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Over the years I have challenged many audiences to tell me about one
complicated model that works well in explanation and prediction and have
not heard of a single one.
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Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit der dynamischen 6konometrischen Mo-
dellierung hochfrequenter Finanzdaten, welche borsentédglich in groffem Umfang von
elektronischen Handelssystemen, sogenannten Limit Order Books (LOBs), generiert
werden. Zusitzlich zu (Handels-) Preisen, die Gegenstand der meisten Modelle der
Finanzokonometrie und -mathematik sind, liefern solche Daten Informationen zur
Liquiditdt eines Wertpapiers: Sie geben zu jedem Zeitpunkt Auskunft iiber samtliche
an einem Markt angebotenen und nachgefragten Mengen. Aus Modellierungssicht
handelt es sich dabei um einen hochdimensionalen Vektor, der sich in sehr hoher
sowie schwankender Frequenz dndert. Die Herausforderung bei der Modellierung
besteht, neben der praktischen Komplikation der schieren Grofie der Datensitze, in
einer sinnvollen Reduktion dieser Preis/Mengen- bzw. zeitlichen Dimension.

Die zentrale Idee dieser Arbeit ist es, die beobachtete Liquiditdt als Realisation
eines funktionalen, d.h. kurvenwertigen stochastischen Prozesses aufzufassen. Auf
diese Weise ist es moglich, einige der wichtigsten Modelle der Finanzokonometrie
auf innovative Weise um den Liquiditatsaspekt zu erweitern. Bestehende statistische
Ansidtze aus dem Gebiet der funktionalen Datenanalyse (FDA) spielen hierbei eine
entscheidende Rolle.

Basierend auf einem dynamischen semiparametrischen Faktoransatz fiir Liquidi-
tatskurven sind dies zum einen multiplikative Fehlermodelle (MEMs) mit funktionalen
Liquiditatseffekten, GARCH- und ACD-FunXL. Zum anderen werden, analog zur
Realized-Volatility-Literatur, Ex-post-Mafle der Liquiditit und Liquiditdtsunsicher-
heit konstruiert. Die realisierte Variation des Preises wird sodann im Rahmen eines
linearen Zeitreihenmodells mit realisierten Liquiditdtseffekten, HAR-FunXL, model-
liert. Die Markov-Eigenschaft des HAR-FunXL-Prozesses (und Markov’scher Versio-
nen der MEMs) ermoglicht dessen Einbettung in die Klasse der generalisierten addi-
tiven funktionalen Regressionsmodelle, fiir deren Schédtzung auch einige Alternativen
zum faktorbasierten Ansatz diskutiert werden.

Anwendungen all dieser Modelle auf Daten des XETRA-Systems der Deutschen
Borse zeigen, dass die vorgeschlagenen Verfahren das Zusammenspiel von Liquiditét
und Volatilitdt besser zu verstehen helfen. Ferner wird gezeigt, dass Liquiditatsinfor-
mationen in vielen Situationen Volatilititsprognosen zu verbessern vermogen.
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Summary

This thesis is concerned with the dynamic econometric modeling of high-frequency
financial data. Such data are generated by electronic trading systems, so-called Limit
Order Books (LOBs), each trading day. Apart from security prices, for which most
models in financial econometrics and financial mathematics are designed, such data
reveal information on the liquidity of a security. At each point in time during the
trading day, supply and demand in the market can be reconstructed from LOB data.
From a modeling perspective, the LOB is a high-dimensional vector subject to random
changes at high and irregular (random) frequency. Apart from the size of LOB data,
the major challenge in modeling such a process is a sensible reduction of both the
price/size dimension of supply and demand, and the temporal dimension.

The focal idea of this thesis is to view observed liquidity as realization of a func-
tional, i.e., curve-valued stochastic process. Some of the most important models of
financial econometrics are extended by adding the liquidity aspect in an entirely
new way. These extensions heavily draw on statistical methodology developed in
the young statistical field of functional data analysis (FDA).

Firstly, multiplicative error models (MEMs) with functional liquidity impact, namely
GARCH-FunXL and ACD-FunXL, are proposed based on a semiparametric factor
model of liquidity curves. Secondly, in analogy to the realized volatility approach,
ex-post measures of liquidity and liquidity uncertainty are introduced. To investi-
gate the impact of realized liquidity on the price process, the HAR-FunXL model is
proposed. The HAR-FunXL process, in contrast to MEMs, is a finite-order Markov
process. It is shown that this model (as well as Markovian versions of some MEMs)
can be embedded into the class of generalized additive functional regression models,
facilitating the use of alternative estimation strategies to the factor-based approach.

Applications of the models to LOB data for the German XETRA system show that
the proposed methods are able to uncover connections between liquidity and volatil-
ity. Moreover, it is shown that liquidity information is valuable for forecasting price
volatility in many situations.
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Introduction

This thesis develops econometric models which aim at exploiting the full ultra-high
frequency information available in electronic trading systems in order to measure and
forecast financial risk.

Such electronic trading systems do not only reveal information on prices of financial
securities, whose statistical analysis has a long tradition tracing back to Bachelier
(1900), but also on liquidity present in the market place. According to Amihud et al.
(2013),

Liquidity and its converse, illiquidity, are elusive concepts: You know it when
you see it, but it is hard to define.

In this thesis, however, we argue that liquidity can not only be accurately defined,
but even directly observed using limit order book (LOB) data. This claim resembles
somewhat the claim that volatility can be observed based on high-frequency data, as it
has been lodged by the founders of the realized volatility revolution (Andersen et al.,
2000). As we will show, liquidity, i.e., limit order schedules for a given security can be
considered as a bivariate curve-valued or functional stochastic process in continuous
time. However, as individual order submissions or revisions typically do not change
the overall state of the LOB much, it is sensible to employ time series methodology on
data generated by a discrete sampling scheme. Which sampling scheme — for exam-
ple: which sampling frequency — is appropriate depends on the specific application.

The major contribution of this thesis is to augment some of the paramount models
of financial econometrics by the liquidity aspect in an entirely new way, building the
class of FunXL (Functional eXogeneous Liquidity) models. In particular, these are

e The GARCH-FunXL model, which aims to capture the impact of limit order
schedules on intraday dynamics of the conditional return distribution’s vari-
ance at “low" intraday frequencies, i.e., in situations where a continuous return
distribution is appropriate.

e The ACD-FunXL model, designed to capture functional liquidity impact in sit-
uations where interest focuses on the location parameter of conditional distri-
butions of time-varying LOB variables with positive support, such as (price,
volume, trade) durations or realized measures of volatility.
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o The HAR-FunXL model, mapping realized measures of liquidity (RML) to re-
alized measures of volatility (RMV) in a dynamic setting. To this end, a first
step towards a theory of RML is made. The model belongs to a greater class of
Markovian generalized autoregressive FunXL models.

In order to capture the FunXL aspect of LOB data, we draw on recent advances
in functional time series methodology and on functional regression techniques on
the one hand. On the other hand, we contribute to and draw on the recently active
literature on GARCH-X models and their relatives.

Guideline through the thesis

The thesis can roughly be divided into an introductory Part (Chapters 1 & 2), and
two Parts (Chapters 3 & 4, Chapters 5 & 6) presenting the major contributions of this
work.

More specifically, Chapter 2 sets the stage for the new econometric methodology
introduced in Chapters 3 to 6. Our measure of LOB-implied liquidity is motivated,
introduced, and discussed against the background of other liquidity measures put
forth in the literature. Its basic statistical properties are presented based on equidis-
tant LOB snapshots. However, we still hesitate to call these properties stylized facts as
they may vary somewhat from marketplace to marketplace due to different techno-
logical and institutional settings. We then use the framework of functional time series
analysis (FTSA), which allows to model liquidity as a discrete-time stochastic process
of curve-valued dynamic objects, to capture liquidity by means of a statistical model.
Finally, we use the functional generalization of the AR process, the FAR model due
to Bosq (2000), and a semiparametric dynamic factor model to investigate the pre-
dictability of liquidity.

Chapters 3 and 4 constitute Part I, introducing mutliplicative error models (MEMs)
with functional liquidity impact. The basic idea is to include liquidity as exogeneous
information in the conditional variance (mean) equation of GARCH (ACD) models.
The methodological challenge lies in mapping liquidity curves to the scalar time-
varying parameter of the (univariate) conditional distribution of financial returns,
durations or, possibly, other non-negative quantities of interest. The task, which is an
ill-posed inverse problem, is accomplished using the dimension reduction techniques
introduced in Chapter 2, namely, functional principal component (FPC) decompo-
sitions of the curves along with a basis expansion of a functional parameter which
exploits the orthonormality of FPCs. We propose a two-step quasi-ML estimation
procedure, conjecture its statistical properties, and investigate its finite-sample per-
formance by means of simulations. An extensive empirical application to three DAX
constituents traded on XETRA shows that liquidity matters to explain price variation
in-sample, and it is shown to augment prediction of volatility in an out-of-sample ex-
ercise. Most parts of Chapter 3 and some parts of Chapter 2 are based on the working
paper Fuest, A. and S. Mittnik (2015): Modeling Liquidity Impact on Volatility: A GARCH-
FunXL Approach, which is not yet published, but was selected for the peer-reviewed
8th Annual Society for Financial Econometrics Conference.



While in Part I, LOB snapshots are modeled, in Part II, snapshots are aggregated over
time. Chapters 5 and 6 constitute Part II. In Chapter 5, ex-post “realized" measures
of liquidity and liquidity variation are introduced. Liquidity at each price level rep-
resented in the LOB is here viewed as a realization of a continuous-time compound
nonhomogeneous Poisson process, i.e., a generalization of the celebrated compound
homogeneous Poisson model of Press (1967), originally proposed to model prices. We
show that accurate estimation is still possible even if only a rather small number of
intraday LOB snapshots is used. By collecting realized measures at all price levels, we
construct (again) functional realized measures of liquidity.

In Chapter 6, we then model the impact of these realized measures on price volatil-
ity in a HAR framework with functional exogeneous liquidity impact, based on di-
mension reduction techniques already used in Chapters 3 and 4. The ability of real-
ized liquidity to help explain and predict price variation is investigated in-sample and
out-of-sample. We also show that several Markovian models with functional liquid-
ity impact, HAR-FunXL being a special case, can be viewed as (functional, additive)
generalized linear regression models. This fact allows to import different approaches
from the respective literature, namely penalized functional regression (PFR), FPC re-
gression, and FPLS regression (Goldsmith et al., 2011; Reiss and Ogden, 2007; Gold-
smith and Scheipl, 2014; Reiss et al., 2015), providing estimates of the functional pa-
rameter based on explicit roughness penalties. We compare one of these approaches,
PFR, to our original FPC approach with respect to their in- and out-of-sample per-
formance, finding that the benefits of roughness penalization are disputable in our
context.

Chapter 7 concludes the thesis and discusses some directions of further research.

Some remarks about notation

Although all variables are introduced and defined in the text where it is most suitable
with regard to the subsequent explanations, it seems appropriate to introduce some
notational principles.

Deterministic vs. random We do not follow the convention of using capital let-
ters for random quantities and small ones for deterministic quantities as we found
it impossible to sustain and, in particular, to avoid collisions with other notational
conventions explained below. Whether or not a quantity is random is always stated
clearly.

Exogeneous vs. endogeneous The FunXL class of models in Parts I and II con-
tains endogeneous quantities, denoted by y, and exogeneous quantities, denoted by
x. As this distinction is crucial, at times we pay the price of using many sub- and
superindexes to consequently stick to this convention.

Dimension of objects We have to denote random quantities (which can be either
scalars, vectors, matrices, or infinite-dimensional objects), their observed realizations,
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and parameters appearing as scalars, vectors, matrices, and functions. Vectors (matri-
ces) are denoted by bold small (bold capital) letters, and vectors are always column
vectors if not explicitely stated otherwise. Almost all functions appearing in this the-
sis map R? or [0,1] to R, where either p = 1 or p = 2. Where not obvious from
the context, functions are often denoted along with their argument(s), for instance
x(d) or X(c,d). Sometimes functional quantities are put together in constructs like
x(d), which denotes a set of functions (argument in rows) stacked in a column vector,
which we call a “vector" (although it could, very informally, also be described as a #
rows x oo “matrix"). At some instances, x(d) represents functions joined together at
the ends of their (rescaled) domains.

Time In Part I, models almost exclusively live in discrete time, however, a daily and
an intraday clock are distinguished at times. For example, x;; may denote some x
at intraday time i on day f, which means there are two simultaneous discrete-time
clocks. In the context of duration models, there are quantities like x/;,, i.e. counted
(i) event times in continuous time ¢, observed over trading days ¢. However, this can
more compactly written as x,; without a loss of (essential) information.

In Part II, we introduce continuous-time processes whose properties change from
day to day, i.e., in discrete time. Here, ¢ is always the continous clock, and 7 is the
discrete clock, as for example in xy .

Price as “space" The functional quantities introduced are functions of the (continu-
ous) relative price d to be defined below, so there are quantities like x;;(d), i.e. func-
tional random variables (or their realizations) evolving in (discrete or continuous)
time.

Market side We always distinguish between supply (ask side) and demand (bid
side) in a market, which is denoted by a superindex (s), s € {bid, ask}.



Limit order books as functional time series

2.1 Introduction

In this Chapter, we introduce the functional approach to liquidity measurement. As
has already been stressed in the introductory Chapter, liquidity is hard do define. An
informal definition, ex negativo, may be that illiquidity of an asset is the effort that has
to be made to trade it. More comprehensively, Kyle (1985) states

[...] a liquid market is a continuous market, in the sense that almost any amount
of stock can be bought or sold immediately, and an efficient market, in the sense
that small amounts of stock can always be bought and sold very near the current
market price, and in the sense that large amounts can be bought or sold over long
periods of time at prices that, on average, are near the current market price.

In much of the econometric literature, a liquid security is simply one which is
heavily traded. However, stating an equivalence of trading volume and liquidity
confuses things: There may be situations where the market is perfectly liquid but
there is no trading, or there may be heavy trading but low liquidity. The paramount
example for the latter situation is the flash crash of May 6, 2010, where heavy trading
occurred during a transitory drop and subsequent recovery of US stock markets which
was due to a lack of liquidity (Kirilenko et al., 2014; Easley et al., 2011).

A simple yet more convincing alternative is Kyle’s Lambda, which has been devel-
oped with a continuous auction model framework in view (Kyle, 1985). The idea is to
relate the size of price changes to trading volume. For an interval [t — A, t] during the
trading day, it is defined as

A= |Price; — Price;_a|

4

Volumey;_4

where volume is measured in terms of the monetary value of the traded shares, and
not by the number of traded shares. Note that the prominent illiquidity measure of
Amihud (2002) is almost equivalent. High liquidity corresponds to a small Lambda in
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this notion. For a given trading volume, higher price changes therefore always imply
lower liquidity, even if they are driven by fundamental news arrivals.

Both liquidity measures, trading volume and Kyle’s Lambda, have in common that
they are computed based on trade information. If we characterize liquidity as the
potential cost of trading, then such trading-based measures obviously are biased as
they neglect liquidity that may be present even when no trading occurs. In contrast,
modern electronic trading systems provide information not only on trades, but also
on the costs of potential trades. Therefore, it can be argued that these trading systems
make liquidity observable — in very much the same way as volatility has been claimed
to be made observable by the availability of high-frequency data on trades and quotes,
15 years ago (Andersen et al., 2000).! It may still be criticized, however, that only
liquidity implied by submitted limit orders is observable, whereas a full picture of
liquidity also consists of unobservable trading intentions of market participants.

In this Chapter, we introduce measures of liquidity that are based on full informa-
tion about limit order schedules. As it turns out, such measures are large-dimensional
but smooth, which is why we choose to view them as realizations of a functional
stochastic process. Moreover, liquidity can in principle be observed at each point in
time during a trading day, giving rise to continuous-time methods. However, most
changes of liquidity typically only occur locally, leading to strong serial dependence
at high frequency. It depends on the specific purpose of the analysis which sampling
scheme and frequency are appropriate. We advocate dimension reduction techniques
for discrete-time stochastic processes with short memory, for which theoretical justifi-
cations have become available recently (Hormann and Kokoszka, 2010).

The Chapter proceeds as follows. After a short introduction of limit order books
(LOBs) in general, the structure and dynamics of LOBs, especially the German XETRA
LOB, are presented. We then introduce liquidity curves which can be constructed from
order book data, and use the framework of functional time series analysis (FTSA),
to capture the curves statistically. This idea allows to model liquidity curves as a
discrete-time stochastic process of curve-valued objects. Two models that have been
proposed in the literature, namely the functional AR model (Bosq, 2000) and a semi-
parametric factor model (Hyndman and Shang, 2009; Aue et al., 2015), are used to
characterize the dynamics and, in particular, to assess the predictability of the pro-
cess.

2.2 Limit order books

We introduce the basic rules and principles of LOBs that we need for subsequent
analyses. As many exchanges for financial securities exist around the world, and
even the trading rules for a given exchange are time-varying, we confine ourselves to
the description of the most basic mechanisms, thereby neglecting things like iceberg
orders, midpoint orders etc. For an excellent, comprehensive, and timely survey of
empirics and theory for LOBs see Gould et al. (2013).

At least this was what Andersen et al. (2000) expected, as the Dickensian title of their paper suggests.
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Market participants can submit limit and market orders. For both order types, they
have to specify the order size, which must be a positive integer-valued multiple of the
lot size, which typically (but not necessarily) amounts to 1 share. A sell (buy) market
order is the offer (request) to sell (buy) a certain number of shares of a financial
security at an unspecified price. A sell (buy) market order is therefore executed against
the demand (supply) on the opposite side of the market. Supply and demand stem
from the submission of limit orders. A limit order is not only characterized by its
direction (buy or sell) and size, but additionally by an execution price which has to
be specified as a positive integer-valued multiple of the tick size 6. Limit orders which
meet a suitable limit order on the opposite market side are immediately executed and
called effective market orders. All other limit orders are made visible to the other market
participants, and called active limit orders until they are either executed against a
suitable order from the other side of the market, or cancelled. The set of all active
limit orders at some time during the trading day is called the limit order book (LOB).

Figure 2.1 shows a stylized example of a LOB at some time during the trading
day. The number of offered (requested) shares implied by the active limit orders are
depicted in red (blue). We see that prices live on a discrete grid defined by the tick
size. The lowest (highest) price at which shares are being offered (requested) is called
the ask (bid) price, in the example Py + 26 and Py, respectively. These prices are also
called the quotes. The difference between the two is called the bid-ask spread, which
always amounts to at least 6. A limit order submission inside the spread (here: at
Py + 9) is called an aggressive limit order.

A market buy order of, say, size 5 would absorb the outstanding shares at Py + 26
and Py + 34, increasing both ask price and spread by 26. A market sell order of the
same size would absorb the best three price levels’ outstanding shares, and (since
there is no share at Py — 3J outstanding) both decrease the bid price and increase the
spread by 44.

We now turn to introducing some notation. LOB;, the state of the limit order book

at some time t during a trading day, can be characterized by PY s e {bid, ask}, the
quotes (measured in ticks), and vgs) (d), the outstanding number of shares on market
side s and at a price distance d (in ticks) from the respective quote. In the following,

we call d the relative price or distance. As limit sell orders may, in principle, be posted at

any integer number, we write "™ = max{d!vgaSk) (d) > 0} for supply at the highest
relevant price to characterize the dimension of LOB;. Limit buy orders can be posted

at any price level between (but excluding) zero and the ask quote.

Then, the LOB at time t is given by the D; = (Pt(bid) + d]"™* 4 3)-dimensional vector

LOB; = | Pt(bid), Pt(ask)/
Ugbid) (Pt(bid) +1),..., vibi‘” (0),
g

“9(0), ..., 00" (dpw)).

D; is typically very large, and the pattern of active orders (i.e., all tuples {price, #
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Figure 2.1: An example limit order book. The price Py is arbitrarily set as an anchor. Blue
(red) boxes stand for outstanding requested (offered) shares. The tick size is
0. The ask price (lowest offer price) is Py + 24, the bid price (highest price of
requests) equals P, thus the spread is 2. A market buy order of, say, size 5
would absorb the outstanding shares at Py + 26 and Py + 35, increasing both
ask price and spread by 26. A market sell order of the same size would absorb
the best three price levels’ outstanding shares, and (since there is no share at
Py — 36 outstanding) both decrease the bid price and increase the spread by 44.
The picture is similar to the one in Preis (2010).
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shares, market side}) highly irregular.

2.2.1 LOB-implied liquidity

Adding up the demand (supply) in the market at a given relative price, we obtain the
cumulative volume.

Definition 2.1 (Cumulative volume, cumulative imbalance). Let vgs) (d),d=0,1,2,...
be the volume in the book at a distance of d ticks from the best quote on market side s €{bid,
ask}. The cumulative volume (CV) at side s, tick d and time t is defined by

and the cumulative imbalance at tick d and time t by
" (d) = 3" (d) — " (@),

Cumulative volume on the sell (buy) side of the market is a strictly non-increasing
(strictly non-decreasing) step function with respect to the price. Steep cumulative
volume curves with respect to d imply high liquidity since a high number of shares
can be bought or sold without moving the price very much. A perfect market may
be characterized by infinite liquidity, i.e., by a situation where the available number
of shares at the quotes can be matched with market orders of any size. The two
CV functions for buy and sell orders plus bid and ask quotes contain the complete
available information about the LOB at a given time t.

If the volumes in the book are weighted by their prices, the resulting quantity is
called depth. Therefore, the depth of an order book is a hybrid between a liquidity
measure and a measure of the price of an asset. Over short periods of time during
which the price stays almost constant, CV and depth contain the same information.

Another, equally informative liquidity measure is the price of instantaneously buy-
ing (selling) n shares (Bowsher, 2004).

Definition 2.2 (Average cost per share). The average cost per share of a market order of
size n at time t is given by

[(n = 3f@) (A + e+ 1)+ R + 0070
k=0

ACH (n) =

S |-

where Pt(s) is either the bid or the ask quote, and
c:=sup{d: xgs)(d) <n, d=0,12...},

provided that n is larger than the volume at d = 0 (otherwise, ¢ := —1).
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Note that s = bid (ask) gives the price of a sell (buy) market order. There is a one-
to-one relationship between CV and the average cost per share as a function of the
offered /requested market order volume 7, which has been analyzed in Gouriéroux
et al. (1998) and Bowsher (2004).

Liquidity is high if AC curves are flat and low if they are steep. Moreover, the
average cost per share can be rewritten as

S S 1 - -
a0 =8+ S5 (- E o)+ Do
k=0 k=0

Just as depth does, AC depends on the (nonstationary) price process and is there-
fore a hybrid between a liquidity measure and the price. If we are interested in
liquidity only, measured as trading cost per share apart from its (bid or ask) price

Pt(s) , we may measure AC in ticks, i.e. simply drop Pt(s) in the above expression.
Closely related to AC, Gomber and Schweickert (2002) define the exchange liquidity
measure (XLM). We note that our version slightly differs from theirs.

Definition 2.3 (Exchange liquidity measure). The exchange liquidity measure of two
market orders (one buy, one sell) of equal size n at time t (a “roundtrip trade”) is given by

XLM;(n) = XLM"™ () + XLME (n),
where

B Act(ask)(n) . Pt(usk)

(buy)
XLM®™) (n) e ,
t
bid bid
XLMEsell)(n) _ Act( i )(nb) _ pt( id)
Pt( id)

are the average costs for buy (sell) orders relative to the respective quotes.

Some recent studies make use of these intrinsically curve-valued liquidity mea-
sures. However, instead of accounting for the functional nature of the data, each of
the liquidity curves is evaluated at one specific arbitrary value of their argument. Ex-
amples are Engle et al. (2012), where liquidity of treasury bills is observed at five price
tiers behind the quotes, and van Kervel (2015), where measures called DepthAsk and
DepthBid are used which are quite similar to CV. Gomber et al. (2015) use the XLM in
the same manner. Gouriéroux et al. (1998), Bowsher (2004) in what would later be-
come Bowsher and Meeks (2008), and Hérdle et al. (2012b) capture full LOB-implied
liquidity as we do. However, they focus solely on the curves” dynamics, while we are
the first to model both the curves and their impact on the price process.

Our measure of choice for LOB-implied liquidity will be cumulative volume through-
out this thesis. As compared to cumulative depth, it measures the number of supplied
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shares (liquidity) and not a hybrid between liquidity and the price. This is especially
important as we seek to disentangle the variation of the price and the variation of lig-
uidity. Moreover, in contrast to the price, CV can be expected to be stationary, as the
number of shares stays (at least approximately) constant over time. A major disad-
vantage is the incomparability of liquidity curves between different stocks.? Finally,
as the price is roughly constant over short periods of time, depth and volume may be
expected to contain roughly the same information in many situations.

It has already been explained that CV contains the same information as AC. More
precisely, CV corresponds to AC measured in ticks, whereas cumulative depth corre-
sponds to AC measured in monetary units. A major advantage of CV when it comes
to modeling is that it is defined for every relative price d > 0. At locations where
the book is empty, i.e., for large d, it simply amounts to the cumulative number of
shares in the book. In contrast, AC(n) is not defined (or may be defined to amount to
infinity) for n larger than the volume in the book. Therefore, although containing the
same information in principle, CV is preferable from a modeling perspective.

2.2.2 The XETRA LOB data

For all our empirical analyses, we make use of historical LOB data recorded by the
XETRA system of the German stock exchange (Deutsche Borse AG), and concentrate
on constituents of the DAX30 index, which can be expected to be quite liquid as com-
pared to non-constituents of DAX30. Our sample covers the period from November
2008 to December 2010. In almost all analyses, we use data for three companies: Mu-
nichRe, Commerzbank, and Linde. At one instance, we also use data for the Deutsche
Bank stock. As will be discussed in subsequent Chapters, the three stocks do not
only represent different industries, they also differ in their trend and volatility profile
during the observed period. Moreover, they have different tick sizes, which depend
on the price. The data contain buy and sell limit orders and trades (i.e., market orders
executed against active limit orders), both time-stamped to the microsecond (107 s)
from the beginning of the sample to mid-2010, and even to the nanosecond (107 s)
until the end of the sample. The available information for limit orders is

e The price of the limit order.
e The time of submission, t.start.

e The time of either cancellation or execution, t.end. Note that the information
whether a limit order was cancelled or executed against a market order is not
given directly.

e The size (in number of shares) of the order.

For trades, the same information is available, but by construction t.start equals
t.end. From these data, the state of the LOB, LOBy, can in principle be reconstructed

ZHowever, comparability of depth between stocks is equally questionable.

11



2 Limit order books as functional time series

for any time t during a trading day. LOB; is given by the collection of all active limit
orders, i.e., all orders for which t.start < t and t.end > t holds. For the stocks in
our sample, the number of changes of LOB; is typically a 6-digit number, the number
of transactions a high 4- or low 5-digit number.

Which sampling scheme and, possibly, which preprocessing of LOB; is chosen de-
pends on the goal of the specific analysis. In the present Chapter, we use data from
the whole sample period, taking equidistant snapshots every 20 minutes, that is, at a
rather low frequency. The same version of the data is used in Chapter 3. In Chap-
ter 4, we only use one month of data, taking snapshots at random, non-equidistant
times determined by the frequency of price changes (price durations), obtaining up to
roughly 70,000 snapshots during that month. Finally, in Chapters 5 and 6, we con-
struct summary statistics (realized measures) for each trading day, based on equidistant
snapshots taken every 1 or 5 minutes. Thus, in all cases we only use a subset of the
tull information that is provided by the data.

In the next Section, we formalize the notion of liquidity curves observed over time
in the language of discrete-time functional stochastic processes.

2.3 Functional time series

2.3.1 The basic setting

In the following, assume that relative prices, originally observed on a tick grid, are
rescaled toliein [0,1],0=d; < --- < d j = 1, without loss of generality. Dropping the
superscript “(s)" for this exposition, we assume the (possibly de-seasonalized) liquid-
ity curves for each market side to be generated by a functional stochastic process in
discrete time, (x;);cz, whose observations are elements of the Hilbert space L? ([0,1])
with inner product (x,y) := f01 x(s)y(s)ds, so that x; is square integrable.

The liquidity process exhibits a mean function, y(d) := E[x;(d)], and a (contempo-
raneous) covariance operator C(z)[(x — u, z)(x — u)] with covariance kernel %(d, m) =
Cov(x¢(d), x¢(m)). Mean and covariance kernel are constant over time. The covariance
operator has the form

1
C(z)(d) = / S (d, m)z(m)dm,
0

describing the contemporaneous linear dependence of different locations (relative
prices) of a liquidity curve. The quantities y and X can be viewed as the functional
time series analogues to the unconditional mean vector and the lag-zero autocovari-
ance matrix in vector autoregression. The covariance operator admits the spectral
representation

(o]

C(z) = Y Aj(pj2)¢;, (2.1)

j=1
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where the A; are the (strictly decreasing) eigenvalues and the gb] are the corresponding

orthonormal eigenfunctions of C, i.e., fol qb]z(m)dm =1land fo Pr(m)pj(m)dm =0, k #
j holds. The ¢;; := (¢;j, x;) are called the scores or loadings of the j-th eigenfunction
on liquidity at time t.

Based on the spectral representation, liquidity curves can then be represented via
the Karhunen-Loeve (KL) decomposition,

xi(d) = p(d) + il &i19(d)
L

which is also called the functional principal component (FPC) representation. The
eigenvalues A; of the spectral representation are equal to the unconditional variances
of the FPC scores (;;. As the eigenvalues are strictly decreasing, the FPCs are sorted
by their contribution to the x;’s (unconditional) variation. This gives rise to the K-
truncated FPC representation

x¢(d) = u(d) + Zéf,tcpj )+ vi(d),

where v (d) = Y2 g1 &j19;(d) is the truncation error.

In practice, we are interested in approximating the curves using such a truncation.
The smallest number of components, K, necessary to explain a certain proportion
(say 99%) of the curves’ total variation is called the effective dimension of the liquidity
process.

In many applications of functional data analysis, either the observation grid is irreg-
ular or even sparse, or some additional measurement error is present in the observed
x¢. In all these cases, x; can not di