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complicated model that works well in explanation and prediction and have
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der dynamischen ökonometrischen Mo-
dellierung hochfrequenter Finanzdaten, welche börsentäglich in großem Umfang von
elektronischen Handelssystemen, sogenannten Limit Order Books (LOBs), generiert
werden. Zusätzlich zu (Handels-) Preisen, die Gegenstand der meisten Modelle der
Finanzökonometrie und -mathematik sind, liefern solche Daten Informationen zur
Liquidität eines Wertpapiers: Sie geben zu jedem Zeitpunkt Auskunft über sämtliche
an einem Markt angebotenen und nachgefragten Mengen. Aus Modellierungssicht
handelt es sich dabei um einen hochdimensionalen Vektor, der sich in sehr hoher
sowie schwankender Frequenz ändert. Die Herausforderung bei der Modellierung
besteht, neben der praktischen Komplikation der schieren Größe der Datensätze, in
einer sinnvollen Reduktion dieser Preis/Mengen- bzw. zeitlichen Dimension.

Die zentrale Idee dieser Arbeit ist es, die beobachtete Liquidität als Realisation
eines funktionalen, d.h. kurvenwertigen stochastischen Prozesses aufzufassen. Auf
diese Weise ist es möglich, einige der wichtigsten Modelle der Finanzökonometrie
auf innovative Weise um den Liquiditätsaspekt zu erweitern. Bestehende statistische
Ansätze aus dem Gebiet der funktionalen Datenanalyse (FDA) spielen hierbei eine
entscheidende Rolle.

Basierend auf einem dynamischen semiparametrischen Faktoransatz für Liquidi-
tätskurven sind dies zum einen multiplikative Fehlermodelle (MEMs) mit funktionalen
Liquiditätseffekten, GARCH- und ACD-FunXL. Zum anderen werden, analog zur
Realized-Volatility-Literatur, Ex-post-Maße der Liquidität und Liquiditätsunsicher-
heit konstruiert. Die realisierte Variation des Preises wird sodann im Rahmen eines
linearen Zeitreihenmodells mit realisierten Liquiditätseffekten, HAR-FunXL, model-
liert. Die Markov-Eigenschaft des HAR-FunXL-Prozesses (und Markov’scher Versio-
nen der MEMs) ermöglicht dessen Einbettung in die Klasse der generalisierten addi-
tiven funktionalen Regressionsmodelle, für deren Schätzung auch einige Alternativen
zum faktorbasierten Ansatz diskutiert werden.

Anwendungen all dieser Modelle auf Daten des XETRA-Systems der Deutschen
Börse zeigen, dass die vorgeschlagenen Verfahren das Zusammenspiel von Liquidität
und Volatilität besser zu verstehen helfen. Ferner wird gezeigt, dass Liquiditätsinfor-
mationen in vielen Situationen Volatilitätsprognosen zu verbessern vermögen.
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Summary

This thesis is concerned with the dynamic econometric modeling of high-frequency
financial data. Such data are generated by electronic trading systems, so-called Limit
Order Books (LOBs), each trading day. Apart from security prices, for which most
models in financial econometrics and financial mathematics are designed, such data
reveal information on the liquidity of a security. At each point in time during the
trading day, supply and demand in the market can be reconstructed from LOB data.
From a modeling perspective, the LOB is a high-dimensional vector subject to random
changes at high and irregular (random) frequency. Apart from the size of LOB data,
the major challenge in modeling such a process is a sensible reduction of both the
price/size dimension of supply and demand, and the temporal dimension.

The focal idea of this thesis is to view observed liquidity as realization of a func-
tional, i.e., curve-valued stochastic process. Some of the most important models of
financial econometrics are extended by adding the liquidity aspect in an entirely
new way. These extensions heavily draw on statistical methodology developed in
the young statistical field of functional data analysis (FDA).

Firstly, multiplicative error models (MEMs) with functional liquidity impact, namely
GARCH-FunXL and ACD-FunXL, are proposed based on a semiparametric factor
model of liquidity curves. Secondly, in analogy to the realized volatility approach,
ex-post measures of liquidity and liquidity uncertainty are introduced. To investi-
gate the impact of realized liquidity on the price process, the HAR-FunXL model is
proposed. The HAR-FunXL process, in contrast to MEMs, is a finite-order Markov
process. It is shown that this model (as well as Markovian versions of some MEMs)
can be embedded into the class of generalized additive functional regression models,
facilitating the use of alternative estimation strategies to the factor-based approach.

Applications of the models to LOB data for the German XETRA system show that
the proposed methods are able to uncover connections between liquidity and volatil-
ity. Moreover, it is shown that liquidity information is valuable for forecasting price
volatility in many situations.
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1
Introduction

This thesis develops econometric models which aim at exploiting the full ultra-high
frequency information available in electronic trading systems in order to measure and
forecast financial risk.

Such electronic trading systems do not only reveal information on prices of financial
securities, whose statistical analysis has a long tradition tracing back to Bachelier
(1900), but also on liquidity present in the market place. According to Amihud et al.
(2013),

Liquidity and its converse, illiquidity, are elusive concepts: You know it when
you see it, but it is hard to define.

In this thesis, however, we argue that liquidity can not only be accurately defined,
but even directly observed using limit order book (LOB) data. This claim resembles
somewhat the claim that volatility can be observed based on high-frequency data, as it
has been lodged by the founders of the realized volatility revolution (Andersen et al.,
2000). As we will show, liquidity, i.e., limit order schedules for a given security can be
considered as a bivariate curve-valued or functional stochastic process in continuous
time. However, as individual order submissions or revisions typically do not change
the overall state of the LOB much, it is sensible to employ time series methodology on
data generated by a discrete sampling scheme. Which sampling scheme — for exam-
ple: which sampling frequency — is appropriate depends on the specific application.

The major contribution of this thesis is to augment some of the paramount models
of financial econometrics by the liquidity aspect in an entirely new way, building the
class of FunXL (Functional eXogeneous Liquidity) models. In particular, these are

• The GARCH-FunXL model, which aims to capture the impact of limit order
schedules on intraday dynamics of the conditional return distribution’s vari-
ance at “low" intraday frequencies, i.e., in situations where a continuous return
distribution is appropriate.

• The ACD-FunXL model, designed to capture functional liquidity impact in sit-
uations where interest focuses on the location parameter of conditional distri-
butions of time-varying LOB variables with positive support, such as (price,
volume, trade) durations or realized measures of volatility.
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1 Introduction

• The HAR-FunXL model, mapping realized measures of liquidity (RML) to re-
alized measures of volatility (RMV) in a dynamic setting. To this end, a first
step towards a theory of RML is made. The model belongs to a greater class of
Markovian generalized autoregressive FunXL models.

In order to capture the FunXL aspect of LOB data, we draw on recent advances
in functional time series methodology and on functional regression techniques on
the one hand. On the other hand, we contribute to and draw on the recently active
literature on GARCH-X models and their relatives.

Guideline through the thesis

The thesis can roughly be divided into an introductory Part (Chapters 1 & 2), and
two Parts (Chapters 3 & 4, Chapters 5 & 6) presenting the major contributions of this
work.

More specifically, Chapter 2 sets the stage for the new econometric methodology
introduced in Chapters 3 to 6. Our measure of LOB-implied liquidity is motivated,
introduced, and discussed against the background of other liquidity measures put
forth in the literature. Its basic statistical properties are presented based on equidis-
tant LOB snapshots. However, we still hesitate to call these properties stylized facts as
they may vary somewhat from marketplace to marketplace due to different techno-
logical and institutional settings. We then use the framework of functional time series
analysis (FTSA), which allows to model liquidity as a discrete-time stochastic process
of curve-valued dynamic objects, to capture liquidity by means of a statistical model.
Finally, we use the functional generalization of the AR process, the FAR model due
to Bosq (2000), and a semiparametric dynamic factor model to investigate the pre-
dictability of liquidity.

Chapters 3 and 4 constitute Part I, introducing mutliplicative error models (MEMs)
with functional liquidity impact. The basic idea is to include liquidity as exogeneous
information in the conditional variance (mean) equation of GARCH (ACD) models.
The methodological challenge lies in mapping liquidity curves to the scalar time-
varying parameter of the (univariate) conditional distribution of financial returns,
durations or, possibly, other non-negative quantities of interest. The task, which is an
ill-posed inverse problem, is accomplished using the dimension reduction techniques
introduced in Chapter 2, namely, functional principal component (FPC) decompo-
sitions of the curves along with a basis expansion of a functional parameter which
exploits the orthonormality of FPCs. We propose a two-step quasi-ML estimation
procedure, conjecture its statistical properties, and investigate its finite-sample per-
formance by means of simulations. An extensive empirical application to three DAX
constituents traded on XETRA shows that liquidity matters to explain price variation
in-sample, and it is shown to augment prediction of volatility in an out-of-sample ex-
ercise. Most parts of Chapter 3 and some parts of Chapter 2 are based on the working
paper Fuest, A. and S. Mittnik (2015): Modeling Liquidity Impact on Volatility: A GARCH-
FunXL Approach, which is not yet published, but was selected for the peer-reviewed
8th Annual Society for Financial Econometrics Conference.
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While in Part I, LOB snapshots are modeled, in Part II, snapshots are aggregated over
time. Chapters 5 and 6 constitute Part II. In Chapter 5, ex-post “realized" measures
of liquidity and liquidity variation are introduced. Liquidity at each price level rep-
resented in the LOB is here viewed as a realization of a continuous-time compound
nonhomogeneous Poisson process, i.e., a generalization of the celebrated compound
homogeneous Poisson model of Press (1967), originally proposed to model prices. We
show that accurate estimation is still possible even if only a rather small number of
intraday LOB snapshots is used. By collecting realized measures at all price levels, we
construct (again) functional realized measures of liquidity.

In Chapter 6, we then model the impact of these realized measures on price volatil-
ity in a HAR framework with functional exogeneous liquidity impact, based on di-
mension reduction techniques already used in Chapters 3 and 4. The ability of real-
ized liquidity to help explain and predict price variation is investigated in-sample and
out-of-sample. We also show that several Markovian models with functional liquid-
ity impact, HAR-FunXL being a special case, can be viewed as (functional, additive)
generalized linear regression models. This fact allows to import different approaches
from the respective literature, namely penalized functional regression (PFR), FPC re-
gression, and FPLS regression (Goldsmith et al., 2011; Reiss and Ogden, 2007; Gold-
smith and Scheipl, 2014; Reiss et al., 2015), providing estimates of the functional pa-
rameter based on explicit roughness penalties. We compare one of these approaches,
PFR, to our original FPC approach with respect to their in- and out-of-sample per-
formance, finding that the benefits of roughness penalization are disputable in our
context.

Chapter 7 concludes the thesis and discusses some directions of further research.

Some remarks about notation

Although all variables are introduced and defined in the text where it is most suitable
with regard to the subsequent explanations, it seems appropriate to introduce some
notational principles.

Deterministic vs. random We do not follow the convention of using capital let-
ters for random quantities and small ones for deterministic quantities as we found
it impossible to sustain and, in particular, to avoid collisions with other notational
conventions explained below. Whether or not a quantity is random is always stated
clearly.

Exogeneous vs. endogeneous The FunXL class of models in Parts I and II con-
tains endogeneous quantities, denoted by y, and exogeneous quantities, denoted by
x. As this distinction is crucial, at times we pay the price of using many sub- and
superindexes to consequently stick to this convention.

Dimension of objects We have to denote random quantities (which can be either
scalars, vectors, matrices, or infinite-dimensional objects), their observed realizations,

3



1 Introduction

and parameters appearing as scalars, vectors, matrices, and functions. Vectors (matri-
ces) are denoted by bold small (bold capital) letters, and vectors are always column
vectors if not explicitely stated otherwise. Almost all functions appearing in this the-
sis map Rp or [0, 1] to R, where either p = 1 or p = 2. Where not obvious from
the context, functions are often denoted along with their argument(s), for instance
x(d) or Σ(c, d). Sometimes functional quantities are put together in constructs like
x(d), which denotes a set of functions (argument in rows) stacked in a column vector,
which we call a “vector" (although it could, very informally, also be described as a #
rows × ∞ “matrix"). At some instances, x(d) represents functions joined together at
the ends of their (rescaled) domains.

Time In Part I, models almost exclusively live in discrete time, however, a daily and
an intraday clock are distinguished at times. For example, xt,i may denote some x
at intraday time i on day t, which means there are two simultaneous discrete-time
clocks. In the context of duration models, there are quantities like x`,ti , i.e. counted
(i) event times in continuous time t, observed over trading days `. However, this can
more compactly written as x`,i without a loss of (essential) information.

In Part II, we introduce continuous-time processes whose properties change from
day to day, i.e., in discrete time. Here, t is always the continous clock, and ` is the
discrete clock, as for example in x`,t.

Price as “space" The functional quantities introduced are functions of the (continu-
ous) relative price d to be defined below, so there are quantities like xt,i(d), i.e. func-
tional random variables (or their realizations) evolving in (discrete or continuous)
time.

Market side We always distinguish between supply (ask side) and demand (bid
side) in a market, which is denoted by a superindex (s), s ∈ {bid, ask}.
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2
Limit order books as functional time series

2.1 Introduction

In this Chapter, we introduce the functional approach to liquidity measurement. As
has already been stressed in the introductory Chapter, liquidity is hard do define. An
informal definition, ex negativo, may be that illiquidity of an asset is the effort that has
to be made to trade it. More comprehensively, Kyle (1985) states

[...] a liquid market is a continuous market, in the sense that almost any amount
of stock can be bought or sold immediately, and an efficient market, in the sense
that small amounts of stock can always be bought and sold very near the current
market price, and in the sense that large amounts can be bought or sold over long
periods of time at prices that, on average, are near the current market price.

In much of the econometric literature, a liquid security is simply one which is
heavily traded. However, stating an equivalence of trading volume and liquidity
confuses things: There may be situations where the market is perfectly liquid but
there is no trading, or there may be heavy trading but low liquidity. The paramount
example for the latter situation is the flash crash of May 6, 2010, where heavy trading
occurred during a transitory drop and subsequent recovery of US stock markets which
was due to a lack of liquidity (Kirilenko et al., 2014; Easley et al., 2011).

A simple yet more convincing alternative is Kyle’s Lambda, which has been devel-
oped with a continuous auction model framework in view (Kyle, 1985). The idea is to
relate the size of price changes to trading volume. For an interval [t− ∆, t] during the
trading day, it is defined as

λt =
|Pricet − Pricet−∆|

Volume[t−∆,t]
,

where volume is measured in terms of the monetary value of the traded shares, and
not by the number of traded shares. Note that the prominent illiquidity measure of
Amihud (2002) is almost equivalent. High liquidity corresponds to a small Lambda in
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2 Limit order books as functional time series

this notion. For a given trading volume, higher price changes therefore always imply
lower liquidity, even if they are driven by fundamental news arrivals.

Both liquidity measures, trading volume and Kyle’s Lambda, have in common that
they are computed based on trade information. If we characterize liquidity as the
potential cost of trading, then such trading-based measures obviously are biased as
they neglect liquidity that may be present even when no trading occurs. In contrast,
modern electronic trading systems provide information not only on trades, but also
on the costs of potential trades. Therefore, it can be argued that these trading systems
make liquidity observable — in very much the same way as volatility has been claimed
to be made observable by the availability of high-frequency data on trades and quotes,
15 years ago (Andersen et al., 2000).1 It may still be criticized, however, that only
liquidity implied by submitted limit orders is observable, whereas a full picture of
liquidity also consists of unobservable trading intentions of market participants.

In this Chapter, we introduce measures of liquidity that are based on full informa-
tion about limit order schedules. As it turns out, such measures are large-dimensional
but smooth, which is why we choose to view them as realizations of a functional
stochastic process. Moreover, liquidity can in principle be observed at each point in
time during a trading day, giving rise to continuous-time methods. However, most
changes of liquidity typically only occur locally, leading to strong serial dependence
at high frequency. It depends on the specific purpose of the analysis which sampling
scheme and frequency are appropriate. We advocate dimension reduction techniques
for discrete-time stochastic processes with short memory, for which theoretical justifi-
cations have become available recently (Hörmann and Kokoszka, 2010).

The Chapter proceeds as follows. After a short introduction of limit order books
(LOBs) in general, the structure and dynamics of LOBs, especially the German XETRA
LOB, are presented. We then introduce liquidity curves which can be constructed from
order book data, and use the framework of functional time series analysis (FTSA),
to capture the curves statistically. This idea allows to model liquidity curves as a
discrete-time stochastic process of curve-valued objects. Two models that have been
proposed in the literature, namely the functional AR model (Bosq, 2000) and a semi-
parametric factor model (Hyndman and Shang, 2009; Aue et al., 2015), are used to
characterize the dynamics and, in particular, to assess the predictability of the pro-
cess.

2.2 Limit order books

We introduce the basic rules and principles of LOBs that we need for subsequent
analyses. As many exchanges for financial securities exist around the world, and
even the trading rules for a given exchange are time-varying, we confine ourselves to
the description of the most basic mechanisms, thereby neglecting things like iceberg
orders, midpoint orders etc. For an excellent, comprehensive, and timely survey of
empirics and theory for LOBs see Gould et al. (2013).

1At least this was what Andersen et al. (2000) expected, as the Dickensian title of their paper suggests.
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2.2 Limit order books

Market participants can submit limit and market orders. For both order types, they
have to specify the order size, which must be a positive integer-valued multiple of the
lot size, which typically (but not necessarily) amounts to 1 share. A sell (buy) market
order is the offer (request) to sell (buy) a certain number of shares of a financial
security at an unspecified price. A sell (buy) market order is therefore executed against
the demand (supply) on the opposite side of the market. Supply and demand stem
from the submission of limit orders. A limit order is not only characterized by its
direction (buy or sell) and size, but additionally by an execution price which has to
be specified as a positive integer-valued multiple of the tick size δ. Limit orders which
meet a suitable limit order on the opposite market side are immediately executed and
called effective market orders. All other limit orders are made visible to the other market
participants, and called active limit orders until they are either executed against a
suitable order from the other side of the market, or cancelled. The set of all active
limit orders at some time during the trading day is called the limit order book (LOB).

Figure 2.1 shows a stylized example of a LOB at some time during the trading
day. The number of offered (requested) shares implied by the active limit orders are
depicted in red (blue). We see that prices live on a discrete grid defined by the tick
size. The lowest (highest) price at which shares are being offered (requested) is called
the ask (bid) price, in the example P0 + 2δ and P0, respectively. These prices are also
called the quotes. The difference between the two is called the bid-ask spread, which
always amounts to at least δ. A limit order submission inside the spread (here: at
P0 + δ) is called an aggressive limit order.

A market buy order of, say, size 5 would absorb the outstanding shares at P0 + 2δ

and P0 + 3δ, increasing both ask price and spread by 2δ. A market sell order of the
same size would absorb the best three price levels’ outstanding shares, and (since
there is no share at P0 − 3δ outstanding) both decrease the bid price and increase the
spread by 4δ.

We now turn to introducing some notation. LOBt, the state of the limit order book
at some time t during a trading day, can be characterized by P(s)

t , s ∈ {bid, ask}, the
quotes (measured in ticks), and v(s)t (d), the outstanding number of shares on market
side s and at a price distance d (in ticks) from the respective quote. In the following,
we call d the relative price or distance. As limit sell orders may, in principle, be posted at
any integer number, we write dmax

t = max{d|v(ask)
t (d) > 0} for supply at the highest

relevant price to characterize the dimension of LOBt. Limit buy orders can be posted
at any price level between (but excluding) zero and the ask quote.

Then, the LOB at time t is given by the Dt = (P(bid)
t + dmax

t + 3)-dimensional vector

LOBt :=[P(bid)
t , P(ask)

t ,

v(bid)
t (P(bid)

t + 1), . . . , v(bid)
t (0),

v(ask)
t (0), . . . , v(ask)

t (dmax
t )]′.

Dt is typically very large, and the pattern of active orders (i.e., all tuples {price, #
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2 Limit order books as functional time series

Supply

Demand

ask price

bid price

P0 + 6δ

P0 + 5δ

P0 + 4δ

P0 + 3δ

P0 + 2δ

P0 + δ

P0

P0 − δ

P0 − 2δ

P0 − 3δ

P0 − 4δ

P0 − 5δ

price P

Figure 2.1: An example limit order book. The price P0 is arbitrarily set as an anchor. Blue
(red) boxes stand for outstanding requested (offered) shares. The tick size is
δ. The ask price (lowest offer price) is P0 + 2δ, the bid price (highest price of
requests) equals P0, thus the spread is 2δ. A market buy order of, say, size 5
would absorb the outstanding shares at P0 + 2δ and P0 + 3δ, increasing both
ask price and spread by 2δ. A market sell order of the same size would absorb
the best three price levels’ outstanding shares, and (since there is no share at
P0 − 3δ outstanding) both decrease the bid price and increase the spread by 4δ.
The picture is similar to the one in Preis (2010).
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shares, market side}) highly irregular.

2.2.1 LOB-implied liquidity

Adding up the demand (supply) in the market at a given relative price, we obtain the
cumulative volume.

Definition 2.1 (Cumulative volume, cumulative imbalance). Let v(s)t (d), d = 0, 1, 2, . . .
be the volume in the book at a distance of d ticks from the best quote on market side s ∈{bid,
ask}. The cumulative volume (CV) at side s, tick d and time t is defined by

x(s)t (d) =
d

∑
k=0

v(s)t (k),

and the cumulative imbalance at tick d and time t by

x(imb)
t (d) = x(ask)

t (d)− x(bid)
t (d).

Cumulative volume on the sell (buy) side of the market is a strictly non-increasing
(strictly non-decreasing) step function with respect to the price. Steep cumulative
volume curves with respect to d imply high liquidity since a high number of shares
can be bought or sold without moving the price very much. A perfect market may
be characterized by infinite liquidity, i.e., by a situation where the available number
of shares at the quotes can be matched with market orders of any size. The two
CV functions for buy and sell orders plus bid and ask quotes contain the complete
available information about the LOB at a given time t.

If the volumes in the book are weighted by their prices, the resulting quantity is
called depth. Therefore, the depth of an order book is a hybrid between a liquidity
measure and a measure of the price of an asset. Over short periods of time during
which the price stays almost constant, CV and depth contain the same information.

Another, equally informative liquidity measure is the price of instantaneously buy-
ing (selling) n shares (Bowsher, 2004).

Definition 2.2 (Average cost per share). The average cost per share of a market order of
size n at time t is given by

AC(s)
t (n) =

1
n

[(
n− x(s)t (c)

)
(P(s)

t + c + 1) +
c

∑
k=0

(P(s)
t + k)v(s)t (k)

]
,

where P(s)
t is either the bid or the ask quote, and

c := sup{d : x(s)t (d) ≤ n, d = 0, 1, 2, . . .},

provided that n is larger than the volume at d = 0 (otherwise, c := −1).
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2 Limit order books as functional time series

Note that s = bid (ask) gives the price of a sell (buy) market order. There is a one-
to-one relationship between CV and the average cost per share as a function of the
offered/requested market order volume n, which has been analyzed in Gouriéroux
et al. (1998) and Bowsher (2004).

Liquidity is high if AC curves are flat and low if they are steep. Moreover, the
average cost per share can be rewritten as

AC(s)
t (n) = P(s)

t +
c + 1

n

(
n−

c

∑
k=0

vt(k)

)
+

c

∑
k=0

kvt(k).

Just as depth does, AC depends on the (nonstationary) price process and is there-
fore a hybrid between a liquidity measure and the price. If we are interested in
liquidity only, measured as trading cost per share apart from its (bid or ask) price
P(s)

t , we may measure AC in ticks, i.e. simply drop P(s)
t in the above expression.

Closely related to AC, Gomber and Schweickert (2002) define the exchange liquidity
measure (XLM). We note that our version slightly differs from theirs.

Definition 2.3 (Exchange liquidity measure). The exchange liquidity measure of two
market orders (one buy, one sell) of equal size n at time t (a “roundtrip trade") is given by

XLMt(n) = XLM(buy)
t (n) + XLM(sell)

t (n),

where

XLM(buy)
t (n) =

AC(ask)
t (n)− P(ask)

t

P(ask)
t

,

XLM(sell)
t (n) =

AC(bid)
t (n)− P(bid)

t

P(bid)
t

are the average costs for buy (sell) orders relative to the respective quotes.

Some recent studies make use of these intrinsically curve-valued liquidity mea-
sures. However, instead of accounting for the functional nature of the data, each of
the liquidity curves is evaluated at one specific arbitrary value of their argument. Ex-
amples are Engle et al. (2012), where liquidity of treasury bills is observed at five price
tiers behind the quotes, and van Kervel (2015), where measures called DepthAsk and
DepthBid are used which are quite similar to CV. Gomber et al. (2015) use the XLM in
the same manner. Gouriéroux et al. (1998), Bowsher (2004) in what would later be-
come Bowsher and Meeks (2008), and Härdle et al. (2012b) capture full LOB-implied
liquidity as we do. However, they focus solely on the curves’ dynamics, while we are
the first to model both the curves and their impact on the price process.

Our measure of choice for LOB-implied liquidity will be cumulative volume through-
out this thesis. As compared to cumulative depth, it measures the number of supplied
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shares (liquidity) and not a hybrid between liquidity and the price. This is especially
important as we seek to disentangle the variation of the price and the variation of liq-
uidity. Moreover, in contrast to the price, CV can be expected to be stationary, as the
number of shares stays (at least approximately) constant over time. A major disad-
vantage is the incomparability of liquidity curves between different stocks.2 Finally,
as the price is roughly constant over short periods of time, depth and volume may be
expected to contain roughly the same information in many situations.

It has already been explained that CV contains the same information as AC. More
precisely, CV corresponds to AC measured in ticks, whereas cumulative depth corre-
sponds to AC measured in monetary units. A major advantage of CV when it comes
to modeling is that it is defined for every relative price d ≥ 0. At locations where
the book is empty, i.e., for large d, it simply amounts to the cumulative number of
shares in the book. In contrast, AC(n) is not defined (or may be defined to amount to
infinity) for n larger than the volume in the book. Therefore, although containing the
same information in principle, CV is preferable from a modeling perspective.

2.2.2 The XETRA LOB data

For all our empirical analyses, we make use of historical LOB data recorded by the
XETRA system of the German stock exchange (Deutsche Börse AG), and concentrate
on constituents of the DAX30 index, which can be expected to be quite liquid as com-
pared to non-constituents of DAX30. Our sample covers the period from November
2008 to December 2010. In almost all analyses, we use data for three companies: Mu-
nichRe, Commerzbank, and Linde. At one instance, we also use data for the Deutsche
Bank stock. As will be discussed in subsequent Chapters, the three stocks do not
only represent different industries, they also differ in their trend and volatility profile
during the observed period. Moreover, they have different tick sizes, which depend
on the price. The data contain buy and sell limit orders and trades (i.e., market orders
executed against active limit orders), both time-stamped to the microsecond (10−6 s)
from the beginning of the sample to mid-2010, and even to the nanosecond (10−9 s)
until the end of the sample. The available information for limit orders is

• The price of the limit order.

• The time of submission, t.start.

• The time of either cancellation or execution, t.end. Note that the information
whether a limit order was cancelled or executed against a market order is not
given directly.

• The size (in number of shares) of the order.

For trades, the same information is available, but by construction t.start equals
t.end. From these data, the state of the LOB, LOBt, can in principle be reconstructed

2However, comparability of depth between stocks is equally questionable.

11



2 Limit order books as functional time series

for any time t during a trading day. LOBt is given by the collection of all active limit
orders, i.e., all orders for which t.start ≤ t and t.end > t holds. For the stocks in
our sample, the number of changes of LOBt is typically a 6-digit number, the number
of transactions a high 4- or low 5-digit number.

Which sampling scheme and, possibly, which preprocessing of LOBt is chosen de-
pends on the goal of the specific analysis. In the present Chapter, we use data from
the whole sample period, taking equidistant snapshots every 20 minutes, that is, at a
rather low frequency. The same version of the data is used in Chapter 3. In Chap-
ter 4, we only use one month of data, taking snapshots at random, non-equidistant
times determined by the frequency of price changes (price durations), obtaining up to
roughly 70, 000 snapshots during that month. Finally, in Chapters 5 and 6, we con-
struct summary statistics (realized measures) for each trading day, based on equidistant
snapshots taken every 1 or 5 minutes. Thus, in all cases we only use a subset of the
full information that is provided by the data.

In the next Section, we formalize the notion of liquidity curves observed over time
in the language of discrete-time functional stochastic processes.

2.3 Functional time series

2.3.1 The basic setting

In the following, assume that relative prices, originally observed on a tick grid, are
rescaled to lie in [0, 1], 0 = d1 < · · · < dJ = 1, without loss of generality. Dropping the
superscript “(s)" for this exposition, we assume the (possibly de-seasonalized) liquid-
ity curves for each market side to be generated by a functional stochastic process in
discrete time, (xt)t∈Z, whose observations are elements of the Hilbert space L2 ([0, 1])
with inner product 〈x, y〉 :=

∫ 1
0 x(s)y(s)ds, so that xt is square integrable.

The liquidity process exhibits a mean function, µ(d) := E[xt(d)], and a (contempo-
raneous) covariance operator C(z)[〈x− µ, z〉(x− µ)] with covariance kernel Σ(d, m) =

Cov(xt(d), xt(m)). Mean and covariance kernel are constant over time. The covariance
operator has the form

C(z)(d) =
1∫

0

Σ(d, m)z(m)dm,

describing the contemporaneous linear dependence of different locations (relative
prices) of a liquidity curve. The quantities µ and Σ can be viewed as the functional
time series analogues to the unconditional mean vector and the lag-zero autocovari-
ance matrix in vector autoregression. The covariance operator admits the spectral
representation

C(z) =
∞

∑
j=1

λj〈φj, z〉φj, (2.1)
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where the λj are the (strictly decreasing) eigenvalues and the φj are the corresponding

orthonormal eigenfunctions of C, i.e.,
∫ 1

0 φ2
j (m)dm = 1 and

∫ 1
0 φk(m)φj(m)dm = 0, k 6=

j holds. The ξ j,t := 〈φj, xt〉 are called the scores or loadings of the j-th eigenfunction
on liquidity at time t.

Based on the spectral representation, liquidity curves can then be represented via
the Karhunen-Loève (KL) decomposition,

xt(d) = µ(d) +
∞

∑
j=1

ξ j,tφj(d),

which is also called the functional principal component (FPC) representation. The
eigenvalues λj of the spectral representation are equal to the unconditional variances
of the FPC scores ξ j,t. As the eigenvalues are strictly decreasing, the FPCs are sorted
by their contribution to the xt’s (unconditional) variation. This gives rise to the K-
truncated FPC representation

xt(d) = µ(d) +
K

∑
j=1

ξ j,tφj(d) + vt(d),

where vt(d) = ∑∞
j=K+1 ξ j,tφj(d) is the truncation error.

In practice, we are interested in approximating the curves using such a truncation.
The smallest number of components, K, necessary to explain a certain proportion
(say 99%) of the curves’ total variation is called the effective dimension of the liquidity
process.

In many applications of functional data analysis, either the observation grid is irreg-
ular or even sparse, or some additional measurement error is present in the observed
xt. In all these cases, xt can not directly be observed but must be estimated, usually in
a nonparametric way where smoothness assumptions are imposed. For our LOB data,
however, none of these problems is present: The relative price grid is dense and even
equidistant, there are no missing values, and the measurement can be considered to
be exact. Nevertheless, it may pay to assume intrinsically smooth underlying curves
and employ a corresponding regularization approach in order to reduce estimation
variance.

2.3.2 Estimation

At this point, the question arises how mean and eigenfunctions can be estimated, and
how the empirical FPC scores ξ̂ j,t can be obtained. In practice, we observe discrete
versions of the curves, xt, on a grid d1, . . . , dJ such that the realization of each curve
is a J-dimensional vector. Raw estimates of mean function and covariance kernel are
then given by

µ̂(dj) =
1
T

T

∑
t=1

xt(dj), dj ∈ [0, 1],

13



2 Limit order books as functional time series

and, with µ̂ := [µ̂(0) µ̂(d2) · · · µ̂(dJ−1) µ̂(1)]′ and Xc = [x1 − µ̂ · · · xT − µ̂]′,

Σ̂ =
1
T

Xc′Xc.

The eigenvalues and eigenfunctions of the raw covariance kernel Σ̂ can then in
practice be computed using standard software for singular value decomposition. Us-
ing these estimates, the empirical FPC scores ξ̂ j,t =

∫ 1
0 (xt(m)− µ̂(m))φ̂j(m)dm can be

obtained by numerical integration. An estimator for the covariance operator itself is
then given by

Ĉ(z) =
1
T

T

∑
t=1
〈xt − µ̂, z〉(xt − µ̂).

Although the observed liquidity curves are step functions by construction, it may be
convenient, especially with a view to the desired K-dimensional approximation, to in-
terpret them as realizations of a process generating intrinsically smooth curves. Given
such an assumption, functional observations are noisy versions of smooth underlying
curves, xt(d) = x̃t(d) + et(d) say, where x̃t(d) is the true underlying realization at t,
and et is a measurement error with mean zero at all curve locations, independent of
measurement errors for other curves (so-called “classical" measurement error, Carroll
et al. (2006)), and independent between different locations of the same curve. The KL
representation of xt(d) then reads

xt(d) = µ(d) +
∞

∑
k=1

ξk,tφk(d) + et(d),

that is, a sum of x̃t(d)’s KL representation plus measurement error.
The measurement error does not affect consistency of the estimator of the mean

curve, the variance of the estimator, however, increases. In contrast, the raw covariance
estimator introduced above, Σ̂ = T−1(Xc)′Xc, has mean

E[Σ̂] =

{
Var(x̃t(dj)) + Var(et(dj)) on the diagonal,

Cov(x̃t(dj), x̃t(dl)), j 6= l, i.e., off the diagonal,

where Var(et(d)) =: σ2
e (d) is the variance function of the measurement error. If

the intrinsic curves x̃t(d) are assumed to be smooth, this translates to a regularizing
smoothness assumption for the covariance kernel and, therefore, its eigenfunctions.

Our strategy is to use the raw mean function, which we find to be already quite
smooth in all of our applications, see Chapters 3 to 6. In case of the covariance
operator, several estimation methods have been proposed in the literature. We adopt
the recent approach of Xiao et al. (2013), Xiao et al. (2013) which proceeds as follows.
Stacking the entries of the raw covariance matrix into a vector, we define vec(Σ̂) =: σ̂.
Then we use univariate smoother matrices of the form

Si = Bi(B′iBi + λiD′iDi)
−1B′i, i = 1, 2,

14



2.3 Functional time series

where Bi is a matrix of B-spline basis functions evaluated at the spline’s knots, Di
is a differencing matrix of order i, and λi ≥ 0 is a smoothing parameter. This is
the P-spline approach due to Eilers and Marx (1996). Using these ingredients, the
smoothed, stacked version of the raw covariance function can be expressed as

σ̂smooth = (S2 ⊗ S1)σ̂,

i.e., by a tensor product of the univariate directions of the covariance. As the co-
variance function is symmetric, the same set of knots and degree of smoothing can
be used for both directions, and there is only one smoothing parameter λ to be cho-
sen. This is accomplished by using generalized cross validation (GCV) which enjoys
favorable asymptotic properties in this setting which are comparable to the usual al-
ternative used in the FDA literature, local linear smoothing (Yao et al., 2005b). At the
same time, the sandwich smoother is very fast computationally. A further alternative
would be kernel smoothing (Staniswalis and Lee, 1998). Moreover, we found that
in our applications eigenfunction estimates based on smoothed and raw covariance
kernel estimates do not differ much, so that the smoothing step is not indispensable.

The estimation procedure described so far was originally designed for the case of
iid data. Recently, Hörmann and Kokoszka (2010) introduced a stationarity concept
for functional time series, called Lp-m-approximability.

Definition 2.4 (Lp-m-approximability, Hörmann and Kokoszka (2010)). A sequence
(xt)t ∈ Lp is called Lp-m-approximable if each xt admits the nonlinear MA(∞) represen-
tation

xt = f (εt, εt−1, . . .), (2.2)

where εi are i.i.d. mean zero functional innovations in some space E , and f maps the innova-
tions from E∞ to Lp ([0, 1]).

Let the sequence (ε′i)i be an independent copy of (εi)i, and replace the εi in (2.2) by ε′i for
i ≥ m, forming the representation

x(m)
t = f (εt, εt−1, . . . , εt−m+1, ε′t−m, ε′t−m−1, . . .). (2.3)

Then,

∞

∑
m=1

(
E||xm − x(m)

m ||p
)1/p

< ∞ (2.4)

holds.

The interpretation of Lp-m-approximability is that the impact of innovations in the
distant past on xt is so small that they can be replaced by different innovations with
the same stochastic properties. While being more general, this is basically the same
property as the MA(∞) representation of causal (V)AR(MA) processes in classical
time series analysis. In other words, it holds for models with sufficiently short mem-
ory. Moreover, being defined in terms of moments, it is a notion of weak stationarity.
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2 Limit order books as functional time series

Based on the assumption of Lp-m-approximability, Hörmann and Kokoszka (2010)
are able to prove that µ̂ and Ĉ(z) are

√
T-consistent estimators of the true mean func-

tion and covariance operator, respectively — provided the data-generating process
is assumed to be L2-m-approximable in case of µ̂, and L4-m-approximable in case of
Ĉ(z), respectively. Throughout, we assume our liquidity process(es) to be stationary
in this sense.

2.3.3 Dynamic dimension reduction

An implication of dimension reduction using the KL-representation, i.e., based on the
contemporaneous covariance structure of the curves, is the fact that the multivari-
ate score series (ξ1,t, ξ2,t, . . .)t is contemporaneously uncorrelated, Cov(ξ j,t, ξk,t) = 0,
j 6= k, but may be cross-correlated at leads and lags, Cov(ξ j,t, ξk,s) 6= 0, t 6= s. In other
words, FPCA as defined above is a static procedure which ignores the temporal de-
pendence of curves when constructing the FPC weights or scores. As a consequence,
dynamic factor models built upon the KL representation, presented in more detail in
Section 2.5, in general must employ multivariate time series methodology to account
for all dynamic properties.

Drawing on ideas first proposed in Brillinger (1981) for the vectorial case, Hörmann
et al. (2015) put forth an alternative, termed dynamic functional principal components
analysis (DFPCA).3 DFPCA uses the whole spectrum of the functional stochastic pro-
cess to obtain score series which are mutually uncorrelated at all leads and lags. In
time-domain language, this amounts to exploiting the information provided by the
entire set of autocovariance operators,

Ch(z)(d) =
1∫

0

Γh(d, m)z(m)dm,

h ∈ Z, where h = 0 gives the contemporaneous covariance operator introduced
above, Γ0(d, m) = Σ(d, m). This idea facilitates the use of univariate time series models
to represent the curves’ dynamics. In the vectorial case, the model is known as the
generalized dynamic factor model (GDFM) due to Forni et al. (2000). For practical pur-
poses, an analogue of the one-sided GDFM of Forni et al. (2005), which only employs
past observations to construct the score series, would be more appropriate. However,
these indicated generalizations are yet to be developed in the context of FTSA.

In spite of the sketched advantages of DFPCA, we expect the approach to have
some drawbacks. The estimation of the functional spectrum, put in time-domain
language, amounts to an implicit estimation of all (or, in practice, a large number of)
autocovariance operators from a finite number of observations. This induces a trade-
off between additional estimation variance and the potential benefits of accounting for
serial dependence. Moreover, as each DFPCA score does not only depend on xt, but
also on temporally adjacent liquidity curves, not only estimation but also interpretation

3See also Panaretos and Tavakoli (2013), moreover Hu and Tsay (2014) for a similar idea in the context
of conditional covariance matrices.
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2.4 The LOB as functional time series

becomes less straightforward.
For these reasons, we exclusively make use of the static version of FPCA, the KL

representation, in the remainder of the thesis.

2.4 The LOB as functional time series

To illustrate FPCA for liquidity curves, we consider data for MunichRe, Commerzbank,
and Linde, observed every 20 minutes during continuous trading in the period 2008-
11-03 to 2010-12-30. Raw liquidity curves for market side s, day t, and intraday time
i, x̃(s)t,i , which are strictly non-decreasing step functions, are diurnally adjusted via

x(s)t,i (d) =
x̃(s)t,i (d)

ν̂
(s)
i (d)

,

where ν̂
(s)
i (d) is the estimated diurnal pattern at the relative price d. The diurnal

pattern is assumed to be deterministic as it is standard practice in modeling high-
frequency trading dynamics (Hautsch, 2012). The same data are used in Chapter 3. A
motivation of the sampling frequency as well as a detailed description of the data and
their preprocessing can be found in Section 3.2.4 where it is put in a more suitable
context.

The estimated diurnal surfaces are shown in Figure 2.2. They behave quite smoothly
over the trading day. However, there is (i) lower-than-average liquidity at the begin-
ning of the trading day, and a slight dip after the midday auction at 1pm, moreover (ii)
a tendency of the LOB-implied amount of liquidity to increase over the day, especially
deep (d >> 0) in the book.

In the following, we model diurnally adjusted curves, x(s)t,i , but could in principle
easily transform the curves back to their original scale. The autocorrelation structure
of curves is only slightly affected by the transformation. The modes of variation, how-
ever, change distinctly: The original curves’ variation increases with d by construction,
whereas de-diurnalized curves measure the level of liquidity relative to the uncondi-
tionally expected level. Figure 2.3 contrasts raw and de-diurnalized curves for two
exemplary trading days. Moreover, it is shown that the autocorrelation structure of
liquidity is preserved.

Figures 2.4 and 2.5 show the results of a FPCA for the full sample exemplarily for
the Commerzbank stock. The results for the other stocks are essentially the same. We
find that the eigenfunctions (which are identifiable only up to the sign) are very sim-
ilar for both market sides. The same holds for the complexity or effective dimension,
represented by the eigenvalues, as in both cases three FPCs are needed to capture
roughly 90 percent of the curves’ variation. The question of symmetry of the market
sides is addressed in Chapter 3. Figure 2.5 depicts the different modes of variation
exemplarily for Commerzbank’s ask curves. The findings for the bid side are quite
similar. The straight horizontal line in all plots is the estimated mean curve, µ̂(ask)(d),
of de-diurnalized ask liquidity, which amounts to 1 for all d by construction. In the
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Figure 2.2: Diurnal liquidity patterns for bid (left panel) and ask (right panel), and (top
to bottom) Commerzbank, Linde, and MunichRe, measured in thousands of
shares. The diurnal pattern is a function of intraday time and relative price d.
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Figure 2.3: Top: Functional time series of ask liquidity curves for April 3, 2009 (top) and
February 1, 2010 (bottom). In the left panel, the raw data (cumulative number
of shares, measured in thousands, within a range of ¤0 to ¤2 from the quotes)
are depicted, in the right panel the de-diurnalized versions of the same curves
are shown. Bottom: Sample autocorrelations of raw and de-diurnalized ask
curves at d = 0, 20, 40, . . . , 180, 200 Cents from the quote, computed over the
full sample. The maximum number of lags, 120, corresponds to five trading
days. The lowest SACF trajectory corresponds to d = 0. The higher d is, the
slower is the decay of the SACFs. The SACFs are virtually identical for raw and
de-diurnalized data. The fact that we take 24 snapshots per day can be seen
from slight heaps at h = 25, 49, . . . lags.
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left panel, µ̂(ask)(d) is shown along with µ̂(ask)(d)± 1.96
√

λ̂
(ask)
k φ̂

(ask)
k (d), k = 1, 2, 3, 4,

where λ̂
(ask)
k is the kth eigenvalue, and φ̂

(ask)
k (d) the kth estimated eigenfunction of

the ask curves’ estimated contemporaneous covariance operator. The rationale is as
follows: λ̂

(ask)
k equals the estimated variance of the kth FPC score, ξ

(ask)
k,t . Simplify-

ingly, we assume the scores to be multivariate normal.4 Then, ±1.96
√

λ̂
(ask)
k are the

estimated 2.5% (97.5%) quantiles of the marginal distribution of ξ
(ask)
k,t . Therefore, the

area between the grey curves in the left panel of Figure 2.5 can be interpreted as the
respective main area of variation. For k = 1, it is found that liquidity curves are
shifted almost parallely, i.e., the first FPC can be interpreted as a level component.
This level component dominates overall variation as already noted in the analysis of
eigenvalues. The FPCs k = 2 to 4 capture several aspects of the curves’ variation in
the left part of the domain of relative prices, i.e., near the quotes.5 The much smaller
areas between the curves in the second to fourth plots in the left panel reflect the
smaller relative contributions of these features (smaller eigenvalues).

Exploiting the diagonal covariance structure of the multivariate score distribution,
the right panel of Figure 2.5 shows the mean function and the cumulative modes of
variation of the first k components,

µ̂(ask)(d)± 1.96
k

∑
j=1

√
λ̂
(ask)
j φ̂

(ask)
j (d), k = 1, 2, 3, 4.

All in all we find that curves (i) mainly vary in their level, and (ii) exhibit more and
richer modes of variation near the quotes.

2.4.1 Identification of eigenfunctions

The theoretical results of Hörmann and Kokoszka (2010) explained above testify that
dimension reduction based on the contemporaneous covariance structure, frequently
used in i.i.d. settings, can also be employed in the context of weakly dependent time
series. However, it remains to be explored how well the procedure works in finite
samples if the factor dynamics are complex, i.e., exhibit highly interdependent score
processes, and/or persistent, i.e., have near unit root dynamics.

We conducted several Monte Carlo experiments to answer these questions, not
shown here in detail. The results suggest that in situations where the temporal depen-
dence structure as well as the eigenstructure are chosen realistically, identification of
eigenfunctions is very accurate.6 Moreover, we find that identification of the original
eigenfunctions is exacerbated when the eigenvalues decay very slowly with respect

4This can be justified either by assuming x(ask)
t to stem from a Gaussian process or based on asymp-

totic arguments.
5Recall that [0, 1] corresponds to [¤0, ¤2].
6In order to obtain a “realistic" simulation setting, we chose serial dependence and eigenstructure

similar to their empirical counterparts. By employing empirical estimates, however, we presuppose
that the identification has worked for these estimates, which leads to a somewhat tautological
“evidence", as the quality of estimation is exactly what we seek to investigate.
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Figure 2.4: Top panel: Cumulative eigenvalues, normalized by the sum over the first 30
eigenvalues, for de-diurnalized bid and ask curves of the Commerzbank stock.
K = 3 components explain more than 90 percent of curve variation in both
cases. Center panel: First four estimated eigenfunctions for ask (left) and bid
(right) curves for the Commerzbank data. The eigenstructure is apparently very
similar for the two market sides. Bottom panel: Estimated covariance surfaces
of bid (right) and ask (left), truncated for better visibility.
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Figure 2.5: Modes of variation for Commerzbank ask liquidity curves. The straight hori-
zontal line in all plots is the estimated mean curve, µ̂(ask)(d), of de-diurnalized
ask liquidity which amounts to 1 for all d by construction. In the left panel,

µ̂(ask)(d) is shown along with µ̂(ask)(d)± 1.96
√

λ̂
(ask)
k φ̂

(ask)
k (d), k = 1, 2, 3, 4. In

the right panel, it is shown along with µ̂(ask)(d) ± 1.96 ∑k
j=1

√
λ̂
(ask)
j φ̂

(ask)
j (d),

k = 1, 2, 3, 4.
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2.4 The LOB as functional time series

to k, which is in line with the findings of previous studies, typically in i.i.d. settings.
However, the approximation of curves using these inaccurately estimated basis func-
tions is still quite good. Finally, we somewhat surprisingly find that, given a simple
eigenstructure, strong serial dependence does not worsen the results much. Implicitly
these issues are taken into account in the simulation study on the liquidity impact in
MEM models in Section 3.4.

2.4.2 Uncertainty assessment

Finally, we investigate the extent of variation in the eigenfunction estimates. Stable
eigenfunction estimates are desirable as will become apparent when dealing with the
FunXL models proposed in Parts I and II of the thesis.

We employ the stationary bootstrap of Politis and Romano (1994) to quantify the
estimation variability of eigenfunctions. As compared to the standard bootstrap for
i.i.d. data, where observations are drawn independently, the idea is to draw blocks
of observations in order to retain the serial dependence inherent in the true data-
generating functional stochastic process. Moreover, in contrast to the standard block
bootstrap, the stationary bootstrap uses random block lengths which are drawn from
a geometric distribution. After some experiments, we choose the tuning parameter,
the mean block size, to be 10. However, we find that the results are not very sensitive
to this choice.

Figure 2.6 shows some exemplary results, again for Commerzbank’s ask curves. We
find that the eigenfunction estimates do not show much variation. The same holds
for µ̂(s) (not shown). Let us for one moment neglect this estimation uncertainty which
we found to be small anyway. This amounts to pretending to know the true mean,
µ(s)(d), and eigenfunctions, φ

(s)
k (d), k = 1,2,. . .. Then, the (estimated) scores,

ξ̂
(s)
k,t =

1∫
0

(
x(s)t (m)− µ̂(s)(m)

)
φ̂
(s)
k (m)dm,

computed using the observed curves x(s)t (m), can be treated as if they were directly
observed. We return to this point in Chapters 3, 4, and 6 as it is crucial for estimation
and model choice of FunXL models.

We also experimented with manually selected blocks, for example all observations
during one month of trading, finding that eigenfunction estimates are also quite stable
over time. Therefore, the assumption of a stationary underlying liquidity process
appears to be appropriate, so that we turn to the application of stationary functional
dynamic models in Section 2.5.7

7In addition to this rather informal investigation, a formal test of stationarity of functional time series
could be performed, which has recently been proposed in Horváth et al. (2014).
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Figure 2.6: Uncertainty assessment for the estimated eigenfunctions of Commerzbank’s
ask curves, based on B = 100 stationary bootstrap samples with mean block
length of 10, results for k = 1 to k = 4, from top to bottom.
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2.5 Functional dynamic modeling of liquidity

2.5 Functional dynamic modeling of liquidity

Although this thesis is mainly concerned with the impact of liquidity on the price
process, the question of the dynamics of liquidity itself arises naturally. In the follow-
ing, the two existing approaches to autoregressive modeling of functional time series
are introduced briefly and then applied to the limit order book snapshot data.

We distinguish two basic model classes, semiparametric factor (SPF) models and
functional autoregressive (FAR) models. The basic idea of SPF models is to first project
the curve-valued objects onto a finite-dimensional subspace and then model the dy-
namics of the projection. Forecasts can be obtained by inverting the projection, i.e. by
reconstructing curves from vectors or scalars. The SPF approach considered here is
based on FPCs. In contrast, FAR models exhibit an infinite-dimensional parameter,
the autoregressive operator, which acts directly on the curve-valued objects of inter-
est. However, the FAR model as introduced in Bosq (2000) employs a finite number of
FPCs to represent the operator, meaning that the same kind of dimension reduction
is used as in FPC-based SPF models, but at a different stage.

A prominent example of a SPF model is the dynamic Nelson-Siegel model of
Diebold and Li (2006). In contrast to the FPC-based approach, the factors (and, hence,
the number of factors) are predetermined — level, slope, and curvature. The model
is estimated either by a two-step procedure — weights in the first step, dynamics in
the second —, or in a joint state space approach. The latter is either accomplished by
the Kalman filter (if Gaussianity is assumed) or by Bayesian techniques which allow
for more flexible measurement error and innovation distributions. Another example
with pre-determined factors, also in a state space setting, is the functional signal-
plus-noise model of Bowsher and Meeks (2008), which was applied to AC curves in
Bowsher (2004). This is to the best of our knowledge the first dynamic model for
liquidity curves.

SPF models with unknown factor structure are developed in Fengler et al. (2007)
and Park et al. (2009). An application of this model to liquidity curves can be found
in Härdle et al. (2012b). There, the factor structure plus weights on the one hand, and
the dynamics on the other hand, are estimated separately. The FPC-based approach
propagated in this thesis can first be found in Hyndman and Shang (2009). Accom-
panied by a sound theoretical grounding, the model is re-introduced in Aue et al.
(2015).To our knowledge, there are only two examples of models where the unknown
factor structure (basis functions plus loadings) and the dynamics are estimated jointly
in one step. The first example is Hays et al. (2012), where an EM algorithm is used,
the second, using Bayesian estimation techniques, is Kowal et al. (2014). In contrast
to SPF models, the literature on the FAR approach, which is the direct analogue to
(V)AR models, can be overseen more easily. The FAR model was pioneered in Bosq
(2000), further references are Kargin and Onatski (2008) and Besse et al. (2000). They
have never been applied to liquidity curves before.
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2 Limit order books as functional time series

2.5.1 Semiparametric factor model

We have already indicated that many different SPF models have been proposed. To
construct a semiparametric factor model, consider the FPC representation of the ran-
dom curve xt,

xt(d) = µ(d) +
∞

∑
j=1

ξ j,tφj(d)

≈ µ(d) +
K

∑
j=1

ξ j,tφj(d). (2.5)

We assume the truncation parameter K to be chosen generously large, rendering
the truncation error ∑∞

j=K+1 ξ j,tφj(d) negligible. The curves’ dynamics are solely cap-
tured by the time-varying weights of the eigenfunctions which are collected in the
K-dimensional vector ξt =

[
ξ1,t · · · ξK,t

]′
.

For the dynamics of the FPC scores or factors ξ1,t, . . . , ξK,t we use a VAR model,

ξt = a0 +
p

∑
j=1

Ajξt−j + vt, (2.6)

where vt is multivariate Gaussian white noise. All in all, we have a nonparamet-
ric first step, the dimension reduction, and a parametric second step, the dynamics.
This is the same model as in Aue et al. (2015). Park et al. (2009) and Härdle et al.
(2012b) use the same dynamics, but extract the factor series slightly differently, while
Hyndman and Shang (2009) also use FPC-based factors, but only univariate autore-
gressive factor dynamics. We note that, although dimension reduction in this setting
is a “linear" procedure (contemporaneously uncorrelated factors based on the covari-
ance structure), the dynamics of the conditional mean may be allowed to be nonlinear.
Another feature that may be desirable is conditional heteroskedasticity of vt. How-
ever, it is unclear how such features translate back to the original, infinite-dimensional
function space of liquidity curves.

Estimation and prediction

Estimation of the semiparametric dynamic factor model proceeds in two steps.

1. Estimate the factor structure as outlined in Section 2.3, yielding a K-variate time
series of FPC scores or factors,

(
ξ̂t

)
t=1,...,T

.

2. Fit a VAR model to the score series
(

ξ̂t

)
t=1,...,T

by OLS.

We represent the resulting estimate as VAR(1), which also encompasses higher-
order VAR models if ξt, A, vt are redefined appropriately (Lütkepohl, 2005). More-
over, we drop the hats stemming from estimation step 1, notationally pretending to
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2.5 Functional dynamic modeling of liquidity

observe the FPC scores directly, while retaining those stemming from step 2, i.e., for
all other quantities, yielding

ξt − µ̂ξ = Â
(

ξt−1 − µ̂ξ

)
+ v̂t, (2.7)

where µ̂ξ = 0, i.e., the estimated unconditional mean vector of the FPC scores is
zero by construction of the scores.

Then, the usual recursive minimum MSE predictor can be applied to obtain h-step-
ahead forecasts of the process,

E[ξt+h|ξt] = Âh
ξt.

Using the estimated eigenfunctions and mean function for the liquidity curves, a
h-step-ahead forecast for the original liquidity curves is then obtained by

E[xt+h|xt] = µ̂ + φ̂
′
(

Âh
ξt

)
,

where φ̂ is the K-dimensional “vector" stacking the K estimated eigenfunctions φ̂.
If the homoskedastic normality assumption for the innovations is taken literally, we

also obtain prediction intervals for the scores, which can in turn be used to construct
prediction intervals for the liquidity curves — thereby ignoring estimation uncertainty
for mean and eigenfunctions, i.e., from step 1.

2.5.2 Functional autoregressive model

The direct analogue of an autoregressive model of order one is the linear FAR(1)
model,

xt(d)− µ(d) =
1∫

0

Ψ(c, d)(xt−1(c)− µ(c))dc + εt(d), (2.8)

where εt(d) is a functional white noise process, i.e., which has mean zero for all
d, and is serially uncorrelated. Additionally, but not necessarily, εt(d) may be as-
sumed to have a homokedastic and/or diagonal contemporaneous covariance opera-
tor.8 Moreover,

Ψ(x) =
1∫

0

Ψ(c, d)x(c)dc

8The model is often used to describe a continuous-time process which is cut into smaller pieces, for
example cumulative intraday return trajectories sampled each trading day. Then a natural innova-
tion process is the (contemporaneously heteroskedastic) Brownian bridge as it is deterministically
zero at d = 0 and d = 1.
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2 Limit order books as functional time series

denotes a linear autoregressive operator such that E[xt|xt−1] = Ψ(xt−1) provided
that xt is de-meaned. The model can then be more compactly rewritten as

xt − µ = Ψ (xt−1 − µ) + εt. (2.9)

We emphasize that µ is a functional parameter, and xt, εt are functional random pro-
cesses. This model is due to Bosq (2000). It is easily seen that it is the direct analogue
to the scalar AR(1) and the vectorial VAR(1) model. Accordingly, in analogy to the
VAR case FAR models of order p can be constructed using the FAR(1) representation,

xt − µ = Ψ (xt−1 − µ) + εt, (2.10)

where xt, µ, and εt are constructed by sticking together p functional quantities,

xt =
(
xt xt−1 · · · xt−p+1

)
µ = (µ µ · · · µ)

εt = (εt 0 · · · 0)

(2.11)

and the autoregressive kernel operator is given by

Ψ =


Ψ1 Ψ2 · · · Ψp−1 Ψp

I 0 · · · 0 0
0 I 0 0
... . . . ...

...
0 0 · · · I 0

 . (2.12)

where I denotes the identity operator (Bosq, 2000). Note that xt (µ,εt) do not denote
vectors of functions as before, but one function mapping [0, 1] → R. The domain of
d, [0, 1], is thereby partitioned into p sections of equal length and the elements of xt

(µ,εt) are rescaled appropriately. In the following, however, we confine ourselves to
the FAR(1) model.

To be stationary and causal, the autoregressive operator must satisfy ||Ψ|| < 1,
where

||Ψ||2 =

1∫
0

1∫
0

Ψ2(c, m)dcdm.

Estimation and prediction

To estimate Ψ, Bosq (2000) proposes a Yule-Walker-type estimator. The subsequent
presentation follows Hörmann and Kokoszka (2012) closely. Throughout, we assume
de-meaned xt, i.e., E[xt(d)] = 0 for all d.
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2.5 Functional dynamic modeling of liquidity

In the univariate scalar AR(1) case, xt = ψxt−1 + εt, where εt is white noise and
|ψ| < 1, the Yule-Walker estimator of ψ is given in terms of the estimated autocovari-
ance function at lags 0 and 1, ψ̂ = γ1/γ0. In the functional case, the estimator looks
just the same in principle, but the autocovariances are replaced by autocovariance
operators C0 (formerly simply written as C) and C1, where

Ch(z) := E[〈xt, z〉xt+h], (2.13)

so that the functional Yule-Walker equation of the FAR(1) model can be written

C1 = ΨC0. (2.14)

Thus, just as in the scalar or vectorial case, the estimator is obtained by inverting the
contemporaneous covariance,

Ψ = C1C−1
0 . (2.15)

Using the spectral representation (2.1) and exploiting the orthonormality of the eigen-
functions, the inverse operator is obtained by simply inverting the eigenvalues,

C−1
0 (z) =

∞

∑
j=1

λ−1
j 〈φj, z〉φj (2.16)

However, as the eigenvalues go to zero for j→ ∞, C−1
0 is unbounded. Therefore, to

render estimation feasible in practice, we truncate the representation, using only the
first K eigencomponents. By plugging in estimated eigenfunctions and eigenvalues,
we arrive at the empirical inverse contemporaneous covariance operator

Ĉ−1
0 (z) =

K

∑
j=1

λ̂−1
j 〈φ̂j, z〉φ̂j (2.17)

while using the estimator

Ĉ1(z) =
1

T − 1

T−1

∑
t=1
〈xt, z〉xt+1 (2.18)

for the order 1 autocovariance operator. In the final estimator of ψ due to Bosq
(2000), the curves xt are approximated by their first K FPCs, xt ≈ ∑K

k=1 ξ̂k,tφ̂k, leading
to
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2 Limit order books as functional time series

ψ̂K(z) =
1

T − 1

T−1

∑
t=1

K

∑
k=1

K

∑
j=1

λ̂−1
k 〈z, φ̂k〉ξ̂k,tξ̂ j,t+1φ̂j (2.19)

with kernel

ψ̂K(c, d) =
1

T − 1

T−1

∑
t=1

K

∑
k=1

K

∑
j=1

λ̂−1
k ξ̂k,tξ̂ j,t+1φ̂k(c)φ̂j(d). (2.20)

All quantities needed to estimate the autoregressive kernel, ψ̂K(c, d), are obtained
via FPCA. The serial dependence of the curves is basically captured by means of the
covariance of the FPC scores which is measured by the product ξ̂k,tξ̂ j,t+1, as can be
seen from (2.20). Moreover, these contributions are weighted by the inverse eigenval-
ues of the components. As a consequence, choosing K large assigns (potentially too)
much weight to components with small explained variance.

Turning to forecasting, we note that in our application the curves are observed on a
regular grid of length J = 201, xt = (xt(0) xt(d2) · · · xt(dJ−1) xt(dJ))

′. The same holds
for the estimated mean, µ̂. We use the same grid for evaluating ψ̂K(c, d), which is then
a J × J matrix. Denote this matrix by ψ̂K,J . Then, h-step-ahead forecasts are basically
obtained in the same way as for VAR models, rescaled by the number of grid points
J,

E[xt+h|xt] = µ̂ + J−2ψ̂
h
K,J (xt − µ̂) . (2.21)

2.5.3 Empirical results

We fit FPC-based SPF models and FAR models to the XETRA data for Commerzbank,
MunichRe, and Linde, using K = 1, . . . , 8 functional principal components, respec-
tively. As this analysis is only supposed to be a preliminary one with the new models
in Parts I and II in view, we confine ourselves to models with p = 1, although a
higher-order model will certainly be slightly more appropriate. Concerning the SPF
models, we find the score dynamics to be pretty diagonal. For instance, for a VAR(1)
model of Linde’s ask curves and K = 5, we obtain

Â =


0.87 0.28 0.20 0.19 −0.17
0.04 0.35 0.19 0.13 −0.14
0.01 0.07 0.55 0.23 −0.01
0.01 0.01 0.13 0.38 −0.21
0.00 −0.03 0.00 −0.13 0.40

 .

The result suggests that it is reasonable to confine to univariate AR(1) score dynam-
ics in the SPF models, resembling the original FPC-based SPF model (Hyndman and
Shang, 2009). We abbreviate these models SPF-AR(1). Note that all SPF models that
we fitted imply clearly stationary dynamics.

30



2.6 Conclusion

The estimated autoregressive kernels for Linde (ask) and K = 1, . . . , 4 are shown in
Figure 2.7. For K = 1, it is positive everywhere and relatively flat, while for K ≥ 1, the
positive autocorrelation near the quotes becomes more pronounced — even to such a
degree that the implied model is no more stationary.

Nevertheless, we evaluate all estimated models, SPF-AR(1) and FAR(1) with K =

1, . . . , 8, in an out-of-sample forecast exercise, regardless of possibly nonstationary
parameter constellations. As the evaluation of the FAR(1) kernel at the J2 grid points
is computationally intense, the models are estimated only once. We use two training
periods, 2008-11-03 to 2009-12-30 and 2008-11-03 to 2010-06-30, and compute forecasts
for (the remainder of) all observations in 2010. As the results are qualitatively the
same for both situations, we report only the first one. We employ the root mean
integrated squared error (RMISE) as our loss function. Denoting the discretized point
forecast by x̂t+h := E[xt+h|xt], it is defined as

RMISEh =

I−1
I

∑
i=1

1∫
0

(xi+h(m)− x̂i+h(m))2dm

1/2

(2.22)

≈
(

I−1 J−1
I

∑
i=1

J

∑
j=1

(xi+h(mj)− x̂i+h(mj))
2

)1/2

, i ∈ I , (2.23)

where I is the index set of forecast origins and I = |I|. That is, we approximate
the integrated error using J = 201 grid points for each curve.

The results of the exercise are shown in Tables 2.1 (h = 1) and 2.2 (h = 3). The
forecast horizons correspond to 20 minutes and 1 hour, respectively. We find that
both models perform similarly well. Models with rather many components perform
fairly well, even in case of FAR, which is a bit surprising given the reciprocal eigen-
value problem explained above. However, the often-cited study which emphasizes
this issue, Didericksen et al. (2012), evaluates the estimation performance based on
the estimation error of the autoregressive kernel, ψ(c, d), which is evaluated in simu-
lation studies, and not based on the forecast performance. Returning to our empirical
result, we find that even the occasionally nonstationary FAR(1) specifications perform
considerably well in many situations. Between FAR and SPF, there is no clear favorite.
Both are able to outperform the no-change forecast (RW) for some K in most cases.
However, the variation of forecast is quite large for all models (including RW), so that
they do not differ at all in the light of Diebold-Mariano tests.9

2.6 Conclusion

The present Chapter has introduced cumulative volume curves as functional measures
of liquidity, as well as the framework of weakly dependent functional time series, due to

9We use the DM test somewhat naively, and only pairwise, as an explorative tool. For a discussion of
the DM assumptions and alternatives see the very enlightening survey Diebold (2015).
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Figure 2.7: Estimated autoregressive kernels of a functional autoregressive model of or-
der 1, fitted to de-diurnalized ask curves of the Linde stock. Plots (i) to
(iv) depict the estimates based on K = 1, . . . , 4 functional principal com-
ponents, evaluated on a grid. The second to fourth components introduce
strong autocorrelation for liquidity near the ask quote. The implied norm,
||ψ̂|| = (

∫ ∫
Ψ̂2

K(t, s)dtds)1/2, equals 0.87 (0.98, 1.16, 1.27) for K = 1 (2,3,4),
meaning that the estimated process is nonstationary for K ≥ 3, presumably
due to the spike near 0, 0.
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2.6 Conclusion

Hörmann and Kokoszka (2010), as a statistical framework for modeling such curves.
Two model classes have been presented that can be used to model the curves’ dy-
namics. For LOB snapshots taken every 20 minutes during trading, we find that both
autocorrelation and persistence of liquidity curves are substantial.

The functional principal component or Karhunen-Loève representation of curves
is a powerful tool for dimension reduction, i.e., for simple yet informative represen-
tations of the data. It is therefore instrumental in developing the new econometric
models in subsequent Chapters of this thesis.
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2 Limit order books as functional time series

number of FPCs
model 1 2 3 4 5 6 7 8 RW

Commerzbank

bid
FAR 3.6118 2.7486 2.5955 2.4787 2.4224 2.3987 2.3802 2.3157 2.6851
SPF 3.6118 2.7561 2.6760 2.5573 2.5013 2.4846 2.4682 2.4595 2.6851

ask
FAR 3.3520 3.0424 2.6834 2.5023 2.4395 2.4002 2.3773 2.3572 2.4678
SPF 3.3520 3.0451 2.8210 2.5961 2.5262 2.4942 2.4736 2.4594 2.4678

MunichRe

bid
FAR 6.7148 6.4169 6.6628 6.7535 6.7471 6.7120 6.7056 5.2044 5.8243
SPF 6.7145 6.1348 5.7408 5.7208 5.7192 5.7101 5.7082 5.7051 5.8243

ask
FAR 7.1981 6.9839 7.1020 7.1046 7.0946 7.0663 7.0686 7.1081 6.6205
SPF 7.1961 6.6753 6.3582 6.3454 6.3440 6.3341 6.3320 6.3267 6.6205

Linde

bid
FAR 4.0104 3.9217 3.8506 3.8498 3.8150 3.7572 3.7570 3.5478 4.0168
SPF 4.0104 3.8802 3.8220 3.8131 3.7661 3.7404 3.7289 3.7218 4.0168

ask
FAR 4.0879 3.9727 3.9003 3.8530 3.8664 3.8335 3.8201 3.8037 4.1558
SPF 4.0879 3.9802 3.9051 3.8722 3.8636 3.8341 3.8260 3.8163 4.1558

Table 2.1: RMISE (× 1000) of one-step-ahead out-of-sample forecasts of FAR(1) and SPF-
AR(1) models. The models are estimated only once, using data from November
3, 2008 to December 30, 2009. The evaluation period is the whole year 2010.
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2.6 Conclusion

number of FPCs
model 1 2 3 4 5 6 7 8 RW

Commerzbank

bid
FAR 3.7480 3.0138 2.8763 2.8042 2.7710 2.7518 2.7389 2.6944 3.1384
SPF 3.7479 3.0445 3.0394 2.9744 2.9421 2.9340 2.9261 2.9215 3.1384

ask
FAR 3.4878 3.3551 2.9484 2.8269 2.7760 2.7473 2.7329 2.7210 2.9417
SPF 3.4878 3.3554 3.3129 3.1828 3.1538 3.1381 3.1282 3.1221 2.9417

MunichRe

bid
FAR 7.4940 8.0714 8.0268 8.0823 8.0919 8.1224 8.1095 6.2088 6.3611
SPF 7.4914 7.3235 7.2728 7.2712 7.2707 7.2704 7.2703 7.2703 6.3611

ask
FAR 8.5128 9.0851 8.9640 9.0026 8.9956 9.0081 8.9931 9.0454 7.3497
SPF 8.5012 8.3610 8.3109 8.3080 8.3077 8.3072 8.3071 8.3070 7.3497

Linde

bid
FAR 4.3927 4.3902 4.3583 4.3473 4.3591 4.3013 4.3201 4.0948 4.5407
SPF 4.3929 4.3831 4.3611 4.3606 4.3523 4.3445 4.3434 4.3429 4.5407

ask
FAR 4.4885 4.4343 4.3670 4.2952 4.2989 4.3268 4.3107 4.3194 4.6892
SPF 4.4888 4.4808 4.4660 4.4599 4.4591 4.4545 4.4522 4.4516 4.6892

Table 2.2: RMISE (× 1000) of three-step-ahead out-of-sample forecasts of FAR(1) and SPF-
AR(1) models. The models are estimated only once, using data from November
3, 2008 to December 30, 2009. The evaluation period is the whole year 2010.
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Part I

Multiplicative Error Models with
Liquidity Impact
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Multiplicative Error Models with Liquidity
Impact

Part I consists of Chapters 3 and 4. In Chapter 3, the GARCH model with Functional
eXogeneous Liquidity, GARCH-FunXL, is introduced. The idea is to capture the
impact of the (functional) shape of the LOB on the conditional variance of the re-
turn process of an asset by using a (functional, nonparametric) linear predictor. A
two-step Gaussian QML estimation procedure in a log-GARCH-X framework is pro-
posed. Estimation relies on the FPC expansion of both liquidity curves and the infinite-
dimensional parameters which are needed to map the curves to the conditional vari-
ance. Monte Carlo evidence suggests that the model works well in finite samples.
In an application to intraday log-returns of three stocks traded on the XETRA LOB,
including an out-of-sample forecast exercise, the importance of liquidity impact for
price variation is documented.

In Chapter 4, the logarithmic ACD-FunXL model is introduced. As Gaussian and
exponential QML inference are equivalent, the estimation procedure of Chapter 3 is
invoked. In an application to price durations for two DAX stocks traded on XETRA,
the liquidity impact on price dynamics at ultra-high frequency is investigated. The
model performs favorably.

Both models, GARCH-FunXL and ACD-FunXL, can be viewed as special cases of
multiplicative error models, constituting the class of MEM-FunXL models. Note that
both Chapters originally were prepared as two standalone manuscripts. Thus, they
contain brief explanations of FTS methods that have already been discussed in depth
in Chapter 2. However, we believe that these pieces improve the overall readability of
these Chapters.
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3
Liquidity impact on volatility: The GARCH-
FunXL model

3.1 Introduction

In recent years, the availability of high-frequency financial data has helped to deepen
our understanding of the microstructure of financial markets. At the same time, the
microstructure itself has changed as electronic order-driven trading platforms have
become the de-facto standard for trading of financial securities. In financial econo-
metrics, starting in the 1990s, two major strands of literature have emerged which
make use of high-frequency data. The first is concerned with the dynamic properties
of the trading process as a whole, not only of prices but also of trading volume, bid-
ask spreads etc. as well as their interactions. Financial duration models pioneered by
Engle and Russell (1998) and Engle (2000) and their many applications are the most
prominent examples of this line of research. The second strand can be termed realized
volatility. It aims at using high-frequency information on prices to improve the mea-
surement of price volatility and, in a second step, modeling its dynamics. In other
words, the realized volatility project has the same goals as for example GARCH mod-
eling for, say, daily data, but hopes to improve accuracy by increasing the sampling
frequency.

The present Chapter contributes to the literature by combining a traditional dy-
namic GARCH volatility model with the complete (in a cross-sectional sense) “micro-
state of the market" for a financial security as implied by its limit order book (LOB).

To sketch the idea, consider the following linear GARCH(1,1) specification for an
intradaily, de-seasonalized log-return, rt,i = log Pt,i − log Pt,i−1, on the mid-quote, Pt,i,
at intra-daily time i and trading day t,

rt,i = σt,iεt,i, εt,i
iid∼ (0, 1), σ2

t,i = ω + αr2
t,i−1 + βσ2

t,i−1, (3.1)

as it has for instance been applied by Engle and Sokalska (2012) to 10-minute re-
turns on NYSE. The LOB however does not only reveal information on prices, but
also on the size of limit orders around the quotes, the LOB inventories. Figure 3.1
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Figure 3.1: State of a limit order book at some time during the trading day, consisting of (i)
prices, i.e. bid and ask quotes whose mean (the mid-quote) is represented by a
dot, and (ii) liquidity, represented by the available requested (left) and offered
(right) cumulative number of shares as a function of the price.

illustrates the state of an LOB at some specific time during a trading day.

We denote the left curve, the bid curve, by x(bid)
t,i (P) and the right curve, the ask

curve, by x(ask)
t,i (P), and view them as functions of the price. Now consider the case

where order book inventories, x(ask)
t,i (P) say, have an impact on the price. We extend

the model introduced above by capturing possible effects of these function-valued
objects on the variation of the price by specifying the conditional variance in terms of

σ2
t,i = ω + αr2

t,i−1 + βσ2
t,i−1 +

∫
P

γ(m)x(ask)
t,i−1(m)dm, (3.2)

where P is the interval of possible prices.
Model (3.2) is now of the GARCH-X type but, in contrast to existing specifications of

this kind, the exogeneous variable is a curve-valued, i.e. infinite-dimensional quantity.
In fact,

∫
P γ(m)x(ask)

t,i−1(m)dm is the limit case of a linear predictor, where γ(m) is a
functional rather than a vectorial parameter, mapping liquidity at all price levels in P
to scalar conditional volatility.

Early studies on the connection of liquidity and volatility (e.g. Gallant et al. (1992),
Jones et al. (1994)) employ daily transactions data to measure liquidity. More recently,
the structure (Gouriéroux et al., 1998) and dynamics (Härdle et al. (2012b); Bowsher
(2004) in an early version of Bowsher and Meeks (2008)) of liquidity as implied by an
order-driven market have been studied. However, to the best of our knowledge the
proposed GARCH-FunXL approach is the first attempt to model volatility dynamics
using the full LOB.
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3.2 Liquidity

The remainder of the Chapter is organized as follows: Section 3.2 explains in detail
how liquidity curves, sampled intradaily at a constant frequency, are constructed from
LOB data and parsimoniously represented in the framework of functional time series
analysis. Basic empirical properties of these curves are evaluated for three liquid
stocks traded on the German XETRA system. Parts of these results are also shown in
Chapter 2.

Section 3.3 introduces the GARCH-FunXL model. A two-step QML estimation pro-
cedure for the model’s parameters, especially the functional parameter γ(m), is de-
veloped and the different sources of estimation uncertainty are discussed. Section 3.4
provides a simulation study investigating the finite-sample performance of the esti-
mation strategy. In an empirical application presented in section 3.5, the model is
fitted to the three XETRA stocks. Both in-sample results and out-of-sample forecast
evaluations underline the relevance of liquidity for explaining price variation. Section
3.6 concludes the Chapter.

3.2 Liquidity

Limit order books carry dynamic information on price and liquidity of an asset.
Strictly speaking, the price is an implication of the liquidity present. Nevertheless,
as we explain in the following, it is possible to measure both phenomena separately.

3.2.1 Limit order book information

Regardless of the specific market design (limit order book or competing market mak-
ers), information on price and liquidity of a given stock is given by the requested
(demand) and offered (supply) volume of shares around the quotes. The latter are an
implication of the offers and requests: The bid quote is the highest supply price, the
ask quote is the lowest demand price. The difference of the two is always at least one
tick.

LOBt, the state of the limit order book at some time t during a trading day, can be
characterized by P(s)

t , s ∈ {bid, ask}, the quotes (measured in ticks), and v(s)t (d), the
outstanding number of shares on market side s and at a price distance d (in ticks)
from the respective quote. The LOB at time t is given by the vast-dimensional and
irregularly populated vector

LOBt :=[P(bid)
t , P(ask)

t ,

v(bid)
t (P(bid)

t + 1), . . . , v(bid)
t (0),

v(ask)
t (0), . . .]′.

Adding up the demand (supply) in the market at a given relative price, we obtain
the cumulative volume,
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3 Liquidity impact on volatility: The GARCH-FunXL model

x(s)t (d) =
d

∑
k=0

v(s)t (k),

see Definition 2.1.
There is a one-to-one relationship between CV and the average price per share as
a function of the offered/requested market order volume as has been analyzed in
Gouriéroux et al. (1998) and Bowsher (2004). If the volumes in the book are weighted
by their prices, the resulting quantity is called depth. Therefore, the depth of an order
book is a hybrid between a liquidity measure and a measure of the price of an asset.
As we seek to analyze liquidity impact on the price process, we will use CV as our
liquidity measure. A possible drawback of this approach is that a comparison of the
liquidities of different stocks gets more complicated.

In the following, we call the mid-quote, Pt :=
(

P(bid)
t + P(ask)

t

)
/2, the price of the

asset. Assuming an equidistant sampling scheme at frequency 1/∆, the log-return
of the price is given by rt = log Pt − log Pt−∆. Confining ourselves to only a single
constant sampling frequency, we set ∆ := 1 without loss of generality.

Cumulative volume curves are termed (bid or ask) liquidity in the remainder of the
paper.

3.2.2 Diurnal patterns

Both price volatility and liquidity exhibit certain regularities during a trading day
that can be treated as being deterministic. In case of volatility, this is the well-known
U-shape over the trading day. For liquidity, the pattern is a bivariate function of both
time of day and relative price whose shape will be shown in brief.

Volatility pattern

As we are interested in asset returns at high frequency, we introduce a second time
index or clock, so that rt,i denotes the i-th of I raw intraday returns on day t, t =

1, . . . , T. Following Andersen and Bollerslev (1997), Andersen and Bollerslev (1998)
and Engle and Sokalska (2012), we assume that the raw return is given by the product
of a stochastic component, yt,i, and a deterministic diurnal component, si, i.e.,

rt,i = yt,isi.

Our interest centers on the conditional variance of the stochastic part, yt,i. The deter-
ministic diurnal pattern si can be estimated as the mean squared return at the specific
intraday interval, ŝi = T−1 ∑T

t=1 r2
t,i (Engle and Sokalska, 2012), or a smoothed ver-

sion thereof. Andersen and Bollerslev (1997), for instance, use the flexible Fourier
functional form proposed by Gallant (1981), where smoothness of the fitted pattern is
implicitly imposed through the choice of constant and cyclical components.

Similar to this second approach, we use a cubic smoothing spline to fit the scatter-
plot of squared intraday returns vs. (intraday) time, where the smoothing parameter
is chosen via generalized cross validation. Results are shown in Section 3.2.4.
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3.2 Liquidity

Liquidity pattern

Curve-valued liquidity can be decomposed in an analogous way. Here, for each mar-
ket side, the diurnal pattern is itself a deterministic function of the relative price d
and intraday time i. Raw liquidity on market side s, x̃(s)t,i , is given by

x̃(s)t,i (d) = ν
(s)
i (d)x(s)t,i (d),

where νi(d) is the deterministic diurnal liquidity surface and x(s)t,i (d) the stochastic
liquidity component, which is of primary interest in our analysis.

As the pattern is typically less pronounced than the volatility pattern, we do not
smooth the diurnal pattern (which could in principle easily be done, for example by
using a tensor product spline) but rather use simple averaging. The estimator is then
given by

ν̂
(s)
i (dj) = T−1

T

∑
t=1

x̃(s)t,i (dj),

where d1, . . . , dJ is the observation grid along the price axis. Empirical results are
shown in Section 3.2.4.

3.2.3 Liquidity as functional time series

Let us briefly review the results from Section 2.3 that are relevant here. We have
demonstrated that liquidity curves can be viewed as realization of a stationary func-
tional stochastic process in discrete time. This is exactly the setting we consider here.
A crucial ingredient we need in order to build the GARCH model with liquidity im-
pact is the Karhunen-Loève decomposition or FPC representation,

xt(d) = µ(d) +
∞

∑
j=1

ξ j,tφj(d).

The eigenvalues λj of the spectral representation are equal to the unconditional vari-
ances of the FPC scores ξ j,t. As the eigenvalues are strictly decreasing, the FPCs are
sorted by their contribution to the (unconditional) variation of xt. This gives rise to
the K-truncated FPC representation

xt(d) = µ(d) +
K

∑
j=1

ξ j,tφj(d) + vt(d),

where vt(d) = ∑∞
j=K+1 ξ j,tφj(d) is the truncation error. In practice, we are interested

in approximating the curves using such a truncation. The smallest number of com-
ponents, K, necessary to explain a certain proportion (say 99%) of the curves’ total
variation is called the effective dimension of the liquidity process.

To empirically obtain the decomposition, the mean is estimated and extracted first.
Discretized versions of the eigenfunctions φk are obtained as the (rescaled) eigen-
vectors of the covariance matrix of the de-meaned curves. However, we smooth the
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3 Liquidity impact on volatility: The GARCH-FunXL model

covariance matrix first using the FACE algorithm (Xiao et al., 2013), leading to smooth
eigenfunction estimates φ̂k. In our well-behaved setting with a dense and regular rel-
ative price grid d1, . . . , dJ , the empirical FPC scores, ξ̂k,t =

∫ 1
0 (xt(m)− µ̂(m))φ̂k(m)dm,

can then be computed by simple numerical integration methods.
The procedure, originally developed in an i.i.d. setting, is valid for dependent

functional data provided they are Lp-m-approximable in the sense of Hörmann and
Kokoszka (2010). Then µ̂ and Ĉ(z) are

√
T-consistent. Throughout, we assume the

liquidity process(es) to be stationary in this sense.

3.2.4 Empirical results

Let us turn to the task of estimating the diurnal patterns and the FPCs for the data at
hand. Before doing so, we provide a description of the data.

Data

We use historical limit order book data from the German XETRA system from Novem-
ber 3, 2008 to December 31, 2010, obtained from the Deutsche Börse AG. The data set
covers 531 trading days and contains information on all limit order submissions, re-
visions and cancellations and all trades (i.e., market orders) at all permissible price
levels for three DAX constituents: Linde, an industrial company, the Commerzbank,
and the (re-)insurance company MunichRe.1

The sample starts in midst of the global financial crisis and ends in more tranquil
times. To get a first impression of the “longer-run” behavior during these 26 months,
consider the daily closing prices and the corresponding returns shown in Figure 3.2.
The price levels of the three stocks behave quite differently during this period: Linde
experienced a positive trend, MunichRe a sideways market, and Commerzbank sta-
bilizes in the second half after a considerable turmoil in early 2009. In contrast, the
dispersion patterns over time are quite similar for all three stocks.

The permissible price levels are the positive multiples of the tick size. The tick
size on XETRA depends on the price. For most of our sample period (from January
2009 on), it is ¤0.001 if the instrument’s price is under ¤10, ¤0.005 for prices in
the interval [¤10, ¤50), 1 cent for prices from ¤50 to ¤100, and 5 cent otherwise.
The data set allows us, in principle, to reconstruct LOBt for any t in a given trading
day. Continuous trading on XETRA starts after a 5-minute opening auction at 9am, is
interrupted by another auction of this type at 1pm, and ends just before the closing
auction at 5:30pm. In our application, we take snapshots of LOBt every 20 minutes
sampled during continuous trading. Specifically, we avoid auction effects by sampling
at 9:09am, 9:29am, . . ., 12:49pm, 1:09pm, . . ., 5:29pm.

1For Commerzbank (MunichRe, Linde), 530 (526, 529) full trading days have been observed, with 25
daily snapshots each, amounting to 13250 (13150, 13225) observations, from which we compute 24
intraday returns per day. After removing the diurnal volatility pattern as explained in the present
section, we substract the mean from each series, so that no zero returns remain. Then we remove 2
(3, 0) outliers. This leaves us with 12719 (12621, 12696) observations, respectively. For the bid and
ask liquidity curves, no missing values or outliers are present.
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Figure 3.2: Daily closing prices (left panel) and log returns (right panel) for Commerzbank
(upper panel), Linde (center panel), and MunichRe (bottom panel).

Order book data are typically available only up to a certain “level”, which means
that only the volumes at the first 10 or 20 best prices are provided. Therefore, the
actual price range covered depends on both the tick size and on how densely the
orders are posted. We, in contrast, have information on all admissible price levels.
However, in our analyses, we only consider volumes posted at the nearest ¤2 around
the quotes on each market side, a range we expect to suffice to observe all relevant
aspects of the LOB. For all three stocks, we record cumulative volumes in increments
of one cent, so that the snapshots are of the form

LOBt :=[P(bid)
t , P(ask)

t ,

v(bid)
t (¤0), v(bid)

t (¤0.01), . . . , v(bid)
t (¤2.00),

v(ask)
t (¤0), v(ask)

t (¤0.01), . . . , v(ask)
t (¤2.00)]′

Moreover, our data set not only contains the information that was available to the
market participants, it also provides a full picture of hidden liquidity as, for example,
iceberg orders are included.
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3 Liquidity impact on volatility: The GARCH-FunXL model

Diurnal patterns

The estimated diurnal volatility patterns for the three considered stocks are shown in
the left panel of Figure 3.3. They basically exhibit the familiar U-shape. In the second
half of the day, volatility typically rises after 3:29pm (US markets open at 3:30pm CET)
and peaks at 4:09pm before decreasing somewhat until the end of trading at 5:30pm.

The center and right panels of Figure 3.3 show the corresponding liquidity patterns
known from Chapter 2. They are quite similar for the two market sides. Especially
at greater distance from the quotes, there is a slight upward trend which may be
attributed to the fact that some of these limit orders remain only in the book because
they are unlikely to be executed. Still, more than 95 percent of the total limit order
volume is cancelled instead of being executed. The median lifetime of a limit order is
less than one second, while the mean lifetime increases as the distance to the quotes
increases.

The structure of liquidity

We now turn to analyzing the de-seasonalized liquidity over the full sample. The time
series of bid and ask liquidity curves for two exemplary days and the Commerzbank
stock are shown in Figure 3.4. Note that by construction the unconditional mean of
de-seasonalized liquidity is 1 for all locations, so that values above (below) 1 can be
interpreted as high (low) liquidity at a specific time of the day and region of the LOB,
respectively.

Turning to the functional principal components of the series, the top panel of Figure
3.5 shows the normalized eigenvalues, i.e., the variances explained by each of the first
ten components, both for the bid and the ask side using the whole range of 201 tick
levels. For both market sides, four components are needed to capture 95 percent of the
variation in liquidity. The bottom panel of Figure 3.5 shows the first four estimated
eigenfunctions for the two market sides. Note that the eigenfunctions are unique only
up to the sign. With this in mind, we conclude that the factor structure of both sides is
quite similar. In both cases, the first eigenfunction is almost horizontal and, therefore,
can be interpreted as a “level” factor. The remaining eigenfunctions capture different
aspects of liquidity variation, all having in common that deviations near the quotes
(in the left part of the domain) are larger than at a greater distance from the quotes.
This finding reflects the larger variation of liquidity near the quotes, as could already
be seen from the exemplary days shown above.

To statistically test for differences in the eigenfunctions, Benko et al. (2009) propose
a resampling-based test for equality of eigenfunctions for two-sample situations like
ours. We do not apply this test here. Instead we estimate the scores, ξ j,t, in the
truncated FPC expansion x̂t = ∑4

j=1 ξ j,tφ̂j, using OLS regressions of the xt against the
first four eigenfunctions. We find that eigenfunction estimates based on bid curves
only, based on ask curves only, and in a pooled estimation, respectively, yield in
all three cases virtually identical score estimates, ξ̂ j,t, and, hence, approximations
x̂t = ∑4

j=1 ξ̂ j,tφ̂j.
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Figure 3.3: Diurnal volatility (left panel) and liquidity (center and right panel) patterns for
the three stocks, fitted using a smoothing spline. From top to bottom: Com-
merzbank, Linde, and MunichRe.
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Figure 3.4: Functional time series of ask (red) and bid (blue) liquidity curves for April
3, 2009 (top) and February 1, 2010 (bottom). In the left panel, the raw data
(cumulative number of shares, measured in thousands, within a range of ¤0
to ¤2 from the quotes) are depicted, in the right panel the de-seasonalized
versions of the same curves are shown.
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3 Liquidity impact on volatility: The GARCH-FunXL model

In contrast, liquidity itself is far from symmetric. The contemporaneous correlation
of the scores between market sides is rather low (see Table 3.1).

bid.1 bid.2 bid.3 bid.4
ask.1 -0.27 0.07 -0.04 0.34
ask.2 0.07 -0.02 0.09 -0.15
ask.3 0.08 -0.02 0.03 0.10
ask.4 -0.06 0.34 0.10 -0.08

Table 3.1: Contemporaneous sample correlations between the first four FPC score series
for the two market sides. Not shown: Correlations between scores of the same
market side which are orthonormal by construction.

3.3 GARCH-FunXL

3.3.1 The model

The raw log-returns rt,i during intraday times i − 1 and i on day t, i = 1, . . . , I, are
generated by

rt,i = yt,isi, (3.3)

yt,i = σt,iεt,i, εt,i
iid∼ (0, 1), (3.4)

where si is a deterministic diurnal volatility component, and σt is the conditional
volatility of the de-seasonalized or de-diurnalized returns yt,i. This setup is as in An-
dersen and Bollerslev (1997), Andersen and Bollerslev (1998) and Engle and Sokalska
(2012), AB and ES henceforth, with the exception that these authors further decom-
pose σt into a daily and an intradaily component. ES use commercially available data
based on multifactor risk models for the daily component, whereas AB use a GARCH
specification. In principle we could also adopt these approaches, but at this stage
prefer to keep it simple.

Note that the model generates only intraday returns, and assumes that σt,i stays
constant between the trading hours of subsequent trading days, i.e., σt,I = σt+1,0.

The conditional volatility follows a GARCH specification, which is augmented by
exogeneous information in terms of the liquidity curves at the beginning of each
intraday interval from both market sides, i.e.

σt,i = f (yt,i−1, . . . , x(ask)
t,i−1, x(bid)

t,i−1), (3.5)

where yt,i−1, . . . denotes the entire return history, in the following denoted by Ft,i−1.
As explained in Section 3.2, the liquidity curves are, as the yt,i, de-diurnalized quan-
tities.
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3.3 GARCH-FunXL

In the following we lighten notation by dropping the i. Furthermore, we consider
a log-GARCH specification whose endogeneous part has order (1,1). We choose the
functional liquidities to enter the model in a log-linear fashion as well. Then, the
conditional log-variance becomes

log σ2
t = ω+α log y2

t−1 + β log σ2
t−1

+

1∫
0

γ(ask)(m)x(ask)
t−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
t−1 (m)dm.

(3.6)

We denote this larger information set, consisting of past returns plus liquidities at
t− 1, by F L

t−1.

Collecting all this and the ingredients from Section 3.2, the logarithmic GARCH(1,1)-
FunXL model for returns with conditional volatility influenced by x(s)t−1, s ∈ {bid, ask},
can be defined as follows.

Definition 3.1 (Logarithmic GARCH(1,1)-FunXL process). Let x(ask)
t , x(bid)

t be drawn
from curve-valued exogeneous liquidity processes as specified before. Then, yt follows a loga-
rithmic GARCH(1,1)-FunXL process, if

yt = σtεt, εt
iid∼ (0, 1) (3.7)

log σ2
t = ω + α log y2

t−1 + β log σ2
t−1

+

1∫
0

γ(ask)(m)x(ask)
t−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
t−1 (m)dm,

(3.8)

where

x(s)t = µ(s) +
∞

∑
k=1

ξ
(s)
k;t φ

(s)
k . (3.9)

We assume that the terms
∫ 1

0 γ(s)(m)x(s)t−1(m)dm, s ∈ {bid, ask}, are non-degenerate
in the sense that the coefficient functions are finite over [0, 1] and recall that both
liquidity processes are stationary in the sense explained above, especially having finite
mean function and covariance operator. Then, if |E(log ε2

t )| < ∞, (3.7)-(3.9) admits the
ARMA(1,1)-(Fun)X representation

log y2
t = π0 + π1 log y2

t−1 + θ1 log ut−1

+ g
(

x(ask)
t−1 , x(bid)

t−1 ; γ(ask), γ(bid)
)
+ ut,
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3 Liquidity impact on volatility: The GARCH-FunXL model

where

π0 = ω + (1− β)E[log ε2
t ],

π1 = α + β,

θ1 = −β,

ut = log ε2
t − E[log ε2

t ],

g
(

x(ask)
t−1 , x(bid)

t−1 ; γ(bid), γ(ask)
)
=

1∫
0

γ(ask)(m)x(ask)
t−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
t−1 (m)dm,

see also Sucarrat et al. (2013). An interesting feature is that the intercept and there-
fore the autocorrelation function of log y2

t depends on the innovation distribution via
E[log ε2

t ]. It follows immediately that log y2
t is stationary if the roots of the AR poly-

nomial lie outside the unit circle, i.e., for a model of order (1,1), −1 < α + β < 1.

We choose the log-GARCH specification primarily to avoid non-negativity con-
straints for the functional exogeneous part of the model. Such contraints would be dif-
ficult to impose in presence of an infinite-dimensional parameter and de-diurnalized
liquidity curves without positivity constraints. One further attractive feature of log-
GARCH specifications is that the log conditional variance has no lower bound (in
contrast to the standard GARCH case). A possible drawback could be that the model
does not allow for zero returns.2 For more details see Francq et al. (2013), who use an
asymmetric log-GARCH specification (similar to the GJR-GARCH), which could also
be adopted here. Another application of the log-GARCH-X, which is in some aspects
similar to ours, is the Realized GARCH model of Hansen et al. (2012).

3.3.2 Estimation

We recall from Section 3.2 that the liquidity curves can be approximated by their first
K functional principal components,

x(s)t (d) ≈ µ(d)(s) +
K

∑
k=1

φ
(s)
k (d)ξ(s)k,t .

Assumptions

We make the following assumptions:

2This is, however, not of practical relevance for de-meaned returns.
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(i) For each s, there is some K < ∞ for which

1∫
0

∞

∑
j=K+1

φ
(s)
j (m)x(s)t (m)dm = 0

⇔
1∫

0

∞

∑
j=K+1

∞

∑
i=1

φ
(s)
j (m)φ

(s)
i (m)ξ

(s)
i,t dm = 0

⇔
1∫

0

∞

∑
j=K+1

∞

∑
i=K+1

φ
(s)
j (m)φ

(s)
i (m)ξ

(s)
i,t dm = 0

holds.

(ii) This K is the same for both market sides.

This means that only a finite number of liquidity components, and moreover only
those that explain liquidity best, have an impact on our quantity of primary interest,
the price volatility.

However, this assumption does not rule out dynamic dependencies between the
first K and the remaining components. Consider, for example, the following vector
autoregressive (VAR) liquidity dynamics for a process whose covariance has K + L
non-zero eigenvalues, L ≥ 1,

ξ
(s)
t =


ξ
(s)
1,t
...

ξ
(s)
K+L,t

 = ν(s) +
p

∑
j=1

A(s)
j ξ

(s)
t−j + v(s)

t ,

x(s)t (d) = µ(s)(d) +
K+L

∑
j=1

φ
(s)
j (d)ξ(s)j,t ,

i.e., each liquidity curve can be decomposed to K + L components which are orthonor-
mal (

∫ 1
0 φi(m)φj(m)dm = 1 for i = j and zero otherwise).

All univariate score processes are contemporaneously uncorrelated with all the oth-
ers, but may well depend on lagged values of other processes. This is ruled out if the
autoregressive matrix of the full liquidity process is assumed to be block diagonal
in the sense that the first K components’ scores do not interact with the remaining
components K + 1, . . . , K + L.

While not explicitely claiming that the scores have such VAR dynamics, we finally
assume that the lead and lag effects of components K + 1, . . . on the first K compo-
nents’ scores are negligible, which is a reasonable assumption for our data: Fitting
VAR models to the empirical FPC scores, we find that autoregressive matrices are
nearly diagonal, i.e., each individual score series is mainly driven by its own past.
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3 Liquidity impact on volatility: The GARCH-FunXL model

Two-step estimation

We estimate the GARCH-FunXL model in two steps.

1. Estimation of the liquidity curves using the orthonormal FPC expansion

x̂(s)t (d) = µ̂(s)(d) +
K

∑
k=1

φ̂
(s)
k (d)ξ̂(s)k,t ,

where the true K, mean function µ, and eigenfunctions φk are unknown, and the
ξ̂
(s)
k,t =

∫ 1
0 (x(s)t (m)− µ̂(s)(m))φ̂

(s)
k (m))dm are computed via numerical integration.

This step has been outlined in detail in Section 3.2.

2. QML estimation of the GARCH-FunXL parameters using the scores ξ̂
(s)
k,t , k =

1, . . . , K, t = 1, . . . , T from Step 1 and the return data.

For statistical inference conditional on a truncated K-component FPC decompo-
sition of x(s)t , we employ a Gaussian quasi-likelihood approach to obtain estimates
of ω, α, β, γ(bid), γ(ask). The conditional distribution of the logarithmic GARCH(1,1)-
FunXL with Gaussian innovations is given by

yt|F L
t−1 ∼ N (0, exp ( ω + α log y2

t−1 + β log σ2
t−1+

1∫
0

(3.10)

+

1∫
0

γ(ask)(m)x(ask)
t−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
t−1 (m)dm

 .

We do not claim the innovations to be Gaussian, instead we are interested in infer-
ence on the latent volatility process only. The Gaussian quasi-log-likelihood is given
by

l(y, x; ω, α, β, γ(bid), γ(ask)) = −1
2

T

∑
t=2

(
σ2

t +
y2

t
σ2

t

)
,

where y is the vector of de-diurnalized returns, and x the “matrix" of de-diurnalized
liquidity curves.

As both the x(s)t and the coefficients γ(s)(·) are infinite-dimensional objects, the term∫ 1
0 γ(s)(m)x(s)t (m)dm has to be approximated by some finite-dimensional representa-

tion. In our practical application, we use K = 1, . . . , 5. For all three stocks considered,
K = 4 components explain at least 95 percent of the curves’ variation.

Introducing a K-dimensional parameter vector γ(s) = [γ
(s)
1 · · · γ

(s)
K ] for each

market side, we expand the coefficient function using the same set of K eigenfunctions
that is used to represent the curves themselves,

γ(s)(d) =
K

∑
k=1

γ
(s)
k φ̂

(s)
k (d),
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3.3 GARCH-FunXL

so that, plugging in estimated mean, eigenfunctions and scores from the FPCA of the
liquidity curves, the integral

∫ 1
0 γ(s)(m)x(s)t (m)dm becomes

1∫
0

K

∑
j=1

K

∑
k=1

ξ̂
(s)
j;t φ̂

(s)
j (m)γ

(s)
k φ̂

(s)
k (m)dm =

K

∑
k=1

γ
(s)
k ξ̂

(s)
k;t

by orthonormality of the eigenfunctions. This approach is well-known from functional
principal component regression and its core idea is the same as in PC regression within
the usual scalar multiple regression setting. Note that this structural assumption
along with the assumption that only a finite number of components affects the condi-
tional variance implies an identification problem: There are infinitely many functions
φj(d) which are orthogonal to the K functions appearing in either the “true" or the
fitted liquidity representation. Thus, each of these φj(d) could be added to the basis
expansion of γ(s)(m) without affecting the model’s goodness of fit.

Defining

Gt−1 := α log y2
t−1 + β log σ2

t−1,

we can now write the conditional volatility as

log σ2
t = ω + Gt−1 +

1∫
0

γ(bid)(m)x(bid)
t−1 (m)dm +

1∫
0

γ(ask)(m)x(ask)
t−1 (m)dm

= ω + Gt−1 + ∑
s

1∫
0

γ(s)(m)x(s)t−1(m)dm

(
µ̂(s)(m) +

K

∑
k=1

ξ̂
(s)
t−1;kφ̂

(s)
k (m)

)
dm

= ω + Gt−1 + ∑
s

1∫
0

γ(s)(m)µ̂(s)(m)dm

︸ ︷︷ ︸
=:γ(s)

0

+
K

∑
k=1

ξ̂
(s)
k;t−1

1∫
0

γ(s)(m)φ̂
(s)
k (m)dm

︸ ︷︷ ︸
=:γ(s)

k

= ω′︸︷︷︸
:=ω+γ0

+Gt−1 + ∑
s

K

∑
k=1

γ
(s)
k ξ̂

(s)
k;t−1. (3.11)

Doing so, the infinite-dimensional problem boils down to an estimation of 2K ad-
ditional scalar parameters compared to the original model, ω, α, β, γ

(bid)
1 , . . ., γ

(bid)
K ,

γ
(ask)
1 , . . ., γ

(ask)
K . However, in practice it may pay to be rather generous in the choice

of K, because the components that explain much of liquidity variation are not guar-
anteed to have a large impact on price volatility. Conversely, modes of variation that
are rather unimportant for liquidity variation may well be of great importance for
predicting price volatility.
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3 Liquidity impact on volatility: The GARCH-FunXL model

Properties of the estimators

Although the inclusion of exogeneous variables (like interest rates or realized volatil-
ity) has already been in vogue for some time, theoretical properties of GARCH-X
processes and especially QML estimators of their parameters have only been estab-
lished very recently. Han (2013) and Han and Kristensen (2014) investigate QML es-
timation for a broad class of possible exogeneous processes, including long-memory
and integrated processes, but only for linear specifications and univariate exogeneous
processes. In particular, in case of a stationary exogeneous process (as assumed here),
QMLEs of linear GARCH processes’ parameters retain their favorable properties.

To the best of our knowledge, and as has been documented by Sucarrat et al. (2013),
Francq et al. (2013), and Hansen et al. (2012), such asymptotic results for log-GARCH-
X models do not exist. The latter however, based on the results of Straumann et al.
(2006), conjecture consistency and asymptotic normality of their QMLE in a scalar
log-GARCH-X framework without providing a proof. With the above assumptions
regarding liquidity effects on volatility, we are basically in a log-GARCH-X setting as
well. However, an additional complication is given by the fact that our exogeneous
variables, the FPC scores, are generated by a nonparametric procedure in the first
place, inducing additional estimation uncertainty. Surprisingly, this fact is rarely ad-
dressed in the FDA literature, see for example Yao et al. (2005b). Therefore, even if
the step-two parameter estimates could be shown to be consistent and asymptotically
normal, ignoring estimation uncertainty from the first step, i.e., for mean functions,
eigenfunctions, and scores will result in confidence bands for γ(s)(·) which are too
narrow. An alternative, frequently used in FDA, is to choose a bootstrap approach.
For our time series setting, the stationary bootstrap proposed by Politis and Romano
(1994), where blocks of random lengths are drawn and reassembled to form resamples
of the original series, is most suitable.

Simulation results reported in section 3.4 convey an idea of the properties of QML
estimators in our log-linear specification.

3.3.3 Liquidity impact

The conditional variance of the GARCH-FunXL model can be written as a product of
the (endogeneous) GARCH part and the exogeneous liquidity part, i.e.,

σ2
t = exp

(
ω + α log y2

t−1 + β log σ2
t−1

)
×

exp
(∫

γ(ask)(m)x(ask)
t−1 (m)dm +

∫
γ(bid)(m)x(bid)

t−1 (m)dm
)

.

Defining

LIt := exp
(∫

γ(ask)(m)x(ask)
t−1 (m)dm +

∫
γ(bid)(m)x(bid)

t−1 (m)dm
)

, (3.12)
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3.4 Estimation uncertainty in GARCH-FunXL models

the second term is henceforth called the liquidity impact. Note that the sub-index is
chosen according to the target variable, the conditional variance. Due to the multi-
plicative structure of the model, liquidity reduces volatlity for LIt < 1 and increases it
for LIt > 1. LIt can further be splitted up into the contributions of each market side,
LIt = LI(ask)

t LI(bid)
t .

Morover, in analogy to the news impact curve, a three-dimensional plot of LIt

against d and x(s)t−1(d) amounts to a liquidity impact surface (LIS). For a given market
side, the LIS shows the influence of liquidity on conditional variance at all locations, d,
within the LOB. However, as both the functional parameter and the liquidity curves
can have quite complex shapes, for instance different signs at different locations of
their domain, the LIS’s interpretability is limited.

The K-truncated, estimated version of the liquidity impact is given by

L̂It = exp
(

γ̂′
(ask)

ξ̂
(ask)
t−1 + γ̂′

(bid)
ξ̂
(bid)
t−1

)
.

Confidence statements for the liquidity impact are directly linked to estimation un-
certainty about the functional parameters discussed above.

3.4 Estimation uncertainty in GARCH-FunXL models

We investigate by means of a simulation study how well the two-step estimation
works for our model in finite samples. In functional regression, the quantity of interest
is typically the parameter. In the present study, however, we focus solely on the
liquidity impact (which of course involves estimation of the functional parameter).

In order to simulate from the model, we have to specify a data-generating mecha-
nism for the liquidity process first. We choose the setting of Aue et al. (2015) where
the scores follow a VAR model,

ξ
(s)
t =


ξ
(s)
1,t
...

ξ
(s)
K,t

 = ν(s) +
p

∑
j=1

A(s)
j ξ

(s)
t−j + v(s)

t ,

x(s)t (d) = µ(s)(d) +
K

∑
j=1

φ
(s)
j (d)ξ(s)j,t .

We simulate from a K = 5-dimensional score process with p = 1 and T = 1000,
5000, 10000. Note that empirically, even K = 4 components capture more than 95
percent of liquidity variation for all data sets. We use the eigenfunctions from the
FPC representation of Brownian motion (see Ash and Gardner (1975)),

φk(d) =
√

2 sin(k− 0.5)πd,

two different sets of eigenvalues and also two different serial dependence struc-
tures for the scores. As eigenvalues, we use (i) the decay as for Brownian motion,
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3 Liquidity impact on volatility: The GARCH-FunXL model

λk = 4/(2k − 1)2π2 and (ii) the empirical decay as estimated from Commerzbank’s
ask curves. As serial dependence structures we use (i) serial independence, A1 =

0(5×5), and (ii) A1 resembling the dependence found empirically (estimated from
Commerzbank’s ask curves),

A1 =


0.98 0.08 0.09 −0.09 0.08
0.01 0.82 −0.37 0.03 −0.09
0.00 −0.20 0.24 −0.22 0.14
0.00 0.02 −0.10 0.81 0.26
0.00 −0.01 0.04 0.11 0.76

 ,

i.e. with high diagonal elements and low off-diagonal elements.
Empirical versions of ξ

(s)
t from which A1 can be estimated are obtained as a by-

product of the GARCH-FunXL estimation procedure proposed in section 3.3.
The unconditional variance Γξ(0) in VAR models depends on both the autoregres-

sive matrices Aj and the covariance matrix Σv of the innovation vector. As we seek
to discriminate between effects due to serial dependence and effects due to score
variation, we simulate from (i) processes with identical innovation covariances and
different serial dependencies (implying different unconditional covariance matrices)
and (ii) processes with equal unconditional covariance matrices and different serial
dependencies (implying different innovation covariance matrices).

We investigate models with only one functional exogeneous process, using three
different functional parameters, (i) γ(m) = 0.01φ1(m), (ii) a linear combination of
all 5 eigenfunctions with weights (0.01, 0.004, 0.002, 0.0006, 0.001), and (iii) γ(m) =

0.002(4 + 5m− 10m2 + 4 cos(5m)). Thus, parameters (i) and (ii) should be identifiable
more easily than (iii), which is not constructed from eigenfunctions. The implied true
liquidity impacts are similar to those found in the data. All function evaluations are
on J = 201 equidistant grid points in [0, 1].

A summary of the results is shown in table 3.2. Not surprisingly, estimation accu-
racy increases substantially with increasing sample size.

Note that estimated models which capture the true liquidity impact accurately do
not necessarily exhibit functional parameter estimates that are close to the truth as
well. This is due to the identification issue discussed above and especially the case
if (i) K, the number of estimated components used in the basis expansion of the
parameter, exceeds the true K and if (ii) the true parameter can not be approximated
well in terms of the eigenfunctions φk of the liquidity process.

If liquidity dynamics are governed by a stable VAR process and T is reasonably
large, we found that eigenfunctions can be estimated very accurately. Therefore,
in situations where the true functional parameter is a linear combination of these
eigenfunctions, its estimation is also accurate. Moreover, so are confidence bands con-
structed based on the conjectured normal asymptotics, despite ignoring the estimation
uncertainty about the eigenfunctions.

We finally note that the results gained for GARCH-FunXL also hold for the ACD-
FunXL model of Chapter 4 as the latter is estimated by the exponential QML method
which is equivalent to Gaussian QML. Both models are part of the broader class of
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3.5 Modeling XETRA returns

MEM-FunXL models.

3.5 Modeling XETRA returns

We use the GARCH-FunXL process to model 20-minute snapshots for the Com-
merzbank, MunichRe, and Linde stocks traded on the German XETRA LOB from
November 3, 2008 to December 31, 2010.3

We fit logarithmic GARCH-FunXL models of GARCH order (1,1) to the data, con-
sidering

• models with liquidity impact from only one market side (bid or ask),

• models with lliquidity impact from both market sides,

• models with liquidity imbalance impact only, i.e., with functional regressor
x(imb)

t = x(ask)
t − x(bid)

t .

Moreover, we vary the domain of prices around the quotes taken into account, using
D = 51 (101, 151, 201) corresponding to the domains [¤0 , ¤0.50] ([¤0 , ¤1.00], [¤0 ,
¤1.50], [¤0 , ¤2.00]). By doing this, we judge whether or not it pays to take liquidity
far from the quotes into account. Note that D (the width of the liquidity domain) can
be viewed as an additional model parameter.

3.5.1 Estimation results

The goodness-of-fit is assessed by the AIC and BIC criteria. Their use in this context
is somewhat critical as the number of parameters in the penalty term is 3+ K (models
with one FunX component) or 3 + 2K (two components), ignoring the fact that the
FPC scores are constructed regressors which have been estimated nonparametrically
from the liquidity data.

Keeping this in mind, we find that the model with imbalance impact performs
worst for all three stocks and all four domains considered, regardless of the informa-
tion criterion used. This result indicates that the imbalance measure, by construction,
eliminates information on the individual curves which is valuable for predicting the
price process. Moreover, the models accounting for both market sides’ liquidity out-
perform those using only one side’s liquidity information in virtually all cases.

Table 3.3 shows the two goodness-of-fit criteria for these bid+ask models, fitted
using K = 0, . . . , 5 FPCs, where K = 0 corresponds to the pure log-GARCH model.
We see a considerable improvement of the fit when allowing for liquidity impact. In
many cases the improvement is largest when introducing the second (not the first!)
FPC, whose eigenfunction is able to induce stronger liquidity impact near the quotes
than deeper in the book, see Figure 3.5. In some cases, even the fifth component
improves the fit. Interestingly, the results are not very sensitive with respect to the
choice of D.

3For details on construction of the snapshots and removing deterministic patterns, see Section 3.2.
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3 Liquidity impact on volatility: The GARCH-FunXL model

Figure 3.6 depicts the functional parameter estimates for all three stocks considered
and the models with both bid and ask liquidity impact. Using the conjecture that
the QML estimator of θ = (ω, α, β, γ(bid), γ(ask)), where γ(s) = (γ

(s)
1 · · · γ

(s)
K )′, is

asymptotically normal, see Section 3.3.2, and assuming the estimation error for the
eigenfunctions to be negligible, confidence bands are constructed as follows.

We denote the the covariance matrix of θ by Σθ. Σθ contains K×K-dimensional par-
titions Σγ(s) , the covariance matrices of γ(s). We stack the corresponding eigenfunc-

tions, φ
(s)
k , k = 1, . . . , K, in the “vector" Φ(s). The covariance kernel of the functional

parameter γ(s)(m) is then given by

Σγ(s)(d, m) = Φ′
(s)
(d)Σ(s)

γ Φ(s)(m).

Plugging in estimates of Φ(s) and Σγ(s) , standard errors of γ̂(s) are given by the

square root of the kernel estimate’s diagonal,
(

Σ̂γ̂(s)(d, d)
)1/2

.

All estimates have in common that both the effect and its uncertainty are largest at
the left edge of the domain, i.e., near the quotes. We find that confidence bands based
on the stationary bootstrap are virtually identical, which can be attributed to the great
stability of eigenfunction estimates as reported in Chapter 2. High bid liquidity near
the quotes tends to increase, high ask liquidity tends to decrease volatility (with the
exception of Commerzbank). The local impact tends to vanish for liquidity deeper
in the book. However, none of the estimates is strictly positive or negative over the
entire domain of relative prices, and the effect sizes are hard to interpret and compare
anyway. We therefore advocate interpretation of the cumulative impact, LIt, instead.

3.5.2 Liquidity impact

Liquidity impact is the cumulative effect of liquidity on the conditional variance over
the entire domain of relative prices. Figure 3.7 depicts the estimated liquidity impact
trajectories implied by the models whose functional parameter estimates have been
shown in Figure 3.6. Note that liquidity impact appears to be fairly robust to the spe-
cific choice of K, results remain quite similar for K = 2, 4, 5. We find the impact not
only to be time-varying, but to differ in size and direction, both between stocks and
between market sides for the same stock. For instance, for the Commerzbank stock,
the liquidity contribution to volatility is typically large as compared to Linde. LIt’s un-
conditional distribution is heavily skewed to the right for Commerzbank (with many
volatility-increasing outbursts), but fairly symmetric or even slightly left-skewed for
Linde and MunichRe.

As LIt is a linear combination of the FPC scores of the liquidity processes, it inherits
its autocorrelation structure from ξ

(s)
t . As most components are highly persistent, so

is LIt which is shown in Figure 3.8.
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Figure 3.6: Estimated functional parameters for Commerzbank (top panel), MunichRe
(center panel), and Linde (bottom panel), along with 95 percent confidence
bands. Results are for models with both bid (left) and ask (right) liquidity im-
pact, with K = 3 liquidity components, and D = 201 relative price levels. The
confidence bands are based on the conjectured asymptotic normality. Estima-
tion uncertainty from step 1 (eigenfunctions) is assumed to be negligible.
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Figure 3.7: Estimated liquidity impact for the models with two functional liquidity pro-
cesses, K = 3, D = 201. From left to right: Bid impact (blue), ask impact
(red), and cumulative impact (their product, black). From top to bottom: Com-
merzbank, MunichRe, and Linde.
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Figure 3.8: Sample autocorrelation functions of the estimated liquidity impact for the mod-
els with two functional liquidity processes, K = 3, and D = 201, for the first 480
lags (roughly four weeks). Both bid (top, blue) and ask (bottom, red) impacts
are highly persistent for all stocks — Commerzbank (left), MunichRe (center),
Linde (right) —, and market sides.
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3 Liquidity impact on volatility: The GARCH-FunXL model

3.5.3 Forecasting

Is liquidity information able to improve the forecast performance of the model? To
answer this question, we conduct an out-of-sample forecast exercise. We follow Engle
and Sokalska (2012) and use the negative quasi-log-likelihood (QLIKE) of one-step-
ahead volatility forecasts as loss function. An alternative method of forecast evalua-
tion would be the use of realized measures of volatility. However, such measures can
expected to be very noisy in our high-frequency setting, even if subsampling or other
measures supposedly alleviating the impact of microstructure noise are used when
estimating RV.

Starting with the first two thirds of the available observations, 1 : b2
3 Tc, we rees-

timate all models considered above for each forecast step, i.e. T − b2
3 Tc − 1 times,

in an expanding window scheme. As before, the models accounting for both market
sides yield the best results. The sum over all one-step-ahead negative log-likelihoods
is shown in Table 3.4.

For all stocks considered, most of the GARCH-FunXL models provide highly sig-
nificant improvements of QLIKE. As in forecast exercises parsimony is typically re-
warded, it is noteworthy that in all cases models with K = 4, i.e., with as many as 11
parameters deliver the best forecasts. There is also strong evidence that models with
D = 51 or D = 101 outperform their competitors, indicating that liquidity deep in the
book is of limited relevance to volatility prediction. Interestingly, this finding is much
more pronounced for Linde than for Commerzbank, although Commerzbank’s price
is much lower than Linde’s throughout the sample, so that a price change by D cents
implies a much higher relative change for Commerzbank than for Linde.

Figure 3.9, depicting QLIKE differences between log-GARCH-FunXL and pure log-
GARCH, cumulated forecast-step by forecast-step for models with D = 51 and K =

3, shows that GARCH-FunXL gains most of the improvement as compared to pure
GARCH at a constant pace. Moreover, some large jumps indicate that also extreme
returns can be forecast more accurately by using liquidity information.

3.6 Conclusion

In the present Chapter, we have put forward a class of semiparametric GARCH-X
models with functional exogeneous variables. The model is able to capture the im-
pact of liquidity as implied by a limit order book on asset price volatility. In simu-
lations and applications, we have confined ourselves to a log-GARCH version of the
model which conveniently allows for the inclusion of complex, potentially negative
functional predictors. In many aspects, linear GARCH models are better understood
and more tractable than log-linear versions like log-GARCH or EGARCH. Therefore,
an alternative GARCH-FunXL specification could for example use the framework of
Amado and Teräsvirta (2013), i.e., a product of a linear endogeneous GARCH part
and a suitable transformation of the exogeneous functional variables.

The GARCH-FunXL model has been shown to be successful in predicting intraday
volatility in an application to the German XETRA limit order book. While originally
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Figure 3.9: Cumulative forecast gain, QLIKE(pure log-GARCH) - QLIKE(log-GARCH-
FunXL), of liquidity-driven GARCH models (K = 3, D = 51), computed
forecast-step by forecast-step, as compared to models without liquidity impact,
for Commerzbank (left), MunichRe (center), and Linde (right).

taylored for limit order book data, the model may be useful in other fields of appli-
cation as well. For example, the term structure of interest rates can be viewed as a
functional time series. A further extension that we address in Chapter 4 is financial
duration modeling with functional exogeneous liquidity. The duration analogue of
the log-GARCH-FunXL in this Chapter is an extension of the log-ACD of Bauwens
and Giot (2000).
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3.6 Conclusion

Commerzbank
AIC BIC

K 51 101 151 201 51 101 151 201
0 42995 42995 42995 42995 43017 43017 43017 43017
1 42977 42980 42982 42974 43014 43017 43020 43012
2 42650 42807 42874 42837 42702 42859 42926 42889
3 42631 42638 42643 42598 42698 42705 42710 42665
4 42608 42611 42638 42598 42690 42693 42719 42680
5 42551 42603 42612 42509 42648 42699 42709 42606

MunichRe
AIC BIC

K 51 101 151 201 51 101 151 201
0 41787 41787 41787 41787 41809 41809 41809 41809
1 41612 41466 41410 41366 41650 41504 41447 41404
2 41119 41039 41061 41057 41171 41091 41113 41109
3 41105 41039 41050 41035 41172 41106 41117 41102
4 41069 41033 41042 41028 41151 41115 41124 41110
5 41062 41034 41031 41029 41159 41130 41128 41125

Linde
AIC BIC

K 51 101 151 201 51 101 151 201
0 43517 43517 43517 43517 43539 43539 43539 43539
1 43236 43205 43200 43205 43273 43242 43238 43242
2 43212 43206 43204 43208 43264 43258 43256 43260
3 43210 43202 43196 43188 43277 43269 43263 43255
4 43189 43187 43185 43184 43271 43269 43267 43266
5 43192 43188 43181 43184 43289 43285 43278 43281

Table 3.3: Goodness-of-fit measures of the models with bid and ask liquidity impact for
the three stocks. The number of price levels apart from the quotes considered
when constructing the liquidity curves is D = 51 (101, 151, 201), corresponding
to the domains [¤0 , ¤0.50] ([¤0 , ¤1.00], [¤0 , ¤1.50], [¤0 , ¤2.00]).

Commerzbank MunichRe Linde
K 51 101 151 201 51 101 151 201 51 101 151 201
0 2912 2912 2912 2912 4066 4066 4066 4066 4700 4700 4700 4700
1 2977 2785 2858 2860 3822 3767 3613 3554 4425 4345 4840 4884
2 2586 2764 2759 2758 3019 3284 3165 3091 4381 4337 4822 4856
3 2608 2515 2567 2573 3035 3290 3103 3020 4377 4328 4824 4856
4 2613 2602 2619 2577 2993 3248 3142 3067 4293 4303 4807 4848
5 2619 2608 2663 2782 3034 3242 3193 3068 4302 4266 4796 4838

Table 3.4: Negative out-of-sample likelihoods for one-step-ahead forecasts of GARCH-
FunXL models with bid and ask liquidity impacts. The number of price lev-
els apart from the quotes considered when constructing the liquidity curves is
D = 51 (101, 151, 201), corresponding to the domains [¤0 , ¤0.50] ([¤0 , ¤1.00],
[¤0 , ¤1.50], [¤0 , ¤2.00]).
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4
Functional liquidity and low-latency volatil-
ity: The ACD-FunXL model

4.1 Introduction

Recent research on securities trading has been mainly devoted to and pointed out
the importance of speed in both gathering and processing information, as a major
proportion of order submissions and trading volume in electronic limit order books
(LOB) can be attributed to (algorithmic) high frequency trading (HFT). Many of these
efforts have focused on the analysis of the impact of market events — such as market
order submissions and cancellations, aggressive limit orders, and so on — on trad-
ing activity and volatility (Large, 2007; Hautsch and Huang, 2012; Cont et al., 2014).
Further steps into this direction include the identification of algo strategies and their
impact on market quality and stability. This identification is difficult, however, as the
presence of and, thus, the effect of HFT is typically not directly observable for the
researcher (Hasbrouck and Saar, 2013).

Whereas limit order submissions and cancellations near the quotes, occurring at
extremely high frequency, drive the small increments of an asset’s price, limit order
schedules at greater price distance to the quotes may still be worthwhile accounting
for. They may eventually reflect the asset’s overall liquidity better than the rather
noisy bouncing of offers and requests at the quotes. In many situations, information-
driven market participants may abstain from silent order submission strategies which
they design to avoid a large impact on the price, but whose implementation needs
some time. They may rather submit large market orders as long as sufficient liquidity
is present in the market. This is possible when limit order schedules can be expected
to be quite stable over a trading day. As we will show, this tends indeed to be the
case to some extent, in spite of single limit orders being submitted, cancelled, and
executed at millisecond frequency.

As in the previous Chapter, we do not focus on the price impact of single liquidity
events, but of entire limit order schedules. The GARCH-FunXL model was designed
to model volatility at high, but not ultra-high frequency, thereby avoiding microstruc-
ture effects. In contrast, in this Chapter we aim at modeling ultra-high frequency
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Figure 4.1: State of a limit order book over the trading day. Liquidity is represented by the
available requested (left) and offered (right) cumulative number of shares as a
function of the price. The quantities which may be called prices, i.e. bid and
ask quotes, are implications of the limit order schedules. The bid quote is the
rightmost point of each blue curve, the ask quote is the leftmost point of each
red curve. Snapshots of the LOB are depicted for the Commerzbank stock on
October 22, 2010. They are taken each minute during the trading day, making
511 snapshots per day. The right plot zooms in to prices between EUR 5.80 and
6.30 and cumulative sizes up to 500,000 shares.

price variation. To this end, we consider the instantaneous volatility of quoted prices
on the bid and ask sides of the market. We introduce an econometric model which
links curve-valued cumulative volume to instantaneous quote volatility in an autore-
gressive conditional duration (ACD) framework.

Figure 4.1 shows cumulative volume curves of the Commerzbank stock, sampled
over the course of one trading day at a frequency of one minute. In the left plot, which
depicts curves over a range of ± 200 Cents around the quotes, it seems that the basic
structure of the curves is preserved throughout the trading day. That is, the curves
seem to be only shifted along the price axis due to quote changes while retaining their
overall shape. However, the plot in the right panel, zooming in a bit, reveals that the
curves exhibit several time-varying features. The question we would like to answer
in this Chapter is to what extent the variation of these curves is able to explain quote
variation.

In our econometric model, importing ideas from functional data analysis (FDA),
these entire curves, capturing the complete LO schedules, are treated as sampled
units and used as regressors supposed to explain bid and ask price durations and,
thus, the quotes’ instantaneous volatility (Engle and Russell, 1998). Using the concept
of liquidity impact, we find that LO schedules, including LOs that are placed at some
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distance from the quotes, help to explain future moves of quoted prices’ volatility to
a considerable extent.

The idea to capture all LOs instead of volume at the quotes only is not entirely
new, there are several studies impliclitly or explicitely using this notion. Engle et al.
(2012) analyze liquidity-volatility interactions for US Treasury notes, where liquidity
is observed at 5 tiers behind the quotes, and even use a MEM framework as we do
— the primary quantitity of their interest is the realized variance (see also Chapters
5 and 6 of this thesis). In van Kervel (2015), the measures DepthAsk and DepthBid
are used which are very similar to the cumulative volume (CV) measure used in the
present study. Gomber et al. (2015) employ the exchange liquidity measure (XLM), which
is the average cost per share of a roundtrip trade and, thus, closely related to CV.
However, all these studies evaluate the intrinsically curve-valued liquidity measure
at one specific, arbitrary value of its argument. They do not account for the shapes of
entire curves.

In contrast, Gouriéroux et al. (1998), Bowsher (2004) in what would later become
Bowsher and Meeks (2008), and Härdle et al. (2012b) capture full LOB-implied liq-
uidity, but focus solely on the curves’ dynamics (as we do in Section 2.5) instead of
interactions between liquidity and price dynamics.

The model introduced in the present Chapter allows to answer the following ques-
tions: What is the structure of liquidity impact on high-frequency volatility of quoted
prices? In particular: Which parts of the LOB (how many price levels in the LOB) are
relevant for quote dynamics? What is the role of the tick size? What is the role of the
market sides? Is the impact of liquidity on quote variation symmetric or asymmetric?

Apart from the application to price durations, the method may be adapted to ana-
lyze further non-negative time-varying quantities of interest like trading volume, or
realized measures of volatility.

The Chapter proceeds as follows. Section 4.2 explains the duration-based notion of
low-latency volatility and offers a first empirical look at low-latency quote variation.
Section 4.3 introduces the functional liquidity concept in a high-frequency setting. In
particular, the task of de-diurnalizing non-equidistant curves is addressed. This task
is more involved in the present setting than it is in the equidistant setting of Chapters
2 and 3. Section 4.4 introduces the model and discusses its properties. The remain-
ing Sections present the empirical results, i.e., in- and out-of-sample performance,
liquidity impact, and functional parameter estimates, and finally conclude.

4.2 Low-latency volatility

Following Engle and Russell (1998), starting from the initial price P0 at the begin-
ning of continuous trading T = [0, T], we measure the waiting times between quote
changes of at least δ, the price durations, for both market sides. The smallest sensible
δ amounts to one tick. The collection of event times can then be written {t1, t2, . . .,
tNT−1 , tNT}, where Nt counts the number of events in [0, t]. We denote the point pro-
cess allocating the event times along the time axis by (Nt)t∈T . It will be specified more
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explicitely below. For the moment it suffices to say that the probabilistic structure of
the point process is uniquely determined by its conditional intensity function (Daley
and Vere-Jones, 2003). Denoting the past of the point process until (but not including)
t by Ft, we define the conditional intensity as

λ(t|It) = lim
∆→0

E[N(t + ∆)− N(t)|Ft]

∆
, (4.1)

that is, for small ∆ we can write more instructively,

λ(t|It)∆ ≈ E[N(t + ∆)− N(t)|Ft], ∆ > 0.

This means that within a small interval, [t, t + ∆], the conditional intensity can be
interpreted as the expected number of events, the expected “local frequency", of the
point process. The conditional intensity can also be expressed in terms of the ratio of
the conditional density and the conditional survivor function of the point process.

Let us assume for simplicity that the price process consists of jumps of size δ only,
upward and downward jumps are equally likely, and denote the price by Pt. This is
certainly a good description of the price process if δ amounts to the tick size, and a
legitimate simplification otherwise. Then its instantaneous variance (Engle and Russell,
1998) can be defined as

σ2(t|Ft) = lim
∆→0

E

(
1
∆

[
Pt+∆ − Pt

Pt

]2

|Ft

)
, (4.2)

which can be decomposed into a jump size and a conditional frequency part, leading
to the expression

σ2(t|Ft) =
δ2

P2
t

λ(t|Ft). (4.3)

Note that this instantaneous notion of volatility is in contrast to Part II of this the-
sis, in which realized concepts of volatility are discussed. In the realized volatility
literature, parts of the low-latency volatility concept put forth here would be termed
microstructure noise, especially when δ is small. On the other hand, Tse and Yang
(2012) argue that the realized variance may be measured very accurately by means
of (integrated) instantaneous variance, given that δ is chosen appropriately (typically
much larger than 1 tick) as a means to robustify against microstructure noise. More-
over, a growing literature on the estimation of the so-called spot volatility has been
established recently, which addresses the problem of estimating the latent stochastic
variance using high-frequency data and, possibly, in the presence of microstructure
noise (Munk et al., 2010; Alvarez et al., 2012). Instantaneous volatility is intimately
linked to the concept of spot volatility, with the notable difference that we approach
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the problem using an explicit (semi-) parametric model instead of nonparametrically.
For further, timely discussions of quote-implied vs. “fundamental" volatility from the
perspective of financial economics, see Hasbrouck (2015) and Conrad et al. (2015).

The XETRA LOB data: Quotes

The permissible price levels are the positive multiples of the tick size. The tick size
on XETRA depends on the price. For our sample period, it amounts to EUR 0.001 if
the price of the instrument is under EUR 10, EUR 0.005 for prices in the interval [EUR
10, EUR 50), 1 Cent for prices in [EUR 50; EUR 100], and 5 Cents otherwise. The data
set allows us, in principle, to reconstruct the book at any time during a given trading
day. Continuous trading on XETRA starts after a 5-minute opening auction at 9am, is
interrupted by another auction of this type at 1pm, and ends just before the closing
auction at 5:30pm.

We confine ourselves to the analysis of continuous trading, considering all orders
within [9:05am; 12:59pm] and [1:05pm; 5:29pm]. Moreover, we choose the parameter
δ, which determines the price duration series, to amount to certain multiples of the
tick size. Table 4.1 informs about the frequencies of such events during October 2010
for Commerzbank (with tick size of 0.1 Cents) and Linde (1 Cent). It is interesting to
see that, although the stocks’ behaviors as well as the companies they represent differ
in many respects, the number of price durations is quite similar with respect to δ. We
will return to this when analyzing the liquidity impact on price durations.

Commerzbank Linde
δ [Ticks] 1 2 3 4 5 1 2 3 4 5

bid quote 65030 32278 27735 17359 11601 47855 27366 24433 18565 9382
ask quote 70241 35160 29958 18456 12079 51679 29201 26056 19618 9858

Table 4.1: Number of quote changes of at least δ ticks in 10/2010 for Linde and Com-
merzbank. The tick size is 1 Cent for Linde and 0.1 Cent for Commerzbank.

In Section 4.4, we construct an explicit semiparametric model of low-latency varia-
tion σ2(t|Ft). Before, we introduce the liquidity part of this model.

4.3 Low-latency liquidity in a limit order book

In this Section, we turn to the liquidity aspects of the XETRA LOB data with an
emphasis on the high-frequency setting. We then introduce the notion of functional
liquidity and analyze liquidity curves sampled at ultra-high frequency empirically.

4.3.1 Latency of orders

The analysis of Hasbrouck and Saar (2013) focuses on the speed at which orders are
submitted, cancelled, and resubmitted by algorithmic traders in what they call the
millisecond environment. This is certainly true for the XETRA LOB as well, as Figure
4.2 shows. About half of the limit orders are executed or cancelled within one second
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after submission. More than 90 percent of them are cancelled. In the following, we
will not focus on this aspect but on the structure and dynamics of the resulting LO
inventories.

4.3.2 Liquidity measure

We use cumulative volume as our liquidity measure. The notation is as before, that is,
cumulative volume at relative price d, market side s and at the end of the ith duration
is denoted by x(s)ti

(d). Cumulative volume curves are termed (bid or ask) liquidity in
the remainder of the Chapter.

One may argue that depth, i.e. economic value assigned to a security, is better com-
parable between stocks whose prices differ than pure volumes are. However, trading
conditions differ in many more respects: For instance, the tick size usually depends
on the quoted price itself, restricting the relation between (potential) variation of a
price and its level. Apart from that, the basic findings for depth and volume can be
expected to be quite similar if the period under study is rather short.

As already indicated before, some studies already make use of this or similar “func-
tional" measures of liquidity, among others van Kervel (2015), Gomber et al. (2015),
and Engle et al. (2012). However, whatever specific liquidity function is used, in all
these studies it is evaluated at one specific value of the argument (the relative price
d in case of cumulative volume and the measure of van Kervel (2015), the size n of a
roundtrip trade in case of the XLM).

Limit order and trade information is time-stamped to the nanosecond in our data
set, such that LOBt can be constructed virtually for any t during the trading day. The
nanosecond precision of stamps leads to roughly 30 trillion, potentially different, ob-
servable states of the LOB during a single trading day. However, this is obviously
neither feasible nor sensible. The maximum speed at which market participants act,
even if trading purely algorithmically, is much slower. It depends on the distance to
the stock exchange, the quality of the cables transferring the orders, and the com-
putational speed of participants. For instance, consider a market participant who is
located at a distance of 1 km away from the stock exchange. Even if she computed
and reacted infinitely fast and had a perfect communication with the stock exchange,
her reaction would still be limited by the speed of light which travels at “only" 30
centimeters per nanosecond. Therefore, a realistic “speed of the market" is slower at
least by a factor of roughly 104 compared to the nanosecond environment.

The number of LOB updates (i.e. market order submissions, limit order submissions
and cancellations) is usually much smaller (typically a 6-digit number for major stocks
traded on XETRA) than the number which is technologically possible, and the number
of “major updates”, to be defined below, even more so. On the other hand, there are
periods of high activity where thousands of revisions occur within only a few seconds.
We finally note that by the very nature of an electronic market place, we do not only
observe intended interactions between market participants, but also those interactions
that are due to submission strategies already in place, for example by means of iceberg
orders.
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Figure 4.2: Top panel: All limit orders submitted during an exemplary trading day, buy
(sell) orders in blue (red), for the Linde stock. Bottom panel: Unconditional
empirical survivor functions of limit buy (solid) and sell (dashed) orders in
10/2010 for Commerzbank (left) and Linde (right) stock, based on roughly 1.24
to 1.28 million orders each.
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4.3.3 Functional time series methods at high frequency

In the following, let (ti)i, i = 1, . . . , I, denote the sequence of sampling times during
a trading day. The indexed events defining the sequence are not equidistant (in cal-
endar time). The collections of observed liquidity curves,

{
x(bid)

ti

}
i

and
{

x(ask)
ti

}
i
, are

assumed to be generated by stationary functional stochastic processes. More specif-
ically, although the inter-event times or durations, ti − ti−1, are random, we assume
that the curves are stationary in the sense of Hörmann and Kokoszka (2010) in op-
erational time i . In particular, the curves have a constant mean function, µ(s)(d),
and a contemporaneous covariance function between different locations on a ran-
dom curve, Cov(x(s)t (dj), x(s)t (dk)), in common, and exhibit a spectral representation
in terms of the contemporaneous covariance operator’s eigenvalues and eigenfunc-
tions, all in close analogy to the properties of vector-autoregressive multivariate time
series models.

Based on the eigenrepresentation, liquidity curves can then be represented via the
Karhunen-Loève decomposition,

xt(d) = µ(d) +
∞

∑
j=1

ξ j,tφj(d),

or functional principal component (FPC) representation. The eigenvalues λj of the
spectral representation are equal to the unconditional variances of the FPC scores ξ j,t.
As the eigenvalues are strictly decreasing, the FPCs are sorted by their contribution
to the xt’s (unconditional) variation. This gives rise to the K-truncated FPC represen-
tation

xt(d) = µ(d) +
K

∑
j=1

ξ j,tφj(d) + vt(d),

where vt(d) = ∑∞
j=K+1 ξ j,tφj(d) is the truncation error.

Steep cumulative volume curves can be considered to represent high, flat curves to
imply low liquidity.

Figure 4.3 depicts an exemplary liquidity curve along with two approximations in
terms of functional principal components. The curve is already de-diurnalized in a
way which will be explained in detail in the next Section.1 We find that the most
important modes of variation are explained by only two eigencomponents. Neverthe-
less, the seemingly unimportant additional features represented by the third to tenth
FPC may still be able to explain quote variation to some extent.

4.3.4 Diurnal patterns of liquidity

Just as the volatility of quoted prices, liquidity exhibits certain regularities during a
trading day that can be treated as deterministic. For liquidity, the pattern is a bivariate

1In contrast to de-diurnalization as done for equidistant snapshots, see Chapter 3, a penalized tensor
product spline is used, so that the mean of de-diurnalized curves is not constantly at 1 over d ∈ [0, 1].
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Figure 4.3: De-diurnalized ask liquidity curve for the Commerzbank stock at 10:34 on
2010-10-22, along with its FPC representation using K = 2 (red) and K = 10
(grey) eigenfunctions. Evidently, the mean plus two eigenfunctions provide al-
ready a very good approximation, so that adding even eight more components
does only lead to a minor further improvement. Estimated eigenfunctions are
smooth as their covariance kernel has been smoothed.

function of both time of day and relative price whose shape will be shown in brief.
We assume that each market side has its own pattern. Introducing a third clock,

`, and distinguishing between raw and adjusted liquidity, let x̃(s)`,t denote “raw”, ob-
served liquidity at time t during day `. It is given by

x̃(s)`,t (d) = ν
(s)
t (d)x(s)`,t (d),

where νt(d) is the deterministic diurnal liquidity surface and x(s)`,t (d) the stochastic
liquidity component, which is of primary interest in our analysis.

In the situation considered in the previous Chapter, liquidity is observed regularly
over time, as LOB snapshots are taken at constant frequency, and over d, as the relative
price grid is equidistant and the same for all curves. While retaining the second
property, snapshots in the present context are taken at random, irregularly spaced
times which differ from day to day.

To estimate the pattern, however, we take equidistant snapshots (constant ti − ti−1
for all i = 1, . . . , I) at a frequency of one minute for all days in our sample of L trading
days. A raw estimate of the pattern is then given by

ν̂
(s)
ti

(dj) = L−1
L

∑
`=1

x̃(s)`,ti
(dj),

where d1, . . . , dJ is the observation grid along the price axis. The resulting raw es-
timate forms a I × J matrix. We smooth this raw estimate using a tensor product
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Figure 4.4: First three eigenfunction estimates, each for the full domain (D = 201), based
on δ = 5 tick price durations, Commerzbank and Linde, 10/2010. Note that
eigenfunctions are identifiable only up to the sign, meaning that, e.g., all four
first components capture the overall liquidity “level", regardless if they are pos-
itive or negative in sign. The remaining components more or less capture dif-
ferent modes of variation near the quotes. Reported explained variance pro-
portions slightly overestimate the true ones as only the first five components’
eigenvalues are taken into account. Typically, two components capture roughly
95 percent of overall liquidity variation. The eigenfunctions are quite similar to
the medium-frequency case in the previous Chapter.

spline, which is basically the same method that is also used to smooth the covariance
function of the liquidity curves (Xiao et al., 2013). The result is still a I × J matrix.
However, as events occur at arbitrary times during the trading day, we need to eval-
uate the diurnal surface not only at the gridpoints, but potentially for all t ∈ T . As
we have a regular grid for d, we interpolate the I estimates for each relative price tier
dj using a cubic spline. That is, our final surface estimate amounts to J cubic spline
estimates for each market side.

4.3.5 Diurnal duration patterns

Finally, we also account for the diurnal pattern of price durations themselves. We fit
a smoothing spline to the scatterplot of yi against ti, pooled for all trading days. The
amount of smoothness is determined manually and is the same for all δ considered.
It is usually a bit higher than suggested by GCV when selected in a data-driven
way. The pooling of all durations causes that volatile days are represented by more
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Figure 4.5: Diurnal duration pattern for Commerzbank 5-tick price durations, computed
by fitting a smoothing spline to the scatterplot of all durations vs. event times
during October 2010.

observations than tranquil days, leading to a slight downward bias. However, we have
compared this scheme with one that pools pre-averaged data for each day, finding that
the difference is negligible. At the same time, by using all observations we decrease
the variability of the estimation. All in all, we expect to be better off with our strategy
as compared to the pre-averaging method.

Figure 4.5 shows the estimated diurnal pattern for Commerzbank in October 2010.
Apart from the well-known U-shape of volatility, which here manifests as inverse U-
shape of price durations, we see that the opening of US markets in the afternoon (at
3:30pm) reduces durations considerably. Moreover, the pattern is very similar for bid
and ask prices.

4.4 Econometric model

4.4.1 The model

Let (ỹi)i be the sequence of (raw) price durations, i.e, durations between price changes
of at least δ, associated with a continuous-time process (Pt)t of quoted prices. The
event times from which durations are constructed are denoted by ti, ti = ti−1 + ỹi.
(Pt)t exhibits a deterministic diurnal volatility pattern which (ỹi)i inherits in form of
a diurnal duration pattern, st.

Let us for the moment use a more explicit notation and write ỹ`,ti for the i-th raw
duration on trading day `. Durations are generated by
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ỹ`,ti = y`,ti sti , (4.4)

y`,ti = ψ`,ti ε`,ti , εt
iid∼ Exp(1), (4.5)

where ψ`,ti is the conditional mean of y`,ti , given a conditioning information set to be
made explicit in a moment. This setup is the same as in most of the intraday volatility
(Andersen and Bollerslev, 1997, 1998; Engle and Sokalska, 2012) and duration liter-
ature. In the remainder of the Chapter, we exclusively work with de-diurnalized
durations y`,ti .

Note that the model generates only intraday durations, and assumes that ψ`,ti stays
constant between the trading hours of subsequent trading days. The conditional du-
ration follows an ACD specification which is augmented by exogeneous information
in terms of the liquidity curves at the beginning of each intraday interval from both
market sides, i.e.

ψ`,ti = f
(

y`,ti−1
, . . . , x(ask)

`,ti−1
, x(bid)

`,ti−1

)
, (4.6)

where y`,ti−1
, . . . denotes the entire duration history, in the following denoted by

F`,ti−1
. As explained before, the liquidity curves are, as the y`,ti , de-seasonalized

quantities.
As we are primarily interested in de-seasonalized durations, we lighten notation in

the following by dropping the `, and by writing i instead of ti. Durations, even if
observed over several days, are indexed by i = 1, . . . , I. Furthermore, we consider a
log-EACD specification2 (Bauwens and Giot, 2000) whose endogeneous part has order
(1,1), and choose the functional liquidities to enter the model in a log-linear fashion
as well. The conditional log-duration then becomes

log ψi = ω + α log yi−1 + β log ψi−1

+

1∫
0

γ(ask)(m)x(ask)
i−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
i−1 (m)dm.

(4.7)

We denote this larger information set, consisting of past returns plus liquidities at
i− 1, by F L

i−1.
Collecting all these and the ingredients from Section 4.3, the logarithmic ACD(1,1)-

FunXL model for returns with conditional volatility influenced by x(s)i−1, s ∈ {bid, ask},
can be defined as follows.

2More specifically, we consider what Fernandes and Grammig (2006) call a log-ACD (type I) speci-
fication. The authors report good overall results for this specification in contrast to type II, which
resembles an EGARCH, and as compared to other models belonging to the AACD family in empir-
ical applications similar to ours.
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4.4 Econometric model

Definition 4.1 (Logarithmic EACD(1,1)-FunXL process). Let x(ask)
i , x(bid)

i be drawn from
curve-valued exogeneous liquidity processes as specified before. Then, yi follows a logarithmic
EACD(1,1)-FunXL process, if

yi = ψiεi, ε
iid∼ Exp(1) (4.8)

log ψi = ω + α log yi−1 + β log ψi−1

+

1∫
0

γ(ask)(m)x(ask)
i−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
i−1 (m)dm,

(4.9)

where

x(s)i = µ(s) +
∞

∑
k=1

ξ
(s)
k;i φ

(s)
k . (4.10)

Thus, the model is basically the same as the GARCH-FunXL model from Chapter
3, however, with two notable differences: Firstly, the ACD-FunXL model is (primar-
ily) a model for the location parameter of the conditional distribution of the duration
process as opposed to the conditional variance. Secondly, it is driven by an inno-
vation term with positive support. For most candidate innovation distributions, the
conditional mean and variance are intertwined, i.e., possible “overdispersion" is con-
stant. For instance, in case of the exponential distribution, the variance is equal to
the squared mean. As we are solely interested in the conditional mean specification,
i.e., in the second model equation, we confine ourselves to exponential innovations.
Other innovation specifications will certainly lead to more accurate conditional densi-
ties, but will not be considered here. This is justified from an inferential perspective by
results on QML estimation as well as Monte Carlo evidence (Grammig and Maurer,
2000).

Further assumptions and properties are directly imported from the GARCH-FunXL
specification: We assume that the terms

∫ 1
0 γ(s)(m)x(s)i−1(m)dm, s ∈ {bid, ask}, are non-

degenerate in the sense that the coefficient functions are finite over [0, 1] and that both
liquidity processes are stationary in the sense explained above. It also holds that log
durations admit an ARMA(1,1)-(Fun)X representation.

Evidently, the innovation distribution of the ARMA-X representation is different
from the GARCH case, but the basic structure is preserved. In particular, log yi is
stationary if the roots of the AR polynomial lie outside the unit circle, i.e., for a model
of order (1,1), −1 < α + β < 1. The log-ACD specification is primarily attractive
because it avoids non-negativity constraints for the functional exogeneous part of the
model.

4.4.2 Estimation

The liquidity part of the model is estimated based on the truncated FPC representation

83



4 Functional liquidity and low-latency volatility: The ACD-FunXL model

x(s)i (d) ≈ µ(d)(s) +
K

∑
k=1

φ
(s)
k (d)ξ(s)k,i .

Empirically we find that the properties of the liquidity part are very much the same
as in the GARCH-FunXL case as only the sampling scheme has changed. For low δ,
i.e., for short durations we get an even higher autocorrelation of liquidity curves while
observing more curves, resulting in basically the same eigenfunctions. As shown
already, few components explain most of liquidity variation. For our empirical model
specification, we conjecture that these components also represent the features that
potentially have an impact on the duration process.

Assumptions

We impose the same assumptions as for the GARCH-FunXL model. In short, this
means that (i) only a finite number, K, of liquidity components is relevant for duration
dynamics, where K is the same for bid and ask liquidity, and (ii) liquidity dynamics
are dominated by the diagonal of the multivariate score processes.

Two-step estimation

We estimate the ACD-FunXL model in two steps.

1. Estimation of the liquidity curves using the orthonormal FPC expansion

x̂(s)i (d) = µ̂(s)(d) +
K

∑
k=1

φ̂
(s)
k (d)ξ̂(s)k,i ,

where the true K, mean function µ, and eigenfunctions φk are unknown, and the
ξ̂
(s)
k,i =

∫ 1
0 (x(s)i (m)− µ̂(s)(m))φ̂

(s)
k (m))dm are computed via numerical integration.

This step has been outlined in detail before.

2. (Q)ML estimation of the EACD-FunXL parameters using the scores ξ̂
(s)
k,i , k =

1, . . . , K, i = 1, . . . , I from Step 1 and the return data. An alternative is given by
inference via the ARMA-X representation.

The procedure can be termed QML as we do not claim that innovations are necessar-
ily exponential. It has been shown, however, that the conditional duration dynamics
can be consistently estimated using the EACD model regardless of the true innovation
distribution. Taking the square root of durations, it is even possible to use GARCH
software. However, in our empirical application, the conditional intensity and its im-
plied instantaneous volatility, the quantity of primary interest, are computed based
on the EACD specification.

The conditional distribution of the logarithmic EACD(1,1)-FunXL with exponential
innovations is given by
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4.4 Econometric model

yi|F L
i−1 ∼Exp

exp

ω + α log yi−1 + β log ψi−1

1∫
0

.

+

1∫
0

γ(ask)(m)x(ask)
i−1 (m)dm +

1∫
0

γ(bid)(m)x(bid)
i−1 (m)dm

 .

The exponential quasi-log-likelihood is proportional to

l(y, x; ω, α, β, γ(bid), γ(ask)) = −
I

∑
i=2

(
log ψt +

yi

ψi

)
,

where y is the vector of de-seasonalized returns, and x the “matrix" of de-seasonalized
liquidity curves.

As both the x(s)i and the coefficients γ(s)(·) are infinite-dimensional objects, the term∫ 1
0 γ(s)(m)x(s)i (m)dm has to be approximated by some finite-dimensional representa-

tion. In our practical application, we use K = 1, . . . , 5. For both stocks considered,
K = 4 components explain at least 95 percent of the curves’ variation.

Introducing a K-dimensional parameter vector γ(s) = [γ
(s)
1 · · · γ

(s)
K ] for each

market side, we expand the coefficient function using the same set of K eigenfunctions
that is used to represent the curves themselves,

γ(s)(d) =
K

∑
k=1

γ
(s)
k φ̂

(s)
k (d),

so that, plugging in estimated mean, eigenfunctions and scores from the FPCA of the
liquidity curves, the integral

∫ 1
0 γ(s)(m)x(s)i (m)dm becomes

1∫
0

K

∑
j=1

K

∑
k=1

ξ̂
(s)
j;i φ̂

(s)
j (m)γ

(s)
k φ̂

(s)
k (m)dm =

K

∑
k=1

γ
(s)
k ξ̂

(s)
k;i

by orthonormality of the eigenfunctions. Defining

Gi−1 := α log yi−1 + β log ψi−1

for the endogeneous part of the model, we can now write the conditional duration in
the following compact way

log ψi = ω′ + Gi−1 + ∑
s

K

∑
k=1

γ
(s)
k ξ̂

(s)
k;i−1 (4.11)

by the same arguments as in Chapter 3. The intercept ω′ includes the mean liquidity
effect,

∫ 1
0 γ(s)(m)µ(s)(m)dm.
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The infinite-dimensional problem has thereby become much easier to handle as only
2K additional scalar parameters compared to the original model, ω, α, β, γ

(bid)
1 , . . . , γ

(bid)
K ,

γ
(ask)
1 , . . . , γ

(ask)
K . We are nevertheless rather generous in the choice of K as low varia-

tion of liquidity features does not necessarily mean irrelevance regarding the duration
process. Note that the properties of the estimators and potential problem of the non-
parametric first step have already been discussed in Chapter 3.

4.4.3 Liquidity impact

The conditional duration of the EACD-FunXL model can be written as a product of
the (endogeneous) ACD part and the exogeneous liquidity part, i.e.,

ψi = exp (ω + α log yi−1 + β log ψi−1)

× exp
(∫

γ(ask)(m)x(ask)
i−1 (m)dm +

∫
γ(bid)(m)x(bid)

i−1 (m)dm
)

.
(4.12)

Defining

LIi := exp
(∫

γ(ask)(m)x(ask)
i−1 (m)dm

)
× exp

(∫
γ(bid)(m)x(bid)

i−1 (m)dm
)

,

the second term is henceforth called the liquidity impact. Note that the sub-index is
chosen according to the target variable, the conditional variance. Due to the multi-
plicative structure of the model, liquidity reduces volatlity for LIi < 1 and increases
it for LIi > 1. LIi can further be divided into the contributions of each market side,
LIi = LI(ask)

i LI(bid)
i .

The K-truncated, estimated version of the liquidity impact is given by

L̂Ii = exp
(

γ̂′
(ask)

ξ̂
(ask)
i−1 + γ̂′

(bid)
ξ̂
(bid)
i−1

)
.

Confidence statements for the liquidity impact are directly linked to estimation un-
certainty about the functional parameters discussed above.

4.5 In-sample evaluation

We fit log-EACD-FunXL models to price durations between quote changes of the
Commerzbank and Linde stocks, considering the following constellations:

• Separate durations models for bid quotes and ask quotes.

• Durations between price changes of (≥) 1 (2, 3, 4, 5, 10, 20) ticks. Note that the
tick size for Linde (EUR 0.01) is ten times as high as for Commerzbank.

• Liquidity curves up to D = 51 (101, 151, 201) price levels (Cents) from the quotes,
that is for J = D equidistant gridpoints, are used as FunX covariates. This
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range, if related to the absolute price level, differs for Commerzbank and Linde.
Liquidity is evaluated only centwise, which for Commerzbank is a rougher grid
than would be possible in principle.

• We allow for impact of ask-side liquidity, bid-side liquidity, both simultaneously,
and imbalance impact, respectively.

• We use up to K = 5 FPCs to approximate the observed liquidity curves and to
expand the functional parameter.

For each time series of durations, this amounts to 96 different models, allowing to
give answers to, among others, the following questions:

• Does LOB-implied liquidity matter for the variation of quoted prices?

• Is liquidity at large distance from the quoted prices relevant for quote variation,
or does it suffice to account for liquidity in the neighbourhood of the quotes?

• Does only the liquidity level matter, or the specific pattern of limit order sched-
ules?

• Is liquidity impact symmetric?

• What role does the tick size play?

4.5.1 Information criteria

To judge the in-sample fit of the models considered, we primarily use the usual AIC
and BIC criteria.

AIC = −2 maximum log likelihood + 2 # parameters

BIC = −2 maximum log likelihood + log( # observations) # parameters,

where the number of observations, ∑L
`=1 N`,T, is stochastic and decreases with respect

to δ. To facilitate interpretation and comparisons, the criteria are normalized by the
number of observations.

We emphasize, however, that these measures should be termed naive AIC/BIC, re-
spectively, as the number of parameters in the respective second terms must not be
taken literally. For a model of order (1,1) accounting for bid and ask liquidity, the
number of parameters sums up to 3 + 2K, where K is the number of FPCs selected.
The FPC scores are constructed based on an estimate of the liquidity curves’ contem-
poraneous covariance kernel, whose dimension is ignored in our informal compari-
son. Moreover, mean and eigenfunctions are estimated quantities subject to estimation
error. The “number of parameters" in our model’s penalty term ignores these facts
and treats the FPCs like directly observable, scalar regressors.
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4 Functional liquidity and low-latency volatility: The ACD-FunXL model

However, this strategy can be justified as the construction of the functional regres-
sors, i.e., the expansion in terms of their covariance operator’s eigenfunctions, is not
tailored with their explanatory power in the second estimation step in view. In other
words: Dimension reduction for liquidity is done independently of the inference for
the FunXL parameters γ(s)(·). Thus, the problem of possible data snooping might be
considered negligible in this case. Having this simplifying assumption in mind, we
nevertheless judge our fits by these criteria. We return to this point when discussing
the out-of-sample exercise below. A second issue, already raised in Chapter 3, is that
QML theory for log-GARCH (and, thus, log-ACD) models is not fully understood,
either. We conjecture it has the favorable properties of the linear version of the model
based on our own numerical experiments and the Monte Carlo evidence in Sucarrat
et al. (2013).

To address the question whether liquidity deep in the book is relevant, models
with different domains [0, D] have to be compared. Note, however, that they are not
nested as regressors are constructed using different eigen-expansions. Therefore, a
comparison of in-sample results has to be drawn with some caution. We prefer to
ultimately judge the models based on their out-of-sample performances.

4.5.2 Results

To start with, we find that liquidity imbalance does not have any explanatory power,
which is in line with the finding for GARCH-FunXL. This result indicates that the
imbalance measure, by construction, eliminates information on the individual curves
which is valuable for predicting jumps of quoted prices. This is quite plausible: As
a gedankenexperiment, consider the cases of (i) a flat ask liquidity and an infinitely
steep bid liquidity curve vs. (ii) curves with unit slope on both market sides. Both (i)
and (ii) imply the same liquidity imbalance (the angle between the curves is 90 degrees
in both cases) although representing completely different states of the market.

Secondly, we find that for all duration series considered, models employing bid and
ask liquidity exhibit a superior goodness-of-fit compared to the one-sided models. In
what follows, we therefore confine ourselves to models with bid and ask liquidity
impact.

For reasons of clarity, we focus on the Commerzbank stock and δ = 1 (5) ticks,
respectively. All remaining results for both Linde and Commerzbank, and for all δ

considered can be found in Appendix A.4.
A minimum requirement for a “good fit" of a time series model is its ability to

decorrelate the data. All models considered achieve this primary goal — which, in
the case of log-ACD models, consists in fitting the autocorrelation of log-durations—,
reasonably well. Figure 4.6 shows Ljung-Box statistics (10 lags) for data and residuals.
For each δ, there are two time series (bid and ask durations), and for each time series,
6 different models are fitted (K = 0, . . . , 5). We observe that in almost all cases, log-
residuals have much lower LB statistics than the unfiltered log-durations, indicating
that log-ACD models (also those without liquidity impact) are able to filter the largest
part of serial correlation out of the data.
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Figure 4.6: Ljung-Box statistics (10 lags) for log durations (left panel) and log residuals
(right panel). Each boxplot in the right panel represents the statistics for all
models (K=1,. . .,5), each fitted to one of the two quote duration series (bid and
ask). Each boxplot in the left panel represents two durations series, the price
durations computed based on bid and ask quotes, respectively.
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Figure 4.7: Estimates of the persistence parameter β for models with K = 0 (1, 5) FPCs,
D = 201.

A further question of interest is whether liquidity provides an alternative explana-
tion for what is usually called the “persistence" of durations. This would be the case
if including liquidity resulted in much smaller autoregressive parameters, especially
smaller β̂. In a series of papers, Han and Kristensen (2014), Han and Park (2008),
Han et al. (2015) show both theoretically and empirically that persistent covariates in
a GARCH framework are able to explain almost all of volatility persistence. How-
ever, usually these persistent covariates are realized measures, i.e., observed proxies
of the latent volatility component itself. This is quite different from our setup, where
liquidity is supposed to be truly exogeneous.

Figure 4.7 shows estimates for the “persistence" parameter β with respect to the
number of liquidity components and δ. In some cases, a fair amount of the persistence
can alternatively be explained by liquidity impact. However, liquidity is not identified
as the main driver of what otherwise would be termed persistence of volatility. The
result is plausible in view of the LB statistics in Figure 4.6, where accounting for
liquidity impact appeared not to affect the amount of residual autocorrelation in such
a decisive manner, either.

Goodness of fit: Information criteria

Let us now turn to the goodness-of-fit results in terms of the (naive) selection criteria
discussed above. Overall, the results can be summarized as follows:

• Liquidity matters: Inclusion of liquidity curves improves the fit in all cases, i.e.
for bid and ask quote processes, in terms of AIC and BIC.

90



4.5 In-sample evaluation

• Both bid and ask liquidities have an impact on both quote processes.

• Considering liquidity for both market sides improves the fit as compared to only
one liquidity curve.

Table 4.2 shows the AICs for the duration models fitted on bid and ask quotes’
2-tick and 5-tick price durations, respectively. K = 0 corresponds to the pure log-
ACD model without liquidity impact. We also consider different liquidity domains
(parameter D). We find in all cases that liquidity has a considerable impact on price
durations, that is, on instantaneous volatility. Models with D = 51 tend to slightly
outperform models with larger D ceteris paribus, in particular for the same K, in-
dicating that liquidity variation near the quotes is most important. Nevertheless, it
appears that the (tuning) parameter D is, at least in the four settings considered here,
of least importance. De-diurnalized liquidity varies most in the left part of its domain
(i.e., near the quotes), and this phenomenon is captured almost equally well by eigen-
components accounting for variation in a wider neighbourhood of up to 201 Cents
from the quotes as for D = 51. Note that we found liquidity on both market sides
to be influential, not only on the side of the respective quote (result not shown here).
Detailed results for all models (bid and ask durations for all δ, D, and K considered)
are shown in the Appendix.

Figure 4.8 shows the fit in terms of the log instantaneous variance over time, and
allows for a comparison to the pure log-ACD model. We find that (on the log scale)
implied variances are quite similar for both models, though (according to the ratio
of the two) there seem to be periods where implied variances differ in a somewhat
persistent manner.

Accordingly, the fits do not vary much with respect to D. However, for Com-
merzbank the models with D = 201 explain quote durations slightly better than those
with lower D; for Linde, the opposite is true. We conjecture that the choice of a
less-than-maximal D only makes sense in finite samples. Asymptotically, K can be
allowed to grow along with the number of observations at a suitable rate, so that the
approximations of the liquidity curves and the functional parameter should converge
to their true entities,

K

∑
j=1

K

∑
k=1

ξ̂i,kφ̂k(d)γ̂jφ̂j(d)→ γ(d)xi(d) ∀ d ∈ [0, 1].

A thorough analysis of this conjectured convergence is left for future research.
As shown in Figure 4.9, durations between small price changes tend to be explained

best by models accounting for many aspects of the liquidity curves’ structure,whereas
durations between large price changes are explained well by 1 or 2 FPCs already. For
the vast majority of models, the first component, which may be regarded as a level
component, provides the highest improvement of the fit as compared to pure ACD
models.

We pick up the question of model choice again in the context of our forecast exer-
cise.
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Figure 4.8: Volatility of Commerzbank ask quotes over the full sample, 10/2010, based on
5-tick price movements. Top panel: Diurnal pattern, evaluated at the event
times. Center panel: Log Variance for the pure log-ACD (black) and the log-
ACD-FunXL with two principal liquidity components, i.e., the model with the
best in-sample AIC. Bottom panel: Ratio of the variances of the pure log-ACD
and the log-ACD-FunXL model.
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Figure 4.9: Liquidity dimension K of the best model with respect to the duration series
(number of ticks) considered. The liquidity domain is held fixed at D = 201.
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4.5 In-sample evaluation

δ = 0.002 EUR (2 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.7788 0.7788 0.7788 0.7788 0.9279 0.9279 0.9279 0.9279
1 0.6919 0.7093 0.7186 0.7220 0.8226 0.8408 0.8486 0.8524
2 0.6847 0.6917 0.6995 0.7034 0.8222 0.8197 0.8231 0.8229
3 0.7078 0.7036 0.7029 0.6986 0.8262 0.8355 0.8339 0.8279
4 0.7070 0.7073 0.7086 0.7090 0.8182 0.8288 0.8288 0.8290
5 0.7129 0.7197 0.7110 0.7112 0.8159 0.8228 0.8223 0.8246

δ = 0.005 EUR (5 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.0164 1.0164 1.0164 1.0164 1.1071 1.1071 1.1071 1.1071
1 0.9777 0.9890 0.9937 0.9949 1.0689 1.0744 1.0768 1.0768
2 0.9738 0.9779 0.9839 0.9858 1.0800 1.0738 1.0772 1.0768
3 0.9986 0.9957 0.9887 0.9817 1.1103 1.0989 1.0949 1.0866
4 0.9853 1.0078 1.0072 1.0021 1.1033 1.1112 1.1056 1.0986
5 0.9563 1.0167 1.0093 1.0124 1.0981 1.1089 1.1113 1.1077

Table 4.2: Average AIC per observation for bid and ask price durations and the Com-
merzbank stock. δ amounts to 1 tick (top panel) and 5 ticks (bottom panel),
respectively.

4.5.3 The functional parameter

Point estimates for the functional parameter of the best model according to the AIC
for the Commerzbank data (δ = 5 ticks) are shown in Figure 4.10. Bid liquidity tends
to increase, ask liquidity tends to decrease price durations over the entire domain
of relative prices (50 Cents in the present case). As price durations are a reciprocal
measure of volatility, the result is in line with the finding for the Commerzbank data in
the GARCH-FunXL context, see Chapter 3, where bid (ask) liquidity has been found
to decrease (increase) the conditional variance.

4.5.4 Liquidity impact

We recall that the EACD-FunXL model’s conditional duration equation can be written
as

ψi = exp (ω + α log yi−1 + β log ψi−1)

× exp
(∫

γ(ask)(m)x(ask)
i−1 (m)dm +

∫
γ(bid)(m)x(bid)

i−1 (m)dm
)

.
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4 Functional liquidity and low-latency volatility: The ACD-FunXL model
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Figure 4.10: Functional parameter estimates for bid and ask liquidity impact, Com-
merzbank data (δ = 5 ticks), for the model with K = 2 and D = 51 as chosen
by the AIC.

Then, in analogy to the GARCH case, the liquidity impact on the conditional duration
can be defined as

LIi := exp
(∫

γ(ask)(m)x(ask)
i−1 (m)dm

)
× exp

(∫
γ(bid)(m)x(bid)

i−1 (m)dm
)

.

The liquidity impact for the Commerzbank data and the same “best" model as be-
fore is depicted in Figure 4.11. According to the total impact in the bottom panel,
apart from two spikes the relative contribution of liquidity to conditional durations is
relatively moderate, leveraging the endogeneous part by roughly ± 5 percent.

4.6 Forecasting price durations

We exemplarily comment on the out-of-sample results for the two data situations
already discussed above, which are quite representative. All remaining results can be
found in Appendix A.4.

Table 4.3 shows 1-step-ahead out-of-sample forecast results for the Commerzbank
data. We find that liquidity-augmented models are able to outperform the pure ACD
specification. Results are also significant in a Diebold-Mariano sense.3 Models only
accounting for liquidity near the quotes tend to perform better than those accounting
for the full range of liquidity. This is in line with the in-sample results. Interestingly,
for the present situation the fourth FPC, not that relevant for liquidity variation itself,
provides a considerable improvement over the models with K = 3.

3We abstain from discussing the appropriateness of the DM assumptions here.
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4.6 Forecasting price durations
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Figure 4.11: Liquidity impact (D = 51) on the instantaneous volatility of Commerzbank’s
ask quotes over the full sample, 10/2010, based on 5-tick price movements and
K = 2 FPCs. The top panel (blue) shows the buy-side liquidity impact, the
center panel (red) the impact from the sell-side. The total impact is depicted
in the bottom panel (black).
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4 Functional liquidity and low-latency volatility: The ACD-FunXL model

δ = 0.002 EUR (2 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 7.4409 7.4409 7.4409 7.4409 7.8037 7.8037 7.8037 7.8037
1 7.3842 7.4809 7.5794 7.6184 7.7112 7.8672 8.0188 8.0760
2 7.3566 7.5040 7.5307 7.5345 7.6573 7.8673 7.9076 7.9128
3 7.3542 7.4529 7.4672 7.4596 7.6427 7.8078 7.8306 7.8137
4 7.2833 7.4448 7.4569 7.4545 7.5296 7.7796 7.8093 7.7924
5 7.3634 7.4385 7.4348 7.4166 7.6059 7.6963 7.7354 7.7314

δ = 0.005 EUR (5 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 6.9429 6.9429 6.9429 6.9429 7.5744 7.5744 7.5744 7.5744
1 6.9091 6.9298 6.9629 6.9738 7.2801 7.4584 7.6317 7.6813
2 6.9416 6.8670 6.8937 6.9066 7.3498 7.4155 7.4599 7.4723
3 6.8634 6.8544 6.8546 6.8679 7.3081 7.4036 7.4450 7.4410
4 6.8883 6.8293 6.8400 6.8776 7.2330 7.4226 7.4725 7.4236
5 6.8775 6.8311 6.8674 6.8179 7.2633 7.3616 7.3868 7.3768

Table 4.3: Out-of-sample forecast performance for Commerzbank price durations. The
model is fitted to the data from the first 10 (left panel) and 15 (right panel)
days, respectively. Then, 1-step-ahead forecasts are computed for each observa-
tion during the days 16 to 21 in the sample (October 2010). The forecasts are
evaluated using the RMSE.

4.7 Conclusion

In the present Chapter we have shown how functional liquidity can be included into a
second class of multiplicative error models, ACD models, in much the same way as in
the GARCH case. It has been shown empirically that (and in which respect) liquidity
matters for the dynamics of quoted prices at ultra-high frequency. Moreover, we
conjecture that the model could be of great use for other applications, for instance if
one is interested in non-negative dynamic quantities like trading volume or realized
variance.

Regarding the specific application, skepticism might come from the realized volatil-
ity corner of financial econometrics. Namely, one could argue that accounting for each
quote change when measuring volatility is problematic. Pointedly, one might ask if
we have just been modeling microstructure noise in the present Chapter. If one is
solely interested (and believes) in an underlying true, efficient price process buried in
noise, the answer to this question is certainly positive. However, when working with
high-frequency data (to whatever purpose), the question really is whether there is
such a thing as a true underlying price.

From a more practical, balanced perspective, we admit that it is certainly correct that

96



4.7 Conclusion

volatility measurement for the purpose of low-frequency decision making — such as
portfolio allocation, derivative pricing, or risk management on a day-to-day or even
10-day basis —, should ignore the extra variance accumulated when sampling at ultra-
high frequency. However, for instance from the perspective of a high-frequency trader,
ignoring any movement of the quotes does not make any sense, simply because it can
potentially be used to be traded on. The ACD model can even be used to estimate
realized volatility via the ICV method which cumulates the instantaneous variance
over time. Robustified by a reasonable choice of δ, it can even be superior to other
realized measures (Tse and Yang, 2012). For a recent contribution discussing the
contrast between microstructural volatility (not being called noise) and fundamental
price variation, see Hasbrouck (2015).
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Realized Volatility and Liquidity Impact

In Part II of the thesis, we change the view by measuring temporal aggregates of liq-
uidity and volatility. To this end, in Chapter 5, analogous to the well-known realized
measures of price variation, some realized measures of liquidity are proposed. We
motivate the realized measures by some of the stylized facts of ultra-high frequency
LOB dynamics, and propose a compound nonhomogeneous Poisson process (NHPP)
for intraday inventory revisions. We justify the use of the realized volatility estimator
as a measure of liquidity risk under the NHPP model.

In Chapter 6, we introduce heterogeneous autoregressive (HAR-) Fun-XL models
to model the connection between liquidity and price volatility dynamics. Finally,
we show how Markovian models like HAR-FunXL, the Markovian version of ACD-
FunXL, and further possible dynamic order book models can be viewed as (gen-
eralized, additive) linear regression models. This representation allows to import
smoothness penalties and other regularization methods that have been developed for
functional regression models in recent years. We apply one of these methods, pe-
nalized functional regression, to reassess the results obtained by using the FPC basis
expansion.
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5
Realized measures of liquidity

5.1 Introduction

In Part I, we have considered models capturing the state of the LOB inventories in the
form of snapshots taken at specific times during continuous trading, and modeled
their impact on the price process. In the present and the following Chapter, LOB
dynamics are viewed and modeled from a different, namely the realized volatility (RV)
perspective.

Research on realized volatility aims at measuring uncertainty about asset prices
ex post, based on high-frequency data. The basic claim made by this strand of re-
search is that (in principle) volatility is no more a latent, unobservable quantity which
can only be proxied by squared (day-to-day) returns, but directly observable using
high-frequency observations of the data-generating, continuous time price process,
(Andersen et al., 2001, 2003). For liquidity, however, to our knowledge no “realized
liquidity" concept exists, with the only exception of Engle et al. (2012). Their notion
of realized volatility is imported directly and rather on an ad-hoc basis from the RV
literature in order to model liquidity uncertainty of treasury bonds. However, the
authors report that the basic assumption of a martingale difference sequence appears
to be fulfilled for their data, so that the application of the standard realized volatility
measure is justified.

In this Chapter, we propose an alternative continuous-time, pure-jump model of
liquidity, but for the same purpose: The ex-post measurement of important aspects
of LOB inventories’ dynamics, aggregated over intervals during continuous trading,
which is in close analogy to realized measures of price volatility. We call these real-
ized measures of liquidity (RML). This model of liquidity allows for the construction of
estimators of liquidity’s integrated drift and variation for every relative price d. In a
second step, the measures can be viewed as functions of the relative price d. RML
on the bid and ask side, respectively, can then be viewed as a stationary functional
time series at a daily frequency, and its dynamics be capured by models introduced
in Chapter 2.

The Chapter proceeds as follows. We first review the standard model of realized
price variation, i.e., a diffusion process for logarithmic prices with stochastic volatility,
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5 Realized measures of liquidity

but without jumps. We then turn to liquidity. After shortly reviewing the approach
by Engle et al. (2012) and discussing the implications of some other LOB models
for liquidity variation, we put forth a pure-jump model of liquidity in the spirit of
the compound Poisson model of Press (1967), originally constructed with prices in
view. Our liquidity model is a difference of two compound nonhomogeneous Poisson
processes (NHPPs) with independent increments or marks. In the realized (price)
volatility literature, a similar model has been introduced in Oomen (2006), on which
we heavily draw.

We then define three measures of integrated liquidity over some interval, typically
the trading day, and show several ways of obtaining realized measures, i.e., estima-
tors of integrated liquidity. In particular, it is shown analytically and by means of
simulation that an estimator based on equidistant snapshots approximates integrated
liquidity accurately. The simulation setup is based on an estimated version of the
compound NHPP with independent exponential marks.

Finally, by considering limit order schedules at a wide range of relative price levels,
functional RML are constructed. We illustrate the construction using XETRA LOB
data and briefly look at RML dynamics by means of functional time series models.
The interplay of RML and RV is then analyzed in the subsequent Chapter 6.

5.2 Realized volatility

The price process

In the basic setting, one assumes that the logarithmic price in continuous time, (pt)t∈[0,∞),
is generated by the diffusion process

pt = p0 +

t∫
0

µsds +
t∫

0

σsdWs,

implying

dpt = µtdt + σtdWt.

Starting at some p0, the process consists of a deterministic drift, µt, and a stochastic
part driven by standard Brownian motion (Wt)t and a time-varying, random scale
parameter, the stochastic volatility process σt.

Now consider the sum of squared returns in the interval [0, T],

M−1

∑
j=0

(pτj+1 − pτj)
2,

for partitions 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τM = T. If we observed the process in
each instant of time, i.e. M → ∞ and τj+1 − τj → 0, we would directly observe the
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5.2 Realized volatility

integrated variance,

[p]T =

T∫
0

σ2
s ds,

which is the quantity of primary interest in the following.
We turn to the task of estimating integrated variance (or volatility) over intervals of

length 1 (day). If we observe the price equidistantly M times during day `, we can
construct M− 1 intraday returns,

r`,j = p`−1+j/M − p`−1+(j−1)/M, (5.1)

and define the realized variance for day `,

RV` =
M

∑
j=1

r2
`,j, (5.2)

which should approach the integrated variance of the price process over day ` for
M→ ∞,

RV` →
T∫

0

σ2
s ds. (5.3)

Using high-frequency data, the possible sample size M is very large, which gives rise
to the notion of realized variance: Integrated variance is no more considered latent, but
(almost) directly observable. Given that the consistency statement holds, there exists
a worked-out inferential theory (Barndorff-Nielsen and Shephard, 2002; Barndorff-
Nielsen, 2002).

We have stated that RV asymptotically should approach its population counterpart.
However, it turns out in practice that the estimate of integrated variance is grow-
ing larger and larger rather than converging to what could be considered the true
integrated variance as M increases. This phenomenon is usually explained by the
presence of so-called microstructure noise which is attributed, among other things, to
the discreteness of the price, which can be specified only as multiples of the tick size,
to the bid-ask spread, etc.. In the statistical literature, such a phenomenon is typically
termed measurement error.

In the simplest (still equidistant) setting, a model exhibiting microstructure noise
may be given by

r`,j = p`−1+j/M − p`−1+(j−1)/M + e`,j,

where e`,j is i.i.d. with mean zero and constant variance.1 This error is present at
every measurement, thus, for M→ ∞,

1There are also versions with autocorrelated errors, MA(1) being the most common.
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5 Realized measures of liquidity

RV` →
T∫

0

σ2
s ds +

∞

∑
j=1

e2
`,j = ∞.

There is a huge body of literature on how to modify RVt to account for and robustify
against measurement error, while the “traditional" way to deal with the phenomenon
is to sample at 5 minute frequency which is widely agreed to be the highest frequency
not subject to noise while still delivering about 100 observations per day (XETRA).
Recently, Liu et al. (2015) found that the improvement brought by more sophisticated
methods like subsampling and pre-averaging is questionable. In our empirical appli-
cation, we use 5-minute returns (in part to be consistent with our method of liquidity
measurement) but also tried subsampling (Zhang et al., 2005) which did not change
the essential findings in our study.

There are alternative models for the price, especially models including a discontinu-
ous jump part, and corresponding realized measures that disentangle the continuous
and the jump part. However, we stay within the basic setting explained above. Be-
fore turning to the measurement of liquidity, we stress the fact that realized volatility,
as an ex-post measure of price variation, is computed conditional on a trading day,
that is, conditional on that trading day’s infinite-dimensional parameter σ`,t, the day-`
section of the stochastic spot volatility function. We adopt this conditional approach
when measuring liquidity ex post.

Realized volatility from a functional data perspective

When measuring realized volatility of the price, for each day a trajectory of M squared
returns is constructed. If one is not only interested in the integrated variance

∫
σ2

s ds,
but in the spot variance σ2

t itself, squared intraday returns can be used to construct
an estimate for this quantity. Müller et al. (2011) propose to view each such daily tra-
jectory as realization of an underlying functional variance process,

(
σ2
` (s)

)
`∈Z

.2 The
potential problem of measurement error is thereby considered negligible. Moreover,
the realizations are assumed to be independently sampled.3

Whereas in case of the price process we are not interested in σ2
` (s) but rather in∫

σ2
` (s)ds, a scalar quantity, we adopt this same basic idea for modeling realized liquid-

ity in a functional manner.

Towards realized liquidity

As demonstrated, there exists a well-elaborated theory for the volatility of asset prices,
and the pure diffusion setting considered above is the standard case. Other studies

2Note that we move the continuous time argument by writing σ2(s) instead of σ2
s both to emphasize

the change of perspective and to stay notationally consistent.
3It is well-known and will be demonstrated later on that realized variances (more precisely: their

logarithm and square-root) are highly autocorrelated. Therefore, the independence assumption for
the time series of spot volatility functions is disputable.
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5.2 Realized volatility

consider pure-jump environments as introduced in Press (1967), or combine both
concepts to jump diffusions. Moreover, the presence of and correction for several
kinds of measurement error (termed microstructure noise) has been a central topic of
this literature in recent years. For an extensive treatment, see Aït-Sahalia and Jacod
(2014).

For asset liquidity no such theory exists, and to our knowledge Engle et al. (2012)
is the only reference so far using realized measures of liquidity uncertainty. How-
ever, Engle et al. (2012) do not provide a theory, but rather conjecture that standard
realized volatility measures may be employed to measure liquidity variation as well.
Using data for US treasury bonds, sampled at 1-second frequency and the first 5 tiers
apart from the quotes on each market side, the authors compute both realized volatil-
ity of the price and realized liquidity volatility (volatility of depth).4 The quantities
constructed in that study are the realized volatility of price, RVP, and of depth, RVD,
which can in (a slight abuse of) our notation be defined as

RVPt =

√√√√ 300

∑
kt=1

(∆pkt)
2,

RVDt(d) =

√√√√ 300

∑
kt=1

(∆vkt(d)pkt)
2, d = 0, 1, 2, 3, 4,

where ∆pkt are second-to-second price changes, and ∆vkt(d) are second-to-second
volume changes at relative price d (ticks). The sampling frequency of high-frequency
observations is constant at 1 second, the frequency of aggregates is 300 seconds (5
minutes).

First, we observe that RVD is not a pure liquidity measure as it depends on the price
pkt . Moreover, a sensible use of the RVD measure requires assuming liquidity changes
to form a martingale difference sequence, in close analogy to the price process. Finally,
there may arise severe problems with microstructure noise at this sampling frequency.
The authors report that for their data the martingale difference assumption is justified
and claim to avoid microstructure noise by using a sampling frequency of 5 minutes.5

Another class of order book models, the most prominent ones being Smith et al.
(2003) and Cont et al. (2010), make assumptions regarding the in- and outflow of
liquidity which imply a specific kind of liquidity variation. In these so-called “zero-
intelligence" models, market orders, limit order submissions, and limit order cancella-
tions arrive at rates which are constant given the relative price, and all these inventory
changes have unit size. In the case of Cont et al. (2010), both market sides evolve by
the following rules.

4Price and depth measurement for treasury bonds is a bit different from prices and volumes of equities
as considered here. For details see the data description in Engle et al. (2012) .

5However, the sampling frequency relevant for the noise issue in their study is 1 second.
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5 Realized measures of liquidity

• Market orders arrive at constant rate µ.

• Limit orders arrive at rate λ(d) = β
dα , where β and α are parameters. This means

that the rate decays with respect to d by a power law.

• Limit orders are cancelled at rate θ(d)vt(d) which is proportional to the number
of outstanding orders at d, vt(d).

The entire LOB is then a continous-time Markov chain with finite state space. An
implication is the fact that inventories’ variation is constant over time.

Our liquidity model, which is introduced in the next Section, adopts some aspects of
both approaches, but it also differs in many respects from them. Firstly, we adopt the
idea of ex-post measurement of squared liquidity differences put forth in Engle et al.
(2012). As outlined earlier, we use the number of offered/ requested shares rather
than their monetary value as measure of pure liquidity. Instead of treating only a few
price tiers and each of them separately, we construct functional realized measures of
liquidity (FRML). Two of the proposed FRML do not only measure variation, but also
the level of liquidity. Finally, in order to avoid potential effects of microstructure noise
and for reasons of practical implementation, we advocate a much lower sampling
frequency (1 minute and 5 minutes), constructing daily aggregates thereof.6

Secondly, we back our realized measures by sketching a “theory of liquidity varia-
tion", i.e., by constructing a plausible data-generating process for liquidity. Then, the
properties of the realized measures will be analyzed for this process. The liquidity
process is built upon the zero-intelligence model, but with two important general-
izations: Order sizes are random instead of constant, and can be described by some
parametric distribution. Moreover, the rates of liquidity arrivals and departures are
time-varying.

5.3 A continuous-time pure-jump model of liquidity

With the final goal of constructing functional realized measures of liquidity, we first
introduce our model and the theoretical quantities of interest within this model. Esti-
mators of these quantities are proposed and their theoretical properties analyzed both
analytically and by means of simulation.

5.3.1 The liquidity model

To develop a model for liquidity, let us first introduce some notation. In what follows,
t denotes continuous intraday time. The subindex ` = 1, . . . , L denotes the trading day
and the superindex (s), s ∈ {bid, ask}, denotes the market side. We consider a specific

6The acceptable amount of microstructure effects of course depends strongly on the goal of the study.
In applications in earlier chapters, particularly in the case of ACD-FunXL, we have tacitly tolerated
a large amount of what the RV literature would call “noise". One may even argue that the efficient
price (and here, additionally: liquidity) process we are interested in does not exist at all and, thus,
distinguishing its variation from noise is a pointless task. Of course, we do not argue that way.
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5.3 A continuous-time pure-jump model of liquidity

trading day with trading hours t ∈ [0, T] =: T , and only one market side. Thus, where
not urgently needed, ` and (s) are omitted in the following to avoid notational clutter.
However, to emphasize the functional nature of liquidity, we entrain the argument d.

As an alternative to the diffusive stochastic volatility models discussed before and
implicitly assumed by Engle et al. (2012) in a liquidity context, we consider a pure-
jump model

xt(d) = x0(d) +
N+

t (d)

∑
i=1

u+
i (d)−

N−t (d)

∑
j=1

u−j (d),

where xt(d) are the limit order inventories at relative price d and time t, x0(d) are the
inventories when continuous trading starts, u+

i (d) denotes increases of liquidity and
u−j (d) denotes decreases of liquidity, and N+

t (d) and N−t (d) are counting processes
to be specified shortly. Note that xt(d), in contrast to Part I, is not the cumulative
volume, but the volume at relative price d. Liquidity increases when a limit order of
size u+

i (d) is being submitted or a quote change leads xt(d) to represent the inventory
at a different absolute price than before, associated with higher liquidity. Liquidity
decreases when a limit order of size u−j (d) is cancelled, a market order absorbs u−j (d)
shares, or a quote change induces a decrease in liquidity at relative price d.

Inventory changes are thus viewed as marked point processes (MPPs) whose re-
alizations consist of the tuples {ti(d), u+

i (d)} ({tj(d), u−j (d)}), i.e. of event times and
sizes of changes in liquidity (the marks). Using the terminology of Daley and Vere-
Jones (2008), the point process generating the event times is called the MPP’s ground
process, the stochastic law of the inventories is the mark process.

To complete the definition of the liquidity model, we assume the following:

1. Conditional on the trading day, liquidity arrives (departs) according to a nonho-
mogeneous Poisson ground process with rate λ+

t (d) (λ−t (d)).

2. Conditional on the trading day, liquidity increases and decreases are drawn from
the same parametric distribution with positive support, finite mean µu, and finite
variance σ2

u. The draws are independent of each other and independent of the
ground process. The distibution is the same for all relative prices d.

3. For the cumulative intensities Λ+
t (d) =

∫ t
0 λ+

s (d)ds and Λ−t (d) =
∫ t

0 λ−s (d)ds,

Λ+
t (d) Q Λ−t (d)

holds for all t during continuous trading. That is, we allow for periods where
liquidity extraction is higher than liquidity submission, and this may even hold
for the entire trading day. However, we assume that the order book is never
empty at any d, which requires x0(d)� µu

(
Λ−t (d)−Λ+

t (d)
)

for all t.

4. The point processes are assumed to be simple, i.e., there are no simultaneous
jumps.
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5 Realized measures of liquidity

We briefly discuss the model assumptions. The intensities of liquidity arrivals and
departures can be viewed as doubly-stochastic or Cox processes, i.e., as (nonhomo-
geneous) Poisson processes whose parameters are themselves generated by discrete-
time stochastic processes, (λ+

`,t(d))`∈Z and (λ−`,t(d))`∈Z, respectively. The intensities
are independent of the sizes of order submissions. This allows to estimate the pa-
rameters of the size distribution and the intensities separately based on an observed
trajectory, and possibly to build a time series model for the intensities. However, the
day-to-day intensity dynamics are not the focus here. Instead, we are solely interested
in the realized intensities, λ+

t (d) and λ−t (d), and in the parameters of the jump size
distribution.7

An important implication of the NHPP structure is that liquidity events are inde-
pendent of earlier liquidity events’ timing and sizes. The number of liquidity jumps
during some intraday interval depends solely on the intensity, i.e. for instance

#order submissions at d during [t, t + h] ∼ Pois
(

Λ+
t+h(d)−Λ+

t (d)
)

.

Thus, the latent NHPP intensities play the same role as the stochastic volatility
process σ2

t in realized volatility theory: From an ex-post perspective, it does not matter
if volatility itself has an autoregressive or “self-exciting" structure as for example in the
Heston model (Heston, 1993), where volatility follows a Cox-Ingersoll-Ross process,
or is purely exogeneous but time-varying. Similarly, liquidity dynamics may be well
explained by self-exciting models like ACD or Hawkes processes, reflecting market
participants’ reaction to other market participants’ actions (“endogeneous news"), but
can ex post be viewed as NHPPs.

Regarding the jumps, as we will show later on, the constancy of the size distribution
over d is realistic, although there seems to be a slight tendency of µu to grow with d.
The assumption of non-emptiness is not completely realistic empirically as the book
is usually empty at some price levels. This is even possible near the quotes, when
market participants do not use the full denseness of the price grid.

As already indicated, the “zero intelligence" models in Smith et al. (2003), Cont
et al. (2010), Gatheral and Oomen (2010) are special cases of the present model, with
homogeneous instead of nonhomogeneous Poisson liquidity arrival and departure
processes and unit marks u+

i (d) = u−i (d) = 1 ∀i, j.

5.3.2 Properties of the liquidity model

Conditional on the intensity λ+
t (d), the number of events N+

t+∆(d) − N+
t (d) during

[t, t + ∆] is Poisson distributed with parameter Λ+
t+∆(d)−Λ+

t (d), thus

E[N+
t+∆(d)− N+

t (d)|λ+
t (d)] = Var[N+

t+∆(d)− N+
t (d)|λ+

t (d)] =
t+∆∫
t

λ+
s (d)ds, ∆ > 0

7In this context, realized means that the NHPP’s intensity is deterministic ex post. However, the
intensity is still a latent infinite-dimensional parameter of the observed point process of event times.

110



5.3 A continuous-time pure-jump model of liquidity

0 2 4 6 8 10

0
50

0
10

00
15

00

(i)

Time

N
t

●

●

●
●●
●
●

●
●

●

●
●●
●

●

●
●

●
●
●●

●
●
●

●
●

●

●

●

●

●●
●
●
●

●

●

●
●
●●●●●
●
●●●
●
●●●●●●
●●

●●
●●●
●
●●●●

●

●

●

●

●

●

●
●

●

●●●
●●

●

●
●●
●●

●●
●
●●●

●

●●

●
●
●
●●●●
●

●●
●

●

●●

●●

●
●●●
●●

●
●●●

●

●●

●

●●
●
●
●

●

●
●●
●
●●

●

●
●●
●
●

●

●
●●●●●

●●
●●●●●
●
●
●

●●
●●
●●
●
●
●●●
●
●●●●
●
●●●●
●●●●●
●
●●●●

●●

●●●●

●

●●
●
●
●

●
●
●
●
●●●●
●
●

●
●
●●●
●●

●

●●●●
●●●
●
●●
●●

●

●●
●●

●

●
●
●
●●●●●
●
●
●●
●
●
●●●●●

●

●●●●●
●

●●
●●
●
●●
●●

●

●
●●●
●●
●

●●

●

●●●
●
●
●●

●

●●●

●

●●
●
●●●
●
●●●●

●
●

●
●

●
●
●●

●

●●●●●●●●
●●
●
●●●
●●●●●●
●

●

●

●

●
●●
●●●●

●

●●●●
●
●
●
●●
●
●●
●

●●●●●

●●
●

●

●

●

●

●

●

●●●

●

●
●
●●
●
●
●●●
●●
●●●
●
●

●
●●
●
●●

●

●

●

●
●●●●
●●
●

●

●

●

●

●
●
●
●

●
●
●●
●
●●●●

●●●

●

●

●

●●

●●●●

●
●●
●

●
●●
●

●

●
●
●●●
●

●

●
●●
●
●●●

●
●

●●●●●●

●
●●
●●

●

●●●●●●●●●●●
●
●●

●
●
●
●●●●
●●
●
●●
●

●
●
●●
●●●

●
●

●

●

●
●
●●●●
●●
●●●●

●

●●●
●●●●
●
●●
●

●
●
●
●
●●●●●●●
●●
●●

●●

●●
●●●●●●
●

●

●
●
●●●●●●

●

●●●●●
●
●●
●
●●

●●

●

●●
●●
●
●
●
●●●●
●●

●
●
●●●●

●●
●
●

●

●
●●●

●

●

●●●●

●

●●
●
●

●
●●

●●●●

●
●
●

●●●
●
●●

●
●

●

●
●

●●
●
●●
●

●●
●●
●●

●

●

●

●
●●●●●●●●●●●●
●●
●●●

●

●
●
●●

●

●

●
●

●

●
●

●●
●●●
●●●

●

●

●

●
●
●●
●

●●●
●
●●●

●

●●
●●
●●

●
●
●
●●●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●●
●
●
●

●
●

●

●

●●
●

●

●

●

●●

●
●●
●

●●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●
●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●
●

●

●
●

●
●
●

●
●
●

●

●
●●

●

●●
●
●
●
●
●

●
●
●

●●
●

●

●
●
●
●

●
●

●●
●

●●●●
●●

●●

●

●

●
●
●
●
●

●●

●

●

●
●●

●

●
●
●

●

●●

●

●●
●
●

●

●

●
●

●●
●
●●

●
●

●●

●

●

●

●●
●
●●●
●
●

●
●
●
●
●

●

●

●
●●●

●

●
●

●

●

●
●●

●
●●
●
●●
●
●●
●

●

●
●

●

●
●
●●
●
●

●

●

●●
●

●
●
●

●
●
●
●●
●

●

●●●●●
●●●●●●

●

●
●●

●●●

●
●
●
●
●
●
●●●●●
●●

●

●

●

●
●

●●●
●
●
●
●●
●●●●●●

●

●

●

●
●●●

●

●
●
●
●●●●

●
●

●

●●●●●●●●●

●

●●●●
●●●●
●

●●

●●

●

●●

●
●●●
●●
●●
●

●

●●
●●●
●

●●●●
●
●
●
●
●
●

●

●

●

●
●

●

●●

●
●
●●
●●
●
●●●

●●
●●

●●●
●●●●●
●●●●●●●●
●
●
●
●●
●●●●
●●

●●
●
●●●●●●●
●●●●
●

●
●
●●●

●

●
●●●
●●●●●●●●
●
●

●
●
●
●●●●●●

●

●●●●
●●
●
●●
●●
●
●

●

●
●

●●●
●●

●
●●●●●

●●
●
●
●
●
●
●●
●●
●

●●●●●
●
●●
●
●
●
●
●●●

●
●
●●●●●

●●
●●●

●

●●

●

●

●
●●●●
●
●

●
●●
●

●

●●
●
●●●
●
●●●
●
●●
●
●●●
●
●●●

●

●●

●
●

●●
●
●

●●
●

●

●

●

●
●
●
●●●●
●
●

●●
●●●●
●
●
●

●●
●

●

●●●●●●●
●●
●●
●
●
●
●●
●●
●●
●
●
●
●
●

●●

●
●●
●●
●●
●
●●
●●

●

●
●●

●

●●

●

●

●

●●
●
●●●●●
●
●
●
●●●
●●●
●●●●
●●
●●
●

●●
●
●
●
●

●

●●●
●
●
●●
●
●
●

●

●●
●
●

●
●
●

●

●●●
●●●●●
●

●

●
●
●●●

●
●

●
●
●●●●
●
●

●

●●
●
●
●
●●●

●

●●
●
●

●●●●●●●●●●

●

●●

●

●
●●
●

●

●●
●

●

●
●●●
●●
●

●
●
●

●
●
●
●●
●
●
●
●●
●●
●
●
●
●
●
●●
●●
●●●●●●

●

●

●
●
●●●●
●
●
●
●
●
●●
●
●●
●
●●●

●

●●

●

●

●
●

●●●

●

●
●
●

●

●
●●●●●

●

●●
●
●
●

●●●

●

●●●

●

●
●
●●
●
●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●
●
●●
●
●

●
●

●

●

●

●●●

●

●
●
●

●
●

●

●

●

●
●●

●●

●
●●

●

●●●

●
●

●

0 500 1000 1500

0.
00

0.
04

0.
08

(ii)

i

t i
−

t i−
1

(iii)

Time

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

0 200 400 600 800 1000

−
0.

1
0.

0
0.

1
0.

2
0.

3
Lag

A
C

F

(iv)

Figure 5.1: Properties of a NHPP with intensity λt = 100(1.5 + sin(t)), simulated for t ∈
[0, 10]. (i) shows the counting process, (ii) shows the durations, i.e., differences
between event times, (iii) shows a histogram of the simulated event times with
the true λt overlaid. (iv) shows the SACF of the durations depicted in (ii).
Evidently, the inhomogeneity of the intensity leads to strong autocorrelation
of durations unconditional on λt, while jumps are independent conditional on λt
(that is, on `).

holds. The same property holds for N−t . All (conditional) means and variances in
the following are to be understood as conditional on the day’s intensity processes. We
denote these conditional moments by E`(·), Var`(·) etc. The lack of autocorrelation
or “self-excitement" of events conditional on `, however, still allows for (spuriously)
autocorrelated durations between events through its time-inhomogeneity. Figure 5.1
illustrates this by a simulation example.8

The marks are independent of the ground process and of each other. Moreover,
both ground processes are independent of each other as well. Thus, the integrated
variance over some interval is given by the expected number of events, multiplied by
the constant jump variance for each event,

Var(xt+∆(d)− xt(d)) =: IVL[t,t+∆](d) = σ2
u

 t+∆∫
t

λ+
s (d)ds +

t+∆∫
t

λ−s (d)ds

 .

We assume that continuous trading starts after the opening auction at some initial
state of the LOB, x0(d), which is random. The expected liquidity, conditional on

8The simulation algorithm is described below.
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5 Realized measures of liquidity

x0(d), at some time during continuous trading is therefore given by

E`[xt(d)|x0(d)] = x0(d) + µu

t∫
0

λ+
s (d)− λ−s (d)ds, (5.4)

so that the integrated liquidity over the entire trading day can be defined as

IL[0,T](d) := µu

T∫
0

λ+
s (d)− λ−s (d)ds. (5.5)

Note that xt(d) is in general not a martingale. To see this, consider the case where
λ+

t (d) = 2 and λ−t (d) = 1. Then, xt(d) is a supermartingale as E[xt+∆(d)− xt(d)|x0(d)]
> 0 holds for all t. However, one may construct an appropriate compensator to make
xt(d) a martingale. Apart from that, xt(d) is a martingale if λ+

t (d) = λ−t (d) holds for
all t.

As is shown below, we empirically find that indeed λ+
t (d) ≈ λ−t (d), such that an

equality assumption seems appropriate. Stated differently, λ+
t (d) − λ−t (d) is very

small relative to λ+
t (d) and therefore contributes virtually nothing to liquidity varia-

tion. However, over the entire trading day there is typically some change in the level
of liquidity. We account for this by replacing

∫ T
0 λ+

s (d)− λ−s (d)ds by a deterministic
drift µt(d) < x0(d) ∀ t, yielding the model

xt(d) = x0(d) + µt(d) +
N+

t (d)

∑
i=1

u+
i (d)−

N−t (d)

∑
j=1

u−j (d), (5.6)

where λ+
t (d) = λ−t (d). Thus, conditional on x0(d), xt(d)− µt(d) is a martingale.9

Due to this simplification, positive and negative jumps do not only have the same
distribution, but also the same intensity. This gives rise to introducing the counting
process Nt(d) = N+

t (d) + N−t (d) with intensity λt(d) = λ+
t (d) + λ−t (d). Moreover, we

construct a mean-zero symmetric random variable ui as follows. Let f (u) denote the
density of u+

i (d) and u−i (d), then the density of ui(d) is given by

g(u) =

{
f (u)/2, u ≥ 0,

f (−u)/2, u < 0.

9Note that if the mean of λ+
t (d)−λ−t (d) was approximately zero unconditionally, but potentially large

for a particular trading day, using a deterministic drift rather than an additional compound point
process for the difference between bid and ask innovations would be problematic. However, we
find empirically that the relative difference (λ+

t (d)− λ−t (d))/λ+
t (d) is usually less than 0.1 percent

for all d and t. Therefore substituting the NHPP of differences by a drift is legitimate according to
the data.
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5.3 A continuous-time pure-jump model of liquidity

For instance, if liquidity jumps are exponentially distributed with mean µu and vari-
ance µ2

u, ui(d) has a Laplace distribution with zero mean and variance 2µ2
u. In the

remainder of the chapter, σ2
u denotes this variance which is twice the variance of u+

i
or u−i . Collecting all these ingredients, we finally define the liquidity process.

Definition 5.1 (Nonhomogeneous Poisson liquidity process). Conditional on the `th
trading day, the outstanding number of shares at the relative price d, d ∈ [0, D] for each
market side s, s ∈ {bid, ask} for times t during continuous trading, t ∈ T , is given by

xt(d) = x0(d) + µt(d) +
Nt(d)

∑
i=1

ui(d), (5.7)

where

• x0(d) and µt(d) are fixed conditional on `,

• ui(d) are i.i.d. symmetric random variables with zero mean and finite variance σ2
u,

• Nt(d) is a nonhomogeneous Poisson counting process with intensity function λt(d) and
cumulative intensity Λt(d) =

∫ t
0 λs(d)ds which is fixed conditional on `.

Unconditional on `,

• the initial state x0(d) has constant mean and variance for all d ∈ D,

• the drift is zero throughout the trading day at all relative prices, µt(d) = 0 ∀ t ∈ T , d ∈
D.

5.3.3 Realized measures

Having defined the liquidity process, we now turn to the task of estimation. For
our purposes of liquidity measurement, it is not necessary to estimate all parameters
of the process. Instead, we are interested in statistical inference on the following
quantities:

• The initial state of the LOB, x0(d),

• the integrated liquidity, i.e. the cumulative drift
∫

µs(d)ds,

• the integrated variance of liquidity, σ2
u
∫ T

0 λs(d)ds.

As both the initial state and the integrated drift reflect the average level of liquid-
ity conditional on the trading day, we term them level components of liquidity. The
integrated variance is called variance component of liquidity. The initial state of the
LOB, x0(d) can be observed directly. Integrated liquidity and integrated variance of
liquidity as defined above are functions of the model’s parameters, i.e. the variance σ2

u

113



5 Realized measures of liquidity

of the marks (the liquidity jumps), the jump intensity λt(d), and the integrated drift∫
µs(d)ds.
While the variance of the mark distribution is a scalar parameter, the NHPP’s in-

tensity is infinite-dimensional, and it can be estimated based on n` observed jumps
using kernel methods. However, it is not necessary to infer the entire intraday (spot)
liquidity trajectory, but the following cumulative quantities for a given trading day
only.

Definition 5.2 (Integrated measures of liquidity). The integrated liquidity over a trading
day is given by

IL[0,T](d) =
∫

µs(d)ds. (5.8)

The integrated variance of liquidity is defined as

IVL[0,T](d) = σ2
u

T∫
0

λs(d)ds = σ2
uΛt(d) (5.9)

Both measures depend solely on quantities that are deterministic conditional on the
trading day. IVL can be splitted into the expected number of events, determined by
the intensity of the ground process, and the mark variance, as times and marks are
independent.

Turning to estimation, we observe that by definition of the data-generating process,

E` (xT(d)− x0(d)) =
T∫

0

µs(d)ds = IL[0,T]. (5.10)

Now consider the case where M+ 1 (not necessarily equidistant) snapshots of the LOB
are observed, xt0(d), xt1(d), . . . , xtM−1(d), xtM(d), t0 = 0, tM = T. A natural, unbiased
estimator for IL is then given by

ˆIL[0,T](d) =
M

∑
i=1

xti(d)− xti−1(d) = xT(d)− x0(d), (5.11)

that is, the intraday observations do not provide any valuable information on the drift.
This result is the same as for the drift in a (jump-) diffusion setting in the standard
stochastic price volatility model in Section 5.2 (Andersen and Benzoni, 2009). Note
that the variance of the estimator ˆIL[0,T](d) depends on the variance of liquidity.

A natural estimator of integrated liquidity variation has already been mentioned:
The estimator of Engle et al. (2012), which for general, not necessarily equidistant
LOB snapshots may be written as
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5.3 A continuous-time pure-jump model of liquidity

ˆIVL[0,T](d) =
M

∑
i=1

(
xti(d)− xti−1(d)

)2 . (5.12)

As

E [xt(d)− x0(d)] = E

[
µt(d) +

Nt(d)

∑
i=1

ui(d)

]
= µt(d)

holds, it is instantly clear that ˆIVL, conditional on the trading day, is biased due to the
presence of a drift. A thorough analysis of the estimator’s properties follows in the
next Section. We call ˆIL and ˆIVL realized measures of liquidity (RML) in the remainder
of the thesis, and collect them in Definition 5.3.

Definition 5.3 (Realized measures of liquidity). The realized liquidity at relative price
d on trading day `, RL`(d), is given by

RL`(d) = xT,`(d)− x0,`(d). (5.13)

Given LOB snapshots xt0,`(d), xt1,`(d), . . . , xtM−1,`(d), xtM,`(d), t0 = 0, tM = T, the real-
ized variance of liquidity at relative price d on trading day `, RVL`(d), is given by

RVL`(d) =
M

∑
i=1

(
xti,`(d)− xti−1,`(d)

)2 . (5.14)

5.3.4 Properties of realized measures of liquidity

We are interested in the error that is made when the realized measure is computed
using LOB snapshots. To answer this question analytically, assume for the moment
that the drift is negligible when measuring liquidity variation, i.e.

RVL`(d) =
M

∑
i=1

(
xti,`(d)− xti−1,`(d)

)2 ≈
M

∑
i=1

xti,`(d)− xti−1,`(d)−
ti∫

ti−1

µs(d)ds

2

,

which is quite realistic empirically. We therefore may write the model as

xt(d) = x0(d) +
Nt

∑
i=1

ui, (5.15)

which, apart from its functional nature in the liquidity context, is the model of Oomen
(2006) for the situation without microstructure noise. Let ∆x[t,t+h],`(d) denote the
liquidity change in the interval [t, t + h] during day `, then
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5 Realized measures of liquidity

∆x[t,t+h],`(d) =
Nt+h(d)

∑
i=Nt(d)+1

ui. (5.16)

Now, for any sampling scheme TSM = {t0, . . . , tM}, the sequence
(

∆x[tm,tm+1]

)
tm∈TSM

is a martingale difference sequence. To analyze the properties of RVL under alterna-
tive sampling schemes, we define the following sampling schemes, again following
Oomen (2006).

Definition 5.4 (Sampling schemes).

• Calendar time sampling: When liquidity xt(d) is sampled equidistantly in calendar
time, CTSM, the sample is given by {xtc

i
(d)}M

i=0, where tc
i = i/M.

• Business time sampling: When liquidity xt(d) is sampled equidistantly in business time,
BTSM, the sample is given by {xtb

i
(d)}M

i=0, where tb
i = Λ−1 (iΛ(T)/M).

• Event time sampling: When liquidity xt(d) is sampled equidistantly in event time,
ETSM, the sample is given by {xte

i
(d)}M

i=0, where te
i = infN−1

iNT/M.

For CTSM, the M observations are equidistant in the usual sense. For BTSM, time
is compressed and stretched according to the expected frequency of events which is
completely determined by Λt(d). Durations between events sampled in business time,
measured in calendar time, are smaller than in calendar time for λt(d) > ΛT(d)/T,
and larger for λt(d) < ΛT(d)/T. If liquidity innovations arrive according to a homo-
geneous Poisson process, BTSM and CTSM are equivalent. Finally, for ETSM, time is
stretched or compressed as in BTSM, but according to the events’ actual rather than
their expected frequency.

We confine ourselves to CTSM and ETSM as we seek to gauge the potential loss
of information by using M equidistant instead of all snapshots when, in principle, all
LOB changes can be observed. Using the characteristic function of the compound non-
homogeneous Poisson liquidity process, the mean squared error for the two schemes
can be explicitely computed.
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5.4 The NHPP liquidity model: Estimation and simulation

Proposition 5.1 (MSE of the realized variance of liquidity under alternative sampling
schemes, Oomen (2006)).
The MSE of the realized variance under calendar time sampling is given by

MSECTSM(d) = E`

[(
RVLCTSM

` (d)− σ2
x(d)

)2
]

= 3σ2
uσ2

x − σ4
x + 2σ4

u

M

∑
i=1

λ2
i + σ4

u

M

∑
i=1

M

∑
j=1

λiλj,
(5.17)

where

λi =

ti∫
ti−1

λs(d)ds. (5.18)

The MSE of the realized variance under event time sampling is given by

MSEETSM(d) = E`

[(
RVLETSM

` (d)− σ2
x(d)

)2
]
= 2σ4

u/M, (5.19)

where σ2
x(d) = σ2

uΛT,`(d) denotes the true integrated variance of liquidity at relative price d
on day `.

The proof, i.e., the derivation of the characteristic function and moments can be found
in Oomen (2006). The difference between the two MSEs is

MSECTSM(d)−MSEETSM(d) = 2σ4
u(d)

M

∑
i=1

(
λi(d)− λ̄(d)

)2
+ 3σ4

u(d)ΛT(d) > 0,

where λ̄(d) = ΛT(d)/T. That is, the first term is due to the temporal nonhomogeneity
of liquidity increments. It would be zero for a homogeneous Poisson process. The
second term is due to sampling variability, i.e., due to the difference between the
expected and actual frequency of events.

The practical implications of these results for our desired application are investi-
gated by simulation in Section 5.4.

5.4 The NHPP liquidity model: Estimation and
simulation

We are primarily interested in the realized measures as defined above. To investigate
the properties of the realized measures, we use a simulation in a realistic setting. To
this end, we first show how the NHPP can be estimated, then use the estimated rate
λ̂t to simulate.
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5 Realized measures of liquidity

5.4.1 Estimation

We illustrate the marked NHPP process of liquidity innovations using XETRA data,
namely for the Deutsche Bank stock as traded on March 30, 2010, which is one of the
most heavily traded stocks on XETRA. Some descriptive information on the number
of limit order submissions and their average sizes are shown in Table 5.1.

all d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
number buy 101555 25554 23259 17632 9353 7244 4480 2500 1854 1146 1074 846
number sell 111979 27892 24888 19034 10387 8203 5195 3007 2146 1352 1247 956
avg. size buy 2161 1684 2303 2363 2186 2057 2090 2147 2131 1876 2757 2158
avg. size sell 2159 2156 2200 2197 2133 2035 2158 2169 2091 2051 2155 2092

Table 5.1: Descriptive statistics for the number of orders and mean order sizes, computed
for the XETRA data, Deutsche Bank stock, 2010-03-30. Most submissions are
placed near the quotes, and the mean size is almost constant with respect to the
relative price d (measured in Cents). The distributions of both quantities over d
are very similar for buy and sell orders, respectively.

An estimate of the arrival (departure) intensity λ+
t (d) (λ−t (d)) is obtained using the

nonparametric kernel estimator of Diggle and Marron (1988), which essentially is a
rescaled density estimator. We use the quartic or biweight kernel, K(x) = .9375(1−
x2)2 for x ∈ [−1, 1] and zero otherwise, and denote the estimator’s bandwidth by h.
Rescaling trading time to [0, 1], T = 1, the estimator is then given by

λ̂t(d) =


h−1 ∑NT

i=0 K
(

t−ti
h

)
+ K

(
t+ti

h

)
, t ∈ [0, h),

h−1 ∑NT
i=0 K

(
t−ti

h

)
, t ∈ [h, 1− h),

h−1 ∑NT
i=0 K

(
t−ti

h

)
+ K

(
t+ti−2

h

)
, t ∈ (1− h, 1],

where t0, . . . , tNT are the event times of the nonhomogeneous Poisson ground process
Nt. Estimates within a distance of h from the edges have a downward bias as there
are no changes in liquidity outside [0, 1]. The additional terms for t ∈ [0, h)∪ (1− h, 1]
correct for this effect.

We use Silverman’s rule of thumb, Silverman (1986), to determine the bandwidth
parameter h. The rule has originally been proposed for the Gaussian kernel. However,
we find that theoretically more attractive strategies for bandwidth selection, namely
cross validation or pilot estimation of derivatives, yield virtually the same results in
our data-rich situation, while being computationally much more expensive. Figure 5.2
shows the estimation results. Submission activity has a first peak in the morning, then
stays at roughly half of its peak level from about 11am to 2pm, then again increases
before the opening of US markets at 3:30pm, peaking at about 4pm. We find that both
market sides behave in a quite similar way (top panel). Moreover, limit order arrivals
(i.e., submissions) and departures (cancellations and opposite-side market orders),
conditional on d, behave in a very similar way as well, i.e. λ+

t (d) ≈ λ−t (d) holds
throughout the trading day (center panel). The arrival frequency near the quotes
exceeds the departure frequency slightly at the beginning of the day. At the end
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5.4 The NHPP liquidity model: Estimation and simulation

of the day, the opposite is true. During most of the meantime, in- and outflow of
liquidity balance each other.

We now turn to estimating the distribution of liquidity innovations. Mean and
variance of limit order sizes as a function of d are quite flat, therefore we work with
one innovation distribution for all d. Figure 5.3 shows a histogram of jumps, overlaid
with an exponential and a log-normal density fitted to the data, respectively. Both
parametric distributions underestimate the probability of medium-sized orders (size
3000-4000). Apart from that, we found that, according to raw autocorrelations, the
assumption of serial independence (in event time) is realistic both unconditional on d
and conditional on d at some distance from the quotes, d > 5 say. However, liquidity
innovations near the quotes exhibit positive autocorrelation which could be described
by a low-order AR process. This means that our measure of liquidity uncertainty may
be slightly biased near the quotes. Using thinned data (equidistant snapshots at lower
frequency), no serial dependence remains. This finding is similar (though not iden-
tical) to the MA(1) serial dependence structure of high-frequency returns on security
prices and may therefore also be seen as a “microstructure noise" phenomenon.

We choose to ignore serial dependence in the present analysis as we do not primar-
ily aim at accurately characterizing liquidity innovations’ behavior in every aspect,
but to construct realized measures capturing the essential information.

5.4.2 Simulation

The estimated intensities and innovation distribution can be used to investigate the
finite-sample performance of realized liquidity estimators in a realistic setting, based
on all observations and based on a smaller number of equidistant snapshots. As we
have shown, estimation of the level components (x0(d) and xT(d)− x0(d)) does not
at all benefit from using intraday data. We therefore confine ourselves to the analysis
of realized variance of liquidity (RVL). Marks are simulated from an exponential dis-
tribution with a realistic parameter (1/2000, implying a mean of 2000). To simulate
from the ground process, we use the above estimates, in particular λ̂+

t (d) and λ̂−t (d)
for d = 0, 5, 10 and sell limit orders.

The simulation algorithm proceeds as follows.10

10For simulation of nonhomogeneous Poisson processes see Pasupathy (2011), moreover Charpentier
(2012) for the implementation in R.
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Figure 5.2: Estimated intensities for the Deutsche Bank stock. Top panel: Submission in-
tensities λ̂+

t (d) of buy (blue) and sell (red) limit orders at a distance of d to
the respective quote. Center panel: Submission intensities λ̂+

t (d) vs. extraction
intensities λ̂−t (d) for sell limit orders and several d. Bottom panel: Difference
between liquidity inflow and outflow intensities, λ̂∆

t (d) = λ̂+
t (d)− λ̂−t (d). The

rate is estimated based on time measured in 10−4 seconds. For instance, this
means that a rate of 0.0001 corresponds to one event per second.
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5.4 The NHPP liquidity model: Estimation and simulation

0 5000 10000 15000 20000 25000 30000

0e
+

00
2e

−
04

4e
−

04

Size

exponential fit
lognormal fit

Figure 5.3: Empirical distribution of liquidity innovations vs. two parametric fits. An
exponential fit, with only one parameter for location and scale, is insufficient,
particularly as the size distribution has a mode apart from zero. A location-
scale distribution like the lognormal is more, but still not entirely appropriate.

Algorithm 5.1 (Simulation from a marked nonhomogeneous Poisson process).

1. Specify some T, the time until which the process is simulated,

2. start in t = 0,

3. draw y, the duration until the next jump, from its conditional distribution, which de-
pends on t only and is exponential with cdf

Ft(y) = 1− exp(Λ(y)−Λ(y + t)) = 1− exp

− t+y∫
t

λ(s)ds

 ,

4. set t to t + y,

5. store t,

6. proceed with step 3 unless the stopping criterion t ≥ T is met.

7. Simulate n i.i.d. realizations from the distribution of marks, ui, yielding the simulated
path of the MPP,

(t1, u1), (t2, u2), . . . , (tn, un).

The compound NHPP is strictly nondecreasing in t. Liquidity is given by the dif-
ference of two compound NHPPs. For illustration, Figure 5.4 depicts simulated tra-
jectories of the model at different d and times during the trading day.

For each of the intensity processes, we simulate B = 100 trajectories of xt(d) with
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Figure 5.4: Simulated trajectories of ask volume generated by the nonhomogeneous Pois-
son liquidity process with submission and extraction intensities estimated from
sell order submissions for one exemplary trading day. From top to bottom: Vol-
ume evolution at a distance of d = 0 (5, 10) ticks from the ask quote. The left
panel shows trajectories directly after the start of continuous trading, the right
panel after opening of US markets. Apparently, submission and revision activ-
ity is higher in the afternoon, leading to higher fluctuations and, thus, higher
liquidity uncertainty. Moreover, activity is much higher near the quote than at
greater distance.
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5.5 Empirical results

exponential jumps whose mean size is 2000, starting at x0(d) = 106. For each simula-
tion run, we compute RVL using the following strategies:

1. (xT(d)− x0(d))2, i.e., the squared open-to-close difference,

2. ∑M
i=1(xiT/M(d) − x(i−1)T/M(d))2, i.e., the sum of squared differences over M

equidistant intraday snapshots of the LOB,

3. ∑NT
i=1 D2

i , the sum over all squared intraday changes,

4. 2µ2
D︸︷︷︸

=Var(Di)

2
T∫

0

λs(d)ds

︸ ︷︷ ︸
=Λ+

T +Λ−T

, i.e., the truth based on the model’s parameters.

The results, shown in Figure 5.5, confirm the unbiasedness of the estimators. Not
surprisingly, the estimation based on M equidistant sampling points (as compared to
all NT(d) observed changes) is the better, the lower NT(d)− M is. In our empirical
application, we assume that there are no microstructure effects and use M = 500
sampling points.11

5.5 Empirical results

From a sample of L trading days, we obtain the following time series of realized
measures,

•
(

x(s)0,`(d)
)
`∈{1,...,L}

•
(

RL(s)
[0,T],`(d)

)
`∈{1,...,L}

•
(

RVL(s)
[0,T],`(d)

)
`∈{1,...,L}

where d is observed along J = 201 equidistant grid points (EUR 0 to EUR 2 by
1-Cent steps), and s ∈ {bid, ask}. To exclude auction effects, we set “t = 0" to 9:05am,
exclude the interval from 12:59pm to 1:05pm, and set T to 5:29pm. We use equidistant
LOB snapshots, taken every minute, providing M = 511− 15 = 496 observations per
day.

x(s)0,` is already a cumulative volume curve. From RL and RVL, estimated individ-
ually at every d, we construct cumulative realized liquidity curves in the following
way.

11A one-minute sampling scheme provides 511 snapshots. Excluding the first 5 minutes, 5 minutes
near the midday auction at 1pm, and the last one at 5:30pm leaves us with exactly M = 500.

123



5 Realized measures of liquidity

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●●

●

●

●●●●●

100 200 300 400 500 600 700 800 900 1000 all

0.
6

0.
8

1.
0

1.
2

1.
4

d=0

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●
●

●

●●

●

●

●●
●

●

●

●
●

●●●●●
●●

●

●●

●

●

●

●● ●
●

●

●

●

●

●

● ●

●

●

●

●●●

100 200 300 400 500 600 700 800 900 1000 all

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

d=5

●

●

●
●

●

●
●

●●
●
●
●

●
●

●

●

●

● ●

●●●

●

●
●

●
●

●●● ●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●
●

●
●●
●

●

●

●
●

●

●

●●

●
●●

100 200 300 400 500 600 700 800 900 1000 all

0.
6

0.
8

1.
0

1.
2

1.
4

d=10

Figure 5.5: Results of the simulation study. The realized liquidity variance at distances of
d = 0, 5, 10 from the ask quote is computed for each of the B = 1000 simulation
runs, based on M = 100, 200, . . . , 1000 equidistant LOB snapshots, and based on
all (approximately Λ̂+

T (0) + Λ̂−T (0) ≈ 105) liquidity jumps. We have normalized
all RVLs by Λ̂+

T (0) + Λ̂−T (0), so that the truth (dashed line) is 1, and errors can
be interpreted as relative deviations from the truth.
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5.5 Empirical results

Definition 5.1 (Cumulative realized measures). The cumulative realized liquidity
(CRL) at side s, tick d and day ` is defined by

x(s),RL
` (d) =

d

∑
k=0

(
x(s)T,`(k)− x(s)0,`(k)

)
,

and the cumulative realized variance of liquidity (CRVL) by

x(s),RVL
` (d) =

d

∑
k=0

(
M

∑
i=1

(
xti,`(k)− xti−1,`(k)

)2

)
.

For the sake of notational consistency, we rewrite the third realized measure, x(s)0,` ,

as x(s),0` in the remainder of the Chapter. Moreover, in analogy to the variation of

the price, we employ logarithmic liquidity variation, log
(

x(s),RVL
` (d)

)
, instead of the

original series.
Whereas the continuous-time model describing liquidity’s intraday behavior is es-

sentially a random walk with time-varying innovation arrivals and drift, i.e., non-
stationary, we assume the time series of realized measures to stem from a weakly
dependent functional stochastic process as defined in Chapter 2. Each of the six time
series (three measures for two market sides) can then be represented in terms of a
constant mean function and time-varying FPCs,

x(s),·` (d) = µ(s),·(d) +
∞

∑
k=1

ξ
(s),·
k,` φ

(s),·
k (d).

The mean function µ(s),·(d) and eigenfunctions φ
(s),·
k (d) can then be estimated, and

the empirical scores ξ̂
(s),·
k,` (d) be computed as usual. Figure 5.7 shows the realized

measures exemplarily for the Linde stock. For CRVL, a sampling frequency of 5
minutes has been used. We found that there is a signature pattern present, i.e. a
monotonic connection between sampling frequency and realized variance, as it is
already known in case of price volatility, see Figure 5.6. In the empirical application,
we use 5-minute sampling for both prices (RV) and liquidity (RML).

To assess the structure of realized measures, we consider Figure 5.7, which shows
the three functional realized measures for the three stocks, Figure 5.8, which depicts
the corresponding eigenfunctions for the first three FPCs, and Figure 5.10, which
shows the cumulative normalized eigenvalues of the first 20 components for all three
stocks. The corresponding Figures for MunichRe and Commerzbank, A.1, A.4 (re-
alized measures), and A.2, A.5 (eigenfunctions), can be found in Appendix A.5. All
these Figures reveal information on all three realized measures and both market sides.

Regarding the structure, we find that all three realized measures vary mainly in
their level and slope, CRVL even seems to consist of parallel shifts of just one concave
factor. CRVL’s major mode of variation, reflected by the first eigenfunction, explains
at least 85 percent of the variation in all cases. In case of RVL, the first component even
explains more than 95 percent. For the two realized measures of the liquidity level,
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Figure 5.6: Mean cumulative realized variance curves for Linde’s ask curves, for sampling
frequencies of 60, 12, and 6 snapshots per hour (corresponding to 1, 5, 10 min-
utes between snapshots). The three values for given d can be interpreted as
signature plot, in analogy to the price volatility. In analogy to price volatility,
there is a positive relationship between sampling frequency and CRVL.

namely initial liquidity and liquidity drift, the corresponding eigenfunction is almost
linear with respect to d.12 That is, the first component reflects the slope of initial
liquidity and the drift. For the third realized measure, the log of cumulative liquidity
variance which is supposed to capture liquidity uncertainty, the first eigenfunction
is almost flat and parallel to the relative price axis. This means that variation is
dominated by the variation near the quotes.

For the third measure and the ask side, we additionally look at the dynamic proper-
ties by means of the first three FPCs’ weights over time, which are depicted in Figure
5.9 for Linde, along with their SACFs. Figures A.3 and A.6 for MunichRe and Com-
merzbank are in Appendix A.5. We find that especially the first component exhibits a
quite persistent serial dependence for all stocks considered, in roughly the same way
as it is the case for realized variation of prices.

12Note that the eigenfunctions are unique only up to their sign, it therefore does not matter whether
the slope is positive or negative.
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Figure 5.7: Top to bottom: (i) Initial liquidity, (ii) cumulative realized liquidity, and (iii)
cumulative realized log variance of liquidity for the Linde stock. Each curve
represents one day between 3 November 2008 to 30 December 2010 (incom-
plete trading days removed). Initial liquidity is strictly positive and stricly non-
decreasing by construction. The drift is positive for most of the days, which
is in line with the findings for the diurnal pattern in Chapter 3. The liquidity
variance, computed based on 5-minute snapshots, almost exclusively varies in
its level, i.e., CRVL curves appear to be almost parallels, which is also reflected
by their eigenstructure.
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Figure 5.8: First three estimated eigenfunctions for all six realized measures, Linde.
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Figure 5.9: First three FPC score series and their SACF for Linde’s ask curves. The first se-
ries, which carries most of the information according to the eigenvalues analy-
sis, is strongly serially dependent and quite persistent, indicating that liquidity
variation itself has these properties as well.
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Figure 5.10: Cumulative relative eigenvalues as a function of K, i.e., the variance propor-
tion explained by the first K FPCs, for (i) Linde, (ii) MunichRe, and (iii) Com-
merzbank.
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5.6 Conclusion

5.6 Conclusion

In the present Chapter, we introduce realized measures of liquidity (RML) based on
equidistant snapshots of the LOB, in close analogy to the realized volatility litera-
ture. Cumulating these measures along LOB locations d, functional RML arise. By
constructing a semiparametric model with ingredients from Press (1967) and Oomen
(2006), capturing many of the LOB’s typical properties, we provide theoretical justifi-
cations for the ad-hoc adoption of realized volatility in the liquidity context. By doing
this, the model supplies some supporting arguments for the RML proposed in Engle
et al. (2012) en passant.

We again note that the assumptions regarding the data-generating process of liq-
uidity, as far as the intraday dynamics are concerned, are quite different from those
in Part I: In Part I, we assume a stationary process throughout, while in Part II we,
basically, assume a stationary sequence of “parameters" governing the nonstationary
intraday dynamics. Our empirical analysis reveals that liquidity increments, at least
at very high frequency, are serially dependent, leading to a non-flat signature plot. As
far as subsequent analyses in this thesis are concerned, we alleviate this problem by
using a rather low sampling frequency. However, we may develop realized measures
accounting for this “noise" phenomenon in future research.

In Chapter 6, functional RML are employed to investigate the liquidity impact on
the dynamics of price variation from a realized perspective.
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6
Realized volatility and realized liquidity: The
HAR-FunXL model

6.1 Introduction

In Part I, we have considered models capturing the state of the LOB inventories in
the form of snapshots taken at specific times during continuous trading. We have
modeled their impact on the price process in the framework of multiplicative error
models (MEMs). In the present Chapter, we introduce the HAR-FunXL process to
model realized volatility dynamics with liquidity impact. Liquidity is measured by
means of realized measures introduced in Chapter 5.

The MEMs in Part I are non-Markovian models1 as the log of squared returns (the
log of durations) has an AR(∞) representation. In contrast, the model to be introduced
in the present Chapter is Markovian of finite order m. As we will show, in a Markovian
framework the absence of a latent component (σt for GARCH, ψi for ACD), that is,
the absence of unobservable regressors, facilitates the use of additional estimation and
roughness penalization techniques originally proposed within the framework of non-
and semiparametric regression.

The Chapter proceeds as follows. In Section 6.2, the HAR-FunXL model is intro-
duced. In Section 6.3 its estimation is discussed. The realized liquidity curves are
expanded in terms of their functional principal components as in earlier Chapters.
However, in case of the functional parameter, some alternatives to the FPC expan-
sion are introduced and discussed. In particular, we exploit the Markovianity of the
model to import methods based on penalized splines from the FDA literature. These
expansions include explicit roughness penalties and are estimated in a mixed model
framework. In an empirical application using XETRA data for Linde, Commerzbank,
and MunichRe (in Section 6.4), we demonstrate that realized measures of liquidity
contribute substantially to the explanation of realized volatility dynamics, while not
being particularly useful to forecast RV in an out-of-sample exercise.

Finally, in Section 6.5, we show that the HAR-FunXL model can be viewed as a
dynamic functional regression model. From an inferential point of view, it is a spe-

1To be more precise, they are Markovian of infinite order.

133



6 Realized volatility and realized liquidity: The HAR-FunXL model

cial case of the more general framework of (functional) generalized additive models.
We discuss some possible extensions, namely the case of modeling all features of
the conditional distribution, and functional autoregressive models. Some concluding
remarks close the Chapter.

6.2 The HAR-FunXL model

Let exp(y`) denote the daily realized variance of the price of a financial asset, i.e.,
an estimate of its integrated variance on day `. The realized variance can either
be computed based on returns on the quoted mid-price or by using returns on the
transaction price. We define the n-period logarithmic realized variance by

y`:(`+1−n) =
1
n

n

∑
i=1

y`−i

We capture serial dependence of y` by employing the HAR model of Corsi (2009),
which is a linear autoregressive model of the form

y` = α0 + αdy`−1 + αwy(`−1):(`−5) + αmy(`−1):(`−22) + ε`, (6.1)

which can easily be shown to be a restricted AR(22) model with only 3 instead of 22
free autoregressive parameters,

y` = α0 +
22

∑
i=1

aiy`−i ++ε`, (6.2)

where

a1 = αd + αw/5 + αm/22

ai = αw/5 + αm/22, i = 2, . . . , 5

ai = αm/22, i = 6, . . . , 22.

(6.3)

In the standard case, which is the situation we confine to, ε` is assumed to be Gaussian
white noise, that is, homoskedastic and inducing a Gaussian marginal distribution to
y`. For possible extensions see for example Corsi et al. (2008) and Corsi et al. (2012).
Though formally having short memory, the model has become the workhorse in the
empirical RV literature as it is able to imitate the autocorrelation structure of fractional
ARIMA-type long memory models quite well. In what follows, we use the notation

y` = (1 y` y`:(`−4) y`:(`−21))
′,

α = (α0 αd αw αm)
′.

(6.4)

Now consider a C-dimensional “vector" of functional regressors,
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x`(d) = (x1,`(d) · · · xC,`(d))′,

where the argument d is used to emphasize the functional nature of its entries. The
subindex ` does not need to be taken too literally as the object may contain different
variables at the same lag, the same variable at different lags, or even a mixture of
such ingredients. In our empirical application, we intend to use C = 6 functional
regressors, namely the three realized measures defined above for both market sides
each, observed contemporaneously at ` or lagged by one day, `− 1. Observations lie
on an equidistant, rescaled grid of relative prices, d = 0, 1/(J − 1), 2/(J − 1), . . . , (J −
2)/(J − 1), 1, thus x` is a C× J matrix in practice.

Furthermore, we introduce the “vector" of functional parameters,

γ(d) = (γ1(d) · · · γC(d))′,

which are coupled with the predictors in a functional linear fashion using the function
g which maps the measures to the real line,

g(γ(d), x`(d)) =
C

∑
i=1

1∫
0

γi(m)xi,`(m)dm.

Using all these ingredients, we can finally define our model.

Definition 6.1 (HAR-FunXL model). The HAR model with functional exogeneous liquidity
is given by

yt = y′`−1α + g(γ(d), x`(d)) + ε`, (6.5)

where ε` is Gaussian white noise.

6.3 Estimation

Exploiting the Gaussianity of innovations, and ignoring the unconditional part, the
log-likelihood of the model can be written as

l =
L

∑
`=23

log f (y`|µ` = y′`−1α + g(x`(d), γ(d)), σ2
` = σ2

ε )

= (23− L)
[
log
√

2π + log σ2
ε

]
− 1

2σ2
ε

L

∑
`=23

y` − y′`−1α− g(γ(d), x`(d)),

where f denotes the normal density. Apart from the exogeneous part, this is still the
HAR model of Corsi (2009). In recent years, several aspects of HAR models have been
generalized. Innovations may be modeled as being non-Gaussian or even condtionally
heteroskedastic (Corsi et al., 2008), the standard choice for d, w, m may be sub-optimal,
and the approximate long memory generated by using p = 22 lags may alternatively
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6 Realized volatility and realized liquidity: The HAR-FunXL model

be created by a short-memory model with time-varying parameter (Chen et al., 2010).
However, we are primarily interested in an alternative explanation of the dynamics
due to the presence of liquidity effects, which are taken as exogeneous. As shown in
Corsi et al. (2008), homoskedastic NIG or heteroskedastic NIG-GARCH innovations
usually provide more realistic conditional densities than a Gaussian model. Being
solely interested in the conditional mean, augmented by functional liquidity impact,
we nevertheless stick to the homoskedastic Gaussian case, which may therefore be
considered a QML approach.2

6.3.1 The functional part

Not for the first time, we mention that the main contribution of this thesis is the inclu-
sion of functional liquidity information. In the present setting, we assume linearity,

g(γ(d), x`(d)) =
C

∑
i=1

1∫
0

γi(m)xi,`(m)dm.

So far, we have always pursued a purely FPC-based estimation strategy, where the
functional parameters are expanded in terms of basis functions estimated from the
data. As a consequence, the truncation parameter K tunes both the complexity of
the regressors and the complexity of the functional parameters. One might argue
that these are different aspects longing for separation. To accomplish this, we intro-
duce an alternative estimation strategy. The first strategy is still based on a functional
principal component expansion of both liquidity and functional parameters. We term
this strategy FPCR henceforth. The second strategy, being called PFR (for penalized
functional regression) in the following, exploits the fact that the HAR model is Marko-
vian. For estimation this means that all variables on the right-hand side can be di-
rectly observed, which facilitates the use of penalized splines to expand the functional
coefficients.

Functional principal component regression (FPCR)

In the context of MEMs, we have expanded both the curves and the parameters in
terms of the curves’ functional principal components, that is in terms of data-driven
basis functions. We use the same strategy here. For the ith predictor, truncating at K
components, and otherwise using the usual notation, we write

xi,`(d) = µi(d) +
K

∑
k=1

ξk,i,`φk,i(d) + vi,`(d), (6.6)

2Note that Corsi et al. (2008) by means of simulations find that such a misspecification leads to an
inefficient statistical inference (provided the true data-generating process is HAR-NIG-GARCH), a
possible drawback of Gaussian QML that we have to accept.
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where vi,` is the truncation error. The corresponding parameter expansion reads

γi(d) =
K

∑
j=1

γj,iφj,i(d) (6.7)

where the γj,i (without argument d) , j = 1, . . . , K, on the right hand side are scalar
parameters. This yields the K-FPC expansion

1∫
0

γi(m)xi,`(m)dm ≈
K

∑
j=1

K

∑
k=1

ξk,i,`γj,i

1∫
0

φk,i(m)φj,i(m)dm

=
K

∑
k=1

γk,iξk,i,`

= ξ′i,`γi,

(6.8)

where

ξi,` = (ξ1,i,` · · · ξK,i,`)
′

γi = (γ1,i · · · γK,i)
′ (6.9)

A crucial difference between the HAR-FunXL and the MEM-FunXL models is the
Markovianity of the first. Its endogeneous part has an AR(22) structure, so that each
conditional density in the log-likelihood can directly be evaluated at the regressors.
As shown above, in contrast MEMs have an ARMA representation due to the latent
component (σt for GARCH, ψi for ACD) and are therefore non-Markovian. In a MEM
of order p, q, the first q pseudo-observations of the latent component needed for es-
timation have to be initialized. This is usually done by plugging in an estimate of
the unconditional return variance (GARCH) or mean duration (ACD). However, the
trajectory of pseudo-observations, the “regressor", depends on all parameters in the
conditional variance (mean) equation which leads to both theoretical and practical
problems, especially for nonparametric estimation. For a review of the respective
literature see Linton and Yan (2011).

In contrast, apart from some aspects of the estimator’s asymptotic properties, the
estimation of Markovian models is not different from the estimation of regression
models for i.i.d. data. For such scalar-on-function regression models, a powerful ma-
chinery of nonparametric techniques already exists, see Reiss et al. (2015) for a com-
prehensive survey, and Goldsmith and Scheipl (2014) for an extensive comparison of
empirical performances in cross-sectional settings. In case of the purely FPC-based
approach employed so far, only the number of components K is used to calibrate the
model’s complexity.3 Alternative techniques use two leverage points: Firstly, the re-
gressors may be expanded by other basis functions or, if observations are regular and

3Additionally, the covariance surface from which the eigenfunctions are estimated is smoothed to
account for its functional nature. However, the effect of smoothing the covariance surface can be
expected to be negligible compared to the sensitivity of results to the choice of K.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

dense, even not be expanded at all. Secondly, and certainly more importantly in our
setting, the functional parameter γ(d) may be forced to be smooth. Such an estimator
is typically biased, but has lower variance than its unpenalized counterpart.

Penalized functional regression (PFR)

To gauge the possible benefits of roughness penalization, we empirically investigate
one such technique, penalized functional regression (PFR), which is due to Goldsmith
et al. (2011). For ease of exposition, we consider the case of only one FunX component,
dropping the subindex i. In PFR, the functional predictor is expanded in terms of its
FPCs as before, but the number of FPCs, K, is not a crucial tuning parameter here
because regularization concentrates on the expansion of γ(d), which is achieved by
using a different set of basis functions ψj(d), j = 1, . . . , Kγ,

γ(d) =
Kγ

∑
j=1

γjψj(d),

whose choice does not depend on the data. To underline the difference, let us denote
the truncation parameter of the FPC by Kx := K in the following. The functional
linear predictor then becomes

1∫
0

γ(m)x`(m)dm ≈
Kγ

∑
j=1

Kx

∑
k=1

ξk,`γj

1∫
0

φk(m)ψj(m)dm.

However,
∫ 1

0 φk(m)ψj(m)dm does no longer collapse to either zero or 1 as before, but
will be nonzero in general. We collect all these integrals in the Kx × Kγ matrix Jφψ

whose (k, j)th element is given by
∫ 1

0 φk(m)ψj(m)dm.
Goldsmith et al. (2011) use a truncated power spline basis for the functional param-

eter,

γ(d) = γ1 + γ2d +
Kγ

∑
j=3

γi(d− κj)+,

with knots {κj}
Kγ

j=3. The roughness penalty to be imposed on γ(d) uses the idea
of representing the basis coefficients as mixed effects in a linear regression setup
(Ruppert et al., 2003). To this end, the coefficients of the nonlinear part of the basis
expansion are assumed to come from a joint normal distribution with zero mean and
homoskedastic as well as diagonal covariance structure, {γj}

Kγ

j=3 ∼ N(0, σ2
γ I). The

motivation for this assumption will become obvious shortly.

6.3.2 Inference for the HAR-FunXL model

We write the model for the pure FPC-based and the penalized case in a unified way.
Denote the (L − 22) × K matrix of empirical FPC scores by Ξ̂, where the hat indi-
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cates that this is not an observable regressor but one which is constructed in a first
estimation step. The `th row of Ξ̂ is denoted by ξ̂`. The unknown parameter in the
first estimation step is the contemporaneous liquidity covariance surface. We further
denote the (L− 22)× 3 matrix of lagged HAR components by Y , and the (L− 22)× 1
vector of dependent log variances by y.

The components which PFR and FPCR have in common are then explicitely given
by

y = (y23 · · · yL)
′

Y =
[
y22 · · · yL−1

]′
Ξ̂ = [ξ̂23 · · · ξ̂L]

′

α = (α0 αd αw αm)
′

(6.10)

To make the difference between the two approaches explicit, we observe that the
PFR penalty matrix is given by

Jφψ =


∫ 1

0 φ1(m)ψ1(m)dm
∫ 1

0 φ1(m)ψ2(m)dm · · ·
∫ 1

0 φ1(m)ψKγ(m)dm∫ 1
0 φ2(m)ψ1(m)dm

∫ 1
0 φ2(m)ψ2(m)dm · · ·

∫ 1
0 φ2(m)ψKγ(m)dm

...
... . . . ...∫ 1

0 φK(m)ψ1(m)dm
∫ 1

0 φK(m)ψ2(m)dm · · ·
∫ 1

0 φK(m)ψKγ(m)dm

 . (6.11)

Analogously to Jφψ, we define the Kx×Kγ matrix Jφφ (which is quadratic as Kx = Kγ)
for the pure FPC case. Due to the orthonomality of eigenfunctions, we have

Jφφ =


∫ 1

0 φ1(m)φ1(m)dm
∫ 1

0 φ1(m)φ2(m)dm · · ·
∫ 1

0 φ1(m)φKγ(m)dm∫ 1
0 φ2(m)φ1(m)dm

∫ 1
0 φ2(m)φ2(m)dm · · ·

∫ 1
0 φ2(m)φKγ(m)dm

...
... . . . ...∫ 1

0 φK(m)φ1(m)dm
∫ 1

0 φK(m)φ2(m)dm · · ·
∫ 1

0 φK(m)φKγ(m)dm

 = IKx×Kx .

(6.12)

The weight vector of the basis functions,

γ = (γ1 · · · γKγ)
′,

is typically chosen to be larger for PFR than for FPCR, Kγ > Kx, as in the PFR ap-
proach regularization is not accomplished through the choice of Kγ but by shrinking
the elements of γ. In contrast, in FPCR the tuning parameter K = Kγ = Kx is crucial
as it determines both the amount of liquidity features represented in the model and
the shape of the functional parameter.

Using the parameter expansion, the HAR-FunXL model with one FunXL compo-
nent can be rewritten as
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6 Realized volatility and realized liquidity: The HAR-FunXL model

y = Yα + Ξ̂Jγ + ε, ε ∼ N(0, σ2
ε I),

where J equals either Jφφ (pure FPCR) or Jφψ (PFR).
While in FPCR, y is directly regressed on Ξ̂, and γ is considered as an unknown
but fixed parameter vector, in PFR γ is assumed to come from a multivariate normal
distribution with mean zero and diagonal covariance matrix, γ− = (γ3 · · · γKγ)

′ ∼
N(0, σ2

γ I). Assuming independence of innovations ε and random coefficients γ−, and
stacking them in one vector, their joint mean and covariance may be written (Ruppert
et al., 2003),

E
([

γ−
ε

])
=

[
0
0

]
, Cov

([
γ−
ε

])
=

[
Σγ 0
0 Σε

]
(6.13)

The joint GLS estimator of fixed and random coefficients accounting for this covari-
ance structure is therefore given by

[
γ̂−
ε̂

]
=

([
Y

Ξ̂Jφ̂ψ

]
Σε
−1

[
Y

Ξ̂Jφ̂ψ

]′
+ B

)−1 [
Y

Ξ̂Jφ̂ψ

]
Σε
−1y, (6.14)

where B =

[
0 0
0 Σγ

−1

]
Note that we have emphasized the fact that the eigenfunctions have been estimated
in a first step by writing Jφ̂ψ. If we assume homoskedastic and serially uncorrelated
innovations, the estimator is of OLS type except for B which contains the (unknown)
parameters in Σγ. This can be interpreted as a ridge penalty on γ̂− which is the
larger, the smaller σ2

γ is. Unpenalized estimation therefore corresponds to σ2
γ = ∞.

The variance parameters appearing in (6.14) are estimated via restricted maximum
likelihood (REML), see Ruppert et al. (2003).

6.4 Empirical results

6.4.1 Explaining realized volatility

In our empirical analysis, we seek to answer the following questions based on daily
realized measures:

• Are liquidity and volatility associated contemporaneously?

• Does past liquidity provide any information on future volatility?

• Which features of liquidity matter the most?

• Are liquidity effects time-varying?
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In all cases, the term liquidity stands for all aspects of realized liquidity: its level,
changes in level, and its intraday variation. In the previous Chapter, we have intro-
duced three functional realized measures of liquidity (RML), namely:

1. Initial liquidity, that is, liquidity at the start of continuous trading on trading
day `,

x(s),IL
` (d) = x(s)0,`(d).

2. Realized liquidity, that is, an estimate of the liquidity drift on trading day `,

x(s),RL
` (d) =

d

∑
k=0

(
x(s)T,`(k)− x(s)0,`(k)

)
.

3. Realized variance of liquidity, that is, the sum of squared changes over trading
day `,

x(s),RVL
` (d) =

d

∑
k=0

(
M

∑
i=1

(
xti,`(k)− xti−1,`(k)

)2

)
.

In our empirical analysis, we additionally consider

4. a second measure of liquidity variation,

x(s),RVLI I
` (d) =

M

∑
i=1

(
d

∑
k=0

xti,`(k)−
d

∑
k=0

xti−1,`(k)

)2

,

while re-terming the first realized variation measure x(s),RVLI
` (d). Note that we have

developed our inferential theory for the original proposal, RVLI , where variation
is first aggregated over time for each observed relative price level individually, and
then cumulated along the relative price. As RVLI is positive for each d, this leads to
strictly non-decreasing curves. The alternative measure, RVLI I , is directly computed
from cumulative volume curves as modeled in Part I, i.e., cumulation along d comes
first, then the squared differences of liquidity curves are computed. These curves are
not necessarily non-decreasing with respect to d, and we do not provide an inferential
theory. However, we conjecture that they behave similar to RVLI .

We collect the RML for the two market sides in the “vector"

x` =
(

x(ask),IL
` x(bid),IL

` x(ask),RL
` x(bid),RL

` x(ask),RVL
` x(bid),RVL

`

)′
.

Lightening notation a bit, the elements of x` are denoted simply by xi,`(d), i = 1, . . . , 6.
We construct the following two models, firstly the model with contemporaneous liq-
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uidity impact,

yt = y′`−1α +
C

∑
i=1

1∫
0

γi(m)xi,`(m)dm + ε`, (6.15)

and, secondly, the model with lagged liquidity impact,

yt = y′`−1α +
C

∑
i=1

1∫
0

γi(m)xi,`−1(m)dm + ε`, (6.16)

where ε` is Gaussian white noise. Of course, one could easily think of many other
specifications, especially including further lagged liquidity curves, but we leave such
analyses for future investigation.

We split the potential predictors into three sets, (i) the level components (i ∈
{1, 2, 3, 4}), (ii) the variance components (i ∈ {5, 6}), and (iii) all components (i ∈
{1, . . . , 6}). For all HAR models considered, the “minimum requirement" of a good
fit, i.e. the decorrelation of residuals, was met according to Ljung-Box tests.4 Tables
6.1 and 6.2 present the estimation results for the three stocks with contemporaneous
and lagged liquidity impact, respectively. Both the level and realized variation of liq-
uidity explain realized price variation to a considerable extent. However, we again
emphasize that the AIC’s and BIC’s should be interpreted with some caution as they
are naive in the sense that the ascribed dimension of the model used in the penalty
term treats the constructed regressors as observed ones.

When fitting, we use either RVLI or RVLI I (not both in one model) to measure liq-
uidity variation, finding that the latter better explains price variation. The importance
of liquidity is somewhat higher if the price is measured in terms of bid and ask quotes
than if transaction prices are used. This may be attributed to the fact that bid and ask
quotes are quantities implied by the limit order schedules (though not measured by
the curves themselves). The quotes tend to exhibit several spikes which, at least partly,
may be explained by liquidity variation. In contrast, transaction prices do not exhibit
such spikes, and their association with liquidity is weaker, but still present. It appears
that both level and variance components explain RV to some extent. However, quote
variation is clearly best explained by liquidity variation rather than by its level, while
the results for the variation of the transaction prices are rather mixed. Not surpris-
ingly, we find that lagged liquidity impact is not as strongly associated with price
variation as contemporaneous liquidity impact. Figures 6.1 and 6.2 reveal to what
extent liquidity is able to alternatively explain RV’s autocorrelation. Although the
results for the three stocks analyzed, especially the composition of short-to-long-term
dependencies as reflected by the HAR parameters α̂d, α̂w, α̂m, are quite mixed, there
appears a slight negative relationship between autocorrelation and K which may be
interpreted as a liquidity explanation of serial dependence.

4However, when looking at the SACF for many lags, the short memory character of the HAR model
becomes finally apparent, as sample autocorrelations exceed those generated by the model.
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The results commented on so far are based on FPCR. In comparison, we found that
the overall performance of PFR was quite poor. The comparison has been drawn on
the grounds of information criteria and residuals, respectively. As PFR is basically
an additive regression model fitted with mixed model software, we can compute AIC
and BIC which account for the dimension of Jφψ and γ, and reward the presence of a
roughness penalty.5 Still, the dimension of the FPC-based part is intrinsically infinite.
As in FPCR, this intrinsic dimension of the regressors, the FPC scores, is neglected.

However, it is possible to compare the fits provided by FPCR and PFR by means
of their residuals or based on R2, which relates the residual sum of squares to over-
all RV variation. For both criteria we find that PFR performs rather poorly as it is
even outperformed by the pure HAR model (which it nests!) in all cases. However,
such poor performance may not come as a total surprise as it is also documented in
Goldsmith and Scheipl (2014), where it is applied in several cross-sectional regression
settings. The same results indicate that other regularization methods may be superior.
We leave this question for further research.

Liquidity impact

The transitory effects of liquidity can be measured in terms of liquidity impact. In
close analogy to the MEM models introduced in Part I, we write the model as

y` = α0 + αdy(`−1):(`−d) + αwy(`−1):(`−w) + αmy(`−1):(`−m)︸ ︷︷ ︸
=:G`

(6.17)

+
C

∑
i=1

1∫
0

γc(m)xi,`(m)dm

︸ ︷︷ ︸
=:LI`

+ε`,

where G` is the endogeneous part of the model and LI` is the exogeneous liquidity
impact, consisting of several measures xi,`(d) which are functions of the relative price.
In terms of notation, the exogeneous part is treated as contemporaneous, but it may
also consist of lagged quantities. The setting (i) level impact means that the opening
liquidity x0,`(d) and realized drift xT,`(d)− x0,`(d), for each market side, are used as
predictors. Setting (ii) variance impact means that RVL` for the bid and ask side is used.
In the following, we consider setting (iii), where both effects are present, which makes
C = 6 (three measures, each for bid and ask). Plugging in the FPC-based estimation
results, each of the functional predictors is approximated using K FPC scores by the
representation

5We used the pfr function in the R package refund (Crainiceanu, Reiss, Goldsmith, Huang, Huo, and
Scheipl, Crainiceanu et al.) for this task, which wraps gam (authored by Simon Wood) and lme4
(Douglas Bates), the latter two providing the state-of-the art methods in semiparametric regression
and mixed models, respectively.
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Figure 6.1: HAR parameters for Linde (�), MunichRe (•), Commerzbank (N), for models
with K = 0, . . . , 8 realized liquidity components (realized level and variance).
Realized price variance is computed in terms of the mid-price. The results are
quite heterogeneous, but there is a slight downward trend with respect to K,
i.e., liquidity explains some of realized volatility’s “memory".
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Figure 6.2: HAR parameters for Linde (�), MunichRe (•), Commerzbank (N), for models
with K = 0, . . . , 8 realized liquidity components (realized level and variance).
Realized price variance is computed in terms of transaction prices. The results
are quite heterogeneous, but there is a slight downward trend with respect to
K, i.e., liquidity explains some of realized volatility’s “memory".
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1∫
0

γ̂i(m)xi,`(m)dm =
K

∑
k=1

γ̂i,k ξ̂i,k,`, (6.18)

where ξ̂i,k,` are FPC scores obtained via numerical integration as explained in Chapter
2. Thus, the estimated liquidity impact can be written

L̂I` =
C

∑
i=1

K

∑
k=1

γ̂i,k ξ̂i,k,`, (6.19)

and, exploiting the fact that we have an additive structure, we additionally define the
relative liquidity impact,

RLI` =
LIt

|G`|+ |LI`|
, (6.20)

where −1 < RLI` < 1. When RLI` ≈ 0, serial dependence dominates the dynamics
of realized variance. However, when RLI` is distinctly positive (negative), liquid-
ity increases (decreases) the volatility of the price. Moreover, as the components of
RLI` have an additive structure, it can be further decomposed into its bid/ask and
level/variance parts, respectively.

Figures 6.3 and 6.4 present the results for the three stocks. Despite their less-than-
optimal fit according to the naive AIC and BIC criteria reported in Tables 6.1 and
6.2, we use models with only K = 2 FPCs in all cases as they already provide the
largest log-likelihood improvement as compared to the pure HAR model. We find a
substantial liquidity impact for mid-price variation, which exhibits many spikes. The
liquidity impact on transaction price variation is much lower, but still considerable.
Moreover, we found that LI heavily depends on the model choice, that is on K, so that
model choice is a crucial task all the more.

Including further lagged FunX components might further improve the fit and is
straightforward to implement. Moreover, as contemporaneous liquidity explains RV
better than lagged liquidity does, a one-step-ahead forecast obtained by one of the
methods from Chapter 2 may be used to augment the model if forecasting is of pri-
mary interest.

6.4.2 Forecasting realized volatility

We fitted the models with lagged liquidity impact to the first 300 observations (roughly
15 months) to investigate the out-of-sample forecast performance, measured in terms
of the forecast RMSE. This means that we are interested in forecasts of the conditional
mean, not of the complete conditional density. As has been shown previously in the
literature, alternative innovation specifications will certainly provide much more re-
alistic conditional densities, but forecasts of the conditional mean will typically not
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6.4 Empirical results
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Figure 6.3: Log realized mid-price variance (left panel) and relative liquidity impact (right
panel) for Linde (top), MunichRe (center), and Commerzbank (bottom) and
K = 2. Realized variance trajectories exhibit several spikes which are usually
due to few extreme price changes during a trading day. However, experiment-
ing with the sampling grid we find that extreme quotes occur quite often during
a trading day, indicating that the phenomenon is not spurious. Liquidity im-
pact, apart from some spikes, typically ranges between ±0.2. Some variance
spikes can be directly linked to liquidity impact by pure visual inspection al-
ready.
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6 Realized volatility and realized liquidity: The HAR-FunXL model
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Figure 6.4: Log realized transaction price variance (left panel) and relative liquidity impact
(right panel) for Linde (top), MunichRe (center), and Commerzbank (bottom)
and K = 2. In conrast to the mid-price, realized variance trajectories for trans-
action prices do not exhibit many spikes. Consequently, the relative liquidity
impact on the transaction prices’ variation is much smaller than the impact on
the variation of the mid-price, but still amounts to several percent.
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6.5 Generalizations

differ much (Corsi et al., 2008). The results are shown in Tables 6.7, 6.8, and 6.9.
Apart from few exceptions, the pure HAR model provides better forecasts than its
liquidity-augmented competitors. All HAR models outperform the naive no-change
random walk forecast. In terms of the Diebold-Mariano test, all HAR models appear
to be equally good, and superior to the random walk.The PFR version of the model
has not been investigated as, due to its poor in-sample performance, we expect it to
be inferior to FPCR.

An alternative to the model with lagged liquidity would be one that explicitely
models liquidity dynamics as in Section 2.5, either based on functional autoregression
or based on the FPCs’ dynamics. One could also think of a full joint model with
volatility and liquidity interacting. Some comments on this prospect follow in Section
6.5. However, multivariate models are typically outperformed by univariate ones
when it comes to forecasts. Therefore, it is questionable whether the construction of
such a full model will be beneficial in this respect.

6.5 Generalizations

We briefly discuss some possible extensions of the functional time series approach
with regularizing penalties. Some comments on the possibility of constructing multi-
variate models follow.

6.5.1 Families of conditional distributions

For (quasi-) likelihood inference on the parameters of the HAR-FunXL model, we
have used a specific conditional distribution of y`,

y`|y`−1, γ(d), x`(d) ∼ N
(

y′`−1α + g(γ(d), x`(d)), σ2
ε

)
,

in which the conditioning set includes only a finite number of lagged, observable
quantities. However, the strategies for estimating the functional parameters in g(·)
explained before are not limited to the Gaussian case. More generally, from an in-
ferential point of view the model may be viewed as a generalized regression model
(GRM). (Univariate) GRMs consist of three ingredients.

1. A distributional assumption. (Univariate) GRMs assume that the conditional
distribution is a univariate exponential family distribution and focus on the mean
of this distribution.

2. A real-valued predictor, i.e., a (possibly nonlinear) combination of the predictor
variables of interest. In our case, this is a mixture of an endogeneous (the lagged
y`) and an exogeneous part (g(γ(d), x`(d))). If the predictor is linear, the model
is a generalized linear model (GLM). If the predictor variables are transformed
in a data-driven way, and this transformation is estimated nonparametrically,
but still additive, the model is a generalized additive model (GAM).
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6 Realized volatility and realized liquidity: The HAR-FunXL model

3. A transformation function or link function h(·), i.e., a continuous function
which maps the predictor to the mean of the conditional distribution.

This framework encompasses, among others, the following models as special cases.

• The HAR-FunXL model. The conditional distribution is normal, the predictor
maps scalar lagged realized measures and functional realized measures to R,
and the link function is the identity link.

• The ACD-FunXL model with β = 0. The conditional distribution is exponential
(or Gamma), the predictor is as before, and the link function is the logarithmic
link.

However, the framework does not encompass non-Markovian models like GARCH
or (unrestricted) ACD because the predictor variables must be observable, and there
must be a finite number of them. Even the ARCH-FunXL model, being Markovian in
contrast to GARCH, is not included for a second reason: It does not feature the mean,
but the dispersion of the conditional distribution as response variable.

6.5.2 Conditional heteroskedasticity and higher-order moments

Building on the GAMLSS model of Rigby and Stasinopoulos (2005), in Brockhaus et al.
(2015) we propose a class of functional regression models in which more features of
the conditional distribution than only the mean are allowed to depend on predictor
variables. While leaving the framework of GRMs, these models still do not allow for
latent components on the right hand side the way they appear in GARCH and ACD
models. For instance, in terms of the HAR model this means that the Brockhaus et al.
(2015) framework encompasses the HAR-FunXL with ARCH-FunXL innovations, but
not with GARCH-FunXL innovations.

The framework is also able to capture time-varying conditional skewness and kurto-
sis. The latter can for instance be introduced using the degrees-of-freedom parameter
of a t-ARCH model. However, while being very flexible, a major drawback of this ap-
proach is that estimation is only accomplished by means of boosting techniques. The
statistical properties of boosting are not well understood in many respects. On the
other hand, the approach can easily be extended to functional autoregressive settings
like those discussed in Chapter 2, which is quite attractive.

6.5.3 Multivariate models

The term multivariate can mean several things in the HAR-FunXL context, namely

• A model for several, p say, realized price volatility series with exogeneous liq-
uidity.

• A joint model for one or p price volatility series along with the corresponding
liquidity measures.
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6.6 Conclusion

The first extension is straightforward to implement by means of a VHAR model,
even if there are cross-effects between, say, asset i’s liquidity on asset j’s price (but not
vice versa). The second extension is much more involved. If we approach the prob-
lem by means of semiparametric factors as in Section 2.5, we could simply stack FPC
scores of curves and scalar realized measures in a large vector and, again, use stan-
dard V(H)AR methodology. This strategy might even enjoy some success in terms of
forecasting. However, describing dynamic dependencies between finite-dimensional
representations of curves and scalars, such a model would be hardly interpretable.

6.6 Conclusion

In this Chapter, we have constructed a model to investigate the impact of realized
measures of liquidity on realized price variation, extending the HAR model of Corsi
(2009) by including FunXL terms. While the FunXL part of the model is very similar
to the FunXL part in MEM-FunXL models, the construction of liquidity measures is
fundamentally different as they are aggregates over intervals of time. Empirically, we
find that there is a considerable contemporaneous liquidity impact on price variation,
while the impact of lagged liquidity on present volatility is rather moderate. There-
fore, at least in the simple cases considered here, realized liquidity does not help to
predict realized price variation at a daily frequency.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 1551 1513 1505 1497 1482 1475 1471 1468 1460
(ii) variance 1551 1515 1514 1510 1506 1503 1501 1495 1495
(iii) all 1551 1499 1487 1468 1449 1437 1427 1419 1405

BIC
(i) level 1572 1523 1515 1508 1492 1485 1481 1478 1471
(ii) variance 1572 1526 1525 1520 1517 1514 1511 1506 1506
(iii) all 1572 1509 1497 1478 1460 1447 1438 1429 1416

MunichRe

AIC
(i) level 1602 1580 1569 1552 1549 1543 1541 1535 1531
(ii) variance 1602 1572 1570 1569 1567 1556 1550 1548 1545
(iii) all 1602 1562 1544 1525 1521 1500 1495 1490 1486

BIC
(i) level 1623 1591 1579 1562 1560 1554 1552 1546 1542
(ii) variance 1623 1583 1580 1580 1578 1566 1561 1558 1555
(iii) all 1623 1573 1554 1535 1531 1510 1505 1500 1497

Commerzbank

AIC
(i) level 1642 1623 1616 1606 1602 1600 1592 1589 1587
(ii) variance 1642 1633 1604 1600 1599 1573 1561 1561 1559
(iii) all 1642 1618 1574 1551 1545 1531 1512 1509 1506
1142

BIC
(i) level 1663 1633 1627 1616 1612 1611 1602 1599 1598
(ii) variance 1663 1644 1614 1610 1610 1584 1572 1571 1569
(iii) all 1663 1629 1584 1561 1555 1542 1523 1520 1517

Table 6.1: AIC and BIC of the in-sample fits for the HAR-FunXL model with contempora-
neous realized liquidity impact on RV computed based on the mid-price. The
model with K = 0 FPCs is the pure HAR model. For each RV series, (i) liquid-
ity’s level components (snapshot at the beginning of trading plus drift estimate),
(ii) its log realized variance, CRVLI , and (iii) level and variance are used as func-
tional predictors. Both level and variance components tend to improve the fit to
a considerable extent in terms of both criteria.
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6.6 Conclusion

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 1549 1533 1517 1514 1511 1503 1502 1487 1478
(ii) variance 1549 1541 1539 1537 1534 1530 1529 1520 1518
(iii) all 1549 1533 1516 1510 1507 1495 1491 1470 1461

BIC
(i) level 1570 1544 1527 1524 1522 1514 1512 1497 1489
(ii) variance 1570 1551 1549 1548 1544 1540 1539 1530 1529
(iii) all 1570 1544 1526 1521 1517 1505 1501 1480 1471

MunichRe

AIC
(i) level 1600 1590 1587 1583 1579 1578 1562 1550 1544
(ii) variance 1600 1588 1586 1584 1584 1582 1581 1578 1569
(iii) all 1600 1585 1580 1574 1568 1567 1552 1536 1522

BIC
(i) level 1621 1601 1597 1593 1589 1589 1573 1561 1554
(ii) variance 1621 1598 1596 1595 1594 1593 1592 1589 1580
(iii) all 1621 1595 1590 1585 1579 1578 1562 1546 1532

Commerzbank

AIC
(i) level 1639 1623 1623 1617 1616 1610 1609 1607 1602
(ii) variance 1639 1622 1617 1617 1616 1613 1612 1608 1607
(iii) all 1639 1617 1610 1606 1605 1597 1596 1590 1584

BIC
(i) level 1660 1634 1633 1627 1626 1620 1619 1617 1613
(ii) variance 1660 1632 1627 1627 1626 1623 1622 1619 1618
(iii) all 1660 1628 1620 1617 1616 1608 1606 1600 1595

Table 6.2: AIC and BIC of the in-sample fits for the HAR-FunXL model with lagged real-
ized liquidity impact on RV computed based on the mid-price. The model with
K = 0 FPCs is the pure HAR model. For each RV series, (i) liquidity’s level
components (snapshot at the beginning of trading plus drift estimate), (ii) its
log realized variance, CRVLI , and (iii) level and variance are used as functional
predictors. Both level and variance components tend to improve the fit consid-
erably in terms of both criteria. However, the improvement is smaller than for
contemporaneous liquidity.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 556 545 543 538 535 532 526 525 515
(ii) variance 556 532 532 530 528 528 527 518 516
(iii) all 556 530 525 519 517 513 503 496 481

BIC
(i) level 577 556 553 548 545 543 536 535 526
(ii) variance 577 542 542 540 539 539 537 529 527
(iii) all 577 541 535 530 527 523 513 506 492

MunichRe

AIC
(i) level 583 573 568 568 564 554 551 547 546
(ii) variance 583 572 570 570 570 569 566 561 560
(iii) all 583 569 563 562 557 544 539 531 529

BIC
(i) level 604 583 579 578 574 564 561 558 556
(ii) variance 604 582 581 581 581 579 576 572 571
(iii) all 604 579 574 573 568 555 550 541 539

Commerzbank

AIC
(i) level 787 770 767 762 758 752 748 746 745
(ii) variance 787 779 766 764 763 763 761 755 754
(iii) all 787 766 747 744 740 732 726 721 720

BIC
(i) level 808 781 778 773 768 762 758 756 756
(ii) variance 808 790 776 775 774 773 771 765 765
(iii) all 808 777 757 754 750 742 736 732 731

Table 6.3: AIC and BIC of the in-sample fits for the HAR-FunXL model with contempora-
neous realized liquidity impact on RV computed based on the mid-price. The
model with K = 0 FPCs is the pure HAR model. For each RV series, (i) liquid-
ity’s level components (snapshot at the beginning of trading plus drift estimate),
(ii) its log realized variance, CRVLI , and (iii) level and variance are used as func-
tional predictors. Both level and variance components tend to improve the fit to
a considerable extent in terms of both criteria.
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6.6 Conclusion

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 556 544 538 538 533 528 518 517 515
(ii) variance 556 548 547 546 545 545 539 538 535
(iii) all 556 544 537 536 531 524 511 509 504

BIC
(i) level 577 555 549 548 544 538 528 528 526
(ii) variance 577 558 558 557 555 555 549 549 545
(iii) all 577 554 548 547 541 535 521 520 514
71

MunichRe

AIC
(i) level 583 574 570 565 563 562 560 554 550
(ii) variance 583 572 568 568 565 564 561 558 557
(iii) all 583 571 562 557 554 551 546 537 530

BIC
(i) level 604 584 580 576 574 572 571 564 560
(ii) variance 604 582 579 578 576 575 572 569 567
(iii) all 604 581 573 568 564 562 556 547 540

Commerzbank

AIC
(i) level 787 772 766 763 761 755 747 746 744
(ii) variance 787 777 773 770 766 763 764 762 761
(iii) all 787 768 759 755 747 735 731 728 726

BIC
(i) level 808 782 777 774 771 765 757 756 755
(ii) variance 808 787 784 781 777 774 774 773 771
(iii) all 808 779 770 765 758 745 742 739 737

Table 6.4: AIC and BIC of the in-sample fits for the HAR-FunXL model with lagged real-
ized liquidity impact on RV computed based on the mid-price. The model with
K = 0 FPCs is the pure HAR model. For each RV series, (i) liquidity’s level
components (snapshot at the beginning of trading plus drift estimate), (ii) its
log realized variance, CRVLI , and (iii) level and variance are used as functional
predictors. Both level and variance components tend to improve the fit consid-
erably in terms of both criteria. However, the improvement is smaller than for
contemporaneous liquidity.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 1427 1401 1400 1382 1379 1374 1372 1368 1364
(ii) variance 1427 1354 1336 1333 1328 1328 1327 1322 1321
(iii) all 1427 1350 1326 1306 1293 1290 1287 1280 1273

BIC
(i) level 1448 1411 1410 1393 1389 1385 1382 1378 1374
(ii) variance 1448 1364 1346 1343 1339 1338 1338 1333 1332
(iii) all 1448 1360 1337 1316 1304 1300 1297 1290 1284

MunichRe

AIC
(i) level 1520 1493 1478 1461 1459 1454 1453 1447 1443
(ii) variance 1520 1467 1431 1428 1425 1415 1414 1411 1404
(iii) all 1520 1458 1420 1399 1394 1382 1381 1377 1367

BIC
(i) level 1541 1504 1489 1472 1469 1464 1463 1458 1453
(ii) variance 1541 1477 1441 1439 1435 1425 1424 1422 1415
(iii) all 1541 1468 1430 1409 1404 1393 1392 1388 1378

Commerzbank

AIC
(i) level 1360 1343 1340 1329 1320 1319 1311 1304 1302
(ii) variance 1360 1311 1274 1228 1220 1210 1209 1208 1206
(iii) all 1360 1304 1266 1196 1183 1167 1154 1148 1142

BIC
(i) level 1381 1353 1351 1339 1331 1329 1322 1315 1313
(ii) variance 1381 1322 1285 1238 1230 1221 1219 1219 1217
(iii) all 1381 1314 1277 1206 1193 1178 1164 1159 1152

Table 6.5: AIC and BIC of the in-sample fits for the HAR-FunXL model with contempora-
neous realized liquidity impact. The model with K = 0 FPCs is the pure HAR
model. For each RV series, (i) liquidity’s level components (snapshot at the be-
ginning of trading plus drift estimate), (ii) its log realized variance, CRVLI I , and
(iii) level and variance are used as functional predictors. Both level and variance
components tend to improve the fit to a considerable extent in terms of both
criteria.
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6.6 Conclusion

number of FPCs
FunXL measure 0 1 2 3 4 5 6 7 8

Linde

AIC
(i) level 1425 1414 1394 1391 1391 1390 1389 1387 1381
(ii) variance 1425 1417 1411 1409 1406 1406 1403 1401 1399
(iii) all 1425 1414 1390 1386 1382 1381 1376 1372 1366

BIC
(i) level 1446 1425 1405 1402 1402 1401 1399 1398 1392
(ii) variance 1446 1427 1421 1420 1416 1416 1413 1411 1409
(iii) all 1446 1425 1400 1396 1392 1392 1386 1382 1376

MunichRe

AIC
(i) level 1518 1507 1501 1497 1494 1494 1482 1470 1466
(ii) variance 1518 1508 1507 1505 1504 1504 1503 1500 1499
(iii) all 1518 1502 1495 1491 1488 1488 1475 1458 1452

BIC
(i) level 1539 1518 1511 1508 1505 1504 1492 1481 1476
(ii) variance 1539 1518 1517 1515 1515 1514 1513 1510 1510
(iii) all 1539 1513 1505 1502 1499 1498 1485 1468 1463

Commerzbank

AIC
(i) level 1357 1341 1341 1336 1330 1327 1325 1322 1321
(ii) variance 1357 1335 1335 1332 1331 1330 1329 1327 1326
(iii) all 1357 1327 1319 1313 1307 1303 1300 1295 1293

BIC
(i) level 1378 1352 1352 1346 1341 1337 1336 1333 1331
(ii) variance 1378 1346 1345 1342 1341 1341 1339 1337 1336
(iii) all 1378 1338 1329 1323 1317 1314 1310 1306 1304

Table 6.6: AIC and BIC of the in-sample fits for the HAR-FunXL model with lagged re-
alized liquidity impact. The model with K = 0 FPCs is the pure HAR model.
For each RV series, (i) liquidity’s level components (snapshot at the beginning of
trading plus drift estimate), (ii) its log realized variance, CRVLI I , and (iii) level
and variance are used as functional predictors. Both level and variance compo-
nents tend to improve the fit considerably in terms of both criteria. However,
the improvement is smaller than for contemporaneous liquidity.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

FunXL number of FPCs
measure 0 1 2 3 4 5 6 7 8 naive

Linde

(i) level 0.6269 0.6643 0.7180 0.7197 0.7181 0.7219 0.7160 0.7065 0.7009 0.7514
(ii) variance 0.6269 0.6325 0.6371 0.6727 0.7067 0.7307 0.7549 0.7681 0.7855 0.7514
(iii) all 0.6269 0.6697 0.7416 0.7785 0.7912 0.8120 0.8220 0.8348 0.8441 0.7514

MunichRe

(i) level 0.6940 0.7144 0.7228 0.7155 0.7078 0.7066 0.6956 0.7001 0.7125 0.8586
(ii) variance 0.6940 0.6780 0.6837 0.6849 0.6874 0.6836 0.6747 0.6930 0.6950 0.8586
(iii) all 0.6940 0.7019 0.7171 0.7128 0.7074 0.6990 0.6836 0.7195 0.7414 0.8586

Commerzbank

(i) level 0.6646 0.7314 0.7344 0.7289 0.7415 0.7583 0.7650 0.7630 0.7724 0.7470
(ii) variance 0.6646 0.7259 0.6709 0.6726 0.7036 0.7082 0.7316 0.7161 0.7260 0.7470
(iii) all 0.6646 0.7719 0.7742 0.7913 0.8137 0.8453 0.8663 0.8302 0.8478 0.7470

Table 6.7: RMSE of one-step-ahead out-of-sample forecasts for the HAR-FunXL model
with lagged realized liquidity impact (expanding window scheme). Price RV
is computed based on the mid-price. The model with K = 0 FPCs is the pure
HAR model. The naive forecast, the random walk forecast, is always outper-
formed by the pure HAR specification. For each RV series, (i) liquidity’s level
components (snapshot at the beginning of trading plus drift estimate), (ii) its
log realized variance, CRVLI , and (iii) level and variance are used as functional
predictors. In contrast to CRVLI I , CRVLI does not improve the RV forecast, nor
do the other RML. As compared to the analysis represented in Table 6.9, one
outlier (2009-09-15) has been excluded.
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6.6 Conclusion

FunXL number of FPCs
measure 0 1 2 3 4 5 6 7 8 naive

Linde

(i) level 0.3527 0.3519 0.3551 0.3551 0.3556 0.3567 0.3558 0.3564 0.3566 0.4487
(ii) variance 0.3527 0.3530 0.3554 0.3575 0.3591 0.3670 0.3719 0.3719 0.3716 0.4487
(iii) all 0.3527 0.3520 0.3591 0.3612 0.3613 0.3748 0.3803 0.3821 0.3811 0.4487

MunichRe

(i) level 0.3726 0.3733 0.3729 0.3726 0.3726 0.3729 0.3729 0.3733 0.3731 0.4404
(ii) variance 0.3726 0.3727 0.3740 0.3742 0.3735 0.3744 0.3753 0.3732 0.3748 0.4404
(iii) all 0.3726 0.3734 0.3732 0.3727 0.3731 0.3746 0.3760 0.3736 0.3744 0.4404

Commerzbank

(i) level 0.3851 0.3861 0.3867 0.3886 0.3869 0.3880 0.3866 0.3873 0.3877 0.4405
(ii) variance 0.3851 0.3873 0.3858 0.3854 0.3880 0.3887 0.3882 0.3894 0.3908 0.4405
(iii) all 0.3851 0.3873 0.3916 0.3908 0.3894 0.3940 0.3908 0.3941 0.3978 0.4405

Table 6.8: RMSE of one-step-ahead out-of-sample forecasts for the HAR-FunXL model
with lagged realized liquidity impact (expanding window scheme). Price RV
is computed based on transaction prices. The model with K = 0 FPCs is the
pure HAR model. The naive forecast, the random walk forecast, is always out-
performed by the pure HAR specification. For each RV series, (i) liquidity’s level
components (snapshot at the beginning of trading plus drift estimate), (ii) its log
realized variance, CRVLI , and (iii) level and variance are used as functional pre-
dictors. Lagged RML do not improve the forecast of price volatility.
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6 Realized volatility and realized liquidity: The HAR-FunXL model

FunXL number of FPCs
measure 0 1 2 3 4 5 6 7 8 naive

Linde

(i) level 0.6111 0.6280 0.6615 0.6683 0.6677 0.6686 0.6636 0.6682 0.6708 0.7514
(ii) variance 0.6111 0.6131 0.6252 0.6277 0.6577 0.6712 0.6774 0.6826 0.6959 0.7514
(iii) all 0.6111 0.6294 0.6712 0.6750 0.7151 0.7290 0.7352 0.7449 0.7543 0.7514

MunichRe

(i) level 0.6791 0.7114 0.7196 0.7153 0.7078 0.7061 0.6978 0.7029 0.7097 0.8617
(ii) variance 0.6791 0.6711 0.6730 0.6692 0.6746 0.6749 0.6745 0.6755 0.6757 0.8617
(iii) all 0.6791 0.7121 0.7275 0.7182 0.7139 0.7111 0.7039 0.7293 0.7395 0.8617

Commerzbank

(i) level 0.5787 0.6132 0.6170 0.6196 0.6421 0.6478 0.6571 0.6578 0.6611 0.6734
(ii) variance 0.5787 0.5852 0.5798 0.5734 0.5718 0.5713 0.5713 0.5752 0.5730 0.6734
(iii) all 0.5787 0.6118 0.6074 0.6016 0.6288 0.6320 0.6574 0.6563 0.6519 0.6734

Table 6.9: RMSE of one-step-ahead out-of-sample forecasts for the HAR-FunXL model
with lagged realized liquidity impact (expanding window scheme). Price RV
is computed based on the mid-price. The model with K = 0 FPCs is the pure
HAR model. The naive forecast, the random walk forecast, is always outper-
formed by the pure HAR specification. For each RV series, (i) liquidity’s level
components (snapshot at the beginning of trading plus drift estimate), (ii) its
log realized variance, CRVLI I , and (iii) level and variance are used as functional
predictors. Including realized liquidity variance, CRVLI I , as predictor improves
the RV forecast slightly for MunichRe and Commerzbank, but not for Linde.
The liquidity level does not help to predict RV in any of the cases.
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In this thesis, the concept of functional exogeneous liquidity (FunXL) is introduced which
makes use of the full information provided by limit order book data in order to un-
derstand and forecast financial risk.

In Part I, logarithmic versions of the GARCH (Bollerslev, 1986) and ACD (Engle
and Russell, 1998) models are augmented by FunXL components. In Part II, in anal-
ogy to realized volatility, realized measures of liquidity are designed, and their use for
understanding realized variation of prices is investigated in the celebrated yet simple
framework of heterogeneous autoregressive models (Corsi, 2009). The FunXL part,
capturing the additional information provided by the limit order book, is in all cases
viewed as a weakly stationary functional time series, allowing for (i) the adoption of
dimension reduction techniques for functional time series (Hörmann and Kokoszka,
2010), and (ii) the adaptation of ideas from the field of functional regression analysis
(Ramsay and Silverman, 2005), which in particular provide means of mapping ran-
dom functional observations to scalar parameters of the conditional distribution of
financial returns or durations.

The usefulness of the newly introduced models is investigated in extensive appli-
cations to limit order book data from the XETRA system of Deutsche Börse. Namely,
the GARCH-FunXL model is used to model financial returns for three instruments
over 26 months, sampled at a frequency of 20 minutes, the ACD-FunXL model is ap-
plied to one month of price durations data, and the realized measures fed into the
HAR-FunXL model, computed at daily frequency, are based on 26 months of high-
frequency trading data. While the FunXL parts of multiplicative error models are
exclusively expanded in terms of functional principal components, the Markovian
HAR-FunXL model allows to import alternative techniques originally developed for
functional regression models in cross-sectional or longitudinal contexts.1

Apart from the different models introduced, the major difference between Parts I
and II is that in Part I, LOB snapshots are modeled, while in Part II, snapshots are ag-
gregated over time. Summarizing, we find empirically that the impact of LOB-implied
liquidity on the price process is very pronounced at high frequency, whereas its suc-

1Note that the meaning of the word longitudinal differs somewhat between time series econometrics
and (bio-) statistics.
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cess in explaining realized price variation is rather modest. However, we are (with
the notable exception of Engle et al. (2012)) to the best of our knowledge the first to
measure realized liquidity variation, and the first to measure functional realized liq-
uidity variation. We expect to achieve an improvement regarding this measurement
issue in future work. For instance, we observe phenomena similar to those that are
termed microstructure noise in the RV literature. Such phenomena will certainly be
investigated in future research, and, possibly, sophisticatedly be accounted for.

Recalling the liquidity definition of Kyle (1985), provided at the very beginning of
Chapter 2, a good liquidity measure should, besides other things, inform about re-
siliency, i.e., the speed at and extent to which the LOB recovers to its former shape
after large trades. This dynamic aspect of liquidity is hard to capture, and our liquid-
ity measure of choice, cumulative volume, does not capture it — at least not directly.
A possible operationalization, to be addressed in future research, might approach the
problem via the persistence of liquidity curves. From an economic perspective, the
ideas put forward in this thesis may eventually also be of use when it comes to bet-
ter judging the pros and cons of high-frequency trading (HFT), which has recently
been criticized from both academic (Budish et al., 2013) and non-academic (Lewis,
2014) directions.2 However, as LOB data usually do not reveal any information on
individual behavior — our data do not include IDs of market participants —, such
inferences would be highly speculative. The heuristic identification of algo strategies
from anonymous data might nevertheless be a feasible alternative (Hasbrouck and
Saar, 2013).

Given the success of the FunXL approach in modeling high-frequency conditional
variance dynamics, an obvious next step for future research is the construction of
multivariate models. In the case of MEMs, depending on the intended application,
such models could be either vector MEMs or multivariate (marked) point process
models with direct specification of the conditional intensity function (Hawkes, 1971;
Bowsher, 2007; Bauwens and Hautsch, 2009). Alternative specifications of the condi-
tional variance (or duration) equation allowing for general forms of liquidity impact,
for instance as in Amado and Teräsvirta (2013), could also be of interest. A further
desirable goal is to endogenize liquidity curves, that is, to construct models for the
joint dynamics of liquidity curves of several instruments, or for prices and liquidity.
However, even in the Markovian case discussed in Part II, there are some major obsta-
cles to overcome. One possible, yet unexplored way to handle such complex models
is to extend the boosting approach we employ in Brockhaus et al. (2015). This may
also open the door to conveniently including additional features like ARCH effects
in a functional setting (Hörmann et al., 2013). Another step towards multivariate
models could be the use of predetermined factors as demonstrated in Diebold and
Li (2006) and Diebold et al. (2008) in the context of term structure dynamics. Such a
strategy comes at the cost of flexibility and statistical efficiency, but keeps the models
sophisticatedly simple.

2Still, most studies, for example Hendershott et al. (2011), find that HFT improves liquidity. The crit-
icism in Budish et al. (2013) mainly concerns the waste of resources attributed to the technological
“arms race" of HF traders.
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A
Additional empirical results

A.4 Chapter 4: Price durations and the ACD-FunXL
model

A.4.1 Goodness-of-Fit

In the following, results of estimation for models for bid and ask durations are
shown, for several δ (1,2,3,4,5,10,20 Ticks), each with bid and ask liquidity impact.
The goodness-of-fit criteria are (naive) AIC and BIC (mean per observation) for the
EACD log-likelihood.

Commerzbank

Table A.1: AIC for EACD-FunXL, Commerzbank.

δ = 0.001 EUR (1 Tick)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.4554 0.4554 0.4554 0.4554 0.5514 0.5514 0.5514 0.5514
1 0.3612 0.3610 0.3619 0.3645 0.4157 0.4212 0.4245 0.4314
2 0.3568 0.3585 0.3610 0.3638 0.4145 0.4180 0.4208 0.4227
3 0.3432 0.3537 0.3572 0.3609 0.4096 0.4163 0.4189 0.4248
4 0.3430 0.3488 0.3511 0.3499 0.4076 0.4156 0.4170 0.4177
5 0.3434 0.3497 0.3477 0.3483 0.4075 0.4139 0.4166 0.4183

δ = 0.002 EUR (2 Ticks)

Continued on next page
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K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.7788 0.7788 0.7788 0.7788 0.9279 0.9279 0.9279 0.9279
1 0.6919 0.7093 0.7186 0.7220 0.8226 0.8408 0.8486 0.8524
2 0.6847 0.6917 0.6995 0.7034 0.8222 0.8197 0.8231 0.8229
3 0.7078 0.7036 0.7029 0.6986 0.8262 0.8355 0.8339 0.8279
4 0.7070 0.7073 0.7086 0.7090 0.8182 0.8288 0.8288 0.8290
5 0.7129 0.7197 0.7110 0.7112 0.8159 0.8228 0.8223 0.8246

δ = 0.003 EUR (3 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.8941 0.8941 0.8941 0.8941 1.0360 1.0360 1.0360 1.0360
1 0.8205 0.8387 0.8484 0.8510 0.9635 0.9777 0.9841 0.9866
2 0.8198 0.8173 0.8233 0.8281 0.9659 0.9635 0.9663 0.9665
3 0.8322 0.8308 0.8269 0.8206 0.9615 0.9771 0.9764 0.9711
4 0.8198 0.8333 0.8352 0.8345 0.9309 0.9647 0.9655 0.9649
5 0.8347 0.8435 0.8358 0.8377 0.9253 0.9423 0.9519 0.9551

δ = 0.004 EUR (4 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.2607 1.2607 1.2607 1.2607 1.3779 1.3779 1.3779 1.3779
1 1.2463 1.2561 1.2627 1.2635 1.3549 1.3633 1.3666 1.3666
2 1.2542 1.2427 1.2453 1.2498 1.3605 1.3587 1.3637 1.3639
3 1.2291 1.2568 1.2534 1.2485 1.3546 1.3767 1.3764 1.3703
4 1.1680 1.2429 1.2530 1.2494 1.3175 1.3604 1.3624 1.3563
5 1.1660 1.2527 1.2450 1.2497 1.3090 1.3401 1.3552 1.3520

δ = 0.005 EUR (5 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.0164 1.0164 1.0164 1.0164 1.1071 1.1071 1.1071 1.1071
1 0.9777 0.9890 0.9937 0.9949 1.0689 1.0744 1.0768 1.0768
2 0.9738 0.9779 0.9839 0.9858 1.0800 1.0738 1.0772 1.0768

Continued on next page
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3 0.9986 0.9957 0.9887 0.9817 1.1103 1.0989 1.0949 1.0866
4 0.9853 1.0078 1.0072 1.0021 1.1033 1.1112 1.1056 1.0986
5 0.9563 1.0167 1.0093 1.0124 1.0981 1.1089 1.1113 1.1077

δ = 0.010 EUR (10 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.1015 1.1015 1.1015 1.1015 1.0517 1.0517 1.0517 1.0517
1 1.1411 1.1357 1.1336 1.1316 0.9702 0.9726 0.9753 0.9763
2 1.1453 1.1391 1.1434 1.1408 0.9994 0.9851 0.9882 0.9831
3 1.1913 1.1481 1.1454 1.1409 1.0564 1.0515 1.0351 1.0228
4 1.2311 1.1349 1.1403 1.1455 1.0617 1.0497 1.0444 1.0498
5 1.3564 1.1915 1.1460 1.1235 1.0812 1.0727 1.0615 1.0661

δ = 0.020 EUR (20 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.8024 0.8024 0.8024 0.8024 1.1946 1.1946 1.1946 1.1946
1 0.7782 0.7813 0.7796 0.7790 1.0814 1.0883 1.0804 1.0761
2 0.8108 0.8049 0.7837 0.7800 1.1667 1.1186 1.0857 1.0739
3 0.8256 0.8243 0.8392 0.8191 1.1886 1.1431 1.1499 1.1676
4 0.8332 0.8280 0.8442 0.8510 1.2514 1.1457 1.1319 1.1652
5 0.8407 0.8944 0.8569 0.8491 1.3504 1.2049 1.2007 1.2165

Table A.2: BIC for EACD-FunXL, Commerzbank.

δ = 0.001 EUR (1 Tick)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.4562 0.4562 0.4562 0.4562 0.5523 0.5523 0.5523 0.5523
1 0.3626 0.3624 0.3633 0.3659 0.4173 0.4227 0.4260 0.4329
2 0.3587 0.3605 0.3630 0.3658 0.4166 0.4201 0.4229 0.4249
3 0.3458 0.3562 0.3597 0.3635 0.4123 0.4190 0.4216 0.4275
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4 0.3461 0.3519 0.3542 0.3529 0.4109 0.4189 0.4203 0.4210
5 0.3470 0.3534 0.3514 0.3520 0.4114 0.4178 0.4205 0.4222

δ = 0.002 EUR (2 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.7804 0.7804 0.7804 0.7804 0.9296 0.9296 0.9296 0.9296
1 0.6946 0.7120 0.7212 0.7247 0.8255 0.8437 0.8514 0.8553
2 0.6884 0.6954 0.7032 0.7071 0.8262 0.8237 0.8271 0.8269
3 0.7126 0.7084 0.7077 0.7033 0.8313 0.8407 0.8390 0.8331
4 0.7128 0.7131 0.7144 0.7148 0.8245 0.8351 0.8351 0.8352
5 0.7198 0.7265 0.7179 0.7181 0.8234 0.8302 0.8297 0.8320

δ = 0.003 EUR (3 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.8959 0.8959 0.8959 0.8959 1.0379 1.0379 1.0379 1.0379
1 0.8235 0.8418 0.8515 0.8541 0.9668 0.9810 0.9874 0.9899
2 0.8241 0.8215 0.8276 0.8324 0.9705 0.9681 0.9709 0.9710
3 0.8377 0.8363 0.8325 0.8261 0.9674 0.9830 0.9823 0.9770
4 0.8266 0.8400 0.8420 0.8413 0.9381 0.9719 0.9727 0.9721
5 0.8426 0.8515 0.8438 0.8456 0.9338 0.9508 0.9604 0.9636

δ = 0.004 EUR (4 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.2636 1.2636 1.2636 1.2636 1.3809 1.3809 1.3809 1.3809
1 1.2511 1.2609 1.2675 1.2684 1.3600 1.3684 1.3717 1.3717
2 1.2610 1.2495 1.2521 1.2566 1.3676 1.3658 1.3709 1.3710
3 1.2378 1.2654 1.2621 1.2572 1.3638 1.3859 1.3855 1.3794
4 1.1786 1.2535 1.2636 1.2600 1.3287 1.3716 1.3736 1.3675
5 1.1785 1.2652 1.2575 1.2622 1.3222 1.3533 1.3684 1.3652

δ = 0.005 EUR (5 Ticks)
Continued on next page
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K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.0205 1.0205 1.0205 1.0205 1.1114 1.1114 1.1114 1.1114
1 0.9845 0.9958 1.0005 1.0017 1.0759 1.0814 1.0838 1.0839
2 0.9833 0.9874 0.9934 0.9953 1.0898 1.0836 1.0871 1.0866
3 1.0109 1.0079 1.0009 0.9939 1.1229 1.1115 1.1076 1.0992
4 1.0002 1.0228 1.0222 1.0170 1.1187 1.1266 1.1210 1.1141
5 0.9740 1.0343 1.0270 1.0300 1.1163 1.1271 1.1295 1.1259

δ = 0.010 EUR (10 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.1101 1.1101 1.1101 1.1101 1.0609 1.0609 1.0609 1.0609
1 1.1554 1.1500 1.1480 1.1460 0.9855 0.9879 0.9906 0.9916
2 1.1654 1.1593 1.1635 1.1609 1.0208 1.0065 1.0096 1.0046
3 1.2171 1.1739 1.1712 1.1668 1.0840 1.0791 1.0627 1.0504
4 1.2627 1.1665 1.1719 1.1771 1.0954 1.0833 1.0781 1.0835
5 1.3937 1.2288 1.1833 1.1609 1.1210 1.1125 1.1013 1.1059

δ = 0.020 EUR (20 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.8187 0.8187 0.8187 0.8187 1.2136 1.2136 1.2136 1.2136
1 0.8052 0.8083 0.8066 0.8061 1.1132 1.1201 1.1122 1.1078
2 0.8487 0.8428 0.8216 0.8178 1.2112 1.1630 1.1302 1.1183
3 0.8743 0.8730 0.8878 0.8678 1.2458 1.2003 1.2070 1.2247
4 0.8927 0.8875 0.9037 0.9106 1.3212 1.2156 1.2017 1.2350
5 0.9111 0.9647 0.9272 0.9194 1.4329 1.2874 1.2832 1.2990

Linde
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Table A.3: AIC for EACD-FunXL, Linde.

δ = 0.01 EUR (1 Tick)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.6190 0.6190 0.6190 0.6190 0.7493 0.7493 0.7493 0.7493
1 0.4909 0.4906 0.4919 0.4954 0.5650 0.5724 0.5768 0.5863
2 0.4849 0.4873 0.4907 0.4945 0.5633 0.5680 0.5718 0.5745
3 0.4665 0.4808 0.4855 0.4906 0.5566 0.5657 0.5693 0.5773
4 0.4662 0.4741 0.4772 0.4755 0.5538 0.5647 0.5667 0.5676
5 0.4667 0.4753 0.4726 0.4734 0.5537 0.5625 0.5661 0.5684

δ = 0.02 EUR (2 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.9377 0.9377 0.9377 0.9377 1.0945 1.0945 1.0945 1.0945
1 0.8331 0.8541 0.8652 0.8694 0.9703 0.9917 1.0009 1.0054
2 0.8244 0.8329 0.8422 0.8469 0.9697 0.9668 0.9708 0.9706
3 0.8523 0.8472 0.8464 0.8411 0.9745 0.9855 0.9836 0.9765
4 0.8513 0.8517 0.8532 0.8536 0.9651 0.9776 0.9776 0.9778
5 0.8584 0.8665 0.8561 0.8563 0.9624 0.9705 0.9699 0.9726

δ = 0.03 EUR (3 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.0280 1.0280 1.0280 1.0280 1.1760 1.1760 1.1760 1.1760
1 0.9433 0.9643 0.9754 0.9785 1.0937 1.1099 1.1172 1.1199
2 0.9426 0.9396 0.9466 0.9521 1.0964 1.0938 1.0969 1.0971
3 0.9568 0.9552 0.9508 0.9435 1.0914 1.1092 1.1084 1.1024
4 0.9426 0.9581 0.9603 0.9595 1.0567 1.0951 1.0960 1.0953
5 0.9597 0.9699 0.9610 0.9631 1.0504 1.0696 1.0806 1.0842

δ = 0.04 EUR (4 Ticks)

K ask quote bid quote
Continued on next page
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D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201
0 1.1860 1.1860 1.1860 1.1860 1.2884 1.2884 1.2884 1.2884
1 1.1725 1.1817 1.1879 1.1887 1.2669 1.2747 1.2779 1.2778
2 1.1799 1.1691 1.1716 1.1758 1.2721 1.2705 1.2752 1.2753
3 1.1563 1.1823 1.1792 1.1746 1.2666 1.2873 1.2870 1.2812
4 1.0988 1.1693 1.1788 1.1754 1.2319 1.2720 1.2739 1.2682
5 1.0969 1.1785 1.1713 1.1756 1.2240 1.2531 1.2672 1.2642

δ = 0.05 EUR (5 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.2455 1.2455 1.2455 1.2455 1.3690 1.3690 1.3690 1.3690
1 1.1980 1.2118 1.2176 1.2191 1.3217 1.3285 1.3314 1.3315
2 1.1933 1.1982 1.2056 1.2079 1.3354 1.3277 1.3320 1.3315
3 1.2236 1.2200 1.2115 1.2028 1.3729 1.3588 1.3539 1.3436
4 1.2073 1.2349 1.2342 1.2279 1.3642 1.3740 1.3671 1.3585
5 1.1718 1.2458 1.2367 1.2405 1.3578 1.3711 1.3741 1.3696

δ = 0.10 EUR (10 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.5709 1.5709 1.5709 1.5709 1.4454 1.4454 1.4454 1.4454
1 1.6273 1.6196 1.6167 1.6139 1.3334 1.3368 1.3404 1.3418
2 1.6334 1.6246 1.6306 1.6270 1.3735 1.3539 1.3582 1.3512
3 1.6989 1.6373 1.6335 1.6272 1.4519 1.4452 1.4227 1.4058
4 1.7557 1.6185 1.6263 1.6337 1.4592 1.4426 1.4354 1.4428
5 1.9344 1.6993 1.6343 1.6023 1.4859 1.4743 1.4589 1.4652

δ = 0.20 EUR (20 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.5984 1.5984 1.5984 1.5984 2.0033 2.0033 2.0033 2.0033
1 1.5501 1.5562 1.5528 1.5517 1.8135 1.8251 1.8119 1.8045
2 1.6150 1.6034 1.5611 1.5536 1.9566 1.8758 1.8207 1.8009
3 1.6445 1.6420 1.6715 1.6316 1.9933 1.9170 1.9283 1.9580
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4 1.6598 1.6493 1.6816 1.6952 2.0985 1.9213 1.8981 1.9540
5 1.6747 1.7816 1.7068 1.6913 2.2645 2.0206 2.0135 2.0400

Table A.4: BIC for EACD-FunXL, Linde.

δ = 0.01 EUR (1 Tick)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.6201 0.6201 0.6201 0.6201 0.7506 0.7506 0.7506 0.7506
1 0.4928 0.4925 0.4938 0.4973 0.5670 0.5745 0.5788 0.5883
2 0.4876 0.4900 0.4934 0.4972 0.5661 0.5709 0.5747 0.5773
3 0.4700 0.4842 0.4889 0.4940 0.5603 0.5694 0.5729 0.5809
4 0.4704 0.4783 0.4814 0.4797 0.5583 0.5692 0.5712 0.5721
5 0.4717 0.4803 0.4776 0.4784 0.5591 0.5678 0.5714 0.5737

δ = 0.02 EUR (2 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 0.9396 0.9396 0.9396 0.9396 1.0965 1.0965 1.0965 1.0965
1 0.8363 0.8573 0.8684 0.8725 0.9736 0.9951 1.0043 1.0088
2 0.8288 0.8373 0.8467 0.8514 0.9744 0.9715 0.9755 0.9753
3 0.8580 0.8529 0.8521 0.8468 0.9806 0.9916 0.9896 0.9826
4 0.8583 0.8586 0.8602 0.8606 0.9725 0.9850 0.9850 0.9852
5 0.8667 0.8748 0.8644 0.8646 0.9712 0.9793 0.9787 0.9814

δ = 0.03 EUR (3 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.0301 1.0301 1.0301 1.0301 1.1782 1.1782 1.1782 1.1782
1 0.9469 0.9678 0.9790 0.9820 1.0974 1.1136 1.1209 1.1237
2 0.9475 0.9446 0.9515 0.9570 1.1016 1.0990 1.1021 1.1023
3 0.9632 0.9615 0.9571 0.9498 1.0981 1.1159 1.1151 1.1091
4 0.9504 0.9658 0.9680 0.9672 1.0649 1.1033 1.1042 1.1035
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5 0.9688 0.9790 0.9702 0.9722 1.0600 1.0793 1.0902 1.0939

δ = 0.04 EUR (4 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.1887 1.1887 1.1887 1.1887 1.2912 1.2912 1.2912 1.2912
1 1.1770 1.1862 1.1925 1.1932 1.2716 1.2795 1.2826 1.2826
2 1.1863 1.1755 1.1779 1.1821 1.2788 1.2771 1.2818 1.2819
3 1.1644 1.1905 1.1873 1.1827 1.2752 1.2958 1.2955 1.2898
4 1.1088 1.1792 1.1888 1.1854 1.2424 1.2825 1.2844 1.2786
5 1.1087 1.1902 1.1830 1.1874 1.2363 1.2654 1.2795 1.2765

δ = 0.05 EUR (5 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.2504 1.2504 1.2504 1.2504 1.3742 1.3742 1.3742 1.3742
1 1.2063 1.2202 1.2260 1.2274 1.3303 1.3372 1.3401 1.3402
2 1.2049 1.2098 1.2173 1.2195 1.3476 1.3399 1.3442 1.3436
3 1.2386 1.2349 1.2264 1.2178 1.3885 1.3744 1.3695 1.3592
4 1.2255 1.2532 1.2525 1.2462 1.3833 1.3931 1.3862 1.3776
5 1.1934 1.2674 1.2583 1.2621 1.3803 1.3937 1.3967 1.3922

δ = 0.10 EUR (10 Ticks)

K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.5832 1.5832 1.5832 1.5832 1.4580 1.4580 1.4580 1.4580
1 1.6478 1.6401 1.6372 1.6344 1.3544 1.3578 1.3615 1.3628
2 1.6621 1.6533 1.6593 1.6557 1.4030 1.3833 1.3876 1.3807
3 1.7358 1.6742 1.6704 1.6641 1.4898 1.4831 1.4605 1.4436
4 1.8008 1.6636 1.6714 1.6788 1.5055 1.4889 1.4817 1.4891
5 1.9877 1.7525 1.6876 1.6556 1.5407 1.5290 1.5137 1.5199

δ = 0.20 EUR (20 Ticks)
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K ask quote bid quote
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 1.6307 1.6307 1.6307 1.6307 2.0352 2.0352 2.0352 2.0352
1 1.6039 1.6101 1.6067 1.6056 1.8667 1.8783 1.8651 1.8578
2 1.6905 1.6788 1.6366 1.6291 2.0311 1.9504 1.8952 1.8754
3 1.7415 1.7390 1.7685 1.7286 2.0891 2.0128 2.0242 2.0538
4 1.7783 1.7678 1.8001 1.8138 2.2157 2.0384 2.0153 2.0711
5 1.8148 1.9217 1.8469 1.8314 2.4029 2.1590 2.1519 2.1784

A.4.2 Forecast results

Commerzbank

Table A.5: 1-step forecast MSEs, EACD-FunXL, bid-quote durations, Commerzbank, for
days 16 to 21 in the sample.

δ = 0.001 EUR (1 Tick)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 11.7733 11.7733 11.7733 11.7733 12.0061 12.0061 12.0061 12.0061
1 11.6583 11.7720 11.9552 12.0172 11.8365 12.0122 12.2384 12.3067
2 11.7566 11.8544 11.9515 11.9830 11.8086 12.0847 12.1704 12.1877
3 11.5565 11.7722 11.7873 11.7950 11.7377 12.0069 12.0325 12.0157
4 11.5718 11.8199 11.8680 11.8592 11.5628 12.0012 11.9907 11.9633
5 11.6905 11.8026 11.8127 11.7939 11.6854 11.8228 11.8539 11.8475

δ = 0.002 EUR (2 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 7.4409 7.4409 7.4409 7.4409 7.8037 7.8037 7.8037 7.8037
1 7.3842 7.4809 7.5794 7.6184 7.7112 7.8672 8.0188 8.0760
2 7.3566 7.5040 7.5307 7.5345 7.6573 7.8673 7.9076 7.9128
3 7.3542 7.4529 7.4672 7.4596 7.6427 7.8078 7.8306 7.8137
4 7.2833 7.4448 7.4569 7.4545 7.5296 7.7796 7.8093 7.7924
5 7.3634 7.4385 7.4348 7.4166 7.6059 7.6963 7.7354 7.7314
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δ = 0.003 EUR (3 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 7.2367 7.2367 7.2367 7.2367 7.5309 7.5309 7.5309 7.5309
1 7.2040 7.2923 7.3717 7.3999 7.4669 7.6296 7.7674 7.8138
2 7.2065 7.2965 7.3265 7.3343 7.4822 7.6625 7.7015 7.7088
3 7.1971 7.2634 7.2738 7.2695 7.4641 7.6214 7.6407 7.6267
4 7.1326 7.2629 7.2711 7.2701 7.3684 7.6057 7.6334 7.6132
5 7.1872 7.2444 7.2679 7.2452 7.4346 7.5304 7.5739 7.5643

δ = 0.004 EUR (4 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 7.3139 7.3139 7.3139 7.3139 7.8651 7.8651 7.8651 7.8651
1 7.2771 7.3403 7.4070 7.4290 7.7267 7.8998 8.0547 8.1017
2 7.2904 7.2968 7.3452 7.3623 7.7999 7.9311 7.9900 8.0076
3 7.2500 7.2625 7.2749 7.2775 7.7596 7.8983 7.9271 7.9245
4 7.1999 7.2268 7.2408 7.2637 7.6514 7.8903 7.9458 7.9320
5 7.1923 7.2358 7.2570 7.2097 7.7089 7.8233 7.8774 7.8502

δ = 0.005 EUR (5 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 6.9429 6.9429 6.9429 6.9429 7.5744 7.5744 7.5744 7.5744
1 6.9091 6.9298 6.9629 6.9738 7.2801 7.4584 7.6317 7.6813
2 6.9416 6.8670 6.8937 6.9066 7.3498 7.4155 7.4599 7.4723
3 6.8634 6.8544 6.8546 6.8679 7.3081 7.4036 7.4450 7.4410
4 6.8883 6.8293 6.8400 6.8776 7.2330 7.4226 7.4725 7.4236
5 6.8775 6.8311 6.8674 6.8179 7.2633 7.3616 7.3868 7.3768

δ = 0.010 EUR (10 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 5.8732 5.8732 5.8732 5.8732 7.3693 7.3693 7.3693 7.3693
1 5.9407 5.9232 5.8736 5.8538 6.4405 6.5086 6.6184 6.5913
2 5.9317 5.8119 5.7944 5.7934 6.5003 6.0153 6.0008 6.0124

Continued on next page

185



A Additional empirical results

Table A.5 – Continued from previous page

3 5.9419 5.8087 5.7854 5.7774 6.1178 6.0315 5.9226 5.8983
4 5.9916 5.8028 5.7783 5.7750 6.1607 5.7621 5.7950 5.8302
5 5.9290 5.8223 5.8020 5.7978 6.0241 5.7718 5.7979 5.7847

δ = 0.020 EUR (20 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 6.7894 6.7894 6.7894 6.7894 11.3246 11.3246 11.3246 11.3246
1 6.7644 6.2842 5.8911 5.7117 8.4256 14.1300 12.7087 11.0349
2 28.0357 77.5566 5.4520 5.4428 80.0214 26.4208 10.0981 8.3073
3 23.7000 29.8716 5.9803 6.9722 99.7300 96.0933 9.1658 7.8474
4 7.1163 6.6939 8.3304 8.8277 5.9705 32.2277 10.2098 30.4344
5 8.2596 489.8598 340.6562 445.5293 87.3178 106.5640 60.9214 94.8828

Table A.6: 1-step forecast negative log-likelihoods, EACD-FunXL, bid-quote durations,
Commerzbank.

δ = 0.001 EUR (1 Tick)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 132.7807 132.7807 132.7807 132.7807 29.8599 29.8599 29.8599 29.8599
1 139.6271 128.9054 115.5066 110.4986 30.9869 29.6028 27.6126 26.9261
2 137.7622 88.9822 93.5263 96.5894 30.3827 27.2940 26.5760 26.4274
3 120.9574 87.6850 88.2370 89.1542 31.4384 28.2724 28.1910 28.2311
4 118.7791 87.4673 89.1304 89.5400 31.7164 27.7267 27.3395 27.4409
5 107.6624 90.6671 90.7568 90.5395 29.7584 28.0682 27.9855 28.1182

δ = 0.002 EUR (2 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 59.1568 59.1568 59.1568 59.1568 18.5709 18.5709 18.5709 18.5709
1 60.4795 58.1004 53.4885 51.2249 19.4968 17.9053 16.3049 15.6767
2 61.9666 39.9391 40.0715 40.7493 19.5863 14.8124 14.7150 14.8107
3 59.6486 40.4612 39.8595 40.4464 19.0041 15.0816 14.9093 15.0125
4 58.4316 40.1380 39.9959 41.0751 19.9714 15.0566 14.9531 15.0568
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5 57.2028 44.6556 41.0928 39.8062 18.1517 15.4141 15.2985 15.3290

δ = 0.003 EUR (3 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 28.9968 28.9968 28.9968 28.9968 16.4561 16.4561 16.4561 16.4561
1 30.1558 27.3000 24.5889 23.5189 17.0893 15.4850 14.0861 13.5586
2 27.7395 20.1435 20.1755 20.3685 16.0805 12.7744 12.5325 12.5230
3 27.0654 20.0158 19.8301 19.9122 16.2439 12.9336 12.8074 12.7896
4 26.8899 19.8413 19.7670 19.9004 16.5630 12.8761 12.8197 12.7532
5 24.2970 20.1681 19.3991 19.9258 15.0496 12.8898 12.5835 13.1228

δ = 0.004 EUR (4 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 25.6233 25.6233 25.6233 25.6233 14.7380 14.7380 14.7380 14.7380
1 27.4991 25.0252 22.3705 21.3776 15.7498 14.4858 13.1938 12.7296
2 24.9505 18.0113 18.1738 18.3635 14.4643 11.3446 11.3368 11.4021
3 23.5617 17.9353 17.7206 17.8414 14.3869 11.3835 11.3096 11.2997
4 23.8119 17.6775 17.6173 17.7938 14.5608 11.4965 11.4672 11.3300
5 21.6686 17.5247 17.0196 17.1341 13.2487 11.5093 11.3121 11.7351

δ = 0.005 EUR (5 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 29.3623 29.3623 29.3623 29.3623 12.5518 12.5518 12.5518 12.5518
1 32.4616 31.2226 28.0930 26.7449 13.4456 13.2925 12.4849 12.1237
2 29.7700 19.9115 19.8425 20.0242 12.1602 10.0174 9.9393 9.9642
3 28.3197 19.8475 19.2470 19.4021 12.5336 10.0228 9.8871 9.7718
4 27.8488 19.3438 19.1319 19.1642 12.0738 9.9555 9.8157 9.6330
5 27.4472 19.6357 18.8044 19.1162 11.8335 9.9507 9.5093 9.9011

δ = 0.010 EUR (10 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 20.4311 20.4311 20.4311 20.4311 4.0387 4.0387 4.0387 4.0387
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1 23.5379 22.5895 18.7491 17.2437 4.6775 4.5829 4.4516 4.4279
2 22.8695 14.7489 13.6697 13.5037 4.5980 4.3234 4.3318 4.3469
3 21.5865 14.6012 13.1728 12.7361 4.6215 4.3395 4.3311 4.2950
4 21.7560 12.9870 12.2638 12.2254 4.7306 4.2985 4.2101 4.1712
5 18.8513 12.9576 12.4847 12.2813 4.7083 4.3297 4.2306 4.2119

δ = 0.020 EUR (20 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 15.6184 15.6184 15.6184 15.6184 3.8491 3.8491 3.8491 3.8491
1 15.2867 9.2762 6.4388 5.4752 3.7055 3.9904 3.8985 3.7861
2 4.5803 6.1659 3.9645 3.9427 6.2466 4.6576 3.6892 3.5632
3 4.4822 4.6041 3.4377 3.4302 6.6005 6.5996 3.5919 3.4818
4 28.7744 12.6216 3.5602 193475.3932 3.5513 4.8991 3.6763 4.8113
5 1131.3715 15.4259 23.1420 23.4375 6.2110 7.4356 17.2510 15.0367

Linde

Table A.7: 1-step forecast MSEs, EACD-FunXL, bid-quote durations, Linde.

δ = 0.01 EUR (1 Tick)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 43.7432 43.7432 43.7432 43.7432 44.1697 44.1697 44.1697 44.1697
1 42.4187 42.5101 42.5422 42.6163 42.7396 42.7265 42.7393 42.8271
2 42.3925 42.4078 42.4395 42.4485 42.7268 42.7798 42.8170 42.8275
3 42.3141 42.3878 42.4180 42.4831 42.6266 42.7503 42.7900 42.8529
4 42.2957 42.3173 42.3529 42.3435 42.6000 42.7064 42.7303 42.7028
5 42.3209 42.3099 42.3272 42.3770 42.6153 42.6903 42.7263 42.7229

δ = 0.02 EUR (2 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 11.1626 11.1626 11.1626 11.1626 11.0121 11.0121 11.0121 11.0121
1 11.2425 11.1748 11.1925 11.1956 10.9147 10.9439 10.9675 10.9753
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2 11.1629 11.3918 11.2923 11.2583 10.9152 10.9400 10.8999 10.8960
3 10.9165 10.9222 10.9928 11.1154 10.7432 10.7471 10.7856 10.8241
4 10.9013 10.8980 10.8914 10.9049 10.6816 10.7257 10.7215 10.7255
5 10.9705 10.8716 10.8949 10.9096 10.6472 10.6881 10.7129 10.7265

δ = 0.03 EUR (3 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 9.0828 9.0828 9.0828 9.0828 8.6437 8.6437 8.6437 8.6437
1 9.1184 9.0960 9.1203 9.1286 8.6229 8.6413 8.6567 8.6577
2 8.9988 9.0636 8.9535 8.9473 8.6005 8.5779 8.5208 8.5214
3 8.5816 8.5703 8.6714 8.8251 8.4136 8.3575 8.3906 8.4293
4 8.5646 8.5434 8.5368 8.5497 8.3733 8.3637 8.3496 8.3400
5 8.6213 8.5131 8.5542 8.5777 8.3646 8.3308 8.3567 8.3546

δ = 0.04 EUR (4 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 8.3959 8.3959 8.3959 8.3959 8.0286 8.0286 8.0286 8.0286
1 8.5698 8.4868 8.4863 8.5035 8.2990 8.2762 8.2753 8.2894
2 7.8831 8.7728 8.5267 8.4903 7.8842 8.1064 7.7435 7.7653
3 6.1145 6.5340 7.1367 7.7253 6.2265 6.3679 6.7208 7.1904
4 5.7990 6.1987 6.2714 6.2261 5.7867 6.3117 6.3666 6.2951
5 5.8167 5.9706 6.1959 6.2071 5.6962 6.0074 6.2683 6.2836

δ = 0.05 EUR (5 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 7.7961 7.7961 7.7961 7.7961 6.0869 6.0869 6.0869 6.0869
1 8.0578 7.9821 8.0071 8.0067 6.0395 6.0654 6.0787 6.0841
2 7.9026 8.1152 7.8426 7.7804 6.0658 6.0220 5.9901 5.9966
3 6.8263 6.9161 7.2284 7.3896 5.8611 5.8716 5.9257 5.9608
4 6.6332 6.9352 6.9526 6.8585 5.8373 5.8746 5.8637 5.8598
5 6.6215 6.6776 6.9507 6.8738 5.8305 5.8591 5.8806 5.8716

δ = 0.10 EUR (10 Ticks)
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K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 6.4713 6.4713 6.4713 6.4713 5.8833 5.8833 5.8833 5.8833
1 6.2527 6.0697 6.1576 6.1797 5.9565 5.8708 5.9489 5.9893
2 6.1950 6.7156 6.3372 6.0978 6.1246 6.2156 5.7962 5.7352
3 4.9532 5.6174 5.9126 6.3516 4.9544 5.5827 5.7998 5.9545
4 4.7693 5.1821 5.4136 5.4959 4.8873 5.1658 5.3862 5.4246
5 4.8137 5.0285 5.0974 5.2098 4.8836 5.0309 5.1343 5.1819

δ = 0.20 EUR (20 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 37.3599 37.3599 37.3599 37.3599 24.5085 24.5085 24.5085 24.5085
1 36.2510 30.3680 29.7287 29.4673 26.8256 31.4838 31.8711 31.8474
2 49.4079 44.8076 37.5068 32.1943 60.4037 56.0472 39.3286 33.8787
3 30.1036 43.1636 50.5767 55.2667 30.1453 55.0503 65.4426 69.8417
4 29.0450 24.2792 27.4535 34.8537 29.4290 27.2701 31.3452 39.3851
5 25.6843 24.3878 26.3501 28.1792 22.7121 25.8964 28.5219 30.0226

Table A.8: 1-step forecast negative log-likelihoods, EACD-FunXL, bid-quote durations,
Linde.

δ = 0.01 EUR (1 Tick)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 525.2768 525.2768 525.2768 525.2768 1413.6026 1413.6026 1413.6026 1413.6026
1 195.7372 207.2154 207.4348 215.0429 305.1424 351.0625 370.9741 401.2723
2 200.8595 210.0136 215.1555 216.2921 309.8952 313.6336 317.4923 314.4418
3 192.8245 208.1792 213.1704 224.5930 302.6874 313.4489 316.7142 324.1369
4 197.6982 204.2048 210.6150 214.2571 299.9014 305.0893 314.0129 308.2225
5 196.7881 205.8797 208.1212 215.7185 300.6993 298.9430 306.1110 314.7011

δ = 0.02 EUR (2 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201
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0 28.9570 28.9570 28.9570 28.9570 101.4032 101.4032 101.4032 101.4032
1 20.7777 21.5261 21.6877 21.8041 49.8157 59.8620 63.8068 66.0162
2 21.5460 22.0787 23.7480 23.7285 52.2479 44.0402 45.2661 45.6860
3 25.8711 26.1188 26.1721 24.2874 47.4167 46.9846 48.6573 46.2368
4 26.9474 26.3800 26.6571 26.8229 42.4920 44.8713 45.3428 45.1752
5 27.4611 28.4975 27.8333 27.2799 40.5651 41.2852 44.2171 44.8035

δ = 0.03 EUR (3 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 24.6267 24.6267 24.6267 24.6267 77.7280 77.7280 77.7280 77.7280
1 21.0543 22.3655 22.4739 22.5149 52.7818 58.3250 59.9376 60.5456
2 22.6873 19.6835 20.4350 20.6815 55.6740 51.2873 52.7984 53.6609
3 26.3786 22.2762 22.4808 20.9670 50.6536 52.8633 55.5913 52.0816
4 26.7085 24.2579 23.8261 23.3063 41.7905 49.6224 49.1432 49.0689
5 25.7048 24.8729 25.4544 24.6324 38.9985 44.4366 46.7154 47.1737

δ = 0.04 EUR (4 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 28.5780 28.5780 28.5780 28.5780 22.0163 22.0163 22.0163 22.0163
1 24.6614 26.3713 26.8384 26.8225 19.6127 19.5300 19.8755 19.8536
2 25.4609 25.6625 26.5752 27.2370 20.8221 18.5638 18.8311 19.0306
3 22.4884 23.7031 25.4002 24.0095 22.1201 21.2403 21.6892 21.4554
4 17.5658 23.2528 22.7994 22.6002 16.0429 19.6350 19.4242 19.0693
5 15.7546 24.0781 23.7958 23.4362 17.0737 17.2200 19.8164 18.8923

δ = 0.05 EUR (5 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 15.3983 15.3983 15.3983 15.3983 21.9687 21.9687 21.9687 21.9687
1 13.7136 14.0220 14.0684 14.0334 17.6103 18.8468 19.2209 19.2657
2 13.9487 13.6764 14.0844 14.1567 18.0874 17.2030 17.7543 18.1752
3 16.5435 15.1184 14.8876 14.1080 20.3910 18.8871 18.2998 17.1210
4 16.2340 15.9240 15.2942 15.7887 18.6770 21.0448 19.9973 19.6900
5 16.8840 16.4470 15.7257 15.9943 19.7793 19.9884 20.9584 20.5544
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δ = 0.10 EUR (10 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 22.8848 22.8848 22.8848 22.8848 56.4386 56.4386 56.4386 56.4386
1 14.5633 14.5801 14.6390 14.6539 43.3427 41.9081 41.5853 41.4188
2 15.8618 17.4962 19.4047 18.0145 48.5597 53.4011 60.2529 54.6936
3 14.6560 16.5633 17.7124 17.1940 39.0345 56.2466 55.1553 53.5709
4 13.1235 12.0970 11.6287 13.3530 39.7532 36.8111 36.4276 41.6271
5 11.3723 18.4836 12.5065 12.7178 33.1281 56.4665 35.0704 35.7900

δ = 0.20 EUR (20 Ticks)

K trained on days 1 to 10 trained on days 1 to 15
D=51 D=101 D=151 D=201 D=51 D=101 D=151 D=201

0 72.7945 72.7945 72.7945 72.7945 17.1619 17.1619 17.1619 17.1619
1 19.9910 19.2941 18.7423 18.1642 9.8586 5.9428 5.6036 5.5831
2 16.4248 15.3489 15.3027 16.0595 6.0241 6.7923 7.4523 7.1161
3 25.9401 14.7324 15.7002 16.3236 6.2674 7.3947 6.1170 6.0627
4 19.2920 25.2561 16.0749 14.9718 5.4159 6.9554 6.6788 7.3295
5 12.5037 42.9097 33.2648 33.9488 4.5610 6.3519 7.0543 8.3908

A.5 Chapter 5: Realized measures of liquidity
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Figure A.1: Top to bottom: (i) Initial liquidity, (ii) cumulative realized liquidity, and (iii)
cumulative realized log variance of liquidity for the MunichRe stock. Each
curve represents one day during 3 November 2008 to 30 December 2010 (in-
complete trading days removed). Initial liquidity is strictly positive and stricly
non-decreasing by construction. The drift is positive for most of the days,
which is in line with the findings for the diurnal pattern in Chapter 3. The
liquidity variance, computed based on 5-minute snapshots, almost exclusively
varies in its level, i.e., CRVL curves appear to be almost parallels, which is also
reflected by their eigenstructure.
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Figure A.2: First three estimated eigenfunctions for all six realized measures, MunichRe.
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Figure A.3: First three FPC score series and their SACF for MunichRe’s ask curves. The
first series, which carries most of the information according to the eigenvalues
analysis, is strongly serially dependent and quite persistent, indicating that
liquidity variation itself has these properties as well.
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Figure A.4: Top to bottom: (i) Initial liquidity, (ii) cumulative realized liquidity, and (iii) cu-
mulative realized log variance of liquidity for the Commerzbank stock. Each
curve represents one day between 3 November 2008 to 30 December 2010 (in-
complete trading days removed). Initial liquidity is strictly positive and stricly
non-decreasing by construction. The drift is positive for most of the days,
which is in line with the findings for the diurnal pattern in Chapter 3. The
liquidity variance, computed based on 5-minute snapshots, almost exclusively
varies in its level, i.e., CRVL curves appear to be almost parallels, which is also
reflected by their eigenstructure.
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Figure A.5: First three estimated eigenfunctions for all six realized measures, Com-
merzbank.
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Figure A.6: First three FPC score series and their SACF for Commerzbank’s ask curves.
The first series, which carries most of the information according to the eigen-
values analysis, is strongly serially dependent and quite persistent, indicating
that liquidity variation itself has these properties as well.
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