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ABSTRACT  
The oculomotor nucleus (nIII) and trochlear nucleus (nIV) of the midbrain contain 

motoneurons that innervate extraocular eye muscles. The aim of this study is to identify the 

motoneuronal subgroups of the human nIII and nIV, which innervate individual extraocular 

muscles using several histochemical stains, and comparing the results with those obtained in 

monkey. The nIV innervates only the superior oblique (SO) muscle, whereas nIII contains 

extraocular motoneurons, which innervate the medial rectus (MR), inferior rectus (IR), 

superior rectus (SR) and inferior oblique (IO) muscles. The organization of the motoneuron 

subgroups in human is not clear, and is the main subject of this investigation. In monkey the 

localization of the motoneuron subgroups for individual muscles is well known as a result of 

tract tracing studies, and analyses of their differential transmitter inputs. The results in 

monkey provided a useful basis for this study on human nIII.  

Human brainstems were fixed in 4% paraformaldehyde, series of frozen and paraffin sections 

of 40µm, 10µm and 5µm respectively were stained with choline acetyltransferase (ChAT) 

antibody to identify cholinergic motoneurons of extraocular muscles. The ChAT sections 

were then immunostained for the inhibitory transmitter GABA with antibodies against 

glutamate decarboxylase (GAD) or for the calcium-binding protein calretinin (CR). The 

cytoarchitecture of nIII was visualized with cresyl violet, gallyas stain or antibodies against 

non-phosphorylated neurofilaments (NP-NF).  

Six subgroups were delineated in nIII: a dorsolateral (DL), dorsomedial (DM), central (CEN), 

ventral (VEN), lateral group (LAT) and the nucleus of Perlia (NP), in addition to the central 

caudal nucleus (CCN) and the urocortin-positive centrally projecting neurons of the Edinger-

Westphal nucleus (EWcp). The DL, VEN, LAT, EWcp and NP groups receive a strong 

supply of GAD-positive terminals as the SO motoneurons in nIV. Strong CR-

immunoreactivity was found in the CEN group, NP and CCN, but not in nIV.  

Based on the staining properties of the subgroups and a comparison to the existing studies on 

monkey nIII, the CCN was considered to innervate the levator palpebrae; the CEN group was 

identified as the upgaze motoneuron subgroup for SR and IO, and DL, VEN and LAT showed 

characteristics of MR motoneurons. For the first time two separate subgroups of motoneurons 

(DL and VEN) subserving motor pathways for MR were identified in the human nIII, 
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whereby the DL subgroup corresponds to the B-group and the VEN subgroup to the A-group 

in the monkey nIII.  The DM group was considered to innervate IR muscle. The strong CR 

input to NP revealed characteristics of upgaze motoneurons in nIII. A good correlation was 

found between monkey and human in CR stains. But surprisingly, there were striking 

differences between monkey and human nIII with GAD stains. The results indicate that 

human MR motoneurons may contribute to a specialized function, e.g. during vergence, by its 

strong GABAergic input. 



8  

ZUSAMMENFASSUNG  
Der Nucleus oculomotorius nIII und Nucleus trochlearis (nIV) im Mittelhirn enthalten die 

Motoneurone der extraoculären Augenmuskeln. Ziel der vorliegenden Arbeit war die 

Identifizierung der verschiedenen Motoneuronengruppen im humanen nIII und nIV, welche 

individuelle Augenmuskeln innervieren. Dies erfolgte anhand verschiedener histochemischer 

Färbungen, die im Vergleich zu Daten an Affen erhoben wurden. Der nIV innerviert nur den 

Musculus obliquus superior (SO), während nIII die Motoneurone von Musculus rectus 

medialis (MR), inferior (IR), superior (SR) und Musculus obliquus inferior (IO) enthält.  Die 

Organisation der Motoneuronengruppen im Menschen ist noch nicht eindeutig geklärt und ist 

Hauptthema der vorliegenden Studie. Im Affen ist die Lokalisation der einzelnen 

Motoneuronengruppen individueller Augenmuskeln aufgrund von Trakt-Tracer-Studien 

etabliert, ebenso wie die Transmittereingänge zu den einzelnen Gruppen, die als Basis für die 

vorliegende Arbeit am menschlichen nIII dienten.    

Humane Hirnstämme wurden in 4% Paraformaldehyd fixiert, und Serien von Gefrier- und 

Paraffinschnitten (40µm, 10µm und 5µm) wurden mit Antikörpern gegen 

Cholinacetyltransferase (ChAT) gefärbt, um die cholinergen Motoneurone der äußeren 

Augenmuskeln zu identifizieren. Die auf ChAT angefärbten Schnitte wurden dann mit einer 

weiteren Immun-Peroxidase-Färbung auf den inhibitorischen Transmitter GABA mit 

Antikörpern gegen Glutatmatdecarboxylase (GAD) oder das Calcium-bindende Protein 

Calretinin (CR) angefärbt. Die Zytoarchitektur des nIII wurde mit einer Kresyl-Violett-

Färbung, Gallyas-Färbung oder Immunfärbung auf nicht-phosphorylierte Neurofilamente 

(NF-NP) dargestellt.  

Sechs Untergruppen konnten im nIII des Menschen voneinander abgegrenzt warden: eine 

dorsolaterale (DL), dorsomediale (DM), zentrale (CEN), ventrale (VEN), laterale Gruppe 

(LAT) neben dem Nucleus Perlia (NP) und dem Nucleus centralis caudalis (CCN) und der 

urocortin-positiven central projizierenden Neurone des Edinger-Westphal Kerns (EWcp). Die 

Gruppen DL, VEN, LAT, EWcp and NP erhalten einen starken Eingang von GAD-positiven 

Endigungen, ebenso die Motoneurone des SO im nIV. Eine starke Immunreaktivität für CR 

wurde innerhalb des nIII nur in der CEN-Gruppe gefunden, sowie dem NP und CCN, nicht 

aber im nIV.   



9  

Basierend auf den histochemischen Eigenschaften der einzelnen Motoneuron-Subgruppen im 

Affen wurde beim Menschen der CCN bestätigt als der Kern, der die Motoneurone des 

Musculus levator palpebrae enthält; die CEN-Gruppe wurde anhand der selektiven CR-

Eingänge als Sitz der Motoneurone von SR und IO identifiziert, die Blickbewegungen nach 

oben bewirken. Die Gruppen DL, VEN und LAT zeigten die Eigenschaften von MR-

Motoneuronen, die DM-Gruppe die von IR-Motoneuronen. Hierbei konnte zum ersten mal 

gezeigt werden, dass auch beim Menschen der MR in zwei Gruppen innerhalb des nIII 

repräsentiert ist, wobei DL der B-Gruppe, und VEN der A-Gruppe beim Affen entspricht. Ein 

weiterer neuer Befund zeigte sich für den NP, der einen starken CR-Eingang erhält und damit 

eher Eigenschaften von Motoneuronen für Aufwärtsblick (wie SR und IO) aufweist. 

Insgesamt fand sich eine gute Übereinstimmung in den histochemischen Eigenschaften der 

Motoneuroneingänge bezüglich CR zwischen Mensch und Affe. Aber überraschenderweise 

war beim Menschen ein viel stärkerer GAD-Eingang auf die Motoneurone für horizontale 

Augenbewegungen (MR) als beim Affen präsent. Diese Daten weisen auf eine spezialisierte 

Rolle der MR-Motoneurone im Menschen, z.B. bei Vergenz, hin.  
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1 INTRODUCTION  1.1 EXTRAOCULAR EYE MUSCLES  
Vertebrates possess six extraocular muscles, five of which originate from the annulus of Zinn 

surrounding the optic nerve. These are the superior rectus (SR), inferior rectus (IR), lateral 

rectus (LR), medial rectus (MR) and superior oblique (SO) muscles (Fig. 1). The inferior 

oblique (IO) muscle has its origin from the lacrimal fossa located in the nasal portion of the 

orbit (Fig. 1). In mammals an additional eye muscle, the levator palpebrae muscle (LP), which 

elevates the upper eyelid originates from the annulus of Zinn as well and inserts on the 

superior palpebra (for review: Spencer and Porter, 2006). Embryologically the extrinsic eye 

muscles develop in a caudo-rostral pattern. MR, IR, SR and IO originate from cells in the 

rostral anlage (premandibular), the SO from cells in the middle anlage (mandibular) and 

lateral rectus from cells in the caudal anlage (hyoid). The mammalian LP develops from the 

premandibular anlage (Porter and Baker, 1992; Spencer and Porter, 2006) and is a derivate of 

the superior rectus muscle (SR) (Siebeck and Kruger, 1955; Isomura, 1981).   

 

 

 

 

 

 

Figure 1. Dorsal view of the left human orbita 
The eye is moved by six extraocular muscles: this includes four recti muscles: the medial rectus (MR), 
inferior rectus (IR), superior rectus (SR) and lateral rectus muscle (LR) and 2 oblique muscles: inferior 
oblique (IO) and superior oblique muscle (SO). 
With permission from Elsevier. Adopted from: Paulsen, Waschke, Sobotta Atlas der Anatomie des 
Menschens, 23.Auflage 2010 © Elsevier GmbH, Urban & Fischer, München (Abb. 9.39 modified). 
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Eye muscle Insertion Function 

MR Sclera of eyeball, nasally Adduction 

SR Sclera of eyeball, rostral Adduction, elevation, intorsion 

IR Sclera of eyeball, caudal Abduction, depression, extorsion 

LR Sclera of eyeball, laterally Abduction 

SO Sclera of eyeball, rostral Abduction, depression, intorsion 

IO Sclera of eyeball, caudal Abduction, elevation, extorsion 

LP Levator palpebrae Elevation of the upper eyelid 

 

Tab.1 Overview of extraocular eye muscles with their insertion points and function. 
MR, medialis rectus; SR, superior rectus; IR, inferior rectus; LR, lateral rectus; SO, superior 
oblique; IO, inferior oblique; LP, levator palpebrae; 
 

1.2.1 THE LOCATION AND STRUCTURE OF THE TROCHLEAR NUCLEUS  

The trochlear nucleus (nIV) is located in the tegmentum of the midbrain at the level of the 

colliculus inferior. At caudal planes the nIV is partially embedded in the fibres of the medial 

longitudinal fascicle (MLF) (Büttner-Ennever and Horn, 2014).  

The nIV consists of motoneurons supplying mainly the contralateral SO (Warwick 1953, 

Büttner-Ennever, 2006), whereas in rabbits a small population (3%) of small-sized neurons 

provide an ipsilateral projection (Murphy et al., 1986). In monkey a dorsal cap of nIV smaller 

motoneurons is located that supply the multiply-innervated slow non-twitch muscle fibers of 

the superior oblique muscle (Büttner-Ennever et al., 2001). A similar population of 

motoneurons is present in human as well (Büttner-Ennever and Horn, 2014).  

1.2.2. EXPERIMENTAL STUDIES OF THE TROCHLEAR NUCLEI 

The cytoarchitecture of nIV has been studied in different species of vertebrates such as 

amphibians (Naujoks-Manteuffel et al. 1986; Muñoz and González, 1995), reptiles (El-

Hassni, 2000), birds (Sohal et al., 1985), and mammals including rabbits (Murphy et al., 

1986), mouse (Sturrock, 1991), monkeys (Büttner-Ennever et al. 2001) and rats (Glicksman, 
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1980). The morphology of the human nIV was studied in adults (Zaki, 1960; Büttner-Ennever 

and Horn, 2014) and at fetal stages (Pearson, 1943; Cooper, 1946; 1947). Morphometric 

studies on adult human trochlear nucleus revealed 1500 motoneurons in one study (Zaki, 

1960) and between 1810 and 2400 in another study (Vijayashankar and Brody 1977). The 

latter number remains relatively constant based on studies from 20 male brains at various 

postnatal ages. 

1.2.3. THE LOCATION AND STRUCTURE OF THE OCULOMOTOR NUCLEUS  

The oculomotor nucleus (nIII) is also located in the midbrain tegmentum and adjoins the nIV 

rostrally. Pearson and coworkers described the development of nIII in human and divided it 

into three parts (Pearson, 1944). Based on studies in amphibians it was found that the 

motoneurons of nIII develop from the mesomere, found in the most caudal part of the 

midbrain (Matesz, 1990; Baker, 1992; Straka et al., 1998; Straka et al., 2001).   

Based on Nissl stainings in transverse human midbrain sections, the caudal part of nIII is 

round or oval in shape and lies dorsal and dorsomedial to the MLF. At caudal planes through 

nIII the unpaired central caudal nucleus is located between the dorsal aspects of both nIII 

(Schmidtke and Büttner-Ennever, 1992; Horn and Adamczyk, 2011; Büttner-Ennever and 

Horn, 2014). At more rostral planes through nIII, the midportion of the nucleus is almost 

triangularly shaped with both halves separated from each other by the nucleus of Perlia (NP) 

(Perlia, 1889). At the dorsal border of nIII a compact small-celled nucleus appears, which is 

now termed the centrally projecting part of the Edinger-Westphal nucleus (EWcp) (see 

section 1.4) (for review: Kozicz et al., 2011). At rostral planes through nIII, the EWcp adjoins 

the dorsal, ventral and rostral border and merges with the unpaired anteromedian nucleus 

(Büttner-Ennever and Horn, 2014).  

The nIII is composed of multipolar neurons with pronounced Nissl substance, similar to those 

of the trochlear and abducens nuclei, which show characteristic features of motoneurons. The 

oculomotor complex contains motoneurons that innervate the ipsilateral medial rectus, 

inferior rectus, inferior oblique and the contralateral superior rectus; and about 36% of the 

oculomotor nerve fibers from the caudal oculomotor nucleus arise from the contralateral side 

and cross the midline within the nucleus (Büttner-Ennever and Horn, 2014).    
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the method of selective extirpation of single extraocular muscles and examining the areas with 

chromatolysis Warwick put forward a topographic map of the distribution of the subgroups of 

individual eye muscles within nIII of monkey. Accordingly, the IR subgroup is located rostro-

dorsally, and the ventral MR subgroup appears throughout the whole length of nIII (Fig. 3). 

1.2.4.2. Tract-Tracing Methods 

Several methods of investigation resulted in conflicting opinions: stimulation, retrograde 

degeneration (chromatolysis analysis) methods, advanced techniques like the combination of 

immunhistochemical and tract tracing methods, were employed offering a broader platform 

for comparison of results.  In one study horseradish peroxidase (HRP) was injected in the eye 

muscles innervated by the oculomotor nucleus (MR, IR, SR, IO) in eleven young adult 

baboons (Augustine et al., 1981). After 48 hours survival time, fixation and cutting, their 

brains were processed with tetramethylbenzidine (TMB)-HRP (Mesulam 1978) and analysed. 

According to Augustine (1981) the functional cell groups intermingled with each other in the 

nIII of baboon and could not be clearly identified as separate entities. Plotting of retrogradely 

labelled HRP-positive neurons following single injections of extrinsic eye muscles, the 

contralateral innervation of the superior rectus muscle was revealed. Motoneurons supplying 

the SR were located in the intermediate area of the contralateral nIII and the median raphe 

predominantly in the caudal two third of the nucleus. Retrogradely labelled IR motoneurons 

were found ipsilaterally, especially in the rostral third of the nIII. IO motoneurons where 

found ipsilaterally in the caudal two thirds of nIII occupying a similar portion as the SR of the 

contralateral eye but tend to lie more laterally. 57% of LP motoneurons were labelled on the 

ipsilateral side, while 43% were contralateral. Two subgroups of motoneurons were identified 

for the MR, which was confirmed in the Rhesus monkey by Büttner-Ennever and Akert, who 

called these MR populations A- and B-group (Fig. 4B; Büttner-Ennever and Akert, 1981). 

The A-group lies ventrally within nIII and reaches into the medial longitudinal fascicle 

(MLF), the B-group lie dorsolateral within nIII. A third small MR group, termed the C-group 

is located at the dorsomedial periphery of nIII (Büttner-Ennever and Akert, 1981). It contains 

motoneurons supplying the multiply-innervated non-twitch muscle fibres (MIFs) of the MR 

(Fig. 4C). Recent studies revealed that the C-group houses also the cell bodies of palisade 

endings, which are associated with MIFs at the myotendinous junction of the MR (Lienbacher 

et al., 2011). In addition, a group of motoneurons supplying the non-twitch muscle fibres of 

IO and SR are located between both nIII in the so-called S-group (Büttner-Ennever et al., 

2001).  
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1.5. AIM OF THE PROJECT 
Aim of this study is to investigate the location of the motoneuronal groups of individual 

extraocular eye muscles within the oculomotor nucleus in human by their differential 

histochemical profile based on previous studies in monkeys (Zeeh et al., 2013; 2015). The 

identification of the motoneuronal subgroups innervating individual extraocular muscles in 

human will help the clinical interpretation of disorders involving nIII lesions.  

In this study frozen and paraffin sections from normal human post-mortem material was used. 

The cytoarchitecture of nIII and nIV was studied in classical Nissl and Gallyas fiber stainings 

and immunostaining for non-phosphorylated neurofilaments (NP-NF). Based on previous 

findings on the content on GABAergic and calretinin-positive terminals in different subgroups 

in monkey nIII, the histochemical features of the subgroups were investigated on parallel 

series of neighbouring sections with immunostaining for glutamate decarboxylase (GAD) and 

calretinin (CR) in the human material. In selected sections the motoneurons were in addition 

immunostained with ChAT-antibodies.  

The results are part of a publication (Che Ngwa et al., 2014)  
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2 MATERIAL AND METHODS 2.1 MATERIALS 
Four human brainstems were investigated in order to delineate the motoneuron subgroups 

within the oculomotor nucleus (nIII) and the trochlear nuclei (nIV) (Che Ngwa et al., 2014). 

 

AUTOPSY REPORTS 

Two brainstems from post-mortem human cases were obtained through the Reference Center 

for Neurodegenerative Disorders of the University of Munich (BrainNet) with written consent 

from next of kin, who confirmed the wishes at time of death.  Two brainstems were obtained 

from donations to the Institute of Anatomy. All procedures were approved by the University 

ethic committees and obeyed the ethical standards laid down in the 1964 Declaration of 

Helsinki. It was of importance to acknowledge in the autopsy report that donors did not suffer 

from a neurological disease, which could have affected the brain stems and thus the outcome 

of the experimental results. All brainstems were obtained 24 hours after death. One brainstem 

was processed for frozen sections (case 1), while the other three cases were embedded in 

paraffin (case 2-4) (Table 2). 

Case 1 (frozen sections): the donor was a 90 years old female, who had no neurological 

disease, but suffered from peripheral vascular disease 4th grade. Death resulted from multi-

organ failure. Case 2 (paraffin sections): the donor was a 69 years old male without 

neurological disorders, but suffered in later life from Hodgkin disease, a side-effect due to 

several cycles of chemotherapy and Diabetes mellitus Type 2. Death resulted from metastasis 

in the cervical region of the spinal cord following squamous cell carcinoma in the temporal 

region. Case 3 (paraffin sections): the donor was a 57 years old female without any mature 

macroscopic identification of neurological degeneration. She suffered from ovarian cancer, 

metastasis of lymph nodes und liver. Death occurred as a result of embolism of the lungs. 

Case 4 (paraffin sections): the donor was a 67 years old male without neurological disorders. 

He suffered from rectal cancer. Death occurred as a result of left heart failure.  

  2.2. PREPARATION OF BRAINSTEMS 
The cerebellum was removed by cutting through the cerebellar peduncles, and then the basilar 

arteries after the pontine branches were carefully dissected away. All brainstems were cut 

transversely through the superior colliculus and caudally about 3cm below the pyramidal 
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decussation. The brainstems of cases 1, 2 and 4 were further cut into two blocks as indicated 

in Figure 7, whereby the rostral block (A) contained the oculomotor (nIII) and trochlear 

nucleus (nIV).  In addition, selected sections containing the oculomotor and trochlear nucleus 

were taken from case 3.   

 

 

 

 

 

 

 

 

 

Figure 7. Blocking of the brainstem 
Sagittal view of the human brainstem showing the block (dotted line) taken from the midbrain 
containing the oculomotor (nIII) and trochlear nuclei (nIV). CCN = central caudal nucleus; INC = 
interstitial nucleus of Cajal; IO = inferior olive; MB = mammillary body; MLF = medial longitudinal 
fascicle; NIII = oculomotor nerve; NVI = abducens nerve; nXII = hypoglossal nucleus; PC = posterior 
commissure; SC = superior colliculus; TR = tractus retroflexus.   2.3 FIXATION 
To preserve the morphology of cells and the tissue antigens during subsequent processing, 

storage and immunohistochemical staining, an appropriate fixation was performed. However 

the effectiveness of fixation depends on fixation time, concentration of fixative and size of the 

brain stems. In the present study all tissue was immersed in either 4% paraformaldehyde in 

0.1M phosphate buffer or 10% formalin at 4°C (Tab. 2). These fixatives prevent the tissues 

from autolysis through inactivation of endogenously released enzymes, decomposition of cells 

by bacteria or other microorganisms. In addition fixation hardens the tissue and aids 

sectioning (Romeis, 2010). For frozen sections the midbrain block of case 1 was transferred 

from fixative to 10% sucrose in PBS solution for 18 hours. After the brainstem had sunken to 

the bottom of the container in 10% sucrose solution, it was transferred to 20% sucrose in PBS 

Block A 
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solution for 76 hours and finally in 30% sucrose solution for 48 hours. For paraffin 

embedding the midbrain blocks of case 2 and 4 were dehydrated in increasing concentrations 

of alcohol and xylene and then embedded in paraffin. 

    

Case Age PMT Fixative TFT Cutting Thickness 

1 90 years 24h 4% PFA 2 days Frozen 40µm 

2 69 years 24h 4% PFA 2 days Paraffin 10 and 5µm 

3 57 years 24h 10% FMN 6 days Paraffin 10µm 

4 67 years 24h 10% FMN 10 days Paraffin 10 µm 

 
Table 2: Human post-mortem cases used in the study 
PMT= post mortem time, TFT= total fixation time, FMN= Formalin, PFA= Paraformaldehyde 

 

2.4 SECTIONING 

For freeze cutting (case 1) the brainstem block was wrapped up in aluminium foil and 

embedded in dry ice for 10 minutes. Then the frozen block was placed on the specimen holder 

of the cryostat using a mounting medium (Tissue Tec). Serial sections at 40µm were collected 

from caudal to rostral. Every 7th section was immediately mounted on a slide for Nissl 

staining (interval of 240µm), the respective neighbouring sections for Gallyas staining. 

Additional 4 series were collected in cold PB for free-floating immunostaining with 

antibodies against either non-phosporylated neurofilaments (NF-NF) or glutamic acid 

decarboxylase (GAD). 

Case 2 and 4: From paraffin blocks series of 20 consecutive sections of 10µm and 10 

consecutive sections of 5µm were cut alternately from rostral to the caudal end of the brain 

stem and mounted on superfrost slides. Every 40th section of 10µm thickness (1, 40, 80 etc) 

was stained with cresyl violet. The neighbouring sections were stored at room temperature to 

be processed immunoperoxidase labelling of different markers, e.g. choline acetyltransferase 

(ChAT) and either GAD or calretinin (CR).  

Case 3: Selected paraffin sections of a case that had been cut at 10µm sections were processed 

for the immunohistochemical detection of ChAT and GAD.  
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2.5. STAINING TECHNIQUES 
2.5.1 NISSL STAINING 

The classical Nissl-staining method labels neurons and glial cells and is used to demonstrate 

the cytoarchitecture of brain tissue. It was named after Franz Nissl, a German 

neuropathologist who developed the technique in the Anatomy Department at the Ludwig 

Maximilians University. It stains the rRNA in the ribosomes on the rough endoplasmic 

reticulum of neurones (Nissl Substance) in a purple/dark blue colour (Romeis, 2010). Here 

cresyl violet is used to identify nIII and nIV within the midbrain tegmentum (detailed protocol 

see appendix).  

 2.5.2 GALLYAS STAIN 
The Gallays method was used to visualize the myelin of nerve fibers in the midbrain. It is a 

silver staining using a physical developing procedure described by Gallyas (Gallyas, 1979). 

(For detailed procedures see protocol).    

2.5.3 IMMUNOHISTOCHEMICAL STAINING 
For the delineation of the motoneuronal subgroups in the human nIV and nIII, several series 

of neighbouring sections were treated with antibodies against different antigens, e.g. non-

phosphorylated neurofilaments (NP-NF), choline acetyltransferase (ChAT), glutamate 

decarboxylase (GAD) and calretinin (CR) with immunoperoxidase detection.  A summary of 

the antibody sources and detection methods is given in Table 3.  

NON-PHOSPHORYLATED NEUROFILAMENT (NP-NF) 
The monoclonal mouse antibody (SMI-32, Sternberger) reacts with non-phosphorylated 

epitope in neurofilament H and is abolished when the epitope is phosphorylated (Sternberger 

and Sternberger, 1982). This antibody visualizes two bands (200 and 180kDa) in conventional 

immunoblots (Goldstein et. al, 2003). The non-phosphorylated neurofilament stain (NP-NF) 

has been proven to label the motoneurons in their whole extent including the dendrites and the 

axons (Eberhorn et al. 2005). It was used here to demonstrate the respective motoneuron 

subgroups in nIII and nIV in one case (case 1).   

CHOLINE ACETYLTRANSFERASE (CHAT) 

Detailed characterization and distribution of cholinergic motoneurons in nIII and nIV were 

studied by staining with a polyclonal antibody against the synthetizing enzyme choline 

acetyltransferase (ChAT) raised in goat (AB 144P; Chemicon). The antigen was purified from 
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human placenta. It is identical to the brain enzyme (Bruce et al., 1985) (see protocol for 

details) 

GLUTAMATE DECARBOXYLASE (GAD) 

GABAergic terminals were detected by using a mouse monoclonal antibody directed against 

both isoforms of the GABA synthesizing enzyme glutamate decarboxylase (GAD) (Biotrend: 

GC3108).  In mammals, GAD exists in two isoforms GAD67 and GAD65 encoded by different 

genes. Both forms are expressed in the brain, where GABA is used as the transmitter. GAD65 

is an amphiphilic, membrane-anchored protein (585aa), encoded on human chromosome 10, 

and is responsible for vesicular GABA production. GAD67 is cytoplasmic (594aa.), encoded 

on chromosome 2, and seems to be responsible for significant cytoplasmic GABA production. 

GAD expression changes during neural development in rat spinal cord. GAD65 is expressed 

transiently in commissural axons around E13 but is down regulated the next day while GAD67 

expression increases mostly in the somata of those neurons (Phelps et al. 1999).  

 

CALRETININ (CR) 

A rabbit polyclonal antibody (7699/4, LOT 18299, Swant, Bellinzona, Switzerland) against 

calretinin (CR) was used. CR is a calcium-binding protein of the EF-hand family related to 

calbindin D-28k and calmodulin with a widespread distribution throughout the brain (review: 

Andressen et al. 1993). The CR antiserum was produced in rabbits by immunization with 

recombinant human CR containing a 6-his tag at the N-terminal C.  

 

2.5.3.1 Single immunostaining for NP-NF, GAD, CR 

Parallel series of adjacent frozen sections were processed free-floating, whereas the paraffin 

sections were processed on slide after deparaffination in three changes of xylene and 

rehydration in decreasing concentrations of alcohol (100%, 96%, 90%, 70%) and a final rinse 

in distilled water. In addition, the paraffin sections of formalin-fixed tissue underwent an 

antigen retrieval procedure preceding the protocol for immunostaining: after deparaffination 

the sections were incubated in 0.01M sodium citrate buffer (pH 8.5) in a water bath at 80°C 

for 15 min and then for another 15 min at room temperature, before being rinsed and started 

with the immunostaining protocol (Jiao et al., 1999). An overview of the sources and dilutions 

of antibodies is given in Table 2.  
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After a short rinse in distilled water and 0.1M PBS, pH 7.4, the sections were treated with 1% 

H2O2 for 30 minutes to eliminate endogenous peroxidase activity and washed extensively 

with 0.1M TBS (pH 7.4). To block non-specific bindings sites the sections were then 

preincubated with 2% normal horse serum in 0.3% Triton-X 100 in 0.1M TBS for 1 h at room 

temperature. Parallel 2mm spaced series of neighboring sections were subsequently treated 

either with mouse anti-NP-NF (1:6000; Sternberger) or mouse anti-GAD (1:4000; Biotrend) 

or rabbit anti-CR (1:2500; SWant) for 2 days at room temperature. After washing in 0.1M 

TBS, the sections were incubated either in biotinylated horse anti-mouse IgG (1:200; Vector 

Laboratories) or biotinylated horse anti-rabbit IgG (1:200; Vector Laboratories) at room 

temperature for 1 h, followed by 3 washes in 0.1M TBS.  Then sections were incubated in 

extravidin-peroxidase (EAP; 1:1000; Sigma) for 1h at room temperature. The glycoprotein 

avidin has a high affinity to biotin and therefore binds to the biotinylated secondary 

antibodies. After two rinses in 0.1M TBS and one rinse in 0.05M Tris-buffer (TB), pH 8, the 

peroxidase of the EAP complex indicating the antigenic sites was visualized by a reaction in 

0.025% diaminobenzidine and 0.015% H202 in 0.05M TB for 10 min. After several rinses in 

TBS free floating sections were mounted, air-dried, dehydrated in increasing concentrations 

of alcohol, then immersed in xylene and coverslipped in Depex (Serva, Heidelberg, 

Germany). 

2.5.3.2 Combined immunoperoxidase labeling for ChAT and GAD  

In selected paraffin sections combined immunoperoxidase labeling was used to 

simultaneously detect ChAT and GAD. After deparaffination and rehydration, the sections 

were washed in 0.1M Tris-buffered saline (TBS, pH 7.4), treated with 1% H2O2 in TBS for 30 

min, were rinsed again, and preincubated with 2% normal rabbit serum in 0.3% Triton-X 100 

in TBS for 1 h at room temperature. The sections were then treated with goat anti-ChAT 

(1:100; Chemicon, AB144P) in TBS with 2% rabbit serum and 0.3% Triton X-100 for 48h at 

room temperature. After three washes in 0.1M TBS the sections were incubated in 

biotinylated rabbit anti-goat IgG (1:200, Vector lab) in TBS containing 2% bovine serum 

albumin for 1h at room temperature. After three washes in 0.1M TBS the sections were 

treated with extravidin-peroxidase (EAP; 1:1000; Sigma) for 1h. Then, two rinses with 0.1M 

TBS were followed by one wash with 0.05M Tris-buffer, pH 8, and the reaction with 0,025% 

diaminobenzidine, 0.4% ammonium nickel sulfate and 0,015% H202 in 0.05M Tris-buffer, pH 

8, for 10 min. This results in a black staining of ChAT-positive structures. After a thorough 

washing and blocking of residual peroxidase activity with 1% H202 in 0.1M TBS, the sections 
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were preincubated in 2% normal horse serum in 0,3% Triton-X-100 in 0.1M TBS for 1 h at 

room temperature before transferred to mouse anti-GAD (1:4000; Biotrend) in 2% normal 

horse serum and 0.3% Triton-X-100 in TBS for 48h at room temperature. After three rinses in 

0.1M TBS the sections were incubated in biotinylated horse anti-mouse IgG (1:200; Vector 

laboratories, Burlingame, CA, USA) in TBS containing 2% bovine serum albumin for 1 h at 

room temperature. The antigen binding sites were detected by incubating sections in 

extravidin peroxidase (1:1000; Sigma, St. Louis, MO, USA) for 1 h and a subsequent reaction 

with 0.025 % diaminobenzidine and 0.015% H2O2 in 0.05 M Tris-buffer (pH 7.6) for 10 min 

to yield a brown staining of GAD-positive profiles. After washing, the sections were air-dried, 

dehydrated in alcohol and coverslipped with DPX (Sigma, St. Louis, MO, USA). 

Antigen Primary Antibody Manufactor Secondary antibody 

Non-phosphorylated 

neurofilamet (NP-NF) 

Mouse anti-NP-NF 

1:5000 

Sternberger Monoclonals 

incorporated: 

Cat-No:  SMI 32 

Biot. Horse anti-mouse 

1:200 (Vect. Lab.) 

Glutamate decarboxylase 

(GAD) 

Mouse anti GAD, 

1:4000 

Biotrend, GC3108 Biot. Horse anti-mouse 

1:200 (Vect. Lab.) 

Choline acetyltransferase 

(ChAT) 

Goat anti-ChAT, 

1:100 

Chemicon, AB144P Biot. Rabbit anti-goat, 

1:200 (Vect. Lab.) 

Calretinin (CR) Rabbit anti-Calretinin

1:2500 

SWant, 7699/4 Biot. Horse anti-Rabbit

1:200 (Vect. Lab.) 

 

Table 3: Sources and dilution of primary antibodies 2.6. DIGITAL IMAGE ANALYSIS 
All slides were examined with a light microscope DMRB (Bensheim, Germany; or Zeiss 

Axiophot). Brightfield photographs were taken with a digital camera (Microfire; Optronics, 

USA) mounted on the microscope (Zeiss, Axiophot). The images were captured on a 

computer with Picture frame software 2.2. (Optronics, USA) and processed in Photoshop 7.0 

(Adobe Systems, Mountain View, CA). The sharpness, contrast, and brightness were adjusted 

to reflect the appearance of the picture seen through the microscope. Arrangement and 

labelling of pictures was performed with drawing software (CorelDraw 11) or in Powerpoint 

(Microsoft, 2010).   
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2.7. SEMIQUANTITATIVE ESTIMATION OF GAD- AND CR-POSITIVE TERMINAL DENSITY 
A semiquantitative approach was chosen for a judgment of the density of GAD- and CR-

positive input to motoneurons in nIII and nIV. For that all subgroups in nIII and nIV were 

viewed at high-power magnification and the density of GAD- and CR-positive puncta was 

judged as either very strong, moderate to strong, or weak and accordingly marked in a series 

of schematic views of nIII and nIV. Were present, immunoreactive cell bodies were included 

in the scheme in a non-quantitative manner (Fig. 16). In a subsequent study with additional 

markers for glycinergic inputs a systematic quantitative analysis with statistics was performed 

in parallel to a similar investigation in rhesus monkey (Che Ngwa et al., 2014; Zeeh et al., 

2015). 
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 3 RESULTS  
The general cytoarchitecture of the human trochlear (nIV) and oculomotor nucleus (nIII) was 

studied in Nissl- and Gallyas-staining and immunohistochemistry for non-phosphorylated 

filaments (NP-NF). A delineation and mapping of the individual subgroups of motoneurons 

within nIII was achieved with simultaneous immunostaining for ChAT and GAD or for CR. A 

semiquantitative judgment of the density of GABAergic and CR input served as basis for the 

delineation of subgroups within nIII. A preliminary quantitative estimation of the GABAergic 

input served as basis for a more elaborated quantitative analysis of GAD-positive and CR-

positive inputs, which were combined with the analysis of glycin-positive inputs carried out 

by colleagues of the research group and published in a common paper (Che Ngwa et al., 

2014).    3.1. TROCHLEAR NUCLEI 
3.1.1. CYTOARCHITECTURE 

Coming from the caudal direction the trochlear nucleus (nIV) is clearly outlined in Nissl and 

Gallyas staining as a round nucleus embedded in the fibers of the medial longitudinal fascicle 

(MLF) (Fig. 8A, B). As reported by others two completely separated divisions of the nIV are 

apparent in the caudo-rostral direction (Büttner-Ennever and Horn, 2014). In NP-NF-

immunostained sections, the morphology of the motoneurons in nIV was also well delineated 

(Fig. 8C). The dendrites remained confined to the dorsal boundaries of the nucleus. Most 

axons leave the nucleus laterally to form the trochlear nerve, which exits the brainstem at its 

dorsal side. However some axons were also observed travelling between the bundles of the 

MLF leaving ventrally (Fig. 8C, arrows).  

3.1.2. HISTOCHEMICAL PROPERTIES OF NIV 

All neurons within nIV were immunostained for ChAT. Double-immunostained sections 

revealed that ChAT-positive motoneurons receive a strong input from GAD-positive 

terminals (Fig. 8F). Immunostaining for calretinin (CR) revealed that no CR-positive neurons 

were present in nIV, and only few scattered CR-positive puncta were found within the 

neuropil of nIV (Fig. 8G).  
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3.2. OCULOMOTOR NUCLEUS  
3.2.1 CYTOARCHITECTURE 

At its caudal end the nIII appears as a V-shaped nucleus with the unpaired central caudal 

nucleus (CCN) containing the levator palpebrae (LP) motoneurons (Fig. 9A, B. C). In NP-NF-

immunostaining a lateral group (LAT) of scattered neurons within the MLF is most apparent, 

which appears separated from a compact central cell group (CEN) (Fig. 9C). A small 

dorsomedial group (DM) can be delineated from a small dorsolateral cell group (DL), which 

forms an almost circle-like round cluster at this plane of nIII (Fig.9 A, C). In Gallyas staining 

it is apparent that a bundle of fibers leaves the dorsolateral subgroup (DL) and runs between 

DM and CEN subgroups (Fig. 9B). An even clearer cytoarchitectural picture of the 

motoneurons was revealed in the NP-NF stain. The dendrites of the motoneurons are 

intermingled with each other most apparent for the CEN subgroup. At further rostral levels, 

the nIII elongates dorso-ventrally and approaches the midline from both sides with the rostral 

end of the CCN situated dorsally (Fig. 10A). At this level five separate groups can be 

delineated within the nIII with NP-NF staining (Fig. 10C): these are the CEN, DM, LAT and 

DL and an additional ventral group (VEN). In Gallyas staining it is apparent that these groups 

are separated by traversing fibers, whereby the DL is most pronounced, almost encapsulated 

by fibers (Fig. 10 B, C).  

At the plane where the rostral end of the CCN is disappearing, a small group of densely 

packed neurons adjacent to the dorsal rim of nIII becomes apparent in Nissl-stained sections 

(Fig. 10A). It is known now to be part of the perioculomotor urocortin group forming a 

central projecting part of the Edinger-Westphal nucleus (EWcp) (Horn et al. 2008; Kozicz et 

al. 2011). At further rostral planes the medial portion of the EWcp appears sandwiched 

between the dorsal parts of nIII of both sides (Fig. 11A). At about the same level at the 

midline ventrally, a cell group known as the Nucleus of Perlia (NP) is separated by dorso-

ventrally traversing fibers from the main nucleus (Perlia 1889) (Fig. 11 A, B, C). As described 

previously the NP shows a similar pattern of NP-NF immunoreactivity as the motoneurons in 

nIII (Fig. 11C). The NP extends up to the rostral end of nIII (Fig. 12). At the most rostral level 

the main nIII nuclei, consisting of the DL group, are embraced by the EWcp forming a large 

cell group dorsally and a small extension ventrally (Fig. 13A), which does not express NP-NF 

immunoreactivity (Fig. 13C). With NP-NF-immunostaining scattered neurons are visible 

dorsal to EWcp, which may correspond to the parasympathetic preganglionic neurons of the 
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the neuropil (Fig. 14G). In addition, CCN receives a strong supply from CR-positive fibers 

and puncta (Fig. 10E, 15 G).  

3.2.2.2 Dorsolateral subgroup (DL) 

The dorsolateral subgroup (DL) receives a rich supply of GAD-positive terminals, which 

outlines its boundaries, already apparent in an overview (Fig. 9D). At high magnification it is 

apparent that the GAD-positive puncta are associated with the somata and dendrites of the 

ChAT positive motoneurons (Fig. 14A). As nIV the DL contains only very few CR-

immunoreactive neuronal profiles most of them traversing fibers (Fig. 15. A). At the rostral 

end of nIII the NP-NF staining revealed that fibers of neurons within the DL cross over the 

midline to its contralateral counterpart (Fig. 13 C, arrow; E) 

3.2.2.3 Dorsomedial subgroup (DM)   

The dorsomedial subgroup (DM) could also be identified in the Nissl stain and showed its 

largest cross section area at mid-level sections of nIII (Fig. 11A). It is bordered from 

traversing fibers at its lateral and medial borders – apparent in Gallyas staining (Fig. 11B). In 

addition, the DM subgroup has a supply of GABAergic inputs, which is markedly less than 

the DL, NP and EWcp. This property was taken to judge whether at the most rostral level of 

nIII the DL or DM was present (Fig. 13 A, B, C, D). CR-immunostaining did not reveal any 

labeled cells or puncta and fibers within DM (Fig. 15 C).  

3.2.2.4 Ventral subgroup (VEN)   

The ventral subgroup (VEN) could be identified in the Nissl stain forming a separated group 

extending throughout almost the complete length of nIII (Fig. 10, 11, 12). Gallyas staining 

revealed its delineation from the medial Nucleus of Perlia (NP) by vertically traversing fibers 

at the medial border of VEN (Fig. 10B, 11B, 12B). No clear separation from the neighbouring 

subgroups was seen with immunostaining for NP-NF (Fig. 10C, 11C, 12C).   

The VEN subgroup received a strong supply of GABAergic terminals similar to that of the 

DL subgroup (Fig. 10D). The detailed view shows numerous GAD-positive puncta attached 

to the outlines of ChAT-positive motoneurons (Fig. 14D). As noted for most other subgroups 

no CR-positive neuronal elements were found in VEN in contrast to the adjacent CEN (10E, 

11E). 
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3.2.2.5 Lateral subgroup (LAT)   

The lateral subgroup (LAT) is only visible at caudal transverse sections of nIII (Fig. 10A, C, 

D) and may belong to adjacent subgroups within nIII, but being separated by the traversing 

fibers of the MLF as found in monkey for the MR subgroups (Büttner-Ennever et al., 1981). 

From NP-NF stains it is apparent that the dendrites of the motoneurons reach into the CEN 

and VEN of nIII (Fig. 9C, 10C). A strong supply from GABAergic terminals was found on 

somata and dendrites of ChAT-positive neurons (Fig. 14E). As in VEN, the LAT cell group 

does not show an expression of CR-positive punctate profiles, but a few traversing CR-fibers 

are visible, which may enter from the MLF (Fig. 15E).  

 

3.2.2.6. Central subgroup (CEN) 

On caudal sections the central group lies at the ventrolateral border of nIII as a large cell 

group located between the DL dorsally and VEN ventrally (Fig. 9, 10, 11). It extends through 

the caudal half of nIII. It is separated from the dorsal adjoining DM and DL by the 

dorsoventrally running fibers seen in the Gallyas stain (Fig.9B, 10B, 11B). The delineation of 

CEN is not so obvious from NP-NF stains, since the dendrites extend into neighbouring 

subgroups except the DL (Fig. 9C, 10C, 11C). As DL the CEN subgroup receives a strong 

supply of GABAergic terminals covering the somata and dendrites of ChAT-positive 

motoneurons (Fig. 9D, 10D, 11D, 12D, 14B). A significant observation for CEN was the 

presence of numerous CR-positive fibers and puncta highlighting this group within nIII very 

clearly (Fig. 10E, 11E). The close inspection revealed that the motoneurons in CEN were 

associated with many CR-positive puncta and fibers entering the nIII from the adjacent lateral 

MLF (Fig. 15 B).  

3.2.2.7 Nucleus of Perlia (NP)   

The nucleus of Perlia (NP) could be identified in the Nissl stain as cytoarchitectural entity 

throughout the rostral half of nIII (Fig. 11, 12). It is located at the midline as an unpaired 

nucleus and separated at its lateral boundaries from the nIII by longitudinally running fibers 

clearly visible with Gallyas staining (Fig.11B, 12B). These fibers expressed strong CR-

immunostaining (Fig. 11E, 12E). The neurons of NP showed a strong NP-NF 

immunoreactivity as described earlier (Horn et al., 2008) (Fig. 11C, 12C).  The neurons 

within NP received a moderate supply by GABAergic puncta (Fig. 14F) and it was filled with 

numerous CR-positive fibers and puncta associated with the neurons (Fig. 15 F).  
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3.2.2.8 Urocortin-positive centrally projecting neurons of EW  

In this study the centrally projecting neurons of EW (EWcp) have not been outlined with 

urocortin-immunostaining, since this has been demonstrated clearly in previous reports 

(Ryabinin et al., 2005; Horn et al., 2008). From these studies it is clear that the urocortin-

containing EWcp is clearly visible and defined in Nissl-stainings as a compact chromatophilic 

group of small-elongated cell bodies dorsal to DM (Fig. 10A, 11A) and DL (Fig. 12A, 13A). 

At rostral levels the dorsally located EWcp enlarges and a second smaller ventral group of 

EWcp is visible (Fig. 13A). Rostral to nIII this cell population merges with the anteromedian 

nucleus, which may represent a rostral extension of EWcp. This reflects the topographical 

arrangement of EWcp and nIII (see Büttner-Ennever and Horn, 2014). As described earlier 

the neurons of EWcp are not ChAT- or NP-NF-positive (Fig. 10C, 11C, 12C, which was 

taken as indication that they do not represent parasympathic preganglionic neurons of the  

ciliary ganglion in an earlier study (Horn et al., 2008). The non-cholinergic neurons of EWcp 

received the strongest supply of GABAergic terminals found in this study (Fig. 14H). This 

was the only subgroup, where scattered CR-positive neurons were found (Fig. 11E, 12E, 15H; 

16F, 16H, 16K, 16M). They may represent the source of the CR fibers traversing 

dorsoventrally separating the NP from the main nIII on both sides (Fig. 11E, 12E).  
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3.3. SEMIQUANTITATIVE ANALYSIS OF GABA AND CALRETININ INPUTS 
The semiquantitative analysis of GABA and CR-positive axonal and synaptic profiles was 

judged at microscopic views of all subgroups in nIII and nIV at high-power magnification 

(see Figures 14 and 15). The density of GAD- and CR-positive puncta, which represent cut 

axons and synaptic endings, were judged as either very strong, moderate to strong, or weak. 

This analysis was accordingly marked in a series of schematic views of nIII and nIV at 

different caudo-rostral planes (Fig. 16, strong, medium, weak shading). The strongest GAD-

input was found to neurons of the EWcp, which densely covered all portions of EWcp (Fig. 

16E,G,I). A similar strong GAD-input was found to SO motoneurons in nIV, CEN, LAT, DL, 

VEN, NP and CCN (Fig. 16A,C, E, G, I), whereas only a weak GAD-input was apparent in 

the DM subgroup (Fig. 16 C, E, G, I). For CR the strongest input was found around neurons 

in CCN, NP and CEN (Fig. 16 D, F, H). All other subgroups in the nIII and nIV contained 

only few CR-profiles most of them representing traversing fibers (Fig. 16 B, D, F, H, K). The 

EWcp was found to contain CR-positive cell bodies, which are indicated by red dots (Fig. 16 

F, 16H, 16K, 16M).  
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4 DISCUSSION 
 

The present study of the cytoarchitectural characteristics and histochemical properties of the 

human oculomotor nucleus provides the basis for the identification of the subgroups of 

individual muscles by comparison with findings in non-human primates based on tract-tracing 

and studies of the histochemical profile (Büttner-Ennever et al., 2001; Zeeh et al., 2013, 

2015). Compared with previous studies, the designation of eye muscle subgroups is unique, 

and the evidence supporting this version in human is the most rigorous up to date. Based on 

the present study an updated map of the oculomotor nucleus in human has been developed 

(Fig. 17) (Che Ngwa et al., 2014).  

 4.1. HISTOCHEMICAL PROPERTIES OF OCULOMOTOR NUCLEUS SUBGROUPS 
4.1.1. CALRETININ 

4.1.1.1. Motoneurons for upgaze 

As in monkey, a strong CR input was only found in selected groups within nIII, which include 

the central group (CEN) and the central caudal nucleus (CCN) (Zeeh et al., 2013). Tract-tracer 

injections into extraocular muscles in monkey have revealed that the motoneurons of the 

ipsilateral IO and contralateral SR occupy a similar location in the caudal nIII as CEN in 

human (Spencer and Porter, 1981; Zeeh et al., 2013). Furthermore, both populations, which 

mediate upward eye movements, are rather mixed with each other, which indicate that they 

may receive similar inputs (Leigh and Zee, 2015). Since combined immunostaining for CR 

and GAD in monkey did not show any colocalization within synaptic nerve endings 

surrounding IO and SR motoneurons, the CR input is considered to be excitatory (Zeeh et al., 

2013), given the fact that glycine-positive inputs (the other potential inhibitory transmitter) 

are only found around MR neurons within nIII (Spencer et al., 1992; Che Ngwa et al., 2014; 

Zeeh et al., 2015). Tract-tracer injections into nIII and combined immunostaining in monkey 

revealed three sources of CR-positive afferents: the rostral interstitial nucleus of the medial 

longitudinal fascicle (RIMLF), the interstitial nucleus of Cajal (INC) and the vestibular Y-

group (Ahlfeld et al., 2011). The CR input did also include the CCN, containing the LP 

motoneurons, which are activated during upward eye movements in a similar way as the SR 

motoneurons mediating concomitant lid movements during upgaze (Fuchs et al., 1992). Given 

the fact that the CEN group in the human nIII has similar histochemical characteristics as 
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upgaze motoneurons in monkey this group is considered as the IO and SR motoneuronal 

subgroup in human (Che Ngwa et al., 2014). This selective CR-input to IO and SR 

motoneurons may serve as an anatomical tool to identify the premotor pathways mediating 

upgaze in human tissue. Based on the work in monkey (Ahlfeld et al., 2011) a recent post-

mortem human study revealed that a subpopulation of parvalbumin-positive neurons in the 

RIMLF expressed CR, which therefore may be considered as premotor up-burst neurons 

(Adamczyk et al., 2015). As in monkey the CR-positive population in INC may represent 

excitatory neurons that are involved in the integration of eye-velocity to eye-position signals 

for upward eye movements transmitted to the SR and IO motoneurons (Adamczyk et al., 

2015). In addition, the Y-group is another possible source of CR-positive input as indicated 

by the presence of CR-expressing neurons in human (Adamczyk et al., 2015). In monkey 

electrical stimulation of the Y-group was shown to induce excitatory signals in the IO and SR 

motoneurons resulting in slow upward eye movements (Chubb and Fuchs, 1982; Sato and 

Kawasaki, 1987). 

4.1.1.2. Function of Calretinin 

So far the functional significance for the selective expression of CR in premotor upgaze 

pathways is unclear. As a calcium-binding protein it may be involved in buffer function 

controlling the concentration of free calcium or in calcium sensoring (Schwaller, 2014). 

Another calcium-binding protein, parvalbumin, has been found in many fast-firing highly 

active neurons of the oculomotor system, which includes motoneurons, saccadic premotor 

neurons in the RIMLF and INC and omnipause neurons (for review: Horn, 2006; Horn and 

Adamczyk, 2011). No such association with specific properties is known for CR-positive 

neurons.  Suggested functions of CR are a role in neuron protection, synaptic plasticity or a 

role in the regulation of neuronal excitability (for review: Schwaller, 2014).  

4.1.2. GLUTAMATE DECARBOXYLASE 

Unlike in monkey a considerable GABAergic input was found to all subgroups of eye muscle 

motonuclei in human. Complimentary work indicated that the human DL and VEN groups 

were specifically associated with glycinergic markers as found for the MR subgroups in 

monkey (Spencer and Baker, 1992; Zeeh et al., 2015). Therefore the VEN is considered as the 

MR A-group and the DL as the MR B-group (Che Ngwa et al., 2014).  Whereas in monkey 

the MR subgroups receive only a moderate GABAergic input (Zeeh et al., 2015), in human a 

very strong supply by GABAergic terminals was noted. Since a more or less strong GABA 
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input was found to all nIII subnuclei, this property was not very helpful for the delineation of 

the subgroups by its own, but only in combination with the other markers for CR and glycine 

(Che Ngwa et al., 2014).  

In monkey and cat a GABAergic input to the motoneurons of vertically pulling eye muscles 

was found to arise from neurons in the vestibular nucleus mediating the vestibulo-ocular 

reflex (De la Cruz et al., 1992; Wentzel et al., 1996; Highstein and Holstein, 2006). Further 

sources of GABAergic afferents are premotor neurons in the INC (Horn et al., 2003), which 

correspond to the finding of inhibitory postsynaptic potentials in nIII and nIV observed after 

INC stimulation (Schwindt et al., 1974; Sugiuchi et al., 2013). It is unclear, why in human the 

histochemical pattern for GABAergic markers in nIII differs from that of non-human 

primates. However it is in line with the observation that also the human abducens nucleus 

(nVI), which mediates horizontal eye movements as well, receives a rich supply from 

GABAergic afferents, unlike in monkey (Spencer et al., 2003; Dombi, Dissertation LMU, 

2014). A possible source of a GABAergic input to the MR subgroups in human is the central 

mesencephalic reticular formation (CMRF) (Büttner-Ennever and Horn, 2014). This area is 

interconnected with the superior colliculus and the premotor horizontal gaze center in the 

pontine reticular formation (Cohen, 1984; Chen et al., 2000). The activity of neurons in the 

CMRF is correlated with horizontal and vertical saccades (Waitzman et al., 2002), but recent 

studies indicated a direct projection to neurons involved in the near response, consisting of 

convergence, pupillary constriction and lens accommodation. Preliminary data from tract-

tracing experiments in monkey revealed that many terminals originating from the CMRF and 

targeting MR motoneurons are GABAergic (Bohlen et al., 2015). It is well possible that this 

near response system used for fixating near visual targets is much more evolved in human 

(Leigh and Zee, 2015).    4.2. HISTOCHEMICAL PROPERTIES OF PERIOCULOMOTOR CELL GROUPS 
4.2.1. NUCLEUS OF PERLIA 

Contrary to Le Gros Clark (1926) and in agreement with Brouwer`s postulation in primates 

and insectivores the spindle shaped nucleus of Perlia (NP) is a consistent entity lying in the 

middle third of the oculomotor nucleus, and it is present in 80% of human (see Büttner-

Ennever and Horn 2014). Based on the coincidence of its appearance in evolution with the 

frontal eye position enabling convergent eye movements a synergistic function to MR 

motoneurons was anticipated for NP (Adler, 1933). The NP was not found in other animals.  
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Reports about a group of retrogradely labelled neurons at the midline between both nIII after 

tract-tracer injections into the ciliary ganglion in monkey must be interpreted with caution 

(Burde and Williams, 1989). These neurons are likely to represent the MIF motoneurons of 

IO and SR of the medial S-group, which may have taken up the tracer (discussed in Horn et 

al. 2008). So far there is more evidence that the neurons of NP exhibit features of twitch SIF 

motoneurons, e.g. expression of ChAT and NP-NF and ensheathing by perineuronal nets 

(present study; Horn et al., 2008; Che Ngwa et al., 2014). A complete new finding of the 

present study is the association of NP with CR-positive puncta and fibres suggesting a CR 

input to this subgroup (Che Ngwa et al., 2014). Considering the findings on a selective CR 

input to those motoneurons involved in upgaze in monkey (Zeeh et al., 2013) and presumably 

also in man, the NP may represent SR SIF motoneurons that have been separated from the 

adjacent main nIII by dorsoventrally travelling axons (Horn et al., 2008; Büttner-Ennever and 

Horn, 2014;  Che Ngwa et al., 2014).   

  

4.2.2. EDINGER-WESTPHAL NUCLEUS 

Traditionally the Edinger-Westphal nucleus is considered as the location for the preganglionic 

neurons of the ciliary ganglion controlling the lens and the sphincter pupillae muscle. 

However several reports showed that this is true only in monkey and avian, whereas in all 

other species studied so far - including human - the EW consists of neurons containing the 

neuropeptide urocortin (Horn et al., 2009). This urocortin-positive group has been identified 

in other species as well and was found to project to other central targets subserving different 

functions in stress reaction or water and food intake (Skelton et al., 2000; Kozicz et al., 2001). 

To avoid confusion between scientists working on the different systems a new nomenclature 

was introduced for the EW: now the term “EWcp” refers to the centrally projecting non-

cholinergic neurons, whereas “EWpg” refers to the cholinergic parasympathetic preganglionic 

neurons of the ciliary ganglion (Kozicz et al., 2011; Büttner-Ennever and Horn, 2014). As 

described earlier the EWcp forms a group of small tightly packed neurons dorsal to the nIII at 

caudal levels, which do not express NP-NF or ChAT- immunostaining. At rostral planes 

through nIII a ventral portion of EWcp was visible. The present study revealed that the EWcp 

received the densest supply from GABAergic terminals, whose source is not known, yet. In 

addition it contained several CR-positive neurons that formed a largely independent 

population from urocortin-positive neurons shown by comparison of neighbouring 5µm 

sections stained for CR and urocortin, respectively (Che Ngwa et al., 2014).  
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4.2.1. TWITCH- AND NON-TWITCH MOTONEURONS 

It has been well established that extraocular muscles contain at least six different muscle fiber 

types, which can be divided into two main categories based on their innervation and 

contraction properties: singly-innervated twitch muscle fibers (SIF) and multiply-innervated 

non-twitch muscle fibers (MIF) (for review: Spencer and Porter, 2006). Tract-tracing 

experiments revealed that the motoneurons of MIFs are located in the periphery of the 

motonuclei (for review: Büttner-Ennever 2006). In monkey the MIF motoneurons of IR and 

MR are located in the C-group dorsomedial to nIII and those of IO and SR in the S-group 

between the both nIII (Büttner-Ennever et al., 2001). Both motoneuron groups differ also in 

their histochemical properties: SIF motoneurons within nIII express NP-NF immunoreactivity 

and are ensheathed by perineuronal nets, whereas MIF motoneurons lack these markers 

(Eberhorn et al., 2005; Eberhorn et al., 2006). Using these histochemical properties putative 

MIF motoneurons have been described around the medial aspects of nIII in human as well, 

but the MIF motoneurons could not be allocated to specific extraocular muscles, yet (Horn et 

al., 2008). A recent immunohistochemical study on transmitter inputs to nIII in monkey with 

emphasis on MIF and SIF motoneurons did not reveal significant differences in transmitter 

inputs to both populations, except for vesicular glutamate transporter 1, which was found only 

at MR MIF motoneurons (Zeeh et al., 2015), but this antibody has not been used in the 

present study on human tissue.  Therefore the proposed oculomotor map in human applies 

only to the SIF motoneurons of individual extraocular muscles. Further studies are necessary 

to extend the map to include the location of MIF motoneurons.    

 4.3. MAP OF THE OCULOMOTOR NUCLEUS IN HUMANS 
Different methods including stimulation, retrograde degeneration, tract tracing and 

immunohistochemical methods have been used in previous animal studies describing the 

representation of the extraocular muscle within nIII in various vertebrate species (for review: 

Evinger, 1988; Büttner-Ennever, 2006). Degeneration or tract-tracing studies in monkeys 

(Warwick, 1953; Augustine et al., 1981; Büttner-Ennever and Akert, 1981; Porter et al., 1983; 

Sun and May, 1993), cats (Gacek, 1974; Akagi, 1978; Miyazaki, 1985), rabbit (Akagi, 1978; 

Shaw and Alley, 1981; Murphy et al., 1986), rat (Glicksman, 1980; Oda, 1981; Labandeira-

Garcia et al., 1983), and guinea pig (Gomez-Segade and Labandeira-Garcia, 1983; Evinger et 

al., 1987), have shown that the motoneurons of nIII are arranged in subgroups. In general the 



48  

arrangement of subgroups of individual eye muscles follow a similar pattern found in all 

vertebrate species (for review: Evinger, 1988; Büttner-Ennever, 2006): Motoneurons of the 

oculomotor nucleus innervate the ipsilateral MR, IR and IO, and the contralateral SR. The 

rostro-caudal arrangement of motoneuronal groups starts with the IR, followed by MR, IO 

and SR, whereas in rodents the LP motoneurons are located within the contralateral nIII, they 

form an unpaired separate central caudal nucleus in cat and primates including human 

(Evinger, 1988; Porter et al., 1989; Horn, 2006).   

The first anatomical description of nIII was published by Stilling (1846). Later a partition into 

a dorsal and ventral portion of nIII was described. The presence of decussating axons was first 

noted by Von Gudden (1881; for review: Warwick, 1953). The work of Warwick, who 

resected extraocular muscles in monkey and plotted the neurons undergoing chromatolysis 

provided a map of the non-human primate nIII (Warwick, 1953), which is still being used in 

textbooks. The tract-tracing methods, which were introduced in the late 70s, basically 

confirmed the topographical arrangement of motoneuronal groups in nIII of monkey (Büttner-

Ennever 2006). However, in this species for the first time the presence of two motoneuron 

groups for the MR was described: the ventral A-group and the dorsolateral circular B-group 

(Büttner-Ennever and Akert, 1981; Porter et al., 1983; Büttner-Ennever, 2006). Up to date no 

differences in the innervation targets, morphology, histochemistry or afferent inputs have 

been found between the A- and B-group, and the function of the two-fold MR representation 

remains unclear (Spencer et al., 1992; Büttner-Ennever et al., 2001; Wasicky et al., 2004; 

Erichsen et al., 2013; Zeeh et al., 2015).  Based on the similar GAD-staining pattern in the DL 

and VEN group together with the finding of a glycine input to these two groups in the human 

nIII (Che Ngwa et al., 2014) strong evidence is provided that the MR subgroups are similarly 

organized in human. Accordingly the DL corresponds to the B-group of monkey nIII and 

VEN to the A-group (Fig. 17).    
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5 CONCLUSION 
The present study provides a topographical map of the motoneurons in the human oculomotor 

nucleus, which is not only based on comparison with the location of the respective 

motoneuronal pools in monkey based on tract-tracing, but on the different histochemical 

properties of premotor afferents (Fig. 17). It should be pointed out that the proposed 

topographical map applies to the motoneurons within the oculomotor nucleus supplying 

singly-innervated twitch muscle fibers (Che Ngwa et al., 2014). This map has yet to be 

extended by the location of the peripheral non-twitch motoneurons supplying multiply-

innervated muscle fibers of individual eye muscles. A striking observation is the selective CR 

input to SR and IO motoneurons, which may help to identify premotor pathways involved in 

upgaze (Che Ngwa et al., 2014; Adamczyk et al., 2015) and to study these pathways in post-

mortem studies on cases with vertical gaze deficits, e.g. progressive supranuclear palsy or 

Niemann-Pick disease (Chen et al., 2010; Strupp et al., 2014). The exact knowledge of the 

location of the motoneuron subgroups of individual eye muscles in human will help to 

localize lesions more accurately in MRI scans and correlate them to clinical findings (Leigh 

and Zee, 2015).  Furthermore the present work on transmitter inputs to individual eye muscle 

subgroups will form the basis for post-mortem studies of afferent inputs to nIII in cases with 

known eye-movement deficits.  
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ATTACHMENT TO MATERIALS AND METHODS 

LABORATORY SOLUTIONS 
 
4% Paraformaldehyd in 0.1M PBS (phosphate buffer), pH 7.4 for 3l 

  *Solution A:  

    1500 ml distilled water heated up to 60°C 

   + 120g PFA while stirring  

   + 5 drops of 30% NaOH; filtrate  

  *Solution B:  

 1500 ml 0.2M PBS, pH 7.4  

Solution A and Solution B were mixed shortly before usage, pH 7,4 

 

Sucrose solution: 

10% sucrose solution was prepared by dissolving 50 g Sucrose in 500 ml 0,1M PBS pH 7,4 

20% sucrose solution: add 100g sucrose in 500ml 0,1M PBS, pH 7.4 

30% sucrose solution: add 150g sucrose to 500 ml 0.1M PBS, pH 7,4 

 

 

0,1M TBS pH 7,4 (Tris – Puffer) 

- 24,2g of Trizma Base 

- 17,0g NaCl in 2 l distilled water.  

Mixture is stirred and adjusted to ph 7,4 with HCl. 

 

0,05M TBS pH 8 für DAB-Solution 

 1:1   500 ml 0,1M TBS pH 7,4 + 500 ml distilled water,  

   adjust pH – value to  8 with NaOH 

 

2% Bovine serum albumin 

  1 g Albumin bovine in 50 ml 0,1M TBS pH 7,4 

 

0,3 % Triton in 0,1M TBS pH 7,4 

 1,5 ml in 500 ml 0,1M TBS pH 7,4 

 



58  

Deparaffination and hydration of sections 

 - 1h    Xylene 

 - 1x 10 min.   100% alcohol 

 - 1x 10 min.  96% alcohol 

 - 1x 10 min.   90% alcohol 

 - 2x 10 min.   70% alcohol 

 - 1x 10 min.   Distilled water 

 

Antigen retrieval in water bath (80°C) for paraffin sections 

Sections were cooked at a temperature of +80°C for 15 min.  in water bath containing sodium 

citrate puffer (2,94g dissolved in 1000ml distilled water and titrated with 0,1M sodium 

hydroxide until ph 8,5 - 9,0 is reached), then allowed to cool at room temperature for 15min. 

After cooling they were immersed shortly in distilled water before rinsing with TBS ph 7,6.  

* 0,01M Sodium Citrate Puffer pH 8,8......................................15 min in waterbath at +80°C 

* Allow cooling in Citratpuffer ........................................................................for 15 min. at RT 

* Rinse in distilled water 

* 3x 0,1M TBS pH 7,6........................................................................................................5 min. 

*Immunostaining 

 

Nissl staining  

Solution: 0.5g cresyl violet in 100ml distilled water. 

70% alcohol for 5 min.  

90% alcohol for 5 min.  

96% alcohol l for 5 min.  

100% alcohol for 5 min.  

2x Xylene for 15 min.  

100% alcohol for 5 min.  

96% alcohol for 5 min.  

90% alcohol for 5 min.  

70% alcohol for 5 min.  

- distilled water for 5 min. 

- 0.5% cresyl violet solution for 5 min. 

- Sections shortly washed in distilled Water 

70%  alcohol for 5 min.  
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90%  alcohol for 5 min.  

96%  alcohol l for 5 min. 

100% alcohol for 5 min.  

2 x  Xylene for 15 min.  

Coverslip  

 

Combined immunostaining for ChAT (DAB-Ni, black) and GAD (DAB, brown):  

Monoclonal mouse anti- Glutamate Decarboxylase (GAD); Biotrend: GC 3108, Polyclonal 

goat anti-choline Acetyltransferase = Chemicon, AB144P 

Day 1. 

* 0,1M TBS pH 7,4..........................................................................................................10 min. 

* Suppression of endogenous peroxidase activity............................................................30 min. 

   1% H2O2 in 0,1M TBS  

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* Preincubation...............................................................................................................1h at RT

  2% Normal Rabbit Serum + 0,3% Triton in 0,1M TBS pH 7,4   

* Primary antibody…...........................................................................................2 nights at RT 

goat anti-ChAT 1:100 [in 2% Normal Rabbit Serum/0,3% Triton in 0,1M TBS pH 7,4] 

Day 2. 

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* Biotinylated secondary antibody:............................................................................... 1h at RT 

biotinylated rabbit anti-goat 1:200  [In 0,1M TBS + 2% BSA (TBS-BSA)] 

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* EAP prepared 30 min before usage.............................................................................1h at RT 

EAP: Extravidin-Peroxidase 1:1000 [In 0,1M TBS + 2% BSA (TBS-RSA)]   

* 2 x 0,1M TBS pH 7,4.............................................................................................each 10 min 

* 1x 0,05M TBS pH 7,6….................................................................................................10 min 

*DAB-Ni Reaction: ..........................................................................................................10 min 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

0,025% DAB = 0,5 ml von 1% DAB-solution in 20ml 0,05M TBS pH 7,6 + 40 mg 

Ammonium Nickel filtrate, then 20ml 0,025% DAB + 10 µl  30%H2O2 

* 3x 0,1M TBS pH 7,4.............................................................................................each 10 min. 
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* Suppression of endogenous peroxidase activity............................................................30 min 

   1% H2O2 in 0,1M TBS pH 7,4 

* 3x 0,1M TBS pH 7,4.............................................................................................each 10 min 

* Preincubation..............................................................................................................1h at RT 

  2% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4   

* 1. Antibody:…..............................................................................................16-24 hours at RT 

Mouse anti-GAD 1:4000 [in 2% Normal Horse Serum/0,3% Triton in 0,1M TBS pH 7,4] 

Day 3. 

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* Biotinylated secondary antibody................................................................................. 1h at RT 

Biot. horse anti-mouse  1:200   [In 0,1M TBS + 2% BSA (TBS-RSA)]   

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* EAP                    prepared 30 min. before usage.........................................................1h at RT 

EAP: Extravidin-Peroxidase 1:1000 [in 0,1M TBS + 2% Bovine serum albumin (TBS-BSA)] 

* 2 x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* 1x 0,05M TBS pH 7,6….................................................................................................10 min 

*DAB Reaction: ................................................................................................................10 min 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

 0,025% DAB = 0,5 ml von 1% DAB-solution in 20ml 0,05M TBS pH 7,6  

Then: 20ml 0,025% DAB + 10 µl 30%H2O2 

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* In [1x 0,1M TBS + 2x distilled water] sections were mounted on object glass 

* Allow getting dry at room temperature 

* Rinse in distilled water……………………….……….…………………………......for 5 min 

* In series of ascending alcohol concentration 70, 90, 96, 100%..........................each for 5 min 

* 3x Xylene……………………………………………………….…...2x 5 min. and  1x15 min 

* Coverslip 
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Goat anti-ChAT-DAB-Ni + Rabbit anti-Calretinin-DAB   

 

Antibodies:  

Polyclonal goat anti-choline Acetyltransferase = Chemicon, AB144P 

Polyclonal rabbit anti-Calretinin = SWant, 7699/4 

 

 

Sodium Citrate Puffer: 0,01M pH 8,5 - 9,0 

 - Sodium Citrate              2,94 g 

 - Distilled water   1000 ml 

 - Titrated with 0,1M NaOH at pH 8,5 - 9,0  

Procedure:  * Deparaffination and rehydration of sections 

 - 1h    Xylene 

 - 1x 10 min.   100% alcohol 

 - 1x 10 min.  96% alcohol 

 - 1x 10 min.   90% alcohol 

 - 2x 10 min.   70% alcohol 

 - 1x 10 min.   Distilled water 

 

*  0,01M Sodium Citrate buffer pH 8,8.............15 min in waterbath at +80°C or in Microwave 

* Let cool in Citrate buffer ...............................................................................for 15 min. at RT 

* Rinse shortly in distilled water 

* 3x 0,1M TBS pH 7,6................................................................... …..........................for 5 min. 

 

Day 1.        

* Suppression of endogenous peroxidase activity ………..........................................for 30 min 

1% H2O2 in 0,1M TBS  

* 3x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* Preinkubation:........................................................................................................1hour at RT

   5% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4 

* Primary antibody:…..........................................................................................48 hours at RT 

Goat anti-ChAT 1:100 [in 5% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4] 
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Day 2.     

* 3x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* Biotinylated secondary antibody:................................................................................1h at RT 

biot. Horse anti-Goat  1:200 [in 0,1M TBS + 2% Bovine serum albumin (TBS-BSA)] 

 * 3x 0,1M TBS pH 7,4.......................................................................................each for 10 min 

* EAP Extravidin-Peroxidase, prepared 30 min before usage.......................................1h at RT 

EAP = Extravidin-Peroxidase 1:1000 [in 0,1M TBS + 2% BSA (TBS-BSA)   

* 2 x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* 1x 0,05M TBS pH 7,6…...........................................................................................for 10 min 

*DAB Reaction: .........................................................................................................5 to 10 min 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

- 0,025% DAB = 0,5 ml von 1% DAB-solution in 20ml 0,05M TBS pH 7,6 

+ 40 mg Ammonium Nickel filtrate   

 then > 20ml 0,025% DAB + 10 µl  30%H2O2 

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* Suppression of endogenous peroxidase activity ............................................................30 min 

   1% H2O2 in 0,1M TBS  

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* Preincubation:.........................................................................................................1hour at RT 

  2% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4 

* Primary antibody:….................................................................................for 48h at RT 

rabbit anti-Calretinin 1:2500 [in 2% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 

7,4]   

 

Day 3.  

* 3x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* Biotinylated secondary antibody:.......................................................................... 1hour at RT 

biot. Horse anti-Rabbit  1:200  [in 0,1M TBS + 2% BSA (TBS-RSA)] 

* 3x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* EAP……………. prepared 30 min before usage.....................................................1hour at RT 

EAP = Extravidin-Peroxidase 1:1000 [In 0,1M TBS + 2% BSA (TBS-BSA)] 

* 2 x 0,1M TBS pH 7,4........................................................................................each for 10 min 

 

* 1x 0,05M TBS pH 7,6-8…....................................................................................... for 10 min 
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*DAB Reaction: .........................................................................................................for 10 min 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

- 0,025% DAB = 0,5 ml von 1% DAB-solution in 20ml 0,05M TBS pH 7,6 

 then > 20ml 0,025% DAB + 10 µl  30%H2O2 

* 3x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* In [2x 0,1M TBS + 1x distilled water] sections mounted on object glass 

* Allow drying at room temperature (RT) 

* Distilled water……………………………………….……………………….......… for 5 min 

* In series of alcohol 70, 90, 96, 100%..................................................................each for 5 min 

* 3x Xylene…………………………………...…………....shortly 2x for 5 min und 1x 15 min 

* Coverslip 

 

Gallyas stain 

Prior to staining all sections were washed in 70% alcohol for 50min and immersed in 96% 
alcohol overnight. 

Impregnation solution: 

475mg of Ammonium nitrate and 500mg of silver nitrate were diluted in 500ml distilled 
water and titrated with NaOH at PH 7,6 

* Production of solutions: 

 Solution A:  300 ml distilled water + 15 g Natriumcarbonat  

 Solution B:  300 ml distilled water 

   + 600 mg Ammoniumnitrat 

   + 600 mg Silbernitrat 

   + 3 g Wolframkieselsäure 

 Solution C:    90 ml B + 0,3 ml Formalin 

* Natriumthiosulfat: 200 ml distilled water + 4 g Natriumthiosulfat 

* Acetic acid: 995 ml distilled water + 5 ml acetic acid 

* Cleaning: 0,5 g Kaliumhexacyanoferrat II + 240 ml distilled water 
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Pretreatment: 

1. Pyridin / aceticanhydrid  2 : 1…………………………….....................................…60 min 

    160 ml 80 ml 

2. 3x distilled water ………………………………………...……...…………… each for 5 min 

3. Impregnation at 24°C in darkness (in Water bad on shaker)........................ …………60 min 

4. Shortly in distilled water 

5. 0,5 % acetic acid……………………………...……………………………………….10 min 

6. 2x distilled water………………………………………………………………each for 5 min 

7. Mixture: 100 ml solution A + 70 ml solution B + 30 ml solution C = 200 ml 

8. Immerse in 0,5 % acetic acid………………………………………………………….shortly 

9. 2x distilled water…………………………………………………...………….each for 5 min 

10. Clean in Kaliumhexacyanoferrat II…………………………..………………………..2 min 

11. 2x distilled water……………………………………………………….…….each for 5 min 

12. 2% Natriumthiosulfat (Fixer)……………………………………………....……….…1 min 

13. Tap water………………………………………………………..………….…….….20 min 

14. Dehydrate and coverslip 

 

Single-immunoperoxidase for GAD or non-phosphorylated neurofilaments (NP-NF) 

Antibodies: 

Mouse monoclonal antibody to Glutamate Decarboxylase (GAD) = Biotrend: GC 3108 

Mouse monoclonal antibody non-phosphorylated neurofilaments. Sternberger Monoclonas 

Incorporated; Cat Nr. SMI 32 

Cases:  Block II  > Group d:  Loch: 1,3,5,7,9  > Reaction of free floating sections 
                                                Loch: 2,4,6,8     > Reaction of sections on slide 
                            >  Group e:  Loch: 1,3,5,7,9  > Reaction of free floating sections 
                                                Loch: 2,4,6,8     > Reaction of sections on slide 
Procedure: 

Day 1.   

* 0,1M TBS pH 7,4............................................................................................................10 min 

* Suppression of endogenous peroxidase activity: ...........................................................30 min 

   1% H2O2 in 0,1M TBS pH 7,4 

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* Preincubation:..............................................................................................................1h at RT
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2% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4 

* Incubation: 1. Antibody:….................................................................................for 48h at RT

  

Mouse anti-GAD             1:4000  

Mouse anti-NP-NF             1:5000  

[in 2% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4] 

Day 2.   

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* Biotinylated 2.Antibody:............................................................................................. 1h at RT 

Biot. Horse anti-Mouse  1:200   [In 0,1M TBS + 2% Bovine serum albumin (TBS-BSA)] 

* 3x 0,1M TBS pH 7,4..............................................................................................each 10 min 

* Extra-Avidin-Peroxidase........prepare 30 min earlier..................................................1h at RT 

EAP = Extravidin-Peroxidase 1:1000  [in 0,1M TBS + 2% BSA (TBS-BSA)] 

* 2 x 0,1M TBS pH 7,4........................................................................................each for 10 min 

* 1x 0,05M TBS pH 7,6….................................................................................................10 min 

*DAB reaction: .................................................................................................................10 min 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

- 0,025% DAB = 0,5 ml von 1% DAB-Solution in 20ml 0,05M TBS pH 7,6 

then > 20ml 0,025% DAB + 10 µl  30%H2O2 

* 3x 0,1M TBS pH 7,4.........................................................................................each for 10 min 

* Immerge sections in [1x 0,1M TBS + 2x distilled water]  

* Allow drying 

* Distilled water………………………………………………….………………………..5 min 

* In alcohol 70, 90, 96, 100%................................................................................each for 5 min 

* 3x Xylene………………………………………………...............…………...each for 15 min 

* Coverslip 
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