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1. SUMMARY/ ZUSAMMENFASSUNG 
 
 

Summary 

 

Cilia have vital functions ranging from extracellular transport, mechano- and chemosensors to 

signaling pathways. Due to their near ubiquitous distribution on human cells, defective cilia 

are associated with severe disorders of the lung, kidney and reproductive system, as well as 

tumor development. Preliminary work from our laboratory has indicated that cilia on the 

surface of the Xenopus larval skin are shortened in length and lessened in number, if the 

Suv4-20h1 and –h2 histone methyltransferases are absent. These enzymes are required for the 

di- and tri-methylation of H4K20 and play a critical role in embryogenesis. The aim of this 

dissertation is to examine the connection between histone methylation and cilia formation. 

 

To elucidate the underlying causes for the Suv4-20h cilia phenotype, endogenous synthesis of 

the Suv4-20h proteins was inhibited by microinjection of antisense-morpholino. 

Subsequently, Suv4-20h target genes were investigated by immunostainings and RNA 

analysis in order to identify links between Suv4-20h enzymes and ciliogenic pathways. This 

dissertation shows that Suv4-20h HMTases control ciliogenesis in multiciliated cells of the 

epidermis and the kidney via a similar pathway. 

 

There are two specific Suv4-20h functions in the larval epidermis during different stages of 

cilia formation. During gastrulation, Suv4-20h protein depleted embryos show more ciliated 

cell progenitors, most likely due to the upregulation of Delta-like 1 (Dll1), which perturbs cell 

fate selection. At the tadpole stage, a defect in cilia differentiation is observed. Four genes 

stimulating multiciliogenesis and encoding axonemal proteins respectively are downregulated 

concomitant with functional losses of cilia. Ciliogenesis is also strongly inhibited in the 

pronephric kidney of Suv4-20h morpholino injected embryos. The microRNA miR-449 that 

normally inhibits Dll1 is strongly reduced here and can act as the earliest link between Suv4-

20h and ciliogenesis to date. Additionally, my data indicate stimulating effects of cilia on 

tubule differentiation. Taken together, my results demonstrate for the first time that 

ciliogenesis has an epigenetic root.  
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Zusammenfassung 

 

Zilien übernehmen lebenswichtige Aufgaben, die vom extrazellulären Transport über 

Mechano- und Chemosensoren bis hin zur Beteiligung an Signalwegen reicht. Aufgrund ihrer 

fast ubiquitären Verbreitung ist deren Ausfall mit schweren Erkrankungen von Lunge, Niere 

und Reproduktionstrakt, sowie mit der Entwicklung von Tumoren verbunden. Die Vorarbeit 

in unserem Labor zeigte, dass die Länge und Anzahl der Zilien auf der Haut der Xenopuslarve 

abnahm, wenn die Suv4-20h1 und –h2 Histonmethyltransferasen abwesend waren. Die 

Enzyme sind zuständig für die Di- und Trimethylierung von H4K20 und spielen eine 

bedeutende Rolle in der Embryonalentwicklung. Das Ziel dieser Dissertation ist den 

Zusammenhang zwischen Histonmethylierungen und Zilienbildung zu erforschen. 

 

Zur Entschlüsselung der zugrunde liegenden Ursachen für den Suv4-20h Zilien-Phänotyp 

wurde initial die endogene Synthese der Suv4-20h Proteine mittels der Mikroinjektion von 

antisense Morpholino-Oligonukleotiden inhibiert. Anschließend wurden Immunfärbungen 

und RNA-Analysen zur Untersuchung von Zielgenen der Suv4-20h Enzyme durchgeführt, um 

Verknüpfungen zwischen den Suv4-20h Enzymen und ziliogenen Netzwerke zu entdecken. 

Diese Doktorarbeit zeigt, dass die Suv4-20h HMTasen die Ziliogenese in multizilierten Zellen 

der Epidermis und der Niere über einen ähnlichen Signalweg kontrolliert. 

 

In der Epidermis der Xenopuslarve zeigen sich zwei spezifische Funktionen der Suv4-20h 

Enzyme zu unterschiedlichen Stadien der Ziliogenese. Während der Gastrulation zeigen 

Suv4-20h Protein depletierte Embryonen vermehrt Zilienvorläufer-Zellen, am ehesten 

aufgrund einer Überproduktion von Delta-like 1 (Dll1), wodurch Störungen in der 

Zellspezifizierung bedingt sind. Während des Kaulquappenstadiums präsentiert sich ein 

Defekt in der Zilien-Differenzierung. Vier Gene, die die Multiziliogenese stimulieren bzw. 

Axonemproteine kodieren, sind vermindert exprimiert, was mit Funktionseinbußen der Zilien 

einhergeht. In der Vorniere zeigt sich ebenfalls eine erhebliche Hemmung der Ziliogenese in 

Suv4-20h Morpholino injizierten Embryonen. Die MikroRNA miR-449, die normalerweise 

Dll1 inhibiert, ist hier deutlich vermindert und kann den bisher frühesten Link zwischen den 

Suv4-20h Histonmethyltransferasen und der Ziliogenese darstellen. Zusätzlich gibt es 

Hinweise für stimulierende Einflüsse auf die Tubulus-Differenzierung durch Zilien. 

Zusammenfassend zeigen meine Ergebnisse zum ersten Mal, dass die Zilienbildung ihre 

Wurzeln in der Epigenetik hat. 
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2. INTRODUCTION 

2.1 Developmental biology and medicine 
 

Developmental biologists strive to understand the question of how a single zygote 

becomes a fully differentiated multicellular organism. It is one of the most magnificent events 

that a single fertilized cell gives rise to different cell types in tissues and organs, all in all 

forming a complex organism. Understanding how tissues and organs become differentiated is 

very valuable for medical and regenerative medicine purposes. Most, if not all, diseases can 

be viewed as failure of cellular differentiation and discoveries of embryonic development can 

help to gather information needed for a better diagnosis and treatment of diseases (Lewis 

Wolpert 2011). 

 

 

2.2 Development of the multiciliated epithelium 

2.2.1 Definition of cilia 

 

A cilium (lat.: eyelash) is a vital membrane-covered cell-extension on the surface of 

almost all post-mitotic cells in vertebrates, which includes mammals and frogs. Discovered 

since the days of Antony van Leeuwenhoeck in 1675, cilia’s steep rising as pivotal cell 

structures began in the past decade. Since then, modern science has linked these hair-like 

structures to profound functions in tissue development and homeostasis (Satir 1995; Oh and 

Katsanis 2012). Basically, cilia are classified into non-motile primary cilia and motile cilia. 

The primary cilium is a solitary cilium with sensory role (e.g. photoreceptors of the retina, 

chemo- and mechanosensors of the olfactory epithelium and inner ear) and functions in 

cellular (cell cycle, division) and signaling processes (e.g. Notch, Wnt pathways). Motile cilia 

cover the surfaces of brain ventricles, fallopian tubes, airways and the embryonic node. Cells 

can form a solitary cilum, as in the node, or multiple cilia, as in the airways. In the past, 

motile cilia were solely attributed to establishing a fluid flow along surfaces. But more 

recently, data suggest that all motile cilia perform sensory functions as well (Fliegauf, 

Benzing et al. 2007; Bloodgood 2010; Oh and Katsanis 2012). All motile cilia share a similar 

ciliary structure, which will be introduced in the next section.  
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2.2.2 Structure of motile cilia 

 

Various classes of cilia may have different tissue-adapted functions, but their highly 

conserved basic structure remains constant. A cilium is basically divided into three 

subcompartments from base to top, i.e. basal body, transition zone and axoneme. After the 

exit from cell cycle, cells in G0/G1 can assemble one or two cilia or a cilia tuft (200-300 per 

cell). In order to assemble multiple cilia, those cells need to start massive centriole 

amplification. This huge amount of centriole amplification is achieved by two modes: a 

centriolar mother centriole-dependent amplification mode and an acentriolar de novo centriole 

biogenesis without a mother centriole. Centrioles later migrate via vesicle transport to the 

apical surface of the cell and become established as basal bodies (BB) (Klos Dehring, Vladar 

et al. 2013).  

 

The basal bodies form the foundation for the axoneme to extend from the cell surface. Each 

basal body contains nine triplets of microtubules and has accessory structures attached, 

including a basal foot and striated rootlet. The basal foot is a lateral extension from the 

midregion of the BB that interacts with apical microtubules of the cytoskeleton. Ciliary 

rootlets are striated fibrous networks, originating from basal bodies and extending toward the 

cell nucleus. The  striated ciliary rootlets are thought to be an anchor and support structure for 

the cilia (Boisvieux-Ulrich and Sandoz 1991; Kasuya and Miyoshi 2001; Yang, Liu et al. 

2002; Fliegauf, Benzing et al. 2007). Figure 1.1 illustrates the main features of the motile 

cilia. 

 

The transition zone marks the proximal region of the cilia and is thought to control entry and 

exit from the ciliary compartment (Fliegauf, Benzing et al. 2007).  

 

The ciliary axoneme is elongated and maintained via intraflagellar transport (IFT) during 

ciliogenesis. The motile ciliary axoneme has a 9+2 structure surrounded by a specialized 

extension of the cell membrane, containing specific receptors and ion channel proteins. Nine 

microtubule doublets (A- and B-tubule)  encircle a pair of singlet microtubules in its core. The 

peripheral microtubules are held in place by radial spokes. Inner and outer dynein arms 

connect A-tubules with adjacent B-tubules and mediate cilia motility based on peripheral 

microtubule sliding (Satir 1980; Fliegauf, Benzing et al. 2007; Satir and Christensen 2007). 

Motility is achieved by the interaction between dynein arms and microtubules. The ATPase 
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activity of the dynein motors causes dynein structural change and initiates the doublets to 

slide asynchronously against each other, thus generating a wave-like beating motion of the 

cilia (Satir, 1980).  

 
Fig. 1.1: Subcompartments of a ‘9+2’ motile cilium.  
Graphic shows a motile cilium with a ‘9+2’ axonemal microtubule arrangement (cyan). The cross-
sectional view is shown at the left side. Outer (red) and inner (blue) dynein arms, connecting two 
peripheral doublet microtubules, facilitate cilia motility. Radial spokes (brown) connect peripheral 
doublets to the central singlet microtubules. The basal body comprises nine microtubule triplets, which 
is the foundation for the axoneme extension. The basal foot connects the cilium to the internal 
cytoskeleton and the striated rootlet stabilizes the cilium. Modified after Fliegauf et al., Nat Rev Mol 
Cell Biol 8, (2007). 
 

 

2.2.3 Ciliopathies: Cilia-related diseases 

 
The term ciliopathy is used for a disease, which is caused by a dysfunction of any 

ciliary component. Cilia-related diseases often affect multiple organ systems due to their 

ubiquitous location. Motile cilia are present in various tissues and organs and are commonly 

attributable to establish a directed fluid flow on the surface of epithelia. In the fallopian tubes 

Basal Body

Axoneme

Transition 
zone

AB

Basal foot

Striated rootlet



Introduction 12 

for example, ciliary motion is involved in transport of an ovum toward the uterus ensuring 

fertility (Lyons, Saridogan et al. 2006). Furthermore, respiratory cilia are vital for a proper 

mucociliary clearance (Knowles and Boucher 2002). Defective ciliary structure and function 

are commonly associated with airway pathologies. Ciliary defects can arise from disease or 

environmental agents including primary ciliary dyskinesia, asthma, infection and pollutants 

such as smoking (Chilvers and O'Callaghan 2000). Smoking was linked to short cilia, likely 

leading to an impaired mucociliary clearance (Leopold, O'Mahony et al. 2009). 

  

Primary Ciliary Dyskinesia 

The respiratory system has a mucociliary epithelium, where hundreds of motile cilia 

from each ciliated cell protrude into the airway lumen. Cilia are surrounded by a watery 

solution, the periciliary layer, which again is covered by a layer of mucus. Ciliary beating 

generates an extracellular mucus-transporting current, which cleans the airways from dirt, cell 

debris and pathogens. Structural defects of respiratory cilia impair cilia motility and the 

mucociliary clearance, leading to a condition described as “primary ciliary dyskinesia” (PCD) 

or “immotile-cilia syndrome”.  However, cilia motility is not always absent. Sometimes 

ciliary beating is present, but is incorrect in its frequency or beating pattern (Afzelius 1976; 

Zariwala, Knowles et al. 2007). 

PCD (OMIM #244400) is an autosomal-recessive disorder, affecting approximately 1 in 

15.000 live births in Europe. However, the prevalence might be an underestimation, because 

PCD is often misdiagnosed. Newborns can present unexplained tachypnea and chronic 

rhinitis. With dysmotile cilia being unable to clear mucus toward the natural exits mouth and 

nose, as a result, respiratory tract bacteria are able to grow and overcome the mucus barrier, 

infecting the underlying epithelium. During progression of disease, chronic upper and lower 

airway infection and inflammation arise as consequence. The disease eventually advances to 

bronchiectasis and lung failure. Since the progression of lung disease varies by age of 

diagnosis and treatment, early diagnoses can positively affect quality of life and slow down 

progression of disease. PCD is often caused by mutations in DNAH5 and DNAI1, which code 

components of outer dynein arms (www.omim.org/entry/244400 ; Zariwala, Knowles et al. 

2007; Reiß 2009). Other disorders, which have been reported in PCD patients, are infertility 

due to defective sperm flagella or fallopian tube cilia, as well as retinal degeneration, hearing 

deficits, hydrocephalus and organ laterality defects. Dysfunctional motile cilia of the 

embryonic node are linked to abnormal left-right organ patterning, resulting in heterotaxy or 
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situs inversus. 50% of PCD patients have a situs inversus, a condition referred to as 

Kartagener’s syndrome (Zariwala, Knowles et al. 2007).  

 

Two other ciliopathies, called Alström Syndrome (OMIM #203800) and Bardet-Biedl 

Syndrome (OMIM #209900) possess many similarities, such as blindness due to rod-cone 

dystrophy, loss of hearing, childhood obesity, insulin resistance and type 2 diabetes mellitus. 

Apart from these characteristics, Bardet-Biedl Syndrome shows mental retardation, 

polydactyly and hypogonadism (http://www.omim.org/entry/209900). Chronic pulmonary 

symptoms also appear in 30-50% of patients with Alström and Bardet Biedl Syndrome, which 

suggests that motile respiratory cilia can also be dysfunctional in ciliopathies of the primary 

cilium (Marshall, Bronson et al. 2005; Zariwala, Knowles et al. 2007).  

 

Hydrocephalus 

Multiple motile ‘9+2’ cilia lining the brain ventricles are important for the circulation 

of the cerebrospinal fluid, which surrounds brain and spinal cord. A dysfunctional ependymal 

flow was shown in several animal studies to be linked to the formation of enlarged brain 

ventricles, termed hydrocephalus (Ibanez-Tallon, Pagenstecher et al. 2004; Hagenlocher, 

Walentek et al. 2013). Dysmotile cilia lacking axonemal dynein heavy chain Dnahc5 caused 

an impairment of fluid flow. Furthermore, mice with mutations in the intraflagellar transport 

protein IFT88 demonstrated erroneous ciliogenesis of the choroid plexus epithelium. 

Therefore, it was thought that the hydrocephalus was caused by an overproduction of 

cerebrospinal fluid as an result of altered mechanosensory function in choroid plexus cilia 

(Fliegauf, Benzing et al. 2007). For a list of ciliopathies see Avasthi and Marshall, (2012). 

 

2.3 Xenopus leavis – the South African claw-toed frog 

2.3.1 A model organism in developmental biology 

 

 Xenopus laevis is a species, which naturally occurs only in South and Central Africa. 

Since the 1940s, it was widely used in Europe for comparative anatomy and endocrinology 

studies, e.g. in hospital laboratories as an indicator for human pregnancy. In the 1960s, 

Xenopus became increasingly popular with developmental biologists, because it could be 

induced to ovulate all season long (Gurdon and Hopwood 2000). In the 1980s, Xenopus 

molecular analysis was crucial to study developmental processes (Gurdon, Mohun et al. 
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1985). Decades later, Xenopus is nowadays one of the most widely used vertebrate species in 

developmental, cell and molecular biology (Gurdon and Hopwood 2000). Biologists use 

Xenopus laevis because of its ease in maintenance, resistance to diseases, and the large 

number of embryos (up to thousand eggs/day). Fertilized eggs are robust and survive well in 

petri dishes with saline solution. To manipulate gene expression and to study embryogenesis, 

mRNA, plasmid DNA and antisense morpholino oligonucteotides can be easily injected into 

the oocyte (Sive, Grainger et al. 2000). To study the molecular mechanisms in cilia 

development, Xenopus skin is widely used as an in vivo model. For this purpose, easy 

accessibility of the large egg size (!1mm) offers enormous advantage compared to the 

internal location of mammalian airway epithelium. Additionally, the processes of early 

development are largely conserved from Xenopus to higher vertebrates. Thus, Xenopus has 

been helpful in detecting many concepts in modern developmental biology. Furthermore, eggs 

tolerate microsurgeries well due to their good tissue healing capabilities, which allows 

microdissections for animal cap assays. But above all, Xenopus is perennially reproductive 

and female frogs can be stimulated to lay eggs by injection of human chorionic gonadotropin 

(hCG) every three months. Moreover, embryos have a short life cycle (Fig. 1.2), enabling the 

researcher to follow the development from a zygote to a tadpole in only 44 hours (Nieuwkoop 

and Faber 1967).  
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Fig. 1.2 Model of Xenopus laevis life cycle. Major stages of development are depicted according to 
Nieuwkoop and Faber (1967): cleavage, MBT (midblastula transition), gastrula, neurula, 
organogenesis and meta-morphosis. Pre-MBT embryos only translate maternal mRNA. After MBT 
during blastula stage (NF 8), zygotic gene transcription starts. (Modified after 
http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_03/devo_03.html) 
 

 

The pigmented surface of the upper half is termed animal pole, while the non-pigmented 

lower surface is called vegetal pole. Prominent factors in endoderm and mesoderm formation 

are maternal Vg1 and VegT that are restricted to the vegetal hemisphere. VegT is important 

for endodermal induction and lack of VegT results in embryos with no endoderm and less 

mesoderm (Zhang, Houston et al. 1998). Vg1 and Nodal genes are thought to play a role 

during gastrula when vegetal cells induce overlaying marginal zone cells to differentiate to 

mesoderm. It is noteworthy that cells lacking mesoderm- and endoderm-inducing signals form 

ectoderm, suggesting that ectoderm formation represents a default pathway (Dale, Matthews 

et al. 1993; Jones, Kuehn et al. 1995). Maternal factors play an important role for ectoderm 

specification. For instance, isolation of the pigmented blastocoel roof before the midblastula 

transition results in the formation of ‘atypical epidermis’, an ectodermal derivate. Ectoderm 

differentiates into two major groups: surface ectoderm and neuroectoderm. The surface 

ectoderm gives rise to the future skin and is specified by BMP (bone morphogenetic protein). 

The neuroectoderm is fated to form the central and the peripheral nervous system by secretion 

of BMP antagonists that inhibit BMP-signaling (Kühl and Gessert 2010). 

 

2.3.2 Cilia in the Xenopus epidermis and ciliogenesis 

 

 Xenopus laevis skin resembles the human respiratory mucociliary epithelium and 

contains two categories of cells: ciliated and non-ciliated cells. In the surface layer of the non-

neural ectoderm, fully differentiated multiciliated cells are evenly scattered between the non-

ciliated cell types, including goblet cells, ionocytes and small secretory cells (Hayes, Kim et 

al. 2007; Dubaissi and Papalopulu 2011; Dubaissi, Rousseau et al. 2014).  

 

So far, two major phases are involved in creating the ciliated spacing pattern. According to 

Deblandre et al. (1999), Notch signaling is a key regulator of ciliated cell fate, which occurs 

in the inner (sensorial) layer of the epidermis. It is involved in many organisms to ensure 
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certain developmental processes. It is responsible for binary cell-fate decisions in patterning 

events and controls specification of cells by direct cell-cell contacts (Fortini 2009).  

 

A subset of cells with high levels of Delta-like 1 (dll1) gets committed to become ciliated 

cells (CCP; ciliated cell progenitor) in the inner skin layer during gastrulation stage (Fig. 

1.3d). These progenitor cells express dll1, a notch ligand and are able to prevent neighboring 

cells from entering the ciliated cell fate by lateral inhibition. Dll1 triggers the Notch1 receptor 

of neighboring cells through direct cell-to-cell contact, which leads to activation of the Notch 

pathway. Subsequently, the notch intracellular domain (NICD) is then released by proteolysis, 

which in turn moves to the nucleus resulting in a transcriptional repression of ciliogenic genes 

(Deblandre, Wettstein et al. 1999; Fortini 2009; Stubbs, Vladar et al. 2012).  

 

However, as CCPs begin to differentiate, they move from the inner ectodermal layer to the 

embryonic surface by radial intercalation through the junctions between at least three outer 

layer cells. Consequently, this second step secures the spaced alignment of ciliated cells in the 

outer skin layer, thereby restricting the number of intercalating cells. Lastly, ciliated cells 

reach the surface of the mucociliary epithelium where cilia can be detected by acetylated "-

tubulin (Deblandre, Wettstein et al. 1999; Stubbs, Davidson et al. 2006). 

 

It is known that dll1-expressing cells also give rise to other cell types of the mucociliary 

epithelium apart from MCCs. The so-called intercalating non-ciliated cells (INC), e.g. the 

small secretory cells and the ionocytes are specified in the inner layer and then intercalate to 

the surface (Stubbs, Davidson et al. 2006; Dubaissi and Papalopulu 2011). 

 



Introduction 17 

 
Fig. 1.3: X. laevis epidermis – a mucociliary epithelium and its development. 
a-c: scanning electron microscopy images of the larval skin. b: higher magnification of red marked 
area in (a), showing a multiciliated cell, intercalating non-ciliated cell (white asterisk), and large 
goblet cells (yellow asterisk). c: lateral view of a multiciliated cell with multiple cilia tufts, from 
Hayes et al. 2007. d: a two-step model of the morphogenesis of the multiciliated skin. Gastrula (NF 
10-13) - Delta-1/Notch-mediated cell fate specification and lateral inhibition; CCPs and INCs express 
Delta (green), whereas neighboring cells express Notch (white).  Later CCPs express "–tubulin as a 
marker (blue). Neurula (NF 15-20) – intercalation into the outer cell layer and subsequent 
differentiation and proliferation (NF 20-22). Yellow: ionocytes; brown: small secretory cells.  
 

 

At the molecular level, the mechanisms, by which a committed cell can differentiate and form 

cilia, are not fully understood. Studies in various animal models have highlighted the 

connection between Delta/Notch and the transcriptional program that drives cilia formation 

during ciliated cell differentiation (Fig. 1.4) (Deblandre, Wettstein et al. 1999; Liu, Pathak et 

al. 2007; Ma and Jiang 2007; Ezratty, Stokes et al. 2011).  
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Fig. 1.4: Proposed molecular pathway for multiciliogenesis. 
Multicilin acts as a critical target of Notch signaling during lateral inhibition. a) Delta/Notch-mediated 
lateral inhibition. CCPs are marked with high Delta-1 levels and can activate Notch signaling in 
adjacent cells. b) Notch activation represses multiciliogenesis by inhibition of Multicilin in future non-
ciliated cells. In contrast, a high level of Multicilin is proposed to induce cell cycle exit and 
ciliogenesis in future multiciliated cells. The dashed line indicates that Delta-1 might repress 
multiciliogenesis through autocrine signaling. miR-449 represses Delta-1 from early neurula onward. 
Grey colour denotes inactive and black denotes active genes/pathways. 
 

 

After ciliated fate specification, cells exit the cell cycle in order to assemble cilia. Multicilin 

(mci) promotes multiciliogenesis downstream of notch by inducing the cell-cycle exit (Stubbs, 

Vladar et al. 2012). Furthermore, it stimulates deuterosome-mediated (de novo) centriole 

amplification by induction of myb, which is a transcription factor involved in cell cycle 

regulation and progenitor cell proliferation. Myb then induces foxj1 (forkhead box J1), a 

master regulator of many genes required for motile cilia formation (Ramsay and Gonda 2008; 

Stubbs, Oishi et al. 2008; Yu, Ng et al. 2008; Tan, Vladar et al. 2013). It is noteworthy that 
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Foxj1 is also expressed in human pulmonary and renal epithelium (Pelletier, Brody et al. 

1998). 

 

According to a recent study by Marcet et al. (2011) in Xenopus and HAECs (human airway 

mucuciliary epithelial cell), microRNAs of the miR-449 family (miR-449a, b and c) are key 

regulators of multiciliogenesis. Delta-like 1 expression in the epidermis is normally 

undetectable from early neurula onwards (Deblandre, Wettstein et al. 1999). miR-449 is 

induced during multiciliogenesis and it is thought that miR-449 represses Delta-like 1 

expression, thus promoting centriologenesis and differentiation of multiciliated cells in 

epidermis and nephrostomes. Inhibition of miR-449 leads to an increase of "-tubulin mRNA 

positive MCPs with defective multiciliogenesis, suggesting that miR-449 regulates terminal 

differentiation rather than specification of MCCs (Marcet, Chevalier et al. 2011). 

 

Taken together, these data suggest an evolutionary conserved cassette controlling the 

mucociliary epithelium formation among many different tissues and species. Thereby, 

Xenopus is a highly suited in vivo system to dissect this process. 

                  
Many epithelia are polarized within the plane of the tissue. This is generally termed as planar 

cell polarity (PCP). Cilia protruding from the surface of multiciliated cells are also polarized 

in order to produce a directed fluid flow by organized ciliary beating. Recent reports have 

shown that planar cell polarity signaling is central in regulation of cilia-mediated fluid flow 

(Konig and Hausen 1993; Park, Mitchell et al. 2008). Two modes of planar polarity are 

present in multiciliated cells: intra-cellular rotational planar polarity and inter-cellular tissue-

level planar polarity (Fig. 1.5). The first mode refers to the unidirectional alignment of all 

basal bodies within a cell with the ciliary rootlet pointing in the direction of the return stroke 

(Fig. 1.5a) (Wallingford 2010). Disrupted Dishevelled (Dvl) function was shown to 

disorganize ciliary beating and impair flow.  Aside from the above function, Dvl is important 

for ciliogenesis by promoting docking of basal bodies to the apical cell membrane. The PCP 

effector proteins Inturned and Fuzzy are also important for ciliogenesis. They control 

formation of the apical actin cytoskeleton downstream of Dvl and defects of these factors 

impair docking of basal bodies (Park, Mitchell et al. 2008). The latter mode states that basal 

bodies of different multiciliated cells of the tissue are parallel aligned (Fig. 1.5b). Tissue-level 

polarity is also controlled by PCP proteins such as Vangl2 and Frizzled (Wallingford 2010). 
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Collectively, the PCP pathway is associated with important events, including cilia formation 

and polarization. 

                                                     
1.5: Modes of planar cell polarity in the X. leavis multiciliated skin. Basal bodies: red; ciliary 
rootlet: green. From Wallingford (2010). 
 

 

2.3.3 Cilia in the pronephric kidney 

 

 Kidneys have various vital functions such as maintenance of homeostasis of water and 

ion balance by filtrating blood, reabsorbing useful molecules and excreting metabolic waste. 

Vertebrate kidneys develop within the intermediate mesoderm and can be divided into three 

sequential developing kidney forms: the pronephric, mesonephric and metaneprhric kidney 

(Vize, Seufert et al. 1997; Brandli 1999).  

The three kidney forms are similar in their basic structure, but differ in the number of the 

nephrons. The mesonephric kidney is the adult form of amphibian and fish, while the 

metanephric kidney represents the functional form in other vertebrates. The metanephros is 

the most complex kidney form and can obtain one million nephrons. The mesonephros is less 

complex and has 10-50 nephrons (Vize, Seufert et al. 1997). 

The pronephric kidney is the first and simplest kidney form, but already functional in early 

embryogenesis. The nephron is the basic functional unit of kidneys. In Xenopus, the 

pronephric kidney consists of one to three nephrons from the so-called nonintegrated type, 

where the glomerulus is not directly attached to the proximal tubule. Instead,  wastes are 

filtered into the coelom as a cavity connecting glomerulus and tubules. Ciliated funnels called 

nephrostomes connect the coelom to the tubules and move filtrate from the coelom toward the 

tubules. There are normally three nephrostomes linking coelom and tubules (Fig. 1.6). 
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Multiciliated cells are present throughout the nephrostomes shown by markers for 

multiciliogenesis and immunostaining with acetylated "-tubulin (Vize, Seufert et al. 1997; 

Brandli 1999; Mobjerg, Larsen et al. 2000; Marcet, Chevalier et al. 2011; Stubbs, Vladar et al. 

2012).  

                                         
Fig. 1.6: Illustration of a sectioned amphibian pronephric kidney with ciliated nephrostome. 
From Wessely et Tran, Pediatr Nephrol (2011). 
 

The Delta/Notch pathway is also important in the developing kidney, where it was shown to 

regulate pronephric cell fate specification (McLaughlin, Rones et al. 2000).  Moreover, the 

Notch pathway plays an important role in the formation of multiciliated cells in the kidney. 

Previous studies in zebrafish have revealed that notch ligand Jagged2 is enriched in 

multiciliated cells (MCC) of the kidney. Jagged2 binds to notch3 receptor of neighboring cells 

and represses ciliogenesis via indirect downregulation of ciliogenic transcription factor rfx2. 

Blocking of Jagged2 leads to an increase in MCCs suggesting that notch signaling might 

regulate multiciliated cell specification via lateral inhibition in other tissues than epidermis 

(Liu, Pathak et al. 2007).  

Studies by Kramer-Zucker et al. demonstrated in zebrafish that disruption of cilia motility 

affected fluid movement in the pronephros, thus leading to fluid accumulation and formation 

of tubular cysts (Kramer-Zucker, Olale et al. 2005). 

 

2.4 Epigenetics and development 

2.4.1 Epigenetics 

  

 Since its definition in 1942 by Conrad Waddington who called it “the branch of 

biology, which studies the causal interactions between genes and their products, which bring 

Picture from Wessely et Tran, Pediatr Nephrol (2011)
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the phenotype into being” (Waddington, 1942), the term “Epigenetics" has been revised 

several times. The Greek prefix “epi-” in “epigenetics” suggests features that are “on top of” 

genetics, indicating that epigenetic traits exist on top of the genetic basis for inheritance. 

Currently, epigenetics might be more specifically defined as “the study of any potentially 

stable and, ideally, heritable change in gene expression or cellular phenotype that occurs 

without change in Watson-Crick base-pairing of DNA” (Goldberg, Allis et al. 2007).   

 

During development, it is essential that cells loose their pluripotent trait and become 

differentiated. Specified at just one time point, cells adopt different phenotypes and functions, 

although the genetic material of the cells stays the same (Li, Liu et al. 2012). Consequently, 

cell-lineage appropriate gene expression patterns have to be ‘inherited’.  

Analyses of the epigenetic landscape of pluripotent cells showed hyperdynamic genes and 

highly decondensed euchromatin, which is correlated with transcriptional active genes since 

DNA is accessible to the transcription complex. Differentiated cells however, need to 

establish and consolidate gene repression. This is, for example, achieved through 

condensation of chromatin (heterochromatin), resulting in less accessible DNA (Dambacher, 

Hahn et al. 2010; Tollervey and Lunyak 2012).  

Epigenetic mechanisms are thought to modulate chromatin accessibility and therefore its 

transcriptional state. Five major mechanisms are known to alter chromatin structure: DNA 

methylation, posttranslational histone modification, non-coding RNA, as well as histone 

variants and chromatin remodeling (Dambacher, Hahn et al. 2010). Before going further into 

detail of epigenetic mechanisms, the basic of chromatin composition will be discussed in the 

next section. 

 

 

2.4.2 Chromatin states 

 

Chromatin consists of DNA wrapped around histones and can be classified in two 

major states: euchromatin and heterochromatin. Euchromatin is open chromatin that is 

accessible for the transcriptional machinery. Therefore, it marks regions of transcriptional 

active genes. Heterochromatin is the opposite; it is condensed and consequently less 

accessible. The repeating fundamental unit of DNA packaging is described as a nucleosome, 

consisting of a 147 bp long portion of superhelix DNA wrapped 1.65 turns around a histone 
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octamer. There are five types of histones: H1, H2A, H2B, H3 and H4. Two copies of each 

H2A, H2B, H3 and H4 form the histone core. The linker histone H1 binds the linker DNA, 

linking the core DNA between two neighboring nucleosomes, to the nucleosome core. 

Nucleosomes are stabilized by various interactions within the core octamer and electrostatic 

and hydrogen bonds between histones and the DNA. Each of the histones consists of a core 

domain and a flexible tail domain where most post-translational modifications (PTM) at 

amino-acid residues occur. The tails extend away from the core DNA and largely interact 

with adjacent nucleosomes or with nuclear factors (Luger, Dechassa et al. 2012; Tollervey 

and Lunyak 2012).  

 

 
Fig. 1.6: Model of chromatin organizing 
Chromatin is sequentially organized in 11nm beads-on-a string fiber (primary chromatin structure), 
30nm fiber chromatin folding (secondary structure) and higher-order chromatin fiber (tertiary 
structure). From B. Pierce, Genetics: A Conceptual Approach, 4th edition (2011), 295. 
 

 

Fig. 1.6 illustrates the basic features of chromatin organization. Although nucleosomes have 

been assumed to fold up into 30-nm chromatin fibers, their actual existence is controversial. 

Contemporary studies on human mitotic chromosomes detected no regular structures >11-nm 

and suggest that mitotic chromosomes rather contain irregularly folded nucleosome fibers 

(Hansen 2012; Nishino, Eltsov et al. 2012). 
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Recently, certain gene expression patterns have been associated with particular epigenetic 

modifications. Lightly packed euchromatin is transcriptionally active and shows several 

histone modifications, such as tri-methylated state of lysine residue in position 9 of histone 

H3 (=H3K4me3) and H3K9ac. These two modifications are related to an “open” state of 

chromatin, as observed in embryonic stem (ES) cells. In contrast, heterochromatin is densely 

packed and is enriched in H3K9me3, H3K27me3 and H4K20me3, which are associated with 

transcriptionally silent chromatin. Bivalent chromatin carries both activating H3K4me3 and 

repressive H3K27me3 lysine histone methylation marks at some promoters. It was thought 

that bivalent chromatin was characteristic for ES cells to poise key developmental genes 

during the pluripotent state, while to keep them available for lineage-specific activation. 

Nevertheless, the functions of bivalent chromatin domains remain to be further elucidated, 

since it also occurs in hematopoietic stem and progenitors cells, as well as in neural 

progenitors and terminal neurons (Mikkelsen, Ku et al. 2007; Dambacher, Hahn et al. 2010; 

Tollervey and Lunyak 2012). 

 

2.4.3 Posttranslational histone modifications 

 

The core histone proteins can be covalently modified at many sites and in many ways. 

Most covalent post-translational modifications target amino-acid residues near the N-termini 

of the core histones H3 and H4 (Fig. 1.7). Modifications include lysine and arginine 

methylation, lysine acetylation (Allfrey, Faulkner et al. 1964), serine, threonine and tyrosine 

phosphorylation and lysine ubiquitylation (Kouzarides 2007). The nomenclature of PTMs 

reflects the histone domain, the type and site of the modified residue and the type of 

modification (Turner 2005), for example, H4K20me3 would mean tri-methylation of lysine 

residue in position 20 of histone H4. 
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Fig. 1.7: Covalent post-translational histone modifications. 
A model of a nucleosome is shown including core histones and unstructured histone tails. It is striking, 
that most modifications, such as acetylation (Ac), methylation (Me) and phosphorylation (Ph) occur in 
N-terminal tails, whereas ubiquitylation (Ub) appears in C-terminal tails of histone H2A and H2B. 
Note that some amino-acid residues can be both methylated and acetylated, e.g. H4K20. From 
Tollervey, J. R. and V. V. Lunyak,  Epigenetics 7(8), (2012).  
 

 

Histone modifications may affect higher-order chromatin organization with the different 

covalent post-translational histone modifications varying in their functions. Which 

mechanisms alter the chromatin structure? What are the mechanisms to elicit downstream 

biological outcomes?  

Knowing that positively charged histone tails interact with the negatively charged DNA, it 

was first hypothesized, that modifications of amino acid residues would change charges of 

histones, resulting in stabilized or destabilized histone-histone and histone-DNA contacts. 

Additionally, the “histone code hypothesis”, states that one or multiple histone marks in 

combination or in sequence can affect gene expression by recruiting other proteins that “read” 

the modified amino acid residues (Strahl and Allis 2000; Davey, Sargent et al. 2002; 

Kouzarides 2007). The enzymes binding to specific modifications are referred to as „readers“, 

while “writers” (methyltransferase, acetyltransferase) catalyze the attachment of 

modifications to the amino acid residues, and “erasers” remove specific modifications 

(Gardner, Allis et al. 2011). 

In summary, these three types of enzymes mediate histone modifications, which function can 

be divided into two main categories. Firstly, modifications help to establish global chromatin 
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environments by generating domains, which are accessible or inaccessible for transcription, 

e.g. euchromatin or heterochromatin. Furthermore, modifications coordinate the recruitment 

of enzyme complexes to manipulate DNA, thereby affecting biological processes (Kouzarides 

2007). In the context of my thesis, the next section will focus on histone lysine methylation 

established by Suv4-20h enzymes. 

 

2.4.4 Suv4-20h histone methyltransferases  

 

 Histone methyltransferases (HMTases) catalyze the transfer of one to three methyl 

groups to lysine or arginine residues of histones. Lysine can be mono- (me1), di- (me2) or tri-

methylated (me3) by specific lysine methyltransferases (KMTs). In contrast, arginine can 

only be mono- or di-methylated by arginine methyltransferases (PRMTs). S-adenosyl-L-

methionine (SAM) serves as the common methyl group donor (Zhang and Reinberg 2001). 

Lysine HMTases may or may not contain a SET-domain. The SET domain is an 

evolutionarily conserved sequence and its acronym refers to its common presence in the 

Drosophila Su(var)3-9, Enhancer of Zeste, and Trithorax proteins (Zhang and Reinberg 2001; 

Feng, Wang et al. 2002).  

 

Histone lysine methylation can enable activation and repression of gene transcription. For 

instance, at active genes H3K4me3 is enriched at the promotor region and H3K36me3 is 

abundant at the gene body. In contrast, at inactive genes H3K27me3, H3K9me3 and 

H4K20me3 are enriched. H3K27 tri-methylation is mediated by polycomb-group proteins 

including Ezh1 (enhancer of zeste homolog1) and Ezh2, which form the polycomb repressive 

complex 2 (PCR2). H3K27me3 is often associated with gene silencing, while H3K9me3 and 

H4K20me3 mark repetitive genomic regions at telomeric and pericentromeric 

heterochromatin (Dambacher, Hahn et al. 2010).  

 

Lysine methylation can occur at five different sites on histone H3, but only at K20 on H4. PR-

Set7 catalyzes mono-methylation of H4K20, whereas Suvh4-20h1 and Suv4-20h2 enzymes 

catalyze di- and tri-methylation of H4K20. The Suv4-20h enzymes are termed according to 

their Drosophila homolog, which acts as suppressor of position effect variegation (Rice, 

Nishioka et al. 2002; Jorgensen, Schotta et al. 2013). 
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According to Schotta et al. (2004), H4K20 methylation is evolutionary conserved from yeast 

to mammals and is “critically important for the biological processes that ensure genomic 

integrity, such as DNA damage repair, DNA replication and chromatin compaction” 

(Jorgensen, Schotta et al. 2013). Mono- and di-methylation of H4K20 are associated with 

DNA replication and DNA damage repair. H4K20 tri-methylation, however, is linked to 

heterochromatin formation. Heterochromatin regions contain both H4K20 and H3K9 tri-

methylated states and both repressive methylation marks are established in a highly 

coordinated sequence. The Suv39h enzymes induce H3K9me3, which allows the HP1 

proteins (heterochromatin protein 1! and ") to attach. HP1 proteins then recruit the Suv4-20h 

enzymes, which induce H4K20 tri-methylation (Schotta, Lachner et al. 2004; Jorgensen, 

Schotta et al. 2013).  

 

In proliferating cells, the levels for H4K20 mono- and tri-metylation are very low, but 

H4K20me2 levels are high, indicating a cell-cycle dependent methylation of Histone H4. 

During S-phase, newly incorporated H4 histones lack all K20 methylation. Due to low 

expression levels of PR-Set7, very few H4K20me1 marks are added during this phase. With 

rising levels of PR-Set7 during G2 -phase, H4K20me1 levels reach a maximum before 

mitosis. In the following G1-phase, H4K20 mono-methyl marks are converted to the di- and 

tri-methylated state by Suv4-20h enzymes. H4K20me2/me3 levels peak during G1-phase, 

before the next S-phase dilutes again their concentration (Rice, Nishioka et al. 2002; 

Jorgensen, Schotta et al. 2013). This implies higher H4K20me2/me3 levels in resting or post-

proliferative cells than in cycling cells. 

 

Regarding their distribution, it is striking that H4K20me3 is enriched at pericentromeric and 

telomeric heterochromatin and imprinted regions, indicating a role in transcriptional silencing. 

H4K20me2 however is broadly localized, suggesting rather a connection with general 

chromatin-related processes. Murine double knockout studies in vitro and in vivo have 

revealed the essential role of Suv4-20h enzymes during development. Suv4-20h double null 

(dn) mouse embryonic fibroblasts (MEF) show a delayed S-phase entry, resulting in impaired 

cell cycle progression and proliferation (Schotta, Sengupta et al. 2008; Jorgensen, Schotta et 

al. 2013). Similarly, double knockdown of Suv4-20h in mice resulted in genomic instability. 

Theses mice had delayed growth, impaired lymphoid cell development, lung defects and died 

perinatally (Schotta, Sengupta et al. 2008). All in all, H4K20 methylation is very likely vital 



Introduction 28 

for processes, such as DNA replication, DNA damage repair and chromatin compaction, to 

ensure genomic integrity.  

 

Recently, novel analyses in Xenopus leavis demonstrated that Suv4-20h enzymes are crucial 

during non-mammalian embryogenesis as well. In order to differentiate, cells need to silence 

genes required for pluripotency and to activate lineage-appropriate genes. H4K20me3 levels 

increase during Xenopus embryogenesis (Schneider, Arteaga-Salas et al. 2011) and Suv4-

20h1/h2 histone methyltransferases were revealed to have a key role in neuroectodermal 

differentiation by directly silencing Oct-25, a pluripotency-associated factor (Nicetto, Hahn et 

al. 2013). XOct-25 normally represses responses to BMP-signaling in ectodermal cells, thus 

promoting neural differentiation (Takebayashi-Suzuki, Arita et al. 2007). In Suv4-20h double 

morphants however, Oct-25 was transcriptionally derepressed during neurula stages. As a 

consequence, genes controlling neural induction and differentiation were specifically 

downregulated resulting in a block of neuroectoderm differentiation (Nicetto, Hahn et al. 

2013). 

 

To summarize, H4K20 methylation by Suv4-20h HMTases is conserved throughout 

vertebrates, from mammals to frogs. Suv4-20h-mediated H4K20 methylation is important for 

a normal development and the maintenance of genomic stability. Notably, impaired Suv4-20h 

expression reduces genomic stability and can result in severe dysfunction, such as growth 

retardation, neural defects, lung defects and perinatal lethality (Schotta, Sengupta et al. 2008). 

Suv4-20h histone methyltransferases catalyze the di- and tri-methyl states of lysine 20 on the 

histone H4 amino terminal tail, which is enriched in transcriptionally repressed 

heterochromatin. Our lab has recently observed that the relative abundance of the H4K20me3 

mark increases in bulk histone during development, suggesting a gradual increase in 

repressive chromatin quality (Schneider, Arteaga-Salas et al. 2011). Further search for a 

developmental function for Suv4-20h enzyme production identified a pathway that operates in 

the neuroectoderm and controls the transition from pluripotent to neural cell states (Nicetto, 

Hahn et al. 2013). Despite this fact, little is known about the function of Suv4-20h HMTases 

in other developmental events. 
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2.5 Objectives 
  

The objectives of the present thesis deal with a novel phenotype observed in Suv4-20h 

morphant embryos, which affects the process of ciliogenesis. It was previously observed 

(Nicetto 2012) that Suv4-20 morphants had less and shorter cilia in the Xenopus larval skin. 

In order to understand the connection between Suv4-20h enzymes and ciliogenesis, the 

presented work aimed to: 

1.  Establish molecular pathways that link Suv4-20h enzymes to cilia formation. Hereby, 

the Suv4-20h-mediated ciliary phenotype of the larval Xenopus skin shall be 

functionally characterized. 

2.  Study the influence of Suv4-20h enzymes in other multiciliated tissues such as in the 

forming pronephros.  
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3.  MATERIALS AND METHODS 

3.1  Research animals 
 
 Mature pigmented Xenopus laevis colonies were purchased from Nasco (USA) and 

Xenopus express (France). Generally, frogs were housed in tanks of still water with a depth of 

at least 20 cm at a temperature of 17-19°C and were fed three times a week with Pondsticks 

Premium brittle (Interquell GmbH, Wehringen). Female frogs had a resting period of at least 

12 weeks between two HCG injections.  

 

3.2 Technical equipment 
 
 Laboratory equipment is listed underneath in alphabetical order.  

Equipment Supplier and model 

Centrifuges:  Eppendorf: 5417C  

Stratagene: PicoFuge® Microcentrifuge 

Thermo Scientific: Haraeus Multifuge 4KR 

Hettich Zentrifugen: Mikro 22 R 

Electrophoresis: GIBCO BRL: ST 305 

Incubator: 

Waterbath 

Heatblock 

 

Dinkelberg: minitherm 2 MTH 232320 

Techne: Dri-Block DB-2D  

Micro-injection: 

Glass injection needles 

 

Injector 

Microneedle puller  

 

World Precision Instruments: Glass 1BBL W/FIL 1.0 mm  

 

Digitimer Ltd.: Pli-100  

Sutter Instrument: P-87  

Microscopes:  

Stereo microscope 

Fluorescence stereo microscope 

 

Zeiss: Stemi SV 6 

Leica: M205 FA 

Photometry: 

Spectrophotometer 

 

PeqLap: Nanodrop ND-1000 

PCR:  
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Thermocycler 

Real-time PCR system 

Hybaid: PCR Express 

Roche: LightCycler® 480 II 

RNA in situ hybridization 

Glass vials 

 

Roland Vetter Laborbedarf OHG: KM-4514HD 

Scanning electron microscopy: 

Scanning electron microscope 

Critical point dryer 

Sputter coater 

 

Jeol: JSM-35 GF 

BAL-TEC: CPD 030 

Quorum Technologies: Polaron sputter coater 

  

 

3.3  Reagents 

3.3.1  Chemicals 

 
Chemicals from Merck and Sigma were used, except for the following.  

 

Agar, Ampicillin, Streptomycin:    Difco  

Agarose, Chicken serum, Lamb serum:    Gibco/BRL 

Human Chorionic Gonadotropin Gonasi 5000:   AMSA/ IBSA Lugano 

Levamisole:       Vectro Laboratories 

 

3.3.2  Enzymes 

Alkaline phosphatase Roche 

BSA fraction V Roth 

Proteinase K Sigma 

Restriction enzymes New England Bio Labs, Roche, Fermentas 

RNase free DNase I Promega 

RNaseA Sigma 

RNasin Promega 

T3, T7, SP6 polymerases  Promega 
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3.3.3  Kits 

DyNAmo cDNA Synthesis Kit Biozym Scientific GmbH 

Plasmid Midi Kit Qiagen 

RNase-Free DNase Set Qiagen 

RNeasy Mini Kit Qiagen 

 

3.4  Nucleic acids 

3.4.1  Morpholino antisense oligonucleotides (MOs) 

Control morpholino 5'-cctcttacctcagttacaatttata-3' 

Xenopus Suv4-20h1 morpholino 5'-ggattcgcccaaccacttcatgcca-3' 

Xenopus Suv4-20h2 morpholino  5'-ttgccgtcaaccgatttgaacccat-3' 

 

Xenopus laevis morpholino antisense oligonucleotides (MO) for loss-of-function studies were 

purchased from Gene Tools, LLC (http://www.gene-tools.com) and kept in aliquots at -20°C. 

Before usage, morpholino solutions were heated at 65°C for 5 minutes to completely denature 

secondary structures. 

Morpholinos should be about 25 bases in length, with a GC content of 50%, and little or no 

secondary structure.Translation blocking oligonucleotides bind to the translation initiation 

complex and should therefore be complementary to the 5’-UTR or the first 25 bases 3’ to the 

translation start site (Heasman 2002; Eisen and Smith 2008). 

 

3.4.2 Oligonucleiotides for RT/qPCR 

Primer Sequence Manufacturer 

H4 for  

H4 rev 

5'-gaccgcggtcacctacacc-3' 

5'-ctggcgcttcagaacataca-3' 

Biomers.net,  http://www.biomers.net 

ODC for 

ODC rev 

5’-acaaagaaacccaaaccga-3’ 

5’-caaacaacatccagtctccaa-3’ 

Biomers.net,  http://www.biomers.net 

dnah9 for 

dnah9 rev 

5’-ctggtgttcggttcacaatg-3’ 

5’-tccactatcccacgaacctc-3’ 

Metabion 

foxj1 for 5’-atccttttgcagagcagagg-3’ Metabion,  http://www.metabion.com 
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foxj1 rev 5’-tatttgctgcccgttagctc-3’ 

foxj1 for 

foxj1 rev 

5’-ccatgggaagagaacaggaa-3’ 

5’-cggaaatgcctcattgagat-3’ 

Sigma, http://www.sigmaaldrich.com 

 

3.4.3 Plasmids 

3.4.3.1  Plasmids for microinjections 

Name Restriction 

enzyme 

Polymerase 

pCMV-myc mouse suv4-20h1 N264A, Y299A 

mutant 

PvuI SP6 

pCMV-myc mouse suv4-20h2 N182A, Y217A 

mutant 

PvuI SP6 

pCS2-n-"Gal NotI SP6 

 

3.4.3.2  Plasmids for dig-labeled in situ hybridization probes  

Name  Source Restriction 

enzyme 

Polymerase 

!-tubulin L. Kodjacachian, Marseille, France NotI T7 

dnah9 A. Schweikert, Stuttgart, Germany ApaI  SP6 

foxj1 A. Schweikert, Stuttgart, Germany HindIII  T7 

pax2 T. Hollemann, Halle, Germany EcoRI T3 

xlim-1 M. Taira, Tokyo, Japan Xho1 T7 

multicilin C. Kintner, Salk Institute, USA BamH1 T7 

 

Eurofins MWG Operon (http://www.eurofinsgenomics.eu) did DNA sequencing. 
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3.5 Antibodies  

3.5.1 Primary antibodies 

Antibody Source Dilution 

3G8 

4A6 

EA Jones, 1995, EXRC 

University of Portsmouth 

ICC 1:50 

ICC undiluted 

Monoclonal Anti-acetylated !-

tubulin 

Sigma #T6793 ICC 1:200 

 

3.5.2 Secondary antibodies 

Antibody Source Dilution 

Sheep anti-Digoxigenin Fab 

fragment conjugated with 

alkaline phosphatase 

Roche #11093274910 In situ hybridization 1:2000 

Anti rat-fluorescent antibody 

Cy3  

Jackson Immuno Research 

#712165153 

ICC 1:500 

Sheep anti-mouse IgG 

conjugated with alkaline 

phosphatase 

Chemicon 

AP303A 

ICC 1:1000 

 

 

3.6 Fertilization and micro-injections 

3.6.1  Preparation of embryos  

 
a) Inducing ovulation  

 On the afternoon prior to microinjection, ovulation was stimulated by injecting 0.25-

0.35ml (500-700 units) of human chorionic gonadotropin (HCG) into the dorsal lymph sac of 

a female Xenopus laevis. A fine 27G Sterican needle was used to reduce injury. Kept at 20ºC, 

frogs started laying eggs 12-16 hours after injection of HCG.   
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b) Isolating testes 

 A male Xenopus laevis was anaesthetized in a solution of 0.1% 3-Aminobenzoeacid-

ethyl-ester for at least 30 minutes and killed through cervical dislocation. Both testes were 

dissected from the abdominal cavity and immediately transferred into MBS/Chicken serum 

and preserved at 4°C for a maximum of 10 days. 

 

c) In vitro fertilization and embryo culture 

 Fertilization was performed by incubation of eggs in 1xMBS with a small amount of 

crushed testis at room temperature. After 5 minutes, 0.1x MBS was added and fertilized eggs 

were cultivated in Petri dishes at 16-23°C until the desired stage for microinjections.   

 

d) Removing the egg jelly coat 

 Before microinjection it is essential to remove the jelly coat, which is a thick protective 

membrane surrounding the embryos. Removal was achieved by bathing the embryos in a 2% 

cysteine solution in an Erlenmeyer flask one-hour post fertilization. Dejellying was optimal 

when eggs started to touch each other, indicating complete removal of the coat. Afterwards, 

embryos were rinsed three times with 0.1x MBS and cultured in a Petri plate with 0.1x MBS/ 

Gentamicin at 16-23°C depending on the anticipated growth velocity. 

 

e) Calibrating needles  

 A glass injection needle (see list in 2.2) was pulled from a capillary with the 

Microneedle Puller using the settings given below: 

Settings  

Microneedle Puller P-87 

 

Heat: 800 

 

Pull: 35 

 

Vel: 140 

 

Time: 139 

 

Next, the needle was fixed in the holder of an injector (Digitimer Ltd.: Pli-100) for calibration 

and carefully cut with Dumont tweezers to a drop size of 5nl (injection pressure: 30 psi; 

injection time: 30ms-1s).  

 

3.6.2  Micro-injection 

 
 Calibrated needles were filled with 1-2 #l injection solution, containing morpholino 

oligonucleotides (MO), RNA or both. In vitro transcription for sense mRNA was performed 

as described in 2.9.4.  
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Embryos were placed onto molded agar plates and injection was made into the animal 

hemisphere either into one cell at two-cell or into one ventral blastomere at 4-cell stage. For 

animal cap assay, embryos were injected into all four cells at 4-cell stage. The total amount of 

injected solution was 5-10nl per embryo. Next, embryos were incubated in 0.1x MBS/ 

Gentamicin in Petri dishes covered with 2% agarose gel at 23°C. Daily change of buffer 

provided the best environment for embryo cultivation.  

 

For epidermal cilia phenotype, embryos were injected twice into one blastomere at two-cell 

stage with Suv4-20h1 or h2 MO (total amount: 40ng per blastomere). For pronephros cilia 

phenotype, embryos were injected with Suv4-20h1 or h2 MO (30g per one ventral blastomere 

at 4-cell stage; 40ng per blastomere at two-cell stage) and rescued with 1.5ng mouse Suv4-

20h1 RNA. For animal cap assay, embryos were injected with Suv4-20h1 or –h1 and -h2 MO 

(40ng per embryo; for schemes see Fig. 4.8a). Control embryos were injected with the same 

total amount of control MO. 

 

3.6.3  Solutions and buffers 

Solutions for embryological methods                                                                Storage 

0.1xMBS/Gentamicin 

 

0.1x 

10µg/ml  

MBS  

Gentamicin 

RT  

1x MBS  

(Modified Barth’s 

Saline)  

 

 

0.7mM 

5mM  

1mM 

88mM  

2.5mM 

1mM 

CaCl2 

HEPES  

KCl  

NaCl  

NaHCO3  

MgSO4 

 Add CaCl2 before 

use. 

pH 7.6 at RT 

2% Cysteine solution 

 

2% 

0.1x 

10M 

L-Cysteine 

MBS 

NaOH  

Sigma  

pH 7.84 at RT  

Agarose gel  0.1x 

2% 

MBS 

Agarose 

 

Anesthetization 

solution for frogs 

0.1% 

 

3-Aminobenzoeacid-ethyl-ester 

Iced ddH2O 

Freshly made 

before use; 
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powder was kept 

at  

-20°C  

Human Chorionic 

Gonadotropin (HCG) 

5000 

UI/ml 

Gonasi HP  

ddH2O    

AMSA/IBSA 

Lugano 

Testis storage solution 0.8x 

20% 

200U/ml 

200µg/ml 

MBS high salt  

chicken serum 

Penicillin 

Streptomycin 

Stored at  

-20°C  

MEMFA  

 

 

 

 

0,1M 

 

2mM 

1mM 

3.7% 

MOPS (3-(N-Morpholino)-

propanesulfonic acid) 

EGTA 

MgSO44 

Formaldehyde 

pH 7.4 at RT, 

freshly made 

before use 

 

 

3.7 Micro-dissection 

3.7.1  Animal cap explants 

 Prior to germ layer formation, micro-dissections were carried out from NF 8 to 9 using 

two sharp Dumont forceps (Switzerland). Embryos were staged according to Nieuwkoop and 

Faber (Nieuwkoop and Faber 1994). By cutting the pigmented blastocoel roof (animal cap) 

from the animal hemisphere, we obtained explants derived purely from ectodermal cell 

populations. Although destined to become epidermis and neuroectoderm in vivo, isolated 

animal cap tissue forms atypical epidermis. This is due to lack of signals promoting 

neuroectoderm, endoderm and mesoderm induction, such as BMP, FGF and TGF-" (Dale, 

Matthews et al. 1993; Zhang, Houston et al. 1998; Munoz-Sanjuan and H. Brivanlou 2001). 

Embryos were placed in 60mm Petri plates covered with 2% agarose in Ca2+-enriched 

solution (0.5x MBS) to avoid dissociation of the tissue. Removal of the vitelline membrane is 

required before cells and tissues can be dissected. This is achieved by grabbing the vitelline 

membrane with one pair of forceps in the equatorial region, grasping the membrane with a 

second pair of forceps and tearing the membrane off. After dissection, caps were transferred 

to a molded agarose plate. They were cultured in 0.5x MBS until NF 25 and stored in liquid 
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nitrogen (Results, Fig. 4.8a). To determine the required stage, control whole mount siblings 

were grown simultaneously.  

 

3.7.2  Dorsal explants  

In order to examine the effects of Su(var)4-20 enzymes on monocilium and organ 

laterality, gastrocoel roof plate explants (GRP/dorsal explants) were created. According to 

Vick et al. (2009), NF 17 to 18 embryos were collected after they had been injected with 40ng 

Suv4-20 h1 or control morpholino into both blastomeres at 2-cell stage. After transferring 

embryos to 0.5xMBS in Petri dishes covered with 2% agarose, the vitelline membrane was 

removed at the beginning. Disconnected by four cuts with two sharp Dumont forceps 

(Switzerland), explants for histological tests were immediately moved into MEMFA solution 

and fixed for one hour at RT. Next, the explants were rinsed twice in 1xPBS for 5 min each 

and dehydration was performed with 100% Methanol at -20°C over night. For Scanning 

electron microscopy studies, GRP explants were fixed with 3% Glutaraldehyde for one hour 

at RT. 

  

3.7.3  Solutions and buffers 

                                                                                                                               Storage 

0.5xMBS 0.5x MBS  RT  

1x MBS  

(Modified Barth’s 

Saline)  

 

 

0.7mM 

5mM  

1mM 

88mM  

2.5mM 

1mM 

CaCl2 

HEPES  

KCl  

NaCl  

NaHCO3  

MgSO4 

 Add CaCl2 before 

use. 

pH 7.6 at RT 

2% Cysteine solution 

 

2% 

0.1x 

10M 

L-Cysteine 

MBS 

NaOH  

Sigma  

pH 7.8 at RT  
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3.8  Histological methods 

3.8.1  X-Gal staining 

Embryos were first fixed in MEMFA for 30 minutes and rinsed with 1xPBS for at 

least 1 hour. Staining was performed with freshly made X-Gal staining solution and embryos 

were kept in the dark at RT until the desired blue color was achieved. The amount of time 

needed for staining was around 15-30 minutes and depended on the amount of "-galactosidase 

activity in the embryos. To stop the reaction, embryos were rinsed with PBS for 30 minutes, 

re-fixed with MEMFA for another 30 minutes and washed in PBS three times for 10 minutes 

each. Last, embryos were stored in 100% ethanol either at RT for 1 hour or at -20°C over 

night. 

 

3.8.2  Immunocytochemistry (ICC) 

 Whole mount embryos were fixed in MEMFA for 1-2h at room temperature on a 

rotating wheel, explants were fixed for 30 minutes. After rinsing with PBS, the embryos were 

dehydrated in 100% methanol and incubated at -20°C for at least over night. Rehydration in 

75%, 50%, 25% methanol in PBSw was performed for 5 min each, followed by a PBT wash 

for 15 min. To block unspecific antibody binding sites, embryos were incubated in PBT plus 

10% heat inactivated goat serum for 1 hour at RT.  

After removal of the blocking solution, the primary antibody was added and embryos were 

incubated in 300#l solution over night at 4°C or 2 hour at RT. Afterwards the embryos were 

washed 5-6 times in PBT for one hour each at RT. Secondary anti- mouse or anti-rabbit 

antibodies conjugated to alkaline phosphatase were used in 1:1000 dilution and incubated 

over night at 4°C. Embryos were rinsed the next morning in PBT six times for one hour each. 

Prior to staining, endogenous alkaline phosphatases were blocked by adding Levamisole to 

the AP buffer and incubating for 2x30 min. Staining was conducted in 1ml BCIP/NBT 

(biomol) staining solution in the dark for 20 to 30 min at RT. Reaction was stopped by rinsing 

the embryos in PBS and fixating in MEMFA over night. Staining was clearly visible after 

bleaching ectodermal pigments for 2-4 hours at RT on a light box.  
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3.8.3  Solutions and buffers  

Solutions for Immunocytochemistry                                                                 Storage 

Alkaline 

Phosphatase (AP) 

buffer 

 

100mM 

50mM 

100mM 

0.1% 

5mM 

Tris/HCl (pH 9.5)  

MgCl2 

NaCl 

Tween 20  

Levamisole 

Freshly made 

before use 

AP staining solution  4.5µl 

 

 

3.5µl 

 

 

1ml 

NBT (Nitro blue tetrazolium) 

75mg/ml in 70% 

dimethylformamide 

BCIP (5-bromo-4-chloro-3-

indolyl-phosphate) 50mg/ml in 

100% dimethylformamide 

AP buffer 

Kept at -20°C 

 

 

Kept at -20°C 

Bleaching solution 1%  

5% 

0.5x 

H2O2 

Formamide 

SSC 

H2Odest 

Freshly made 

before use 

Blocking buffer 1x 

10% 

PBT  

heat inactivated serum 

 

Lamb Serum  heat-inactivated lamb serum (30 

min at 56°C) 

Stored at  

-20°C 

MEMFA  

 

 

 

 

0,1M 

 

2mM 

1mM 

3.7% 

MOPS (3-(N-Morpholino)-

propanesulfonic acid) 

EGTA 

MgSO4  

Formaldehyde 

pH 7.4 at RT, 

freshly made 

before use 

PBS  

 

 

 

103mM 

2.7mM 

1.7mM 

0.7mM 

NaCl 

KCL 

KH2PO4 

Na2HPO4 

pH 7.2 at RT 

PBSw 1x 

0.1% 

PBS 

Tween 20 
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PBT 1x 

2mg/ml 

0.1% 

PBS 

BSA  

Triton-X-100 

 

X-Gal staining 

solution 

0,25M 

0,25M 

25µl/ml 

1M 

K3Fe(CN)6 

K4Fe(CN)6 

Xgal (40mg/ml) 

2µl/ml MgCl2 in 1x PBS 

 

 

3.9  RNA in situ hybridization 

3.9.1  Bacterial transformation 

Transformation was performed according to standard protocols (Sambrook et al., 

1989) using XL1 Blue E. coli strains. 

 

XL1 

Blue 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1lac 

[FcproABlacIqZDM15 Tn10 (Tetr)] 

Stratagene 

 

Plasmid DNA was purified with Plasmid Midi Kit (Qiagen) according to the manufacturer’s 

protocol. 

 

DNA and in vitro synthesized RNA respectively were analyzed by agarose gel 

electrophoresis. Each sample was mixed with a loading dye and pipetted to a well in a 1% 

TBE agarose gel containing ethidium bromide. DNA ladders of 1kb or 100bp were used as 

size standard. Electrophoresis gels were recorded with the Gel documentation System G:BOX 

(Syngene). 
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3.9.2  In vitro transcription of digoxigenin-labeled antisense RNA probes 

Linearization 

 To allow run-off transcription, plasmid templates were linearized with the following 

set up: 

10#g DNA template 

4#l Buffer B (Roche, Mannheim, Germany) 

3#l Restriction enzyme 

Add to 40#l DEPC H2O 

 

Reactions were conducted for two hours in an incubator at 37°C. Complete linearization was 

controlled by 1% TBE agarose gel electrophoresis as described above. Linearized plasmids 

were stored in aliquots at -20°C. 

 

In vitro transcription 

 The following transcription reactions were set up to generate antisense RNA:  

2#g Linearized plasmid 

10#l 5x Transcription buffer  

5#l 10mM Dig-NTPs mix  

5#l 100mM DTT 

0.5#l 40U/#l RNasin  

2#l  RNA-Polymerase  

Add to 50#l DEPC H2O 

 

The reactions were carried out for two hours at 37°C. After that another #l of RNA-

Polymerase was mixed to the set up mixture. Next, reactions were incubated over night at 

37°C, after which 1#l of DNase was added and incubated for 30 min at 37°C.  

According to the RNeasy Mini Kit (Qiagen) manufacturer’s protocol, the dig-labeled RNA 

probes were separated from unincorporated mononucleotides and stored in 50% formamide at 

-20°C. 
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3.9.3  In vitro transcription of messenger RNA for microinjections  

 The following transcription reactions were set up to generate capped sense mRNA for 

microinjections: 

2#g Linearized plasmid 

10#l 5x Transcription buffer  

5#l 25mM G(5´)pppGcap analog  

10#l 10mM NTPs mix  

5#l 100mM DTT 

0.5#l 40U/#l RNasin  

Add to 50#l DEPC H2O 

2#l RNA polymerase 

 

The reactions were carried out for two hours at 37°C. Another #l of RNA-Polymerase was 

mixed to the set up and reactions were incubated for another two hours at 37°C. Finally the 

mRNA probes were cleaned up according to the Qiagen RNeasy Mini Kit manufacturer’s 

protocol and messenger RNA quality was tested by gel electrophoresis. Aliquots were stored 

at -80°C. 

 

3.9.4  RNA in situ hybridization (ISH) 

Whole mount embryos for ISH were collected in 5ml screw-cap storage vials and 

fixed in freshly made MEMFA for 1.5-2h (30 min for animal caps) at RT on a rotating wheel. 

Prior to fixation, the vitelline membrane had been removed manually. MEMFA was removed 

by washing 3 x 5 min in 1x PBS, followed by a quick rinse with 100% ethanol and 

dehydration with fresh ethanol at least over night at -20°C to support probe penetration.  

In situ hybridization was performed according to the protocols by (Sive, Grainger et 

al. 2000) with minor modifications:  

First, samples were removed from storage and rehydrated stepwise to 75%, 50%, 25% ethanol 

by adding 1x PBSw, followed by 3 x 5min washes in 1x PBSw. To increase dig-labeled probe 

staining, the embryos were permeabilized by incubating in 10#g/ml Proteinase K for 15min 

(5min for explants) at RT. Because of Proteinase K usage, embryos need to be refixed in 

PBSw containing 4% paraformaldehyde for 20 min. Next, embryos were washed 5 x 5min in 

PBSw at RT. PBSw was exchanged with 50% hybridization solution in the first wash and 

with 100% hybridization solution in the second wash, each step taking 3 min at RT. The 



Materials and methods 44 

entire buffer was removed and 0.5ml of fresh hybridization solution was added per vial. 

Thereafter, samples were incubated in a water-bath and kept for one hour at 65°C to inactivate 

endogenous phosphatases. Subsequently, prehybridization followed for about 6h at 60°C to 

reduce nonspecific sticking of probes. 30-50ng of digoxigenin-labeled RNA probe was mixed 

with 100#l of hybridization solution, heated at 90°C for 5min and added to the 

prehybridization solution. Hybridization was performed over night at 60°C in a water bath.  

Next, non-hybridized probes were removed in several 20x SSC washes. The first steps 

occurred at 60°C: embryos were rinsed for 10 min in fresh hybridization solution and then 

washed 3 x 20 min in 2x SSC buffer, embryos were then washed 2 x 30min in 0.2X SSC, 

followed by one 10min wash in MAB solution at RT. The solution was replaced with 1ml of 

MAB containing 2% BMB blocking solution (Boehringher Mannheim) and vials were placed 

vertically on a rocking table for one hour at RT. Afterwards the solution was replaced with 

fresh MAB containing 2% BMB blocking solution and a 1/2000 dilution of the anti-

digoxigenin antibody coupled to alkaline phosphatase. Samples were agitated vertically for 4h 

at RT. Excess antibodies were removed by rinsing the samples in MAB and replacing with 

fresh MAB over night at 4°C. Washes in MAB were continued 5 x 1 hour the next day. For 

the chromogenic reaction, embryos were incubated in alkaline phosphatase buffer 2 x 5 min at 

RT and replaced with 0.5ml freshly prepared staining solution. Samples were kept in the dark 

and staining was quickly stopped by 2 x 10 min washes in 1X PBS at RT, once staining 

reached deep saturation. If overnight staining was required, samples were placed at 4°C.  

After fixation in MEMFA for at least 1.5 hour at RT on a rotator embryos were then washed 3 

x 20 min in 1X PBS containing 75% ethanol to prepare samples for bleaching. To better 

visualize in particular weak expression signals, epidermal and melanocyte-derived pigment 

granules were dissolved by performing a bleaching reaction for 2-4 hours at RT on a light 

box.  

 

3.9.5 Solutions and buffers 

Solutions for RNA In situ hybridization                                          Storage 

Hybridization 

Solution 

5X 

50% 

1% 

0.1% 

0.01% 

SSC 

Formamide 

Boeheringer blocking solution 

Torula RNA 

Heparin 

-20°C 
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0.1% 

0.1% 

5mM 

Tween-20 

CHAPS 

EDTA 

1% TBE agarose gel 50ml 1x  

1% 

5#l 

TBE buffer (Tris/Borate/EDTA) 

Agarose 

Ethidium bromide 

 

MAB (Maleic Acid 

Buffer), pH 7.5 

100mM 

150mM 

maleic acid 

NaCl 

 

MEMFA  

 

 

 

 

0,1M 

 

2mM 

1mM 

3.7% 

MOPS (3-(N-Morpholino)-

propanesulfonic acid) 

EGTA 

MgSO4  

Formaldehyde 

pH 7.4 at RT, 

freshly made 

before use 

Paraformaldehyde 4%  Paraformaldehyde in PBSw  

PBS  

 

 

 

103mM 

2.7mM 

1.7mM 

0.7mM 

NaCl 

KCL 

KH2PO4 

Na2HPO4 

pH 7.2 at RT 

PBSw 1x 

0.1% 

PBS 

Tween 20 

 

Proteinase K 10#g/ml  Proteinase K in PBSw  

SSC 20x  

 

3M 

0.3M 

NaCl 

sodium citrate 

pH 7.0 at RT 

 

 

3.10 Real time polymerase chain reaction 

3.10.1    RNA purification from Xenopus leavis explants 

 10-15 animal cap explants were harvested at NF 25 in 1.5ml Eppendorf tubes and 

directly processed, or frozen in liquid nitrogen and kept in the -80°C freezer. RNA 

purification was conducted using the RNeasy Mini Kit (Qiagen) in line with the 

manufacturer’s protocol, including the on-column DNA digestion using the RNase-Free 
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DNase Set. RNA concentration was determined photometrically using the nanodrop ND-1000 

(PeqLab). Finally samples were stored in aliquots of 5-10#l at -80°C. 

 

3.10.2    Reverse transcription for RT/qPCR 

 After RNA purification, reverse transcription was carried out according to the 

DyNAmo cDNA Synthesis Kit protocol (Biozym).  

 

3.10.3    Quantitative real-time PCR (RT/qPCR) 

 The following set up was prepared: 

1µl cDNA template 

5µl SYBR Green Master Mix 

1µl 3,0µM primer for and rev 

3#l H2O 

 

PCR was performed using a LightCycler® Multiwell plate 384, white from Roche. Each 

sample was amplified in triplicates. The plate was sealed with a foil and centrifuged at 

3000rpm for 1 min to eliminate bubbles in the reactions.  

 

After the run, results were analyzed using the 2$%%CT method according to Livak and 

Schmittgen, 2001. To diminish inhomogeneity in RNA quality and amount, Ct (cycle 

threshold) levels of target genes were normalized to the two housekeeping genes ODC and 

H4. Next, mRNA amounts in control MO injected ACs were set as one. Further, a ratio of 

mRNA levels in Suv4-20h MO injected and Co MO injected ACs was calculated. 

Settings for reactions were as following: 

Steps Cycles Temperature in °C Time in sec 

1. Denaturation 1 95 60  

 

2. Amplification 

 

45 

 

95 10  

60 20 

72 10 

3. Melting 1 
95 5 

65 60 

4. Cooling 1 40 30 
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3.11 Scanning electron microscopy (SEM) 

3.11.1    Preparation of explants 

 All gastrocoel roofplate explants (GRP) were dissected at NF 17 to 18 and transferred 

to 3% Glutaraldehyde fixation solution as soon as possible to avoid rolling up of the explants. 

GRPs were fixed in glass vials at RT for one hour, while gently moved on a rotator. To obtain 

clean explants for good SEM pictures, it was important to thoroughly and carefully free the 

GRPs from cell debris by washing with 1xPBS several times, at least 3x20 min. At the end 

samples were immediately delivered to the Institute for Anatomy, University of Munich, for 

further treatment according to their protocol. This included secondary fixation in Osmium 

tetroxide, 1% OsO4 and a stepwise dehydration in 30%, 50%, 70%, 90%, 96% and 100% 

ethanol for 3 x 5-15 min each step. Samples were then completely dehydrated by removing 

liquid with the critical point drying method. All samples were attached on a specimen stub 

and sputter-coated with gold to confer electrical conductivity to the specimen that is required 

for SEM. 

 

3.11.2    SEM 

 The scanning electron microscope images were kindly taken by Mrs. Beate Aschauer 

(Laboratory of Professor Ulrich Welsch, Institute of Anatomy, Medical Faculty, LMU, 

Munich) using the Jeol: JSM-35 GF scanning electron microscope. 

3.11.3 Solutions and buffers 

Solutions for Scanning electron microscopy 

3% Glutaraldehyde 

solution 

25% 

0.1M 

Glutaraldehyde, 4°C 

Sorensen’s Phosphate buffer 

 

Sorensen’s 

Phosphate buffer 

0.1M 

0.1M 

KH2PO4  

Na2HPO4 x 2 H2O 

pH 7.4 
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3.12 LNA in situ hybridisation 

3.12.1 Preparations 

Embryos for LNA in situ hybridization were injected at two-cell stage into one animal 

blastomere. 30-40ng morpholino or 1.5ng of Suv4-20h1 mRNA were injected together with 

Alexa 488 as lineage tracer and tested for microRNA miR-449 expression. Wild type, control 

MO, Suv4-20h1 MO, Suv4-20h2 MO and Suv4-20h1 MO+Suv4-20h1 mRNA injected 

embryos were studied at the following stages: NF 25 and NF 32-35. To analyze epidermal 

multiciliated cells, NF 25 embryos were collected, which gave a robust expression in the 

epidermis. In the pronephros, strong signals were observed from NF 32 onward hence NF 32-

35 embryos were used to investigate miR-449 pronephric expression,. Fixation of embryos 

was performed in 4% PFA over night at 4°C. Next, samples were washed 2x10 minutes in 

PBS  kept in 100% methanol at -20°C. Penetrance of acetylated !-tubulin and Dnah9 

depletion in immunostainings were used to assess ciliogenic phenotypes. Only batches with 

highly depleted epidermal cilia were used for LNA in situ tests.  

LNA in situ hybridization experiments were kindly performed by Mrs. Virginie 

Thomé (Laboratory of Dr. Laurent Kodjabachian, Institut de Biologie du Développement de 

Marseille-Luminy, France). 

 

3.12.2     Solutions and buffers 

Solutions for LNA In situ hybridization                                                            Storage 

4% 

Paraformaldehyde 

4% 

1x 

PFA 

PBS 

pH 7.4, stored at  

-20°C 

 

 

3.13  Video-tracking 
 
 For fluid flow analysis on the larval epidermis, NF 33/34 Suv4-20h1 morphant and 

control morphant embryos were anaesthetized with Tricaine in petri dishes covered with 

agarose. A microinjection needle was filled with a red dye (Phenol Red, Sigma-Aldrich), 

which we used to visualize the fluid flow. As embryos rest on their sides, the fluid flow of 

either side was tested individually. The tip of the needle was placed near to the embryo’s skin 

surface and the dye was released in a pulsed manner. It was made sure to eliminate factors 
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that could disturb the fluid flow, e.g. ventilation by air condition and unidirectional injection. 

The fluid flow was recorded using the Leica Application Suite V3 3.0.  

 
 

3.14  Statistical tests 
 

A two-tailed Fischer’s exact test was performed to analyse the significance of 

morphological and molecular phenotypes. Quantitative real-time PCR studies were validated 

by two-tailed Student’s t-test. 
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4. RESULTS  

4.1 Morpholino induced analysis of Suv4-20h enzymes in Xenopus leavis 

epidermal multiciliogenesis 
 

An increasing number of studies have pointed out the importance of cilia in signaling 

processes, early embryonic development, as well as pathological conditions of the respiratory 

tract, kidneys and carcinogenesis (Fliegauf, Benzing et al. 2007). In order to treat such 

diseases it is essential to learn as much as possible about the development of the affected 

organ. The embryonic epidermis of Xenopus laevis has become a highly suited model to study 

cilia development as well as mucociliary epithelia and mucociliary diseases. The larval skin is 

quite similar to the human respiratory epithelium. Among other cell types, mucus-secreting 

goblet and mucus clearing multiciliated cells (MCC) are pivotal for a proper functioning of 

the epithelium (Billett and Gould 1971; Morrisey and Hogan 2010; Dubaissi and Papalopulu 

2011). Additionally, genes and molecular mechanisms required for ciliogenesis are similar in 

Xenopus and human showing that this relatively simple model can translate to human 

development. Furthermore, Xenopus laevis has many assets, which have established it as a 

favored model for research on mucociliary epithelium and cilia development. Xenopus grows 

quickly, a great variety of molecular tools can be used for analysis and due to its external 

location, the embryonic skin is easier to access for treatments and analysis compared to 

mammal respiratory epithelia (Werner and Mitchell 2012).  

 

Our laboratory has been studying the effects of the di- and tri-methylation catalyzing Suv4-

20h1 and -h2 histone methyltransferases in the early development of X. laevis. Nicetto (2012) 

discovered that Suv4-20h1/h2 enzymes were required for formation of the neuroectoderm and 

the expression of neuronal markers Delta-like 1, Neurogenin and N-tubulin. Intriguingly, 

RNA in situ hybridization analysis showed that while Delta-like1 was downregulated in the 

neurogenic stripes of the forming brain, expression levels were upregulated in the skin of 

Suv4-20h double morphants (Nicetto 2012).  

The expression of non-neuroectodermal Delta-like 1 is associated to cilia formation in the 

frog larval skin (Deblandre, Wettstein et al. 1999) and further investigations in Suv4-20h 

double morphants revealed that the expression of the axonemal marker acetylated !-tubulin 

was reduced. Moreover, confocal analysis showed shorter and less cilia per ciliated cell in the 

epidermis. Co-injection of xSuv4-20h1/2 morpholinos and murine Suv4-20h1/h2 mRNA was 
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able to restore both Delta-like 1 and acetylated !-tubulin expression in the epidermis. These 

results led to the asumption that Suv4-20h enzymes-mediated H4K20 di- and tri-methylation 

was required for ciliogenesis (Nicetto 2012). The genetic background in cilia formation has 

been characterized in depth, however there is little knowledge about epigenetic regulatory 

mechanisms of cilia development, leading us to characterize the functions of the Suv4-20h 

enzymes in the formation of these vital cell organelles. 

 

For the following studies, “loss-of-function” experiments were performed in order to analyze 

Suv4-20h HMT function in ciliogenesis. Therefore, anti-sense morpholino oligonucleotide 

assays were used (Materials and Methods, 3.5.1) to inhibit endogenous Suv4-20h protein 

synthesis (Fig. 4.1b). Morpholino oligonucleotides (MO) are currently the leading tools to 

achieve protein knockdown in Xenopus laevis. Some of the advantages to other gene 

knockdown approaches, e.g. S-DNA and siRNA, include high sequence specificity, low off-

target effects and high affinity to RNA (Summerton 2007). Suv4-20h MOs (Fig. 4.1c) were 

designed by Gene Tools and tested for specificity before use. Suv4-20h MO specific 

translation blocking of the targeted template has previously been proven by in vitro TNT 

assay. Additionally, western blot analysis significantly showed that Suv4-20h1/h2 depletion 

causes a decrease of H4K20me2 and H4K20me3 marks, whereas H4K20me1 increased. 

Suv4-20h enzyme data from preliminary work was achieved by double protein knockdown 

with 60ng of each Suv4-20h1 and Suv4-20h2 morpholino (Nicetto 2012).  

 

In my experiments, 30-50ng of Suv4-20h1 morpholino was injected. These concentrations 

achieved a ciliary phenotype with comparable strength and penetrance to the Suv4-20h double 

morphants. Furthermore, Suv4-20h1 and Suv4-20h2 morpholino injection generated the same 

phenotype. Nonetheless, the phenotype was stronger and occurred with higher penetrance in 

Suv4-20h1 morphants than in Suv4-20h2 morphants at older stages (own data and personal 

correspondence). These observations supported the results of Nicetto et al., according to 

which the temporal expression patterns of the two Suv4-20h enzymes are opposing. While 

Suv4-20h1 mRNA levels increase, Suv4-20h2 levels decrease from midgastrula onwards 

(Nicetto, Hahn et al. 2013). Reviewing the molecular and phenotypic findings suggested that 

Suv4-20h1 enzyme was more important than Suv4-20h2 in later stages of embryogenesis. 

Thus, subsequent analyses were mainly performed by Suv4-20h1 protein knockdown. 

Experiments were conducted according to the following principles. Embryos from outbred 

Xenopus adults were used to obtain individual microinjected cohorts. Basically, Suv4-20h1 or 
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-h2 depleted morphant cohorts were compared to control embryo cohorts, which served as an 

external control for microinjection and subsequent statistical analysis of penetrance. Control 

cohorts were uninjected wild type embryos or control morpholino injected embryos. 

Additonally, the injected versus the uninjected side of each embryo was compared within a 

morphant cohort (internal control). This method enabled to minimize the non-specific 

developmental differences that occur in cohorts injected with different morpholinos. The 

internal control was established by the mode of microinjection itself. Morphant embryos were 

usually generated by unilateral microinjection of morpholino (Fig. 4.1a). Thereby, Suv4-

20h1, -h2 or control morpholino was injected twice into the animal pole of one blastomere at 

two-cell stage (NF 2). To assess the injected side, a lineage tracer such as lacZ RNA or 

fluorescent Alexa Fluor-488 was co-injected. In this way, all specimens were completely 

uninjected on the one side and morpholino-injected on the other side. Noteworthy, injection 

of control MO produced phenotypes comparable to that of wild type embryos and uninjected 

side of morphants.  

                                  
 
Fig. 4.1: Morpholino oligonucleotides 
a) Unilateral injection mode. b) Protein knockdown by translation blocking morpholinos. MO binds to 
the complementary region of the target mRNA and inhibits progression of the initiation complex 
(Eisen and Smith 2008). c) From top to bottom: sequence of xSuv4-20h1 target region 
(NM_001092308) and Suv4-20h1 MO. Sequence of xSuv4-20h2 mRNA (NM_001097050) and Suv4-
20h2 MO and Suv4-20h target region. The region of morpholino base pairing is displayed in blue; the 
start codon is labeled in red. 

 

            
xSuv4-20h1              5’ - GTATGTTGGCATGAAGTGGTTGGGCGAATCCAAGAA - 3’
Suv4-20h1 MO                        3’ - ACCGTACTTCACCAACCCGCTTAGG - 5‘

xSuv4-20h2              5’ - TGCACATACTATGGGTTCAAATCGGTTGACGGCAAGA - 3‘                         
Suv4-20h2 MO                                  3’  - TACCCAAGT T TAGCCAACTGCCGTT - 5’

5’ CAP AAAAAAA

Anti-sense morpholino oligonucleotide

Suv4-20h ORFAUG

Translation

a

b

240210

150

220 230

140130120

2-cell tailbud

c
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4.1.1 Abrogation of Suv4-20 h1 HMT reduces expression of acetylated !-tubulin 

Acetylation of "-tubulin is correlated with stabilized microtubules, for example those 

located in ciliary axonemes and neuronal processes. On the surface of the embryo, acetylated 

"-tubulin is found in the apical cilia tufts of MCCs (Chu and Klymkowsky 1989). In the 

following analyses, the cilia tufts were visualized by whole mount ICC using anti-acetylated 

"-tubulin antibody to elucidate the ciliary phenotype in control cohorts and morphants.  

Figure 4.2 shows acetylated "-tubulin expression of a wild type embryo via 

immunocytochemistry. Cilia tufts were normally arranged in dorso-ventral stripes consisting 

of single multiciliated cells with gaps between the MCCs (Fig. 4.2).  

 

 
Fig. 4.2: Acetylated "-tubulin marks ciliary axonemes. a: Whole-mount immunocytochemistry of a 
NF 27 WT embryo with acetylated "-tubulin expressed in evenly scattered multiciliated cells in the 
epidermis; alkaline phosphatase (ap)-staining. b: high magnification image of cilia tufts (arrow). Scale 
bars: 200 #m. 
 
 

To investigate the Suv4-20h1-related cilia changes, I analyzed the expression of acetylated "-

tubulin in wild type, control MO injected and Suv4-20h1 MO injected cohorts. Images in Fig. 

4.3 and 4.4 were achieved using fluorescent whole mount ICC with anti-acetylated "-tubulin 

antibodies. Morphants were generated by microinjection of 40ng Xenopus Suv4-20h1 

morpholino with fluorescent Alexa Fluor-488 and the same amount of a standard control 

morpholino plus Alexa respectively. As ciliated cells are fully differentiated by NF 23 

(Deblandre, Wettstein et al. 1999), acetylated "-tubulin expression was studied from NF 25 

onwards. Therefore, embryos were staged according to Nieuwkoop and Faber (Nieuwkoop 

and Faber 1994) and divided into groups of left side and right side injected embryos before 

fixation. Fig. 4.3 shows an image taken from a representative wild type sample after 

immunostaining. The “speckled” red fluorescent signal indicated expression of acetylated "-

a b
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tubulin and each bright red spot represents hundreds of cilia in the apical surface of a 

multiciliated cell. Ciliary tufts are displayed via scanning electron microscopy (Fig. 4.3b). 

 

Fig. 4.3: Immunohistochemistry with anti-acetylated "-tubulin antibodies showing a salt-and-pepper 
pattern of NF 25 Xenopus epidermis. a: lateral view of an WT embryo. Bright red spots indicate cilia 
tufts as seen in Fig 4.2. Illustration of an embryo shows region of magnification. b: scanning electron 
microscopy image, where multiciliated cells are surrounded by goblet cells and ionocytes. Arrowhead 
indicates a multiciliated cell in the ICC and SEM images.  
 

  
Fig. 4.4: Acetylated "-tubulin is reduced in Suv4-20h1 MO injected embryos. 
Immunocytochemistry against acetylated "-tubulin in right side injected NF 26 embryos. The first 
three columns represent dorsal views of embryos. The fourth colum shows lateral view of the injected 
side. a-d: acetylated "-tubulin expression in Co-MO injected embryos is similar in injected and 
uninjected side. e-h: acetylated "-tubulin is reduced in the injected side of Suv4-20h1 morphants 
(arrowhead) (n=4 independent experiments). 
 
 
As can be seen in Fig. 4.4 the acetylated "-tubulin fluorescent signal is noticeably weakened 

in the injected side of Suv4-20h1 morphants (Sh1-MO); Fig 4.4e-h). Additionally, cilia tufts 

(“red spots”) appeared smaller. In contrast, acetylated "-tubulin signal was equally strong in 

both sides of control morpholino (Co-MO) injected samples (Fig. 4.4a-d). This showed that 

ICC 160x

Acetylated α-tubulin

W
T

lateral

a b
SEM 5000x

59/64 

39/47 
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multiciliogenesis was defective in Suv4-20h1 morphants similar to Suv4-20h double 

morphants.  

 

4.1.2 Depletion of Suv4-20h1 HMT perturbs directional fluid flow 

 
Airway multicilia beat in a so-called metachronous wave in order to establish a 

unidirectional fluid flow to transport debris, noxious agents and infectious organisms from the 

respiratory epithelium (Chilvers and O'Callaghan 2000). X. laevis epidermal multicilia work 

similarly. The fluid flow keeps the larval skin clean and sufficiently provided with oxygen 

(Werner and Mitchell 2012).  A strong fluid flow requires cilia motility and cilia organization 

in two planar polarities: the rotational and tissue-level polarity. Cilia need to be polarized to 

each other within a ciliated cell and ciliated cells in turn need to be polarized to each other 

within a tissue respectively (Wallingford 2010). The epidermal fluid flow is established as 

early as NF 23 when differentiated cilia are on the skin surface (Deblandre, Wettstein et al. 

1999). Cilia can generate a powerful stroke, which is sufficient to propel the resting embryo 

in the buffer solution over the smooth surface of the agarose gel.  

 

Given the decreased acetylated "-tubulin signal in the Suv4-20h1 morphants, it was further 

investigated, whether the epidermal fluid flow was affected. Unilaterally injected embryos 

showed strong phenotypic changes such as lack of eye and melanophores (melanocytes), 

neurologic defects and a curved anterior-posterior axis in the injected side, similar to Suv4-

20h double morphants (Nicetto, Hahn et al. 2013). Control morphants showed a directed and 

fast fluid flow on each uninjected and injected side (Fig. 4.5a,b). The red dye was transported 

quickly from the head region to the tail region forming a y-shaped flow pattern. In contrast to 

the control, Suv4-20h1 morphants had a disturbed fluid flow on the skin surface (Fig. 4.5c,d). 

Here, the red dye was removed more slowly and without a visible flow pattern, indicating a 

perturbation in fluid flow, which might be caused by cilia motility defects or by planar 

polarity defects.  
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Fig. 4.5: Cilia-driven fluid flow is perturbed in Suv4-20h1 morphants. Unidirectional 
cilia-driven fluid flow generated by hundreds of beating cilia was observed in anesthetized 
tadpoles. Xenopus laevis embryos were injected with control morpholino and Suv4-20 h1 
morpholino respectively. Here, injected sides are shown. In the beginning, a dye was injected 
on the surface of the embryos in an area close to the head. a,b: in control embryos, the dye 
was quickly washed away towards the tail of the embryo, thus creating a y-shaped flow 
pattern (b). c,d: flow pattern in injected side of Suv4-20h1 morphants was perturbed. The 
flow is slowed down, which was indicated by accumulation of dye on the skin. Note the eye 
defect and shortened body axis. Movie in Supplement. 
 

 

4.1.3 Suv4-20h HMTases are required for ciliogenesis by promoting expression 

of ciliogenic genes 

 
To gain more insight into the mechanisms underlying the Suv4-20h ciliary phenotype, 

multiciliogenic genes such as foxj1 and dnah9 were investigated using RNA in situ 

hybridization. In its function as a transcription factor, FoxJ1 (forkhead box J1) promotes 

activation of genes required for apical docking of basal bodies, cilia extension and cilia 

motility. Interestingly, it is a key regulator of motile cilia only, but not of non-motile primary 

cilia. Mice, which lacked foxj1/Hfh-4, had missing 9+2-type (motile) cilia formation and 

organ patterning, whereas 9+0-type (primary) cilia formation was unaffected. Motile cilia 

were dose-dependently reduced in number and shortened in length by Foxj1 MO injection 

(Pohl and Knochel 2004; Stubbs, Oishi et al. 2008; Neugebauer, Amack et al. 2009). Dnah9 

(dynein axonemal heavy chain 9) is one of the genes induced by FoxJ1 and is critical for cilia 

motility. Motile cilia require dynein arms to generate a wave-like bending of the axonemes 

that collectively produce a fluid flow along surfaces. Dynein motor function of the nine outer 

doublet microtubules is essential for initiation and propagation of motility, which in fact is 

due to microtubule sliding powered by ATP hydrolysis. Interestingly, doublet microtubules 

slide asynchronously and thus generate an effective and a recovery stroke (Satir 1980; 

Kramer-Zucker, Olale et al. 2005; Stubbs, Oishi et al. 2008). 
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First of all, two-cell stage embryos were unilaterally injected into the animal region of one 

blastomere. Only precisely injected embryos were collected for succeeding analysis. 

In figure 4.6, representative embryos from tadpole stages (NF 25), when MCCs are 

differentiated, are stained for foxj1 mRNA. Via RNA in situ hybridization, messenger RNAs 

of genes of interest are detected. The first two columns display the right side of wild type, Co 

MO and Suv4-20h1 MO injected specimen. The last two columns represent the left side, 

which is injected, where indicated.  

As expected, foxj1 was expressed in ciliated cells of the epidermis, creating a regular polka 

dot like pattern of stained cells. Notably, foxj1 was also detectable in the central nervous 

system, especially in the most caudal part of the spinal cord central canal, the ciliated ampulla 

terminalis (Hagenlocher, Walentek et al. 2013). In Suv4-20h1 morphant embryos, expression 

was still visible in the epidermis. Furthermore, Suv4-20h1 MO injected specimen at tadpole 

stages appeared to have more MCCs. This phenotype was scored at high penetrance (Fig. 

4.6k,l, p<0.001, Fisher’s exact test, two-tailed). Among others, it was striking that the density 

of MCCs was higher in the head region. More clearly than in control morphants and in the 

uninjected side of each embryo, foxj1-labeled cells were adjacent to each other.  

 

 
Fig. 4.6: Suv4-20h1 HMT depletion increases the number of foxj1 positive cells in the non-neural 
ectoderm. RNA in situ hybridization (ISH). Graphic shows  unilateral injection mode: two red spots 
mark site of microinjection. Images show lateral views of NF 25 wild type, control MO injected and 
Suv4-20h1 MO injected embryos. The right side is uninjected, whereas the left side is injected, where 
it is indicated (*). White boxes in the head region mark regions of higher magnification displayed in 
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b,c,f,g,j and k. Numbers of embryos showing the displayed type of staining are compared to the total 
number of analyzed embryos (n=3 independent experiments). hpf: hours post fertilization.  
 
 
Figure 4.7 shows immunostaining for dnah9, which has a comparable spacial expression (e.g. 

expression in MCC and CNS) to foxj1. Similar to foxj1, each purple stained dot represents a 

ciliated epidermal cell, which is positive for dnah9 mRNA. Both control embryos (Fig. 4.7a-

h) and morphants (Fig. 4.7k,l) display analogous results to foxj1 mRNA expression. The 

amount of dnah9+ cells in Suv4-20h1 morphants also appeared to be increased, whereas it 

was normal in control embryos and in the uninjected halves. 
 

 
Fig. 4.7: Suv4-20h1 depletion increases the number of dnah9 mRNA positive cells in the non-
neural ectoderm  
ISH with unilaterally injected embryos. Lateral views of uninjected (a-d, e-f, i-j) and MO injected (g-
h, k-l) sides of NF 25 embryos. White boxes in the head region mark areas of higher magnification. 
dnah9 expression pattern of Suv4-20h1-morphant embryos resembled foxj1 expression; dnah9+ 
multiciliated cells were upregulated, especially in the anterior region (k,l). The penetrance of affected 
embryos was high (p<0.001, Fisher’s exact test); *: injected side, where indicated (n=3 independent 
experiments). 
 
 
To further address, if mRNA levels of ciliary genes were affected, a relative quantification via 

real-time PCR was performed. Thereby, mRNA levels of genes in morphant and wild type 

ectodermal explants (animal caps) were detected relative to the mRNA levels of two reference 

(‘housekeeping’) genes, e.g. ODC and H4. To analyze epidermal expression levels of genes 

of interest, animal cap (AC) assay was chosen. Animal caps represent isolated epidermal 

tissue. Thus, it was expected that MO-related changes in expression levels of each cohort 

would be free from meso-endodermal signals. 

Fig. 4.8a demonstrates the sequential steps in the preparation of animal caps. Relative 

quantification was performed for above-mentioned genes foxj1 and dnah9. Morphant embryos 
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as well as control and wild type embryos were analyzed at tadpole stage NF 25 when ciliated 

cells are differentiated. ODC and H4 were used as reference genes to normalize mRNA levels 

of the studied genes.  

The total amount of foxj1+ cells, which represent ciliated cells, were significantly increased in 

conditions injected with Suv4-20h1 MO (p=0.002). Cells were increased by 45% relative to 

control MO injected caps. Foxj1+ cells were increased by 24% in Suv4-20h1/h2 morphants 

(p=0.021). Thus, to assess relative quantification of foxj1 and dnah9 per each multiciliated 

cell, mRNA expression levels were calculated with the increased number of foxj1+ cells. 

Results identify significant lower levels for foxj1 and dnah9 in Suv4-20h1 and double 

morphants relative to control morphants by about 50%, (p=0.05, p=0.01 respectively, Fig. 

4.8c). The difference in the results (more MCCs, but reduced mRNA levels) might be 

explained by the two different methods that I have used, where quantitative (RT/qPCR) and 

non-quantitative (ISH) methods were compared. These results indicate, that reduced foxj1 

expression levels might result in less cilia and shorter cilia length, a phenotype, which has 

been observed in Xenopus (Stubbs, Oishi et al. 2008). Additionally, dnah9 expression levels 

were lower indicating that this caused defects in cilia motility and therefore affected fluid 

flow. However, there is a second phenotype: Suv4-20h1 depletion apparently increases the 

number of MCCs, leading to more foxj1 and dnah9 positive cells.  

 



Results 60 

 
Fig. 4.8: Depletion of Suv4-20h1 or h1/h2 enzymes decreases mRNA levels of foxj1 and dnah9. 
RT/qPCR in animal caps. a: illustration of animal cap preparation: injection of 40ng of control, Suv4-
20h1 or h1/h2 MOs. Isolation of ACs, culture in a saline solution until NF 25. b: three fields of 
100x100px were counted per cap of which a mean value was calculated. The grey box marks a 
representative field. Significant increase of foxj1+ cells in 40ng Suv4-20h1 MO (p=0.002) injected 
caps by 45% relative to control MO caps. 24% increase of foxj1+ cells in 40ng Suv4-20h1/h2 MO 
(p=0.02). n=7 caps per condition, cells absolute n=697 (Co MO), n=1154  (Sh1 MO), n=979 (Sh1/h2 
MO), n=2 independent experiments. c: Relative quantification of foxj1 and dnah9 expression levels 
were normalized to ODC/H4. The mRNA expression levels of morphants were calculated with the 
increase in foxj1+ cells. Foxj1 and dnah9 levels were significantly two-fold reduced in Suv4-20h1 and 
double morphants relative to control morphants (foxj1: p=0.03 and p=0.01 respectively, dnah9: p=0.01 
and p=0.01), error bars indicate SEM (n=3 independent experiments). 
 
 
 

4.1.4 Depletion of Suv4-20h HMTases perturbs multiciliated cell fate 

specification  

 

On the cellular level, cilia formation was compromised and the cilia-driven fluid flow 

was perturbed. Paradoxically, more foxj1+ and dnah9+ cells were observed in the larval 

epidermis, which could imply that Suv4-20h specific processes interfered with multiciliated 

cell fate specification leading to more MCCs in the mucociliary epithelium of the skin. To 
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address this question, Suv4-20h1 and Suv4-20h2 MO effects on multiciliated cell 

specification were studied.  

 

In the absence of Suv4-20h1/h2 HMTs, Delta-like 1 (Dll1) mRNA was increased in the non-

neural ectoderm (Nicetto 2012). The Delta/Notch pathway has a crucial role in cell 

determination. Therefore, we investigated if multiciliated cell precursor (MCP) selection was 

affected. According to Deblandre et al. (1999), two steps are required to form differentiated 

MCCs on the epidermal surface. First, during gastrulation, a subset of cells is selected to 

become a MCC by expressing Delta-like 1. Second, during neurulation, these cells express "-

tubulin as a prerequisite of cilia formation.  

 

As dll1 overexpression was detected at late gastrula, a time when precursors are chosen, 

embryos from a stage immediately afterwards were analyzed. "-tubulin and Foxj1 were used 

as markers for ciliated cell precursors and motile ciliated cells respectively (Deblandre, 

Wettstein et al. 1999). Furthermore, Multicilin (mci) was investigated as a hallmark of 

multiciliated cells (Stubbs, Vladar et al. 2012). At NF 14, all three markers appear within 

multiciliated cell precursors of the inner layer in a regularly spaced pattern. Results obtained 

from RNA in situ hybridization analyses with these markers indicate that reduced Suv4-20h1 

or -h2 enzyme function results in an overproduction of MCC precursors, i.e. !-tubulin+, mci+ 

and foxj1+ cells. 

 

Fig. 4.9 shows in situ hybridization for the ciliated cell marker !-tubulin on neurula stage (NF 

14) embryos. Accordingly, the uninjected side of the embryo could be distinguished from the 

injected side, which stained indigo after treatment with X-Gal. Control MO injected specimen 

showed the typical spotted pattern of !-tubulin-probe containing MCPs. In between them are 

unstained, MCP-free areas (Fig 4.9a-c). In contrast, there were clearly more !-tubulin+ cells 

in the Suv4-20h MO treated embryos (Fig. 4.9d-l), which led to densely packed !-tubulin+ 

cells in the inner skin layer. Sections of embryos showed a thickening of the !-tubulin+ inner 

layer in the Suv4-20h MO injected side (Fig. 4.9j).  

 

 

 



Results 62 

 
 

S 
h1

 M
O

 
S 

h2
 M

O
 

  
dorsal

a
Co

 M
O

 

α-Tubulin

lateral

injected uninjectedb c

d fe

ihg

Sh
1 

M
O

 
Se

ct
io

ns

j k lnp          uninj.         inj.
epi epi

S 
h1

 M
O

 
+ 

Sh
1 

RN
A

m ninjected uninjected



Results 63 

Fig. 4.9: Suv4-20h1 or -h2 knockdown increases the density of !-tubulin-labeled ciliated cell 
precursors. In situ hybridization. First column shows dorsal view of samples, second column the 
injected half and the third the uninjected half. a-c: control morpholino injected embryos showing a 
normal phenotype. d-i: Suv4-20h1 (p<0.001) and Suv4-20h2 (p<0.001) morphants showing an 
increased population of ciliated cell progenitors in the injected region. Displayed are a lower power 
view of the whole embryo and an insert of higher power. d,g: Note the wide neural plate due to 
delayed neural tube formation in the injected side (marked by yellow line). k: section through a Suv4-
20h1 morphant (as indicated by white dashed line in e) illustrates !-tubulin stained cells in the 
epidermis. Yellow box: injected side, White box: uninjected side. The injected side had more !-
tubulin+ MCPs (j) and the inner layer of the epidermis was thicker in the injected side compared to 
the uninjected side (l). m,n: Rescue decreased the number of !-tubulin+ cells compared to uninjected 
side and Suv4-20h1 MO injected regions (p=0.001) . Scale bars, 200#m. White arrowhead: injected 
side and anterior region, epi: epidermis, np: neural plate (n=3 independent experiments).  
 
 
The upregulation of !-tubulin+ cells was evident with high penetrance in three individual 

experiments (Fig. 4.10). Some wild type and control MO injected embryos that were affected 

were presumably due to non-specific effects. The specificity of the Suv4-20h-related !-

tubulin upregulation was tested by a so-called rescue experiment. Phenotypes that were 

caused by effective Suv4-20h1 translation blocking can be rescued by adding Suv4-20h1 

RNA, which cannot be targeted by the used Suv4-20h1 morpholino. For this purpose, 

alongside to Suv4-20h1 MO, murine Suv4-20h1 RNA was injected, which encodes a well-

characterized protein with similar function. Upon rescue, the amount of !-tubulin+ cells was 

comparable in injected and uninjected regions (Fig. 4.9m,n), demonstrating a Suv4-20h1-

specific effect.  
 

 
Fig. 4.10: Statistical analysis of Suv4-20h MO effects on !-tubulin expression in MCPs (Related 
to Fig. 4.9). Embryos were examined for !-tubulin at NF 14 by ISH. The absolute number of embryos 
is indicated in the top row of the diagram (n=three independent experiments).  
 
 

Furthermore, the upregulation of foxj1+ (Fig. 4.11) and mci+ (Fig.4.12) cells in RNA in situ 

hybridization analysis at NF 14 supports the idea that MCPs are increased. 
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Fig. 4.11: Suv4-20h1 or -h2 ablation increases number of foxj1+ multiciliated cell precursors. In 
situ hybridization. LacZ RNA and Suv4-20h1 or Suv4-20h2 MO were injected into one blastomere at 
two-cell stage. At NF 14/15, embryos were fixed and X-Gal staining (light blue color) was performed 
to trace the injected side (arrow heads). The foxj1 probe was detected with NBT/ BCIP (purple color). 
Note again the delayed neural fold formation of the Suv(ar) depleted side (a,b,d,e). Foxj1 positive 
cells mark the putative multiciliated cells. Increased density of foxj1-positive cells correlates with 
higher density of !-tubulin+ cells. h: As shown in the diagram, injection of both Sh1 MO (p<0.001, 
two-tailed) or Sh2 MO (p<0.001) increased the density of foxj1+ cells (n=three independent 
experiments). 

 
Fig. 4.12: Suv4-20h1 knockdown causes an increase of multicilin-positive MCPs.  
a-d: RNA in situ hybridization of NF 14 embryos. The number of MCPs, which were detected by mci 
probes, was upregulated in the Suv4-20h1 depleted cohort. i: Precursor counts were relatively 
increased in the Suv4-20h1MO injected side by 50% compared to the uninjected side (p<0.0001). j: 
Suv4-20h1 ablation strongly reduced mci mRNA levels by over 60% relative to control MO injected 
skin explants (p=0.15). White boxes: region of higher magnification (n=three individual experiments).  
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Fig. 4.12 displays the expression of mci mRNA in multiciliated cell precursors. MCPs were 

significantly increased in the injected sides (n=987) of Suv4-20h1 MO compared to the 

uninjected sides (n=658) by about 50% (p<0.0001, e-i). The numbers were assessed by the 

following method. From each side (injected/uninjected) of an embryo, one field of a fixed size 

was selected at a comparable region (see white boxes in Fig. 4.12) and mci+ cells were 

counted. In the control MO injected cohort, MCP counts were similar in injected (n=1107) 

and uninjected sides (n=1168).  

The ciliogenic genes, foxj1 and dnah9 were downregulated in tailbud stages. To test whether 

this is also valid for mci mRNA levels in MCPs, relative quantification was conducted with 

NF 14 skin explants. ODC and H4 were again used as reference genes to normalize mRNA 

levels of the gene of interest and mRNA amount in the control MO injected cohort was set as 

one. Given that Suv4-20h1 morphants generated more MCPs, the mci mRNA levels were 

adjusted to the 50% increase in mci+ cells. Mci mRNA levels were lower in Suv4-20h1 

morphants relative to control morphants by more than 60%, (p=0.15, Fig. 4.12j).   

 

The results show a clear rise in the amount of multiciliated cell progenitors that are positive 

for !-tubulin, foxj1 and mci after Suv4-20h protein ablation. According to Deblandre et al. 

(1999), the number of MCPs is restricted by lateral inhibition through the Delta/Notch 

pathway. Overexpression of dll1 was reported to increase the number of specified MCPs 

(Deblandre, Wettstein et al. 1999). Consequently, the most obvious interpretation from our 

data together with previous findings of dll1 upregulation during the gastrula stages would be 

that Suv4-20h HMTs are necessary to restrict the multiciliated cell fate specification via 

Delta/Notch. 

 

4.1.5 Depletion of Suv4-20h HMTases perturbs multiciliated cell spacing pattern  

 

In the process of multiciliated cell development, MCPs move by intercalation from the 

inner deep layer to the outer layer of the skin. As a result of this, two differentiated MCCs 

hardly ever touch each other. Additionally, multiciliated cells of the Xenopus larval skin adopt 

an evenly spaced pattern with goblet cells, small secretory cells and ionocytes separating the 

MCCs (Deblandre, Wettstein et al. 1999).  

It was interesting to know if the increase of MCPs results in patterning changes in the 

Xenopus mucociliary epithelium. Immunohistochemistry for acetylated "-tubulin, which is a 
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stable form of !-tubulin found in microtubules, was carried out in order to detect MCCs on 

the skin surface. Subsequently, the injected and uninjected side of each embryo was pictured 

and compared to each other.  On each side, a standardized region was selected and the number 

of multiciliated cells per field was counted. In morphant embryos, the numbers of mature 

MCCs was significantly increased (p=0.0184) by 30% compared to the non-injected (Fig. 

4.13). The spacing pattern seemed more random, although big clusters of MCCs in contact 

with each other were missing. This suggests that the mechanism of intercalation of progenitor 

cells was still operating. Therefore, the increase in the number of progenitors and 

multiciliated cells might be explained by a shift in cell determination towards the MCC fate, 

an over-proliferation of committed multiciliated cell precursors or both. 

  

 

 

 

 

4.2 Suv4-20h enzymes are required for ciliogenesis during pronephric 

development  
 

4.2.1 Expression levels of genes required for multiciliogenesis are reduced in the 

nephrostomes 

 
Motile multiciliated cells not only exist in the epidermis, but also in the pronephros. 

The amphibian embryonic kidney, which is derived from intermediate mesoderm, has three 

ciliated nephrostomes. The ultrafiltrate from the glomus is thought to be streamed into the 

adjacent tubules via the nephrostomes by a swirling beating of the many cilia (Mobjerg, 

Larsen et al. 2000; Wessely and Tran 2011). This raises the question whether Suv4-20h 

HMTs promote ciliogenesis in a general manner. 
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To address this issue, embryos were injected into one ventral blastomere at 4-cell stage to 

specifically target nephrostomes and epidermis and were collected at different time points 

after NF 28. In situ hybridization for dnah9 in NF 32/ 33 tadpoles shows expression in three 

organs: pronephros, otic vesicle and epidermis. In the pronephros, dnah9 is expressed in three 

defined structures, called nephrostomes. In Suv4-20h1 morphants, ciliogenesis was blocked in 

the nephrostomes given that dnah9 expression was highly affected in the Suv4-20h1 MO 

injected half (p<0.001). 80% showed a strong phenotype with an absent expression (Fig. 

4.14g,h) and 10% showed a reduced phenotype in the nephrostomes. The specificity of the 

observed pronephric phenotype was demonstrated by a rescue experiment with Suv4-20h1 

MO and murine Suv4-20h1 mRNA coinjection. Succeeding analysis showed that the absent 

dnah9 expression in the nephrostomes was reduced by 30% in rescue embryos relative to the 

Suv4-20h1 MO condition (p=0.0006, Fig. 4.14k,l,m). Furthermore, the fraction of embryos 

with one/two or three (normal) dnah9+ nephrostomes was larger. Interestingly, 7 out of 99 

embryos from the rescue cohort appeared to have 4 dnah9+ nephrostomes. Consequently, the 

added RNA compensated for the reduced Suv4-20h1 protein levels and loss of dnah9 

expression recovered partially in rescued embryos. This recovery of dnah9 expression, 

although incomplete, testifies to the specific nature of the ciliogenic defect in Suv4-20h1 

morphants.  
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Fig. 4.14: Suv4-20h1 enzyme depletion abolishes dynein axonemal heavy chain 9 in the 
embryonic kidney. Expression was detected by RNA in situ hybridization.  a-d: wild type embryos 
with three nephrostomes, shown in higher magnifications (b,c). e-h: half-injected Suv4-20h1 
morphants showed loss of dnah9 expression in the nephrostomes (g,h). Furthermore, an increase of 
MCCs was seen compared to the uninjected half. i-l: Rescued phenotypes displayed dnah9 expression 
in the nephrostomes (k,l,m) indicating that phenotypic changes were Suv4-20h1 morpholino specific 
and co-injection of mouse Suv4-20 RNA was able to compensate for Suv4-20h1 knockdown. m: 30% 
increase of embryos showing a normal or reduced phenotype with one to three nephrostome in the 
rescued region. Uninjected halves were used as internal control. n: illustration of a sectioned 
amphibian pronephric kidney with ciliated nephrostome. Scale bar, 200#m for a,d,e,h,i,l, 100#m for 
b,c,f,g,j,k. White boxes mark regions of magnification. NS: nephrostome, *: injected side, where 
indicated, #: abnormal skin with dense patch of MCCs. (n=three independent experiments). 
 
 

To address the question of how Suv4-20h1 MO affects the pathway upstream of dnah9, we 

assessed key regulatory genes of the multiciliogenic program, such as foxj1 and mci. FoxJ1 is 

a known master regulatory factor for motile ciliogenesis (Pohl and Knochel 2004; Stubbs, 

Oishi et al. 2008; Yu, Ng et al. 2008) and mci is required for the exit from cell cycle and for 

centriole assembly in MCCs (Stubbs, Vladar et al. 2012). Again, similar to dnah9 expression, 
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foxj1 was induced in ciliated nephrostomes. In unilaterally injected, NF 32/33 Suv4-20h1 

morphants, foxj1 expression in the nephrostomes was weaker (Fig. 4.15c,d) and diffuse in 

contrast to uninjected and control MO injected sides (p<0.001, Fig 4.15a,b). Nevertheless, the 

amount of embryos with an absent foxj1 expression was lower than those with an absent 

dnah9 expression. This might indicate that in nephrostomes FoxJ1 function is dependent on 

dosage in inducing ciliary proteins, such as Dnah9. 

 
Fig. 4.15: Depletion of Suv4-20h1 HMT reduces foxj1 expression in the nephrostomes. 
Expression was detected by RNA in situ hybridization in NF 32/33 embryos. a-b: foxj1 staining in the 
nephrostomes showed a distinct pattern in uninjected and control morphants (white arrow head). c-e: 
foxj1 is downregulated and diffusely stained in Suv4-20h1 morphants (n= three independent 
experiments). 
 

While FoxJ1 is sufficient for motile cilia formation, multicilin, a transcriptional regulatory 

factor upstream of FoxJ1, is specifically required for multiciliogenesis. For this purpose, mci 

promotes centriole assembly and induces foxj1 expression (Stubbs, Vladar et al. 2012). Mci 

was normally transiently expressed in the nephrostomes and the overlaying skin around NF 

28. It vanished in later stages after multiciliated cells were differentiated in the nephrostomes. 

At NF 28, shortly before foxj1 and dnah9 expressions were downregulated, mci expression 

was massively perturbed by Suv4-20h1 MO injection. For almost all Suv4-20h1 morphants, 

MCC formation in the pronephric nephrostomes seemed to be blocked according to loss or 

reduction of mci expression (Fig. 4.16g-i). Note that the epidermal expression at NF 28 was 

absent as well. Thus, this might indicate that Suv4-20h1 enzyme is required for both 

epidermal and kidney multiciliogenesis (Marcet, Chevalier et al. 2011) by stimulating mci 

expression.  
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Fig. 4.16: Suv4-20h1 protein knockdown leads to loss of multicilin. Expression was detected using 
RNA in situ hybridization. Uninjected and injected sides of embryos were compared. Injected side 
was traced with fluorescent Alexa 488. White box in lower magnification view of whole embryo 
marks region of high magnification. a-d: Representative specimen of control condition. Epidermal mci 
expression was in the skin around the gills (arrowhead). e-h: Loss of mci RNA in nephrostomes and 
skin of the injected region. i: high penetrance of mci nephrostome phenotype in Suv4-20h1 MO 
condition compared to wild type and control MO. Scale bar: 200#m for a,d,e,h and 100#m for b-c,f-g 
(n=three individual experiments). 
 

 

4.2.2  Suv4-20h1 protein knockdown represses microRNA miR-449 expression in 

the nephrostomes 

 
Recent work has identified the microRNA miR-449 as a promoter of multiciliogenesis in both 

human and frog by directly inhibiting the Delta/Notch pathway (Marcet, Chevalier et al. 

2011). Mci, foxj1 and dnah9 are genes downstream of Notch and were repressed in Suv4-

20h1 morphants. Since Notch represses mci expression (Stubbs, Vladar et al. 2012), we 

assumed that Delta/Notch was activated in Suv4-20h morphants. Towards this goal, miR-449 

expression was examined in wild type and half-injected Suv4-20h1 and control morphants 

older than NF 32. MiR-449 co-localizes with acetylated !-tubulin mRNA indicating that it 

functions in MCCs. A locked nucleic acid (LNA) in situ hybridization approach was used to 

detect microRNAs.  
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Fig. 4.17: Suv4-20h1 protein knockdown represses microRNA miR-449 expression in 
nephrostomes. Half-injected embryos with Co MO, Suv4-20h1 MO and Alexa 488 as lineage marker, 
LNA in situ hybridization of NF 32-35 embryos. a-d: the control cohort showed similar expression for 
miR-449 in the skin and nephrostomes of the uninjected and injected side. e-i: Injection of Suv4-20h1 
MO dramatically reduced miR-449 (p<0.001) in the nephrostomes by almost 70% (n=three individual 
experiments). Likewise, miR-34b, which belongs to the same superfamily of microRNAs, seemed to 
be affected (n-q) (n=one individual experiment). White boxes mark regions of higher magnification. 
LNA ISH was kindly performed by V. Thomé, IBSM Marseille. 
 
 

LNA in situ hybridization was performed on Suv4-20h1 morphant cohorts, which were 

validated for the ciliogenic phenotype. Fig. 4.17 shows the injected and uninjected sides of 

control morphants (a-d) and Suv4-20h1 morphants (e-h). In nephrostomes, miR-449 

expression was present in both sides of control embryos, whereas it was absent in the injected 

side of Suv4-20h1 morphant cohort (p<0.001). This experiment was repeated three times and 

showed a loss of miR-449 in as many as 70% (Fig. 4.17g,i). Noteworthy, miR-449 expression 

was visible in the epidermis. Furthermore, there were clearly more miR-449+ cells in the skin. 

This observation supports previous findings that the number of MCCs was upregulated in the 

Suv4-20h1 depleted skin. The simplest explanation for the loss of miR-449 expression is that 

Suv4-20h1 enzyme acts upstream of miR-449 to promote multiciliogenesis. Furthermore, this 

also implies that the shift in cell fate specification toward the MCC fate is due to miR-449. 

MiR-34b is another microRNA, which shares the seed region with miR-449 and which is 

enriched in MCCs (Marcet, Chevalier et al. 2011). Like miR-449, miR-34b is absent after 

Suv4-20h1 knockdown (p<0.001; Fig. 4.17n-q). Although only tested in a restricted number 

of embryos, the results were steady (11 out of 11 embryos; Fig. 4.17i).  
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4.2.3  Suv4-20h1 knockdown does not repress pronephric anlage markers 

 

 The observed changes in ciliogenesis gene expression may be caused by defects in 

cilia formation or in pronephric kidney development. To distinguish between theses causes, 

the pronephric anlage marker xlim-1 (Taira, Otani et al. 1994) and pax2 were analyzed. Pax2 

is a well-characterized transcriptional factor of specific functional importance for the 

pronephric development (Heller and Brandli 1997). Fig. 4.18 shows the pax2 expression 

pattern both in nephrostomes, as well as in proximal and distal (*) tubules of NF 32 embryos 

(Fig. 4.18a,b). In Suv4-20h1 depleted embryos, pax2 expression was clearly present, and 

seemed to be rather ectopic in the pronephric structures. Xlim-1 expression was unaltered in 

both control MO injected and Suv4-20h1 MO injected embryos. The xlim-1 expression of 

injected versus uninjected sides was similar in intensity and pattern. Fig. 4.18e,h shows dorsal 

views, where injected and uninjected sides can be compared to each other. Fig. 4.18f,i 

demonstrate the injected side indicated by blue X-Gal staining. 

 

 
Fig. 4.18: Pronephric anlage markers pax2 and xlim-1 are expressed in Suv4-20h1 morphants. 
RNA in situ hybridization on NF 32/33 embryos. X-Gal staining was used as lineage tracer (blue 
staining). a-b: wild type pax2 expression in tubules (*) and duct (arrow). c-d: protein knockdown of 
Suv4-20h1 does not eliminate pax2 expression in nephrostomes and tubules, although the expression 
seems to be less distinct in these structures (n=3 independent experiments). e-j: NF 20, xlim-1 is 
unperturbed in Suv4-20h1 morphant and control morphant cohorts; anterior is marked by arrowhead. 
Scale bar: 200#m; 100#m for b,d. (n=three independent experiments). 
 

 

 

Co
 M

O
Sh

1 
M

O
 

66/66

74/76

200

e f g

jih
xlim-1

W
T

Sh
1 

M
O

 

a b

c d

33/33

69/69

200 100Pax2

laterallateral dorsal

inj. uninj.
*



Results 73 

4.2.4  Suv4-20h1 depletion inhibits tubule formation 

 

According to xlim-1 and pax2 expressions in neurula and tadpole stages, induction of the 

pronephros was not blocked. However, in order to detect defects in pronephric development, 

two well-characterized antibodies for proximal tubules (3G8) and distal tubules/duct (4A6) 

were used in immunostainings. 3G8 recognizes a luminal antigen in proximal tubules, 

whereas 4A6 stains the entire cell surface of distal tubules and duct. Both antibodies stain 

tubular antigens regardless of the tubular morphology (Vize, Jones et al. 1995; Brennan, 

Nijjar et al. 1998). The structures that were stained in the uninjected side of Suv4-20h1 

morphants corresponded to those found in control morphants (data not shown). In contrast, 

the signal for both antibodies was lost in the injected side of Suv4-20h1 morphants compared 

to the control cohort (p<0.001). Transversal sections through these Suv4-20h1 morphant 

embryos demonstrated a clear staining for both 3G8 and 4A6 in tubules of the uninjected side 

(Fig. 4.19i,j,l,m). However, no staining was detectable in the injected side (k,n). Additionally, 

tubule structures could not be identified in the injected side where the staining was missing. 

The most obvious explanation is that the antigens are missing due to differentiation problems. 

This can be caused by defects in epithelial differentiation or the lack of tubule formation.  
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Fig. 4.19: Suv4-20h1 protein knockdown inhibits tubule differentiation. 3G8 and 4A6 were 
detected by immunocytochemistry at NF 33 (3G8) and NF 37/38 (4A6). X-Gal staining was used as 
lineage marker. a-d: Loss of 3G8 antigen in proximal tubules of Suv4-20h1 MO injected regions 
(p<0.001). e-h: morphants lacked 4A6 staining in distal tubules and duct of the injected region (g.h). 
White box in lower magnification view of whole embryo marks region of high magnification. i-j: 
transversal sections. i’: 3G8 immunostaining showing expression in the uninjected side (white box in 
i) versus absent expression in the injected region (p<0.001; i’’, k). j’: 4A6 is expressed in the 
uninjected half of Suv4-20h1 morphants, but is missing in the injected side (j’’, l).  (n=two individual 
experiments for each antibody). 
 

 

4.2.5  Knockdown of Suv4-20h1 leads to edema formation 

 

Studies in four days old (>NF 45) embryos demonstrated that the tubule system was 

developed in Suv4-20h1 MO injected cohorts. These embryos were generated by injection at 

4-cell stage into all cells and were subsequently analyzed for morphological changes. Since 

Xenopus embryos are transparent at these developmental stages, this approach is well suited 

to evaluate internal organs, such as the kidney. In comparison to uninjected and control MO 

injected embryos, Suv4-20h1 depleted morphants were massively deformed. Embryos did not 

swim around in the petri dish like the control cohorts and had striking abnormalities of the 

eyes and melanophores, which supports prior findings by our lab in embryos at earlier stages 

(Nicetto 2012). The eyecups were not fully bisected and seemed to lack the lens.  

In addition to these phenotypic changes, all Suv4-20h1 morphant tadpoles were severely 

edematous. The edema was found in a generalized manner (Fig. 4.20c) reminiscent of 

embryos with impaired pronephros differentiation (Tran, Pickney et al. 2007). Suv4-20h1 

morphant tadpoles showed dilated tubules on higher power magnification, whereas wild type 

and control siblings formed compactly organized tubules with a comparatively small diameter 

(Fig. 4.20a’,b’). The results represent a limited number of specimens, but the observed 

phenotype is consistent (11/11 embryos; p<0.001)  
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Fig. 4.20: Knockdown of Suv4-20h1 HMT leads to edema formation. 
Embryos >NF 45. a-b: control conditions showing well developed embryos. c: edema in Suv4-20h1 
morphants occurs in a generalized manner (arrowheads). a’-c’: higher maginification of pronephric 
tubules, highlighted with white circles. Red lines mark tubule width. WT and control MO injected 
embryos (a’,b’) are normal, whereas Suv4-20h1 morphants show dilated tubules (p<0.001) (c’). 
Numbers indicate embryos showing the above phenotype compared to the total amount of analyzed 
embryos (n=one individual experiment). 
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5. DISCUSSION 
 

During the transition from pluripotent to a differentiated state, cells need an exact 

temporal and spatial organization of gene expression to drive cell fate specification. Cells 

possess the same genome, but establish individual cellular identities with specialized cellular 

functions. This is mainly achieved by epigenetic mechanisms, since genes remain mostly 

unaltered. Epigenetic mechanisms are known to play a vital role in early development of 

embryos by regulating cell-lineage appropriate gene expression. For instance, histone lysine 

methylation marks, such as H4K20me3 and H3K9me3, are involved in transcriptional gene 

repression and mark pericentromeric and telometric heterochromatin (Schotta, Lachner et al. 

2004; Li, Liu et al. 2012; Nicetto, Hahn et al. 2013).   

 

This thesis addresses the role of the H4K20me2/me3 catalyzing histone methyltransferases 

Suv4-20h1 and Suv4-20h2 in multiciliated cell development. During embryogenesis, the 

abundance of H4K20me3 increases approximately five-fold as demonstrated by western blot 

analysis in frog embryos (Schneider, Arteaga-Salas et al. 2011), which implies an important 

role for the Suv4-20h HMTases during development (Nicetto, Hahn et al. 2013). Moreover, 

down-regulation of Suv4-20h enzymes by morpholino approach can impair the formation of a 

specific cell organelle, the cilium. Cilia formation was affected in the Xenopus embryonic 

skin and additionally in another multiciliated tissue, the embryonic kidneys.  

 

Analysis of the Suv4-20h-ablated ciliary phenotype in the Xenopus skin demonstrated two 

specific results in single morphants. Since Suv4-20h1 or –h2 enzymes both increase di- as 

well as tri-methylated H4K20 in Xenopus (Nicetto, Hahn et al. 2013), it is thought that there 

is no functional subdivision of Suv4-20h1 or –h2, but rather a general reduction in 

H4K20me3 levels, which result in defective cilia formation. First of all, the specification of 

multiciliated cell precursors (MCP) is affected subsequently leading to an increase in 

multiciliated cell (MCC) numbers. Secondly, on the level of the individual multiciliated cell, 

expression levels of multiciliogenic genes are reduced leading to a defective ciliary 

phenotype.  
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5.1 Suv4-20h enzymes impact epidermal cilia formation 
 

5.1.1 Suv4-20h HMTases effects on multiciliated cell specification 

The skin in Xenopus laevis develops after gastrulation in two distinct cell layers of the 

non-neural ectoderm: the inner sensorial and outer superficial layer. In general, ciliated cells 

are committed in the inner layer via Delta/Notch signaling (Drysdale and Elinson 1992). A 

subset of cells with high expression levels of Delta-like 1 (dll1) inhibits neighboring notch-

presenting cells from taking on the multiciliated cells fate. This mechanism is referred to as 

lateral inhibition and helps cells to become different from surrounding cells. During early 

neurula stages (NF 12-14) cells with high dll1 levels give rise to committed ciliated cell 

precursors, which intercalate into the outer layer during neurulation and finally form a cilia 

tuft (NF 20-22) (Deblandre, Wettstein et al. 1999). The radial intercalation is important to 

create a regularly spaced pattern of MCCs in the larval skin (Stubbs, Davidson et al. 2006).  

 

The prominent upregulation of multiciliated cells in Suv4-20h morphants proposes a 

contribution of Suv4-20h enzymes to the fate specification process of MCPs. Indeed, 

investigation of mci, !-tubulin and foxj1 expression in multiciliated precursor cells in Suv4-

20h1 and –h2 morphants confirmed that the increase in cell number already occurred in 

neurula (NF 14), i.e. during the period when MCPs arise. Multicilin-expressing cells during 

this stage represent MCPs. As expected, mci+ precursor counts were significantly raised by 

about 50% in Suv4-20h1 morphants compared to controls. Most control morphants on the 

contrary presented similar MCP numbers in the injected and uninjected side of each 

specimen. Consistent with this key finding, !-tubulin- and foxj1 mRNA-expressing MCPs are 

elevated with high penetrance (& 80%) in Suv4-20h1 and -h2 morphants. Since embryos were 

rescued by coinjection of Suv4-20h1 MO and murine Suv4-20h1 mRNA, the increase in the 

!-tubulin+ MCP number is caused by the morpholino-mediated downregulation of H4K20 

tri-methylation. This result establishes another biological function of Suv4-20h enzymes in 

skin, in addition to their impact on neural differentiation (Nicetto, Hahn et al. 2013). 

 

These findings in whole embryos are supported by analysis in animal caps at tailbud stage 

(NF 25). The ciliogenic marker foxj1 was investigated as a hallmark for multiciliated cells. In 

RNA in situ hybridization, foxj1 was, similarly to !-tubulin and mci, expressed in more cells. 

The number of foxj1 mRNA-positive MCCs increased relatively (45%) at equal proportions to 
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mci mRNA-positive MCCs (50%). This suggests that Suv4-20h1-mediated effects on MCP 

specification are comparable in whole embryos and animal caps.  

 

At tailbud stages, ciliary axonemes can be visualized by immunostaining for the structural 

marker acetylated !-tubulin. These immunostainings presented an evenly spaced, “spotty” 

arrangement of cilia tufts in wild type and control embryos. The ciliated cells appeared to be 

aligned in rows along the dorsoventral axis of the embryo, leaving gaps of unciliated areas 

between the rows. In Suv4-20h morphants on the contrary, the regular alignment of acetylated 

!-tubulin expressing cells was perturbed compared to the uninjected side of the specimen, as 

well as to the control morphants. Furthermore, acetylated !-tubulin-labeled cells were 

significantly increased (30%) in the skin of Suv4-20h1 morphants. This result indicates that 

more MCPs give rise to more MCCs. Noteworthy, the increase in acetylated !-tubulin+ cells 

(MCC) is smaller compared to the increase in MCPs. A robust inhibition of ciliation can 

explain this difference, since only MCCs with visible cilia tuft are scored. Possible 

mechanisms underlying the inhibited ciliary phenotype will be discussed in the next chapter. 

 

The results presented here provide support to the hypothesis that Suv4-20h enzymes are 

important for the specification of MCPs. Data from this work show that Suv4-20h enzyme 

depletion leads to more MCPs suggesting a repressive function in ciliated cell precursor 

specification. Deblandre et al. (1999) states that dll1 expression regulates the number of 

MCPs and that dll1 overexpression leads to an increase of MCPs. The underlying mechanism 

may be explained by the so-called cis-inhibition of Notch. This proposed mechanism 

describes that ligands can trans-activate Notch receptors of neighboring cells or cis-inhibit 

Notch within the same cell, causing Notch inhibitory effects (Jacobsen, Brennan et al. 1998; 

Deblandre, Wettstein et al. 1999; Marcet, Chevalier et al. 2011b). In other words, sufficient 

high levels of dll1 within the cells could prevent the cell from lateral inhibition and thus more 

MCPs could be specified. Indeed, a previous report by Nicetto et al. showed that dll1 mRNA+ 

cells of double Suv4-20h morphants was specifically and strongly upregulated in the 

epidermis (Nicetto, Hahn et al. 2013). Consistent with this finding, the delta like-1 

upregulation was reproducible in Suv4-20h1 single morphants (data not shown). The most 

straightforward conclusion is that the Suv4-20h protein knockdown causes an upregulation of 

non-neural ectodermal dll1, which interferes with ciliated cell specification leading to an 

increase of precursor cells.  

 



Discussion 79 

Several reports have demonstrated the importance of Delta/Notch signaling for the 

specification of lineage-restricted precursor cells (Deblandre, Wettstein et al. 1999; Dubaissi 

and Papalopulu 2011; Morimoto, Nishinakamura et al. 2012). In the Xenopus mucociliary 

epithelium, the Delta/Notch pathway regulates specification of both precursors for ciliated 

cells and ionocytes (Deblandre, Wettstein et al. 1999; Hsiao, You et al. 2007). Ionocytes 

express many ion channels and are thought to play a role in ionic regulation, which is vital for 

the function of specialized epithelia. Both precursor types are committed in the inner layer 

and intercalate to the surface of the epidermis (Dubaissi and Papalopulu 2011). Stubbs et al. 

(2006) suggested that MCCs and ionocytes are “regulated in tandem by Notch signaling” 

instead of a reciprocal manner (Stubbs, Davidson et al. 2006). Since Suv4-20h protein 

depletion increased dll1 positive cells, this implies that Suv4-20h enzymes also impact other 

cell types in the skin, i.e. ionocytes. In other words, epidermal dll1 upregulation in morphants 

may increase, apart from MCC numbers, also ionocyte numbers, which potentially leads to a 

perturbation of the normal skin homeostasis. Thus, further investigations would illuminate the 

role that Suv4-20h enzymes have in the differentiation of the mucociliary epithelium. 

 

5.1.2 Suv4-20h HMTases promote multiciliogenesis 

 Previous studies, mainly in Xenopus laevis, have identified several transcription 

factors that coordinate ciliogenesis. The transcription regulatory factor X2 (rfx2) is broadly 

required for all types of ciliogenesis. The forkhead-box transcription factor FoxJ1 is necessary 

for motile cilia formation. For example, cells with a high foxj1 level establish a single motile 

cilium (Stubbs, Oishi et al. 2008).  

What distinguishes multiciliated from monociliated cells? MCCs involve a large number of 

cilia on the apical cell surface and therefore need hundreds of centrioles. Centriole formation 

is normally coupled to the cell cycle, when multiple daughter centrioles are formed 

orthogonally to a mother centriole at G1/S transition. Since MCCs are postmitotic and require 

massive centriole amplification, these cells need at least one additional factor to foxj1 in order 

to exit from the cell cycle and to start de novo centriole assembly (Dirksen 1991; Klos 

Dehring, Vladar et al. 2013). Recently, a factor called multicilin (mci) was identified, which 

is specifically needed and sufficient for the formation of multiciliated cells (Stubbs, Vladar et 

al. 2012). Multicilin is thought to act at the start of the multiciliogenic pathway, downstream 

of Notch and upstream of FoxJ1 (Stubbs, Vladar et al. 2012), Dnah9 and Rfx2 (Yu, Ng et al. 

2008; Chung, Peyrot et al. 2012; Stubbs, Vladar et al. 2012). Preliminary observations in 
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Suv4-20h double morphants showed defective cilia formation in the skin with less abundant 

and shorter cilia (Nicetto 2012), a condition that for example is also observed in the airways 

of smokers (Leopold, O'Mahony et al. 2009). The observed Suv4-20h ciliary phenotype 

suggests that the transcriptional regulation of multiciliogenic genes is changed in the Suv4-

20h morphants.  

 

In this thesis, specific ciliary genes, including mci, foxj1 and dnah9 were analyzed via 

RT/qPCR at two time points. The first time point is during neurulation (NF 14), when 

progenitor cells are specified. The second one is during tailbud stage (NF 25), when ciliated 

cells are differentiated and exhibit cilia tufts on their cell surface as reported by Deblandre et 

al. (1999). Knockdown of Suv4-20h1 protein levels shows a significant increase of mci 

mRNA positive precursor cells by 50% compared to the uninjected side of the same embryo. 

Notably, the increase in multicilin positive cells is accompanied by a decline in mRNA levels 

of mci. Mci mRNAs were decreased strongly by 60% in MCPs, although this result was not 

significant (p=0.15, student t-test). The data was collected from three independent 

experiments and the strength of the reduction was variable between them. Nevertheless, 

expression levels were downregulated in all three experiments when compared to controls. 

Additional experiments will be required to validate this difference statistically. This suggests 

that Suv4-20h1 drives multiciliogenesis by promoting mci expression. The results are 

compatible with a prior report by Stubbs et al. (2012) who states that multicilin knockdown 

leads to inhibition of multiciliated cell formation. Similar to their result, Suv4-20h morphant 

embryos show reduced levels of mci and foxj1 mRNA levels (Stubbs, Vladar et al. 2012). The 

data from mci expression studies are in good agreement with quantitative analyses performed 

for foxj1 and dnah9 at the tailbud stage. Both foxj1 and dnah9 mRNA levels are significantly 

decreased by two-fold in Suv4-20h1 and Suv4-20h1/h2 depleted specimen. These results can 

explain the initially mentioned Suv4-20h ciliary phenotype, which shows less and shorter 

cilia. According to Stubbs et al., FoxJ1 protein knockdown also produces fewer and shorter 

cilia in the skin (Stubbs, Oishi et al. 2008).  

The consistent transcriptional inhibition of ciliary genes in Suv4-20h1 morphants indicates 

that Suv4-20h enzymes regulate multiciliogenesis via the promotion of the multiciliogenic 

pathway. Suv4-20h1 ablation compromises the expression of multiciliogenic factors and 

consequently, MCPs lack factors needed to differentiate and generate normal cilia tufts.  
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Independent studies have recently indicated a cross talk between non-ciliated and 

multiciliated cells in the skin of Xenopus. Similar to MCC formation, Ionocytes, also known 

as proton-secreting cells, differentiate by intercalating into the outer layer. It has been shown 

that Ionocytes have a non-cell autonomous effect on MCC differentiation. Ionocytes express 

the trynscription factor foxi1e, which is required for both epidermal and neural ectoderm 

formation (Mir, Kofron et al. 2007). Foxi1e knockdown diminishes ionocytes and can harm 

the development of multiciliated cells. Although ciliated cell specification and intercalation is 

unaffected, MCCs presented fewer, shorter and abnormal beating cilia (Deblandre, Wettstein 

et al. 1999; Dubaissi and Papalopulu 2011). Future studies should therefore analyze the 

interconnection between H4K20 tri-methylation and Ionocyte formation in the multiciliated 

epithelium to wholly understand the Suv4-20h morphant ciliary phenotype. 

 

Another interesting point concerns the Suv4-20h role in cell cycle regulation. Schotta et al. 

showed that loss of H4K20me3 marks is associated with a delay in G1/S-phase transition and 

impaired cell cycle progression (Schotta, Sengupta et al. 2008). This fact could be an 

important link to the observation that Suv4-20h morphants assemble less cilia in MCCs. 

Delayed S-phase entry after Suv4-20h depletion might hinder centriole assembly and 

therefore result in fewer cilia. In addition to promotion of the ciliogenic pathway, Suv4-20h 

enzymes could regulate multiciliogenesis by coordination of the cell cycle progression. 

However, this remains to be investigated. For example, cilia formation can be assessed by 

immunostaining after acceleration or inhibition of the cell cycle. Comparing these ciliary 

phenotypes with the Suv4-20h1 depleted morphants can expose whether an impaired cell 

cycle progression impacts ciliogenesis.  

 

5.1.3 Contribution to cilia-driven fluid flow across the epidermis 

Motile cilia are found throughout the body and establish a directional fluid flow across 

tissue surfaces or lumina. The cilia-driven fluid flow is involved in the breakage of body 

symmetry in embryos and is also needed for the development of organs, including the central 

nervous system and inner ear (Kramer-Zucker, Olale et al. 2005; Blum, Beyer et al. 2009; 

Colantonio, Vermot et al. 2009). Further functions are to move an ovum toward the uterus, 

provide sperm motility and to drive cerebrospinal fluid flow in brain ventricles (Fawcett 

1954; Lyons, Saridogan et al. 2006; Fliegauf, Benzing et al. 2007; Hagenlocher, Walentek et 

al. 2013). Airway cilia-driven flow of extracellular mucus keeps the respiratory epithelium 
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clean. In Xenopus, embryos respire through their skin. Thereby the fluid flow is required to 

provide the larval skin with oxygen and ions. Moreover, cilia-driven flow is linked to the 

protection of the epidermal mucociliary epithelium against infections as very recently 

reported by Dubaissi et al. (Werner and Mitchell 2012; Dubaissi, Rousseau et al. 2014). 

 

Cilia-driven fluid flow on the skin of Suv4-20h1 depleted larval embryos was abnormal. The 

Suv4-20h1MO-mediated reduced flow velocity could be due to the following hypotheses. A 

defect in multiciliogenesis, for example, can result in stumpy or less cilia with a weaker 

stroke power (Neugebauer, Amack et al. 2009; Dubaissi and Papalopulu 2011). Furthermore, 

defects in ciliary motility due to lack of dynein, which is a key component of motile cilia, can 

cause impaired fluid flow (Satir 1980; Colantonio, Vermot et al. 2009; Vick, Schweickert et 

al. 2009). The decline in dnah9 mRNA levels of Suv4-20h morphants together with the 

compromised fluid flow is in good agreement with studies by Vick et al. (2009). This report 

has demonstrated that dnah9 depletion reduced motility of epidermal cilia without affecting 

the ciliation (Vick, Schweickert et al. 2009). Furthermore, molecular results (foxj1, mci) from 

the present loss-of-function studies explain the observed ciliary phenotype in a consistent 

manner. Taken together, my findings implicate that Suv4-20h-depletion inhibits the 

expression of multiciliogenic genes required for normal cilia length, number and motility 

resulting in reduced fluid flow on the knockdown side. This is also supported by electron 

microscopy pictures of the larval epidermis showing the compromised cilia tufts (Nicetto 

2012). 

 

However, contributions from other signaling pathways cannot be excluded yet. Recent work 

by Walentek et al. has linked serotonin-secreting cells (SSC) in the frog epidermis to cilia 

motility. Serotonin has effects on non-motile and motile cilia (Brailov, Bancila et al. 2000; 

Whitfield 2004). It induces the ciliogenesis of motile cilia and regulates the beating frequency 

(Beyer, Danilchik et al. 2012; Walentek, Bogusch et al. 2014). Inhibition of serotonin 

synthesis impaired cilia motility and weakened flow rate in the frog skin (Walentek, Bogusch 

et al. 2014). If epidermal cilia motility is stimulated also by serotonin, the ciliogenic defect in 

Suv4-20h morphants could also be indirect, for instance, due to reduced serotonin production 

or reduced SSC specification. 

 

Furthermore, fluid flow is dependent on the orientation of cilia, which is regulated by the 

planar cell polarity pathway (PCP). Cilia are polarized in a sequential fluid flow-mediated 
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manner: PCP signaling sets the initial orientation that is followed by a refining flow-mediated 

step (positive feedback loop) provided that cilia are motile (Mitchell, Jacobs et al. 2007). 

Defects of the PCP pathway and cilia polarization can impair cilia-driven fluid flow (Konig 

and Hausen 1993; Park, Mitchell et al. 2008). Cilia orientation can be assessed by 

microinjection of mRNA encoding two proteins fused to fluorescent tag that localize either to 

the basal body (Centrin-RFP) or to the striated rootlet (Clamp-GFP). The trajectory of the 

straight line between the rootlet and BB of each cilium provides the direction of effective 

stroke. It is hereby important to investigate whether all trajectories are properly aligned within 

one cell (Mitchell, Stubbs et al. 2009). In this way, epidermal cilia orientation of Suv4-20h1 

morphants can be visualized.  

 

5.2  Are Suv4-20h enzymes obligatory regulators of ciliogenesis? 
  

Multicilia are generated in vertebrates in the brain ventricles, airways, kidneys, the 

reproductive system and the epidermis. Monocilia on the contrary are found in the auditory 

organ and the gastrocoel roof plate (GRP) (Choksi, Lauter et al. 2014). In the following, my 

data from other ciliated tissues, such as the GRP, otic vesicle and pronephric kidney will be 

discussed. 

 
Cilia in the GRP are transiently assembled and produce a fluid flow by rotational ciliary 

beating that induces organ laterality (Vick, Schweickert et al. 2009). There is yet no 

significant evidence that Suv4-20h enzymes perturb ciliogenesis of single motile cilia, for 

example in the Xenopus GRP. Suv4-20h1 morpholino injected embryos showed non-

significant (p=0.15) reduction of cilia length (2.86±0.7µm, n=87) compared to uninjected 

(3.8±0.04µm, n=70) and control morpholino injected (3.8±0.9µm, n=97) embryos (Appendix 

Fig. S1). Although there was no major disturbance in organ arrangement, Suv4-20h1 

morphants showed an abnormal leftward pointing of the gut coil compatible with a weak situs 

defect. Unfortunately, the analysis of GRP cilia could not be continued due to technical 

problems with the electron microscope used. 

 

Another monociliated tissue is the inner ear. According to a recent report in zebrafish both 

motile cilia and immotile kinocilia are present in the auditory vesicles, also known as otic 

vesicles (Stooke-Vaughan, Huang et al. 2012). It was demonstrated that ciliary motility 

contributes to a normal otholith biogenesis and localization. Otholiths are mineralized 
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structures inside the inner ear and are necessary for sensation of gravity and linear 

acceleration (Colantonio, Vermot et al. 2009; Stooke-Vaughan, Huang et al. 2012). Tests in 

zebrafish have demonstrated that the knockdown of dnah9 disrupts cilia motility causing 

defects in otolith assembly (Colantonio, Vermot et al. 2009). Motile cilia are also present in 

the Xenopus otic vesicles demonstrated by the expression of motile cilia-components, such as 

dnah9 and radial spoke protein 3 (RSP3) (Zhang, Zhao et al. 2013). Preliminary data from 

injection of Suv4-20h1 mopholino also suggest ciliogenic defects in the otic vesicles where 

rfx2 and dnah9 expression was diminished or even eliminated in the knockdown side (data 

not shown). Further tests with molecular markers and histological analysis of sections would 

clarify the role of Suv4-20h enzymes in inner ear ciliogenesis and otolith formation. 

 

5.2.1 Suv4-20h1 HMT regulates ciliogenesis in the embryonic kidney   

 
 In the course of my work, I have observed that ciliogenic genes are misregulated in the 

forming pronephros, in addition to the epidermis. Ciliary genes are usually expressed in 

MCCs in three multiciliated funnels, called nephrostomes. Similar to epidermis, candidate 

genes, such as mci, foxj1 and dnah9 were investigated for their possible involvement in 

pronephric ciliogenesis. 

 

All genes of interest were strongly compromised in the pronephric nephrostomes. Mci is 

transiently expressed in the Xenopus larval skin from gastrulation until late neurula, when 

MCCs differentiate (Stubbs, Vladar et al. 2012). It then disappears from the skin, except in 

the gill and forehead areas. At early tailbud stage (NF 28), mci is re-expressed in the 

nephrostomes until the late tailbud stage (NF 32). In RNA in situ hybridization, the mci 

expression in the Suv4-20h1-MO injected cohort was highly affected ('90%). In half of the 

affected embryos, the expression in the nephrostomes and the skin was even lost.  

Foxj1 and dnah9 mRNA expression was similarly affected (90%). These observations are 

comparable to reports by Yu et al. (2008), where the pronephros of Foxj1a deficient zebrafish 

embryos lacked the expression of motile ciliogenic genes, including dnah9 (Yu, Ng et al. 

2008). Consequently, loss of foxj1 and dnah9 compromises the formation of motile cilia 

(Stubbs, Oishi et al. 2008; Yu, Ng et al. 2008; Vick, Schweickert et al. 2009; Hagenlocher, 

Walentek et al. 2013). It is noteworthy that in this thesis, foxj1 showed a weaker phenotype 

than dnah9 supporting the dose-dependent function of foxj1. Stubbs et al. pointed out that 
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epidermal cilia were lost upon a strong reduction of foxj1 protein levels, while cilia were only 

impaired in length and number upon a weak reduction at medium to low doses (Stubbs, Oishi 

et al. 2008). In most of the Suv4-20h1 morphants, foxj1 was downregulated, whereas dnah9 

was robustly eliminated (80%). The evidence for a specific effect of Suv4-20h enzymes was 

provided, when the epidermal cilia phenotype could be rescued by coinjection of Suv4-

20h1/h2 MO and murine Suv4-20h1/h2 mRNA (Nicetto 2012). The Suv4-20h1-depleted 

pronephric phenotype was also rescued by co-injection of Suv4-20h1 morpholino with murine 

Suv4-20h1 mRNA. Dnah9 expression in the rescue cohort clearly recovered compared to the 

Suv4-20h1 knockdown cohort showing that the Suv4-20h MO works specifically for more 

than one phenotype. In this context, the prominent downregulation of ciliary genes in the 

pronephric nephrostomes of the Suv4-20h1 depleted cohort suggests a general requirement of 

Suv4-20h1 HMT for multiciliogenesis (Fig. 4.14). 

 

Kidney development depends critically on the transcription factors xlim-1 and pax2, which 

control specification of the organ anlage and tubule formation, respectively. The transcription 

factor xlim-1 is first detected in the pronephric anlagen of late gastrula embryos and is 

therefore the earliest marker with nephrogenic potential (Taira, Otani et al. 1994). During 

neurula stages, the pronephric anlage will give rise to the capsule, tubule and duct primordiae, 

which in turn will differentiate into the epithelial lining of the tubules and duct. Around early 

tailbud stage, tubules are differentiated (Brandli 1999). Pax2 is a transcription factor 

expressed in the pronephric tubules and duct and controls the transition from mesenchyme to 

epithelium (Taira, Otani et al. 1994; Heller and Brandli 1997; Brandli 1999). Moreover, 

analysis in mice has revealed that pax2 is required for the differentiation of intermediate 

mesoderm and that pax2 deficiency prevents kidney formation (Torres, Gomez-Pardo et al. 

1995). It was shown in zebrafish that pax2 is additionally necessary to maintain the 

pronephric cell fate. Loss of pax2 resulted in the absence of pronephric tubules suggesting a 

role for pax2 in tubule differentiation as well (Majumdar, Lun et al. 2000).  

 

It is important to exclude possible failure of kidney specification and differentiation as a 

modifying cause for the dysregulation of the above studied ciliary genes. If pronephic 

development was impaired, nephrostome formation could be inhibited and ciliary markers 

would be absent. Xlim-1 and pax2 were examined at two time points during kidney 

development (neurula and late tailbud stage). Suv4-20h1 MO injection clearly did not alter 

xlim-1 expression suggesting that kidney specification was unaffected. Additionally, despite 
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the downregulation of the ciliary genes in the nephrostomes, the pronephric and ductal pax2 

expression was present. This indicates that kidney specification and differentiation is not 

compromised and that the downregulation of pronephric multiciliogenesis is rather due to the 

specific inhibition of ciliogenesis by Suv4-20h1 MO, comparable to the cilia phenotype in the 

skin. 

 

5.2.2 Cilia and pronephric tubule formation 

 The nephron, the functional unit of the pronephros, is segmented into glomus, coelom, 

nephrostome, proximal tubule, intermediate tubule, distal tubule and duct from anterior to 

porterior (Wessely and Tran 2011). Pronephric tubule epithelia undergo maturation and 

terminal differentiation around NF 30. Pronephros maturation involves formation of the 

lumina, cell proliferation and functional maturation, including the appearance of ion channels 

and transporters. The embryonic kidney is fully functional after NF 37/38 when blood supply 

of the nephron has started (Brandli 1999; Wessely and Tran 2011). The frog kidney contains 

two types of cilia, which are spatially separated. As mentioned before, multiciliated cells are 

located in the nephrostomes and transport urinary filtrate into the tubules. Primary cilia, on 

the contrary, line up the tubule and duct and are credited with sensory functions (Mobjerg, 

Larsen et al. 2000; Tran, Pickney et al. 2007). 

 

There are two monoclonal antibodies (mab), where antigens are differentially expressed in the 

pronephric kidney. The mab 3G8 recognizes an antigen on the luminal membrane of 

nephrostomes and proximal tubules from NF 31 onwards, while 4A6 binds to an epitope that 

localizes to the entire cell surface of the distal tubules and duct from NF 37/38 onwards (Vize, 

Jones et al. 1995; Brennan, Nijjar et al. 1998). As shown in Fig. 4.19, 3G8 and 4A6 staining 

was strongly reduced, whereas xlim-1 and pax2 were expressed both in controls as well as in 

morpholino treated specimen. Taken together, these data suggest that Suv4-20h1 is critical for 

the formation of the pronephric tubules and duct. The specification of the pronephros anlage 

is not affected per se, since the tubule differentiation marker pax2 is expressed in its normal 

location. However, in the Suv4-20h1 injected side cells fail to undergo proper terminal tubule 

differentiation displayed by the 3G8 and 4A6 staining. 
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Although Suv4-20h morphants show higher rate of apoptosis and reduced cell proliferation 

(Nicetto, Hahn et al. 2013), the remaining pax2 expression argues strongly against a complete 

suppression of pronephric kidney. 

 

Another and more likely explanation is based on a report of Vasilyev and co-workers. 

According to Vasilyev, cilia-driven fluid flow is needed for the proximal-directed collective 

cell migration in zebrafish pronephros development (Vasilyev, Liu et al. 2009). In Xenopus 

kidney development, a posterior to anterior morphogenetic cell movement also shapes the 

proximal tubule (Nieuwkoop and Faber 1994). Similar to zebrafish, cilia-dependent fluid flow 

may be linked to the extension and differentiation of the proximal pronephros in Xenopus. 

The slower fluid flow on the skin surface of Suv4-20h1 depleted morphants suggests that 

pronephric fluid flow may be impaired as well given that multiciliogenesis is inhibited. Since 

nephrostome formation (NF 28) precedes the onset of tubule differentiation (NF30) (Heller 

and Brandli 1997), inhibition of multiciliogenesis may weaken fluid flow and thus cause 

defects in tubular differentiation.  

 

Indeed, observation of dilated tubules in Suv4-20h1 morphants indicates that cilia-driven fluid 

flow is affected. Additionally, these morphant embryos developed dramatic edema (Fig. 

4.20). These data are comparable to a report by Tran et al. (2007) who demonstrated that 

Xenopus Bicaudal-C depleted embryos developed a phenotype similar to PKD (polycystic 

kidney disease) with expanded tubules and large edema due to defects in pronephric 

differentiation (Tran, Pickney et al. 2007). PKD is a common disease affecting one in 1000 

humans. Cysts are caused by extremely dilated tubule lumina and patients with PKD develop 

multiple cysts, which can drastically interfere with kidney function, eventually leading to 

organ failure. Recent work has linked cilia and cystic diseases. Furthermore, a variety of 

genes mutated in cystic diseases, such as polycystin 1, polycystin 2, inversin, polaris and 

pkd2, are localized to cilia or associated to ciliogenesis (Drummond 2005). Kramer-Zucker et 

al. (2005) reported that cilia-driven fluid flow is necessary for a normal kidney development 

in zebrafish. Knockdown of dhc9 (dynein heavy chain 9) homologous to Xenopus dnah9 led 

to impaired cilia motility, reduced fluid flow, tubule distention and cysts formation (Kramer-

Zucker, Olale et al. 2005). Interestingly, these zebrafish cysts mutants also revealed a curved 

body axis comparable to Suv4-20h1 morphants. The related pronephric phenotype to 

zebrafish dhc9 depleted embryos implies that the enlarged tubules and severe edema of Suv4-

20h1 morphants are due to downregulation of dnah9. Dnah9 deficiency disturbed cilia 
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motility and hence fluid flow generated in the nephrostomes was impaired. This in turn 

resulted in fluid accumulation and edema.  

 

General mesodermal (Xbra, VegT) and skeletal muscle (MyoD) genes were normally 

expressed in Suv4-20h-double morphants (Nicetto, Hahn et al. 2013). However, kidney 

markers have not been assessed. My data shows, there is a defect in pronephros implicating 

that Suv4-20h functions are not germlayer restricted and confer additional aspects than exit 

from pluripotency.  

 

5.3 Suv4-20h HMTases impact microRNA miR-449 production 
 

 As reported by multiple studies, Notch signaling is important for both pronephros 

formation and multiciliogenesis (McLaughlin, Rones et al. 2000; Liu, Pathak et al. 2007; 

Marcet, Chevalier et al. 2011; Wang, Fu et al. 2013). Very recently, a direct inhibitor of the 

Delta/Notch signaling has been shown to be an essential factor that induces multiciliogenesis. 

This factor is the microRNA miR-449 (Marcet, Chevalier et al. 2011). MicroRNAs are small 

(23 nucleotides) non-coding RNAs, which silence protein expression by complementary base 

pairing between the seed region of the miRNA and the target mRNA at the 3’-UTR. Thereby, 

translational blocking, mRNA destabilization or a combination of both mechanisms occurs 

(Bartel 2009). Interestingly, the host gene for miR-449, which is CDC20B, is located next to a 

region, where mci is encoded (Lize, Klimke et al. 2011; Stubbs, Vladar et al. 2012). 

 

MiR-449 and ciliogenic genes are co-localized in the multiciliated cells of the nephrostomes 

and the larval skin. Depletion of miR-449 blocks multiciliogenesis in both the nephrostomes 

and the epidermis (Marcet, Chevalier et al. 2011). In this thesis, the effects upon Suv4-20h1 

ablation were identical to those observed after miR-449 knockdown suggesting a link between 

them. Indeed, miR-449 expression was abolished in the nephrostomes of Suv4-20h1 depleted 

embryos (Fig. 4.17). The absent miR-449 expression is in line with the above-mentioned 

increase in dll1 levels after Suv4-20h1 ablation in MCPs and pronephros respectively (see 

Appendix Fig. S2). Since dll1 downregulation is necessary for the normal MCC 

differentiation, multiciliogenesis was impaired in both the epidermis and the nephrostomes of 

Suv4-20h1 morphants. These results argue strongly that multiciliogenesis depends on the 

induction of miR-449 by Suv4-20h enzymes. 
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The epidermal miR-449 phenotype of Suv4-20h1 deficient embryos was weaker compared to 

the pronephric phenotype. MCPs increased in the epidermis, which is comparable to findings 

by Marcet et al. (2011), but quantitative analysis of miR-449 levels remains to be performed. 

It is expected that miR-449 mRNA levels will decline since dll1 is elevated in the skin of 

Suv4-20h1 morphants. As mentioned before, MCPs are increased, presumably, because more 

cells are committed by the cis-inhibition of Notch (Jacobsen, Brennan et al. 1998; Deblandre, 

Wettstein et al. 1999; Marcet, Chevalier et al. 2011b).  

 

MiR-449 and miR-34 belong to the same family of microRNAs and share the seed sequence. 

Thus, they are predicted to target similar mRNAs, since the seed region is central for the 

interaction between miRNA and the mRNA target (Cardinaud, Moreilhon et al. 2009; Marcet, 

Chevalier et al. 2011). The miR-34 family of microRNAs is an important component of the 

p53 tumor suppressor network (He, He et al. 2007). Furthermore, it has been described as 

regulator of multiciliogenesis through cmyb in the zebrafish pronephros (Wang, Fu et al. 

2013). The miR-34 family of microRNAs is also enriched in the ciliated epidermis of 

Xenopus (Marcet, Chevalier et al. 2011). In my experiments, Suv4-20h1 protein knockdown 

results in downregulation of miR-34b in the nephrostomes. This cohort is also mci, foxj1 and 

dnah9 deficient. Taken together, this leads to the assumption that Suv4-20h1 HMT also 

regulates other microRNAs, e.g. miR-34b, during MCC formation in the Xenopus pronephros. 

 

Together, these observations lead us to a model for how Suv4-20h might be involved in 

multiciliogenesis (see Fig. 5.1). In this model, Suv4-20h enzymes regulate ciliated cell fate 

specification during gastrula and neurula stages via the Delta/Notch pathway. MicroRNA 

miR-449 appears to be the major link between Suv4-20h and the Delta/Notch signaling. Suv4-

20h enzymes are thought to provide high levels of miR-449. If embryos are Suv4-20h 

deficient, miR-449 is strongly repressed. Since Suv4-20h HMTases catalyze repressive 

methylation marks (Schotta, Lachner et al. 2004), the enzymes cannot promote miR-449 

production directly, but rather indirectly through one or more yet unknown factor(s) (Fig. 

5.1b).  

 

While miR-449 is ablated in the nephrostomes, it is not ablated in the epidermis. Therefore, 

two factors are postulated, which are termed as “X” and “Y” to avoid that there is only one 

single factor/pathway in which Suv4-20h enyzmes may regulate multiciliogenesis. These 

factors could be the same, but they do not have to be the same, since they are acting in two 
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different tissues. Possible factors for “X” are genes that might regulate miR-449/CDC20B 

induction. To date, no activator of miR-449/CDC20B in the mucociliary epithelium has been 

reported. Those factors might be Sox7, Sox17, FoxJ1 and other Fox-factors (FoxA1, FoxA2, 

FoxM1, FoxF1) (Maeda, Dave et al. 2007; Lize, Klimke et al. 2011). Oct-25 may be a 

possible factor connecting the Suv4-20h enzymes to the compromised ciliogenesis and may 

represent “Y”. Oct-25 mRNA is normally restricted to pluripotent cells, but it is sustained 

throughout the ectoderm in Suv4-20h double morphants beyond its physiological temporal 

expression (Nicetto, Hahn et al. 2013). Therefore, persistent oct-25 levels may interfere with 

cilia differentiation. 

 
Fig 5.1: Model of the Suv4-20h HMTases function. a: timeline for the formation of multiciliated 
cells in the Xenopus epidermis. b: proposed function of Suv4-20h HMTases in wildtype embryos. c: 
Suv4-20h HMTases function in Suv4-20h morpholino injected embryos. Grey color depicts pathways 
that have yet to be identified. “Y” indicates an auxiliary pathway that can inhibit multiciliogenesis. 
Thickness of lines depicts effect power. 
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This rise in miR-449 secures low dll1 levels after fate specification. This is important for a 

normal MCC differentiation and high levels of dll1 inhibit ciliogenesis as demonstrated by 

mci, foxj1, dnah9 and acetylated !–tubulin downregulation. It is not clear why suppressed 

levels of dll1 mRNA are necessary in MCPs to promote ciliogenesis, but one explanation 

could be that dll1 may act cell-autonomously and block multiciliogenesis within the same cell 

by yet unknown mechanisms (Deblandre, Wettstein et al. 1999; Marcet, Chevalier et al. 

2011).  

 

Other studies have revealed a role for miR-449 in various significant events, including cell 

cycle progression, differentiation and apoptosis (Lize, Klimke et al. 2011). MiR-449 is 

thought to be a tumor-suppressive miRNA and was also related to prostate and gastric cancer 

(Lize, Herr et al. 2010). Interestingly, H4K20me3 is also correlated to cancer progression 

(Fraga, Ballestar et al. 2005). 

 

Data in this thesis collectively suggest for the first time a link between Suv4-20h HMTases, 

H4K20me2/me3 and microRNAs. This model can be validated by analysis of the global 

H4K20me3 distribution and identifying direct target genes of the Suv4-20h enzymes. 

Afterwards, target genes could be further tested to infer effects on the miR-449 host gene 

cdc20b. Via miR-449, Suv4-20h HMTases might regulate a whole series of events, including 

cancer development. This important finding opens up new future directions for the analysis of 

Suv4-20h enzymes function. 

 

 

5.4 Conclusions and future directions  
 

 Cilia-related disorders can affect many organ systems and underlie a broad spectrum 

of human diseases. It is therefore a primary concern to understand how cilia formation is 

regulated. In this dissertation, I have investigated the role of the Suv4-20h histone 

methyltransferases in ciliogenesis in various tissues. The following are the main research 

contributions of this dissertation. 

 

The data presented here demonstrate a specific requirement for Suv4-20h enzymes in 

ciliogenesis, especially in multiciliogenesis, for epidermis and kidney. In the epidermis, two 

different phenotypes are observed. First, Suv4-20h morphants display an increased MCP fate 
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selection suggesting that Suv4-20h HMTases restrict MCP numbers via the Delta/Notch 

pathway. Second, on the level of the individual cell, multiciliogenic and axonemal genes - 

mci, foxj1, dnah9 and acetylated !–tubulin - are reduced indicating problems with centriole 

amplification and/or axoneme formation.  

In the kidney, similarly to the epidermis, Suv4-20h enzymes are required to drive 

multiciliogenesis. Markers for multiciliogenesis, such as miR-449, mci, foxj1 and dnah9 are 

strongly compromised in the nephrostomes and tubular markers 3G8 and 4A6 reveal a 

problem with proximal and distal tubulogenesis.  

 

Suv4-20h-related ciliary phenotypes are functionally relevant as demonstrated by the strong 

impairment of the cilia-driven fluid flow on the epidermal surface and the development of a 

massive general edema consistent with compromised pronephric cilia function. The 

embryonic skin of Xenopus is similar to the human airway epithelium indicating that the 

Suv4-20h phenotypes could also be clinically relevant.  

 

My data place Suv4-20h HMTases upstream of both miR-449 and Dll1 in the genetic cascade 

of multiciliogenesis. This work provides the first evidence that cilia formation, specifically 

multiciliogenesis, is connected to the epigenome. 

 

Future research will be needed to fully understand the mechanisms that convey the Suv4-20h 

activity. A focus in future studies should be a genome-wide analysis of candidate target genes 

that link Suv4-20h enzymes to ciliogenesis. Particularly, direct and indirect interactions 

between Suv4-20h and miR-449 will be important. The search for a direct target gene using 

the methods in this work had limitations, since only a restricted number of genes could be 

tested. Nevertheless, this approach was important, since the genes that were identified here 

can guide genome-wide studies to establish an epistatic network ranging from Suv4-20h 

activity, enrichment of H4K20me2/me3 marks to misregulation of cilia structural genes or 

factors that regulate the ciliogenic pathway. RNA sequencing (RNA-Seq) on control and 

morphant animal caps, which form epidermis in isolation, would be important to investigate 

the Suv4-20h contribution to ciliogenesis. Additionally, ChIP-Seq for H4K20me3 would help 

to examine whether specific regions/genes involved in ciliogenesis and/or ciliopathies are 

decorated by this modification and detect changes upon Suv4-20h depletion.  
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Genome-wide analyses, such as RNA-Seq or ChIP techniques, are available for the related 

Xenopus tropicalis, because its genome has been almost fully sequenced. Genes that are 

down- or upregulated in response to Suv4-20h protein depletion will be of special attention as 

possible direct target genes and interaction partners of the Suv4-20h enzymes.  

 

It would be useful to raise antibodies for Xenopus Suv4-20h HMTases for future research. 

They could be used to perform both genome wide analysis (ChIP-Seq) and biochemical 

approaches (mass spectrometry), e.g. to study whether Suv4-20h1 and -h2 interact with 

specific factors in the ciliogenic program. Such questions could be addressed in both animal 

caps and whole embryo samples by immunoprecipitation with Suv4-20h1 or –h2 antibody and 

mass spectrometry analysis on immunoprecipitated proteins.  

 

Studies in the epidermis and kidney have given first clues of Suv4-20h enzymes’ impact on 

ciliogenesis. It would be important to further investigate whether Suv4-20h enzymes have a 

role during monocilium formation (GRP, otic vesicles) beside their role during 

multiciliogenesis. Also in the context of cilia-related disorders, it might be helpful to 

investigate the Suv4-20h effects in these tissues, which are often associated with ciliopathies 

(GRP, otic vesicles, brain ventricles, kidneys and lungs).  

 

An important aspect of future investigations regards the study of the ciliogenic potential of 

Suv4-20h enzymes in mammalian models, including the human airway epithelial cells, where 

ciliogenesis can be studied in vitro at the air-liquid interface. The mouse model can also be 

considered to study the Suv4-20h enyzme role within the formation of the mucociliary 

epithelium, especially, since Suv4-20 dn mice displayed lung defects (Schotta, Sengupta et al. 

2008). 

 

The results of my thesis define Suv4-20h enzymes as relevant and specific regulators of the 

multiciliogenic differentiation program. They contribute a level of epigenetic control that 

works upstream of known ciliogenic regulatory proteins. Given the broad impact of 

epigenetic mechanisms on normal and pathological physiology, it is conceivable that this 

finding may have a profound impact on our understanding of why a growing number of 

human diseases show defects in cilia formation. 
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Fig. S1 Analysis of GRP cilia after Suv4-20h1 depletion 
a: injection into the dorsal marginal zone of both blastomeres at two-cell stage. b: Graphic depicting 
the ciliated area of the gastrocoel roof plate (GRP) in red. Sagittal section as marked by red dashed 
line (b’). c: SEM picture of a GRP explant at neurula stage (NF 17/18), GRP is marked in red. d,e: 
SEM pictures of GRP monocilia in uninjected and Suv4-20h1 MO injected embryos. f: mean cilia 
length of all GRP cilia and mean cilia length of cilia that are located at the posterior part of the cell. 
Uninjected (70/2; total number of cilia counted in number of embryos), Co MO (97/4), Suv4-20h1 
MO (87/4). Lengths in #m. Error bars represent SD. a: anterior, p: posterior, l: left, r: right, bp: 
blastoporus. Scale bars in x1800, 10#m. Scale bars in x12000, 1#m. 
 
 
 
 

 
Fig. S2 Suv4-20h1 depletion upregulates delta-like 1 expression in the pronephros. RNA in situ 
hybridization of NF 33 embryos. First two columns represent uninjected sides of embryos. Last two 
columns show the injected sides visualized by lacZ staining. a-d: Dll1 expression in the pronephros is 
physiologically lost at NF 33. e-h: Dll1 expression in the injected side of Suv4-20h1 depleted embryos 
is sustained (n=two independent experiments).   
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