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ABSTRACT 

For a long time the role of hybridization in ecological and evolutionary process has been 

underestimated in the animal kingdom. In contrast, the number of studies reporting 

successful hybridization has increased tenfold in the last decades. It has often been 
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reported that the establishment of hybrids has been connected with their abilities to 

colonize new and extreme environments. The aim of this thesis was to evaluate which 

processes lead to frequently observed hybrid establishment in the Daphnia longispina 

species complex. Daphnia are cyclical parthenogens with an asexual and a sexual phase 

of reproduction, during which hybrids are produced. Hybrids of this species complex 

are known to be less successful in sexual reproduction compared to their parental 

species. As Daphnia mainly survive winter by producing sexual resting eggs, the main 

focus was set on how hybrids survive winter and reach high abundances in spring. 

Therefore, Daphnia individuals were sampled during spring over six consecutive years 

and monthly during one year in ten shallow lakes strongly affected by winter. Using 

microsatellite data the following three scenarios were tested: 1) recurrent hybridization 

events, 2) survival as asexual females during winter and 3) establishment of hybrids via 

migrants. Furthermore, several experimental surveys were performed to find possible 

traits that facilitate the dominance of a “successfully hybrid” clone, as observed in one 

of the tested lakes in two consecutive years. A mathematical model was created to 

evaluate various possible traits that might facilitate the establishment of hybrids. In the 

spring samples high levels of linkage disequilibrium and observed heterozygosity were 

found in hybrids, indicating that they mainly survive as asexual females during winter. 

Enhanced survival of asexual females in hybrids was confirmed in the experiment 

exposing hybrids and parental species to winter conditions. In addition, the 

mathematical model confirmed that an enhanced overwintering as asexual females can 

lead to an establishment of hybrids. Interestingly, field data showed that cold winters 

resulted in lower numbers of hybrid genotypes in the following spring suggesting a 

selection of hybrids with high capabilities to survive winter. In the mathematical model 

hybrids dominated the community during cold winters, while warm winters could lead 

to the loss of such an advantage. Low migration rates and high genetic differentiation in 

hybrids compared to the parental species suggest that migration of hybrids could be 

excluded. Overall the results of my thesis suggest that an enhanced parthenogenetic 

reproduction of Daphnia hybrids during winter can facilitate their successful 

establishment. Furthermore, such an advantage depends on the severity of the winter. 
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ZUSAMMENFASSUNG 

Lange Zeit wurde die Rolle der Hybridisierung in ökologischen und evolutionären 

Prozessen im Reich der Tiere unterschätzt. Im Gegensatz dazu stieg die Anzahl der 

Studien, die über erfolgreiche Hybridisierung berichten, in den letzten Jahrzehnten um 

das Zehnfache. Diese Studien berichten häufig darüber, dass die Etablierung von 

Hybriden mit ihrer Fähigkeit zusammenhängt, neue und extreme Umwelten zu 

kolonisieren. Das Ziel dieser Arbeit besteht darin zu evaluieren, welche Prozesse zu der 

häufig beobachteten Etablierung von Hybriden im D. longispina Artenkomplex führen. 

Daphnien sind zyklische parthenogenetische Organismen mit einer asexuellen und einer 

sexuellen Reproduktionsphase, während derer Hybride gebildet werden. Hybride dieses 

Artenkomplexes sind dafür bekannt, dass sie im Vergleich zu ihren Elternarten weniger 

erfolgreich in der sexuellen Reproduktion sind. Da Daphnien den Winter vor allem 

durch die Produktion sexueller Dauereier überleben, wurde ein Hauptaugenmerk darauf 

gerichtet, wie Hybride den Winter überleben und hohe Häufigkeiten im Frühling 

erreichen. Dazu wurden Daphnien-Individuen über einen Zeitraum von sechs 

aufeinander folgenden Jahren sowie monatlich innerhalb eines Jahres in zehn seichten 

Seen, welche stark durch den Winter beeinflusst sind, beprobt. Mithilfe von 

Mikrosatellitendaten wurden drei Szenarien getestet: 1) wiederkehrendes Vorkommen 

von Hybridisierung, 2) das Überleben von asexuellen Weibchen während des Winters 

und 3) die Etablierung von Hybriden durch Migranten. Des Weiteren wurden mehrere 

experimentelle Studien durchgeführt, um mögliche Merkmale zu finden, die die 

Dominanz eines „erfolgreichen Hybrid-Klons“, der in einem der beprobten Seen in zwei 

aufeinander folgenden Jahren beobachtet wurde, erklären. Es wurde außerdem ein 

mathematisches Modell entwickelt, um verschiedene mögliche Merkmale zu evaluieren, 

die eine erfolgreiche Etablierung von Hybriden ermöglichen. In den Proben, die im 

Frühling entnommen wurden, wurden hohe Werte von Linkage Disequilibrium und 

beobachteter Heterozygotie gefunden, die auf ein hauptsächliches Überleben von 

asexuellen Weibchen über den Winter hinaus hinweisen. Ein verbessertes Überleben 

von asexuellen Weibchen in Hybriden wurde in einem Experiment bestätigt, in dem 

Hybride und Elternarten Winterbedingungen ausgesetzt waren. Außerdem bestätigte das 

mathematische Modell, dass ein verbessertes Überleben durch asexuelle Weibchen zu 

einer Etablierung von Hybriden führen kann. Interessanterweise zeigten Felddaten, dass 

kalte Winter zu einer geringeren Anzahl verschiedener Hybridgenotypen im folgenden 
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Frühling führen können. Das weist darauf hin, dass Hybride mit einer hohen Fähigkeit 

den Winter zu überleben, selektiert werden. In dem mathematischen Modell 

dominierten Hybride die Gemeinschaft in kalten Wintern, während warme Winter zu 

einem Verlust dieses Vorteils führten. Niedrige Migrationsraten und eine hohe 

genetische Differenzierung in Hybriden im Vergleich zu den Elternarten deuten an, dass 

Migration von Hybriden ausgeschlossen werden kann. Insgesamt zeigen die Ergebnisse 

der Arbeit, dass eine verbesserte parthenogenetische Reproduktion von Daphnien-

Hybriden während des Winters eine erfolgreiche Etablierung von Hybriden ermöglicht. 

Dabei hängt dieser Vorteil von der Stärke des Winters ab. 
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Hybridization 

Hybridization in animals 

Hybridization is defined as the interbreeding of individuals from two populations or 

groups of populations, which are distinguishable on the basis of one or more heritable 

characters (Dowling and Secor 1997). In many cases post- and prezygotic barriers 

prevent successful hybridization between such populations (summarized in Coyne and 

Orr 2004). However, these barriers are not always complete. In the plant kingdom the 

role of hybridization in evolutionary and ecological processes has been acknowledged 

for a long time (Grant 1981; Rieseberg and Brunsfeld 1992; Stebbins 1959). In contrast, 

in the animal kingdom it has been considered of less importance: “The total weight of 

evidence contradicts the assumption that hybridization plays a major role among higher 

animals…” (Mayr 1963, p. 133). First, the crossing between divergent lineages were 

regarded to result mainly in offspring with a reduced viability and/or fertility (Mayr 

1963). The reason for the reduced fitness of hybrid offspring was seen in the complexity 

of organs and tissues in animals, that requires a large amount of genes interacting with 

each other (Dobzhansky 1951). Genes of the parental species have been under selection 

pressure for a long time and they might be co-adapted within the parental species. 

Sexual recombination during the mating of divergent populations are likely to break up 

such interacting genes (Mayr 1963). Second, if reproductive isolation would be weak 

enough to facilitate successful hybrids, species that coexist would not be maintained, if 

they are not geographically isolated (Mayr 1963). Therefore, introgression of genes via 

hybridization would be unlikely (Mayr 1963).  

In the last decades, hybridization in the animal kingdom has gained more attention 

(reviewed in Schwenk et al. 2008) and hybrids of various groups were found to show 

the same or even higher fitness than the parental species. For example in the Darwin 

finches from the Galapagos Island, hybrids between Geospiza fortis and G. scandens 

were favored during a dry period caused by a rare El Nino event (Grant and Grant 

1996). Due to the drought, seeds became smaller and could be eaten easier by hybrids 

having a smaller beak than the parental species. In the North American leopard frog, 

hybrids between Rana blairi and R. sphenocephala had the highest proportion of 

individuals that survived and metamorphosed compared to their parental species in three 

different aquatic habitats (Parris 2001). These observations contradict the traditional 
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view of hybrids always being less fit than their parental species. It is assumed that the 

combination of isolated genomes results in a distribution of differently fit phenotypes of 

hybrids. Such phenotypic traits can be outside of the distribution of the parental species, 

having negative but also positive effects on the fitness of hybrids (Abbott et al. 2013). 

Positive effects could be the result of heterosis, the novel combination of genes or the 

combination of advantageous genes (Burke and Arnold 2001). Even if most hybrid 

genotypes would be less fit than the parental species, natural selection can pick out fit 

genotypes (Barton 2001). Selection on hybrids can be endogenous or exogenous (Burke 

and Arnold 2001). Endogenous selection means that the fitness of hybrids is 

independent of the environment, such as incompatibilities of genes (Burke and Arnold 

2001). In the tension zone model (Barton and Hewitt 1985) it is thought that the success 

of hybrids depends rather on the balance between the reduced fitness and their dispersal 

abilities. Exogenous selection means that the fitness of hybrids is dependent on 

environmental factors (Burke and Arnold 2001). The gradient ecotone model (Endler 

1977) describes how environmental gradients result in gradients of selection pressure. 

While the parental species perform best at the extreme ends of the gradients, hybrids are 

intermediate. According to the bounded hybrid superiority model (Moore 1977; Moore 

and Koenig 1986) parents are adapted to different environments, while hybrids are 

adapted to neither of them, but new ones. Such environments are often considered to be 

extreme compared to the original environments of the parental species (Seehausen 

2004). For example, hybrids of the sunflowers are well adapted to sand dunes, desert 

floors and salt marshes; habitats where the parental species cannot establish (Rieseberg 

et al. 2006). In spadefoot toads hybrids have longer development times, which makes 

them less fit in the parental environments, but are beneficial during long dry periods 

(Pfennig 2007).  

Additionally, hybridization could allow for a fast introduction of variation. Within one 

generation more combinations of genes could be created than by selection on neutral 

alleles with mutations (Schwenk and Spaak 1997). Also groups of genes that are 

stabilized could be transferred fast between populations (Dowling and Secor 1997). 

Moreover, hybridization introduces genetic variation that can reduce inbreeding 

depression during periods of small population size (Dowling and Secor 1997). In 

changing environments rapid emerging variation could be advantageous, particularly 

when new ecological niches arise (Dowling and Secor 1997). Indeed, it has been 

observed that hybrids usually occupy environments which are different from those of 
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their parental species (reviewed in Seehausen 2004). Hybridization therefore can be a 

factor driving adaptive radiation (Seehausen 2004) as observed in the Heliconius 

butterflies. Heliconus butterflies divide in a variety of species. These species have a 

large variation in wing patterns, which is unlikely to be the result of mutation, but to 

have their origin in several hybridization events (Gilbert 2003).  

 

Parthenogenesis and hybridization 

Parthenogenesis is the development of embryos without fertilization. The offspring can 

be genetically identical with the mother (clones). For a long time, clonal reproduction 

has been seen as an evolutionary dead end, because deleterious mutations would 

become fixed and variability reduced (Delmotte et al. 2003). Moreover, genetic drift 

would lead to a decrease in variability and finally to the extinction of parthenogenetic 

reproduction. Therefore, clonal reproduction would decrease the rate of adaptive 

evolution, rate of speciation and increase the rate of extinction (Vrijenhoek 1979). In 

contrast, in some animal species clonal parthenogenetic lineages established and 

showed to have higher variability than expected (for examples see Kearney 2005). 

Different theories have been developed to explain the contradiction between expectation 

and observation. In the Frozen Niche Variation (FNV) theory, favored gene complexes 

in clonal lineages are not broken up via sexual reproduction (Vrijenhoek 1979). 

Variation is frozen within clonal lineages. Often such favored traits are associated with 

special niches at the edges of the environment of the sexual parental species, and clones 

can disperse to environments with similar settings (Kearney 2005). In the FNV theory 

asexual individuals have to arise constantly from sexual populations, leading to high 

genetic diversity (Vrijenhoek 1979; Vrijenhoek and Parker 2009). In the frog Rana 

esculanta, different clones have different fitness peaks for specific habitats, expressing a 

superiority as clonal mixture rather as single clones (Semlitsch et al. 1997). 

Alternatively, certain clones can show an adaptation to a wide range of environments 

and intermediate success in life history traits, facilitating a broad establishment and 

dispersal of these general purpose genotypes (GPGs) (Vrijenhoek 1979; Vrijenhoek and 

Parker 2009). In such a case, mutations are the only source of variation leading to a low 

genetic diversity. An example of an GPG is the asexual ostracod Darwinula stevensoni, 

that shows a broad tolerance for salinity and temperature and has a broad geographical 

and ecological distribution which can explain its long-term persistence (Van Doninck et 
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al. 2002). In addition, parthenogenesis can have some short-term advantages, for 

example the ability of colonization with one female only and the amplification of co-

adapted gene combinations (Delmotte et al. 2003). 

Parthenogenetic lineages are often associated with specific environmental settings 

(geographical parthenogenesis, reviewed in Kearney 2005). Such environments are 

extreme habitats such as high altitudes and latitudes, deserts islands, disturbed and 

ecotone habitats. It has been proposed that geographic parthenogenesis is likely to be a 

pattern of hybridization and the advantage of hybrids in newly opened environments 

(Kearney 2005). Parthenogenesis often occurs in populations that originated via 

hybridization (Delmotte et al. 2003). During hybridization co-adapted gene complexes 

responsible for the meiotic cell division can be broken up inducing parthenogenetic 

reproduction. Interestingly, almost all vertebrates that reproduce parthenogenetically 

have hybrid origin (Avise et al. 1992). Hybrids might successfully establish also 

because of their ability of parthenogenetic reproduction (e.g. aphids, Delmotte et al. 

2003; freshwater snails, Johnson 2005; edible frogs, Semlitsch 1993; waterfleas, Spaak 

and Hoekstra 1995), which compensates for otherwise reduced hybrid abilities to 

reproduce sexually (Schwenk and Spaak 1997). 

 

Daphnia as a model system for hybridization 

More than 100 Daphnia species are found around the world in most standing 

freshwater, from large lakes to small pools and temporary rockpools (Adamowicz et al. 

2009; Petrusek et al. 2012). Daphnia is a key species in the food webs of lakes and 

ponds. They are grazers on algae and serve as food for planktivorous fish and 

carnivorous invertebrates (Lampert 2011). Daphnia are cyclical parthenogens with an 

asexual and a sexual phase. During the asexual phase females produce genetically 

identical offspring. During the sexual phase females produce genetically identical 

diploid males or haploid resting eggs (Hebert 1978). These resting eggs are protected by 

an ephippium, which makes them resistant to freezing and desiccation. Therefore, the 

phase of sexual reproduction is mostly induced during harsh conditions. The production 

of males and sexual females is dependent on temperature, food quantity and quality, 

density and the photoperiod (Hebert 1978; Innes 1997; Spaak 1995). The induction of 



CHAPTER 1 
 

  

 
11 

resting egg production is more species-specific than the production of males (Spaak 

1995). After fertilization resting eggs are released into the water column, where they 

float or sink to the sediment of the lake. Lake sediments often contain large numbers of 

Daphnia diapausing eggs that have been accumulated over dozens of years (103-105 

eggs per square meter, Brendonck and De Meester 2003). Resting eggs also provide the 

main dispersal stage of Daphnia, as they can be transported via wind or birds (Bilton et 

al. 2001; Figuerola et al. 2005). 

In the temperate zones Daphnia densities vary strongly throughout the year. Early in the 

year numbers of Daphnia increase rapidly with exponential growth (Ebert 2005). Later 

on, growth is reduced by density-dependent competition, which can be followed by a 

midsummer decline, due to overgrazing on the food resources of Daphnia such as 

phytoplankton (Sommer et al. 1986). During cold periods (i.e. winter) Daphnia occur at 

low densities or disappear completely. Daphnia can overwinter by persisting as asexual 

lineage in the water column or via sexually produced resting eggs, which hatch under 

favorable conditions (Hamrová et al. 2011; Lampert et al. 2010). Surviving as asexual 

female can lead to a competitive advantage in spring, when they can quickly reproduce 

parthenogentically, and their offspring are born during an algae bloom (Sommer et al. 

1986). The early occurrence of such surviving females may then lead to dominance later 

on (i.e. priority effects, Louette and De Meester 2007). However, survival as asexual 

females can be risky if lakes get anoxic during ice cover or freeze to the bottom of the 

lake (Lampert et al. 2010).  

 

Hybridization in Daphnia 

In the water flea Daphnia hybrids are common worldwide and have been documented in 

several species complexes (Colbourne et al. 1998; Hebert 1985; Keller et al. 2008). The 

Daphnia longispina species complex is the most commonly found complex in Europe 

(mainly consisting of D. galeata, D. longispina, D. cucullata and their interspecific 

crosses; taxonomy revised in Petrusek et al. 2008). Hybrids of this complex are less 

successful in sexual reproduction compared to the parental species (Keller and Spaak 

2004; Keller et al. 2007; Spaak et al. 2004). This is because hybrids produce less resting 

eggs and resting eggs containing hybrids have lower hatching success. Moreover, 

members of this species complex do not reproduce at random, resulting in lower 
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numbers of resting eggs containing hybrids. In contrast, during the parthenogenetic life 

cycle hybrids of this complex can show the same or even higher fitness than the parental 

species. Such fitness advantages occur during certain environmental conditions for 

example when fed with different quantities (e.g. Boersma and Vijverberg 1994) or 

qualities of food (e.g. Seidendorf et al. 2007), exposed to different temperatures (e.g. 

Weider and Wolf 1991), predation (e.g. Declerck and Meester 2003), or parasite 

pressure (e.g. Wolinska et al. 2006). For example, D. galeata × D. longispina hybrids 

performed worse at 20 °C compared to their parental species but showed higher fitness 

values when raised at 14 °C (Weider and Wolf 1991). Environmental changes in time 

and space may therefore provide open windows for the successful establishment of 

hybrids in the Daphnia longispina complex (Spaak and Hoekstra 1995). In fact, field 

observations indicate that Daphnia hybrids may become more abundant or outcompete 

their parental species during certain time periods (Hebert and Finston 2001; Keller et al. 

2008; Yin et al. 2012).  

 

Aim of the thesis 

In this thesis, I examined hybridization in the D. longispina complex and its role in the 

establishment of newly opened habitats. To evaluate hybridization across space and 

time I collected genetic data from the hybridizing complex across habitats and 

generation. I screened Daphnia communities in ten artificial lakes (flooded gravel pits) 

in and around Munich (Fig. 1). These lakes have been created recently (max. age 80 

years), resulting in newly founded Daphnia communities. In addition, these lakes are 

rather shallow with a maximum depth of 16 m, which makes them strongly affected by 

temperature decline in winter. During winter Daphnia abundances fall under detection 

level in these lakes, leading to the opening of the habitats in spring. The maximum 

distance between lakes is 30 km. Altogether, these features make these lakes an ideal 

system to study hybrid establishment in newly opened habitats on a small geographical 

scale. 
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Figure 1: Ten lakes sampled in and around Munich.  

The aim of the thesis was to evaluate how Daphnia hybrids establish in spring by 

testing three contrasting scenarios: 1) recurrent hybridization events, 2) survival as 

asexual females during winter and 3) establishment of hybrids via migrants. Moreover, 

using different experimental set-ups (carrying capacity, temperature and crowding) a 

“successful hybrid” clone (i.e. the clone that dominated an entire Daphnia community 

in two consecutive years) was compared with other clones of the parental species and 

their hybrids. Finally, observed parameters that might facilitate the establishment of 

hybrids were analyzed in a mathematical model. 

My PhD thesis contains the following chapters: 

Chapter 2: Daphnia communities of ten lakes were sampled every spring during six 

consecutive years. Individuals were screened at 15 microsatellite loci to identify 

Daphnia species and their hybrids. The establishment of hybrids in the beginning of 

spring was examined by analysing the clonal and genetic diversity of hybrids, 

migration, temporal and spatial differentiation as well as the correlation with the 

severity of the winter in comparison to the parental species.  

Chapter 3: Daphnia communities were sampled every month during one growing 

season (April-November). Individuals were screened at 15 microsatellite loci to identify 

Daphnia species and their hybrids. Furthermore, environmental characteristics of the 

lakes (e.g. phosphorus or nitrate level) were tested for correlation with the abundance of 

parental species and hybrids. Clonal diversity was followed over the year to examine if 

clonal diversity will decrease over the season (clonal erosion). Furthermore, we tested if 

hybrids are more likely to be produced locally or dispersed from other lakes. 
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Chapter 4: In Chapter 2, we found one hybrid genotype from the lake Feldmochinger 

See to dominate the Daphnia community, in two consecutive years. To examine traits 

which facilitate the superiority of these “successful hybrid”, I conducted a competition 

experiment and life history experiments under different conditions (temperature, 

crowding, carrying capacity and simulated winter). Moreover, abundances of the 

“successful hybrid” were tested for correlations with the strength of the winter. 

Chapter 5: Here we employed a mathematical model to examine conditions that could 

explain the frequently observed establishment of hybrids in the Daphnia longispina 

complex. Therefore, we simulated the co-occurrence of parental species and hybrids 

over several years. Specifically, we compared the outcome of hybrid and parental 

species competition under different scenarios such as including a reduction of sexual 

reproduction in hybrids and simulating their enhanced survival over winter as asexual 

females. 
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CHAPTER 2: PARENTAL AND HYBRID DAPHNIA FROM THE 

D. LONGISPINA COMPLEX: LONG-TERM DYNAMICS IN GENETIC 

STRUCTURE AND SIGNIFICANCE OF OVERWINTERING 

STRUCTURES 

 

Johanna Griebel, Sabine Gießler, Mingbo Yin, Justyna Wolinska 

(2016) 

 

Journal of Evolutionary Biology 
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Abstract 

In recent decades, hybridization has become a focus of attention because of its 

role in evolutionary processes. However, little is known about changes in genetic 

structure within and between parental species and hybrids over time. Here, we 

studied processes of genetic change in parental species and hybrids from the 

Daphnia longispina complex (Crustacea, Cladocera) over a period of six years 

across ten habitats. These cyclical parthenogens respond to fluctuating 

environments by switching from asexual to sexual reproduction. Importantly, 

sexually produced diapausing eggs, which resist extreme conditions such as low 

temperatures and serve as dispersal stages, are produced to a lower extent by 

hybrids. Long-term microsatellite data revealed clear differences between 

hybrids and parental species. In hybrids, clonal diversity values were lower, 

whereas heterozygosity and linkage disequilibrium values were higher compared 

to parental species. Clonal diversity of hybrids responded to the strength of the 

winter, with cold winters resulting in few genotypes in the following spring. In 

time windows when only asexual hybrid females survive, priority effects will 

favour the establishment of the hybrid offspring before hatchlings from parental 

diapause eggs can enter the community. The constant high levels of 

heterozygosity maintained by clonal reproduction in hybrids might lead to their 

successful establishment over time, when they are able to escape competition 

from both parental species. Although we found evidence that hybrids diversity 

depends on fluctuating environments, a direct link between hybrid abundance 

and the strength of winter was missing. Because of reduced adaptability in 

clonally reproducing hybrids, multiple factors must contribute to promoting their 

long-term success in fluctuating environments. 

Full-text article: 

http://onlinelibrary.wiley.com/doi/10.1111/jeb.12828/abstract 
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CHAPTER 3: HYBRIDIZING DAPHNIA COMMUNITIES FROM TEN 

NEIGHBOURING LAKES: SPATIO-TEMPORAL DYNAMICS, LOCAL 

PROCESSES, GENE FLOW AND INVASIVENESS 

 

Mingbo Yin, Sabine Gießler, Johanna Griebel, Justyna Wolinska 

(2014)  

BMC Evolutionary Biology, 14: 80 
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Abstract 

Background 

In natural communities of cyclical parthenogens, rapid response to environmental 

change is enabled by switching between two reproduction modes. While long 

periods of asexual reproduction allow some clones to outcompete others, and 

may result in “clonal erosion”, sexual reproduction restores genetic variation in 

such systems. Moreover, sexual reproduction may result in the formation of 

interspecific hybrids. These hybrids can then reach high abundances, through 

asexual clonal reproduction. In the present study, we explored genetic variation 

in water fleas of the genus Daphnia. The focus was on the short-term dynamics 

within several clonal assemblages from the hybridizing Daphnia longispina 

complex and the impact of gene flow at small spatial scales. 

Results 

Daphnia individuals belonged either to the parental species D. galeata and D. 

longispina, or to different hybrid classes, as identified by 15 microsatellite 

markers. The distribution and genotypic structure of parental species, but not 

hybrids, corresponded well with the geographical positions of the lakes. Within 

parental species, the genetic distance among populations of D. galeata was lower 

than among populations of D. longispina. Moreover, D. galeata dominance was 

associated with higher phosphorous load. Finally, there was no evidence for 

clonal erosion. 

Conclusions 

Our results suggest that the contemporary structure of hybridizing Daphnia 

communities from ten nearby lakes is influenced by colonization events from 

neighbouring habitats as well as by environmental factors. Unlike the parental 

species, however, there was little evidence for successful dispersal of hybrids, 

which seem to be produced locally. Finally, in contrast to temporary Daphnia 

populations, in which a decrease in clonal diversity was sometimes detectable 
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over a single growing season, the high clonal diversity and lack of clonal erosion 

observed here might result from repeated hatching of sexually produced 

offspring. Overall, our study provides insights into spatio-temporal dynamics in a 

hybridizing Daphnia species complex in a recently established lake system, and 

relates genetic similarities of populations to a scenario of secondary invasion 

enhanced by environmental factors. 

Full-text article: 

http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-14-80 
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CHAPTER 4: EXTREME ENVIRONMENTS FACILITATE HYBRID 

SUPERIORITY – THE STORY OF A SUCCESSFUL DAPHNIA GALEATA 

× LONGISPINA HYBRID CLONE 

Johanna Griebel, Sabine Gießler, Monika Poxleitner, Amanda 

Navas Faria, Mingbo Yin, Justyna Wolinska (2015) 

Plos ONE, 10(10) 
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Abstract 

Hybridization within the animal kingdom has long been underestimated. Hybrids 

have often been considered less fit than their parental species. In the present 

study, we observed that the Daphnia community of a small lake was dominated 

by a single D. galeata × D. longispina hybrid clone, during two consecutive 

years. Notably, in artificial community set-ups consisting of several clones 

representing parental species and other hybrids, this hybrid clone took over 

within about ten generations. Neither the fitness assay conducted under different 

temperatures, or under crowded and non-crowded environments, nor the carrying 

capacity test revealed any outstanding life history parameters of this hybrid 

clone. However, under simulated winter conditions (i.e. low temperature, food 

and light), the hybrid clone eventually showed a higher survival probability and 

higher fecundity compared to parental species. Hybrid superiority in cold-

adapted traits leading to an advantage of overwintering as parthenogenetic 

lineages might consequently explain the establishment of successful hybrids in 

natural communities of the D. longispina complex. In extreme cases, like the one 

reported here, a superior hybrid genotype might be the only clone alive after cold 

winters. Overall, superiority traits, such as enhanced overwintering here, might 

explain hybrid dominance in nature, especially in extreme and rapidly changing 

environments. Although any favoured gene complex in cyclic parthenogens 

could be frozen in successful clones independent of hybridization, we did not 

find similarly successful clones among parental species. We conclude that the 

emergence of the observed trait is linked to the production of novel recombined 

hybrid genotypes. 

 

Full-text article:  

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140275 
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Abstract 

Intraspecific hybridization occurs frequently in animals. In a number of species, hybrids 

can proliferate and establish through parthenogenetic reproduction, even if sexual 

reproduction of hybrids is impaired. Regarding water fleas of the Daphnia longispina 

species complex, hybrids can express the same or higher fitness than parental species 

during the parthenogenetic part of the life cycle, whereas their success in sexual 

reproduction is reduced. Therefore, Daphnia hybrids would benefit from adaptations 

that enhance their overwintering survival as parthenogenetic lineages, thus avoiding the 

need to switch to the production of sexual resting eggs. Here, we constructed a 

mathematical model to examine the conditions that could explain the frequently 

observed establishment of hybrids in the Daphnia longispina species complex. 

Specifically, we compared the outcome of hybrid and parental species competition 

under different scenarios, including a reduction of sexual reproduction in hybrids, and 

simulating their enhanced survival over winter as asexual females. We also examined 

the influence of average annual temperatures on the establishment of hybrids. Our 

model shows that enhanced overwintering as asexual females can compensate for 

reduced success in sexual reproduction. This pattern holds true for lower annual 

temperatures, but at higher temperatures hybrids are unable to become established. 

Consequently, hybrids might become less abundant as temperatures rise due to climate 

change, resulting in reduced diversity and faster differentiation of the parental species. 
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Introduction 

Hybridization and its implications for evolutionary and ecological processes have been 

widely discussed in recent decades (Abbott et al. 2013; Barton 2013; Burke and Arnold 

2001; Rieseberg et al. 2007). Hybrids can display extreme phenotypes due to the 

combination of two parental genomes and therefore are sometimes able to establish in 

extreme environments. For example, hybrid Darwin finches on the Galapagos islands 

were favoured during a rare El Nino event, because the intermediate beak morphology 

of hybrids was best adapted to the smaller seed sizes caused by the event (Grant and 

Grant 1996). Hybrids of spadefoot toads display longer development times as tadpoles, 

a strategy beneficial during long dry periods (Pfennig 2007), whereas sunflower hybrids 

are able to establish on sand dunes, desert floors and salt marsh habitats (Rieseberg et 

al. 2007). Hybridization might result in parthenogenetic organisms (Delmotte et al. 

2003); almost all parthenogenetically reproducing vertebrates have a hybrid origin 

(Avise et al. 1992). Therefore, by taking advantage of their capacity to reproduce 

parthenogenetically (e.g. aphids, Delmotte et al. 2003; freshwater snails, Johnson 2005; 

edible frogs, Semlitsch 1993; waterfleas, Spaak and Hoekstra 1995), hybrids might 

successfully establish despite their reduced abilities to reproduce sexually (Schwenk and 

Spaak 1997). 

In cladoceran water fleas, Daphnia, hybrids are found worldwide (Hebert and Crease 

1980; Keller et al. 2008; Yin et al. 2010). Daphnia mainly reproduce 

parthenogenetically, but under harsh conditions they form sexual dormant eggs 

(ephippia). During this sexual phase, interspecific hybrids can be produced. In the 

Daphnia longispina species complex such hybrids can successfully compete with their 

parental species during the parthenogenetic life cycle (e.g. Declerck and De Meester 

2003; Seidendorf et al. 2007; Wolinska et al. 2007). However, hybrids suffer reduced 

efficiency of sexual reproduction; they have lower proportions of viable ephippia and 

lower hatching rates from these dormant eggs (Keller and Spaak 2004; Keller et al. 

2007; Spaak et al. 2004). Unlike their parental species, hybrids therefore have a reduced 

ability to survive harsh conditions as dormant stages. Consequently, hybrid 

establishment relies mainly on parthenogenetic reproduction. In our recent experimental 

study, Daphnia galeata × D. longispina hybrids originating from several shallow lakes 

(i.e. strongly influenced by harsh winters) had an increased survival as parthenogenetic 

lineages under simulated winter conditions (4 °C, low food and 8:16 hours light-dark 
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photoperiod, Griebel et al. 2015). Moreover, microsatellite screening of Daphnia 

communities sampled from the same lakes showed that hybrids are likely to survive 

winter as asexual females, in contrast to the parental species that survive mainly via 

sexually produced diapause eggs (Griebel et al. 2016). The ability to overwinter as 

asexual females can play an important role during recolonization of the water body in 

spring: individuals that are present first in the water column might quickly dominate the 

entire community, inhibiting the establishment of genotypes hatching from ephippia 

later in a season (De Meester et al. 2002; Lampert et al. 2010; Sommer et al. 1986). 

However, the interplay between reduced success in sexual reproduction on the one 

hand, and enhanced overwintering as asexual females on the other, has not been 

evaluated previously in terms of prospects for hybrid establishment. 

We constructed a mathematical model, simulating a community consisting of two 

parental species of the D. longispina complex, F1-, F2-hybrids, and their species-

specific backcrosses. First, we evaluated the influence of hybrids’ reduced success in 

sexual reproduction on their establishment, using parameter values derived from 

published work (Keller and Spaak 2004; Keller et al. 2007). Second, we tested a 

scenario of hybrids’ enhanced survival as asexual females during winter, adjusting the 

seasonal function for F1-hybrids during winter and using the survival data from our 

previous experimental study (Griebel et al. 2015). Seasonal changes in temperature and 

light, parameters strongly affecting Daphnia growth during the year, were simulated by 

applying a sinusoidal function from Scheffer et al. (1997). Third, different growth rates 

of the parental species and, fourth, differences in average annual temperatures, were 

evaluated for their influence on hybrid production and establishment. 

 

Model 

The aim of our model was to examine the conditions that could explain the frequently 

observed establishment of hybrids in the D. longispina complex. Specifically, we 

compared the outcome of hybrid and parental species competition under different 

scenarios such as reduced sexual reproduction in hybrids and an enhanced survival over 

winter as asexual females.  
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Individuals were divided into six classes: two parental species (j = 1 and j = 2), F1-

hybrids (j = 3), backcrosses to respective parental species (j = 4 and j = 5) and F2-

hybrids (j = 6). For each class the numbers of asexual individuals (A), sexual individuals 

(S) and resting eggs, ephippia (E), were modelled using the following differential 

equations: 
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The growth of asexual individuals is logistic with a specific intrinsic growth rate rj for 

each class. The carrying capacity K is shared by all six classes, as well as asexual and 

sexual individuals. During two periods of the year (two weeks in May and September, 

days: 151 - 165 and 273 - 287, Keller and Spaak 2004) a fraction sj(t) of asexual 

individuals switch to sexual reproduction. Sexual individuals die at a fixed mortality 

rate m. At the beginning of April (days 119-120), ephippia (containing two embryos) 

hatch at a rate hj(t) and result in asexual individuals, mimicking a photoperiod-driven 

hatching of resting eggs (Stross and Hill 1968). Seasonal forces (seasonal cycle of light 

and temperature) were included by multiplying the carrying capacity K (affected by 

resource availability, changing with light conditions) and the growth rate rj (affected by 

metabolic rates, changing with temperature) by a periodic function of time t (Fig. 1) 

with ε set to 0.7 as proposed by Scheffer et al. (1997): 
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The production of ephippia was calculated using the harmonic mean developed by 

Caswell and Weeks (1986), which accounts for the fact that both females and males 

have to be present. The model was set up with equal fractions of males and sexual 

females for the different classes: 
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Here, k is the number of offspring produced per sexual encounter, which was set to one 

(Ebert 2005). Si(t) and Sl(t) are the number of sexual individuals of class i, l (i, l = 1 - 3) 

at time t. For simplification, sexual individuals of the backcrosses and F2-hybrids 

(classes j = 4, 5, 6, see above) do not take part in sexual reproduction. Ephippia of the 

hybrid (or backcross) class are produced by the two possible encounters of sexual 

females of one parental species (or hybrid) with males of the other parental species (or 

hybrid) and vice versa (Fig. 2). To simulate deviation from random mating, the sexual 

encounters were divided into individuals that only mate with individuals from their own 

class (fraction c) and individuals that mate randomly with any other individual (1-c). 

The fraction c was set the same for all three classes. These lead to the following 

equations: 
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The number of sexual encounters was multiplied by f (number of ephippia produced per 

day) the fraction of non-empty ephippia ((1-ej), equation (3)). Several scenarios were 

evaluated by solving the differential equations (1) – (3) numerically using Mathematica 

10.3 (Wolfram Research Inc. 2015). If not stated otherwise, parameter values are as 
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described in Table 1. Starting densities were set to 0.001 individuals per litre for each 

parental species and zero individuals for the other classes. Carrying capacity was set to 

150 individuals per litre (Griebel et al. 2015). 

 

Reduced sexual reproduction and enhanced overwintering in F1-hybrids 

We evaluated how a reduced success in sexual reproduction influences the long-term 

(100 years) establishment of hybrids. Therefore, hatching rate hj was set lower and the 

number of empty ephippia ej was set higher in hybrids compared to parental species: 50 

% and 12.5 %, respectively (Keller and Spaak 2004; Keller et al. 2007). The fraction of 

sexual individuals that mate within their own class was set at 75 % (c = 0.75). Growth 

rates were set the same for both parental species, F1-hybrids and backcrosses (rj = 0.35 

for j ≠ 6). The growth rate for F2-hybrids was set lower assuming a hybrid breakdown 

(r6 = 0.3, scenario A). Unfortunately, no data on fitness of F2-hybrids exist, as too few 

F2-hybrids are found in natural communities (Griebel et al. 2016; Keller et al. 2008) to 

be successfully established in laboratory cultures. We tested to what extent better 

overwintering success of hybrids as asexual lineages will change the establishment 

success of hybrids. Therefore, the   of the seasonal force function (4) was set lower than 

in the original function (ε = 0.1, 0.175, 0.25 and 0.325) to increase the growth rate of 

hybrids (r3) during winter (120 days; November till February, Fig. 1). These changes in 

ε result in 50 to 80 % higher growth rates of F1-hybrids at the minimum of the seasonal 

function (at day 365). In laboratory experiments, the growth rates during winter 

conditions (4 °C, low food and short photoperiod) were found to be seven times higher 

for hybrids compared to parental species (Griebel et al. 2015). We opted for more 

conservative values to exclude laboratory artefacts (e.g. experimental clones were 

sampled in spring, when only successful survivors were present). Additionally, the 

growth rate of F1-hybrids (r3) was varied for different calculations (range: 0.30 to 0.35), 

to estimate whether the differences in winter survival may compensate for a generally 

lower fitness of asexual individuals in F1-hybrids. For example, in the laboratory 

hybrids had lower growth rates compared to parental species when raised at 20 °C 

(Weider and Wolf 1991). Analyses were run for 100 years. 
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Different growth rate scenarios for the parental species 

In addition to scenario (A) in which both parental species have the same growth rates 

(which is unlikely in nature, Brede et al. 2009; Weider and Wolf 1991; Wolf 1987; 

Wolinska et al. 2006), we evaluated four other scenarios;  

B) one parental species has a higher intrinsic growth rate (Weider and Wolf 1991); here: 

r1=0.35 and r2=0.3; 

 C) the intrinsic growth rates of the parental species alternate every second year (for 

example, because of changing parasite pressure, Wolinska et al. 2006); here: r1=0.3 then 

0.35 and r2=0.35 then 0.3; 

D) the intrinsic growth rates of parental species change within a year (because species 

might have reverse fitness at different seasonal conditions, Wolf 1987); here: switch at 

day 166, r1=0.3 then 0.35 and r2=0.35 then 0.3; 

E) second parental species enters with a higher intrinsic growth rate, after the system 

has been dominated by a single parental species for 100 years (for example, due to 

eutrophication, Brede et al. 2009); here: r1=0.3 and r2=0.35).  

In all scenarios, the consequences of the reduced success of sexual reproduction in F1-

hybrids were evaluated for the likelihood of their establishment and how establishment 

success is changed by enhanced overwintering as asexual females. The growth rates of 

backcrosses (r4 and r5) were set to the average of the respective parental species and F1-

hybrids. Growth rate of the F2-hybrids was set lower (r6=0.3), whereas growth rate of 

F1-hybrids (r3) was varied for different calculations (range: 0.30 to 0.35).  

 

Different average annual temperatures 

For all scenarios (A) – (E), the effect of differences in average annual temperature 

(differences of x °C) on the establishment of hybrids was tested by multiplying the 

growth rate of equation (1) by the parameter: 

; = 2 <�=                                                                                                                                           	9
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The formula is derived from the temperature coefficient Q10, which measures the 

change of biological processes induced by a temperature increase of 10 °C. The 

coefficient Q10 for Daphnia has been evaluated by Gorski and Dodson (1996) and was 

already applied in the predator-prey models of de Senerpont Domis et al. (2007) and 

Straile et al. (2001). Differences in temperature were tested for a change of x = -5 °C 

and x = -3 °C as well as x = +3 °C and x = +5 °C. 

 

Results 

Reduced sexual reproduction and enhanced overwintering in F1-hybrids 

Analysis of the model shows that if sexual reproduction in F1-hybrids was reduced (i.e. 

50 % lower hatching rate (h3 = 0.05), 12.5 % more empty ephippia (e3 = 0.8) compared 

to parental species (h1,2 = 0.1 and e1,2 = 0.7) and non-random mating), F1-hybrids were 

present at low numbers (< 20 Daphnia / L, proportion of 13 % , Fig. 3a). However, in 

the case of an enhanced survival of F1-hybrids as asexual individuals during winter, the 

number of established F1-hybrids increased under all simulated differences in the 

seasonal function (4) (i.e. 50 %, 60 %, 70 % and 80 % higher growth rates of F1-

hybrids during winter compared to parental species, Fig. S1). Backcrosses as well as F2-

hybrids were present in low numbers (Fig. S2). After an increase of the F1-hybrids’ 

growth rate from 80 % during winter (ε = 0.475 in equation 4), F1-hybrids reached 

abundances of more than 50 % in the Daphnia community (Fig. S1). Therefore, the 

seasonal function with ε = 0.1 leading to 80 % higher growth rate during winter was 

applied for F1-hybrids and simulations were run for 100 years in all further analyses. If 

the general growth rate of hybrids was reduced by 12.5 % (r3 = 0.31) during the whole 

year, F1-hybrids were still detected, but below five Daphnia individuals per litre (Fig. 

3c). They then coexisted with the parental species but were not able to dominate the 

system (Fig. 3c) as they did when their growth rate was equal to the growth rate of the 

parental species (Fig. 3b). Backcrosses and F2-hybrids were no longer present (Fig. 

S3c). 

Different growth rate scenarios for the parental species 
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If sexual reproduction of F1-hybrids was reduced, they could not establish in two of the 

four further tested scenarios (i.e. additional to scenario A): in scenario B (where one 

parental species had a lower growth rate than the other parental species, Fig. 3d) and 

scenario E (where the second species with a higher growth rate was added after 100 

years, Fig. 3m). In scenario E, F1-hybrids occurred for about 20 years but then 

vanished. When the growth rates of the parental species alternated, either within 

(scenario C) or between years (scenario D), F1-hybrids were detectable after ten years 

and quickly dominated the system (proportions of 60 – 75 %, Fig. 3 g, j). However, the 

smaller the difference in the average growth rates was between F1-hybrids and parental 

species in these scenarios (C, D), the smaller the numbers of hybrids (data not shown). 

In the case of parental species having altered growth rates within the year, the parental 

species with a higher growth rate in the second half of the year was more abundant in 

the system than the parental species that had a higher growth rate at the beginning of the 

year (Fig. 3j).  

If the overwintering of F1-hybrids was enhanced (seasonal function with ε = 0.1 for 160 

days: from November till February), then F1-hybrids occurred in all four scenarios of 

different growth rates for the parental species (B – E, Fig. 3). In scenario B (where one 

parental species had a lower growth rate than the other parental species, Fig. 3f) F1-

hybrids only coexisted with the parental species, while in the other scenarios they 

dominated the system. The growth rate of F1-hybrids could only be reduced by 1.3 % 

(r3 = 0.347) during the whole year in order to still facilitate their abundance compared 

to 12 % in scenario A (Fig. 3c). In scenarios C and D (growth rates of the parental 

species alternating within or between years, respectively), F1-hybrids dominated the 

system quicker (proportions of 85 % after 5 years) as is the case when overwintering 

was not enhanced via the seasonal function in F1-hybrids during winter (Fig. 3h, k). F1-

hybrids were even able to coexist with the parental species when their growth rate was 

reduced by as much as 12 % (r3 = 0.31) and 9.5 % (r3 = 0.32), respectively (Fig. 3i, l). 

In scenario E (where the second species with a higher growth rate was added after 100 

years), enhanced overwintering of asexual F1-hybrids facilitated their occurrence 

shortly after the addition of the second parental species and led to their dominance after 

about 20 years (66 %, Fig. 3n, the graph shows the 100 years after the new parental 

species was introduced). Furthermore, successful establishment of F1-hybrids was 

facilitated if their growth rates were reduced by up to 3 % (r3 = 0.34). However, time 

until establishment was longer in such a case and the number of F1-hybrids decreased 
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after 50 years to low numbers (Fig. 3o). In all scenarios, backcrosses and F2-hybrids 

occurred at low numbers (below ten individuals per litre) when overwintering of F1-

hybrids was enhanced (Fig. S3). 

 

Different average annual temperatures 

Under lower average annual temperature (differences of -3 °C and -5 °C), F1-hybrids 

established faster compared to the previous analysis with x = 0 °C in scenarios B-E 

(Fig. 4). Only with a temperature decrease of -5 °C in scenario A F1-hybrids did not 

establish (Fig. 4a). In addition, the number of F2-hybrids was higher, whereas the 

number of backcrosses was lower, than in the analysis with x = 0 °C (Fig. S4). 

However, the effect of higher numbers of F1-hybrids during lower temperatures was 

small in scenarios C and D (alternating growth rates of parental species). In contrast, 

higher average annual temperatures (+3 °C and +5 °C) resulted in the failure of hybrids 

to establish in scenarios A, B and E. In scenarios C and D, numbers of F1-hybrids were 

low (Fig. 4). The numbers of F2-hybrids and backcrosses were lower, or these classes 

did not exist at all, when temperatures increased (+3 °C and +5 °C, Fig. S4). 

 

Discussion 

Our model indicates that reduced success in sexual reproduction in hybrids results in the 

situation that F1-hybrids cannot establish or establish only at low numbers, in three out 

of five simulated scenarios regarding the varying growth rates of parental species. 

Interestingly, in the remaining two scenarios (when the growth rates of the parental 

species alternate within and between years), F1-hybrids were able to outcompete the 

parental species and dominate the community. However, if only F1-hybrids had an 

enhanced survival as asexual females during winter, they dominated the system in all 

five tested scenarios of different growth rates of the parental species, and they were 

present even under a scenario of reduced growth rate during the whole year compared to 

their parental species. Lower average annual temperatures facilitated the successful 

establishment and dominance of F1-hybrids, while higher temperatures resulted in a 

failure of hybrids to establish. 
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Our model indicates that if hybrids’ success in sexual reproduction is reduced and their 

growth rate is lower or equal to the growth rate of parental species, then F1-hybrids are 

present at low numbers only (scenarios A and E) or not at all (B). Reduced success in 

sexual reproduction and consequently lower production of ephippia, is therefore a clear 

disadvantage for hybrids, even though all classes survive winter as asexual females. In 

contrast, in another model, where different Daphnia species were not taken into 

account, overwintering asexual females were shown to always dominate the entire 

system (de Senerpont Domis et al. 2007). If the growth rates of parental species 

fluctuate between years or within years (scenario C and D) F1-hybrids become the most 

abundant in the community, even with lower success in sexual reproduction. Such 

success of F1-hybrids is caused by their higher overall average growth rate compared to 

the parental species during the year. Moreover, F1-hybrids’ growth rate can still be 

lower than the maximum of each growth rate of the parental species (when parental 

growth rates vary within or between years) as long as it is above the overall average 

growth rate of each of the parental species. The overall average growth rate during the 

year for each class (parental species and F1-hybrids) therefore plays a major role in the 

establishment of hybrids. 

Additionally, non-random mating had a larger impact on the establishment success of 

F1-hybrids than reduction in hatching rate and the number of empty ephippia, indicating 

that pre-zygotic barriers are more important than postzygotic ones. Studies on 

reproductive barriers in Daphnia have shown that time differences in production of 

sexual stages (Spaak 1995) as well as occupation of different habitats within a lake by 

the two parental species (Seda et al. 2007), both reduce encounter probability and thus, 

the possibility to hybridize. In nature, hatching rates are low and the proportion of 

empty ephippia is high in all classes of Daphnia (Keller and Spaak 2004; Spaak 1995). 

Therefore, differences in hatching rate and empty ephippia between F1-hybrids and 

parental species are unlikely to have a large impact. However, if overwintering as 

asexual females is enhanced in F1-hybrids, they are able to dominate the Daphnia 

community in all scenarios in our model. This is because enhanced overwintering leads 

to a generally higher average growth rate during the year. In that case the number of 

ephippia produced becomes less important.  

The results of our model could explain patterns of Daphnia hybrid occurrence observed 

in nature. For example, although F1-hybrids were shown to have reduced success in 
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sexual reproduction, in some years they have dominated the entire Daphnia community 

of lake Greifensee (Switzerland) (Keller and Spaak 2004; Keller et al. 2007). F1-hybrids 

first occurred in that lake in the 1950s, when the level of phosphorus rose and the 

second parental species D. galeata invaded the lake (Brede et al. 2009). This is 

consistent with scenario E in our model, where the introduction of a second species 

resulted in the quick establishment of F1-hybrids, in the case of hybrids having 

enhanced overwintering. Moreover, only small numbers of F2-hybrids and backcrosses 

were detected in Greifensee (Keller et al. 2007), consistent with the results of our 

model. Across several shallow lakes in Munich (Germany) F1-hybrids occurred 

together with only one parental species (Griebel et al. 2016; Yin et al. 2014). This 

indicates that hybrids do not need to be produced newly every season, consistent with 

the findings of our model. Indeed, F1-hybrids collected from these lakes have a higher 

overwintering survival probability than the parental species, as proven experimentally 

(Griebel et al. 2015). Moreover, genotype data of the aforementioned communities 

suggest that F1-hybrids survive winter mainly as asexual females (Griebel et al. 2016). 

Our model predicts the establishment, coexistence or dominance of F1-hybrids as long 

as the overwintering of F1-hybrids is enhanced, even if only one parental species is 

present in the long-term. Interestingly, only low numbers of F2-hybrids and backcrosses 

were detected across the described lakes (Griebel et al. 2016; Yin et al. 2014), again 

consistent with the results of the model.  

In our model, average annual temperatures of lakes have an important effect on the 

occurrence of hybrids, when hybrids’ overwintering is enhanced compared to parental 

species. Colder temperatures result in faster establishment and dominance of F1-

hybrids, because only very low numbers of parental species survive as asexual females. 

Consequently, F1-hybrids reach high abundances before the parental species hatch from 

ephippia. Indeed, surviving as asexual females can lead to a competitive advantage in 

spring, when offspring of surviving Daphnia clones can quickly reproduce 

parthenogentically, and their offspring are born during an algal bloom (Sommer et al. 

1986). This can then lead to later dominance (i.e. priority effects, Louette and De 

Meester 2007). Interestingly, in scenario A no F1-hybrids were detected when the 

average annual temperature was reduced by 5 °C suggesting that, below a certain 

temperature, no asexual females survive over winter. In this case, hatchlings from 

ephippia become the main colonization source in spring, resulting in a disadvantage to 

hybrids. Hybrids are also at a disadvantage at the opposite end of the temperature range, 
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though for a different reason: high temperatures lead to large numbers of parental 

species surviving as asexual females and therefore hybrids lose their priority advantage 

and cannot establish. The model thus predicts that hybrids thrive at an intermediate 

temperature range (cold, but not too cold). The fact that higher temperatures lead to 

larger proportions of Daphnia surviving winter in an active form has been reported in 

other models (de Senerpont Domis et al. 2007; Schalau et al. 2008; Scheffer et al. 

1997). As temperatures of lakes are rising throughout the world (Adrian et al. 2009), 

F1-hybrids may become less abundant in future. Indeed, we have observed previously 

that a successful hybrid clone (with experimentally proven enhanced overwintering as 

asexual females) was replaced in its natural habitat by the parental species after a warm 

winter (Griebel et al. 2015). However, more data would be required to examine the 

effect of temperature on hybrids’ abundances in the field. If hybrids become less 

abundant in future, the possibility for introgression of genes between the parental 

species would be reduced, which could result in their faster genetic differentiation. 

Overall, our model shows that hybrids’ enhanced overwintering as asexual females 

might explain their frequently observed establishment and dominance in natural D. 

longispina communities. Even if F1-hybrids exhibit lower fitness than the parental 

species, enhanced overwintering can compensate for that. In general, differences in the 

overall average growth rates between parental species and hybrids play an important 

role in the establishment possibilities of hybrids. The success of hybrids’ enhanced 

overwintering through asexual reproduction depends on average annual temperatures. 

Given that temperatures of lakes are rising, hybrids may become less abundant in future; 

this is because the number of parental species surviving winter will increase, 

consequently diminishing the advantages otherwise enjoyed by hybrids. 
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Figures and tables 

 

Figure 1. Adjustment of seasonal forces in Daphnia by σ(t). The black line represents 

the standard curve for ε =0.7 (Scheffer et al. 1997), while the orange lines (ε = 0.1, 

0.175, 0.25, 0.325) were used to obtain higher growth rates of F1-hybrids during winter 

(120 days from October to February). Blue vertical lines mark the winter period during 

which σ(t) differs for F1-hybrids. The red lines indicate the periods of sexual 

reproduction in early spring and autumn (May and September). The green line shows 

the hatching period from ephippia in spring (April). 
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Figure 2. Possible encounters within and between the two parental species (class 1 and 

2) and F1-hybrids (classes 3) during the phase of sexual reproduction resulting in 

ephippia of parental species, F1-hybrids, both backcrosses and F2-hybrids (Ej, j = 1-6). 

m: fraction of males, f: fraction of sexual females. S1-S3: sexual individuals of class 1-3. 
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Figure 3. Numbers of individuals (asexual and sexual) of the two parental species and 

F1-hybrids over 36500 days (100 years) with F1-hybrids having reduced success in 

sexual reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared 

to parental species and non-random mating), with no enhanced overwintering for F1-

hybrids (left column), with enhanced overwintering of F1-hybrids (ε=0.1 in φ(t) for an 

80 % higher growth rate during winter (middle column) and F1-hybrids having 

enhanced overwintering and reduced growth rate during the year (right column). The 

top row represents scenario A, where parental species have the same growth rate (curves 

of both parental species overlap), the mid top row represents scenario B, where parental 
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species 1 has a higher growth rate than parental species 2, the mid row represents 

scenario C, where the absolute growth rate of parental species alternates every two 

years, the mid bottom row represents scenario D, where growth rate of parental species 

alternates within the year and the bottom row represents scenario E, where the second 

species was introduced after 100 years, having a higher growth rate (graphs show the 

100 years after parental species 2 had entered the system). 
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Figure 4. Numbers of individuals (asexual and sexual) of the two parental species and 

F1-hybrids over 36500 days (100 years) with F1-hybrids having reduced success in 

sexual reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared 

to parental species and non-random mating) and parental species differing in growth 

rates. The ε of the seasonal function of F1-hybrids differed during winter to simulate 

enhanced overwintering as asexual individuals for F1-hybrids compared to parental 

species (ε = 0.1 for an 80 % higher growth rate). The growth rate of F1-hybrids is 0.35. 

Differences in the average annual temperature (changes of -3 °C, -5 °C, +3 °C, and +5 

°C) were applied for each scenario of different parental growth rates. The top row 

represents scenario A, where parental species have the same growth rate (curves of both 

parental species overlap), the mid top row represents scenario B, where parental species 

1 has a higher growth rate than parental species 2, the mid row represents scenario C, 

where the absolute growth rate of parental species alternates every two years, the mid 

bottom row represents scenario D, where growth rate of parental species alternates 

within the year and the bottom row represents scenario E, where the second species was 



CHAPTER 5 
 

  

 
46 

introduced after 100 years, having a higher growth rate (graphs show the 100 years after 

parental species 2 had entered the system).  



CHAPTER 5 
 

  

 
47 

Table 1: Parameters of the model.  

parameter value unit description Reference 

m 0.15 day-1 death rate Schalau et al. (2008) 

K 150 no. L-1 carrying capacity Griebel et al. (2015) 

sj 0.5 day-1 
fraction of individuals of class j 

switching to sexual reproduction 
Keller and Spaak (2004) 

f 0.14 day-1 
number of ephippia produced per 

day 
Ebert (2005) 

e1,2 0.7  
fraction of empty ephippia of class 

j=1,2 
Keller and Spaak (2004) 

e3 0.8 
 

fraction of empty ephippia of class 

j=3 
Keller and Spaak (2004) 

e4,5 0.75 
 

fraction of empty ephippia of class 

j=4,5 
Keller and Spaak (2004) 

e6 0.85 
 

fraction of empty ephippia of class 

j=6 
Keller and Spaak (2004) 

c 0.75 
 

fraction of sexual individuals mating 

within own class 
Keller et al. (2007) 

h1,2 0.1 day-1 hatching rate from ephippia Keller et al. (2007) 

h3,4,5,6 0.05 day-1 hatching rate from ephippia Keller et al. (2007) 
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Supplementary Figure 

 

Figure S1. Numbers of individuals (asexual and sexual) of the two parental species and 

F1-hybrids over 36500 days (100 years) with F1-hybrids having reduced success in 

sexual reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared 

to parental species and non-random mating). Parental species and F1-hybrids have the 

same growth rates during the year (r1,2,3 = 0.35) The ε of the seasonal function of F1-

hybrids differed during winter to simulate enhanced overwintering of F1-hybrids 

compared to parental species: a) ε = 0.325 (50 % higher growth rate, b) ε = 0.25 (60 % 

higher growth rate), c) ε = 0.175 (70 % higher growth rate), d) ε = 0.1 (80 % higher 

growth rate). The curves of both parental species overlap. 



CHAPTER 5 
 

  

 
49 

 

Figure S 2. Numbers of individuals (asexual and sexual) of the two backcrosses and F2-

hybrids over 36500 days (100 years) with F1-hybrids having reduced success in sexual 

reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared to 

parental species and non-random mating). Parental species and F1-hybrids have the 

same growth rates during the year (r1,2,3 = 0.35) The ε of the seasonal function of F1-

hybrids differed during winter to simulate enhanced overwintering of asexual 

individuals compared to parental species: a) ε = 0.325 (50 % higher growth rate, b) ε = 

0.25 (60 % higher growth rate), c) ε = 0.175 (70 % higher growth rate), d) ε = 0.1 (80 % 

higher growth rate). 
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Figure S5. Numbers of individuals (asexual and sexual) of the two backcrosses and F2-

hybrids over 36500 days (100 years) with F1-hybrids having reduced success in sexual 

reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared to 

parental species and non-random mating) with no enhanced overwintering for F1-

hybrids (left column), with enhanced overwintering of F1-hybrids (ε=0.1 for a 80 % 

higher growth rate during winter, middle column) and F1-hybrids having enhanced 

overwintering and reduced growth rate during the year (right column). The top row 

represents scenario A, where parental species have the same growth rate (curves of both 

parental species overlap), the mid top row represents scenario B, where parental species 
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1 has a higher growth rate than parental species 2, the mid row represents scenario C, 

where the absolute growth rate of parental species alternates every two years, the mid 

bottom row represents scenario D, where growth rate of parental species alternates 

within the year and the bottom row represents scenario E, where the second species was 

introduced after 100 years, having a higher growth rate (graphs show the 100 years after 

parental species 2 had entered the system). 
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Figure S6. Numbers of individuals (asexual and sexual) of the two backcrosses and F2-

hybrids over 36500 days (100 years) with F1-hybrids having reduced success in sexual 

reproduction (50 % lower hatching rates, 12.5 % more empty ephippia compared to 

parental species and non-random mating) and parental species differ in growth rates. 

The ε of the seasonal function of F1-hybrids differed during winter to simulate 

enhanced overwintering of asexual individuals compared to parental species (ε = 0.1 for 

an 80 % higher growth rate). The growth rate of F1-hybrids and backcrosses is 0.35, 

while F2-hybrids have a growth rate of 0.3. Differences in the average annual 

temperature (changes -3 °C, -5 °C, +3 °C, +5 °C) were applied for each different 

scenario of different parental growth rates. The top row represents scenario A, where 

parental species have the same growth rate (curves of both parental species overlap), the 

mid top row represents scenario B, where parental species 1 has a higher growth rate 

than parental species 2, the mid row represents scenario C, where the absolute growth 

rate of parental species alternates every two years, the mid bottom row represents 

scenario D, where growth rate of parental species alternates within the year and the 
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bottom row represents scenario E, where the second species was introduced after 100 

years, having a higher growth rate (graphs show the 100 years after parental species 2 

had entered the system). 
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Discussion 

This PhD thesis aimed to examine the role of hybridization in Daphnia during the 

colonization of newly opened habitats. Therefore, Daphnia communities of ten recently 

created shallow lakes (flooded gravel pits) were sampled in spring of six consecutive 

years and monthly during one year. Using microsatellite data, clonal diversity, 

migration patterns and differentiation between years were compared between parental 

species and their hybrids to examine how hybrids establish in spring. Three contrasting 

scenarios were tested: 1) recurrent hybridization events, 2), survival as asexual females 

during winter and 3) establishment of hybrids via migrants. Moreover, using different 

experimental set-ups (carrying capacity, temperature and crowding) a “successful 

hybrid” clone was compared with other clones of the parental species and their hybrids. 

Finally, observed parameters that might facilitate the establishment of hybrids were 

analyzed in a mathematical model. 

Large numbers of F1-hybrids were found in four out of ten tested lakes (Chapter 2). 

These hybrids either coexisted with one of the parental species (three lakes) or 

dominated the community (one lake). Backcrosses and F2-hybrids occurred only in low 

numbers. Such different abundance patterns of hybrids of the D. longispina complex 

were observed already in other lakes in Europe (e.g. Keller et al. 2008; Yin et al. 2010). 

For example, the lake Greifensee (Switzerland) was dominated by F1-hybrids 

(proportion of ~80 %) during two sampled years, except for one sample where D. 

galeata dominated the Daphnia community (Keller and Spaak 2004). D. longispina was 

found only in small numbers (proportion of below 5 %). In these cases where only one 

parental species was detected, hybrids must have been produced earlier, when both 

parental species had been present, or the second parental species occurs only during 

short time periods and was therefore not detected.  

In the spring samples of six consecutive years, hybrids had a higher heterozygosity and 

linkage disequilibrium compared to the parental species (Chapter 2). This observed 

pattern is likely the result of high proportions of parthenogenetic reproduction (Falconer 

et al. 1996; Fitzpatrick 2012). Moreover, hybrids showed a low genetic differentiation 

over time in contrast to the parental species. Therefore, hybrids are likely to establish in 

spring from asexual females that survived winter. In general, Daphnia show a mixed 

mode of how they survive winter: they produce sexual resting eggs but may also survive 

as parthenogenetic lineages (Lampert et al. 2010). Hybrids, however, have a lower 
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sexual reproduction success. First, fewer resting eggs containing hybrids are produced, 

because mating between parental species is not random (Keller et al. 2007). Second, 

hybrids have lower hatching rates compared to the parental species (Keller and Spaak 

2004). Therefore, it is likely that they would depend more on individuals that survive 

winter as asexual females. Surviving as asexual females can be advantageous in spring, 

as the offspring is directly born into the algae bloom, while individuals from resting 

eggs still need to hatch (Sommer et al. 1986). However, in lake Lerchenauer See the 

same D. galeata genotype and in lake Waldschwaigsee the same six D. longispina 

genotypes were detected repeatedly in different years (Chapter 2) indicating that 

parental species survive as asexual females as well. Also in other lakes (in Czech 

Republic) the parental species showed a high capability to survive winter as asexual 

females (Hamrová et al. 2011). This suggests that hybrids would need to have an 

enhanced survival as asexual females compared to the parental species during winter to 

successfully compete with them.  

Indeed, in an experimental survey simulating winter conditions (low food and 

temperatures, short photoperiod) hybrids had a higher survival probability compared to 

the parental species (Chapter 4). Interestingly, the “successful hybrid” clone that 

dominated the entire Daphnia community in the Feldmochinger See in two consecutive 

spring samples had the highest survival probability in this survey. The “successful 

hybrid” and other hybrids used in the winter experiment produced more offspring 

during the experiment than the parental species. In another study simulating winter 

conditions, using D. longispina and hybrid clones collected from alpine lakes, only very 

low numbers of offspring were produced (Rellstab and Spaak 2009), which indicates 

that the hybrid clones sampled from the ten lakes used in this thesis have a special 

adaptation to winter conditions. The mathematical model in Chapter 5 shows that 

enhanced overwintering as asexual females indeed can facilitate the establishment and 

dominance of hybrids. Without hybrids’ enhanced survival a reduced sexual 

reproduction resulted in low numbers of hybrids during the year. 

In general, clonal diversity was lower in hybrids compared to the parental species. Low 

numbers of clones have been found before in other hybrid systems that exclusively 

reproduce parthenogenetically (Johnson and Leefe 1999). One reason could be the 

earlier mentioned reduced success in sexual reproduction of hybrids (Keller and Spaak 

2004; Keller et al. 2007; Spaak 1995). Alternatively, only certain hybrid genotypes 
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might be successful, whereas others fail to establish. It is known that the relative fitness 

of Daphnia hybrids is influenced by the fluctuating environments (Löffler et al. 2004; 

Spaak and Hoekstra 1995; Wolinska et al. 2006), which might reduce the diversity of 

hybrids over time. For example, the winter period could select for asexual females that 

have an enhanced survival during winter. If the winter period is long and cold, hybrid 

genotypes that show an enhanced survival might be the only ones surviving. Indeed, 

clonal diversity of hybrids was lower with a higher severity of the winter (Chapter 2), 

which indicates that long and cold winter selects for hybrid genotypes able to survive as 

asexual females during such periods. However, fluctuations in the clonal diversity also 

suggest that new hybrid genotypes have to regularly hatch from resting eggs. Otherwise, 

due to selection of genotypes clonal diversity would be expected to decrease steadily 

over years (clonal erosion).  

The model shows that colder average annual temperatures result in higher numbers of 

hybrids (Chapter 5). This was the result of only very few individuals of the parental 

species that survived as asexual females. In contrast, higher annual temperatures 

resulted in a loss of the advantage of hybrids’ enhanced overwintering as asexual 

females, and they could not establish anymore. As temperatures of lakes are rising due 

to climate changes (Adrian et al. 2009), hybrids might become less frequent in Daphnia 

communities. Such a dependence of hybrid abundance on temperature was seen with the 

“successful hybrid”, which first dominated the community of the Feldmochinger See in 

2010 after a cold winter and vanished after a warm winter in 2012 (Chapter 4). 

However, there was no evidence that the proportion of hybrids was correlated with the 

severity of winter (Chapter 2). Regarding the latter one, six years might be a too short 

time period to observe such a correlation. Moreover, the abundance of hybrids can also 

depend on different environmental conditions (e.g. Declerck and Meester 2003; Weider 

and Wolf 1991; Wolinska et al. 2006), which might conceal such dependencies. In one 

study, for example, hybrids had higher growth rates than the parental species at 14 °C 

(Weider and Wolf 1991). The mathematical model in Chapter 5 even predicts that if the 

average growth rate of the hybrids is higher during the year than that of each parental 

species, they can establish, also if they have no enhanced survival as asexual females 

during the year. If the differences in the average growth rates are big enough, hybrids 

dominate the community. Therefore, it was tested if environmental parameters (e.g. 

phosphorus and nitrate level) can explain the abundance patterns of hybrids. It is known 

for the parental species that D. galeata occurs in rather eutrophic lakes, while D. 
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longispina occurs mainly in less eutrophic habitats (Brede et al. 2009; Keller et al. 

2008). This was also the case in the here studied lakes (Chapter 3), however, abundance 

of hybrids was not correlated with any of the measured parameters.  

The lakes sampled in this thesis are relatively young (the oldest lake was constructed in 

the 1930s). The relative fast development of an enhanced overwintering in hybrids 

might have been promoted by two mechanisms. First, as shown in Chapter 2, the winter 

period selects for hybrid genotypes expressing such an enhanced overwintering. Second, 

the combination of the parental genomes can facilitate a faster occurrence of novel or 

enhanced traits in hybrids (Burke and Arnold 2001). 

Interestingly, as shown in Chapter 2, hybrids had mainly the mitochondrial haplotypes 

of D. galeata. Unidirectional hybridization can be due to premating barriers, unviability 

or lower fitness of such hybrids (Schwenk 1993). Previous studies of the D. longispina 

complex report both bidirectional (e.g. Gießler et al. 1999; Taylor and Hebert 1993) as 

well as unidirectional hybridization (Schwenk 1993). Therefore the here observed 

unidirectional hybridization (even though it is incomplete) might be caused by 

incompatibilities between interactions of nuclear DNA and mitochondrial DNA (Burton 

et al. 2006). If such interactions are broken up via hybridization, the energy supply by 

the mitochondria can be lowered. For example, in the marine copepod Tigriopus 

californicus ATP production was reduced in the F2-generation (Ellison and Burton 

2006). This reduction in fitness was found to be dependent on temperature (Willett and 

Burton 2003) which might indicate why the hybrids found in our lakes have mainly D. 

galeata as mother. Overwintering in hybrids was enhanced and found to be the factor 

involved in a successful hybrid establishment. It is conceivable that the combination of 

two parental genomes in hybrids with mt-DNA of D. galeata provides the essential 

interaction to facilitate the overwintering and is selected for. This is supported by the 

fact that the only backcrosses we detected in the studied lakes were those with D. 

galeata (Chapter 2 and 3). If backcrosses have the parental mt-DNA haplotype as well 

as nuclear genes involved in the mitochondria energy production from the same parental 

species, fitness can be restored (Ellison and Burton 2008). 

The relative young age of the lakes can facilitate migration of hybrids from other lakes. 

Normally gene flow between lakes, which have older Daphnia communities than the 

sampled here lakes, is low. In Daphnia, rapid population growth and local adaptation is 

suggested to lead to a monopolization of resources in the earlier stage of colonization 
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(priority effects, De Meester et al. 2002). If Daphnia communities become older and 

therefore better adapted, it prevents newly arriving individuals from establishment. 

Moreover, large amounts of resting eggs in the sediment can provide a buffer against 

newly arriving genotypes (De Meester et al. 2002). But as the lakes sampled here are 

rather young they might still be providing a new habitat for invading Daphnia species 

and hybrids. However, hybrid populations of the lakes samples here were characterized 

by a high genetic differentiation between lakes and low numbers of migrants compared 

to the parental species (Chapter 2). In addition, microsatellite data from Daphnia 

community sampled monthly during one year, suggested that hybrids are rather locally 

produced (Chapter 3). Such a local production of hybrids was reported for several other 

lakes in Europe (Spaak 1997). The fact that fewer resting eggs containing hybrid 

genotypes are produced, is likely to explain the low migration rates of hybrids as 

Daphnia mainly disperse via ephippia transported by birds or wind (Bilton et al. 2001; 

Figuerola et al. 2005).  

In Chapters 2-5, I present evidence that in the lakes sampled here, hybrids of the D. 

longispina species complex mainly survive winter as parthenogenetic females. 

Moreover, hybrids have developed an enhanced survival as asexual females helping 

them to overcome the reduced production of resting eggs. Enhanced survival of asexual 

females during cold periods was shown to be a possible explanation for the 

establishment and dominance of hybrids, as predicted by the mathematical model. 

However, if temperatures are rising the advantage of such a trait might be lost.  
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Future directions 

The observed pattern of hybrids’ enhanced overwintering found in the lakes studied in 

this thesis leaves several questions open. For example: 

Is such an overwintering as asexual females a general enhanced trait of hybrids to 

compensate for reduced success in sexual reproduction? In fact, the scenario that 

hybrids have an enhanced overwintering as asexual females was tested for the first time. 

Further experimental studies and field studies with Daphnia hybrid genotypes from 

different lakes and different habitat types (shallow or deep lakes) could help to 

understand, if such a trait is generally enhanced or if this was a special case observed 

only for the lakes tested here. 

What is the mechanism behind the enhanced overwintering as asexual females? In 

general it is assumed that low temperatures result in a down-regulation of the metabolic 

rate and therefore in an increased lifespan in Daphnia. In detail, low temperatures 

decrease the energy intake, assimilation and respiration of Daphnia (Burns 1968; 

Yurista 1999). Furthermore, during cold temperatures more highly unsaturated fatty 

acids have to be produced to maintain the cell membrane fluidity (Schlechtriem et al. 

2006). Proteomic analysis of D. pulex raised under low temperatures revealed the up- 

and down-regulation of several protein groups, including up-regulation of vitellogenins 

(Schwerin et al. 2009). These proteins serve as vehicle for providing the developing 

embryos with essential resources. Therefore, higher expression of these proteins could 

be expected in the hybrids compared to the parental species, because hybrids produced 

more offspring than the parental species. Also, enzymes involved in extracellular 

digestion were found to be down-regulated in D. pulex under cold temperatures 

(Schwerin et al. 2009). Such a down-regulation actually would lead to decrease of 

protein digestion with lower temperatures. If observed, differences between hybrids and 

parental species in the down-regulation of these enzymes could be an explanation of the 

higher survival probabilities of hybrids. Furthermore, with the publication of the D. 

pulex genome (Colbourne et al. 2011), new possibilities arise also for the D. longispina 

complex to search for potential candidate genes and signaling pathways for the 

enhanced overwintering in hybrids. 

Another explanation of an enhanced survival as asexual females could be the interaction 

between nuclear and mitochondrial DNA. The fact that hybrids mainly had 
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mitochondrial haplotypes of D. galeata could be an indication of such an interaction. 

Therefore one would need to experimentally test if hybrids having mitochondrial 

haplotypes of D. galeata perform better under winter conditions than hybrids with D. 

longispina haplotypes. Also, if such differences in performance exist under colder 

temperatures it would be interesting to examine whether they vanish during warmer 

temperatures. It would be necessary to measure if energy production (e.g. ATP 

production) is higher in hybrids having mitochondrial haplotypes of D. galeata 

compared to hybrids with D. longispina haplotypes.  

In the mathematical model of Chapter 5, some assumptions were made that are not 

always true in nature. This was a necessary simplification, as we wanted to concentrate 

on the overwintering patterns. For example, one assumption was that males and sexual 

females occur in the same frequencies. This is not always true in nature. First of all, one 

asexual female can only turn into one sexual female producing two resting eggs, while 

one asexual female can switch to the production of several males within one clutch 

(Ebert 2005). Furthermore in contrast to the induction of sexual females (Spaak 1995), 

the production of males is not species specific (Hobæk and Larsson 1990). Males are 

mainly induced by crowding (Banta and Brown 1929; Hobæk and Larsson 1990), while 

the induction of females depends also on temperature, photoperiod and food quality 

(Spaak 1995). Therefore, the establishment of hybrids can also depend on the 

frequencies and timing of male and sexual female induction. To examine the effect of 

differences in numbers and induction of sexual females and males, differential functions 

for males and females could be introduced, instead of using a differential equation for 

sexual individuals in general. Male production then could depend on the density of all 

Daphnia individuals. The female production could be simulated with a function of 

temperature and photoperiod. The dependencies on varying environmental cues could 

be set differently for the distinct species, which would allow examining the 

establishment of hybrids under different frequencies of males and females. Furthermore, 

on could simulate the migration of a new species that does not successfully establish, 

but takes part in hybrid formation through the production of males. 
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