling. Water is not a viable choice when the
products are prone to oxidation. A more suitable choice are alkanes such as
Hexane (CH3(CH2)4CH3) or Heptane (CH3(CH2)5CH3). They are constituents
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of gasoline and highly flammable. Sometimes surfactants are added (surfactant
assisted milling) to reduce interactions between particles [Akdogan et al., 2009].
These surfactants create a layer of material between individual particles und thus
increase their mean distance. The temperature inside the bowl during milling can
rise to > 100◦C within a few minutes, especially at higher rotation speeds. Since
the milling bowls can only withstand temperatures of up to 130◦C, temperature
and pressure have to be constantly monitored.

Mechanical alloying has been used to synthesize a variety of magnetic phases.
Magnetite was produced by milling of hematite with metallic iron in stoichiomet-
ric proportions [Petrovský et al., 2000]. Mecahnically alloyed iron-nickel alloys,
typically with high Ni concentrations, have been frequently studied in the con-
text of material science because of their technological relevance. Most studies,
however are mainly concerned with structural properties and their evolution with
milling time [Baldokhin et al., 1999, Djekoun et al., 2004, Kaloshkin et al., 2001,
Zhu & Huang, 2003]. Studies that are seeking to determine the magnetic prop-
erties of mechanically alloyed Fe-Ni, typically are less concerned with grain size
from a rock magnetic point of view [Gaffet et al., 2004, Hamzaoui et al., 2003, Li
et al., 1997]. To my knowledge this is the first study to systematically investigate
differences in magnetic properties with Ni concentration and grain size.

3.3. Synthesis

I used a Fritsch Pulverisette Premium (P7) planetary ball mill (fig. 3.5a) with a
maximum rotation speed of Ω = 1100 rpm and place for two bowls for alloying of
the powders. Elementary powders of Fe (Sigma Aldrich ≥99.5%) and Ni (Sigma
Aldrich ≥99.7%) were used as received. Several different powder mixtures – with
the correct atomic weight ratio – were produced with Ni concentrations ranging
from 2-20%. They were filled into a 80 mL bowl together with 100 g yttrium
stabilized zirconium oxide ceramic beads in two different sizes (3 and 0.5 mm) as
milling medium. Even though their density is lower than other milling media (e.g.
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(a) Fritsch Pulverisette 7 Premium high
energy planetary ball mill

(b) 80 ml bowl for the mill with pressure
and temperature sensor

30 mm

(c) Grinding medium consists of 3 mm
Yttrium stabilized Zirconia ceramic beads

(d) Glovebox with vacuum port, where all
sample handling was done under Ar atmo-
sphere

Figure 3.5.: Milling setup: a) mill b) bowls c) 3 mm grinding medium d) glovebox
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steel) they have the distinct advantage of being extremely abrasion resistant, and
most importantly, do not contain iron, which could distort the iron to nickel ratio
and influence the purity of the sample[Koch, 1997].

Because iron is prone to oxidation, all sample handling steps are done under Argon
atmosphere. For this we used a three port glovebox with a vacuum port. The
glovebox (fig. 3.5d) was flushed with Argon and the oxygen level was constantly
monitored using an oxygen gas sensor. A slight overpressure was maintained in
the glove box in order to keep oxygen levels at a minimum, which never exceeded
2%.

3.3.1. Milling Protocol

The rotation speed of the disc can be set and the transmission is fixed to 1:2 with
the bowls rotating at twice the rate of the planetary disk (Ω = 0.5 × ω). Thus
the milling process described here is mainly in friction mode [Gaffet et al., 2004].
In order to produce different grain sizes, milling was done for different times and
at two different speeds (Ω = 400 rpm and Ω = 1100 rpm).

One of the bowls used during the mechanical alloying process is equipped with
temperature and pressure sensors. Due to the increased energy when milling at
1100 rpm the sample bowl quickly heats up. The sensors give the possibility to
interrupt the run so that temperatures and pressures do not reach preset limits
Tmax = 70◦C, Pmax = 5 bar). Since the temperatures were always kept within
these predefined limits, high and low energy milling regimes are easier to compare.
At 400 rpm the T,P limits were barely reached during continuous operation, while
at 1100 rpm, 2 min milling was followed by 15 min cooling time, prolonging a 1
hr milling run to 8 1/2 hours.

Several protocols including wet and surfactant assisted milling techniques were
tested on different compositions (table 3.1). Only few of them gave the desired
results. Protocols with small grinding balls generally did not produce properly
alloyed or homogeneous powders, likely due the small mass of the balls. A thick
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rpm Liquid Quantity Surfactant Quantity Ball size

400 - - - - 0.5 mm
400∗ - - - - 3mm
400 - - Oleic Acid 10 wt. % 3mm
400 Heptane 10 wt.% Oleic Acid 10 wt. % 3mm
1100 - - - - 0.5mm
1100∗ - - - - 3mm
1100 Heptane 10 wt.% Oleic Acid 10 wt.% 0.5mm
1100 Heptane 10 wt.% Oleic Acid 10 wt.% 3mm
1100 Si-Oil 10 wt.% - - 3mm
1100 - - Oleic Acid 10 wt. % 3mm

Table 3.1.: Overview of the tested milling protocols of this study. Not all protocols proved to
produce the desired alloys or sizes. * denotes protocols that were adopted in the study.

shell of material covered the balls in wet techniques, especially for 0.5 mm and
made extracting the sample nearly impossible. In addition, the mass of the
(Fe,Ni) powder was difficult to determine because of the added mass of surfactant
and milling liquid. Therefore, only dry milling techniques with 3 mm beads were
used.

3.4. Samples

The milling procedure was monitored by opening the bowls and subsampling the
milled powder for the Fe80Ni20 composition. To reduce the risk of oxidizing the
material, all handling of powders was done inside the glovebox. Subsamples were
taken after milling times of 1, 2, 4, 6, 10, 16, 30, 60, 120, 240, 480, 960, 1440,
and 2160 min. During the high energy milling protocol (1100 rpm) the sample
solidified and milling times longer than 240 minutes were not possible. After the
optimal milling time was determined, as described in the next section, several
other compositions (Fe98Ni2, Fe96Ni4, Fe94Ni6, Fe92Ni8 and Fe88Ni12) were milled
for 2160 min at 400 rpm.
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(a) Fe80Ni20starting powder. Green lines
indicate Ni (fcc) peaks, pink lines indicate
Fe (bcc) peaks

(b) X-ray diffraction of Fe80Ni20 after 2160
min of milling. The inset shows the log-
normal domain size distribution with its
arithmetic mean size.

Figure 3.6.: X-ray diffraction and of starting Fe80Ni20 mixture and 2160 min milled powders (400
rpm). Observed intensities (black circles), calculated pattern (red), and the difference curve (blue)

3.4.1. Sample Preparation

For each sample of each milling time, energy and composition, three specimen
were prepared. About 50 mg of powder was filled into a gel cap with the rest of
the volume filled with fine quartz sand. A second set of samples was prepared
by diluting about 0.5 g of (Fe,Ni) powder with 9.5 g quartz sand in an attempt
to minimize interactions between particles. For each diluted sample we prepared
three gel cap samples in the same fashion as described earlier.

3.5. X-ray diffraction

X-ray diffraction (XRD) measurements were performed with a STOE Stadi P
diffractometer in Debye-Scherrer geometry. Data were recorded in the range from
10◦ to 70◦ 2θ and a counting time of 360 s per step, using Mo-kα1 (λ = 0.7093Å)
radiation and a curved position-sensitive detector with a step size of 0.15◦ 2θ.
Glass capillaries of 100 µm diameter and 10 µm wall thickness were used as
sample holders.
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The XRD patterns were analyzed using the Rietveld method [Rietveld, 1969]
implemented in the program MAUD [Lutterotti et al., 1999]. The instrumental
resolution was determined by measuring a NIST SRM 660b (LaB6) standard
under the same conditions used for the ball-milled samples. Size and strain
broadening was fitted using the anisotropic size/strain model after Popa & Lungu
[2013]. All X-ray diffraction work was done with the help of Dr. Bernd Maier,
Ludwig-Maximilians Universität München.

Figure 3.6a shows the XRD pattern of the 80% iron, 20% nickel powder mixture
before ball milling at 400 rpm. Reflections from both phases, i.e. Fe (bcc) and
Ni (fcc), are visible. Both phases show no resolvable sample broadening, i.e.
the mean domain size for both phases is above 100 nm and no detectable strain
broadening. Rietveld refinement of the unmilled powder shows a Ni concentration
of 18.7 ± 2%.

For both milled and unmilled powders, no other phases (e.g. iron oxides) can
be found. Milling times of > 120 minutes show a significant broadening of the
peaks due to grain size reduction and increased microstrain. After 960 minutes of
milling the reflections from the Ni (fcc) phase disappeared completely, i.e. nickel
has been completely incorporated into the bcc structure (fig. 3.6b). The mean
crystallite size (t = 960 min, 400 rpm) has been reduced from 75 ± 4 nm to
10.9 ± 2 nm while the microstrain has increased to 1.18 ± 2%. Further milling
has less impact on the crystallite size and microstrain. Particles with a mean size
of 10.24 ± 3 nm and microstrain of 1.38 ± 2% are observed (see inset of fig. 3.6b
and fig. 3.7) after 2160 minutes. Similar grain sizes were reported in previous
studies on various Fe,Ni compositions [e.g. Baldokhin et al., 1999, Gaffet et al.,
2004, Hamzaoui et al., 2003, Otmani et al., 2009].

3.6. Magnetic Measurements

Rock magnetic measurements consisting of hysteresis loops, backfield curves,
isothermal remanent acquisition (IRM) curves and FORC measurements were
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done with a Lake Shore PMC MicroMag 3900 Series vibrating sample magne-
tometer (VSM). High temperature measurements were done using a Ar-flow fur-
nace in the VSM. Further thermomagnetic measurements were done on a Petersen
instruments variable fields translation balance (VFTB) in air.

3.6.1. Changes of magnetic properties during alloying

In order to verify the alloying progress, Curie temperatures were measured in
Argon atmosphere of several Fe80Ni20 samples at different milling times. The
unmilled sample gave 2 Curie temperatures, one for iron (770◦C) and one for
nickel (358◦C). At the Curie point of nickel the magnetic moment of the powder
is reduced by 9.5%. At temperatures above Tc(Ni) the magnetization shows a
shallow linear decrease up to temperatures close to the Curie point of Fe, which
is marked by a sharp drop in magnetization.

Calculating the concentration of nickel from the loss in moment after the Curie
temperature gives a value (≈ Fe70Ni30) higher as determined by XRD. Using the
linear decrease in magnetization at 450-550◦C and assuming a similarly linear
decrease in the range 20-450◦C, a linear regression can be used to determine the
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Figure 3.8: Moment versus tem-
perature heating cycles for different
milling times for Fe80Ni20. Blue
shows unmilled mixture, green
milled for 30 minutes. Red shows
fully alloyed powder. Heating
was done in Ar. Dashed vertical
lines show Curie points for iron
(770◦C) and nickel (358◦C). Dot-
ted line shows linear regression of
M(450-550◦C). Dashed line shows
d2M/dT2
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initial magnetic moment of the iron (see dashed black line in fig. 3.8). This yields
a Ni concentration of 19.2% in agreement with the value determined by XRD and
the initial mixing ratio of the elementary powders.

With increasing milling time (green line fig. 3.8) both Curie temperatures become
less pronounced indicating that a portion of the Ni has already been incorporated
into the α-Fe,Ni structure, while XRD shows little to no alloying has happened
even at milling times of 60 min. Subtle changes in magnetization are easily visible
within magnetic data, while these are not yet visible in XRD. After milling for
2160 min at 400 rpm the Ni has been completely absorbed into the bcc structure
(red line in fig. 3.8). Compared to the pure iron, the transition is less sharp with
only one Curie temperature at TC = 688◦C close to the Curie point of iron-nickel
alloys of similar composition [Swartzendruber et al., 1991].

3.6.2. Rock Magnetic Measurements

Mass normalized hysteresis loops were corrected for symmetry and the arith-
metic mean of the three subsamples was calculated after linear interpolation.
Calibration of the absolute moment of the VSM was done once a day using the
NIST 772a nickel standard. Figure 3.9c shows hysteresis loops for three different
milling times of the Fe80Ni20 composition at 400 rpm and 1100 rpm. Hysteresis
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Figure 3.9.: Comparison of room temperature rock magnetic measurements for 400 rpm (left
row) and 1100 rpm (right row) milled Fe80Ni20. a,b) show hysteresis loops for unmilled powder
(green) and 2 different milling times. Inset shows hysteresis at field range (±50 mT). c,d) shows
backfield (solid lines, absolute field) and IRM acquisition (dashed lines). Red curves show the
longest milling time for either sample. Inset in a) shows enlarged field region from -50 - 50 mT.

loops of the unmilled powders are almost closed, with low coercivity (Bc = 2.7
mT) and saturation remanence (Mrs = 2.2 Am2/kg) (table 3.2). The saturation
magnetization (Ms = 182.7±3 Am2/kg) is within error of the calculated value
Ms(Fe80Ni20) = 183.8 Am2/kg [Crangle & Goodman, 1971] for a mixture of 80



3.6 Magnetic Measurements 79

at.% Fe (217.7 Am2/kg) and 20 at.% Ni (55.1 Am2/kg). IRM acquisition curves
(dashed lines in fig. 3.9) show saturation remanence is reached in a field of 350
mT, while slightly lower fields (250 mT) are needed in the backfield measurement.
Mrs values for both IRM and backfield correspond well to the value obtained from
hysteresis measurements.

Domain state can be estimated by the remanence (Mrs/Ms) and coercivity ratios
(Bcr/Bc) [Day et al., 1977, Dunlop, 2002a]. Determined values for the unmilled
powders indicate that the sample is in a multidomain state with Bcr/Bc = 8.0
(Bcr = 22 mT) and Mrs/Ms = 0.01 consistent with the expected domain state for
initial grain sizes of >100 nm (table 3.3)[Dunlop, 2002a].
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Figure 3.10.: Evolution of the mean rock magnetic properties with milling time, error bars show
show one standard deviation. The shaded region indicates where alloying starts and ends in the
400 rpm samples as determined by XRD.

With increasing milling time at low energy (400 rpm), Ms decreases slightly to
a minimum at 60 minutes (Ms(60 min) = 175.3 Am2/kg) and increases during
the alloying phase to Ms(2160 min) = 189.6 Am2/kg. The saturation remanence
peaks (Mrs(60 min) = 5.5 Am2/kg) then decreases and stabilizes. The increased
Mrs value causes a maximum of the Mrs/Ms = 0.03 ratio. The coercivity increases
up to 60 min Bc(60 min) = 4.5 mT and then decreases. Remanence coercivity
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shows a minimum at 30 minutes Bcr(30 min) = 15.5 mT, leading to a reduction
of remanence ratio from 8 to 4. For milling times longer than 60 min the opposite
behavior is visible with Ms and Bcr increasing while Mrs and Bc are decreasing,
even though the grain-size is further reduced.

Figure 3.11.: Contour plots for backfield (top) and IRM acquisition (bottom) for 400 rpm (left)
and 1100 rpm (right). Dashed red line in the backfield plot shows the value of Bcr. Color scales
are equal for all plots and show the magnitude of magnetization. Dashed lines represent the ac-
tual measurements, the rest is determined by linear interpolation. Dashed contour lines show neg-
ative values; solid lines show positive values. A cross section along the 0.5 T value corresponds to
±Mrs and is within 2% of the value determined from hysteresis measurements (see fig. 3.10).

The highest values for Mrs/Ms and Bcr/Bc (table 3.3) are found near the start
of the alloying region as determined by XRD (shaded region fig. 3.10). At this
stage both XRD and thermomagnetic curves show that the sample is comprised
of multiple components (i.e. Fe, Ni and inhomogeneous FeNi alloy). Both the
increase in remanence ratio as well as the decrease in coercivity ratio indicate a
change in grain size towards a more single domain like state for at least one of
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the components [Dunlop, 2002a].

Plotting backfield and IRM in a contour plot shows changes in remanence with
milling time. Each dashed line in fig. 3.11 corresponds to the mean of three
separate samples measured at each milling step. Maximum (IRM) and minimum
(backfield) value correspond to the Mrs value as determined by hysteresis loops
(see fig. 3.10, table 3.2). A blue patch in the backfield curves as well as the
red patch in the IRM acquisition show a maximum of Mrs between 16 and 120
minutes of milling at low energies. Comparing the 400 rpm data to the high
energy milling shows a similar patch at much lower milling times (1-10 min,
see arrow in fig. 3.11), pointing towards a faster alloying process and grain size
reduction at higher energies. Using this relation it is likely that a homogeneous
alloy is achieved after only 10 minutes of milling at 1100 rpm, an increase in
milling efficiency by a factor of approximately 40 over 400 rpm milling times.
Saturation remanence peaks at 2 min (Mrs(2 min, 1100 rpm) = 4.9 Am2/kg) and
declines to a minimum at 10 minutes then increases again. Coercivity (Bc(2 min,
1100 rpm) = 3.7 mT) peaks at 2 min, decreases at 10 min followed by an increase
to Bc = 5.4 mT, while Bcr continuously increases with increasing milling time
with a maximum of Bcr = 26.7 mT.

High energy milling causes a continuous decrease in saturation magnetization
after 10 min of milling. This could be an indication for oxidation, due to a lower
Ms value of iron oxides. However, Curie temperatures and XRD do not show a
significant oxide contribution; e.g., there is no evidence for Curie temperatures
corresponding to magnetite or hematite. Using the increased milling efficiency to
compare the high to the low energy milling, the sample milled for 240 min at 1100
rpm would correspond to 9600 minutes (160 hrs) of milling at 400 rpm. Milling
times of that length have been shown to produce amorphous alloys [Hamzaoui
et al., 2003, Suryanarayana, 2001], which could explain the anomalous behavior of
the saturation magnetization with increasing milling time. Unfortunately X-ray
diffraction data is not available for this alloy at the time of this writing, thus the
presence of an amorphous phase cannot be tested.
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Neither 400 rpm nor 1100 rpm samples approach an SD-like value for remanence
(fig. 3.10e) or coercivity ratios (fig. 3.10f and table 3.3), even though their size
supposedly approaches the proposed SD range for iron [Butler & Banerjee, 1975,
Muxworthy & Williams, 2015]. There are several possible explanations that could
lead to this.
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Figure 3.12.: Visualization of interactions. a) Henkel plot for unmilled and milled powders,
dashed line shows ideal Henkel line for non interacting single domain particles b) Cisowski plot
and δM(H). Crosses mark the crossing point (R) of backfield and IRM curves. c) shows the
change in interactions with milling time. Solid line shows the crossing points in the Cisowski plot
and dashed line the integral over all δM(B) values. Shaded part shows alloying region (400 rpm).

Interactions, both electrostatic and exchange coupling, can influence on the mag-
netic properties of a material [Mørup et al., 2010], thet can, for example, alter
the SP-SD threshold in magnetite [Muxworthy & Williams, 2009]. Wohlfarth
[1958] showed, that IRM acquisition and backfield have a linear relationship in
the absence of interactions. In an IRM acquisition, an initially demagnetized
particle assembly is magnetized in successively larger magnetic fields. This satu-
rated IRM moment is then demagnetized and replaced by an equal but opposite
magnetization in a backfield measurement.

Several ways to show if a sample experiences interactions exist. The Henkel plot
[Henkel, 1964] utilizes the relationship from Wohlfarth [1958]. A non-interacting
particle system shows a linear relationship when the backfield moment is plotted
against the IRM acquisition (fig. 3.12a). A different method is the Cisowski plot
where both the IRM acquisition as well as an alternating field (AF) demagneti-
zation of an SIRM are plotted against the magnetic field [Cisowski, 1981]. The
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crossing point of the two curves (crossover ratio R) has a value of 0.5 × Mrs if the
particles are non interacting. In many cases it is more convenient to use the re-
duced backfield moment (M ′

backfield(B) = 0.5×(Mrs(B)+Mbackfield(−B)) instead
of an AF demagnetization (fig. 3.12b) and typically gives similar results [Jackson,
2007]. Deviations from these criteria, a non-linear Henkel plot or crossover points
̸= 0.5, indicate the presence of interactions. A way to determine the type and
strength of the interactions is to calculate the δM(B) value.

δM(B) = M ′
backfield(B) − [1 − 2MIRM(B)]

Positive values of δM(B) indicate a dominance of exchange coupling, while neg-
ative values show that interactions are predominantly caused by dipolar interac-
tions [Gao et al., 2001].

The Henkel plot for all samples is non-linear and the crossover points in the
Cisowski plot appear at values lower than 0.5 for all samples (fig. 3.12). This
indicates that the material is harder to magnetize than demagnetize. Dashed
lines in fig. 3.12b show the δM(B) value for each field step. Dipolar interactions
dominate and cause negative δM(B) values until saturation is reached. With
increased milling times at 400 rpm, the crossing point of the Cisowski plot de-
creases from 0.410 to 0.385 at 60 minutes of milling (fig. 3.12c) and increases
during alloying to 0.403 at 480 min. Comparing this to the rock magnetic data in
fig. 3.10, shows that with decreasing grain size towards the SD range, interactions
become more pronounced. This is especially visible when the crossover ratio is
plotted against the remanence and coercivity ratio. When Mrs/Ms and Bcr/Bc

trend towards more single domain like values, interactions become more impor-
tant (low R values in fig. 3.13). At this stage the sample is still an inhomogeneous
two component system, because the alloying process is not yet completed. Most
likely grains of various compositions between pure iron and pure nickel exist.
During alloying, the ratios increase again towards multidomain like values. This
is somewhat surprising since the grain size is still lowered during alloying.

In an attempt to minimize interactions, the samples of the composition Fe80Ni20
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Figure 3.13: Remanence ratio
and coercivity ratio versus the
crossover points determined from
the Cisowski plot. Arrows indicate
path of increasing milling time.
Dashed lines show the linear corre-
lations.

less interactionsmore interactions

were subjected to several procedures. Grinding nano-particles with an inert ma-
terial has been shown to decrease interactions [Xu et al., 2004], so we diluted
the material with SiO2-powder and milled the diluted mixture for 15 min at 200
rpm to homogenize the mixture as described in the samples section. While the
procedure seemed to reduce interactions for nanoparticles of α−Fe2O3 [Xu et al.,
2004], no reduction could be found for Fe80Ni20 particles. This is likely due to the
much higher remanence of FeNi metals compared to α−Fe2O3. In a second step
the procedure was repeated, with the addition of 10 wt.% oleic acid. Oleic acid is
a common surfactant used for coating nanoparticles [e.g. Mørup et al., 2010, Yin
& Chow, 2009]. A mixture of 20 ml Heptane and 10 ml oleic acid was produced
and 100 mg sample were added. The suspension was placed in an ultrasonic
bath for 60 min. Hysteresis loops, backfield curves and IRM acquisition of these
samples did not change in form nor indicate a decrease in magnetic interaction.

First Order Reversal Curves

First order reversal curves (FORC) help visualize the magnetic state of a sample
and can be used to discriminate between different magnetic components [Pike
et al., 1999, Roberts et al., 2014]. The possibility of assessing magnetic interac-
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Table 3.3.: Coercivity and remanence ratios for all milling times for the Fe80Ni20 composition.
Milling time longer than 240 min was not possible at 1100 rpm.

time Bcr/Bc Mrs/Ms

(min) 400 rpm 1100 rpm 400 rpm 1100 rpm

1 8.0 4.7 0.012 0.022
2 7.5 4.4 0.013 0.028
4 6.7 5.4 0.014 0.022
6 6.0 5.6 0.016 0.019
10 5.3 7.4 0.019 0.015
16 4.3 7.3 0.025 0.017
30 3.8 5.4 0.030 0.023
60 3.9 5.4 0.031 0.024
120 5.1 5.7 0.025 0.024
240 8.2 5.1 0.016 0.029
480 9.2 0.013
960 8.4 0.013
1440 8.6 0.013
2160 8.1 0.015

tions among particles make FORC measurements the ideal tool for characterizing
the samples for this study [Roberts et al., 2014].

The diagrams are calculated from partial hysteresis loops. From a saturated state
of the sample, the field is decreased to a reversal field Ha and the loop is measured
while the field is increased until saturation is reached again. After each partial
loop Ha is decreased. From the moments at the applied field Hb and reversal
field Ha, (M(Ha, Hb)) one can determine the FORC distribution (ρ(Ha, Hb)) by
calculating the mixed second derivative [Pike et al., 1999]:

ρ(Ha, Hb) = −∂2M(Ha, Hb)
∂Ha∂Hb

It is more convenient to change the coordinate system from Ha, Hb to Hu = (Ha+
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Hb)/2 and Hc = (Hb − Ha)/2 [Roberts et al., 2014]. Since the mixed second
derivative increases the measurement noise, sophisticated smoothing algorithms
have to be employed [e.g. Egli, 2013].

The FORC diagram measured for Fe80Ni20 milled for 1440 minutes at 400 rpm was
measured using very fine field steps (500 µT) so that the narrow coercivity band
is sufficiently covered. The data were corrected for thermal and instrumental
drift with all processing done with the mathematica package VARIFORC by Egli
[2013].

Despite the apparently multidomain hysteresis loops, the processed FORC dia-
gram reveals the presence of particles with a high coercive force. The central
ridge, marked by (1) in fig. 3.14 indicates the presence of single domain par-
ticles. The coercivity distribution along the peak extends to fields > 150 mT

much higher than coercivities determined from hysteresis loops (Bc = 3.5 mT).
However, the main, much stronger peak ((2) in fig. 3.14) is located at Hc = 0
and spreads ± 50 mT. Such a peak is typically interpreted as a multidomain
contribution to the FORC distribution.

A slight downward shift can be seen in the central ridge. Super paramagnetism
(SP) is a phenomenon that arises when particles are so small that the thermal
energy (kBT ) spontaneously changes their magnetization. Super paramagnetic
particles do not contribute remanent magnetization within the typical timeframe
of a measurement but the decay of its magnetic moment can be visible in FORC
diagrams. The presence of superparamagnetic particles in a sample can shift the
central ridge towards low Hc values [Roberts et al., 2014] and cause a downward
shift [Roberts et al., 2001]. The occurrence of these features, together with the
grain sizes determined by XRD suggests that some of the particles after milling
for 1440 minutes are in a superparamagnetic state. Furthermore a small negative
contribution (3) can be seen at negative Hu values. This indicates interactions
between particles, in agreement with the Henkel and Cisowski plots.

The magnetic moment of these particles, scaled by the saturation magnetization,
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Figure 3.14: High resolution FORC
diagram of Fe80Ni20 milled for 1440
minutes at 400 rpm (10.9 nm).
Measurements were performed on
a VSM with 500µT step sizes be-
tween measurement points. Cal-
culations to construct the diagram
were done using VARIFORC [Egli,
2013].
1) shows central ridge
2) shows a maximum at Hc = 0
3) shows a negative contribution
caused by interaction fields

can be described by:

M

Ms

= coth
(

µH

kBT

)
− kBT

µH
= L

(
µH

kBT

)
(3.2)

Where µ is the magnitude of the magnetic vector of the particle, H is the applied
field, kB is the Boltzmann constant, T is the temperature and L is the Langevin
function. This shows that an assemblage of super paramagnetic particles can be
described by the Langevin function.

A common technique in rock magnetism is to model hysteresis loops and coerciv-
ities with a series of hyperbolic base functions (tanh and sech) [Leonhardt, 2006].
These have been shown to accurately describe hysteresis loops for single as well
as multidomain particles [Jackson & Solheid, 2010, von Dobeneck, 1996].

This gives two separate properties that can be used to model the hysteresis be-
havior of a sample and estimate the SP contribution of the the system.

1. Superparamagnetic particles can be described by the Langevin function

2. Other particles can be described by by hyperbolic base functions

First the hysteresis is decomposed into their remanent hysteretic (Mrh) and in-
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(b) Fe80Ni20 milled for 60 min-
utes at 400 rpm
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(c) Fe80Ni20 milled for 1440
minutes at 400 rpm

Figure 3.15.: Examples for fitting Langevin and hyperbolic base functions to the measurement
data, using eq. (3.5) for three different milling times. Only positive fields are shown. Black circles
show the measured data. Dashed blue line shows the Langevin part, green dashed line shows the
tanh component of the fit, scaled by Ms. The red line shows the fit using both components. The
misfit (in percent of the Ms value) is shown in the lower part of the plot.

duced hysteretic (Mih) parts [von Dobeneck, 1996]. The induced hysteretic part
is the mean of the two hysteresis branches and the remanent hysteretic part is
their difference.

Mrh = [M−(B) − M+(B)]/2 (3.3)

Mih = [M−(B) + M+(B)]/2 (3.4)

Where M+(B) is the upper, descending and M−(B) is the lower, ascending
branch of the hysteresis. Since Mrh is the difference between the two branches,
it represents the non reversible components and can be used to determine coer-
civities and remanence. The Mih on the other hand only contains the reversible
(induced) magnetization of the hysteresis loop [von Dobeneck, 1996]. Using a
least squares approach a linear combination of the two function is fit to Mih as
determined by eq. (3.4). The function used to fit the hysteresis loops is:

M(B) = cLMsL(B/b1) + cT Ms tanh(B/b2) (3.5)
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Figure 3.16: Components from fitting a com-
bination of Langevin function and tanh to the
induced hysteretic part of the hysteresis with
eq. (3.5). Weights of the two components as a
function of milling time. Dashed lines indicate
grain sizes, shaded area shows the alloying region
as determined by XRD.

cL is the amount of Langevin-type behavior and cT is the amount of tanh-like
behavior (cL + cT = 1). b1, b2 are scaling factors that change the steepness
of the functions. While the values determined from the fit can not be taken as
the absolute value of the amount of SP, it can give an indication on the main
constituent of the particle system.

Fitting the unmilled powder (fig. 3.15a) gives a cL value of 33% (cT = 67%) so
tanh is the main component. At low fields (< 0.4 T), the Langevin component
overestimates the magnetization and the tanh component fits the data better
owing to the multidomain character of the sample. A maximum of cL is found in
the 10-60 minute range (fig. 3.16). At milling for 60 minutes, the cL component
accounts for 96% of the data and on its own gives a good representation of the
measurement. At these milling times the grain sizes of both Fe and Ni are reduced
from several µm to 30-40 nm (see dashed lines in fig. 3.16) without much alloying
visible in the diffraction spectra. The high cL component indicates that a part of
the Fe or nickel might be in a SP state and therefore is better approximated by
a Langevin function.

For even longer milling times cL increases again and both components are equally
important (cL ≈ cT ). Since longer milling times case a reduction in grain size and
this reduction ultimately leads to an increase in the amount of superparamag-
netic particles in the sample, seeing an increase in the cT component is somewhat
surprising. However, during alloying, the two phase system is continuously trans-
formed into a single phase Fe80Ni20 alloy, which likely possess a different single
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domain threshold size [Muxworthy & Williams, 2015]. A change in stable single
domain size could explain this behavior.

3.7. Dependence on Ni concentration

3.7.1. Thermomagnetic Measurements

Magnetic moment versus temperature curves for all other compositions were mea-
sured on the VFTB using two different methods. Approximately 20mg of sample
was heated in air at a rate of 60 ◦C/min. In a second experiment, in order to
create a reducing environment, a similar amount of sample was thoroughly mixed
with twice the mass of powdered sugar as a reducing agent. Curie temperatures
were calculated using the maximum of the second derivative using the RockMag
analyzer [Leonhardt, 2006]. The measured curves can be seen in fig. 3.17.

When heated in air, the moment (B = 120 mT) is more or less stable up to 400◦C
for samples with less than 10 at.% nickel and then decays more or less linearly.
This stands in stark contrast to the sharp transition of pure iron when heated in
inert atmosphere (fig. 3.8). A change from convex to concave is visible for nickel
concentrations higher than 6%. This change in demagnetization behavior can
be attributed to the continuous transformation from the α-Fe to the non mag-
netic γ-Fe phase at high temperatures [Dunlop & Özdemir, 1997]. These alloys
technically do not show a Curie temperature but the austenite transformation,
where the bcc phase is transformed into the fcc phase. In the literature how-
ever, the two are often used synonymously. The transition temperature decreases
with increasing Ni concentration as can be seen in fig. 3.2. All samples show low
Curie temperatures when compared to literature values (fig. 3.18). Especially
the samples with the composition Fe80Ni20 yielded low Curie points (Tc(Fe80Ni20,
400 rpm)= 538◦C, Tc(Fe80Ni20, 1100 rpm) = 543◦C).

Heating the samples with sugar shows a more rounded demagnetization for Ni<8
at.% and yields sharper transitions with slightly higher (19±3◦C[Ni ≤ 12 at.%])
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Figure 3.17.: Moment versus temperature measurements in air for all compositions. a) shows
samples heated in air. dashed line shows cooling curve for Fe94Ni06, other cooling curves omitted
for clarity. b) shows thermomagnetic measurements carried out in a reducing environment (i.e.
added carbon). Carbon mixed into the sample powder is shown as solid lines, while measurements
with a separate layer of carbon is shown as dashed lines.

Curie points in accordance with previous studies [Swartzendruber et al., 1991]. All
curves with added sugar show a slight inflection just before the Curie temperature,
which might be caused by the incorporation of carbon from the sugar into the
FeNi structure [Wilson, 1994]. An exception is the composition Fe80Ni20 (see
fig. 3.18), which still gives a low transition temperature. Comparing the VSM
(fig. 3.8) and VFTB curves Fe80Ni20 shows a more convex shape and a Curie
temperature close to that determined by earlier studies [Kuhrt & Schultz, 1993,
Wasilewski, 1981a].

Upon cooling, a 15-30% increase in magnetic moment at 150◦C and a less pro-
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Figure 3.18: Curie temperatures,
determined from heating cycle for
Fe(100-x)Nix compositions. Heat-
ing was done in air (circles), in Ar
(triangle) and with sugar as reduc-
ing agent (squares). Heating rate
60◦C/min. Magnetic field during
heating was 100 mT. White circles
show data from [Swartzendruber
et al., 1991].
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nounced increase at 215◦C is visible after heating with carbon (fig. 3.17). In
order to verify that this behavior is not related to a reduction of iron oxides, the
carbon was added as a separate layer underneath the sample material. In this
case the sugar was not mixed and did not get into direct contact with the sample
but would hopefully still create a reducing atmosphere upon heating. Two exam-
ples can be seen as dashed lines in fig. 3.17. The absence of the initial increase
indicates that it is not related to a reduction of oxides but more likely an incorpo-
ration of carbon into the crystal structure. Since the transition temperature for
both mixed carbon and layered carbon are comparable to within 5◦C , alteration
to oxide phases in the samples is unlikely.

When cooled in air most of the material is transformed to magnetite (see dashed
red line fig. 3.17a). In alloys with a high Ni concentration (>6%) a second inflec-
tion can be found at temperatures lower 250◦C. Similar to the austenite (α → γ)
transformation, this increase in magnetization correlates to the transformation
from γ → α [Dunlop & Özdemir, 1997, Wasilewski, 1981a]. The transformation
is barely visible in most measurements due to the magnetite contribution and
a more thorough analysis isn’t possible. Interestingly, the cooling curves after
heating with sugar also show an increase in magnetization (see red dotted line in
fig. 3.17b) on cooling. It is located at a higher temperature and recovers most of
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the pre heating magnetization. Oxidation to magnetite can be excluded since the
transition does not correlate with the Curie point of Fe3O4. Adding carbon, can
change the martensite transformation temperature [Wilson, 1994], which leads to
different heating and cooling behavior in the thermomagnetic curves. This should
be investigated more closely, especially for C-rich meteorites (e.g., carbonaceous
chondrites). Unfortunately our experiments only show that there is an effect
but we can not quantify it. Experiments under more controlled conditions and
atmosphere are in preparation.

3.7.2. Rock Magnetic Measurements
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Figure 3.19.: Hysteresis (a), backfield (b) and IRM acquisition (c) measurements for different
Fe100-xNix. Inset in a) shows a zoom into the hysteresis loop at fields from -10 - 10 mT.

Using the same measurement protocol and corrections as described earlier, hys-
teresis loops, backfield curves and IRM acquisition curves were analyzed for the
other compositions. Figure 3.19a) shows that hysteresis loops for concentrations
with Ni< 12 at.% vary little in shape or parameters. The exception is Fe80Ni20,
with increased remanence (Mrs = 2.75 Am2/kg) and coercivity (Bc = 3.5 mT)
and lower saturation magnetization (Ms = 190 Am2/kg). This is especially visible
in the backfield and IRM measurements (fig. 3.19b and 3.19c).

The saturation magnetization (fig. 3.20a) is close to the literature value of pure
iron (Ms(Fe)=217.6 Am2/kg) [Crangle & Goodman, 1971]) and constant with
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increasing nickel concentration up to 12 at.% Ni (Ms = 214.9 ± 0.7 Am2/kg).
Measured Ms values correspond well with data of ball milled alloys published in
earlier studies (see. fig. 3.20) [Hamzaoui et al., 2003, Kuhrt & Schultz, 1993]. For
higher nickel concentrations (≥12 at.%), the saturation magnetization decreases.
Our Fe80Ni20 data show lower values than previous work. However previous
studies used stainless steel milling balls that could potentially contaminate the
sample material and increase the iron content [Koch, 1997]. Since Ms varies little
for low Ni content, contamination would only be visible in alloys with higher Ni
concentrations.
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Figure 3.20.: Mean results from hysteresis measurements for different compositions. Errorbars
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marks Ms for pure iron [Crangle & Goodman, 1971] and Bc for pure iron [Glaubitz et al., 2011].
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The saturation remanence (fig. 3.20b) is similarly stable for low Ni compositions.
Fe80Ni20 on the other hand nearly doubles the Mrs values of the other samples.
Saturation remanence is rarely measured in studies focused on magnetic proper-
ties from a material sciences perspective. To our knowledge, Wasilewski [1981a]
is the only study reporting Mrs for Fe,Ni alloys of different compositions and
yielded lower values than our alloys when Ni (< 12%). We note that the sam-
ples used in the Wasilewski [1981a] study were produced by an entirely different
method. Iron-nickel wire was brought to melting temperatures in a drop tower
where the molten droplets were solidified by ”zero g” solidification. Compared to
the method used here, their samples are not only much bigger (1 mm spheres) but
likely contain less crystal defects. Nevertheless it seems that increasing the Ni
concentration to more than 15 at.% increases the remanence carrying capability.

As with the other hysteresis parameters, little change is found in coercivity
(fig. 3.20c) with increasing Ni content for ≥12 at.%. Fe80Ni20 has the highest
value with 3.5 mT while other compositions are close to half that value (Bc = 1.6
± 0.1 mT). While the coercivities are low (Bc = 1.5 - 3.5 mT) compared to
other minerals, they are large compared to the samples of other studies, both
ball milled and zero-g synthesized. Literature values for Bc generally have a large
scatter but show a trend towards larger coercivities with higher Ni content. To
our knowledge our study is the first to determine Bcr values for synthetic FeNi
alloys. Figure 3.20d shows that compared with Bc the coercivity of remanence is
large. It rapidly decreases with increasing Ni from Bcr (Fe98Ni2) = 29 ± 1.0 mT)
to a minimum at 12 at.% nickel (Bc (Fe28Ni12) = 19 ± 0.2 mT).

3.8. Discussion

Magnetic properties of mechanically alloyed iron-nickel powders change signifi-
cantly during the milling process. In a first stage the grain sizes of the different
starting powders are reduced while maintaining a two component system. This
is visible by an increase in Mrs and Bc and a decrease in Bcr consistent with a
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trend towards more single domain behavior. At longer milling times, hysteresis
and backfield measurements show the start of the alloying process as a decrease
in remanent magnetization and coercive force. The magnetic measurements seem
more sensitive to the subtle changes due to alloying than X-ray diffraction. Milling
for 960 minutes at 400 rpm produces fully alloyed powders. Grain size reduction
takes place within the first 400 minutes of milling (400 rpm) and little to no
change is visible in the XRD data for milling times longer than 2160 minutes. No
other magnetic phase could be found in XRD or thermomagnetic curves; high Ms

values, close to that of iron, further indicate the purity of the samples.

The mean particle size for alloyed powders after 1440 min at 400 rpm is ≈ 10 nm,
within the theoretical limits for single domain iron [Butler & Banerjee, 1975,
Muxworthy & Williams, 2015]. This raises the question as to why the hysteresis
parameters do not indicate the presence of single domain material? Strong dipolar
interactions as seen in the Henkel and Cisowski plots are known to bias the
magnetic state of a sample [Mørup et al., 2010]. Moreover particles of this size
(≈10 nm) have very large surface area to volume ratios. Uncompensated spins
on the surface can intensify interactions [Bødker et al., 1994]. Unfortunately
the magnetic measurements do not give conclusive evidence for a domain state
interpretation. Two conflicting interpretations are possible. Either the particles
are still predominantly multidomain, or the grain size has already passed the
single domain threshold and is in a mainly superparamagnetic state. The fact that
interactions and the SP component of the Langevin fit are at a maximum after 60
minutes (400 rpm) of milling suggests that grain sizes are in fact approaching the
SP size. The central ridge in the FORC distribution leads to a similar conclusion.
This question could be resolved by the measurement of frequency dependent
susceptibility, which is able to quantify the SP contribution [Bowles et al., 2009].
These measurements are planned in the near future.

An increase in Ni concentration to ≤ 12 at.% has only little effect on the magnetic
properties. Curie temperatures, Ms, Mrs and coercivity vary little. A much larger
effect is seen in the remanence coercivity (fig. 3.20), which decreases from 29 mT
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at 2 at.% to about half for 12 at.%. Since milling conditions are the same for
all compositions, it seems unlikely that their grain size or internal strain varies
considerably. Thus the increase in remanence coercivity is most likely related
to the increased Ni content. Remanence coercivity is a little known quantity for
Fe–Ni alloys, but seems to be a good indicator for Ni concentration in α-Fe alloys.

Figure 3.21 shows the changes of Bcr/Bc and Mrs/Ms ratio with nickel concentra-
tion. The remanence ratio stays constant with increasing Ni while the coercivity
ratio decreases almost linearly. A change in the SD/MD threshold is a potential
cause for the decrease in Bcr/Bc. Whether the threshold size decreases or increases
can not be determined with confidence until the domain state of the samples is
clarified. High coercivity ratios can be due to the presence of superparamagnetic
as well as multidomain particles [Dunlop, 2002a]. This causes an ambiguity in
the interpretation. Assuming most particles in the sample are to small (SP), the
single domain to superparamagnetic threshold needs to be lowered in order for
the 10 nm particles to show a more single domain behavior. On the other hand,
if the particles are to large (i.e. MD) a shift SD/MD threshold would need to be
shifted towards larger sizes.

Independent of whether the samples produced here are too large (i.e. in a MD
state) or too small (SP), our study shows the limits of mechanical alloying for
producing single domain iron nickel alloys. Larger particles can not be produced
by mechanical alloying alone, because fully alloyed, homogeneous powders need
milling times of 960 minutes (400 rpm) or more. At this time the size is already
reduced to ≈11 nm. On the other hand, much longer milling times will be needed
to reduce the size further due to the exponential decay of milling efficiency. This is
further complicated by the theoretical calculations that show that iron possesses
only a very narrow SD range, which is likely also true for FeNi alloys [Muxworthy
& Williams, 2015]. Finding the right milling conditions, to produce a purely
single domain sample seems unlikely.

The samples produced here show rock magnetic values typical of those found in
iron bearing meteorites [e.g. Gattacceca et al., 2014, Wasilewski, 1981a]. Curie
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Figure 3.21: Remanence and co-
ercivity ratios for different mechan-
ically alloyed (400 rpm, 2160 min)
Fe100-xNix compositions. Dashed
line shows linear regression.
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temperature measurements showed that the identification of remanence carriers
in meteorites may be more complicated than previously thought. Thermally ac-
quired remanences for Ni concentrations of more than 6 at.% are likely thermal
chemical remanences due to the martensitic transformation (γ → α) as discussed
by [Wasilewski, 1981a]. Furthermore both the martensite as well at the austenite
(α → γ) transitions depend on the carbon concentration in the sample and on the
oxygen fugacity of the heating experiments. Especially higher Ni concentrations
(i.e. Fe80Ni20) suffer from this. Heating Fe80Ni20 in air yields a Curie temperature
at 538◦C, adding carbon 629◦C, while heating in Ar, 688◦C. Adding carbon can
therefore shift the martensite transition temperatures [Wasilewski, 1981a, Wilson,
1994]. Furthermore Kuhrt & Schultz [1993] showed that the γ → α transition can
be influenced by the maximum temperature of the measurement. When measur-
ing thermomagnetic curves on Fe80Ni20, they found the martensite temperature
to be 180◦C by heating to 690◦C ,while cycling to 900◦C yielded ≈ 200◦C. Both
martensite and austenite transitions are commonly used to characterize magnetic
minerals in meteorites [e.g. Butler, 1972]. Given these findings, interpreting the
magnetic signal form carbon-bearing meteorites like carbonaceous chondrites (2
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wt% of organic matter) may be further complicated [Sephton, 2002].

3.9. Conclusions

We have successfully synthesized α-Fe,Ni alloys with different Ni-concentrations
ranging from 2-20 at. % by mechanical alloying. XRD as well as thermomagnetic
measurements show no sign of contamination of the samples by other magnetic
phases. The alloying process was monitored by hysteresis, backfield and IRM
acquisition measurements. The magnetic and XRD data identify three distinct
phases during the mechanical alloying process: 1) grain size reduction of the
elementary powders (≈60 min at 400 rpm), 2) alloying (60 - 960 min), and 3)
slow reduction of grain size of the finished alloys. Milling efficiency increases 40
times when increasing the rotation speed from 400 rpm to 1100 rpm. The ability
to easily synthesize FeNi alloys in the laboratory opens up many new ways to
study the magnetic carriers of most meteorites. The samples can be used to
produce better calibration factors for non-heating paleointensity methods and
generally help to understand this complicated mineral system.

Grain sizes on the order of 10 nm do not show typical SD characteristics. This
is likely due to strong magnetic interactions between particles. However, at this
stage determining whether the particles are too large (MD) or too small (SP) to
lie in the narrow SD range is not possible. Further measurements of frequency
dependent susceptibility are planned to resolve this question. The data, however
suggest a change in SD threshold with increasing Ni content, which was previously
only hypothesized [Muxworthy & Williams, 2015].

Determining the composition of the magnetic carriers is crucial to the interpre-
tation of the signal. Thermomagnetic measurements are a commonly used tool.
The study shows that the α → γ and γ → α transitions are extremely sensitive
to the experimental setup. Heating and cooling rate [Wilson, 1994], maximum
heating temperature [Kuhrt & Schultz, 1993] and carbon content influence the
results. In the absence of chemical analyses, identifying magnetic minerals could
thus be prone to misinterpretation and these effect need to be studied in more
detail.





4. Design of a Paleomagnetic Oven

Paleomagnetism is the study of the ancient Earth’s magnetic field preserved in
the rock record; it is this discipline that has led to several of the major modern
discoveries of the Earth system, including the theory of plate tectonics. Mag-
netic information can be retrieved from trace amounts of ferromagnetic minerals
present in most rocks that record the paleomagnetic field direction and intensity
in at the time the rock formed [Kirschvink et al., 2008]. The geomagnetic direction
is recorded either during sedimentation (detrital remanent magnetization [DRM])
or by cooling through the rocks Curie temperature (thermal remanent magneti-
zation [TRM]). This information can be obtained from rock samples collected in
the field and measured in the laboratory. A typical paleomagnetic investigation
is based on stepwise thermal or alternating field demagnetization of hundreds
or thousands of samples. Samples are successively stepwise heated to increasing
temperatures and the natural remanent magnetization (NRM) is measured after
each heating cycle at room temperature. This procedure is very time consuming
because the samples are often heated to 10 or more temperatures.

Since the first paleomagnetic laboratories were founded in the 1950’s, techno-
logical advancements in magnetometer technology, Superconducting Quantum
Interference devices (SQUIDS) have made measuring the NRM increasingly fast,
accurate and convenient. In recent years more sophisticated systems that are ca-
pable of measuring large numbers of samples autonomously have been developed.
These not only have the advantage of minimizing human error but also consid-
erably increases the throughput of samples. In addition, the user does not have
to be present at all times. Several such systems are used in laboratories all over
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the world. Some of them have the capacity to measure more than 90 samples
in succession (e.g. University of Bremen (unpublished), California Institute of
Technology [Kirschvink et al., 2008], SushiBar at our institute [Wack & Gilder,
2012]). The latter system, named after its visual similarity to a running sushi
restaurant, is able to measure 99 samples without user intervention.

Several commercial paleomagnetic furnaces are available for purchase (table 4.1)
and the maximum number of samples that can be heated simultaneously vary
between 30-80. In order to utilize the full capacity of the SushiBar, an oven with
a bigger capacity was needed. During the course of my doctoral thesis I planned,
built and tested a paleomagnetic thermal demagnetizing furnace with a capacity
for ca. 100 samples.

Table 4.1.: Comparison of commercially available thermal demagnetizing furnaces.

Name No. samples1 Field Noise (nT) Thermal Gradient
SOGO fine-TD2 30 <30nT < 5%
ASC Model TD483 48 50/10nT 10 ◦C
MMTD80A4 80 10nT (66 nT5) 6 ◦C

4.1. Setup

The furnace needs to be able to heat and cool a complete set of samples within
the measurement time of the SushiBar, which is approximately 4 hours [Wack,
2016]. Heating and cooling in the same region is impractical so we decided to
implement a two chamber system. The two chambers are connected so that the
boat, that holds the samples can be easily pushed from the heating section into
the cooling section of the furnace. This approach is adopted by most commercial
ovens and reduces the working time because two sets of samples can be heated
and cooled simultaneously.

1simultaneous heating
2Zheng, Zhong et al. [2010]
3ASC scientific [2016]
4Magnetic-Measurements [2016], Shaw [2010]
5Zheng et al. [2010], Zheng, Zhong et al. [2010]
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4.1.1. Magnetic Shielding

Rocks that cool in a magnetic field typically acquire a thermoremanence, there-
fore samples have to be isolated from direct current (DC) magnetic fields (e.g. the
Earth’s field). Passive shielding is possible by using materials with a high mag-
netic permeability such as Permalloy or Mu-Metal (Iron–Nickel alloys (70-80%
Nickel), that are frequently used in paleomagnetic furnaces. Their high perme-
ability creates a low resistance path for magnetic field lines, which are diverted
from the inside of the furnace and pass through the material. Depending on num-
ber and thickness of the layers, modern shielding techniques can reduce the low
frequency magnetic fields inside a furnace to a few nT, a fraction of the Earths
magnetic field.

The magnetic permeability of Mu-Metal strongly depends on the crystalline struc-
ture and internal stresses. High temperature annealing removes stress and re-
crystallizes the material, which results in an increase in permeability and reduces
coercivity [Sekels GmbH, 2016]. Since machining and annealing of the material
requires special equipment, tools and large furnaces, design and construction of
the shield was outsourced to the company Magnetic Shields Ltd..

Specifications for the shield was a reduction of the static magnetic field to <10
nT within the sample region (1200 mm) of the furnace. A two layer system
with 2mm thick Mu-Metal cylinders (fig. 4.1) was proposed by the company and
two removable lids were added to the shield to reduce field leakage at the ends.
Figure 4.1 shows a schematic drawing of the shield and the magnetic field inside,
which does not exceed 15 nT in the cooling chamber.

4.1.2. The Boat

The boat is designed for 96 cylindrical samples, 2.5 cm in diameter and 2.2 cm in
height that are arranged in a hexagonal pattern with 16samples×6rows. Samples
in the center of the boat would be thermally shielded by the surrounding samples,
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Figure 4.1.: Cross section of the magnetic shield designed and constructed by Magnetic Shields
Ltd., all measurements in mm.

to balance out uneven heating. I incorporated an Inconel 600 tube in the center
with the samples placed in a circle around it (see fig. 4.2a). The tube has a
higher thermal conductivity (14.9 W/m K [Special Metals Corporation, 2008])
than the rocks (typically 2-12 W/m K [Eppelbaum et al., 2014]) and flattens the
thermal gradient inside the chamber. Furthermore, it increases the flow of air
during cooling thereby decreasing cooling time.

In order to thermally isolate the heating region from the rest of the furnace, Pro-
masil6 plugs, covered by Pythagoras7 ceramic tubes (fig. 4.2b) were placed at the
ends of the boat. We positioned four radiation shields between the thermal isola-
tion and the sample region of the boat. They reflect infrared radiation back into
the sample chamber and decrease thermal gradients (Dr. John Shaw, personal
communication).

4.1.3. Heating Chamber

An important concern when designing a demagnetizing furnace is the thermal
gradient inside the sample chamber. It needs to be low, otherwise some rocks may
already demagnetize because their temperature is higher, while others still carry

6High performance calcium silicate, Promat GmbH
7The Morgan Advanced Materials Company plc.
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rock samples inconel

(a) Front view of a filled boat. Shows the
hexagonal arrangement of samples around
an Inconel tube.
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(b) Cross section of the boat. Left half
shows a slice through the boat with thermal
reflectors and ceramic, promasil thermal
isolation.

Figure 4.2.: Design of the sample boat. It holds 96 samples in a hexagonal pattern with an In-
conel 600 tube in the center a).

a magnetization. This can be falsely interpreted as differences in mineralogy or
blocking temperature of the sample. To counter this we split the heating chamber
into three zones with separately controlled heating sections.

Three heating zones are arranged symmetrically with respect to the center of the
tube with the inner one spanning the entire sample zone (372 mm). Each of the
zones has a separate thermocouple (TC) (T1-T3 fig. 4.4) so that they can be
controlled individually. For proper temperature control, the thermocouple needs
to measure the temperature inside that zone so the thermocouples for channels
1 and 3 were placed as close as possible to the sample region (marked by an x in
fig. 4.4). Each section is controlled by a commercially available multi-zone PID8

temperature controller (Nolden Reglersysteme, Germany, 6 × 3.5 kW, 16A).

Most thermal demagnetizing units consist of temperature controlled resistance

8proportional–integral–derivative controller
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furnaces. The simplest design would be a single high resistance wire wound in
a single spiral around the main furnace tube and glued into place. However, we
must also achieve a near zero field (< 10 nT [Collinson, 1982] in order to avoid
the acquisition of partial thermal remanent magnetizations (pTRM). A solenoid
with only one path creates a magnetic field (Ampere’s law). Thus, wiring can
produce magnetic fields that render the measurements unusable. Paleomagnetic
ovens typically have bifilar windings to counteract this effect. Several such designs
(fig. 4.3) are possible. Preliminary testing showed that the wiring scheme fig. 4.3a)
would be the most suitable for this project. A single wire for each section is used,
bent 180◦around a piece of ceramics and wound back, resulting in antiparallel
current directions so the magnetic fields cancel out.

a) b) c)

Figure 4.3.: Some common heating wire schemes. Oppositely running electrical currents cancel
out their magnetic fields generated during operation. [Collinson, 1982]

The wire dimensions are chosen so that the heat produced by the element can
be dissipated fast enough. A common way of calculating this is by the surface
loading, the power per surface area of the element.

S = P

l × d × π
(4.1)
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Where S is the surface loading, P is the power of the element in Watts, l the
length of the wire and d is the diameter of the wire in cm. According to the
Kanthal [2002] handbook, the suggested surface loading for a spiral element in
air, that is embedded in grooves should be between 4-5 W/cm2(at 800 ◦C). To
keep within the surface loading limits and the maximum power of the controller,
a diameter of � 0.7 mm was chosen for the auxiliary (outer) heating sections and
a diameter of � 1 mm for the inner (main) one. Surface loading values calculated
with eq. (4.1) are S1,3 = 13.9 and S2 = 2.1 W/cm2 for outer and main section,
respectively. Due to the high surface loading, the maximum power for the outer
sections was reduced to 30% of the maximum value, resulting in S1,3 = 4.2.
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Figure 4.4.: Heating chamber dimensions and heating section / thermocouple positions with boat
positioned inside. Red sections are the outer, auxiliary heating sections. A) shows the dimensions
of the inner heating tube, B) shows the dimensions of the protection half tubes. C) is the thermal
isolation made from Promaform. T1-T3 point to approximate thermocouple positions marked
with a x.

The tube material (Sillimantin 60) was chosen for its superior thermal stability
and a higher porosity that makes the material more stable against temperature
gradients (see fig. 4.4 for size measurements). Sillimantin is slightly softer than
alumina ceramics, thus it is easier to machine so more sophisticated designs can
be adopted. Two 1 mm deep groves with a pitch of 10 mm and an offset of 5 mm
(fig. 4.5b) were ground using an electroplated diamond grinding wheel over the
length of all three sections. Using ceramic glue (Cotronics Resbond 903HP) at
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Table 4.2.: Wiring configuration for each channel of the final heating chamber design. Channel
1&3 are reduced in power, full power in brackets. Wire is Nicrothal 80 from Kanthal

sect. length wire � Ω / m wire length windings Ω power (kW)

1 125 mm 0.7 mm 2.81 7.85 m 25 22.0 0.7 (2.4)
2 372 mm 1.0 mm 1.39 25.75 m 74 32.7 1.7
3 125 mm 0.7 mm 2.81 7.85 m 25 22.0 0.7 (2.4)

several positions, the wire was directly embedded into the grove of the ceramic.
In the case that the glue does not hold, the wires were fastened with an additional
layer of quartz fabric (fig. 4.6).

The heating chamber was designed as a separate unit, and thus can be easily
taken out of the frame and replaced if needed. Thermal isolation is achieved by
two half shells made of a mixture of aluminum-silicate and aluminum-oxide fabric
(Promaform). It is able to withstand temperatures of up to 1600 ◦C with a low
thermal conductivity of 0.22 W/m K. When fully assembled, the heating chamber
is held together by two aluminum plates connected by aluminum strips. Inconel
rings facilitate the connection with the cooling section and center the heating
chamber inside of the frame. A cross sectional view of the completed furnace can
be seen in fig. 4.8. Before it can be inserted, the thermocouples are slid through
ceramic pipes into the main chamber and copper cables are connected to the
heating wires.

Operation of the furnace is done via software written by Michael Wack. A screen-
shot can be seen in fig. 4.7. The user enters the desired set temperature in 1).
Heating times are set automatically by the software and shown in 2) but can be
adjusted if needed. Adding an email address into field 3) allows the user to be
automatically notified after the set temperature is reached and when the heating
run is finished. Heating trends for all three channels are shown in 4) and can be
saved using the save function (5). Panels 6 (set temperatures) and 7 (measured
temperatures) show the current state of the furnace. The heating ratio is the
supplied power to each heating section and can be seen in 8). The remaining
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(a) First heating test with bifilar winding
on top of AL23 alumina ceramics. 1mm
wire are glued in strips of ceramic glue.

10 mm

5 mm

(b) Second version of Sillimantin 60 heat-
ing tube. Wire is glued into grooves. Ar-
rows show the current direction. Distance
between groves = 5 mm

Figure 4.5.: Tubedesign AL23 (a) and Sillimantin 60 (b) heating chamber tubes.

heating time is displayed in 9).

The software handles offset corrections and heating rate changes in the back-
ground without user interference. Offsets are adjusted dynamically as a function
of temperature to ensure optimal accuracy. Each second, the measured tempera-
tures from all 6 channels, heating ratios and several other parameters are written
to a file on the computer that can later be consulted to check for irregularities in
the heating pattern. Even though only 3 channels are used for the normal oper-
ation of the furnace, all 6 are recorded so that calibrations can be performed. To
our knowledge this is the first software controlled, fully automatic paleomagnetic
demagnetization furnace.
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Figure 4.6.: Final design of the heating chamber. Sillimantin inner tube with wires (top) covered
by Pythagoras outer tube (bottom). The heating wires are glued into the groves and covered by
high temperature quartz fabric (blue strip top). Red arrows mark the positions for the thermocou-
ples. The heating chamber is thermally isolated with Promaform.

4.1.4. Cooling Chamber

To insure a low magnetic field environment, all materials have to be non-magnetic
like aluminum [Collinson, 1982]. The frame for the oven was made from off the
shelf parts, produced by item. It is comprised of the outer frame (fig. 4.8 and
4.9) and an inner cooling chamber. A hexagonal item piece with an inner tube
with � 87 mm serves as cooling chamber and connects for the rest of the frame
construction.

One concern when constructing the furnace was the structural integrity of the
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aluminum at high temperatures. Samples in the cooling chamber can reach up to
700 ◦C, potentially heating up the room, frame and Mu-metal shield. Thus, we
decided to add a water cooling system (water temperature = 15 ◦C). The hori-
zontal item pieces have a continuous hole through their center, that are normally
used for connecting them to other pieces. These holes have a diameter of 5 mm
in the outer frame and 8 mm in the inner frame. Copper pipes were installed
directly into the frame and the water is pumped into the inlet, through the four
cooling chamber pipes and finally through the outer frame. A leak detector was
installed at the base of the oven. Electricity is automatically cut if any water
escapes.

1 2 3

5

6

7

4

8

9

Figure 4.7.: Screenshot of the software (written by Michael Wack) that controls the furnace.
User enters the Tset in 1. 2 shows the pre-determined heating time, 3) field for email notification
after heating is completed, 4) visual representation of the heating run as measured on the three
thermocouples T1-3 can be saved with 5). Current state of the furnace can be seen in 6) set
temperature, 7) measured temperature, 8) heating ratio. Remaining heating time as entered in 2)
can be seen in 9).
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Figure 4.8.: Section through the center of the oven chamber. Left is the cooling chamber with
the long copper tube sticking out. On the right side is the modular heating chamber.

High temperature furnaces can considerably heat the laboratory. Furthermore,
rocks may contain organic material, that burns and smells. In order to minimize
these effects and decrease cooling times, air cooling was implemented (fig. 4.10).
Room air is pulled through holes into the sample chamber. As the air passes
through the Inconel tube and around the samples, it transports heat away from
the samples. In order to keep a flat thermal gradient in the heating chamber, air
is diverted away through an opening at the top of the chamber and pulled out of
the furnace by a vacuum that sits well outside the room.

4.2. Calibration and Testing

Temperatures are measured by thermocouples inside the heating chamber, there-
fore the samples’ temperatures are only known indirectly through prior calibra-
tion. Given enough time, the whole system will be in thermal equilibrium and the
sample temperature should be equal to the measured temperatures, but generally
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cooling chamber

water cooled frame
(pipes inside not shown)

Figure 4.9.: The empty Frame for the paleomagnetic oven including the cooling chamber. Water-
cooling is achieved by copper pipes inside the outer (� 5mm) and inner (� 8mm) frame pieces.
Empty space on the right is for the heating chamber. The final frame is closed to ensure air circu-
lation.

small offsets are unavoidable. Calibration measurements were done to correct for
these offsets and to check for the linearity of the thermal gradient inside the fur-
nace. Offsets can occur when the thermocouple position for one channel differs
to the position of another channel (e.g. is slightly closer to the heating wire).
On top of this, calibration measurements enable us to determine optimal heating
and cooling times.

The first step is to optimize the settings in the controller (PID). Choosing wrong
PID settings can cause the temperatures to ”overshoot” and/or oscillate around
the set temperature. Several heating runs were done in order to find a suitable
PID setting in the controller. The furnace was heated to 400 ◦C while monitor-
ing the overshoot and oscillation. Then the controller parameters were adjusted
accordingly and a new run to the same temperature was started. This was re-
peated until the setting showed no visible overshoot or oscillation. A heating rate
of 7 ◦C per minute was chosen and is reduced to 1 ◦C/min upon reaching the a
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Figure 4.10.: Configuration of the cooling region. Cold air is sucked through the item profile
with a high-powered vacuum into the sample region, passes over the samples and is sucked out
through an opening in the profile. All measurements are in mm.

temperature 10 ◦C lower than Tset. In this way, the heating rate is constant for
all temperatures up to the maximum of 700 ◦C (fig. 4.12b).

To calibrate absolute temperatures and heating/cooling times, a full boat (96) of
rock samples was prepared. Three of the rocks were fitted with thermocouples
(S1,S2,S3) by drilling a hole into the cylindrical sample and fixing the thermo-
couple into the hole with high-temperature ceramic. 9 glued into their center
with a high temperature ceramics glue. This simulates the thermal inertia of the
case during intended operation and allows for the calibration of needed heating
and cooling times as well as absolute temperature calibration of the furnace. The
samples were placed in the top row of the boat with two samples at the ends
(S1,S3) and one (S2) in the center of the boat.

Measurements were done in 100 ◦C steps from 100-700 ◦C. For each step I
calculated the offset ∆T for each thermocouple (Tn −Sn). A linear regression was
used to fit the offsets. The slopes of the linear regression was used to dynamically
adjust the offset in the ovens operating software.

9The number of the channel in the controller, thermocouple in the heating chamber and
thermocouple in the test sample correspond to each other, e.g. channel 1 → T1 → S1.
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Figure 4.11: Heating and cooling
times measured during calibration.
Heating times (red) more or less
constant for all set temperatures,
while cooling times (blue) increase
with increasing temperature. Blue
lines show cooling times calculated
using eq. (4.2) with λ = 0.022
(solid) and λ = 0.020 (dashed).

Finally several steps (100, 200, 300 and 600 ◦C) were repeated in order to check
the accuracy of the offset calibration. The samples were placed in the furnace at
room temperature and then heated to the set-temperature, where they remained
for 2.5 hours in order to achieve thermal equilibrium. Figure 4.12a) shows that
temperature overshoot in the sample chamber (T1-3) are lower that < 1%. Ther-
mal gradients in the test samples showed a maximum thermal gradient (∆T) of
5 ◦C at Tset =700 ◦C.

Heating times (∆theat) and cooling times (∆tcool) were calculated from the cali-
bration measurements. ∆theat is defined as the time needed for all three samples
(S1 − S3) to reach the set temperature (Tset) to ± 1 ◦C, while the cooling time
is taken after all samples reached a threshold temperature (Tthresh=45 ◦C) after
being pushed into the cooling chamber. Heating times are more or less indepen-
dent of Tset (∆theat = 143±3 min), when heating started from room temperature
(T0) (table 4.3 and fig. 4.11).

Cooling times on the other hand depend on the set temperature (fig. 4.11). The
decay approximately follows T = Tset exp(−λt) + T0, with the decay constant λ

depending on the set temperature as well as the position in the boat. Samples
close to the exit of the cooling chamber are passed by the cold air first, thus they
cool the fastest. The decay constants determined at the maximum temperature
(700 ◦C) are λ = 0.023/min, 0.021/min and 0.035/min for S1 − S3, respectively.
Since heat capacity between rocks may vary, a lower λ should be used, so that
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Table 4.3.: Measured heating and cooling times for selected temperatures 100-700 ◦C. Calcu-
lated cooling times were determined using eq.4.2 with λ = 0.2. Values in brackets show thermal
gradient ∆T( ◦C) determined from repeated heating experiment (see. fig. 4.12)

Tset 100 200 300 400 500 600 700

theat (measured)[ ◦C] 137(2) 146(2) 143(2) (0) (5) 147 (4) (5)
tcool (measured) [ ◦C] 62 97 120 144 162
tcool (eq. 4.2) [ ◦C] 80 115 135 150 161 170 178

cooling times are independent of rock type. Cooling times can be calculated with:

∆tcool =
log

(
Tset

45◦C−T0

)
λ

(4.2)

Choosing a λ, 5% lower than the lowest value determined in the calibration
measurements (λ = 0.020) calculated using e.q. (4.2) and the measured cooling
and heating times for selected temperatures are shown in table 4.3 and fig. 4.11.
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Figure 4.12.: a) Two final calibration tests (I: 100-500 ◦C, II: 600-700 ◦C). Thermocouple for
channel 1 corresponds to T1 and the thermocouple in sample S1. Shaded region shows cooling of
the samples. b) Heating ratios for I) show symmetry of channels 1 and 3.
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4.2.1. Lowrie test

The so called Lowrie test [Lowrie, 2012] is commonly used in paleomagnetism to
help determine the magnetic mineralogy of a rock. Some minerals like hematite
(α-Fe2O3) with a Curie temperature of 680 ◦C have high coercivities while others
like magnetite (Fe3O4) with a Curie temperature of 580 ◦C have lower coercivities.
To test for the presence of these phases, one can apply a strong magnetic field
(e.g. 1 T) along one of the sample’s axes (e.g. x). This gives minerals with
a coercivity lower than the applied field a saturating remanent magnetization
in that direction. A second, weaker field (e.g. 0.3 T) is then applied along an
orthogonal axis direction (e.g. y), which causes a realignment of the moment
for minerals with ”intermediate” coercivities like magnetite. The third step is to
apply an even weaker field (e.g. 0.1 T) along the third axis. One can characterize
magnetic carriers of the sample as well as the blocking temperature spectrum
of the mineral by thermally demagnetizing the sample and plotting their x, y, z

components against temperature.
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Figure 4.13.: Lowrie test of two samples. Three fields were applied to the sample. X(1 T), Y(0.3
T), Z(0.1 T). Dashed lines show Curie temperatures for magnetite 580 ◦C and hematite 680 ◦C.

We carried out Lowrie tests on several samples (fig. 4.13) to detect of several
possible issues with the furnace (stray magnetic fields, temperature homogeneity,
etc.). Internal temperature gradients could be seen if samples at one side of the
boat demagnetize at different temperatures than samples on the other. Offsets in
absolute temperature would be visible in the demagnetization pattern and Curie
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temperatures. Furthermore, magnetic pollution could be seen if the samples
acquire a remanence instead of lose a remanence.

Thermal demagnetization of three samples at different positions in the boat can
be seen in fig. 4.13. Sample GX133 (fig. 4.13a) shows only a high coercivity
component but two different minerals, visible by the inflections near the magnetite
and hematite Curie temperatures. Demagnetization of a granite from the Sierra
Nevada (SN080) reveals only one magnetic mineral. All of its magnetic moment is
lost at a temperature of 570 ◦C, corresponding to magnetite with a slight amount
of titanium. It also shows that when comparing it to GX133, a large portion
of the moment is carried by low coercivity particles, likely in a multidomain
state. Medium coercive, small magnetite particles are carrying the remaining
part of the moment. Sample A6195 (fig. 4.13c) shows the demagnetization of two
different minerals with largely different coercivities in the same rock. In the high
coercivity component, only one Curie temperature, that demagnetizes at 670 ◦C
(hematite) can be found. Most of the medium coercivity component on the other
hand is demagnetized at a temperature of 570 ◦C around the Curie temperature
of magnetite, with only a small fraction of the magnetization being stable to
higher temperatures. At 570 ◦C the major part of the low coercivity component
is unblocked.

All samples show smooth demagnetization up to 680 ◦C where the remaining
hematite component is demagnetized. The Lowrie test shows that the set and
real temperatures coincide well and the thermal gradient in the oven is negligible,
because all samples demagnetize at the same temperature. No appreciable partial
thermal remanence was acquired in any sample, which indicates that magnetic
fields during cooling are insignificant.

4.3. Conclusions

The furnace is capable of heating 96 samples to a maximum temperature of
Tmax = 700 ◦C with a low (∆T < 5 ◦C) thermal gradient at Tmax. Figure 4.14
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shows the finished furnace inside the Mu-metal shield installed in the laboratory.
Temperature offsets were calibrated and do not exceed 5 ◦C. The magnetic
field in the shield was < 15 nT over the length of the sample section of the
furnace. During calibration and testing of the furnace we were unable to detect
any remanence acquisition in the samples.

Figure 4.14.: Finished furnace inside the Mu-metal shield installed in the lab.

Heating times were determined from a cold state of the furnace and vary little
with temperature (∆theat = 143 ± 3 min). Cooling times can be calculated using
eq. (4.2) and seen in table 4.3. A complete set of samples can be heated and
cooled to the set temperatures in less than 330 min (5.5 hrs), when heating to
700 ◦C. Even though a single heating run takes longer than the average running
time of the SushiBar (4 hrs), one boat can be heated while the second one is
in the cooling chamber, thereby halving the time needed. Furthermore, heating
times can be greatly reduced by using a pre-heated oven.
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In order to reconstruct the features of the magnetic fields in the early solar system
and planetesimal bodies, accurate and reliable estimates of the ancient field in-
tensity are needed. At present, thermal remanent magnetizations (TRM) are the
only form of magnetization that can be used for obtaining absolute paleointensi-
ties. Consequently, experimental protocols usually try to mimic this acquisition
process. Since the classic Thellier-Thellier method can cause thermal alterations,
especially in meteorites, other methods based on anhysteretic (ARM) and isother-
mal remanent magnetization (IRM) evolved [Weiss et al., 2010]. Non heating,
relative methods are not grounded on a rigorous theory and have large margins
of error. Thus paleointensities derived from meteorites often yield varying results.
For one this is likely due to the magnetic mineralogy, which is not well under-
stood. On the other hand, the acquisition process can be complicated and the
resulting magnetization is often disturbed by pressure events or low temperature
demagnetization. In the course of this study I have worked on confirming several
open questions concerning the validity of paleomagnetic studies on meteorites.

Pressure cycling of rocks with a low-Ti pseudosingle domain magnetite can cause
a loss of remanent magnetization and others have shown similar effects for dif-
ferent minerals. It mainly influences grains with low coercivity and unblocking
temperatures. This can even happen at relatively low pressures (e.g. 0.6 GPa),
which typically don’t leave any petrographic indications. Since absolute paleoin-
tensity methods relate the natural remanent magnetization to a laboratory ac-
quired thermally acquired magnetization, the loss of moment can cause a change
in the slope in the NRM-TRM diagram and consequently an underestimation of
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the past field intensity. Leading to the conclusion that paleointensities derived
from pressurized materials can only be taken as a lower limit. Pressure cycling
can also have an effect of the remanence carrying capability of the sample by
lowering its mean unblocking temperature. Through straightening of the arai
plots and apparently enhancing the quality of the data, the magnetic state of the
sample can be misinterpreted.

On the other hand, demagnetization of pyrrhotite bearing samples due to low
temperature cycling from their equilibrium temperature in space to room tem-
perature on Earth has little effect on the remanent moment. This leads credibility
to paleointensity derived from meteorites with pyrrhotite as a magnetic carrier
for example the Martian meteorites. The pyrrhotite phase transition, which is
an important tool for identifying the magnetic minerals in a sample has been in-
tensely studied. The mechanism behind the transition, however is not clear and
conflicting interpretations exist. Hysteresis loops in the the basal plane of the
crystal show a increase in magnetic parameters during the transition. Surprisingly
the values for coercivity of remanence increases faster with decreasing tempera-
ture than the coercivity of the crystal, yielding a coercivity of less than unity.
Rotational hysteresis loops and backfield curves show a change from a six-fold
symmetry above the transition to a fourfold symmetry below TBes. This indicates
a crystallographic change rather than changes in interactions of superstructures.

Our data for iron-nickel alloys, the most common magnetic mineral in meteorites,
are less encouraging. While being able to synthesize pure alloys with a relatively
novel technique in earth sciences (mechanical alloying) no clear evidence for the
presence of a single domain grain size could be found. SD remanence carrier,
however are especially important when dealing with magnetizations that were
acquired several billions of years ago during the formation of the solar system.
Due to thermal relaxation effects the magnetic moment can only be stable for
these timescales if the particle carrying it is in the single domain size range. The
failure to find SD particles, even though grain sizes are within the proposed limits
[Butler & Banerjee, 1975, Muxworthy & Williams, 2015] could be partly masked
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Figure 5.1: Arai diagram: Ambi-
guity of paleointensity determined
from PSD and MD grains. The
lower temperature portion would
yield a paleointensity of 84 µT
while the high temperature portion
(right) only recovers an intensity of
20.2 µT [Chauvin et al., 2005]

by the presence of strong dipolar interactions in the sample. Moreover, our data
shows that phase transitions in these alloys are sensitive to many factors, such
as carbon content, heating and cooling rate and maximum heating temperature.
This further complicates the interpretations of the remanent magnetization. The
study shows that a lot more work has to be done in order to understand the mag-
netic signature of metal bearing meteorites. The synthesis technique described in
here, however could pave the way for new experiments on synthetic Fe,Ni alloys,
to further the understanding of their magnetic properties.

Outlook

Our community has generated an impressive number of paleointensity protocols,
but the most commonly used methods are variants on the approach of Thellier &
Thellier [1959] [Biggin & Perrin, 2007, Coe, 1967, Coe et al., 1978, Yu et al., 2004].
All of these methods require a linear dependence of TRM intensity on the inducing
field and the additivity, independence, and reciprocity of partial-TRMs (pTRMs).
These properties are exhibited by populations of non-interacting single-domain
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(SD) grains, but not by multidomain (MD) or pseudo-single domain (PSD) par-
ticles [Levi, 1977]. However, most natural materials contain a range of magnetic
grain sizes, which results in non-ideal behavior during paleointensity experiments.
The prevalence of non-SD grains and thermochemical alteration during repeated
heating cycles are the most frequent causes of failure in paleointensity studies.

Examples of non-ideal behavior are shown in fig. 5.1 and are manifest as excessive
curvature in the Arai plots. This curvature causes ambiguity in calculations of
the ancient magnetic field strength. Which part of the data set is more reliable?
When higher temperature data points are discarded (blue line in fig. 5.1) the
intensity may be overestimated. If one choses to only use the higher temperature
data, then the intensity may be underestimated (red line in fig. 5.1) [Biggin &
Thomas, 2003, Chauvin et al., 2005, Dunlop, 2005]. In an effort to avoid this
non-ideal behavior, some researchers have introduced alternative paleointensity
protocols [Dekkers & Böhnel, 2006, Fabian & Leonhardt, 2010, Xu & Dunlop,
2004], while others have developed experimental checks that can be incorporated
into Thellier-style protocols to monitor the contribution of remanence from PSD
and MD grains as well as their stability during repeated heating cycles [Biggin &
Perrin, 2007, Coe, 1967, Coe et al., 1978, Krása et al., 2003, Riisager & Riisager,
2001, Yu et al., 2004]. Another approach has been to determine statistical pa-
rameters that can be used to exclude spurious data [Paterson et al., 2012, 2010,
2014, Perrin, 1998].

During the work of this study we found that pressure cycling preferentially demag-
netizes the remanence held by PSD and MD grains, while leaving the remanence
held by SD grains largely intact. By treating specimens to pressure treatments
prior to paleointensity experiments, non-ideal behavior can be strongly inhibited
and Arai diagrams straightened. This method begins by measuring a specimens
natural remanent magnetization (NRM) and then pressure cycling to e.g. 1 GPa.
The reduced NRM is remeasured (NRMP ) and the moment lost (∆MP ) calcu-
lated. Then a standard Thellier-style experiment is conducted. For specimens
containing Fe-rich titanomagnetite in predominantly PSD grain sizes, increasingly
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Figure 5.2.: Arai diagrams for the same sample before (a) and after pressure cycling (b) shows
demagnetization ∆MR. There is a significant decrease in curvature and the quality factor q
increased by factor of 2. Data of b corrected for ∆MR (c) gives correct paleointensity and in-
creased q

large pressure treatments progressively reduce the curvature in Arai diagrams
(fig. 5.2). The final paleointensity estimate from the pressure-cycled material
correlates with the amount of pressure demagnetization. Thus, the magnetic
moment lost after pressure cycling can be used to correct the generally lowered
paleointensity to its correct value. Additionally, the quality factor (q) [Coe et al.,
1978] increases with increasing pressure demagnetization. Since the quality factor
has proven to be a good measure of the overall robustness of the data [Chauvin
et al., 2005], this method of removing non-ideal remanences and then correcting
for ∆MP should lead to more robust data. This method may also allow speci-
mens that would otherwise be dismissed from a study, because of their ambiguous
NRM-TRM diagrams, to yield usable and reliable paleointensities.
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A.1. Effect of static pressure on absolute
paleointensity recording
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Figure A.1.: Alternating field (AF) demagnetization of a 1.2 T SIRM of an obsidian sample after
cycling to successively higher pressure. The sample was given a new SIRM moment after each
AF-demagnetization.
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50% of the moment is demagnetized known as the median destructive field (MDF). The data
shows that pressure demagnetization affects the low coercivity components, thereby increasing its
apparent MDF.
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A.2. Low temperature magnetic properties of
monoclinic pyrrhotite
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Figure A.3.: Polar representation of non normalized rock magnetic results of pyrrhotite single
crystal. Data shown for all temperatures with respect to the a1 axis at 0◦. a) shows pseudo Ms*,
radial distance in Am2/kg, b) shows remanent saturation magnetization Mrs, radial distance in
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Figure A.4.: Polar representation of normalized rock magnetic results for all temperatures with
respect to the a1 axis at 0◦. Data from fig. A.3 normalized to the minimum and maximum value
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Bertaut, E. F. (1953). Contribution à l’étude des structures lacunaires: la pyrrhotine.
Acta Crystallographica, 6(6), 557–561.

Besnus, M. J. & Meyer, A. J. (1964). Nouvelles données expérimentales sur le
magnétisme de la pyrrhotine naturelle, volume 20. Proc. Int. Conf. Mag.

Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A., & Trukhin, V. I. (2010).
Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure
up to 1.2 GPa. Physics of the Earth and Planetary Interiors, 179(1–2), 7–20.

Bezaeva, N. S., Rochette, P., Gattacceca, J., Sadykov, R. A., & Trukhin, V. I. (2007).
Pressure demagnetization of the Martian crust: Ground truth from SNC meteorites.
Geophysical Research Letters, 34(23).



134 Bibliography

Biggin, A. J. & Perrin, M. (2007). The behaviour and detection of partial thermore-
manent magnetisation (PTRM) tails in Thellier palaeointensity experiments. Earth,
Planets Sp., 59(7), 717–725.

Biggin, A. J., Strik, G. H. M. A., & Langereis, C. G. (2009). The intensity of the
geomagnetic field in the late-Archaean: new measurements and an analysis of the
updated IAGA palaeointensity database. Earth, Planets and Space, 61(1), 9–22.

Biggin, A. J. & Thomas, D. (2003). The application of acceptance criteria to results
of Thellier palaeointensity experiments performed on samples with pseudo-single-
domain-like characteristics. Physics of the Earth and Planetary Interiors, 138(3-4),
279–287.

Bin, M. & Pauthenet, R. (1963). Magnetic Anisotropy in Pyrrhotite. Journal of Applied
Physics, 34(4), 1161.

Bødker, F., Mørup, S., & Linderoth, S. (1994). Surface effects in metallic iron nanopar-
ticles. Physical Review Letters, 72(2), 282–285.

Bowles, J., Jackson, M. J., Chen, A., & Solheid, P. (2009). Interpretation of low-
temperature data part 1: superparamagnetism and paramagnetism. The IRM Quar-
terly, 19(3).

Brecher, A., Stein, J., & Fuhrman, M. (1977). The magnetic effects of brecciation and
shock in meteorites: I. The Ll-chondrites. Moon, 17(3), 205–216.

Butler, R. F. (1972). Natural remanent magnetization and thermomagnetic properties
of the Allende meteorite. Earth and Planetary Science Letters, 17(1), 120–128.

Butler, R. F. & Banerjee, S. K. (1975). Single-Domain Grain-Size Limits for Metallic
Iron. Journal of Geophysical Research: Solid Earth, 80(2), 252–259.

Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D. S., &
Gattacceca, J. (2011). Magnetic evidence for a partially differentiated carbonaceous
chondrite parent body. Proc. Natl. Acad. Sci., 108(16), 6386–6389.

Charilaou, M., Kind, J., Koulialias, D., Weidler, P. G., Mensing, C., Löffler, J. F., &
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Dekkers, M. J. & Böhnel, H. N. (2006). Reliable absolute palaeointensities independent
of magnetic domain state. Earth and Planetary Science Letters, 248(1-2), 508–517.
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Stöffler, D., Keil, K., & Edward R.D, S. (1991). Shock metamorphism of ordinary
chondrites. Geochim. Cosmochim. Acta, 55(12), 3845–3867.

Sugiura, N. & Strangway, D. W. (1988). Magnetic studies of meteorites. Meteorites
and the Early Solar System, (pp. 595–615).

Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials
Science, 46(1-2), 1–184.

Swartzendruber, L. J., Itkin, V. P., & Alcock, C. B. (1991). The Fe-Ni (iron-nickel)
system. Journal of Phase Equilibria, 12(3), 288–312.

Tarduno, J. A., Cottrell, R. D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A.,
Blackman, E., Scott, E. R. D., & McKinley, R. (2012). Evidence for a dynamo in
the main group pallasite parent body. Science, 338(6109), 939–942.

Thellier, E. & Thellier, M. (1959). Sur l’intensité du champ magnétique terrestre dans
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