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ABSTRACT 
 

 

ABSTRACT 

Nucleic acids sensing pathogen recognition receptors (PRRs) are forced to develop 

sophisticated strategies to overcome self nucleic acid recognition. During evolution cytosolic 

nucleic acid sensors acquired elaborate mechanisms to recognize specific structural features 

confined to nucleic acids of pathogenic origin. Accurate understanding of these mechanisms 

and regulation of the innate immune response can be a key in therapeutic strategies for 

prevention and treatment of autoimmune diseases. In addition, information about how the 

innate immune response is activated and consequent modulation of the adaptive immune 

system is a valuable tool for the design of new immunostimulatory molecules for vaccination 

and for the constant fight against viral infections.  

The cyclic GMP-AMP synthase (cGAS) was discovered as the major cytosolic sensor for 

dsDNA. Upon dsDNA recognition, cGAS catalyses the production of a novel second messenger 

cGAMP harboring a noncanonical 2´-5´ and a 3´-5´ mixed phosphodiester linkage.  This work 

provided the crystal structures of porcine cGAS (MAB21 domain) alone and in complex with a 

14-mer dsDNA and the substrates ATP and GTP together with functional assays in vitro and in 

cells. Our results revealed the cGAS activation mechanism explaining its broad sequence-

independent sensing specificity along with an insight into the catalysis of the first linear 

intermediate. This structural work has an impact on our understanding of the evolutionary 

origin connecting cGAS to the dsRNA sensor oligo-adenylate synthetase 1 (OAS1). A new class 

of template-independent nucleotidyltransferases (NTases) acting as cytosolic nucleic acids 

sensing PRRs was revealed.  

cGAS, previously known as MB21D1, is member of the NTase fold protein subfamily MAB21 

which was named after a conserved family of eukaryotic cell fate determining proteins. 

MAB21-like proteins (MAB21L1, MAB21L2 and MAB21L3) have a fundamental role in 

development. Besides extensive characterization of drastic MAB21 phenotypes in different 

model organisms, little or nothing was known about the structure and molecular function of 

these proteins. The main aim of this work was to decipher the evolutionary path within 

members of the MAB21 family and cGAS in order to improve our enzymatic understanding of 

this newly discovered subfamily of NTases. This thesis provides a first structural framework 

for the highly conserved MAB21-like proteins. Crystal structures of full length human 

MAB21L1 alone and in complex with CTP were solved at 3.0 Å and 2.5 Å respectively. A high 

degree of structural conservation between MAB21L1 and cGAS was revealed along with some 

important differences. In the crystal structure MAB21L1 assembled into a highly symmetric 

double-pentameric oligomer, suggesting that oligomerization could be a feature of MAB21L1. 

Moreover, CTP did not bind in the NTase active site; instead CTP unveiled a potential ligand 

binding site. The drastic phenotypes of patient-related mutations in MAB21L2 and MAB21L1 

could be explained by means of structural analysis, since affected residues were involved in 

interaction networks stabilizing the protein.   
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Finally, a part of this thesis dealt with structure-derived as well as patient-related ATPase 

mutants of retinoic acid inducible gene-I (RIG-I) and their specific effects in vitro and in 

human cells. Previous studies demonstrated that ATPase defective alleles of RIG-I and MDA5 

resulted in autoimmune diseases including Aicardi-Goutières and Singleton-Merten 

syndromes. So far it was not clear how RIG-I like receptors (RLRs) make use of the driving 

force of ATP hydrolysis for translocation along the bound RNA. In this work, ATP hydrolysis 

was revealed to help RIG-I to discriminate between self and non-self dsRNA by fine-tuning 

the release of its tandem CARDs and the hereby associated downstream signaling events. 

Therefore low or impaired ATP hydrolysis in RIG-I and MDA5 mutants correlates with 

constitutive signaling inducing autoimmunity.  
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1 INTRODUCTION 
 

1.1 THE INNATE IMMUNE SYSTEM: DISCRIMINATION OF 

SELF AND NON-SELF  

Innate immunity represents the first line of defense that recognizes the invading pathogen 

and initiates host immune response through production of type I interferons and 

proinflammatory cytokines. The innate immune system was believed for a long time as being 

an evolutionary ancient remainder or fragment, whose function is only to rapidly isolate 

infection. Based on accumulating evidences, it is now a well-established paradigm that the 

innate immune system is essential for activation and subsequent guidance of adaptive 

immunity (2). It helps the adaptive immune response to discriminate between self and non-

self by providing valuable information about the origin of the antigen, determining microbial 

presence, viability, replication, location and virulence. In addition, it ensures time for the 

clonal adaptive system to develop a specific and long-lasting immunity, while it controls the 

infection during the first critical period of 4-7 days (3).  

In the course of evolution, this phylogenetically ancient defense mechanism present in all 

multicellular organisms, evolved a limited number of nonclonal, germ-line encoded receptors 

(4). Pathogen recognition receptors (PRRs) are constitutively expressed in the host and 

specialized in detecting one type of pathogen-associated (PAMP) or damage-associated 

molecular pattern (DAMP). PAMPs are molecular structures usually essential for the survival 

and/ or replication of the pathogen. These are shared by large groups of microorganisms and 

therefore invariant and difficult for the pathogen to mutate or exclude from detection without 

a fitness cost. Consequently, it is more complicated for the pathogen to avoid innate immunity 

and thus, most mechanisms to evade immune response are directed to the variable adaptive 

immune system. DAMPs in contrast, are originating from the host and can lead to 

inflammation when not found in the right context of a healthy cell, e.g. endogenous stress 

signals (5,6). 
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1.2 THE FIRST LINE OF DEFENSE: PATHOGEN 

RECOGNITION RECEPTORS 

For the purpose of recognizing different microbial molecules, PRRs arose from a vast range of 

structures deriving from several protein families. PRRs sharing common protein domain 

structures, such as Toll-like-receptors (TLRs), rely on different amino acids compositions 

within these modules and on accessory molecules for diversity and specificity in ligand 

recognition (7). However, PRRs share a universal concept of initiating downstream signaling. 

After recognizing the respective ligand, PRR’s signaling domains interact with downstream 

adaptor proteins resulting in similar signaling pathways activating the respective effector 

proteins. These lead to proinflammatory response followed by activation and recruitment of 

phagocytic cell as well as professional antigen-presenting cells. Principal functions of PRRs, 

besides activation of proinflammatory signaling, are therefore opsonization, activation of 

complement and coagulation cascades, phagocytosis and induction of apoptosis (8). 

Depending on the type of ligand they recognize, pathogen recognition receptors can be 

expressed on the cell surface, in intracellular compartments or secreted into the bloodstream 

and tissue fluids. There are several ways to classify PRRs: either by compartmentalization 

dividing into membrane-associated, cytoplasmic and secreted PRRs; tissue-specific 

expression or characterizing by structure and class of ligand recognized (9).   

Mammalian Toll-like receptors (TLRs) were the first PRRs to be discovered and therefore the 

best studied (10). First evidences for this class of PRR came from the Toll protein in 

Drosophila melanogaster. Besides being already implied in embryonic dorso-ventral axis 

formation, Toll was shown to be responsible for effective immune responses in adult flies 

against the fungus Aspergillus fumigates (11,12). Following this discovery, a mammalian 

homolog of the Drosophila Toll receptor, namely Toll-like receptor 4 (TLR4), was identified. 

In the experiment a constitutively active mutant of human TLR4 was transfected into human 

cell lines and resulted in the activation of NK-κB, which led to the expression of genes 

encoding proinflammatory cytokines and upregulation of co-stimulatory molecules (10). The 

ultimate link between TLRs and the innate immune response was provided when a point 

mutation in the TLR4 gene resulted in mice unresponsive to lipopolysaccharide (LPS) 

challenge and therefore more susceptible to Gram-negative bacterial sepsis (13). Hereby, the 

first study characterizing the ligand for a PRR demonstrated that TLR4 is the receptor for 

LPS. Subsequently, the generation of knockout mice for each member of the TLR family has 

revealed the respective PAMP recognized by each TLR. 

So far 10 human TLRs and 13 in mice were identified. Each TLR recognizes a specific PAMP 

and this correlates with its subcellular localization. TLR recognizing molecular components 

located on the pathogen’s surface reside at the plasma membrane (TLR1, TLR2, TLR4, TLR5, 

TLR6 and TLR11), while the ones recognizing nucleic acids are located in intracellular 

compartments, such as endosomes and lysosomes (TLR3, TLR7, TLR8 and TLR9) (14).          
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1.3 NUCLEIC ACIDS SENSING PATHOGEN RECOGNITION 

RECEPTORS 

Nucleic acids, which are used as genetic information carrier by every organism, serve as 

PAMPs and expand the variety of pathogens recognized by the host innate immune system. 

The main difference in PRR recognition of nucleic acids as PAMPs is that they are not 

restricted to the pathogen. This blurs the lines between self and non-self discrimination and 

introduces the risk of host nucleic acid recognition by innate immune sensors which can lead 

to autoimmune and autoinflammatory diseases (1). Hence, nucleic acids sensing PRRs are 

forced to acquire new strategies to overcome self-recognition.  

These PRRs are stringently compartmentalized in order to restrict accessibility to host 

nucleic acids and are responsible for surveillance of almost all cell types against invading 

pathogens (9). First characterized group of nucleic acid sensing PRRs were the Toll-like 

receptors (TLRs) that are expressed on the endosomal membrane where they monitor the 

lumen. Nucleic acids sensing TLRs are confined to cells of the immune system such as 

dentritic cells (DCs), macrophages and B cells. In contrast, non-immune cells such as 

epithelial cells and fibroblasts that reside on the mucosal surface rely on another group of 

PRRs. These cells, most prone to infection, express several types of cytosolic RNA and DNA 

sensors. In order to further avoid self-recognition, these cytosolic receptors developed 

several mechanisms to recognize defined biochemical features exclusively present on 

molecules of pathogenic origin. Nucleic acid receptors and their ligands will be described in 

detail below and focus will be kept on mechanisms and strategies of cytosolic nucleic acid 

sensing.   

1.3.1 TOLL-LIKE RECEPTORS 

TLRs are type I transmembrane proteins of the Interleukin-1 receptor (IL-1R) family. These 

integral membrane glycoproteins have a trimodular structure comprising an N-terminal 

ectodomain consisting of leucine-rich-repeats (LRR) for PAMP recognition, a single 

transmembrane domain and a C-terminal cytosolic Toll/ IL-1 (TIR) receptor domain for 

downstream signaling (15). The ligand binding domain of TLRs is confined to the lumen of 

endosomes, so that after endocytosis of the virus, the acidic environment is able to degrade 

viral particles followed by exposure of genomic nucleic acids and detection by the respective 

TLR. TLR3 recognizes viral double stranded RNA whereas TLR7 and TLR8 detect viral single 

stranded RNA (16-18). TLR9 recognizes DNA containing unmethylated cytosine-guanosine 

(CpG) motifs common in bacteria (19). Recently, a specific sequence of 13 nucleotides 

present in bacterial 23S ribosomal RNA, was shown to release immune response via the 

murine TLR13 (20). Upon ligand binding the TLRs dimerize as homodimer or heterodimer 

and two TIR domains are brought in close proximity.  A subsequent conformational change of 

the TIR domains provides a platform to recruit cytosolic adaptor proteins (21). TLR 

downstream signaling acts using two distinct adaptor molecules, namely TRIF and MyD88 

(FIG. 1). Most of the nucleic acids sensing TLRs rely on MyD88 as adaptor molecule and thus 
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activation of IRF7 and Nf-κB. TLR3 is an exception and makes use of TRIF for downstream 

signaling resulting in IRF3 and NF-κB activation (22).  

1.3.2 NOD-LIKE RECEPTORS 

In contrast to TLRs, Nucleotide-binding and oligomerization domain (NOD) -like receptors 

(NLRs) recognize PAMPs localized in the cytoplasm. NLRs comprise either an N-terminal 

Caspase Activation and Recruitment Domain (CARD) or a pyrin domain (PYD) for signal 

transduction, a central nucleotide-binding and oligomerization domain (NOD/ NACHT) for 

ATP-dependent oligomerization and C-terminal leucine-rich repeats (LRRs) for ligand 

recognition. NLR protein’s architecture resembles the one from plant R-proteins, which are 

implied in plant cell defense against microbes (23). There are 23 human NLRs that recognize 

a variety of PAMPs, including nucleic acids, deriving from intracellular pathogens (24). Upon 

ligand recognition via LRRs as with TLRs, NLRs undergo conformational changes exposing 

the N-terminal protein-protein interaction domain for downstream signaling. Some NLRs 

(NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4 and NAIP) are then able to build a platform 

in order to recruit and activate the inflammatory protease caspase-1. Active caspase-1 then 

cleaves the pro forms of the cytokines IL-1β and IL-18 leading to an inflammatory form of cell 

death, called pyroptosis (25).  

FIGURE 1: PATHOGEN RECOGNITION RECEPTORS SIGNALING I 

Nucleic acids sensing pathogen recognition receptors are depicted along with their adaptor molecules required 

for downstream signaling. Only domains of the proteins where structural information is available are depicted. 

NLR (PDB: 4KXF) is shown in its auto-repressed state. NLRs are known to oligomerize to form an inflammasome 

structure (PDB: 3JBL) after activation with the respective PAMP. TLR (PDB: 3CIY) sense nucleic acids in the 

lumen of endosomes and activation dimerizes the cytoplasmic TIR (PDB: 4OM7) domains in the cytoplasm.  This 

platform then recruits adaptor proteins MyD88, IRAK4 and IRAK2 that form the Myddosome (PDB: 3MOP). RIG-I 

(PDB: 5E3H) representing the RLRs, releases its CARDs (PDB: 4A2Q) after nucleic acid recognition and these 

oligomerize with the CARD of adaptor protein MAVS (PDB: 4P4H). Polyubiquitin chains stabilize these 

interactions forming a helical assembly resembling the Myddosome. 
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Out of these inflammasome constituting NLRs, NLRP3 has been reported to be activated, 

among others, upon release of oxidized mitochondrial DNA in the cytosol (26). As recently 

shown with the NLRC4 and NAIP2 inflammasome cryogenic electron microscopy structure, 

NLRP3 might assemble in a similar fashion after activation (FIG. 1) (27,28). Further, NLRX1, 

another NLR-family member with a unique mitochondrial targeting sequence, was revealed 

to directly interact with RNA ligands with its C-terminal LRR domain (29). This results in 

subsequent NLRX1-mediated reactive oxygen species (ROS) activation. The structural basis 

for ligand recognition by NLRs is poorly understood and it is still unclear if NLRs, except for 

NLRX1, directly bind nucleic acids or if adaptor molecules are required. 

1.3.3 RIG-I-LIKE RECEPTORS 

It was known for a long time that infection with RNA viruses, such as influenza and hepatitis 

C viruses, triggers a strong production of type I IFNs. This response was demonstrated in 

crucial studies to be independent from TLR signaling (30). Viral RNAs in the cytoplasm are 

recognized by the RIG-I-like Receptor (RLR) family, named after its founding member 

retinoic acid inducible gene-I (RIG-I). RIG-I was discovered in a function-based cDNA library 

screen in 2004 searching for proteins able to induce expression of an IFNβ promoter reporter 

gene. Together with its homologs melanoma differentiation associated gene 5 (MDA5) and 

laboratory of genetics and physiology 2 (LGP2), RIG-I was identified as the sensor of cytosolic 

viral RNA (31,32). RLRs are members of the superfamily II (SF2) of ATPases, helicases or 

nucleic acid translocases. RLR family members have a conserved domain architecture 

consisting of a central DExD/H-box helicase core with two helicase domains (Hel-1 and Hel-

2) and an additional specific insertion within Hel-2 (Hel-2i). The C-terminal domain (CTD) 

confers part of the ligand specificity and is adjacent to Hel-2 by a helical extension named 

pincer domain. At the N-termini of RIG-I and MDA5, excluding LGP2, two tandem caspase 

activation and recruitment domains (CARDs) mediate signaling.     

RIG-I and MDA5 distinguish between different kinds of RNA ligand and this is reflected in the 

distinct immune responses against specific virus families. RIG-I detects members of 

Paramyxoviridae, Flaviviridae and Rhabdoviridae family, while MDA5 responds to viruses of 

the Picornaviridae family. Among others Reovirus, Dengue and West Nile Virus (WNV) are 

detected by RIG-I as well as MDA5 (33-36). In vitro, the synthetic analog RNA 

(polyriboinosinic:polyribocytidylic acid) poly (I:C) elicits immune responses by RIG-I and 

MDA5. While MDA5 recognizes longer fragments >4 kb, RIG-I has a preference for shorter 

fragments after enzymatic digestion with ca. 300 bp (37). dsRNA containing a 5´ tri- (or di-) 

phosphate and lacking a 7-methylguanosine cap structure was identified as being the natural 

ligand of RIG-I (38-40). Further studies, demonstrated that RIG-I indeed is capable of binding 

the cap structure, consisting of a 5´ triphosphate 5´-5´ linked to a guanosine methylated at N7. 

However, endogenous mRNA bearing a N1-2´O-methyl group overcomes the risk of 

triphosphate recognition by RIG-I in the cytosol (41,42). Further, RIG-I activation was shown 

to additionally require base-paired RNA stretches such as panhandle-like structures as they 

occur in genomes of negative-strand ssRNA viruses (43-45). Among viral tri-phosphorylated 

RNAs, RIG-I is also able to recognize short RNA generated by RNAse L consisting of a double 
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strand stem together with a 5´hydroxyl (5´-OH) and a 3´-monophosphoryl group (46). In the 

case of MDA5, less is known about the ligand. Higher-order structured RNA containing ss and 

dsRNA arising during viral replication/ transcription resulted in activation of MDA5. These 

findings suggested that MDA5 activation requires not only long dsRNA, but rather a RNA 

forming web-like structures (47). LGP2 was shown to have the highest RNA binding affinity 

among RLRs, independently of length and 5´-triphosphate (48-50). Due to the lack of CARDs, 

LGP2 is not able of direct downstream signaling. A regulatory role in MDA5 and RIG-I 

dependent signaling, including synergistic effects with MDA5 leading to enhanced antiviral 

signaling, were assigned to LGP2 (51-53).       

RIG-I and MDA5 share the same downstream signaling mechanism. In the absence of a RNA 

ligand both occur in an auto-inhibited conformation. Upon recognition of dsRNA, they 

undergo conformational changes exposing the N-terminal tandem CARDs (54-58). These are 

then accessible for E3 ligases TRIM25 and Riplet to modify them with K63-linked 

polyubiquitin chains (59,60). After the CARDs are released, RIG-I as well as MDA5 

subsequently oligomerize along the RNA (61). Oligomerization of the CARDs provides a 

platform enhancing further interactions with the CARD of the downstream effector protein 

mitochondrial antiviral-signaling adaptor protein MAVS (also referred to as IPS-1, Cardif, and 

VISA) (FIG. 1) (62-65). Along with the N-terminal single CARD domain, MAVS has a proline-

rich domain and a transmembrane domain at the C-terminus, which anchors MAVS in the 

mitochondrial outer membrane. Upon homotypic CARD-CARD interaction, MAVS undergoes 

massive aggregation on the mitochondrial membrane and oligomerizes into long helical 

filaments (66-68). MAVS prion-like aggregates function as a seed that leads to a robust 

amplification of the signal triggering activation of IRF3. The additionally K63 polyubiquitin 

chains on the RIG-I CARDs, have an increased affinity to the MAVS CARD and are therefore 

even more potent activators (69). MAVS oligomerization in turn recruits and activates 

through distinct TRAF-binding motifs multiple E3 ligases such as TRAF2, TRAF3, TRAF5 and 

TRAF6 that synthesize polyubiquitin chains (70-73). NEMO, the regulatory subunit of the IKK 

and TBK1, serves as a sensor for polyubiquitin chains (74,75). IKK and TBK1 complexes are 

recruited by NEMO to the MAVS polymers where these kinases phosphorylate IκBα and IRF3 

resulting in the induction of type I interferons and other proinflammatory cytokines. 

RNA binding modes for MDA5 and RIG-I, structural basis of MAVS helical filament activation 

and RIG-I’s ATPase role in discrimination of self and non-self RNA will be described later on 

in detail. 

1.3.4 OAS PROTEINS 

Before the RLR’s classification as PRRs for cytosolic dsRNA, in 1987 first antiviral activity of 

2´-5´- oligoadenylate synthetases (OAS) was demonstrated (76). OAS1 dramatically reduced 

viral titers when transfected and overexpressed in cells infected with Encephalomyocarditis 

virus (EMCV). OAS proteins are constitutively expressed at low levels in the cell and serve as 

combined IFN-induced PRRs and antiviral protein (77). Upon sensing dsRNA, OAS proteins 

have the unique property to catalyze the conversion of ATP into 2´-5´-linked oligoadenylates 
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(78). These 2´-5´-linked oligoadenylates subsequently bind to the latent ribonuclease RNase L 

leading to dimerization and the activation of a viral as well as cellular RNA degradation 

pathway already described in the late 1970s (FIG. 2) (79-83). Protein translation and viral 

replication are thus inhibited in virus infected cells. Cleavage products of RNase L further 

augment antiviral response through recognition by PRRs, such as RIG-I, followed by induction 

of type I IFN production (46,84). However, RNase L cleavage products characterized by a 3´-

monophosphate seem to have a minor contribution in RIG-I activation compared to genomic 

RNAs generated during viral replication (85).  

 

FIGURE 2: PATHOGEN RECOGNITION RECEPTOR SIGNALING II 

Nucleic acids sensing pathogen recognition receptors are depicted along with their synthesized 2´-5´-linked 

second messengers and adaptor molecules required for downstream signaling. Only domains of the proteins 

where structural information is available are depicted. cGAS (PDB: 4LEY) dimerizes upon dsDNA recognition 

and synthesizes the second messenger cGAMP, which is then sensed by the adaptor protein STING (PDB: 4KSY) 

followed by dimerization and subsequent activation of downstream signaling. OAS1 (PDB: 4IG8) produces 2´-5´-

oligoadenylates in presence of dsRNA in the cytosol. This second messenger is then recognized by the 

downstream adaptor RNase L (PDB: 4OAU).  cGAS and OAS proteins form a conserved class of pathogen 

recognition receptor synthesizing small molecules containing a 2´-5´-phosphodiester linkage for downstream 

signaling.  
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There are four OAS genes in humans OAS1, OAS2, OAS3 and OASL that share considerable 

homology (86). The basal OAS unit is repeated once in OAS1 and OASL, twice in OAS2 and 

thrice in OAS3. Each of these OAS proteins has unique physiological functions. 

Oligomerization of OAS1 and OAS2 in its catalytically active form is mediated by a tripeptide 

motif (CFK) within the OAS domain (87). OAS3 and OASL lack this motif and thus function as 

monomers. Copies of OAS units are catalytically inactive and in the case of OASL mutations at 

key residues in the active site completely abolish its catalytic function. C-termini of OAS 

proteins are variable and OASL encodes a tandem ubiquitin-like domain (88). Besides lacking 

catalytic activity, OASL retains its antiviral properties suggesting an RNase L independent 

antiviral effect of the OAS family (89-92). OASL antiviral activity relies on the feature of its 

tandem ubiquitin-like domain to substitute for K63-linked poly-ubiquitin interacting with the 

CARDs of RIG-I and thereby enhancing RIG-I signaling (93,94). Furthermore, structural 

studies revealed the RNA binding groove of OASL and demonstrated that the ability of OASL 

to bind RNA is required for amplifying antiviral response via RIG-I. 

1.3.5 cGAS-STING PATHWAY 

Long before DNA was identified as the genetic material it was known to elicit a potent 

immune response (95). DNA was shown to induce type I IFN through the protein stimulator 

of interferon genes (STING, also termed as TMEM173, MPYS, MITA and ERIS) (96-98). STING 

has an N-terminal transmembrane domain that confines it to the endoplasmatic reticulum 

(ER), a cytoplasmic soluble cyclic-di-nucleotide (CDN) binding domain and a C-terminal tail 

(CTT). Bacterial CDNs, such as c-di-GMP were shown to directly activate STING (99,100). 

Upon activation STING oligomerizes into a supramolecular complex and translocates from 

the ER to a perinuclear compartment, where it activates NF-κB and IRF3 through interactions 

of its CTT with the kinases IKK and TBK1 (101).   

However, STING is not able to directly bind DNA and therefore an additional host protein is 

required to function as a DNA sensor (102). Recently the search for an unambiguous and non-

redundant cytosolic DNA sensor acting upstream of STING was successful. The cyclic GMP-

AMP synthase (cGAS) was identified as the major PRR for cytosolic DNA through biochemical 

purification coupled with quantitative mass spectrometry (103,104). cGAS contains an N-

terminal unstructured stretch followed by an NTase fold domain, harboring the conserved 

motif found in the nucleotidyltransferase (NTase) fold protein family and partially 

overlapping with the C-terminal male abnormal 21 (MAB21) domain. When DNA is sensed, 

cGAS binds ATP as well as GTP and produces a novel second messenger: a cyclic GMP-AMP 

dinucleotide with a noncanonical 2´-5´ and a 3´-5´ mixed phosphodiester linkage (FIG. 2) 

(105,106). This CDN is in turn recognized by STING inducing a closed conformation of the 

STING dimer with four antiparallel β-sheet strands forming a lid above the bound CDN 

(107,108). STING is more responsive to 2´-3´-cGAMP than canonical bacterial CDNs harboring 

3´-5´ linkages and therefore cGAMP is a more potent stimulator of the IFN pathway 

(105,109). Structural studies revealed that cGAMP binds 2.5 Å deeper in the cleft of the STING 

dimer than c-di-GMP inducing closure of the dimer by 20 Å and lid formation (110). cGAMP 

was further shown to promote antiviral response in a transcription-independent horizontal 
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manner bypassing type I IFN signaling. The second messenger is transferred from infected 

cells via gap junctions inducing STING activation in neighboring cells (111). In addition, viral 

particles, such as lentivirus or herpes virus, where shown to incorporate cGAMP, when 

produced in cGAS-expressing cells (112,113). In newly infected cells, cGAMP then activates 

STING spreading and accelerating immune response against the progeny virus.  

Further experiments showed that, while TLR9-/- and MyD88-/- mice cleared the herpes 

simplex virus 1 (HSV1) infection as effectively as the wild type, cGAS-/- mice were more 

susceptible to lethal infection due to failure in type I IFN production (114). cGAS was thus 

unveiled to unequivocally be the general PRR for dsDNA. Moreover, cGAS acts as a retroviral 

sensor, able of detecting reverse-transcribed viral cDNA from HIV and other retroviruses 

(115). Concerning the immune response against RNA viruses, cGAS plays an indirect role by 

contributing to tonic type I IFN levels, facilitating rapid immune response. This low 

constitutive type I IFN response is triggered by cGAS ability to recognize host DNA released 

from cells damaged or killed by the virus (116). Another event where cGAS was shown to 

recognize self-DNA is after infection with HSV1, a dsDNA virus. This infection induces 

aberrant mitochondrial DNA packaging leading to release of mtDNA into the cytosol where it 

is recognized by cGAS and activates an antiviral response (117). This cell-intrinsic signal of 

infection can be mediated by mitochondria just as it can be inactivated in a caspase-

dependent manner (118). The cGAS-STING pathway was further shown to be antagonized by 

oncogenes of DNA tumor viruses, such as human papillomavirus (HPV) and adenovirus (119). 

These findings explain why several immortalized cell lines have suppressed IFN signaling and 

suggest that a principal function of viral oncogenes, which shaped the virus’ evolution, is to 

inhibit the innate immune response.  

Structural insights into DNA recognition by cGAS, catalytic reaction mechanism of cGAMP 

synthesis and homology to the OAS family will be presented in detail further in this work. 

1.3.6 OTHER DNA SENSING RECEPTORS 

Before cGAS was acknowledged as the central PRR for cytosolic dsDNA, several studies were 

conducted revealing other potential nucleic acids sensing receptors. The first protein to be 

proposed as a cytosolic DNA sensor was the DNA-dependent activator of IRFs (DAI, also 

termed ZBP1 or DLM1) (120). DAI contains DNA-binding domains (Z-α and Z-β) and 

knockdown studies resulted in a modest defect in type I INF production (121). However, no 

physical or genetic link to STING was presented and DAI knockout mice experiments showed 

that DAI is not indispensable in order to mount a type I IFN response (122).  

Another superfamily of potential DNA sensors is the PYHIN protein family also termed as 

AIM2-like receptors (ALR). ALRs were shown to sense HSV-1 and Kaposi’s sarcoma virus 

DNA in the nucleus, to immunoprecipitate with STING in dsDNA-stimulated cells and to 

function in the inflammasome pathway (123-127). Members like AIM2 and IFI16/ p204 

possess C-terminal hemopoietic expression, interferon-inducible, nuclear localization (HIN) 

domains that interact with B-form DNA, and an N-terminal effector PYRIN domain (PYD). The 
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PYDs from AIM2 and IFI16 were shown to form filaments which then engage with the 

apoptosis-associated speck-like protein containing a CARD (ASC), leading to inflammasome 

assembly and subsequent proteolytic cleavage of inactive precursors of IL-1β and IL-18 

(128,129). 

DDX41, member of the superfamily of DExD/ H-box RNA helicases, is another interesting 

candidate as additional DNA sensor. Interferon response to dsDNA as well as to the DNA 

virus HSV-1 was affected when DDX41 was knocked down.  DDX41 was shown to bind DNA 

instead of poly (I:C) despite its homology to RNA helicases (130). And further studies pointed 

out co-localization of DDX41 with STING and ability to directly sense bacterial CDNs (131). 

Another link was proposed between DNA damage repair and DNA-induced immune response.  

Other putative DNA sensors, such as DNA-dependent protein kinase (DNA-PK) and meiotic 

recombination 11 homolog A (MRE11) were shown to bind DNA and be required for type I 

IFN response via STING (132-134). Nevertheless, a major issue concerning this search for 

further cytosolic DNA sensors is that it relies on assays such as immunoprecipitation, 

immunofluorescence and RNAi knockdown experiments which can lead to indirect evidences 

and non conclusive results. Genetic evidence demonstrating requirement for the sensor and 

direct interactions with STING together with the more conclusive gene knockout experiments 

rather than RNAi knockdown would provide definitive results (102).    

 

1.4 cGAS – THE MAJOR SENSOR FOR CYTOSOLIC DNA 

1.4.1 STRUCTURAL STUDIES ON cGAS DNA SENSING AND ACTIVATION 

After the discovery of cGAS as the major DNA sensor, several crystal structures were 

published of cGAS catalytic MAB21 domain in complex with DNA, substrate nucleotides, 

linear intermediates and the final product cyclic G(2´-5´)pA(3´-5´)p (106,135-137). cGAS has 

a bilobal structure with mixed α/β topology and separated by a deep cleft harboring the 

active site (FIG. 3). Lobe 1 comprises the N-terminal NTase subdomain with central highly 

twisted β-sheets (β1-β8) flanked by two long α-helices (αA-αB). The catalytic triad (hscGAS 

E225, D227 and D319/ sscGAS E200, D202 and D296) responsible for Mg2+ coordination in 

other NTase superfamily members is conserved and located on β-sheets β1 and the adjacent 

β6. The C-terminal lobe 2 is composed of a conical four-helix bundle (αE-αH). This structure 

is stabilized by a long N-terminal ‘spine’ helix (α1) that spans across both lobes and an 

additional central linker region containing two helices (αC, αD) and a long active site loop 

between αA and β1. The loop connecting αD and αE contains a highly conserved set of a 

histidine and cysteines (hscGAS H390, C396, C397 and C404 /sscGAS H367, C373, C374 and 

C381) that coordinate a Zn2+ion (Zn-thumb). Inactive cGAS is monomeric in solution and the 

active site is partially unstructured with B-factors of lobe 1 being twice as high as the ones for 

the less flexible lobe 2 (109). In the absence of dsDNA, the active site is not properly aligned 

for coordination of nucleotide substrates. Structures are available of inactive NTases with not 
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correctly coordinated nucleotides bound to the active site, such as the cGAS structure in 

complex with UTP (135,138).  

On the opposite site of the NTase active site, cGAS displays a highly positively charged 

molecular ‘platform’. Structures of cGAS bound to dsDNA revealed that this ‘platform’ binds 

to dsDNA in a sequence-independent manner where binding is mainly mediated by extensive 

electrostatic interactions and hydrogen bonds with the phosphate backbone (106,135). In 

addition two arginine fingers (sscGAS R150, R192/ hscGAS R176, H217) reach into the minor 

groove of the DNA. The protruding loop stabilized by the Zn2+ ion is rigid upon dsDNA 

binding and serves as a molecular ruler to specifically distinguish between B-form DNA and 

A-form RNA. Binding of B-form DNA to cGAS induces a helix break in the ‘spine’ that closes 

lobe 1 and 2 rearranging the active site loops in order to allow coordination of two Mg2+ ions 

and the substrate nucleotides. Further studies using analytical ultracentrifugation and small-

angle X-ray scattering experiments revealed that cGAS forms a 2:2 complex with dsDNA in 

solution instead of the 1:1 complex (FIG. 4) (109,139). Dimerization further stabilizes the 

active conformation in which two dsDNA molecules are sandwiched between two cGAS 

protomers. Besides the ‘platform’ denoted as site A, a secondary DNA binding site B and the 

Zn-thumb, were shown to be important for DNA induced oligomerization of cGAS. Mutations 

at site B reduced DNA binding as well as higher-order complex formation more drastically 

than mutations at site A, suggesting that site B plays a role in cooperative DNA binding (109). 

In its inactive conformation cGAS NTase domain is locally destabilized. During DNA binding, 

site A is responsible for triggering the structural switch, while site B contributes to 

cooperative binding. The resulting crosslinking of the cGAS dimer restricts previous 

structural flexibility which is supported by the uniform distribution of B-factors in the 

complex structures (109).  

FIGURE 3: DNA RECOGNITION BY CYTOSOLIC DNA SENSOR cGAS 

A. Front and side views of cGAS’ MAB21-domain (PDB: 4LEY) structure in complex with dsDNA (grey). The 

model is shown as cartoon representation with annotated domains. DNA binds along the ‘platform’ between the 

spine helix and the Zn-thumb (pink).  B. Close up view of aligned apo cGAS (light blue, PDB: 4K8V) and 

substrate- and DNA-bound activated cGAS (dark blue, PDB: 4KB6). The structural switch induced by the helix 

break on the spine, allows for closure of the active site cleft and proper residue alignment on the nucleotide-

binding loop.  
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1.4.2 cGAS PRODUCES 2´-5´, 3´-5´ CYCLIC GMP-AMP 

Regarding the catalytic mechanism of cyclic G(2´-5´)pA(3´-5´)p synthesis,  the sscGAS complex 

structure bound to DNA, ATP and GTP using transferase-trapping active site mutations 

provided an insight into the first catalytic step leading to the formation of linear intermediate 

pppGp(2´-5´)A (FIG. 5) (135). GTP is bound to the N-terminal acceptor site, while ATP sits in 

the C-terminal donor site with the two bases partially stacking to each other in an 

approximately 90° rotated orientation. In this first catalytic step the triphosphate from ATP is 

coordinated by the two Mg2+ ions in a way that the α-phosphate can be attacked by the 2´-OH 

of GTP.  In addition D296 polarizes the attacking nucleophilic 2´-OH from GTP, Y413 stacks 

the adenine base and E360 holds the donor ribose in place.  

Subsequent structural studies of wild type cGAS revealed the cyclization reaction during the 

second catalytic step. When comparing structures of cGAS with the linear product pG(2´-

5´)pA, it is obvious that the cyclic product G(2´-5´)pA(3´-5´)p is in the opposite orientation. In 

the structure with bound linear intermediate the acceptor guanine stacks with sscGAS Y413/ 

hscGAS Y436 whereas the structure with bound cGAMP shows how the donor adenine stacks 

with sscGAS Y413/ hscGAS Y436 (106). This suggests that the linear intermediate pppGp(2´-

5´)A has to flip-over and rebind in the reversed order into the active site for the cyclization 

reaction to take place. GTP then occupies the donor pocket and 2´-5´-linked AMP is in the 

acceptor site. Formation of the 3´-5´ phosphodiester bond takes place by an additional 

FIGURE 4: cGAS OLIGOMERIZES UPON DNA BINDING REVEALING A SECOND DNA BINDNG SITE  

Top and front views of the MAB21 domain of cGAS in a 2:2 cGAS:dsDNA complex in the crystallographic 

asymmetric unit (PDB: 4LEY). Both 18bp dsDNA strands are depicted in grey, cGAS protomers in light and dark 

blue respectively and the Zn-thumbs in pink. Both DNA binding sites A (platform) and B are marked. 
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nucleophilic attack of the AMP 3´-OH onto the α-phosphate of GTP, which is consent with the 

general nucleotidyltransferase reaction mechanism (140,141).  

Different structures of cGAS with cyclic G(2´-5´)pA(3´-5´)p bound show that after 3´-5´ 

phosphodiester bond formation a second flip-over takes place just before the product is 

released (106,109). cGAS active site has distinct recognition elements that enable 

differentiation between guanine and adenine. Whereas the donor binding site is promiscuous 

and adenine can even be replaced by a pyrimidine, the guanine base forms a network of 

intermolecular hydrogen bonds with its Watson-crick as well as Hoogsteen edges with the 

acceptor binding site (106). Thus, cGAMP is bound in a unique orientation in the cGAS active 

site pocket. In the case of the linear intermediate pppGp(2´-5´)A, the triphosphate seems to 

be capable of overruling the donor acceptor specificities. The two step synthesis of cyclic 

G(2´-5´)pA(3´-5´)p by cGAS is distinct from the one of bacterial diadenylate (DAC-domain) 

and diguanylate cyclases (GGDEF-domain) (142,143). These bacterial enzymes are dimers or 

oligomers and each active site binds one ATP or GTP. Two opposing active sites carry out two 

simultaneous transferase reactions to form a CDN with two 3´-5´ phosphodiester linkages. 

FIGURE 5: CURRENT MODEL OF THE CATALYTIC MECHANISM OF CYCLIC G(2´-5´)pA(3´-5´)p SYNTHESIS 
BY cGAS 

Schematic representation of the current model involving a two-step generation of cyclic G(2´-5´)pA(3´-5´)p 

within the single catalytic pocket of cGAS. cGAS binds ATP in the donor binding site and GTP in the acceptor 

binding site and the first step involves the formation of a 5’-pppGpA linear intermediate which is flipped-over in 

order to allow the second reaction step where the cyclic product G(2´-5´)pA(3´-5´)p is generated. In order to 

facilitate product release, a second flip-over occurs. 
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1.4.3 cGAS - OAS FAMILY  

Recent studies revealed that OAS proteins and cGAS form a new family of template-

independent nucleotidyltransferases that act as cytosolic nucleic acids sensing PRRs 

(106,135-137). OAS proteins and cGAS are not phylogenetically related (144). However, they 

share some functional properties, such as nucleic acid binding, synthesis of a second 

messenger containing a noncanonical 2´-5´ phosphodiester bond and the ability of viral 

inhibition. Regarding the structural similarities, cGAS and OAS1 have a common overall fold, 

conserved active site residues and share activation induced rearrangements of lobe I and II, 

as well as structural elements such as the ‘platform’ and the ‘spine’ helix (145).  

While OAS1 binds ssRNA, cGAS was shown to bind ssDNA or even dsRNA in vitro (135). 

Nevertheless, it is not sufficient to trigger the structural switch required for activation. Thus 

it seems that OAS1 and cGAS require the double-strand topology to distinguish between A-

form RNA and B-form DNA. cGAS is activated by B-form DNA interactions with the ‘platform’, 

Zn-thumb and site B of the other cGAS protomer, whereas OAS1 remains monomeric and 

requires A-form RNA binding contacting two minor groove segments separated by 30 Å 

(135,138). Modeling studies of dsRNA and dsDNA into the cGAS apo structure revealed that 

DNA clashes with the protruded activation loop forcing it to move inward and subsequently 

rearranging the active site (139). In the case of RNA binding, modeling showed that the same 

activation loop inserts into the major groove devoid of conformational changes. When 

comparing the available crystal structures, it becomes clear that the cGAS apo form is much 

closer to its active state than in the case of OAS1. Differences in the N-terminal lobe, explain 

the more extensive conformational changes of OAS1 upon activation (146). 

Taking into account the active site 

specificities, cGAS as well as OAS1 have 

promiscuous donor binding sites, which were 

shown to accept any triphosphate nucleotide. 

In contrast orientation of the substrate by the 

acceptor site, determines the 2´-specificity of 

the product formation. One major difference 

between OAS and cGAS is that cGAS catalyses 

the synthesis of CDNs, while OAS1 forms 

linear 2´-5´ oligoadenylate chains. OAS1 

suppresses the flip-over of the intermediate 

pppA(2´-5´)pA by sterically blocking CDNs 

with helix αE (3103-α5) (FIG. 6) (146). 

Instead, this linear intermediate has to rebind 

FIGURE 6: HELIX αE IN THE ACTIVE SITE OF OAS1 HINDERS CYCLIC PRODUCT FORMATION  

Superposition of the active sites of cGAS (blue, PDB: 4K9A) bound to linear intermediate ApGppp and OAS1 (red, 

PDB: 4RWN) bound to two ATP molecules. OAS1 suppresses the flip-over of the linear intermediate by sterically 

blocking CDN coordination with S186 on helix αE.    
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to the acceptor site (145). Further steps in 2´-5´ oligoadenylate chain elongation use pppA(2´-

5´)pA as an acceptor for following 2´-5´ phosphodiester linkages.   

One further event underlying the evolutionary connection between OAS proteins and cGAS, is 

the extensive and common positive selection these enzymes experienced in order to evade 

inhibition by pathogens (144,147). Several amino acid substitutions were located at 

equivalent positions in the protein-nucleic acid interfaces comprising the ‘spine’ and the C-

terminus of αE. This suggests that cGAS and OAS proteins adapted to evade common 

pathogen encoded inhibitors. In addition cGAS and OAS genes made use of alternate splicing 

or gene fusion events respectively, in order to drastically alter protein structure and thus 

evade recognition by certain pathogens.  

 

1.5 MEMBERS OF THE NTASE FOLD PROTEIN FAMILY 

MAB21  

Nucleotidyltransferases (NTases) constitute a large and diverse family of proteins having a 

variety of distinct functions in the cell. All NTases catalyze the transfer of a nucleoside 

monophosphate (NMP) from a nucleoside triphosphate (NTP) onto an acceptor hydroxyl 

group via elimination of diphosphate (148,149). As an acceptor a vast range of substrates are 

available from proteins, nucleic acids to small molecules. Besides displaying little sequence 

similarity, NTases share a common fold with three-stranded, mixed β-sheet flanked by four α-

helices with αβαβαβα topology (150). The core NTase fold harbors common sequence 

patterns, that include the active site residues hG[GS], [DE]h[DE]h and h[DE]h (h indicates a 

hydrophobic amino acid) (148). Two aspartate or glutamate residues located on one core β-

sheet are involved in the coordination of divalent ions essential for catalysis. The third 

carboxylate residue on the adjacent β-sheet is responsible for the activation of the acceptor 

hydroxyl group. On the nucleotide-binding loop (NB-loop), forming an α-helical turn, is the 

antecedent hG[GS] motif normally crucial in harboring the substrate within the active site.  

 

A previous comprehensive review of the nucleotidyltransferase (NTase) fold protein family 

significantly expanded the number of putative NTases (150). Using top in line homology 

FIGURE 7: ALIGNMENT OF THE TWELVE NEWLY CLASSIFIED MAB21 FAMILY MEMBERS  

Multiple sequence alignment for the NTase fold protein subfamily MAB21 (150). Only conserved regions of the 

fold core are shown. Conservation of residues is denoted with the following scheme: uncharged, highlighted in 

light blue; small, letters in pink; critical active site aspartate/ glutamate, highlighted in pink and critical inactive 

asparagine and glutamine, highlighted in dark blue.    
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detection methods combined with fold recognition programs, 25 novel superfamily members 

were identified in the human genome.  Twelve of these newly classified members belong to 

the MAB21 family: MAB21L1, MAB21L2, MAB21L3 (C1ORF161), cGAS (MB21D1, C6ORF150), 

MB21D2 (C3ORF59), MiD51 (SMCR7L), MiD49 (SMCR7), CBAP (TMEM102), ITPRIP 

(KIAA1754, DANGER), ITPRIPL1, ITPRIPL2 and C2ORF54 (FIG. 7). All members possess an N-

terminal NTase domain followed by C-terminal PAP/ OAS1 substrate binding domain. 

Biological functions of most of these NTases are unknown and some even partially lack the 

conserved catalytic residues and thus seem to lack enzymatic activity.   

 

1.5.1 TWELVE NEW HUMAN NTASE FOLD PROTEINS- THE MAB21 

FAMILY 

Besides the best characterized MAB21 family member being cGAS (MB21D1), the MAB21 

family was named after a conserved family of eukaryotic MAB21-like proteins (MAB21L1, 

MAB21L2 and MAB21L3) involved in cell fate specification (151). MAB21-like proteins will 

be described in detail later in this chapter. Regarding other members of this family, the 

common β chain associated protein (CBAP, TMEM102) was shown to play an important role 

in: pro-apoptotic signaling via interactions with the GM-CSF/ IL-3/ IL-5 receptor (152), 

chemokine-induced T-cell migration and adhesion (153) and thymocyte development 

through T-cell receptor signaling promoting negative selection (154). Another member 

termed DANGER (ITPRIP) is a membrane-associated protein predicted to contain a partial 

MAB21 domain. DANGER’s MAB21 domain interacts with the inositol 1,4,5 triphosphate 

receptor (IP3R) and co-localizes to membranes in the cell periphery, allosterically modulating 

the sensitivity of IP3R to inhibition by Ca2+ (155). Further studies demonstrate that DANGER 

directly binds the calcium/ calmodulin-dependent death associated protein kinase (DAPK) 

inhibiting its catalytic activity and thus regulating cell death (156). DANGER deletion 

augments for instance neurotoxicity and therefore DANGER has the potential to serve as 

therapeutic target (156).  

Mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49/SMCR7 and MiD51/SMCR7L) 

share 42 % sequence similarity and were found in a random cellular localization screen 

where expression of MiD49 led to fused mitochondrial tubules (157). MiD proteins are 

anchored in the mitochondrial outer membrane with their N-terminal transmembrane 

domain and the C-terminal MAB21 domain is located in the cytosol. MiD49 and MiD51 were 

shown to participate in the mitochondrial fission machinery mediating recruitment of the 

GTPase dynamin-related protein 1 (Drp1) independently from other mitochondrial outer 

membrane proteins: mitochondrial fission protein 1 (Fis1) and mitochondrial fission factor 

(Mff) (158-160). MiD49 and MiD51 seem to be functionally redundant since changes in 

mitochondrial morphology were only observed when both MiDs were knocked down. 

Recently, first crystal structures of MiD proteins revealed ADP as essential co-factor of MiD51 

for activation of Drp1 self-assembly (FIG. 8) (161,162). In the crystal structure ADP is bound 

in the catalytic cleft and stabilizes MiD51 devoid of conformational changes. Differently from 
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other NTases the catalytic residues H201 and Q203 rather directly interact with ADP than 

coordinate the Mg2+ ions. MiD51 displays no affinity for nucleotide triphosphates, and instead 

seems to prefer ADP or GDP suggesting that MiD51 is catalytically inactive. Intriguingly, 

MiD51 crystal structure seems to trap MiD51 in its active state displaying the helix break in 

the ‘spine’ and the α-turn in the NB-loop. In addition, MiD51 dimerizes using a distinct 

interaction interface from that known of other NTases. An important finding was that a 

surface loop (β4-α4) is required for Drp1 binding independently of MiD51 dimerization and 

ADP binding. Drp1 recruitment was abolished when a single residue R235 was mutated 

disrupting a salt bridge (R235-D249) located on this loop (161).  

Purified MiD51 can recruit Drp1 to the mitochondrial outer membrane and is able of 

inhibiting Drp1 assembly. Only in the presence of ADP, Drp1 can be activated for fission, 

resulting in assembly into spirals and GTP hydrolysis. MiD49 lacks key residues (only H193 is 

present) and it is monomeric since the dimer interface is not conserved. The binding affinity 

for ADP is also lost. Instead, MiD49 has a modified binding pocket where the central β-sheet 

is repositioned and the flexible NB-loop sterically hinders co-factor binding in the active site 

(163). Other MAB21 family members such as MB21D2 or C2ORF54 have completely 

unknown function even though they harbor the conserved catalytic residues.  

FIGURE 8: THE CYTOSOLIC DOMAIN OF MiD51 HAS A NUCLEOTIDYLTRANSFERASE FOLD AND BINDS ADP 

Left panel: side and top views of the crystallized MiD51 (4OAG) dimer showing the dimer interface in the N-

terminal domain. The surface loop β4-α4 required for Drp1 recruitment is depicted in red. Right panel: Crystal 

structure of MiD51 bound to ADP with a close up view of the active site. ADP (yellow) is directly coordinated by 

residues H201 and Q203.  
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1.5.2 MAB21 CELL FATE DETERMINING PROTEINS 

The mab21 (male abnormal 21) gene was first described in Caenorhabditis elegans as a cell 

fate determinant (164). Mutations in 6 genes were shown to alter the adult arrangement of 

sensory rays on the nematode’s tail and four of them specifically affected ray development 

(165). Rays are a set of nine bilateral and symmetrical pair of protruding structures, each 

consisting of an epidermal structural cell, a neuron A and a neuron B cell. Each ray tip has a 

precise antero-posterior and dorso-ventral localization on the surface of the nematode. 

Mutations in the mab21 gene result in loss of ray 6 morphology and lead to fusion of this ray 

with ray 4 (165). Other pleiotropic defects include abnormal locomotion, shorter body shape 

and reduced fecundity, suggesting that mab21 function is not exclusively in the male tail. All 

effects of mab21 mutations can be seen as posterior-to-anterior homeotic transformations. In 

addition, mab21 mutations lead to the transformation of a neighboring hypodermal cell (T. 

apapa) into a neuroblast cell expressing ray sublineage and that generates a ray (165). Thus 

mab21 mutants exhibit an additional tenth ray, termed ectopic ray, instead of 9 rays. Cell 

ablation experiments confirmed that mab21 is able of acting cell autonomously when 

specifying the properties of sensory rays and acts cell non-autonomously in the case of the 

neuroblast cell fate choice (164). Epistatic analysis revealed that mab21 acts downstream of 

the Sma/Mab pathway (TGF-β pathway in vertebrates) (166,167). A ligand for this pathway 

dbl-1 (also termed cet-1, a homolog of vertebrate bone morphogenetic protein, BMP) acts as 

general dorsalizing factor in male ray patterning and negatively regulates mab21. Further 

characterization of MAB21 function in C. elegans so far, involves the interaction and co-

expression in sensory rays with SIN-3, a key component of a histone deacetylase associated 

co-repressor complex. Regarding developmental and post-embryonic expression patterns, 

MAB21 fused to GFP was first observed in embryos at the beginning of gastrulation and could 

be traced in larval and adult nematodes in hypodermal cells, neuronal cells, neurons along 

the ventral nerve cord, body wall, muscles and ray cells (151).  

Two highly conserved vertebrate MAB21 orthologs were identified and designated MAB21-

like 1 (MAB21L1) and MAB21-like 2 (MAB21L2) (168-170). The mab21 gene family exhibits 

striking phylogenetic conservation and vertebrate orthologs are 94 % identical in amino acid 

sequence. MAB21L1 and MAB21L2 possibly aroused from an ancestral gene duplication 

event prior to vertebrate divergence, as they are equidistant from their C. elegans homolog. 

The ancestral mab21 gene was embedded in an intron of Lrba/ Nbea before metazoan 

divergence leading to a conserved nested gene pair (MAB21L2-Lrba and MAB21L1-Nbea) 

(171). Several studies in the different model organisms Xenopus, zebrafish and mouse 

revealed that both genes have similar expression patterns in the developing eye, midbrain, 

neural tube, branchial arches and limb bud (172-176). MAB21-like proteins have widespread 

and dynamic expression patterns during embryonic development. And yet these expression 

patterns are still similar in different vertebrate model organisms, suggesting that these 

proteins act in concert during embryonic tissue patterning and organogenesis. In addition, 

MAB21-like genes maintain expression in mature tissues, such as postnatal cerebellum and 

eye, and have therefore not an exclusively developmental role (172,177). Alongside with 
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overlapping expression patterns, MAB21-like proteins are expressed in distinct tissues. 

MAB21L1 is uniquely expressed in the lens vesicles and genital tubercle whereas MAB21L2 is 

found in the retinal epithelium, body wall and umbilical cord (178,179). Extensive mutational 

analysis proved MAB21-like protein’s essential role in vertebrate embryogenesis. Zebrafish 

mutants have shown involvement of MAB21L2 in development of the midbrain-hindbrain 

boundary region as well as a proliferation defect within the retinal progenitor cell population 

(180,181). Whereas in Xenopus depletion of Xmab21l2 leads to failure of gastrulation and 

impairment of notochord differentiation causing subsequent neural tube defects (174). 

MAB21L2-deficient mice have defects in eye and body wall formation causing abnormal 

extrusion of abdominal organs and resulting in death in mid-gestation (179,182). Another 

study demonstrated that MAB21L2 is essential for heart and liver development (183). In 

comparison MAB21L1-deficient mice show a relatively mild phenotype. Homozygous 

MAB21L1 mutant mice evidenced defects in eye and preputial gland formation causing 

infertility (178). MAB21L2-/- as well as MAB21L1-/- defects are restricted to tissues with 

unique expression of one of the proteins, although transcripts are detected in other tissues. 

MAB21-like proteins compensate each other’s function in shared expression domains, with 

MAB21L2 being more critical than MAB21L1 for embryonic development.  

HOM-C/ Hox genes play a fundamental role in development. Two homeobox genes egl-5 and 

mab18 in C. elegans, homologous to hox9-13 and pax-6 in vertebrates, mediate cell fate 

decision events where mab21 is required (164). In vertebrates the homeobox transcription 

factors Pax6, Rx and Mbx regulate MAB21L1 and MAB21L2 expression (180,184,185). 

Further experiments demonstrated that myeloid ELF1-like factor (MEF/ELF4) up regulates 

MAB21L1 on a transcriptional level whereas BMP2 down regulates MAB21L2 expression in 

osteoblasts (186,187). BMP2, 4 and 7 are members of the TGFβ signaling pathway and widely 

expressed in the gastrula ectoderm and mesoderm where they regulate dorsoventral axis 

formation as well as numerous key aspects in embryonic development. Regarding the 

molecular function of MAB21-like proteins, Xenopus MAB21L2 was reported to rescue 

ventralization of embryos by antagonizing BMP4 in its ability to ventralize embryonic 

mesoderm in vivo. Immunoprecipitation experiments in vivo with the BMP4 effector SMAD1, 

as well as in vitro, detected an interaction of MAB21L2 with SMAD1 and the SMAD1-SMAD4 

complex (188) These results are in agreement with the epistatic interactions observed in 

nematodes (166,167).  

A further MAB21 family member termed MAB21L3 was recently revealed to be required for 

the development of dorsal ectodermal and mesodermal fates in Xenopus (189). MAB21L1 and 

MAB21L2 share 40% and 44% sequence similarity with MAB21L3, respectively. Moreover, 

MAB21L3 acts downstream of the Notch pathway as key regulator in cell fate specifications of 

multiciliate cells (MCC) and ionocytes (190).   
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1.5.3 STRUCTURAL STUDIES ON MAB21L1 

The first structural work on a MAB21 protein revealed that human MAB21L1 has an overall 

topology highly similar to its family member cGAS (FIG. 9). The bi-lobal structure with the 

typical α/β topology is composed of an N-terminal NTase domain with five-stranded, 

antiparallel and highly twisted β-sheets (β1-β9)  flanked by two helices (α1/α4) and a C-

terminal lobe formed by a conical four helix bundle (α8-α13). Both lobes are separated by a 

deep cleft and are hold together by the N-terminal ‘spine’ helix and a central linker region of 

two α-helices (α5, α6). The catalytic triad responsible for the Mg2+ ion coordination is only 

partially conserved in MAB21-like proteins (hsMAB21L1- E73 and E75). The third catalytic 

carboxylate residue, which normally coordinates the second Mg2+ ion and helps to polarize 

the acceptor hydroxyl group, is a catalytic inactive glutamine (hsMAB21L1- Q169) in the case 

of MAB21L1. 

In the crystal structure MAB21L1 assembles as a highly symmetric oligomer composed of two 

pentameric rings with back-to-back orientation (180° rotation) (FIG. 10). The MAB21L1 

decamer has a D5-symmetry with one five-fold and five perpendicular two-fold non-

crystallographic symmetry axes. The N-terminal lobe of each monomer is surface-accessible, 

while the C-terminal lobe is buried in the oligomer. The interaction interface of the pentamer 

is surprisingly small and distinct from that of other MAB21 domains known to dimerize 

(109,139,161,162). In contrast, the bulky stacking of the pentameric-rings in the crystal 

lattice is mediated between opposing lobes by the central linker region together with a 

strictly conserved region of MAB21L1 and MAB21L2. Despite different space groups and unit 

cell constants, this characteristic highly symmetric double-pentamer was observed in all 

MAB21L1 crystals raising the possibility that oligomerization might be a key function of 

MAB21L1. However, so far no experimental evidence of MAB21L1 oligomerization in solution 

is given.  

FIGURE 9: STRUCTURE OF MAB21L1 IN COMPLEX WITH CTP 

Front and side views of the human MAB21L1 (purple, PDB: 5EOM) crystal structure in complex with CTP. The 

model is depicted as cartoon representation with annotated domains and secondary structure. CTP molecule is 

colored in yellow. Sequence in grey is reminiscent from the N-terminal tag. 
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Regarding the solvent accessible electrostatic surface of MAB21L1, there are several 

extensive positively charged regions. One notable positively-charged pocket stands out at the 

interface between the N-terminal ’spine’ and the C-terminal lobe (ligand binding pocket). 

Similar, in cGAS there is a positively charged cleft in this region of the protein, which together 

with the Zn-thumb is responsible for DNA binding and recognition (106,135). In the 

MAB21L1 decamer another substantial positively charged surface around the five-fold 

symmetry axis is present. MAB21-like protein’s positively charged surface correlates with 

their ability to bind oligonucleotides with preference for ssRNA (191). However, MAB21-like 

proteins bind generic oligonucleotides with considerable less affinity than cGAS suggesting 

that the ligand of MAB21-like proteins is more specific regarding sequence and/or structure. 

Further experiments concerning a potential ligand/ substrate for the nucleotidyltransferase 

fold protein MAB21L1 evidenced an affinity for specific nucleotides. CTP as well as ATP were 

bound by MAB21L1, while other nucleotides, such as UTP and GTP, did not bind at all. A clear 

preference of MAB21L1 for ATP instead of ADP suggests that MAB21L1 ligand might contain 

a triphosphate. The structure of MAB21L1 bound to CTP exhibits a clear density for a single 

CTP moiety in each protomer. Interestingly, CTP was not located at the NTase active site. 

Instead, CTP bound in the positively charged pocket corresponding to the ‘platform’ in the 

FIGURE 10: MAB21L1 OLIGOMERIZATION AND SOLVENT ACCESSIBLE ELECTROSTATIC SURFACE 

Top panel: Front and side views of the MAB21L1 double-pentamer formation in the crystallographic asymmetric 

unit (PDB: 5EOM). One MAB21L1 monomer is colored in purple. Bottom panel: Corresponding surface 

accessible electrostatic surface representation (front and side views of the decamer) colored by charge (blue = 

5kT/e to red = -5kT/e). The positively-charged ligand binding pocket and the positive patch correlating with the 

‘platform’ in cGAS are indicated with an arrow.    
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case of cGAS (FIG. 11). This ‘platform’ surface recognizes DNA in cGAS and RNA in OAS1 

respectively, leading to major conformational changes required for activation of the enzyme 

(106,135,138). Nucleotide binding did not affect the overall conformation of MAB21L1, 

besides the nucleotide-binding loop which is better resolved in the CTP bound structure. This 

argues for an increased flexibility of this loop in apoMAB21L1 and CTP binding then traps 

MAB21L1’s nucleotide-binding loop in an inactive conformation.  

 

1.5.4 HIGH STRUCTURAL CONSERVATION BETWEEN MAB21L1 AND 

cGAS 

The conserved MAB21 domain fold of MAB21L1 evidences high structural similarity to other 

nucleotidyltransferases, such as cGAS, OAS1 and MiD51/ MiD49 (136,162,163,192). 

Structural conservation between MAB21L1 and cGAS is striking despite of low sequence 

similarity. A sophisticated feature evolutionary inserted in cGAS, the Zn-thumb, is not present 

in MAB21L1. Active site residues located on the α-helical C-terminal lobe are highly 

conserved. These residues are responsible for ‘donor’ nucleotide coordination in other 

nucleotidyltransferases (FIG. 12). Y272 in hsMAB21L1, which is stacking to the ATP base, 

corresponds in porcine sscGAS to Y413 (hscGAS Y436). Further conserved residues essential 

for correctly positioning the ‘donor’ ATP in the active site of cGAS are: sscGAS E360/hscGAS 

E383 (MAB21L1 E238), which holds the ribose in place, sscGAS K416/hscGAS K439 

(MAB21L1 K275) and sscGAS K391/ hscGAS K414 (MAB21L1 K255) responsible for 

coordination of the negative charge of the phosphate 

groups.  

Striking differences are found in the N-terminal lobe, 

which coordinates the Mg2+ ions and mostly contacts 

with the ‘acceptor’ GTP molecule. While the adenine 

base is not involved in any intermolecular hydrogen 

bonds, the guanine base is in hydrogen bond 

distance with its Watson-crick and Hoogsteen edges 

from residues sscGAS T186, S57, S355 and R353 

(hscGAS T211, S378, R376 and S380) respectively. 

Notably, these residues, which confer cGAS 

specificity for the guanine base, are missing in 

MAB21L1. T186 cannot be assigned, since the 

nucleotide binding loop is in an inactive 

conformation in MAB21L1 and the other residues 

are A235, V231 and Q233, in MAB21L1 respectively. 

As mentioned before, the catalytic triad coordinating 

the two Mg2+ ions that hold the ATP triphosphate in 

place is only partially conserved in MAB21 proteins. 

In sscGAS the first Mg2+ ion is coordinated by E200 

FIGURE 11: POTENTIAL LIGAND BNDING 
POCKET IN MAB21L1 CORRELATES WITH 
‘PLATFORM’ IN cGAS 

Superposition of MAB21L1 (purple, PDB: 

5EOM) in complex with CTP (yellow) and 

cGAS (blue, PDB: 4KB6) in complex with 

dsDNA (grey). Zn-thumb is depicted in pink.   
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and D202 (hscGAS E225 and E227, MAB21L1 E73 and E75) and D296 facilitates the 

coordination of the second Mg2+ ion. MAB21L1 has the third catalytic carboxylate residue 

changed to an inactive glutamine Q169.  

The MAB21L1 structure bound to CTP represents an inactive conformation. In structures of 

inactive cGAS or OAS1 the loop connecting β1 and β2 is not resolved (106,135,192). In 

MAB21L1 this loop is resolved, due to CTP binding. cGAS and OAS undergo large 

conformational changes upon activation and especially part of the nucleotide-binding loop 

(β1-β2 hairpin) becomes a α-helical turn (146). CTP binding to MAB21L1 prevents these 

rearrangements and access to the catalytic pocket with residues such as I69 hindering 

coordination of the catalytic Mg2+ ions. It is still unclear, if MAB21L1 features 

nucleotidyltransferase activity, despite the lack of a complete catalytic triad and being in an 

inactive conformation.  

 

1.5.5 PATIENT MUTATIONS IN MAB21L2 CAUSE EYE MALFORMATIONS   

Recently, three independent whole exome sequencing projects identified four different 

MAB21L2 missense mutations in patients with bilateral ocular coloboma (191). Eight 

individuals from five unrelated families all evidenced mutations altering only one gene 

(MAB21L2) out of a previously compiled list of 38 candidate genes for eye malformations. 

Three mutational events altered Arg51 to cysteine or histidine (R51C/H) leading to bilateral 

anophtalmia, intelectual disability and rhizomelic skeletal dysplasia (193). Another further 

mutation of Glu49 mutated to lysine (E49K) was located within two residues of Arg51 and in 

a different region of the protein; Arg247 is mutated to glutamine (R247Q). Both mutations 

were associated with retinal coloboma. These mutations support a strong involvement of 

MAB21L2 in human ocular development. First attempts to clarify MAB21L2’s role in this 

drastic phenotypes based on alignments of MAB21L2 with cGAS and OAS1 (191). In 

FIGURE 12: ACTIVE SITE OF MAB21L1 IN COMPARISON WITH STRUCTURALLY CONSERVED cGAS 

A. Close up view of the NTase active site of human MAB21L1 (purple, PDB: 5EOM) in an inactive conformation 
with annotated residues implicated in catalysis and conserved to cGAS. B. Close up view of the NTase active site 
of porcine cGAS-DNA-ATP-GTP (blue, PDB: 4KB6) in the same orientation. Q200 and N202 are mutated in figure 
to E200 and D202, respectively, and a second Mg2+ is added to the catalytic site for reason of clarity. C. Close-up 
view of distinct nucleotide binding sites in the cGAS-DNA-ATP-GTP and MAB21L1-CTP complexes. 

 

25



INTRODUCTION 
 

 
 

agreement with the location of the mutations in MAB21L2 close to the RNA binding cleft in 

OAS1, all mutations were able to disrupt the affinity of MAB21L2 for ssRNA (191). In 

addition, Rainger et al. generated GFP fused MAB21L2 mutants (R51C/H, E49K, R247Q) that 

proved to be more stable than the wild type protein (191). In contrast, subsequent 

experiments in zebrafish evidenced a decreased stability of the mutant R51G compared to 

wild type MAB21L2 (194).   

Since only mutation R247Q located on the C-terminal lobe is structurally conserved in cGAS, 

the crystal structure of MAB21L1 brought further insights into the intriguing question 

whether the mutations have stabilizing or destabilizing effects. All amino acids mutated in 

MAB21L2 are conserved in MAB21L1. Instead of being located at the surface as previously 

proposed, the mutated residues are involved in structure stabilization (FIG. 13). From the 

MAB21L1 structure it is visible that R247, which is structurally conserved in cGAS, forms a 

salt bridge with E288 and that E49 together with R51 participate in a network of salt bridges 

with E115.  

All mutational events disrupt the aforementioned integral structural interactions. Thermal 

shift assays of MAB21L2 wild type, R51C and R247Q demonstrated that mutations lead to a 

decrease in stability of the protein. In particular, R247Q resulted in even more drastic 

destabilization compared to R51C. R247 seems to be more fundamental for structural 

stability of the MAB21 domain fold per se. The highly conserved R51 and E49 residues are 

responsible for correctly positioning the loop β4-α4 and allowing the two α-turns α2 and α3 

(FIG. 14). The high degree of conservation of this loop suggests that correct folding is of major 

importance for the stability and proper function of MAB21-like proteins.     

FIGURE 13: PATIENT MAB21L2 MUTATIONS MAPPED ON MAB21L1 STRUCTURE 

Amino acids of MAB21L2 mutated in patients with eye malformations are depicted in red (E49K, R51C/H) on 

the N-terminal lobe and in blue (R247Q) on the C-terminal lobe of the MAB21L1 structure.   
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1.6 MECHANISM OF CYTOSOLIC RNA SENSING BY RIG-I 

1.6.1 STRUCTURAL MECHANISM OF RNA SENSING AND RLR 

ACTIVATION 

RIG-I surveys the cytoplasm in an auto-inhibited state where the helicase is in an open 

conformation (49,58). The CTD is flexibly linked to the helicase having no major interactions 

with the rest of the protein, while the CARDs are sequestered by Hel2i through extensive 

contacts between the top end of CARD2 (α23, α24) and α25 of Hel2i (54). In the inactive state 

CARD1 is mainly surface accessible. In contrast, the proximity of CARD2 to the Hel1 domain 

as well as the Hel1-linker and the Hel2i interface sterically hinder interactions with other 

macromolecules (MAVS-CARD, polyubiquitin) and poly-ubiquitination required for 

downstream signaling. Indeed, disruption of the CARD2-Hel2i interface led to constitutively 

active RIG-I and stimulation of the IFN β promoter in human Huh7.5 cells (54). Moreover, the 

tandem CARDs form a rigid functional unit which is essential as a whole for downstream 

signaling events (69). RIG-I’s auto-inhibited state is supported via masking of the RNA 

binding site on the Hel2i domain by the CARDs. This contributes to inhibition of dsRNA 

binding and dsRNA-dependent ATPase activity of RIG-I. ATPase activity is lacking in inactive 

RIG-I due to the stabilized open conformation where the helicase motifs are misaligned (58). 

The first step in RIG-I activation is the capturing of the RNA by the flexible and surface 

exposed RD (CTD), which selectively binds 5´ppp dsRNA (195,196). Binding of the RNA to the 

RD increases the local concentration of dsRNA near the helicase and favors therefore the co-

operative binding of ATP and dsRNA. Following major rearrangements lead to a closed 

conformation of RIG-I where the helicase-RD organizes into a ring around the dsRNA capping 

the blunt end 5´ppp dsRNA and simultaneously liberating the CARDs (FIG. 15) (54,56,57). 

The crystal structure of RIG-I helicase-RD in complex with ADP•BeF3, with BeF3 mimicking 

the γ-phosphate of ATP, shows how all four domains (Hel1, Hel2, Hel2i and RD) move to each 

FIGURE 14: PATIENT MUTATIONS IN MAB21L2 AFFECT THE FOLD OF CONSERVED LOOP  

Left panel: MAB21L1(purple, PDB: 5EOM) monomer with the β4-α4 loop marked in red. Center and right panel: 

MAB21L1 decamer with one MAB21L1 protomer in purple and the neighboring MAB21L1 protomer from the 

adjacent pentamer in blue. β4-α4 loops of both MAB21L1 interact and are depicted in red.  
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other upon binding dsRNA and ATP (56). Conformational changes include rotation of Hel1 by 

49° from Hel2 as a reference and rotation of Hel2i by 24° (54). The dsRNA maintains its 

helical A-form conformation in a highly basic channel of the helicase-RD containing 

previously uncharacterized helicase motifs for RNA recognition. The 3´ strand is exposed and 

mainly interacts with the helicase, whereas the 5´end harboring the tri-phosphate is capped 

by the helicase-RD. Interactions between RIG-I’s helicase-RD and dsRNA are mainly 

sequence-independent involving the ribose-phosphate backbone of both strands. Residues 

known to interact with dsRNA in previous crystal structures of the isolated RD are identical 

in the helicase-RD structure bound to dsRNA (195,197,198). However, the trajectory of the 

dsRNA in the isolated RD structures differs from the one in the helicase-RD structure where 

the dsRNA bound to the isolated RD would clash with Hel2i. Hence, the dsRNA in helicase-RD 

is rotated and new contacts with the RD are introduced. Furthermore, the critical RNA 

binding loop (849-857) containing F855, which stacks on the blunt-end bases, changes its 

conformation upon dsRNA binding allowing capping of the blunt-end dsRNA (56). In the 

helicase-RD structures, a two α-helical V-shaped linker that extends into a proline-rich loop 

makes the connection from Hel2 to the RD. RIG-I’s activity was shown to be regulated 

through phosphorylation of T770 by Casein kinase II (199). This residue is located on the 

kink of this V-shaped linker (pincer) suggesting a mechanistic role for the linker such as a 

hinge for RD positioning (54,56). 

Regarding the helicase core domains, characteristic motifs interact with the dsRNA. Hel1 

domain motifs Ia, Ib and Ic interact with the 3´ strand sugar-phosphate backbone, whereas 

FIGURE 15: MODEL FOR THE ACTIVATION OF RIG-I 

Inactive RIG-I (PDB: 4A2Q) has an open conformation where the CARDS (green) are sequestered by the Hel2i 
(blue). The pincer (orange) holds RIG-I in the inactive conformation where the CTD (red) is flexibly linked to the 
helicase (blue). Upon 5´ triphosphate dsRNA and ATP binding RIG-I (PDB: 5E3H) adopts a closed conformation 
with the helicase (blue) forming a ring around the dsRNA (grey). The CTD (red) displaces the CARDS (green) 
from the Hel2i interface. The CARDS (green) are then accessible for downstream signaling.     
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motif IIa and motif II are in contact with the 5´ strand. In the Hel2 domain, motifs IV, IVa, IVb 

and V interact with 3´ strand from C13 to C10 and the 5´ strand is bound by motif Vc (54,56). 

These newly characterized RNA recognizing motifs may constitute a general feature for 

dsRNA or dsDNA binding helicases, since motif IIa was identified to be involved in dsDNA 

binding by a Rad54 homologue belonging to the Swi/ Snf2 family of helicases (200). Motifs Q, 

I, II, III, Va and VI are generally involved in ATP binding and hydrolysis. In the RIG-I helicase-

RD structure ADP•BeF3 is bound in the interface between Hel1 and Hel2 and nucleotide 

coordination is achieved by residues in the responsible helicase motifs. The adenine is 

specifically recognized by motif Q, phosphates together with BeF3 are bound by motif I, the 

Mg2+ ion is coordinated by motif II (D372 and E373) and residues in motifs Va and VI 

generally contact with the ribose and phosphates of the ATP analog (54,56). 

Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) experiments 

evidenced that in RIG-I the resting auto-inhibited state is maintained by CARD2-Hel2i 

interactions, while in MDA5 the analogous intra-molecular interactions are lacking (201). 

This results in an extended conformation of MDA5 where the CARDS are exposed. In addition, 

human MDA5 has a significantly longer linker between CARD2 and the helicase compared to 

RIG-I (105 and 55 residues respectively). Hence, RIG-I and MDA5 have different resting states 

and thus mechanisms of activation.  

FIGURE 16: COMPARISON OF RIG-I AND MDA5 RNA BINDING MODES  

Side and bottom views of RIG-I (left, PDB: 5E3H) and MDA5 (right,PDB:  4GL2) bound to dsRNA (grey). RIG-I 

forms an asymmetrically closed O-ring around the dsRNA. In the dsRNA end capping mode of RIG-I, the CTD 

(red) of RIG-I is tilted towards the dsRNA end. Instead, MDA5 forms an open ring structure (C-shaped, 30° 

opening between CTD and Hel1) around the dsRNA stem orienting the CTD (red) parallel to the dsRNA axis.    
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Concerning the dsRNA recognition, major differences in the orientation of the CTD enable 

both binding to dsRNA stem by MDA5 and capping of dsRNA ends by RIG-I (FIG. 16) 

(54,56,57,202). RIG-I forms an asymmetrically closed O-ring around the dsRNA where the 

bottom tip of the CTD is tilted towards the dsRNA end close to Hel1. In contrast, the CTD of 

MDA5 is placed parallel to the axis of dsRNA forming a C-shaped ring around the dsRNA stem 

(203). The Hel2i domain provides a docking site for the CTD of MDA5 to be relocated near the 

dsRNA stem. In the case of RIG-I, the Hel2i interface has an additional protrusion in helix α12 

that is able to push the CTD away from Hel2i preventing the same orientation of the CTD for 

RIG-I (202). Another difference represents the 5´ppp and blunt end recognizing RNA binding 

loop (849-857) in RIG-I, which is disordered in MDA5 leaving dsRNA stem recognition to the 

flat surface of the CTD. A loop located in the Hel2 domain plays an important role in coupling 

RNA binding with ATP hydrolysis and subsequent signaling. In MDA5 the Hel2 loop inserts 

into the major groove of the dsRNA stem, whereas in RIG-I it binds the dsRNA end. Besides 

the distant location of the Hel2 loop from the ATP-binding site, deletion of this loop abolishes 

dsRNA-dependent ATP hydrolysis (202).  

 

1.6.2 ATP HYDROLYSIS BY RIG-I PREVENTS RECOGNITION OF SELF-

RNA  

RLRs are classified as RNA helicases belonging to the structurally conserved helicase 

superfamily 2 (often referred to as DExH/D or DExD/H proteins) (204). The term ‘helicase’ 

was first proposed to describe ATP-dependent duplex DNA unwinding activity (205). In 

particular, SF2 members are characterized by nucleic acid binding and simultaneous ATP 

hydrolysis coupled to large conformational changes triggering downstream events (206). 

Helicase conformational changes generally include structural remodeling of bound nucleic 

acid, protein-nucleic acid complexes or translocation of the helicase along the bound nucleic 

acid. However, not all helicases or members of the DExD/H helicase family share this 

translocation-dependent unwinding nor unwinding activity alone (206). Single-molecule 

analysis revealed that RIG-I has ATP-dependent translocation activity reflected in transient 

rapid on/off interactions with the duplex RNA stem (207). Further, in the absence of 5´-

triphosphate, translocation was drastically suppressed by the CARDs. RIG-I as well as MDA5 

seem to lack duplex unwinding activity, besides a report showing RIG-I to unwind short 

duplex 3´ overhang RNAs in an ATP-dependent manner (208).    

RIG-I mediated signaling was shown to systematically increase with dsRNA length at a 

constant molar amount (209). Involvement of the dsRNA stem in RIG-I activation together 

with the ATP-dependent translocation activity suggest that the helicase domain of RIG-I 

might be capable of low affinity internal binding to dsRNA devoid of a 5´-triphosphate end. In 

fact, dsRNA termini are bound by RIG-I as a monomer in the absence of ATP and upon ATP 

hydrolysis, RIG-I was demonstrated to assemble into filamentous oligomers that propagate 

from the dsRNA end to the interior (210,211). Importantly, dsRNA ends and ATP hydrolysis 

are continuously required for filament formation, explaining how previous studies of RIG-I 

without ATP led to the misleading notion of monomeric RIG-I bound to dsRNA (210). Crystal 
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structures of RIG-I capping the dsRNA end are consistent with dsRNA translocation without 

unwinding and represent the conformation of RIG-I prior to translocation and filament 

formation (54,56,57). Unfortunately, no crystal structures depicting the conformation of RIG-

I bound internally to long dsRNA are available. End-capping structures of RIG-I are 

incompatible with filament architecture suggesting that RIG-I dsRNA stem-binding requires a 

different orientation of the CTD, which might be similar to that of MDA5 for dsRNA stem 

recognition (202,210). MDA5 was shown to distinguish between dsRNA and other nucleic 

acids through cooperative assembly into a filamentous oligomer along the length of the 

dsRNA (202,212). MDA5 stacks along the dsRNA in a head-to-tail arrangement where the 

Hel2i domain of one protomer binds the pincer domain of the next protomer. In contrast, 

RIG-I filaments evidence no protein-protein interactions (202,210). Further, the impact of 

ATP hydrolysis on RIG-I and MDA5 oligomerization states is remarkably different. In the case 

of MDA5, filament formation is ATP-independent, while ATP hydrolysis dynamically 

regulates MDA5’s disassembly process in a dsRNA length-dependent manner. The ATP-

driven length dependent dissociation enables MDA5 to measure the dsRNA length and 

renders short dsRNA kinetically unstable for signaling via MDA5 (202,212). Instead, RIG-I 

requires ATP hydrolysis for translocation and associated filament formation (210,211).   

ATP hydrolysis is associated with the conformational switch required for signaling of RIG-I as 

well as MDA5 (69). In several studies ATPase defective and gain-of-function alleles of RIG-I 

and MDA5 result in either improved viral clearance or autoimmune diseases including 

Aicardi-Goutières and Singleton-Merten syndromes (SMS) (213-216). While SMS mutations 

resulted in constitutive RIG-I signaling described as gain-of-function, previous studies dealing 

with mutations in helicase motif I rendered inactive RIG-I, different types of mutations in 

motif II resulted in either gain or loss of function and finally mutations in motif III, which 

significantly disrupt ATPase function had no impact on RIG-I signaling (FIG. 17) 

(31,48,58,217). Mutation K270I in motif I, which abrogates ATP binding, is unable to signal 

when challenged with longer RNAs (217-219). Short 10bp RNA did not abolish signaling, 

suggesting that Walker A mutants are only detrimental to signaling on longer RNA (219).  The 

structure-derived E373Q mutation in motif II, however, resembles the phenotype of SMS 

mutations. E373 in motif II is required for proper Mg2+ ion coordination to stabilize ATP. 

Hence, RIG-I E373Q mutant is trapped in an ATP-bound state leading to constitutive signaling 

in response to self-RNA (218). ATPase activity helps both helicases to discriminate between 

self and non-self dsRNA by fine-tuning release of the CARDs and thus the hereby associated 

downstream signaling. Low ATP hydrolysis in RIG-I or MDA5 mutants correlates with 

constitutive signaling. This effect is reverted, when mutations that disrupt RNA binding to the 

helicase are inserted (217). RIG-I mutations T347A and V699A which disrupt the interaction 

of the RNA with either the Hel1 or Hel2 domain respectively, were designed to test if E373Q 

signaling in non-infected cells is due to interactions with self-RNA. T347A mutation disrupted 

signaling in either infected or non-infected cells, whereas V699A slightly increased the 

signaling (218). The latter can be related to a putative reduction in translocation ability 

instead of the desired disruption of RNA binding. In order to dissect, if binding to endogenous 

RNA by RIG-I (E373Q) is dependent on RNA harboring a 5´-triphosphate or 5´-diphosphate, 

K888T was mutated (218). 5´triphosphate binding in the RD is mediated by residue K888 

31



INTRODUCTION 
 

 
 

(56). RIG-I E373Q/ K888T double mutant signals constitutively in non-infected cells, 

indicating that signaling upon binding to self-RNA is independent from 5´triphosphates 

(218). Another autoimmune disease related mutation C268F located on motif I, is 

constitutively active (218). Intriguingly, previous mutations in motif I (K270I) abolished RIG-

I signaling. The non-ATP binding C268F mutation, behaves as a motif II mutation (E373Q) 

and therefore phenocopys a mutation that prevents ATP hydrolysis.   

 

FIGURE 17: RIG-I HELICASE MOTIFS  

A and B. Structure RIG-I bound to dsRNA (grey) and ADP•BeF3 (black, PDB: 5E3H) with helicase motifs 
responsible for RNA and ATP binding denoted in blue (Hel1, motifs Q, I, Ia, Ib, Ic, II, IIa), green (motif III) and in 
yellow (Hel2, motifs IV, Iva, IVb, V, Va, Vb, Vc and VI). A. Inset shows a close up of the ATP binding site of RIG-I. 
Residues mutated in this work are denoted. B. Inset shows a close up of the dsRNA binding site. Residues 
mutated in this work are denoted.      
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The nature of the endogenous RNA ligand for RIG-I E373Q was characterized from co-

immunoprecipitation experiments in non-infected cells (218). E373Q mutants co-purified 

with a three-fold increased amount of RNA compared to wt RIG-I. This RNA was not 

immunostimulatory in a wt RIG-I background and most of it was uncovered to be 28S 

ribosomal RNA. Cryo-EM analysis of RIG-I E373Q mutant in complex with the ribosome 

revealed an extra density for RIG-I E373Q located at the expansion segment ES-7L (218). 

Ribosomal expansion segments have G:C rich, base-paired RNA stretches that form large 

tentacle-like hairpin structures with considerable double-stranded content, therefore 

providing an optimal dsRNA ligand for RIG-I stabilized in the ATP-bound state (220).  

ATP binding to the helicase domain contributes to the overall affinity of RIG-I to dsRNA in 

addition to the RD, which dominates the interactions with dsRNA. This notion is supported by 

several structures of RIG-I in complex with ATP analogs (54,56). These structures of RIG-I 

depict a progressive closure of the helicase domain upon ATP binding which is responsible 

for triggering the release of the tandem CARDs. Moreover, the CARDs play a major role in 

mediating the dissociation from RNA by linking it to ATP binding to the helicase. In 

agreement with this, ΔCARDs constructs showed no enhanced dissociation from RNA in the 

presence of ATP (219). ATP addition shows no effect on the affinity to 5´-triphosphorylated 

dsRNA, suggesting that upon ATP binding and subsequent hydrolysis only RIG-I dissociation 

from unphosphorylated RNA ends is promoted (218). Therefore inhibition or slow-down of 

the ATPase activity of RIG-I leads to prolonged interaction periods with endogenous dsRNA 

ligands devoid of 5´-triphophate epitopes and to the corresponding constitutive downstream 

signaling.     
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2.1 STRUCTURAL MECHANISM OF CYTOLSOLIC DNA 

SENSING BY cGAS 

 

Civril, F.*, Deimling, T.*, de Oliveira Mann, C. C., Ablasser, A., Moldt, M., Witte, G., Hornung, V., 

and Hopfner, K.-P. (2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 

498, 332-337 

*: equal contribution 

 

This publication reports the crystal structure of porcine cGAS (MAB21-domain) alone and in 

complex with a 14-mer dsDNA, ATP and GTP along with functional studies in vitro and in 

human cells. Recent studies identified the cyclic GMP-AMP synthase (cGAS) as the major 

cytosolic DNA sensor. In the presence of dsDNA, cGAS binds ATP and GTP and subsequently 

catalyses the production of a novel second messenger cGAMP bearing a noncanonical 2´-5´ 

and a 3´-5´ mixed phosphodiester linkage. Upon cGAMP binding, STING dimerizes and 

stimulates a robust IFN response to cytosolic DNA. Our results explain the broad sequence-

independent sensing specificity of cGAS along with the activation mechanism based on a 

structural switch induced by DNA binding. Further, the crystal structure of a transferase-

trapping active site mutant together with the substrate nucleotides readily defines how cGAS 

first catalyses the synthesis of a linear dinucleotide intermediate. Taken as a whole these 

results mechanistically unify dsRNA and dsDNA recognition in innate immunity by cGAS and 

OAS1. A new unique class of conserved of 2´-5´-linked second messengers synthesizing 

enzymes is revealed with similar structural fold and activation mechanisms. cGAS contains a 

unique Zn-thumb that serves as molecular ‘ruler’ and specific residues involved in minor-

groove interactions enabling it to recognize the backbone of B-form dsDNA. A-form dsRNA is 

not able to trigger the conformational changes required for cGAS activation and for proper 

orientation of the active site geometry in order to catalyse cGAMP.  

 

Author contribution 

The author of this thesis cloned, expressed and purified the porcine and human cGAS 

constructs and mutants for crystallization, in vitro and cell-based assays. She performed 

electro-mobility shift assays (EMSA) in order to characterize binding affinities for different 

RNA/DNA species of wild type cGAS, STING and the effects of several cGAS mutations.        
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Structural mechanism of cytosolic DNA
sensing by cGAS
Filiz Civril1*, Tobias Deimling1*, Carina C. de Oliveira Mann1, Andrea Ablasser2, Manuela Moldt1, Gregor Witte1, Veit Hornung2

& Karl-Peter Hopfner1,3

Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular
pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory
cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces
the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of
cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA
sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced
structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA
sensor 29-59oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded
DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl
transferases.

Recognition of pathogen- or danger-associated molecular patterns
(PAMPs or DAMPs) is crucial for host defence. Innate immunity
ensures this recognition through germline-encoded pattern recog-
nition receptors (PRRs) and triggers signalling cascades that result
in production of proinflammatory cytokines and type I interferons
(IFN-a and IFN-b)1,2. Cytosolic DNA arising from intracellular bacteria
or viral infections is a powerful PAMP and is also implicated as a DAMP
in autoimmune diseases1,3,4. Over the past years, a variety of PRRs for
cytosolic DNA have been reported: DNA-dependent activator of IFN-
regulatory factors (DAI, also known as ZBP1)5, absent in melanoma 2
(AIM2)6–8, RNA polymerase III9,10, leucine-rich repeat (in Flightless I)
interacting protein-1 (LRRFIP1)11, DExD/H box helicases (DDX41,
DHX9 and DHX36)12,13 and IFN-inducible protein IFI1614. However,
these PRRs are either cell-type- or DNA-sequence-specific, are possible
accessory factors (DExD/H proteins), or trigger different pathways
such as caspase-1 activation (AIM2) or a b-catenin-dependent signall-
ing pathway (LRRFIP1)15.

Although the DNA sensor for type I IFN production with broad
specificity and cell distribution was not identified until recently, it was
known that IRF3 and NFkB activation in response to DNA requires
STING (stimulator of interferon genes, encoded by gene TMEM173
the protein is also known as MITA, MPYS or ERIS), a transmembrane
protein that is resident on the endoplasmic reticulum16–18. STING
colocalizes with DNA in vivo but binds DNA only with low affinity
in vitro19, suggesting the presence of an additional sensor. Furthermore,
STING is a direct PRR for cyclic dinucleotides such as c-di-AMP and
c-di-GMP20, which are signalling molecules in prokaryotes and trigger
IFN in response to, for example, intracellular bacteria21,22.

Recent results identified human c-GMP-AMP (cGAMP) synthase
(cGAS, also known as C6ORF150 and male abnormal 21 domain
containing 1 (MB21D1)) as a broad-specificity cytosolic DNA sensor23.
In the presence of DNA cGAS produces cGAMP, which is an endogenous
second messenger that activates STING18, explaining how STING can
stimulate IFN in response to both cyclic dinucleotides and DNA. To reveal

the mechanism of DNA-stimulated cGAMP synthesis, we determined
the crystal structure of porcine cGASMab21 (residues 135–497, comprising
the highly conserved, DNA-stimulated nucleotidyl transferase (NTase)
domain) with and without a 14-mer dsDNA ligand and nucleotide
substrates, along with functional studies in vitro and in living cells.

Crystal structure of cGASMab21

cGAS is a 60 kDa protein composed of an unstructured, not well
conserved amino-terminal stretch of approximately 130–150 residues
followed by a highly conserved Mab21 domain that belongs to the
nucleotidyl transferase (NTase) superfamily24. To overproduce and
crystallize cGAS, it was necessary to genetically remove the unstruc-
tured N-terminal tail. The resulting cGASMab21 used in this study
(residues 155/161–522 for human cGAS and residues 135–497 for
porcine cGAS) possesses DNA-dependent dinucleotide synthesis acti-
vity in the presence of a 50-mer dsDNA that induces IFN in THP1 cells
(Fig. 1a and Supplementary Fig. 1a, b). Whereas cGAS also produces
cGAMP in the presence of a 40-mer dsDNA, no activity was observed
when we omitted either GTP or ATP from the reaction mixture or sub-
stituted dsDNA with single-stranded DNA (Supplementary Fig. 1a).

We determined the crystal structure of porcine cGASMab21 by single-
wavelength anomalous dispersion to 2.5 Å resolution using a seleno-
methionine derivative. After density modification, we could build an
initial model, which was completed and refined against the 2.0 Å resolu-
tion native data, resulting in good R-factors and stereochemistry (Sup-
plementary Fig. 1c and Supplementary Table 1).

The Mab21 domain of cGAS comprises two lobes, separated by a
deep cleft (Fig. 1b). Lobe 1 possesses the NTase fold with a two-leaved
highly twisted b-sheet (b1–b8) that is flanked on the outside by two
long a-helices (aA and aB). At the inner side, lining the cleft, b1 and
b6 harbour the signature catalytic site residues (E200, D202, D296) of
the NTase superfamily that coordinate the catalytic Mg21 ions and
nucleotides. Lobe 2 is a bundle of four a-helices (aE–aH), connected
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to lobe 1 by a long ‘spine’ (aA), two linker helices (aC, aD) and by a
long active site loop connecting aA and b1.

The molecular surface opposite the active site is a fairly flat, slightly
concave ‘platform’, formed predominantly by aA, aC, aD and the
nucleotide-binding loop. An intriguing protrusion (residues 367–
382) is situated at one end of the platform. This protrusion contains
highly conserved histidine and cysteines (H367, C373, C374 and C381),
which together coordinate a Zn21 ion (Fig. 1c). We denote this loop
‘Zn thumb’. Its sequence is inserted between lobes 1 and 2 and is a
highly conserved and characteristic feature of cGAS orthologues
(Supplementary Fig. 1d), indicating an important functional role.

The cGAS–DNA–GTP–ATP complex
To reveal the structure of the activated conformation of cGAS, we
co-crystallized cGASMab21(td) with a self-complementary 14-mer oligo-
nucleotide, ATP, GTP and MgCl2. To trap an activated conformation of
cGASMab21 with DNA and bound nucleotides we mutated the NTase
catalytic residues E200 and D202 to Q and N, respectively, thereby pre-
venting catalysis during crystallization. The resulting transferase-
deficient (td) variant is denoted cGASMab21(td). The structure of the
cGASMab21(td)–DNA–GTP–ATP complex was determined by molecular
replacement using the coordinates for apo cGASMab21 as search model.
2Fo 2 Fc and Fo 2 Fc maps revealed interpretable density for 13 out of
14 base pairs of the dsDNA duplex and for both nucleotides bound at
the active site (Supplementary Fig. 2). The structure was refined at
3.1 Å resolution, resulting in a model with good R-factors and stereo-
chemistry (Supplementary Table 1).

DNA is bound along the platform between the spine on one side and
the Zn thumb on the other side (Fig. 2a). cGAS binds DNA predomi-
nantly by sequence-independent interactions to both phosphate-sugar
backbone strands along the minor groove (Fig. 2b, c). Hereby, cGAS
binds seven nucleotides at the core of the platform, which are recog-
nized by at least eleven residues via specific side- and/or main-chain
contacts. In addition to the phosphate and sugar contacts, two arginine
fingers (R150 and R192) are inserted into the minor groove, addition-
ally stabilizing the interaction in a fairly sequence-independent manner.
Besides binding to the array of conserved positively charged residues at
the bottom of the platform, DNA is also bound by the spine and the Zn
thumb. The continuous helix of the spine in apo-cGASMab21 is inter-
rupted in the DNA complex and a DNA backbone phosphate is bound
at the central kink of the spine helix. On the other side of the platform,
the Zn thumb contacts the DNA backbone near the major groove. We
do not see close, direct polar contacts between Zn thumb and DNA, but

do not want to rule out water-mediated interactions here (Supplemen-
tary Fig. 2a).

The Zn thumb does not substantially change conformation or loca-
tion between apo and DNA-bound cGAS. It seems to be a rather rigid
element, in which the zinc ion serves as a structural stabilizer of the
protruding loop, similar to Zn21 in regulatory domains of RIG-I-like
receptors25. The location of the Zn thumb at the backbone near the
major groove suggests that it may assist in binding to B-form DNA. In
support of this, we do not see a substantial perturbation of the bound
DNA from canonical B-form DNA.

Altogether, our structure suggests a specific recognition of B-form
dsDNA by cGAS through an extended B-DNA binding platform and
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flanking ‘Zn thumb’ across both lobes of the enzyme. The observed
mode of binding is consistent with the key role of cGAS in sensing
very different types of DNA in a sequence-independent manner18,23.

Structure-function analysis
To validate the structural results, we mutated several conserved positively
charged residues at the DNA-binding platform of human cGAS, two
active site residues, two zinc ligands in the Zn thumb, or the entire Zn
thumb and tested for nucleotidyl-transferase activity in vitro by thin-layer
chromatography (TLC) (Fig. 3a). cGAS produces a product that migrates
approximately in the range of c-di-AMP synthesized by DisA26, con-
sistent with formation of a dinucleotide. The conserved active site
residues of NTases (human E2251D227; porcine E2001D202 and
human G2121S213) are essential for in vitro activity of cGASMab21.
Moreover, mutation of conserved positively charged residues at the centre
and flanking regions of the platform (K1731R176 and K4071K411)
either diminish or abolish activity, in accordance with this site being
important for DNA sensing. Finally, disruption of the zinc-binding
site of the thumb (human C3961C397, Zn thumbless) abolishes

DNA-induced NTase activity in vitro, highlighting the functional
importance of the conserved Zn thumb in DNA binding.

To test the effect of active site, platform and thumb mutations in
living cells, we measured the transactivation of an IFN-b promoter
reporter by transiently expressing human cGAS variants in HEK293T
cells that stably expressed murine STING (Fig. 3b). Induction of IFN-b
by cGASMab21 (human cGAS155–552) in these cells is only moderately
reduced compared to wild-type cGAS, showing that the Mab21
domain structurally addressed in this study is the catalytic active
functional core of the sensor. The activity of full-length cGAS was
abolished when residues of the NTase active site were mutated
(E225Q/A1D227N/A or G212A1S213A). Mutating charged plat-
form residues (K173A1R176A; K407A1K411A) substantially reduced
the activity of cGAS in living cells. Likewise, disrupting the zinc-
binding site of the thumb (C396A1C397A, Zn thumbless) severely
compromised cGAS activity. These data validate the in vitro biochem-
ical data and emphasize the importance of the structure-derived motifs
and elements in living cells.

To see whether Zn thumb and conserved platform surface residues
are important for dsDNA binding and activity, we performed elec-
trophoretic mobility shift assays (Fig. 3c). Both porcine and human
wild-type cGASMab21 bind efficiently to dsDNA and, surprisingly, also
to dsRNA (Supplementary Fig. 3a, c). The mutations in platform and
thumb either did not affect DNA/RNA binding under these condi-
tions, or reduced but did not abolish it (Supplementary Fig. 3b).
However, both mutants fail to show DNA-stimulated activity under
conditions where they still bind DNA, and dsRNA fails to stimulate
activity under conditions where it binds robustly to the protein
(Supplementary Fig. 3c, d). Thus, although these analyses validate
the functional relevance of the DNA binding platform and Zn thumb
on activating cGAS, they suggest that DNA or RNA interactions per se
are not sufficient to activate the enzyme, indicating for instance the
necessity for a precise DNA-induced structural switch.

NTase and DNA induced structural switch
To reveal the mechanism of activation of cGAS by DNA, we first
analysed the NTase mechanism. We see clear electron density for
two nucleotide triphosphate moieties (Supplementary Fig. 2b). The
two bases partially stack in an approximately 90u rotated orientation
and inserted into a hydrophobic/aromatic pocket, sandwiched between
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Figure 3 | Platform and Zn thumb are involved in dsDNA-dependent
activity. a, NTase assays performed with different cGASMab21 mutants (2mM)
in presence of 3mM dsDNA (50-mer). Human wild-type cGASMab21 (positive
control) synthesizes dinucleotide, DNA binding site mutant K173A1R176A
show reduced activity. K407A1K411A DNA binding site mutant,
C396A1C397A Zn thumb mutant, Zn thumbless, L174N structural switch
mutant, active site mutants E200Q1D202N of porcine cGASMab21 and
E225A1D227A and G212A1S213A of human cGASMab21 are inactive. The
asterisk indicates the dinucleotide product. b, IFN-b stimulation of cGAS
mutants in HEK293T cells stably expressing murine STING. HEK293T cells
were transfected with plasmids encoding indicated constructs along with the
IFN-b promoter reporter plasmid pIFN-b-GLUC. Luciferase activity is plotted:
mean 6 s.d. (n 5 3). Both full-length and the crystallized region (cGASMab21

human 155–522) induce IFN-bpromoter transactivation. Active site mutations
(G212A1S213A and E225Q/A1D227N/A) abolish IFN-b stimulation. DNA-
binding site mutants (K173A1R176A, K407A1K411A), Zn thumb mutants
(C396A1C397A, Zn thumbless) and structural switch mutant (L174N) either
reduce or abolish IFN-b stimulation. Empty vector was used as negative control
whereas cyclic-di-GMP synthase (cdG syn) expressing vector was used as
positive control. Inset: western blot showing wild-type and mutant protein
levels with b-actin as loading control. c, Electrophoretic mobility shift analysis
of 50-mer dsDNA (0.2mM) bound to cGASMab21 mutants at indicated
concentrations. Plotted bars, mean 6 s.d. (n 5 3). Whereas K407A1K411A
DNA binding site mutant and C396A1C397A Zn thumb mutant show slightly
reduced but not impaired affinity to dsDNA, no detectable binding change was
observed with the other mutants.
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I298 (lobe 1) and Y413 (lobe 2). The current resolution of the diffrac-
tion data does not allow us to unambiguously determine which base
is adenine and which guanine. Binding of R353 at nucleobase 1 (the
‘receiving substrate’ of NTases) near O6 and N7 would argue for this
being guanine. In general, nucleobase 1 (interpreted as guanine here) is
in hydrogen bonding distance to S355, S357 and T186, suggesting that
this nucleotide is specifically recognized. In contrast, we do not observe
direct hydrogen-bonding contacts of the protein to nucleobase 2
(the ‘transferred’ nucleotide in NTases; interpreted as adenine here).
Nevertheless, this recognition might be mediated via water molecules
such as in 39 terminal uridylyl transferases27.

The structure provides a mechanism for attack of nucleotide 1 on
nucleotide 2, consistent with the mechanism of other NTases, for
example, CCA adding enzyme28. The triphosphate chain of nucleotide
2 is well coordinated via S188 (lobe 1), S412 (lobe 2) and Mg21 bound
to E200 (Q in cGASMab21(td)) and D202 (N in cGAS Mab21(td)). As a
consequence, the relative orientation of lobes 1 and 2 is important for
the phosphate coordination of nucleotide 2. In our conformation, the
a-phosphate of nucleotide 2 is well placed and oriented to promote
nucleophilic attack of the sugar 29 OH from nucleotide 1 to form the
29-59 linkage (Fig. 4a, see ref. 29). The attacking OH of nucleotide 1 is
polarized and activated by D296, consistent with the conserved features
of NTases24. A second Mg21 could be important for this catalytic step.
However, distinct localization will require higher resolution.

cGAS is proposed to form a cyclic-dinucleotide, which would require
a second catalysis step and an additional attack of the OH of nucleotide
2 on the phosphate of nucleotide 1. Such an attack will require an almost
180u flip of the sugar moiety of nucleotide 2 to place its a-phosphate
appropriately. In principle this is possible: in the course of our studies
we determined the crystal structure of cGASMab21 bound to UTP in the
absence of DNA and do observe an appropriate flip of the sugar moiety
(Supplementary Fig. 4). In any case, our structure satisfactorily explains
the catalysis of formation of a specific (at present linear) dinucleotide by
cGAS, but formation of a cyclic dinucleotide needs to be addressed in
future studies.

To reveal a potential activation mechanism of cGAS, we superimposed
apo-cGAS, cGASMab21–UTP and cGASMab21(td)–DNA–GTP–ATP com-
plex (Fig. 4b, c and Supplementary Fig. 5a, b). We used cGASMab21–
UTP because UTP binding orders the b-sheets on lobe 1 and we can
also visualize conformational changes specifically induced by dsDNA
rather than the nucleotides.

Although UTP binding to cGAS ordered to some extend the nucleotide-
binding loop in the active site, it did not substantially change the overall
structure and active site geometry of cGAS (Supplementary Fig. 5b). In
contrast, DNA phosphate binding to the spine (Fig. 4b) triggers a
substantial structural switch in the spine helix (Fig. 4c) that closes lobes

1 and 2 and rearranges the active site loop, allowing magnesium coor-
dinating of E200 to position and activate nucleotide 2.

To test the role of this DNA-induced structural switch we mutated
human L174 to N. L174 (porcine L148) is repositioned in response to
DNA binding to stabilize the nucleotide-binding loop, but does not
directly bind DNA or NTPs (Supplementary Fig. 5c). Although
L174N shows fairly normal DNA binding (Fig. 3c and Supplemen-
tary Fig. 3b), it lacks DNA-stimulated cGAMP synthetase activity in
vitro (Fig. 3a) and shows decreased interferon stimulation in cells
(Fig. 3b). Thus, the structural and biochemical data suggest that
cGAS is activated by a DNA-induced structural switch that rearranges
the NTase active site.

Conclusion
Here we provide the structure and mechanism of activation of the
cytosolic DNA sensor cyclic-GMP-AMP synthase that readily explain
the synthesis of a linear dinucleotide intermediate by cGAS in res-
ponse to DNA binding. The backbone binding of a canonical B-DNA
by cGAS is consistent with a broad specificity innate immune PRR for
cytosolic DNA and the structural elements of cGAS such as the posi-
tioning of residues involved in minor-groove binding, arginine fingers
and the Zn thumb suggest that cGAS specifically responds to B-form
DNA. This might explain the function of other innate immune DNA
sensors to detect non-canonical DNA structures, such as DAI5. A
structural switch transmitted by proper B-form DNA binding to the
active site could also explain the lack of activation by dsRNA or in
mutants that still bind DNA: slightly different conformations of RNA-
bound or DNA-bound mutant cGAS would not trigger robust cGAMP
synthesis as even small differences in the active site geometry can
strongly affect catalytic rates of enzymes.

In future, it will be important to address the specificity for other
DNA structures in the activation of cGAS in more detail to see which
types of DNA structures can activate cGAS. It will also be important to
investigate additional requirements for efficient DNA sensing in vivo,
because although shorter dsDNA molecules can stimulate cGASMab21

in vitro, DNA larger than 50-mer is required for efficient IFN stimu-
lation in vivo14,19. One possibility is that fraying of shorter DNA
molecules prevents efficient stimulation or that the positively charged
N terminus contributes to sensing of longer DNA molecules. In addi-
tion, STING might have a direct role in DNA binding in a larger
context in vivo19, although we do not see strong DNA binding in vitro
and IFN stimulation in response to DNA in HEK293T cells in the
absence of cGAS (Supplementary Fig. 6).

Interestingly, cGAS has remarkable fold similarity to the antiviral
protein oligoadenylate synthase 1 (OAS1)30,31 (Fig. 5). OAS1 synthe-
sizes 29-59 linked oligoadenylate chains in response to binding to
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Figure 4 | NTase and DNA-induced structural switch. a, Close-up view of
the NTase active site. Selected residues that are implicated in binding and
catalysis are annotated. Both base moieties partially stack to each other and are
further bound by stacking to Y413 and recognition by R353. E200 (mutated to
Q in our structure) and D202 (mutated to N in our structure) bind an active site
magnesium that coordinates phosphates of nucleotide 2. The attacking OH of

nucleotide 1 is activated by D296 for nucleophilic attack on the a-phosphate of
nucleotide 2 (arrow). b, Close-up view of DNA backbone phosphate binding at
the spine. c, This DNA phosphate binding triggers a change in the spine helix
(*), which allows a closure of the active site cleft ({) and repositioning of the
substrate binding loop for Mg21 coordination of E200 ({).
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cytosolic dsRNA. The structural similarity not only embraces the
overall fold, several active site features and arrangement of lobes 1
and 2, but also certain structural elements of the platform, including
the long ‘spine’ helix. Like cGAS, OAS1 binds dsRNA along the ‘plat-
form’ and triggers a structural change that is transmitted to the active
site31. However, whereas OAS1 is activated by A-form RNA, cGAS is
activated by B-form DNA. The Zn thumb in cGAS, missing in OAS1,
probably acts as a molecular ‘ruler’ to specifically trigger activation in
response to B-form but not A-form nucleic acids (Fig. 5). Despite
these differences, cGAS shows a structural switch induced by
dsDNA that is very similar to that of OAS1 induced by dsRNA31

(Fig. 5). Thus, our results structurally unify dsDNA and dsRNA sens-
ing by cGAS and OAS1 NTases, respectively, in the innate immune
system and suggest that both processes are evolutionarily connected.
Note added in proof: After submission of the revised version of this
manuscript, Gao et al.32 reported related structures of cGAS and its
complexes with DNA and nucleotides.

METHODS SUMMARY
Proteins were produced in Escherichia coli and purified by affinity, ion exchange
and size exclusion chromatography. Apo, UTP- and DNA–ATP–GTP-bound
cGASMab21 and its catalytic inactive form were crystallized by hanging or sitting
drop vapour diffusion. The structure of apo cGASMab21 was determined by single-
anomalous dispersion phasing on selenomethionine derivatized protein. The
other structures were determined by molecular replacement using apo cGASMab21

as search model. NTase assays were performed by thin layer chromatography and
phosphor imaging. DNA and RNA binding were assessed by electrophoretic
mobility shift assays. Analysis of cGAS mutants in living cells were performed in
HEK 293T cells stably expressing full-length murine STING and transfected with
an IFN-b promoter reporter plasmid.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Constructs and cloning. The sequence encoding full-length or truncated Homo
sapiens and Sus scrofa cGAS were amplified from total cDNA (courtesy of S. Bauersachs)
and cloned into pIRESneo3 (Clontech) or a modified pET21 (Novagen), respectively.
The mutants were generated by site-directed mutagenesis using PfuUltra (Stratagene).
Zn thumbless mutant was created by replacing residues 390–405 (Homo sapiens) by
three Gly-Ser replicates.
Protein production and purification. All proteins were produced in E. coli
Rosetta (DE3) or B834 (DE3) strains for native or selenomethionine derivative
proteins, respectively. Bacteria were grown until a D600 of 0.6 to 0.8 was reached
and expression was induced at 18 uC for 16 to 18 h with 0.1 mM IPTG. Proteins
were purified by Ni-NTA agarose resin and incubated with tobacco etch virus
(TEV) protease (ratio 1:50) at 4 uC overnight to remove the 6xHis-MBP-tag. The
proteins were further purified by cation exchange chromatography followed by
size exclusion chromatography using a Superdex 200 column (GE Healthcare),
equilibrated in 20 mM Tris pH 7.5, 150 mM NaCl and 1 mM DTT. Purified proteins
were concentrated to 10 mg ml21 for crystallization. Human STING 139–379 was
purified as described33. All purified proteins were frozen in liquid N2 and stored at
280 uC.
Crystallization of cGASMab21. Purified porcine cGAS (10 mg ml21) was crystal-
lized by hanging drop vapour diffusion in 20% PEG3350 and 200 mM sodium
malonate. The crystals appeared after one day at 20 uC and were flash frozen after
addition of glycerol to a final concentration of 15% (v/v). The selenomethionine
derivatized protein was crystallized in 100 mM Bis-Tris propane pH 6.3, 18%
PEG3350 and 200 mM sodium malonate and cryo protected with 20% ethane-
1,2-diol before flash freezing. UTP bound crystals were obtained by adding
20 mM MgCl2 and 1:10 (v/v) of 50 mM of nucleotide in 100 mM Tris pH 7.5 to
the protein before crystallization.

For crystallizing the DNA–GTP–ATP–cGAS complex 20 mM MgCl2, 2 mM of
both nucleotides and 14 bp dsDNA (59-CGACGCTAGCGTCG-39) in a molar
ratio of 1:1.2 protein:DNA were added to the inactive porcine cGASMab21(td)

(E200Q1D202N) (10 mg ml21). Crystals were obtained by hanging drop vapour
diffusion in 50 mM sodium cacodylate pH 7.0, 2.5 mM spermine, 60 mM MgCl2
and 3% (v/v) PEG 400 after one day at 20 uC. The crystals were soaked in reservoir
solution containing 25% (v/v) glycerol before flash freezing.
Data collection and refinement. X-ray diffraction data of cGAS and cGAS-UTP
were collected at X06SA beamline (Swiss Light Source, Switzerland) and diffraction
data of the cGASMab21(td)–GTP–ATP–DNA complex were collected at PetraIII
beamline P14 (EMBL/DESY, Hamburg, Germany) at 100 K. The selenomethionine
derivative data were collected at the selenium peak wavelength (l 5 0.97961 Å).
Data processing was carried out with XDS34. AutoSHARP was used to locate Se
sites (SAD data set) and to produce an initial solvent flattened map35. An initial
model was built using iterative cycles of Buccaneer36 and ARP/wARP classic37. The
model was optimized by alternating manual building with Coot38 and refinement
using Phenix39 against a 2.0 Å native data set. The structure of UTP-bound cGAS
and the DNA–GTP–ATP–cGAS complex structure were determined using
molecular replacement with Phaser40 and optimized by manual building with
Coot and refinement with Phenix or Autobuster41. Data collection and refinement
statistics are listed in Supplementary Table 1.
NTase assays. NTase assays were performed as described in ref. 26. Reaction
mixtures with the indicated concentrations of protein and DNA (40-mer: 59-
GGATACGTAACAACGCTTATGCATCGCCGCCGCTACATCC-39, 50-mer:
59-GGATACGTAACAACGCTTATGCATCGCCGCCGCTACATCCCTGAGC

TGAC-39) (unless indicated 50-mer dsDNA is used) or RNA (sequence as 50-mer
DNA) in 0.1 M NaCl, 40 mM Tris pH 7.5 and 10 mM MgCl2 were started by
addition of 100mM ATP and 100mM GTP containing 1:600 [a32P]ATP and/or
[a32P]GTP (3,000 Ci mmol21, Hartmann Analytic). Analysis of the reaction pro-
ducts was done using thin layer chromatography (PEI-Cellulose F plates, Merck)
with 1 M (NH4)2SO4/1.5 M KH2PO4 pH 3.8 as running buffer for the TLC plates.
Assays were performed at 35 uC. The dried TLC plates were analysed by phosphor
imaging (GE Healthcare).
Electrophoretic mobility shift assays. 0.2mM of dsDNA or dsRNA (same
sequences used for NTase assays) was incubated with indicated amount of purified
protein for 30 min on ice. As reaction buffer 20 mM Tris pH 8.0 and 200 mM NaCl
was used. Samples were separated by 1% agarose gel prepared with Gel-Red
(Biotium) as suggested by the manufacturer. The gel images were analysed using
ImageJ.
Reporter assays. HEK 293T cells stably expressing full-length murine STING
(2 3 104 cells in each well of a 96-well plate) were transiently transfected with
25 ng IFN-b promoter reporter plasmid (pIFN-b-GLUC) in conjunction with
200 ng cGAS expression vectors using GeneJuice (Novagen) as indicated by the
manufacturer. A codon-optimized version the diguanylate cyclase domain (83–
248) of TM1788 (Thermotoga maritima MSB8) harbouring a point mutation
(R158A) to enhance c-di-GMP production was cloned into pEFBOS to contain
a carboxy-terminal haemagglutinin (HA) tag42. This construct (c-di-GMP-synthase)
was used to induce c-di-GMP production within 293T cells upon transient over-
expression, which served as positive control. 14 h post transfection luciferase activity
was assessed.

THP-1 cells were stimulated with 200 ng of either 50-mer dsDNA (as in NTase
assays) or tri-phosphate-RNA complexed with Lipofectamine 2000 (Life Technologies)
according to the manufacturer’s instructions. Supernatants were collected 18 h
after stimulation and assayed for IP-10 production via ELISA. 90-mer DNA used
is as described in ref. 19. CMA was purchased from Sigma Aldrich.
Immunoblotting. Cells were lysed in 13 Laemmli buffer and denatured at 95 uC
for 5 min. Probes were separated by 10% SDS–PAGE and transferred onto nitro-
cellulose membranes. Blots were incubated with anti-cGAS (Sigma Aldrich), anti-
phospho-IRF3 (Cell Signaling Technology) or anti-b-actin-IgG–horseradish peroxidase
(HRP). Goat anti-rabbit-IgG–HRP was purchased from Santa Cruz Biotechnology.

33. Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K. P. & Hornung, V. Species-specific
detection of the antiviral small-molecule compound CMA by STING. EMBO J. 32,
1440–1450 (2013).

34. Kabsch, W. XDS. Acta Crystallogr. 66, 125–132 (2010).
35. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with

autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).
36. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing

protein chains. Acta Crystallogr. 62, 1002–1011 (2006).
37. Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP’s model-building algorithms. I.

The main chain. Acta Crystallogr. 58, 968–975 (2002).
38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta

Crystallogr. 60, 2126–2132 (2004).
39. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for
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Supplemental Figure S1: Activity assays, electron density and cGAS sequence alignment  

a) Activity assays with human and porcine cGASmab21 in the presence of ATP, GTP and ATPα32P. Upper 

panel left: 2µM human cGASMab21 + dsDNA (50mer), right: 1µM human cGASMab21 + 0.5µM ssDNA 

(40mer). Lower panel left: 2µM human cGASMab21 + 3µM dsDNA (50mer) using only ATP/ATPα32P and 

only GTP/GTPα32P, respectively; right: 1µM porcine cGAS Mab21 + 0.5µM dsDNA (40mer). The reactions 

were stopped at indicated time points by plotting on TLC plates. Both human and porcine cGASMab21 are 

activated by dsDNA while ssDNA and single nucleotides fail to induce activity.  

b) IFN-β stimulation in THP1 cells by dsDNA50mer or with 5’triphosphate dsRNA (3pRNA). 200ng of 

indicated ligand was transfected to THP1 cells along with IFN-β promoter reporter plasmid pIFN-β-

GLUC. Luciferase activity is plotted: mean ± sd (n=3). The dsDNA50mer used in in vitro assays induces 

interferon production in THP1 cells. 3pRNA, which induces the RIG-I pathway, is used as positive 

control. The negative control is without ligand. 

c) 2Fo-Fc electron density overlaid with the final model around the thumb (carbons green). The 2Fo-Fc 

map is contoured at 2σ.  

d) Structure based alignment of selected cGASMab21 sequences (abbreviations: Sus scrofa: ss, Homo 

sapiens: hs, Mus musculus: mm, Danio rerio: dr, Gallus gallus: gg) with highlighted conserved residues 

and annotated motifs. The secondary structural elements are shown on top of the alignment for the 

porcine homolog, color coding is analogous to Fig. 1. The squares mark residue contacts: green => DNA, 

magenta => GTP/ATP, cyan => Mg2+, orange => Zn2+. Stars denote residues that are mutated in this 

study. 
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Supplemental Figure S2: Electron densities 

a) Ribbon model of cGASMab21(td) (blue) with bound dsDNA (beige stick representation). 2Fo-Fc electron 
density for the DNA and the Zn-thumb residues are shown at a contour level of 1σ.  

b) 2Fo-Fc electron density around the two nucleotides in the active site (contour level of 1σ).  

45



SUPPLEMENTARY INFORMATION

4  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

 

Supplementary Figure S3: Electrophoretic mobility shift and activity assays 

a) Electrophoretic mobility shift analysis of dsDNA50mer (0.2 µM) with human or porcine cGASMab21 

(protein concentrations are 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50 µM (triangle)). Control: without 

protein.  

b) Like a), but with human cGASMab21 mutants.  

c) Like a) but binding of human cGASMab21 to dsRNA50mer.  

d) Activity assay with 2µM human cGASMab21 + 3µM dsRNA50mer. 
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Supplementary Figure S4: Comparison of UTP- and ATP/GTP-bound structure of cGASMab21 

The stereo figure shows the active site of the superimposed structures of the UTP-bound state of 

cGASMab21 (orange) and the cGASMab21(td):DNA:GTP:ATP complex (blue), respectively. The ribose 

moiety is flipped in UTP as compared to ATP. 
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Supplementary Figure S5: Comparison of cGASMab21 structures 

a) Superposition of the DNA-bound (blue) and apo (grey) cGASMab21 structures.  

b) Superposition of apo (grey) cGASMab21 and UTP-bound (orange) cGASMab21.  

c) The Leu148 flip upon DNA binding. In the absence of DNA (orange UTP-bound and grey apo 

structures) Leu148 is solvent exposed. In the DNA binding conformation (blue), Leu148 flips and helps 

stabilize the nucleotide-binding loop. 
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Supplementary Figure S6: Comparison of STING and cGAS DNA binding and STING in vivo 
activity. 

a) Electrophoretic mobility shift analysis of dsDNA (0.2 µM) with human cGASMab21 (left) and human 

STINGaa139-379 (right) (protein concentrations are 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15 µM, control: without 

protein). While human cGASMab21 readily binds dsDNA at a concentration as low as 0.5 µM, human 

STINGaa139-379 fails binding even at concentration as high as 15 µM. 

b) Western blot analysis of IRF3 phosphorylation which indicates interferon stimulation. The HEK293T 

cells stably expressing STING were induced with cyclic-di-GMP, dsDNA90mer and 10-carboxymethyl-9-

acridanone (CMA). The proven STING ligands cyclic-di-GMP and CMA induce IRF3 phosphorylation 

while DNA90mer fails, suggesting requirement of a sensor that detects DNA upstream of STING. β-actin 

was used as loading control. 
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Supplemental Table S1  Data collection and refinement statistics 	
  
  SeMet  Apo  +UTP DNA-GTP-ATP complex 

Data collection       
Space group C2221 C2221 P212121 C2221 
Cell dimensions       
    a, b, c (Å) 47.5, 119.9, 140.9 47.4, 118.0, 142.6 80.6, 97.7, 107.0 86.2, 111.7, 117.6 
    α, β, γ  (°)  90,  90, 90 90,  90, 90 90,  90, 90 90,  90, 90 
Resolution (Å) 47.1 (2.5)* 47.5 (2.0)*  46.9 (2.28)* 999.0 (3.1)* 
Rmerge 9.0 (44.7)* 4.7 (57.5)* 5.8 (59.1)* 9.0 (90.7)* 
I / σI 13.8 (3.3)* 20.9 (2.6)* 12.0 (2.0)* 17.0 (1.9)* 
Completeness (%) 98.7 (92.0)* 99.6 (98.4)* 95.9 (93.3)* 98.6 (91.7)* 
Redundancy 6.8 (6.4)* 6.4 (5.9)* 2.3 (2.3)* 6.9 (6.6)* 
Wavelength  (Å) 0.97961 1.00665 0.97934 0.97626 

     
Refinement     
Resolution (Å)  45.5 - 2.0 44.6 - 2.27 68.3 - 3.08 
No. reflections  51611 72224 10739 
Rwork / Rfree (%)  18.6 / 21.3 17.0 / 20.4 25.5 / 25.8 
No. atoms     
    Protein  2878 5969 2899 
    DNA  - - 555 
    Ligand/ion  54 62 73 
    Water  132 306 2 
B-factors     
    Protein  52.2 38.0 101.4 
    DNA  - - 113.6 
    Ligand/ion  65.6 41.5 129.5 
    Water  45.1 38.2 95.59 
R.m.s. deviations     
    Bond lengths (Å)  0.008 0.009 0.004 
    Bond angles (°)  1.07 1.19 0.888 
Ramachandran (%)     
    Favored   97.4 98.6 96.0 
    Allowed   2.3 1.4 4.0 
    Outliers  0.3 0 0 
PDB Accession Code                                        4JLX 4JLZ 4KB6 

     
*Values in parentheses are for the highest-resolution shell. 
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This publication provides the first crystal structures of full-length human apoMAB21L1 and 

MAB21L1 in complex with CTP and thus the first structural framework for MAB21 proteins. 

MAB21 proteins participate in cell fate decisions and belong to the large 

nucleotidyltransferase fold protein family where they share considerable sequence homology 

with cGAS. Besides extensive characterization of MAB21 phenotypes in different model 

organisms and a fundamental role in development, little is known about the structure and 

molecular function of MAB21. This hinders amongst others the characterization of an 

evolutionary connection between MAB21 proteins and the cytosolic DNA sensor cGAS. This 

work not only revealed a high structural conservation between MAB21L1 and cGAS, but also 

discovered some important differences. MAB21L1 is monomeric in solution. However, in the 

crystal structure MAB21L1 forms a highly symmetric double-pentameric oligomer suggesting 

that this may be a key feature in MAB21 protein function. In the structure MAB21L1 is 

trapped in an inactive conformation explaining why for MAB21L1 no nucleotidyltransferase 

activity was detected, yet. Similar to cGAS, MAB21 proteins may require ligand interactions 

inducing conformational changes and proper alignment of the active site residues. Of note, 

co-crystallization with CTP identified a putative ligand binding site correlating with the DNA 

binding ‘platform’ in cGAS. Finally, the MAB21L1 structure provides an explanation for the 

implications of MAB21L2 mutations found in patients with eye malformations. Mutated 

residues are required for protein stabilization and mutations disrupt stabilizing interaction 

networks rendering a destabilized MAB21L2 protein.     

 

Author contribution 

The author of this thesis cloned, expressed and purified human MAB21L1 protein for 

crystallization as well as functional in vitro assays. She crystallized, collected the data, solved 

and interpreted the structures of MAB21L1 in apo as well as MAB21L1 in complex with CTP. 

In order to characterize the oligomeric state of MAB21L1 in solution, she performed and 

evaluated static light scattering experiments and in addition conducted and helped with 

interpreting the SAXS measurements. Further, she carried out and evaluated electro-mobility 

shift assay, isothermal titration calorimetry and thermal shift assay experiments. She wrote 

the manuscript together with G. Witte and K.-P. Hopfner.  

51



1Scientific Reports | 6:27498 | DOI: 10.1038/srep27498

www.nature.com/scientificreports

Structural and biochemical 
characterization of the cell fate 
determining nucleotidyltransferase 
fold protein MAB21L1
Carina C. de Oliveira Mann1, Reiner Kiefersauer2, Gregor Witte1 & Karl-Peter Hopfner1,3

The exceptionally conserved metazoan MAB21 proteins are implicated in cell fate decisions and 
share considerable sequence homology with the cyclic GMP-AMP synthase. cGAS is the major innate 
immune sensor for cytosolic DNA and produces the second messenger 2′-5′, 3′-5′ cyclic GMP-AMP. 
Little is known about the structure and biochemical function of other proteins of the cGAS-MAB21 
subfamily, such as MAB21L1, MAB21L2 and MAB21L3. We have determined the crystal structure of 
human full-length MAB21L1. Our analysis reveals high structural conservation between MAB21L1 
and cGAS but also uncovers important differences. Although monomeric in solution, MAB21L1 
forms a highly symmetric double-pentameric oligomer in the crystal, raising the possibility that 
oligomerization could be a feature of MAB21L1. In the crystal, MAB21L1 is in an inactive conformation 
requiring a conformational change - similar to cGAS - to develop any nucleotidyltransferase activity. 
Co-crystallization with NTP identified a putative ligand binding site of MAB21 proteins that corresponds 
to the DNA binding site of cGAS. Finally, we offer a structure-based explanation for the effects of 
MAB21L2 mutations in patients with eye malformations. The underlying residues participate in fold-
stabilizing interaction networks and mutations destabilize the protein. In summary, we provide a first 
structural framework for MAB21 proteins.

The male abnormal 21 (MAB21) like proteins form a sequence related subfamily within the large and diverse 
family of nucleotidyltransferase (NTase) fold proteins1. NTases generally catalyze the transfer of a nucleoside 
monophosphate (NMP) from a donor nucleoside triphosphate (NTP) to an acceptor hydroxyl. A prominent 
member of the MAB21 like protein family is cyclic GMP-AMP synthase (cGAS), a sensor of cytosolic DNA in the 
innate immune system2,3. cGAS detects cytosolic DNA arising from intracellular bacteria, damaged mitochon-
dria, DNA viruses and retroviruses and triggers a type I interferon response4–6. Upon DNA recognition, cGAS 
produces the second messenger, 2′​-5′​, 3′​-5′​ cyclic GMP-AMP (2′​,3′​-cGAMP) by two sequential NTase reactions 
from substrate ATP and GTP7,8.

Besides cGAS (also known as MAB21 domain-containing protein 1 - MB21D1), MAB21 like proteins in 
humans include MB21D2, MAB21-like protein 1 (MAB21L1), MAB21L2 and MAB21L31. Although cGAS or 
cGAS-like activities are present in insects, vertebrates and possibly sea anemone, the MAB21 protein was first 
discovered in C. elegans as a factor important for cell fate determination9–11. Mutations in C. elegans MAB21 cause 
posterior-to-anterior homeotic transformation of sensory ray 6 in the male tail. The fundamental and crucial role 
of MAB21 during development is emphasized by additional pleiotropic phenotypes previously described and the 
fact that, the null allele of MAB21 is lethal prior to hatching. MAB21 is unusually conserved throughout species 
and vertebrate MAB21 proteins have almost identical primary sequences.

Despite comprehensive characterization of MAB21 phenotypes and an emerging role in cell fate decisions, 
the molecular function remains unknown. In vertebrates, MAB21L1 and MAB21L2 have a 94% identical amino 
acid sequence and exhibit similar expression patterns12–16. In agreement with the observations in C. elegans, 
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mutations of MAB21L2 result in drastic phenotypes and defects that lead to death in mid-gestation17–19. Studies 
on MAB21L1 revealed relatively mild phenotypes in tissues where the expression of MAB21L1 differs from that 
of MAB21L2, namely in the lens and in reproductive organs20. MAB21L2 antagonizes the effects of BMP4 in 
Xenopus via interactions with the transcription factor SMAD1 and is therefore involved in regulation of the 
TGF-β​ pathway21,22. Moreover, MAB21L3, which only shares a sequence identity of 25%, was recently shown to 
be acting downstream of the Notch pathway in cell fate specifications of multiciliate cells and ionocytes23.

Recent current whole exome sequencing projects identified four different missense mutations in the 
single-exon gene MAB21L2 in eight individuals with major eye malformations24. In particular, an Arg51 muta-
tion to cysteine (R51C) led to bilateral anophtalmia, intellectual disability, and rhizomelic skeletal dysplasia25. A 
mutation of the same residue to histidine (R51H) in a large multiplex family with colobomatous microphtalmia, 
as well as the mutation Glu49Lys was linked to coloboma. A homozygous mutation altering a different region of 
the protein Arg247Gln was also associated with retinal coloboma. The underlying molecular pathology of these 
mutations is unclear and both protein stabilizing and destabilizing effects have been proposed24,26.

Understanding the pivotal role of MAB21 proteins during development, their pathophysiology in human dis-
ease, and their evolutionary connection to the cGAS innate immune DNA sensor is hampered because the mech-
anistic function, biochemical activity and interaction partners, ligands or substrates of MAB21 proteins remain 
elusive. Here, we provide the first crystal structure of a MAB21 protein and the structure of MAB21L1 bound to 
CTP. The human MAB21L1 structure exhibits a high degree of structural conservation with cGAS but features 
a number of differences. Our study shows that MAB21L1 would require an activating conformational change in 
order to possess its potential NTase activity and unveils a potential binding site for an activating ligand of this 
poorly understood nucleotidyltransferase. Intriguingly, the NTase contains the residues to recognize a donor NTP 
and active site magnesium ions, but lacks some residues that are important for NTase activity in cGAS. Finally, we 
provide a structure-based explanation for the effects of mutations in MAB21L2 associated with eye malformations 
and show that these mutations lead to destabilization of the fold.

Results
Crystal Structure of Human MAB21L1.  We crystallized native MAB21L1 in space group C2 with unit 
cell constants a =​ 167.7 Å, b =​ 177.6 Å, c =​ 115.6 Å, β​ =​ 126.5°. The native crystals contained 5 molecules in the 
asymmetric unit and diffracted to a limiting resolution of 3.05 Å. In order to determine experimental phases, 
we also crystallized selenomethionine substituted MAB21L1 (space group P21, unit cell constants a =​ 122.9 Å, 
b =​ 181.0 Å, c =​ 131.3 Å, β​ =​ 96.5° and 10 molecules per asymmetric unit). Single anomalous diffraction (SAD) 
data to 3.4 Å followed by phase improvement produced an interpretable electron density map that was used to 
build initial models for all ten copies in the asymmetric unit using non-crystallographic symmetry restrains. This 
initial model was used to phase the native dataset by molecular replacement. Further model building and refine-
ment resulted in a final atomic model with good R-factors and stereochemistry (Table 1, Materials and Methods).

MAB21L1 is a two lobed, globular protein of a mixed α​/β​ topology with approximate molecular dimen-
sions of 64 Å ×​ 35 Å ×​ 48 Å. (Fig. 1a). The N-terminal lobe possesses the NTase subdomain with a five-stranded, 
antiparallel and highly twisted β​-sheet (β​1–β​9) that is flanked on the surface by two long α​-helices (α​1/α​4). The 
C-terminal lobe is formed by a conical four-helix bundle (α​8–α​13). This bi-lobal structure is stabilized by a long 
N-terminal ‘spine’ helix (α​1), reaching across and spanning both lobes, as well as a central linker region com-
posed of two helices (α​5, α​6). In general, the overall topology is highly similar to cGAS in its inactive form8,27–29. 
A notable difference with respect to cGAS is the lack of the zinc-thumb region which is important for DNA bind-
ing and dimerization27,30,31. Similarities and differences to cGAS and other members of the NTase fold protein 
family are described in more detail below.

Oligomerization and Interaction Interfaces.  The crystal packing of MAB21L1 is unusual and con-
sists of an intimate assembly of ten copies of MAB12L1 into a decamer, formed from two back-to-back stacked 
pentameric rings. The decamer has a D5 symmetry (one five-fold and five perpendicular two-fold symmetry 
axes) (Fig. 2a, Supplementary Fig. S1). Whereas the MAB21L1 protomers within the decamer are intimately 
packed, the decamers themselves pack less dense in the lattice and the interactions resemble crystal lattice inter-
actions (Fig. 2a). The highly symmetric packing of MAB21L1 raises the possibility that oligomerization is part 
of MAB21L1’s function – similar to e.g. cGAS - and it might be worthwhile to describe the packing within the 
decamer in more detail. The N-terminal lobes of each protomer are partially surface accessible and located on 
the outside of the pentameric rings, whereas the C-terminal lobes are to a large extent buried and mediate the 
contacts within the pentamer. The pentamer interface is composed of hydrophobic and some polar interactions 
between the N-terminal helix α​1 of one monomer and the C-terminal helices α​11 and α​12 of the neighboring 
molecule (Fig. 2a). Y10 stacks with W343 and interacts with a hydrophobic patch of other nearby residues (L305, 
I2, A6), while N20 hydrogen-bonds with R314/E336. A citrate molecule from the crystallization condition sta-
bilizes this interface (Fig. 2a). The citrate is coordinated by residues R344 and K340 from one monomer together 
with K14 and K354 from the next monomer in a very basic surface patch. In total, each pentamer buries a surface 
area of approximately 2500 Å2.

The interface between the two back-to-back stacked pentamers is in the range of 5000–6000 Å2, i.e. the 
decamer contains approx. 10000 Å buried surface. The pentamer stacking is mediated by contacts between oppos-
ing lobes and the linker region, both of which are highly conserved regions of MAB21L1 and L2 (Figs 1b and 
2a). Salt bridges and hydrogen bonds are formed between the linker helices α​6 and α​5, β​3 and the loop between 
β​2–β​3 as well as between the small helices α​2 and α​3 from the opposing monomer. Hydrophobic interactions are 
formed between loops connecting β​2 with β​3 and loop α​2–α​3 (Fig. 2a). The same double-pentameric packing 
is observed in all three of our crystals despite of changes in space groups and unit cell constants (Supplementary 
Fig. S1).
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In order to address the oligomeric state of MAB21L1 in solution, we performed size exclusion chromatogra-
phy coupled to static light scattering (SEC-RALS) as well as small angle X-ray scattering (SAXS) experiments. 
Both methods show that MAB21L1 is present as a monomer in solution, at least under the assayed conditions 
(Fig. 2b,c). MAB21L1 elutes as a single peak with a molecular mass determined by SEC-RALS of Mw =​ 47 kDa, 
in good agreement with the theoretical mass of a monomer (Mw =​ 41 kDa). Molecular weight determined from 
the SAXS data (Mw =​ 41 kDa, Rg =​ 2.4 nm) as well as the shape of the scattering curve are only compatible with 
a monomeric MAB21L1 molecule in solution. In order to rule out oligomerization in the crystal due to higher 
salt concentrations, we performed analytical size-exclusion experiments using buffers containing different salt 
concentrations up to 1 M. However, MAB21L1 still remained monomeric (Supplementary Fig. S1). Although 
MAB21L1 is monomeric in solution, it is possible that ligand interactions may promote oligomerization, such as 
in the case of cGAS30,31.

It has been proposed that MAB21L2 binds ssRNA24. Consistent with this, the solvent accessible electrostatic 
surface of the MAB21L1 monomer shows several positively-charged regions. One notable positive surface patch 
is a pocket at the surface adjacent to the ‘spine’ helix at the side of the double-pentamer (Fig. 2d). The cor-
responding region binds the DNA backbone in the case of cGAS. Another notable and quite extended patch 
is located around the five-fold symmetry axis of the pentamer (Fig. 2d). In order to test MAB21L1’s affinity 
for oligonucleotides, we performed electrophoretic mobility shift assays (EMSAs) with dsDNA/RNA as well as 
ssDNA/RNA (Fig. 3a,b). MAB21L1 has a preference for ssRNA in comparison to dsRNA and ss/dsDNA in good 
agreement with Rainger et al.24 (Fig. 3a), as can be estimated from the concentrations at half-maximal bind-
ing (ssRNA =​ 3.3 μ​M, ssDNA =​ 6.7 μ​M; dsRNA =​ 5 μ​M, dsDNA =​ 6 μ​M). The variations in the total binding of 
MAB21L1 to ssRNA and ssDNA are due to weak binding constants and therefore no binding curves and respec-
tive KD values were calculated. However, the affinities for these generic DNA or RNA sequences are considerably 
lower in our hands than those for DNA binding to cGAS (Fig. 3b). We could also not detect any enzymatic NTase 
activity of MAB21L1 either in the absence or presence of these nucleic acids.

Structure of MAB21L1 Bound to CTP Reveals Possible Ligand Binding Site.  In order to identify 
potential nucleotide substrates of MAB21L1, we performed thermal shift assays and isothermal titration calo-
rimetry experiments using various nucleoside phosphates. We observed large increase in the melting temper-
ature of MAB21L1 in the presence of CTP, CDP, ATP and ADP of ∆​Tm =​ 8 °C (Supplementary Fig. S2). Other 

Data collection Mab21L1 Mab21L1-CTP SeMet-Mab21L1

Space group C2 P21 P21

Cell dimensions

  a, b, c (Å) 167.1, 177.0, 115.1 115.0, 177.8, 134.9 122.9, 181.0, 131.2

  α​, β​, γ​ (°) 90, 126.5, 90 90, 97.6, 90 90, 96.5, 90

Wavelength 1.00000 1.00000 0.97898

Resolution (Å) 50-3.05 (3.13-3.05) 50-2.55 (2.62-2.55) 50-3.4 (3.49-3.4)

Rsym 4.4 (115.7) 7.5 (151) 22 (112)

I/σ​I 22.5 (2.1) 21.7 (2.35) 8.75 (1.88)

Completeness (%) 98.8 (98.1) 99.8 (99.7) 99.2 (98.7)

Redundancy 7.0 (7.2) 13.9 (14.0) 8.9 (8.5)

Refinement

Resolution (Å) 50-3.05 50-2.55

No. reflections 50741 174180

Rwork/Rfree 22.3/27.9 19.9/22.7

No. of atoms (total) 13186 28115

  Protein 13117 27413

  Ligand/ion 65 440

  Water 4 262

B-factors

  Protein 149 93

  Ligand/ion 163 109

  Water 126 77

R.m.s. deviations

  Bond lengths (Å) 0.009 0.003

  Bond angles (°) 1.201 0.765

Ramachandran statistics

  favoured (%) 96.3 96.8

  allowed (%) 3.3 3.0

  disallowed (%) 0.4 0.2

  PDB code 5EOG 5EOM

Table 1.   Data collection and refinement statistics. Highest resolution shell is shown in parenthesis.
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nucleotides tested, such as GTP and UTP, did not stabilize the protein and did not bind in isothermal titration 
calorimetry experiments (Supplementary Fig. S2). However, isothermal titration calorimetry experiments reveal 
strong binding of CTP, ATP and ADP with dissociation constants of KD(CTP) =​ 0.41 μ​M, KD(ATP) =​ 0.34 μ​M and 
KD(ADP) =​ 3.1 μ​M. These data indicate a preference for a triphosphate over a diphosphate (Fig. 4c).

In order to test for Mg2+ -binding we performed a thermal stability shift assay in the absence and presence 
of magnesium. Magnesium did not stabilize MAB21L1 and this might be explained by the fact that MAB21L1 is 
present in an inactive conformation (Supplementary Fig. S2).

To further address the nucleotide binding, we co-crystallized MAB21L1 with both ATP and CTP in the crys-
tallization condition and determined the resulting crystal structure of MAB21L1 to 2.55 Å resolution. In this 

Figure 1.  Structure of human MAB21L1 and Alignment with ceMAB21, dmMAB21 and hsMAB21L2.  
(a) Front and side views of the human MAB21L1 crystal structure. The model is shown as cartoon 
representation with annotated domains and secondary structure. (b) Sequence alignment of MAB21, 
MAB21L1 and MAB21L2 amino acid sequences (abbreviations: Homo sapiens: hs, Drosophila melanogaster: 
dm, Caenorhabditis elegans: ce). Darker shadings indicate higher conservation (BLOSUM62 conservation 
score). The respective secondary structure elements for the human homolog are shown on top of the alignment 
with dots marking the conserved active site residues usually involved in metal coordination. Red stars denote 
residues that have been identified in disease related mutations.
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structure each protomer shows clear density for a single CTP moiety (Supplementary Fig. S3), and we did not see 
any density for ATP. Unexpectedly, the CTP moiety is not localized at the NTase active site, but rather bound at the 
positively-charged pocket on the ‘platform’ side of the molecule adjacent to the spine helix (Fig. 4a). The pocket 
coincides with a positively-charged surface patch on the ‘side’ of the double-pentamer (Fig. 2d). We denote this 
pocket ‘ligand binding pocket’. CTP is well coordinated in a partially hydrophobic, partially positively-charged 
pocket. In the loop connecting α​1-β​1, R62 stacks with the cytosine base in a planar conformation (Fig. 4b). This 
loop is better resolved in the MAB21L1:CTP structure, compared to apo MAB21L1, arguing for some sort of 
induced fit. Further contacts of MAB21L1 with CTP include hydrophobic interactions between I31, I27, V68 and 
A28 and carbons of the base and sugar. Backbone interaction between L66 and Y63 and the amino group at C4 of 
the cytosine explain the preference of MAB21L1 for CTP and ATP, compared to UTP and GTP where no binding 
affinity was detected. The negative charge of the phosphate groups of the nucleotide is well and specifically coor-
dinated by residues from α​1 and α​8. The α​-phosphate is coordinated by K255 and R23, the β​-phosphate builds 
salt bridges with K255 and S252 and R23, while the γ​-phosphate is held in place by K24 and K248. During model 
building of the MAB21L1 structure with no nucleotides added, we observed an additional electron density not 
associated with the polypeptide chain in the ligand binding pocket (Supplementary Fig. S3). However, we were 
not able to identify by structural or mass spectrometric methods the nature of this low molecular weight ligand, 
which may be a buffer component or have co-purified with the protein from E. coli.

In summary, CTP binding did not obviously affect the overall conformation of MAB21L1 and the superpo-
sition of apo MAB21L1 (crystallized without added nucleotides) and MAB21L1 in complex with CTP reveals 
no major conformational changes (RMSD 0.94 Å) (Supplementary Fig. S3). Thus, it is unlikely that CTP is the 
physiological ligand that can induce a potential activating conformational change (see below).

Figure 2.  Characterization of MAB21L1 Oligomeric State in the Crystal and in Solution. (a) Front and 
side views of the MAB21L1 pentamer and decamer formation in the crystallographic asymmetric unit. One 
MAB21L1 monomer is colored in purple. The left inset shows a close-up of the hydrophobic interface between 
MAB21L1 molecules (purple, grey) in the pentameric ring. The right inset shows the interaction between 
two pentameric rings in the decameric assembly which is mainly composed of stacking interactions between 
highly conserved residues. (b) Measured SAXS data for MAB21L1 (red curve shows the measured scattering 
data) in comparison with theoretical scattering curves (calculated with CRYSOL) of monomeric, pentameric 
and decameric MAB21L1 assemblies (purple, green and blue curves, respectively) support that MAB21L1 
is monomeric in solution. (c) Size-exclusion chromatography coupled static right-angle light scattering 
(SEC-RALS) of MAB21L1 shows a single peak with a constant molecular mass of Mw =​ 47 kDa. (d) Solvent 
accessible electrostatic surface representations of the MAB21L1 decamer interface, decamer (front view and 
side view), monomer (front view with NTase core and back view with ligand binding pocket) colored by charge 
(blue =​ 5 kT/e to red =​ −​5 kT/e). The positively-charged ligand binding pocket is indicated with an arrow.
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Comparison of MAB21L1 and cGAS Active Sites.  To reveal differences and similarities between 
MAB21L1 and cGAS in the NTase active sites, we superposed the structures of N-terminally truncated porcine 
apo cGAS (RMSD 2.2 Å, PDB code 4JLX) and porcine cGASMAB21-DNA-ATP-GTP complex (RMSD 2.8 Å, PDB 
code 4KB6) with the structure of the MAB21L1:CTP complex (Fig. 5). MAB21L1 shows a high degree of struc-
tural conservation to cGAS and the conserved MAB21-domain fold strongly resembles other human nucleotidyl-
transferases, such as OAS1, and the bacterial DncV protein (Supplementary Fig. S4). In general, many active site 
residues located on the α​-helical C-terminal lobe – responsible for binding of the ‘donor’ nucleotide in cGAS and 
other NTases, such as OAS1 - are highly conserved (Supplementary Fig. S4). For instance, Y272 in MAB21L1 cor-
responds to Y413 in sscGAS and to Y436 to hscGAS, where it stacks with the adenine base (Fig. 5). Further con-
served residues essential for correctly positioning of ATP in the active site of cGAS are sscGAS E360/hscGAS E383 
(MAB21L1 E238), sscGAS K416/hscGAS K439 (MAB21L1 K275) and sscGAS K391/hscGAS K414 (MAB21L1 
K255). Thus, at least from sequence conservation, the structure of MAB21L1 suggests that MAB21-like proteins 
may bind an NTP at the NTase donor position.

The N-terminal lobe binds the Mg2+ -triphosphate group of the donor nucleotide and specifically recognizes 
and orients the ‘acceptor’ nucleotide GTP in cGAS. Consequently, the Watson-crick and Hoogsteen edges of the 
guanine base are within hydrogen bonding distance of the residues sscGAS T186, S355, R353 and S357 (hscGAS 
T211, S378, R376 and S380) respectively. Whereas the donor site is partially conserved between MAB21L1 and 

Figure 3.  Characterization of MAB21L1’s Affinity for Oligonucleotides. (a) Quantified electrophoretic 
mobility shift assays of 1 μ​M 50mer dsRNA, dsDNA and 0.5 μ​M, ssRNA or ssDNA with MAB21L1 (protein 
concentrations of 0, 0.5, 1, 2, 5, 7, 10, 15 μ​M for binding to dsDNA/RNA and 0, 1, 2, 10, 14, 20, 30 μ​M for 
binding to ssDNA/RNA). Intensities of unbound oligonucleotides (relative shift) were plotted as triplicates 
against protein concentration (upper plot: ssRNA-red, ssDNA-black; lower plot: dsRNA-red, dsDNA-black). 
The half-maximal binding of ssRNA is at 3.3 μ​M protein concentration, whereas for ssDNA it is 6.7 μ​M, 
dsRNA =​ 5 μ​M and dsDNA =​ 6 μ​M, showing that MAB21L1 has a preference for ssRNA. (b) Corresponding gels 
of electro mobility shift assays of MAB21L1 in comparison to cGAS (same conditions as before). cGAS clearly 
has a higher affinity for generic nucleic acids than MAB21L1.
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cGAS, these residues, which confer cGAS specificity for the guanine base, cannot be assigned, such as sscGAS 
T186 on the NB-loop, or are missing in MAB21L1 (A235, V231 and Q233, respectively).

A yet unanswered question is whether MAB21 proteins have any NTase activity, like e.g. cGAS or OAS. The 
catalytic triad on lobe I, which coordinates the two Mg2+ ions and polarizes the acceptor hydroxyl group in the 
active site of cGAS is only partially conserved in MAB21 proteins. While the presence of the Mg2+ ion coor-
dinating MAB21L1 E73 and E75 (sscGAS: E200 and D202/hscGAS E225 and E227) suggest the existence of a 
functional Mg2+ and perhaps triphosphate coordinating site, MAB21L1 has a glutamine (Q169) at the position 
of sscGAS D296 (hscGAS D319). The carboxylate of D296 coordinates a second Mg2+ and helps to polarize the 
acceptor hydroxyl. Alanine mutations in either of the three residues or a double E200Q, D202N mutation in ssc-
GAS lead to inactive proteins in vitro or in cellular assays8. It is unclear whether a more conserved asparagine at 
position hscGAS D319, similar to the Q169 of MAB21L1 still allows NTase activity.

However, in case MAB21L1 is an NTase, it would likely require a conformational change for activation. cGAS 
and OAS undergo conformational changes upon activation and especially part of the β​1–β​2 hairpin becomes a 
α​-helical turn, which then constitutes the so called NB-loop32. In structures of inactive cGAS or OAS1 the loop 
connecting β​1 and β​2 is disordered in the crystal structures. Although the equivalent region of MAB21L1 is 
ordered in our crystal structure, it notably does not adopt the α​-helical NB-loop conformation. CTP binding to 
MAB21L1 appears to stabilize the current, presumably inactive, conformation (Fig. 5d).

In summary, the structure of MAB21L1 exhibits similarities and differences with the structures of cGAS and 
OAS1, explaining why we currently fail to see NTase activity. Overall, the active site conformation observed in 
the crystal structure is inconsistent with catalytic activity. Residues that bind the donor NTP in the active site of 
NTases as well as coordinate the di-metal center are to a considerable extent conserved to cGAS, OAS proteins and 
other 3′​-specific nucleotidyltransferases, such as poly(A) polymerase (PAP) and CCA-adding enzyme (CCA)32.

Human Missense Mutations of MAB21L2 Mapped on MAB21L1 Structure are Responsible for 
Protein Stability.  A whole exome sequencing project revealed four different MAB21L2 missense mutations 
in patients with ocular coloboma. Out of 38 candidate genes for eye malformations, MAB21L2 was the only one 
altered by mutations. Previous studies attempted to explain the drastic phenotype of these mutations based on 
alignments of MAB21L2 with cGAS24. However, only the mutation R247Q, located in the C-terminal lobe on α​8, 

Figure 4.  Structure of MAB21L1 in Complex with CTP. (a) Front views of the MAB21L1-CTP complex 
crystal structure (left) and the crystal structure of the cGASMAB21-DNA-ATP-GTP complex (right, PDB code 
4KB6). (b) Close-up view of the CTP binding site with the bound CTP. Key residues interacting with the CTP 
are depicted and annotated. The CTP is bound in a positively charged pocket via interactions with the NB-
loop. (c) Titration of MAB21L1 with different nucleotides by ITC [KD(CTP) =​ 0.41 μ​M, KD(ATP) =​ 0.34 μ​M and 
KD(ADP) =​ 3.1 μ​M] suggest that MAB21L1 has a preference for nucleotide triphosphate coordination at this site.
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is structurally conserved in cGAS and even OAS1 (Supplementary Fig. S4) and previous work disagreed whether 
the patient derived mutations increased or decreased protein stability24,26.

All of the described amino acids mutated in MAB21L2 are conserved in MAB21L1 (Fig. 1b), so our crystal 
structure offers a good model to reveal the molecular basis for this disease. We therefore mapped the mutations 
R51C/H, E49K and R247Q on our MAB21L1 structure, in order to shed light on the possible effects on the pro-
tein stability (Fig. 6a). In our MAB21L1 structure R247 forms a salt bridge with E288 on the α​10-turn. This salt 
bridge is disrupted by the mutation of R247 to glutamine and consequently may lead to decreased stability of the 
protein. Residues E49 and R51 (Mutated to K and C/H, respectively) are located on the beginning of loop α​1-β​1. 
They are unique to MAB21 proteins and are highly conserved (Fig. 1b). Based on our MAB21L1 structure, E49 
and R51 participate in a network of salt bridges with E115 (Fig. 6a). E49 and R51 stabilize the large loop between 
β​4 and α​4 by anchoring the loop via interactions to E115. This loop and E115 are a highly conserved element in 
MAB21L1 and L2, indicating that destabilization caused by the mutations of E49 to lysine and R51 to cysteine or 
histidine inactivate MAB21L2.

To experimentally address the effects of the mutations on the protein stability we performed comparative flu-
orescence thermal shift assays. The thermal stability of MAB21L1 was tested in comparison to MAB21L1 R247Q 
and MAB21L1 R51C. MAB21L1 R51C and MAB21L1 R247Q showed significantly decreased melting tempera-
tures, which indicates a decreased stability of the mutated protein (Fig. 6b). The mutant MAB21L1 R247Q showed 
an even more drastic decrease in melting point stability loss as R51C. The fact that R247Q is also conserved 
in cGAS (sscGAS R383 and hscGAS R406) suggests that this residue plays a more fundamental role in protein 

Figure 5.  Superposition of MAB21L1 Active Site with Structurally Conserved cGAS. (a) Close-up views  
of the NTase active sites of human MAB21L1 (purple) superposed with porcine cGAS (blue, PDB code 4JLX).  
(b) The corresponding part of the porcine cGAS-DNA-ATP-GTP (blue, PDB code 4KB6) and (c) human 
MAB21L1 structure in the same orientation. Residues responsible for magnesium ion coordination in the 
cGAS-DNA-ATP-GTP structure (PDB code 4KB6) Q200 and N202 are mutated in the figure to E200 and  
D202, respectively, and a second magnesium ion was added to the catalytic site of cGAS for reason of clarity. 
Selected residues of MAB21L1, which are conserved to cGAS residues implicated in catalysis, are annotated.  
(d) Close-up view of nucleotide binding sites in the cGAS-DNA-ATP-GTP and MAB21L1-CTP complexes. 
CTP binding to MAB21L1 prevents the NB-loop rearrangements required for activation and therefore access  
to the catalytic pocket.
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Figure 6.  Patient Mutations on MAB21L2 Affect Protein Stability. (a) Amino acids of MAB21L2 mutated 
in patients with eye malformations are depicted in blue (R247Q) and red (E49K, R51C/H) in the MAB21L1 
structure. The insets show close-up views of the salt bridges formed by the mutated residues. R247 forms a salt 
bridge with E288, while E49 and R51 build a network of salt bridges with E115. Mutation of these stabilizing 
interactions will affect the correct MAB21L1 fold. (b) Thermal shift assay derivative melt curve plots of MAB21L1 
(black), MAB21L1 R51C (red) and MAB21L1 R247Q (blue). The disease related mutations in MAB21L1  
all show a decreased melting temperature supporting the idea that the mutations destabilize the protein.
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stability (Supplementary Fig. S4). In summary, we conclude that the MAB21L2 mutations associated with ocular 
coloboma lead to a protein with reduced stability because critical fold-stabilizing bonding networks are disrupted.

Discussion
MAB21 family proteins are implicated in cell fate decision processes in metazoans. Whereas MAB21 is required 
for pattern formation of the male tail in nematodes, MAB21 is sufficient and required for development of the 
dorso-ventral axis in vertebrates10,33,34. MAB21 proteins act downstream of the TGF-β​ signaling pathway by 
antagonizing the effect of BMP4 in Xenopus embryo ventralization and in C. elegans MAB21 is negatively reg-
ulated by cet-1 (vertebrate BMP4)22. Direct interactions of MAB21L2 with SMAD1, a nuclear transducer of the 
TGF-β​ pathway, suggest that MAB21L1 could be a transcriptional repressor21. Several studies in the model organ-
isms Xenopus, zebrafish and mouse revealed that both genes have similar expression patterns in the developing 
eye, mid- and hindbrain, neural tube and branchial arches13–15,35. In particular, recent studies in zebrafish detected 
MAB21L2 transcripts in the ciliary marginal zone of the retina. Similarly, expression of MAB21L3 in Xenopus was 
specific for multiciliate cells and ionocytes associating MAB21 proteins with cell fate specification of cilia23,26.

The biochemical activity and physiological role of MAB21 proteins remain to be established. As with many 
other NTases there are three ligand or substrate molecules to be considered, which make identification of the 
biochemical activity and biological function of these types of molecules challenging. NTases transfer a NMP 
from a donor NTP onto a hydroxyl group of an acceptor molecule. A third molecule required for development 
of catalytic activity is a potential activating ligand. In the case of cGAS, these molecules are ATP, GTP and 
double-stranded DNA. In the case of MAB21 proteins, neither the substrates of a NTase reaction nor a potential 
activating ligand have been described, if such molecules exist at all. Our structural studies show that MAB21L1 
resembles cGAS in the unliganded inhibited state and show that any NTase activity would require a conforma-
tional change similar to that DNA induces in cGAS8,27. It is of course possible that MAB21 proteins exert their 
functions via a predominantly structural role, e.g. by binding other proteins or nucleic acids such as mRNAs or 
micro-RNAs, and do not possess any catalytic activity at all. For instance, it has previously been proposed that 
MAB21L2 interacts with mRNA24. We also see some preferential but moderate binding to generic ssRNA with 
MAB21L1 and the positive electrostatic surface potential would be consistent with nucleic acid binding. Generic 
nucleic acids bind, however, with considerably less affinity to MAB21L1 than to cGAS27. This reduced affinity 
suggests that MAB21 binds perhaps a specific sequence or structure, if any. Of note in this context, potential 
functional link to micro-RNAs in the case of MAB21L3 has been proposed, although there are no experimental 
data for a functional or physical interaction at this point23. Apart from nucleic acids, it is also possible that MAB21 
proteins interact with other protein partners such as the SMAD proteins21.

MAB21 proteins could also confer their function through a catalytic NTase activity. As stated above, 
MAB21L1 has an inactive conformation in the crystal structure, but a cGAS-like conformational change could in 
principle form a proper active site. If such a hypothetical conformational change takes place, our structure shows 
that residues typically associated with donor NTP binding are conserved, in particular at the C-terminal lobe 2. 
These include Y272, which stacks with the base, and E238, which binds to the sugar OH groups. Finally, donor 
NTP binding also requires the catalytic triad carboxylates on lobe I, which coordinate together with the triphos-
phate moiety the two active site magnesium ions. However, residues coordinating the acceptor nucleotide GTP in 
cGAS are not found in MAB21L1 and residues located on the NB-loop cannot be assigned in our conformation, 
due to the lack of a MAB21L1 structure in an active conformation. Furthermore, in MAB21L1 and L2, two out of 
the three catalytic triad residues are conserved (E73, E75), whereas the third triad residue (Q169) is altered. In the 
case of cGAS the aspartate equivalent to Q169 (hscGAS D319) coordinates a second active site Mg2+ and could 
help to polarize the attacking acceptor OH. A glutamine at this position could still coordinate this magnesium 
ion, but may result in a reduced but perhaps not entirely abolished activity. As such, we do not want to rule out the 
possibility that MAB21 proteins still possess NTase activity.

An unexpected observation was that CTP was not bound at the NTase active site, even though it binds to 
MAB21L1 with 0.41 μ​M affinity and leads to a substantial increase in thermal stability. In previous studies by our-
selves and other groups with related enzymes (cGAS, OAS, MiD51), co-crystallization with NTPs or soaking of 
crystals with NTPs resulted in binding of the NTPs at the NTase active site, although the NTPs were often bound 
in a catalytically inactive conformation and not sufficient to switch the enzyme from an inactive to an active con-
formation27,32,36,37. In our structure, CTP is bound to a site that recognizes activating ligands in the case of related 
NTases (cGAS, OAS1), and it is tempting to speculate that this site is a ligand-binding site of MAB21 proteins as 
well. Obviously CTP did not switch the protein into an active conformation, so CTP is unlikely a physiological 
activating ligand. It is possible however, that CTP mimics part of a physiological ligand. It should be noted that 
the sugar and base moieties of CTP are bound by the NB-loop in its inactive conformation and thus would argue 
against an activating structural switch in MAB21, while the triphosphate binds into a highly positively-charged 
pocket that may not be affected by a conformational switch. The fact that the structure of MAB21L1 without 
any nucleotides added shows density for an unidentified molecule in the ligand binding pocket may support the 
suggestion that this positively-charged site acts as a binding site for an acidic ligand. The explicit preference of 
MAB21L1 for a nucleoside triphosphate (over a diphosphate) at this site suggests that MAB21L1 could bind, for 
instance, the 5′​ triphosphate of an RNA such as mRNA or precursor miRNA. This positively-charged pocket in 
MAB21L1 could act as an activation site but also as an inactivation site, such as the equivalent site on the bacterial 
nucleotidyltransferase DncV that binds 5MTHFGLU238. In the folate-bound conformation of DncV residues 
Y117 and Q116 sterically hinder binding of nucleotides in the active site.

In our structure, MAB21L1 packs into a decamer with D5 symmetry. This highly symmetric packing is quite 
unusual for generic crystal lattice interactions. Although we cannot rule out that this packing is purely a result 
of the high concentrations in the crystal, it may have a biological function, even though it was not detected  
in vitro in solution. cGAS, for instance, was shown to cooperatively bind dsDNA through two distinct interaction 

61



www.nature.com/scientificreports/

1 1Scientific Reports | 6:27498 | DOI: 10.1038/srep27498

sites, which induced oligomerization required for activation30,31. The interaction interfaces between protomers 
in the double pentamer are rather small and distinct from those of the oligomers of related proteins, such as 
cGAS and MiD5130,36. The interface area between two pentameric rings, however, is substantial and mediated by 
a highly conserved region in MAB21L1 and L2 comprising amino acids G96-Q138 (Fig. 1b). The same sequence 
was shown to be involved in protein-protein interactions in related MAB21 domain proteins. Drp1 recruitment 
to MiD51 was abolished when a single amino acid was mutated in this region36. In addition, residues differing 
between the 94% identical MAB21L1 and MAB21L2 proteins do not affect the predicted oligomer interface. The 
extreme surface conservation of MAB21 proteins throughout species further argues for potential oligomerization 
and/ or interaction partner binding features. Therefore, the oligomerization of MAB21 could be of biological 
importance and should be considered in future studies.

Finally, our structure allows a molecular interpretation of the MAB21L2 mutations in ocular coloboma 
since the underlying residues and their interaction partners are conserved between L1 and L2. Interestingly, 
we find that the mutated residues are not located on the surface but rather stabilize the structure of MAB21L1/
L2. Consistently, the mutations reduce the thermal stability of MAB21L1 in vitro, suggesting that the disease is 
caused by destabilized MAB21L2. Of note, the mutations E49K and R51C/H help fold a highly conserved area 
in MAB21L1/L2 that in our structure mediates the pentamer-pentamer interactions. In MiD51 the same loop is 
responsible for protein-protein interactions36. Therefore, the phenotype caused by mutations E49K and R51C/H 
could be due to disruption of possible protein-protein interactions with a yet unknown partner, that might be 
required for MAB21L1 to fulfill its function. Furthermore, these mutations were previously shown to disrupt 
MAB21L2 ability to bind ssRNA, consistent with the locations of the affected residues close to the RNA binding 
cleft in OAS124.

In line with the mutations observed for MAB21L2, a recent study reports severe effects of a the Cys246Leufs*​
18 frameshift mutation in MAB21L139. This mutation leads to a potentially disrupted structural integrity of the 
whole alpha helical arrangement in the C-terminal lobe, also affecting the mapped intramolecular interaction 
R247:E288 in MAB21L2 mutation R247Q. The fact that the MAB21L1 mutation causes an additional phenotype 
compared to MAB21L2 argues for an important role of both proteins in the organism.

In summary, we provide a first structural framework for the highly conserved MAB21 family of nucleotidyl-
transferase fold proteins.

Methods
Protein Expression and Purification.  The full length human MAB21L1 gene, purchased from GENEART 
with codon optimization for expression in E. coli, was cloned into a modified pET21 vector with an N-terminal 
His-MBP-tag. Site-directed mutagenesis was performed using the Quikchange (Stratagene) protocol with the 
respective primers. Expression was performed in E. coli BL21 Rosetta (DE3) and B834 (DE3) strains for native and 
selenomethionine labeled proteins, respectively. Cells were induced with 0.1 mM IPTG after reaching an OD600 
0.5–0.6 and proteins were expressed at 18 °C for 18 h. Harvested cells were resuspended in lysis buffer (50 mM 
Tris, 300 mM NaCl, 25 mM imidazole, 2 mM β​-mercaptoethanol, 5% v/v glycerol) and disrupted by sonication. 
MAB21L1 was purified by nickel-affinity chromatography and the His-MBP-tag was subsequently removed by 
TEV-protease cleavage (ratio 1:30) at 4 °C over night in buffer A (30 mM Tris-HCl, 100 mM NaCl, 2 mM DTT, 
pH 7.0). The protein was then further purified by cation exchange chromatography step using a HiTrap SP HP 
column (GE Healthcare) at pH 7.0. The protein was eluted with a linear gradient up to 50% buffer B (30 mM Tris, 
1 M NaCl, 2 mM DTT, pH 7.0). Fractions containing MAB21L1 were pooled and loaded on a Superdex 75 size 
exclusion chromatography column (GE Healthcare) using 20 mM Tris-HCl pH 7.5, 150 mM NaCl and 2 mM 
DTT as running buffer. MAB21L1 fractions were concentrated (2–3 mg/ml) before being flash-frozen in liquid 
nitrogen for storage at −​80 °C. MAB21L1 mutants were expressed and purified accordingly. The final crystalliza-
tion buffer for selenomethionine derivatized protein contained 2 mM TCEP (Tris(2-carboxyethyl) phosphine).

Crystallization of MAB21L1.  Co-crystallization of MAB21L1 with a mixture of CTP/ATP (5 mM final 
concentration) was performed by hanging drop vapor diffusion in 0.1 M MES pH 5.5 and 1 M tri-sodium cit-
rate. 2 μ​L protein/nucleotide mix were added to 1 μ​L reservoir solution from a total reservoir volume of 250 μ​L 
in the well. Native crystals grew for one week at 20 °C before being mounted on a Free Mounting System (FMS, 
Proteros Biostructures GmbH). Liquid surrounding the crystal was removed in the humidified gas stream with 
a glass capillary. TMAO (trimethylamine oxide) was supplied as a cryo-protectant to the protein crystal with the 
PicoDropper during a humidity gradient. The crystal was then flash-frozen by the quick rotational replacement 
of the humidity nozzle with the cryo nozzle and finally stored in liquid nitrogen (for more details see also40). 
Selenomethionine derivatized protein crystals grew in 0.2 M Tri-potassium citrate pH 7.8 and 16% PEG 3350 and 
were cryo protected by soaking in reservoir solution containing 30% (v/v) glycerol prior to flash freezing.

Data Collection and Structure Determination.  X-ray diffraction data were collected at beamline 
SLS X06SA (Swiss Light Source, Villigen, Switzerland) and PETRAIII beamline P13 (EMBL/DESY, Hamburg, 
Germany). Diffraction data were processed using XDS and XSCALE41. We determined the structure of MAB21L1 
using a high-redundant single anomalous diffraction (SAD) dataset measured at the Se-peak wavelength. Three 
finely-sliced datasets of translations on one needle-shaped crystal were merged (10800 ×​ 0.1° frames) to provide 
enough phase information. The self-rotation function calculated with MOLREP42 of the CCP4 package43 sug-
gested the presence of an additional five-fold symmetry axis and in combination with the Matthews’ coefficient 
we assumed either 10 or 15 copies. Phasing and density modification using the PHENIX suite44 located 70 Se 
sites for the 10 copies of MAB21L1 in the ASU leading to an initial low resolution map at 3.4 Å. This map allowed 
partial automatic model building using BUCCANEER45 followed by manual model building in COOT46 and 
alternate refinement steps in PHENIX. The initial starting model could be used to phase the two better diffracting 
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native crystals using PHASER47, leading to readily interpretable electron density. Extensive manual model build-
ing in COOT and further iterative refinements with PHENIX resulted in a final model with reasonable statistics. 
Data collections and refinement statistics are listed in Table 1. Figures were created with PyMOL48.

Thermal Shift Assay.  The thermal stability of MAB21L1 in presence of different ligands was analyzed by flu-
orescence thermal shift assays. 20 μ​M MAB21L1 was incubated with 5 mM of the respective ligand in 25 mM Tris 
pH 7.5, 150 mM NaCl, 10 mM MgCl2. After addition of SYPRO Orange (final concentration of 5×, Invitrogen) 
the fluorescence signal was detected during a temperature gradient between 5 °C to 100 °C at a rate of 0.5 K/30 s 
with one scan per 0.5 K in a real-time thermal cycler using the FRET mode (CFX96 touch/Biorad).

Isothermal Titration Calorimetry.  Isothermal Titration Calorimetry was carried out at 23 °C using a 
VP-ITC Microcal calorimeter (Microcal, GE Healthcare). Proteins were dialyzed overnight against 20 mM 
HEPES pH 8.0, 150 mM NaCl, 1 mM TCEP and nucleotides were resuspended in dialysis buffer. 1.44 mL of pro-
tein in the cell with concentrations of 5–10 μ​M were titrated with nucleotides with 10×​ higher concentrations. 
8 μ​L nucleotides was injected 25–30 times with 3.5 min intervals between injections. A background curve for 
each titration consisting of the titration of the nucleotide into buffer without protein was subtracted to account 
for heat dilution. The ITC data were analyzed using the Origin version 7 software package of the ITC instrument 
(Microcal).

Analytical Size-exclusion chromatography.  Analytical size-exclusion chromatography with MAB21L1 
was performed with a Superdex 200 increase 10/300 (GE Healthcare) in 20 mM HEPES pH 8.0, 2 mM DTT with 
varying concentrations of NaCl (150 mM, 500 mM, 750 mM and 1 M).

Size-exclusion chromatography coupled static light scattering.  Size-exclusion coupled static 
right-angle light scattering (SEC-RALS) was performed using an AEKTAmicro system (GE Healthcare Life 
Sciences) equipped with a refractive index detector (VE 3580) and a TD270- RALS –device (Viscotek/Malvern 
Instruments) with a Superdex 200 10/300 size-exclusion column (GE Healthcare). BSA (66 kDa) was used as 
standard protein for system calibration. Analysis of data was performed with Software OmniSEC (Viscotek/
Malvern Instruments).

Small-Angle X-ray Scattering.  Small-angle X-ray scattering (SAXS) experiments were performed at 
PETRAIII beamline P12 (EMBL/DESY, Hamburg, Germany). Protein samples were purified by size-exclusion 
chromatography (SEC) and centrifuged prior to the measurements. All samples were monodisperse as judged from 
the SEC- chromatograms and dynamic light-scattering size distributions. The scattering of the SEC running buffer 
(20 mM Tris-HCl pH 7.5, 150 mM NaCl and 2 mM DTT) was used for buffer correction of the MAB21L1 samples 
which were measured at different concentrations (1.3–6.5 mg/mL). The samples did not show signs of radiation 
damage and the scattering data were processed in the ATSAS suite49 as e.g. described in50. Guinier-plot (ln I(s) 
vs s2) analysis did not show signs of aggregation of the sample and provided a radius of gyration for MAB21L1 of 
Rg =​ 2.4 nm. By extrapolation to zero angle scattering intensity (I0) in the Guinier region s*​Rg <​ 1.3 the molecular 
weight of MAB21L1 in solution was determined Mw(I0) =​ 49.8 kDa using BSA (66 kDa) as a I0-reference. This is in 
good agreement with the molecular weight determined from the Porod volume Mw(porod) =​ 41 kDa. Theoretical 
scattering curves of crystallographic coordinates were calculated using CRYSOL51.

Electrophoretic Mobility Shift  Assays.  1 μ​M of 50mer ds/ssDNA or ds/ssRNA (5′​-GGATACGTAACAACG 
CTTATGCATCGCCCCGCTACATCCCTGAGCTGAC-3′​), RNA same sequence as DNA) was incubated with 
the indicated increasing concentration of purified protein for 30 min on ice. As reaction buffer 20 mM Tris pH 8.0 
and 200 mM NaCl was used. Samples were separated by a 1% agarose gel supplemented with Gel-Red (Biotium) 
for staining as suggested by the manufacturer instructions.
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Supplementary figure S1: Patterson self-rotation function, crystal packing and analytical SEC  

(a) The Patterson self-rotation function shows five two-fold non-crystallographic symmetry axes at 

chi=180° and a single five-fold non-crystallographic symmetry axis at chi=72°. (b) MAB21L1 crystal 

packing forms the decameric assembly (double-pentameric rings) observed in all three crystals, despite 

the different space groups and unit cell constants. (c) Size-exclusion chromatography of MAB21L1 

performed with buffer containing varying NaCl concentrations (150 mM NaCl – red, 500 mM NaCl - 

purple, 750 mM NaCl - blue, 1M NaCl - green). Purple, blue and green chromatograms overlap. The 

retention volume of MAB21L1 corresponds to a monomer compared to the gel filtration standard (670 

kDa, 158 kDa, 44 kDa, 17 kDa and 1.3 kDa).   
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Supplementary figure S2: Fluorescence thermal shift assays and ITC of MAB21L1 with different 

NTPs and Mg2+ 

(a) Fluorescence thermal shift assay derivative melt curve plots of MAB21L1 (black, dots), MAB21L1 

with 5 mM ATP (red), ADP (blue), CTP (green) and CDP (yellow). (b) Titration of MAB21L1 with GTP 

and UTP by ITC show no binding to MAB21L1. (c) Fluorescence thermal shift assay derivative melting 

curve plots of MAB21L1 (black, dots), MAB21L1 in presence of 5 mM MgCl2 (red) and MAB21L1 with 

5 mM EDTA (blue). 
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Supplementary figure S3: Composite omit electron density maps for MAB21L1:CTP and unknown 

ligand in apoMAB21L1 structure, superposition of apoMAB21L1 and MAB21L1:CTP 

(a) Composite omit electron density maps of the ligand binding pocket of MAB21L1:CTP and (b) apo 

MAB21L1 contoured at 1σ. The apo MAB21L1 structure shows additional density for an unknown 

ligand. Key residues interacting with the CTP are depicted and annotated. (c) Front and side views of 

MAB21L1:CTP (purple) superposed with apo MAB21L1 (green) with an RMSD of 0.94Å.  
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Supplementary figure S4: Structures of the MAB21L1-related proteins cGAS, OAS1 and DncV and 

a sequence alignment of OAS1, cGAS, MAB21L1 and MAB21L2 

Upper panel: crystal structures of MAB21L1 (purple, PDB code 5EOM) and the structurally-related 

proteins cGASMAB21 (blue, PDB code 4JLX), OAS1 (red, PDB code 4RWQ) and DncV (yellow, PDB 

code 4XJ1). Lower panel: amino acid sequence alignment of human OAS1, cGASMAB21, MAB21L1 and 

MAB21L2 generated with MUSCLE 1 and colored according to the BLOSUM62 conservation score 

(30%). Green dots mark conserved active site residues involved in metal coordination and conserved 

residues known to be involved in donor NTP coordination. Red stars denote residues that are mutated in 

patients with eye malformations in MAB21L2. 

 

1 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 

Nucleic acids research 32, 1792-1797 (2004). 
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In this publication effects of specific structure-derived and patient-related single point 

mutations in RIG-I’s ATPase were analyzed in vitro as well as in human cells. ATP hydrolysis 

activity coupled to RNA binding is known to be required for SF2 helicases to undergo large 

conformational changes required for their proper function. So far, it was not clear how RLRs 

use the driving force of ATP hydrolysis for translocation along the bound RNA in order to 

distinguish viral from endogenous RNA. Recently, mutations in the ATPase motifs of RIG-I 

were linked with autoimmune diseases, such as multi-system disorder Singleton-Merten 

Syndrome (SMS) and Aicardi-Goutières. These mutations lock RIG-I in an active state and 

lead to constant interferon response. This study showed that mutations disrupting binding of 

ATP to RIG-I inhibited the ability of the receptor to signal, whereas patient-related mutations 

still allowed ATP binding but no ATP hydrolysis. ATPase deficient RIG-I constitutively signals 

through unintentional prolonged binding to endogenous RNA and even co-purified with 

endogenous RNA from non-infected cells. Here a 60S ribosomal expansion segment was 

identified as a predominant self-RNA species bound to ATPase deficient RIG-I. In summary, 

this work suggests that ATP hydrolysis helps to remove/recycle RIG-I from endogenous 

dsRNA stretches not harboring a 5´-triphosphate, therefore serving as a control strategy for 

RLRs to overcome nucleic acid self-recognition and limit their signaling to viral non-self RNA.     
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Abstract The cytosolic antiviral innate immune sensor RIG-I distinguishes 5¢ tri- or diphosphate

containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood

mechanism that involves ATP hydrolysis by RIG-I’s RNA translocase domain. Recently discovered

mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome

(SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report

that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis.

ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-

RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S

ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient

RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5’ triphosphate

dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that

SMS mutations lead to unintentional signaling through prolonged RNA binding.

DOI: 10.7554/eLife.10859.001

Introduction
The innate immune system provides a rapid initial reaction to invading pathogens and also stimu-

lates the adaptive immune system (Iwasaki and Medzhitov, 2015). Pattern recognition receptors

(PRRs) of the innate immune system sense pathogen- or danger-associated molecular patterns

(PAMPs or DAMPs) and trigger molecular cascades that together initiate and orchestrate the cellular

response through activation of e.g. interferon regulatory factors and nuclear factor kB

(Brubaker et al., 2015; Pandey et al., 2015; Wu and Chen, 2014).

Retinoic-acid inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and

laboratory of physiology and genetics 2 (LGP2) are three structurally related PRRs – denoted RIG-I
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like receptors (RLRs) – that recognize cytosolic foreign RNA. RIG-I senses RNA from a broad range

of viruses including measles virus and Sendai virus (both paramyxoviridae), Influenza A virus, Japa-

nese encephalitis virus and Hepatitis C virus, whereas MDA5 is activated for example by picornavirus

RNA. LGP2 has augmenting and regulatory roles in MDA5 and RIG-I dependent signaling

(Bruns et al., 2014; Satoh et al., 2010; Sparrer and Gack, 2015).

RIG-I preferentially detects base-paired double-stranded RNA (dsRNA) ends containing either 50

triphosphate (ppp) or 50 diphosphate (pp) moieties (Goubau et al., 2014; Hornung et al., 2006;

Pichlmair et al., 2006; Schlee et al., 2009; Schmidt et al., 2009) and not 2’ OH methylated at the

first 5’ terminal nucleotide (Schuberth-Wagner et al., 2015). ppp-dsRNA arises, for example, at

panhandle structures of influenza virus nucleocapsids, or during measles or Sendai virus transcription

(Liu et al., 2015; Weber et al., 2013). 50 diphosphates are found on genomic RNA of reoviruses

(Banerjee and Shatkin, 1971). RIG-I can also detect poly-U/UC-rich dsRNA (Schnell et al., 2012).

Ligands of MDA5 are less well characterized but include dsRNA longer than 1000 bp (Kato et al.,

2008), higher-order dsRNA structures (Pichlmair et al., 2009), or AU-rich RNA (Runge et al., 2014).

RLRs are members of the superfamily II (SF2) of ATPases, helicases or nucleic acid translocases.

RIG-I and MDA5 consist of two N-terminal tandem caspase activation and recruitment domains

(2CARD), a central ATPase/translocase domain and a C-terminal regulatory domain (RD). LGP2 lacks

the 2CARD module but otherwise has a similar domain architecture. Binding of RNA induces a con-

formational change in RIG-I. If activated, the RD binds the ppp- or pp-dsRNA end, while the SF2

domain interacts with the adjacent RNA duplex and forms an active ATPase site (Civril et al., 2011).

In this conformation, the 2CARD module is sterically displaced from its auto-inhibited state

(Jiang et al., 2011; Kowalinski et al., 2011; Luo et al., 2011) and can be K63-linked poly-ubiquiti-

nated (Gack et al., 2007). Multiple Ub-2CARD complexes assemble to form a nucleation site for the

polymerization of mitochondrial antiviral-signaling adaptor protein (MAVS) into long helical filaments

(Hou et al., 2011; Wu et al., 2014; Xu et al., 2014). Instead of recognizing terminal structures like

eLife digest Living cells produce long, strand-like molecules of RNA that carry the instructions

needed to make proteins. Viruses also make use of RNA molecules to hijack an infected cell’s

protein-production machinery and create new copies of the virus. RNA molecules from viruses have

a number of features that distinguish them from a cell’s own RNAs, and human cells contain

receptors called RLRs that can start an immune response whenever they detect viral RNAs. All of

these receptors break down molecules of ATP, a process that releases useable energy. However, so

far it is not understood how this activity helps the receptors to distinguish viral RNA from the cell’s

own RNA molecules (called self-RNA).

Recently, some autoimmune diseases (including Singleton-Merten Syndrome) were linked to

mutations in the parts of RLRs that allow the receptors to break down ATP. Now, La€ssig et al. have

studied the effects of specific mutations in an RLR called RIG-I in human cells. The experiments

showed that mutations that disrupt RIG-I’s ability to bind to ATP also prevented the receptor from

becoming activated. However, mutations linked to Singleton-Merten Syndrome don’t stop ATP from

binding but instead slow its breakdown; this effectively locks the receptor in an ATP-bound state.

La€ssig et al. found that similar mutations in RIG-I caused human cells to trigger a constant immune

response against the self-RNAs.

Further experiments then suggested that the breakdown of ATP helps to remove RIG-I that has

bound to double-stranded sections of self-RNAs. This activity frees the receptor, making it more

able to detect double-stranded viral RNAs and preventing unintentional signaling. La€ssig et al. also

identified a specific double-stranded section of a human RNA that may be recognized by the

mutated version of RIG-I in people with Singleton-Merten Syndrome.

The next steps following on from this work are to extend the analysis to also include other RLRs

and further explore the underlying mutations within the three-dimensional structures of the

receptors and RNA molecules involved.

DOI: 10.7554/eLife.10859.002
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RIG-I, MDA5 cooperatively polymerizes along dsRNA (Berke and Modis, 2012), which is suggested

to trigger MAVS polymerization.

The SF2 ATPase domain plays a critical part in RIG-I activation, although the role of the ATPase

activity is still debated. Mutation of the seven SF2 “helicase” motifs resulted in RLRs that are either

inactive or signal constitutively (Bamming and Horvath, 2009; Louber et al., 2015). On the other

hand, overexpression of the 2CARD module alone is sufficient for signaling (Yoneyama et al.,

2004). Further studies revealed that the SF2 domain is an ATP-dependent dsRNA translocase

(Myong et al., 2009) that can help enhance signaling by loading multiple RIG-I on dsRNA

(Patel et al., 2013) and may execute anti-viral “effector” functions through displacement of viral

proteins (Yao et al., 2015). Finally, RIG-I ATPase activity promotes recycling of RIG-I:dsRNA com-

plexes in vitro, suggesting a kinetic discrimination between self and non-self RNA (Anchisi et al.,

2015; Louber et al., 2015).

Several autoimmune diseases, including the Aicardi-Goutières and Singleton-Merten syndromes

(SMS), were linked to single amino acid mutations in the SF2 domains of MDA5 and RIG-I

(Funabiki et al., 2014; Jang et al., 2015; Rice et al., 2014; Rutsch et al., 2015). Two point muta-

tions within the Walker A (motif I) or Walker B (motif II) of RIG-I are linked to atypical SMS and func-

tional studies indicated constitutive RIG-I activation (Jang et al., 2015). Thus, these mutations have

been described as a gain of function, which is puzzling considering previous mutations in motif I led

to loss of RIG-I function, while mutations in motif II led to either gain or loss of function, depending

on the type of mutation (Bamming and Horvath, 2009; Louber et al., 2015).

In order to clarify the role of RIG-I’s ATPase in antiviral signaling and RLR associated human dis-

eases, we engineered structure-derived and patient-identified mutations into RIG-I and tested the

resulting proteins in different types of cell-based and in vitro analyses. Collectively, we find that SMS

mutations phenocopy the structure-derived E373Q mutation in motif II, which is designed to trap

RIG-I in an ATP-bound state. Freezing this state results in a dramatic autoimmune response because

the enzyme binds self-RNA and signals. An unexpected, strongly enriched self-RNA is the ribosomal

large subunit, which contains large, dsRNA expansion segments. Collectively, our results suggest

that a biomedical and functional critical role of RIG-I’s ATPase is to prevent spontaneous and unin-

tended activation by self-RNA. Thus, the SF2 translocase likely increases the sensitivity of the system

by reducing background signaling. Furthermore, our studies suggest that in SMS, RIG-I is trapped in

an ATP-bound state and signals through self-ligands.

Results

Prevention of ATP hydrolysis in RIG-I leads to a constitutive activation
of the interferon-b promoter by recognition of self-RNA
To address the roles of ATP binding and hydrolysis by the SF2 domain of RIG-I, we studied RIG-I var-

iants containing structure-based mutations designed to i) prevent ATP binding and formation of a

functional ATP-bound complex, ii) allow ATP binding and ATP-induced conformational changes but

prevent ATP hydrolysis, or iii) disable interaction of the RNA with either the 1A or 2A domain of SF2

(Figure 1A, B). The structure of RIG-I in complex with RNA and ADP�BeFx served as guide for these

mutations ([Jiang et al., 2011], PDB code 3TMI, Figure 1B).

In order to dissect the influence of these mutations on the ability of RIG-I to elicit downstream

signaling, we used an interferon-b (IFNb) promoter activity assay carried out in HEK 293T RIG-I KO

cells (Figure 1—figure supplement 1A,B). Overexpressed wild-type RIG-I (wtRIG-I) is able to induce

a slight activation of the IFNb promoter, which can be further amplified by stimulation with Sendai

virus defective interfering particles (SeV DIs) (Figure 1C). The 2CARD module (RIG-I 1-229) induced

a strong activation in both non-infected and SeV DI-stimulated cells and is crucial since constructs

lacking these domains (D2CARD, RIG-I 230-925) cannot conduct any downstream signaling. RIG-I

K270I, carrying a mutation in the motif I lysine that reduces ATP binding (Rozen et al., 1989), sig-

naled in neither uninfected nor SeV DIs stimulated cells, consistent with previous studies. Remark-

ably, the E373Q substitution in motif II had a strikingly different effect. RIG E373Q, which has a

stabilized ATP-bound state by slowed-down ATP hydrolysis, strongly signaled in both non-infected

and SeV DIs stimulated cells. Western blots validated correct expression of all mutants (Figure 1—

figure supplement 1C).
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Figure 1. Cellular studies of RIG-I ATPase mutants in infected or non-infected cells. (A) Location of amino acid substitutions of RIG-I SF2 domain

variants used in this study (orange lines) within different RLR helicase motifs (orange squares). (B) Single amino acid substitutions (orange) within the

RIG-I 3D structure (PDB: 3TMI). (C) Fold change of interferon-b (IFNb) promoter driven luciferase activity in uninfected HEK 293T RIG-I KO cells or in

cells challenged with Sendai virus defective interfering particles (SeV DIs). Cells were co-transfected with RIG-I expression vectors and p125-luc/ pCMV-

RL reporter plasmids, and infected with SeV DIs 6 hr post transfection. Firefly (FF) luciferase activities were determined in respect to Renilla (Ren)

luciferase activities 24 hpi. All ratios were normalized to the empty vector control. n=3–12, error bars represent mean values ± standard deviation.

Figure 1 continued on next page
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To rule out a “constitutive” active conformation of RIG-I E373Q due to an exposed 2CARD mod-

ule (e.g. from an unfolded SF2) we performed small angle X-ray scattering with purified wtRIG-I and

RIG-I E373Q demonstrating that both proteins have the same solution structure (Figure 1—figure

supplement 2A, B). In addition, thermal unfolding assays show that the E373Q mutation does not

destabilize RIG-I (Figure 1—figure supplement 2C). Finally, RIG-I D2CARD,E373Q has a dominant

negative effect on signaling by RIG-I E373Q (Figure 1, Figure 1—figure supplement 2D, E). Taken

together, these data show that RIG-I E373Q is neither destabilized nor constitutively active, suggest-

ing it needs productive RNA interactions.

To test whether E373Q signals in non-infected (and perhaps also infected cells) because of inter-

action with self-RNA, we additionally introduced mutations in various RNA binding sites, in particular

a DRD variant (RIG-I 1-798) and mutations in two RNA-interacting residues in domains 1A (T347A)

and 2A (V699A) of SF2. The single mutation RIG-I T347A did not signal in either infected or non-

infected cells, showing that the interaction of RNA with this specific amino acid is critical for signal-

ing (Figure 1C). Interestingly, we find that the single mutation V699A slightly increases the signaling

activity of RIG-I in non-infected cells (Figure 1C), which could be explained by a putative reduction

of translocation activity instead of a prevention of RNA binding to SF2 (see discussion). Finally, dele-

tion of the regulatory domain (DRD) inactivates signaling in both infected and non-infected cells as

previously observed (Cui et al., 2008). As expected, both combination mutants RIG-I E373Q,T347A

and RIG-I E373Q,DRD failed to signal in both SeV DIs infected and non-infected cells. These data

show that the increased immunostimulatory effect of E373Q requires a productive RNA interaction

of SF2 and RD.

Since RD is also required for the displacement of the 2CARD module from SF2, we

additionally analyzed a point mutation in RD. K888 mediates triphosphate binding in RD and muta-

tions in this residue inactivate recognition of viral RNA (Cui et al., 2008; Wang et al., 2010). Of

note RIG-I E373Q,K888T is still constitutively active in non-infected cells. This effect indicates that

the increased signaling capacity on endogenous RNA is independent from the ppp-dsRNA or pp-

dsRNA epitopes that RIG-I recognizes on viral RNA via the RD.

Finally, we addressed the effect of the Singleton-Merten mutations C268F and E373A. E373A is

at the same position as our structure-derived E373Q mutant. Consistent with this, we observed that

this substitution leads to a constitutive activation of the IFNb promoter (Jang et al., 2015)

(Figure 1C). Interestingly, although C268 is located in motif I, it also leads to constitutive signaling,

whereas motif I mutation of K270 (which coordinates the b-phosphate of ATP) blocks ATP binding

and renders RIG-I inactive. Thus, mutation of the non-ATP binding C268 in motif I appears to pheno-

copy a mutation that prevents ATP hydrolysis.

In summary, our studies show that signaling of RIG-I requires both ATP and RNA binding. ATP

hydrolysis, on the other hand, appears to be critical to dissolve the signaling state and to prevent

activation of RIG-I by self-RNA.

RIG-I ATP hydrolysis defective mutant E373Q shows increased
interaction with ribosomal RNA
We hypothesized that E373Q traps RIG-I in an ATP bound high affinity conformation that is activated

already by self-RNA. To test this idea, we immunoprecipitated RIG-I and its mutants from non-

infected HEK 293T RIG-I KO cells or cells infected with measles or Sendai virus and analyzed the co-

purified RNA molecules. Regardless of whether co-purified from infected or non-infected cells, the

amount of RNA recovered from RIG-I E373Q was about 3 times higher than that from RIG-I

(Figure 2A). Similarly increased amounts of RNA co-purified with the SMS mutants C268F and

E373A from uninfected cells, reflecting the same altered RNA binding properties as in RIG-I E373Q

(Figure 2—figure supplement 1A).

When analyzed on a Bioanalyzer RNA chip or on agarose gels, we found that the increased

amount of RNA is to a large extent due to the presence of 28S rRNA, while 18S rRNA remains unal-

tered (Figure 2B). Control analysis of the total RNA content ruled out an alteration of ribosome sub-

unit ratio in RIG-I E373Q transfected cells (Figure 2C). Both increased amount of RNA and specific

enrichment of 28S rRNA were also observed for the equivalent MDA5 E444Q Walker B mutant (Fig-

ure 2—figure supplement 1B, C).

In order to determine the immunostimulatory potential of the RNA co-purified from virus-infected

cells, we back-transfected the RNA into HEK 293T ISRE-FF/RFP reporter cells (which contain

Lässig et al. eLife 2015;4:e10859. DOI: 10.7554/eLife.10859 5 of 20

Research article Cell biology Immunology

76



endogenous RIG-I, see Figure 2—figure supplement 2A). RNA co-purified with wtRIG-I and RIG-I

lacking the 2CARD module induced an immune response in these cells (Figure 2—figure supple-

ment 3A). RNA co-purified with RIG-I K270I (ATP binding deficient) and V699A (putative transloca-

tion deficient) was also able to stimulate the ISRE reporter in an amount comparable to wtRIG-I,

indicating no altered RNA binding properties in these mutants under virus infected conditions. In

Figure 2. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vivo. (A) Relative RNA amount co-purified with

overexpressed RIG-I or RIG-I E373Q from virus infected or non-infected HEK 293T RIG-I KO cells. n=4 (infected) or n=10 (non-infected), error bars

represent mean values ± standard deviation. (B) Bioanalyzer evaluation and agarose gel separation of RNA co-purified with overexpressed RIG-I or RIG-

I E373Q from non-infected HEK 293T RIG-I KO cells. Curves are normalized in respect to 18S rRNA peaks. (C) Bioanalyzer evaluation and agarose gel

separation of total RNA content of non-infected HEK 293T RIG-I KO cells overexpressing RIG-I or RIG-I E373Q. Curves were normalized as in panel B.

(D) Immunostimulatory potential of co-purified RNA from RIG-I, RIG-I E373Q or GFP overexpressed in measles virus (MeV), MeV-Cko-ATU-Cs or Sendai

virus Cantell (SeV) infected HEK 293T RIG-I KO cells. RNA was back-transfected into HEK 293T ISRE-FF/RFP cells together with pTK-RL transfection

control. Firefly luciferase (FF) activities were determined 24 hr after transfection in respect to Renilla luciferase (Ren) activity and were normalized to the

immunostimulatory potential of RIG-I associated RNA. n=4, error bars represent mean values ± standard deviation. (E) Immunostimulatory potential of

endogenous RNA in cells overexpressing RIG-I E373Q. RNA was co-transfected into HEK 293T RIG-I KO cells together with a RIG-I E373Q expression

vector and p125-luc/ pCMV-RL reporter plasmids. FF luciferase activities were determined in respect to Ren luciferase activities 24 hr after transfection.

All ratios are normalized to the RIG-I E373Q control without RNA stimulation. Purified RNA was in addition analyzed on agarose gels. n=3, error bars

represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.006

The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of RNA co-purified with RIG-I SMS or MDA5 variants.

DOI: 10.7554/eLife.10859.007

Figure supplement 2. Assay for defining the immunostimulatory potential of different RNAs.

DOI: 10.7554/eLife.10859.008

Figure supplement 3. Immunostimulatory potential of co-purified RNA from Sendai virus Cantell (SeV) infected cells.

DOI: 10.7554/eLife.10859.009
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contrast, RNA that co-purified with the RNA-binding deficient RIG-I T347A (mutation in SF2 domain),

RIG-I K858E (mutation in RD domain that reduces triphosphate recognition) or RIG-I DRD poorly

stimulated the ISRE promoter and probably represents background RNA (Figure 2—figure supple-

ment 3A). These data suggest that RIG-I recognizes immunostimulatory RNA via the SF2 and RD

domains, but does not require ATP binding for this process. ATP binding is necessary, however,

because RIG-I K270I expression alone does not stimulate the IFNb promoter (compare with

Figure 1C). Interestingly, RNA co-purified with RIG-I E373Q failed to induce reporter gene expres-

sion (Figure 2D, Figure 2—figure supplement 3A). Thus, despite the observation that RIG-I E373Q

co-purifies with approximately threefold more RNA than wtRIG-I from infected cells, the co-purified

RNA is not immunostimulatory in a wtRIG-I background. However, cells that transiently express RIG-I

E373Q can be further stimulated by transfection of total RNA extracts and purified ribosomal RNA

(Figure 2E), suggesting that ribosomal RNA can activate RIG-I E373Q. Cells lacking wtRIG-I or RIG-I

E373Q on the other hand do not respond to those RNAs. We conclude that host-RNA, which does

not activate wtRIG-I, can apparently compete with viral RNA for RIG-I E373Q.

In order to verify a higher affinity of the RIG-I ATP hydrolysis defective mutant towards ribosomal

RNA, we purified full-length human RIG-I and RIG-I E373Q, as well as human 80S ribosomes, and

tested for a direct interaction. We confirmed that while both RIG-I E373Q and the wild-type protein

are able to bind ATP, only wtRIG-I can hydrolyze ATP (Figure 3A, B). We subsequently conducted

sedimentation assays via ultra-centrifugation of sucrose cushions loaded with 80S ribosomes that

have been pre-incubated with wtRIG-I or RIG-I E373Q in presence or absence of ATP or the non-

hydrolysable ATP analogue ADP�BeF3. In presence of ATP a minor binding of wtRIG-I to the ribo-

some could be observed, whereas RIG-I E373Q bound in a near stoichiometric manner. In absence

of ATP or in presence of ADP�BeF3 binding of wtRIG-I was greatly enhanced and showed similar lev-

els compared to RIG-I E373Q (Figure 3C).

We next analyzed RIG-I E373Q:80S ribosome complexes by cryo-electron microscopy and single

particle 3D reconstruction (Figure 3D). The average resolution was estimated to be 17.7 Å based on

the Fourier shell correlation cut-off criterion at 0.5. When compared with the reconstruction of the

human 80S ribosome alone (Figure 3E), the ribosome:RIG-I E373Q complex revealed an additional

density located at rRNA expansion segment (ES) 7L, which is located at the back of the large ribo-

somal subunit. Calculation of a statistical difference map between the two reconstructions confirmed

that this distinct region contained significant additional density (Figure 3F). Human ribosomes con-

tain several long, G:C rich, base-paired RNA expansion segments forming large tentacle-like hairpin

structures of substantial double-stranded nature (Anger et al., 2013). A large part of the double-

stranded RNA in these segments is not covered by ribosomal proteins and accessible for cytosolic

proteins. The crystal structure of ADP�BeFx-bound RIG-I 42CARD:RNA complex ((Jiang et al.,

2011), PDB code 3TMI) fits well into the density observed at ES7L and is located at the root of the

solvent exposed portion of helix A of ES7L that contains a contiguous stretch of seven G:C/C:G

base pairs (Figure 3G).

In summary, we conclude that stabilizing the ATP-bound state of RIG-I induces a conformation

where RIG-I binds to ribosomes, presumably at exposed dsRNA expansion segments.

Specificity of RIG-I towards double-stranded RNA is increased in
presence of ATP
To further evaluate the role of ATP binding and hydrolysis of RIG-I we performed electrophoretic

mobility shift assays (EMSAs), fluorescence anisotropy experiments and ATP hydrolysis assays in

presence and absence of ATP or ADP�BeF3 with different RNAs. These RNAs mimic different types

of endogenous or viral RNAs and help dissecting contributions of RD’s binding to the RNA end and

SF2’s binding to the stem. In addition to a 24mer or 12mer blunt-ended dsRNA or ppp-dsRNA

(Goldeck et al., 2014), we also used a 60 nucleotide hairpin RNA (denoted as ES hairpin) derived

from the ribosomal expansion segment ES7L, which contains several bulges and a non-pairing end

(Figure 4—figure supplement 1A). The hairpin at one end and the added Y-structure at the other

end are used to minimize RNA end binding by RIG-I’s RD because RD has a high affinity for blunt

RNA ends.

RIG-I and RIG-I E373Q bound to the 24mer blunt ended dsRNA with a slightly higher affinity in

presence of ATP or ADP�BeF3 than in its absence (Figure 4A), suggesting that ATP binding to the

SF2 domain positively contributes to the overall affinity in addition to RD. A similar result was
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Figure 3. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vitro. (A) DRaCALA ATP binding assay of RIG-I or RIG-I

E373Q in presence or absence of RNA. (B) ATP hydrolysis assay of RIG-I or RIG-I E373Q in presence and absence of RNA. (C) Binding studies of human

80S ribosomes with RIG-I or RIG-I E373Q in presence or absence of ATP or ADP�BeF3. Pre-formed complexes were separated on sucrose cushions via

ultracentrifugation and pellet (P) as well as supernatant (SN) fractions were analyzed by SDS-PAGE. (D) Side views of a cryo-EM reconstruction of RIG-I

E373Q (blue) bound to the human 80S ribosome (yellow: 40S subunit, gray: 60S subunit). Data was low pass-filtered at 15 Å. (E) Side views of a cryo-EM

reconstruction of the human 80S ribosome without prior RIG-I E373Q incubation. Data filtering and color coding as in panel D. (F) Statistical difference

map (left, s = 2) of cryo-EM reconstructions in panels D and E reveals a significant additional density at expansion segment 7L A (ES7L-A, pink) into

which RIG-I (PDB 3TMI) can be fitted (right, s = 1.51). (G) Secondary structure map of the 28S rRNA ES7L (derived from (Anger et al., 2013) and zoom

into RIG-I E373Q binding area. ES7L-A is indicated in pink (as in panel F).

DOI: 10.7554/eLife.10859.010
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obtained when we used a 12mer dsRNA in fluorescence anisotropy experiments in order to further

dissect the influence of different RNA ends (Figure 4B). Interestingly, the positive effect of ATP was

not observed when we used the corresponding ppp-dsRNA 12mer (Figure 4C), most likely because

the RD dominates RNA binding under these conditions. Thus, it is plausible that RIG-I dissociates

from unphosphorylated RNA termini with an increased rate after ATP hydrolysis than from triphos-

phorylated termini.

We next tested the role of ATP on binding of wtRIG-I, RIG-I E373Q, RIG-I T347A,E373Q and the

SMS variant RIG-I C268F to the ES hairpin RNA mimicking the base of the ribosomal ES7L. In pres-

ence of ATP we observed moderately increased binding of RIG-I E373Q and of RIG-I C268F to this

hairpin, however wtRIG-I displayed a strikingly opposing effect (Figure 4D, Figure 4—figure supple-

ment 1C). For this RNA, ATP reduced rather than increased the affinity of wtRIG-I. The addition of

ADP�BeF3 to RIG-I could reconstitute the high affinity state of RIG-I E373Q. The RIG-I T347A,E373Q

double mutant, on the other hand, showed binding affinities similar to RIG-I in presence of ATP,

probably caused by residual binding of RD (Figure 4D).

Consistent with this, the ES hairpin RNA could induce signaling in RIG-I E373Q transfected HEK

293T RIG-I KO cells (Figure 2F) and could also stimulate the ATPase activity of RIG-I 42CARD, and

to a lesser extent wtRIG-I (which is auto-inhibited by the 2CARD module) (Figure 5A, Figure 5—fig-

ure supplement 1A). A comparable stimulatory effect on the ATPase activity of RIG-I could also be

detected with whole human ribosomes (Figure 5A). Control assays with the ATP hydrolysis defective

mutants RIG-I E373Q and RIG-I T347A,E373Q confirmed the lacking ability of those proteins to

hydrolyze ATP even in the presence of triphosphorylated RNA (Figure 5A, Figure 5—figure supple-

ment 1B).

In summary, our results show that ATP hydrolysis leads to a moderately increased binding of RNA

containing base-paired ends, but decreased binding of RNA lacking base-paired ends. These in vitro

data are also consistent with our co-immunopurification studies of RNA from cells, where we

observed that the ATP hydrolysis deficient RIG-I E373Q mutant co-purified with increased amounts

of endogenous RNA.

Discussion
Here we show that mutations that slow down or inhibit RIG-I’s ATPase lead to an increased interac-

tion of RIG-I with endogenous RNA, including double-stranded RNA expansion segments of the

human large ribosomal subunit. Our results suggest that RIG-I’s ATPase confers specificity to viral

RNA by preventing signaling through the abundant background of self-RNA and provide a molecular

framework for understanding the pathology of atypical Singleton-Merton syndrome.

Recently, several autoimmune diseases, including the Aicardi-Goutières and Singleton-Merten

syndromes, have been linked to RLRs through whole exome sequencing, which discovered single

amino acid mutations that are mostly found within the ATPase domain of RLRs (Jang et al., 2015;

Rice et al., 2014; Rutsch et al., 2015). Increased interferon levels suggest that an increased activa-

tion of MDA5 or RIG-I underlies the molecular pathology of these diseases. Indeed we find that not

only E373Q, consistent with recent results, leads to an increased activation of RIG-I in non-infected

cells, but also the SMS mutations E373A and C268F (Jang et al., 2015) (Figure 1C). While this could

have been expected for E373A, because of its similarity to E373Q, the increased immunostimulatory

effect of C268F in motif I comes as a surprise. Prior mutations in motif I studied by others and us led

to an inactivation of RIG-I, rather than constitutive activation. The precise structural reason for the

increased signaling of C268F needs to be addressed in future studies, but our co-immunoprecipita-

tion and in vitro binding assay results suggest that this mutation may also lock RIG-I in an RNA-

bound, active conformation (Figure 2—figure supplement 1A, Figure 4—figure supplement 1C).

Mutational and biochemical analyses previously suggested a kinetic model for RIG-I’s specificity

towards viral RNA, where the ATP-dependent recycling helps to discriminate ppp-dsRNA from

endogenous RNA (Anchisi et al., 2015; Louber et al., 2015; Runge et al., 2014) (Figure 6A). Our

studies show that, in case of base-paired triphosphate containing RNA ends, the RIG-I RD dominates

binding. Although RIG-I’s ATPase is very active, we do not see a strong effect of ATP on the affinity

for the RNA (Figure 4C, Figure 5A). ATP hydrolysis may under the assayed conditions not efficiently

displace RIG-I from ppp-dsRNA because RD might prevent full dissociation even after ATP-hydrolysis

displaced SF2. Importantly, ATP reduces the affinity towards self-RNA containing a duplex region
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Figure 4. RIG-I’s ATP hydrolysis enhances RNA end recognition and removes RIG-I from RNA stems. (A) Quantification of electrophoretic mobility shift

assays of RIG-I or RIG-I E373Q incubated with 24mer dsRNA in presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure

supplement 1B). (B) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence of ATP into solutions

containing fluorescently labeled 12mer dsRNA. (C) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence

of ATP into solutions containing fluorescently labeled 12mer ppp-dsRNA. (D) Quantification of electrophoretic mobility shift assays of RIG-I, RIG-I

E373Q or RIG-I T347A, E373Q incubated with an RNA hairpin derived from helix A of the human ribosome expansion segment 7L (ES hairpin) in

presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure supplement 1C). All binding curves were fitted using the LL.2 function

of the R drc package (Cedergreen et al., 2005). n=3-6, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.011

The following figure supplement is available for figure 4:

Figure supplement 1. Design of the ribosomal expansion segment derived hairpin RNA, EMSA raw figures and control experiments with RIG-I C268F

SMS mutant.

DOI: 10.7554/eLife.10859.012
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but not a “proper” ppp-dsRNA end (Figure 4D). Thus, if RD is unable to tether RIG-I to ppp-dsRNA

ends the ATPase could rapidly remove RIG-I from RNA duplex regions via its translocase and there-

fore prevents an autoimmune response towards self-RNA (Figure 6B). Our cellular studies are con-

sistent with this biochemical observation, because a point mutation in K888, a residue that is critical

for recognizing ppp-dsRNA ends, did not reduce the constitutive activation of ATP hydrolysis-defi-

cient RIG-I (Figure 1C). However, RD and ATP binding are clearly important for signaling, as shown

by 4RD and K270I mutations by us and others (Louber et al., 2015) (Figure 1C), suggesting that a

ring-like, ATP-bound structure is also involved in signaling caused by self-RNA (Figure 6C). In this

conformation, the RD likely helps to displace the 2CARD module from the SF2 domain but may not

have a high affinity for the RNA itself. Of note, the mutation in V699 of motif V also leads to

increased constitutive signaling (Figure 1C). A plausible explanation could be that this mutation in

RecA2 decouples RNA-binding induced ATP hydrolysis from translocation or displacement of RNA.

In summary, our results suggest a model where RIG-I’s translocase removes SF2 from dsRNA, per-

haps at nearby bulges, unless high-affinity binding by the RD on RNA ends containing di- or triphos-

phates tethers RIG-I despite ATP-hydrolysis and leads to repeated or prolonged exposure of the

2CARD module.

An unexpected finding was that trapping the ATP state of RIG-I leads to a particularly increased

interaction with the large ribosomal subunit via the expansion segment ES7L (Figure 3D, F). This

expansion segment is present in metazoan ribosomes, however its length is substantially increased

in human compared to drosophila ribosomes. The function of these expansion segments is not

understood, but since helix E (ES7L-E) was recently found to interact with the selenoprotein synthesis

factor SBP2, it is likely that the RNA in these elements is accessible to cytosolic proteins

(Kossinova et al., 2014). The specific enrichment of the large ribosomal subunit under conditions

where ribosomal subunits disengage argues for rather specific interactions of RIG-I E373Q with RNA

present on the large but not the small subunit. The dominant binding of ribosomes by RIG-I E373Q

can be explained by the high abundance of ribosomal RNA compared to other potential RIG-I

ligands in the cytosol. We could directly visualize RIG-I E373Q on the ribosome at the solvent

exposed root of ES7L-A (Figure 3F, G). This site contains a stretch of seven G:C/C:G base pairs,

which approximately matches the footprint of dsRNA across the two SF2 RecA domains in the crystal

structure of ADP�BeFx-bound RIG-I (Jiang et al., 2011; Kohlway et al., 2013; Kowalinski et al.,

2011; Luo et al., 2011) and also meets the requirements for activation of RIG-I’s ATPase

Figure 5. RIG-I’s ATPase activity correlates with its RNA binding affinity. (A) Quantification of hydrolyzed [g-32P]ATP by RIG-I or RIG-I E373Q in presence

of different RNA substrates. Reactions were allowed to proceed for 20 min at 37 ˚C and free phosphate was separated from ATP via thin layer

chromatography. Spots corresponding to labeled ATP and labeled Pi were quantified using ImageJ. All curves were fitted using the LL.2 function of the

R drc package. n=3, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.013

The following figure supplement is available for figure 5:

Figure supplement 1. RIG-I’s 2CARD module reduces the ATP hydrolysis activity.

DOI: 10.7554/eLife.10859.014
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(Anchisi et al., 2015). Since 40% of the particles had this additional density, it is conceivable that

additional binding sites could contribute to the interaction with RIG-I E737Q as well. However, the

peripheral parts of the expansion segments are flexible and not visible in the 3D reconstructions,

preventing us from observing RIG-I at other regions.

The RNA corresponding to the observed binding region of ES7L-A is also bound by RIG-I in vitro

and can moderately stimulate RIG-I’s ATPase (Figure 4D, Figure 5A). The much more efficient stim-

ulation of RIG-I’s ATPase by ppp-dsRNA is likely due to the high affinity towards RD, which could

repeatedly “present” the RNA to SF2 (i.e. increasing the “local” concentration of RNA at SF2). Of

note, while the addition of ATP to RIG-I reduces the interaction with the ES hairpin RNA, consistent

with a role of the ATPase in preventing interaction with self-RNA, RIG-I E373Q binds with a moder-

ately increased affinity to the ES-hairpin RNA in presence of ATP. Because of the large number of

ribosomes in the cytosol it is therefore conceivable that RIG-I binds to double-stranded ribosomal

RNA, including ES7L-A, under conditions where the ATPase is not able to efficiently displace the

protein, such as those arising in patients with atypical SMS. In addition, the high local concentration

of ribosomes in polysomes as well as a potential binding of RIG-I to other expansion segments could

bring multiple RIG-I E373Q in contact, such that their exposed 2CARD module could interact for

downstream signaling (Peisley et al., 2014; Wu et al., 2014). We do not, however, want to rule out

contributions by other self-ligands as well. For instance, RIG-I can bind to endogenous mRNA

(Zhang et al., 2013) or RNase-L cleavage products (Malathi et al., 2007), while MDA5 was shown

to be activated by mRNA stem loop structures under conditions where reduction of A:T base-paired

RNA is not prevented by ADAR1 (Liddicoat et al., 2015).

In any case, there are two levels of control to limit RLR mediated signaling to viral RNA. On one

hand, RNA editing (Liddicoat et al., 2015) and methylation (Schuberth-Wagner et al., 2015) modi-

fies particular types of self-RNA that would otherwise form reasonable ligands for RIG-I or MDA5.

On the other hand, the intrinsic ATPase and translocase activity removes RLRs from short, but abun-

dant endogenous dsRNA stretches, thereby reducing background signaling and increasing the sensi-

tivity of the system.

Figure 6. Proposed model for impact of ATP on RIG-I signaling on different RNAs. (A) RIG-I recognizes tri- or diphosphorylated double-stranded RNA

and preferentially binds to the RNA end through its regulatory domain (RD, green). Binding of ATP-SF2 (purple) to the dsRNA releases the 2CARD

module (yellow) and activates the downstream signaling process. ATP hydrolysis displaces the SF2 domain from dsRNA leading to either rebinding at

the RNA end (tethered by RD) or to translocation along the RNA. (B) In healthy cells, sustained binding of RIG-I to self-RNA containing dsRNA stretches

is prevented by ATP hydrolysis. The SF2 domain can be sufficiently displaced because the RD does not provide a high affinity tether. (C) Mutations that

allow ATP promoted binding of dsRNA and displacement of the 2CARD module, but prevent ATP hydrolysis dependent dissociation of SF2 from

dsRNA, such as those underlying atypical Singleton-Merten Syndrome, will result in an unintended signaling through self-RNA.

DOI: 10.7554/eLife.10859.015
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Materials and methods

Cell lines, viruses and antibodies
Luciferase assays and RIG-I:RNA co-immunopurifications were carried out in HEK 293T cells (pur-

chased from ATCC, CRL-11268) or HEK 293T RIG-I KO cells (Zhu et al., 2014). HEK 293T ISRE-FF/

RFP reporter cells (stable expression of firefly luciferase and RFP under the control of an ISRE pro-

moter, kindly provided by Luis Martinez-Sorbid, University of Rochester, Rochester, NY) were used

for interferon stimulated luciferase reporter gene assays of recovered RNA. HEK cells were main-

tained in high glucose Dulbecco’s Modified Eagle Medium supplemented with GlutaMAX, pyruvate

and 10% FBS (all purchased from Gibco, UK). Human ribosomes were purified from HeLa S3 cells

cultured in SMEM (Sigma, Germany) supplemented with 10% FBS, Penicillin (100 U/mL)/ Streptamy-

cin (100 mg/mL) and 1x GlutaMAX (all purchased from Gibco, UK) using a spinner flask at 40 rpm. All

cell lines were routinely checked for Mycoplasms by PCR and were, except for the HEK 293T ISRE-

FF/RFP cell line, tested to be negative. Mycoplasm contaminations were suppressed using Plasmocin

(InvivoGen, France) according to the manufacturer’s protocol. Viruses used for infections were Sen-

dai virus Cantell, Sendai virus defective interfering particles H4 (kindly provided by Dominique Gar-

cin, Geneva, Switzerland), recombinant measles virus (MeV) with a sequence identical to the vaccine

strain Schwarz (AF266291.1.)(del Valle et al., 2007; Devaux et al., 2007) and recombinant MeV-

Cko-ATU-Cs. MeV-Cko-ATU-Cs expresses the C Schwarz protein from an additional transcription

unit (ATU) located between the M and the P gene, while expression of C from the P gene is abro-

gated. Specifically, three stop codons were introduced into the P gene for the C ORF while leaving

P and V protein expression intact. Cloning was done as described previously (Pfaller and Conzel-

mann, 2008; Sparrer et al., 2012). Additionally, an ATU was introduced between the P and M gene

by duplicating the gene borders of the P gene. The ORF of the C (Schwarz) protein was cloned into

that ATU and the virus rescued from cDNA using helper plasmids in 293-3-46 cells (Radecke et al.,

1995) and propagated on Vero cells as described previously (Parks et al., 1999; Pfaller et al.,

2014). Primary antibodies to human MDA5 (AT113) and RIG-I (Alme-1) were purchased from Enzo

Life Science (Loerrach, Germany). Antibodies to FLAG (M2), HA (HA-7) and b-tubulin (TUB 2.1) were

obtained from Sigma-Aldrich (Saint Luis, MO, USA). Secondary antibodies were supplied by GE

Healthcare (Buckinghamshire, UK).

Generation of RLR mutants
Sequences encoding full-length human RIG-I or MDA5 with N- or C-terminal FLAG/HA-tag were

cloned into pcDNA5 FRT/TO (Invitrogen, Carlsbad, CA, USA). Mutants were generated by site-

directed mutagenesis with PfuUltra polymerase (Agilent, Santa Clara, CA, USA).

Immunoprecipitation of RLR-associated RNA from infected or non-
infected cells
6x106 HEK 293T or HEK 293T RIG-I KO cells were transfected with 10 mg pcDNA5 vector coding for

different FLAG/HA tagged RLR proteins. Non-infected cells were harvested 24 h after transfection.

Infections were carried out 6h after transfection with an MOI of 0.05 for measles virus or high MOI

for Sendai virus and were allowed to proceed for 40 or 24 hr, respectively. Cells were harvested and

incubated in Nonidet P-40 lysis buffer (50 mM HEPES, 150 mM KCl, 1 mM NaF, 0.5% NP-40, 0.5

mM DTT, protease inhibitor (Sigma, Saint Luis, MO, USA), pH 7.5) for 10 min on ice. Lysates were

cleared by centrifugation and proteins were immunoprecipitated for 2.5 - –4 hr with anti-DDK mag-

netic beads (OriGene, Rockville, MD, USA) or anti-FLAG (M2) bound to magnetic protein G Dyna-

beads (Novex, Life Technologies, Carlsbad, CA, USA). Beads were washed five times with washing

buffer (50 mM HEPES, 300 mM KCl, 0.05% NP-40, 0.5 mM DTT, protease inhibitor, pH 7.5) and incu-

bated with proteinase K (Thermo Scientific, Vilnius, Lithuania) for 30 min at 50 ˚C. RNA was isolated

by phenol/ chloroform/ isoamyl alcohol extraction using Phase Lock Gel Heavy tubes (5

PRIME, Germany). The quality of the isolated RNA was validated on an Agilent RNA 6000 Nano

chip.
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Luciferase transfection assays
Immunoactivity experiments were carried out in 24-well plates seeded with 2.5�105 HEK 293T RIG-I

KO or 2.5�105 HEK 293T ISRE-FF/RFP reporter cells per well using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA, USA) as transfection reagent according to the manufacturer’s protocol. For down-

stream signaling assays HEK 293T RIG-I KO cells were co-transfected with 500 ng protein expression

vector, 100 ng p125-luc, 10 ng pCMV-RL and 50 ng empty expression vector. For RIG-I E373Q/RIG-I

D2CARD,E373Q competition assays HEK 293T RIG-I KO cells were co-transfected with 100 ng RIG-I

E373Q expression vector, varying concentrations of the RIG-I D2CARD,E373Q expression vector,

100 ng p125-luc and 10 ng pCMV-RL. DNA concentrations were held constant by adding empty

expression vector if necessary. For determination of the immunostimulatory potential of recovered

RNA from co-immunoprecipitations, HEK 293T ISRE-FF/RFP cells were transfected with 250 ng RNA

in Opti-MEM (Gibco, UK). For RNA stimulation of cells overexpressing RIG-I E373Q 2.5�105 HEK

293T RIG-I KO cells were transfected with 100 ng RIG-I E373Q expression vector, 100 ng p125-luc,

10 ng pCMV-RL and 1000 ng total RNA/ rRNA or ES hairpin RNA in Opti-MEM. All cells were har-

vested 24 h after transfection using 200 mL PLB (Promega, Madison, WI, USA) and subjected to

immunoactivity experiments using the Dual-Glo luciferase assay system (Promega, Madison, WI,

USA) as previously described (Runge et al., 2014). The luciferase activity was determined with a

Berthold Luminometer in 96-well plates using 20 mL cell lysate.

Protein expression and purification
RIG-I and RIG-I E373Q were expressed and purified from insect cells as described previously

(Cui et al., 2008). Briefly, sequences encoding RIG-I were cloned into pFBDM vectors and trans-

formed into E. coli DH10MultiBac cells. Bacmids were extracted for transfection into SF9 insect cells

and propagated virus was used for protein expression in High Five insect cells. Seventy-two hours

after infection cells were harvested and flash frozen in liquid nitrogen. RIG-I D2CARD was expressed

in E. coli BL21 Rosetta (DE3), using pET expression vectors as described earlier (Cui et al., 2008). All

recombinant proteins were purified using metal affinity (QIAGEN, Germany), heparin affinity and gel

filtration chromatography (both GE Healthcare, Buckinghamshire, UK). Fractions containing RIG-I

were concentrated to 6 mg/mL and flash-frozen in liquid nitrogen.

Thermal unfolding assay
Thermal stability of RIG-I or RIG-I E373Q in presence or absence of ATP was analyzed by fluores-

cence thermal shift assays. Proteins (20 mM) were incubated in 25 mM HEPES pH 7, 150 mM NaCl,

10 mM MgCl2, 5 mM TCEP, 5% glycerol and 5 mM ATP. After addition of SYPRO orange (Invitro-

gen, Carlsbad, CA, USA, final concentration: 2.5x) the fluorescence signal was detected using a gra-

dient from 5 ˚C to 100 ˚C with 0.5 K/30 s and one scan each 0.5 K in a real-time thermal cycler

(Biorad, Germany, CFX96 touch) using the FRET mode.

Small-angle X-ray scattering
SAXS experiments were conducted at the PETRA3 P12 beamline of the European Molecular Biology

Laboratory/ Deutsches Elektronen-Synchrotron, Hamburg, Germany. Samples were measured in

absence or presence of 5 mM ATP in size exclusion buffer (25 mM HEPES pH 7, 150 mM NaCl, 5

mM MgCl2, 5 mM b-Mercaptoethanol, 5% glycerol). RIG-I samples were measured at protein con-

centrations of 1.28, 2.65 and 8.35 mg/mL and RIG-I E373Q samples with concentrations of 0.87,

2.13 and 6.84 mg/mL. The respective scattering of the corresponding buffer was used for buffer sub-

traction. The samples did not show signs of radiation damage, which was assessed by automatic and

manual comparison of consecutive exposure frames. The data was processed using PRIMUS from

the ATSAS package (Konarev et al., 2006) and the radius of gyration was determined by Guinier

plot [ln I(s) versus s2] analysis obeying the Guinier approximation for globular proteins (s x Rg < 1.3).

Human 80S ribosome preparation
HeLa S3 cells were harvested (2 min, 650 x g), washed with PBS (Invitrogen, Carlsbad, CA, USA) and

incubated with 1.5x vol Buffer 1 (10 mM HEPES/KOH, pH 7.2/4 ˚C, 10 mM KOAc, 1 mM Mg(OAc)2
and 1 mM DTT) for 15 min on ice, followed by disruption with nitrogen pressure (300 psi, 30 min, 4

˚C) in a cell disruption vessel (Parr Instrument, Moline, IL, USA). The cell lysate was cleared (10 min,
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14,000 rpm, Eppendorf 5417R, 4 ˚C) and the resulting supernatant was loaded onto a sucrose cush-

ion (Buffer 1 supplemented with 35% sucrose). Subsequent spinning (98 min, 75.000 rpm, TLA

120.2, 4 ˚C) was performed. After resuspension of the ribosomal pellet, a high-salt purification by

centrifugation through a 500 mM sucrose cushion (50 mM Tris/HCl, pH 7.0/4 ˚C, 500 mM KOAc, 25

mM Mg(OAc)2, 5 mM b-mercaptoethanol, 1 M sucrose, 1 mg/mL cycloheximide and 0.1% Nikkol)

was conducted (45 min, 100,000 rpm, TLA120.2, 4 ˚C). The ribosomal pellet was resuspended in

Ribosome Buffer (50 mM Tris/HCl, pH 7.0/4 ˚C, 100 mM KOAc, 6 mM Mg(OAc)2, 1 mM DTT, 1/200

EDTA-free Complete protease inhibitor (Roche, Germany), 0.2 U/mL RNasin (Promega, Madison, WI,

USA)), quickly centrifuged, frozen in liquid nitrogen and stored at -80 ˚C.

Total RNA and ribosomal RNA isolation
For total RNA isolation 2.5 x 105 HEK 293T were seeded per well of 24 well plates. After 24 h cells

were harvested in PBS, collected by centrifugation and lysed in Nonidet P-40 lysis buffer for 10 min

on ice. Supernatant was cleared by centrifugation and DNA was digested with TURBO DNase

(Ambion, Life Technologies, Carlsbad, CA, USA) for 3 min at 37 ˚C. Proteins were digested and RNA

was extracted as described above. For ribosomal RNA isolation purified human ribosomes were pro-

teinase K digested and RNA was extracted accordingly.

Ribosomal binding studies
Human 80S ribosomes were incubated with or without 2.5x molar excess of RIG-I or RIG-I E373Q in

binding buffer (50 mM HEPES/KOH, pH 7.5/ 4 ˚C, 100 mM KCl, 2.5 mM Mg(OAc)2, 2 mM DTT, 1

mM ATP, 0.1% DDM, 10% Glycerol) for 15 min at room temperature and then for 15 min at 4 ˚C.
The mixture was loaded onto a sucrose cushion (binding buffer with 750 mM sucrose) and spun (3 h,

40,000 rpm, SW55Ti, 4 ˚C). Supernatant and pellet fractions were separated and TCA precipitated.

The resulting samples were analyzed by SDS-PAGE and visualized using SYPRO Orange

Staining (Molecular Probes, Eugene, OR, USA).

Cryo-grid preparation
5 OD/mL human 80S ribosomes were incubated with or without 2.5x molar excess of RIG-I E373Q.

Each sample (50 mM HEPES / KOH, pH 7.5 / 4 ˚C, 100 mM KCl, 2.5 mM Mg(OAc)2, 2 mM DTT, 1

mM ATP, 0.1% DDM, 5% glycerol) was applied to 2 nm pre-coated Quantifoil R3/3 holey carbon

supported grids and vitrified using a Vitrobot Mark IV (FEI Company , Germany).

Cryo-electron microscopy and single particle reconstruction
Data were collected on a 120 keV TECNAI SPIRIT cryo-electron microscope with a pixel size of 2.85

Å/pixel at a defocus range between 1.4 mm and 4.6 mm (with RIG-I E373Q ligand) or between 1.8

mm and 5.3 mm (without ligand) under low dose conditions. Particles were detected with SIGNATUR-

E (Chen and Grigorieff, 2007). Initial alignment resulted in 61,067 particles (with ligand) and 29,959

particles (without ligand). Subsequent data processing and single particle analysis was performed

using the SPIDER software package (Frank et al., 1996). Non-ribosomal particles (19,080 particles,

31% (with ligand) and 10,663 particles, 35% (without ligand)) were removed from each data set by

unsupervised 3D sorting (Loerke et al., 2010). The remaining particles were further sorted, resulting

in a volume with additional density (with ligand: 23,715 particles, 39% ). The identical sorting scheme

was applied to the control 80S ribosome without ligand, resulting in final 11,727 particles (39% ).

The final 80S structures with and without ligand were refined to an overall resolution (FCS0.5) of 17.7

Å and 21.9 Å, respectively. For comparison of the two final volumes, a statistical difference map

between the two reconstructions was calculated.

Figure preparations and model docking
We used the crystal structure of the human RIG-I protein (PDB code 3TMI) (Jiang et al., 2011) and

the human ribosome (PDB 4V6X) (Anger, et al., 2013) for rigid-body fitting into the additional den-

sity. Figures depicting atomic models with and without density were prepared using UCSF Chimera

(Pettersen et al., 2004).
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Differential radial capillary action of ligand assay
ATP binding was determined by DRaCALA using [a-32P]ATP (Hartmann Analytik, Germany). 12 mM

RIG-I or RIG-I E373Q were incubated in 50 mM HEPES, pH 7.5, 150 mM KCl, 5 mM MgCl2, 2.5 mM

TCEP, 0.1 mg/mL BSA supplemented with 2.5 nM [a-32P]ATP for 10 min at room temperature in

presence or absence of 100 nM RNA. 2.5 mL of reaction mixture was spotted on nitrocellulose mem-

branes (0.22 mM pores, GE Healthcare, Buckinghamshire, UK), air-dried and [a-32P]ATP was detected

using a phosphor-imaging system (GE Healthcare, Germany).

Electrophoretic mobility shift assay
Proteins at different concentrations were pre-incubated with ATP, ADP or ADP�BeF3 (all 3 mM end

concentration, ADP�BeF3 was generated using ADP, NaF and BeCl2 in a 1:1:5 molar ratio) and added

to 0.5 mM ES hairpin RNA or 0.2 mM 24mer RNA in EMSA buffer (50 mM Tris pH 7.5, 50 mM KCl, 5

mM MgCl2, 5 mM TCEP, 7.5 mM ZnCl2, 3 mM ATP, 5% glycerol). Reactions were incubated for 20

min at 37 ˚C. Samples were separated on TB agarose gels (89 mM Tris, 89 mM boric acid, 0.8% aga-

rose) and stained with Gel-Red (Biotium, Hayward, CA, USA). Unbound RNA bands were quantified

with ImageJ.

Fluorescence anisotropy assays
Different RIG-I or RIG-I E373Q protein concentrations were titrated into EMSA buffer without ATP

and glycerol. Reactions were started by addition of 5 mM ATP and 20 nM Cy3- or Cy5-labeled RNA

and fluorescence anisotropy was measured with a TECAN M1000 plate reader after incubation at

room temperature for 20 min.

ATPase hydrolysis assays
ATPase hydrolysis activity was determined using [g-32P]ATP (Hartmann Analytik, Germany). Proteins

at different concentrations were pre-incubated with 100 nM RNA or purified ribosomes for 10 min at

room temperature in EMSA buffer without ATP. The reaction was initiated by addition of 1.5 mM

unlabeled and 10 nM [g-32P]ATP and incubated for 20 min at 37 ˚C. Free phosphate was separated

from ATP by thin layer chromatography in TLC running buffer (1 M formic acid, 0.5 M LiCl) on polye-

thyleneimine cellulose TLC plates (Sigma-Aldrich, Germany). [g-32P]Pi and [g-32P]ATP were detected

using a phosphor-imaging system (GE Healthcare, Germany) and quantified using ImageJ.
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Figure 1. Cellular studies of RIG-I ATPase mutants in infected or non-infected cells. (A) Location of amino acid substitutions of RIG-I SF2 domain

variants used in this study (orange lines) within different RLR helicase motifs (orange squares). (B) Single amino acid substitutions (orange) within the

RIG-I 3D structure (PDB: 3TMI). (C) Fold change of interferon-b (IFNb) promoter driven luciferase activity in uninfected HEK 293T RIG-I KO cells or in

cells challenged with Sendai virus defective interfering particles (SeV DIs). Cells were co-transfected with RIG-I expression vectors and p125-luc/ pCMV-

RL reporter plasmids, and infected with SeV DIs 6 hr post transfection. Firefly (FF) luciferase activities were determined in respect to Renilla (Ren)

luciferase activities 24 hpi. All ratios were normalized to the empty vector control. n=3–12, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.003
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Figure 1—figure supplement 1. Assay for defining of the impact of RLR variant expression on RLR signaling in

infected or non-infected cells. (A) HEK 293T RIG-I KO cells were co-transfected with different expression and

control vectors as indicated. RLR signaling induces an interferon-b (IFNb) promoter driven expression of firefly

luciferase (FF). Renilla luciferase (Ren) is constitutively expressed via a CMV promoter and serves as transfection

control. (B) Western Blot analysis of virus-induced RIG-I expression in HEK 293T and HEK 293T RIG-I KO cells. (C)

Western Blot control of overexpressed FLAG/HA tagged RIG-I variants in HEK 293T RIG-I KO cells from Figure 1,

panel C.

DOI: 10.7554/eLife.10859.004
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Figure 1—figure supplement 2. RIG-I E373Q mutation does not confer constitutive activity due to an exposed 2CARD module. (A) Small-angle X-ray

scattering (SAXS) intensity curves of RIG-I and RIG-I E373Q in presence and absence of ATP. (B) Distance distribution functions derived from SAXS data

in panel A. Calculated radii of gyration (Rg) are indicated within the legend. (C) Thermal shift assays in presence and absence of ATP. Melting

temperatures I are indicated within the legend. (D) Fold change of interferon-b promoter driven luciferase activity of HEK 293T RIG-I KO cells co-

transfected with a RIG-I E373Q expression vector, varying concentrations of a RIG-I D2CARD,E373Q expression vector and p125-luc/ pCMV-RL reporter

plasmids. Firefly luciferase (FF) activities were determined in respect to Renilla luciferase (Ren) activities 24 hr after transfection. All ratios were

normalized to an empty vector control. n=3, error bars represent mean values ± standard deviation. (E) Control Western Blot analysis of FLAG/HA-

tagged constructs from panel D.

DOI: 10.7554/eLife.10859.005
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Figure 2. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vivo. (A) Relative RNA amount co-purified with

overexpressed RIG-I or RIG-I E373Q from virus infected or non-infected HEK 293T RIG-I KO cells. n=4 (infected) or n=10 (non-infected), error bars

represent mean values ± standard deviation. (B) Bioanalyzer evaluation and agarose gel separation of RNA co-purified with overexpressed RIG-I or RIG-

I E373Q from non-infected HEK 293T RIG-I KO cells. Curves are normalized in respect to 18S rRNA peaks. (C) Bioanalyzer evaluation and agarose gel

separation of total RNA content of non-infected HEK 293T RIG-I KO cells overexpressing RIG-I or RIG-I E373Q. Curves were normalized as in panel B.

(D) Immunostimulatory potential of co-purified RNA from RIG-I, RIG-I E373Q or GFP overexpressed in measles virus (MeV), MeV-Cko-ATU-Cs or Sendai

virus Cantell (SeV) infected HEK 293T RIG-I KO cells. RNA was back-transfected into HEK 293T ISRE-FF/RFP cells together with pTK-RL transfection

control. Firefly luciferase (FF) activities were determined 24 hr after transfection in respect to Renilla luciferase (Ren) activity and were normalized to the

immunostimulatory potential of RIG-I associated RNA. n=4, error bars represent mean values ± standard deviation. (E) Immunostimulatory potential of

endogenous RNA in cells overexpressing RIG-I E373Q. RNA was co-transfected into HEK 293T RIG-I KO cells together with a RIG-I E373Q expression

vector and p125-luc/ pCMV-RL reporter plasmids. FF luciferase activities were determined in respect to Ren luciferase activities 24 hr after transfection.

All ratios are normalized to the RIG-I E373Q control without RNA stimulation. Purified RNA was in addition analyzed on agarose gels. n=3, error bars

represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.006
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Figure 2—figure supplement 1. Analysis of RNA co-purified with RIG-I SMS or MDA5 variants. (A) Relative RNA amount co-purified with

overexpressed RIG-I, RIG-I E373Q or RIG-I SMS variants from non-infected HEK 293T RIG-I KO cells. (B) Relative RNA amount co-purified with

overexpressed MDA5 from non-infected HEK 293T cells. n=3, error bars represent mean values ± standard deviation. (C) Bioanalyzer evaluation of RNA

co-purified with overexpressed MDA5 from non-infected HEK 293T cells. Curves are normalized in respect to 18S rRNA peaks.

DOI: 10.7554/eLife.10859.007
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Figure 2—figure supplement 2. Assay for defining the immunostimulatory potential of different RNAs. (A) Endogenous RLRs in HEK 293T ISRE-FF/RFP

cells (stably express firefly luciferase (FF) and RFP under control of an interferon stimulated response element (ISRE) promoter) induce a downstream

signaling cascade upon binding to transfected RNA. Subsequent interferon (IFN) expression results in activation of the STAT signaling pathway which in

return induces ISRE promoter driven expression of FF luciferase.

DOI: 10.7554/eLife.10859.008
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Figure 2—figure supplement 3. Immunostimulatory potential of co-purified RNA from Sendai virus Cantell (SeV)

infected cells. (A) HEK 293T RIG-I KO cells were transfected with the indicated RIG-I mutant or GFP expression

vector. RNA co-purified with the respective overexpressed protein was back-transfected into HEK 293T ISRE-FF/

RFP cells (compare with Figure 2—figure supplement 2). Firefly luciferase activities were determined 24 h after

transfection and normalized to the RIG-I sample.

DOI: 10.7554/eLife.10859.009
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Figure 3. RIG-I ATP hydrolysis defective mutant E373Q recognizes the 60S ribosomal subunit in vitro. (A) DRaCALA ATP binding assay of RIG-I or RIG-I

E373Q in presence or absence of RNA. (B) ATP hydrolysis assay of RIG-I or RIG-I E373Q in presence and absence of RNA. (C) Binding studies of human

80S ribosomes with RIG-I or RIG-I E373Q in presence or absence of ATP or ADP�BeF3. Pre-formed complexes were separated on sucrose cushions via

ultracentrifugation and pellet (P) as well as supernatant (SN) fractions were analyzed by SDS-PAGE. (D) Side views of a cryo-EM reconstruction of RIG-I

E373Q (blue) bound to the human 80S ribosome (yellow: 40S subunit, gray: 60S subunit). Data was low pass-filtered at 15 Å. (E) Side views of a cryo-EM

reconstruction of the human 80S ribosome without prior RIG-I E373Q incubation. Data filtering and color coding as in panel D. (F) Statistical difference

map (left, s = 2) of cryo-EM reconstructions in panels D and E reveals a significant additional density at expansion segment 7L A (ES7L-A, pink) into

which RIG-I (PDB 3TMI) can be fitted (right, s = 1.51). (G) Secondary structure map of the 28S rRNA ES7L (derived from (Anger et al., 2013) and zoom

into RIG-I E373Q binding area. ES7L-A is indicated in pink (as in panel F).

DOI: 10.7554/eLife.10859.010
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Figure 4. RIG-I’s ATP hydrolysis enhances RNA end recognition and removes RIG-I from RNA stems. (A) Quantification of electrophoretic mobility shift

assays of RIG-I or RIG-I E373Q incubated with 24mer dsRNA in presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure

supplement 1B). (B) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence of ATP into solutions

containing fluorescently labeled 12mer dsRNA. (C) Fluorescence anisotropy changes measured by titrating RIG-I or RIG-I E373Q in presence or absence

of ATP into solutions containing fluorescently labeled 12mer ppp-dsRNA. (D) Quantification of electrophoretic mobility shift assays of RIG-I, RIG-I

E373Q or RIG-I T347A, E373Q incubated with an RNA hairpin derived from helix A of the human ribosome expansion segment 7L (ES hairpin) in

presence or absence of ATP, ADP or ADP�BeF3 (compare with Figure 4—Figure supplement 1C). All binding curves were fitted using the LL.2 function

of the R drc package (Cedergreen et al., 2005). n=3-6, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.011
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Figure 4—figure supplement 1. Design of the ribosomal expansion segment derived hairpin RNA, EMSA raw figures and control experiments with

RIG-I C268F SMS mutant. (A) RIG-I E373Q binding site at ES7L-A was used to design a 60b hairpin RNA (ES hairpin). RNA secondary structure was

determined with the RNAfold webserver (Gruber et al., 2008). (B) Electrophoretic mobility shift assays of RIG-I or RIG-I E373Q incubated with 24mer

dsRNA. Complexes were pre-formed at 37 ˚C for 20 min, separated on agarose gels and stained with GelRed. Free RNA bands were quantified using

ImageJ. Protein concentrations (from left to right): 0, 0.1 mM, 0.3 mM, 0.5 mM, 0.7 mM, 1 mM, 1.5 mM and 2 mM. *: unbound RNA, **: protein:RNA

complexes. (C) Electrophoretic mobility shift assays of RIG-I, RIG-I E373Q or RIG-I C268F incubated with ES hairpin RNA. Complexes were pre-formed,

separated and stained as in panel B. Protein concentrations (from left to right): 0, 0.5 mM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM and 10 mM. *: unbound RNA,

**: protein:RNA complexes.

DOI: 10.7554/eLife.10859.012
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Figure 5. RIG-I’s ATPase activity correlates with its RNA binding affinity. (A) Quantification of hydrolyzed [g-32P]ATP by RIG-I or RIG-I E373Q in presence

of different RNA substrates. Reactions were allowed to proceed for 20 min at 37 ˚C and free phosphate was separated from ATP via thin layer

chromatography. Spots corresponding to labeled ATP and labeled Pi were quantified using ImageJ. All curves were fitted using the LL.2 function of the

R drc package. n=3, error bars represent mean values ± standard deviation.

DOI: 10.7554/eLife.10859.013
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Figure 5—figure supplement 1. RIG-I’s 2CARD module reduces the ATP hydrolysis activity. (A) Measurement of ES hairpin or ppp-dsRNA stimulated

[g-32P]ATP hydrolysis of RIG-I or RIG-I D2CARD. Reactions were monitored over 3 hr at room temperature and free phosphate was separated from ATP

via thin layer chromatography. (B) Quantification of hydrolyzed [g-32P]ATP by RIG-I T347A,E373Q in presence of 24mer ppp-dsRNA. Reactions were

allowed to proceed for 20 min at 37 ˚C and free phosphate was separated from ATP via thin layer chromatography. Spots corresponding to labeled

ATP and labeled Pi were quantified using ImageJ. Curves were fitted using the LL.2 function of the R drc package. n=3, error bars represent mean

values ± standard deviation.

DOI: 10.7554/eLife.10859.014
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Figure 6. Proposed model for impact of ATP on RIG-I signaling on different RNAs. (A) RIG-I recognizes tri- or

diphosphorylated double-stranded RNA and preferentially binds to the RNA end through its regulatory domain

(RD, green). Binding of ATP-SF2 (purple) to the dsRNA releases the 2CARD module (yellow) and activates the

downstream signaling process. ATP hydrolysis displaces the SF2 domain from dsRNA leading to either rebinding

at the RNA end (tethered by RD) or to translocation along the RNA. (B) In healthy cells, sustained binding of RIG-I

to self-RNA containing dsRNA stretches is prevented by ATP hydrolysis. The SF2 domain can be sufficiently

displaced because the RD does not provide a high affinity tether. (C) Mutations that allow ATP promoted binding

of dsRNA and displacement of the 2CARD module, but prevent ATP hydrolysis dependent dissociation of SF2

from dsRNA, such as those underlying atypical Singleton-Merten Syndrome, will result in an unintended signaling

through self-RNA.

DOI: 10.7554/eLife.10859.015
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3 Discussion 

3.1  cGAS IN VIVO LIGAND - LENGTH VERSUS SEQUENCE 

Despite extensive structural studies on dsDNA recognition by cGAS, several questions remain 

open: the mode of binding of cGAS to long immunostimulatory DNA (ISD), how short DNA can 

activate cGAS in a sequence-specific way, how cGAS can act as a major sensor for DNA despite 

a comparatively low affinity for DNA along with a very promiscuous recognition and which is 

the nature of cGAS endogenous ligands arising from cell damage under stress conditions. 

Structures of cGAS bound to different dsDNA along with in vitro assays do not comply with 

results of cGAS activation performed in cell assays (106,109,135). In the crystal structure a 

minimum of 16 bp are required in order for the DNA to span both binding sites of cGAS in the 

2:2 cGAS-DNA complex (109). In agreement with this, 12 bp DNA does not activate mouse 

cGAS efficiently in vitro, while 18 bp evidenced about 90% activity in comparison to salmon 

sperm DNA (109). However, DNA length dependence (> 40 bp) for interferon stimulation by 

cGAS in vivo is not readily explained by the 2:2 complex structures of cGAS binding to two 

short dsDNAs. In fact, the 2:2 complex structures even indicate that the binding of long 

dsDNA by cGAS is not sterically favorable (FIG. 18) (109). Binding of cGAS to internal sites on 

long dsDNA would lead to collision of both DNA duplexes, whereas binding of cGAS to DNA 

ends avoids these potential clashes and therefore seems to be at first more plausible.  

Nevertheless this does not explain how cGAS detects and measures the length of the DNA 

duplex for activation in vivo. Moreover, analytical ultracentrifugation experiments detected 

higher oligomeric species of cGAS bound to dsDNA in vitro, even though in probably non-

physiological cGAS concentrations. Further, in the available crystal structure each DNA 

FIGURE 18: MODEL OF 37 bp DNA CLASHING IN THE cGAS OLIGOMER  

Top and front views of the MAB21 domain of cGAS in a 2:2 cGAS:dsDNA complex (PDB: 4LEY) modeled with 37 
bp long DNA. Both 37 bp DNA strands are depicted in grey, cGAS protomers in light and dark blue respectively 
and the Zn-thumbs in pink. The binding mode of cGAS to the two 37 bp long dsDNA leads to a clash between 
both strands. Thus, DNA length dependence (minimum 40 bp) for interferon stimulation by cGAS in vivo cannot 
be explained by the current model.  
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duplex stacks end-to-end with another duplex mimicking a continuous 36 bp DNA with cGAS 

dimers bound along the DNA duplex axis (109). Taking into account how other sensors, such 

as MDA5 sense the length of the bound nucleic acid, it is tempting to speculate that cGAS 

might bind DNA co-operatively and may even dimerize along the length of the DNA duplex for 

this purpose.  

cGAS is a generic DNA sensor and is thought to be relatively unspecific with its main 

requirements being double-strandedness and a sufficient length over 40 bp (135). Recent 

experiments revealed that cGAS is activated in a structure- and sequence-dependent manner 

by a minimal immunostimulatory DNA motif (221). This so-called ‘strong-stop DNA’ or G-YSD 

motif was detected in HIV-1 early transcripts and endogenous retroviral elements. Hence, 

DNA recognition by cGAS was shown to be more specific than previously thought and first 

evidence was provided that single-stranded DNA when containing guanosine-rich regions 

and a short duplex stem loop structure is sufficient to effectively trigger cGAS activation. 

Another possibility is that the polyglutamine binding protein 1 (PQBP1) mediates cGAS 

specificity for retroviral G-YSD motifs. PQBP1 was demonstrated to serve as a specific co-

receptor directly binding reverse-transcribed viral cDNA and to interact with cGAS in order 

to initiate the immune response against retroviruses (222). Besides retroviral DNA, PQBP1 is 

not required for cGAS-dependent immune response to cytosolic dsDNA. It is still not clear if 

cGAS requires other co-sensors analogous to PQBP1 in order to detect other kinds of 

cytoplasmic dsDNA. Regarding the reported affinity of cGAS (MAB21 domain) for generic 

dsDNA and its broad range of specificity, one could suspect that either other co-sensors or the 

so far uncharacterized N-terminal unstructured region of cGAS contribute to its particular 

mode of PAMP recognition and subsequent activation (109,135,136).  

cGAS has been shown to recognize mislocalized dsDNA, such as mitochondrial DNA that is 

released into the cytosol after herpesvirus induced stress (117). The nature of other potential 

endogenous ligands for cGAS has to be uncovered, since aberrant cytoplasmic localization of 

DNA is recognized by cGAS leading to a robust interferon response to self nucleic acids and 

therefore autoimmunity (223).  

 

3.2  STRUCTURE-BASED ANALYSIS OF ANCIENT cGAS 

ORIGIN AND OTHER NUCLEOTIDYLTRANSFERASES 

Structural studies performed in this work have a drastic impact on our understanding of the 

evolutionary origin regarding the template-independent nucleotidyltransferases cGAS and 

OAS.  This conserved family of nucleic acid sensors in innate immunity seemed to have 

diverged from a common 3´-specific ancestor right at the beginning of metazoan evolution 

(224). OAS proteins and cGAS developed the unique feature to form 2´-5´-linked second 

messengers and both proteins belong to the large and diverse family of 

nucleotidyltransferase fold proteins. OAS proteins were placed in the well characterized class 

of template-independent polymerases due to structural conservation with the 3´-specific poly 
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(A) polymerase (PAP), whereas cGAS was classified as a member of the MAB21 subfamily 

(150). Poly (A) polymerases are involved in mRNA metabolism by adding a poly-A tail to 

mRNA (225). Conservation among nucleotidyltransferases is focused around the phosphate 

binding loop (P-loop) and the first two divalent ion coordinating catalytic carboxylate 

residues. The classical 5-stranded β-sheet domain (palm domain – hand analogy used by 

Steitz and others (140)) on the N-terminal lobe harboring the catalytic triad is found in all 

members of the nucleotidyltransferase family, while the thumbs and finger domains as found 

in template-dependent polymerases are replaced in PAP, OAS proteins and MAB21 family 

members by a C-terminal lobe composed of a four helix bundle (192).  

Main aim of this work was to decipher the evolutionary path within members of the MAB21 

family and cGAS in order to improve the enzymatic understanding of this newly discovered 

subfamily of nucleotidyltransferase fold proteins. cGAS is present in choanoflagellates 

(Monosiga brevicollis) and metazoans as early as cnidarians (Nematostella vectensis) while 

completely missing in nematodes (226). MAB21 proteins were first discovered in the 

nematode (Caenorhabditis elegans), are present in all metazoa and in contrast to cGAS are 

missing in the choanoflagellates (171). MAB21 proteins seem to have evolved earlier in 

evolution as cGAS. In some species such as H. magnipapillata, T. castaneum, Drosophila virilis, 

Drosophila persimilis, Drosophila pseudoobscura, cephalochordate B. florida and Danio rerio 

two cGAS homologs were identified (226). MAB21 as well duplicated once in the vertebrate 

genome (MAB21L1 and MAB21l2) and in Drosophila similarly, two MAB21 homologs were 

mapped (171). In early vertebrate evolution, cGAS developed some key features: the zinc-

thumb, which is missing in all invertebrate cGAS variants and the N-terminal extension, 

which consists of over 150 amino acids length in vertebrates whereas in cnidarians and 

insect it is as short as 70 residues (226). MAB21 proteins do not possess special features 

except the common MAB21-domain fold and an extensive positively charged surface.  

Residues orienting the donor substrate in the active site (MAB21L1 – Y272, K275, K255) are 

conserved in 3´-specific nucleotidyltransferases, such as the poly(A) polymerase and CCA-

adding enzyme (CCA-adding enzyme are responsible for maturation or repair of the 

functional 3´-end of tRNA by adding the CCA tail (227)) along with cGAS, OAS proteins and 

MAB21 proteins (146). Different reaction specificities are achieved by variation of active site 

residues on the acceptor side (N-terminal lobe). Critical catalytic residues in the N-terminal 

lobe of human cGAS (G212, S213, E225, D227 and D319) were found to be conserved in all 

cGAS species, OAS1 and even the bacterial nucleotidyltransferase DncV (226). DncV was 

identified as a virulence factor on pandemic island-1 of Vibrio cholerae, which is capable of 

synthesizing a mixed base cyclic GMP-AMP molecule with 3´-5´ phosphodiester linkages (3´-

5´ cGAMP) (228). Structural characterization of DncV revealed that DncV is a homolog of 

cGAS (229-232). While previously described bacterial cyclic dinucleotide synthases, such as 

DisA, formed oligomers where each of the two phosphodiester bonds was generated 

simultaneously in active sites of adjacent monomers, DncV resembles cGAS performing the 

same reaction with a single active site (142,229). Unlike cGAS, DncV is in a constitutively 

active conformation evidencing a helix break of the ‘spine’ with L24 already oriented toward 

the catalytic pocket and no requirement for previous arrangement of the catalytic triad (229).  
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Strikingly, despite no requirement for activation by a oligonucleotide as its counterpart cGAS, 

DncV retains a long basic cleft with conserved residues along the surface corresponding to 

the ‘platform’ in cGAS and OAS (FIG. 20) (231). MAB21 proteins as well have in common the 

extensive positively charged surface suggesting possible involvement of interactions with 

oligonucleotides.  

FIGURE 19: ACTIVE SITES OF DIFFERENT NUCLEOTIDYLTRANSFERASE FOLD PROTEINS 

Close-up views of the NTase active sites of human MAB21L1 (PDB: 5EOM), porcine cGAS (PDB: 4KB6), porcine 

OAS1 (PDB: 4RWN), Archaeoglobus fulgidus CCA-adding enzyme (PDB: 1TFW), Saccharomyces cerevisiae PAP 

(PDB: 2Q66) and Vibrio cholerae DncV (PDB: 4UOM) shown in the same orientation together with the respective 

substrates in yellow. Residues responsible for Mg2+ ion coordination and implicated in catalysis are annotated. 

For illustrative reasons missing Mg2+ ions in the crystal structures were added and mutant residues changed to 

wild-type residues.     
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2´-specificity of cGAS and OAS proteins results from a different orientation of the ribose (i.e. 

the syn and anti conformations) of the acceptor substrate where the 2´-OH, and not the 3´-OH, 

is positioned near the phosphate of the donor nucleotide for catalysis (229). cGAS 

reprogramming experiments relying on the bacterial DncV structure showed that the 

mutation R353I is enough for cGAS to produce the bacterial 3’-5’-cGAMP (229). These distinct 

recognition elements enable cGAS to distinguish between guanine and adenine in order to 

bind 2’-5’-cGAMP in a preferred orientation. DncV has a more promiscuous active site that 

catalyses the reaction of cGAMP in opposite direction to cGAS and is even capable of 

producing other types of CDNs such as c-di-GMP and c-di-AMP (228,230). Notably, these 

residues, which confer cGAS specificity for the guanine base, are missing in MAB21L1. MAB21 

proteins only possess two out of these five catalytic NTase core residues (E73 and E75) 

(226). Therefore, MAB21L1 probably has less specificity for a possible acceptor substrate, 

than the evolutionary more developed nucleotidyltransferase cGAS. Besides being in an 

FIGURE 20: COMPARISON OF SOLVENT ACCESSIBLE ELECTROSTATIC SURFACE OF NTases 

Solvent accessible electrostatic surface representations of human MAB21L1 (PDB: 5EOM), human cGAS (PDB: 

4KM5), human OAS1 (PDB: 4IG8), model of invertebrate cGAS from Nematostella vectensis, Saccharomyces 

cerevisiae PAP (PDB: 2Q66) and Vibrio cholerae DncV (PDB: 4UOM) colored by charge (blue = 5kT/e to red = -

5kT/e). The ligand binding pocket in MAB21L1 and the dsDNA and dsRNA binding sites in cGAS and OAS1 

respectively are indicated with an arrow.  
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inactive conformation and partially lacking the catalytic triad (E73, E75 and Q169), MAB21L1 

still possesses conserved features of a possibly active nucleotidyltransferase. The C-terminal 

α-helical bundle is rigid and residues responsible for the donor nucleotide coordination, such 

as ATP, are conserved in MAB21L1. The N-terminal lobe is only partially conserved and 

orientation of the catalytic residues on the flexible β-sheet bundle varies depending on major 

conformational changes. MAB21 protein residues on the NB-loop participating in catalysis 

could not be assigned, due to the lack of a MAB21L1 structure in an active conformation.  

 

3.3  THE SEARCH FOR THE MAB21 PROTEIN FUNCTION 

Apart from sharing a high degree of structural homology, MAB21 proteins and cGAS seem to 

have developed clear distinct functions in the organism. Previous cell localization studies 

with MAB21 proteins showed that MAB21 can be found in the nucleus as well as in the 

cytoplasm (191,194). Vertebrate cGAS however, was compartmentalized to the cytosol where 

it evolved into the major and nonredundant cytosolic DNA sensor (103). dsDNA binding 

characteristics of vertebrate cGAS are lacking in the invertebrate version of cGAS (233). 

While vertebrate cGAS homologs can be confidently identified based on conserved catalytic 

residues and DNA binding properties, invertebrate cGAS proteins are likely to be orthologs of 

human MAB21L2. According to the phylogenetic tree, cGAS is suggested to have originated 

during the transition from invertebrates to vertebrates (FIG. 21) (1). 

FIGURE 21: PHYLOGENETIC ANALYIS OF cGAS AND MAB21L2 

cGAS and MAB21L2 proteins from representative species were obtained by NCBI BlastP search. Invertebrate 

cGAS proteins are closer to be orthologs of human protein MAB21L2. This figure was adapted from (1). 
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 The Toll-like Receptors have an evolutionary ancestor in Drosophila - the Toll protein, which 

exhibits the dual role of immune signaling and dorso-ventral patterning of the embryo 

(11,12). Likewise, the MAB21-like proteins are known to be responsible for the formation of 

the dorso-ventral axis and may have served as ancestors for the pathogen recognition 

receptor cGAS (189).  

Recently, functional cGAS and STING homologs were experimentally identified in the sea 

anemone Nematostella vectensis (233). Anemone cGAS was able to induce STING activation in 

cells, in contrast to the MAB21 homolog in N. vectensis (233). This indicates that CDN 

synthesis for STING activation is not a feature exclusively acquired by vertebrate cGAS. 

Moreover, phosphodiesterase assays in cells with Vibrio cholera cGAP1, which efficiently 

hydrolyzes exclusively 3´, 3´cGAMP, suggest that the CDN synthesized by invertebrate cGAS 

contains only 3´-5´-phosphodiester linkages (233,234). However, recombinant purified 

anemone cGAS showed no detectable activity in vitro even in the presence of dsDNA (233). 

These results suggests that anemone cGAS requires activation by a ligand present within the 

cellular environment other than generic dsDNA as in the case of vertebrate cGAS. MAB21 

proteins likewise developed an affinity for oligonulceotides, which is lacking in other MAB21 

family members (such as MB21D2, data not shown). Due to their less confined localization, it 

seems plausible that the oligonucleotide ligand has to have specific features to be recognized 

by MAB21 proteins, in contrast to the generic dsDNA activating vertebrate cGAS. It is still 

unclear, what the chemical properties of CDNs are that invertebrate cGAS is capable of 

synthesizing and all together what the previous role of cGAS was before it evolved to a 

pathogen recognition receptor.  

This work provides alongside unique structural information on MAB21L1, some valuable 

insights required to unravel the molecular function of MAB21-like proteins. The structure of 

MAB21L1 bound to CTP revealed a potential ligand binding site. This positively charged 

surface corresponds to the dsDNA binding ‘platform’ of cGAS, the dsRNA binding site in OAS1 

and recently DncV activity was shown to be regulated by binding of 5-methyltetrahydrofolate 

diglutamate to a similar ligand binding pocket (106,135,138,232). CTP is unlikely to be the 

physiological ligand, since it was not enough in order to trigger conformational changes of 

MAB21L1 required for activation. Instead, CTP or ATP, which was bound by MAB21L1 as 

well, could represent part of a physiological ligand or mimic the chemical structure of a 

nucleotide-related molecule or a specific oligonucleotide. Since MAB21L1 displayed the 

highest affinity for ssRNA in vitro and a binding preference for a tri-phosphate, it is tempting 

to speculate about binding to, e.g. the cap-structure of an mRNA or microRNA precursor as 

MAB21L1 was also detected in the nucleus (191,194).  

Besides having most of the characteristics common for a nucleotidyltransferase, no such kind 

of activity was detected for MAB21-like proteins yet. Similar, MiD51 and MiD49, members of 

the MAB21 subfamily, were demonstrated to execute distinct functions in the cell, despite of 

harboring the nucleotidyltransferase fold. Binding of ADP to the NTase active site was shown 

to stabilize the interactions between Drp1 and MiD51 (161,162). The MiD51 active site 

resembles the one in proteins NF45 and NF90, which are known to be involved in a variety of 
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cellular processes regulating gene expression on a transcriptional as well as translational 

level (161,235). These nucleotidyltransferase fold proteins lost crucial catalytic residues 

during evolution leading to a lack of activity (236). Thus, NF45 and NF90 exert their functions 

via protein-protein and protein-RNA interactions (236,237). Another example is OASL, a 

unique member of the OAS family, which also lacks NTase activity and fulfills its function via 

a C-terminal domain homologous to ubiquitin (93).  

Several nucleotidyltransferase fold proteins are known to oligomerize making use of different 

interfaces in order to exert their cellular functions. MiD51 dimerization is mediated by the N-

terminal α-helical segments, whereas NF45 and NF90 dimerize via their C-terminal α-helices 

and an N-terminal extension of NF45 further contributes to the dimerization interface 

(162,236). cGAS instead, was demonstrated to require ligand binding in order to oligomerize 

(109,139). Data obtained in the course of this work show that, MAB21L1 forms a highly 

symmetric double-pentameric oligomer in the crystal, which however could not be detected 

in solution. MAB21L1 might require ligand binding for oligomerization as in the case of cGAS, 

since MAB21L1 alone did not readily oligomerize in solution. Since oligomerization is a key 

feature of several nucleotidyltransferases, it is plausible to suggest that this oligomeric state 

of MAB21L1 could have a physiological relevance.   

Regarding the pathophysiology of MAB21-like proteins in human disease, single point 

mutations E49K, R51C/H and R247Q in MAB21L2 were found in patients with eye 

malformations termed ocular coloboma (191). Ocular coloboma describes the spectrum of 

eye malformations, including microphtalmia resulting from failure of optic fissure closure 

during embryonic eye development (optic fissure closure defect - OFCD) (194). Patients 

suffering from OFCD normally have additional systemic anomalies, most commonly of 

neurological, muscoskeletal and facial, urological and genital, or cardiac nature (238). The 

role of MAB21-like proteins in embryonic eye development is largely unknown. The most 

common genetic causes of structural eye malformations are both involving retinoic acid 

metabolism and transport or dosage-sensitive transcription factors, such as sox2, otx2 or 

pax6 (184,239-241). The latter was demonstrated to regulate MAB21 expression levels. Since 

the molecular function of MAB21 proteins remains elusive, the structural information 

provided in this work was used to explain the phenotype caused by the patient-related 

mutations. The mutations E49K and R51C/H were demonstrated to affect protein stability 

and to disrupt the fold of the surface accessible loop β4-α4. The same loop was demonstrated 

to play an important role in protein-protein interactions between MiD51 and Drp1 (161,162). 

As in this case, MAB21-like proteins loop β4-α4 could interact with possible still unknown 

interaction partners and lack of proper function due to destabilization of this loop could then 

be responsible for the drastic phenotype. 

As common for other genes with early embryonic expression, knockout studies of MAB21-

like proteins caused embryonic lethality (183). In addition, redundancy in the mab21 gene 

family masks several of the early effects of mab21 gene mutation and only uncovers the role 

of these genes in later stages of development (188). Nevertheless, acquired information from 

several studies in different model organisms and for the three members MAB21L1, MAB21L2 
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and MAB21L3 gives first insights into their crucial role in development. Recently, several 

reports revealed that molecular mechanisms controlling the differentiation of multiciliated 

cells are strictly conserved in mammalian upper airways and in the Xenopus embryonic 

epidermis (242,243). Since human airway epithelial cells (HAECs), the main tool for 

investigation of MCE biology are technically demanding, Xenopus revealed to be a powerful 

and valuable model to address the poorly understood vertebrate MCE biology (244). 

Important information regarding cilia specification and pathways involved was retrieved 

from these recent findings. Crucial links regarding the function of MAB21-like proteins in this 

field are presented in this work.  

Fine-tuning of BMP signaling activity was demonstrated to be required for the correct 

organogenesis of the Xenopus embryonic epidermis (245). Specification of multiciliated cells 

(MCCs), ionocytes and small secretory cells (SSCs) requires the attenuation of BMP activity, 

identifying the BMP pathway as a key regulator of vertebrate mucociliary epithelium 

differentiation and intercalation. Previous experiments revealed MAB21L2 to modulate and 

antagonize BMP signaling through direct interactions with its effector transcription factor 

SMAD1 (188). On top of that, MAB21L3 was recently demonstrated to act downstream of the 

Notch pathway and act upstream of the master regulator foxj1 and multicilin in cilia 

formation (190). The BMP and Notch pathways are linked in the Xenopus epidermis 

controlling cell fate choices. BMP4 injection results in drastic decrease amongst others of 

foxj1 expression levels in MCCs and a strong upregulation of the Notch ligand delta-like-1 

(245). Likewise blocking of the Notch pathway increases the number of MCCs (246,247). Both 

pathways seem to have an inhibitory effect on cells preventing them to engage in cell fate 

choices to form MCCs. MAB21L3, which is downregulated by Notch, counteracts by up-

regulating the master genes for MCC and ionocyte cell fate specification (FIG. 22) (190).  

FIGURE 22: INVOLVEMENT OF MAB21-LIKE PROTEINS IN CILIOGENESIS  

MAB21-like proteins are involved in the regulation of cell fate in the context of ciliogenesis. MAB21L3 was 

shown to be counteracted by Notch signaling and MAB21L2 was demonstrated to antagonize the effects of BMP4 

by interacting with SMAD1. While MAB21L3 is the major regulator for cilia differentiation, SMAD1 was shown to 

inhibit cilia development. The Notch signaling is in turn regulated by miR-449.  
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Another factor known to regulate MCC differentiation trough interference with the Notch 

pathway in Xenopus embryonic epidermis and HAECs is the microRNA family miR-449. The 

miR-34/ 449 family consists of six homologous highly conserved miRNAs at three genomic 

loci (miRNA-34a, miRNA-34b, miRNA-34c, miRNA-449a, miRNA-449b and miRNA-449c) 

(248). miR-449 are the most strongly induced microRNAs during epithelium differentiation 

and therefore conserved key regulators of vertebrate multiciliogenesis (249). Differentiation 

of ciliated cell progenitors requires inhibition of the Notch pathway by miR-449. Accordingly, 

conserved miR-449 binding sites were found in the 3´-untranslated region (3´-UTR) of delta-

like-1 and notch (250). Experiments with mouse and Xenopus MCCs deficient in all miR-34/ 

449 evidenced a decrease in cilia length and number caused by defective basal body 

maturation and apical docking (249). A similar phenotype with decreased number of MCCs 

was detected when mab21l3 was knocked down with an antisense morpholino (190). 

Therefore MAB21-like proteins seem to operate in concert with miR-449 in cell fate 

specifications of MCCs. miR-449 were detected almost exclusively in tissues harboring high 

amounts of cilia, such as the brain, reproductive organs and respiratory tract (251,252). 

These partially overlap with tissues where high mRNA levels of MAB21-like proteins were 

measured (172-174,176). It remains to be shown, if miR-449 are also present in non-motile 

cilia, such as the connecting cilia of photoreceptors in the retina where for instance MAB21L1 

has high expression levels (178). Another link represents the requirement of normal 

ciliogenesis for correct neural tube closure connecting cilia with brain development (253-

255). MAB21-like proteins were shown to be involved in ciliogenesis as well as brain 

development. Previously studies where XMAB21L2 antisense RNA was injected blocked 

closure of the neural tube (174).  

How large amounts of miR-449 expression are induced and regulated during cilia 

specification are still largely unknown. Transcription factors responsible for mucociliary 

epithelia, such as Foxj1, could be involved. MAB21-like proteins, which regulate Foxj1, could 

represent another possible candidate (190). MAB21-like proteins might regulate miRNA via 

another mechanism. For instance MAB21L2 was shown to antagonize BMP4 and to directly 

bind SMAD1 (188). Maturation of pri-miRNA to pre-miRNA by the specific nucleases Drosha 

and Pasha is promoted by SMAD1 and BMP signaling (256,257). If this is disrupted by 

MAB21-like proteins, miRNA precursors are not cleaved and transported into the cytosol for 

further processing through the ribonuclease Dicer.   

 

3.4  RLRs ATPase AND TRANSLOCASE ACTIVITY 

As a strategy to distinguish between self vs. non-self nucleic acids, RLRs developed at least 

two different levels of control limiting RLR mediated signaling to viral non-self RNA. First, 

self-RNA editing by ADAR1 and methylation, modify particular types of endogenous RNA 

prone to serve as ligands for RIG-I and MDA5 in such a way that unintentional recognition is 

impeded (42,258). Second, the intrinsic ATPase coupled translocase activity of the helicase 

domain was recently demonstrated to remove RLRs from short abundant endogenous dsRNA 

116



DISCUSSION 
 

 

(217-219). High affinity ligands, such as RNA ends harboring di- or tri-phosphates are bound 

by the RD and hold RIG-I on the RNA despite of ATP hydrolysis. This enables prolonged 

CARDs exposure sufficient for downstream signaling. Low affinity endogenous dsRNAs, 

however, are displaced from the helicase by ATP hydrolysis leading to increased recycling of 

bound RNA not able to activate IFN response. In this case the auto-repressed state of RIG-I is 

reestablished. Therefore, activation of RIG-I by potential endogenous RNA ligands is 

kinetically controlled by fast ATP turnover so that background signaling is reduced and 

sensitivity increased (FIG. 23). 

The proposed model for RIG-I signaling involves ATP-mediated domain compaction that 

relies on a steric collision between the CARDs and the RNA-bound CTD (217-219). Several 

evidences are provided that the CARDs can be accommodated in apo and RNA-bound states 

of RIG-I (201,217-219). However, when bound to RNA and ATP, conformational changes lead 

to the displacement of the CARDs by the RD (54,56,57). Thus, ATP binding is sufficient to 

force the conformational transition representing the deterministic step in RIG-I activation, 

whereas ATP hydrolysis is required for resetting RIG-I into the auto-repressed conformation. 

Maintaining of the auto-repressed state is accomplished by the pincer domain, contradicting 

previous results which suggested that the CTD has a repressor activity (49,217,259). 

Regarding RIG-I mutations related to constitutive signaling in autoimmune diseases, affinity 

for self-RNA coupled to slow ATP hydrolysis in  RIG-I E373Q leads to a inefficient RNA 

displacement from the SF2 helicase domain and consequently to prolonged CARDs exposure 

and constitutive IFN response (217,218). Constitutively active RIG-I C268F in motif I 

contradicts previous mutations in motif I by mimicking a motif II mutation phenotype locking 

Figure 23: PROPOSED MODEL FOR ATP 
HYDROLYSIS OF RIG-I AS STRATEGY TO 
OVERCOME SELF RECOGNITION 

RECOGNITION OF VIRAL RNA: RIG-I recognizes viral 

5´-tri-phophorylated dsRNA via its CTD capping the 

dsRNA end. ATP binding to the helicase domain 

induces conformational changes releasing the CARDs. 

This high affinity ligands bound by the CTD hold RIG-I 

on the dsRNA despite of ATP hydrolysis. This 

prolonges CARDs exposure so that it is sufficient for 

downstream signaling. ATP hydrolysis displaces the 

helicase from the dsRNA and this can result in 

translocation along the dsRNA or rebinding by the RD 

at the 5’-trihophorylated dsRNA end. 

RECOGNITION OF ENDOGENOUS RNA: Binding of 

RIG-I to low affinity endogenous dsRNA, does not lead 

to a sufficient exposure of the CARDs for signaling. 

ATP hydrolysis is enough to displace RIG-I from 

endogenous dsRNA, since the CTD does not provide a 

high affinity anchor holding RIG-I onto the dsRNA. 

This leads to increased recycling of bound RNA not 

able to active IFN response.  
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RIG-I in a RNA-bound active state (218). In this regard, structural studies revealing the 

mechanistic role of C268 are required. Different mutations in the RD and as well as mutations 

affecting ATP binding (K270I/A) support the model that self-RNA recognition by RIG-I 

involves a ring-like, ATP-bound compact structure around the RNA.  

RIG-I and MDA5 possess different resting states and their activation upon RNA ligand binding 

alongside with the effect of ATP hydrolysis is therefore as distinct as their preference for 

different RNA species. RIG-I exists in an auto-repressed state with a relatively flexible Hel1 

domain which is maintained by the pincer, as shown in experiments in absence of the CTD 

(54,217). In contrast, MDA5 exists in an open conformation with a lower threshold required 

for activation compared to RIG-I (201). Moreover, MDA5 does not require the pincer to 

maintain its auto-repressed state, arguing for a different mechanism of repression in a 

conformation dealing with surface exposed CARDs (217). For RIG-I, the Hel2 domain was 

shown to couple ATP hydrolysis to translocation activity, while the Hel2i domain appeared to 

contact several different base pairs along the 10bp dsRNA in a series of crystal structures, 

suggesting a Hel2i-mediated scanning of RNA length (218,260). Further, the CARD2-Hel2i 

interface serves as a barrier selecting against non-blunt ended dsRNAs relying on the affinity 

of the dsRNA to the CTD and its ability to displace the CARDs (261). RIG-I CARDs have an 

inhibitory role by destabilizing RNA binding to the CTD as a well as an allosteric regulatory 

role. In agreement with this, removal of the CARDs increased the RNA binding affinity and 

ATPase activity (261). In the case of MDA5 the Hel2i accommodates the CTD of MDA5 and 

rigidly holds it, thereby allowing dsRNA stem binding (202). Important residues in the 

CARD2-Hel2i interface known from RIG-I are not conserved in MDA5, again suggesting that 

CARDs of MDA5 are not locked in a similar auto-repressed state. The length of the linker 

connecting the tandem CARDs of MDA5 is conserved and twice as long as in RIG-I. This would 

on one hand allow formation of oligomers composed of 8-10 CARDs compared to a CARDs 

tetramer for RIG-I activation (262). On the other hand a possible auto-inhibitory mechanism 

as with RIG-I, where a constant collision of the RD expulses the CARDs from the helicase and 

vice-versa, would be more intricate and probably slower. The isolated CARDs of MDA5 

oligomerize in contrast to RIG-I CARDs which stay monomeric (202). A higher propensity of 

MDA5 CARDs to oligomerize is consistent with the requirement of more CARDs units for 

MDA5 signaling than RIG-I. Further, RIG-I CARDs belonging to different RIG-I dsRNA 

complexes have to come close together and stabilization of the CARDs is achieved by bridging 

of adjacent CARD2 subunits with K63-polyubiquitin chains reinforcing downstream signaling 

(263).  

As mentioned before, MDA5 requires a lower threshold for activation, which is compensated 

by co-operative filament formation along one long dsRNA bringing the CARDs into close 

proximity. ATP binding is dispensable for MDA5 downstream signaling, however, ATP 

hydrolysis leads to an intrinsic kinetic instability in the filament and subsequent dissociation 

of MDA5 from the dsRNA (202,212). Any endogenous RNA that does not have a dsRNA 

structure long enough to efficiently promote nucleation of MDA5 filaments into an long-lived 

signaling platform, is expelled from MDA5 by its ATPase motor. Consistently, mutations in 

MDA5 helicase disrupting this ATPase motor result in constitutive activity as in the case of 
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RIG-I with MDA5 E444Q having the strongest effect (217). Interestingly, constitutive 

signaling of MDA5 was not abolished when combined with mutations in the RNA binding site 

of the CTD (217). These facts suggest that RNA length is the determining factor in MDA5 

signaling activation as an alternative to the role of the CTD in RIG-I. Formation of more 

numerous short MDA5 filaments capable of signaling is mediated by LGP2 that facilitates 

nucleation of these MDA5 filaments by assisting MDA5-RNA interactions (53). LGP2 allows 

MDA5 filament initiation at multiple sites on a long duplex RNA over time leading to a greater 

number of signaling-competent MDA5 molecules. LGP2-mediated positive regulation of 

MDA5 signaling is dependent on ATP hydrolysis, again enforcing its important role in RLR 

signaling. Similar to RIG-I, LGP2 binds RNA more efficiently in the presence of ATP (264). In 

contrast to the other RLRs, LGP2 goes one step further by hydrolyzing ATP even in the 

absence of RNA. LGP2 makes use of its intrinsic basal dsRNA-independent ATP hydrolysis 

activity and not dsRNA-dependent hydrolysis to increase its dsRNA ligand repertoire and 

thus to enhance subsequent RLR activation (264). Therefore LGP2 seems to act upstream of 

other RLRs in order to accelerate PAMP recognition followed by improved pathogen 

clearance. Another role for LGP2 could be as anti-viral effector displacing viral proteins from 

their positions on dsRNA enabling binding of MDA5 and RIG-I to naked dsRNA. Indeed, the 

ATP-dependent translocase activity of RLR helicases was previously shown to remodel viral 

protein-dsRNA complexes through displacement of viral proteins such as NS1 (influenza A) 

from dsRNA (265,266). Antiviral activities of MDA5 and RIG-I can be a result of dsRNA 

clearing for subsequent interactions with other effector molecules such as protein kinase R 

(PKR) and OAS1 that then execute the antiviral activity (265). However, the effector-like 

functions for instance of RIG-I even extend from mere viral protein displacement to direct 

interference with viral replication by competing with viral polymerase P for the 5´ end of the 

pre-genomic RNA (267). In this case the effector function is ATP-independent since 

translocase activity is not required.   

The results reported previously in this work, suggested that ATP hydrolysis-driven 

translocation results in tight packing of RIG-I along the dsRNA as seen in EM images of RIG-I 

filaments, instead of direct internal binding of non-translocating RIG-I which would lead to 

sparse and out-of-register placed individual RIG-I monomers on dsRNA (210). Moreover, 

enhanced signaling of RIG-I demonstrated with longer RNAs (5’ triphosphate 50bp compared 

to 5’ triphosphate 30bp RNA) speaks for filament formation rather than only 5´-end capping 

(219). However, RIG-I exclusively bound at internal sites is unable to induce downstream 

signaling despite of ATP hydrolysis. This was recently demonstrated by means of RIG-I 

binding studies on a dumbbell-like structure harboring no free ends (219). The CARDs 

remain in their auto-repressed conformation, suggesting that the collision force of the CTD is 

not enough in order to displace them. Probably in this scenario, all interactions of RIG-I with 

RNA are exclusively through contacts with the helicase. Availability of a duplex terminus for 

signaling at high concentrations of RIG-I leads to stacking of several RIG-I monomers along a 

RNA, thus enhancing the signaling efficiency of the end-bound RIG-I.    

In spite of constant exposure and interactions to endogenous RNA stems of different nature 

in the cytoplasm, the receptor RIG-I remains silent due to the proofreading mechanism 
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enabled by ATP hydrolysis. Potential endogenous ligand RNA for RIG-I are tRNAs containing 

duplex RNA regions, miRNAs precursors bearing 3´overhangs, lncRNAs, specific endogenous 

mRNA or RNase-L cleavage products (46,261,268,269). Recently, an additional potential 

endogenous ligand for RLRs with long duplex RNA regions was uncovered. Several mRNA 

containing internal ribosomal entry sites (IRES) where identified not exclusively in viruses 

but also in humans (270). In this work, RIG-I was shown to bind to a ribosomal expansion 

segment (ES-7L) to a stretch of seven G:C/C:G bp, which approximately correspond to the 

footprint of dsRNA across the two helicase domains in RIG-I crystal structures (218). The 

accessibility of these RNA elements to cytosolic proteins combined with the high abundance 

of ribosomal RNA, explains why this was the predominant endogenous RNA found to bind to 

RIG-I E373Q (271).     

 

3.5  NUCLEIC ACIDS SENSING AND AUTOIMMUNITY  

Autoimmunity is characterized as an abnormal response of the adaptive immune system, 

where B cells and/ or T cells act towards endogenous antigens leading to localized tissue 

damage or a systemic disease. A misled adaptive immune response is often caused by 

aberrant PRR-triggered production of type I interferon and thus autoimmunity is tightly 

connected to the innate immune system. Improved understanding of innate immune 

signaling, especially the strategies used by nucleic acids sensing PRRs to distinguish self from 

non-self, would enable treatment or even prevention of specific diseases. A natural 

prevention mechanism of inadvertent reactions to self-nucleic acids is constituted by the 

rapid clearance of endogenous nucleic acids with inappropriate localization. This builds up a 

key checkpoint for maintaining homeostasis and control of the innate immune response. 

Factors antagonizing the effects through e.g. degradation of endogenous DNA in the cytosol 

keep the amounts of nucleic acids beneath a certain threshold and enable selective 

monitoring of nucleic acid sensing. Another mechanism prone to cause autoinflammatory or 

autoimmune syndromes is the pathogen-induced mitochondrial response, where mtDNA is 

released into the cytosol (117). This mechanism is beneficial for the host since it amplifies 

antiviral signaling and at the same time it further stimulates the thin line between foreign and 

self-recognition.    

Alterations of the type I interferon system contributing to plasma cell differentiation and 

autoantibody production were found in diseases, such as systemic lupus erythematosus 

(SLE), Sjörgen’s syndrome, diabetes mellitus type I, Aicardi-Goutières syndrome (AGS) and 

Singleton-Merten syndrome (SMS) (272,273). Aicardi-Goutières syndrome is a rare 

autoimmune disease present in neonates whose phenotype mimics an in utero acquired viral 

infection. Studies of AGS revealed at least six independent loci mutated in patients evidencing 

this hereditary disorder: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1 and ADAR1 

(274-277). Recently, AGS patient-related mutations were even described in the nucleic acids 

sensing receptor MDA5 (215,278). Nevertheless, the other mutations are as well linked to 

nucleic acid sensing. Mutations in the 3´-5´ exonuclease TREX1 (DNase III) are present in 25 
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% of the patient suffering from AGS and 1-2% of SLE patients (279). SLE is caused by a 

combination of multiple genetic and environmental factors that lead among others to 

ineffective clearance of dead cells and the respective nucleic acids.  An excess supply of 

extracellular nucleic acids results in an aberrant immune response by nucleic acids sensors, 

such as cGAS, and thus leads to autoimmunity. TREX-/- mice suffer from an elevated 

expression of interferon induced genes (ISGs) and recent experiments demonstrated that 

genetic ablation of cGAS in TREX-/- MEFs and TREX-/- mice eliminated all pathological 

phenotypes associated with inadequate ISG induction including lethality (223,280). cGAS 

inhibition by small molecule drugs could provide therapeutic benefits to AGS and SLE 

patients with elevated cGAMP levels. Several antimalarial drugs were identified as effective 

dose-dependent cGAS inhibitors that disrupt dsDNA-cGAS interactions and even counteract 

milder manifestations of SLE (279). Seven SNPs were identified in IFIH1 (coding MDA5) in 

patients with AGS and all altered single amino acids were located within the helicase domain 

of MDA5 (215,278). Mutations in IFIH1 are further associated with diabetes type I, multiple 

sclerosis, psoriasis, selective IgA deficiency, dilated cardiomyopathy and SLE (273). Despite 

IFIH1 mutations being well characterized in patients with autoimmunity, the first report 

correlating RIG-I with autoimmune diseases is quite recent. Mutations in DDX58 (coding RIG-

I) were identified in patients with Singleton-Merten syndrome (SMS) an extremely rare multi 

system disorder (214). Regulation of the RLR signaling pathway is as important in the 

prevention of autoimmunity, as can be seen in e.g. four SNPs in MAVS associated with SLE 

and enhanced TRIM25 expression in peripheral blood mononuclear cells (PBMCs) derived 

from primary Sjögren’s syndrome and in B cells from SLE patients (281,282).   

Activation and regulation of the innate immune response is a proven therapeutic strategy in 

vaccination and its more precise understanding would improve the design of new types of 

effective adjuvants. Recent discoveries lead to the development of cGAMP as an endogenous 

potent adjuvant (114). cGAMP, as an endogenous immunostimulant, was demonstrated to 

boost antigen-specific T cell activation and antibody production (114). Concerning the 

regulation of the cGAS-STING pathway, the ecto-nucleotide pyrophosphatase/ 

phosphodiesterase (ENPP1) was identified as the major 2´3´-cGAMP hydrolase (283). A 

hydrolysis resistant variant of 2´3´-cGAMP (bisphosphothioate analog) was demonstrated to 

be a promising candidate agonist for vaccine adjuvant and cancer therapeutic (283). Further 

adjuvants connected to innate immunity are: poly I:C that enhances the adaptive immunity 

through activation of TLR3 and cytosolic RLRs and c-di-GMP as well as ci-di-AMP that binds 

to STING and was demonstrated to upregulate the expression of MHC class II and co-

stimulatory molecules (284-287).  

 

 

 

  

121



DISCUSSION 
 

 
 

 

122



REFERENCES 
 

 

4 References 
 

1. Wu, J., and Chen, Z. J. (2014) Innate immune sensing and signaling of cytosolic nucleic 
acids. Annual review of immunology 32, 461-488 

2. Medzhitov, R., and Janeway, C. A. (1997) Innate immunity: the virtues of a nonclonal 
system of recognition. Cell 91, 295-298 

3. Iwasaki, A., and Medzhitov, R. (2015) Control of adaptive immunity by the innate 
immune system. Nature immunology 16, 343-353 

4. Janeway, C. A. (1989) Approaching the asymptote? Evolution and revolution in 
immunology. in Cold Spring Harbor symposia on quantitative biology, Cold Spring 
Harbor Laboratory Press 

5. Matzinger, P. (1994) Tolerance, danger, and the extended family. Annual review of 
immunology 12, 991-1045 

6. Kono, H., and Rock, K. L. (2008) How dying cells alert the immune system to danger. 
Nature Reviews Immunology 8, 279-289 

7. Lee, C. C., Avalos, A. M., and Ploegh, H. L. (2012) Accessory molecules for Toll-like 
receptors and their function. Nature Reviews Immunology 12, 168-179 

8. Janeway Jr, C. A., and Medzhitov, R. (2002) Innate immune recognition. Annual review 
of immunology 20, 197-216 

9. Chow, J., Franz, K. M., and Kagan, J. C. (2015) PRRs are watching you: Localization of 
innate sensing and signaling regulators. Virology 479, 104-109 

10. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A. (1997) A human homologue of 
the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-
397 

11. Anderson, K. V., Bokla, L., and Nüsslein-Volhard, C. (1985) Establishment of dorsal-
ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene 
product. Cell 42, 791-798 

12. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M., and Hoffmann, J. A. (1996) The 
dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent 
antifungal response in Drosophila adults. Cell 86, 973-983 

13. Poltorak, A., He, X., Smirnova, I., Liu, M.-Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., 
Silva, M., and Galanos, C. (1998) Defective LPS signaling in C3H/HeJ and 
C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 

14. Kawai, T., and Akira, S. (2011) Toll-like receptors and their crosstalk with other 
innate receptors in infection and immunity. Immunity 34, 637-650 

15. Kawai, T., and Akira, S. (2010) The role of pattern-recognition receptors in innate 
immunity: update on Toll-like receptors. Nature immunology 11, 373-384 

16. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of 
double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 
732-738 

17. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and e Sousa, C. R. (2004) Innate antiviral 
responses by means of TLR7-mediated recognition of single-stranded RNA. Science 
303, 1529-1531 

18. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., 
Wagner, H., and Bauer, S. (2004) Species-specific recognition of single-stranded RNA 
via toll-like receptor 7 and 8. Science 303, 1526-1529 

123



REFERENCES 
 

 
 

19. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., 
Hoshino, K., Wagner, H., and Takeda, K. (2000) A Toll-like receptor recognizes 
bacterial DNA. Nature 408, 740-745 

20. Li, X.-D., and Chen, Z. J. (2012) Sequence specific detection of bacterial 23S ribosomal 
RNA by TLR13. Elife 1, e00102 

21. Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C. M., Klein, D. C., Monks, B. G., 
McKnight, C. J., Lamphier, M. S., and Duprex, W. P. (2007) Ligand-induced 
conformational changes allosterically activate Toll-like receptor 9. Nature 
immunology 8, 772-779 

22. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. 
Cell 140, 805-820 

23. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. (2006) Host-microbe 
interactions: shaping the evolution of the plant immune response. Cell 124, 803-814 

24. Shaw, M. H., Reimer, T., Kim, Y.-G., and Nuñez, G. (2008) NOD-like receptors (NLRs): 
bona fide intracellular microbial sensors. Current opinion in immunology 20, 377-382 

25. Franchi, L., Eigenbrod, T., Muñoz-Planillo, R., and Nuñez, G. (2009) The 
inflammasome: a caspase-1-activation platform that regulates immune responses and 
disease pathogenesis. Nature immunology 10, 241-247 

26. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in 
NLRP3 inflammasome activation. Nature 469, 221-225 

27. Zhang, L., Chen, S., Ruan, J., Wu, J., Tong, A. B., Yin, Q., Li, Y., David, L., Lu, A., and Wang, 
W. L. (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals 
nucleated polymerization. Science 350, 404-409 

28. Hu, Z., Zhou, Q., Zhang, C., Fan, S., Cheng, W., Zhao, Y., Shao, F., Wang, H.-W., Sui, S.-F., 
and Chai, J. (2015) Structural and biochemical basis for induced self-propagation of 
NLRC4. Science 350, 399-404 

29. Hong, M., Yoon, S.-i., and Wilson, I. A. (2012) Structure and functional characterization 
of the RNA-binding element of the NLRX1 innate immune modulator. Immunity 36, 
337-347 

30. Diebold, S. S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L. E., Al-
Shamkhani, A., Flavell, R., Borrow, P., and e Sousa, C. R. (2003) Viral infection switches 
non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324-328 

31. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., 
Taira, K., Akira, S., and Fujita, T. (2004) The RNA helicase RIG-I has an essential 
function in double-stranded RNA-induced innate antiviral responses. Nature 
immunology 5, 730-737 

32. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., 
Loo, Y.-M., Gale, M., and Akira, S. (2005) Shared and unique functions of the DExD/H-
box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. The Journal of 
Immunology 175, 2851-2858 

33. Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R. A., Diamond, M. S., 
and Colonna, M. (2006) Essential role of mda-5 in type I IFN responses to 
polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. 
Proceedings of the National Academy of Sciences 103, 8459-8464 

34. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., 
Jung, A., Kawai, T., and Ishii, K. J. (2006) Differential roles of MDA5 and RIG-I helicases 
in the recognition of RNA viruses. Nature 441, 101-105 

35. Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G., and Gale, M. (2008) 
Establishment and maintenance of the innate antiviral response to West Nile Virus 

124



REFERENCES 
 

 

involves both RIG-I and MDA5 signaling through IPS-1. Journal of virology 82, 609-
616 

36. Loo, Y.-M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., 
Akira, S., Gill, M. A., García-Sastre, A., and Katze, M. G. (2008) Distinct RIG-I and MDA5 
signaling by RNA viruses in innate immunity. Journal of virology 82, 335-345 

37. Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., 
Dermody, T. S., Fujita, T., and Akira, S. (2008) Length-dependent recognition of 
double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma 
differentiation–associated gene 5. The Journal of experimental medicine 205, 1601-
1610 

38. Hornung, V., Ellegast, J., Kim, S., Brzózka, K., Jung, A., Kato, H., Poeck, H., Akira, S., 
Conzelmann, K.-K., and Schlee, M. (2006) 5'-Triphosphate RNA is the ligand for RIG-I. 
Science 314, 994-997 

39. Pichlmair, A., Schulz, O., Tan, C. P., Näslund, T. I., Liljeström, P., Weber, F., and e Sousa, 
C. R. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-
phosphates. Science 314, 997-1001 

40. Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A. J., Zillinger, T., Goldeck, M., 
Schuberth, C., Van der Veen, A. G., Fujimura, T., and Rehwinkel, J. (2014) Antiviral 
immunity via RIG-I-mediated recognition of RNA bearing 5 [prime]-diphosphates. 
Nature 514, 372-375 

41. Devarkar, S. C., Wang, C., Miller, M. T., Ramanathan, A., Jiang, F., Khan, A. G., Patel, S. S., 
and Marcotrigiano, J. (2016) Structural basis for m7G recognition and 2′-O-methyl 
discrimination in capped RNAs by the innate immune receptor RIG-I. Proceedings of 
the National Academy of Sciences, 201515152 

42. Schuberth-Wagner, C., Ludwig, J., Bruder, A. K., Herzner, A.-M., Zillinger, T., Goldeck, 
M., Schmidt, T., Schmid-Burgk, J. L., Kerber, R., and Wolter, S. (2015) A Conserved 
Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N 1-2′ O-Methylated 
Self RNA. Immunity 43, 41-51 

43. Schlee, M., Roth, A., Hornung, V., Hagmann, C. A., Wimmenauer, V., Barchet, W., Coch, 
C., Janke, M., Mihailovic, A., and Wardle, G. (2009) Recognition of 5′ triphosphate by 
RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of 
negative-strand virus. Immunity 31, 25-34 

44. Schmidt, A., Schwerd, T., Hamm, W., Hellmuth, J. C., Cui, S., Wenzel, M., Hoffmann, F. S., 
Michallet, M.-C., Besch, R., and Hopfner, K.-P. (2009) 5′-triphosphate RNA requires 
base-paired structures to activate antiviral signaling via RIG-I. Proceedings of the 
National Academy of Sciences 106, 12067-12072 

45. Liu, G., Park, H.-S., Pyo, H.-M., Liu, Q., and Zhou, Y. (2015) Influenza A Virus Panhandle 
Structure Is Directly Involved in RIG-I Activation and Interferon Induction. Journal of 
virology 89, 6067-6079 

46. Malathi, K., Dong, B., Gale, M., and Silverman, R. H. (2007) Small self-RNA generated by 
RNase L amplifies antiviral innate immunity. Nature 448, 816-819 

47. Pichlmair, A., Schulz, O., Tan, C.-P., Rehwinkel, J., Kato, H., Takeuchi, O., Akira, S., Way, 
M., Schiavo, G., and e Sousa, C. R. (2009) Activation of MDA5 requires higher-order 
RNA structures generated during virus infection. Journal of virology 83, 10761-10769 

48. Bamming, D., and Horvath, C. M. (2009) Regulation of signal transduction by 
enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2. Journal 
of Biological Chemistry 284, 9700-9712 

49. Saito, T., Hirai, R., Loo, Y.-M., Owen, D., Johnson, C. L., Sinha, S. C., Akira, S., Fujita, T., 
and Gale, M. (2007) Regulation of innate antiviral defenses through a shared 

125



REFERENCES 
 

 
 

repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sciences 
104, 582-587 

50. Pippig, D. A., Hellmuth, J. C., Cui, S., Kirchhofer, A., Lammens, K., Lammens, A., Schmidt, 
A., Rothenfusser, S., and Hopfner, K.-P. (2009) The regulatory domain of the RIG-I 
family ATPase LGP2 senses double-stranded RNA. Nucleic acids research 37, 2014-
2025 

51. Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and 
Barber, G. N. (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate 
antiviral responses. The Journal of Immunology 178, 6444-6455 

52. Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., 
Fujita, T., Akira, S., and Takeuchi, O. (2010) LGP2 is a positive regulator of RIG-I–and 
MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences 
107, 1512-1517 

53. Bruns, A. M., Leser, G. P., Lamb, R. A., and Horvath, C. M. (2014) The innate immune 
sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and 
filament assembly. Molecular cell 55, 771-781 

54. Kowalinski, E., Lunardi, T., McCarthy, A. A., Louber, J., Brunel, J., Grigorov, B., Gerlier, 
D., and Cusack, S. (2011) Structural basis for the activation of innate immune pattern-
recognition receptor RIG-I by viral RNA. Cell 147, 423-435 

55. Leung, D. W., and Amarasinghe, G. K. (2012) Structural insights into RNA recognition 
and activation of RIG-I-like receptors. Current opinion in structural biology 22, 297-
303 

56. Jiang, F., Ramanathan, A., Miller, M. T., Tang, G.-Q., Gale, M., Patel, S. S., and 
Marcotrigiano, J. (2011) Structural basis of RNA recognition and activation by innate 
immune receptor RIG-I. Nature 479, 423-427 

57. Luo, D., Ding, S. C., Vela, A., Kohlway, A., Lindenbach, B. D., and Pyle, A. M. (2011) 
Structural insights into RNA recognition by RIG-I. Cell 147, 409-422 

58. Civril, F., Bennett, M., Moldt, M., Deimling, T., Witte, G., Schiesser, S., Carell, T., and 
Hopfner, K. P. (2011) The RIG‐I ATPase domain structure reveals insights into 
ATP‐dependent antiviral signalling. EMBO reports 12, 1127-1134 

59. Gack, M. U., Shin, Y. C., Joo, C.-H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., 
Chen, Z., and Inoue, S. (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for 
RIG-I-mediated antiviral activity. Nature 446, 916-920 

60. Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009) Riplet/RNF135, a 
RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the 
early phase of viral infection. Journal of Biological Chemistry 284, 807-817 

61. Jiang, X., Kinch, L. N., Brautigam, C. A., Chen, X., Du, F., Grishin, N. V., and Chen, Z. J. 
(2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 
activates antiviral innate immune response. Immunity 36, 959-973 

62. Seth, R. B., Sun, L., Ea, C.-K., and Chen, Z. J. (2005) Identification and characterization 
of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. 
Cell 122, 669-682 

63. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O., 
and Akira, S. (2005) IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I 
interferon induction. Nature immunology 6, 981-988 

64. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and 
Tschopp, J. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is 
targeted by hepatitis C virus. Nature 437, 1167-1172 

126



REFERENCES 
 

 

65. Xu, L.-G., Wang, Y.-Y., Han, K.-J., Li, L.-Y., Zhai, Z., and Shu, H.-B. (2005) VISA is an 
adapter protein required for virus-triggered IFN-β signaling. Molecular cell 19, 727-
740 

66. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.-X., and Chen, Z. J. (2011) MAVS forms 
functional prion-like aggregates to activate and propagate antiviral innate immune 
response. Cell 146, 448-461 

67. Wu, B., Peisley, A., Tetrault, D., Li, Z., Egelman, E. H., Magor, K. E., Walz, T., Penczek, P. 
A., and Hur, S. (2014) Molecular imprinting as a signal-activation mechanism of the 
viral RNA sensor RIG-I. Molecular cell 55, 511-523 

68. Xu, H., He, X., Zheng, H., Huang, L. J., Hou, F., Yu, Z., de la Cruz, M. J., Borkowski, B., 
Zhang, X., and Chen, Z. J. (2014) Structural basis for the prion-like MAVS filaments in 
antiviral innate immunity. Elife 3, e01489 

69. Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z. J. (2010) 
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored 
polyubiquitin chains in innate immunity. Cell 141, 315-330 

70. Liu, S., Chen, J., Cai, X., Wu, J., Chen, X., Wu, Y.-T., Sun, L., and Chen, Z. J. (2013) MAVS 
recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2, 
e00785 

71. Saha, S. K., Pietras, E. M., He, J. Q., Kang, J. R., Liu, S. Y., Oganesyan, G., Shahangian, A., 
Zarnegar, B., Shiba, T. L., and Wang, Y. (2006) Regulation of antiviral responses by a 
direct and specific interaction between TRAF3 and Cardif. The EMBO journal 25, 
3257-3263 

72. Tang, E. D., and Wang, C.-Y. (2010) TRAF5 is a downstream target of MAVS in antiviral 
innate immune signaling. PLoS One 5, e9172 

73. Paz, S., Vilasco, M., Werden, S. J., Arguello, M., Joseph-Pillai, D., Zhao, T., Nguyen, T. L.-
A., Sun, Q., Meurs, E. F., and Lin, R. (2011) A functional C-terminal TRAF3-binding site 
in MAVS participates in positive and negative regulation of the IFN antiviral response. 
Cell research 21, 895-910 

74. Wu, C.-J., Conze, D. B., Li, T., Srinivasula, S. M., and Ashwell, J. D. (2006) Sensing of Lys 
63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature cell 
biology 8, 398-406 

75. Ea, C.-K., Deng, L., Xia, Z.-P., Pineda, G., and Chen, Z. J. (2006) Activation of IKK by 
TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by 
NEMO. Molecular cell 22, 245-257 

76. Chebath, J., Benech, P., Revel, M., and Vigneron, M. (1987) Constitutive expression of 
(2′–5′) oligo A synthetase confers resistance to picornavirus infection.  

77. Benech, P., Vigneron, M., Peretz, D., Revel, M., and Chebath, J. (1987) Interferon-
responsive regulatory elements in the promoter of the human 2', 5'-oligo (A) 
synthetase gene. Molecular and cellular biology 7, 4498-4504 

78. Minks, M. A., West, D. K., Benvin, S., and Baglioni, C. (1979) Structural requirements of 
double-stranded RNA for the activation of 2', 5'-oligo (A) polymerase and protein 
kinase of interferon-treated HeLa cells. Journal of Biological Chemistry 254, 10180-
10183 

79. Hovanessian, A. G., Brown, R. E., and Kerr, I. M. (1977) Synthesis of low molecular 
weight inhibitor of protein synthesis with enzyme from interferon-treated cells.  

80. Roberts, W. K., Hovanessian, A., Brown, R. E., Clemens, M. J., and Kerr, I. M. (1976) 
Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein 
synthesis.  

81. Kerr, I. M., Brown, R. E., and Hovanessian, A. G. (1977) Nature of inhibitor of cell-free 
protein synthesis formed in response to interferon and double-stranded RNA.  

127



REFERENCES 
 

 
 

82. Baglioni, C., Minks, M. A., and Maroney, P. A. (1978) Interferon action may be 
mediated by activation of a nuclease by pppA2′ p5′ A2′ p5′ A.  

83. Zilberstein, A., Kimchi, A., Schmidt, A., and Revel, M. (1978) Isolation of two 
interferon-induced translational inhibitors: a protein kinase and an oligo-
isoadenylate synthetase. Proceedings of the National Academy of Sciences 75, 4734-
4738 

84. Malathi, K., Saito, T., Crochet, N., Barton, D. J., Gale, M., and Silverman, R. H. (2010) 
RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. Rna 16, 
2108-2119 

85. Rehwinkel, J., Tan, C. P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, 
F., Barclay, W., and Fodor, E. (2010) RIG-I detects viral genomic RNA during negative-
strand RNA virus infection. Cell 140, 397-408 

86. Chebath, J., Benech, P., Hovanessian, A., Galabru, J., and Revel, M. (1987) Four different 
forms of interferon-induced 2', 5'-oligo (A) synthetase identified by immunoblotting 
in human cells. Journal of Biological Chemistry 262, 3852-3857 

87. Ghosh, A., Sarkar, S. N., Guo, W., Bandyopadhyay, S., and Sen, G. C. (1997) Enzymatic 
activity of 2′–5′-oligoadenylate synthetase is impaired by specific mutations that 
affect oligomerization of the protein. Journal of Biological Chemistry 272, 33220-
33226 

88. Rebouillat, D., Marié, I., and Hovanessian, A. G. (1998) Molecular cloning and 
characterization of two related and interferon‐induced 56‐kDa and 30‐kDa proteins 
highly similar to 2′‐5′ oligoadenylate synthetase. European Journal of Biochemistry 
257, 319-330 

89. Marques, J., Anwar, J., Eskildsen-Larsen, S., Rebouillat, D., Paludan, S. R., Sen, G., 
Williams, B. R., and Hartmann, R. (2008) The p59 oligoadenylate synthetase-like 
protein possesses antiviral activity that requires the C-terminal ubiquitin-like 
domain. Journal of General Virology 89, 2767-2772 

90. Liu, S.-Y., Sanchez, D. J., Aliyari, R., Lu, S., and Cheng, G. (2012) Systematic 
identification of type I and type II interferon-induced antiviral factors. Proceedings of 
the National Academy of Sciences 109, 4239-4244 

91. Guo, X., Li, X., Xu, Y., Sun, T., Yang, G., Wu, Z., and Li, E. (2012) Identification of OASL d, 
a splice variant of human OASL, with antiviral activity. The international journal of 
biochemistry & cell biology 44, 1133-1138 

92. Schoggins, J. W., Wilson, S. J., Panis, M., Murphy, M. Y., Jones, C. T., Bieniasz, P., and 
Rice, C. M. (2011) A diverse range of gene products are effectors of the type I 
interferon antiviral response. Nature 472, 481-485 

93. Ibsen, M. S., Gad, H. H., Andersen, L. L., Hornung, V., Julkunen, I., Sarkar, S. N., and 
Hartmann, R. (2015) Structural and functional analysis reveals that human OASL 
binds dsRNA to enhance RIG-I signaling. Nucleic acids research, gkv389 

94. Zhu, J., Zhang, Y., Ghosh, A., Cuevas, R. A., Forero, A., Dhar, J., Ibsen, M. S., Schmid-
Burgk, J. L., Schmidt, T., and Ganapathiraju, M. K. (2014) Antiviral activity of human 
OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 
40, 936-948 

95. O'Neill, L. (2013) Sensing the dark side of DNA. Science 339, 763-764 
96. Ishikawa, H., and Barber, G. N. (2008) STING is an endoplasmic reticulum adaptor that 

facilitates innate immune signalling. Nature 455, 674-678 
97. Sauer, J.-D., Sotelo-Troha, K., von Moltke, J., Monroe, K. M., Rae, C. S., Brubaker, S. W., 

Hyodo, M., Hayakawa, Y., Woodward, J. J., and Portnoy, D. A. (2011) The N-ethyl-N-
nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting 

128



REFERENCES 
 

 

in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. 
Infection and immunity 79, 688-694 

98. Jin, L., Hill, K. K., Filak, H., Mogan, J., Knowles, H., Zhang, B., Perraud, A.-L., Cambier, J. 
C., and Lenz, L. L. (2011) MPYS is required for IFN response factor 3 activation and 
type I IFN production in the response of cultured phagocytes to bacterial second 
messengers cyclic-di-AMP and cyclic-di-GMP. The Journal of Immunology 187, 2595-
2601 

99. Burdette, D. L., Monroe, K. M., Sotelo-Troha, K., Iwig, J. S., Eckert, B., Hyodo, M., 
Hayakawa, Y., and Vance, R. E. (2011) STING is a direct innate immune sensor of cyclic 
di-GMP. Nature 478, 515-518 

100. Yin, Q., Tian, Y., Kabaleeswaran, V., Jiang, X., Tu, D., Eck, M. J., Chen, Z. J., and Wu, H. 
(2012) Cyclic di-GMP sensing via the innate immune signaling protein STING. 
Molecular cell 46, 735-745 

101. Tanaka, Y., and Chen, Z. J. (2012) STING specifies IRF3 phosphorylation by TBK1 in 
the cytosolic DNA signaling pathway. Science signaling 5, ra20 

102. Burdette, D. L., and Vance, R. E. (2013) STING and the innate immune response to 
nucleic acids in the cytosol. Nature immunology 14, 19-26 

103. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z. J. (2013) Cyclic GMP-AMP synthase is a 
cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786-
791 

104. Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., and Chen, Z. J. (2013) Cyclic GMP-AMP 
is an endogenous second messenger in innate immune signaling by cytosolic DNA. 
Science 339, 826-830 

105. Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T., Witte, G., Röhl, I., Hopfner, K.-P., 
Ludwig, J., and Hornung, V. (2013) cGAS produces a 2 [prime]-5 [prime]-linked cyclic 
dinucleotide second messenger that activates STING. Nature 498, 380-384 

106. Gao, P., Ascano, M., Wu, Y., Barchet, W., Gaffney, B. L., Zillinger, T., Serganov, A. A., Liu, 
Y., Jones, R. A., and Hartmann, G. (2013) Cyclic [G (2′, 5′) pA (3′, 5′) p] is the metazoan 
second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 
1094-1107 

107. Diner, E. J., Burdette, D. L., Wilson, S. C., Monroe, K. M., Kellenberger, C. A., Hyodo, M., 
Hayakawa, Y., Hammond, M. C., and Vance, R. E. (2013) The innate immune DNA 
sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. 
Cell reports 3, 1355-1361 

108. Zhang, X., Shi, H., Wu, J., Zhang, X., Sun, L., Chen, C., and Chen, Z. J. (2013) Cyclic GMP-
AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand 
for STING. Molecular cell 51, 226-235 

109. Li, X., Shu, C., Yi, G., Chaton, C. T., Shelton, C. L., Diao, J., Zuo, X., Kao, C. C., Herr, A. B., 
and Li, P. (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-
induced oligomerization. Immunity 39, 1019-1031 

110. Gao, P., Ascano, M., Zillinger, T., Wang, W., Dai, P., Serganov, A. A., Gaffney, B. L., 
Shuman, S., Jones, R. A., and Deng, L. (2013) Structure-function analysis of STING 
activation by c [G (2′, 5′) pA (3′, 5′) p] and targeting by antiviral DMXAA. Cell 154, 
748-762 

111. Ablasser, A., Schmid-Burgk, J. L., Hemmerling, I., Horvath, G. L., Schmidt, T., Latz, E., 
and Hornung, V. (2013) Cell intrinsic immunity spreads to bystander cells via the 
intercellular transfer of cGAMP. Nature 503, 530-534 

112. Gentili, M., Kowal, J., Tkach, M., Satoh, T., Lahaye, X., Conrad, C., Boyron, M., Lombard, 
B., Durand, S., and Kroemer, G. (2015) Transmission of innate immune signaling by 
packaging of cGAMP in viral particles. Science 349, 1232-1236 

129



REFERENCES 
 

 
 

113. Bridgeman, A., Maelfait, J., Davenne, T., Partridge, T., Peng, Y., Mayer, A., Dong, T., 
Kaever, V., Borrow, P., and Rehwinkel, J. (2015) Viruses transfer the antiviral second 
messenger cGAMP between cells. Science 349, 1228-1232 

114. Li, X.-D., Wu, J., Gao, D., Wang, H., Sun, L., and Chen, Z. J. (2013) Pivotal roles of cGAS-
cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390-
1394 

115. Gao, D., Wu, J., Wu, Y.-T., Du, F., Aroh, C., Yan, N., Sun, L., and Chen, Z. J. (2013) Cyclic 
GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 
341, 903-906 

116. Schoggins, J. W., MacDuff, D. A., Imanaka, N., Gainey, M. D., Shrestha, B., Eitson, J. L., 
Mar, K. B., Richardson, R. B., Ratushny, A. V., and Litvak, V. (2014) Pan-viral specificity 
of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 
691-695 

117. West, A. P., Khoury-Hanold, W., Staron, M., Tal, M. C., Pineda, C. M., Lang, S. M., 
Bestwick, M., Duguay, B. A., Raimundo, N., and MacDuff, D. A. (2015) Mitochondrial 
DNA stress primes the antiviral innate immune response. Nature 520, 553-557 

118. Rongvaux, A., Jackson, R., Harman, C. C., Li, T., West, A. P., de Zoete, M. R., Wu, Y., 
Yordy, B., Lakhani, S. A., and Kuan, C.-Y. (2014) Apoptotic caspases prevent the 
induction of type I interferons by mitochondrial DNA. Cell 159, 1563-1577 

119. Lau, L., Gray, E. E., Brunette, R. L., and Stetson, D. B. (2015) DNA tumor virus 
oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350, 568-571 

120. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., 
Kodama, T., and Honda, K. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and 
an activator of innate immune response. Nature 448, 501-505 

121. Wang, Z., Choi, M. K., Ban, T., Yanai, H., Negishi, H., Lu, Y., Tamura, T., Takaoka, A., 
Nishikura, K., and Taniguchi, T. (2008) Regulation of innate immune responses by DAI 
(DLM-1/ZBP1) and other DNA-sensing molecules. Proceedings of the National 
Academy of Sciences 105, 5477-5482 

122. Ishii, K. J., Kawagoe, T., Koyama, S., Matsui, K., Kumar, H., Kawai, T., Uematsu, S., 
Takeuchi, O., Takeshita, F., and Coban, C. (2008) TANK-binding kinase-1 delineates 
innate and adaptive immune responses to DNA vaccines. Nature 451, 725-729 

123. Unterholzner, L., Keating, S. E., Baran, M., Horan, K. A., Jensen, S. B., Sharma, S., Sirois, 
C. M., Jin, T., Latz, E., and Xiao, T. S. (2010) IFI16 is an innate immune sensor for 
intracellular DNA. Nature immunology 11, 997-1004 

124. Roberts, T. L., Idris, A., Dunn, J. A., Kelly, G. M., Burnton, C. M., Hodgson, S., Hardy, L. L., 
Garceau, V., Sweet, M. J., and Ross, I. L. (2009) HIN-200 proteins regulate caspase 
activation in response to foreign cytoplasmic DNA. Science 323, 1057-1060 

125. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J., and Alnemri, E. S. (2009) AIM2 
activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 
458, 509-513 

126. Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. 
R., Latz, E., and Fitzgerald, K. A. (2009) AIM2 recognizes cytosolic dsDNA and forms a 
caspase-1-activating inflammasome with ASC. Nature 458, 514-518 

127. Bürckstümmer, T., Baumann, C., Blüml, S., Dixit, E., Dürnberger, G., Jahn, H., 
Planyavsky, M., Bilban, M., Colinge, J., and Bennett, K. L. (2009) An orthogonal 
proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the 
inflammasome. Nature immunology 10, 266-272 

128. Morrone, S. R., Wang, T., Constantoulakis, L. M., Hooy, R. M., Delannoy, M. J., and Sohn, 
J. (2014) Cooperative assembly of IFI16 filaments on dsDNA provides insights into 
host defense strategy. Proceedings of the National Academy of Sciences 111, E62-E71 

130



REFERENCES 
 

 

129. Lu, A., Kabaleeswaran, V., Fu, T., Magupalli, V. G., and Wu, H. (2014) Crystal structure 
of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED 
interactions. Journal of molecular biology 426, 1420-1427 

130. Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.-J. (2011) The helicase DDX41 
senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature 
immunology 12, 959-965 

131. Parvatiyar, K., Zhang, Z., Teles, R. M., Ouyang, S., Jiang, Y., Iyer, S. S., Zaver, S. A., Schenk, 
M., Zeng, S., and Zhong, W. (2012) The helicase DDX41 recognizes the bacterial 
secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon 
immune response. Nature immunology 13, 1155-1161 

132. Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H., and Smith, G. L. (2012) DNA-PK is a 
DNA sensor for IRF-3-dependent innate immunity. elife 1, e00047 

133. Imamichi, T., Zhang, X., Zhou, M., Lempicki, R., Baseler, M., Veenstra, T., Young, H., and 
Lane, H. C. (2011) Ku70 is a novel cytosolic DNA sensor that induces a Type-III rather 
than Type-I IFN via activation of IRF-1 and IRF-7. The Journal of Immunology 186, 
116.111 

134. Kondo, T., Kobayashi, J., Saitoh, T., Maruyama, K., Ishii, K. J., Barber, G. N., Komatsu, K., 
Akira, S., and Kawai, T. (2013) DNA damage sensor MRE11 recognizes cytosolic 
double-stranded DNA and induces type I interferon by regulating STING trafficking. 
Proceedings of the National Academy of Sciences 110, 2969-2974 

135. Civril, F., Deimling, T., de Oliveira Mann, C. C., Ablasser, A., Moldt, M., Witte, G., 
Hornung, V., and Hopfner, K.-P. (2013) Structural mechanism of cytosolic DNA 
sensing by cGAS. Nature 498, 332-337 

136. Kranzusch, P. J., Lee, A. S.-Y., Berger, J. M., and Doudna, J. A. (2013) Structure of human 
cGAS reveals a conserved family of second-messenger enzymes in innate immunity. 
Cell reports 3, 1362-1368 

137. Kato, K., Ishii, R., Goto, E., Ishitani, R., Tokunaga, F., and Nureki, O. (2013) Structural 
and functional analyses of DNA-sensing and immune activation by human cGAS. PloS 
one 8, e76983 

138. Donovan, J., Dufner, M., and Korennykh, A. (2013) Structural basis for cytosolic 
double-stranded RNA surveillance by human oligoadenylate synthetase 1. 
Proceedings of the National Academy of Sciences 110, 1652-1657 

139. Zhang, X., Wu, J., Du, F., Xu, H., Sun, L., Chen, Z., Brautigam, C. A., Zhang, X., and Chen, Z. 
J. (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and 
undergoes switch-like conformational changes in the activation loop. Cell reports 6, 
421-430 

140. Steitz, T., Smerdon, S., Jager, J., and Joyce, C. (1994) A unified polymerase mechanism 
for nonhomologous DNA and RNA polymerases. Science 266, 2022-2025 

141. Steitz, T. A. (1999) DNA polymerases: structural diversity and common mechanisms. 
Journal of Biological Chemistry 274, 17395-17398 

142. Witte, G., Hartung, S., Büttner, K., and Hopfner, K.-P. (2008) Structural biochemistry of 
a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA 
recombination intermediates. Molecular cell 30, 167-178 

143. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., and Schirmer, T. (2004) 
Structural basis of activity and allosteric control of diguanylate cyclase. Proceedings of 
the National Academy of Sciences of the United States of America 101, 17084-17089 

144. Mozzi, A., Pontremoli, C., Forni, D., Clerici, M., Pozzoli, U., Bresolin, N., Cagliani, R., and 
Sironi, M. (2015) OASes and STING: adaptive evolution in concert. Genome biology and 
evolution 7, 1016-1032 

131



REFERENCES 
 

 
 

145. Hornung, V., Hartmann, R., Ablasser, A., and Hopfner, K.-P. (2014) OAS proteins and 
cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nature 
Reviews Immunology 14, 521-528 

146. Lohöfener, J., Steinke, N., Kay-Fedorov, P., Baruch, P., Nikulin, A., Tishchenko, S., 
Manstein, D. J., and Fedorov, R. (2015) The Activation Mechanism of 2′-5′-
Oligoadenylate Synthetase Gives New Insights Into OAS/cGAS Triggers of Innate 
Immunity. Structure 23, 851-862 

147. Hancks, D. C., Hartley, M. K., Hagan, C., Clark, N. L., and Elde, N. C. (2015) Overlapping 
Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a 
Common Mechanism of Pathogen Antagonism and Escape. PLoS Genet 11, e1005203 

148. Holm, L., and Sander, C. (1995) DNA polymerase β belongs to an ancient 
nucleotidyltransferase superfamily. Trends in biochemical sciences 20, 345-347 

149. Aravind, L., and Koonin, E. V. (1999) DNA polymerase β-like nucleotidyltransferase 
superfamily: identification of three new families, classification and evolutionary 
history. Nucleic acids research 27, 1609-1618 

150. Kuchta, K., Knizewski, L., Wyrwicz, L. S., Rychlewski, L., and Ginalski, K. (2009) 
Comprehensive classification of nucleotidyltransferase fold proteins: identification of 
novel families and their representatives in human. Nucleic acids research 37, 7701-
7714 

151. Ho, S. H., So, G. M., and Chow, K. L. (2001) Postembryonic expression of 
Caenorhabditis elegans mab‐21 and its requirement in sensory ray differentiation. 
Developmental Dynamics 221, 422-430 

152. Kao, C., Chiang, Y., Chen, P., Lin, K., Hwang, P., Yang-Yen, H., and Yen, J. J. (2008) CBAP 
interacts with the un-liganded common β-subunit of the GM-CSF/IL-3/IL-5 receptor 
and induces apoptosis via mitochondrial dysfunction. Oncogene 27, 1397-1403 

153. Chiang, Y.-J., Ho, K.-C., Sun, C.-T., Chiu, J.-J., Lee, F.-J., Liao, F., Yang-Yen, H.-F., and Yen, J. 
J.-Y. (2013) CBAP functions as a novel component in chemokine-induced ZAP70-
mediated T-cell adhesion and migration. PloS one 8, e61761 

154. Ho, K., Chiang, Y., Lai, A. C., Liao, N., Chang, Y., Yang-Yen, H., and Yen, J. J. (2014) CBAP 
promotes thymocyte negative selection by facilitating T-cell receptor proximal 
signaling. Cell death & disease 5, e1518 

155. van Rossum, D. B., Patterson, R. L., Cheung, K.-H., Barrow, R. K., Syrovatkina, V., 
Gessell, G. S., Burkholder, S. G., Watkins, D. N., Foskett, J. K., and Snyder, S. H. (2006) 
DANGER, a novel regulatory protein of inositol 1, 4, 5-trisphosphate-receptor activity. 
Journal of Biological Chemistry 281, 37111-37116 

156. Kang, B. N., Ahmad, A. S., Saleem, S., Patterson, R. L., Hester, L., Doré, S., and Snyder, S. 
H. (2010) Death-associated protein kinase-mediated cell death modulated by 
interaction with DANGER. The Journal of Neuroscience 30, 93-98 

157. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R., and Wiemann, S. (2000) 
Systematic subcellular localization of novel proteins identified by large‐scale cDNA 
sequencing. EMBO reports 1, 287-292 

158. Palmer, C. S., Osellame, L. D., Laine, D., Koutsopoulos, O. S., Frazier, A. E., and Ryan, M. 
T. (2011) MiD49 and MiD51, new components of the mitochondrial fission 
machinery. EMBO reports 12, 565-573 

159. Losón, O. C., Song, Z., Chen, H., and Chan, D. C. (2013) Fis1, Mff, MiD49, and MiD51 
mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell 24, 
659-667 

160. Palmer, C. S., Elgass, K. D., Parton, R. G., Osellame, L. D., Stojanovski, D., and Ryan, M. T. 
(2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in 

132



REFERENCES 
 

 

Drp1 recruitment and are specific for mitochondrial fission. Journal of Biological 
Chemistry 288, 27584-27593 

161. Richter, V., Palmer, C. S., Osellame, L. D., Singh, A. P., Elgass, K., Stroud, D. A., Sesaki, H., 
Kvansakul, M., and Ryan, M. T. (2014) Structural and functional analysis of MiD51, a 
dynamin receptor required for mitochondrial fission. The Journal of cell biology 204, 
477-486 

162. Losón, O. C., Liu, R., Rome, M. E., Meng, S., Kaiser, J. T., Shan, S.-o., and Chan, D. C. 
(2014) The mitochondrial fission receptor MiD51 requires ADP as a cofactor. 
Structure 22, 367-377 

163. Losón, O. C., Meng, S., Ngo, H., Liu, R., Kaiser, J. T., and Chan, D. C. (2015) Crystal 
structure and functional analysis of MiD49, a receptor for the mitochondrial fission 
protein Drp1. Protein Science 24, 386-394 

164. Chow, K. L., Hall, D. H., and Emmons, S. W. (1995) The mab-21 gene of Caenorhabditis 
elegans encodes a novel protein required for choice of alternate cell fates. 
Development 121, 3615-3626 

165. Baird, S. E., Fitch, D., Kassem, I., and Emmons, S. W. (1991) Pattern formation in the 
nematode epidermis: determination of the arrangement of peripheral sense organs in 
the C. elegans male tail. Development 113, 515-526 

166. Morita, K., Chow, K. L., and Ueno, N. (1999) Regulation of body length and male tail 
ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. 
Development 126, 1337-1347 

167. Suzuki, Y., Yandell, M. D., Roy, P. J., Krishna, S., Savage-Dunn, C., Ross, R. M., Padgett, R. 
W., and Wood, W. B. (1999) A BMP homolog acts as a dose-dependent regulator of 
body size and male tail patterning in Caenorhabditis elegans. Development 126, 241-
250 

168. Margolis, R. L., Stine, O. C., McInnis, M. G., Ranen, N. G., Rubinsztein, D. C., Leggo, J., 
Brando, L. V. J., Kidwai, A. S., Loev, S. J., and Breschel, T. S. (1996) cDNA cloning of a 
human homologue of the Caenorhabditis elegans cell fate-determining gene mab-21: 
expression, chromosomal localization and analysis of a highly polymorphic (CAG) n 
trinucleotide repeat. Human molecular genetics 5, 607-616 

169. Wong, R., Wong, H., and Chow, K. (1999) Genomic cloning and chromosomal 
localization of the mouse Mab21l2 locus. Cytogenetic and Genome Research 86, 21-24 

170. Mariani, M., Baldessari, D., Francisconi, S., Viggiano, L., Rocchi, M., Zappavigna, V., 
Malgaretti, N., and Consalez, G. G. (1999) Two murine and human homologs of mab-
21, a cell fate determination gene involved in Caenorhabditis elegans neural 
development. Human molecular genetics 8, 2397-2406 

171. Tsang, W., Shek, K., Lee, T., and Chow, K. (2009) An evolutionarily conserved nested 
gene pair—Mab21 and Lrba/Nbea in metazoan. Genomics 94, 177-187 

172. Mariani, M., Corradi, A., Baldessari, D., Malgaretti, N., Pozzoli, O., Fesce, R., Martinez, S., 
Boncinelli, E., and Consalez, G. (1998) Mab21, the mouse homolog of a C. elegans cell-
fate specification gene, participates in cerebellar, midbrain and eye development. 
Mechanisms of development 79, 131-135 

173. Wong, R. L. Y., Chan, K. K. L., and Chow, K. L. (1999) Developmental expression of 
Mab21l2 during mouse embryogenesis. Mechanisms of development 87, 185-188 

174. Lau, G. T., Wong, O. G., Chan, P. M., Kok, K.-H., Wong, R. L., Chin, K.-T., Lin, M. C., Kung, 
H.-F., and Chow, K. L. (2001) Embryonic XMab21l2 expression is required for 
gastrulation and subsequent neural development. Biochemical and biophysical 
research communications 280, 1378-1384 

133



REFERENCES 
 

 
 

175. Kudoh, T., and Dawid, I. B. (2001) Zebrafish mab21l2 is specifically expressed in the 
presumptive eye and tectum from early somitogenesis onwards. Mechanisms of 
development 109, 95-98 

176. Wong, Y.-M., and Chow, K. L. (2002) Expression of zebrafish mab21 genes marks the 
differentiating eye, midbrain and neural tube. Mechanisms of development 113, 149-
152 

177. Cederlund, M. L., Vendrell, V., Morrissey, M. E., Yin, J., Gaora, P. Ó., Smyth, V. A., Higgins, 
D. G., and Kennedy, B. N. (2011) mab21l2 transgenics reveal novel expression 
patterns of mab21l1 and mab21l2, and conserved promoter regulation without 
sequence conservation. Developmental Dynamics 240, 745-754 

178. Yamada, R., Mizutani-Koseki, Y., Hasegawa, T., Osumi, N., Koseki, H., and Takahashi, N. 
(2003) Cell-autonomous involvement of Mab21l1 is essential for lens placode 
development. Development 130, 1759-1770 

179. Yamada, R., Mizutani-Koseki, Y., Koseki, H., and Takahashi, N. (2004) Requirement for 
Mab21l2 during development of murine retina and ventral body wall. Developmental 
biology 274, 295-307 

180. Kennedy, B. N., Stearns, G. W., Smyth, V. A., Ramamurthy, V., van Eeden, F., 
Ankoudinova, I., Raible, D., Hurley, J. B., and Brockerhoff, S. E. (2004) Zebrafish rx3 
and mab21l2 are required during eye morphogenesis. Developmental biology 270, 
336-349 

181. Li, S., Yin, M., Liu, S., Chen, Y., Yin, Y., Liu, T., and Zhou, J. (2010) Expression of ventral 
diencephalon‐enriched genes in zebrafish. Developmental Dynamics 239, 3368-3379 

182. Wong, R. L. Y., and Chow, K. L. (2002) Depletion of Mab21l1 and Mab21l2 messages in 
mouse embryo arrests axial turning, and impairs notochord and neural tube 
differentiation. Teratology 65, 70-77 

183. Saito, Y., Kojima, T., and Takahashi, N. (2012) Mab21l2 is essential for embryonic 
heart and liver development. PloS one 7, e32991 

184. Wolf, L. V., Yang, Y., Wang, J., Xie, Q., Braunger, B., Tamm, E. R., Zavadil, J., and Cvekl, A. 
(2009) Identification of pax6-dependent gene regulatory networks in the mouse lens. 
PLoS One 4, e4159 

185. Kawahara, A., Chien, C.-B., and Dawid, I. B. (2002) The homeobox gene mbx is 
involved in eye and tectum development. Developmental biology 248, 107-117 

186. Kim, Y. J., Kim, B. G., Lee, S. J., Lee, H. K., Lee, S. H., Ryoo, H. M., and Cho, J. Y. (2007) The 
suppressive effect of myeloid elf‐1‐like factor (MEF) in osteogenic differentiation. 
Journal of cellular physiology 211, 253-260 

187. Kim, B. G., Park, Y. J., Libermann, T. A., and Cho, J. Y. (2011) PTH regulates myleoid 
ELF‐1‐like factor (MEF)‐induced MAB‐21‐like‐1 (MAB21L1) expression through the 
JNK1 pathway. Journal of cellular biochemistry 112, 2051-2061 

188. Baldessari, D., Badaloni, A., Longhi, R., Zappavigna, V., and Consalez, G. G. (2004) 
MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP 
signaling and interacts with SMAD1. BMC cell biology 5, 48 

189. Sridharan, J., Haremaki, T., Jin, Y., Teegala, S., and Weinstein, D. C. (2012) Xmab21l3 
mediates dorsoventral patterning in Xenopus laevis. Mechanisms of development 129, 
136-146 

190. Takahashi, C., Kusakabe, M., Suzuki, T., Miyatake, K., and Nishida, E. (2015) mab21-l3 
regulates cell fate specification of multiciliate cells and ionocytes. Nature 
communications 6 

191. Rainger, J., Pehlivan, D., Johansson, S., Bengani, H., Sanchez-Pulido, L., Williamson, K. 
A., Ture, M., Barker, H., Rosendahl, K., and Spranger, J. (2014) Monoallelic and biallelic 

134



REFERENCES 
 

 

mutations in MAB21L2 cause a spectrum of major eye malformations. The American 
Journal of Human Genetics 94, 915-923 

192. Hartmann, R., Justesen, J., Sarkar, S. N., Sen, G. C., and Yee, V. C. (2003) Crystal 
structure of the 2′-specific and double-stranded RNA-activated interferon-induced 
antiviral protein 2′-5′-oligoadenylate synthetase. Molecular cell 12, 1173-1185 

193. Horn, D., Prescott, T., Houge, G., Brække, K., Rosendahl, K., Nishimura, G., FitzPatrick, 
D. R., and Spranger, J. (2015) A Novel Oculo-Skeletal syndrome with intellectual 
disability caused by a particular MAB21L2 mutation. European journal of medical 
genetics 58, 387-391 

194. Deml, B., Kariminejad, A., Borujerdi, R. H., Muheisen, S., Reis, L. M., and Semina, E. V. 
(2015) Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. 
PLoS Genet 11, e1005002 

195. Lu, C., Xu, H., Ranjith-Kumar, C., Brooks, M. T., Hou, T. Y., Hu, F., Herr, A. B., Strong, R. 
K., Kao, C. C., and Li, P. (2010) The structural basis of 5′ triphosphate double-stranded 
RNA recognition by RIG-I C-terminal domain. Structure 18, 1032-1043 

196. Cui, S., Eisenächer, K., Kirchhofer, A., Brzózka, K., Lammens, A., Lammens, K., Fujita, T., 
Conzelmann, K.-K., Krug, A., and Hopfner, K.-P. (2008) The C-terminal regulatory 
domain is the RNA 5′-triphosphate sensor of RIG-I. Molecular cell 29, 169-179 

197. Lu, C., Ranjith-Kumar, C., Hao, L., Kao, C. C., and Li, P. (2011) Crystal structure of RIG-I 
C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. 
Nucleic acids research 39, 1565-1575 

198. Wang, Y., Ludwig, J., Schuberth, C., Goldeck, M., Schlee, M., Li, H., Juranek, S., Sheng, G., 
Micura, R., and Tuschl, T. (2010) Structural and functional insights into 5 [prime]-ppp 
RNA pattern recognition by the innate immune receptor RIG-I. Nature structural & 
molecular biology 17, 781-787 

199. Sun, Z., Ren, H., Liu, Y., Teeling, J. L., and Gu, J. (2011) Phosphorylation of RIG-I by 
casein kinase II inhibits its antiviral response. Journal of virology 85, 1036-1047 

200. Dürr, H., Körner, C., Müller, M., Hickmann, V., and Hopfner, K.-P. (2005) X-ray 
structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex 
with DNA. Cell 121, 363-373 

201. Zheng, J., Yong, H. Y., Panutdaporn, N., Liu, C., Tang, K., and Luo, D. (2015) High-
resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by 
RIG-I and MDA5. Nucleic acids research 43, 1216-1230 

202. Wu, B., Peisley, A., Richards, C., Yao, H., Zeng, X., Lin, C., Chu, F., Walz, T., and Hur, S. 
(2013) Structural basis for dsRNA recognition, filament formation, and antiviral 
signal activation by MDA5. Cell 152, 276-289 

203. Ahmad, S., and Hur, S. (2015) Helicases in Antiviral Immunity: Dual Properties as 
Sensors and Effectors. Trends in biochemical sciences 40, 576-585 

204. Singleton, M. R., Dillingham, M. S., and Wigley, D. B. (2007) Structure and mechanism 
of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23-50 

205. Abdel-Monem, M., Lauppe, H.-F., Kartenbeck, J., Dürwald, H., and Hoffmann-Berling, H. 
(1977) Enzymatic unwinding of DNA: III. Mode of action of escherichia coli DNA 
unwinding enzyme. Journal of molecular biology 110, 667-685 

206. Fairman-Williams, M. E., Guenther, U.-P., and Jankowsky, E. (2010) SF1 and SF2 
helicases: family matters. Current opinion in structural biology 20, 313-324 

207. Myong, S., Cui, S., Cornish, P. V., Kirchhofer, A., Gack, M. U., Jung, J. U., Hopfner, K.-P., 
and Ha, T. (2009) Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate–Dependent 
Translocase on Double-Stranded RNA. Science 323, 1070-1074 

135



REFERENCES 
 

 
 

208. Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., 
Inagaki, F., and Fujita, T. (2008) Nonself RNA-sensing mechanism of RIG-I helicase 
and activation of antiviral immune responses. Molecular cell 29, 428-440 

209. Binder, M., Eberle, F., Seitz, S., Mücke, N., Hüber, C. M., Kiani, N., Kaderali, L., Lohmann, 
V., Dalpke, A., and Bartenschlager, R. (2011) Molecular mechanism of signal 
perception and integration by the innate immune sensor retinoic acid-inducible gene-
I (RIG-I). Journal of Biological Chemistry 286, 27278-27287 

210. Peisley, A., Wu, B., Yao, H., Walz, T., and Hur, S. (2013) RIG-I forms signaling-
competent filaments in an ATP-dependent, ubiquitin-independent manner. Molecular 
cell 51, 573-583 

211. Patel, J. R., Jain, A., Chou, Y. y., Baum, A., Ha, T., and García‐Sastre, A. (2013) 
ATPase‐driven oligomerization of RIG‐I on RNA allows optimal activation of type‐I 
interferon. EMBO reports 14, 780-787 

212. Peisley, A., Lin, C., Wu, B., Orme-Johnson, M., Liu, M., Walz, T., and Hur, S. (2011) 
Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA 
recognition. Proceedings of the National Academy of Sciences 108, 21010-21015 

213. Funabiki, M., Kato, H., Miyachi, Y., Toki, H., Motegi, H., Inoue, M., Minowa, O., Yoshida, 
A., Deguchi, K., and Sato, H. (2014) Autoimmune disorders associated with gain of 
function of the intracellular sensor MDA5. Immunity 40, 199-212 

214. Jang, M.-A., Kim, E. K., Nguyen, N. T., Kim, W.-J., Yoo, J.-Y., Lee, J., Jeong, Y.-M., Kim, C.-H., 
Kim, O.-H., and Sohn, S. (2015) Mutations in DDX58, which encodes RIG-I, cause 
atypical Singleton-Merten syndrome. The American Journal of Human Genetics 96, 
266-274 

215. Rice, G. I., del Toro Duany, Y., Jenkinson, E. M., Forte, G. M., Anderson, B. H., Ariaudo, G., 
Bader-Meunier, B., Baildam, E. M., Battini, R., and Beresford, M. W. (2014) Gain-of-
function mutations in IFIH1 cause a spectrum of human disease phenotypes 
associated with upregulated type I interferon signaling. Nature genetics 46, 503-509 

216. Rutsch, F., MacDougall, M., Lu, C., Buers, I., Mamaeva, O., Nitschke, Y., Rice, G. I., 
Erlandsen, H., Kehl, H. G., and Thiele, H. (2015) A specific IFIH1 gain-of-function 
mutation causes Singleton-Merten syndrome. The American Journal of Human 
Genetics 96, 275-282 

217. Louber, J., Brunel, J., Uchikawa, E., Cusack, S., and Gerlier, D. (2015) Kinetic 
discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC 
biology 13, 54 

218. Lässig, C., Matheisl, S., Sparrer, K. M., de Oliveira Mann, C. C., Moldt, M., Patel, J. R., 
Goldeck, M., Hartmann, G., García-Sastre, A., and Hornung, V. (2016) ATP hydrolysis 
by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. eLife 4, 
e10859 

219. Rawling, D. C., Fitzgerald, M. E., and Pyle, A. M. (2015) Establishing the role of ATP for 
the function of the RIG-I innate immune sensor. Elife 4, e09391 

220. Anger, A. M., Armache, J.-P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson, D. N., 
and Beckmann, R. (2013) Structures of the human and Drosophila 80S ribosome. 
Nature 497, 80-85 

221. Herzner, A.-M., Hagmann, C. A., Goldeck, M., Wolter, S., Kübler, K., Wittmann, S., 
Gramberg, T., Andreeva, L., Hopfner, K.-P., and Mertens, C. (2015) Sequence-specific 
activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-
1 cDNA. Nature immunology 16, 1025-1033 

222. Yoh, S. M., Schneider, M., Seifried, J., Soonthornvacharin, S., Akleh, R. E., Olivieri, K. C., 
De Jesus, P. D., Ruan, C., de Castro, E., and Ruiz, P. A. (2015) PQBP1 is a proximal 
sensor of the cGAS-dependent innate response to HIV-1. Cell 161, 1293-1305 

136



REFERENCES 
 

 

223. Gao, D., Li, T., Li, X.-D., Chen, X., Li, Q.-Z., Wight-Carter, M., and Chen, Z. J. (2015) 
Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. 
Proceedings of the National Academy of Sciences 112, E5699-E5705 

224. Torralba, S., Sojat, J., and Hartmann, R. (2008) 2’-5’oligoadenylate synthetase shares 
active site architecture with the archaeal CCA-adding enzyme. Cellular and molecular 
life sciences 65, 2613-2620 

225. Balbo, P. B., and Bohm, A. (2007) Mechanism of poly (A) polymerase: structure of the 
enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 15, 1117-1131 

226. Wu, X., Wu, F.-H., Wang, X., Wang, L., Siedow, J. N., Zhang, W., and Pei, Z.-M. (2014) 
Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and 
STING. Nucleic acids research 42, 8243-8257 

227. Xiong, Y., and Steitz, T. A. (2006) A story with a good ending: tRNA 3′-end maturation 
by CCA-adding enzymes. Current opinion in structural biology 16, 12-17 

228. Davies, B. W., Bogard, R. W., Young, T. S., and Mekalanos, J. J. (2012) Coordinated 
regulation of accessory genetic elements produces cyclic di-nucleotides for V. 
cholerae virulence. Cell 149, 358-370 

229. Kranzusch, P. J., Lee, A. S., Wilson, S. C., Solovykh, M. S., Vance, R. E., Berger, J. M., and 
Doudna, J. A. (2014) Structure-guided reprogramming of human cGAS dinucleotide 
linkage specificity. Cell 158, 1011-1021 

230. Kato, K., Ishii, R., Hirano, S., Ishitani, R., and Nureki, O. (2015) Structural Basis for the 
Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. 
Structure 23, 843-850 

231. Ming, Z., Wang, W., Xie, Y., Ding, P., Chen, Y., Jin, D., Sun, Y., Xia, B., Yan, L., and Lou, Z. 
(2014) Crystal structure of the novel di-nucleotide cyclase from Vibrio cholerae 
(DncV) responsible for synthesizing a hybrid cyclic GMP-AMP. Cell research 24, 1270 

232. Zhu, D., Wang, L., Shang, G., Liu, X., Zhu, J., Lu, D., Wang, L., Kan, B., Zhang, J.-r., and 
Xiang, Y. (2014) Structural biochemistry of a Vibrio cholerae dinucleotide cyclase 
reveals cyclase activity regulation by folates. Molecular cell 55, 931-937 

233. Kranzusch, P. J., Wilson, S. C., Lee, A. S., Berger, J. M., Doudna, J. A., and Vance, R. E. 
(2015) Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′, 3′ cGAMP 
Signaling. Molecular cell 59, 891-903 

234. Gao, J., Tao, J., Liang, W., Zhao, M., Du, X., Cui, S., Duan, H., Kan, B., Su, X., and Jiang, Z. 
(2015) Identification and characterization of phosphodiesterases that specifically 
degrade 3′ 3′-cyclic GMP-AMP. Cell research 25, 539-550 

235. Zhao, G., Shi, L., Qiu, D., Hu, H., and Kao, P. N. (2005) NF45/ILF2 tissue expression, 
promoter analysis, and interleukin-2 transactivating function. Experimental cell 
research 305, 312-323 

236. Wolkowicz, U. M., and Cook, A. G. (2012) NF45 dimerizes with NF90, Zfr and SPNR via 
a conserved domain that has a nucleotidyltransferase fold. Nucleic acids research 40, 
9356-9368 

237. Sakamoto, S., Aoki, K., Higuchi, T., Todaka, H., Morisawa, K., Tamaki, N., Hatano, E., 
Fukushima, A., Taniguchi, T., and Agata, Y. (2009) The NF90-NF45 complex functions 
as a negative regulator in the microRNA processing pathway. Molecular and cellular 
biology 29, 3754-3769 

238. Skalicky, S. E., White, A. J., Grigg, J. R., Martin, F., Smith, J., Jones, M., Donaldson, C., 
Smith, J. E., Flaherty, M., and Jamieson, R. V. (2013) Microphthalmia, anophthalmia, 
and coloboma and associated ocular and systemic features: understanding the 
spectrum. JAMA ophthalmology 131, 1517-1524 

137



REFERENCES 
 

 
 

239. Fantes, J., Ragge, N. K., Lynch, S.-A., McGill, N. I., Collin, J. R. O., Howard-Peebles, P. N., 
Hayward, C., Vivian, A. J., Williamson, K., and van Heyningen, V. (2003) Mutations in 
SOX2 cause anophthalmia. Nature genetics 33, 462-463 

240. Ragge, N. K., Brown, A. G., Poloschek, C. M., Lorenz, B., Henderson, R. A., Clarke, M. P., 
Russell-Eggitt, I., Fielder, A., Gerrelli, D., and Martinez-Barbera, J. P. (2005) 
Heterozygous mutations of OTX2 cause severe ocular malformations. The American 
Journal of Human Genetics 76, 1008-1022 

241. Glaser, T., Jepeal, L., Edwards, J. G., Young, S. R., Favor, J., and Maas, R. L. (1994) PAX6 
gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and 
central nervous system defects. Nature genetics 7, 463-471 

242. Cibois, M., Scerbo, P., Thomé, V., Pasini, A., and Kodjabachian, L. (2014) Induction and 
differentiation of the Xenopus ciliated embryonic epidermis. Xenopus Development, 
112-129 

243. Dubaissi, E., Rousseau, K., Lea, R., Soto, X., Nardeosingh, S., Schweickert, A., Amaya, E., 
Thornton, D. J., and Papalopulu, N. (2014) A secretory cell type develops alongside 
multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective 
function in the frog embryonic mucociliary epidermis. Development 141, 1514-1525 

244. Karp, P. H., Moninger, T. O., Pary Weber, S., Nesselhauf, T. S., Launspach, J. L., Zabner, J., 
and Welsh, M. J. (2002) An in vitro model of differentiated human airway epithelia. 
Epithelial cell culture protocols, 115-137 

245. Cibois, M., Luxardi, G., Chevalier, B., Thomé, V., Mercey, O., Zaragosi, L.-E., Barbry, P., 
Pasini, A., Marcet, B., and Kodjabachian, L. (2015) BMP signalling controls the 
construction of vertebrate mucociliary epithelia. Development 142, 2352-2363 

246. Deblandre, G. A., Wettstein, D. A., Koyano-Nakagawa, N., and Kintner, C. (1999) A two-
step mechanism generates the spacing pattern of the ciliated cells in the skin of 
Xenopus embryos. Development 126, 4715-4728 

247. Stubbs, J. L., Davidson, L., Keller, R., and Kintner, C. (2006) Radial intercalation of 
ciliated cells during Xenopus skin development. Development 133, 2507-2515 

248. He, L., He, X., Lim, L. P., De Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, 
J., and Ridzon, D. (2007) A microRNA component of the p53 tumour suppressor 
network. Nature 447, 1130-1134 

249. Song, R., Walentek, P., Sponer, N., Klimke, A., Lee, J. S., Dixon, G., Harland, R., Wan, Y., 
Lishko, P., and Lize, M. (2014) miR-34/449 miRNAs are required for motile 
ciliogenesis by repressing cp110. Nature 510, 115-120 

250. Marcet, B., Chevalier, B., Luxardi, G., Coraux, C., Zaragosi, L.-E., Cibois, M., Robbe-
Sermesant, K., Jolly, T., Cardinaud, B., and Moreilhon, C. (2011) Control of vertebrate 
multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. 
Nature cell biology 13, 693-699 

251. Lizé, M., Herr, C., Klimke, A., Bals, R., and Dobbelstein, M. (2010) MicroRNA-449a 
levels increase by several orders of magnitude during mucociliary differentiation of 
airway epithelia. Cell Cycle 9, 4579-4583 

252. Lizé, M., Klimke, A., and Dobbelstein, M. (2011) MicroRNA-449 in cell fate 
determination. Cell cycle 10, 2874-2882 

253. Park, T. J., Haigo, S. L., and Wallingford, J. B. (2006) Ciliogenesis defects in embryos 
lacking inturned or fuzzy function are associated with failure of planar cell polarity 
and Hedgehog signaling. Nature genetics 38, 303-311 

254. Wallingford, J. B. (2006) Planar cell polarity, ciliogenesis and neural tube defects. 
Human molecular genetics 15, R227-R234 

138



REFERENCES 
 

 

255. Zohn, I. E., Anderson, K. V., and Niswander, L. (2005) Using genomewide mutagenesis 
screens to identify the genes required for neural tube closure in the mouse. Birth 
Defects Research Part A: Clinical and Molecular Teratology 73, 583-590 

256. Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., and Hata, A. (2010) Smad proteins 
bind a conserved RNA sequence to promote microRNA maturation by Drosha. 
Molecular cell 39, 373-384 

257. Saj, A., and Lai, E. C. (2011) Control of microRNA biogenesis and transcription by cell 
signaling pathways. Current opinion in genetics & development 21, 504-510 

258. Liddicoat, B. J., Piskol, R., Chalk, A. M., Ramaswami, G., Higuchi, M., Hartner, J. C., Li, J. 
B., Seeburg, P. H., and Walkley, C. R. (2015) RNA editing by ADAR1 prevents MDA5 
sensing of endogenous dsRNA as nonself. Science 349, 1115-1120 

259. Rawling, D. C., Kohlway, A. S., Luo, D., Ding, S. C., and Pyle, A. M. (2014) The RIG-I 
ATPase core has evolved a functional requirement for allosteric stabilization by the 
Pincer domain. Nucleic acids research, gku817 

260. Kohlway, A., Luo, D., Rawling, D. C., Ding, S. C., and Pyle, A. M. (2013) Defining the 
functional determinants for RNA surveillance by RIG‐I. EMBO reports 14, 772-779 

261. Ramanathan, A., Devarkar, S. C., Jiang, F., Miller, M. T., Khan, A. G., Marcotrigiano, J., 
and Patel, S. S. (2015) The autoinhibitory CARD2-Hel2i Interface of RIG-I governs 
RNA selection. Nucleic acids research, gkv1299 

262. Wu, B., and Hur, S. (2015) How RIG-I like receptors activate MAVS. Current opinion in 
virology 12, 91-98 

263. Peisley, A., Wu, B., Xu, H., Chen, Z. J., and Hur, S. (2014) Structural basis for ubiquitin-
mediated antiviral signal activation by RIG-I. Nature 509, 110-114 

264. Bruns, A. M., Pollpeter, D., Hadizadeh, N., Myong, S., Marko, J. F., and Horvath, C. M. 
(2013) ATP hydrolysis enhances RNA recognition and antiviral signal transduction by 
the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). Journal of 
Biological Chemistry 288, 938-946 

265. Yao, H., Dittmann, M., Peisley, A., Hoffmann, H.-H., Gilmore, R. H., Schmidt, T., Schmid-
Burgk, J. L., Hornung, V., Rice, C. M., and Hur, S. (2015) ATP-dependent effector-like 
functions of RIG-I-like receptors. Molecular cell 58, 541-548 

266. Weber, M., Sediri, H., Felgenhauer, U., Binzen, I., Bänfer, S., Jacob, R., Brunotte, L., 
García-Sastre, A., Schmid-Burgk, J. L., and Schmidt, T. (2015) Influenza virus 
adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-
I. Cell host & microbe 17, 309-319 

267. Sato, S., Li, K., Kameyama, T., Hayashi, T., Ishida, Y., Murakami, S., Watanabe, T., Iijima, 
S., Sakurai, Y., and Watashi, K. (2015) The RNA sensor RIG-I dually functions as an 
innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123-132 

268. Zhang, H.-X., Liu, Z.-X., Sun, Y.-P., Zhu, J., Lu, S.-Y., Liu, X.-S., Huang, Q.-H., Xie, Y.-Y., Zhu, 
H.-B., and Dang, S.-Y. (2013) Rig-I regulates NF-κB activity through binding to Nf-κb1 
3′-UTR mRNA. Proceedings of the National Academy of Sciences 110, 6459-6464 

269. Wilson, R. C., and Doudna, J. A. (2013) Molecular mechanisms of RNA interference. 
Annual review of biophysics 42, 217-239 

270. Weingarten-Gabbay, S., Elias-Kirma, S., Nir, R., Gritsenko, A. A., Stern-Ginossar, N., 
Yakhini, Z., Weinberger, A., and Segal, E. (2016) Systematic discovery of cap-
independent translation sequences in human and viral genomes. Science 351, 
aad4939 

271. Kossinova, O., Malygin, A., Krol, A., and Karpova, G. (2014) The SBP2 protein central to 
selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 
28S rRNA. RNA 20, 1046-1056 

139



REFERENCES 
 

 
 

272. Ablasser, A., Hertrich, C., Waßermann, R., and Hornung, V. (2013) Nucleic acid driven 
sterile inflammation. Clinical Immunology 147, 207-215 

273. Kato, H., and Fujita, T. (2015) RIG-I-like receptors and autoimmune diseases. Current 
opinion in immunology 37, 40-45 

274. Crow, Y. J., Hayward, B. E., Parmar, R., Robins, P., Leitch, A., Ali, M., Black, D. N., van 
Bokhoven, H., Brunner, H. G., and Hamel, B. C. (2006) Mutations in the gene encoding 
the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 
locus. Nature genetics 38, 917-920 

275. Crow, Y. J., Leitch, A., Hayward, B. E., Garner, A., Parmar, R., Griffith, E., Ali, M., Semple, 
C., Aicardi, J., and Babul-Hirji, R. (2006) Mutations in genes encoding ribonuclease H2 
subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain 
infection. Nature genetics 38, 910-916 

276. Rice, G. I., Bond, J., Asipu, A., Brunette, R. L., Manfield, I. W., Carr, I. M., Fuller, J. C., 
Jackson, R. M., Lamb, T., and Briggs, T. A. (2009) Mutations involved in Aicardi-
Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. 
Nature genetics 41, 829-832 

277. Rice, G. I., Kasher, P. R., Forte, G. M., Mannion, N. M., Greenwood, S. M., Szynkiewicz, M., 
Dickerson, J. E., Bhaskar, S. S., Zampini, M., and Briggs, T. A. (2012) Mutations in 
ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon 
signature. Nature genetics 44, 1243-1248 

278. Oda, H., Nakagawa, K., Abe, J., Awaya, T., Funabiki, M., Hijikata, A., Nishikomori, R., 
Funatsuka, M., Ohshima, Y., and Sugawara, Y. (2014) Aicardi-Goutieres syndrome is 
caused by IFIH1 mutations. The American Journal of Human Genetics 95, 121-125 

279. An, J., Woodward, J. J., Sasaki, T., Minie, M., and Elkon, K. B. (2015) Cutting Edge: 
Antimalarial Drugs Inhibit IFN-β Production through Blockade of Cyclic GMP-AMP 
Synthase–DNA Interaction. The Journal of Immunology 194, 4089-4093 

280. Ablasser, A., Hemmerling, I., Schmid-Burgk, J. L., Behrendt, R., Roers, A., and Hornung, 
V. (2014) TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent 
manner. The Journal of Immunology 192, 5993-5997 

281. Sjöstrand, M., Brauner, S., Kvarnström, M., Wahren-Herlenius, M., and Espinosa, A. 
(2012) TRIM genes are part of the interferon signature observed in patients with 
primary Sjögren's syndrome. Annals of the Rheumatic Diseases 71, A81-A81 

282. Liu, X., Jiao, Y., Wen, X., Wang, L., Ma, C., Gao, X., Chen, Z.-J., and Zhao, Y. (2011) 
Possible association of VISA gene polymorphisms with susceptibility to systemic 
lupus erythematosus in Chinese population. Molecular biology reports 38, 4583-4588 

283. Li, L., Yin, Q., Kuss, P., Maliga, Z., Millán, J. L., Wu, H., and Mitchison, T. J. (2014) 
Hydrolysis of 2′ 3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nature 
chemical biology 10, 1043-1048 

284. Kumar, H., Koyama, S., Ishii, K. J., Kawai, T., and Akira, S. (2008) Cutting edge: 
cooperation of IPS-1-and TRIF-dependent pathways in poly IC-enhanced antibody 
production and cytotoxic T cell responses. The Journal of Immunology 180, 683-687 

285. Karaolis, D. K., Means, T. K., Yang, D., Takahashi, M., Yoshimura, T., Muraille, E., 
Philpott, D., Schroeder, J. T., Hyodo, M., and Hayakawa, Y. (2007) Bacterial c-di-GMP is 
an immunostimulatory molecule. The Journal of Immunology 178, 2171-2181 

286. McWhirter, S. M., Barbalat, R., Monroe, K. M., Fontana, M. F., Hyodo, M., Joncker, N. T., 
Ishii, K. J., Akira, S., Colonna, M., and Chen, Z. J. (2009) A host type I interferon 
response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-
GMP. The Journal of experimental medicine 206, 1899-1911 

140



REFERENCES 
 

 

287. Škrnjug, I., Rueckert, C., Libanova, R., Lienenklaus, S., Weiss, S., and Guzmán, C. A. 
(2014) The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on 
dendritic cells and macrophages. PloS one 9, e95728 

 

  

141



REFERENCES 
 

 
 

 

  

142



ACKNOWLEDGEMENTS 
 

 

Acknowledgements 

Foremost I would like to thank my supervisor Prof. Dr. Karl-Peter Hopfner for the 

opportunity to work in his research group in the field of structural biology. I am thankful for 

his support, advice and especially for the freedom to develop my own ideas, interest and 

skills during my PhD.  

 

Special thanks go to Dr. Gregor Witte for his support, contributions to the project and for 

introducing me into crystallography, along with its patience during the endless hours at the 

synchrotron measuring MAB21 protein crystals. You made synchrotron trips enjoyable! 

Alongside Gregor, I would like to thank Dr. Katja Lammens and Dr. Dirk Kostrewa for help 

and for answering all my crystallography related questions. 

 

My dear lab mates in the innate immune field thank you for the great lab atmosphere - along 

with your scientific and personal support. 

 

I would like to thank the whole Hopfner lab for the inspiring scientific discussions and help in 

the lab. 

 

Furthermore, I would like to thank the Coordinator Dr. Petra Runge-Wollmann and the 

members of the graduate program GRK1721 “Integrated Analysis of Macromolecular 

Complexes and Hybrid Methods in Genome Biology” for support and the inspiring 

discussions, workshops and retreats. 

 

My greatest gratitude goes to my family and Philipp who have encouraged me in my ambition 

and are always there for me. 

 

143




