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1. Introduction  

The genetic information of each organism is stored in its double-stranded deoxyribonucleic acid 

(DNA). According to the central dogma of molecular biology (Crick, 1970) gene expression and 

therefore the synthesis of proteins, which are encoded in the genetic information, is constituted of 

two processes: In the first process called transcription, ribonucleic acid (RNA) polymerases utilize one 

DNA strand as template to make RNA. Such RNA can directly fulfill several functions in the cell as 

transfer RNA (tRNA) (Berg and Offengand, 1958; Giegé, 2006) and ribosomal RNA (rRNA) or can be 

used as template as messenger RNA (mRNA) for the second process called translation. In eukaryotes, 

the transcribed mRNA is processed prior to its usage in translation: Processing steps involve the 

addition of a 5’-7-methyl guanosine (5’-m7G) cap (capping), the addition of a poly(A) tail at the 3’ end 

(polyadenylation) and RNA splicing to remove intervening sequences termed introns. Then, the 

mRNA is read (decoded) in nucleotide triplets, termed codons (Crick et al., 1961), to assemble the 

corresponding amino acids (aa) to a polypeptide chain composing the functional protein. The 

ribosome, a large molecular machine first described in 1955 (Palade, 1955) functions as platform for 

the four-step translation cycle. Newly from the ribosome emerging polypeptide chains require 

folding into their three-dimensional (3D) protein structures (‘native state’) to fulfill their cellular 

function properly which already occurs co-translationally and is facilitated by chaperons. In rather 

rare cases, the newly translated polypeptide chain leads to arrest in translation, resulting in a stalled 

polypeptide-bound ribosome residing on the mRNA. Large parts of today’s comprehension on 

ribosome-mediated processes have been generated by biochemical and structural data. Especially 

recently, due to new technological advances, high-resolution structures from both, x-ray 

crystallography and cryo-electron microscopy (cryo-EM), have revealed novel and enlightening 

insights into the intricate molecular networks underlying the ribosome’s functions in the translation 

cycle. 

1.1 The Ribosome 

1.1.1 An Overview 

All ribosomes are conserved in their function to catalyze protein synthesis. In prokaryotes and 

eukaryotes, they are often referred to as 70S and 80S particles, respectively based on their particular 

sedimentation coefficient (in the Svedberg unit S). Ribosomes are all composed of two unequally 

sized subunits (SUs) which accordingly are called small (30S in prokaryotes, 40S in eukaryotes) and 

large (50S in prokaryotes, 60S in eukaryotes) subunit (SSU and LSU, respectively). Each subunit has its 

distinct structure and function: The SSUs from different organisms have similar shapes revealing the 

head, body, platform, beak and shoulder landmarks (see Figure 1A) (Wimberly et al., 2000). The 

mRNA is situated in a channel (mRNA channel) which it enters between the ribosomal head and 

shoulder, it twins around the neck and exits between the head and the platform (Jenner et al., 2010; 

Yusupova et al., 2001). The mRNA-contained information is read in the conserved decoding center 

(DC) on the SSU interface surface (see Figure 1B).  

The LSU has an overall crown-like shape comprising the prominent central protuberance (CP), the 

L1-stalk at the tRNA exit-site and the acidic L7/L12-stalk (P1/P2-stalk in eukaryotes) serving as factor 

‘landing platform’ (see Figure 1C). The peptidyl transferase center (PTC), where peptide-bond 

formation between the aa is catalyzed, is located in the LSU. It is entirely comprised of rRNA, which 

exclusively conducts the catalytic reaction, leading to the designation ribozyme (Cech, 2000). To 

convey information from the DC to the PTC, tRNAs are utilized as adapters where the mRNA codon is 
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read by the tRNA anticodon in the DC. The tRNA binding sites are on the interface sides of both SUs 

and are named according to the tRNA state in the elongation cycle: Aminoacyl- (A-), peptidyl- (P-) or 

exit- (E-)site. The participating tRNA traverses from the A- via the P- to the E-site. Each tRNA is only 

charged by a specific aa corresponding to its anticodon sequence (Berg and Offengand, 1958; de 

Duve, 1988; Lengyel, 1966) ensuring incorporation of the cognate aa. Reading in nucleotide triplets 

results in 43 possible codons (three of which function as stop codons), yet only 20 different canonical 

aa are encoded leading to a degenerate code (Lagerkvist, 1978). Initial binding of the aminoacyl-tRNA 

occurs partly to the A-site where its anticodon is matched to the displayed mRNA codon before 

complete accommodation, whereas the hitherto synthesized polypeptide chain is linked to the P-site 

tRNA. Peptide-bond formation transfers the peptide chain to the A-site, why both tRNAs have to be 

moved to resume the original arrangement of a P-site peptidyl-tRNA. The deacylated tRNA in the 

P-site is shifted to the E-site being regarded as ready for exiting the ribosome. Due to the 5’ to 3’ 

reading direction of the mRNA, proteins are synthesized from their N- to the C-terminus (Dintzis, 

1961). The PTC is located at the heart of the ribosome, hence newly synthesized polypeptides have 

to pass through an ∼80 angstrom (Å) long and 10 - 20 Å wide exit tunnel (Frank et al., 1995) before 

being exposed to the cellular environment (see Figure 1B). The tunnel is predominantly composed of 

rRNA (Nissen et al., 2000) explaining its electronegative potential (Lu et al., 2007). ∼30 Å from the 

PTC the so called central constriction, a narrowing of the tunnel between uL4 and uL22, is apparent 

(Nissen et al., 2000). Further down, at the tunnel exit (folding vestibule), the eukaryote-specific 

protein L39e resides whereas the extension of L23 takes its place in prokaryotes (Harms et al., 2001). 

Tunnel components have been demonstrated to interact with the newly synthesized peptide. 

 

Figure 1:  Schematic Representation of the Ribosome.  

(A) The human 40S subunit (SU) (yellow) with head, body, platform, beak and shoulder indicated. (B) The 
human 80S ribosome (40S SU (yellow) and 60S SU (gray)) with mRNA channel, exit tunnel, decoding center (DC) 
and peptidyl-transferase center (PTC) indicated. The mRNA is depicted in red whereas the P-site peptidyl-tRNA 
in green. (C) The human 60S SU (gray) in its crown-shape with the central protuberance (CP), the L1-stalk at the 
tRNA exit site and the acidic P1/P2- or simply P-stalk (L7/L12-stalk in prokaryotes) indicated.  

 

Generally, maximization of reaction accuracy combined with high efficiency puts conflicting demands 

on enzymes. The eukaryotic ribosome is a precise enzyme with an error rate of 2x10-4
 to 6x10-6

 

(Stansfield et al., 1998) while incorporating ∼5 aa/sec (Olofsson et al., 1987). Profiling data (Yang et 

al., 2014) showed diminishing of this conflict by slow elongation with higher accuracy of rather 
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important residues whereas accuracy is sacrificed at other residues to gain speed. Such delicately 

modulated trade-off corroborates the multi-level regulation of ribosomal translation for optimized 

cellular function. 

1.1.2 The Three Kingdoms of Life 

 

 

Figure 2:  Comparison of the Bacterial Escherichia coli, Archaeal Haloarcula marismortui and 

Eukaryotic Homo sapiens Ribosomes.  

(A) 2.4 Å resolution structure of the bacterial Escherichia coli (E. coli) 70S ribosome (Noeske et al., 2015) with 
the 30S small subunit (SSU) colored in yellow and the 50S large SU (LSU) colored in gray (PDB-code: 4YBB). (B) 

2.4 Å resolution structure of the archaeal Haloarcula marismortui (H. marismortui) 50S LSU (Gabdulkhakov et 

al., 2013) colored as in (A) (PDB-code: 4HuB). (C) 3.6 Å resolution structure of the eukaryotic Homo sapiens 
(H. sapiens) 80S ribosome (Khatter et al., 2015). The 40S SSU and the 60S SSU are colored as in (A) (PDB-code: 
4ug0). 
The contained amount of nucleotides (nt) of ribosomal RNA and the amount of ribosomal proteins are 
indicated below the structures. 

 

As aforementioned, the ribosome always consists of two subunits whereat ribosomes from all three 

kingdoms of life contain a common conserved core (∼4,400 nucleotides (nt), 34 ribosomal proteins 

(r-proteins)) (Melnikov et al., 2012). Irrespective of this, their composition varies tremendously 

amongst different species, as visualized in high-resolution structures (see Figure 2) (Gabdulkhakov et 

al., 2013; Khatter et al., 2015; Noeske et al., 2015): The bacterial Escherichia coli (E. coli, Ec) (LSU: 

23S, 5S rRNA, 33 r-proteins; SSU: 16S rRNA, 21 proteins), the archaeal Haloarcula marismortui 

(H. marismortui) (LSU: 23S, 5S rRNA, 34 proteins; SSU: 16S rRNA, 25 proteins) and the eukaryotic 

Homo sapiens (H. sapiens) (LSU: 28S, 5.8S, 5S rRNAs and 47 r-proteins; SSU: 18S rRNA and 33 

proteins) ribosomes differ in mass of up to 2 megadalton (MDa) (E. coli vs. H. sapiens). Such 

differences are mainly attributed to additional rRNA expansion segments (ESs), (Spahn et al., 2001), 
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variable rRNA regions (Cannone et al., 2002) as well as 13 (12 in yeast) eukaryote-specific proteins 

(Halic et al., 2005; Sengupta et al., 2004; Spahn et al., 2001; Taylor et al., 2009) and protein-

extensions of the conserved proteins (Armache et al., 2010a, 2010b). These compositional 

discrepancies demand a consistent system for r-protein nomenclature which has been established 

recently and will be adhered to hereupon (Ben-Shem et al., 2011). 

In the eukaryotic LSU the additional mass can be found in two clusters indicating an intertwined co-

evolution (Yokoyama and Suzuki, 2008) of rRNA and r-proteins. The extra rRNA mass can be found as 

long ES helices protruding from the ribosome into the cytosol (Armache et al., 2010b; Ben-Shem et 

al., 2011). Even though rRNA ESs are largely responsible for the increased mass in eukaryotic 

ribosomes, a particular function for their enormous length could not have been assigned with 

certainty to date (Armache et al., 2010b; Ben-Shem et al., 2011; Houge et al., 1993, 1995; Sweeney 

et al., 1994). The eukaryote-specific r-proteins contain long unusual tails and are mainly situated at 

the solvent surface of the ribosome forming wide-ranging interactions (Ben-Shem et al., 2011; Klinge 

et al., 2011). The additional protein layer basically fulfills three functions: First, it seems to stabilize 

the long bulged ESs whose lengths increase with complexity of the eukaryotic organism, whereat 

ES27L is the most dramatic with 200 nt length in Saccharomyces cerevisiae (S. cerevisiae) and 850 nt 

in H. sapiens (Anger et al., 2013; Cannone et al., 2002). Second, eukaryote-specific proteins 

participate in interactions between the two SUs mainly at the periphery (Ben-Shem et al., 2010, 

2011; Selmer, 2006; Yusupov, 2001). These so-called intersubunit bridges are of dynamic 

composition, changing with each conformational rearrangement of the ribosome (Balagopal and 

Parker, 2011). Compared to prokaryotes, the interaction surface is nearly doubled in eukaryotes 

where additional bridges are mostly abundant at the periphery (Ben-Shem et al., 2011). Third, 

particularly on the SSU, eukaryote-specific proteins were suggested to assist in the much more 

complex process of eukaryotic translation initiation. Eukaryote-specific eS31 and eS30 for example 

were shown to interact with the initiation factor eIF1A (Weisser et al., 2013) or eS1, eS13, eS26 and 

eS27 all anchor the huge multimeric eIF3 complex to the 40S SU (Hajnsdorf and Boni, 2012; Hashem 

et al., 2013). eS6, another eukaryote-specific r-protein, plays a role in translational control due to its 

phosphorylation by the S6-kinase which is activated by the mechanistic target of rapamycin (mTOR) 

pathway in response to nutritional and environmental cues (Meyuhas and Dreazen, 2009; Ruvinsky 

and Meyuhas, 2006). Also, the receptor for activated C kinase 1 (RACK1), a scaffolding-protein 

(Nilsson et al., 2004; Sengupta et al., 2004), plays a putative role in SU joining via indirect eIF6 

phosphorylation (Ceci et al., 2003) or the recruitment of specific mRNAs (e.g. β-actin mRNA/Z-DNA 

binding protein (ZBP1)) (Ceci et al., 2012) why it might allow ribosome positioning for localized 

translation (Sasaki et al., 2010). Additionally, RACK1 was shown to be necessary for hepatitis C virus 

(HCV) Internal Ribosome Entry Site (IRES)-mediated translation initiation (Majzoub et al., 2014). 

1.2 The Eukaryotic Translation Cycle 

Translation, the process where mRNA is decoded in order to produce polypeptide chains, is mediated 

via the ribosome in all living cells. Generally, translation appears as cycle composed of four phases: 

Initiation, elongation, termination and recycling (see Figure 3) (Kapp and Lorsch, 2004; Rodnina and 

Wintermeyer, 2009). In bacteria polypeptide synthesis is mediated in the cytoplasm whereas in 

eukaryotes it occurs in the cytoplasm or across the endoplasmatic reticulum (ER) membrane. 

Especially during the initiation and termination phases eukaryotes employ a far more complex 

regulatory system which the focus is set on henceforth. 
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Figure 3:  Schematic of the Bacterial and Eukaryotic Translation Cycles. 

The translation process is realized in a four-step cycle consisting of initiation, elongation, termination and 
recycling. On the left-hand side, the translation cycle and its required protein factors are indicated for bacteria, 
whereas on the right-hand side for Eukarya. Factor names in black are homologous, in green are bacteria-
specific and in red are eukaryote-specific.  
Figure was based on Melnikov et al. (Melnikov et al., 2012). Abbreviations see II. 

 

1.2.1 Initiation 

The initiation process intends the assembly of an elongation-competent ribosome with an mRNA 

AUG start codon in its SSU P-site, bound to an initiator tRNA (fMet-tRNAi
fMet in prokaryotes and 

Met-tRNAi
Met in eukaryotes).  

In prokaryotes the Shine-Dalgarno (SD) sequence, located 7 - 10 nt upstream of the mRNA AUG start 

codon, plays a profound role in AUG positioning (Shine and Dalgarno, 1974). The SD sequence base 

pairs with the anti-Shine-Dalgarno (anti-SD) sequence in the 3’ end of the 16S rRNA, positioning the 

AUG codon in the 30S P-site (Kaminishi et al., 2007). Three initiation factors (IF1, 2 and 3) promote 

binding of the fMet-tRNAi
fMet (IF2), control mRNA binding (IF3), block the ribosomal A-site (IF1) and 

monitor subunit joining (IF2 and 3) to form an initiating complex. 

In eukaryotes, on the contrary, this initiation process is by far more intricate relying on an mRNA 

scanning mechanism and on 13 core initiation factors (eIFs) which are termed eIF1 - 6 and of which 

numerous are even multimeric complexes (reviewed in Aitken and Lorsch, 2012; Hinnebusch, 2014; 
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Voigts-Hoffmann et al., 2012). Such complexity renders this process highly regulated (Sonenberg and 

Hinnebusch, 2009), yet beclouds our understanding of the detailed molecular processes. 

Canonical Initiation 

The first step in eukaryotic translation initiation is the assembly of a ternary complex (TC): The 

trimeric (α, β, γ) guanosine triphosphatase (GTPase) eIF2 recognizes the unique structure of the Met-

tRNAi
Met which binds with high affinity to guanosine triphosphate (GTP)-bound eIF2 (see Figure 4) 

(Kolitz and Lorsch, 2010). Notably, phosphorylation of eIF2α on Ser51 in response to various stress-

stimuli, as key mechanism of translational control, inhibits guanosine diphosphate (GDP) to GTP 

nucleotide exchange by its guanine nucleotide exchange factor (GEF) eIF2B, retaining eIF2 

incompetent for Met-tRNAi
Met binding (Jackson et al., 2010; Schmitt et al., 2010).  

 

Figure 4:  Canonical Translation Initiation in Eukaryotes. 

During canonical translation initiation in eukaryotes, ribosomal scanning is inevitable for AUG start codon 
recognition. Here, 13 core protein factors (called eIF1 - 6) are required. First, ternary complex (TC) formation of 
eIF2, the initiator tRNA Met-tRNAi

Met and guanosine triphosphate (GTP) is performed. Subsequently, the TC 
joins eIF1, 1A, 3, 5 and the 40S subunit (SU) to form the 43S preinitiation complex (PIC). Interactions with 
5’ mRNA-bound eIF4F (consisting of eIF4A, E, G) and eIF4B enable PIC binding to the mRNA which results in the 
48S complex. Unwinding of the mRNA allows scanning in 5’ to 3’ direction until encounter of an AUG start 
codon, where the 60S SU is joined to result in the 80S initiation complex which is enhanced by eIF5 and 5B. 
Premature 60S SU binding is prevented by eIF6. Finally, initiation factors are evicted rendering the 80S 
ribosome ready for translation elongation. 

 

eIF1, 1A, 3 and 5 binding to the 40S SU all promote association with the TC to form a 43S pre-

initiation complex (PIC) (Algire et al., 2002; Asano et al., 2001; Kolupaeva et al., 2005; Majumdar et 

al., 2003). eIF1, 1A and 3 are thought to have already bound to the 40S SU during the recycling 

process to prevent subunit re-joining (Jackson et al., 2012). Structural and biochemical data have 

delivered insights into the positioning of the eIFs on the 40S SU: eIF1 binds in proximity to the P-site 

(Lomakin et al., 2003; Rabl et al., 2011). eIF1A binding to the A-site was revealed by homology 

modeling based on its prokaryotic homolog IF1 (Carter, 2001), protruding with its C-terminal tail 

(CTT) into the P-site (Olsen et al., 2003) and therefore blocking full tRNA accommodation. The eIF1A 

N-terminal tail (NTT) interacts with eIF2 and 3, directly stabilizing TC binding to the 43S PIC (Olsen et 

al., 2003). The large multimeric eIF3-complex (13 SU in mammals (a - m), 6 in yeast (a, b, c, g, i, j)) 

(Jackson et al., 2010) reveals a 5-lobed shape (Querol-Audi et al., 2013; Siridechadilok et al., 2005; 

Sun et al., 2011), localizes uniquely at the solvent-exposed side of the 40S SU and was reported to 

span from the mRNA entry to the exit channel (Chiu et al., 2010; Pisarev et al., 2008; Querol-Audi et 

al., 2013; Siridechadilok et al., 2005). Further, it can interact with each component of the 43S PIC 

(Asano et al., 2000; Kolupaeva et al., 2005; Pisarev et al., 2008; Valasek, 2003) possibly coordinating 

its assembly. Both terminal domains of eIF5 interact with eIF2 (β and γ) (Alone and Dever, 2006; 
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Asano et al., 1999; Das et al., 2001; Paulin et al., 2001; Yamamoto et al., 2005), however, its precise 

localization, as well as its time of binding, is still under debate.  

eIF1 und 1A jointly promote the ‘open’, scanning-competent conformation of the 43S PIC (Pestova et 

al., 1998). Here, the tRNAi is not fully accommodated (Pout state), yet (Saini et al., 2010). As 

mentioned, eIF1A’s CTT extends into the P-site to prevent full tRNAi acceptor stem loop (ASL) 

accommodation, keeping it rather in a P/E state (Dunkle et al., 2011; Saini et al., 2010). Further, 

based on the crystal structure of the eIF1-bound 40S SU from Tetrahymena thermophile, eIF1 

promotes an unlocked mRNA ‘latch’ (open mRNA entry channel between the 40S body (h18) and 

head (h34 and uS3)) likewise keeping the tRNA in the metastable Pout state (Passmore et al., 2007). In 

addition, in mammals eIF3 was suggested to be non-dispensable for the ‘open’ 43S PIC conformation 

(Chaudhuri et al., 1999; Kolupaeva et al., 2005; Majumdar et al., 2003).  

The 5’-m7G-capped mRNA is redundantly bound to the eIF4F complex consisting of eIF4A, E and G: 

eIF4A is an adenosine triphosphate (ATP)-dependent, non-processive DEAD-box helicase (Liu et al., 

2008; Lorsch and Herschlag, 1998; Sengoku et al., 2006) and the least conserved factor eIF4B 

(mammals) or eIF4H (plants) promotes its activity (Bi et al., 2000; Cheng et al., 2008; Özeş et al., 

2011; Rogers et al., 2001, 2002; Rozovsky et al., 2008). eIF4F catalyzes mRNA unwinding directly at 

the 5’ mRNA end for 43S PIC loading (Pestova and Kolupaeva, 2002) whereupon evidence 

accumulates for the necessity of more potent helicases (e.g. Dhx29 (mammals), Ded1 (yeast)) to 

catalyze mRNA unwinding of more complex secondary structures during mRNA scanning (Abaeva et 

al., 2011; Pisareva et al., 2008). 5’-m7G cap recognition, mediated by eIF4E, which is least abundant 

under the eIFs, represents the rate-limiting step in initiation and consequently is highly regulated 

upon cellular stimuli (Duncan et al., 1987; Hiremath et al., 1985; reviewd in Raught and Gingras, 

1999). eIF4G acts as scaffold. It is known to interact with the poly(A)-binding protein (PABP) bound to 

the 3’-poly(A) tail and to simultaneously interact with eIF4E bound to the 5’-m7G cap which results in 

bridging and therefore circularization of the mRNA. This locally brings the recycling and initiation 

steps closer together, accelerating the passage to the next round of the translation cycle (Uchida et 

al., 2002). Furthermore, in mammals eIF4G activates eIF4A’s helicase activity (Rogers et al., 2002; 

Schütz et al., 2008) and directly interacts with eIF3 (part of the 43S PIC) which assigns a role in 43S 

PIC recruitment and consequently 48S complex (43S PIC and mRNA) assembly (LeFebvre et al., 2006).  

Once recruited, the 43S PIC scans 5’ to 3’, base by base with ∼8 bases/sec during which codon 

sampling in the P-site is realized (Berthelot et al., 2004; Vassilenko et al., 2011). Only in the right 

sequence surrounding the first AUG encounter leads to start codon recognition. If there is sufficient 

deviation from the ideal Kozak sequence 5’-(A/G)NNAUGG-3’ (Kozak, 1986), leaky scanning leads to 

start codon omitting, resulting in initiation at an ensuing AUG-codon. Upon start codon recognition 

the complex engages its ‘closed’, scanning arrested conformation (Maag et al., 2005). eIF1, situated 

at the critical intersubunit bridge B2a (Rabl et al., 2011), blocks premature binding of the 60S SU. For 

tRNAi accommodation, domain rearrangements in eIF1 and 1A are a prerequisite to clear the P-site 

(Yu et al., 2009). Especially, eIF1 (which is functionally homologous to the prokaryotic IF3 in 

maintaining proper start codon selection) (Lomakin et al., 2006) dissociation is of major importance 

and is enhanced by eIF5 (Nanda et al., 2009; Pisarev et al., 2006) triggering a cascade: GTP hydrolysis 

by eIF2 can now be followed by eIF5-mediated inorganic phosphate (Pi) release (Algire et al., 2005; 

Maag et al., 2005) resulting in full accommodation of the tRNAi in the P-site (Pin state) (Maag et al., 

2005) which stabilizes the Met-tRNAi
Met - mRNA interaction and is accompanied by 40S head rotation 



I n t r o d u c t i o n  

 

P a g e  | 17 
 

which locks the Met-tRNAi
Met (Lomakin and Steitz, 2013). In a described model, displacement of eIF1A 

CTT could confer movement to eIF5 (Maag et al., 2006) which then interacts with the eIF1A CTT to 

consequently allow Pi release (Aitken and Lorsch, 2012). However, detailed domain positioning at this 

stage is not known.  

Next, eIF2:GDP together with eIF5 dissociate from the complex (Shin et al., 2002; Singh et al., 2006, 

2007) freeing the eIF1A CTT for the mediation of SU joining (Acker et al., 2006; Marintchev et al., 

2003; Olsen et al., 2003). Premature 80S assembly is likewise impeded on the 60S SU by the anti-

associative eIF6 protein which is bound to the LSU GTPase center and has to dissociate (Brina et al., 

2011; Gartmann et al., 2010; Greber et al., 2012; Klinge et al., 2011, 2012). 60S recruitment, 

facilitated by another GTPase called eIF5B (structurally homologous to IF2) (Pestova et al., 2000) 

evicts the remaining eIFs from the 40S SU (Acker et al., 2006) rendering the complete 80S ribosome 

competent for translation elongation (Aitken and Lorsch, 2012).  

Internal Ribosome Entry Site-mediated Initiation  

Compared to the highly regulated, multi-step process of eukaryotic initiation (see Figures 4 and 5A), 

many viruses have evolved alternative mechanisms to circumvent host control and even compromise 

or sabotage the host’s canonical translation (by targeted proteolysis (Castelló et al., 2009; Chau et al., 

2007; Etchison et al., 1982), eIF modification (Feigenblum and Schneider, 1993; McInerney et al., 

2005; Mulvey et al., 2003) or overproduction of competing 5’-m7G cap-binding proteins 

(Marcotrigiano et al., 1999)). 

 

Figure 5:  Comparison of the Canonical and Several Internal Ribosome Entry Site-mediated 

Translation Initiation Processes. 

(A) The canonical 5’-m7G cap-dependent 48S initiation complex is assembled (as described in Figure 4 in more 
detail) which allows for mRNA scanning. (B) Encephalomyocarditis virus (EMCV) Internal Ribosome Entry Site 
(IRES) mediated initiation. Direct interaction between the EMCV IRES and the eukaryotic initiation factor eIF4G 
circumvents the necessity for eIF4E by direct recruitment of the 43S preinitiation complex to the IRES. 
Therefore, eIF1, 1A and 4E are not needed in the initiation process. (C) Hepatitis C virus (HCV) IRES mediated 
initiation. Here, direct interaction of the HCV IRES with the 40S subunit (SU), as well as with eIF3, removes the 
need for further eIFs. Since the AUG start codon is directly placed into the peptidyl-tRNA site of the 40S SU, no 
scanning is necessary either. Yet, Met-tRNAi

Met positioning by eIF2 is still required. (D) Cricket paralysis virus 
(CrPV) intergenic region (IGR) IRES mediated initiation. In this particular case neither Met-tRNAi

Met nor eIFs are 
required by directly recruiting the 40S SU. Protein synthesis is initiated from the aminoacyl-tRNA binding site 
GCU codon by jump-starting elongation. 
Color scheme see Figure 4. 

 

The utilization of IRES-sequences, cis-acting mRNA whose 3D structure is of utter importance for its 

function, allows viral translation to by-pass the canonical initiation pathway eliminating the need for 

some (or even all) of the cellular eIFs (Fernández-Miragall et al., 2009; reviewed in Holcik and 
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Sonenberg, 2005; Jang et al., 1988; Pelletier and Sonenberg, 1988). IRES-dependent translation is 

known to be 5’ cap-independent, why for instance positive strand viral RNA of Picornaviridae instead 

contain a viral protein genome-linked (VPg) covalently attached to the 5’ end of their genome. IRES 

classification is mainly based on their dependency on the canonical initiation factors: The class of 

Type I IRES comprises entero- and rhinovirus genomes (Jackson et al., 1990; Nomoto et al., 1976) 

whereas the oldest class of Type II IRES comprises cardio- and aphthovirus genomes all of the 

Picornaviridae family with the most characterized IRES being the encephalomyocarditis virus (EMCV) 

IRES (see Figure 5B) (Jang et al., 1988). For both types I and II, many of the canonical initiation factors 

are needed except for eIF4E and the N-terminal region of eIF4G (reviewed in Hanson et al., 2012). 

Type III IRES are present in the Flaviviridae family whose mRNA directly binds to the 40S SU and eIF3 

why no 5’-m7G cap-binding eIFs are needed and are exemplified by the HCV IRES (see Figure 5C) 

(Tuller et al., 2010; Zhou et al., 2013). All IRES types mentioned so far additionally utilize non-

canonical initiation factors called IRES-transacting factors (ITAFs) further circumventing their 

dependency on the targeted host eIFs (Morley et al., 2005). Cricket paralyses virus (CrPV) IRES (see 

Figure 5D), the prototypical example for a type IV IRES, is independent of any cellular initiation 

factors and occurs in the family of Dicistroviridae (Wilson et al., 2000). 

The natural CrPV IRES is located at an intergenic region (IGR) of a dicistronic message (Wilson et al., 

2000). Whereas initiation via the HCV IRES still requires proper positioning of the Met-tRNAi
Met on the 

AUG start codon in the P-site, the CrPV IGR IRES even eliminates such need by starting translation 

form the A-site: The mRNA binds directly to the 40S SU, recruiting the 60S SU for hijacking the 

complete 80S ribosome. Cryo-EM studies (Fernández et al., 2014; Muhs et al., 2015; Schüler et al., 

2006) revealed that the CrPV IGR IRES pseudoknot I (PKI) mimics the tRNA/mRNA interaction in the 

A-site DC rather resembling the pre-translocation (PRE) state of the ribosome than any initiation 

state. Further, eukaryotic elongation factor 2 (eEF2) requirement for translocation to subsequently 

obtain the first open reading frame (ORF) codon (GCU) in the A-site argues for a jump-started 

elongation rather than initiation by this type of IRES (Fernández et al., 2014). 

1.2.2 Elongation 

Compared to translation initiation and termination, the elongation cycle (see Figure 6) is highly 

conserved between eukaryotes and bacteria. Most studies in this context therefore were conducted 

in the easier approachable model system of bacteria, yet the obtained key findings should be 

likewise applicable for eukaryotic organisms. 

After successful initiation, the ribosome harbors an initiator tRNA in its P-site and contains an empty 

A-site displaying the next ORF codon for tRNA sampling. Delivery of the aminoacyl-tRNA is mediated 

as ternary complex together with the GTP-bound elongation factor EF-Tu (eEF1A in eukaryotes). 

Solely cognate aminoacyl-tRNA binding results in GTP-hydrolysis, subsequent EF-Tu dissociation and 

progression towards rapid peptide-bond formation to elongate the nascent peptide chain by one aa. 

A finalizing translocation step, facilitated by EF-G (eEF2 in eukaryotes), moves the mRNA and the 

bound tRNAs by one codon displaying the next ORF codon in the empty A-site for anew tRNA delivery 

in a sequential manner. 
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Figure 6:  The Elongation Cycle. 

The small ribosomal subunit (SSU) is depicted in yellow, the large ribosomal subunit (LSU) in gray. The 
description start is indicated by a ‘*’: Amino-acid-bound tRNA (purple) delivery to the ribosomal aminoacyl-
tRNA binding site (A-site) is mediated by the elongation factor EF-Tu (red) as ternary complex with guanosine 
triphosphate (GTP). Subsequent GTP hydrolysis to guanosine diphosphate (GDP) (light pink) is followed by tRNA 
accommodation and GDP:EF-Tu release. At which point the deacylated tRNA in the exit site (E-site) (blue) 
vacates the ribosome is uncertain. Concomitant to peptide-bond formation, the nascent chain is transferred 
from the peptidyl-tRNA binding site (P-site) (green) to the A-site (purple) tRNA which results in the pre-
translocation (PRE) state. In hybrid state 2, the P-site tRNA is in a hybride P/E state (first letter corresponding to 
its position on the SSU, second letter to its position on the LSU). In the subsequent hybrid state 1, additionally 
the A-site peptidyl-tRNA is found in a hybrid A/P state. Elongation factor EF-G (brown) binding and GTP 
hydrolysis promote translocation of the tRNAs into the P/P and E/E states. The release of GDP:EF-G results in 
the post-translocation (POST) state which is ready for the next round of elongation. 

 

Decoding and tRNA Accommodation 

Efficient and precise decoding is required for high fidelity rates of elongation while performing at 

high speed. To increase the local concentration of the ternary aminoacyl-tRNA:EF-Tu:GTP complex, 

multiple EF-Tu proteins were suggested to interact simultaneously with the L7/L12-stalk (P1/P2-stalk 

or P-stalk in eukaryotes) proteins located at the tRNA entry side (Blanchard et al., 2004; Diaconu et 

al., 2005; Rodnina et al., 1996). tRNA binding to the A-site not only results in Watson-Crick base-

pairing interactions of the tRNA anticodon arm with the mRNA codon, but also induces 

conformational changes in the highly conserved rRNA residues Ec A1492 (Hs A1824), Ec A1493 

(Hs A1825) and Ec G530 (Hs G626) which interact with the minor groove of the formed codon-

anticodon helix at position 1 and 2 (not at 3 which is consistent with the ‘wobble hypothesis’ (Crick, 

1966)) to form an A-minor interaction (Ogle et al., 2001). Unexpectedly, the Watson-Crick base-

pairing geometry (instead of wobble-pair geometry) was reported also for near- or non-cognate tRNA 

binding in crystal structures (Ratje et al., 2010) which even was accompanied by similar rRNA 
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positioning and interaction patterns as for cognate tRNA binding. Yet, such enforced and unfavorable 

nucleotide conformation results in high energy loss and is therefore thought to be responsible for 

tRNA discrimination and the absence of elongation progression due to lacking energy for near- and 

non-cognate tRNA binding. This results in a model for codon discrimination where the ribosome 

rather provides a geometric highly restrictive environment coupled to energy loss for near- or non-

cognate tRNAs than performs specific sampling of right Watson-Crick base-pairing conformations for 

cognate tRNAs which would lead to unique rRNA interactions. Nevertheless, a close-by rRNA 

nucleotide in Helix 69 (H69), Ec A1913 (Hs A3731) was reported to acquire different conformations 

upon cognate versus near-cognate tRNA binding to the A-site (Demeshkina et al., 2012; Selmer, 

2006). 

Subsequent to cognate tRNA binding, the resulting energy is transferred to conformational changes 

(Pape et al., 1999): Ribosomal domain closure (a large scale SSU rotation towards the LSU) (Ogle et 

al., 2002, 2003), distortion of the tRNA body in the anticodon- and the D-stem to fit the A/T state 

(state where the aminoacyl-tRNA is bound to the A-site of the SSU, yet not to the LSU) (Moazed and 

Noller, 1989; Schmeing et al., 2009; Stark et al., 1997; Valle et al., 2002) and EF-Tu domain 

rearrangement to prevent clashing into the 23S rRNA sarcin-ricin loop (SRL) (Voorhees and 

Ramakrishnan, 2013). These conformational rearrangements all contribute to GTPase activation of 

EF-Tu in which the phosphate of Ec A2662 (in the SRL) (Voorhees et al., 2010) and a conserved His 

(Ec His84) of EF-Tu itself (Daviter et al., 2003) were suggested to play a major role. The SRL opens a 

‘hydrophobic gate’ (Berchtold et al., 1993; Schuette et al., 2009; Sengupta et al., 2008; Villa et al., 

2009; Vogeley et al., 2001; Voorhees et al., 2010) accompanied by the stabilization of an active 

Ec His84 conformation coordinating an H2O to catalyze hydrolysis of the GTP γ-phosphate (Berchtold 

et al., 1993; Daviter et al., 2003; Knudsen et al., 2001). Pi release is followed by domain rotation of 

EF-Tu (Berchtold et al., 1993) which disrupts important interaction sites (Schmeing et al., 2009) and 

leads to dissociation of GDP:EF-Tu. At this point, the tRNA is solely bound via its Watson-Crick base-

pairing interactions which, as mentioned above, are stronger for cognate tRNAs. This serves as 

another, independent step of proof-reading (Blomberg et al., 2009; Gromadski and Rodnina, 2004; 

Thompson and Stone, 1977). Now, the aminoacyl-tRNA acceptor stem can accommodate into the 

PTC to allow rapid peptide-bond formation. Interestingly, Zaher et al. (Zaher and Green, 2009) 

reported further proof-reading even after the aa has already been incorporated. The codon-

anticodon helix in the P-site is monitored, resulting in complete translation termination for 

discovered mismatches, once again increasing fidelity of the process. 

Peptidyl Transfer 

As mentioned in 1.1.1, the PTC is solely comprised of rRNA (Ban, 2000; Nissen et al., 2000; Selmer, 

2006; Voorhees et al., 2009) providing the environment for the nucleophilic attack of the A-site 

primary amine to the P-site peptidyl-tRNA aminoacyl-ester to elongate the polypeptide chain by one 

aa (see Figure 7). This reaction concomitantly transfers the whole nascent chain from the P-site tRNA 

to the A-site aminoacyl-tRNA. Importantly, spontaneous ester-bond hydrolysis during translation is 

omitted by steric exclusion of H2O via the PTC residues Ec A2486 (Hs A4394) and Ec C2063 (Hs C3880) 

on the one side and Ec U2585 (Hs U4493) on the other (Schmeing et al., 2005a). 

A-site aminoacyl-tRNA accommodation results in an induced fit mechanism remodeling the PTC 

residues Ec G2583 - U2585 (Hs G4491 - U4493) and Ec U2506 (Hs U4414) (Schmeing et al., 2005a; 

Voorhees et al., 2009) as well as in re-positioning of the carbonyl carbon of the P-site ester-bond to 
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facilitate the catalyzed reaction (Schmeing et al., 2005b). Simultaneous proper arrangement of the 

A-site α-amino group in close proximity reveals a major contribution of the PTC to the reaction’s 

catalysis by substrate positioning why the ribosome is thought to function as ‘entropy trap’ (Sievers 

et al., 2004). Notably, the ribosome enhances the nucleophilic attack by seven orders of magnitude 

indicating further contribution besides proper substrate positioning. Prime candidates for direct 

participation in the chemical reaction are the N3 of Ec A2451 (Hs A4359) (Muth, 2000; Nissen et al., 

2000) or the 2’ OH of the P-site A76 ribose (Hansen et al., 2002). The importance of these residues 

however, has been challenged by numerous studies. Ec A2451 (Hs A4359) for example was shown to 

be dispensable for peptide-bond formation (Youngman et al., 2004) and replacement of the A76 

ribose 2’ OH by 2’ H or 2’ fluoride (F) revealed only moderate decrease in the catalysis rate (Zaher et 

al., 2011). Further, the A76 ribose 2’ OH was suggested to be involved in a fully concerted 

8-membered proton-shuttle mechanism (in the transition state (TS)) (Kuhlenkoetter et al., 2011) 

which is contradictory to studies that rather propose a 2-step mechanism involving a tetrahedral TS 

(Hiller et al., 2011). Although the precise catalytic mechanism of peptide-bond formation, as well as 

the contribution of individual residues, still remains to be elucidated, a ribosomal role beyond 

substrate positioning is evident due to its large catalytic power compared to the un-catalyzed 

reaction (Sievers et al., 2004). 

 

Figure 7:  Peptide-bond Formation. 

Chemical mechanism of the peptide-bond formation reaction between the amino acid (aa) delivered to the 
aminoacyl-tRNA binding site (A-site) and the nascent peptide chain bound to the tRNA in the peptidyl-tRNA 
binding site (P-site). The free electron pair of the primary amine of the A-site aa (red) acts as nucleophile which 
attacks the carbonyl carbon of the ester-bond (blue) in the P-site. Break down of the transition state (TS) 
results in a deacylated tRNA in the ribosomal P-site and transfer of the nascent peptide chain to the A-site tRNA 
(Beringer and Rodnina, 2007; Rodnina, 2013; Schmeing et al., 2005b). 
The reaction mechanism was drawn with ChemSketch (ACD/Labs).  

 

Translocation 

Successful peptide-bond formation results in an elongated nascent peptide chain attached to the 

A-site tRNA, whereas the deacylated tRNA is localized in the P-site. To render the A-site accessible for 

the next tRNA, translocation (the movement of the mRNA and tRNAs by nearly 50 Å) from the 

ribosomal PRE to the post-translocation (POST) state is required (see Figure 8). To this end, first a 

hybrid state is adopted by the tRNAs, where only their counterparts in the LSU move to the P- and E-

sites resulting in an A/P and P/E hybrid state 1 (Bretscher, 1968; Moazed and Noller, 1989). Such 

hybrid state was suggested to be promoted by peptide-bond formation (Semenkov et al., 2000; 

Sharma et al., 2004) or can occur spontaneously (Agirrezabala et al., 2008; Julián et al., 2008) where 



I n t r o d u c t i o n  

 

P a g e  | 22 
 

the P/E state precedes formation of the A/P state (Pan et al., 2007; Walker et al., 2008) even 

resulting in a short-lived hybrid state 2 intermediate. Hybrid state formation is facilitated by counter-

clockwise rotation of the SSU relative to the LSU (ratcheting) resulting in the rotated PRE state (Frank 

and Agrawal, 2000). 

Since the ribosome itself was observed to allow tRNA movement in both directions (Konevega et al., 

2007; Shoji et al., 2006), directionality (Frank, 2012; Frank and Gonzalez, 2010), as well as precision 

(to exactly keep the reading-frame), is mediated by EF-G (eEF2 in eukaryotes). GTP-bound EF-G 

mimics the ternary aminoacyl-tRNA:EF-Tu:GTP complex and inserts its domain IV into the DC of the 

SSU (Agrawal et al., 1998; Nissen et al., 1995) disrupting the delicate hydrogen bonding (H-bonding) 

network and preventing back-translocation (Chen et al., 2013; Connell et al., 2007; Gao et al., 2009; 

Khade et al., 2013; Ratje et al., 2010; Tourigny et al., 2013). This induces SSU head movement of 18° 

toward the E-site relative to the SSU body (head swiveling) (Schuwirth et al., 2005) thought to 

facilitate tRNA movement in a yet unknown way (Guo and Noller, 2012; Ratje et al., 2010; Zhang et 

al., 2009b). 

 

Figure 8:  tRNA Positioning in the Ribosomal Head and Body during Translocation.  

The small ribosomal subunit (SSU) is depicted in yellow, the large ribosomal subunit (LSU) in gray. In the lower 
schematic, the tRNA exit-site (E-site), the peptidyl-tRNA binding site (P-site) and the aminoacyl-tRNA binding 
site (A-site) are marked with E, P and A, respectively. (A) The pre-translocation (PRE) state is highly dynamic 
where both tRNAs can either exist in the classical A/A and P/P states or spontaneously fluctuate to hybrid 
states in which the tRNA(s) are moved relative to the LSU like in (B), the hybrid state 2, where the P-site tRNA is 
moved to the P/E state or in (C), the hybrid state 1, where the A-site tRNA is additionally moved to the A/P 
state. (D) Subsequently, guanosine triphosphate (GTP):EF-G (brown) binding stabilizes the ratcheted pre-
translocational intermediate (TIPRE) state with a moderately swiveled SSU head. (E) Due to further head 
swiveling and back-ratcheting after GTP to guanosine diphosphate (GDP)-hydrolysis, the additional movement 
of the tRNAs relative to the LSU to the ap/P and pe/E states follows, resulting in the post-translocational 
intermediate (TIPOST) state. (F) GDP:EF-G dissociation completes translocation with the ribosome in the 
unratcheted post-translocation (POST) state in which a back-swiveled SSU head results in the classical P/P and 
E/E tRNA states.  

 

Crystallization of the Thermus thermophilus (Thermus, Tt) 70S PRE ribosome bound to an L9-fused 

EF-G protein visualized a compacted EF-G conformation where its domains III - V are oriented away 

from the A-site of the SSU (Lin et al., 2015). It was hypothesized that SSU rotation allows GTP-

independent elongation of the factor positioning domain III next to domain I. Subsequent GTP-

hydrolysis might further extend EF-G putting domain IV into the DC of the SSU. The fully extended 

EF-G conformation was observed for L9-fused EF-G bound to the POST state. Interestingly, EF-G not 

only resembles the ternary complex of aminoacyl-tRNA:EF-Tu:GTP, but recently a similar role for a 
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highly conserved His (Ec His91) in coordinating an H2O molecule for GTP-hydrolysis in context with 

the SRL has been observed, highlighting even more similarities to EF-Tu’s function on the ribosome 

(Voorhees et al., 2010). A recent cryo-EM structure of an E. coli 70S ribosome bound to a His91Ala 

EF-G mutant protein demonstrated strong contacts of EF-G to S12 and L11 only with the rotated PRE 

(as opposed to the non-rotated POST) state restricting EF-G’s conformation (Li et al., 2015). S12 

contacts stabilized domain III which properly positions the domain in vicinity to switch I. This was 

stated to be a prerequisite for GTP hydrolysis.  

By solving two differently rotated cryo-EM reconstruction of the Thermus ribosome bound to fucidic-

acid-stalled EF-G, which cannot undergo the rearrangements upon GTP hydrolysis, two novel hybrid 

states were discovered (Ratje et al., 2010): After EF-G binding, the pre-translocational intermediate 

(TIPRE) state is engaged with tRNAs in the A/P and P/E states where the 30S SU head is moderately 

swiveled and the body ratcheted by 7°. Further swiveling, yet back-rotation of the body to only 4° 

lead to the TIPOST state with tRNAs in the intra-subunit ap/P and pe/E states. This TIPOST state was 

suggested to be stabilized by EF-G domain IV which interacts with h34 leading to ‘latch’ opening of 

the mRNA channel. EF-G-catalyzed mRNA and tRNA movements (Ermolenko and Noller, 2011; 

Savelsbergh et al., 2003; Studer et al., 2003) in the SSU are coupled to complete back-ratcheting of 

the SSU to the classical POST state leaving the ribosome with a peptidyl-tRNA in the P-site and a 

deacylated tRNA in the E-site (Ermolenko and Noller, 2011) which has to dissociate for completion of 

one elongation cycle (Chen et al., 2011; Uemura et al., 2010). Sequential elongation steps are 

performed until an mRNA stop codon is displayed in the A-site. 

Recent cryo-EM analysis of native, translating human 80S ribosomes revealed a significant population 

of the POST state and hence its high-resolution structure (Behrmann et al., 2015). Authors suggest a 

stoichiometric E-site tRNA which contacts the LSU 28S rRNA with its acceptor stem and CCA-end. A 

tight binding pocket excludes aminoacyl-tRNAs, yet unlike in prokaryotes C75 interacts with 

eukaryote-specific eL44. Due to further E-site tRNA abundancy in the unrotated PRE state, authors 

reason that it is the rotation which leads to E-site tRNA destabilization resulting in its subsequent 

release. Although the prevalent model for translocation includes EF-G binding, GTP-hydrolysis and 

subsequent mRNA/tRNAs movement coupled to ribosome unlocking followed by relocking steps, the 

sequential order of ribosome movement and translocation is still a hot topic in the field, leaving 

discussions about causes and consequences.  

Despite of being highly regulated the steps of tRNA delivery or translocation can be erroneous which 

results in stalled ribosomes blocking further progression. Here, EF4 (former LepA), which contains six 

domains, (four of which are homologous to EF-G (Evans et al., 2008b)) can produce relief. The crystal 

structure of Thermus-bound EF4 revealed its function in back-translocation or in helping to displace 

the EF-Tu delivered A-site tRNA. Remodeling of the DC is accompanied by a clockwise rotation of the 

SSU relative to LSU and is thought to ensure that ribosomes don’t remain stalled during elongation 

(Gagnon et al., 2014). A corresponding counterpart has not been discovered in eukaryotes (yet). 

Eukaryotic Peculiarities 

Even though the general process of translation elongation is highly conserved, some specific features 

have evolved for eukaryotes:  
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For example, E-site tRNA clearance after successful translocation is facilitated by the yeast- or fungal-

specific adenosine triphosphatase (ATPase) eEF3 (Andersen et al., 2006; Gagnon et al., 2014) which, 

however, lacks homologues in higher eukaryotes.  

Further, in eukaryotes eEF2 is post-translationally modified from His to diphthamide on the tip of its 

functionally important domain IV which was suggested to play a crucial role during development 

(Chen and Behringer, 2004; Liu et al., 2006; Webb et al., 2008) and to positively influence frame-

accurate translocation (Ortiz et al., 2006) by disrupting the mRNA - tRNA duplex interaction in the 

SSU DC (Taylor et al., 2007). In addition, a regulatory phosphorylation at Thr56 by the eEF2 kinase 

was reported to inhibit eEF2 binding to the ribosome (Carlberg et al., 1990) blocking total protein 

translation. Since translation elongation consumes the vast majority of energy in the eukaryotic cell 

(Rennie, 2005), eEF2 kinase regulation by the mitogen-activated protein (MAP) kinase and mTOR 

signaling pathways (Knebel et al., 2001; Redpath et al., 1996; Wang et al., 2001) couples various 

cellular stimuli like mitogens, growth factors or G-protein coupled receptor antagonists to translation 

elongation via the eEF2-phosphorylation status, rendering eEF2 a key player in eukaryotic translation 

regulation.  

eIF5A (EF-P in bacteria) does not represent a eukaryote-specific factor, however, is uniquely modified 

on a conserved lysine to hypusine (Park et al., 2010). Its involvement in the elongation cycle by 

promoting the sophisticated poly-proline synthesis especially is important in the context of ribosomal 

stalling. As the quantity of genome-wide poly-proline motifs increases with complexity of the 

eukaryotic organism, a role for eIF5A in eukaryotic evolution has been suggested (Mandal et al., 

2014). 

Reaching higher structural resolution and therefore increasing sensitivity for subtle changes and 

structural insights, Budkevich et al. (Budkevich et al., 2014) have recently not only discovered 

propensity towards a rotated PRE-state during mammalian elongation, but also a novel 40S 

movement during tRNA accommodation from the A/T to the A/A state which is absent in bacteria. 

Such subunit rolling is concomitant with an altered binding site and interaction pattern for the 

ternary aminoacyl-tRNA:eEF1A:GTP complex. Even though the overall process of elongation seems to 

be conserved, subtle, yet crucial changes have evolved for eEF1A in order to adapt to a changed 

eukaryotic ribosomal interaction partner. 

1.2.3 Termination and Recycling 

Whenever the mRNA displays one of the three stop codons UAA (ochre), UAG (amber) or UGA (opal) 

in the ribosomal A-site during translation, generally speaking, no matching tRNA is abundant 

(Brenner et al., 1965; Weigert and Garen, 1965). In rare cases, due to translational recoding, UAG can 

lead to selenocysteine incorporation (Chambers et al., 1986; Zinoni et al., 1986) and in methanogenic 

archaea as well as in bacteria UGA can lead to pyrrolysine incorporation (Kavran et al., 2007; 

Yanagisawa et al., 2006; Yuan et al., 2010). Yet, typically stop codon recognition is mediated by class-I 

release factors (RFs) (Capecchi, 1967; Frolova et al., 1994) which catalyze peptide-release, 

whereupon peptide-synthesis is completed. Sequence similarities between eukaryotic and 

prokaryotic class-I RFs are rarely present, however, they all mimic a tRNA-like shape and are known 

to bind to the ribosomal A-site where they fulfill their functions. 
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Prokaryotic Termination 

Prokaryotes utilize two class-I release factors (RF1 and RF2) (see Figures 9A, B) (Capecchi, 1967) with 

mixed specificities for recognizing the three stop codons. UAA and UAG are recognized by RF1, 

whereas UAA and UGA by RF2. In biochemical studies, the PxT- (RF1, residues Ec 188 - 190 (Tt 184 - 

186)) and SPF-motifs (RF2, residues Ec 205 - 207 (Tt 206 - 208)) were suggested to directly decode 

the three bases of the stop codon with the three aa residues upon binding (Anderson et al., 2000), 

yet several crystal structures of RF1/2-bond 70S ribosomes enlightened us with a more complicated 

network of interactions (Jin et al., 2010; Korostelev et al., 2008, 2010; Laurberg et al., 2008; 

Weixlbaumer et al., 2008; reviewed in Zhou et al., 2012). In all structures, the RFs bound in their 

extended conformation connecting the DC with the PTC in the respective SUs. The two factors are 

similarly composed of four domains 1 - 4, where domain 1 contacts class-II RF and L11 (Pallesen et 

al., 2013), domains 2 and 4 co-fold for forming the decoding region and domain 3 is involved in 

peptide-hydrolysis via its conserved GlyGlyGln (GGQ) motif. Strikingly, the high-resolution structures 

revealed conformational changes in the ribosomal DC upon RF binding: Unlike during A-site tRNA 

binding (see 1.2.2 Decoding), RF1/2 binding is concomitant with Ec/Tt A1492 (Hs A1824) bulging out 

of helix 44 (h44) to engage in stabilizing interactions with Ec/Tt G530 (Hs G626). Ec/Tt A1493 

(Hs 1825) remains in h44 and stacks on Ec/Tt A1913 (Hs A3731) (in H69) resuming the original place 

of Ec/Tt A1492 (Hs A1824). If Ec/Tt A1913 (Hs A3731) resided in its non-stacking position, RF1/2 

binding would sterically clash. The mRNA stop codon bases 1 and 2 are positioned similarly to sense 

codon bases during decoding (Demeshkina et al., 2012), yet interestingly base 3 is rotated away from 

its usual base pairing position due to RF1/2 loop insertion between bases 2 and 3 (also see Figure 

53D). RF1/2 further contact mRNA bases 4 and 5 whose identities have been shown to influence 

termination efficiency (Tate and Mannering, 1996). 

How can the two RFs result in such high termination accuracy of 10-5 without any proof-reading 

mechanism (Freistroffer et al., 2000)? Generally, stop codon recognition relies on an H-bonding 

network and van-der-Waals stacking interactions (see Figures 9C - J). A conserved Gly (RF1: Ec Gly120 

(Tt Gly116) (Korostelev et al., 2008, 2010); RF2: Ec Gly137 (Tt Gly138) (Laurberg et al., 2008; 

Weixlbaumer et al., 2008)) packs against Uracil at position 1 of the stop codon (U1) sterically 

hindering larger purines to bind. Further H-bonding to the backbone N of a glutamic acid (RF1: 

Ec Glu123 (Tt Glu119); RF2: Ec Glu140 (Tt Glu141)) excludes cytosine due to its inverted H-bonding 

capacity. RF1, containing the PxT-motif, uses Ec Thr190 (Tt Thr186) to discriminate U1 and the 

adenine at position 2 (A2) by donating an H-bond to the 4-keto oxygen of U1 and by accepting an 

H-bond from the N6-amino group of A2 (see Figures 9C, D). This would not be possible with a guanine 

at position 2 (G2) harboring a keto-group instead of an amino group at its position 6. RF2, containing 

the SPF-motif, can donate and accept an H-bond either from A2 or G2 with Ec Ser205 (Tt Ser206) (see 

Figures 9E, F). For RF1, H-bonding to both types of purines in position 3 is possible with Ec Gln185 

(Tt Gln181) and Ec Thr198 (Tt Thr194) (see Figures 9G, H). Stacking on Ec/Tt G530 discriminates 

smaller pyrimidines for both RFs. RF2 however, uses the H-bonding capacity of Ec Thr214 (Tt Thr216) 

that can only act once as H-bond donor excluding guanine at position 3 (G3) (see Figures 9I, J). 

Consequently, the two motifs previously suggested only play a partial role in specific codon 

recognition: Merely Ec Thr190 (Tt Thr186) (PxT) and Ec Ser205 (Tt 206) (SPF) in RF1 and RF2, 

respectively directly interact with the stop codon. The Pro residues (PxT, SPF) are rather responsible 

for proper loop-conformation whereas Ala (x in E.coli PxT), Val (x in Thermus PxT) and Phe (SPF) 

provide non-specific van-der-Waals contacts.  
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Figure 9:  Stop Codon Decoding by the Prokaryotic Class-I Release Factors RF1 and RF2. 

(A) Crystal structure of the Thermus thermophilus (Thermus) ribosome-bound class-I release factor RF1 
(decoding the UAA stop codon) (Laurberg et al., 2008) with its domains 1 (green), 2 (yellow), 3 (blue) and 4 
(purple) colored distinctively. The switch loop is colored in orange (PDB-code: 3D5A). (B) Crystal structure of 
the Thermus ribosome-bound class-I release factor RF2 (decoding the UAA stop codon) (Korostelev et al., 2008) 
colored as in (A) (PDB-code: 3F1E). (C) Recognition of uracil at position 1 (U1) and adenine at position 2 (A2) of 
the UAA stop codon by RF1 (Laurberg et al., 2008). (D) Recognition of U1 and A2 of the UAG stop codon by RF1 
(Korostelev et al., 2010). (E) Recognition of U1 and A2 of the UAA stop codon by RF2 (Korostelev et al., 2008). (F) 

Recognition of U1 and guanine at position 2 (G2) of the UGA stop codon by RF2 (Weixlbaumer et al., 2008). (G) 
Recognition of adenine at position 3 (A3) of the UAA stop codon by RF1 (Laurberg et al., 2008). (H) Recognition 
of guanine at position 3 (G3) of the UAG stop codon by RF1 (Korostelev et al., 2010). (I) Recognition of A3 of the 
UAA stop codon by RF2 (Korostelev et al., 2008). (J) Recognition of A3 of the UGA stop codon by RF2 
(Weixlbaumer et al., 2008). 
Release factors are indicated in yellow, the 16S rRNA in cyan and the mRNA in green with its heteroatoms 
colored distinctively. Figures (C) - (J) taken from Korostelev (Korostelev, 2011). 

 

Subsequent to peptide-release RF1/2, the deacylated P-site tRNA and the mRNA are still bound to 

the ribosome. Class-II release factor RF3 ensures efficient release of RF1/2 in a GTP-coupled manner 

(Freistroffer et al., 1997; Grentzmann et al., 1998). The RF3 GTPase is structurally related to EF-G (see 

Figure 10A) and likewise interacts with the SRL (Gao et al., 2007), however, here the aforementioned 

His residue (see 1.2.2) (Voorhees et al., 2010) important for catalyzing GTP hydrolysis is situated 

more than 8 Å away from the γ-phosphate likely not taking part in the reaction as observed in two 

crystal structures (Jin et al., 2010; Zhou et al., 2012b). Interestingly, RF3 was suggested to bind in its 

GDP-bound state whereupon nucleotide exchange (Zavialov et al., 2001) leads to ribosome inter-
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subunit rotation and head movement causing a clash of the 30S head and the L11-stalk with RF1/2 

(reviewed in Klaholz, 2011; Zhou et al., 2012a). This, together with a hinge movement in RF3, was 

proposed to promote RF1/2 release resulting in the post-termination complex. According to cryo-EM 

reconstructions of the RF3-bound 70S ribosome the deacylated tRNA resides in a P/E hybrid state (Jin 

et al., 2010; Zhou et al., 2012b). Such observation explains why RF3 only functions after peptide 

release since only deacylated tRNAs can be moved to the E-site.  

Prokaryotic Ribosome Recycling 

To prepare for the next round of translation, the post-termination complex has to be further 

dissociated into its components: mRNA, deacylated tRNA and the ribosomal SUs. This process is 

mediated by the ribosome recycling factor (RRF) (Janosi et al., 1996), likewise a structural mimicry of 

a tRNA (see Figure 10B) (Kim et al., 2000; Selmer, 1999; Toyoda et al., 2000; Yoshida et al., 2001), in 

concert with GTP-bound EF-G (Barat et al., 2007; Hirashima and Kaji, 1973; Peske et al., 2005). 

Precise interactions of the two factors are still a matter of debate. Moreover, when and how the 

tRNA and mRNA are released has also not been established (Nakamura and Ito, 2011). As connection 

to the initiation process, IF3 is thought to bind to the 30S SU employing its anti-associative potential 

to keep the SUs separate (Peske et al., 2005; Zavialov et al., 2005) until a new round of translation is 

heralded (Hirokawa et al., 2008; Karimi et al., 1999). 

 

Figure 10:  Crystal Structures of Ribosome-bound RF3 and RRF. 

(A) Crystal structure of ribosome-bound Escherichia coli class-II release factor RF3 with its domains 1 (blue), 2 
(orange) and 3 (purple) colored distinctively (PDB-code: 4V89). (B) Crystal structure of ribosome-bound 
Thermus thermophilus ribosome recycling factor (RRF) with its domains 1 (gray) and 2 (turquois) colored 
distinctively (PDB-code: 4v46). 

 

Eukaryotic (Premature) Termination 

Conversely, a single class-I release factor termed eRF1 was discovered to perform decoding of all 

three stop codons in eukaryotes. eRF1 is composed of three domains (Frolova et al., 2000; Song et 

al., 2000): The N domain which is suggested to interact with the stop codon (Bertram et al., 2000), 

the M domain which harbors the conserved GGQ motif (Frolova et al., 1999; Seit-Nebi et al., 2001) 

and the C domain which interacts with GTP-bound eRF3 likely for approaching the ribosome in a 

ternary complex or with ATP binding cassette E1 (ABCE1) for ribosome recycling (Cheng et al., 2009; 

Ebihara and Nakamura, 1999). Numerous biochemical studies suggested many eRF1 residues to be 

directly involved in stop codon interactions, yet evidence has accumulated for the participation of 

the TAS-NIKS (residues 58 - 64), the YxCxxxF (residues 125 - 131) and the GTS (residues 31 - 33) 
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motifs located within the N domain (Bulygin et al., 2010; Chavatte et al., 2002; Conard et al., 2012; 

Frolova et al., 2002; Seit-Nebi et al., 2002; Wong et al., 2012). In addition, nuclear magnetic 

resonance (NMR) and x-ray crystallography-derived structures delivered proposed modes of action 

for eRF1 (Cheng et al., 2009; Ivanova et al., 2007; Mantsyzov et al., 2010; Polshakov et al., 2012; Song 

et al., 2000). As opposed to the prokaryotic RFs, eRF1 is delivered to the ribosome by eRF3 (see 

Figures 11A, B), the class-II RF thought to stimulate eRF1 activity on the ribosome and therefore to 

increase termination efficiency (Cheng et al., 2009; Frolova et al., 1999). eRF3 is composed of an N 

terminal domain which is non-essential for termination (Kushnirov et al., 1988), however, was 

reported to interact with the PABP bound to the 3’ poly(A) tail of the mRNA (Cosson et al., 2002; 

Hoshino et al., 1999). This interaction likely enhances termination efficiency (Cosson et al., 2002; 

Ivanov et al., 2008). Further, eRF3 consists of the GTP-binding G domain as well as the β-barrel 

domains 2 and 3 which are homologous to EF-Tu and eEF1A (Kong et al., 2004). 

 

Figure 11:  Schematic of Eukaryotic Termination and Recycling. 

The 40S ribosomal subunit (SU) is depicted in yellow, the 60S ribosomal SU in gray. Further, the tRNA exit-site 
(E-site), the peptidyl-tRNA binding site (P-site) and the aminoacyl-tRNA binding site (A-site) are marked with E, 
P and A, respectively. (A) When the ribosome encounters a stop codon (red) in the A-site decoding center, 
usually translation termination is sought. (B) For the formation of the pre-termination complex, the 
eRF1:eRF3:guanosine triphosphate (GTP) ternary complex binds to the A-site. eRF1 universally decodes all 
three stop codons whereupon GTP is hydrolyzed by the guanosine triphosphatase eRF3 which subsequently 
dissociates from the ribosome. Conformational changes in eRF1 result in its elongated conformation where its 
M Domain is positioned in the peptidyl-transferase center. Here, peptide-release is mediated by the universally 
conserved GGQ motif. (C) Recycling factor ABCE1 binding to 2 adenosine triphosphates (ATPs) can assist in the 
release mechanism and eventually leads to recycling of the 60S SU, eRF1 and the 40S SU (still bound to the 
deacylated tRNA and ABCE1). The state of the ABCE1-bound nucleotides after ribosome recycling is still 
unknown. 

 

Upon ribosome encounter in the ternary complex, eRF1 was shown to perform stop codon decoding, 

however, to not engage in its active and elongated conformation, yet. Therefore, the GGQ motif is 

still bound to eRF3 as opposed to the PTC where peptide-bond hydrolysis takes place (des Georges et 

al., 2014; Preis et al., 2014; Taylor et al., 2012). eRF3 interactions with eRF1 and the ribosome were 

demonstrated to be a prerequisite for GTP hydrolysis (Frolova et al., 1996) upon which eRF3 

dissociation leads to structural rearrangements in eRF1 (Salas-Marco and Bedwell, 2004) to position 

the eRF1 M domain within the PTC to hydrolyze the ester-bond in a similar manner to its prokaryotic 

counterpart (see Figure 11B) (Muhs et al., 2015). The basic steps of eukaryotic translation 

termination were visualized in medium-resolution cryo-EM structures of the eRF1:eRF3:GMPPNP 

containing pre-termination complex (des Georges et al., 2014; Preis et al., 2014; Taylor et al., 2012), 

the eRF1-containing termination complex (Muhs et al., 2015) and the eRF1:ABCE1:AMPPNP 

containing pre-recycling complex (Preis et al., 2014), yet, due to lacking resolution and ambiguous 
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biochemical results the molecular mechanism of stop codon decoding has been a matter of debate 

for decades.  

Further significance of comprehending the molecular mechanism of stop codon recognition lies in 

the association of premature termination codons (PTCs) (nonsense mutations) with ∼1/3 of all 

inherited genetic diseases (Frischmeyer, 1999). The presence of a PTC can lead to exon skipping, 

decreased mRNA stability or protein truncation (Mort et al., 2008). Generally, for cellular protection 

potential dominant negative or gain-of-function effects due to protein truncation are prevented by 

the eukaryotic surveillance mechanism known as nonsense-mediated (mRNA) decay (NMD) 

(reviewed in Kervestin and Jacobson, 2012; Leeds et al., 1991; Lykke-Andersen and Bennett, 2014; 

Peltz et al., 1993; Pulak and Anderson, 1993; reviewed in Shoemaker and Green, 2012). Here, the PTC 

is recognized as such, leading to rapid degradation of the truncated protein as well as the faulty 

mRNA. The mechanistic understanding of NMD is still poor, yet three basic models have evolved 

describing the process of how NMD might be triggered: 1) The exon junction complex (EJC) model, 2) 

the up-frameshift 1 (Upf1) 3’-untranslated region (UTR) sensing and potentiation model and 3) the 

faux 3’-UTR model (reviewed in He and Jacobson, 2015).  

The occurrence of diseases and their phenotypic expressions are associated with varying rationales 

depending on whether NMD is activated or not. The NMD protection mechanism only grasps if the 

PTC is positioned at least 50 nt upstream of the most 3’ exon-exon junction (reviewed in Maquat, 

2004). As briefly mentioned, PTCs which do not provoke NMD can lead to dominant negative effects 

if the truncated protein interferes with the wild-type (WT) protein. An example for this is the sex-

determining region Y (SRY)-related high mobility group (HMG)-box (SOX10) gene whose PTC-

containing mRNA causes the Waardenburg-Shah syndrome (Mort et al., 2008). Furthermore, the 

associated absence of NMD due to a PTC in the last exon of the β-globin gene (HBB) results in a 

dominant-type of β-thalassemia (Hall and Thein, 1994). The pathogenesis of this disorder involves 

the dominant-negative dimer formation of the truncated β-globin chain with the α-globin chain 

hence leading to anemia in the patients (Hall and Thein, 1994; reviewed in Thein, 2013). Another 

example, where NMD is beneficial is the Marfan Syndrome (Byers, 2004), a connective tissue 

disorder, where NMD contributes to limiting the severity of the disease. Here, truncated and WT 

fibrillin-1, a 350 kilodalton (kDa) glycoprotein, interact with each other which disrupts the proper 

formation of the extracellular microfibrils (Eldadah et al., 1995). Consequently, here NMD and the 

abolishment of the truncated protein results in a mild phenotype, whereas its expression is 

associated with severe effects on the patient. However, NMD can also be associated with drawbacks 

if the truncated protein would retain some activity, but the decay pathway results in complete 

protein abolishment and loss of function. 10 % of cystic fibrosis (CF) patients with e.g. a W1282X or 

G542X mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene suffer from 

the consequences (Hamosh et al., 1992; Roberto Gambari, 2015). It was shown that the N-terminal 

part of the CTFR protein is sufficient to form a functional cyclic adenosine 3′,5′-monophosphate 

(cAMP)-regulated chloride channel (Sheppard et al., 1994) and a small percentage (10 - 15 %) of 

protein expression would already be sufficient to efficiently milden the patients’ disorders (Chu et al., 

1992). Further diseases which are caused by PTC-associated NMD are for example the Hurler 

syndrome (alpha-L-iduronidase deficiency), X-linked nephrogenic diabetes insipidus (XNDI), ataxia-

telangiectasia (ATM), cystinosis, Duchenne muscular dystrophy (DMD), Hailey–Hailey disease, factor 

VII deficiency or infantile neuronal lipofuscinosis (reviewed in Bidou et al., 2012 and Linde and 

Kerem, 2008). Consequently, high hopes and efforts have been attributed to PTC read through drug 
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development by outcompeting release factor binding to prevent NMD (reviewed in Bidou et al., 

2012; Linde and Kerem, 2008). A detailed mechanistic understanding of how eRF1 binds to the 

ribosome and especially the mRNA stop codon could serve as starting point to specifically design 

drugs that successfully compete for stop codon binding. Enabling the translation of merely a small 

percentage of the full length protein (with a point mutation) would in many cases already be 

associated with clinical rescue.  

So far, potential therapeutics in this context include aminoglycosides and the organic molecule 

PTC124, yet both are associated with high drawbacks. Aminoglycoside binding to prokaryotic 

ribosomes was demonstrated to cause Ec A1492 (Hs A1824) and Ec A1493 (Hs 1825) to flip out of h44 

mimicking tRNA delivery to the A-site and to increase error-prone tRNA selection (François et al., 

2005; Tsai et al., 2013). This was suggested to more effectively allow near-cognate aa-tRNA binding 

to the stop codon (reviewed in Ramakrishnan, 2002). However, this type of antibiotic cannot be used 

for long-term drug treatment as it has relatively severe side effects due to its nephrotoxicity and 

ototoxicity (Humes, 1988; Selimoglu, 2007). PTC124 (Ataluren) has been discovered in a high-

throughput screen and specifically targets PTCs for read through, however, does not affect canonical 

termination (Welch et al., 2007). Its effect has been controversial as PTC124 itself was discovered to 

upregulate firefly luciferase (FLuc) activity which was utilized as read-out for its effectiveness in the 

initial screening (Auld et al., 2009). PTC Therapeutics has stated to have used independent screenings 

which reassure a role for PTC124 in nonsense-suppression by now (Peltz et al., 2009), yet clinical 

trials struggle to reveal clear effects (reviewed in Keeling et al., 2014; Kerem et al., 2014). Compared 

to aminoglycosides, PTC124 has manageable side-effects for the patient and due to unmet medical 

needs for DMD it has been licensed in Europe under the trade name Translarna™ (PTC Therapeutics) 

for its treatment. 

Another therapeutic approach could be the prevention of NMD through increasing the performance 

of canonical termination instead. Designing drugs with specific effects only on desired targets, 

however, will most likely prove difficult. General perturbation of NMD would likely result in off-target 

effects which are associated with intolerable side-effects for the patient hindering the drugs’ 

therapeutic applications (reviewed in Keeling et al., 2014). 

Many efforts have been undertaken to develop drugs on the basis of increasing PTC read through, 

however, no promising candidate has been discovered up to date. Whichever method or compound 

will lead to safe and efficient treatment of PTC-derived diseases in the end, understanding the 

molecular mechanism of translation termination and NMD will be crucial to design effective 

termination or NMD suppressor drugs. 

Eukaryotic Ribosome Recycling 

Successful canonical termination results in an 80S ribosome associated with an mRNA, eRF1 in the 

A-site and a deacylated tRNA in the P-site. Consequently, to complete the translation cycle, 

components have to be disjoint (see Figure 11C).  

To this end, the ABC-type ATPase ABCE1 (Rli in yeast) (Barthelme et al., 2011; Pisarev et al., 2010), 

which consists of two head-to-tail asymmetric ATPase sites (nucleotide binding domains (NBDs)) and 

two [Fe4-S4]
2+ clusters, plays a pivotal role (see Figures 12A, C) (Hung et al., 1998). ABCE1 is essential 

(Andersen and Leevers, 2007; Dong et al., 2004; Zhao et al., 2004), conserved in eukaryotes and 

archaea (Dean and Annilo, 2005; Kerr, 2004) and was suggested to also play a role in ribosome 
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biogenesis (Dong et al., 2004; Yarunin et al., 2005). In vitro studies showed that already eRF1-binding 

by itself can promote recycling, however, the reaction rate is highly stimulated by ABCE1 (Pisarev et 

al., 2010; Shoemaker and Green, 2011). Cryo-EM studies of yeast eRF1:Rli (Preis et al., 2014) and 

archaeal (Pyrococcus furiosus) Pelota:ABCE1 (Pelota is the surveillance class-I RF and therefore 

paralog of eRF1) (Becker et al., 2012) revealed four major contact sites of Rli/ABCE1 in the pre-

recycling complex, primarily to the SSU. One contact is mediated by the [Fe4-S4]
2+ cluster domain 

which stabilizes the eRF1 C domain (Preis et al., 2014). Why the contact is mediated by such peculiar 

cluster is still under debate. However, it was suggested to represent a direct link to cellular oxidative 

stress during which the oxidation of Fe2+ could cause ABCE1 inactivation (Alhebshi et al., 2012; 

Barthelme et al., 2007). Yeast Rli was shown to stimulate termination in an ATP-independent manner 

(Shoemaker and Green, 2011). Yet, its ATPase activity is required to promote SU splitting, resulting in 

the 60S SU and a deacylated tRNA:mRNA:40S SU complex.  

In general, ABC-type proteins perform a tweezer like motion (Chen et al., 2003; Hopfner, 2003): ATP 

binding closes a gap between the two NBDs whereas ATP hydrolysis leads to opening and adenosine 

diphosphate (ADP) and Pi release (see Figure 12B) (Barthelme et al., 2011). In the case of ABCE1, 

however, it still remains to be elucidated what triggers such motion and how the motion is 

transferred to ribosome recycling. 

 
Figure 12:  Recycling in Eukaryotes: The Adenosine Triphosphatase ABCE1. 

(A) Primary domain structure of the human adenosine triphosphate (ATP)-binding cassette E1 (ABCE1) protein 
consisting of the conserved FeS domain (FeS) (dark brown), a nucleotide binding domain 1 (NBD1) (dark 
orange), a first hinge domain (Hinge 1) (light green), a second nucleotide binding domain (NBD2) (light brown) 
and a second hinge domain (Hinge 2) (green). Further, a more detailed composition of NBD1 is given (the 
aromatic Y loop (brown), the Walker A and B motifs (orange and light blue), the helix–loop–helix (HLH) (dark 
green), the Q loop (ocher), the ABC signature motif (Signature) (light green) and the His switch Region (His 
switch) (dark blue)). (B) Schematic of the catalytic cycle of ATP-binding cassette-type ATPases. A tweezer like 
motion closes or opens a gap between the two NBDs. The conformational changes between the closed and the 
opened conformations upon ATP binding and hydrolysis, respectively are fundamental for the proteins’ 
functions. (C) Crystal structure of Pyrococcus abyssi ABCE1 (PDB-code: 3BK7). NBD1 and NBD2 form a cavity 
into which the two [4Fe-4S]2+ clusters (in the FeS domain) extend. They are positioned adjacent to the ATP 
site I. As shown, two adenosine diphosphate molecules are bound to the ATP sites I and II.  
Figure (C) was modified from Nürenberg et al. (Nürenberg and Tampé, 2013). 
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Similarly to prokaryotes, ribosome dissociation is irreversible due to initiation factor binding to the 

individual subunits (Jackson et al., 2010). Further, 40S clearance seems to be mediated by eIF1, 1A 

and 3j (shown in vitro) (Pisarev et al., 2007), ligatin/eIF2D (Skabkin et al., 2010) or to a lesser extend 

multiple copies in T-cell lymphoma-1 (MCT-1) and density-regulated protein (DENR) (Skabkin et al., 

2010). ABCE1’s interaction with the eIFs tightly couples ribosome recycling and translation initiation 

which completes and prepares the translation cycle for its efficient re-start. 

1.2.4 In vitro Translation Systems 

In vitro translation systems have been successfully used for more than 50 years (Dvorak et al., 1967; 

Matthaei and Nirenberg, 1961). Since then, commercially available cell-free translation systems have 

provided useful tools for protein expression in E. coli (S30 Systems (Promega), PURExpress® (NEB)), 

RTS (5 Prime), ExpresswayTM (ThermoFisher Scientific)), wheat germ (WG) (TNT® Systems (Promega), 

WEPRO (CellFree Sciences), RTS (5 Prime)) or rabbit reticulocyte lysate (RRL (Promega), Retic lysate 

IVT (ThermoFisher Scientific)) extracts particularly if the sought protein product interferes with cell 

viability due to its toxicity or is rapidly degraded by intracellular proteases. These systems are not 

only useful to characterize synthesized proteins, but also for in vitro reconstitution of translation 

intermediates. To efficiently analyze the intricate translation cycle and dissect individual molecular 

contributions, such controllable environments can be advantageous. While E. coli- (Carlson et al., 

2011; Gale and Folkes, 1954; Shimizu et al., 2001, 2005), WG- , insect cell- (such as SF9 or SF21) 

(Ezure et al., 2006, 2010) or RRL-based extracts (Jackson and Hunt, 1983) are commonly available 

and protocols are well established, it was not until recently that the human translation system came 

to the fore (Brödel et al., 2013; Mikami et al., 2010a; Zeenko et al., 2008). Here, the certainty of 

‘natural’ post-translational modifications (PTMs) like phosphorylation or N-glycosylation is an 

advantage, while such modifications are missing in RRL-derived proteins due to lacking microsomes. 

The bottle neck however, is reduced initiation efficiency caused by phosphorylation of the initiation 

factor eIF2α on Ser51 during extract preparation, still constituting an obstacle for efficient 

translation. Nonetheless, it is crucial to especially understand translation regulation in the human 

system, allowing for more precise drug development in the future. This renders the human system 

ideal for biochemical assays or in vitro reconstitutions followed by high-resolution structural studies 

which can generate profound insights into molecular details of the translation cycle relevant for 

human health. 

1.2.5 Co- and Post-translational Protein Folding  

For obtaining functional activity, nascent polypeptide chains have to acquire their ‘native state’ by 3D 

folding which is thermodynamically favored in solution. The primary aa sequence defines both the 

local structure like α-helices or β-sheets (secondary) and the protein’s overall 3D (tertiary) structure 

(Anfinsen et al., 1954). Numerous folding-related studies were conducted in vitro on chemically 

denatured proteins (Brockwell et al., 2000; Herbst et al., 1997; Kubelka et al., 2004), however, 

cellular influences such as molecular crowding (Ellis and Minton, 2006), molecular chaperones 

(reviewed in Hartl, 1996), interacting co-factors (Apiyo and Wittung-Stafshede, 2002; Bushmarina et 

al., 2006; Goedken et al., 2000; Pozdnyakova et al., 2000; reviewed in Wilson et al., 2004; Wittung-

Stafshede, 2002), translation speed (Chow et al., 2003; Mu et al., 2008) and the influence of the 

translating ribosome itself (Chattopadhyay et al., 1996; Das et al., 1992; Kudlicki et al., 1997; Phillips, 

1967) were demonstrated to cause affected folding funnels in vivo. A folding funnel (see Figure 13A) 

is a model representing potential conformational energy states available en route to the ‘native 

state’ of the protein (Bryngelson et al., 1995; Dill et al., 1995). Its rugged energy surface was 
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introduced to account for transiently stable intermediates and restricted conformational space 

(global minima) when progressing along the folding procedure which can result in kinetically trapped 

intermediates. Partially folded or misfolded proteins expose hydrophobic aa patches prone to result 

in amorphous aggregates, oligomers or even amyloid fibrils (Cabrita et al., 2009; David et al., 2010; 

Demontis and Perrimon, 2010; Eichmann et al., 2010). In this regard, maintaining protein integrity is 

of particular importance since several abundant diseases including Parkinson’s, Alzheimer’s and 

Huntington’s diseases are associated with aggregated proteins (reviewed in Chiti and Dobson, 2006; 

Kayed et al., 2003; Olzscha et al., 2011).  

 

Figure 13:  Co- and Post-translational Protein Folding. 

(A) Schematic of a folding funnel energy landscape that proteins traverse during folding. The ‘native state’ is 
represented by a deep free energy minimum. The roughness of the funnel was introduced to account for 
partially folded and intermediate states demonstrated by local minima in which proteins can be kinetically 
trapped. Chaperones assist in surmounting the energy-barriers and in preventing the destabilization of 
(partially) folded or intermediate states (green). If multiple proteins form intermolecular contacts, amorphous 
aggregates, toxic oligomers or ordered amyloid fibrils can result (red). (B) Architecture of the ribosomal tunnel 
which is divided into the peptidyl-transferase center (PTC), the central constriction, the midgut, the lower 
tunnel and the folding vestibule areas. Approximate distances in angstrom (Å) as well as amino acid (aa) 
lengths from the PTC are indicated. 
Figure (A) based on Hartl et al. (Hartl et al., 2011).  

 

The chaperone machinery restricts such potential misfolding or aggregation by promoting folding 

without being part of the protein’s final structure (reviewed in Deuerling and Bukau, 2004; reviewed 

in Frydman, 2001; reviewed in Hartl and Hayer-Hartl, 2009). The heat shock protein 70 kDa (HSP70) 

family, DnaK in prokaryotes (reviewed in Mayer and Bukau, 2005) and HSC70 in eukaryotes, (Auluck 

et al., 2002) comprises chaperones functioning in the cytoplasm which mediate co- or post-

translational folding as well as escorting proteins to chaperonins (GroEL (group I) in bacteria 

(reviewed in Hartl and Hayer-Hartl, 2009; reviewed in Horwich and Fenton, 2009), TRiC (group II) in 

eukaryotes (Cuéllar et al., 2008)). Moreover, the ribosome itself was suggested to be involved in 

protein folding (Chattopadhyay et al., 1996; Das et al., 1992; Kudlicki et al., 1997) and certainly 

serves as platform for chaperones of the HSP70 system: Trigger factor (TF) in prokaryotes (Ferbitz et 

al., 2004; Hoffmann et al., 2006; Tomic et al., 2006; Wegrzyn and Deuerling, 2005; Witt, 2009) and 

the nascent polypeptide-associated complex (NAC) (Wiedmann et al., 1994) or MPP11 and HSP70L1 

in mammals (ribosome-associated complex (RAC) in yeast) (Gautschi et al., 2001; Leidig et al., 2013) 
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serve as protective shields for the nascent polypeptide chains. Beyond, during translation ribosomes 

form distinctly arranged pseudo-helical polysome-complexes which allow for maximized distance and 

minimized interchain interaction between neighboring newly emerging nascent chains as visualized 

via cryo-EM tomography (Brandt et al., 2009; Chow et al., 2003). Single-domain proteins can only 

completely engage their ‘native state’ post-translationally (Chow et al., 2003; Taniuchi and Anfinsen, 

1969) and have been observed to successfully do so independently even in vitro (Anfinsen and 

Haber, 1961). However, especially in eukaryotes, larger multi-domain proteins undergo domain-wise 

folding already co-translationally (Batey et al., 2008; Evans et al., 2008a). Evolution of larger and 

more complex multi-domain proteins might have been accompanied by slowing the translational 

speed adapting to co-translational folding. A remarkable finding for translation adjustments, to 

concomitantly allow for highly optimized protein folding, is the clustering of rare codons (Clarke and 

Clark, 2008), particularly at inter-domain regions, which causes translational pausing, resulting in 

synchronization of translation and folding or allowing for interactions with chaperones (Zhang et al., 

2009a). 

If protein folding is monitored so closely directly after the protein emerges from the ribosome 

protected exit tunnel (Fulle and Gohlke, 2009; Voss et al., 2006), is it likewise already in the tunnel 

directly after aa addition in the PTC? The tunnel provides a highly spatially confined area with 

80 - 100 Å length (Voss et al., 2006) and 10 Å (at the central constriction) - 20 Å diameter (see 

Figure 13B) (Ban, 2000). Such confinements don’t allow for tertiary structure formation, however, 

several biochemical (Ellis et al., 2009; Voss et al., 2006) and computational (Ziv et al., 2005) 

experiments have been reported for sequence-dependent α-helical propensity of nascent peptides in 

the tunnel environment. The varying electrostatic potential (Lu and Deutsch, 2005, 2008; Lu et al., 

2007) was suggested to be responsible for some tunnel regions to promote α-helix formation more 

than others (Bhushan et al., 2010a; Kosolapov et al., 2004; Tu and Deutsch, 2010; Tu et al., 2007). 

However, whether this is due to entropic effects or particular aa interactions with the tunnel wall still 

has to be investigated.  

1.3 Translational Arrest by Nascent Polypeptides 

After its discovery in 1982 (Bernabeu and Lake, 1982), the ribosomal exit tunnel was commonly 

contemplated as static conduit, however, ongoing research has revealed its capacity to actively 

interact with and even monitor the newly emerging polypeptides (Berndt et al., 2009; Bornemann et 

al., 2008; Cruz-Vera et al., 2005, 2006; Devaraneni et al., 2011; Dimitrova et al., 2009; Gong and 

Yanofsky, 2002; Liao et al., 1997; Lin et al., 2012, 2011; Lovett and Rogers, 1996; Lu and Deutsch, 

2005; Lu et al., 2011; Mariappan et al., 2010; Morris and Geballe, 2000; Nakatogawa and Ito, 2002; 

Pool, 2009; Ramu et al., 2011; Robinson et al., 2012; Wang and Sachs, 1997a, 1997b; Yap and 

Bernstein, 2009). The nascent chain configuration cannot only signal to the tunnel exit influencing 

extra-ribosomal activities like chaperone-engagement as mentioned above (see 1.2.5), but can also 

affect its own translation progression by the modulation of PTC residues from within the tunnel. In 

extreme cases, specific nascent chain interactions with tunnel wall components can lead to 

ribosomal slow-down or even stalling due to PTC inactivation, termed ribosomal arrest. 

1.3.1 Features and Functions 

Up to 49 % of all human transcripts (Calvo et al., 2009; Lawless et al., 2009) contain upstream ORFs 

(uORFs) on their transcript leader sequences. Such abundancy reveals the multi-functionality 

associated with their mode of gene regulation one of which is ribosomal arrest. Random ribosomal 
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arrest during peptide elongation would be harmful to the cell, demanding for precise cues upon 

which slow-down or stalling is expedient. Often, the key regulators are small, extrinsic effector 

molecules like antibiotics (e.g. macrolides for the antibiotic resistance genes ErmCL and ErmAL1 

(Ramu et al., 2009)) or a free aa like Trp for the tryptophanase leader peptide TnaC (Gong and 

Yanofsky, 2002; Wang and Sachs, 1997a, 1997b). But even the nascent chain itself can be sufficient 

(as reported for the membrane integration and folding monitor (MifM) (Chiba et al., 2009), the 

secretion monitor SecM (Nakatogawa and Ito, 2002) or the human cytomegalovirus gp48/UL4 uORF2 

(hCMV) (Degnin et al., 1993; Geballe et al., 1986)) for the cis-specific elements to function in 

translational arrest by inhibiting peptidyl-transfer (e.g. ErmCL, MifM, SecM), translocation (e.g. 

cystathionine-γ-synthase 1 (CGS1) contained arrest-peptide (Onouchi et al., 2005)) or their own 

translation termination (e.g. arginine attenuator peptide (AAP), hCMV (Degnin et al., 1993), TnaC). 

The arrest-sequences can encompass only as little as 3 aa, but also a wide stretch wherein the cirtical 

aa reside. Mostly, only a few residues herein are essential for stalling, however, their exact spacing 

and therefore positioning in the tunnel are inevitable. Stalling can occur at single sites (e.g. ErmCL, 

hCMV, TnaC) or over longer stretches and at multiple sites (e.g. MifM, SecM). In prokaryotes, stalling 

effects are rather positive: For instance, residing ribosomes allow disruption of mRNA secondary 

structures that expose the SD sequence of the target ORF to enable translation initiation (see Figure 

14A). Examples  therefor are ErmCL (Ramu et al., 2009), ErmAL1 (Ramu et al., 2009), MifM (Chiba and 

Ito, 2012; Chiba et al., 2009) or SecM (Ramu et al., 2009). TnaC-mediated regulation takes advantage 

of coupled transcription and translation in prokaryotes (Gong and Yanofsky, 2003; Proshkin et al., 

2010). Here, 70S ribosome stalling blocks access for the transcription termination factor Rho, which 

allows continued transcription of the downstream genes (Gong et al., 2001), resulting in target ORF 

expression (see Figure 14B). In eukaryotes, stalled ribosomes rather serve as road-block preventing 

ribosomal scanning of downstream ORFs which results in their repression. Human AMD1 for example 

encodes for the S-adenosylmethionine decarboxylase (AdoMetDC) playing an important role in 

polyamine biosynthesis. Its expression is monitored via a negative feedback loop by its uORF 

encoding the MAGDIS peptide (Hill and Morris, 1993). Polyamine-dependent stalling of MAGDIS 

translation termination leads to ribosomal stalling and precludes scanning (Hill and Morris, 1993). 

Another example for uORF-mediated gene regulation by a small effector molecule is CPS-A 

(Neurospora crassa: arg-2, S. cerevisiae: CPA1) which encodes the small subunit of the arginine-

specific carbamoyl-phosphate synthetase catalyzing the first step of Arg synthesis. Consequently, 

cellular Arg levels are coupled to ribosomal stalling by the uORF encoded AAP (Luo and Sachs, 1996): 

High Arg abundancy leads to arrest at uORF translation termination. Here, further ribosomes are not 

only hindered from scanning (Wang and Sachs, 1997b), however, for the orthologous gene CPA1 in 

yeast, induction of NMD was shown as consequence (Gaba et al., 2005). Moreover, there are also 

eukaryotic stalling peptides which intrinsically harbor stalling competency without being modulated 

by small effector molecules (see Figure 14C): The most characterized hCMV-peptide (see 1.3.2) 

(Degnin et al., 1993) stalls at its own translation termination.  

Discovered stalling sequences differ in composition, are diverse, hardly conserved and therefore 

presumably lately evolved fine-tuning details in translation modulation. Their ultimate regulatory 

consequences differ greatly from mRNA cleavage (e.g. CGS1) (see Figure 14D) (Chiba, 1999; 

Haraguchi et al., 2008; Ominato et al., 2002) to recoding (e.g. 2A peptide) (see Figure 14E) (Atkins et 

al., 2007; Sharma et al., 2012) and mRNA localization (e.g. SecM, unspliced X-box-binding protein 1 

(XBP1u) (see Figure 14F) (Pavitt and Ron, 2012)), yet their common purpose is the regulation of gene 

expression of an associated ORF. 
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Cross-linking experiments (e.g. Wu et al., 2012), high-resolution cryo-EM structures of nascent chain 

harboring ribosomes (Arenz et al., 2014a; Bischoff et al., 2014; Sohmen et al., 2015) and mutational 

scanning analyzes of aa residues in the stalling peptides (e.g. ErmAL1 (Ramu et al., 2011), ErmCL 

(Vazquez-Laslop et al., 2008; Vázquez-Laslop et al., 2010), MifM (Chiba and Ito, 2012), SecM 

(Lawrence et al., 2008; Nakatogawa and Ito, 2002; Yap and Bernstein, 2009), TnaC (Cruz-Vera and 

Yanofsky, 2008; Cruz-Vera et al., 2005, 2007; Gollnick and Yanofsky, 1990; Gong and Yanofsky, 2002)) 

provided molecular insights into interaction patterns of several stalling mechanisms. Although very 

diversely regulated, in all cases the PTC geometry is somehow perturbed. Further, some re-occurring 

residues have been identified in the upper part of the tunnel predominantly modulating nascent 

chain interactions: uL4 and uL22, likely due to the constricted nature of their localization, were found 

to be key players in e.g. APP- (Wu et al., 2012) or MifM-mediated stalling (Sohmen et al., 2015) 

particularly since peptide stabilization was not observed at the central constriction for non-regulator 

peptides (Bhushan et al., 2010a). In close proximity, Ec A751 (Hs A1582) of the 23S (28S in 

eukaryotes) rRNA was identified upon mutation for MifM and SecM to play a critical role in stalling. 

Several rRNA residues like Ec A2602 (ErmCL, MifM), Ec U2585 (AAP, ErmCL, hCMV, MifM, TnaC), Ec 

A2058 (AAP, hCMV, TnaC), Ec U2609 (AAP, hCMV, TnaC) and Ec A2062 (AAP, ErmCL, hCMV, SecM) 

(Arenz et al., 2014a, 2014b; Bhushan et al., 2010b, 2011; Bischoff et al., 2014; Sohmen et al., 2015) 

were reported as re-occurring interaction partners for the stalling peptides, however, uniquely 

combined for each particular case. PTC-contained residues are prone to be affected due to their 

critical contribution to translation termination or peptide-bond formation. Importantly, not all 

contacts observed between the nascent chain residues and the tunnel wall contribute to stalling and 

not all ribosomal residues shown to be important for stalling (by mutational studies) directly contact 

the nascent chain. Rather, it seems to be a complex relay mechanism, which propagates signals 

within the tunnel ultimately up to the PTC, also influencing residues not directly engaging with the 

nascent chain (Bhushan et al., 2011; Gong and Yanofsky, 2002; Seidelt et al., 2009; Vázquez-Laslop et 

al., 2010). In some cases, the A-site- or P-site-bound aa influences stalling properties (e.g. ErmAL1 

(Ramu et al., 2011), hCMV (Degnin et al., 1993), SecM (Muto et al., 2006)). Especially Pro operates as 

poor A-site substrate due to its low nucleophilicity and geometric restraints transferred to the PTC 

(Pavlov et al., 2009). Some peptides efficiently exhibit stalling properties for elongation as well as 

termination (e.g. AAP, ErmCL, MifM) others are limited to either one of them (e.g. hCMV, SecM, 

TnaC) once again stressing the individuality rendering each uORF truly unique.  
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Figure 14:  Schematic of Peptide-mediated Stalling Mechanisms and Their Respective Effects. 

The small ribosomal subunit is depicted in yellow, the large ribosomal subunit in gray. The initiator tRNA 
(tRNAi), the peptidyl-tRNA binding site (P-site) and the aminoacyl-tRNA binding site (A-site) tRNAs are marked 
accordingly. (A) The ribosome binding site (RBS) is sequestered in a secondary mRNA structure when the 
arrest-peptide containing upstream open reading frame (uORF) is translated (left). If stalling occurs, the RBS is 
exposed leading to downstream initiation and target translation (right) (e.g. MifM, ErmCL, ErmAL1, SecM). (B) 
Arrest-peptide containing uORF translation is terminated leaving the transcription termination factor Rho 
(orange) binding site, called rho utilization site (rut), accessible which results in transcription termination and 
therefore 3’ truncated mRNA (left). If translation termination is stalled, however, Rho cannot bind, resulting in 
prolonged mRNA transcription by the RNA polymerase (pol) (purple) and translation of the target sequence 
(right) (TnaC). (C) Leaky scanning of the arrest-peptide containing uORF leads to downstream target translation 
(left). If uORF translation is initiated, however, the translating 80S ribosome is stalled which prevents 
downstream target translation (right) (e.g. hCMV, AAP, AdoMetDC). (D) If the arrest-peptide containing open 
reading frame is translated, it results in enzyme expression (left). If translation is stalled, the ribosome acts as 
road-block for following ribosomes which stack behind. 5’ mRNA cleavage by an endonuclease results in 
fragmented mRNA preventing target expression (right) (CGS1). (E) mRNA translation is terminated, paused and 
re-initiated (right) (2A peptide). (F) The stalled ribosome exposes an already translated HR2 protein sequence 
which localizes the mRNA to the endoplasmatic reticulum (ER) membrane. There, the transmembrane 
endoribonuclease IREα mediates mRNA splicing to generate mRNA encoding the active form of the target 
sequence (right) (XBP1u). 
Figure was based on Ito et. al  (Ito and Chiba, 2013). 

 

When discussing peptide-mediated arrest as mode of gene regulation, the successful release of 

stalled ribosomes for re-usage, which certainly temporally influences the anticipated gene regulation, 

has to be considered. Some arrest sequences (e.g. MifM, SecM, VemP (Ishii et al., 2015)) are sensitive 

to force which, when applied, corrects the perturbed PTC leading to release of stalling. As 

mentioned, other stalling mechanisms are sensitive to extrinsic cues whose altered concentrations 

result in the formation or perturbation of the composite binding pocket. Other stallers seem to be 

dead-end stallers which are subjected to the mRNA surveillance pathways. Literature on the 

involvement of such pathways, especially in eukaryotes, is scarce. Genome-wide analysis in 

mammalian cells on NMD substrates demonstrated enrichment of uORF-containing transcripts 

(Mendell et al., 2004). Basic or acidic clusters of aa are known to induce ribosome arrest (Bengtson 

and Joazeiro, 2010; Ito-Harashima et al., 2007; Kuroha et al., 2009; Matsuda et al., 2014; Wilson et 

al., 2007) evidenced by non-stop mRNA where translation continues into the mRNA poly(A) tail 

(encoding poly-lysine) followed by ribosomal stalling. Such stalling however, was reported to induce 

non-stop mRNA decay (NSD) (Frischmeyer et al., 2002; van Hoof, 2002; Keiler et al., 1996; Parker, 

2012). Generally, peptide-mediated stalled ribosomes would rather be a classical target for the no-go 

mRNA decay (NGD) pathway, (Doma and Parker, 2006; Parker, 2012) yet abundant A-site occupancy 

in most render this pathway inapplicable. Taken together, as no clear boundaries are set between 

NGD and NSD, further studies would be beneficial to unravel the role of the mRNA surveillance 

systems in gene regulation via peptide-mediated arrest. 

1.3.2 The Human Cytomegalovirus gp48/UL4 uORF2 Nascent Polypeptide 

The human cytomegalovirus is a species of the Herpesviridae whose infection usually remains 

asymptomatic in the healthy population, however, can lead to carcinoma in immunocompromised 

patients (Geballe et al., 1986; Herbein and Kumar, 2014). Of particular interest in the ribosome 

stalling context is its UL4 gene which expresses a 48 kDa N- and O-glycosylated protein gp48 (or UL4) 

and contains three uORFs (Chang et al., 1989; Schleiss et al., 1991). Hereof, uORF2 encodes for a 22 

codon peptide (1-MEPLVLSAKKLSSLLTCKYIPP-22) inhibiting its own translation termination (Degnin et 
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al., 1993) and therefore scanning ribosomes which cannot pass and initiate at the downstream 

gp48/UL4 ORF in the early stage of infection (see Figure 15) (Degnin et al., 1993; Geballe et al., 1986). 

To possibly express the gp48/UL4 ORF, the AUG Kozak consensus context of uORF2 is weak causing 

leaky scanning and occasional omission of its initiation (Cao and Geballe, 1995). On the contrary, 

both uORF1 and 3 do not appear to have any influence on gp48/UL4 expression (Degnin et al., 1993). 

Efficient uORF2-mediated stalling was demonstrated in WG, RRL (Bhushan et al., 2010b; Janzen et al., 

2002), Drosophila melanogaster (D. melanogaster) and yeast translation extracts (Bhushan et al., 

2010b) indicating the manipulation of a conserved eukaryotic ribosomal feature by the hCMV-

peptide for ribosome stalling. This unspecificity for a certain species could also be observed for CGS1 

or APP (Fang et al., 2004; Spevak et al., 2010). By contrast, MifM or SecM peptides function in a 

species-specific manner, as both only stall in gram-positive or gram-negative bacteria, resepectively. 

Relevant residues for stalling were characterized in mutational studies where uORF2 was cloned 

upstream of the reporter β-galactosidase (β-gal) whose expression level was monitored: Upon the 

most critical residues for stalling were the stop codon itself which resides in the ribosomal A-site as 

well as the ultimate and penultimate Pro residues (22/21) (Degnin et al., 1993). Medium effects were 

observed for Tyr19, however, more severe effects for Ser12, Ala8 and Ser7 mutations (all bold in the 

above codon-message) (Alderete et al., 1999; Degnin et al., 1993). In isolated clinical hCMV strains, 

the six most C-terminal aa residues were identical (Degnin et al., 1993), yet conversely, the N-

terminus was more polymorphic (Alderete et al., 1999). 

 

Figure 15:  Schematic of hCMV-stalling Mediated Regulation of gp48/UL4 Expression. 

(A) Leaky scanning of the AUG codon in the upstream open reading frame 2 (uORF2) leads to initiation at the 
proximal AUG of the gp48/UL4 open reading frame and consequently its expression. (B) Translation of uORF2 
however, leads to peptide-mediated stalling at its own translation termination. The stalled ribosome harbors a 
stop codon (red) in its aminoacyl-tRNA binding site (A-site) where the release factor eRF1 (light green) can bind. 
The Proline encoding CCU codon is positioned in the ribosomal peptidyl-tRNA binding site (P-site). Arrested 
ribosomes prevent further 80S scanning, resulting in repression of gp48/UL4. 
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 

 

Interestingly, Geballe and co-workers discovered that interactions between eRF1 in the ribosomal 

A-site and the hCMV-peptide contribute to stalling activity and that eRF1 even accumulates on the 

stalled ribosome (Janzen et al., 2002). Further, eRF1 Gly183 and Gly184 (of the GGQ motif) are both 

necessary for full inhibition of downstream translation since usage of an AAQ mutant eRF1 in in vitro 

translation assays increased downstream expression in a similar β-gal assay as above. When 

mutation of stalling-relevant residues was combined with the addition of the AAQ mutant eRF1, 

downstream translation of the β-gal reporter was even further increased (compared to the 

mutations only). In the final proposed model, the two N-terminal Pro interact (directly or indirectly) 

with both Gly of the GGQ motif. It was suggested that eRF1 and the mRNA vacate the ribosome 
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before the peptidyl-tRNA is hydrolyzed which renders eRF1 irresponsible for the prolonged 

association of the hCMV peptidyl-tRNA on the ribosome.  

In 2010, a cryo-EM reconstruction of a WG CMV-stalled ribosome-nascent chain complex (RNC) with 

an average resolution of 6.5 Å was published visualizing the hCMV-stalling peptide in the tunnel 

(Bhushan et al., 2010b). The resolution allowed rough placement of the nascent chain backbone 

revealing an extended conformation and probable interacting tunnel wall components (Bhushan et 

al., 2010b). Most likely, an IGG anticodon tRNA resides in the P-site since it is known to decode CCU 

(and CCC) codons encoding Pro like in the construct (Geballe, 1996). A loop of the ribosomal protein 

uL16 (L10e) was suggested to interact with the CCA-end of the tRNA and perhaps to be important for 

stalling activity. Moreover, the C-terminal nascent chain residues were hypothesized to interact with 

the upper part of the tunnel, namely with Ec A2062 (Hs A3879) and Ec U2585 (Hs U4493). Additional 

contacts are made to Ec U2609 (Hs U4517) and Ec A2058 (Hs A3875). At the central constriction area 

stabilization of the nascent chain around residues 10 - 12 by uL22, uL4 and the Ec A751 (Hs A1582) 

region was further hypothesized. Even though placement of the nascent chain might reveal contact 

sites to the tunnel wall, at this resolution no clear statement could be made about specific molecular 

interactions not to mention side-chain interactions. Since mutational studies of eukaryotic exit tunnel 

components could not have been conducted so far, their importance for hCMV-peptide-mediated 

stalling could also not have been verified biochemically, yet.  

1.3.3 Stalling as Tool for Programming Ribosomes in vitro 

High-resolution structures of empty ribosomes are a useful reference for identifying positions of 

rRNA nucleotides and r-proteins and for identifying molecular differences during the steps of the 

translation cycle. Yet, to acquire novel molecular insights into the translation process ribosomes 

associated with their translated mRNA, tRNA(s) or protein factors are required for highest possible 

resemblance of the canonical situation. Studying such ribosomal complexes via cryo-EM or x-ray 

crystallography has preferably required homogenous samples of synchronized ribosomal states for a 

long time. Consequently, the possibility to halt translation at a particular state due to stalling and to 

enrich for such ribosomes was exploited as tool to efficiently obtain suitable samples. Generally, 

arrest can be mediated via stalling peptides as described above (see 1.3.1) or truncated and stem-

loop containing mRNAs (Becker et al., 2011; Frauenfeld et al., 2011; Halic et al., 2004) all yielding 

RNCs. The combination with ligand incubation for in vitro reconstitution has proven to be an elegant 

technique for structural studies (Becker et al., 2011; Preis et al., 2014). 

Less than a handful cryo-EM structures of the human 80S ribosome are existent (Anger et al., 2013; 

Behrmann et al., 2015; Khatter et al., 2015; Quade et al., 2015) which are either non-functional 

(Anger et al., 2013; Khatter et al., 2015), derived from pullout assays (Behrmann et al., 2015) or are 

associated with the HCV IRES (Quade et al., 2015) emphasizing the challenges of sample preparation 

and obtaining large enough quantities required for structural investigations. For the human system 

and in the context of studies on translation termination, in vitro reconstitution by the preparation of 

hCMV-peptide stalled RNCs was thought to be most ideally suited since the hCMV-peptide is known 

to successfully and stably stall at its own translation termination in several organisms (Bhushan et al., 

2010b; Cao and Geballe, 1998; Preis et al., 2014) and even enrich for eRF1 (Janzen et al., 2002). 



I n t r o d u c t i o n  

 

P a g e  | 41 
 

1.4 Structural Analysis of Macromolecular Complexes: Cryo-Electron Microscopy 

in the New Era 

In many cases, structural visualization of macromolecular complexes proofed indispensable for the 

detailed mechanistic understanding of the critical biological processes they fulfill. Relevant functional 

states delivered explicit insights which contributed to our current knowledge of molecular activities 

throughout the translation cycle. 

Before major technology advances, near-atomic resolution has been reserved to x-ray 

crystallography which successfully revealed numerous prokaryotic 70S (e.g. Dunkle et al., 2011; 

Hansen et al., 2002; Schmeing et al., 2005b, 2009; Schuwirth et al., 2005) and archaeal 50S 

(Gabdulkhakov et al., 2013) ribosomal structures advancing our understanding of key steps in the 

translation cycle. It was not until recently that the first high-resolution crystal structure of a 

eukaryotic 80S yeast ribosome was presented at 3.0 Å (Ben-Shem et al., 2011). Further, a 

Tetrahymena thermophila 60S SU at 3.5 Å and a 40S SU at 3.9 Å could be crystallized (Klinge et al., 

2011; Weisser et al., 2013) whereas higher eukaryotic structures were denied comparable success 

likely due to their increasing complexity and lacking homogeneity (Khatter et al., 2014). The best 

resolution acquired by crystallization of the human ribosome at present is 26 Å (Khatter et al., 2014). 

Only very recently, attempts for cryo-EM reconstructions on human ribosomes revealed first high-

resolution structures in non-functional (5.0 Å and 3.6 Å) (Anger et al., 2013; Khatter et al., 2015) and 

functional (3.5 Å and 3.9 Å) (Behrmann et al., 2015; Quade et al., 2015) states. 

Despite its long-term drawback in obtaining high-resolution, cryo-EM (a form of transmission 

electron microscopy (TEM)) has always been advantageous in key considerations: Comparably small 

sample quantities are needed for specimens from 170 kDa (the human γ-secretase (Lu et al., 2014)) 

to ∼75 MDa (the extremophile Sulfolobus turreted icosahedral virus (Veesler et al., 2013)) along with 

sample preparation in a nearly native buffer system. Sample homogeneity plays an important role, 

however, as opposed to crystallography, was shown to be computationally adjustable nowadays 

(Amunts et al., 2014; Fernández et al., 2013, 2014; Koh et al., 2014). Especially the combination of 

lower-resolution cryo-EM structures to visualize the larger interaction context, as well as subunit 

arrangements, and the docking of high-resolution crystallography or NMR structures has provided 

valuable insights so far. From its birth in 1984, when methods for convenient sample vitrification in a 

frozen-hydrated state were introduced (Adrian et al., 1984; Dubochet et al., 1982), increasing 

resolution for cryo-EM was highly sought (see Figure 16A for the correlation of acquired resolution 

and increasing observable molecular details). By 1997, the 10 Å limit was overcome visualizing 

α-helices of the hepatitis B virus (Böttcher et al., 1997). Technical innovations, like the development 

of the field emission gun (FEG) (Zhou and Chiu, 1993), improved illumination systems (Glaeser et al., 

2011), automated data collection (Allegretti et al., 2014; Nickell et al., 2005; Suloway et al., 2005) 

and robust computational algorithms (Chen and Grigorieff, 2007; Glaeser, 2004; Klug, 2010; Langlois 

et al., 2011; Pauling and Corey, 1953; Scheres, 2012a, 2012b; Sorzano et al., 2009; Voss et al., 2009; 

Zhu et al., 2004) all considerably contributed to resolution improvement. By 2010, the first atomic 

cryo-EM structure of the human adenovirus was reported at 3.6 Å (Liu et al., 2010). In theory, 

obtaining atomic resolution has been feasible for TEMs for years, yet practical limitations in cryo-EM 

application on biological samples have limited such achievement. Since biological molecules are built 

of light elements (carbon, oxygen, nitrogen, phosphor, sulfur and hydrogen), they only scatter 

electrons (e-) weakly. Such barrier could be overcome with high e- dose, however, as opposed to 

material sciences, biological specimen suffer from radiation damage and beam-induced motion 
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(Leapman and Sun, 1995) prohibiting the reception of higher signal-to-noise ratios (SNRs) by these 

means. Fortunately, particularly recent developments in the camera technology leveraged cryo-EM 

to the long-sought quantum leap in obtaining high resolution which allowed also ribosomal 

structures to be solved at near-atomic resolution. These achievements herald a new era in which the 

long-term obstacle of lacking high-resolution is overcome for cryo-EM. 

 

Figure 16:  Recent Technology Advances in Cryo-Electron Microscopy. 

(A) Correlation of acquired resolution (in angstrom (Å)) and increasing observable molecular details: General 
shapes (Tecnai G2 Spirit derived reconstruction of the human 80S ribosome), DNA/RNA (PDB-code: 4v6w, EMD: 
5805) (Anger et al., 2013), alpha-helices (PDB-code: 3j3b, EMD: 5592) (Anger et al., 2013), beta-strands (PDB-
code: 5a8L, EMD: 3099) (Matheisl et al., 2015) and side-chains (PDB-code: 5afi, EMD: 2847) (Fischer et al., 
2015) can be visualized at increasing resolution. (B) Electron (e-) detection via a charge-coupled-device (CCD) 
camera. A phosphate scintillator is needed to convert the e- signals to photons, which are transferred to the 
camera sensor through fiber optics, leading to indirect e- detection. (C) First, bulk direct electron detection 
devices (DDDs), where e- signal conversion was no longer necessary due to direct e- detection, were 
introduced. (D) Then, novel back-thinned DDDs with less support matrix followed. Here, prevention of e- back-
scattering results in a higher modulation transfer function and therefore higher detective quantum efficiency. 
(E) CCD camera derived blurred-image due to beam-induced motion. In addition, limited sorting and 
classification could result in heterogeneous reconstructions. (F) Image acquisition and processing improved 
concomitant to DDD development. The read-out is fast enough to record several frames (movie) that can be 
realigned and corrected for beam-induced motion. Further developments in classification algorithms more 
easily result in individual homogenous structures due to increased sorting power.  
Figures (A) and (B) designed on the basis of Schröder et al. (Schröder, 2015). Figure (F) designed on the basis of 
Binshtein et al. (Binshtein and Ohi, 2015) and Bai et al. (Bai et al., 2014). 

 

Previously, charge-coupled-device (CCD) cameras were used for signal detection in cryo-EM (see 

Figure 16B). The CCD camera is composed of a phosphate scintillator to convert the e- signals to 

photons which are then transferred to the camera sensor through fiber optics, consequently 

indirectly recording the e- image. Now, new technology allows direct detection of e- on a 

semiconductor membrane of novel direct e- detection devices (DDDs) leading to a higher contrast 

across high spatial frequencies which allows higher resolution at lower magnification (see Figure 16C) 

(McMullan et al., 2009a, 2009b). The modulation transfer function (MTF) measures the contrast 

across all spatial frequencies. A measure to specifically calculate and compare camera performances 

is the detective quantum efficiency (DQE) which analyzes the combined effects of the SNR of the 
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incoming signal (described by the MTF) and the errors (or noise) which diminish the SNR in the 

detection process.  

Further, removing support matrix of the bulk DDD, called back-thinning, minimized noise from back-

scattering e- (see Figure 16D) (McMullan et al., 2009a). The associated higher SNR requires fewer 

particles to be collected whereas faster read-out possible due to DDDs (up to 400 frames/sec) 

enables concomitant fractionation of the applied e- dose into separate frames. Such frames can be 

individually corrected for beam-induced motion still opposing a problem whose origin is hardly 

understood (see Figures 16E, F) (Bai et al., 2013; Brilot et al., 2012; Campbell et al., 2012; Li et al., 

2013). Moreover, various frame combinations can be utilized for particle alignment, which requires 

high SNR, and the final reconstruction, which preferably requires little e- damage (Baker and 

Rubinstein, 2010). Possessing much higher DQEs (Li et al., 2013; McMullan et al., 2014; Ruskin et al., 

2013) combined with faster read-out, DDDs revolutionized the structural field (Bai et al., 2013). This 

technical acquisition was accompanied by novel computational algorithms further enhancing final 

data quality. With improving resolution, subtle conformational changes in the specimen became 

more and more apparent. Unsupervised 3D classification based on the maximum likelihood 

estimation (Lyumkis et al., 2013; Scheres, 2010, 2012a; Scheres et al., 2007; Sigworth, 1998; Sigworth 

et al., 2010), combined with the empirical Bayesian approach (Scheres, 2012b), even rebounded the 

heterogeneity of some samples to advantage (Elad et al., 2008; Lyumkis et al., 2013; Spahn and 

Penczek, 2009; Zhang et al., 2008). From one single biochemical preparation multiple conformational 

states could be separated allowing even deeper mechanistic understanding of the investigated 

process.  

During the past two years, several ribosomal structures were successfully reconstructed to 

resolutions beyond 4 Å which all delivered novel insights: To only name a few, the prokaryotic TnaC-

stalled (3.8 Å) (Bischoff et al., 2014) and SecM-stalled (3.3 – 3.7 Å) (Zhang et al., 2015) 70S ribosomes, 

the Plasmodium falciparum 80S ribosome (3.2 Å) (Wong et al., 2014), the scanning and engaged 

mammalian-SRP complex (3.75 Å) (Voorhees and Hegde, 2015), the human mitoribosome (3.5 Å) 

(Amunts et al., 2015), the MifM-stalled B. subtilis 70S ribosome (3.9 Å) (Sohmen et al., 2015), the EF-

Tu-bound ribosome (2.9 Å) (Fischer et al., 2015), the eIF1:eIF4A-bound 40S preinitiation complex 

(3.46 Å) (Llácer et al., 2015) the SecYEG-bound translocating ribosome (3.33 Å) (Jomaa et al., 2016) 

and the EF-4 bound ribosome (3.2 – 3.7 Å) (Zhang et al., 2016) under which very recently structures 

of the human ribosome like the HCV IRES-bound 80S ribosome (3.9 Å) (Quade et al., 2015) and the 

non-functional 80S ribosome itself (3.6 Å) (Khatter et al., 2015) were generated.  

Although technical and computational progress led to the high paste of advancing cryo-EM, the 

technique still has its limits. To convincingly visualize ions and side-chains, resolutions better than 3 Å 

are worth pursuing. Improving computational power and developing tools for efficient model 

building, refinement and validation are desirable. Stopping beam-induced motion, most likely 

deriving from structural changes in the carbon support (Russo and Passmore, 2014), will be one of 

the next obstacles to be tackled by the cryo-EM community. Notably, not all structures will readily 

reach atomic resolution since conformational flexibility, as likewise for crystallography, limits 

visualization, but taken together, recent developments provide the feasibility of near-atomic 

resolution structures of large macromolecular complexes via cryo-EM. As versatile tool, cryo-EM is 

starting to become as widely used as crystallography, opening the floodgates for answering long-

standing questions like the molecular mechanism of stop codon decoding in eukaryotes and beyond. 
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1.5 Aims of the Thesis 

This dissertation aims at unraveling the molecular mechanism underlying stop codon recognition 

during translation termination in the human ribosome by structural means.  

Why spending the enormous effort and not just draw conclusions from high-resolution crystallized 

prokaryotic termination complexes? Termination and especially stop codon recognition is one of the 

least conserved processes during translation. In bacteria, two class-I release factors (RF1 and RF2) 

have evolved with overlapping specificity for two stop codons each (Scolnick et al., 1968). High-

resolution structures have already been solved starting from 2008 by the crystallization of an RF1-

bound 70S ribosome (Laurberg et al., 2008). Since then, all possible stop codon - RF1/2 combinations 

have been crystallized to high resolution to elucidate the molecular network of stop codon 

recognition by the two prokaryotic RFs (Korostelev et al., 2008, 2010; Weixlbaumer et al., 2008). The 

unrelated eukaryotic eRF1 however, mediates stop codon decoding for all three codons while being 

structurally diverse from RF1 and RF2. Consequently, the precise underlying mechanism of 

eukaryotic stop codon decoding is a pressing issue, which can only be solved by a high-resolution 

structure of the eRF1-bound ribosome, because all hitherto existing genetic and biochemical studies 

could only reveal contradictory results. 

At the start of the project various options were available for biochemical sample preparation of the 

first human ribosome in a functional state: Native pullouts could have been conducted as in the 

meantime has been successfully reported by Spahn and co-workers (Behrmann et al., 2015). Gain of 

this approach is to certainly obtain several natural ribosome states, yet its drawback is limited 

amounts of particles for each state resulting in compromised resolution. Since particularly the state 

of translation termination at highest possible resolution was aimed at, in vitro reconstitution seemed 

rather promising in our case. In vitro translation combined with subsequent reconstitution has been 

successfully performed from the yeast (Becker et al., 2011), the WG (Preis et al., 2014) and the RRL 

(Gogala et al., 2014) in vitro translation systems before where efficiently stalled 80S ribosomes were 

purified and supplemented with the according protein factors.  

Recently, a Japanese group (Mikami et al., 2010a) has published a supposedly efficient way for in 

vitro translation extract preparation based on human HeLa cells which has been applied 

commercially by Thermo Scientific. Conversely, testing the latter could not produce reliable, 

reproducible results. Hence at first, we set out for the establishment of a human translation extract 

and its optimization due to adjustments to our particular needs.  

With this extract in hands, the generation of 80S ribosomes each harboring a peptidyl tRNA in its 

P-site and a stop codon in its A-site was of necessity. Translation of the human hCMV-stalling 

sequence resulted in inhibition of termination and effective enrichment of stalled RNCs for in vitro 

reconstitution. hCMV-mediated stalling has been characterized extensively via mutational studies 

(Alderete et al., 1999; Degnin et al., 1993; Janzen et al., 2002) and has already successfully been used 

for low-resolution cryo-EM structures (Bhushan et al., 2010b; Preis et al., 2014), yet also here only a 

high-resolution structure can elucidate the molecular basis of why termination is impeded.  

Several approaches for the purification of the participating human proteins eRF1, eRF3 and ABCE1 

were undertaken to successfully assemble a termination involved complex Due to the reluctance of 

the human ribosome to high-resolution crystallization up to date, cryo-EM presented the method of 
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choice to acquire the required resolution in this project. To this end, the hCMV-peptide stalled, 

heRF1-only containing human RNC preparation was subjected to structural investigations by cryo-EM 

eventually allowing the reconstitution of a 3.8 Å cryo-EM density followed by atomic model building 

to unravel the molecular mechanism of hCMV-peptide mediated stalling as well as stop codon 

decoding during human translation termination. 

  



M a t e r i a l s  a n d  M e t h o d s  

 

P a g e  | 46 
 

2. Materials and Methods 

2.1 Molecular Cloning 

2.1.1 Plasmids and Strains 

For cloning experiments in this study, several plasmid backbones (see Table 1) were used as basis for 

modification. After insert cloning, final plasmids were used for protein expression and purification 

from bacterial E. coli or human HEK293T cells and cell-free protein expression experiments. 

Table 1:  Plasmid Backbones and Their Respective Inserts Used in this Study. 

Backbone Purpose Cloned Insert 
Selection 

Marker 
Manufacturer 

pCDNA3.1 Protein expression in 
mammalian cells 

3xFLAG-hABCE1 Amp Invitrogen 

pET-28a Protein expression in E. coli  (His)6-Δ(1-46)Jmjd4 Kan Novagen 

pET-32a Protein expression in E. coli TRX-(His)6-TEV-heRF3a 
full length (fl) 

Amp Novagen 

pETDuet-1 Protein co-expression in  
E. coli 

Differently (His)8-3C-
tagged heRF1 and 
heRF3a fl/ 
Δ(1-138)heRF3a 
combinations 
Tagged/untagged heRF1 
only 

Amp Novagen 

pRSFDuet-1 Protein co-expression in  
E. coli 

(His)8-3C-Δ(1-138) 
heRF3a WT, H300Q and 
R371G only 

Kan Novagen 

pT7CFE1-
NHis 

Cell-free protein expression 
in human translation 
system 

CrPV IGR IRES-linker-
(His)6-3C-HA-hCMV-
p(A)26 

Amp Thermo 

Scientific 

 

E. coli strains (see Table 2) were grown in 1x Luria Bertani (LB) medium (1 % (w/v) bacto tryptone, 

0.5 % (w/v) yeast extract, 1 % (w/v) sodium chloride (NaCl) in H2O) or where indicated in 2x LB (2 % 

(w/v) bacto tryptone, 1 % (w/v) yeast extract, 1 % (w/v) NaCl in H2O) under shaking conditions (120 - 

140 rounds per minute (rpm)) at 37 °C for plasmid amplification and at various temperatures (18 °C, 

20 °C, 30 °C, 37 °C) for protein expression. To determine the growth of liquid cultures, the optical 

density at a wavelength of λ = 600 nm (OD600) was measured with a BioPhotometer® (Eppendorf). 

Growth on agar plates (1x LB completed with 1.5 % (w/v) agar) was performed at 37 °C overnight. For 

establishing selection pressure, the corresponding antibiotic kanamycin (50 µg/mL) (Kan) or 

ampicillin (100 µg/mL) (Amp) (and chloramphenicol (34 µg/mL) (Cam) for the pRARE plasmid 

containing E. coli Rosetta (DE3)) was added. 
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Table 2:  E. coli Strains Used in this Study. 

Strain Purpose Genotype Manufacturer 

E. coli BL21 
(DE3) 

Protein expression F– ompT gal dcm lon hsdSB(rB- mB-) 
λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 
nin5])  

Stratagene 

E. coli DH5α Plasmid amplification F- endA1 glnV44 thi-1 recA1 relA1 
gyrA96 deoR nupG Φ80dlacZΔM15 
Δ(lacZYA-argF)U169, hsdR17(rK- mK+), λ–  

Stratagene 

E. coli ER2566 Protein expression F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 
gal sulA11 Δ(mcrC-mrr)114::IS10 R(mcr-
73::miniTn10-TetS)2 R(zgb-210::Tn10) 
(TetS) endA1 [dcm] 

NEB 

E. coli Rosetta 
(DE3) 

Protein expression F- ompT hsdSB(RB- mB-) gal dcm λ(DE3 
[lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 
pRARE (CamR) 

Novagene 

E. coli XL1blue Plasmid amplification endA1 gyrA96(nalR) thi-1 recA1 relA1 
lac glnV44 F'[ ::Tn10 proAB+ lacIq 
Δ(lacZ)M15] hsdR17(rK- mK+) 

Stratagene 

 

2.1.2 Polymerase Chain Reaction-based Methods 

Gibson Assembly Cloning (NEB) 

Gibson Assembly (GA) (see Figure 17A) is a fast and flexible cloning method which is independent of 

restriction enzymes. The prerequisite on DNA level are overlapping sequence endings between the 

fragments to be assembled. In favor of three enzymatic reactions even multiple overlapping DNA 

fragments can be joined: First, an exonuclease creates single-stranded 3’ overhangs to allow 

annealing between the fragments. Then, a DNA polymerase extends the 3’ ends to fill the existing 

gaps before a DNA ligase seals the remaining nicks. 

Table 3:  Primers Used for Gibson Assembly Cloning in this Study. 

Blue color indicates sequences overlapping with the target vector. Melting temperatures (Tm) are only given for 
the annealing parts of the sequences and were calculated with the Tm Calculator (NEB) 
(http://tmcalculator.neb.com). Forward (fwd) and reverse (rev) primers are indicated. 

Name Sequence Tm Type Purpose 

SM 42 5’cctggccaccaccatatgCTGGAAGTGCTGTT
TCAGGGCCCGTACCCATACGATGTTCCAG
ATTACG3’ 

66 °C fwd Clone(His)6-3C-HA-hCMV-
(UAA)G into pT7CFE1-NHis 

SM 43 5’gatctcactcgagtgcTTAAGGAGGAATATA
TTTGCAGG3’ 

60 °C rev Clone(His)6-3C-HA-hCMV-
(UAA)G into pT7CFE1-NHis 

 

For the described GA approach, the plasmid template pT7CFE1-NHis was linearized (with NdeI/NotI) 

to reduce the background of its transformation. The insert was polymerase chain reaction (PCR) 

amplified to append sequences contained in the primers (see Table 3) which partly overlap with the 

target vector. For amplification, a 50 µL sample containing 0.5 µM of each primer, 10 ng of the 

linearized template plasmid and 50 % (v/v) of the Phusion Flash High-Fidelity Master Mix (Finnzymes) 

was assembled. Cycling conditions were based on the manufacturer’s recommendation with an 

amplification time of 20 seconds (sec)/kilo base pair (kb) and an annealing temperature (Ta) 2 °C 
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higher than the lower melting temperature (Tm) of the two primers (annealing sequence < 20 nt). As 

starting material for the GA reaction, 100 ng vector and 3x molar excess of the amplified insert were 

incubated in 1x GA Master Mix (NEB) in a total volume of 20 µL. Samples were incubated at 50 °C for 

1 hour (h) to obtain fully assembled DNA and diluted 1:4 prior to their transformation (see 2.1.7). 

Megaprimer PCR of Whole Plasmid Cloning 

The megaprimer PCR of whole plasmid (MEGAWHOP) cloning method (see Figure 17B) (Miyazaki, 

2011) is a further technique to circumvent the classical problem-prone restriction enzyme-based 

cloning. In this novel kit-independent approach overlapping sequences between two fragments are 

also required. Therefore, sequences which are homologous to the target site of the plasmid are 

added to the insert fragment through primer overhangs during a first PCR (PCRI). The amplified 

product is then used as primer (due to its size called megaprimer) in a second PCR (PCRII) in which 

the homologous regions prime to the original vector sequence which is replaced during whole-

plasmid PCR. 

Table 4:  Primers Used for Megaprimer PCR of Whole Plasmid Cloning in this Study. 

Blue color indicates sequences overlapping with the target vector. Melting temperatures (Tm) are only given for 
the annealing parts of the sequences and were calculated with the Tm Calculator (NEB) 
(http://tmcalculator.neb.com). Forward (fwd) and reverse (rev) primers are indicated. 

Name Sequence Tm Type Purpose 

SM 59 5’cggttattttccaccatattgAAAGCAAAAAT
GTTGATCTTGCTTGTAAATAC3’ 

65 °C fwd Clone CrPV IGR IRES-linker 
into pT7CFE1-(His)6-3C-HA-
hCMV-(UAA)G-p(A)26 

SM 60 5’catattatcatcgtgtttttcAGGTAAATTTCT
TAGGTTTTTCGACTACC3’ 

65 °C rev Clone CrPV IGR IRES-linker 
into pT7CFE1-(His)6-3C-HA-
hCMV-(UAA)G-p(A)26 

SM 108 5’taagaaggagatataccATGGGTCATCACC
ATCACCATCACCATCACGATTACGATATT
CCAACGACCCTGGAAGTTCTGTTCCAGG
GGCCCGCGGACGACCCCAGTGC3’ 

71 °C fwd Clone (His)8-heRF1 in 
pETDuet-1 (Multiple Cloning 
Site 1 (MCS1)) 

SM 109 5’caggcgcgccgagctcgaattcTTAGTAGTC
ATCAAGGTCAAAAAATTCATCG3’ 

68 °C rev Clone (His)8-heRF1 in 
pETDuet-1 (MCS1) 
Clone heRF1 in pETDuet-1 
(MCS1) 

SM 110 5’taagaaggagatataccATGGCGGACGAC
CCCAGTGC3’ 

71 °C fwd Clone heRF1 in pETDuet-1 
(MCS1) 

 

DNA amplification during PCRI (primers see Table 4) was performed with the Phusion Flash High-

Fidelity Master Mix (Finnzymes) as described for the GA cloning, but with an elongation time of 

30  sec – 1 minute (min)/kb and an Ta equal to the lower Tm of the two primers (due to the Tm being 

in the higher ranges of possible Tm). 
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Figure 17:  Applied Cloning Strategies. 

(A) Gibson Assembly (GA) (NEB) cloning strategy. Overlapping (OL) sequences (red/orange, dark/light geen) are 
added to the insert (light blue) during a polymerase chain reaction (PCR). Subsequent 5’ exonuclease treatment 
and fragment annealing are followed by DNA polymerase (pol) 3’ extension and nick sealing resulting in the 
final product. (B) Megaprimer PCR of whole plasmid (MEGAWHOP) cloning strategy color coded as in (A). OL 
sequences are added to the insert during a first PCR (PRCI). Subsequent usage of this PCR product as 
megaprimer in a second PCR (PCRII), DpnI digestion of the methylated (Me) plasmid and transformation result 
in the final product. (C) Classical restriction enzyme-based cloning strategy. The PCR product and the vector are 
digested with the same restriction enzymes (here: NdeI and AvrII) to create sticky or blunt ends. Restriction 
sites (red/orange, dark/light geen) can be added to the insert (light blue) during the PCR. Ligation of the 
restricted fragments results in the final product. (D) Restriction-free blunt end mutagenesis (RfBEM) cloning 
strategy. 5’ phosphorylated primers (P) are used to introduce an insertion (red/orange), deletion or mutation 
(red/orange) during a PCR. Subsequent DpnI digestion and ligation result in the final products.  
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For amplification during PCRII, 8 µL of PCRI purified product and 250 ng of the target vector were 

supplemented with deoxynucleoside triphosphates (dNTPs) (2 millimolar (mM) each, 

(Merck/Millipore)), 1x KOD Buffer (Merck/Millipore) and the KOD Xtreme™ Hot Start DNA 

Polymerase (Merck/Millipore). Amplification was performed with two Ta during the following 

gradient PCR protocol: 

 94 °C 2 min  

  98 °C  8 sec   
 50.9 °C and 65.2 °C 30 sec    8x 
 74 °C 1 min/kb  

  98 °C   8 sec   
 50.9 °C and 65.2 °C 30 sec    8x 
 68 °C 1 min/kb  

68 °C   3 min 

12 °C   ∞ 

Samples were pooled and subjected to DpnI digestion (see 2.1.4) and PCR product purification (see 

2.1.3) before transformation (see 2.1.7).  

Classical Restriction Enzyme-based Cloning 

Cloning into both multiple cloning sites (MCSs) of the Duet-1 co-expression vectors cannot be 

successfully accomplished by MEGAWHOP cloning due to equal sequences neighboring the MCSs. 

Therefore, it was reverted to the classical restriction enzyme-based cloning method (see Figure 17C). 

To this end, restriction enzyme recognition sites were appended to the insert fragments by primer 

overhangs (see Table 5) during a PCR realized with the Phusion Flash High-Fidelity Master Mix 

(Finnzymes) as described for template amplification (PCRI) during MEGAWHOP cloning. The PCR 

purified product (see 2.1.3) was subjected to enzymatic digestion (20 µL PCR purified product, 3 µL 

10x CutSmart® Buffer (NEB), 1 µL of each enzyme (NEB) in a total volume of 30 µL) at 37 °C overnight. 

In parallel, the plasmid was digested with the same restriction enzymes (10 - 20 microgram (µg) 

plasmid, 5 µL 10x CutSmart® Buffer (NEB), 1.5 µL of each enzyme (NEB) in a total volume of 50 µL). 

Subsequent ligation (see 2.1.5) and transformation (see 2.1.7) resulted in the final clones. 

Table 5:  Primers Used for Classical Restriction Enzyme-based Cloning in this Study. 

Green color indicates restriction enzyme recognition sites (AvrII: cctagg; NdeI: catatg). Melting temperatures 
(Tm) are only given for the annealing parts of the sequences and were calculated with the Tm Calculator (NEB) 
(http://tmcalculator.neb.com). Forward (fwd) and reverse (rev) primers are indicated. 

Name Sequence Tm Type Purpose 

SM 82 5’CTAGcctaggttaGTCTTTCTCTGGAACCAGT
TTCAGAA3’ 

67 °C 
 

rev Clone (His)8-3C-heRF3a fl in 
pETDuet-1 heRF1 (Multiple 
Cloning Site (MCS) 2) 
Clone Δ(1-138)heRF3a in 
pETDuet-1 (His)8-heRF1 
(MCS2) 
Clone (His)8-3C-Δ(1-
138)heRF3a in pRSFDuet-1 
(MCS2) 

SM 84 5’GGAATTCcatatgGGTCATCACCATCACCAT
CACCATCACGATTACGATATTCCAACGACCC

70 °C fwd Clone (His)8-3C-heRF3a fl in 
pETDuet-1 heRF1 (MCS2) 
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TGGAAGTTCTGTTCCAGGGGCCCGATCCGG
GCAGTGGCG3’ 

SM 88 5’GGAATTCcatatgTCAGAACCTATTGAAAAT
GGAGAGACAG3’ 

67 °C fwd Clone Δ(1-138h)heRF3a in 
pETDuet-1 (His)8-heRF1 
(MCS2) 

SM 89 5’GGAATTCcatatgGGTCATCACCATCACCAT
CACCATCACGATTACGATATTCCAACGACCC
TGGAAGTTCTGTTCCAGGGGCCCTCAGAACC
TATTGAAAATGGAGAGACAG3’ 

67 °C fwd Clone (His)8-3C-Δ(1-
138)heRF3a in pRSFDuet-1 
(MCS2) 

 

Restriction-free Blunt End Mutagenesis Cloning 

A cloning method which allows short mutations, insertions or deletions is restriction-free blunt end 

mutagenesis (RfBEM) cloning (see Figure 17D). Primers need to be 5’ phosphorylated and carry the 

desired mutation or overhang for insertion. During PCR the whole plasmid is amplified resulting in 

DNA fragments comprising 5’ phosphorylated ends which are subjected to ligation. 

For amplification, 100 µL sample containing 10 µM of each primer (see Table 6), 15 ng of the 

template plasmid and 50 % (v/v) of the Phusion Flash High-Fidelity Master Mix (Finnzymes) were 

assembled and equally divided into 8 samples. Cycling conditions were as follows: 

98 °C 20 sec 

 98 °C   10 sec   
Gradient: ± 5 °C of calculated Ta  20 sec    2x 
72 °C  6 min  

98 °C   10 sec  
Gradient: ± 5 °C of calculated Ta 20 sec    3x 
72 °C 5 min  

98 °C   10 sec  
Gradient: ± 5 °C of calculated Ta 20 sec    18x 
72 °C 4.5 min  

12 °C   ∞ 

Afterwards, all samples were pooled and subjected to PCR product purification (see 2.1.3), DpnI 

digestion (see 2.1.4), gel extraction (see 2.1.3), ligation (see 2.1.5) and transformation (see 2.1.7).  

Table 6:  5’ Phosphorylated Primers Used for Restriction-free Blunt End Mutagenesis Cloning in 

this Study.  

Red color indicates the mutated codons. Melting temperatures (Tm) are only given for the annealing parts of 
the sequences and were calculated with the Tm Calculator (NEB) (http://tmcalculator.neb.com). Forward (fwd) 
and reverse (rev) primers are indicated. 

Name Sequence Tm Type Purpose 

SM 96 5’GCACTCGAGTGAGATCTGAC3’ 60 °C fwd Replacing stop in pT7CFE1 
CrPV IGR IRES-linker-(His)6-3C-
HA-hCMV-p(A)26 with ideal 
stops codons 

SM 97 5’TTTAAGGAGGAATATATTTGCAGG3’ 60 °C rev Replacing stop in pT7CFE1 
CrPV IGR IRES-linker-(His)6-3C-
HA-hCMV-p(A)26 with UAA(A) 
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SM 98 5’TTCAAGGAGGAATATATTTGCAGG3’ 57 °C rev Replacing stop in pT7CFE1 
CrPV IGR IRES-linker-(His)6-3C-
HA-hCMV-p(A)26 with UGA(A) 

SM 99 5’TCTAAGGAGGAATATATTTGCAGG3’ 57 °C 
 

rev Replacing stop in pT7CFE1 
CrPV IGR IRES-linker-(His)6-3C-
HA-hCMV-p(A)26 with UAG(A) 

SM 143 5’CAGAAGAGTTTTGTCCCAAATATG3’ 62 °C fwd Creating GTPase deficient 
mutant of heRF3a fl or Δ(1-
138)heRF3a: H300Q 

SM 144 5’GCCAGGGGCATCTAGAATTG3’ 66 °C rev Creating GTPase deficient 
mutant of heRF3a fl or Δ(1-
138)heRF3a: H300Q 

SM 145 5’GGCTATGAAGAATGTAAGGAGAAAC3’ 62 °C fwd Creating GTPase deficient 
mutant of heRF3a fl or Δ(1-
138)heRF3a: R371G 

SM 146 5’CTCATTGCTCCAATTTACTGTT3’ 60 °C rev Creating GTPase deficient 
mutant of heRF3a fl or Δ(1-
138)heRF3a: R371G 

SM 223 5’AGCACTCGAGTGAGATCTGAC3’ 61 °C fwd Mutational screening of 
hCMV-stalling: Stop23Ala 

SM 224 5’GGCAGGAGGAATATATTTGCAGG3’ 57 °C rev Mutational screening of 
hCMV-stalling: Stop23Ala 

SM 225 5’TAAAGCACTCGAGTGAGATC3’ 57 °C rev Mutational screening of 
hCMV-stalling: Pro22Ala 

SM 226 5’GGCAGGAATATATTTGCAGGTCA3’ 56 °C rev Mutational screening of 
hCMV-stalling: Pro22Ala 

SM 227 5’CCTTAAAGCACTCGAGTGAG3’ 59 °C fwd Mutational screening of 
hCMV-stalling: Pro21Ala 

SM 228 5’GGCAATATATTTGCAGGTCAGCA3’ 57 °C rev Mutational screening of 
hCMV-stalling: Pro21Ala 

SM 229 5’CCTCCTTAA AGCACTCGAGTG3’ 63 °C fwd Mutational screening of 
hCMV-stalling: Ile20Ala 

SM 230 5’GGCATATTTGCAGGTCAGCAGGC3’ 64 °C rev Mutational screening of 
hCMV-stalling: Ile20Ala 

SM 231 5’ATTCCTCCTTAAAGCACTCG3’ 60 °C fwd Mutational screening of 
hCMV-stalling: Tyr19Mutation 

SM 232 5’GGCTTTGCAGGTCAGCAGG3’ 60 °C rev Mutational screening of 
hCMV-stalling: Tyr19Ala 

SM 233 5’GAATTTGCAGGTCAGCAGG3’ 60 °C rev Mutational screening of 
hCMV-stalling: Tyr19Phe 

SM 234 5’TATATTCCTCCTTAAAGCACTCG3’ 60 °C fwd Mutational screening of 
hCMV-stalling: Lys18Ala 

SM 235 5’GGCGCAGGTCAGCAGGCTG3’ 62 °C rev Mutational screening of 
hCMV-stalling: Lys18Ala 

SM 236 5’AAATATATTCCTCCTTAAAGCACTC3’ 59 °C fwd Mutational screening of 
hCMV-stalling: Cys17Ala 

SM 237 5’GGCGGTCAGCAGGCTGCTC3’ 61 °C rev Mutational screening of 
hCMV-stalling: Cys17Ala 

SM 238 5’TGCAAATATATTCCTCCTTAAAGCAC 
TCG3’ 

69 °C fwd Mutational screening of 
hCMV-stalling: Thr16Ala 

SM 239 5’GGCCAGCAGGCTGCTCAGTTTTTTCG3’ 71 °C rev Mutational screening of 
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hCMV-stalling: Thr16Ala 
SM 240 5’ACCTGCAAATATATTCCTCC3’ 57 °C fwd Mutational screening of 

hCMV-stalling: Leu15Ala 
SM 241 5’GGCCAGGCTGCTCAGTTTTTTC3’ 60 °C rev Mutational screening of 

hCMV-stalling: Leu15Ala 
SM 244 5’CTGCTGACCTGCAAATATATTC3’ 60 °C fwd Mutational screening of 

hCMV-stalling: Ser13Ala 
SM 245 5’GGCGCTCAGTTTTTTCGCACT3’ 63 °C rev Mutational screening of 

hCMV-stalling: Ser13Ala 
SM 246 5’AGCCTGCTGACCTGCAAATATATTC3’ 67 °C fwd Mutational screening of 

hCMV-stalling: Ser12Mutation 
SM 247 5’GGCCAGTTTTTTCGCACTCA3’ 67 °C rev Mutational screening of 

hCMV-stalling: Ser12Ala 
SM 248 5’GGTCAGTTTTTTCGCACTCA3’ 67 °C rev Mutational screening of 

hCMV-stalling: Ser12Thr 
SM 249 5’AGCAGCCTGCTGACCTGC3’ 67 °C fwd Mutational screening of 

hCMV-stalling: Leu11Ala 
SM 250 5’GGCTTTTTTCGCACTCAGCACCA3’ 67 °C rev Mutational screening of 

hCMV-stalling: Leu11Ala 
SM 251 5’CTGAGCAGCCTGCTGACC3’ 65 °C fwd Mutational screening of 

hCMV-stalling: Lys10Ala 
SM 252 5’GGCTTTCGCACTCAGCACCAG3’ 64 °C rev Mutational screening of 

hCMV-stalling: Lys10Ala 
SM 253 5’AAACTGAGCAGCCTGCTGAC3’ 65 °C fwd Mutational screening of 

hCMV-stalling: Lys9Ala 
SM 254 5’GGCCGCACTCAGCACCAGC3’ 63 °C rev Mutational screening of 

hCMV-Stalling: Lys9Ala 
SM 255 5’AAAAAACTGAGCAGCCTGC3’ 62 °C fwd Mutational screening of 

hCMV-stalling: Ala8Mutation 
SM 256 5’CACACTCAGCACCAGCGGTTC3’ 64 °C rev Mutational screening of 

hCMV-stalling: Ala8Val 
SM 257 5’GTCACTCAGCACCAGCGGTTC3’ 64 °C rev Mutational screening of 

hCMV-stalling: Ala8Asp 
SM 258 5’GCGAAAAAACTGAGCAGCC3’ 65 °C fwd Mutational screening of 

hCMV-stalling: Ser7Ala 
SM 259 5’GGCCAGCACCAGCGGTTCC3’ 65 °C rev Mutational screening of 

hCMV-stalling: Ser7Ala 
SM 260 5’CTGACCTGCAAATATATTCCTCCTTAA3’ 65 °C fwd Mutational screening of 

hCMV-stalling: Leu14Ala 
SM 261 5’GGCGCTGCTCAGTTTTTTCGCACTC3’ 67 °C rev Mutational screening of 

hCMV-stalling: Leu14Ala 

 

2.1.3 Purification of DNA Fragments 

Generated PCR products were purified with the QIAquick® PCR Purification Kit (Qiagen) according to 

the manufacturer’s instructions and eluted in 30 µL nuclease-free H2O. For obtaining solely DNA 

according to a particular size, the DNA fragments were subjected to agarose gel electrophoresis 

whereupon only the desired fragment was excised from the gel under ultraviolet (UV) light. After 

weight determination, the DNA was extracted and purified from the agarose gel using the QIAquick® 
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Gel Extraction Kit (Qiagen) following the manufacturer’s instructions. Elution was also performed in 

30 µL nuclease-free H2O. 

2.1.4 Enzymatic Digestion with DpnI 

Previously described cloning methods (see 2.1.2, MEGAWHOP and RfBEM cloning) require incubation 

with the dam-methylated DNA specific restriction enzyme DpnI to eliminate the template plasmid 

which is of bacterial origin. PCR amplified DNA remains undigested which yields in higher cloning 

efficiency. 30 µL purified PCR product was incubated with 20 U DpnI (NEB) in NEBuffer-4 (NEB) for at 

least 2 h at 37 °C. 

2.1.5 Ligation 

After gel extraction, the DpnI digested intermediate of the RfBEM cloning was ligated with 1,200 U T4 

DNA ligase (NEB) in 1x T4 Reaction Buffer (NEB) in a total volume of 40 µL at 16 °C overnight.  

For classical restriction enzyme-based cloning, the vector insert ratio had to be considered (see 

Table 7). Ligation reactions were performed in a total volume of 10 µL containing 400 U T4 DNA 

ligase (NEB) in 1x T4 Reaction Buffer (NEB) at 16 °C overnight. 

Table 7:  Plasmid to Insert Ratios for Ligations during Classical Restriction Enzyme-based Cloning. 

Plasmid Insert Ratio (Plasmid : Insert) 

pETDuet-1 (His)8-3C-heRF1 Δ(1-138)heRF3a 3:1 
pETDuet-1 heRF1 (His)8-3C-heRF3a fl 1:2 
pRSFDuet-1 (His)8-3C-Δ(1-138)heRF3a 3:1 

 

2.1.6 Preparation of Chemical Competent Escherichia coli Cells 

A 5 mL LB E. coli (strains see 2.1.1) overnight culture was diluted 1:100 in 100 mL 1x LB and grown to 

an OD600 = 0.6 - 0.8 at 37 °C under shaking conditions (140 rpm). In case of E. coli Rosetta (DE3), Cam 

was added to the media. Henceforth, all utilized equipment was pre-cooled at 4 °C. The E. coli culture 

was cooled on ice for 15 min whereupon centrifugation (10 min / 4 °C / 5,000 rpm / GSA (Sorvall
TM)) 

was performed. The supernatant was discarded whereas the resulting pellet was resuspended in 

50 mL 0.1 molar (M) calcium chloride (CaCl2). The mixture was incubated for 30 min on ice before 

centrifugation was conducted as above. Again, the supernatant was discarded whereas the pellet 

was resuspended in 50 mL 0.1 M CaCl2 supplemented with 15 % (v/v) glycerol. Subsequently, the 

competent cells were gently aliquoted, flash frozen in liquid nitrogen and stored at -80 °C until 

further use. 

2.1.7 Transformation and Plasmid Isolation 

Competent E. coli cells were thawed on ice for 10 min. 50 µL cells were incubated on ice with 40 µL 

ligation reaction (RfBEM cloning), with 10 µL ligation reaction (classical restriction enzyme-based 

cloning), with 30 µL PCR purified product (MEGAWHOP cloning) or with 2 - 10 µL of the 1:4 dilution 

of the GA reaction (GA cloning) for 10 min. A 42 °C heat-shock was performed in an H2O-bath for 

45 sec. Immediate incubation on ice for 1 minute was followed by incubation under shaking 

conditions (350 rpm) at 37 °C in 900 µL LB without antibiotics for 1 - 2 h. Cells were collected (3 min / 

RT / 5,000 rpm / 5415D (Eppendorf)), 700 µL medium was omitted and the remainder was plated on 

pre-warmed selective LB-agar plates. Incubation followed at 37 °C overnight. 
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5 mL 1x LB medium (containing the corresponding antibiotic(s)) each was inoculated with one 

bacterial colony. Growth was performed at 37 °C overnight before cells were harvested (10 min / 4 °C 

/ 4,500 rpm / Rotanta 46R (Hettich)) and plasmids were isolated using the QIAprep® Spin Miniprep 

Kit (Qiagen) according to the manufacturer’s protocol. Optional steps were omitted and elution was 

performed in 30 µL nuclease-free H2O. Accordingly, 200 mL inoculated 1x LB medium was used as 

starting material for plasmid isolation using the QIAGEN Plasmid Maxi Kit (Qiagen) according to the 

provided instructions. Plasmids were resuspended in a volume of 200 - 300 µL nuclease-free H2O. 

2.1.8 DNA Sequencing Reaction 

The concentration of plasmid preparations was determined spectrophotometrically via light-

absorption measurements at a wavelength of λ = 260 nm (A260) (1 A260 = 50 µg/µL DNA) using the 

NanoDropTM 1000 spectrophotometer (Thermo Scientific). 750 - 1500 ng plasmid DNA per 15 µL total 

volume were provided for sequencing reactions with Eurofins. The sequencing primer was added to a 

final concentration of 30 µM or was optionally provided by the sequencing company (see Tables 8 

and 9). Received sequencing results were analyzed and compared using the software ApE (A plasmid 

editor by M. Wayne Davis). 

Table 8:  Sequencing Primers (Binding to Plasmid Backbone) Used for Sequencing Reactions. 

Forward (fwd) and reverse (rev) primers are indicated. 

Plasmid Backbone Primer Name Sequencing Primer Type 

pCDNA3.1 pCDNA3_fwd (Eurofins) 5’GGCTAACTAGAGAACCCACTG3’ fwd 
pCDNA3_rev (Eurofins) 5’GGCAACTAGAAGGCACAGTC3’ rev 

pET-28a T7 (Eurofins) 5’TAATACGACTCACTATAGGG3’ fwd 
T7 term (Eurofins) 5’CTAGTTATTGCTCAGCGGT3’ rev 

pET-32a T7 (Eurofins) 5’TAATACGACTCACTATAGGG3’ fwd 
T7 term (Eurofins) 5’CTAGTTATTGCTCAGCGGT3’ rev 

pETDuet-1 
(sequencing MCS1) 

SM 117 5’GATCGATCTCGATCCCGC3’ fwd 
SM 92 5’TACGATTACTTTCTGTTCGA3’ rev 

pETDuet-1 
(sequencing MCS2) 

SM 118  5’GTACACGGCCGCATAATCG3’ fwd 
T7 term (Eurofins) 5’CTAGTTATTGCTCAGCGGT3’ rev 

pRSFDuet-1 
(sequencing MCS1) 

SM 93 5’CATTAGGAAATTAATACGAC3’  fwd 
SM 92 5’TACGATTACTTTCTGTTCGA3’ rev 

pRSFDuet-1 
(sequencing MCS2) 

SM 118  5’GTACACGGCCGCATAATCG3’ fwd 
T7 term (Eurofins) 5’CTAGTTATTGCTCAGCGGT3’ rev 

pT7CFE1-NHis SM 49 5’CTCAAGACCCGTTTAGAGGC3’ rev 
 

Table 9:  Sequencing Primers (Binding to Insert) Used for Sequencing Reactions. 

Forward (fwd) primers are indicated. 

Insert Primer Name Sequencing Primer Type 

3xFLAG-hABCE1 SM 148 5’GACACAGGCAATTGTATGTC3’ fwd 
Various heRF1 SM 91 5’CTTTTTGGCACACTCCAAGG3’ fwd 
Various heRF3 fl SM 86 (SM 87 and SM 90: 

sequences see above) 
5’TTCGTGCCCAACGTCCACGC3’ fwd 

Various 
Δ(1-138)heRF3  

SM 87 5’GGAGGAAGAGGAAATCCC 3’ fwd 
SM 90 5’TGTCCTTGGTACATTGGATTAC3’ fwd 
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2.2 Protein Analysis 

2.2.1 Determination of Protein Concentration 

Protein absorption at λ = 280 nm was measured using the NanoDropTM 1000 spectrophotometer 

(Thermo Scientific). To calculate the corresponding protein concentration, the sequence-specific 

extinction coefficient (in M-1 cm-1) according to the EXPASy ProtParam Tool 

(http://www.expasy.org/tools/) (Artimo et al., 2012) was taken into account for each protein (see 

Table 10). 

Table 10:  Extinction Coefficients (Assuming All Cysteine Residues are Reduced) of Proteins Used in 

this Study. 

Extinction coefficients were calculated with EXPASy ProtParam Tool (http://www.expasy.org/tools/) (Artimo et 

al., 2012). 

Protein Extinction Coefficient  Molecular Weight 
Related 

UniProtKB Entry 

(His)6-Δ(1-46)Jmjd4, isoform1 96,370 M-1 cm-1 49,588.6 Da Q9H9V9 
3xFLAG-hABCE1 45,270 M-1 cm-1 70,371.6 Da P61221 
heRF1, isoform 1 31,860 M-1 cm-1 48,996.8 Da P62495 
heRF3a fl, isoform 2  
(co-expression) 

46,410 M-1 cm-1 
 

68,413.3 Da 
 

P15170 

heRF3a fl, isoform 3  
(single expression) 

46,410 M-1 cm-1 68,799.7 Da P15170 

Δ(1-138)heRF3a, isoform 2 40,910 M-1 cm-1 55,437.4 Da P15170 

 

2.2.2 Protein Precipitation 

For the analysis of diluted protein solutions, great volumes were reduced by the precipitation of 

contained proteins and their resuspension in a smaller volume. To this end, a final concentration of 

6 % (v/v) trichloroacetic acid (TCA) (Sigma) and 0.0125 % (w/v) sodium-deoxycholate (Roth) (as co-

precipitant) were added to the protein solution which was adjusted with double distilled H2O 

(ddH2O) to a final volume of 1,200 µL. Incubation on ice for 30 min was followed by centrifugation 

(30 min / 4 °C / 14,000 rpm / 5417R (Eppendorf)). Thereupon, the white precipitate was washed with 

900 µL 100 % (v/v) ice-cold acetone (Roth) and centrifuged again under the same conditions. The 

acetone was removed completely whereupon the remaining pellet was air-dried at RT and 

resuspended in 10 µL 1x sodium dodecyl sulfate (SDS) Sample Buffer (SB) (50 mM 

tris(hydroxymethyl)aminomethane (Tris) / HCl pH 6.8, 2 % (w/v) SDS, 10 % (v/v) glycerol, 0.1 % (w/v) 

bromophenol blue, 100 mM 1,4-dithiothreitol (DTT)) prior to analysis via SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) (see 2.2.3). 

2.2.3 Sodium Dodecyl Sulfate-polyacrylamide Gel Electrophoresis 

Electrophoresis 

For separation of proteins according to their molecular weight, the method of denaturing SDS-PAGE 

was applied. To this end, discontinuous polyacrylamide (PAA) gels consisting of a 4 % (v/v) stacking 

(37 mM Tris / pH 6.8, 4 % (w/v) acrylamide-, bis-acrylamide solution (37.5:1) (Roth), 0.1 % (w/v) SDS, 

0.05 % (v/v) tetramethylethylenediamine (TEMED), 0.1 % (w/v) ammonium persulfate (APS)) and a 

15 % (v/v) separating (37 mM Tris / pH 8.6, 15 % (w/v) acrylamide-, bis-acrylamide solution (37.5:1) 

(Roth), 0.1 % (w/v) SDS, 0.05 % (v/v) TEMED, 0.1 % (w/v) APS) gel were used. Protein samples were 
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completed with SDS SB (see 2.2.2) followed by a heat-denaturing step at 95 °C for 2 min. 

Electrophoresis was conducted at a constant voltage of 230 volt (V) in SDS-Running Buffer (25 mM 

Tris, 192 mM glycine, 0.1 % (w/v) SDS) for 45 min. For size determination, either the PageRulerTM 

Unstained Protein Ladder (10 to 200 kDa) (Thermo Scientific) or the PageRulerTM Prestained Protein 

Ladder (10 to 180 kDa) (Thermo Scientific) was used. 

Coomassie Brilliant Blue Staining 

The conventional method for visualizing protein bands after SDS-PAGE is their staining with 

Coomassie Brilliant Blue. To this end, the gel was heated in H2O at 600 W (microwave) twice for 

1 min to remove residual salt and SDS. Staining with Coomassie® G-250 solution (SimplyBlueTM
 

SafeStain (Novex)) at 600 W for 1 min and shaking at RT for 5 - 10 min was followed by incubation 

with H2O until a clear background was obtained. The gels were digitalized using a desk scanner 

(Perfection 4490 PHOTO, Epson) and eventually processed with the Adobe Software Package CS6 

(Adobe Systems Incorporated). 

SYPRO® Orange Staining 

For less concentrated protein samples, the more sensitive dye SYPRO® Orange (λEx(max) = 300/472 nm; 

λEm(max) = 570 nm) was applied. The staining procedure included incubation with a 1:5,000 dilution of 

SYPRO® Orange (Invitrogen) in freshly made 10 % (v/v) acetic acid under shaking conditions in the 

dark for 1 h. Subsequently, the gel was washed 3x with H2O for 5 min each and digitalized using the 

Typhoon FLA 900 scanner (Laser: 473 nm, Filter: LBP, adjusted exposure time) (GE Healthcare) or the 

Chemi DocTM MP Imaging System (Light source: Blue Epi Illumination, Filter: 605/5, adjusted exposure 

time) (BIO-RAD). Digitalized images were processed further as mentioned above. 

2.2.4 Semi-dry Western Blotting 

Western Blotting 

Semi-dry Western blotting was used subsequent to SDS-PAGE in order to qualitatively (or semi-

quantitatively) identify proteins. Cropped Whatman® filter-papers, the PAA gel and the nitrocellulose 

(NC) membrane (GE Healthcare) were pre-equilibrated in Blotting Buffer (20 % (v/v) methanol, 

48 mM Tris, 39 mM glycine, 0.037 % (w/v) SDS). A semi-dry blotting sandwich was assembled in the 

blotting apparatus (PeqLab) from anode to cathode containing three 3 mm Whatman® filter-papers, 

the NC membrane, the PAA gel and three further 3 mm Whatman® filter-papers. Protein transfer was 

achieved by applying a constant current of 1 mA per cm2
 gel for 55 min. Afterwards, the membrane 

was stained with amidoblack solution (0.1 % (w/v) naphthol blue black, 7.5 % (v/v) acetic acid, 20 % 

(v/v) ethanol) for 1 min to check transfer efficiency whereupon destaining was performed in destain 

solution (40 % (v/v) ethanol, 10 % (v/v) acetic acid) until a white background was obtained. The 

membrane was incubated shortly in Tris-buffered saline (TBS) (20 mM Tris / HCl pH 7.6 / 4 °C, 

150 mM NaCl) for pH neutralization and digitalized (Perfection 4490 PHOTO, Epson). 

Antibody Detection 

To saturate unspecific binding sites, the membrane was incubated for 1 h at 4 °C in 5 % (w/v) milk 

powder dissolved in TBS. Incubation with the primary antibody solution was performed according to 

specifically pre-tested and optimized conditions for each antibody (see Table 11). After washing 3x 

for 10 min at 4 °C with TBS, TBS-T (TBS supplemented with 0.1 % (v/v) Tween) and TBS to remove 

unbound antibodies, the horseradish peroxidase (HRP)-coupled secondary antibody solution was 
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applied also in its ideal concentration. Three washing steps at 4 °C with TBS-T each for 10 min 

followed.  

In the case of the α-FLAG®HRP antibody, the primary antibody was already coupled to HRP. 

Therefore, the protocol was adjusted to blocking for 1 h at RT in 5 % (w/v) milk powder dissolved in 

TBS-T. The washing steps were also performed in TBS-T, 2x for 5 min each. After primary antibody 

incubation, washing was performed with TBS-T again 6x for 5 min each. 

Table 11:  Antibodies for Protein Identification on Western Blot Membranes Used in this Study. 

1
st

 Antibody Dilution 
Incubation 

Condition 
2

nd
 Antibody Dilution 

Incubation 

Condition 

goat-α-eRF3a 
(Santa Cruz) 

1:100 2 % (v/v) BSA/TBS, 
RT, 1.5 h 

donkey-α-goat 
IgG-HRP 
(Santa Cruz) 

1:10,000 5 % (v/v) 
milk/TBS, 
4 °C, 1 h 

mouse-α-eRF1 
(Santa Cruz) 

1:2,000 5 % (v/v) BSA/TBS, 
RT, 1 h 

goat-α-mouse 
IgG-HRP 
(Santa Cruz) 

1:2,500 5 % (v/v) 
milk/TBS,  
4 °C, 1.5 h 

mouse-α-
FLAG®HRP 
(Sigma) 

1:1,000 TBS-T, RT, 1 h  
------ ------ ------ 

mouse-α-HA 
(Sigma) 

1:1,000 2 % (v/v) BSA/TBS, 
4 °C, overnight 

goat-α-mouse 
IgG-HRP 
(Santa Cruz) 

1:2,500 5 % (v/v) 
milk/TBS, 
4 °C, 1 h 

 

The signal was produced by providing enhanced chemiluminescence (ECL) substrate (Enhanced 

Chemi Luminescence Detection Kit for Western blot (AppliChem)) to the bound HRP according to the 

manufacturer’s recommendations. Signal detection was performed on LucentBlue X-ray film 

(advansta) which was exposed until an appropriate signal to noise ratio was obtained. The film was 

fixed using a developing device (Optimax Type TR, PROTEC) whereupon image digitalization and 

processing was performed as mentioned in 2.2.3.  

2.2.5 Mass Spectrometry 

To monitor the post-translational side-chain C4 hydroxylation of lysine 63 of differently treated 

heRF1 protein samples, they were subjected to SDS-PAGE, excised from the gel and provided to 

Thomas Fröhlich (Gene Center, LMU). Subsequently, gel extraction and enzyme digestion with 

chymotrypsin or trypsin were performed before analysis via mass spectrometry. Here, also possible 

secondary hydroxylation sites were monitored. Data evaluation was performed via the Scaffold 4 

software (Proteome Software, Inc.).  

2.3 Protein Expression and Purification 

Throughout the protein expression and purification procedures appropriate volumes of intermediate 

steps were taken for analysis via SDS-PAGE. These samples were all stored at -20 °C. 

Several strategies (see Figure 18) were pursued concurrently in order to obtain the human 

eRF1:eRF3a protein complex. Protein purification was based on metal affinity chromatography via 

the introduced histidine (His)-tag and on subsequent size exclusion chromatography via an ÄKTA 

Purifier FPLC system (GE Healthcare) if necessary. Only the approaches which lead to proteins or 

protein complexes ending up as potential high-resolution cryo-EM sample are elaborated below. 
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Figure 18:  Schematic Overview of Purification Strategies for the Human eRF1:eRF3a:GMPPCP 

Complex. 

Several purification strategies for the class-I release factor eRF1 and the class-II release factors Δ(1-138)heRF3a 
and heRF3a full length (fl) were conducted in parallel: (A) Single purification of 1: N-terminally (N) octahistidine 
((His)8)-tagged heRF1, 2: N-terminally Thioredoxin (TRX)-hexahistidine ((His)6)-tagged heRF3a fl, 3: N-terminally 
(His)8-tagged Δ(1-138)heRF3a, 4: C-terminally (C) (His)8-tagged Δ(1-138)heRF3a. (B) Co-expression and co-
purification of 5: N-terminally (His)8-tagged heRF1 and untagged heRF3a fl, 6: N-terminally (His)8-tagged heRF1 
and untagged Δ(1-138)heRF3a, 7: Untagged heRF1 and N-terminally (His)8-tagged heRF3a fl, 8: Untagged heRF1 
and C-terminally (His)8-tagged heRF3a fl, 9: Untagged heRF1 and N-terminally (His)8-tagged Δ(1-138)heRF3a 
and 10: Untagged heRF1 and C-terminally (His)8-tagged Δ(1-138)heRF3a. 

 

2.3.1 General Procedures 

Testing Protein Expression Conditions in Escherichia coli Cells 

All protein expression conditions in E. coli which were not based on previous publications were 

tested in matters of induction time (1 h, 3 h, overnight) and expression temperature (18 °C, 30 °C, 

37 °C) in a culture volume of 20 mL by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG). Further, different E. coli expression strains (E. coli BL21 (DE3), Rosetta (DE3), ER2566) were 

tested for suitable expression conditions.  

Escherichia coli Cell Harvest and Lysis 

After ideal large-scale protein expression was performed in E. coli, cells were harvested (15 min / 4 °C 

/ 6,000xg / SLC-6000 (Sorvall
TM)) and the resulting cell pellet was washed once with H2O before flash 

freezing the dry pellet in liquid nitrogen and storage at -80 °C. All following steps during protein 

purification were either performed on ice or at 4 °C. To continue, the pellet was thawed and 

resuspended in Lysis Buffer (composition individually indicated for each purification). Lysis was 

conducted with three passes through the Microfluidizer® (Microfluidics) at a pressure of 15,000 psi 

(103 MPa). Finally, the lysate (L) was cleared from cellular debris (P) (30 min / 4 °C / 13,500 rpm / 

SS-34 (Sorvall
TM)). 

Testing Protein Stability 

After each protein purification procedure, the stability of the final protein was tested via 

centrifugation (15 min / 4 °C / 14,000 rpm / 5417R (Eppendorf)) and subsequent analysis of the 

resulting supernatant and pellet fractions via SDS-PAGE. Furthermore, an equal sample was flash 

frozen in liquid nitrogen, thawed and similarly analyzed to ensure stability of the protein when 

undergoing the freeze-thaw cycle. 

Increasing Protein Concentration 

To increase protein concentration during its purification, centrifugal filter units (Amicon Ultra-50 or 

Ultra-15 (Millipore)) with a molecular weight cut-off (MWCO) of at least half of the protein’s size 
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were used. Membranes were pre-equilibrated with the corresponding protein buffer whereupon 

spinning speed and time were adjusted to obtain the desired protein concentration, never exceeding 

a speed of 3,000xg to ensure the protein’s integrity. 

2.3.2 Human Δ(1-46)Jmjd4  

Construct: pET-28a (His)6-Δ(1-46)Jmjd4 

Expression Conditions 

An overnight culture of transformed E. coli BL21 (DE3) was diluted to an OD600 = 0.1 in 5 L 1x LBKan. 

Cells were grown to an OD600 = 0.8 at 37 °C and temperature adjusted (4 °C, 30 min) for subsequent 

expression at 18 °C overnight. Induction of protein expression was performed by the addition of 

0.5 mM IPTG. After 18.5 h, cells were harvested, flash frozen in liquid nitrogen and stored at -80 °C. 

Protein Purification 

After cell lysis (L) (see 2.3.1) (50 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) / 

potassium hydroxide (KOH) pH 7.5 / 4 °C, 500 mM NaCl, 5 mM imidazole, 1 pill/50 mL 

ethylenediaminetetraacetic acid (EDTA)-free complete protease inhibitor (Roche)), the E. coli cell 

material was incubated with pre-equilibrated 7.5 mL 50 % (w/v) TALON® Metal Affinity Resin 

(Clontech) at 4 °C under rotation for 1.25 h. The bead-lysate mixture was transferred to an Econo-

Pac® Chromatography Column (BIO-RAD). The flow through (FT) was collected via gravity-flow 

whereupon the beads were washed 6x with 35 mL High Salt Wash Buffer (W1 - W6) (50 mM HEPES / 

KOH pH 7.5 / 4 °C, 500 mM NaCl, 20 mM imidazole, 5 mM β-mercaptoethanol). Elution was 

performed with a step gradient of 5x 8 mL Elution Buffer (50 mM HEPES / KOH pH 7.5 / 4 °C, 500 mM 

NaCl) each supplemented with 50 (E50), 100 (E100), 150 (E150), or 2x 250 mM (E250/1 and E250/2) 

imidazole. Appropriate samples were pooled, concentrated and possible aggregates were removed 

(15 min / 4 °C / 14,000 rpm / 5417R (Eppendorf)) before performing gel filtration on a Superdex 75 

(10/300) GL (GE Healthcare) column. The appropriate fractions were pooled and concentrated to 

1.00 µg/µL. Aliquots were prepared, flash frozen in liquid nitrogen and stored at -80 °C. 

2.3.3 Human eRF1  

Construct: pETDuet-1 (His)8-3C-heRF1 

Expression Conditions 

An overnight culture of transformed E. coli BL21 (DE3) was diluted to an OD600 = 0.1 in 1 L 1x LBAmp. 

Cells were grown to an OD600 = 0.6 at 37 °C and temperature adjusted (4 °C, 30 min) for subsequent 

expression at 18 °C overnight. Induction of protein expression was performed by the addition of 

1 mM IPTG. After 20 h, cells were harvested, flash frozen in liquid nitrogen and stored at -80 °C. 

Protein Purification  

After cell lysis (L) (see 2.3.1) (50 mM HEPES / KOH pH 7.5 / 4 °C, 500 mM NaCl, 5 mM imidazole, 

5 mM β-mercaptoethanol, 1 pill/50 mL EDTA-free complete protease inhibitor (Roche)), the E. coli 

cell material was incubated with pre-equilibrated 1.5 mL 50 % (w/v) TALON® Metal Affinity Resin 

(Clontech) at 4 °C under rotation for 1 h. The bead-lysate mixture was transferred to a Poly-Prep® 

Chromatography Column (BIO-RAD). The flow through (FT) was collected via gravity-flow whereupon 

the beads were washed 6x with 7.5 mL High Salt Wash Buffer (W1 - W6) (see 2.3.2). Elution was 

performed via 3C-protease cleavage (final concentration (conc) 0.5 µg/µL) of the (His)8-tag (E3C) at 

4 °C for 1 h (50 mM HEPES / KOH pH 7.5 / 4 °C, 200 mM NaCl, 1 mM imidazole, 5 mM 
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β-mercaptoethanol, 2.5 mM magnesium chloride (MgCl2)). Further elution possibilities were tested 

to ensure quantitative elution of the tag-free protein. Aliquots were prepared, flash frozen in liquid 

nitrogen and stored at -80 °C. 

In vitro Hydroxylation 

Purified heRF1 was subjected to in vitro hydroxylation of the lysine 63 side-chain C4 by the 

2-oxogluterate and Fe(II)-dependent oxygenase Jmjd4. Therefore, incubation of 40 µg (8.5 µM) 

heRF1 with 4 µg (0.85 µM) Δ(1-46)Jmjd4 (50 mM HEPES / KOH 7.5 / 4 °C, 200 mM NaCl, 6.76 µM 

2-oxogluterate, 42.2 µM NH4FeSO4*6H2O) was performed at 4 °C overnight. Further, quenching 

efficiency with 10 mM EDTA (pH 8.0) for 5 min on ice was tested to prevent potential hydroxylation 

of secondary sites. Hydroxylation efficiency for heRF1 Lys63 was monitored via mass spectrometry 

(see 2.2.5). 

2.3.4 Human eRF1 Co-expression with Δ(1-46)Jmjd4 for in vivo Hydroxylation  

Constructs: pETDuet-1 (His)8-3C-heRF1 and pET-28a (His)6-Δ(1-46)Jmjd4 

Expression Conditions 

Co-expression of heRF1 and Δ(1-46)Jmjd4 was performed in 5 L 1x LBAmp/Kan E. coli BL21 (DE3) as 

described for the heRF1 only expression (see 2.3.3). 

Protein Purification 

Expression and purification were also performed as described in 2.3.3, however, up-scaled 

accordingly due to the usage of 5 L E. coli culture as starting material. Also here, the hydroxylation 

efficiency for heRF1 Lys63 was monitored via mass spectrometry (see 2.2.5). 

2.3.5 Human Δ(1-138)eRF3a  

Construct: pRSFDuet-1 (His)8-3C-Δ(1-138)heRF3a 

Expression Conditions  

An overnight culture of transformed E. coli BL21 (DE3) was diluted to an OD600 = 0.1 in 2 L 1x LBKan. 

Cells were grown to an OD600 = 0.6 at 37 °C. Induction of protein expression was performed by the 

addition of 1 mM IPTG. After 21 h at 30 °C, cells were harvested, flash frozen in liquid nitrogen and 

stored at -80 °C. 

Protein Purification 

Subsequent to cell lysis (L) (see 2.3.1) (50 mM HEPES / KOH pH 7.5 / 4 °C, 500 mM NaCl, 10 % (v/v) 

glycerol, 0.1 % (v/v) Nonidet P40, 10 mM imidazole, 2 mM β-mercaptoethanol, 1 mM 

phenylmethylsulfonylfluorid (PMSF), 1 pill/50 mL EDTA-free complete protease inhibitor (Roche)) the 

E. coli cell material was incubated with pre-equilibrated 1.5 mL 50 % (w/v) TALON® Metal Affinity 

Resin (Clontech) at 4 °C under rotation for 1 h. The bead-lysate mixture was transferred to a Poly-

Prep® Chromatography Column (BIO-RAD). The flow through (FT) was collected via gravity-flow 

whereupon the beads were washed 5x with 8.5 mL High Salt Wash Buffer (W1 - W5) (50 mM HEPES / 

KOH pH 7.5 / 4 °C, 500 mM KCl, 10 mM imidazole). Elution (E3C) was performed via 3C-protease 

cleavage (final conc 0.5 µg/µL) of the (His)8-tag at 4 °C for 1 h (50 mM HEPES / KOH pH 7.5 / 4 °C, 

50 mM KCl, 2 mM β-mercaptoethanol). Further elution possibilities were tested to ensure 

quantitative elution of the tag-free protein. Aliquots were prepared, flash frozen in liquid nitrogen 

and stored at -80 °C. 
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2.3.6 Guanosine Triphosphatase Deficient Mutants of Human Δ(1-138)eRF3a  

Constructs: pRSFDuet-1 (His)8-3C-Δ(1-138)heRF3a H300Q and R371G 

According to Salas-Marco et al. (Salas-Marco and Bedwell, 2004) the yeast eRF3 mutants His348Gln 

and Arg419Gly are deficient in GTP hydrolysis while maintaining the capability of GTP binding. The 

corresponding mutations His300Gln (H300Q) and Arg371Gly (R371G) in human Δ(1-138)eRF3a were 

therefore introduced via RfBEM cloning and mutant protein was expressed and purified as described 

for the truncated human eRF3a (Δ(1-138)heRF3a protein (see 2.3.5). 

2.3.7 Human eRF3a Full Length 

Construct: pET-32a TRX-(His)6-TEV-heRF3a fl 

Expression Conditions  

Here, the initial overnight culture of transformed E. coli BL21 (DE3) was grown in 30 mL 2x LBAmp 

medium at RT without shaking overnight. Subsequently, it was transferred to 37 °C, grown to an 

OD600 = 0.6 under shaking conditions and diluted 1:80 in 1 L 2x LBAmp again. After further growth to an 

OD600 = 0.6 - 0.7 at 37 °C, the culture was temperature adjusted (4 °C, 30 min) and protein expression 

was induced with 0.25 mM IPTG. After incubation at 20 °C for 18 h, cells were harvested, frozen in 

liquid nitrogen and stored at -80 °C.  

Protein Purification 

After cell lysis (L) (see 2.3.1) (70 mM Tris / HCl pH 8.0 / 4 °C, 300 mM KCl, 10 % (v/v) glycerol, 1 % 

(v/v) TritonTM X-100 (v/v), 1 mM β-mercaptoethanol, 1 mM PMSF, 1 pill/50 mL EDTA-free complete 

protease inhibitor (Roche)), the E. coli cell material was incubated with pre-equilibrated 1.5 mL 50 % 

(w/v) TALON® Metal Affinity Resin (Clontech) at 4 °C under rotation for 1 h. The bead-lysate mixture 

was transferred to an Econo-Pac® Chromatography Column (BIO-RAD). The flow through (FT) was 

collected via gravity-flow whereupon the beads were washed 3x with 15 mL Wash Buffer 1 (W1 – W3) 

(50 mM Tris / HCl pH 7.5 / 4 °C, 2 M KCl, 10 % (v/v) glycerol, 1 mM β-mercaptoethanol), 1x with 

7.5 mL Wash Buffer 2 (W4) (like Wash Buffer 1, but containing 800 mM KCl) and 1x with 7.5 mL Wash 

Buffer 3 (W5) (like Wash Buffer 1, but containing 100 mM KCl). Elution (ETEV) was performed via 

tobacco etch virus (TEV)-protease cleavage (50 µL (home-made) in 5 mL total volume) of the 

thioredoxin (TRX)-(His)6-tag at 4 °C overnight (50 mM HEPES / KOH pH 7.5 / 4 °C, 100 mM KCl, 10 % 

(v/v) glycerol, 2.5 mM MgCl2, 1 mM DTT). Aliquots were prepared, flash frozen in liquid nitrogen and 

stored at -80 °C. 

For optimization of heRF3a full length (fl) purification that was intended for individual use (no ternary 

complex formation), the elution strategy was changed to an imidazole step-gradient (3x 150 mM and 

3x 250 mM) (E150/1, E150/2, E150/3, E250/1, E250/2, E250/3) of 2 mL each. Adequate fractions were pooled and 

supplemented with TEV-protease (50 µL, home-made) before dialysis (Spectra/Por® MWCO 12 - 

14 kDa (SPECTRUM)) at 4 °C overnight. Subsequently, the retentate was loaded onto 1.5 mL 

50 % (w/v) TALON® Metal Affinity Resin (Clontech) again. The flow through (FT2) was collected and 

concentrated (Final), aliquots were flash frozen in liquid nitrogen and stored at -80 °C. 

2.3.8 Human eRF1:eRF3a Complex Formation 

Human eRF1 and Δ(1-138)eRF3a  

For complex formation, equimolar amounts of individually purified heRF1 and Δ(1-138)heRF3a were 

incubated together with 1 mM β,γ-methyleneguanosine 5′-triphosphate (GMPPCP) (Sigma) for 
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10 min at 20 °C in Buffer CF (50 mM HEPES, pH 7.5 / 4 °C, 100 mM NaCl, 26 mM KCl, 1.5 mM 

β-mercaptoethanol, 2.5 mM MgCl2). Possible aggregates were removed (30 min / 4 °C / 14,000 rpm / 

5417R (Eppendorf)) before the sample was loaded onto the analytical size exclusion column S200 

(150/5) Increase GL (GE Healthcare) (50 mM HEPES, pH 7.5 / 4 °C, 125 mM KCl, 1 mM 

β-mercaptoethanol, 2.5 mM MgCl2). Successful complex formation was monitored by an absorption 

profile at λ = 280 nm as well as by SDS-PAGE of the obtained, concentrated fractions. Adequate 

samples were aliquoted, flash frozen in liquid nitrogen and stored at -80 °C.  

Human eRF1 and eRF3a Full Length 

Here, for complex formation heRF1 was applied in excess to ensure quantitative binding of human 

heRF3a fl and therefore circumvent the challenge of heRF3a fl separation form the heRF1:heRF3a fl 

complex via size exclusion chromatography due to the insufficient difference in size. Samples were 

assembled and treated as mentioned above for complex formation (50 mM HEPES / KOH pH 7.5 / 

4 °C, 40 mM KCl, 120 mM NaCl, 4 % (v/v) glycerol, 0.4 mM DTT, 3 mM β-mercaptoethanol, 

2.5 mM MgCl2) and loaded onto an S200 (10/300) (GE Healthcare) size exclusion column. Successful 

complex formation was monitored by an absorption profile at λ = 280 nm as well as by SDS-PAGE. 

Adequate samples were concentrated, aliquoted, flash frozen in liquid nitrogen and stored at -80 °C. 

Complex stability after concentration and freezing was monitored by an absorption profile at 

λ = 280 nm as well as by SDS-PAGE of the obtained fractions from sample application on an analytical 

S200 (150/5) Increase GL (GE Healthcare) size exclusion column. 

2.3.9 Co-purification of the Human eRF1:Δ(1-138)eRF3a Complex (Co-expressed with Δ(1-

46)Jmjd4) for in vivo Hydroxylation)  

Constructs: pETDuet-1 (His)8-3C-eRF1 Δ(1-138)heRF3a and pET-28a (His)6-Δ(1-46)Jmjd4 

Expression Conditions  

An overnight culture of transformed E. coli BL21 (DE3) was diluted to an OD600 = 0.1 in 8 L 1x 

LBAmp/Kan. Cells were grown to an OD600 = 0.6 at 37 °C. Induction of protein expression was performed 

by the addition of 1 mM IPTG. After 3 h at 37 °C, cells were harvested, flash frozen in liquid nitrogen 

and stored at -80 °C 

Protein Purification 

After cell lysis (L) (see 2.3.1) (50 mM HEPES / KOH pH 7.5 / 4 °C, 100 mM NaCl, 5 mM imidazole, 

5 mM β-mercaptoethanol, 2.5 mM MgCl2, 1 pill/50 mL EDTA-free complete protease inhibitor 

(Roche)), the E. coli cell material was incubated with pre-equilibrated 5 mL 50 % (w/v) TALON® Metal 

Affinity Resin (Clontech) at 4 °C under rotation for 1 h. The bead-lysate mixture was transferred to an 

Econo-Pac® Chromatography Column (BIO-RAD). The flow through (FT) was collected via gravity-flow 

whereupon the beads were washed 6x with 25 mL Low Salt Wash Buffer (W1 - W6) (50 mM HEPES / 

KOH pH 7.5 / 4 °C, 100 mM NaCl, 20 mM imidazole, 5 mM β-mercaptoethanol, 2.5 mM MgCl2). 

Elution was performed via 3C-protease cleavage (E3C) (final conc 0.5 µg/µL) of the (His)8-tag at 4 °C 

for 1 h (50 mM HEPES / KOH pH 7.5 / 4 °C, 100 mM NaCl, 1 mM β-mercaptoethanol, 2.5 mM MgCl2). 

1 mM GMPPCP (Sigma) was added to the sample which was incubated at 20 °C for 10 min before 

performing size exclusion chromatography on a Superdex 200 (10/300) GL (GE Healthcare) column. 

The appropriate fractions were pooled and concentrated to 0.96 µg/µL. Aliquots were made, flash 

frozen in liquid nitrogen and stored at -80 °C. Lastly, also here the hydroxylation status of heRF1 

Lys63 was analyzed via mass spectrometry (see 2.2.5). 
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2.3.10 Co-purification of the Human eRF1:eRF3a Full Length Complex (Co-expressed with Δ(1-

46)Jmjd4) for in vivo Hydroxylation)  

Constructs: pETDuet-1 eRF1 (His)8-3C-eRF3a fl and pET-28a (His)6-Δ(1-46)Jmjd4 

Expression Conditions 

An overnight culture of transformed E. coli BL21 (DE3) was diluted to an OD600 = 0.1 in 1 L 

1x LBAmp/Kan. Cells were grown to an OD600 = 0.6 at 37 °C. Induction of protein expression was 

performed by the addition of 1 mM IPTG. After 3 h at 30 °C, cells were harvested, flash frozen in 

liquid nitrogen and stored at -80 °C 

Protein Purification 

After cell lysis (L) (see 2.3.1 for lysis and 2.3.9 for the corresponding buffer) the E. coli cell material 

was incubated with pre-equilibrated 1 mL 50 % (w/v) TALON® Metal Affinity Resin (Clontech) at 4 °C 

under rotation for 1 h. The bead-lysate mixture was transferred to a Bio-Spin® Chromatography 

Column (BIO-RAD). The flow through (FT) was collected via gravity-flow whereupon the beads were 

washed 6x with 5 mL Low Salt Wash Buffer (W1 - W6) (see 2.3.9). Elution was performed with a step 

gradient of 6x 1 mL Elution Buffer (50 mM HEPES / KOH pH 7.5 / 4 °C, 2 mM β-mercaptoethanol, 

2.5 mM MgCl2, 100 mM NaCl) each supplemented with 0 (E0), 50 (E50), 100 (E100), 150 (E150), 200 (E200) 

or 250 (E250) mM imidazole. Appropriate samples were pooled, concentrated to 2.29 µg/µL and 1 mM 

GMPPCP (Sigma) was added before incubation at RT for 10 min. Analytical size exclusion 

chromatography on a Superdex S200 (150/5) Increase GL (GE Healthcare) column followed where 

complex formation was monitored by an absorption profile at λ = 280 nm as well as by SDS-PAGE of 

the obtained fractions. 

2.3.11 Human ABCE1 

(Construct: pCDNA3.1 3xFLAG-hABCE1) 

Expression Conditions and Cell Lysis 

Expression of human ABCE1 has failed in E. coli cells, why it was expressed in human HEK293T cells. 

Ten 154 cm2 dishes with HEK293T cells were transfected as described in 2.4.1. After 48 h, cells were 

washed off the plates with DPBS (Gibco) (5 min / 4 °C / 1,600 rpm / Rotanta 46R (Hettich)) and the 

resulting dry pellet was flash frozen in liquid nitrogen before storage at -80 °C. Here, lysis was 

performed by incubation with NP-40 Substitute Lysis Buffer (50 mM HEPES / KOH pH 7.5 / 4 °C, 

100 mM potassium acetate (KOAc), 1 mM DTT, 5 mM MgCl2, 0.5 % (v/v) NP-40 Substitute, 

1 pill/50 mL EDTA-free complete protease inhibitor (Roche)) at 4 °C under rotation for 30 min.  

Protein Purification 

The HEK293T cell lysate was cleared (15 min / 4 °C / 14,000 rpm / 5417R (Eppendorf)) whereupon the 

supernatant (L) was incubated with pre-equilibrated 200 µL 50 % (v/v) ANTI-FLAG® M2 beads (Sigma) 

at 4 °C for 2 h. Then, the bead-lysate mixture was transferred to a Bio-Spin® Chromatography Column 

(BIO-RAD). The flow through (FT) was collected via gravity-flow whereupon the beads were washed 

3x with 2 mL Lysis Buffer (W1 - W3), 3x with 2 mL High Salt Wash Buffer (W4 - W6) (50 mM HEPES / 

KOH pH 7.5 / 4 °C, 400 mM KOAc, 1 mM DTT, 5 mM Mg(OAc)2, 0.1 % (v/v) TritonTM X-100) and 1x 

with 2 mL Elution Buffer without 3xFLAG®-peptide (W7) (50 mM HEPES / KOH pH 7.5 / 4 °C, 100 mM 

KOAc, 1 mM DTT, 5 mM Mg(OAc)2). Elution was performed by step-wise incubation with 5x 200 µL 

Elution Buffer with 0.2 µg/µL 3xFLAG®-peptide (Sigma) (E1 - E5) each at 4 °C for 10 min. Low binding 

tubes (Biozyme Scientific) were used to prevent binding of the eluted protein to the tube wall. To 
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dispose the 3xFLAG® peptide (Sigma) from the final sample, the solution was repeatedly diluted 1:4 

in Elution Buffer without 3xFLAG®-peptide and concentrated to a final conc of 0.51 µg/µL. Samples 

were not stable upon freezing why they had to be stored in low binding tubes at 4 °C overnight until 

further usage. 

2.4 Human Cell Culture 

2.4.1 Human Embryonic Kidney 293T Cells  

Cell Culture 

Adherent human embryonic kidney 293T (HEK293T) cells were cultured at a density of 10 - 90 % 

confluence in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) supplemented with 10 % (v/v) 

heat-inactivated fetal calf serum (FCS) (Gibco), 100 U/mL Penicillin / 100 µg/mL Streptomycin (Gibco) 

and 1x GlutaMAX (Gibco) at 37 °C and 5 % carbon dioxide (CO2) using 58 - 154 cm2 dishes. 

Transient Transfection 

∼18 h prior to transient transfection HEK293T cells were seeded to a density of 20 - 30 % confluence 

in 30 mL supplemented medium in 154 cm2 dishes (see Figure 19). As transfection reagent, the stable 

cationic polymer polyethylenimine (PEI) (Sigma) was used. The amount of the required PEI (c = 1 

mg/mL) /DMEM (without supplements) mixture was calculated by the 

number	of	dishes	x	μg	of	transfected	DNA	x	2.5	�PEI	factor�, 
assembled and incubated for 5 min at RT. A second mixture of 30 µg DNA in 1 mL DMEM (without 

supplements) per 154 cm2 dish was prepared. Then, the PEI/DMEM and the DNA/DMEM mixtures 

were combined and incubated for 20 min at RT. Subsequently, 2 mL solution were carefully applied 

in a dropwise manner and evenly distributed onto the liquid surface of each 154 cm2 dish. 

Transfected cells were incubated for 48 h prior to harvesting. 

 

Figure 19:  Application of HEK293T Cell Culture. 

Human embryonic kidney 293T (HEK293T) cells were cultured adherently in cell culture dishes and seeded at a 
density of 20 - 30 % confluence 18 hours (h) prior to transient transfection. The cell confluence was determined 
optically under a light microscope. Transient transfection of plasmid DNA was achieved via the stable cationic 
polymer polyethylenimine (PEI) in Dulbecco's Modified Eagle Medium (DMEM). 48 h later, gentle centrifugation 
resulted in a cell pellet that was subjected to cell lysis (see 2.3.1) and protein purification (see 2.3.11).  
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2.4.2 HeLa S3 Suspension Cells 

Cell Culture 

HeLa S3 suspension cells were cultured at a density of 3.0 - 6.0x105 cells/mL in Spinner Minimum 

Essential Medium Eagle (SMEM) (Sigma) supplemented with 10 % (v/v) heat-inactivated FCS (Gibco), 

100 U/mL Penicillin / 100 µg/mL Streptomycin (Gibco) and 1x GlutaMAX (Gibco) at 37 °C and 5 % CO2 

using 58 cm2 and 154 cm2 dishes for small volumes or a spinner flask (40 rpm) for a volume of up to 

7.0 L (see Figure 20). 

Cell Concentration Determination 

Cell counting was performed with a Neubauer cell chamber, Depth 0.100 mm (Marienfeld). The cells 

were mixed 1:1 with 0.4 % (w/v) Trypan Blue solution (Sigma) before introduction into the chamber. 

Counting was performed in 4 - 8 big squares visualized under the light microscope TELAVAL31 (ZEISS). 

To calculate the cell concentration, the following formula was used: 

!"#$%#&'(&)"#	 *$%++,
-. / 0 	 12%'(3%	#4-5%'	"6	$%++,	7%'	,84('%

9"+4-%	7%'	,84('%	:-.; 	<	=)+4&)"#	6($&"' 

						0 	 >"&(+	#4-5%'	"6	$%++,	<	10,000
A4-5%'	"6	5)3	,84('%, 	<	2 

The volume of one big square was calculated to 0.1 cm x 0.1 cm x 0.1 cm = 0.0001 cm3 = 0.0001 mL = 

10,000-1 resulting in a factor of 10,000. The dilution factor corresponds to the Trypan Blue dilution 

resulting in a factor of 2. 

 

Figure 20:  Application of HeLa S3 Suspension Cell Culture. 

HeLa S3 suspension cells were cultured in a spinner flask up to a volume of 7.0 liters. Their concentration was 
determined by cell counting with a Neubauer cell chamber under a light microscope. Gentle centrifugation 
resulted in a cell pellet that was subjected to extract preparation (see 2.5.2) and subsequent ribosome-nascent 
chain complex (RNC) purification (see 2.6).  

 

2.5 Establishing a Human in vitro Expression System for Obtaining Stalled 80S 

Ribosomes 

2.5.1 T7 Polymerase-based in vitro Transcription 

Solely sequenced plasmids were used as template for in vitro transcription to ensure accuracy on 

DNA-level. Plasmids were linearized with SpeI-HF (NEB) in 10x CutSmart® Buffer (NEB) at 37 °C 
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overnight to later obtain a defined mRNA 3' end and were subjected to purification (QIAquick® PCR 

Purification Kit (Qiagen), according to 2.1.3). In vitro transcription was performed in a total volume of 

100 µL in Transcription Buffer (40 mM Tris / HCl pH 7.0 / 4 °C, 20 mM MgCl2, 0.01 % (v/v) TritonTM 

X-100, 2.5 mM Spermidine, 5 mM DTT, 6.25 mM ATP, 6.25 mM CTP, 6.25 mM GTP, 6.25 mM UTP, 

0.2 U/mL Anti-RNase (Ambion®)) with home-made T7 RNA polymerase and 0.015 µg/µL mRNA at 

37 °C for 4 h. After 1 h incubation and a short spin (1 min / RT / 13,000 rpm / 5415D (Eppendorf)) to 

remove accumulated pyrophosphate, fresh T7 RNA polymerase was added. The final mRNA construct 

encoded for a CrPV IGR IRES sequence for translation initiation, N-terminal HA- and (His)6-tags, parts 

(DP75) of the well characterized dipeptidyl aminopeptidase B (DPAPB) (Beckmann et al., 2001), the 

human hCMV-stalling sequence (Schleiss et al., 1991) and a 26 nt poly(A) tail (p(A)26). The resulting 

mRNA was LiCl precipitated for purification, analyzed via agarose gel electrophoresis, flash frozen in 

liquid nitrogen and stored at -80 °C. 

2.5.2 HeLa S3 Extract-based in vitro Translation 

Extract Preparation 

The human in vitro translation extract was prepared on the basis of Mikami et al. (Mikami et al., 

2010a) with significant adjustments resulting in the protocol schematically depicted in Figure 21. 

Here, HeLa S3 suspension cells were grown to a density of 3.0 - 5.5x105 cells/mL as described in 2.4.2. 

Thereupon, cells were harvested (2 min / RT / 650xg / Rotanta 46R (Hettich)), washed 3x in Washing 

Buffer (35 mM HEPES / KOH pH 7.5 / 4 °C, 140 mM NaCl, 11 mM Glucose) and 1x in Extraction Buffer 

(20 mM HEPES / KOH pH 7.5 / 4 °C, 45 mM KOAc, 45 mM KCl, 1.8 mM Mg(OAc)2, 1 mM DTT). The 

resulting pellet was resuspended in Extraction Buffer to obtain a density of 1.2x109 cells/mL. For 

maintaining extract activity, gentle cell disruption via nitrogen pressure (30 min / 4 °C / 300 psi) in a 

cell disruption vessel (Parr Instrument) was necessary. The extruding extract was mixed with 1/29 

volume High Potassium Buffer (20 mM HEPES / KOH pH 7.5 / 4 °C, 945 mM KOAc, 945 mM KCl, 

1.8 mM Mg(OAc)2, 1 mM DTT), incubated for 5 min on ice and very briefly centrifuged (20 sec / 

14,000 rpm / 4 °C). Aliquoting was performed quickly and strictly on ice whereupon the aliquots were 

flash frozen in liquid nitrogen and stored at -80 °C until further usage. 

 

Figure 21:  Schematic of in vitro Translation Extract Preparation. 

Small volumes of HeLa S3 suspension cells were cultured in cell culture dishes. To grow large volumes, cells 
were transferred into a spinner flask and grown up to 7.0 liters at 37 °C and 40 rounds per minute (rpm) under 
5 % carbon dioxide (CO2). Cells were harvested and immediately subjected to nitrogen (N2) pressure for gentle 
cell lysis upon pressure release. Fast centrifugation resulted in the extract to be supplemented and subjected to 
the in vitro translation reaction of the target mRNA. 
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Optimization of Translational Stalling 

Ribosome stalling conditions had to be optimized individually for each batch of translation extract 

since they differed considerably. First, several translation times (5 min intervals within 60 min 

translation time) were tested in small test-translation reactions (total volume of 12 µL each). Then, 

nine differently concentrated Mg(OAc)2 solutions resulting in 0.25 mM steps in the range of 2.5 - 

4.5 mM were tested. Knowing the ideal Mg(OAc)2 concentration this was used to test eight KOAc 

concentrations resulting in 600 mM steps in the range of 600 - 4,800 mM. For each test, 4 µL of the 

sample were analyzed via SDS-PAGE, Western blotting and anti-body detection. 

In vitro Translation Reaction 

In vitro translation was performed in Translation Buffer (24 mM HEPES / KOH pH 7.5 / 4 °C, 

optimized mM KOAc, 20.1 mM KCl, optimized mM Mg(OAc)2, 2.5 mM DTT, 0.25 mM GTP, 1.56 mM 

ATP, 16 mM Creatine Phosphate (Roche), 0.45 µg/µL Creatine Kinase (Roche), 50 µg/mL yeast tRNA, 

0.4 mM Spermidine, 0.12 mM aa mixture complete (Promega) and 0.885 U/µL Anti-RNase 

(Ambion®)) with 50 % (v/v) extract. This mixture was supplemented with a final concentration of 

0.17 µg/µL mRNA before incubation for 20 - 60 min (depending on the extract) at 30 °C followed.  

Mutational Scanning Analysis 

For the mutational screening of the hCMV-peptide sequence, the in vitro translation reaction volume 

was also downscaled to 12 µL. 4 µL of the sample were analyzed via SDS-PAGE, Western blotting and 

anti-body detection to monitor stalling efficiency of the mutated peptide chain. 

2.6 Preparation of Human Stalled Ribosome-nascent Chain Complexes 

Purification of Human CMV-stalled and Truncated CMV Control Ribosome-nascent Chain 

Complexes 

Human 80S ribosomes were stalled via the hCMV-peptide (see 1.3.2) and the resulting ribosome-

nascent chain complexes (RNCs) were purified. To this end, the human in vitro translation reaction 

was stopped by the addition of 25 µg/mL cycloheximide (Sigma) which hindered translocation. The 

reaction (T) was layered onto a sucrose cushion (50 mM Tris / HCl pH 7.0 / 4 °C, 500 mM KOAc, 

25 mM Mg(OAc)2, 5 mM β-mercaptoethanol, 750 mM sucrose, 10 µg/mL cycloheximide (Sigma), 

0.1 % (w/v) Nikkol, 1/1,000 EDTA-free complete protease inhibitor (Roche)) and centrifuged (45 min / 

4 °C / 100,000 rpm / TLA120.2 (Beckman Coulter)). The supernatant (SN1) was quickly and completely 

removed. The resulting pellet (P) was resuspended in Buffer A (50 mM Tris / HCl pH 7.0 / 4 °C, 

250 mM KOAc, 25 mM Mg(OAc)2, 5 mM β-mercaptoethanol, 250 mM sucrose, 10 µg/mL 

cycloheximide (Sigma), 0.1 % (w/v) Nikkol, 1/1,000 EDTA-free complete protease inhibitor (Roche), 

0.1 % (v/v) Anti-RNase (Ambion®)) and was shortly centrifuged again to remove residual extract parts 

(Rspin Sup and Rspin P) (1 min / 4 °C / 13,000 rpm / 5417R (Eppendorf)). The remaining solution was 

subjected to TALON®-affinity purification. The Co2+-matrix TALON® Metal Affinity Resin (Clontech) 

was pre-equilibrated and subsequently pre-exposed to a yeast tRNA mixture (10 µg/mL) in Buffer A 

to minimize unspecific RNA binding. The RNC-containing solution was incubated with the beads for 

15 min at RT before the beads were washed 1x with 8 column volumes (CVs) (W1) and 2x with 5 CVs 

Buffer A (without Anti-RNase) (W2 - W3). The final wash 1x with 3 CVs Buffer B (W4) (50 mM Tris / HCl 

pH 7.0 / 4 °C, 500 mM KOAc, 25 mM Mg(OAc)2, 5 mM β-mercaptoethanol, 250 mM sucrose, 0.1 % 

(w/v) Nikkol, 1/1,000 EDTA-free complete protease inhibitor (Roche)) was followed by the elution of 

the His-tagged RNCs by incubation with 3 CVs Buffer A supplemented with 150 mM imidazole at RT 

for 15 min. The eluate was loaded onto a sucrose cushion (see above) and centrifuged (60 min / 4 °C 
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/ 100,000 rpm / TLA 110 (Beckman Coulter)). The supernatant (SN2) was again removed quickly and 

completely. The pellet was resuspended in an appropriate volume of Buffer C (50 mM Tris / HCl 

pH 7.0 / 4 °C, 100 mM KOAc, 6 mM Mg(OAc)2, 1 mM DTT, 1/200 EDTA-free complete protease 

inhibitor (Roche), 0.2 U/mL Anti-RNase (Ambion®)) on ice for at least 1 h, briefly centrifuged (RNCP 

and RNCFinal) (1 min / 4 °C / 13,000 rpm / 5417R (Eppendorf)), aliquoted, flash frozen in liquid 

nitrogen and stored at -80 °C. The final ribosome concentration was determined by measuring the 

absorbance at λ = 260 nm (1 A260 ≈ 20 pmol for human ribosomes) using a BioPhotometer® 

(Eppendorf). Appropriate sample sizes were taken throughout the purification procedure to monitor 

purification efficiency of the individual steps via SDS-PAGE and Western blot analyses.  

Truncated hCMV-RNCs without a stop codon in the A-site were prepared accordingly as control. 

Analytical Sucrose Gradient 

To analyze the mono- and polysome fractions in the RNC preparation, the eluate of the TALON® 

Metal Affinity Resin (Clontech) was directly loaded onto a 10 - 40 % sucrose gradient in Buffer D 

(50 mM Tris / HCl pH 7.0 / 4 °C, 100 mM KOAc, 6 mM Mg(OAc)2, 1 mM DTT, 1/200 EDTA-free 

complete protease inhibitor (Roche), 10 - 40 % (w/v) sucrose). Gradients were centrifuged (19 h / 

4 °C / 16,500 rpm / SW 40 (Beckman Coulter)) whereupon they were collected from top to bottom 

(Gradient Station ip, BioComp) while continuously recording the absorption profile at λ = 254 nm 

(Econo UV Monitor, BIO-RAD).  

2.7 Binding Assay of Translation Termination Complexes 

 

Figure 22:  Schematic of the Conducted Binding Assay Studies. 

For sample preparation, ribosome-nascent chain complexes (RNCs) were incubated with the respective ligands 
under various buffer conditions. Ultracentrifugation (UZ) resulted in separation of free ligands (supernatant) or 
RNC-bound ligands (pellet). The flash frozen centrifugation tubes and their contents were separated between 
the two fractions by cutting whereupon pellet and supernatant were separately subjected to protein 
precipitation (see 2.2.2). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed 
abundance of the ligands in the respective fractions allowing conclusions about their RNC-binding abilities. 

 

To test ligand binding to the purified RNCs, binding assay studies were performed (see Figure 22). To 

this end, the ligand containing input was centrifuged (15 min / 4 °C / 14,000 rpm / 5417R 

(Eppendorf)) after thawing to remove possible aggregates. Solely the resulting supernatant was used 

further. To assure similar binding conditions, compensation buffers were calculated (final buffer 

conditions, see Table 12) and mixed to 1 pmol RNCs and 5 - 10x molar ligand excess. Samples were 

incubated for 20 min at RT and for 10 min on ice in a total volume of 12.5 µL to simulate molecular 

crowding conditions comparable to cryo-EM grid conditions. Ultra-ClearTM tubes (4x21 mm) 

(Beckman Coulter) were filled with 550 µL sucrose cushion (750 mM sucrose in respective binding 

conditions) and overlaid with the sample. Centrifugation followed (3 h / 4 °C / 40,000 rpm / SW55Ti 

(Beckman Coulter)) whereupon the filled tubes were flash frozen in liquid nitrogen. Subsequent 

cutting of the tubes and their contents 2 cm from the bottom of each tube resulted in separated 
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supernatant and pellet fractions which were thawed and concentrated (see 2.2.2) individually. 

Analysis via SDS-PAGE and SYPRO® Orange Staining (see 2.2.3) followed. 

Table 12:  Final Buffer Conditions for Conducted Binding Assay Studies. 

Buffer condition 1 was used for ligand binding to ribosome-nascent chain complexes (RNCs), buffer condition 2 
for natively heRF1 containing RNCs. 

Buffer Condition 1  Buffer Condition 2 

20 mM HEPES pH 7.4 / 4 °C  50 mM Tris pH 7.0 / 4 °C 
100 mM KOAC  100 mM KOAC 
2.5 mM Mg(OAc)2  6 mM Mg(OAc)2 
2 mM  DTT  1 mM  DTT 
0.25 mM Spermidine  0.2 U/mL  Anti-RNase (Ambion®) 
   1/200 EDTA-free complete 

protease inhibitor (Roche) 
 

2.8 Electron Microscopy 

For structural analysis of the hitherto prepared biochemical samples, the method of electron 

microscopy was used. The material was applied on carbon-coated grids and either stained with 

uranyl acetate for negative stain EM or plunge frozen for cryo-EM. Data collection, processing and 

analysis lead to the final reconstruction (see Figure 23). 

 

Figure 23:  Schematic from the Biochemical Sample Preparation to the Final Cryo-Electron 

Microscopy-based Molecular Model. 

Individually prepared ligands and ribosome-nascent chain complexes (RNCs) were mixed for sample 
preparation. Subsequently, sample condition and particle density were screened via negative stain electron 
microscopy (EM). Here, the sample was applied on a carbon-coated grid and stained with uranyl acetate. Ideal 
conditions were chosen for subsequent cryo-EM sample preparation where the sample-containing carbon-
coated grid was vitrified in liquid ethane using a vitrobot. Data collection for low- or high-resolution data was 
performed with a Tecnai G2 Spirit (Figure from FEI Company) or a Titan Krios (Figure from FEI Company), 
respectively. Data processing resulted in the final cryo-EM volume which could be used for molecular model 
building and interpretation. 
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2.8.1 Negative Stain Electron Microscopy Sample Preparation and Data Analysis 

Potential samples for cryo-EM were pre-checked for particle condition and density on negative stain 

grids (see Figure 23). To this end, the holey carbon-supported grid was glow discharged in a plasma 

cleaner (Basic Plasma Cleaner, Harrick Plasma) at 2.2x10-1 torr for 30 sec to ionize the hydrophobic 

carbon film. Then, the pre-incubated (20 min at RT) sample (3.5 µL total volume of RNCs with or 

without 5 - 10x molar ligand excess) was applied to the grid. Different concentrations were tested for 

each sample whereof the best and final are listed in Table 13. It was incubated at RT for 45 sec 

before it was washed with 5 - 6 drops of H2O and stained with 3.5 µL 2 % (w/v) uranyl acetate (Ted 

Pella, Inc.) which was immediately blotted off and substituted by fresh 3.5 µL 2 % (w/v) uranyl 

acetate. Incubation was performed for 15 sec and residual staining was blotted off whereupon the 

grid dried for at least 5 min at RT. Negative staining grids were monitored with a 100 kV Morgagni 

electron microscope (FEI Company). 

2.8.2 Cryo-Electron Microscopy Sample Preparation 

The in Table 13 summarized samples were applied on 2 nm pre-coated R3/3 holey carbon supported 

grids (Quantifoil), vitrified in liquid ethane using a Vitrobot Mark IV (FEI Company) (see Figure 23) 

(Grassucci et al., 2007; Wagenknecht et al., 1988) by Charlotte Ungewickell and Susanne Rieder and 

stored in liquid nitrogen until further usage. 

Table 13:  Final Ribosome-nascent Chain Complex and Ligand Concentrations in the Cryo-Electron 

Microscopy Samples. 

Detailed buffer conditions are provided in Table 12. 

Dataset 
Ribosome-Nascent Chain 

Complex Concentration  
Molar Ligand Excess  Buffer  

heRF1 5 A260/mL (0.10 pmol/µL) 5x excess Condition 1 
heRF1 + hABCE1 4 A260/mL (0.08 pmol/µL) 5x excess Condition 1 
heRF1 + hABCE1 5 A260/mL (0.10 pmol/µL) 10x excess Condition 1 
heRF1:Δ(1-138)heRF3a 6 A260/mL (0.12 pmol/µL) 5x excess Condition 1 
Natively heRF1-containing  5 A260/mL (0.10 pmol/µL) None Condition 2 

 

2.8.3 Cryo-Electron Microscopy Data Collection 

Tecnai G2 Spirit (FEI Company) 

For low-resolution reconstructions, data was collected on a Tecnai G2 Spirit TEM (FEI Company) at 

120 kV and a calibrated magnification which resulted in a pixel size of 3.17 Å on the object scale. Data 

was provided with different defocus values between 0.85 µm and 7.5 µm and recorded on the Eagle 

2K CCD camera (2,048x2,048 pixel, 30x30 μm) (FEI Company). Data collection was performed by 

Charlotte Ungewickell and Susanne Rieder. 

Titan Krios (FEI Company) 

For high-resolution reconstructions, data was collected on the in-hose Titan Krios TEM (FEI Company) 

equipped with a Falcon II direct electron detection device (FEI Company). The acceleration voltage 

amounted to 300 kV and the magnification settings resulted in a pixel size of 1.062 Å on the object 

scale. The dataset was provided with the semi-automatic software EPU (FEI Company) in a series of 

seven frames (numbered 0 - 6) with a dose of 5 e-/Å2 per frame for frames 0 - 3 and 10 e-/Å2 per 

frame for frames 4 - 6. Data collection was performed by Dr. Otto Berninghausen.  
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For the final reconstruction, frames 3 - 6 were excluded for limitation of the effective dose. The three 

remaining frames were aligned and summed up using the Motion Correction Software MotionCorr (Li 

et al., 2013).  

2.8.4 Cryo-Electron Microscopy Data Analysis of Tecnai G2 Spirit (FEI Company) Derived Datasets 

Since data analysis is less complicated for data collected on the Tecnai G2 Spirit (FEI Company) than 

on the Titan Krios (FEI Company), detailed description for the processing procedure is given only for 

the latter (see 2.8.5). Dataset specific particle distribution during sorting for data which was collected 

with the Tecnai G2 Spirit is provided in Table 14. Sorting for non-ribosomal particles (edge-sorting) 

was followed by sorting against an intrinsically derived structure obtained during initial refinement. 

Lastly, focused sorting on the ribosomal A-site followed. The same sorting scheme was applied to 

each dataset to ensure comparability. Yet, for sorting of the natively heRF1 containing RNCs 

additional sorting (*) was done to assure quantitative heRF1-binding to the ribosome in this case. 

Table 14:  Particle Distribution of Tecnai G2 Spirit (FEI Company) Derived Datasets. 

Particle numbers which were sorted out at each step are shown. Corresponding percentage is given in 
parenthesis. 

Dataset 
Starting 

Particles 

Particles 

(Edge 

Sorting) 

Particles 

(Self-

sorting) 

Particles 

(Focused 

Sorting) 

Final  

Particles 

Final 

Resolution 

heRF1 (10x) + 
hABCE1 (10x)  

34,648 
(100 %) 

3,758 
(11 %) 

16,101 
(46 %) 

7,125 
(21 %) 

7,664 (22 %) 20.9 Å  

heRF1 (5x)  14,067 
(100 %) 

3,978 
(28 %) 

5,907 
(42 %) 

1,553 
(11 %) 

2,629 (19 %) 22.3 Å  

heRF1 (5x) + 
hABCE1 (5x)  

31,498 
(100 %) 

4,214 
(13 %) 

12,054 
(38 %) 

6,674 
(21 %) 

8,556 (27 %) 21.0 Å  

heRF1: 
Δ(1-138)heRF3a 
complex (5x)  

26,534 
(100 %) 

5,583 
(21 %) 

2,738 
(10 %) 

8,330 
(31 %) 

heRF1:Δ(1-138) 
heRF3a 
complex: 
9,883 (37 %)  
 
heRF1:  
4,837 (18 %) 

21.0 Å 
 
 
 
 
25.2 Å  

Natively heRF1 
containing  

19,524 
(100 %) 

4,767 
(24 %) 

5,734 
(29 %) 

6,181 
(32 %) 

5,187 (26 %) 
 
*Sorted  
further: 
2,842 (14 %) 

21.9 Å  
 
*Sorted 
further: 
22.5 Å 

 

2.8.5 Cryo-Electron Microscopy Data Analysis of a Titan Krios (FEI Company) Derived Dataset 

Pre-processing  

For System for Processing Image Data from Electron microscopy and Related fields (SPIDER)-based 

processing (Frank et al., 1996), microscope- and dataset-specific parameters are required which have 

to be adjusted and provided in a params file (see Table 15) prior to processing. 
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Table 15:  Parameters Used for Titan Krios Derived Data Processing in this Study. 

Number Parameter Value 

1 Zip flag 0: Do not unzip, 1: Needs to be unzipped 0.0000 
2 File format 0: SPIDER, 1: HiScan tif, 2: Perkin elmer, 3: ZI scanner 1.0000 
3 Picture dimensions (width) [pixel] 12,288 
4 Picture dimensions (height) [pixel] 12,288 
5 Pixel size [Å] 1.062 
6 Electron energy [kV] 300 
7 Spherical aberration [mm] 2.7 
8 Source size [Å-1] 5.00000x10-3 
9 Defocus spread [Å] 0.0000 
10 Astigmatism [Å] 0.0000 
11 Azimuth [degree] 0.0000 
12 Relative amplitude contrast 0.0700 
13 Gaussian envelope half width [Å-1] 10,000 
14 --- (reserved) 0.0000 
15 --- (reserved) 0.0000 
16 --- (reserved) 0.0000 
17 Box size [pixel] 420.00 
18 Particle diameter [pixel] 330.00 
19 Interpolation, decimation factor 3.000/2.000/1.000 
20 Actual box size (in decimation) 140/210/420 

 

Data output of the Motion Correction Software (Li et al., 2013) was set to be in .mrc format. Import 

and conversion to SPIDER format by the command CP FROM MRC (Copy from MRC File to SPIDER 

File) followed. A list, which contains all micrographs in consecutive order (micsuse), was created 

which is adjusted throughout pre-processing to exclude non-adequate micrographs. The command 

TF ED (Transfer Function - Estimate Defocus from Image Power Spectrum) was used to calculate the 

contrast transfer functions (CTFs) and to retrieve the correct defocus values. Power spectra, which 

show the micrograph intensity as square of the amplitude plotted against the special frequency, 

were created using the command PW (Power Spectrum - Amplitudes of Fourier Transform). 

Detailed visual evaluation based on power spectrum and micrograph quality using the JWEB software 

(Shaikh et al., 2008) was performed for each micrograph. Micrographs with power spectra depicting 

poor information content, drift or astigmatism were excluded. Micrographs showing aggregated or 

burnt particles, bad ice quality, blurry images or other impurities were also discarded. 

Automated particle picking was performed using the program SIGNATURE based on a two-

dimensional (2D) template matching method (Chen and Grigorieff, 2007): Particle correlations to 

2D-projections from a previously calculated human 80S reference were computed using optimized 

parameters (pixel size: 4x1.062, box size: 420 pixel (px), particle size: 180 px, particle distance: 15 px, 

margin: 80 px and local density correlation function (LCF): 0.41) for particle finding. Particle 

SIGNATURE coordinates were converted to SPIDER coordinates (from center of particle to top left of 

the window), normalized by providing an internal noise-file, contrast inverted and windowed out 

using the command WI (Window Image/Volume). 
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For computational advantage, grouping of micrographs according to similar defoci was performed. 

Such grouping additionally enhances the SNR when creating 3D volumes and allows for facilitated 

application of the CTF-correction. In this calculation, 283 defocus groups with up to 900 particles 

each were introduced, omitting micrographs which were recorded at lower defocus than 1.0 µm or 

higher defocus than 2.7 µm to ensure a defocus spread smaller than 150 nm in each group. 

Micrographs which belonged to power spectra with cross-correlation values to themselves (when 

turning the power spectra by 90°) lower than 0.6 were additionally excluded. 

Henceforth, data processing and single particle analysis was done using the SPIDER software 

package. The initial alignment was done on 3-fold decimated data for 255,253 particles. The 

command AP MQ (Alignment - Multi-reference, Shift and Rotation) allowed a cross-correlation based 

projection matching technique to determine particle orientation: A previously calculated human 80S 

ribosome was filtered with the FQ NP (Filter Quick, no Pad) command (Butterworth low-pass, lower 

and upper limiting frequencies corresponding to 19.5 Å and 20 Å) and used as initial reference 

whereof 83 2D projections were generated by the command PJ 3Q (Project - 3D Volume Using 

Eulerian Angles, Trilinear Interpolation) resulting in an angular accuracy of 15°. For re-processing of 

the dataset, the final volume of the first calculation was filtered accordingly and similarly provided as 

initial reference. Each single particle was then matched to the best fitting projection leading to the 

assignment of an individual cross-correlation, translational shifts (x- and y-shifts) and three Eulerian 

angles to each particle. 

Refinement and Semi-supervised Sorting  

To improve the resolution of the initially obtained volume, the iterative process of refinement was 

applied to gradually increase accuracy of the assigned Eulerian angles, the x- and the y-shifts. For 

each defocus group, particles were refined in parallel: They were aligned (commands: AP MD 

(Alignment - Multi-reference, Rotation) (no shifts, 360° search range, with mirror check) and AP MQ 

(Alignment - Multi-reference, Shift and Rotation) (1 px shift, with mirror check)) to the output volume 

of the previous round (for the first round, the same reference was used as for the initial alignment) 

whilst the angular search range was gradually narrowed with proceeding rounds. Back projection 

(combination of 2D particles to reconstruct the 3D structure) was performed in Fourier space (bp32f 

algorithm) to obtain sub-volumes for each defocus group. Such sub-volumes were weighted 

according to the number of particles in the group and subjected to CTF correction (usage of a Wiener 

filter which squares the amplitudes and flips the phases) via the TF CTS (Transfer function - CTF 

correction 2D and 3D) command before being combined to the final output volume of the round (and 

input volume for the next round). For this reconstruction, the reference input was never subjected to 

a Butterworth low-pass filter higher than the frequencies which correspond to 8 Å. 

To generate a high-resolution structure, the dataset was sorted from a heterogeneous to a 

homogenous population. Again, a cross-correlation based method was used, however, here 

projection matching was competitive: Two reference volumes were offered to which each particle 

was aligned to, resulting in the calculation of two correlation values. To achieve successful sorting, 

the particle was assigned to the particle class of the reference where its alignment resulted in a 

higher cross-correlation. Both resulting particle subsets were back-projected individually as described 

above and each calculated volume was used as input for the subsequent round of sorting. This was 

again performed iteratively, until the amount of particles remained stable in each class. Generally 

spoken, during sorting increasing structural details from global to local differences are considered 
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starting with ‘edge sorting’ to remove fractional and non-ribosomal particles or noise (here: 35,062 

particles; 14.3 %). 

For this dataset, after removing noisy particles, particles comprising a significantly lower cross-

correlation than other particles of the same defocus group were discarded from the dataset 

(64,659 particles, 26.4 %) leading to resolution improvement.  

Further sorting with a reference from a very early refinement round (which still contained rough 

features) resulted in the removal of empty 80S and CrPV IGR IRES containing 80S ribosomes 

(50,952 particles, 20.8 %). To sort for small but critical differences, ‘focused sorting’ was performed, 

where only a restricted area (defined by a provided mask) was used for the calculation of the cross-

correlation and therefore solely determined to which of the two classes the particle was assigned to, 

leading to removal of further 61,415 particles (25.0 %). The final volume contained 33,165 particles 

(13.5 %). 

Resolution Determination 

Two semi-independent sub-volumes (each calculated from either all evenly or oddly numbered 

particles) were created every round and used for Fourier shell correlation (FSC)-based resolution 

determination with the RF 3 (Phase Residual and Fourier Shell Correlation, 3D) command.  

Since, as described above, throughout the refinement and sorting process frequencies higher than 

corresponding to 8 Å were omitted to prevent potential overfitting, the resolution was estimated by 

the FSC = 0.143 criterion according to Scheres et al. (Scheres and Chen, 2012). Obeying this criterion, 

the average resolution was determined to 3.8 Å with a local resolution extending to 3.6 Å in the core 

of the ribosome. The local resolution was determined using ResMap (Kucukelbir et al., 2014).  

2.8.6 Molecular Model Building, Validation and Interpretation 

The heRF1-bound RNC complex was B-factor sharpened using the program EM-BFACTOR (Fernández 

et al., 2008). For interpretation of the acquired electron density, molecular models were initially rigid 

body fitted with UCSF Chimera (Pettersen et al., 2004) and, where appropriate, manually adjusted 

according to the electron density with Coot (Emsley and Cowtan, 2004). Ribosomal RNA and proteins, 

which contacted heRF1 or comprised the exit tunnel wall and the PTC, were based on the cryo-EM 

reconstruction of the human 80S POST state by Behrmann et al. (Behrmann et al., 2015) (PDB-code: 

5AJ0). The human eRF3-bound crystal structure of the eRF1 protein (PDB-code: 3E1Y) by Cheng et al. 

(Cheng et al., 2009) was taken as groundwork for its modeling according to the EM-density. The 

missing heRF1 Mini Domain, as well as the C-terminal tail residues 421 – 437, was incorporated from 

the NMR solution structure of the heRF1 C-terminal domain (PDB-code: 2KTV) by Mantsyzov et al. 

(Mantsyzov et al., 2010).  

Modeling was followed by refinement using Coot (Emsley and Cowtan, 2004) and the real-space 

refine tool of the PHENIX software package (Adams et al., 2010) with the default settings of the 

PHENIX command ‘phenix.real_space_refine model.pdb map.ccp4’. To validate the fit of the refined 

structure to the experimentally acquired data, cross-correlation values between the heRF1 cryo-EM 

density and a density molmap (width proportional to the resolution and amplitude proportional to 

the atomic number) generated from the refined molecular heRF1 model or from the initial eRF1 

crystal structure were calculated using UCSF Chimera (Pettersen et al., 2004). The cross-correlation 

values increased when comparing the initial model (domains of the human eRF1 crystal structure 
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were docked into the isolated density individually) with the refined model: 0.73 to 0.76 for the N 

domain; 0.66 to 0.68 for the M domain, 0.39 to 0.70 for the C domain. 

2.8.7 Figure Preparation 

Figures depicting electron densities or molecular models were produced with UCSF Chimera 

(Pettersen et al., 2004). 

2.8.8 Cryo-electron Microscopy Data Processing Software 

All software used for cryo-EM data processing and evaluation is summarized in Table 16. 

Table 16:  Software Used for Cryo-electron Microscopy Data Processing. 

Software Reference 

Coot Emsley and Cowtan, 2004 
EM-BFACTOR Fernández et al., 2008 
Gnuplot  Janert, 2009  
JWEB Shaikh et al., 2008 

MotionCorr Li et al., 2013  

PHENIX Adams et al., 2010 

ResMap Kucukelbir et al., 2014 
SIGNATURE Chen and Grigorieff, 2007  
SPIDER  Frank et al., 1996  
UCSF Chimera  Pettersen et al., 2004  
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3. Results 

One of the most fundamental questions which has remained without answer for the eukaryotic 

translation cycle concerns the process of translation termination. Besides tremendous efforts and a 

great variety of biochemical and structural studies, the molecular mechanism of how stop codon 

decoding is performed by only one single factor (eRF1) could not have been elucidated so far. Hence, 

to investigate how eRF1 realizes stop codon decoding, particularly in human translation termination, 

this study comprises the establishment of a human in vitro translation system. Further purification of 

hCMV programmed human ribosomes for in vitro reconstitution of versatile termination complexes 

was the starting point for high-resolution structural studies solving the long-standing question of 

eukaryotic stop codon decoding and beyond.  

3.1 Obtaining Human Cytomegalovirus gp48/UL4 uORF2 (hCMV)-stalled 

Ribosome-nascent Chain Complexes 

3.1.1 Establishment of a Human in vitro Translation Extract 

For the generation of stalled human ribosomes, it was set out to establish a human in vitro 

translation extract based on HeLa S3 suspension cells. Prepared extracts were supplemented with in 

vitro transcribed target mRNA upon which its translation was performed. Efficiency was optimized 

directly with the hCMV-stalling construct rather than a read-out optimized construct such as GFP or 

luciferase since the latter are both aiming at high translation speed and protein production. The 

chosen approach ensures ideal conditions for hCMV-mediated translational stalling, which only 

requires one round of initiation per mRNA and subsequent stabilization of the translation 

intermediates, rather than high efficiency of protein production for which in contrast multiple rounds 

of initiation would be beneficial.  

mRNA in vitro transcription has always been performed separately from translation to introduce an 

additional layer of control. Solely sequenced and linearized plasmids were used as template for 

transcription to ensure accuracy on DNA-level. The final template comprised a 5’ CrPV IGR IRES 

sequence for translation initiation. This differs from all other recommended modes of translation 

initiation in commercially available eukaryotic translation systems. For instance, for the RRL System 

(Promega) a 5’ capped or uncapped mRNA is suggested as template. However, such mRNAs could 

not be successfully translated in the here established human system (see Figure 24A). In the 

commercially available human system (Thermo Scientific) the 5’ EMCV IRES sequence is utilized, 

however, requires supplementation of accessory protein factors (like K3L or hGADD34) for functional 

initiation (Mikami et al., 2006). During the optimization of the human translation system all efforts 

towards purification and effective supplementation of these protein factors did not result in 

sufficient translation why the EMCV IRES sequence was substituted for the CrPV IGR IRES sequence 

due to its independence of any cellular initiation factors. A further advantage of using the CrPV IGR 

IRES for translation initiation is the simultaneous incapability to translate canonical mRNAs in the 

extract why cellular resources like ribosomes and aminoacyl-tRNAs remain available for specific 

target translation. Accordingly, S7 nuclease treatment of the extract to eliminate cellular mRNAs did 

not affect adjacent translation efficiency why this step was omitted in the extract preparation 

protocol. 
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Different linker sequences between the CrPV IGR IRES 3’ terminal CCT codon and the ATG start codon 

resulted in various stalling efficiencies (see Figure 24B) whereof the most active was used 

henceforth. 

 

Figure 24:  Optimization of the mRNA Sequence for Translation in the Human in vitro System. 

Anti-hemagglutinin (α-HA) antibody detection of the target translation product. (A) Translation and stalling 
efficiency of various 5’ mRNA ends: 5’ capped, 5’ uncapped or 5’ cricket paralysis virus (CrPV) intergenic region 
(IGR) Internal Ribosome Entry Site (IRES) containing mRNAs were tested. The most efficient 5’ end is 
highlighted in green. (B) Translation efficiency of the 5’ CrPV IGR IRES mRNA with and without the most active 
linker sequence to the target open reading frame and of the 5’ encephalomyocarditis virus (EMCV) IRES mRNA 
were tested. Further, each mRNA was translated in the presence of the accessory proteins (APs) from the in 

vitro translation system by Thermo Scientific. The combination used further is highlighted in green. (C) 
Necessity of the 3’ poly(A) tail for CrPV IGR IRES initiated hCMV-stalling was tested. The condition used further 
is highlighted in green.  

 

Moreover, the DNA template contained a (His)6-tag encoding sequence for RNC purification and a 

human influenza hemagglutinin (HA)-tag (aa 98 - 106) for Western blot detection of either the 

translated free peptide or the peptidyl-tRNA. Tag-specific antibodies revealed a double band at 

∼15 kDa (theoretically: 14.8 kDa) corresponding to the free peptide only under suboptimal 

conditions. The vast majority of hCMV-stalled ribosomes remained stable under the extract 

conditions represented by a signal at ∼36 kDa since the stalling peptide is still bound to the P-site 

tRNA causing the ∼19 kDa shift in its SDS-PAGE running behavior. Further encoding sequence, the 

DP75 DPAPB (Beckmann et al., 2001) sequence, which has been successfully translated before in 

home-made D. melanogaster extracts, was used. The hCMV sequence was utilized for species-

accurate stalling meeting the requirement for a stop codon in the ribosomal DC. Finally, at the 3’ end 

a 26 nt poly(A) tail was encoded, which is not particularly necessary for the CrPV IGR IRES containing 

construct (see Figure 24C), however, likely increases the stability of mRNAs (Dreyfus and Régnier, 

2002; Eckmann et al., 2010) and ensures closer resemblance of the canonical termination state in the 

in vitro reconstituted complexes. 

Translational stalling was tested at 30 °C (based on Mikami et al., 2010), 33 °C (based on Brödel et al., 

2013) and 37 °C whereof 30 °C was most efficient in all tested extracts. Particularly the ideal time 

interval of translation, the KOAc concentration and the Mg(OAc)2 concentration varied for each 

extract and were optimized anew for each prepared batch (see Figure 25). 
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Figure 25:  Example of Stalling Optimization in the Human Translation Extract. 

Each newly prepared extract was optimized for (A) translation time (B) magnesium acetate (Mg(OAc)2) and (C) 
potassium acetate (KOAc) concentration using Western blotting and the anti-hemagglutinin (α-HA) antibody for 
detection of tRNA-bound human hCMV-peptide or free hCMV-peptide. Optimal conditions varied for each 
extract. Best conditions for this extract example are highlighted in green. 
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 

 

3.1.2 Purification of Homogenously Stalled Ribosome-nascent Chain Complexes 

The RNC purification procedure had to be adjusted from published protocols (Beckmann et al., 2001; 

Bhushan et al., 2011; Halic et al., 2004; Seidelt et al., 2009) in several aspects: The resuspension of 

ribosomal pellets after concentration via ultra-centrifugation proved rather protracted why it was 

partially performed under shaking conditions. Additionally, due to the high concentrations of the 

extracts themselves (A260 ∼180 - 250), cellular parts were carried along during the RNC preparation 

which had to be separated repeatedly via short centrifugation steps for complete removal. 

Furthermore, prolonged washing steps and higher imidazole concentration for (His)6-tagged RNC 

elution resulted in increased purity and greater yields, respectively. As mentioned above (see 3.1.1), 

successful stalling can be visualized via antibody detection subsequent to Western blotting by a 

shifted peptide-signal. In the final RNC sample (see Figure 26A, lane ‘Final’) a homogenously stalled 

RNC population and no free hCMV-peptide was evident.  

One limitation for obtaining great quantities of RNCs was the volume of HeLa S3 suspension cells 

which could only be grown up to 7.0 L to a maximum density of 6x105 cells/mL without aggregation 

or sedimentation in the utilized set-up. Volume restrictions during extract preparation itself were 

only present by the cell disruption vessel (30 mL), however, can merely be encountered by harvesting 

a 15 L HeLa S3 cell culture. After in vitro translation, ribosomes were concentrated via centrifugation 

through a sucrose cushion. Hereafter, measuring the absorption at λ = 260 nm (A260) represented a 

good estimation of the ribosome quantity in the extract: On average (n = 3) 118 A260/preparation. 

Measuring the A260 for purified RNCs in the final sample an average (n = 3) of 1.34 A260/preparation 

remained. This corresponds to 0.98 % of all ribosomes present during the initial in vitro translation 

reaction. The bottle neck for high yields in RNC preparations therefore rather was the stalling 

efficiency likely due to challenged initiation of translation and loss during RNC purification. Examples 

for preparation efficiencies are given in Table 17. 
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Table 17:  Examples for Efficiencies of Human in vitro Translation Extract Preparations and 

Ribosome-nascent Chain Complex Purifications. 

Starting 

Culture 

Volume 

Starting 

Cell 

Amount 

Final 

Extract 

Volume  

Cells/mL 

Extract 

RNCs/mL  

Extract 

RNCs/L Cell 

Culture 

Extract 

Absorption 

Values  

5.6 L 2.4x109 5,400 µL  4.44x108 Not applicable Not applicable A260 = 228 
A280 = 162 

5.2 L 2.9x109 5,935 µL  4.89x108 Not applicable Not applicable A260 = 251 
A280 = 172 

7.0 L  1.9x109 7,600 µL 
 

2.50x108 TAA(A) stop codon: 
33.5 pmol 

36.4 nmol A260 = 177 
A280 = 123 

4.7 L 1.7x109 5,140 µL  3.31x108 TAA(A) stop codon: 
25.65 pmol 

28.1 nmol A260 = 189 
A280 = 140 

6.0 L 2.0x109 4,930 µL 
 

4.06x108 TAA(G) stop codon: 
51.3 pmol/mL 
TAG(A) stop codon: 
58.8 pmol 

42.2 nmol 
 
48.3 nmol 
 

A260 = 200 
A280 = 140 

 

 

Figure 26:  Purification of hCMV-stalled and Truncated hCMV-Ribosome-nascent Chain Complexes. 

Anti-hemagglutinin (α-HA) antibody detection of samples taken throughout the ribosome-nascent chain 
complex (RNC) purification procedures of (A) human hCMV-stalled RNCs and (B) truncated (trunc) hCMV-RNCs.  
The free peptide has an apparent mass of ∼15 kilodalton (kDa) and appears as double band. The peptidyl-
tRNA-bound peptide, an indicator for stalled RNCs, of ∼35 kDa. A band of unknown identity is visible at 
∼55 kDa. Note that the trunc hCMV-RNCs are less stable resulting in a greater variety of bands in the 
supernatant 2 (‘SN2’) fraction and less yield in the final RNC (‘Final’) fraction. The final fractions are highlighted 
in green for both preparations. 

 

As a result of the limited yields, sucrose gradient purification was omitted in the RNC purification 

procedure (like usually done for stalled 70S ribosome samples for cryo-EM (Arenz et al., 2014a, 

2014b; Bischoff et al., 2014; Sohmen et al., 2015)). However, to assess the fraction of polysomes, an 

analytical gradient purification (see Figure 27A) was performed whereof the absorption profile at 

λ = 254 nm was recorded (see Figure 27B). The vast majority of the absorption signal originated from 

ribosomes that were singly bound to the mRNA and were evident as monosome 80S peak (shaded in 
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gray). The area below the absorption curve for ribosomal polysomes was comparably small and was 

estimated to be < 10 %.  

 

Figure 27:  Analytical Sucrose Gradient of Affinity-Purified Ribosome-nascent Chain Complexes. 

The polysome-state of the purified ribosome-nascent chain complexes (RNCs) was analyzed via an analytical 
sucrose gradient from 10 - 40 %. (A) Affinity purified RNCs (blue) were layered on top of the gradient (gray) 
whereupon it was subjected to ultracentrifugation. Subsequent collection of the gradient from top to bottom 
while recording the absorption at λ = 254 nm allowed identification of (B) monosome 80S (gray-shaded) and 
polysome fractions in the sample.  

 

To ensure specific assembly of the termination-involved complexes, control RNCs were prepared 

without harboring a stop codon in the ribosomal A-site. Since the stop codon is a prerequisite for 

hCMV-mediated peptide stalling (also see Figure 47) (Degnin et al., 1993), it could not be simply 

abolished by mutation into a sense codon. Therefore, the control construct was truncated after the 

Pro22 codon (trunc hCMV) which also lead to successful ribosomal stalling, however, less stably as 

evident in the supernatant 2 (see Figure 26B, lane ‘SN2’) fraction where increased amounts of 

unbound  peptide were present. 

In the wealth of existent mutational studies contradictory conclusions about interactions between 

eRF1 and the mRNA stop codon have been postulated. Particularly interesting is the varying effect of 

eRF1 mutations on decoding efficiencies of the three abundant stop codons UAA, UAG and UGA. 

Also, the mRNA nucleotide at position 4 is known to be influential on termination efficiency which 

might explain the discrepancy in mutational studies. To investigate interactions of eRF1 while 

decoding each of the three stop codons and ascertain the role of the nucleotide at position 4, RNCs 

containing either a UAA(A), UAG(A), UGA(A) or UAA(G) stop codon were prepared similarly.  

3.2 In vitro Reconstitution of Ribosome Complexes Involved in Translation 

Termination 

3.2.1 Purification of Protein Components 

For in vitro reconstitution of termination-involved complexes, the corresponding human protein 

factors were purified. Particularly for the purification of the ternary heRF1:heRF3a:GMPPCP complex 

several strategies were exploited simultaneously to ensure great yield combined with high purity of 

the resulting samples (also see Figure 18). 

Human eRF1 

heRF1 was designed with an N-terminal 3C-protease-cleavable (His)8-tag and successfully expressed 

and purified from E. coli cells. Extensive high salt washes combined with elution of the protein via 3C-

protease cleavage of the (His)8-tag resulted in great yields (see Table 21) and high purity which is 
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evident from one single band in the elution fraction after SDS-PAGE analysis (see Figure 28A, lane 

‘E3C’). Purified heRF1 was used for in vitro hydroxylation studies and as negative control of the 

hydroxylation status of the heRF1 Lys63 side-chain C4 in mass spectrometry analyses (see next 

section). 

 

Figure 28:  Purification of the heRF1 and the (His)6-Δ(1-46)Jmjd4 Proteins from Escherichia coli 

Cells. 

(A) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of samples taken throughout the 
heRF1 purification procedure. The final 3C-protease cleaved elution sample (‘E3C’) is highlighted in green 
revealing high yield of pure heRF1. Also, a sample of the hexahistidine ((His)6)-tagged 3C-protease was applied. 
(B) Hydroxylation reaction of the heRF1 Lys63 side-chain C4 catalyzed by the oxygenase Jmjd4. Necessary co-
factors are 2-oxoglutarate (2OG), Fe(II) and oxygen (O2). (C) SDS-PAGE of samples taken throughout the (His)6-
tagged Δ(1-46)Jmjd4 purification procedure. Subsequent to affinity purification appropriate elutions (‘E50’, ‘E100’ 
and ‘E150’) were subjected to size exclusion chromatography on an S75 (300/10) column. Samples ‘B5’ - ‘C9’ 
were pooled and concentrated. The final sample (‘Final’) is highlighted in green revealing high yield of (His)6-
Δ(1-46)Jmjd4 only containing few impurities or degradation products. 

 

Human eRF1 Hydroxylation 

Feng et al. (Feng et al., 2014) demonstrated the importance of the eRF1 Lys63 side-chain C4 

hydroxylation of the TAS-NIKS motif (see Figure 28B) in termination efficiency. Since Lys63 is known 

to be a key-player in termination (Chavatte et al., 2002), this PTM was assigned great importance. For 

its in vitro hydroxylation, purified heRF1 was incubated with the 2-oxogluterate and Fe(II)-

dependent oxygenase Jmjd4 which was also purified successfully in this study (see Figure 28C, lane 

‘Final’). Hereupon, heRF1 was analyzed via mass spectrometry to assess the efficiency of the 

enzymatically catalyzed reaction. The hydroxylation-status was monitored with and without 

quenching of the reaction with EDTA to prevent potential secondary hydroxylations to occur (see 

Tables 18 and 19). 
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In parallel, in vivo hydroxylation of heRF1 was anticipated by co-expression of heRF1 and Jmjd4 in 

E. coli. After similar (as to single expression of heRF1) purification and tag-cleavage, co-expressed 

heRF1 was likewise analyzed via mass spectrometry. A full quantitative analyses was not realized 

since the obtained results regarding differences in Lys63 side-chain C4 hydroxylation efficiency 

between the two methods were unambiguous (see Table 18). Comparison and normalization to 

other, via mass spectrometry analyzed peptides ((a) the FANNYKKF signal and (b) the 

FHTEALTALLSDDSK signal), were made which allowed approximate percentages to be assigned for 

each hydroxylation method (see Table 19).  

Table 18:  Mass Spectrometry Results for the heRF1 Lys63 Side-chain C4 Hydroxylation Status. 

heRF1 

Peptide: LADEFGTASNIK*SRVN 

Intensity of Lys63 C4 

Hydroxylated 

Intensity of Lys63 C4 Non-

hydroxylated 

In vivo hydroxylation 1.14x106 ----------- 
No hydroxylation ----------- 1.44x107 
In vitro hydroxylation (quenched) 8.60x105 6.93x106 
In vitro hydroxylation (not quenched) 5.14x105 4.59x106 
 

heRF1 

Peptide: MLADEFGTASNIK* 

Intensity of Lys63 C4 

Hydroxylated 

Intensity of Lys63 C4 Non-

hydroxylated 

In vivo hydroxylation 2.21x107 ----------- 
No hydroxylation ----------- 2.77x108 
In vitro hydroxylation (quenched) 1.71x107 1.75x108 
In vitro hydroxylation (not quenched) 1.00x107 8.18x107 

 

Table 19:  Normalized Mass Spectrometry Results for the heRF1 Lys63 Side-chain C4 Hydroxylation 

Status. 

heRF1 

Peptide: LADEFGTASNIK*SRVN 

Normalized Intensity of 

Lys63 C4 Hydroxylated 

Normalized Intensity of 

Lys63 C4 Non-hydroxylated 

In vivo hydroxylation 3.69x105 (100 %) -----------  (0 %) 
No hydroxylation -----------  (0 %) 3.15x106 (100 %) 
In vitro hydroxylation (quenched) 2.20x105 (60 %) 1.77x106 (56 %) 
In vitro hydroxylation (not quenched) 1.95x105 (53 %) 1.74x106 (55 %) 
n = 1, normalized with (a) the FANNYKKF signal  
 
 

heRF1 

Peptide: MLADEFGTASNIK* 

Normalized Intensity of 

Lys63 C4 Hydroxylated 

Normalized Intensity of 

Lys63 C4 Non-hydroxylated 

In vivo hydroxylation 2.21x107 (100 %) -----------  (0 %) 
No hydroxylation -----------  (0 %) 2.77x108 (100 %) 
In vitro hydroxylation (quenched) 1.71x107 (61 %) 1.75x108 (74 %) 
In vitro hydroxylation (not quenched) 1.00x107 (54 %) 8.18x107 (51 %) 
n = 1, normalized with (b) the FHTEALTALLSDDSK signal 
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For the in vitro hydroxylation method, efficiency was comparable to previously published results of 

∼60 % (Feng et al., 2014). In vivo hydroxylation resulted in quantitative Lys63 hydroxylation since no 

corresponding peptide without Lys63 hydroxylation could be detected. To ensure specificity of the 

reaction, secondary hydroxylation sites on all heRF1 Lys residues were monitored whereat no 

hydroxylation could be detected. Due to the high efficiency, Jmjd4 was also co-expressed for in vivo 

hydroxylation in the following heRF1:heRF3a co-purification strategies. 

Human Δ(1-138)eRF3a  

The N-terminal 138 aa of eRF3 are known to be non-essential for ternary complex formation with 

GTP and eRF1 (Kushnirov et al., 1988) and in this regard truncated eRF3 has been successfully used 

for termination studies before (des Georges et al., 2014; Pisareva et al., 2006; Preis et al., 2014; 

Taylor et al., 2012). Considering heRF3a full length protein purification is known to be challenging 

N-terminally truncated heRF3a was expressed and purified from E. coli cells for a start. Extensive high 

salt washes and specific elution due to (His)8-tag cleavage via the attached 3C-protease cleavage site 

resulted in high amounts of stable protein (see Table 21) with only slight contaminations as evident 

after SDS-PAGE analysis (see Figure 29A, lane ‘E3C’).  

 

Figure 29:  Purification of the Δ(1-138)heRF3a and the heRF3a Full Length Proteins. 

(A) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of samples taken throughout the 
Δ(1-138)heRF3a purification procedure. Octahistidine ((His)8)-tagged Δ(1-138)heRF3a protein could be 
expressed. The final 3C-protease-cleaved elution sample (‘E3C’) is highlighted in green revealing high yield of 
tag-free protein and minor impurities. (B) SDS-PAGE of samples taken throughout the heRF3a fl purification 
procedure. Thioredoxin (TRX) and hexahistidine ((His)6)-tagged heRF3a fl protein could be expressed. The final 
TEV-protease cleaved elution sample (‘ETEV’) is highlighted in green revealing low yield and numerous 
impurities.  

 

Human Full Length eRF3a 

heRF3a full length has only been demonstrated to be stably expressed in the baculovirus/insect 

system (Frolova et al., 1998) or as TRX-fusion protein in E. coli (Kononenko et al., 2010) before. Thus, 

based on the expression and purification strategy described in Kononenko et al., human eRF3a fl was 

purified from E. coli cells. The N-terminal stability-conferring TRX-tag was fused to a (His)6-tag 

required for purification. Both tags could be removed collectively via TEV-cleavage. The yield and 

grade of purity after cleavage of the tags for elution were only moderate (see Table 21 and Figure 

29B, lane ‘ETEV’ respectively) nevertheless, since heRF3a fl was used for ternary complex formation 

and adjacent size exclusion chromatography to separate the formed complex from the individual 

components, it was considered sufficiently pure to proceed. 
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To optimize for heRF3a fl purity rather than quantity for its individual usage in biochemical assays, 

the elution strategy was changed to an imidazole step-elution followed by imidazole- and tag-

removal via dialysis and TEV-cleavage, respectively. Residual uncleaved protein, as well as the TRX-

(His)6-tag, was removed by another TALON®-affinity purification step, resulting in heRF3a fl protein 

which was more pure (see Figure 30, lane ‘Final’). However, exact comparisons of yields were 

challenging since impurities falsified the measured protein concentrations.  

 

Figure 30:  Purification of the Human eRF3a Full Length Protein for Individual Usage. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples taken throughout the heRF3a fl 
purification procedure. Thioredoxin (TRX) and hexahistidine ((His)6)-tagged heRF3a fl protein could be 
expressed. The final sample after TEV-protease cleavage and two TALON®-affinity purification procedures 
(‘Final’) is highlighted in green revealing high yield and some impurities. 

 

Ternary Complex Formation of heRF1, heRF3a and GMPPCP: Co-purification versus in vitro 

Assembly 

Like for A-site tRNA delivery by the translational GTPase eEF1A and GTP, the A-site binding factor 

eRF1 was described to interact with the GTPase heRF3a and GTP. This pre-assembled ternary 

complex is thought to approach the ribosome for translation termination (Nakamura et al., 1996). To 

closely resemble this process, in vitro complex-assembly was performed by incubation of the purified 

proteins heRF1 and heRF3a at 25 °C (described as ideal thermodynamic parameter for complex 

formation in Kononenko et al. (Kononenko et al., 2010)) together with the non-hydrolysable GTP-

analog GMPPCP for stabilization of ribosomal binding of the complex due to prevention of 

nucleotide-hydrolysis and heRF3 dissociation. Successful complex formation of heRF1:(Δ1-

138)heRF3:GMPPCP could be monitored by its increased molecular weight compared to the single 

proteins which is apparent by an altered migration behavior during size exclusion chromatography 

(see Figure 31A) and by the SDS-PAGE anylsis of the obtained fractions. Resulting fractions ‘B5’ - ‘B8’ 

contained the heRF1 and Δ(1-138)heRF3a proteins in a stoichiometric manner without major 

impurities. Efficiencies of individual protein purifications and subsequent in vitro complex assembly 

are summarized in Table 21. 
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Figure 31:  In vitro Assembly and Co-purification of the heRF1:Δ(1-138)heRF3a:GMPPCP Complex. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples taken throughout the ternary complex 
purification approaches of heRF1, Δ(1-138)heRF3a and GMPPCP. The acquired absorption profiles during size 
exclusion chromatography are also depicted. (A) Incubation of individually purified heRF1 and Δ(1-138)heRF3a 
with GMPPCP was followed by size exclusion on an S200 (150/5) Increase (Incr) GL column to separate the 
formed ternary complex from the individual components. The final samples (‘B5’- ‘B8’) are highlighted in green 
revealing a stoichiometric, well concentrated complex. (B) Co-purification of heRF1 and Δ(1-138)heRF3a 
resulted in their non-stoichiometric abundance in the 3C-protease-cleaved elution samples (‘E3C/1’ and ‘E3C/2’). 
Subsequent size exclusion chromatography of the input (Inp) on an S200 (10/300) column to separate the 
formed complex from the individual components resulted in a highly concentrated and purified complex 
(highlighted in green).  

 

In parallel, co-purification of the heRF1:Δ(1-138)heRF3a complex from E. coli was performed. 

N-terminally (His)8-tagged heRF1 did not result in untagged heRF3 co-purification whereas 

N-terminally (His)8-tagged (Δ1-138)heRF3a and untagged heRF1 could be co-purified. To ensure 

complex stability, washing only occurred under low salt conditions. Again, elution by (His)8-tag 

cleavage resulted in pure fractions of the complex (see Figure 31B, lanes ‘E3C/1’and ‘E3C/2’) which were 

incubated with GMPPCP before purification and analysis via size exclusion chromatography and SDS-

PAGE (see Figure 31B, S200 (10/300)). Indicated fractions ‘B7’ – ‘B9’ stoichiometrically contained both 

proteins and were used for binding studies and cryo-EM analysis. Final co-purification yields are 

provided in Table 21. 
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For co-purification of the heRF1:Δ(1-138)heRF3a complex (after co-expression with Jmjd4), the heRF1 

hydroxylation status was also monitored via mass spectrometry to ascertain the occurrence of in vivo 

hydroxylation on the Lys63 side-chain C4 even if heRF1 is already associated with Δ(1-138)heRF3a in 

the cell. Results are summarized in Table 20 again revealing full hydroxylation of the Lys63 side-chain 

C4. Also, no secondary hydroxylation could be detected for any heRF1 Lys residue. 

Table 20:  Mass Spectrometry Results for the heRF1 Lys63 Side-chain C4 Hydroxylation Status after 

Co-expression with Δ(1-138)heRF3a and Jmjd4. 

heRF1 

Peptide: LADEFGTASNIK*SRVN 

Intensity of Lys63 C4 

Hydroxylated 

Intensity of Lys63 C4 Non-

hydroxylated 

In vivo hydroxylation (co-expressed with 
Δ(1-138)heRF3a and Jmjd4) 

3.4x105 ------------- 

 

heRF1 

Peptide: MLADEFGTASNIK* 

Intensity of Lys63 C4 

Hydroxylated 

Intensity of Lys63 C4 Non-

hydroxylated 

In vivo hydroxylation (co-expressed with 
Δ(1-138)heRF3a and Jmjd4) 

1.76x107 ----------------- 

 

 

Figure 32:  In vitro Assembly and Co-purification of the heRF1:heRF3a full length:GMPPCP Complex. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of samples taken throughout the 
ternary complex purification approaches of heRF1, heRF3a fl and GMPPCP. Octahistidine ((His)8)-tagged 
heRF3a fl and eRF1 could be expressed. The acquired absorption profiles during size exclusion chromatography 
are also depicted. (A) The final samples (‘E50’ - ‘E250’) after co-purification of heRF1 and heRF3a fl contained 
impurities (likely heRF3a degradation products). Subsequent size exclusion chromatography on an S200 (150/5) 
Increase (Incr) GL column to separate the formed ternary complex from the individual components resulted in 
no fraction that only contained the purified complex. (B) Incubation of individually purified heRF1 and heRF3a fl 
with GMPPCP was followed by size exclusion chromatography on an S200 (30/100) column to separate the 
formed ternary complex from the individual components. A sample of the input (Inp) was also applied. The 
final samples (‘B4’ - ‘B6’) are highlighted in green revealing a stoichiometric, pure ternary complex. 

 

Considering the successful co-purification of the N-terminally truncated heRF3a protein and heRF1, 

this strategy was also applied for complex formation of heRF1 with the aggregation-prone heRF3a fl 

protein. Here, after extensive low salt washing steps the elution could only be successfully performed 
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with imidazole which resulted in impurities in the elution samples (see Figure 32A, lanes ‘E50’ - ‘E250’). 

Especially contaminations being of similar size to the eRFs were present, likely presenting 

degradation products of heRF3a fl, which could not be separated during size exclusion 

chromatography (see Figure 32A, S200 (150/5) Incr).  

Consequently, in vitro assembly of the heRF3a fl containing complex was conducted as for the 

N-terminally truncated heRF3a protein. Size exclusion chromatography which was analyzed via 

subsequent SDS-PAGE (see Figure 32B) resulted in low, but feasible amounts of pure termination 

complex evident in the two stoichiometric bands in the final fractions ‘B4’ - ‘B6’. 

Human 3xFLAG-ABCE1 

 

Figure 33:  Purification of the 3xFLAG-hABCE1 Protein from Human HEK293T Cells. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples taken throughout the 3xFLAG-hABCE1 
purification procedure. The final concentrated sample (‘Final’) is highlighted in green revealing high purity. 

 

Attempts to purify hABCE1 from E. coli have failed. Thus, expression was performed in human 

HEK293T cells. Elution via 3C-cleavage and 3xFLAG-tag removal lead to protein instability for which 

reason elution was performed by incubation with 3xFLAG peptide instead. 3xFLAG peptide removal 

was achieved by sequential dilution and concentration to avoid falsified determination of protein 

concentration and surface coverage of the EM-grid. Considerable amounts of 3xFLAG-ABCE1 (see 

Table 21) were obtained in high purity (see Figure 33, lane ‘Final’). Stability of the protein was 

challenged by sorption to the solid phase of the Eppendorf cup and precipitation during the freeze-

thaw cycle even after the addition of cryo-protectant. Remedial measures were storage in low 

binding Eppendorf cups at 4 °C for one day before usage for in vitro reconstitution and EM analysis. 
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Protein Purification Efficiencies 

Table 21:  Overview of Protein Purification Efficiencies. 

Protein Strategy 
Starting 

Material 

Final 

concentration  

Final 

amount 

Amount of 

protein per 

1 L E. coli 

heRF1 Single purification 1 L (E. coli) 0.78 µg/µL 3,627 µg 3,627 µg 
(His)6-(Δ1-46) 
Jmjd4 

Single purification 5 L (E. coli) 1.00 µg/µL 1,000 µg 200 µg 

heRF1 Single purification 
(co-expression 
with (His)6-Δ(1-
46)Jmjd4)  

5 L (E. coli) 2.76 µg/µL 24,990 µg 
 

4,995 µg 

Δ(1-138)heRF3a Single purification 2 L (E. coli) 1.01 µg/µL 4,747 µg 2,374 µg 
heRF3a fl  Single purification 

(for individual 
usage) 

2 L (E. coli) 0.65 µg/µL 266 µg 133 µg 

heRF3a fl Single purification 
(for complex-
formation) 

1 L (E. coli) 3.20 µg/µL, 
strong 
impurities 

Not assignable due to 
strong impurities 

heRF1: 
Δ(1-138)heRF3a: 
GMPPCP 
Complex 

Co-purification 
(co-expressed 
with (His)6-Δ(1-
46)Jmjd4) 

8 L (E. coli) 0.96 µg/µL 9,360 µg 1,170 µg 

heRF1: 
heRF3a fl: 
GMPPCP 
Complex 

Single purification 
and subsequent 
complex 
formation 

heRF1  
(828 µg) 
heRF3a fl 
(640 µg) 

0.24 µg/µL 30 µg Not 
applicable 

3xFLAG-hABCE1 Single purification 
from human 
HEK293T 

Ten 15.4 
cm2 dishes 
(30 - 40 % 
confluency) 

0.51 µg/µL 68 µg 
 

Not 
applicable 

 

3.2.2 Preparation of Natively heRF1 Containing Ribosome-nascent Chain Complexes 

During the establishment of the human RNC purification protocol comparisons of the RNC protein 

pattern to empty human 80S ribosomes (Anger et al., 2013) on PAA gels revealed an additional band 

in the RNC preparation at the height of eRF1. For identification, the area of the additional band, 

containing 3 visible bands (see Figure 34A, green box), was subjected to mass spectrometry. Top hits 

contained tubulin, T-complex protein 1 (TCP 1), the ribosomal proteins L3 and L4 and eRF1 whereof 

the latter has been shown to natively bind to RRL hCMV-stalled 80S ribosomes before (Janzen et al., 

2002). Increased salt-concentrations of up to 1 M KOAc during washing did not enhance the amount 

of unbound RNCs which would have been advantageous for more quantitative binding of the 

heRF1:heRF3:GMPPCP complex during in vitro reconstitution. Hence, the amount of natively bound 

heRF1 and its specificity for hCMV-stalled RNCs was assessed via Western blotting (see Figure 34B). 

The distinct and specific signal, which only occurred for hCMV-stalled RNCs and not for truncated 

hCMV-RNCs (control, without a stop codon in the A-site), rendered this sample suitable for cryo-EM 

analysis. 
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Figure 34:  Identification of the Additionally Bound Protein in the Purified hCMV-stalled Ribosome-

nascent Chain Complex. 

(A) Comparison of the human 80S ribosome preparation from Anger et al. (Anger et al., 2013) (left) and the 
hCMV-stalled ribosome-nascent chain complex (RNC) (right) protein patterns on poly-acrylamide gels revealed 
additional bands for the RNC preparation. The region of interest, which was subjected to mass spectrometry, is 
highlighted in green, demonstrating heRF1 abundance. (B) Western blot to assess the natively bound heRF1 
and its specificity for hCMV-stalled RNCs compared to truncated (trunc) hCMV-RNCs via anti-eRF1 (α-eRF1) 
antibody detection.  
Figure (B) was modified from Matheisl et al. (Matheisl et al., 2015). 

 

3.2.3 Preparation of Natively heRF1 Containing Ribosome-nascent Chain Complexes bound to 

Guanosine Triphosphatase-deficient heRF3a 

Stable binding of Δ(1-138)heRF3a to the natively containing heRF1 RNCs was attempted by the 

addition of the GTPase deficient heRF3 mutants His300Gln or Arg371Gly. Supplementation to the in 

vitro translation reaction was speculated to efficiently trap the pre-termination complex. However, 

after similar RNC purification and likewise after only applying low-salt washing steps during RNC 

purification, presence of eRF3a in the final sample could not be determined via Western blotting (see 

Figure 35).  

 

Figure 35:  Ternary Complex Formation during Ribosome-nascent Chain Complex Preparation 

Attempted with Guanosine Triphosphatase-deficient heRF3a. 

Western blots of samples taken throughout the ribosome-nascent chain complex (RNC) purification procedure 
that was supplemented with guanosine triphosphatase-deficient Δ(1-138)heRF3a H300Q protein for its co-
purification. (A) The stalling efficiency was assessed by anti-hemagglutinin (α-HA) antibody detection. (B) The 
Δ(1-138)heRF3a abundance was monitored by incubation with an eRF3-specific antibody (α-eRF3). No co-
purification of the wildtype or mutant eRF3 protein could be detected. 
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3.2.4 Preliminary Analysis: Binding Assays and Negative Staining 

Prior to cryo-EM analysis specific stoichiometric binding of the purified protein factors to hCMV-

stalled RNCs was assessed. Particularly adequate buffer conditions could be identified by means of a 

binding assay. In such assay ribosomes and their potential binding partners were incubated at RT to 

allow for interactions to occur. Subsequently, complex formation was monitored by pelleting of the 

sample through a sucrose cushion. Ribosomes by themselves and together with their stably bound 

interaction partners could migrate through the sucrose cushion and resided in the pellet fraction. 

Unbound proteins remained in the supernatant due to their limited molecular weight. 

The identification of specific binding conditions was started with the heRF1:Δ(1-138)heRF3a:GMPPCP 

complex. Numerous buffer compositions were tested before (specific) interaction could be detected. 

As demonstrated in Figure 36A, the ternary complex bound to hCMV-stalled RNCs in an 

approximately stoichiometric manner (green box), however, did not bind to stop codon deficient 

truncated hCMV-RNCs (red box) when applied in 5x molar excess. Notably, the ternary complex did 

not bind to similarly obtained hCMV–stalled RNCs purified from RRL (see Figure 36B), which are 

evolutionarily very closely related to human ribosomes, showing high specificity for the ternary 

complex ribosome interaction. 

The same buffer conditions were applied for samples containing RNCs with 5x molar excess of 

hydroxylated eRF1 only. The assessment of adequate binding conditions for heRF1, 3xFLAG-hABCE1 

and AMPPCP together provided challenges. Known to sorb the Eppendorf cup surface, the 3xFLAG-

hABCE1 protein also interacted with the ultracentrifuge tube during the binding assay studies 

wherefore it could neither be detected in the pellet nor in the supernatant fraction. Consequently, 

the same buffer conditions as for the heRF1:Δ(1-138)heRF3a:GMPPCP complex were applied for 

subsequent negative staining and cryo-EM analysis. 

 

Figure 36:  Assay to Assess Binding of the heRF1:Δ(1-138)heRF3a:GMPPCP Complex to Ribosome-

nascent Chain Complexes. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of supernatant (Sup) and pellet (P) fractions of the 
binding assays: (A) Conducted with hCMV-stalled RNCs or truncated hCMV-RNCs (both from human) and the 
heRF1:∆(1-138)heRF3a:GMPPCP complex under different buffer conditions with either 100 mM or 150 mM 
KOAc. Specific complex binding to hCMV-stalled RNCs revealed final buffer conditions used for subsequent 
cryo-EM studies (highlighted in green). Highlighted in red is the decreased interaction with the truncated 
hCMV-RNCs. (B) Conducted with hCMV-stalled RNCs or truncated hCMV-RNCs from rabbit reticulocyte lysate 
(RRL) and the heRF1:∆(1-138)heRF3a:GMPPCP complex under buffer conditions as in (A). Absent binding of the 
complex to RRL hCMV-stalled RNCs revealed binding specificity of the human complex to human RNCs under 
the chosen buffer conditions. 
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Furthermore, ideal grid-coverage of RNCs was examined during negative staining EM. Various 

concentrations ranging from 4 - 8 A260/mL (0.08 – 0.16 pmol/µL) were tested for each sample. 

Negative staining data displayed typical 80S particles which were slightly contaminated (see Figure 

37A, red box). As illustrated in Figure 37, 4 - 5 A260/mL RNCs yielded in sufficient particles aiming at 

high-resolution reconstructions while yet preventing aggregation. Compared to E. coli 70S ribosomes, 

the critical concentration which led to ribosome aggregation was much lower for human 80S 

ribosomes due to their higher molecular weight (∼2.5 MDa versus ∼4.5 MDa) (Yusupova and 

Yusupov, 2015) and the presence of extruding GC-rich expansion segments (Anger et al., 2013) which 

both demand for a precise titration of the applied RNC concentration.  

 

Figure 37:  Negative Staining Electron Microscopy Images. 

Negative staining electron microscopy (EM) images of: (A) hCMV-stalled ribosome-nascent chain complexes 
(RNCs) at a final concentration of 4 A260 (absorption at λ = 260nm)/mL with 5x molar excess of the heRF1:∆(1-
138)heRF3a:GMPPCP complex. One of the co-purified impurities is highlighted in red in a close up of the 
indicated area. (B) RNCs at a final concentration of 5 A260/mL with 5x molar excess of heRF1. (C) RNCs at a final 
concentration of 5 A260/mL with 10x molar excess of heRF1, 3xFLAG-hABCE1 and AMPPNP. (D) Natively heRF1 
containing RNCs at a final concentration of 5 A260/mL.  

 

3.2.5 Tecnai G2 Spirit Derived Reconstructions 

To evaluate the percentage of ligand-occupancy in the different complexes, low-resolution cryo-EM 

reconstructions were calculated. Computational sorting was performed until a homogenous 

population was obtained for each assembled complex. The reconstructed densities, their 

corresponding resolutions and ligand occupancies are depicted in Figure 38. Detailed statements 

about ligand interacting residues could not be made at these resolutions, however, suitability and 

the required amount of collected data for high-resolution cryo-EM could be pre-assessed. 



R e s u l t s  

 

P a g e  | 93 
 

 

Figure 38:  Overview of Cryo-Electron Microscopy Reconstructions from Data Collected with the 

Tecnai G2 Spirit. 

The 40S subunit (SU) is indicated in yellow, the 60S SU in gray. The tRNA is colored in green whereas the 
protein factors in red. (A) Cryo-electron microscopy reconstruction of the pre-termination complex resulted in 
an eRF1-only containing ribosomal structure with 37 % occupancy and a final resolution of 22 angstrom (Å). 
Further sorting, however, revealed a complex containing heRF1 and Δ(1-138)heRF3a. Here, 18 % occupancy 
resulted in a final resolution of 25 Å. In both volumes, a tRNA in the peptidyl-tRNA binding site (P-site) is 
additionally visible. (B) The termination complex containing a P-site tRNA and heRF1. 19 % occupancy resulted 
in a final resolution of 22 Å. (C) Reconstruction of the ribosome-nascent chain complex (RNC) natively 
containing heRF1 and a P-site tRNA. 14 % occupancy resulted in a final resolution of 22 Å. (D) The pre-recycling 
complex assembled with 5x molar excess of heRF1, 3xFLAG-hABCE1 and AMPPNP. Also here, a P-site tRNA is 
visible. 27 % occupancy resulted in a final resolution of 21 Å. (E) The pre-recycling complex assembled with 10x 
molar excess of heRF1, 3xFLAG-hABCE1 and AMPPNP. Also here, a P-site tRNA is visible. 22 % occupancy 
resulted in a final resolution of 21 Å.  

 

3.3 High-resolution Structure of Human eRF1 Bound to the Human 80S Ribosome 

3.3.1 Data Processing and the Resulting Cryo-Electron Microscopy Reconstruction 

To elucidate the structural basis of stop codon decoding by heRF1 as well as the hCMV-stalling 

mechanism at high resolution, single particle analysis of cryo-EM data (starting with 

245,253 particles) collected on the in-house Titan Krios TEM equipped with a Falcon II direct electron 

detector was performed on the most promising termination complex.  
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Figure 39:  Particle Sorting Scheme of the Termination Complex Cryo-Electron Microscopy 

Reconstruction. 

Number of particles and percentage of starting particles are given for each sorting step. Figure was modified 
from Matheisl et al. (Matheisl et al., 2015). 

 

As described in ‘Materials and Methods’ (see 2.8.5) and depicted in Figure 39, several in silico sorting 

steps with the SPIDER software package were of necessity to result in the final homogenous set of 

particles. For resolution improvement, the dataset was processed twice: The final volume of the first 

calculation was used as template for the initial particle alignment and the initial refinement round in 

the second calculation. Early omitting of particles that did not positively contribute to resolution was 

realized directly after removing the non-ribosomal particles. Here, cross-correlation values 

(cc-values) were assigned to each particle resembling its fit to the 3D reconstruction. Cut-off values 

for each defocus group were based on visual inspection in dependency on the average cc-value of 

the corresponding defocus group. Further unfocused and focused semi-supervised sorting against 

intrinsically derived reconstructions resulted in the final reconstruction of 33,165 particles (see 
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Figures 39, green box and 40). Further, neither RELION-based 3D refinement nor movie processing 

(Scheres, 2014, 2012a) of the final particles improved the calculated resolution or map quality.  

 
Figure 40:  Final Cryo-Electron Microscopy Reconstruction of the heRF1-bound hCMV-stalled 

Ribosome-nascent Chain Complex. 

(A) Final cryo-electron microscopy reconstruction containing the mRNA (red), tRNA (green) and eRF1 (N 
domain: light green, M domain: purple, C domain: orange). (B) Transverse section focusing on the peptidyl-
tRNA (green) in the peptidyl-tRNA binding site (P-site). (C) Transverse section color coded as in (A). (D) 
Molecular model for (C). (E) Molecular model of human eRF1 when bound to the human ribosome color coded 
as in (A). Most important motifs (GGQ, GTS, TAS-NIKS and YxCxxxF) are indicated. 
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 

 

Data was collected with 7 frames (corresponding to 31.2 e-/Å2) whereof only the motion-corrected 

and aligned frames 1 - 4 were used for the initially conducted refinement and sorting steps. Selection 

of the right frames for reconstruction always is a balancing act between their beneficial effect by 

increasing the contrast and their harmfulness owing to accumulating electron damage. The smaller, 

final particle set allowed motion-correction (Cheng et al., 2009) only for the remaining micrographs 

which was utilized for testing different frame combinations. Particles were picked anew for each 

frame-combination with the originally determined coordinates. Undecimated refinement resulted in 

the final reconstructions of each frame-combination. Corresponding resolutions are listed in Table 22 

and depicted in Figure 41 whereof frames 0 - 2 visually turned out to be the best compromise 

revealing an average resolution of 3.8 Å at FSC0.143 (see Figure 42A). 
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Table 22:  Tested Frame Combinations for the Cryo-Electron Microscopy Reconstruction of the 

heRF1-bound hCMV-stalled Ribosome-nascent Chain Complex and Their Resulting 

Average Resolutions. 

Frame Combination Exposed Electron Dose Resolution (FSC0.143) 

0 - 1 9.6 e-/Å2 3.84 Å 
0 - 2 14.4 e-/Å2 3.77 Å 
0 - 3 19.2 e-/Å2 3.73 Å 
0 - 4 21.6 e-/Å2 3.75 Å 
1 - 4 26.4 e-/Å2 3.81 Å  
1 - 6 31.2 e-/Å2 3.81 Å 

 

 

Figure 41:  Average Resolutions of the heRF1-bound hCMV-stalled Ribosome-nascent Chain 

Complex Reconstructions Depending on the Tested Frame Combinations. 

The average resolution was based on the Fourier shell correlation (FSC) cut-off criterion at 0.143 (dotted line). 
A close-up reveals differences in the calculated resolutions that are numerically listed in Table 22.  

 

Low-pass filtering at frequencies lower than corresponding to 8 Å throughout processing was 

adhered to avoid possible overfitting and therefore noise accumulation potentially interpretable as 

high-resolution features, which is conform to the application of the resolution criterion at FSC0.143. 

Local resolution calculations (see Figure 42B) revealed a well-resolved ribosomal core region and 

more flexible regions at the outer layer mostly consisting of the rRNA ES. Clear density could be 

assigned to the P-site tRNA linked to the continuous density of the nascent chain reaching from the 

PTC throughout the upper part of the tunnel to the central constriction formed by uL4 and uL22 (see 

Figure 40B). Hereafter, only discontinuous density was observable in the lower part of the tunnel. 

Further, additional density could be assigned to heRF1 whose resolution was of major importance 

displaying similarly resolved N and M domains and a slightly less well resolved C domain (see Figure 

42C). 
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Figure 42:  Average and Local Resolutions of the heRF1-bound hCMV-stalled Ribosome-nascent 

Chain Complex Reconstruction. 

(A) The average resolution was based on the Fourier shell correlation (FSC) cut-off criterion at 0.143 (dotted 
line) and calculated to 3.8 Å. Local resolution for (B) the heRF1-bound hCMV-stalled ribosome-nascent chain 
complex and for (C) the heRF1 protein as calculated by ResMap (Kucukelbir et al., 2014). 
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 

 

For molecular interpretations, rigid body docking of the molecular model of the human 80S POST 

state (Behrmann et al., 2015) was performed being in agreement with the acquired electron density 

resembling such POST state. Observed distinct features like the presence of density for bulky side-

chains or for the pitch of α-helices and β-strand separation are in accordance with the calculated 

average resolution (examples see Figure 43). For heRF1, the X-ray crystallography-based molecular 

model (Cheng et al., 2009) was docked. Due to the different overall conformation of heRF1 in the 

heRF3-bound crystal structure, each heRF1 domain was fitted separately. From this starting point, 

the missing Mini Domain, as well as the missing C-terminal tail (residues 420 - 437), was added from 

the NMR structure (Mantsyzov et al., 2010) and modeled according to the obtained cryo-EM density. 

Further, individual residues of heRF1 and their ribosomal interaction partners were adjusted to the 

experimental data. The nascent chain was built de novo, yet starting from the central constriction 

area (hCMV-peptide residue Leu6) the interrupted density only allowed backbone tracing. 

 

Figure 43:  Representative Electron Densities of the Cryo-Electron Microscopy Reconstruction. 

Selected electron densities (gray mesh) for (A) a ribosomal protein and (B) ribosomal RNA of the large subunit. 
Figures taken from Matheisl et al. (Matheisl et al., 2015). 
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3.3.2 Interactions of Human eRF1 with the Human Ribosome and Comparisons to Previous 

Human eRF1 Structures 

Crystallized unbound human eRF1 (see Figure 44A) (Song et al., 2000) showed an increased distance 

of ∼98 Å between the TAS-NIKS motif, which was proposed in numerous studies to be involved in 

stop codon recognition in the DC (Chavatte et al., 2002; Frolova et al., 2002), and the GGQ motif, 

which is the only conserved RF motif and was shown to be engaged in bacterial peptide release in the 

PTC (Jin et al., 2010; Korostelev et al., 2008, 2010; Laurberg et al., 2008; Weixlbaumer et al., 2008). 

Consequently, when considering eRF1’s accommodation into the ribosome, conformational changes 

have to occur to meet the distance from the DC located in the SSU to the PTC located in the LSU 

(∼85 Å). In the eRF1:eRF3 crystal structure (see Figure 44B), where eRF1 is in the ribosome-unbound 

state, it engages in a tRNA resembling conformation. In lower resolution cryo-EM reconstructions 

(des Georges et al., 2014; Preis et al., 2014; Taylor et al., 2012) of the pre-termination complex 

where the eRF1:eRF3 complex is bound to the 80S ribosome eRF1 was shown to adopt a similar 

conformation: It is bound to the ribosomal A-site, however, its GGQ motif is locked by its interaction 

with eRF3. Recently, Muhs et al. (Muhs et al., 2015) have demonstrated also by cryo-EM that eRF1-

only binding to the 80S ribosome renders the termination factor in its active, elongated conformation 

with the GGQ motif already positioned in the PTC. This is also in accordance with biochemical release 

assays showing virtually complete peptide release if only eRF1 is present (Alkalaeva et al., 2006). 

Indeed, consistent with these postulations, our structure of the termination complex revealed a 

similar overall orientation of eRF1 on the human ribosome. It is located in the ribosomal A-site 

mimicking the shape of a tRNA (see Figures 44C, D) reaching from the A-site mRNA DC into the PTC in 

its elongated state.  

 

 

Figure 44:  Structural Comparison of Molecular Models: Human Unbound eRF1, eRF3-bound eRF1, 

Ribosome-bound eRF1 and a P-site tRNA. 

(A) Crystal structure of the unbound heRF1 protein (PDB-code: 1DT9) with a distance of ∼98 Å from the TAS-
NIKS motif (Lys63) to the GGQ motif (Gln185) (Song et al., 2000). (B) Crystal structure of the heRF3-bound 
heRF1 protein (PDB-code: 3E1Y) with a distance of ∼87 Å from the TAS-NIKS motif (Lys63) to the GGQ motif 
(Gln185) (Cheng et al., 2009). (C) Ribosome-bound heRF1 protein (PDB-code: 5a8L) with a distance of ∼89 Å 
from the TAS-NIKS motif (Lys63) in the decoding center (DC) to the GGQ motif (Gln185) in the peptidyl-
transferase center (PTC). (D) Human P-site tRNA with a distance of ∼76 Å from the anticodon (position 3) in the 
DC to the CCA-end (A76) in the PTC. 
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As expected, more detailed comparisons of our molecular model (see Figure 45A) to the human 

eRF3-bound crystal structure (see Figure 45B) revealed a shifted GGQ motif when their alignment 

was based on the C domain (see Figure 45C). Notably, even when the alignment was performed on 

the basis of the GGQ-containing M domain, the tip of the distal loop comprising the GGQ motif is 

oriented differently (see Figure 45D). Not only is it shifted by ∼6 Å, but furthermore the Gln side-

chain is turned by 180° pointing towards the peptidyl-tRNA ester-bond in our reconstruction. 

 

Figure 45:  Structural Comparison of Molecular Models: The Human eRF3-bound eRF1 versus the 

Obtained Human Ribosome-bound eRF1. 

(A) Molecular model of the ribosome-bound peptidyl-tRNA binding site (P-site) tRNA (green) and the heRF1 
protein with its domains colored distinctively (N domain: light green, M domain: purple, C domain: orange) 
(PDB-code: 5a8L). The C-terminal tail is indicated in pink. (B) Crystal structure of heRF3-bound heRF1 (PDB-
code: 3E1Y) (Cheng et al., 2009). (C) Overlay of (A) and (B) revealing the additional C-terminal tail in the 
ribosome-bound model as well as the shifted GGQ-containing loop (black box). (D) Close up, on the GGQ-loop 
additionally showing the rotated side-chain of Gln185 (Q185). 
Figures were modified from Matheisl et al. (Matheisl et al., 2015).  

 

Moreover, the crystal structure lacks density for the Mini Domain (which contacts eS31 at the 40S 

head only in the eRF3-bound pre-termination complex (Muhs et al., 2015)) and the C-terminal 

protein tail (residues: 420 - 437), both located in the C domain. Positioning of the α-helical protein 

tail into our filtered (4 Å) density (see Figures 46A, B) revealed displacement of the uL11 loop 

(residues 28 - 40) towards the intersubunit space (see Figure 46C). Further, the α-helical protein tail 

contacts the ribosomal protein eS27. In this region, heRF1 binding causes the ribosomal stalk base 

(H43/H44) to move inwards consistent with the pre-recycling complex (Behrmann et al., 2015; Preis 

et al., 2014). In heRF1’s extended conformation the N domain, which harbors the well-studied TAS-

NIKS (residues 58 - 64), YxCxxxF (residues 125 - 131) and GTS (residues 31 - 33) motifs, interacts with 

ribosomal RNA as well as the mRNA stop codon. More detailed molecular interactions for all three 

heRF1 domains predominantly involving rRNA are depicted in Figure 46D or are discussed in 3.3.4.  
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Figure 46:  Contacts of heRF1 to the 80S Ribosome. 

(A) Density-containing (gray mesh) close up of (B) which shows the additional C-terminal heRF1 helix of 
residues 420 - 437 in pink. The remaining heRF1 C domain is colored in orange, the ribosomal RNA (rRNA) 
helices 95 (H95) (sarcin-ricin-loop (SRL)) and H43/H44 in gray and the uL11 protein in light blue. (C) The 
displacement of the uL11 loop (residues 28 - 40) color coded as in (B) is highlighted (black box). The original 
position of the uL11 loop in the ribosomal post-translocation (POST) state (Behrmann et al., 2015) is indicated 
in dark blue. (D) Overview of heRF1 contact sites to the 80S ribosome mainly involving rRNA residues (helices 
indicated) and the ribosomal proteins eS27 and uL11. heRF1 domains are colored distinctively (N domain: light 
green, M domain: purple, C domain: orange). 
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 

 

3.3.3 The Human Cytomegalovirus gp48/UL4 uORF2 (hCMV) Stalling Mechanism 

The human cytomegalovirus is a double stranded deoxyribonucleic acid (dsDNA) herpes virus with a 

230 kb genome encoding ∼200 genes (Schleiss et al., 1991). The UL4 gene is present on a transcript 

comprising three uORFs and encodes a 48 kDa glycoprotein (gp48/UL4). Expression regulation is 

mediated in cis by the 22-codon uORF2 whose peptide product inhibits its own translation 

termination (Degnin et al., 1993) preventing scanning 80S ribosomes from translation initiation at the 

downstream AUG start codon of the gp48/uL4 ORF (also see 1.3.2 and Figure 15). 

Meeting the requirement for inhibition of translation termination the hCMV-stalling sequence was 

employed to stably capture 80S ribosomes with a stop codon in their A-site. Because of their 

impairment in peptide-release, differences in nucleotide positioning in the conserved PTC, compared 

to bacterial termination complexes, could provide a hint for participating residues in the reaction. 

Furthermore, at the intended resolution understanding the molecular mechanism of hCMV-stalling 

was anticipated. 

To strategically analyze the importance of the individual aa residues in hCMV-peptide mediated 

stalling, mutational analysis was performed exchanging each residue from position 23 (stop codon) 

to position 7 (Ser) with an Ala (or for selected residues additionally with other relevant aa). In 

accordance with published results (Degnin et al., 1993; Janzen et al., 2002), mutation of the stop 

codon as well as the ultimate and penultimate Pro residues resulted in complete abolishment of the 

stalling mechanism in our in vitro translation system (see Figure 47). When Tyr19 was mutated to Ala, 

few free peptide was apparent, but when mutated to Phe, stalling efficiency was as for the WT 

emphasizing the importance of an aromatic residue at this position. Other mutations throughout the 

nascent chain did not have an influence on stalling efficiency which is in contrast to former read-

through assays (Alderete et al., 1999) revealing an influence for the mutated residues Ser12, Ala8, 

Ser7 and Val5. Increased incubation time for the translation reaction (from 20 to 40 min) more 
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sensitively revealed slight amounts of free peptide also for the Lys18Ala and Ser7Ala mutants in our 

system. 

 

Figure 47:  Mutational Scanning of hCMV-peptide Residues to Assess Their Contribution to 

Ribosomal Stalling. 

Anti-hemagglutinin (α-HA) antibody detection of the mutated hCMV-(stalling) peptides. Point mutations from 
codon 23 (stop) to codon 7 (Ser) were introduced and subsequent in vitro translation reactions were 
performed. The peptidyl-tRNA content represents stalled ribosome-nascent chain complexes, yet the free-
peptide content demonstrates to what extend stalling is impeded.  
Figure was modified from Matheisl et al. (Matheisl et al., 2015). 

 

Interactions of the hCMV-peptide with the Ribosomal Exit Tunnel 

As mentioned, the hCMV-peptide was well resolved from the PTC to the central constriction 

comprising all residues (from Ser7 to Pro22) previously reported to be important for stalling (see 

Figure 48). All modeling efforts to place an extended polypeptide chain into the density were to no 

avail. Strikingly, the density revealed an α-helical hCMV-peptide conformation in the upper part of 

the tunnel. The peptide was built de novo and contacting rRNA bases in the tunnel wall (contacts see 

Table 23) were adjusted from the initial model (Behrmann et al., 2015) to fit the electron density and 

therefore their position during hCMV-peptide mediated stalling. Henceforth, the residue numbering 

of Homo sapiens (Hs) will be used according to Behrmann et al. (Behrmann et al., 2015). 

The resolution allowed us to model side-chains especially for the two C-terminal prolines (Pro21/22) 

which are indispensable for stalling (Degnin et al., 1993). Their geometrical verification via PHENIX 

and Coot proved rather difficult highlighting their introduced tension to the whole chain. The 

penultimate Pro21 is stabilized by interactions with the shifted base Hs U4414 (Ec U2506) apparent 

by density fusion. 

The shifted C-terminal peptide path, which deviates from the paths observed so far, is likely 

accompanied with the interaction of Ile20 and Hs U4494 (Ec U2586) which, however, according to 

our mutational scanning analysis, can also be established with Ala at position 20 or is non-essential 

for stalling. The aromatic Tyr19 is in close proximity to nucleotides Hs A3879 (Ec A2062) and 

Hs C3880 (Ec C2063) whereof the latter is shifted to allow for such close positioning. The contribution 

of an aromatic residue at position 19 to stalling becomes apparent by slight diminishing when 

replaced by Ala, but not by Phe during the mutational scanning. On the opposite side of the α-helix 

Lys18 and Leu15 are in hydrogen bonding distance to Hs A4411 (Ec A2503) and Hs A3876 (Ec A2059), 

respectively. Progressing down the tunnel density fusion suggests that the 28S rRNA might interact 
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with the nascent chain by contacting Leu14 with the Hs G3875 (Ec G2058) base, Leu11 with its sugar 

and Ser13 with Hs U4517 (Ec U2609). 

 

Figure 48:  The hCMV-stalling Peptide. 

(A) Overview of the tRNA bound to the peptidyl-tRNA binding site (P-site) (green) and of the heRF1 protein 
with its domains colored distinctively (N domain: light green, M domain: purple, C domain: orange). The central 
constriction at the ribosomal proteins uL22 (light blue) and uL4 (light pink) is also shown. The close up of the 
hCMV-stalling peptide (green) density (gray mesh) reveals its α-helical conformation. (B) Selected contacts of 
the hCMV-stalling peptide to the ribosome exit tunnel are indicated by double arrows. 
Escherichia coli numbering of ribosomal components is given in parentheses. Figures were modified from 
Matheisl et al. (Matheisl et al., 2015). 

 

The central constriction is formed ∼30 Å from the PTC by the ribosomal proteins uL4 and uL22 

narrowing the tunnel to 10 Å. This tight passage and the surrounding area has been described as 

monitor in several prokaryotic stalling peptides before (Bischoff et al., 2014; Nakatogawa and Ito, 

2002; Sohmen et al., 2015; Yap and Bernstein, 2009) which respond to certain interactions of the 

peptide chain with the tunnel wall. For the hCMV-stalling peptide, contacts to the base Hs A1582 

(Ec A751) of the 28S rRNA near the central constriction can be observed at the height of Ser7 - Val5. 

The peptide helix ends at the most distal Hs His133 (Ec Lys90) of uL22. After a sharp kink of the 
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peptide-chain, when passing the central constriction, the peptide is less well resolved implying a 

certain degree of flexibility. From here on (Leu6) only a backbone trace of the peptide was placed.  

Table 23:  Interactions of the hCMV-peptide with Tunnel Wall Components. 

Homo sapiens (Hs) numbering of ribosomal components is given. Additionally Escherichia coli (Ec) numbering is 
provided in parentheses. 

hCMV-peptide Residue Tunnel Wall Component 

Pro21 Hs U4414 (Ec U2506) 
Ile20 Hs U4494 (Ec U2586) 
Tyr19 Hs A3879 (Ec A2062), Hs C3880 (Ec C2063) 
Lys18 Hs A4411 (Ec A2503) 
Leu15 Hs A3876 (Ec A2059) 
Leu14 Hs G3875 (Ec G2058) 
Ser13 Hs U4517 (Ec U2609) 
Leu11 Hs G3875 (Ec G2058) 
Ser7 - Val5 Hs A1582 (Ec A751) 
Leu6 - Leu4 Hs Arg71 (Ec Thr65) of uL4 

 

Comparison of a nascent chain harboring tunnel between E. coli (Bischoff et al., 2014) and H. sapiens 

revealed Hs Arg71 (Ec Thr65) of uL4 to protrude much further into the tunnel in H. sapiens possibly 

contacting Leu6 - Leu4. Besides, the human uL4 protein possesses an extending loop form Hs Ile76 to 

Hs Phe92 at its tip which, along with the shifted base Hs C2773 (Ec C1614), narrows the tunnel down 

to ∼10 Å. Contacts to the nascent chain at this narrowing on both sides indicate the ability to 

monitor peptide conformation in the tunnel even more closely in the human ribosome. Displacement 

of Hs C2773 (Ec C1614) might further influence the bases Hs A1582 (Ec A751) and A1583 (Ec A752) 

due to joint Mg2+ coordination via their backbone phosphates contributing to signal propagation. 

Mutation of Val5 was shown to moderately influence stalling efficiency (Alderete et al., 1999). 

Particularly such slighter influence could render the mutation important to not completely abolish 

stalling, however, upregulate gp48/UL4 expression and therefore obtain altered gp48 levels in the 

host cell. 

In brief, the hCMV-peptide heavily interacts with the ribosome exit tunnel. Considering the increased 

diameter of an α-helix (compared to an extended peptide chain) exceeding interactions with the 

narrow environment are allegeable to not all contribute to ribosomal stalling. Mutational screening 

revealed major importance for the stop codon in the A-site as well as the ultimate and the 

penultimate Pro residues in silencing of the PTC and therefore mediating hCMV-stalling. 

Silencing of the Peptidyl Transferase Center 

Due to the presence of a stop codon in the A-site, eRF1 binding is enabled and even was 

demonstrated to leverage the regulatory mechanism by direct interaction with the hCMV-stalling 

peptide (Janzen et al., 2002). To unravel the molecular interplay of heRF1 and especially its inability 

to efficiently hydrolyze the peptidyl-tRNA ester-bond while being bound to the ribosome, analysis of 

critical bases in the PTC and comparisons to the prokaryotic RF2-bound 70S ribosomal structure (Jin 

et al., 2010) were made (see Figure 49): 

Despite considerable functional and structural variations between eRF1 and the bacterial release 

factors RF1/RF2, their mediated release mechanisms via their GGQ motifs are thought to be 
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conserved. Positioning of the universally conserved GGQ motif in close proximity to the peptidyl-

tRNA ester-bond in the Thermus and H. sapiens structures (Jin et al., 2010) and the involvement of 

this motif in peptide release in both organisms as suggested by biochemical analyses (Muhs et al., 

2015; Seit-Nebi et al., 2001; Song et al., 2000) support this assumption. In our human termination 

complex the distance between the conserved GGQ motif and the carbonyl carbon of the ester-bond 

is ∼5.2 Å (see Figures 49A, B) which is in accordance with the ability to properly coordinate a catalytic 

H2O molecule being involved in the nucleophilic attack of the ester-bond. Moreover, comparison to 

RF2 GGQ motif and P-site tRNA CCA-end positioning in the 70S ribosome revealed high similarities 

(see Figure 49C). Therefore, the positioning of the human GGQ motif, as well as the tRNA CCA-end, 

particularly the 2’OH, which was suggested to participate in the coordination of the catalytic H2O 

(Brunelle et al., 2008), is assumed to be canonical during hCMV-peptide mediated stalling. Other key 

players for the catalytic H2O coordination are thought to be the side-chain (Song et al., 2000) or 

rather the backbone nitrogen of Gln185 (Korostelev et al., 2008, 2010; Laurberg et al., 2008; 

Weixlbaumer et al., 2008) which is also positioned fairly canonically. 

 

Figure 49:  GGQ Motif Positioning.  

The peptidyl-tRNA is indicated in green, the eRF1 C domain in orange and the ribosomal RNA in gray. All 
heteroatoms are colored distrinctively. (A) The distance between the eRF1 GGQ motif (Gln185 (Q185), 
backbone N) and the carbonyl carbon of the tRNA ester bond is ∼5.2 Å. (B) Electron density (gray mesh) for the 
eRF1 GGQ motif and the CCA-end of the peptidyl-tRNA. (C) Overlay of the conserved release factor (RF2 and 
eRF1) GGQ motifs and the peptidyl-tRNA CCA-ends from Thermus thermophilus (Thermus) (orange) (PDB-code: 
2x9s) and human (purple/green) (PDB-code: 5a8L) revealing their nearly identical positions. (D) Positioning of 
Hs A4510 (Ec A2602) which stabilizes the GGQ-containing loop via the interaction with heRF1 Phe190 (F190). 
(E) View as in (D) showing the corresponding electron density (gray mesh).  
Escherichia coli numbering of ribosomal components is given in parentheses. Figures were modified from 
Matheisl et al. (Matheisl et al., 2015). 
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Further universally conserved nucleotides postulated to be critical for proper peptide release are 

Hs A4359 (Ec A2451) and Hs U4414 (Ec U2506) (Youngman et al., 2004) which were found to be 

similarly positioned in our structure compared to the prokaryotic termination complex and therefore 

are most likely able to fulfill their intended role in the reaction. Mutational analyses revealed 

substantial contribution of two more PTC nucleotides to peptide-hydrolysis: Hs A4510 (Ec A2602) and 

Hs U4493 (Ec U2585). Nucleotide Hs A4510 (Ec A2602), which was reported to stabilize the RFs’ GGQ-

loops in prokaryotes, is differently positioned in the human termination complex. However, such 

displacement of the base is in accordance with an equally stabilizing role of Hs A4510 (Ec A2602) 

since its shift allows stacking on heRF1 Phe190 (see Figures 49D, E) why this movement rather 

demonstrates adjustment of the eukaryotic eRF1 - rRNA interaction for efficient peptide-hydrolysis 

mediated by this otherwise unrelated release factor.  

The most remarkable difference was observed for Hs U4493 (Ec U2585) positioning which is rotated 

by 90° when compared to its canonical position in the human POST state (see Figures 50A, B) 

(Behrmann et al., 2015) or the reported position before (Jin et al., 2010) and subsequent (Korostelev 

et al., 2008; Laurberg et al., 2008) to peptide-release mediated by RF2 (see Figure 50C) in 

prokaryotes. This Hs U4493 (Ec U2585) position would be incompatible with the observed hCMV-

peptide conformation owing to a sterical clash with Pro21 suggesting to be the cause for the 90° flip 

of Hs U4493 (Ec U2585). Such displacement most likely renders the base unable to still participate in 

the release reaction leading to PTC silencing and hindered translation termination. This model is 

consistent with mutational substitution of the penultimate Pro21 which results in complete 

abolishment of the stalling mechanism. This distinct Hs U4493 (Ec U2585) conformation has only 

been observed in ErmCL-type stalling before (see Figure 50D) where by contrast however, translation 

elongation is inhibited.  

 

Figure 50:  Flipping of the Nucleotide Hs U4493 (Ec U2585). 

(A) The human termination complex (PDB-code: 5a8L) reveals a 90° flipped orientation of Hs U4493 (Ec U2585) 
when compared to (B) the human post-translocation (POST) state (pink) (PDB-code: 5AJ0). The canonical POST 
position of Hs U4493 would clash (indicated by a red cross) with the hCMV-stalling peptide Pro21 (P21) position 
likely being the cause for base flipping. (C) Position of Hs U4493 (Ec U2585) in the Thermus Thermophilus 
(Thermus) termination complex (PDB-code: 2x9s). (D) Similarly flipped position of Hs U4493 (Ec U2585) in the 
Escherichia coli (E. coli) ErmCL-stalled 70S complex (PDB-code: 3J7Z). 
E. coli numbering of ribosomal components is given in parentheses. Figures were modified from Matheisl et al. 
(Matheisl et al., 2015). 
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3.3.4 Involvement of Known heRF1 Motifs in Interactions with the Messenger and Ribosomal 

RNAs 

Up until now, attention has been drawn to the heRF1 M domain containing the universally conserved 

GGQ motif involved in peptide-release. In striking contrast, stop codon recognition, which is the 

critical step for accurate performance of translation termination upon stop codon encounter, has 

evolved uniquely. This complex process is mediated via the heRF1 N domain and known to be 

functional during hCMV-mediated stalling. In this matter well known, repeatedly identified and 

confirmed motifs (albeit with different emphases and proposed interaction patterns) are the TAS-

NIKS (residues 58 - 64), YxCxxxF (residues 125 - 131) and GTS (residues 31 - 33) motifs. Consequently, 

we analyzed positioning and interactions of such heRF1 motifs with the UAA(A) stop codon and 

ribosomal components (see Figures 51 and 52A). 

Starting with the TAS-NIKS motif (residues 58 - 64) (see Figure 51A), it interacts with the UAA(A) stop 

codon from the ‘top’ side (the side from which the A-site tRNA anticodon approaches the mRNA 

during decoding). The Thr58 is in hydrogen bonding distance to adenine at position 2 (A2). Ala59, 

Ile62 and Ser64 are more likely to be involved in the stabilization of the TAS-NIKS containing loop 

connecting the two α-helices α2 and α3. Ile62 seems to be important for proper uracil at position 1 

(U1) positioning via its backbone rather than for pivotal discrimination via its side-chain. Lys63 is in 

hydrogen bonding distance to U1 most likely being the key residue of heRF1 to discriminate position 1 

during eukaryotic stop codon recognition. Arg65 and Arg68, which were reported critical for heRF1’s 

function on the ribosome (Blanchet et al., 2015), seem to interact with h34 and h31 of the 18S rRNA 

rather contributing to heRF1 binding itself. In brief, the TAS-NIKS motif facilitates stop codon 

recognition by direct interaction with U1 and A2 and by stabilizing residues that make a substantial 

contribution to proper heRF1 binding. 

The nearby positioned YxCxxxF motif (residues 125 - 131) (see Figure 51B) is likewise located in a loop 

region whereof the aromatic residues Tyr125 and Phe131 seem to be important for accurate 

positioning of the region. While Tyr125 seems to interact with Glu55 of the opposite α-helix, Phe131 

stacks on Tyr96 conferring structural stability. Cys127 is likely directly involved in interactions with A2, 

while Asp128 is likely to contribute to the stabilization of Hs A1825 (Ec A1493) in h44 in the 

anticipated flipped out position where the base is able to form stacking interactions with A2. 

Therefore, Asp128 seems to indirectly engage in A2 discrimination. Asn129 and Lys130 do not 

participate in stop codon decoding interactions being directed to the opposite site.  

Across the tip of the YxCxxxF motif, another loop region, containing the GTS motif (residues 31 - 33) 

(see Figure 51C), is located. Obviously, the Gly31 cannot contribute by side-chain interactions, 

however, since this aa can engage in extreme φ - ψ torsion angles of its protein backbone and 

therefore a wide range of unique conformations, it seems to rather contribute to proper positioning 

of the whole GTS motif. Thr32 lies opposite to the adenine at position 3 (A3) likely forming a 

hydrogen bond to the otherwise non-hydrogen bonded base. Ser33 likely interacts with Asn67, which 

neighbors the TAS-NIKS motif, facilitating the correct positioning of the participating motifs in close 

proximity to the UAA(A) stop codon and to each other. 
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Figure 51:  Interactions of Known eRF1 Motifs with the UAA(A) Stop Codon. 

Overview of the interactions of: (A) The TAS-NIKS motif (dark green, residues 58 - 64) with uracil at position 1 
(U1) and adenine at position 2 (A2) of the UAA(A) stop codon (red). The hydroxylation-site on the Lys63 (K63) 
side-chain C4 is indicated by ‘*’. (B) The YxCxxxF motif (dark green, residues 125 - 131) with A2 of the UAA(A) 
stop codon (red) as well as with the ribosomal RNA base Hs A1825 (Ec A1493) (gray) and (C) the GTS motif (dark 
green, residues 31 - 33) with adenine at position 3 (A3) of the UAA(A) stop codon (red). 
H-bonds are indicated by dotted lines. Figures taken from Matheisl et al. (Matheisl et al., 2015). 

 

In addition, the adenine at position 4 (A4), located directly 3’ of the stop codon, stacks on Hs G626 

(Ec G530) of h18. 

Taken together, the three different motifs in the heRF1 N domain together with the rRNA bases 

Hs G626 (Ec G530) and Hs A1825 (Ec A1493) provide a tight binding pocket for the UAA(A) stop 

codon. Such cavity formation (see Figure 52B) seems to facilitate close monitoring of the right A-site 

codon in a three dimensional manner likely contributing to heRF1’s accuracy in the stop codon 

decoding mechanism. 

 

Figure 52:  The UAA(A) Stop Codon Interacts with heRF1 and Ribosomal RNA. 

(A) Overview of the heRF1 region (light green) in close proximity to the UAA(A) stop codon (red). (B) Cavity 
formed by heRF1 (light green) and the ribosomal RNA (Hs G626 (Ec G530) and Hs A1825 (Ec A1493)) (gray) 
which accommodates the UAA(A) stop codon (red). 
Escherichia coli numbering of ribosomal components is given in parentheses. Figures taken from Matheisl et al. 
(Matheisl et al., 2015). 
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3.3.5 The Stop Codon Resembles a UNR-type U-turn Geometry 

As yet, a remarkable feature during the decoding mechanism of the human stop codon has been 

disregarded. Strikingly, the UAA(A) stop codon itself seems to participate in the accuracy of its 

discrimination. The adopted UAA geometry (see Figure 53A) resembles the geometry of a UNR-type 

U-turn motif (see Figure 53B) when heRF1 is bound whereby it significantly differs from known mRNA 

structures of sense codons or of the bacterial stop codons in the A-site (see Figures 53C - F). Its 

characteristic interaction pattern consists of an H-bond between the U1 and the phosphate of the 

nucleotide at position 3 as well as an H-bond between the 2’ OH of the ribose at position 1 and N7 of 

the purine base at position 3 (see Figures 53G, J). Such RNA conformation has not been observed for 

mRNA yet, however, in tRNA anticodon loops (see Figure 53H) or in parts of the 23S rRNA (see 

Figure 53I).  

 
Figure 53:  UNR-type U-turn Geometry. 

(A) Positioning of the mRNA (red) in between heRF1 (light green), as well as in between the ribosomal RNA 
(rRNA) bases Hs A1825 (Ec A1493) and Hs G626 (Ec G530) (gray), reveals its unique geometry. (B) Electron 
density (gray mesh) of the UAA(A) stop codon forming a UNR-type U-turn geometry. H-bonds are indicated by 
dotted lines. Comparison of the A-site mRNA geometry in (C) the human termination complex (red) (PDB-code: 
5a8L), (D) the Thermus thermophilus (Thermus) termination complex (orange) (PDB-code: 2x9s) and (E) the 
Thermus UAC decoding complex (light blue) (PDB-code: 38z7). (F) Schematic depiction of (C) - (E). Comparison 
of the UNR-type U-turn geometry in (G) the human termination complex stop codon (red) (PDB-code: 5a8L), 
(H) the Saccharomyces cerevisiae (S. cerevisiae) anticodon loop (light purple) (PDB-code: 1EHZ) and (I) the 
Escherichia coli (E. coli) 23S rRNA residues U1083 - A1085 (turquois) (PDB-code: 2aw4). (J) Schematic depiction 
of (G) - (I).  
Figures were modified from Matheisl et al. (Matheisl et al., 2015). 
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Formation of such stop codon geometry is accompanied by further restraints on the participating 

base identities. Position 1 of an UNR-type U-turn has to be occupied by an uracil in order to allow for 

motif formation. The adenosine at position 2 is pulled into a sandwiched stacking position between 

the bases Hs A1825 (Ec A1493) and A3 in addition to the direct interactions with the heRF1 motifs as 

described above. The UNR-type U-turn geometry provides a further constrain on position 3: Only a 

purine base can be positioned here which could explain why extensive discrimination via heRF1 

hydrogen bonding remains absent for A3 for the UAA(A) stop codon. The mRNA re-arrangement 

further propagates by pulling of A4 into the A-site DC. Here, A4 also engages in stacking interactions 

with Hs G626 (Ec G530) of h18 which contributes to the formation of the mRNA binding pocket and 

likely to the stabilization of the UNR-type U-turn geometry. 

In conclusion, not only the discriminatory effect of the heRF1 H-bonding interaction pattern ensures 

the right codon identity, but also the mRNA geometry itself since such intrinsically provided 

constraint can offer a whole other layer of verification. Hence, stop codon decoding is dependent, 

but not solely reliable on heRF1. Occurring U-turn formation accompanied by stacking interactions 

positively contributes to the energy balance and can provide a steric frame-work for stop codon 

decoding which results in the high accuracy of the crucial, non-reversible process of translation 

termination. 
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4 Discussion 

4.1 Sample Generation 

4.1.1 Establishment of a Human in vitro Translation System 

Groundwork for the biochemical sample preparation of the human translation termination complex 

was the establishment and optimization of a human in vitro translation extract. Even though such 

extract has been commercially available (by Thermo Scientific) its reliability and reproducibility left a 

lot to be desired when tested, why the development of an optimized system was indispensable.  

Extract preparation was based on the protocol by Mikami et al. (Mikami et al., 2010a), yet had to be 

significantly altered in context of translation initiation and accessory material. The efficiency of 

hCMV-peptide mediated translational stalling was monitored via Western blotting and antibody 

detection of the tagged product revealing sufficient material for cryo-EM sample preparation even 

after affinity purification. In the future, our in vitro translation system not only provides hCMV-stalled 

ribosomes for the reconstruction of the translation termination complex like in this study, but offers 

a wide variety to analyze translation-related events in the human system. For example, further 

complexes could be in vitro reconstituted in the context of NGD, NSD or NMD. Besides, new 

developments for targeted genome editing like the clustered, regularly interspaced, short 

palindromic repeat (CRISPR)-Cas system (reviewed in Sander and Joung, 2014) could be exploited for 

generating knock-out or mutated human cell-lines resulting in modified extracts which could be 

supplemented by separately purified factors or directly be used for the enrichment of particular 

functional states. Not only the purification of stalled ribosomes, but also of expressed PTM-

containing proteins, is a valuable option for the application of our newly developed, robust in vitro 

translation system. Depending on the object of the study, yields could be increased by optimization 

of the buffer conditions, utilization of a different linker sequence between the CrPV IGR IRES and the 

start codon or testing various IRES elements for efficient initiation.  

Wheat germ and yeast translation extracts have been abundant for years, but the complexity of the 

human system prohibits direct transfer of many research results. Especially in the context of human 

diseases, an accurate model is desirable when it comes to drug development, increasing the drugs’ 

chances to successfully help patients and to prevent possible side effects. To this end, it is 

particularly useful to now be able to exploit the human in vitro translation system. 

4.1.2 Utilization of Viral mRNA Sequences for Modulating Initiation and Stalling in the Human in 

vitro Translation System  

Commonly, host infection by viral particles is detrimental for the attacked cell. Upon infection, a virus 

hijacks the host’s replication and metabolic systems to efficiently proliferate itself. To successfully 

outcompete cellular processes, viruses have evolved measures to circumvent and manipulate the 

host’s regulatory and defense systems which can be exploited as molecular research tools. 

A long standing problem during human extract preparation has been the resulting reduced 

translation efficiency due to the phosphorylation of eIF2α on Ser51. Such modification causes 

decreased canonical translation initiation of 5’-m7G capped mRNAs (reviewed in Kaufman, 2004). 

Subsequent to successful Met-tRNAi
Met delivery by GTP-bound eIF2 and start-codon encounter during 

scanning, GTP hydrolysis results in eIF2-GDP and Pi (also see 1.2.1) (Huang et al., 1997). If eIF2α is 

phosphorylated, its affinity towards GDP is increased (Zeenko et al., 2008) rendering its GEF eIF2B 
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unable to catalyze nucleotide exchange while even being sequestered. Due to its lower abundancy, 

free eIF2B concentration can be dramatically reduced in this manner to efficiently block canonical 

translation initiation (Clemens, 2001; Oldfield et al., 1994). Such general initiation shut down usually 

is employed by the cells to cope with various cellular stress conditions (see Figure 54). Four 

mammalian kinases are known for eIF2α phosphorylation: Heme-regulated inhibitor (HRI) is 

activated by heme deficiency or oxidative stress (e.g. due to a heat shock, arsenite or osmotic stress) 

(Lu et al., 2001; reviewed in Wek et al., 2006)). Further, pancreatic eIF2α kinase (PKR) catalyzes 

phosphorylation upon dsRNA presence due to viral infection. Protein kinase RNA-like endoplasmic 

reticulum kinase (PERK) acts upon unfolded proteins in the ER (ER stress) and general control non-

derepressible 2 (GCN2) is activated upon aa deficiency, proteasome inhibition or UV irradiation. 

 
Figure 54:  eIF2 Phosphorylation upon Cellular Stress. 

The activating stress stimuli for the eIF2 kinases heme-regulated inhibitor (HRI), pancreatic eIF2α kinase (PKR), 
protein kinase RNA-like endoplasmic reticulum kinase (PERK) and general control non-derepressible 2 (GCN2) 
are depicted. Kinase activity phosphorylates (P) eIF2α on Ser51 rendering it inactive. Its guanine nucleotide 
exchange factor (GEF) eIF2B cannot act on the phosphorylated eIF2, why eIF2 remains in the GDP-bound state. 
This state is inactive in translation initiation. The viral K3L or the human growth-arrest- and DNA-damage-
induced transcript 34 (hGADD34) proteins can be used to prevent eIF2 phosphorylation or activate the eIF2 
phosphatase, respectively.  

 

Also, proteins have been identified to antagonize eIF2α phosphorylation for returning back to 

canonical protein synthesis or in the case of viruses to counteract the cellular defense mechanism: As 

first example, the human growth-arrest- and DNA-damage-induced transcript 34 (hGADD34) protein 

interacts with the catalytic subunit of the serine/threonine protein phosphatase 1 (PP1) comprising 

the holoenzyme which acts as phosphatase on eIF2α (Ron and Harding, 2006). Second, the vaccinia 

virus K3L protein is an example for structural mimicry of eIF2α (Ramelot et al., 2002) consequently 

serving as pseudo substrate for PKR catalyzed phosphorylation competing with eIF2α for PKR binding 

(Carroll et al., 1993). Both, K3L and hGADD34 were attempted to be purified and supplemented as 

accessory proteins to the extract in this study to reduce initiation inhibition by eIF2 phosphorylation 

which has been shown successfully by Mikami et al. (Mikami et al., 2006) before. Hereby, the usage 

of the more efficient EMCV IRES or 5’ capped mRNAs might have become possible. Yet, protein 
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purification proved to be challenging, resulting in low yields for K3L and aggregation for hGADD34. 

Even hGADD34 truncation by the N-terminal 120 or 240 aa, which was reported to increase stability 

(Mikami et al., 2010b), only decreased aggregation marginally. Additionally, no increase in translation 

efficiency upon EMCV IRES containing mRNA translation was noted upon the supplementation of any 

purified accessory protein(s) to the in vitro translation extract demanding for further remedial 

measures. 

eIF2-independent initiation was anticipated in the translation extract by utilizing the viral IGR IRES 

mRNA element of the type IV cricket paralysis virus (construct see Figure 55) (Wilson et al., 2000). 

With this 5’ mRNA sequence translation initiation was completely independent of any eukaryotic IFs 

whereby the cellular defense mechanism of eIF2 phosphorylation was bypassed. Exploiting such viral 

initiation mechanism allowed successful target translation in the human extract even though eIF2α-

phosphorylation couldn’t be prevented during extract preparation. The initiation efficiency of the 

CrPV IGR IRES is known to be ∼4x less than of the EMCV IRES (Isken et al., 2008), which is used in the 

commercial system (by Thermo Scientific), yet especially for stalling and therefore the absence of 

multiple rounds of initiation per transcript such drawback is worth the gain. Analysis of the 

supplementary solution that is provided in addition to the commercial translation extract revealed 

the abundance of multiple purified accessory proteins illustrating the complexity to circumvent eIF2 

phosphorylation and to successfully perform EMCV IRES-mediated mRNA translation in the human 

extract. 

 

Figure 55:  Schematic of the Construct Used for in vitro Translation in the Human Extract. 

The mRNA contained a cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) 
sequence for initiation, a sequence encoding for a hexahistidine ((His)6)-tag for affinity purification, for a 
human influenza hemagglutinin (HA)-tag (aa 98 - 106) for Western blot detection, for parts of the dipeptidyl 
aminopeptidase B (DP75) and for the human hCMV-stalling sequence with a UAA(A) stop codon (stop). This 
was followed by a linker sequence and a 26 nucleotide poly(A) tail (p(A)26). The stop codon that is relevant for 
UAA(A) stop codon deficient constructs during mutational scanning analysis is underlined. 
Figure was modified from Matheisl et al. (Matheisl et al., 2015). 

 

For obtaining the translation termination complex, another viral feature besides the CrPV IGR IRES 

was utilized. Ribosomes were stalled at their own translation termination which is known to 

successfully take place upon translation of the human hCMV-peptide. hCMV-peptide mediated 

stalling has effectively been demonstrated before in WG and RRL extracts (Bhushan et al., 2010b; 

Brown et al., 2015; Gogala et al., 2014; Preis et al., 2014). As the human organism serves as natural 

host of the cytomegalovirus, its adaption to the human system was assumed to result in highly 

efficient stalling. Effectively, in the developed translation extract robust hCMV-mediated stalling 

could be observed generating RNCs with a stop codon in the A-site that beneficially accumulated 

heRF1.  
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Stalling efficiency could be monitored via Western blotting, which mostly revealed only one single 

band for the peptidyl-tRNA and virtually no abundance of the free peptide, stressing stalling stability. 

In some RNC preparations, higher molecular weight bands at ∼55 kDa and/or ∼70 kDa were 

abundant which could represent a PTM of the peptide that does not seem to influence tRNA binding. 

Considering the increase in size of ∼20 kDa and ∼35 kDa, N- or O-linked glycosylation might be a 

possibility. Labeling of the nascent chain by ubiquitin for degradation as consequence of human 

surveillance mechanisms is rather unlikely as several chain lengths of ubiquitin would be added (Peng 

et al., 2003) which would result in a range of bands and not in one or two defined bands. Here, mass-

spectrometry analysis or PTM-specific antibodies could deliver helpful insights. As control, truncated 

hCMV mRNA was used for generating truncated RNCs. They contained less stably bound peptidyl-

tRNA, yet such mRNA still represents a valuable option for RNC preparation in the human system. 

Here, the two aforementioned additional bands also occurred sporadically in the Western blots. 

Another possibility for these two bands could be their unspecific cross-reaction with the detecting 

anti-HA antibody. 

Calculation of the final amount of purified, hCMV-stalled RNCs identified ∼1 % of the ribosomes 

present in the initial translation reaction. Such limited yields highlight the drawback of the human in 

vitro translation system. For this reason, a subsequent sucrose-gradient purification was omitted as it 

was associated with too high material loss due to handling of low RNC amounts.  

Primarily, the hCMV-peptide was exploited to successfully reconstitute a termination complex. 

Simultaneously though, its high-resolution structure could also reveal the molecular interaction 

network of the hCMV-peptide and the tunnel wall residues shedding light onto the causes of 

hindered peptide-release. Of course, other eukaryotic-specific stalling mechanisms like the 2A 

peptide, AdoMetDC, XBP1 or CPS-A could be investigated similarly in the established translation 

system. 

In E. coli or lower eukaryotes RNC generation has been successfully demonstrated over the past 

years (Becker et al., 2012; Beckmann et al., 2001; Bhushan et al., 2011; Halic et al., 2004; Preis et al., 

2014; Seidelt et al., 2009). Taken together, for the human system the utilization of the viral CrPV IGR 

IRES and the viral hCMV sequences as well as contriving the ideal buffer conditions resulted in a 

robust expression system from which RNCs could be successfully purified after protocol adaption for 

human 80S ribosomes. Consequently, as from now, the human system can be added to the list of 

functional home-made in vitro translation systems.  

4.1.3 Protein Purification, Complex Formation and Ribosomal Binding 

Translation termination is comprised of several steps. The GTPase eRF3 was reported to deliver eRF1 

to the ribosomal A-site in a ternary complex contributing to termination efficiency (pre-termination 

complex) (Salas-Marco and Bedwell, 2004). After stop codon recognition by eRF1 in the DC, GTP 

hydrolysis is followed by eRF3 release, resulting in the elongated eRF1 conformation (Alkalaeva et al., 

2006; Salas-Marco and Bedwell, 2004) reaching into the PTC. Subsequently, eRF1 solely resides on 

the ribosome (termination complex) which was shown to be sufficient for stop codon decoding and 

peptide-release (Alkalaeva et al., 2006; Muhs et al., 2015). ABCE1 binding (pre-recycling complex) 

further enhances peptide-release activity whereupon ribosome recycling is initiated (Shoemaker and 

Green, 2011). Consequently, in all three described complexes eRF1 is bound to the A-site likely 

interacting with the DC and the displayed stop codon. 
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Purification of all participating protein factors was anticipated in parallel to reconstitute all three 

termination-involved complexes. Two genes (GSPT1 and GSPT2) encode two eRF3 isoforms: eRF3a 

and eRF3b both of which contain differences in their N-terminus (Hoshino et al., 1998; Jakobsen et 

al., 2001). eRF3b depletion was demonstrated to not affect termination efficiency in human cells. 

Yet, eRF3a depletion negatively influences termination efficiency and can be compensated by eRF3b 

which is not the case vice versa (Chauvin et al., 2005). Furthermore, eRF3a seems to be ubiquitously 

expressed whereas eRF3b expression is tissue-specific (Chauvin et al., 2005). For this reason, eRF3a 

was used for complex formation. It has proven difficult to express and purify human eRF3a form 

E. coli cells (Frolova et al., 1998), why additional purification of an N-terminally truncated heRF3a 

protein (Δ(1-138)heRF3a) was aimed at. Since heRF1, heRF3 and GTP form a ternary complex before 

ribosome encounter, their complex formation was sought before conducting ribosomal binding 

studies. For their complex formation, one option was the co-expression and co-purification of heRF1 

with heRF3a fl or Δ(1-138)heRF3a. The co-purification of heRF1 and Δ(1-138)heRF3a resulted in a 

clean, stoichiometric and well-concentrated complex that was shown to efficiently bind to the 

prepared human RNCs in binding studies and low-resolution cryo-EM reconstructions, yet only upon 

extensive optimization of appropriate buffer conditions. However, with adequate controls of human 

truncated hCMV-RNCs and RRL hCMV-stalled RNCs, specific binding could be assured under the final 

chosen buffers. With such conditions cryo-grid preparation did not result in the clumpy, aggregated 

samples as observed before for the wheat-germ/yeast pre-termination/pre-recycling complexes 

(Thomas Becker, personal communication) or the yeast Dom34:Hbs1 complex (Becker et al., 2011). 

One drawback of the co-purification strategy was potential GTP-binding by heRF3a and its co-

purification in the ternary complex. As precaution, high GMPPCP excess buffers were applied to 

displace the initially bound nucleotide. Instead of GMPPCP, guanosine 5′-[β,γ-imido]triphosphate 

trisodium salt hydrate (GMPPNP) (contains non-hydrolysable imido-group instead of a methylene 

group) was supplemented in several studies involving eRF3 before (Alkalaeva et al., 2006; des 

Georges et al., 2014; Preis et al., 2014; Susorov et al., 2015; Taylor et al., 2012). However, GMPPNP 

was observed to represent a poor GTP-resembling analog for eRF3-binding (Hauryliuk et al., 2006). 

For the truncated heRF3a protein, also individual purification could be performed successfully. For 

the heRF3a full length protein, however, the co-purification approach did not result in a stable 

complex. Here, a thioredoxin-fusion construct was crucial for individual purification (Kononenko et 

al., 2010) which was followed by in vitro complex formation of the components. Final yields were 

low, yet sufficient for the preparation of cryo-EM samples. 

eRF1 was shown to be post-translationally modified by the 2-oxogluterate and Fe(II)-dependent 

oxygenase Jmjd4 (Feng et al., 2014). Since the hydroxylation site resides in the TAS-NIKS Lys63 

side-chain C4 and was shown to influence termination efficiency (Feng et al., 2014), in vitro and in 

vivo hydroxylation assays were performed to obtain hydroxylated human eRF1. Even though at the 

possible resolution by cryo-EM the hydroxylation itself likely cannot be assigned, its influence on 

proper Lys63 or even TAS-NIKS loop positioning couldn’t be excluded. Published results reveal an 

∼60 % hydroxylation efficiency by in vitro hydroxylation via incubation of purified eRF1, purified 

Jmjd4 and its co-factors (Feng et al., 2014). Here, we proved an alternative in vivo co-expression of 

the two proteins which led to an ∼100 % hydroxylation efficiency of Lys63 whereas no secondary 

hydroxylation sites could be identified via mass spectrometry. 

hABCE1 could not be successfully purified from E. coli cells why it was expressed and purified from 

human HEK293T cells. Its high affinity to the plastic wall of the Eppendorf tube resulted in limitation 
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of the biochemical experiments conducted. Therefore, binding conditions to the 80S ribosome were 

transferred from the ternary heRF1:Δ(1-138)heRF3a:GMPPCP complex. heRF1 and hABCE1 were 

individually added to the RNCs together with adenosine 5′-(β,γ-imido)triphosphate lithium salt 

hydrate (AMPPNP) since during termination eRF1 binding to the 80S ribosome occurs previous to 

ABCE1. The two [4Fe-4S]2+
 clusters of ABCE1 from Pyrococcus abyssi were reported to be inefficiently 

formed and oxidized during purification for which reason they were reconstituted under anaerobic 

conditions prior to crystallization (Karcher et al., 2008). Such instability could also be possible for the 

human ABCE1 explaining its adherence to the tube rather than engaging in its native conformation. 

Its purification under anaerobic conditions could provide remedy. 

For the termination complex which only contains heRF1, purified hCMV-RNCs were successfully 

analyzed for their natively bound heRF1 content via Western blotting and mass spectrometry. Native 

eRF1 abundance has already been observed before for hCMV-stalled RRL 80S ribosomes (Janzen et 

al., 2002). Since removal of heRF1 could not be conducted by high salt washes of up to 1 M KOAc to 

more quantitatively bind the heRF1:heRF3 complex, this stably bound ligand was taken advantage of 

by directly applying the sample to cryo-EM analysis.  

Capitulatory, each termination or recycling involved protein could be purified and analyzed via low-

resolution cryo-EM. Ideal binding conditions were tested with the ternary heRF1:Δ(1-

138)heRF3a:GMPPCP complex. In low-resolution cryo-EM, the pre-termination complex with 

eRF1:Δ(1-138)eRF3a:GMPPCP, the termination complex with eRF1 only and the pre-recycling 

complex with heRF1, hABCE1 and AMPPNP each revealed additional densities corresponding to the 

respective protein factors. Hereof, the termination complex was chosen for high-resolution cryo-EM 

studies and the application of the novel DDD technology. 

4.2 Cryo-Electron Microscopy as Method of Choice 

In the context of eukaryotic translation termination there have been innumerable biochemical 

approaches to determine the molecular details of stop codon decoding. Multitudinous mutational 

studies of eRF1 (and eRF3) including loss-of-function (Kolosov et al., 2005; Kryuchkova et al., 2013), 

gain-of-function (Hatin et al., 2009) or inter-species domain swapping (Ito et al., 2002; Seit-Nebi et 

al., 2002) were conducted in several eukaryotic organisms all with varying read-outs. Besides, eRF1 

mutations appear to differently affect codon recognition for each of the three stop codons. Such 

studies account for contradictory results as they virtually all presented varying outcomes, why 

various mechanistic models of how eRF1 recognizes and distinguishes stop codons from sense 

codons are existent. Here, structural data could provide the missing insights to ascertain the 

inconsistent results. For biological samples, basically three established methods are widely used for 

structural studies: NMR spectroscopy, x-ray crystallography or cryo-EM. Crystal structures of human 

unbound eRF1 and eRF3-bound eRF1 were already obtained in 2000 and 2009, respectively (Cheng et 

al., 2009; Song et al., 2000). The high-resolution structures of 2.8 Å and 3.8 Å, respectively allowed 

structural comparisons to the prokaryotic class-I RFs (Song et al., 2000) and revealed eRF1’s tRNA 

resembling shape only upon eRF3 interaction (Cheng et al., 2009). Further, mapping of eRF1 

interactions with eRF3 and its stimulatory effect on the eRF3 GTPase could be analyzed (Cheng et al., 

2009). Crystallographic studies per se don’t suffer from a specimen size limit, however, they are 

associated with several challenges: The resulting resolution is dependent on well-ordered crystal 

packing which often requires unphysiological buffer conditions in addition to a highly homogenous, 
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concentrated sample. Large quantities of specimen or their inherent reluctance to crystal packing 

imposes further limits, not to mention the associated artefacts of crystal packing.  

For detailed insight into the dynamics of eRF1, each of its three domains was determined by NMR 

spectroscopy (Ivanova et al., 2007; Mantsyzov et al., 2010; Polshakov et al., 2012) analyzing peptide-

hydrolysis or signal propagation from the DC in the ribosomal SSU where the stop codon is 

recognized to the PTC in the LSU where peptide-hydrolysis takes place (Ivanova et al., 2007). 

Furthermore, solving stop codon recognition and the presentation of structural data on flexible 

regions that could not be crystallized properly was anticipated. Commonly, NMR is only applicable 

for molecules smaller than ∼100 kDa of which likewise large quantities are required. 

The main drawback of all presented eRF1 structures is their isolation from the ribosome. According 

to distance measurements, eRF1’s ribosome-bound domain arrangement must be significantly 

altered for peptide-hydrolysis. Moreover, the underlying molecular mechanism for stop codon 

decoding can only be convincingly determined by a complex actually presenting the interaction with 

ribosome-bound mRNA. To this end, already several medium-resolution cryo–EM structures of the 

ribosome-bound eRF1:eRF3 and eRF1:Rli complexes were solved with resolutions ranging from 

8.75 Å to 17 Å (des Georges et al., 2014; Preis et al., 2014; Taylor et al., 2012). Biochemical studies 

revealed eRF1’s capability to decode the stop codon in the ribosomal A-site as well as to 

subsequently hydrolyze the peptidyl-tRNA ester-bond without eRF3 (Alkalaeva et al., 2006). Its stable 

binding was confirmed by another medium-resolution cryo-EM study of an eRF1-bound RRL 80S 

ribosome at 8.7 Å (Muhs et al., 2015). Nevertheless, for the visualization of the intricate molecular 

interaction pattern that is applied for stop codon decoding, near-atomic resolution is required. To 

this end, cryo-EM is the method of choice as the new technological and computational advances 

(also see 1.4) render it superior to other methods for structural investigations of the human 

termination complex. 

4.3 Molecular Mechanism of hCMV-peptide Mediated Stalling of the Human 

Ribosome 

With the application of the in-house DDD equipped microscope as well as SPIDER-based 

computational refinement and sorting, it was possible to reconstruct the cryo-EM volume of the 

heRF1 containing hCMV-stalled 80S ribosome complex to an average resolution of 3.8 Å with a final 

set of 33,165 particles. The homogeneous dataset revealed a comparable resolution for heRF1 which 

was only slightly less well resolved at the C-terminus owing to a missing stability providing interaction 

partner like heRF3 or hABCE1. 

The obtained cryo-EM volume sheds light on the molecular changes which the ribosome undergoes 

upon heRF1 binding and on the stop codon decoding process. Additionally, due to the utilization of 

the hCMV-stalling sequence, the molecular mechanism underlying the hindrance of peptide-release, 

even though heRF1 can stably bind to the ribosomal A-site, can be anticipated. Since here ester-bond 

hydrolysis is considered as conserved, differences to prokaryotic termination complexes can provide 

a hint concerning participating PTC components in a process which is still not completely understood.  

The nascent peptide chain was modeled de novo. Any attempts to fit an extended peptide 

conformation into the cryo-EM density have failed, yet modeling an α-helix between the PTC and the 

central constriction revealed its proper fit. Helix formation in the exit tunnel was suggested 
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biochemically and computationally before (also see 1.2.5), however, its actual formation has only 

been observed by cryo-EM in the lower exit tunnel parts so far (Bhushan et al., 2010a).  

In 2010, a medium-resolution cryo-EM structure (6.7 Å) of a CMV-stalled WG ribosome was 

published. Here, differences in the PTC, when compared to the archaeal LSU (Ban, 2000) or to helix-

RNCs (Bhushan et al., 2010a), included the tip of the loop of uL16 (L10e) which connects the CCA-end 

of the P-site tRNA with H89. This could not be observed in the human hCMV-stalled structure. Here, 

the uL16 (L10e) loop is delocalized from position 103 to 113, why it most likely does not directly 

engage in any interactions. Notably, its position in the POST state (Behrmann et al., 2015), which was 

used as initial fit, would have clashed with heRF1 around uL16 (L10e) positions 108/109. Since in the 

human hCMV-stalled structure the CCA-end is positioned rather canonically (also see Figures 

49A - C), it is unlikely that uL16 (L10e) influences hCMV-peptide mediated stalling. 

Further, main rRNA interaction partners in the exit tunnel were described for the hCMV-stalled WG 

ribosome: Hs 3879 (Ec A2062), Hs 4493 (Ec U2585), Hs 4517 (Ec U2609) and Hs 2875 (Ec A2058). In 

our cryo-EM structure main rRNA interaction partners for the nascent chain are Hs 3879 (Ec A2062), 

Hs 4494 (Ec U2586), Hs 4517 (Ec U2609) and Hs 2875 (Ec A2058) nearly matching. However, 

interestingly at the lower resolution of 6.5 Å an extended nascent chain conformation was modeled 

into the density of the WG RNC. Using PSIPRED, helical propensity was predicted after the central 

constriction for the midgut region around residues Ala8 to Leu14 (Bhushan et al., 2010b). Such helix 

formation was indeed observed in our structure, however, reached up to Pro22 in the PTC whereas 

in the WG CMV-stalled RNC structure no density was identified at all for residues 13 - 14. Further, the 

nascent chain was suggested to be stabilized around residues 10 - 12 by the interaction with uL4 and 

uL22 forming the constriction. In our cryo-EM reconstruction residue Lys9 interacts with uL22. The 

following residues which constitute the N-terminal end of the α-helix reside in the constriction area. 

Further down in the midgut region and lower tunnel, the density gets less well resolved which is also 

in stark contrast to the well resolved CMV-peptide observed in the WG RNC. Notably though, in the 

human structure, the peptide residues here already belong to the DP75 encoding sequence. 

Another apparent difference is the position of Ec A2602 (Hs A4510). The base was described as 

flexible in the WG CMV-stalled RNC complex. In our structure, by contrast, density could be observed 

for the base. This difference is reasonable as we reported stabilization of Ec A2602 (Hs A4510) by 

direct interaction with heRF1 Phe190. A similar interaction of Ec A2602 was observed in prokaryotes 

where it is stabilized in a pocket formed by the respective RF for correct positioning of the GGQ-loop 

in the PTC (Amort et al., 2007; Polacek et al., 2003; Youngman et al., 2004). It would be particularly 

interesting to directly compare both molecular models of the hCMV-peptide chains, yet no PDB entry 

is available for the WG CMV-stalled RNC structure.  

An important observation of our cryo-EM structure is the proper positioning of the heRF1 GGQ motif 

when compared to the crystal structure of the RF2-bound 70S ribosome (Jin et al., 2010). In the 

human structure the distance between the carbonyl carbon of the ester-bond and the GGQ motif 

(Gln185, backbone N) is similar to the RF2-containing structure. For this part of the RF, inter-species 

comparisons are reasonable since the GGQ motif is the only highly conserved motif. Consequently, 

hCMV-peptide mediated stalling does not interfere in any way with GGQ motif positioning and 

therefore heRF1 conformation. If this was the case, one could argue conformational influence and 

even propagation of changes in heRF1 to the DC due to hCMV-stalling. Especially in the context of 



D i s c u s s i o n  

 

P a g e  | 118 
 

the molecular stop codon decoding mechanism it is noteworthy that hCMV-stalling is not influential 

on the heRF1 conformation itself. 

Closer examination of the PTC reveals a 90° flip of Hs U4493 (Ec U2585) away from the nascent chain. 

Since the nascent chain engages a shifted path in the PTC region, which interferes with the usual 

position of Ec U2585, this is assumed to be the cause for base evasion during hCMV-stalling. In its 

back flipped position, Hs U4493 (Ec U2585) likely cannot participate in ester-bond hydrolysis, why 

peptide-release is hindered. By contrast, in ErmCL stalling peptide-bond formation is prevented also 

due to a 90° flip of Ec U2585. Mutational studies revealed that also termination can be inhibited 

during ErmCL translation demonstrating a role of Ec U2585 in hindering termination in both stalling 

mechanisms. Since translation elongation is possible upon stop codon to sense codon mutation of 

the hCMV-peptide, it is likely that the Ec U2585 flip is necessary, yet not sufficient for ErmCL 

elongation stalling.  

In contrast to the elucidation of prokaryotic stalling mechanisms, no mutational studies of tunnel 

wall components have been conducted so far in the human ribosome. Only a mutational screening of 

the nascent chain residues revealed important aa for hCMV-peptide mediated stalling (Alderete et 

al., 1999; Degnin et al., 1993; Janzen et al., 2002). Here, stalling was not monitored directly however, 

the expression level of a downstream β-gal ORF was measured. Similarly to our mutational screening 

where stalling efficiency was tested in the in vitro translation extract for several point mutations, 

mutation of the ultimate und penultimate proline residues effected stalling most efficiently. This 

biochemical evidence perfectly correlates to our cryo-EM structure where the C-terminal peptide 

path of both prolines and particularly the position of the Pro21 are responsible for the Hs U4493 

(Ec U2585) flip and consequently for the prevention of peptide-hydrolysis. On the contrary, the 

effects for the mutations of Ser7, Ala8 and Ser12 were different. The mutations Ser7Phe, Ala8Arg and 

Ser12Pro all showed strong impediment of stalling, resulting in read-through activity and β-gal 

expression (Alderete et al., 1999). However, no tremendous effect was observed in our mutational 

screening for the Ser12Ala, Ser12Thr, Ala8Val, Ala8Asp or Ser7Ala mutations. With the structure in 

hands this discrepancy can be explained. The mutation by Alderete et al. (Alderete et al., 1999) 

introduces the bulky residue Phe at position 7 which likely clashes with Hs A1582 (Ec A751). Since 

Ser12 is part of the α-helix, mutation to Pro, which is known to be a helix breaker, most likely 

disturbs the secondary structure of the stalling peptide which is propagated to the PTC. The Ala8 

side-chain is positioned rather freely why the introduced Arg residue might influence positioning due 

to its highly increased length and positively charged side-chain. By contrast, the mutations conducted 

in our study seem to be more conservative and therefore don’t seem to influence proper peptide 

conformation for stalling.  

When modeling the peptide chain de novo, finding the proper conformation of Pro21/22 to fit the 

density and simultaneously meet geometrical restraints proved rather difficult. Here, the 

introduction of one or two cis-prolines could provide remedial measures however, their tautomeric 

state cannot be determined at this resolution. The presence of an ultimate cis-peptide could further 

contribute to ribosomal stalling solely at termination. Termination is known to be slower than 

elongation (Freistroffer et al., 2000). If the time-consuming cis-proline formation is only allowed 

previous to peptide-release, this could explain why solely ester-bond hydrolysis cannot take place 

anymore. If elongation is fast enough to hinder trans-cis isomerization, the peptide-path may be 

altered and peptide-bond formation could still occur. At present resolution however, involvement of 
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isomerization is rather speculation. Furthermore, termination inhibition cannot be caused in general 

by two C-terminal proline residues because if so, their occurrence would be infrequent. A Swiss-Prot 

search by Janzen et al. (Janzen et al., 2002) however, demonstrated a 70 % occurrence, when 

compared to random distribution, arguing for additional features that cause stalling at termination. 

Taken together, several residues of the hCMV nascent chain might be influential on stalling as 

documented in other studies. Yet, in our mutational screening, stable stalling is still existent upon 

most mutations. Maybe the varying introduced side-chains or differences in the experimental read-

out can explain the contradictory conclusions here. In general, the α-helix, with its greater diameter 

than an elongated nascent chain, contacts many residues of the tunnel wall. Mutations could not 

only influence such contacts, but also be accountable for different secondary structure formation. 

Certainly the ultimate and penultimate proline residues (Pro21/22) play a pivotal role as shown 

biochemically and structurally. The 90° flip of Hs U4493 (Ec U2585) seems to be the major reason for 

the inhibition of termination and is caused by the deviant peptide path taken due to the two 

C-terminal prolines. Hs U4493 (Ec U2585) flipping only seems to contribute to termination as 

compared to elongation stalling, also rendering the stop codon in the A-site indispensable. For the 

future, rRNA mutations of the tunnel wall would be one possibility to identify other important 

contact sides. 

4.4 Molecular Mechanism of UAA(A) Stop Codon Decoding 

Prior to peptide release, accurate stop codon decoding has to be efficiently performed to ascertain 

release only upon stop codon encounter. In eukaryotes, the molecular basis of stop codon 

discrimination by the omnipotent factor eRF1 has remained elusive for long. In prokaryotes, an H-

bonding pattern between the RFs and the stop codons contributes to their discrimination (see 1.2.3). 

Also, during human stop codon decoding, an H-bonding network is established between the UAA(A) 

stop codon and heRF1 residues of the TAS-NIKS (58 - 64), YxCxxxF (125 - 131) and GTS (31 - 33) motifs 

contributing to decoding accuracy.  

 

Figure 56:  The Ribosome Senses the A-site mRNA Codon. 

Positions of the ribosomal RNA residues Hs A3731 (Ec A1913) as part of Helix 69 (H69), Hs A1824 (Ec A1492) 
and Hs A1825 (Ec A1493) both part of helix 44 (h44) in (A) the human termination complex (gray) (PDB-code: 
5a8L), (B) the Thermus thermophilus (Thermus) termination complex (orange) (PDB-codes: 2x9r and 2x9s) and 
(C) the Thermus UAC sense codon decoding ribosomal complex (light blue) (PDB-codes: 3uz7 and 3uz8). (D) 
Schematic depiction of (A) - (C).  

 

Yet surprisingly, compared to prokaryotic stop codon decoding, in the human termination complex a 

special geometry of the A-site U1A2A3(A4) stop codon is sensed: Two ribosomal bases Hs A1825 

(Ec A1493) and Hs G626 (Ec G530) are employed for stacking interactions with A2 and A4, 

respectively, stabilizing a UNR-type U-turn like conformation of the UAA stop codon. While Hs A1824 

(Ec A1492) remains in h44, Hs A1825 (Ec A1493) bulges out to engage in the stacking interaction (see 
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Figures 56A, D). By contrast, in the Thermus termination complex Ec A1492 (Hs A1824) flips out of 

h44 and forms an H-bond with the also flipped out Ec G530 (Hs G626) (in h18) which interacts with 

the base at position 3 (and not 4) (see Figures 56B, D). The conformation of Hs A1824 (Ec A1492) and 

Hs A1825 (Ec A1493) were also reported to be important for tRNA discrimination in the A-site during 

elongation (also see 1.2.2). Here, however, both bases flip out of h44 (see Figures 56C, D) and 

interact with the displayed anticodon. 

 

Figure 57:  Close Monitoring of Each Stop Codon Residue. 

(A) The uridine at position 1 engages in interactions with the TAS-NIKS motif, especially with Lys63 (K63) via its 
base (U1), as well as with N7 and the backbone phosphate of adenosine 3. The hydroxylation of Lys63 (K63) is 
indicated by a ‘*’. (B) Adenine 2 (A2) interacts with Cys127 (C127) in the YxCxxxF motif and participates in 
stacking interactions with A3 and the ribosomal RNA (rRNA) residue Hs A1825 (Ec A1493). Possible rotamer 
conformations of Glu55 (E55) for base discrimination are depicted in light blue (E55 and E55#). (C) A3 interacts 
with the Thr32 (T32) of the GTS motif and U1 for U-turn formation. (D) Adenine 4 (A4) stacks on the rRNA base 
Hs G626 (Ec G530).  
Hydrogen-bonds are indicated by dotted lines. Figures were modified from Matheisl et al. (Matheisl et al., 
2015). 

 

Unlike sense codons, where the third (wobble) position is of less importance, all three bases (and 

even the fourth base) contribute to stop codon decoding in the case of UAA(A). Due to U-turn 

formation, the fourth base is pulled into the A-site consequently participating in the decoding 

process. According to toe-print analyses (Alkalaeva et al., 2006), a 2 nt shift occurs upon eRF1 binding 

to the ribosome which can be explained by further propagation of the mRNA compaction. Since such 
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shift is not observable without eRF1 addition, one could speculate that eRF1 actively induces U-turn 

conformation rather than its spontaneous formation upon A-site encounter.  

The distinction between a stop and a sense codon is largely realized for position 1 (see Figure 57A) by 

demanding for the UNR-type U-turn conformation. This restraint excludes already all sense codons, 

but five (UGG, UCG, UUG, UCA and UUA). In addition, the mRNA geometry has to fit in a tight pocket 

formed by the rRNA residues Hs A1825 (Ec A1493) and Hs G626 (Ec G530) and by heRF1. 

Furthermore, Lys63 (of the TAS-NIKS motif), which was shown to cross-link to U1 (Chavatte et al., 

2002), is found in H-bonding distance to U1. The hydroxylation at the side-chain C4 of Lys63 might be 

involved in ideal positioning of the Lys63 side-chain for such H-bonding. Owing to size constrictions, 

purines would be too bulky for the binding pocket and cytosine could neither participate in U-turn 

formation nor in the interaction with Lys63. Consequently, several layers of verification seem to be 

employed to ascertain the right base identity at position 1. H-bonds of protein structures typically 

contribute to the energy balance by approximately 6 - 8.5 kJ/mol (1.5 - 2 kcal/mol) (Sheu et al., 

2003). U-turn formation is accompanied by the additional development of 2 H-bonds between U1 

and the third phosphate group of the stop codon as well as between the 2’ OH group of the U1 ribose 

and the N7 of the third base. Stacking interactions of Hs A1825 (Ec A1493) with A2 and A3 as well as of 

Hs G626 (Ec G530) with A4 (see Figures 57B - D) significantly contribute in an energetic manner as 

stacking provides even higher Gibbs free energy (G) than H-bond formation.  

The base at stop codon position 2 (here: A2) is not directly subjected to constraints by the UNR-type 

U-turn conformation why it can in principle be occupied by any base. The engaged stacking 

interaction however, is of higher energy when formed between two purine bases (Friedman and 

Honig, 1995). The YxCxxxF motif is localized in H-bonding distance to A2, likely to interact with Cys127 

(see Figure 57A). This interaction can only be realized with an A or G in position 2. The third position 

again is defined by UNR-type geometry which only allows purines. In addition, A3 seems to interact 

with Thr32 of the GTS motif which would also be possible for a G in this position (see Figure 57C).  

As indicated, excluding sense codons is ensured in multiple layers likely accounting for the observed 

high accuracy of stop codon decoding. In cross-linking experiments (Chavatte et al., 2002) eRF1 was 

also found to interact with the near-cognate codon UGG arguing for at least transient eRF1 

interaction. Since G can be found either in position 2 for UGA or position 3 for UAG, discriminating 

UGG as sense codon supposedly is particularly challenging possibly explaining why eRF1 interaction 

shortly takes place. Although no density could be observed for the Glu55 side-chain, which could 

derive from its flexibility, its favored rotamer conformations are positioned in H-bonding distance to 

the amino groups of A2 or A3. Therefore, it would be possible that Glu55 interacts with either of them 

leading to its flexibility. Negatively charged side-chains are known to be prone for early e- damage 

and loss of their visibility (Allegretti et al., 2014) which could also explain the lack of side-chain 

information for Glu55 in the cryo-EM density. If a UAG or a UGA stop codon is decoded, an H-bond 

can still be established with one A, yet, if two Gs are present simultaneously in both positions 2 and 

3, Glu55 cannot form any H-bonding interaction leading to eRF1 destabilization. This would render 

Glu55 of major importance for the discrimination of two consecutive Gs in positions 2 and 3. 

Why the identity of the base at position 4 is of such major influence on termination efficiency has 

been under investigation for long, however, no clear picture could be drawn. It was even shown 

specifically for eukaryotes that a tetra-nucleotide is necessary for successful termination (Caskey et 

al., 1974) whereas in prokaryotes a trinucleotide is sufficient. Our cryo-EM structure reveals base 4 
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stacking on the purine base Hs G626 (Ec G530) for compaction and stabilization of the mRNA 

conformation. As mentioned, stacking is energetically more favorable for purines with purines (see 

Figure 58A) explaining higher efficiency and frequency of occurrence for purines at position 4 in 

eukaryotes (see Figure 58B). Since it is base 3 which stacks on Ec G530 in the case of prokaryotes, 

here the greatest preference for position 4 is an uridine (Tate and Mannering, 1996). Taken together, 

the resulting energy, when performing eukaryotic stop codon decoding, is composed of H-bonding 

interactions and is considerably increased by the additional utilization of several stacking interactions 

due to mRNA compaction and U-turn formation.  

 

Figure 58:  The Follwing Base (at Position 4) Influences Stop Codon Decoding. 

(A) Base stacking free energies as calculated in Friedman et al. (Friedman and Honig, 1995) for the DNA bases 
adenine (A), cytosine (C), guanine (G) and thymine (T). Highlighted in yellow are the possible combinations for 
position 4 (boxed) when the stacking base is considered to be Hs G626. (T and uracil (U) are assumed to 
similarly contribute to base stacking energy). The pyrimidine bases C and T are boxed in red whereas the purine 
bases G and A are boxed in green. Cycle 1 (ΔG(ν)) is according to Smith et al. (Smith and Honig, 1994) and cycle 
2 (ΔG(α)) according to Gilson et al. (Gilson and Honig, 1988). Base stacking free energies are higher for purine-
purine stacking. (B) Different termination activities and frequencies of occurrence for stop signals in Escherichia 
coli (E. coli) or mammalian cells depicting class-specific differences as reported in Tate et al. (Tate and 
Mannering, 1996). The investigated UAA(A) stop codon is highlighted in yellow. Forth position pyrimidine and 
purine bases are boxed in red and green, respectively.  
Figure (A) was modified from Friedman et al. and Figure (B) from Tate et al. (Friedman and Honig, 1995; Tate 
and Mannering, 1996). 

 

As mentioned, the numerous mutational studies on eRF1 termination efficiency were conducted 

under various experimental conditions and with different stop codons. Mutated eRF1 residues could 

be specifically responsible for the direct recognition of either a G or an A in a particular position 2 or 

3, leading to influenced termination efficiency. However, a different stop codon could also result in 

structural rearrangements in eRF1 that particularly occur for each stop codon. Hence, eRF1 might 

harbor the two different RFs that are present in prokaryotes in one single protein by alternating its 
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conformation in the A-site. Therefore, the essential question remains, whether mRNA and eRF1 

interactions are differently mediated for the UAG and UGA stop codons than what could be observed 

for the UAA(A) stop codon in this study.  

 

Figure 59:  U-turn Like Conformation (or Maybe Not). 

(A) U-turn conformation of the UAA(A) stop codon (red) in our cryo-electron microscopy (cryo-EM) derived 
model of the human termination complex (PDB-code: 5a8L). (B) Compacted geometry of the UAA(G) stop 
codon (light blue) in the cryo-EM derived model of the Oryctolagus cuniculus AAQ mutant eRF1- and ABCE1-
containing termination complex (PDB-code: 3JAG) (Brown et al., 2015). (C) Overlay of (A) and (B) revealing a 
∼90° turn of U1 between the two conformations. 
Hydrogen bonds are depicted via dotted lines. 

 

Almost simultaneously to the publication of our study, Ramakrishnan and co-workers (Brown et al., 

2015) also revealed a cryo-EM reconstruction of the Oryctolagus cuniculus (Oc) termination complex. 

The experimental design allowed stalling of termination by the addition of a GGQ to AAQ mutant 

eRF1 protein to an RRL in vitro translation reaction. In this case, the extract-contained ABCE1 protein 

also assembled on the stalled 80S complex, however, no detailed insights were given for its 

interactions. An apparent discrepancy concerning stop codon decoding is the missing U-turn 

conformation in their molecular model (see Figure 59). Here instead, Asn61 of the TAS-NIKS motif 

was suggested to interact with O2 and N4 of the U1 base which is turned by ∼90°. Consequently, 

such U1 positioning results in the loss of the two H-bonds due to U-turn conformation (see Figure 

60A), yet allows the Asn61 side-chain to engage in H-bonding (see Figure 60B). To ascertain the 

precise conformation of U1, higher resolution would be beneficial. Further, the influence of ABCE1 

binding has to be analyzed carefully as it was reported to change eRF1 N domain conformation 

before (Preis et al., 2014).  

The eRF1 AAQ mutation hinders any conclusion about GGQ motif interactions and loop positioning, 

yet the cryo-EM reconstructions of all three stop codons by Brown et al. (Brown et al., 2015) allowed 

comparison of the eRF1 conformation while decoding each kind of stop codon: The eRF1 TAS-NIKS 

motif is quite similarly positioned in all three molecular models while decoding UAA(G), UGA(G) or 

UAG(G). Interestingly, in the termination complexes of the UAA(G) and UAG(G) codons, both 

harboring an A at position 2, positioning of the YxCxxxF (125 - 131) and GTS (31 - 33) motifs are 

indistinguishable. Yet, for decoding the UGA(G) codon, both motifs adopt a different conformation. 

The G at position 2 causes a movement of the YxCxxxF motif towards the mRNA by ∼1 Å. This 

movement is intertwined with a ∼4 Å shift of the whole GTS loop which coincides with a turn of the 

Thr32 side-chain away from the stop codon (see Figure 61A). This indeed presents two varying 

conformations of eRF1 for the three stop codons. Mutational studies on the eRF3 GTPase function 

revealed different effects on termination efficiency of the three stop codons when GTP hydrolysis is 
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impaired (Salas-Marco and Bedwell, 2004). It appears that GTP hydrolysis is most important for UGA 

stop codon decoding rendering it more dependent on eRF3. Since it was shown that eRF1 engages a 

slightly different conformation for UGA(G) decoding (Brown et al., 2015), such structural fine-tuning 

could gain its energy from GTP hydrolysis by eRF3.  

 

Figure 60:  Potential Hydrogen bonding Patterns for the Uridine at Position 1 of the Stop Codon.  

(A) Hydrogen bonding (H-bonding) pattern for uridine at position 1 with Lys63 and the adenosine at position 3 
which occurs if the stop codon engages in a UNR-type U-turn conformation. Here, three hydrogen bonds (H-
bonds) are formed. (B) H-bonding pattern for uracil at position 1 (U1) with Lys63 and Asn61 based on the cryo-
EM structure by Brown et al. (Brown et al., 2015). Here, also three H-bonds are formed.  
H-bonds are depicted via dotted lines. H-bond donors are depicted in blue, H-bond acceptors in red. 

 

Ser33Ala mutation (in the GTS motif) was analyzed via NMR spectroscopy (Blanchet et al., 2015) 

revealing local shifts that also influence the YxCxxxF motif and particularly diminish UGA decoding. 

Therefore, Ser33 was interpreted to be required for G2 read-out, yet its ability to participate in eRF1 

N domain rearrangement necessary for UGA decoding could also explain its importance when a G is 

at position 2. Ser70Ala mutation did not introduce NMR shifts (Blanchet et al., 2015), yet Ser70’s 

H-bonding capacity is required for UGA decoding. Comparison of the three stop codon structures 

revealed closer positioning of Ser70 to the backbone N of Ser33 in the UGA stop codon containing 

structure. Maybe the H-bonding capacity of Ser70 is also necessary for the stabilization of structural 

rearrangements occurring in the GTS loop during proper UGA decoding. 

Further, the slightly better resolved cryo-EM reconstructions of all three stop codons (Brown et al., 

2015) could validate a major role for the Glu55 side-chain in UGG sense codon discrimination. 

Together with Tyr125 the Glu55 side-chain is positioned to H-bond with the N6 of either A2 or A3. 

Interestingly, close inspection of the cryo-EM densities could not reveal side-chain density for Glu55 

in the UAG(G) stop codon containing reconstruction which is best resolved (3.45 Å) (see Figure 61B). 

Yet, in the less well resolved UGA(G) stop codon containing reconstruction (3.83 Å) (see Figure 61C) 

density fusion to Tyr125 and A3 are both prominent. Notably, for the UAA(G) stop codon containing 

reconstruction (3.65 Å) (see Figure 61D) the Glu55 side-chain seems to be placed slightly different 

which leads to density fusion rather with A2. Nonetheless, a guanine base harbors an oxygen at 

position 6 (O6) which cannot engage in a similar H-bond with Glu55. The UGG sense codon however 

only contains 2Gs. Not only would their repulsion with each other, but also with Glu55 hinder 

engagement in similar conformations as observed for any of the three stop codons (see Figure 61E).  



D i s c u s s i o n  

 

P a g e  | 125 
 

 

Figure 61:  Alternating eRF1 Conformations During Different Stop Codon Decoding. 

(A) According to Brown et al. (Brown et al., 2015) eRF1 engages in different conformations depending on the 
base identity at position 2 of the stop codon. During UAG (gray) and UAA (light blue) decoding the YxCxxxF and 
the GTS motifs are positioned similarly. However, during UGA (light pink) decoding the YxCxxxF motif is shifted 
by ∼1 angstrom (Å) towards the stop codon which causes a shift of ∼4 Å in the GTS motif containing loop 
combined with a flip of the Thr32 (T32) side-chain. Also according to Brown et al. (Brown et al., 2015) Glu55 
(E55) is the key player in stop codon discrimination always interacting with (B - D) an adenine (A) base at 
position 2 and/or at position 3, explaining why (E) UGG is not recognized as stop codon. Here, both Glu55 
rotamers are depicted (E55# and E55*) neither capable of hydrogen bonding to the guanine at position 2 or 3. 

 

Two-step models have been suggested before for stop codon decoding by eRF1 (Blanchet et al., 

2015; Bulygin et al., 2011; Kryuchkova et al., 2013), however, were rather speculated in a time-wise 

manner. Initial ribosome engagement of eRF1 in the ternary complex could specifically recognize the 

three stop codons and upon structural rearrangements to move the M domain into the PTC also the 

N domain could engage in altered interactions. Such movement would be energy consuming yet, 

could serve as additional layer of control. Certainly, it could account for the various results during 

mutational studies. To ascertain the initial interaction of eRF1 with the mRNA stop codon, a high-

resolution structure of the ternary complex on the ribosome would be clarifying.  

Taken together, due to all acquired cryo-EM structures, novel invaluable insights have been gained of 

how one omnipotent factor can accomplish decoding of all three stop codons. If the mRNA simply 

undergoes compaction to engage in the H-bonding interactions with eRF1 or forms a UNR-type 

U-turn to contribute to its recognition remains to be elucidated. For any scenario, it is likely that the 

stop codon capacity to form the right geometry is monitored by eRF1 and the ribosome. The 

knowledge whether the mRNA codon forms compaction by itself or only upon eRF1 binding could 

particularly help to better understand the phenomenon of stop codon read-through. Analysis of the 

cryo-EM particles which harbor the stop codon in the A-site yet did not bind eRF1 might provide 

answers. It is questionable however, if the stop codon is sufficiently stabilized by its rRNA contacts to 

reveal density of high resolution. The mentioned toe-print assay, which only revealed a 2 nt shift 

upon eRF1 binding (Alkalaeva et al., 2006), argues against an mRNA compaction by mere presence of 

the stop codon in the A-site. 

The idea of including geometry for increasing fidelity in biological processes has been demonstrated 

before where precise and rapid progression is of high importance. For example, during translation 

elongation the A-site mRNA codon and any bound tRNA anticodon form a short A-helix whose 
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Watson-Crick geometry (for the first 2 nucleotides) is enforced by the aforementioned rRNA bases 

Ec G530 (Hs G626), Ec A1492 (Hs A1824) and Ec A1493 (Hs A1825) (Demeshkina et al., 2012; Ogle et 

al., 2003) together with constraints imposed by a P/A kink in the mRNA coordinated by a Mg2+ ion 

and the r-protein S12 (see Figures 62A, B). It was suggested that near- or non-cognate tRNA binding 

is accompanied by high energy loss due to their restricted geometry, therefore leading to anticodon 

discrimination (see Figure 62C and 1.2.2). Here, the right geometry formation is not actively sensed, 

yet enforced geometry is utilized for high fidelity discrimination (Demeshkina et al., 2012). 

 

Figure 62:  Specific Geometry Formation Contributes to High Fidelity Processes. 

(A) In the aminoacyl-tRNA binding site (A-site): Enforcing geometry of the mRNA codon (red) - tRNA anticodon 
(green) A-minor helix by the ribosomal RNA (rRNA) bases Ec G530 (Hs G626), Ec A1492 (Hs A1824) and 
Ec A1493 (Hs A1825) (gray) contributes to accuracy of translation elongation. Cognate and non-cognate A-site 
tRNA binding reveal similar Watson-Crick geometry. In the case of near- or non-cognate tRNAs the required 
energy for tautomerization or repulsion to fit the enforced geometry leads to tRNA dissociation (PDB-codes: 
3TVE and 3TVF). Escherichia coli (Ec) numbering is given. Human numbering is in parentheses. (B) Schematic 
representation of the rRNA bases Ec G530 (Hs G626), Ec A1492 (Hs A1824), Ec A1493 (Hs A1825) and Ec A1913 
(Hs A3731) (gray) in the decoding center (DC) of a vacant 70S (left) ribosome or during A-site occupation by any 
cognate, near-cognate or non-cognate tRNA (right). (C) Schematic representation of the A-site interactions: The 
geometry of the first two codons is restricted by the DC (h18, h44, H69 and S12) together with the P/A kink 
(indicated on the left) which is coordinated by a Mg2+ ion (light green). Cognate tRNA binding (left) leads to 
hydrogen bonding (H-bonding) between the codon and the anticodon. Near-cognate tRNA binding (non-
matching bases indicated in pink) leads to enforced Watson-Crick geometry (middle) whereas its geometrically 
favored wobble base pair geometry (right) would have resulted in two hydrogen bonds if its formation had 
been possible. (D) Active geometry sensing mediated by the T7 DNA polymerase (beige) which contributes to 
the accuracy of replication. Arg429 (R429) and Gln615 (Q615) of the polymerase form H-bonding interactions 
to the DNA minor groove (PDB-code: 1T7P) (Doublié et al., 1998). A mismatch, resulting from nucleotide 
(ddGTP) miss-incorporation by the polymerase, introduces distortions that might lead to the loss of H-bonding. 
(E) Geometry of DNA base pairs according to Hunter et al. (Hunter et al., 1986). Distances are given for both C1’ 
atoms and angles are given between the C1’ – C1’ distance vector and the C1’ – N1 (N9) bond showing 
differences for the Watson-Crick base pairs (green) and non-Watson-Crick base pairs (red). 
Figure (C) based on Demeshkina et al. (Demeshkina et al., 2012) and Figure (E) on Hunter et al. (Hunter et al., 
1986).  

 

The concept of enclosing geometric shapes is not only restricted to the ribosome. Another process 

where a molecular machine examines geometry to add to its high fidelity is applied during DNA 

synthesis. Here, the DNA polymerase incorporates dNTPs with error frequencies of ∼10-5 to ∼10-6 
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(Doublié et al., 1998) essential for accurate genome replication. The correct selection of the Watson-

Crick base pair is favored by the formation of H-bonds of the incoming dNTP with the DNA template 

base. Yet, in this high fidelity process, base-pairing and concomitant H-bonding is not enough to 

account for the great accuracy. Liu et al. (Liu et al., 1997) designed a study where a dTTP with a non-

standard difluorotoluene (dF) base was incorporated. Its isosterity to the thymine (T) pyrimidine ring 

combined with its poor base-pairing capacity to any DNA base still allowed its successful 

incorporation in lieu of T with only slightly diminished fidelity. Consequently, this experiment 

demonstrated the importance of size and shape of the base pair rather than solely the H-bonding 

network. In subsequent studies, interactions of the polymerase to the minor groove of the DNA 

proved crucial for the geometric selection (Brown and Kennard, 1992; Seeman et al., 1976). More 

specifically, based on crystal structures (Doublié et al., 1998; Kiefer et al., 1998; Li, 1998), the DNA 

polymerase residues Arg429 and Gln615 interact with the minor groove N3 of the primer 3’ end and 

O3 of the corresponding template base, respectively (see Figure 62D) (Doublié et al., 1998). A 

mismatch, resulting from dNTP miss-incorporation by the polymerase, introduces distortion in three 

geometric parameters: The width of the base pair and the two angles between the C1’ – C1’ distance 

vector and the C1’ – N1 (N9) bonds of the two nucleotides (see Figure 62E) (Hunter et al., 1986). Such 

distortion might be sensed as loss of one or both of these minor groove interactions of the DNA 

polymerase. Furthermore, upon nucleotide binding, a large conformational change in the DNA 

polymerase defines tightness of the active site and determines strictness of the geometric restraints. 

Here again, the conformational change can only accommodate a properly fitting base-pair. 

Accordingly, to also include geometry formation in the irreversible process of translation termination 

would be reasonable considering its high fidelity and importance in protein synthesis. Whether 

mRNA compaction is monitored or specifically the capability of U-turn conformation cannot be surely 

determined at present resolutions. Yet, the acquired cryo-EM reconstructions present the basis for 

more specifically designed mutational and biochemical assays which can assist in unraveling 

remaining questions in the context of stop codon decoding.  
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5 Summary and Outlook 

This dissertation presents a high-resolution cryo-EM structure of the human translation termination 

complex, unraveling the stop codon recognition mechanism duing translation termination.  

Due to the absence and costliness of reliable commercial human in vitro translation systems, we 

optimized our own enhanced HeLa cell based in vitro translation extract. This extract was utilized to 

obtain hCMV-stalled human 80S ribosomes which harbor an mRNA stop codon (UAA(A)) in the A-site 

and allow efficient binding of human eRF1. Affinity purification of the complex revealed 

homogenously and stably stalled ribosomes with a Pro-tRNA bound to the P-site and heRF1 bound to 

the A-site. Subsequent cryo-EM recording of 245,253 particles with a Titan Krios equipped with a 

DDD and in silico sorting to 33,165 particles resulted in the reconstruction of the termination 

complex with an overall resolution of 3.8 Å (FSC0.143). The local resolution determination revealed 

similarly resolved heRF1. Rigid body fitting of the human POST state ribosome (Behrmann et al., 

2015) demonstrated its large accordance with our cryo-EM density. Single nucleotides and aa, 

especially in the PTC, the exit tunnel region and at the DC could be identified to harbor a different 

conformation due to stalling or heRF1 binding and were adapted accordingly. As expected at this 

resolution, the pitch of alpha helices, beta-stand separation and most bulky side-chains could be 

visualized. This allowed modeling of heRF1 based on the ribosome-unbound crystal structure (Cheng 

et al., 2009) which had to be heavily adjusted for the ribosome-bound state. Further, our density 

allowed de novo modeling of the C-terminal part of the hCMV-stalling peptide and the localization of 

the two for stalling indispensable ultimate and penultimate prolines which cause flipping of Hs 

U4493 (Ec U2585) by 90° hindering its participation in the chemical reaction of peptide-bond 

hydrolysis therefore being the cause for termination stalling. Surprisingly, from the PTC to the central 

constriction, the nascent chain engages in an α-helical conformation. Starting from Leu6, positioned 

at the central constriction, to the N-terminus a backbone trace of the nascent chain could be 

followed through the exit tunnel. Overall, the α-helix numerously contacts the tunnel wall, yet not all 

contacting residues seem to be essential for stalling which was demonstrated by mutational scanning 

analysis. 

eRF1 itself was bound in its elongated state reaching from the DC to the PTC. Conformations of the 

conserved eRF1 GGQ motif in the PTC, as well as the P-site tRNA CCA end, were comparable to their 

prokaryotic counterparts. In the DC, however, the RFs from prokaryotes and eukaryotes as well as 

their influence on the ribosome differ greatly. The afore identified TAS-NIKS, YxCxxxF and GTS motifs 

of eRF1 indeed play a crucial role for stop codon decoding by H-bonding to the three bases UAA. 

Furthermore, heRF1, as well as the rRNA bases Hs A1825 (Ec A1493) and Hs G626 (Ec G530), is 

involved in cavity formation into which the UAA(A) stop codon is pulled. The mRNA conformation is 

stabilized by base stacking interactions with A2 and A4 accounting for energy gain. Strikingly, the UAA 

bases engage in a hitherto unique mRNA geometry which has, however, been observed for tRNA and 

rRNA elements before. More precisely, utilizing the stop codon’s capacity to form a UNR-type U-turn 

geometry as read-out element introduces an additional layer of accuracy by putting restraints on the 

three involved bases. Position 1 can only be taken by a uracil base and position 3 has to be a purine 

base. Consequently, such U-turn geometry can only be formed by eight existing codons already 

omitting 56 sense codons from mistakenly being interpreted as termination signal. The formation of 

the tight cavity, base stacking and specific H-bonding patterns further confer high fidelity to stop 

codon decoding by heRF1. 
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For the future, the established in vitro translation extract lays the groundwork for the purification of 

other eukaryote-specific stalling complexes and for the in vitro reconstitution of other human 80S 

complexes. As always, highest possible resolution of the human termination complex to provide 

more detailed insights on the molecular mechanism of stop codon decoding or for example to 

account for the contribution of the Lys63 hydroxylation will be further aspired. Yet, this cryo-EM 

structure already provides various novelties, aspects and insights to the long-standing question of 

stop codon decoding in eukaryotes which can now be used as inspiration for skillfully designed 

prospective research assays in this context. 
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7 Appendix 

7.1 Plasmid Constructs for Protein Expression 

Color code 

      - ATG start codon 

      - 3xFLAG-tag 

      - Sequencing primer binding site 

      - TAA/TAG stop codon 

      - (His)6-/(His)8-tag 

      - TRX-tag 

      - 3C-/TEV-cleavage site 
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7.1.1 pCDNA3.1 3xFLAG-hABCE1 
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7.1.2 pET-28a (His)6-Δ(1-46)Jmjd4 
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7.1.3 pET-32a TRX-(His)6-TEV-heRF3a Full Length  
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7.1.4 pETDuet-1 heRF1 

 

 



A p p e n d i x  

 

P a g e  | 167 
 

 

  



A p p e n d i x  

 

P a g e  | 168 
 

7.1.5 pETDuet-1 (His)8-3C-heRF1 
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7.1.6 pETDuet-1 Δ(1-138)heRF3a  
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7.1.7 pRSFDuet-1 Δ(1-138)heRF3a-3C-(His)8 
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7.1.8 pRSFDuet-1 (His)8-3C-Δ(1-138)heRF3a 
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7.1.9 pETDuet-1 heRF3a Full Length 
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7.1.10 pETDuet-1 heRF3a Full Length-3C-(His)8 
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7.1.11 pETDuet-1 (His)8-3C-heRF3a Full Length 
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7.2 Plasmid Construct for the Human in vitro Translation System 

Color code 

      - CrPV IGR IRES sequence 

      - linker 

      - ATG start codon 

      - (His)6-tag 

      - 3C-cleavage site 

      - HA-tag 

      - hCMV-stalling sequence 

      - TAA stop codon 

      - poly(A)-tail 
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7.2.1 pT7CFE1 CrPV IGR IRES-linker-(His)6-3C-HA-hCMV-p(A)26 with TAA(A) 

Constructs containing the TAG(A), TGA(A) and TAA(G) stop codons were similarly constructed. 
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