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Zusammenfassung

In dieser Dissertation untersuchen und verwenden wir geometrische Methoden zur Berech-
nung von Verschränkungs-Entropie in Feldtheorien, die gemäß der Eichtheorie/Gravitations-
Dualität über ein Gravitations-Dual verfügen. Die Hauptresultate dieser Arbeit ergeben
sich aus der Anwendung unserer Ergebnisse auf die Untersuchung von Verschränkungs-
und Defekt-Entropien in einem holographischen Modell des Kondo-Effektes.

Die Eichtheorie/Gravitations-Dualität ist eine wichtige Methode zur Untersuchung stark
gekoppelter Systeme. Zunächst geben wir einen kurzen Überblick über die verwandten
Ideen des holographischen Prinzips und die Realisierung der AdS/CFT-Korrespondenz in
Stringtheorie (AdS steht hier für Anti-de Sitter, und CFT steht für Konforme Feldthe-
orie, englisch conformal field theory). Außerdem besprechen wir das Konzept der Ver-
schränkungs-Entropie und erklären, wie diese Größe holographisch berechnet werden kann.

Anschließend wenden wir moderne Methoden zur Berechnung von Verschränkungs-Entropie
in Gravitationstheorien mit Termen höherer Krümmungsordnung auf spezielle Raumzeiten,
im Besonderen auf stationäre Schwarze Löcher, an. Dabei stoßen wir auf analytische
Lösungen für die extremalen Hyperflächen, die die Verschränkungs-Entropie bestimmen,
welche sich um das Schwarze Loch winden. Wir argumentieren, dass diese Hyperflächen
unphysikalisch sind, indem wir aufzeigen, dass sie bestimmte Kausalitätsbedingungen ver-
letzen.

Weiterhin untersuchen wir die geometrischen Eigenschaften bestimmter Modelle für Du-
alitäten zwischen AdS-Räumen und Grenzflächen-CFTs, mit einem besonderen Augen-
merk auf ein kürzlich vorgeschlagenes holographisches Modell des Kondo-Effektes. Eines
der Hauptresultate dieser Dissertation wird darin bestehen, ein Verständnis dafür zu er-
langen, wie sich Energie-Bedingungen auf die möglichen Geometrien der höherdimensio-
nalen Raumzeit auswirken. Wir wenden dann die Ergebnisse dieser Untersuchungen im
Speziellen auf das Kondo-Modell an und insbesondere berechnen wir Verschränkungs- und
Defekt-Entropien numerisch. Diese Größen können im Kontext des RG-Flusses, welchen
das Kondo-Modell erfährt, interpretiert werden. Es wird im Detail erläutert, inwiefern das
holographische Kondo-Modell Erwartungen aus Feldtheorie-Rechnungen erfüllt und wie
es verbessert werden könnte. Weiterhin gehen wir auf aktuelle Vorschläge zur Definition
eines holographischen Maßes für Komplexität ein. Dabei handelt es sich um einen Begriff
aus der Quanteninformationstheorie. Die Arbeit endet mit einem Ausblick auf mögliche
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Abstract

In this thesis we investigate and use geometrical prescriptions for the calculation of en-
tanglement entropy in field theories that have a gravity dual according to gauge/gravity
duality. The main results of this work will arise from the application of our findings to the
study of entanglement and defect entropies in a holographic model of the Kondo effect.

Gauge/gravity duality is an important tool for the study of strongly coupled systems.
We give a short review over the related idea of the holographic principle and the realisa-
tion of the AdS/CFT correspondence in string theory. We also introduce the concept of
entanglement entropy and review the methods of holographically calculating it.

We then apply recent prescriptions for calculating holographic entanglement entropy in
gravitational theories with higher curvature terms to specific example spacetimes, such
as stationary black holes, and obtain analytical solutions for extremal surfaces defining
entanglement entropy that wrap around the black holes. We argue that these surfaces are
unphysical by discussing how they violate certain well motivated causality constraints.

We then investigate the geometrical properties of certain models of dualities between AdS
spaces and boundary CFTs, with a special interest in a recently proposed holographic
model of the Kondo effect. Understanding the impact of energy conditions on the allowed
bulk geometries will be one of the main results of this thesis. We then apply the knowledge
gained from these studies to the specific Kondo model, and numerically calculate entan-
glement and impurity entropies. These quantities can be interpreted in terms of the RG
flow that the Kondo model undergoes. It will also be discussed in detail to which extend
the holographic model reproduces field theory expectations, and how it can be improved.
Furthermore, we investigate recent proposals of defining holographic measures of complex-
ity. This is a quantity in quantum information theory. We end with an outlook on possible
future research directions.

This thesis is based on the research that the author carried out as a PhD student under
the supervision of Prof. Dr. Johanna Erdmenger at the Max Planck Institute for Physics
in Munich, Germany, between the 2nd of April 2013 and the 31st of March 2016. The
relevant publications are:
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Chapter 1

Introduction

From clockworks to geometry and information

The goal of natural sciences is to describe the world around us in exact scientific terms,
often by uncovering fundamental laws of nature and phrasing them in an unambiguous
mathematical language, thereby enabling scientists to make predictions about future events
in nature or laboratory environments. Ultimately, the natural sciences, specifically physics,
have to be applied to the universe as a whole. In this endeavour, it is not surprising that,
instead of starting from scratch, people have often derived inspiration from the ideas of
science and technology that were prevalent at the time. The deterministic laws of celestial
motion and Newtonian mechanics have, for example, often caused scientists to liken the
universe to a clockwork. In contrast, during the last century, the analogy of the universe
as a (quantum) computer seems to have grown popular.

A little more than 100 years ago, Albert Einstein’s general theory of relativity1, introduced
the idea into theoretical physics that events in the universe are not taking place on a fixed
stage, but that spacetime itself is a dynamical quantity, and has to play an important part
in the physics of the universe. This was already an enormous paradigm shift, but it didn’t
take long before scientists such as Oskar Klein and Theodor Kaluza proposed that the idea
of dynamical spactime geometry could lead the way to a unification of general relativity
and electromagnetism. Although due to certain problems of this approach and the rise of
quantum field theory these early ideas have fallen somewhat out of favour shortly after
their advent,2 they have arguably seen a strong comeback with the necessity of handling
the extra dimensions that string theory proposes.

In the 1950s, the idea of dynamical geometry as the fundamental property of nature made
its return to (classical) theoretical physics with Wheelers idea of geometrodynamics [7, 8],
culminating in the slogan “physics is geometry” [8]. This program proposed that, for

1Just recently confirmed once more by the direct detection of a gravitational wave [5].
2For an excellent overview over the early history of general relativity and Kaluza Klein theory, see [6].
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example, point charges could be seen as the ends of tiny wormholes from which the field
lines of a source-free electromagnetic field emerge.

These ideas attracted some amount of interest at the time, only to fall out of favour
thereafter, only to be revived once more in a slightly different way under the modern slogan
“ER=EPR” (see [9–13] for a partial list of references). This idea notes certain fundamental
similarities between the physical properties of entangled particles (EPR pairs) and black
holes (defined by the geometry of Einstein-Rosen (ER) bridges) and proposes that this
is not a coincidence, but in fact a fundamental duality between these two phenomena.
This would mean that entanglement, one of the core phenomena of quantum physics and
quantum information theory, can be understood in terms of geometry and topology. How
can such a bold claim be made with so much confidence? The reason is that this is not
an isolated qualitative idea, but it is motivated and in some cases derived from a much
broader, more fundamental and, most importantly, more quantitative framework, namely
the ideas of holography and gauge/gravity duality.

Holography

The ideas of holography arise from the need to formulate a consistent theory of thermo-
dynamics in a world that allows for black holes to exist. Black holes are solutions to the
equations of Einstein’s gravity (or similar theories) that have a non-trivial causal struc-
ture, i.e. there are regions in the black hole spacetime that cannot send a signal out to
the region infinitely far away from the black hole. Such objects can only arise in a theory
where the speed of communication has an upper bound (the speed of light in Einstein’s
theory) and the spacetime metric (the mathematical object determining the trajectories
of information carrying signals) is a dynamical quantity, not being fixed to be a simple
background structure. Even more, such objects are not only theoretical constructs allowed
by the mathematics of Einstein’s theory, but also have they likely been observed to exist
in nature [5]. The consistency of the physics of such objects with the well known laws of
thermodynamics is hence an interesting and important question, the study of which was
started in [14–16]. The result of this work was the realisation that not only is it necessary
to assign entropy to black holes, but that this entropy has to scale like the surface area of
the black hole. This is in contrast to non-gravitational systems where the thermodynamic
entropy, being an extensive quantity, scales like the volume. This groundbreaking result
has led to deep investigations into the thermodynamics of black holes and quantum field
theory in curved spacetimes. Also, it has led to the idea that there should be upper bounds
on the amount of entropy (or information) that can be stored in physical systems, depend-
ing on the characteristics of the system such as energy content or size [17–19]. Simply
speaking, whenever someone tries to violate these bounds by storing too much entropy
in a given system, nature automatically intervenes by forming a black hole. This led to
the proposal [18, 19] that a consistent theory unifying the laws of gravity and the laws
of quantum physics should obey the holographic principle, the principle that the number
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of degrees of freedom of a given spacetime region scales like its surface area, not like its
volume.

The best current candidate for a unified theory of quantum gravity is string theory (see
[20–24] for introductory texts), and indeed it has been shown [25–27] that the holographic
principle is realised in string theory in the form of an Anti-de Sitter/conformal field the-
ory (AdS/CFT) correspondence. Specifically, the most well known example studied in [25]
proposes a duality between type IIB superstring theory on an AdS5×S5 background and
N = 4 SU(N) super Yang-Mills theory in 3 + 1 dimensions, which is a CFT. The former
theory is (in general) a theory of quantum gravity and hence its foundational principles
and properties must currently be considered to be mysterious, but the latter one, in con-
trast, is a quantum field theory and hence in principle well understood. This is how the
AdS/CFT correspondence encodes the holographic principle, a quantum gravity theory in
(after compactification) (d + 1) + 1 dimensions is formulated as a d + 1-dimensional field
theory, such that the entropies in both theories will scale as lengthd.

Although we wrote above that in general the mathematical principles of quantum field
theory are much better understood than those of quantum gravity, we will see later that
the best understood form of Maldacena’s AdS5/CFT4 correspondence requires us to work
in a parameter range where the CFT is strongly coupled, making computations hard in
practice. On the other hand, the quantum gravity theory becomes weakly coupled classical
gravity in this case, and is hence tractable. The AdS5/CFT4 correspondence and similar
models of AdS/CFT duality and generalisations thereof, going by the name gauge/gravity
dualities, then provide a new way of studying strongly coupled systems. This topic is
notoriously hard due to the inapplicability of perturbation theory and the shortcomings
of lattice techniques. Successes of gauge/gravity duality techniques in this field involve,
amongst many others, the following:

• Gauge/gravity duality naturally suggests an investigation of the information paradox,
as the CFT that is dual to the quantum gravity theory in the bulk is manifestly
unitary [28].

• Using gauge/gravity techniques, it has been possible to derive the ratio of shear
viscosity η to entropy density s,

η

s
=

1

4π

~
kB
, (1.1)

for a wide class of holographic fluids [29,30]. Later, an entire field called fluid/gravity
correspondence emerged in which the methods of holography, and in particular the
physics of black holes and event horizons, were applied to the study of fluids [31], see
also [32] for an overview.

• In fact, the result (1.1) has been conjectured to be a universal lower bound on η/s
for realistic systems [29, 30] (see also the review [33]), an idea fuelled by the fact
that of all experimentally known fluids in nature it is the (strongly coupled) quark-
gluon plasma (QGP) that comes closest to this bound, but it does not violate it



4 1. Introduction

[30, 33, 34]. Much work, often involving numerical simulations of dynamical bulk
spacetimes, has been invested to apply gauge/gravity techniques to the study of
strongly coupled plasmas and QGP phenomenology, which can experimentally be
studied in heavy ion collisions at accelerators such as LHC or RHIC. Apart from
this problem of heavy ion collisions, gauge/gravity methods have also been applied
to other questions in quantum chromodynamics (QCD). For overviews of the various
attempts to create qualitative holographic duals of QCD see [33, 35–37]. Notable
results are the holographic studies of meson melting and meson spectra (see [33, 38]
for reviews) and of the QCD phase diagram (see [36] for a review). Very recently,
holographic methods have also been applied to the study of glueballs [39].

• Gauge/gravity duality has also been applied to condensed matter physics, for exam-
ple with the study of holographic superconductors pioneered in [40, 41]. A detailed
overview over the vast landscape of holographic models and results concerning con-
densed matter physics is beyond the scope of this introduction, but see [42, 43] for
reviews and references.

• Gauge/gravity duality and especially one of its features, the UV/IR connection [44],
naturally suggest an application to the study of renormalisation group (RG) flows,
both by constructing duals of specific flows (see e.g. [45]) or by proving general
theorems about RG-flow monotones, such as the famous c-theorem or similar theo-
rems [45–49].

Overviews of some of the above mentioned research directions as well as further references
can also be found in the recent textbooks [50–53].

We see that the concrete realisation which the holographic principle has, due to string
theory, found in the form of the AdS/CFT correspondence and gauge/gravity duality has
transformed holography from a simple property of gravitational theories to a versatile tool
that can be applied to many different research questions and topics. In the next section,
we will focus on one additional important achievement of gauge/gravity duality research
that was left out in our above enumeration, namely the holographic study of entanglement
entropy.

Entanglement entropy

In its weak form, i.e. when taking the limit of strong coupling in the CFT and small bulk
Newton’s constant, the AdS/CFT duality is not only a strong-weak duality but also a
quantum-classical duality. This means that quantum phenomena of the field theory, like
for example entanglement, have to be somehow encoded in the classical bulk gravity theory.

There are different ways of quantifying the amount of entanglement between two quantum
systems (see [54] for a basic introduction to quantum information theory), and one of
the simplest ways to do so is by calculating a quantity called entanglement entropy. For
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a quantum system A which is the subsystem of a larger quantum system, entanglement
entropy is defined to be the von Neumann entropy of the reduced density matrix ρA of the
system A, i.e.3

SA = −kBTrA[ρA log ρA]. (1.2)

Ryu and Takayanagi proposed in [55, 56] that this field theory quantity has a very simple
geometrical interpretation, namely that the holographically dual way to calculate this
quantity is to calculate the area A of a certain extremal hypersurface in the curved bulk
spacetime. The entanglement entropy is then

SA =
kBc

3

~GN

A
4
. (1.3)

This encompasses the Bekenstein-Hawking formula for black hole entropy as a special case
and generalises it. Holography thus naturally suggests to interpret black hole entropy as
entanglement entropy for a division of the dual theory into two sectors. As the entropy
of stationary black holes is determined by their geometrical properties (Killing horizons,
bifurcation surfaces et cetera), this leads to a geometric interpretation of entanglement in
holography and hence to the idea of “ER=EPR” mentioned earlier on. In fact, as the
dual prescription (1.3) for calculating entanglement entropy is only dependent on the bulk
geometry, and not on any other bulk field, it is the ideal subject to study in order to
understand how gauge/gravity duality leads to a modern manifestation of the old slogan
“physics is geometry”.

Gauge/gravity models do not have to be derived from string theory, in fact it is quite
common to propose bottom-up models that follow the spirit of stringy holography, but
otherwise take some freedom. For example, such models may make use of asymptotically
AdS spacetimes and interpret certain bulk objects as dual to certain objects in a conjectured
dual field theory, but otherwise freely fix the field content of the bulk theory without having
a concrete derivation of that field content from a string theory model in mind. In such
bottom-up models it may then occasionally be of interest to consider bulk gravitational
theories which are not pure Einstein-Hilbert gravity, but contain higher curvature terms
in their action. It is well known [57–59] that such higher curvature terms will lead to
corrections to Bekenstein’s area formula for black hole entropy and consequently there
will also have to be corrections to the holographic entanglement entropy formula. These
corrections have only recently been determined [60–63] and it will be one of the topics of
this thesis to study geometrical properties of holographic entanglement entropy when such
higher curvature corrections are present. In particular, we will investigate the geometrical
impact of the causal influence argument [64], which has to hold for simple physical reasons.

3In contrast to many sources that are concerned with information theory, we explicitly include the
factor kB here.
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Holographic impurities and the Kondo effect

Above, we have seen that holographic techniques have been successfully applied to topics
in condensed matter physics. One phenomenon out of this broad field that will be studied
in this thesis is what is known as the Kondo effect. See [65] for the original source, [66,67]
for a modern perspective and [68] for a brief historical overview.

This effect has first been observed by measuring the resistivity of metal probes with a
low concentration of impurity atoms as a function of temperature. For example, when
investigating the resistivity of a gold probe with dilute iron impurities it is clearly visible
that as the temperature is lowered, the resistivity first attains a minimum at a certain
temperature and then increases [69]. This increase of resistivity at low temperatures was
surprising as it was qualitatively different from the expected decrease in normal metals
or even superconductors [65, 66, 68]. As the effect was only observed in the presence of
magnetic impurities and was found to be proportional to the concentration of the impurity
atoms, it was quickly realised that the phenomenon had to be due to the interaction of
conduction electrons with localised single magnetic impurities [65, 68]. A perturbative
second order calculation by Jun Kondo then showed in [65] that due to the spin-spin
interaction between impurities and electrons, the resistivity ρ at low temperatures follows
an equation of the form

ρ(T ) = a1T
5 + ca2 − ca3 log

(
T

TF

)
, (1.4)

where c is the concentration of the impurity atoms, TF is the Fermi temperature and the
ai are model dependent positive parameters. The term ∼ − log(T ) explains the rise of
resistivity at low temperatures. However, the prediction of a divergence of the resistivity
at low temperatures is unphysical, and signifies a breakdown of the perturbation theory,
used to derive (1.4), below a certain temperature TK , the Kondo temperature [65–67, 70].
The desire to understand the correct behaviour of these impurity systems at temperatures
below the Kondo temperature TK , the Kondo problem [67], inspired the application and
development of a variety of different physical methods [66], including renormalisation group
methods [70,71]. The modern understanding of the solution of this problem is that at low
temperatures the impurity is screened from the rest of the system by conduction electrons
that form the Kondo screening cloud [72], see also [66,67,73,74]. As pointed out in [66,67],
interest in the Kondo effect has increased recently with the advent of nanotechnology and
quantum dots [75].

The Kondo effect has attracted a large amount of attention from the theoretical physics
community, and the works cited above only give a small glimpse of the extensive literature
that is available on this topic. There is even a sizeable amount of holographic models
describing Kondo impurities or related physics, see [76–86]. What interesting things can
such holographic models still teach us about a phenomenon that is so well researched in the
condensed matter literature? In the closing section of [66], three mayor topics concerning
the physics of the Kondo effect were outlined that still warrant further research:
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• The properties of the Kondo cloud, and ways to measure and manipulate it.

• Time-dependent phenomena in Kondo systems.

• Interactions between different magnetic impurities.

Excitingly, all three of these items can be studied based on a holographic Kondo model pro-
posed in [86] and sketched in figure 1.1. This model will be explained in more detail later,
for the moment it is only important to note that the asymptotically AdS bulk spacetime
is a 2 + 1-dimensional black hole, and the localised magnetic impurity is holographically
described by an infinitely thin massive hypersurface, referred to as brane in the following.
The two impurity case of this model was holographically studied in [87], and a numerical
study of time-dependent phenomena in the model of [86] is currently under way. Results
on the Kondo cloud based on this model have been published in [3,4] and will be a central
issue of this thesis in chapter 6.

2`

spin impurity

brane matter am, Φ

z
zH

bulk matter Aµ

bulk geodesic

black hole

x

x
Kondo cloud

AdS boundary

Field theory picture:

Gravity picture:

Figure 1.1: A sketch of the holographic bottom-up Kondo model of [86]. On the field
theory side, we have conduction electrons interacting with a localised impurity via spin-
spin interaction. At low temperatures these electrons will form a Kondo cloud bound to
the impurity. In the dual gravity model, the localised impurity is mapped to a localised
codimension one hypersurface, called brane, embedded into the ambient spacetime. A
Chern-Simons field Aµ is defined throughout the bulk spacetime, while a scalar field Φ and
a gauge field am are confined to the worldvolume of the hypersurface. The entanglement
entropy of a boundary interval of length 2` centered around the impurity will be holo-
graphically given by the length of a spacelike geodesic crossing the brane. The figure is
presented as in [3].

Specifically, we will study the Kondo cloud using holographic calculations of entanglement
entropy. As said above, the Kondo effect comes about due to the spin-spin interaction of
conduction electrons and impurity, creating entanglement between the impurity and the
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conduction electrons [74]. Entanglement entropy can hence be used to study the Kondo
cloud and its length scale, as has been done in the field theory literature in [88–91]. We
carry out similar computations using the holographic Kondo model, but to do so we need to
consistently take into account the backreaction of the brane onto the bulk geometry. The
necessary mathematical formalism to do so is given by the Israel junction conditions, which
will be studied in detail. Proposals for holographic duals of field theories with boundaries,
or field theories interacting with impurities or defects, based on these junction conditions
have been proposed already in [92–94]. Towards the end of this thesis, it will become
clear how the geometrical properties of the model of [86] and the Israel junction conditions
combine in a non-trivial way to yield new insights into holographic Kondo physics.

Results of this thesis

In this thesis, we present several new results that have been published in [1–4]. Of course
these papers were not written without the help of the coauthors listed on these papers, and
hence we will in this thesis focus on presenting the contributions that the present author
made to these publications. In particular, the original results to be presented in this thesis
will be the following:

• Following [1], we will demonstrate the importance that causality constraints have
in the calculation of holographic entanglement entropy. We will do so by explicitly
calculating closed holographic entangling surfaces in black hole spacetimes in new
massive gravity (NMG) and Gauss-Bonnet gravity, demonstrating that the standard
prescriptions proposed in the literature [60–63] would lead to unphysical results.
The imposition of causality constraints is then sufficient to exclude the unphysical
hypersurfaces both in NMG and Gauss-Bonnet gravity.

• In a framework proposed by Takayanagi [92–94] for constructions of bottom-up mod-
els of AdS/boundary CFT duality, we provide a geometrical theorem that greatly
constrains the possible geometries of bulk spacetimes in models of this type, depend-
ing on the energy conditions satisfied by the bulk matter [2].

• Furthermore, as in [2], we present a variety of exact solutions to a simple toy model
of this kind, showcasing the content of the above mentioned geometrical theorem.

• We then apply these geometrical methods to the specific bottom-up model of the
Kondo effect proposed in [86]. From the resulting bulk geometry, we holographically
calculate entanglement entropy and impurity entropy and show that the holographic
model satisfies the g-theorem, as expected. These results have been published in [3,4].

• For AdS/BCFT models such as the Kondo model of [86], we develop a geometri-
cal approximation method that is valid when calculating the entanglement entropy
of large boundary regions [3, 4]. We will compare the analytical formula following
from this approximation scheme to an analytical result published in the field theory
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literature [90], finding good agreement.

• We will also comment on a quantity referred to as computational complexity [95–101]
and present results on this quantity in the holographic Kondo model that have not yet
been published elsewhere. We will discuss both the possible physical interpretation
of this quantity in the light of the RG flow of the Kondo model, as well as certain
issues concerning the definition and holographic computation of complexity.

• Finally, we will analyse the low temperature features of the holographic Kondo model.
It is then shown by analytical arguments [3] that the potential of the scalar field Φ
needs to be equipped with terms of at least quartic order for the model to show
realistic behaviour at very low temperatures.

Outline of this thesis

The structure of this thesis is as follows:

• Chapter 2 will deal with the fundamental ideas behind holography and the AdS/CFT
correspondence. Specifically, section 2.1 will summarise how the physics and ther-
modynamics of black holes leads to the holographic principle. In section 2.2 we will
then encounter a first realisation of the holographic principle due to the asymptotic
symmetries of three-dimensional Anti-de Sitter space. The following section 2.3 will
contain a detailed look at how the to this date best understood manifestation of
the holographic idea, namely Maldacena’s AdS5/CFT4 correspondence, arises from
string theory. The chapter closes with a few musings on the similarities and differ-
ences between gravitational holography and optical holography in section 2.4.

• In chapter 3 we will then encounter what arguably is (besides the idea of holography
itself) the main topic of this thesis: entanglement entropy. The basic definition of
this quantity in quantum mechanical terms will be given in section 3.1, followed by
a discussion of how to calculate this quantity in a holographic way in section 3.2.
In section 3.3 it will be explained how holographic entanglement entropy is related
to and generalises the idea of black hole entropy. This will enable us to understand
the basic motivation of the ER=EPR proposal mentioned earlier. The replica trick,
an important method for calculating and understanding entanglement entropy, will
then be briefly discussed in section 3.4.

• In chapter 4 we will then begin to delve into the new results presented in this the-
sis. After a quick introduction to the topic of holographic entanglement entropy in
the presence of higher curvature terms in section 4.1 we will study explicit calcula-
tions concerning holographic entanglement entropy in two higher curvature theories,
namely new massive gravity in section 4.2 and Gauss-Bonnet gravity in section 4.3.
In both cases we will encounter problems when following the standard prescription
for the holographic calculation of entanglement entropy in these higher curvature
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theories. These problems will be resolved in section 4.4 by imposing a causality
requirement on the prescription for calculating entanglement entropy.

• Bottom-up models for dualities between AdS spaces containing dynamical boundary
surfaces and boundary CFTs (BCFTs) will be discussed in chapter 5. After intro-
ducing the geometric setup in section 5.1, we will in detail study the relation between
energy conditions and geometry for these models in section 5.2. Specifically, we will
present a useful decomposition of the energy-momentum tensor in section 5.2.1, state
the various energy conditions in section 5.2.2 and discuss their implications in con-
junction with the barrier theorem in section 5.2.3. We will then discuss the special
cases of AdS and BTZ background spacetimes in section 5.2.4. Exact analytical so-
lutions to the equations of motion defined in section 5.1 will then be discussed in
section 5.3, where in subsection 5.3.1 we deal with constant tension models and in
subsection 5.3.2 we assume the matter content to be described by a perfect fluid.

• Chapter 6 will then be denoted to an application of the results developed in the
previous chapter to the holographic Kondo model of [86]. The Kondo effect itself will
be briefly reviewed from a field theory perspective in section 6.1.1, before explaining
the top-down holographic Kondo model of [86] in section 6.1.2. The main results of
this chapter will however be obtained working with the bottom-up model of [86] to
be summarised in section 6.2. The inclusion of backreaction into this model and its
equations of motion will be discussed in section 6.3. The numerical results on this
model will then be explained in section 6.4, with a focus on energy conditions (section
6.4.1), entanglement entropy (section 6.4.2) and the g-theorem (section 6.4.3). A
semi-analytical approximation formula for the impurity entropy will be discussed
in section 6.5, before the behaviour of a measure of complexity in the holographic
Kondo model is studied in section 6.6. The chapter then closes in section 6.7 with
a discussion of the zero-temperature behaviour of the holographic bottom-up Kondo
model, and ways to improve it.

• The main text of this thesis concludes with chapter 7, where we give an outlook on
possible future research directions related to the topics discussed in this work.

• A number of technical details will be relegated to the appendices. In particular,
in appendix A we will discuss geometrical definitions such as extrinsic curvature
and induced metrics for hypersurfaces of both codimension two (appendix A.1) and
codimension one (appendix A.2). The corollary to the barrier theorem presented in
section 5.2.3 for 2+1-dimensional ambient spaces will be extended to 3+1 dimensions
in appendix B. Finally, appendix C will discuss junction conditions for Chern-Simons
fields similar to the Israel junction conditions for the metric discussed in section 6.3.1.
In this appendix, we will also apply these Chern-Simons junction conditions to a
simple and pedagogical toy model in order to illustrate them.
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Conventions

Most of the time we will be setting the speed of light c, the reduced Planck constant ~ and
the Boltzmann constant kB to one,

c = ~ = kB ≡ 1, (1.5)

leaving only Newton’s constant GN as a dimensionfull independent natural constant. This
is sometimes referred to as quantum units, see e.g. [102]. This in particular means that
all hypervolumes of d-dimensional hypersurfaces (referred to as areas for codimension two
hypersurfaces) will be measured in units of the Planck length `dP . In four spacetime dimen-
sions, `P =

√
GN . We will occasionally also make use of the reduced Newton’s constant

κ2
N ≡ 8πGN and the 10-dimensional reduced Planck length `8

P,10 ≡ κ2
N .

For Lorentzian spacetimes or induced metrics, we use the mostly plus sign convention. A
vector vµ is then called timelike if vµvµ < 0, spacelike if vµvµ > 0 and null if vµvµ = 0. Any
worldvolume, submanifold or hypersurface in a larger spacetime that includes a timelike
vector field is also referred to as timelike, irrespective of how many spacelike dimensions it
may also have. A d + 1-dimensional spacetime is then a spacetime with one timelike and
d spacelike dimension.





Chapter 2

Holography

In the following, we will lay the foundations for the later chapters by discussing the holo-
graphic principle and its realisations in the form of AdS/CFT. To do so, we will summarise
how the existence of a general holographic principle can be inferred from thought exper-
iments concerning the physics of black holes in section 2.1. In section 2.2 we will have a
look at the famous result due to Brown and Henneaux [103] that established a possible
relation between gravity on three-dimensional asymptotically Anti-de Sitter (AdS) spaces
and two-dimensional CFTs already in 1986. Section 2.3 will then be devoted to the so far
best understood manifestation of the holographic principle, namely Maldacena’s deriva-
tion of an AdS5/CFT4 correspondence from string theory [25]. There will also be a short
epilogue 2.4 in which we compare the holographic principle and its realisations to optical
holography.

2.1 Holography and the laws of gravity

In this section we will briefly summarise how thought experiments concerning the physics
of black holes show the necessity of some kind of holographic principle. To do so, we will
mainly follow the outline of these ideas presented in [50,104].

2.1.1 Black hole thermodynamics and entropy bounds

Black holes are solutions to general relativity1 which exhibit a non-trivial causal structure
that includes event horizons, i.e. null hypersurfaces that distinguish between such points
from which signals can be sent to some notion of asymptotic infinity (or far away outside

1Or any other gravitational theory of curved spaces, such as higher curvature theories. See section 4
for more details. Throughout the reminder of this section, we will always assume gravity to be described
by the Einstein-Hilbert action, with no or only negligible corrections.
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region) and such points from which this is not possible. See e.g. [105] for the precise
mathematical definition. The presence of such event horizons then means, almost by
definition, that from the point of view of an outside observer which remains near infinity,
other observers may fall into the black hole and vanish from sight. This raises the question:
What happens to the entropy of an object that falls into the black hole from the point
of view of an outside observer? Will the second law of thermodynamics be violated, or
will the object’s entropy be effectively transferred onto the black hole? Based on thought
experiments like this, Bekenstein proposed that a black hole should indeed be assigned an
entropy proportional to its area [14–16]2

SBH =
A

4GN

(2.1)

While the precise nature of the microstates that may give rise to an entropy of the form
(2.1) is still an open question up to this day, there are good reasons to believe in this
formula at least as a good approximation to black hole entropy. The first reason is the
existence of Hawking radiation corresponding to the Hawking temperature [106,107]

TBH =
κ

2π
(2.2)

where κ is the surface gravity of the black hole horizon. Equations (2.1) and (2.2) together
allow for a first law of black hole thermodynamics3 to be formulated in the form [108]

dM = TBHdSBH =
κ

8πGN

dA (2.3)

where M is the black hole mass. Indeed it is only equation (2.3) together with (2.2) that
fixes the prefactor in (2.1) to be 1/4. It is easy to check the validity of equation (2.3) on
concrete examples such as the Schwarzschild solution.

The second mayor reason to believe in the validity of equation (2.1) is that, due to the
area theorem dSBH ≥ 0 proven by Hawking for classical processes in general relativity
in [109, 110], it suggests an extension of the second law of thermodynamics to what is
called the generalised second law. This law purports that in any physical process, the
combination of matter entropy Smat and black hole entropy SBH can only grow, i.e. [14–16]

dStot = d(Smat + SBH) ≥ 0. (2.4)

In the absence of black holes, this reduces to the ordinary second law of thermodynamics,
dSmat ≥ 0, while in the absence of thermodynamic matter it reduces to the area law. The
remaining question is then: Will in any physical process the apparent loss of thermody-
namic entropy be outweighed by the corresponding increase in black hole entropy, such

2The prefactor 1/4 was only fixed in hindsight by Hawking’s calculation of black hole temperature
in [106,107].

3The “zeroth” law of black hole thermodynamics is often stated to claim that on the event horizon of
a stationary black hole, κ is a constant [108].
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that the generalised second law (2.4) holds? This leads directly to a thought experiment
discussed by Bekenstein in [17]. This thought experiment is concerned with a process in
which a thermodynamic system with energy E, entropy Smat and size R is lowered into a
Schwarzschild black hole with radius rS � R in two steps: First the system’s center of mass
is slowly lowered from infinity to a position located at a distance of R above the horizon,
and then in the second step it is let loose to fall into the black hole. Taking the redshifting
of the energy E in step one of the process properly into account, one finds dM = ER

4GNM
.

Then, using (2.3) as well as TBH = 1
8πGNM

for the Schwarzschild black hole [107], this
implies that the generalised second law (2.4) only holds when [17]

Smat ≤ 2πER (2.5)

for any physical thermodynamic system. This equation (2.5) is known as the Bekenstein
bound, not to be confused with the Bekenstein formula (2.1). See also [104] for a short
discussion of this result and its general validity. The relevance of the Bekenstein bound
in the context of holography is that, assuming that black holes exist and behave in a
physical thermodynamic way, it sets an upper limit on the amount of information that
can be stored in a physical system with finite size and energy content. In this context,
it is interesting to note that Schwarzschild black holes in 4 dimensions actually saturate
this bound when setting E = M,R = rS [104]. The Bekenstein bound also exemplifies the
species problem [104,111,112] which is ubiquitous in discussions of the holographic principle
and black hole information: If one just allows for a large number of particle species to be
present in the theory, then information can efficiently be encoded in the types of particles
present in a certain system, with no significant increase in energy cost. This way the bound
(2.5) can in principle easily be violated. An arbitrarily large number of particle species is
hence considered unphysical, see [104] for a more in depth discussion.

In a different kind of thought experiment, first analysed by Susskind in [19] (see also
[50, 104]), an approximately spherical matter system (smaller than a sphere with surface
area A, and with an entropy Smat) is turned into a black hole with area precisely equal
to A by collapsing a spherical shell of matter onto the central matter system. Demanding
the generalised second law (2.4) to hold then straightforwardly yields the spherical entropy
bound [19]

Smat ≤
A

4GN

(2.6)

which, due to (2.1), is saturated by black holes. Again, simply by requiring the existence of
thermodynamically well behaved black hole solutions in the universe (i.e. equation (2.4))
a bound was derived that limits the amount of information that can be stored in a finite
physical system. This yields the motivation for the formulation of the holographic principle,
to be discussed in the next section.
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2.1.2 The holographic principle

In the above discussion, we have mentioned that entropy bounds such as (2.5) and (2.6)
(and consequently (2.4)) can easily be violated by invoking the species problem, i.e. by
allowing the matter part of the theory under consideration to contain an arbitrarily large
number of particle species. However, it was estimated in [104] that the number of species
would have to exceed 1040 in order to violate (2.6) for proton sized black holes. This means
that the holographic principle cannot be derived as a consequence of quantum field theory
(QFT) or classical general relativity (GR), instead it may be proposed as a law of nature
that should be respected by any physical theory of the universe [104].

What is then the holographic principle? For a quantum field theory, a naive estimate of the
amount of information that can be stored in a given volume V goes as follows [18,19,50,104]:
To obtain a finite result, approximate the quantum field theory of interest by a lattice
of harmonic oscillators, the lattice spacing being of the order of the Planck scale. The
finiteness of the volume in question precludes any IR divergencies, and UV divergencies
are avoided by imposing a UV cutoff on the oscillator spectrum at the Planck scale. The
spectrum of each oscillator at each lattice point is then discrete and finite as well as bounded
from below and above. The number of possible states of this system is then naturally
exponential in V , and consequently the amount of information that can be stored in this
system, the maximal entropy, is proportional to the volume, Smax ∼ V . But taking the
effects of gravitational physics into account, we find that a lot of these seemingly different
configurations of quantum fields in the volume V would collapse to indistinguishable black
holes, due to the property of stationary black holes to be described only by very few
macroscopic quantities. This is known as the no-hair theorem, see e.g. [113, 114] and
references therein for an overview. The arguments discussed in the previous section, and
especially the bounds (2.5) and (2.6), then imply that the maximal entropy can at most
scale like the surface area A of the system.

Hence the holographic principle is a proposed principle of nature, assumed to be valid in
any physical theory consistently incorporating gravitational physics and hence the physics
and thermodynamics of black holes in a way similar to Einstein’s GR, that states that the
logarithm of the number of possible states of a physical system in a certain region, and
hence its maximal entropy, is proportional to the area A of the boundary of that region,
and not its volume V [18, 19, 50, 104]. Any attempt to store more information in a given
physical system than allowed by this principle must either result in a system that does
not have the desired properties (in terms of entropy-density versus energy density), or
must be interrupted by the formation of a black hole. For concreteness, we can state the
holographic principle in the following formulation:

A region with boundary of area A is fully described by no more than A/4GN

degrees of freedom4, or 1/ ln 2 bits of information per Planck area [18, 104].

4In [104], the term degree of freedom means that N degrees of freedom yield a maximal entropy Smax =
N .
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It has been argued (see [18, 19, 50, 104, 115] amongst others) that this holographic prin-
ciple, tentatively proposed as a fundamental principle of nature, might lead the way to-
wards a better understanding of (quantum) gravity. It is hence of immediate interest to
study theories or systems in which this holographic principle is not only satisfied, but in
which it is in some sense manifest, formulated in a more quantitative way, and/or derived
from underlying principles. The most prominent realisation of the holographic principle
to this day is without any doubt the AdS/CFT correspondence (and more generally the
gauge/gravity duality in the case of broken conformal symmetry) which will be outlined in
sections 2.1.4, 2.2 and 2.3. These will in fact be the foundation of the results presented in
the later chapters 4-6, but it is important to note that there are also other manifestations
of the holographic principle. For example, in the original paper [18], it was proposed to
construct a fundamental theory obeying the holographic principle based on constrained
cellular automata, see also [116] for further investigations in this direction. Holographic
entropy bounds on lightlike surfaces have been discussed in [19], see also [50] and refer-
ences therein. In [117, 118] and references therein, it was discussed what role holography
may play in thermodynamical approaches to gravitational physics. For four-dimensional
vacuum solutions to GR of Petrov type D with certain symmetry properties, a form of the
holographic principle was proven in [119] by relating it to initial value theorems.

In the next section, we will briefly summarise the covariant entropy bound or Bousso bound,
and in section 2.1.4 we will see how the geometry of Anti-de Sitter (AdS) spaces naturally
invites the use of holographic techniques. This will set the stage for the discussions in the
later sections 2.2 and 2.3.

2.1.3 Covariant entropy bound

The entropy bounds of the previous section were derived via very specific thought experi-
ments, e.g. the assumption of spherical symmetry was important in the derivation of (2.6).
See [104] for a more in depth discussion of the explicit and implicit assumptions made in
the derivations of these entropy bounds. It is hence of interest to study whether there is
a general kind of entropy bound from which bounds like (2.5) and (2.6) can be derived
as special cases. One proposal in this direction is the covariant entropy bound or Bousso
bound (see [50, 104,120]) to be briefly discussed in this section.

The geometrical setup underlying the formulation of the Bousso bound is depicted in
figure 2.1. We start with a spacelike orientable codimension two hypersurface B. It can
be thought of as the surface or boundary of a spacelike codimension one hypersurface
C, B = ∂C. The light cone of any point P on B includes four light rays that leave P
perpendicularly to B. Of these four light rays, two are ingoing, outgoing, future pointing
and past pointing, respectively, see figure 2.1 a). If we construct these four light rays
for every point on B, we obtain four null hypersurfaces, see figure 2.1 b) and c). These
null hypersurfaces can be interpreted as the light fronts that emerge from a light emitting
surface B (upon time reversal for the past pointing rays). Again, two of these surfaces
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can be classified as ingoing while the other two are said to be outgoing. So far, these
notions and definitions are independent of the specific spacetime geometry. If we imagine
that B is e.g. a sphere in flat Minkowski space, it is clear that the ingoing light fronts will
have decreasing area along the congruence and shrink to a point (the tips of the cones in
figure 2.1 b)) while the outgoing light fronts will have increasing area along the light front.
This, however, is not true in generic spacetimes. If the hypersurface B is e.g. inside of a
Schwarzschild black hole, then both null hypersurfaces constructed from future pointing
null rays will have an area decreasing with the affine parameter. In this case, B is called
a trapped surface [104,121].

Figure 2.1: a): Construction of light rays perpendicular to a surface B = ∂C, starting
from a point P . b): Correspondingly constructed null hypersurfaces, here shown for the
example on an approximately flat spacetime. c): Similar construction, this time for a
trapped surface B, e.g. a sphere inside of a black hole. See also figure 3 in [104].

Mathematically, this is related to the definition of the expansion θ of the null congruences
in question.5 Assume that the light rays starting from B are all affinely parameterised by
a parameter λ, such that λ ≡ 0 defines B. For all four types of light rays in figure 2.1 a),
we assume that the affine parameter increases away from B. The condition λ ≡ λ0 > 0
then defines spacelike slices B′(λ0) (with area A(λ0)) of the null hypersurfaces generated
by the null geodesics as in figure 2.1 b) and c). For any of the four null hypersurfaces, the
expansion is defined to be [104,120]

θ(λ0) =
1

A
dA
dλ0

. (2.7)

As pointed out in [104,120], one does not need to make the assumption that B is closed as
in figure 2.1, in fact this procedure also holds for open surfaces B.6 Hence we will from now

5This definition is also important in the definitions of apparent and trapping horizons [121].
6The terms ingoing and outgoing then become interchangeable, but can, after fixing a convention, still

be distinguished as B is orientable.
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on assume the expansion of all four null hypersurfaces to not change sign when varying
the coordinate on B. If this is not the case, one can split B up into parts and carry out
the analysis piece by piece. The null hypersurfaces constructed accordingly are referred
to as lightsheets in [104, 120] if the expansion at B, as defined in (2.7), is non-positive:
θ(λ = 0) ≤ 0. Furthermore, lightsheets are defined to terminate where the expansion
becomes positive (θ(λ) > 0) [104,120]. This will e.g. be the case when the null congruence
in question forms caustics or focal points [104,120].

Due to a vanishing expansion being allowed in the definition of lightsheets, there are at least
two lightsheets constructed from any B. In figure 2.1 c), the null hypersurfaces constructed
from the future pointing in- and outgoing light rays are lightsheets, while in the middle
example only the null hypersurfaces constructed by ingoing future and past pointing light
rays are lightsheets.

Having clarified the necessary terminology and definitions above, we can now state the
Bousso bound as in [50, 104, 120]: The entropy S(L) passing through any lightsheet L
constructed from a surface B is conjectured to be bounded by

S(L) ≤ A(B)

4GN

(2.8)

where A(B) is the area of B. For further details, tests and a discussion of validity see
[50,104,120]. A priori, this conjecture concerns the entropy flowing through a certain null
hypersurface, and not the entropy of a spacelike region as the previous bounds (2.5) and
(2.6). Yet, looking at figure 2.1, we see that there are examples where any worldline passing
through the spacelike region C necessarily also passes through the lightsheet constructed
from future pointing light rays. Then, invoking the second law of thermodynamics, it can
be argued that the same bound (2.8) also applies to the entropy S(C) assigned to the
region C [50, 104,120].

This closes our discussion of the motivation for and the general formulation of the holo-
graphic principle. In the next section, we will introduce the geometry of Anti-de Sitter
(AdS) spacetime, and investigate it in light of the entropy bounds discussed so far. Then,
in the later chapters 2.2 and 2.3 we will study the more concrete manifestation of the
holographic principle in the form of the AdS/CFT correspondence.

2.1.4 Anti-de Sitter spacetime

The Anti-de sitter (AdS) spacetime is the globally maximally symmetric Lorentzian solu-
tion to Einstein’s vacuum equations

Rµν −
1

2
Rgµν + Λgµν = 0 (2.9)
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with a negative cosmological constant Λ. In the d + 1-dimensional case, the line element
can be written as

ds2 = −
(

1 +
r2

L2

)
dt2 +

1

1 + r2

L2

dr2 + r2dΩ2
d−1, (2.10)

where t ∈]−∞,+∞[, r ∈ [0,+∞] and dΩ2
d−1 is the line element of the d− 1 sphere. Here,

L is the AdS scale or AdS radius, and using (2.9) it is easy to derive Λ = −d(d−1)
2L2 . The

coordinates used above are called global coordinates as they cover the entire spacetime.
Via a particular coordinate transformation7, one finds the line element

ds2 =
L2

z2
(−dτ 2 + d~x2 + dz2) (2.11)

with τ, xi ∈] − ∞,+∞[, z ∈ [0,+∞]. This coordinate system is geodesically incomplete
due to the coordinate singularity at z → ∞, and hence does not cover the entire AdS
spacetime. The region covered by these coordinates is called the Poincaré patch.

Returning to the global coordinates (2.10), we see that AdS space has the topology of a
d-dimensional disk times the real (time) axis, Dd×R(t), i.e. the topology of a full cylinder.
This is similar to d+1-dimensional Minkowski space written as ds2 = −dt2 +dr2 +r2dΩ2

d−1,
yet there is a very important difference: In Minkowski space, the asymptotic infinity
(i.e. the boundary of the conformal diagram) can be reached by light rays only after infinite
coordinate time t. Contrarily, it can be shown that in AdS space an observer in the space-
time (from now on called the bulk) can send a light ray towards infinity (i.e. the cylinder
at r →∞, henceforth called the boundary) and receive an answer in finite coordinate time
t, hence establishing a back and forth communication with the boundary.8 This motivates
the question about the role that the boundary will play in the light of the holographic
principle. Can for example the entropy bounds derived in the earlier sections 2.1.1-2.1.3
be applied to the AdS space?

This is indeed the case [50, 104, 122]: Taking the surface B used in the formulation of the
Bousso bound (2.8) to be a sphere in global AdS space (2.10) specified by the restriction
t = t0, r = r0, it is easy to calculate the corresponding light rays and sheets as described
in section 2.1.3. Indeed, the result will look qualitatively similar to figure 2.1 b), with the
two null surfaces constructed from ingoing light rays, which terminate at a focal point,
satisfying the definition of a lightsheet. The difference from the Minkowski case is that
the outgoing light rays reach infinity in finite coordinate time. As discussed in section
2.1.3, in this situation the Bousso bound (2.8) implies the spherical entropy bound (2.6)
S(C) ≤ A(B)/4 on the entropy of the spacelike region C. As we take the limit r0 → 1/ε

7Details on the geometry of AdS and its different coordinate systems can be found in [51].
8In this discussion we have been using the coordinate t (similarly we could have used τ for the Poincaré

patch (2.11)) as a measure of physical time. This makes sense, as the corresponding vector ∂t (similarly
∂τ ) is a Killing vector, and the spacetimes under consideration are static. The coordinates t and τ are
then natural and well-defined measures of time.
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with a small cutoff ε, C becomes an equal time slice of the AdS space, and due to the entropy
bound the information stored on this slice is bounded by the area of a spacelike slice of
the AdS boundary. The information on this surface C, together with boundary conditions
imposed at the cutoff surface (which is interpreted as the AdS boundary) then determines
the evolution of all fields in the bulk spacetime. The interesting aspect of this is that the
induced metric on the AdS boundary is Lorentzian and nondegenerate. Specifically, it is
the Einstein static universe for (2.10) and Minkowski space for (2.11) [51]. Consequently,
it might be possible to define an ordinary QFT (without gravitational sector) to live on
this boundary, and the maximal entropy and information storage capacity of this theory
would scale like the area of the boundary, just as is the case for the gravitational bulk
theory. Hence it may in principle be possible to describe the bulk dynamics entirely in
terms of such a boundary theory. In the next sections 2.2 and 2.3 we will see in detail how
this is indeed possible.

2.2 The AdS3/CFT2 duality

Gravitational theory in 2+1 dimensions, i.e. in one dimension lower than in the observable
universe, has often been described as an interesting field of research as it is technically
simpler than 3+1-dimensional gravity while at the same time still posing similar problems
to quantisation attempts. See [123] for an overview over this topic. In this section we will
very briefly recapitulate the connection found in [103] between gravity in 2 + 1 dimensions
in the presence of a negative cosmological constant and 1 + 1-dimensional CFTs. See
also [124–126] for important further work and [127,128] for useful reviews.

In section 2.1.4, we have seen that Einstein’s equations with a negative cosmological con-
stant Λ are solved by AdS space. For 2 + 1 bulk dimensions in particular, the line element
of global AdS (2.10) reads

ds2 = −
(

1 +
r2

L2

)
dt2 +

1

1 + r2

L2

dr2 + r2dφ2, Λ = − 1

L2
, (2.12)

where the angular coordinate φ ∈ [0, 2π[ is periodically identified. This metric is maximally
symmetric, and its symmetry group is SL(2,R) × SL(2,R) ∼= SO(2, 2). This can be
explicitly seen [129] by deriving the Killing vectors

l0 =
i

2
(L∂t + ∂φ), (2.13)

l−1 =
i

2
e−i(

t
L

+φ)

[
Lr√
L2 + r2

∂t +

√
L2 + r2

r
∂φ + i

√
L2 + r2∂r

]
, (2.14)

l+1 =
i

2
e+i( tL+φ)

[
Lr√
L2 + r2

∂t +

√
L2 + r2

r
∂φ − i

√
L2 + r2∂r

]
, (2.15)
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l̄0 =
i

2
(L∂t − ∂φ), (2.16)

l̄−1 =
i

2
e−i(

t
L
−φ)

[
Lr√
L2 + r2

∂t −
√
L2 + r2

r
∂φ + i

√
L2 + r2∂r

]
, (2.17)

l̄+1 =
i

2
e+i( tL−φ)

[
Lr√
L2 + r2

∂t −
√
L2 + r2

r
∂φ − i

√
L2 + r2∂r

]
, (2.18)

and verifying their algebra

[l0, l±1] = ∓l±1, [l+1, l−1] = 2l0,

[l̄0, l̄±1] = ∓l̄±1, [l̄+1, l̄−1] = 2l̄0, (2.19)

[lm, l̄n] = 0,

where for vector fields lm, l̄n the bracket [·, ·] is simply the Lie bracket.

Although pure gravity in 2 + 1 dimensions does not have propagating bulk degrees of
freedom [103, 123], it is known [103, 130, 131] to exhibit non-trivial solutions that are lo-
cally equivalent to (2.12), but not globally. This hence motivated the study [103] of the
boundary conditions (as r →∞) that a metric should have to satisfy in order to be called
asymptotically AdS :9

gtt = − r
2

L2
+O(1), (2.20)

gtr = O
(

1

r3

)
, (2.21)

gtφ = O(1), (2.22)

grr =
L2

r2
+O

(
1

r4

)
, (2.23)

grφ = O
(

1

r3

)
, (2.24)

gφφ = r2 +O (1) . (2.25)

Of course diffeomorphisms are generated by vector fields ζµ according to the formula δgµν =
∇µζν +∇νζµ, and the vector fields that generate diffeomorphisms that leave the conditions

9Indeed, two sets of possible boundary conditions were studied in [103]. Here, we only consider the
laxer ones which lead to a larger asymptotic symmetry group.
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(2.20)-(2.25) invariant can be shown [103,125,128] to be of the form

ζt = L
(
f+ + f−

)
+
L3

2r2

(
∂2

+f
+ + ∂2

−f
−)+O

(
1

r4

)
, (2.26)

ζr = −r
(
∂+f

+ + ∂−f
−)+O

(
1

r

)
, (2.27)

ζφ = f+ − f− − L2

2r2

(
∂2

+f
+ − ∂2

−f
−)+O

(
1

r4

)
, (2.28)

where f± is a function of t
L
± φ and ∂± = 1

2
(L∂t ± ∂φ). Introducing the basis

ln = ζ

(
f+ ≡ i

2
ein(

t
L

+φ), f− ≡ 0

)
, (2.29)

l̄n = ζ

(
f+ ≡ 0, f− ≡ i

2
ein(

t
L
−φ)
)
, (2.30)

we see that these contain the globally defined Killing vectors (2.13)-(2.18), and the resulting
algebra

[lm, ln] = (m− n)lm+n,

[l̄m, l̄n] = (m− n)l̄m+n, (2.31)

[lm, l̄n] = 0,

contains the SL(2,R) × SL(2,R) algebra (2.19) as a subalgebra [103, 125, 128]10. These
are two commuting copies of the Witt algebra and are known to describe the algebra of
infinitesimal conformal transformations in two dimensions, see e.g. the monograph [132].

Due to a careful Hamiltonian analysis of GR in 2 + 1 dimensions and its boundary terms,
which will not be repeated here, it was also shown in [103] that the Dirac bracket algebra
of the associated charges Ln, L̄m reads [103,125,128]

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
(m3 −m)δm+n,0, (2.32)

[Lm, L̄n] = 0,

which is similar to (2.31), but centrally extended with a central charge

c =
3L

2GN

. (2.33)

The algebra (2.32) is easily recognised to be composed of two commuting copies of the
Virasoro algebra [103], see also [132]. This suggests that the boundary dynamics of GR in
2 +1 dimensions can be phrased in terms of a 1+ 1-dimensional (quantum) conformal field
theory. In fact, this theory was argued to be Liouville theory in [124].

10In the normalisation of the vectors (2.13)-(2.18) and (2.29)-(2.30) we have followed the convention
of [129] in contrast to [103,125,128], leading to slightly different factors in the algebra.
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2.3 Maldacena’s AdS5/CFT4 duality

Having seen in chapters 2.1.4 and 2.2 how Anti-de Sitter space naturally seems like a good
starting point for an implementation of holographic ideas (see section 2.1), we will now
proceed to describe how string theory implements the holographic principle in the form of
the AdS/CFT duality. We will not give a detailed introduction to string theory, referring
the reader to the many excellent text books on the subject [20–24]. For the outline of how
the AdS5/CFT4 correspondence was obtained in [25], we will mostly follow [51] throughout
this section, although other textbooks on the subject matter exist [52,53], as well as a large
number of review papers [133–139] focusing on a variety of aspects of the topic.

The motivation of the AdS5/CFT4 correspondence from superstring theory is based on the
fact that string theory not only contains strings as dynamical objects, but also Dirichlet
branes [140, 141]. These D-branes can be described both from an open and from a closed
string perspective [141], and the existence of these two complementary perspectives is what
ultimately motivates the AdS/CFT correspondence in string theory. In the following, we
will hence describe a certain configuration of D-branes from an open string point of view
in section 2.3.1, and from a closed string point of view in section 2.3.2. In section 2.3.3,
we will then bring these two perspectives together.

2.3.1 Open string construction

Conventionally, D-branes are introduced as hypersurfaces on which open strings can end,
i.e. as surfaces where Dirichlet boundary conditions are imposed on the endpoints of the
open string, in contrast to the more simple Neumann boundary conditions. As an exam-
ple, we can take type IIB superstring theory in which D3-branes may be studied. By
nomenclature, such a D3-brane is then a 3 + 1-dimensional hypersurface in the 9 + 1-
dimensional target space of the superstring theory. Specifically, using standard coordinates
xM (M ∈ {0, .., 9}) for the 10-dimensional Minkowski space, the simplest D3-brane can
be taken to extend along the directions M ∈ {0, 1, 2, 3}. Brane embeddings like this are
conventionally depicted in the form of tables such as table 2.1:

Direction xM , M = 0 1 2 3 4 5 6 7 8 9
D3 • • • • - - - - - -

Table 2.1: Embedding of a D3-brane into 10-dimensional Minkowski space.

This means that for an open string with both endpoints on this D3-brane, the coordinates
x4-x9 of both endpoints are fixed to be zero, while they can still freely move in the directions
x0-x3. See also figure 2.2 which depicts an entire stack of coincident D3-branes.

We now study a setup of N coincident D3-branes in type IIB superstring theory such as
depicted in table 2.1 or figure 2.2. To be able to view the strings as small perturbations,
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Figure 2.2: N coincident D3-branes in a 10-dimensional Minkowski space, embedded as in
table 2.1.

we will choose to work in the regime

gsN � 1, (2.34)

where gs is the closed string coupling constant. Furthermore, we will work with massless
excitations, i.e. low energies

E � 1/
√
α′, (2.35)

where α′ is related to the string length `s and tension Ts by α′ = `2
s, Ts = 1

2πα′
.

In order to understand the theory described by this setup, we have to note two things: First
of all, the excitations of the open strings give rise to a gauge theory living in the world-
volume of the D3-branes. Specifically, the bosonic excitations of the open strings parallel
to the D-brane directions give rise to a U(N) gauge (vector) field Aµ while the bosonic
excitations perpendicular to the brane, not carrying any worldsheet indices, are described
by scalar fields of the worldvolume theory. As the number of perpendicular directions is
six, there will be precisely six real scalar fields emerging this way. Similarly, the fermionic
excitations of the open strings will contribute fermions to the effective brane worldsheet
action, allowing for a certain amount of supersymmetry to be preserved. Second of all, it
is important to point out that any string theory containing open strings consequently also
has to contain closed strings, but not vice versa. This means that closed strings can be
emitted from the D3-branes and propagate into the full 10-dimensional Minkowski space.
We hence find that the effective low energy action for string theory in this setup takes the
form

S = Sclosed, 10d + Sopen, 4d + Sint, (2.36)
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where Sint is the interaction term between the two sectors and

Sclosed, 10d =
1

2κ2
N

∫
d10x
√
−gR + ..., (2.37)

2κ2
N = (2π)7g2

sα
′4, (2.38)

is the (Einstein frame) action of 10-dimensional (N = 1) supergravity including higher
derivative corrections of order α′ and higher. For the open strings, one finds to leading
order in α′:

Sopen, 4d =
−1

2πgs

∫
d4x

(
1

4
Tr [FµνF

µν ] + fermions, scalars +O(α′)

)
. (2.39)

We now ignore terms of order α′ and higher, i.e. we take the limit α′ → 0. To do this limit
consistently, we will at the same time send any distance ` to zero such that `/α′ is kept
fixed. This is known as the Maldacena limit. The action (2.39) then becomes the action
of N = 4 Super Yang-Mills (SYM) theory with a coupling11

g2
YM = 4πgs (2.40)

and a U(N) gauge group. In fact, this U(N) symmetry group can be split into SU(N)
and U(1), such that the U(1) part decouples [27, 136, 143]. In the α′ → 0 limit, the terms
in Sint vanish and hence the open and closed string sectors decouple. Later on, it will be
useful to note that instead of using the coupling constant gYM for the Yang-Mills field, we
can also define the ’t Hooft coupling [144]

λ ≡ g2
YMN. (2.41)

2.3.2 Closed string construction

Following [25, 51] in the previous section, using the limit gsN � 1, we discussed a stack
of N D3-branes as a geometrical manifestation of boundary conditions on open strings,
viewing both the branes and the strings from a perturbative point of view. In this section
on the other hand, using the regime

gsN � 1, (2.42)

we will view the D-branes as massive non-perturbative solutions to (closed) string theory
and its supergravity low-energy limit, again following [25, 51]. This alternative view of
D-branes was introduced in [141]. The solution of type IIB supergravity (ignoring higher

11This seems to be the most common convention in the literature, although [25, 51] use g2YM = 2πgs.
See [142] for a detailed discussion of how a convention on the normalisation of the non-abelian generators
influences this factor.
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curvature terms of orderO(α′)) that preserves the same symmetries as the brane embedding
depicted in table 2.112 contains a constant dilaton field

e2φ(r) = g2
s , (2.43)

a black brane line element

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)δijdx

idxj, (2.44)

r =
√
xixi, (2.45)

H(r) = 1 +

(
L

r

)4

, (2.46)

with brane worldvolume directions xµ, µ, ν ∈ {0, ..., 3}, and perpendicular directions xi,
i, j ∈ {4, ..., 9}, as well as a non-trivial four-form field

C(4) =

(
1− 1

H(r)

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 + ... . (2.47)

The flux of the corresponding five-form F(5) = dC(4) through the five-sphere spanned by
the perpendicular coordinates xi around the black brane has to be quantized, yielding the
number N of coincident D3-branes. This fixes the relation

L4 = 4πgsNα
′2. (2.48)

Consequently, using (2.42) we find

L4

α′2
=
L4

`4
s

� 1, (2.49)

i.e. the curvature scale of the black brane should be large compared to the string scale,
resulting in a weak curvature regime RMNR

MN ∼ 1
L4 . We could also make use of the 10-

dimensional reduced Planck constant `8
P,10 ≡ κ2

N and (2.38) to deduce from (2.48) that [136]

L

`P,10

= 2−
1
4π−

5
8N

1
4 , (2.50)

so that large N implies a classical spacetime description.

In section 2.3.2, an important part of the calculations relied on taking the low energy limit
of the excitations. What does a low energy limit mean in the background spacetime (2.44)?
To answer this, consider that an observer at infinity, far away from the black branes, will see
two kinds of low energy excitations: On the one hand closed strings propagating through

12I.e. Poincaré symmetry R3+1 o SO(3, 1) in the brane worldvolume directions, rotations SO(6) in the
remaining directions and the correct amount of supersymmetry.
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Figure 2.3: Black brane in a 10-dimensional asymptotically flat space.

the asymptotically flat space far away from the branes and on the other hand closed strings
living near the black brane horizon, which will appear redshifted to the observer due to
the redshift factor

√
−gtt = H(r)−1/4. See also figure 2.3.

The low energy limit hence splits the theory into two decoupled sectors: low energy modes
of type IIB supergravity propagating in 10-dimensional Minkowski space far away from the
brane, and excitations near the horizon of the black brane. In order to study the latter,
we will take the near horizon limit

r � L⇒ H(r) ∼ L4

r4
(2.51)

of the line element (2.44). From (2.48), we know that L4/r4 ∼ gsN(α′4/r4)α′−2, hence
keeping λ ∼ gsN fixed, this limit is consistent with the Maldacena limit (introduced in
section 2.3.1) of taking α′ → 0 such that α′/r is fixed. Taking the limit in this way means
that energies measured at infinity

[E∞] ∼
[ r
α′

]
[E(r)

√
α′] (2.52)

are kept fixed if the energy of the near horizon excitations is kept fixed with respect to
the string length, i.e. if E(r)

√
α′ is kept fixed. In (2.52), fixed quantities in the Maldacena

limit are grouped in square brackets [...]. Performing this limit, we obtain

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
δijdx

idxj. (2.53)

Let us next introduce a coordinate z = L2/r as well as S5 coordinates in the six directions
perpendicular to the brane. The line element then takes the familiar form

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2ds2
S5 , (2.54)
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which is a product spacetime built out of the sphere S5 and a five-dimensional Poincaré
AdS space (2.11). This is the spacetime on which the near horizon low energy excitations
effectively live.

2.3.3 The duality

Let us now bring the results of sections 2.3.1 and 2.3.2 into a common framework. Both
times we have studied type IIB superstring theory in the presence of branes, once in the
perturbative limit gsN � 1 and once in the non-perturbative limit gsN � 1. In the
former case, we have taken the Maldacena limit and obtained type IIB supergravity in
flat space together with N = 4 SU(N) SYM theory. In the latter case, we have taken
the near horizon limit and obtained type IIB supergravity in flat space together with type
IIB superstring theory on AdS5×S5. Assuming that these respective low energy limits
commute with adiabatic variations of gs [136], this observation motivates the AdS5/CFT4

correspondence [25]:

Type IIB superstring theory on AdS5×S5 with N units of F(5) flux on S5

is dual to (2.55)

N = 4 SYM theory with gauge group SU(N) in four dimensions.

As in section 2.1.4, the AdS5×S5 spacetime is called the bulk spacetime. Both theories in
(2.55) are each described by three constants of which one is redundant, these are the string
coupling gs, the string length `s =

√
α′ and the reduced Planck length `8

P,10 = 1
2
(2π)7g2

sα
′4

in the string theory on AdS5×S5 and the number N , the coupling gYM and the ’t Hooft
coupling λ = g2

YMN in the YM theory. The relations between these parameters are,
according to (2.40),(2.41),(2.48) and (2.50):

N
1
4 = 2

1
4π

5
8
L

`P,10

, (2.56)

g2
YM = 4πgs, (2.57)

λ =
L4

α′2
. (2.58)

Consequently, taking the limit N → ∞ will allow for a classical treatment of the AdS
background geometry, while assuming λ to be large will allow us to neglect (classical)
string corrections. While it is known how to mathematically formulate the N = 4 SYM
theory of (2.55) at least in principle, this is not the case for the type IIB superstring theory
(in a non-perturbative target space formalism). The equations (2.56)-(2.58) hence suggest
different forms of the conjectured duality (2.55):

• The weak form of the AdS/CFT correspondence proposes that (2.55) only holds for
the limit N → ∞ while λ is assumed to be fixed and large, consequently gs → 0.
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This means that (2.55) reduces to a correspondence between classical supergravity
and N = 4 SYM theory in the large N limit and for large ’t Hooft coupling. This is
certainly the form of the correspondence which is best motivated by the description
above, and in which the gravity side of the duality is best understood. Consequently,
this is also the best tested form of the correspondence, see e.g. [51,52] for an overview
of tests of the correspondence. Relating a strongly coupled (λ � 1) theory to a
weakly coupled theory, this weak form of the correspondence (2.55) is an example
of a strong-weak duality. Given the reliance of many modern physics calculations
on perturbative methods and the scarcity of adequate methods to tackle strongly
coupled theories, such strong-weak dualities are obviously very useful13.

• The strong form of the AdS/CFT correspondence proposes that (2.55) requires the
large N limit N →∞, but is valid for any fixed value of λ. This still implies gs → 0.
The gravity side of the duality is then described by classical type IIB string theory
on AdS5×S5. What is the significance of the large N limit in both the weak and
strong versions of the duality? This question leads us to work by ’t Hooft, who
studied U(N) gauge theories in the limit N → ∞, λ = g2

YMN fixed in [144]. He
found that in this limit, the Feynman diagrams of the theory can be rearranged in
an expansion in 1/N , in such a way that each diagram contributes with a factor Nχ,
where χ is the Euler characteristic of the corresponding diagram. This topological
expansion suggests a similarity with string theory, where 1/N takes the role of the
string coupling constant gs. In fact, as the ’t Hooft parameter λ is assumed to be
held fixed in the large N or ’t Hooft limit, from (2.41) and (2.57) we immediately
find 1

N
∼ gs

λ
. This means that the strong form of the AdS/CFT correspondence

(2.55), together with the relations (2.56)-(2.58), identifies the precise string theory
describing the ’t Hooft limit of N = 4 SYM theory to be type IIB string theory on
AdS5×S5.

• Taking into account 1/N corrections then leads to the strongest form of the AdS/CFT
correspondence, i.e. the conjecture that (2.55) is valid for any choice of the parameters
N and λ, or L

`P,10
and L4

α′2
respectively.

In the remaining part of this subsection, we will discuss some of the aspects of the cor-
respondence (2.55) which make it more concrete, or which are important for carrying out
concrete calculations. The first important aspect to note is that of global symmetries,
which have to match on both sides of the duality (2.55) [25]. This is indeed the case as
shown in table 2.2:

The next important thing that we need to understand is how precisely we can make use of
the correspondence (2.55). What does the result of a certain calculation on one side of the

13We should also note that the correspondence (2.55) evades the famous Weinberg Witten theorem [145]
in a rather elegant way: According to this theorem, a dynamical graviton cannot arise effectively in a
gauge theory. The AdS/CFT correspondence evades this theorem as the gauge theory describes a graviton
that lives in a higher-dimensional background spacetime.
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Gravity side Symmetry Field theory side

Isometries of AdS5 SO(2, 4) ∼ SU(2, 2) Conformal group in 4 dimensions

Isometries of S5 SO(6) ∼ SU(4) R-Symmetry

Bosonic subgroup SO(2, 4)× SU(4) Bosonic subgroup
of ⊂ of
full supergroup SU(2, 2|4) full supergroup

Table 2.2: Global symmetries in AdS5/CFT4, following e.g. [133].

correspondence mean in terms of the theory on the other side of the correspondence? To
answer this, one needs to establish a holographic dictionary that relates certain quantities
on the two sides of the correspondence. This was done in [26, 27], where it was argued
that in an AdSd+1/CFTd duality such as (2.55) the boundary generating functional should
be related to the bulk partition function according to what is sometimes called, after the
names of the authors of [26,27], the GKPW formula〈

e
∫
ddxOϕ(0)

〉
CFT

= Zstring
∣∣
limz→0 z∆−dϕ(z,x)→ϕ(0)(x)

. (2.59)

Let us explain the notation used in this formula. First of all, this formula is presented
for the Euclidean case for simplicity. On the left hand side we have a CFT generating
functional, with the CFT expectation value defined in the usual way via the path integral.
We are interested in a CFT operator O with conformal dimension ∆, such that ϕ(0) on
the left hand side of (2.59) is the source for that operator. On the right hand side, we
have the string theory partition function with the restriction that the bulk field ϕ(z, x)
must have a certain asymptotic behaviour given by ϕ(0). This means that the boundary
source enters the bulk calculation as a boundary condition. In the weak form of the
correspondence (2.55), the bulk theory becomes classical and we can use the saddle point
approximation [26, 27]〈

e
∫
ddxOϕ(0)

〉
CFT

= e
−SSUGRA|limz→0 z

∆−dϕ(z,x)→ϕ(0)(x) , (2.60)

where now ϕ(z, x) is a solution to the classical supergravity equations of motion. This
equation can then be used to holographically calculate n-point functions of operatorsO and
compare them to CFT expectations [26,27], which is an important check of the AdS/CFT
correspondence.

In the above formulas (2.59) and (2.60), the bulk field ϕ is said to be the field dual to
the boundary operator O. But which kinds of operators have such dual fields, and how
can one determine which bulk field is the dual one to a given O? Just like the global
symmetries of the two theories of the duality match according to table 2.2, it is clear that
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in such a field-operator map, the entries on both sides of the duality should transform in the
same representations of the global symmetry group. Comparing then the gauge invariant
operators present in the field theory to the fields present in the bulk theory after the
Kaluza-Klein (KK) reduction on the S5 leads to the expectation that certain operators on
the field theory side with conformal dimension ∆ are related by the holographic dictionary
to fields on the AdS5 background with mass determined by ∆ [27]. As an example, this
dictionary will relate the scalar 1/2 BPS operator

O∆(x) ≡ C∆
i1...i∆

Tr
[
φi1 ...φi∆

]
(2.61)

to a scalar field ϕ that satisfies a Klein-Gordon equation on the AdS5 background (the S5

being gone due to KK reduction) with mass

m2L2 = ∆(∆− 4) (2.62)

for the correspondence (2.55) [27]. Similar formulas exist for fields with different spins and
general dimensions, see e.g. the overview given in [51,52]. For the model building in chapter
6, it will be useful to note that the field-operator map relates, in particular, fluctuations of
the bulk metric to the CFT stress energy tensor, and fluctuations of a gauge field on the
gravity side to a corresponding current on the field theory side.

Let us consider the example of a scalar bulk field ϕ and its dual operator O in more
detail. The Klein-Gordon equation in Poincaré AdSd+1 (see the first term in (2.54)) reads,
following the notation of [51],

0 =
1√
−g

∂m
(√
−ggmn∂nϕ

)
−m2ϕ (2.63)

=
1

L2

(
z2∂2

zϕ− (d− 1)z∂zϕ+ z2∂µ∂
µϕ
)
−m2ϕ. (2.64)

It is now a standard exercise to make the ansatz ϕ(z, x) = ϕk(z)eikx and find from the
above equation that

0 = z2∂2
zϕk − (d− 1)z∂zϕk −

(
m2L2 + k2z2

)
ϕk. (2.65)

The solution of this equation is given in terms of two modes whose near-boundary (z → 0)
asymptotic behaviour is

ϕk(z) ∼ z∆+ respectively ϕk(z) ∼ z∆− . (2.66)

Here ∆± are the solutions to equation (2.62) (with 4 replaced by the general dimension d),
i.e.

∆± =
d

2
±
√
d2

4
+m2L2, ∆− = d−∆+, (2.67)
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and an expansion of the bulk solution ϕ(z, x) will yield

ϕ(z, x) = ϕ(0)(x)z∆− + ϕ+(x)z∆+ + ..., (2.68)

where ... stands for other terms. In fact, comparing (2.68) to the boundary condition
imposed in the GKPW formula (2.59),(2.60) we see that this field has the right near-
boundary behaviour to define the source ϕ(0) for an operator O of dimension ∆+ [27].
Even more, using (2.60) to calculate the expectation value and taking care of bulk IR
divergencies one can identify the coefficient ϕ+ with the expectation value 〈O〉 [146, 147],
see also the overview given in [51,52].

We have just seen what an important role the near-boundary behaviour of bulk fields plays
in the concrete formulation of the holographic dictionary of the AdS/CFT correspondence
(2.55). Indeed, this, as well as our studies in sections 2.1.4 and 2.1.4, suggest the common
picture that in an AdS/CFT correspondence, the CFT lives on the conformal boundary of
the AdS space. An interesting aspect of this geometrical picture is the so called UV/IR
connection motivated in [44], see also [50]. This connection states that IR effects in the bulk
theory will be holographically related to UV effects in the field theory. For concreteness,
let’s take another look at the AdS5×S5 line element (2.54). Technically, the conformal
boundary is located at z = 0, but in order to regulate the infinite volume of the AdS space
(and IR effects of the bulk theory), we can cut off the spacetime at the regulating surface
z = ε � 1. As we lower ε towards zero, we see that the Minkowski part of the induced
boundary metric

ds2 =
L2

ε2
(ηµνdx

µdxν) + L2ds2
S5 (2.69)

seems to diverge. But of course the CFT assumed to live on the boundary is scale invariant,
so the effect is that overall, the size of the sphere S5 shrinks to zero compared to the
Minkowski space [50]. This is the reason why in (2.55) we are dealing with a boundary
theory that lives on four-dimensional Minkowski space M4, not on M4×S5. As argued
in [44], the role of ε in the field theory is that of a UV cutoff. This can be seen by studying a
variety of quantities, such as for example entanglement entropy which will be investigated
in section 3, see [44, 50] for other examples. As argued in [44, 50], this knowledge of
how the field theory UV cutoff is related to the bulk geometry allows to verify that the
correspondence (2.55) indeed satisfies a holographic bound as already argued in 2.1.4. To
see this, we remind ourselves that we are dealing with a theory with fields in the adjoint
representation of SU(N). For a UV cutoff ε, we then expect that the number of bits Nbits

that can be stored in the CFT in a spacelike unit volume (∆xµ = 1) goes as

Nbits ∼
N2

ε3
. (2.70)

From the bulk point of view, the corresponding area (calculated from (2.69)) will scale as
(dropping the part of the sphere)

A =
L3

ε3
. (2.71)
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Hence (2.70) can be written as

Nbits ∼
N2

ε3
∼ AN

2

L3

N∼ L4

gsα′2∼ AL5

α′4g2
s

∼ A
G5,N

. (2.72)

Here, we have used (2.58) and in the last step we have identified the five-dimensional
Newton’s constant G5,N . Following [44,50], we hence reproduced the expected holographic
bound of section (2.1.2) up to a factor.

This shows that the correspondence (2.55), if any of the three forms discussed above
holds true, is without a doubt the most concrete realisation of the holographic princi-
ple discussed in this thesis. However, it should be pointed out that the correspondence
(2.55) is not the only holographic duality that has been shown to arise from brane con-
structions in string theory or more generally M-theory. Notable other instances include
the AdS3×S3×T4/CFT3 correspondence of [25] and the ABJM AdS4×S7/Zk

/
CFT3 du-

ality [148], amongst others. Attempts to change the brane constructions in such a way
that the conjectured dual field theories resemble more realistic field theories, with less con-
formal and supersymmetry, have led to a variety of models, the famous Sakagi-Sugimoto
model [149, 150] for a holographic dual of a QCD-like field theory being only one exam-
ple. Such models, that have a precise definition in the form of a brane setup in string or
M-theory, are commonly referred to as top-down models. In section 6 we will encounter
a top-down model [86] for a holographic dual of the Kondo effect. Unfortunately, such
top-down models are notoriously complicated, and as the findings of sections 2.1 and 2.2
suggest, a holographic duality between two theories may be possible even without a for-
mal derivation from string theory. Conjectured dualities between certain field theories and
gravitational theories, in which the bulk fields are chosen in such a way that a holographic
dictionary between the bulk theory and the field theory of interest can be established, are
then referred to as bottom-up models. Such bottom-up models predominantly include clas-
sical gravity in the bulk, i.e. are based on the weak form of the AdS/CFT correspondence.
Chapters 4 and 5 will be denoted to the investigation of general classes of holographic
bottom-up models. In chapter 6, we will study in detail a specific holographic bottom-up
model [86] for the Kondo effect, and compare it to the top-down model for the same effect
proposed in the same paper.

Before moving on to the definition and study of entanglement entropy, an important and
useful entry in the holographic dictionary, in chapter 3, we will now close this chapter with a
short epilogue contrasting gravitational holography with its namesake, optical holography.

2.4 Epilogue: comparison to optical holography

In the past sections 2.1-2.3 we have studied the holographic principle and examples of its
manifestation in theories of gravitation. To end this chapter, we will leave strings and
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curved spaces aside for a moment to go back to the very beginnings and ask: Why is it
called the “holographic principle”? The origin of this name goes back to the paper [18],
where ’t Hooft proposed this principle and pointed out some superficial similarities between
this putative feature of (quantum) gravity and properties of optical holograms. Even a
good analogy should never be overstrained, but it may prove insightful to briefly recap the
principles of optical holography (following [151, 152]) and then point out both similarities
and discrepancies between the two phenomena going by the name “holography”14.

Optical holography is based on the insight that a light wave carries information not only in
its amplitude, but also in its phase. An ordinary photograph records an intensity pattern
only, but no phase information, hence information is lost in the photographic process. In
optical holography, in contrast, the key to recording both intensity and phase information
on a two-dimensional photographic plate is the introduction of a reference wave, with
known amplitude, phase and direction. It is then the interference pattern caused by both
the reference wave and the object wave that is recorded by a photographic screen, and that
allows for the reconstruction of three-dimensional data in a later step.

Specifically, let us assume that we want to produce a holographic image of a certain object.
To do so, we produce a reference wave of coherent light with known intensity, wavelength
et cetera. Apart of this reference wave directly falls onto the photographic screen, while
another one is first scattered from the object of interest. We are then faced with two wave
fields15 [152]

ER/O = AR/O(x, y, z) cos 2π(νt+ ΦR/O(x, y, z)), (2.73)

where index R stands for the reference wave and O stands for the object wave. The
position dependent functions A and Φ give amplitude and phase, respectively. As neither
the amplitude A nor the phase Φ are time dependent, we see that this derivation assumes
a stationary wave field, at least on the time scales that it takes to produce one holographic
“snapshot”. Assume furthermore that a photographic screen is placed at the position
x = 0, extending infinitely along the y, z-plane. On this holographic screen, the intensity
distribution will be

I(y, z) ∝ [EO + ER]2
∣∣
x=0

=
[
A2
O + A2

R + 2AOAR cos 2π(ΦO − ΦR)
] ∣∣
x=0

, (2.74)

where we also implicitly assumed a time averaging over one period 1/ν. This intensity
distribution will determine the blackening on the photographic plate (as a negative), and
as this plate is processed we assume to obtain a holographic image which shows a structure
of blackened stripes on a transparent background (for example on a glass plate), such that
the transmittance is proportional to the original function I(y, z). If now the same reference

14It was pointed out in [153] that metamaterials may be used to test certain bottom-up models of
holographic dualities in a laboratory environment, and that the methods of optical holography may then
be of use.

15Holography, as an interference phenomenon, can be done with transversal as well as longitudinal waves,
e.g. light waves as well as sound waves. Hence for simplicity we work with scalar wave fields in this section.
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wave as before falls on this hologram, it will be refracted by the complicated pattern of
black stripes that make up the hologram.16 The wave field obtained this way in the y, z-
plane is

E(y, z) ∝ I(y, z)ER(y, z) (2.75)

∝
[
AR(A2

O + A2
R) cos 2π(νt+ ΦR) + AOA

2
R cos 2π(νt+ ΦO) (2.76)

+ AOA
2
R cos 2π(νt− ΦO + 2ΦR)

]∣∣
x=0

.

Knowing the wave field E(y, z) in the plane of the holographic plate, we can now predict
the wavefield behind the holographic plate as it is completely determined by E(y, z) via
the Huygens-Fresnel principle. In fact, in (2.76) we see that this wavefield behind the
holographic plate will be a superposition of three wavefields: one (∼ cos 2π(νt + ΦR))
that reproduces the original reference wave, one (∼ cos 2π(νt + ΦO)) that reproduces the
original object wave17 and creates the impression of a three-dimensional object for an
observer (i.e. the hologram) and one (∼ cos 2π(νt − ΦO + 2ΦR))) that creates a kind of
twin image of the original object.

We can now see what motivated ’t Hooft’s original analogy [18] between optical holography
and his own holographic principle: Information about a higher-dimensional region can
be stored on its lower-dimensional boundary. In the gravitational case, it is the physics
of black holes as we have seen in section 2.1 that seemingly restricts the scaling of the
information storage capacity of a physical theory to be proportional to the surface area,
not the bulk volume. In the optical case, it is the Huygens-Fresnel principle combined with
the assumption of a stationary wave field that allows the reconstruction of the object image.
Even further, ’t Hooft pointed out that in both cases of holography there is a fundamental
limit on the length scales that can be resolved on the boundary/ holographic plate: In the
gravitational case this is the Planck length, in the optical case it is the wavelength of the
light.

Interestingly, there is one aspect in which the analogy fails, and this is the issue of causality
and bulk reconstruction. It is known [151, 152] that if you take a holographic plate and
smash it into pieces, you can still produce a comparably good holographic image by sending
the reference wave through one of the pieces only. The smaller the piece (compared to the
original holographic plate), the worse the spacial resolution of the hologram will be. This
is the reason why it is often said that an optical hologram stores information about every
part of the image object in every part of the hologram. In contrast, in the case of the
holographic principle as a property of gravitational theories, this will not be possible, as
the gravitational (bulk) theory necessarily needs to contain notions of causality, such as
light cones et cetera. In section 4 we will discuss things like domains of dependence and the
causal influence argument, and we will see that for causality reasons it must not be possible
to reconstruct certain parts of the bulk spacetime if only a too small part of the boundary

16For example a Fresnel zone plate can be considered to be a simple hologram of an approximately
point-like object.

17We see that ideally the reference wave should be chosen such that AR is approximately constant [151].
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information is known. Indeed, in the recent literature this topic of bulk reconstruction
has received much attention, especially with the introduction of the idea of quantum error
correcting codes, see [154–158].





Chapter 3

Entanglement entropy and
holography

The AdS/CFT duality (2.55) is, in its weak form, not only a duality between a strongly
and a weakly coupled theory, but also between a quantum and a classical theory. It is
hence particularly interesting to study the quantum properties of a field theory via holo-
graphic techniques, and one phenomenon of fundamental meaning to quantum theory is
entanglement. There are several quantities that can be used to investigate or quantify
entanglement in quantum systems (see e.g. [54]), but due to its simplicity, entanglement
entropy has received the most attention in the holography literature. We will hence intro-
duce the definition of entanglement entropy in this chapter, as well as its calculation and
interpretation in holographic terms. This will provide the basis for the work to be pre-
sented in chapters 4-6. Due to its prominence in holography, there is as lot of literature on
entanglement entropy. Reference [54] contains a thorough review of entanglement, entropy
and other topics of quantum theory. Reviews of entanglement entropy from a holographic
viewpoint can be found in [52,159], amongst others.

3.1 Definition

We start by presenting the definition and basic properties of entanglement entropy following
[52, 54]. The definition of entanglement entropy starts by describing the quantum state
of a certain quantum system via a density matrix ρ. In case of a pure state |Ψ〉, we find
ρ = |Ψ〉 〈Ψ|, but in more general cases the density matrix may describe a system in a
mixed state, or an ensemble of states. For example, in the thermal canonical ensemble
with inverse temperature β the density matrix takes the form

ρ =
1

Z(β)
e−βĤ =

1

Z

∑
i

e−βEi |ψi〉 〈ψi| , (3.1)
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where Ĥ is the Hamiltonian operator with energy eigenstates |ψi〉 and eigenvalues Ei, and
the partition function Z(β) serves as a normalisation to ensure Tr [ ρ] = 1.

Using the density matrix of a system, a generalisation of Shannon entropy to quantum
states can be defined [54]. This is called von Neumann entropy and reads

S = −Tr [ ρ log ρ]. (3.2)

Entanglement entropy now extends this definition onto subsystems of the total quantum
system. To do so, one divides the total system into complementary subsystems A and Ā,
such that the Hilbert space factorises as H = HA ⊗HĀ.1 One can then define the reduced
density matrix of the subsystem A, ρA, by tracing out the states on the Hilbert space HĀ:

ρA = TrĀ[ρ]. (3.3)

The entanglement entropy of A, SA, is then defined as the von Neumann entropy (3.2) of
the reduced density matrix ρA on HA, i.e.

SA = −TrA[ρA log ρA]. (3.4)

This quantity has the following properties [52,54]:

• Von Neumann entropies and consequently entanglement entropies are non-negative,
S ≥ 0.

• Von Neumann entropy (3.2) is zero if and only if the density matrix ρ describes a
pure state.

• Entanglement entropies of subsystems (A,B,C) of a larger system satisfy a number
inequalities. These are the subadditivity

SA∪B ≤ SA + SB, (3.5)

indicating that entanglement entropy is not extensive, strong subadditivity

SA∪B∪C + SB ≤ SA∪B + SB∪C , (3.6)

and the triangle or Araki-Lieb inequality [54, 161]

SA∪B ≥ |SA − SB|. (3.7)

This implies that in the case of a pure total state, SA∪Ā = 0, the entanglement
entropy will be symmetric: SA = SĀ.

As a consequence of the above, we see why entanglement entropy can be used as a rough

1The assumption that the Hilbert space always factorises in this nice way is indeed non-trivial for gauge
theories. See [160] for a detailed discussion.
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measure for entanglement: If we find SA = 0, then the reduced density matrix ρA is in
a pure state, even after tracing out the degrees of freedom in the Hilbertspace HĀ. This
indicates that no information about subsystem A is lost when tracing out Ā, hence there is
no entanglement between A and Ā present in the total state ρ. Unfortunately, the converse
is not true: SA 6= 0 does not necessarily imply entanglement between A and Ā in the initial
state ρ. Entanglement entropy is hence not a perfect quantifier of entanglement in any
generic situation, nevertheless it can be used as a practical indicator of entanglement in
many cases.

To illustrate this point, let us consider two spins A and B which are together in the pure
EPR state

|Ψ〉 =
1√
2

(|↑〉A |↑〉B + |↓〉A |↓〉B) . (3.8)

It is then an easy task to calculate the reduced density matrix

ρA =
1

2
(|↑〉A 〈↑|A + |↓〉A 〈↓|A) , (3.9)

which describes a mixed state with entanglement entropy

S = log 2. (3.10)

This shows that the two states in the EPR state (3.8) are entangled. In fact they are max-
imally entangled because in a Hilbert space HA with finite dimension d the entanglement
entropy is bounded from above by log d [54].

Via the replica trick to be studied in section 3.4, entanglement entropy can not only be cal-
culated for simple systems in quantum information theory, but also for more complicated
setups. In particular, for conformal field theories in two dimensions, there are a number of
analytic results, see [162]. In many other cases, nevertheless, the calculation of entangle-
ment entropy can be notoriously difficult. This makes it a very interesting quantity to be
studied holographically. In the next two sections, we will hence discuss holographic tech-
niques of calculating entanglement entropy, and the way in which entanglement entropy
leads to a generalisation of the Bekenstein-Hawking formula (2.1).

3.2 Holographic entanglement entropy

A prescription for the calculation of entanglement entropy in the AdS/CFT correspondence
was first proposed by Ryu and Takayanagi (RT) in [55, 56]. This proposal rests on the
assumptions that the gravitational bulk theory is described by Einstein-Hilbert gravity
coupled to matter, and that the (asymptotically AdS) bulk spacetimeM is static, i.e. there
exists a timelike hypersurface orthogonal Killing vector field. Then this Killing vector field
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defines a foliation of both the spacetime M and its conformal boundary ∂M into equal
time slices. Via holography, we assume a quantum field theory to live on the asymptotic
boundary ∂M, and we divide the equal time slice of ∂M into two spacelike regions, A and
its complement Ā. According to the RT prescription, the entanglement entropy for the
CFT subsystem defined on the region A can be calculated via the formula

S(A) =
area(E(A))

4GN

, (3.11)

where E(A) is an extremal surface2 in the (static) bulk spacetime which is anchored to the
boundary of the region A on the AdS boundary, i.e. ∂E(A) = ∂A. See figure 3.1 for the
geometrical setup. Here, the extremal surface E(A) will be referred to as the holographic
or bulk entangling surface, while ∂A, the boundary of the region A on ∂M, is often called
the entangling surface.

As shown in [163], the RT prescription has to be amended with a topological constraint
that we refer to as homology condition: E(A) has to be required to be homologous to A,
i.e. there has to be a spacelike codimension one surface F (see figure 3.1) such that the
boundary ∂F is the union of E(A) and A.

It was already shown in [55, 56] that this prescription reproduces results known for CFTs
from field theory calculations [162], and much more evidence for the correctness of (3.11)
has been aggregated since. In particular, a simple proof for the strong subadditivity (3.6)
of holographic entanglement entropy was given using the RT prescription in [164]. A first
general proof of this formula was attempted in [163], but see [165]. A universally accepted
proof of the RT prescription was then given in [166], see section 3.4. Attempted proofs for
the special case of 2 + 1-dimensional bulk spacetimes can be found in [167,168].

Figure 3.1: The geometrical setup for the Ryu-Takayanagi prescription. The bulk space-
time M is assumed to be static. The time direction is suppressed in this figure, i.e. only
a spacelike slice of M is shown. The figure is presented as in [1].

One of its shortcomings is that the RT prescription is by definition only valid for static
bulk spacetimes, but a covariant extension to general cases, with non-static bulk space-
times, was given by Hubeny, Rangamani and Takayanagi (HRT) in [169]. According to

2Particularly, a spacelike codimension two surface embedded in the equal time slice of the geometry
that minimises its surface area.
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this prescription, in order to holographically calculate the entanglement entropy of the
subsystem of the boundary CFT defined on a spacelike codimension one region A of the
boundary ∂M, one searches for bulk surfaces E(A) that are anchored to ∂A and satisfy
the homology constraint as before, but now extremise the area. Then, out of all surfaces
that satisfy these conditions, the one with minimal area is chosen, and the entanglement
entropy is calculated as

S(A) = minX
area(E(A))

4GN

for X = {E(A) : ∂E(A) = ∂A, ∃F s.t. ∂F = E(A) ∪ A}. (3.12)

The reason that the HRT prescription searches for curves extremising the area is the fol-
lowing [169]: In the RT prescription, the bulk entangling curves are by definition embedded
in a spacelike time slice, and on this spacelike slice a unique minimal area surface should
exist. In the covariant case however, the length of a spacelike curve for example can always
be made arbitrarily small by deforming it closer and closer to a piecewise null curve. The
minimisation of the area in a Lorentzian background will hence not yield a well-defined
spacelike surface. This is why in the HRT prescription, one first constructs the set of all
well-defined spacelike extremal surfaces, and then takes the minimal area surface in this
set.

As remarked in [170,171], the homology constraint has to be refined for the covariant pre-
scription (3.12), e.g. by requiring that the codimension one surface F has to be spacelike.
In the RT approach, this is the case by construction. In [64], it was discussed that the bulk
entangling curves should satisfy certain causality constraints, and that this is automati-
cally the case in the HRT prescription when the null energy condition is satisfied. These
causality conditions will play a major role in our discussion of entanglement entropy in
higher curvature theories, where we show that they are not automatically satisfied even in
physical background spacetimes, see section 4.

We will end this section by showing a very simple example of the calculation of entan-
glement entropy using these holographic methods that was originally already presented
in [55]. Specifically, we will take 2 + 1-dimensional Poincaré AdS (2.11) as the background
spacetime, and we will be interested in calculating the entanglement entropy of a boundary
interval A defined to be a subset of the equal time slice τ = 0 and ranging from x = −∆x/2
to x = +∆x/2. The bulk spacetime is static and the equal time slice τ = 0 is the Euclidean
hyperbolic space

ds2 =
L2

z2
(dx2 + dz2). (3.13)

It is well known that the geodesics in this space are half-circles, and consequently the
bulk-entangling surface needed to calculate the entanglement entropy can be given in a
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simple non-affine parametrisation

z(s) =
∆x

2
sin(s), (3.14)

x(s) =
∆x

2
cos(s), (3.15)

with s ∈]0, π[. See figure 3.2 for an illustration of the geometric setup. By (3.11), the
entanglement entropy will be defined by the area of this codimension two hypersurface,
which is in case of such a one-dimensional curve only its length. Strictly speaking, this
length will be infinite due to the contribution of the part of the curve near the boundary
and we hence have to impose a cutoff at z = ε. As explained in section 2.3.3, this cutoff
acts as an IR regulator for the bulk theory (regulating infinite volume effects), but as a UV
regulator in terms of the boundary CFT. Using (3.11), the entanglement entropy is then

S =
L

4GN

π−arcsin( 2ε
∆x)∫

arcsin( 2ε
∆x)

ds

sin(s)
≈ c

3
log

(
∆x

ε

)
+ ... , (3.16)

where ... stands for terms of higher order in ε
∆x

and we used the result (2.33) to express
GN in terms of the central charge c. As expected, (3.16) reproduces the field theory result
of [162].

Figure 3.2: Geometric setup for the calculation of entanglement entropy of an interval
A = [−∆x

2
, ∆x

2
]. In the hyperbolic space (3.13), the spacelike geodesics are half-circles.

3.3 Black hole entropy and thermofield double states

As we can clearly see by comparing equations (2.1), (3.11) and (3.12), the holographic
prescription for calculating entanglement entropy is a generalisation of the Bekenstein-
Hawking formula for black hole entropy. Indeed, we can see that in the AdS/CFT cor-
respondence the entropy of a static bulk black hole can be calculated as entanglement
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entropy. To do so, we have to distinguish two possible cases.

In the first case, we are working in an asymptotically Poincaré black hole background, where
the event horizon extends infinitely in the spacelike directions xµ. When we then calculate
the entanglement entropies of certain boundary systems (e.g. infinite strips) A(R) with
size R, and take the limit R→∞, we find that the corresponding holographic entangling
surfaces in the bulk approach the event horizon more and more closely, see figure 3.3.
For example, the generalisation of (3.16) to the background-spacetime given by the BTZ
black hole [130, 131] with temperature T will play an important role in chapter 6 and
reads [55,162]3

S =
c

3
log

(
1

πεT
sinh (πRT )

)
. (3.17)

Apart from the divergence ∼ log(ε) caused by the near-boundary part of these surfaces,
which can be subtracted, the entanglement entropy will then be dominated by the in-
creasing parts of the surfaces that are close to the horizon. For large R, the renormalised
entanglement entropy Sren can then be approximated by the area of the part of the curve
EA(R) which is near the event horizon, or equivalently by the area of A(R) (measured at
the boundary) times the entropy density of the event horizon times some constant. In
the limit R → ∞ the entanglement entropy hence reproduces the black hole entropy. We
also see that in this limit the entanglement entropy becomes extensive, as expected for a
thermodynamic entropy. For example, in the limit R→∞ equation (3.17) yields

Sren ≈
c

6
πTR. (3.18)

These considerations will later become very useful in our study of entanglement entropy
and impurity entropy in the Kondo effect, see chapter 6.

Figure 3.3: Typical holographic entangling surfaces for three boundary regions A(Ri) with
sizes R1 < R2 < R3. With increasing size, the surfaces approach the event horizon closer
and closer.

In the second case we deal with black holes in asymptotically global AdS, where the
boundary is compactified to a (hyper-) sphere. The analogous situation to the first case

3With ∆x in (3.16) renamed to R in this context.
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is a bit more complicated here, as bulk entangling curves still tend to approach the event
horizon, but due to the finiteness of the boundary volume, the limit R → ∞ is now not
possible anymore. To investigate this case more closely, we should consider the conformal
diagram of a static asymptotically AdS black hole as it is sketched in figure 3.4. Outside of
the event horizons, this spacetime is static, and hence equal time slices can be constructed.
In such cases, as we have seen in section 3.2, we can calculate entanglement entropy
holographically using the Ryu-Takayanagi prescription4. The corresponding holographic
entangling surfaces are then extremal surfaces on the geometry defined by the equal time
slice, which is known as an Einstein-Rosen (ER) bridge or also Euclidean wormhole. See
figure 3.5 for a sketch of the geometry of such an equal time slice.

Figure 3.4: Conformal diagram for a static asymptotically AdS black hole. The spacetime
has two boundaries, with CFTs 1 and 2 living on it. The flow of the (asymptotically)
timelike Killing vector field ∂t is indicated with arrows. The event horizons (diagonal
lines) are Killing horizons, and the bifurcation surface B is defined to be the locus where
the Killing vector field vanishes. An equal time slice with respect to the Killing field is
a straight line through the center of this diagram, shown as a dotted line. The figure is
presented as in [1].

Assume we start with a subregion A of CFT1 which has a small angular extend ∆φ on the
boundary sphere.5 The corresponding bulk entangling surface used in the RT prescription
will then be of the qualitative form of C in figure 3.5. As ∆φ grows beyond π, this will
smoothly transform into a hypersurface of the shape D, which increasingly approaches the
bifurcation surface B, which is the equal time slice of the black hole event horizon. But now
we have to take into account that according to the RT prescription, the bulk entangling
surface need not necessarily be connected. Then, for ∆φ→ 2π, there are two possibilities
for extremal bulk surfaces that satisfy the homology constraint and are anchored at ∂A on
the boundary. One possibility is the surface D sketched in figure 3.5, the other possibility
is that the entanglement entropy is described by the union of the curves B and C.6 Note

4Assuming that the boundary subsystem in question is also defined on an equal time slice.
5This is a generalisation of the size scale R that we used for the case of a flat boundary.
6For the moment, we ignore surfaces of the type A, i.e. closed surfaces wrapping around the black hole

event horizon. In Einstein-Hilbert gravity, these are excluded by the null energy condition [172].



3.3 Black hole entropy and thermofield double states 47

that C alone would not satisfy the homology constraint with respect to the boundary
region A. According to the RT prescription, the entanglement entropy is given by the
extremal surfaces with smallest area, subject to the correct boundary conditions and the
homology constraint. Hence, as ∆φ is increased from 0 to 2π, there will generically be a
transition from the entanglement entropy being defined by one surface for small ∆φ to the
entanglement entropy being defined by the union of a surface anchored at the boundary
and the bifurcation surface B for large ∆φ.7 Especially, we see that if we take the limit
B → 0 such that the subregion A encompasses the entirety of the right boundary, where
CFT1 lives, the (renormalised) entanglement entropy is given by the area of the bifurcation
surface B,8 i.e. the area of a slice of the event horizon. This means that the two CFTs on
the two boundaries of the eternal black hole are entangled, and the entanglement entropy
between them is exactly the Bekenstein-Hawking entropy (2.1), or in the nomenclature of
this section [169,170]

S =
area(B)

4GN

. (3.19)

This implies that after tracing out the degrees of freedom of CFT2, CFT1 is left in a
thermal state with density matrix (3.1) and an entropy (3.19) that could be interpreted as
thermal entropy from a viewpoint of the CFT1, but that is an entanglement entropy from
a viewpoint that takes into account both CFT1 and CFT2.

The remaining question is: What is the total state of CFT1 and CFT2 dual to the eternal
black hole? The answer was given by Maldacena in [173], where he proposed that in the
weak form of the AdS/CFT conjecture, the total state of the two CFTs dual to the large
static eternal black hole9 is the (pure) thermofield double state

|Ψ〉 =
1√
Z(β)

∑
i

e−
1
2
βEi |Ei〉1 |Ei〉2 , (3.20)

where the notation is similar to equation (3.1) and the states |Ei〉1/2 are energy eigenstates
of CFT1/2 respectively. Starting from this state (3.20), it is then easy to take the trace
on the Hilbertspace of CFT2 and find that the reduced density matrix for CFT1 will be
the thermal one (3.1). This pure thermofield double state describing two entangled CFTs
is hence analogous to the EPR state (3.8) describing two entangled spins. This is one
manifestation of the ER=EPR proposal mentioned in section 1.

The fact that the entropy of the bulk black hole holographically describes the entropy of
the CFT on one of the boundaries, described by the density matrix of a thermal state, was
already derived without the use of entanglement entropy in [27, 174]. To understand this
result, we should note that for a thermal canonical ensemble, the CFT thermodynamics

7This also leads to the phenomenon of entanglement plateaux studied in [170].
8As area(C)→ 0 in this limit.
9The AdS-black hole is assumed to be large compared to the AdS-scale in order to have positive specific

heat and be the dominant contribution to the canonical thermodynamic ensemble [173].
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Figure 3.5: Left: The geometry of an Einstein-Rosen bridge, which is the equal time slice
signified in figure 3.4 by a dotted line. Several types of possible curves on such a time
slice are shown as A,B, C,D. B is the bifurcation surface, which is the throat of the
wormhole, where the circumference of the geometry is the smallest. Curves of the type of
A are usually not possible in Einstein-Hilbert gravity [172], but will play a role in higher
curvature theories, see chapter 4. Right: A similar sketch, showing only the spacetime
region between the bifurcation surface and the right boundary (divided into regions A and
B), where CFT1 is assumed to live via the holographic duality. The figures are presented
as in [1].

can be inferred from the (canonical) partition function Z(β) = Tr
[
e−βĤ

]
. Then, one can

define quantities such as the free energy βF = − logZ(β) and the field theory entropy
SCFT = β2∂βF . Holographically, the weak form GKPW formula (2.60) equates the CFT
partition function with the saddle point approximation of the gravity partition function,
i.e.

Z = e−SE(β), (3.21)

where SE is the Euclidean on-shell action of the dominant bulk saddle for a given temper-
ature. This dominant saddle will be a black hole, at least for large temperatures [27,174].
It then follows that βF = S and the CFT thermal entropy can be calculated from the
gravity on-shell action to be [27,174]

SCFT = β2∂β

(
1

β
S
)
. (3.22)

This on-shell action approach to black hole entropy reduces to the area formula (3.19)
[27,174], and hence we find

SCFT = SBH =
area(B)

4GN

, (3.23)

reproducing the result derived via entanglement entropy above.
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3.4 The replica method

So far, we have seen concrete examples of how entanglement entropy can be calculated for
simple spin-systems, as well as in holographic contexts. To gain a deeper understanding
of entanglement entropy in field theory terms, in this section we present a brief overview
over the replica trick or replica method. Although this method has been developed in the
context of spin glasses (see e.g. [175]), we will in this section follow the outline presented
in [162] as well as the summary of [52].

The first step towards understanding the replica method is to write the entanglement
entropy (3.4) in the form

SA = −TrA[ρA log ρA] = − lim
n→1

∂

∂n
Tr [ρnA] . (3.24)

SA can hence be calculated by the detour of calculating Tr [ρnA] for any integer n > 1,
analytically continuing to general n > 1 and taking the appropriate limit [162]. The
virtue of the replica method is that the quantity Tr [ρnA] can be calculated via path integral
methods. For simplicity, we will now restrict our discussion to Euclidean two-dimensional
quantum field theories, with a Euclidean time coordinate t and a space coordinate x. We
will also assume this Euclidean space to be simply a cylinder where the time is compactified
with a period β = 1/T .

The path integral can now for example be used to calculate transition probabilities between
two states at different Euclidean times, or the thermal partition function

Z =

∫
D[φ]

∣∣
t∼t+β e

−SE , (3.25)

where we have collectively called the fields of the theory φ, and the Euclidean action
SE. The integration is over all field configurations that satisfy the appropriate periodicity
conditions for finite temperature. In the following, we consider the case where a subsystem
A is defined to be an interval on the t = 0 line of the Euclidean space. The reduced density
matrix ρA then reads [162]:

ρ =
1

Z

∫
D[φ]

∣∣
t∼t+β for x∈Ā

∏
x∈A

δ(φ(x, 0+)− φ′(x))
∏
x∈A

δ(φ(x, 0−)− φ′′(x)) e−SE . (3.26)

The interpretation of this formula is that the periodicity conditions are only imposed
on the fields outside of A, while in the subsystem A we impose the boundary condition
φ′(x) at an infinitesimal time-step to the future and φ′′(x) at an infinitesimal time step to
the past. This implements the tracing out of the complement Ā (ρA = TrĀ[ρ]), and the
functions φ′ and φ′′ can be seen as indices of the reduced density matrix, (ρA)φ′φ′′ . It is now
straightforward to understand how the quantity Tr [ρnA] can be calculated by introducing
n copies, also called replicas, of the manifold on which the QFT lives. See figure 3.6 for an
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illustration. One simply sews together the n copies of the spacetime along the subsystem
A in a cyclic way, always identifying the state on the 0+-line of replica i with the state on
the 0−-line of replica i+ 1. Taking the overall trace is then implemented by identifying the
state on the 0+-line of replica n with the state on the 0−-line of replica 1.

Figure 3.6: An illustration of the replica method, here for the case n = 3. The subsystem
A is seen as a cut in the space on which the field theory lives, and n replicas of the space
are sewn together along this cut in a cyclic manner.

This means that we are effectively working with an n-sheeted Riemann surface Rn, and
the reduced density matrix is related to the partition function Zn(A) of the QFT on this
Riemann surface via the equation [162]

Tr [ρnA] =
Zn(A)

Zn
. (3.27)

Thus, the replica trick suggests a possible way to calculate entanglement entropy by cal-
culating the expressions Zn(A) for integer n > 1. Unfortunately, this is still a non-trivial
task in general, but analytic results such as (3.17) can be derived for two dimensional
CFTs [162]. We will not go into the details of this, instead we will in the rest of this sec-
tion give a brief overview over how the replica trick was used for a holographic derivation
of the Ryu-Takayanagi prescription (3.11) in [166], see also [163, 165, 167, 168] for earlier
work. To do so, we will follow the overviews presented in [52] and [62].

The idea behind the proof given in [166] is to extend the replica trick into the bulk space-
time. Specifically, for the case of n replicas, there should be a bulk spacetime Bn such that
Rn is the conformal boundary of this bulk spacetime, and Bn is a solution to Einstein’s
equations. The generalisation of (3.21) then reads

Zn(A) = e−SE, bulk(Bn). (3.28)

For integer n, the boundary manifold Rn has a cyclic Zn symmetry (of shifting the replicas
i → i + m modulo n), and this is conjectured to be also the case for Bn [166]. The set of
points that are invariant under this Zn symmetry is very interesting: On the boundary Rn,
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these points will be the boundary ∂A of the subsystem A, i.e. the endpoints of the cut along
which the replicas are sewn together. In the bulk spacetime Bn, the set of fixed points will
form a codimension two surface that reaches to the boundary Rn and is anchored there at
∂A. For simplicity, we refer to this set of fixed points as E(A), as in the limit n→ 1 it will
become the holographic entangling surface defined in section 3.2. Instead of Bn, it is now
useful to look at the orbifold

B̂n = Bn/Zn. (3.29)

The hypersurface E(A) is then the locus of a conical defect in B̂n. Excluding boundary
terms of the action at the locus of this conical defect, one can then write SE, bulk(Bn) =

nSE, bulk(B̂n) [62, 166]. Furthermore, as Tr[ρ] = 1, (3.24), (3.27), (3.28) and (3.29) can be
used to derive [62,166]

SA = − lim
n→1

∂nTr [ρnA] = − lim
n→1

∂n log Tr [ρnA] = lim
n→1

1

1− n
log Tr [ρnA] (3.30)

= lim
n→1

n

n− 1

(
SE, bulk(B̂n)− SE, bulk(B̂1 = B1)

)
= lim

n→1
∂nSE, bulk(B̂n) (3.31)

As shown in [62,166], the metric in the vicinity of this hypersurface can be written as

ds2 = ρ−2ε
(
dρ2 + ρ2dτ 2

)
+
(
hij + 2k

(α)
ij x

α
)
dyidyj + ..., (3.32)

where the yi are coordinates along E while xα ∈ {ρ, τ ∼ τ + 2π} are polar coordinates
in the plane normal to the conical defect surface. The conical defect is parameterised by
ε = 1− 1/n, and the k

(α)
ij are extrinsic curvature tensors, see appendix A. The terms ... are

terms in higher order of ρ. The virtue of this approach of introducing B̂n and the metric
(3.32) is that this setup can easily be generalised to non-integer n.

As shown in [166], imposing Einstein’s equations to be satisfied by the metric (3.32) leads,
in the limit n→ 1, to the condition

k(α)i
i = 0, (3.33)

i.e. the traces of the extrinsic curvature tensors have to vanish. This means nothing else
than that the surface E(A) has to be an extremal surface10, as expected from the holo-
graphic prescriptions discussed in section 3.2. This is a very important result, as in chapter
4 we will be concerned with locating the extremal surfaces that define entanglement en-
tropy in higher curvature theories. Furthermore, a detailed analysis of the terms arising
in the action SE, bulk(B̂n), which will not be repeated here for the sake of brevity, confirms
that the correct entropy functional is indeed (3.11) [166].

As we have seen in this chapter, entanglement entropy is a widely studied topic in the
AdS/CFT literature and it would lead too far to summarise here all the ways in which

10In the sense of extremising its area.
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the study of entanglement entropy has lead to new insights into the nature of holography.
Instead, we will devote the remaining chapters of this thesis to highlighting the contribu-
tions that the author made to the understanding of holographic entanglement entropy in
certain contexts. In chapter 4, we study how prescriptions for calculating entanglement
entropy in bulk theories with higher curvature terms in the action will be constrained by
requirements of causality. In chapters 5 and 6 we will study bottom-up models of boundary
CFTs (BCFTs), and how entanglement entropy can be used in such models to define defect
entropy and monitor the behaviour of this quantity under holographic RG flows.



Chapter 4

Entanglement entropy in higher
curvature theories

4.1 Introduction

In the following chapter, we will present the results obtained by the present author in [1]. In
section 3.3 we have seen that in AdS/CFT, the entropy of eternal black holes is interpreted
as the entanglement entropy between two CFTs living on the two AdS boundaries. While,
as we discussed in section 2.1.1, the entropy of a black hole in Einstein-Hilbert gravity
should be given by the Bekenstein-Hawking formula (2.1), the generalisation of this formula
to gravitational theories with higher curvature terms in the action (e.g. R2, RµνR

µν et
cetera) was given by Wald and others in [57–59]. There, it was derived that for a stationary
black hole in a higher curvature theory with action

S =
1

16πGN

∫
dd+1x

√
−gL, (4.1)

the black hole entropy can be calculated by evaluating a certain entropy functional on the
bifurcation surface B (see section 3.3) of the black hole [57–59]:

SWald =
−1

8GN

∫
B

dd−1y
√
γ

∂L
∂Rαβγδ

εαβεγδ. (4.2)

Here εαβ is called the binormal and, using εαβεαβ = −2, (2.1) follows as the special case
for Einstein-Hilbert gravity [57–59]. Now as we have seen in sections 3.2 and 3.3 the
holographic prescriptions for the calculation of entanglement entropy can be considered
to be a straightforward generalisation of the entropy formula (2.1) for black holes. Will
holographic entanglement entropy calculations in higher curvature bulk theories then be a
straightforward generalisation of (4.2)? The answer is both yes and no. “Yes” because, as



54 4. Entanglement entropy in higher curvature theories

explained in section 3.3, the prescription for calculating holographic entanglement entropy
has to reproduce the correct black hole entropy. “No” because the necessary generalisation
of (4.2) will not be straightforward. In the derivation of [57–59], there where several
possible ambiguities that did not matter as the corresponding terms always vanish when
evaluated on a bifurcation surface B [176]. Nevertheless, holographic entanglement entropy
in higher curvature theories has been an active field of research in holography, starting
already with [163,176,177] for specific theories, continuing with [60,61] for general theories
with higher curvature terms of order R2 and reaching the most general result up to date
with [62,63]. Specifically, for a higher curvature theory of the form

S =
1

16πGN

∫
dd+1x

√
−g
[
R + 2Λ + aR2 + bRµνR

µν + cRµναβR
µναβ

]
, (4.3)

the entropy functional proposed in [60–63] based on replica methods similar to the argu-
ments discussed in section 3.4 reads:

SEE(Σ) =
1

4GN

∫
Σ

dd−1y
√
γ

[
1 + 2aR + b

(
R‖ −

1

2
k2

)
+ 2c

(
R‖‖ − Tr(k)2

)]
. (4.4)

This indeed reduces to (4.2) when evaluated on a black hole bifurcation surface [60–63].
For an explanation of the notation used in this formula, see appendix A.1.

The derivations done in [60–63] are a generalisation of the calculations of [166] (see section
3.4) to higher curvature theories, and as such are quite involved. However, just like the end
result of [166] was the simple Ryu-Takayanagi prescription (3.11), the general prescription
how to calculate holographic entanglement entropy using the functional (4.4) is thought
to be simply a generalisation of the RT and HRT prescriptions studied in section 3.2. Ac-
cording to [62], in order to calculate the entanglement entropy of a boundary subregion A,
one has to find a codimension two spacelike surface extremising the functional (4.4) and
satisfying the same boundary conditions as the curve E(A) in the RT and HRT prescrip-
tions, i.e. ∂Σ = ∂A and the homology condition. If several extremal surfaces Σ satisfying
these conditions exist, one would take the one yielding the smaller entropy (4.4) to be the
one defining the physical holographic entanglement entropy.

In this chapter, however, we will apply this prescription to two different physical theories
and find that there are special situations in which this prescription yields extremal surfaces
Σ that satisfy all conditions described above and give the lowest entropy, but that should
not be considered to be the correct physical surface defining entanglement entropy. In
particular, following the thoughts of section 3.3 we will look for hypersurfaces extremising
the functional (4.4) which are not anchored to the asymptotic boundary, but which are
closed and wrap around a black hole, such as curve A in figure 3.5. If such a curve was
to define entanglement entropy between the two CFTs on the boundaries of an eternal
black hole, this would mean that the entanglement entropy (SEE(A)) would no longer be
equivalent to the black hole entropy (SEE(B) = SWald), violating the expectations from
section 3.3 and, e.g., [27,174]. In section 4.4 we will show that the imposition of additional
causality constraints serves to distinguish physical from unphysical extremal surfaces.
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4.2 New massive gravity

The first higher curvature theory that we are going to work with is new massive gravity
(NMG) which is a toy model of gravity in 2 + 1 dimensions that was proposed in [178,179]
and studied in the holographic context in [180–187]. The action is written as

S =
1

16πGN

∫
d3x
√
−g

[
σR− 2λm2 +

1

m2

(
RµνR

µν − 3

8
R2

)]
. (4.5)

Here the mass parameter m2 may take any sign, λ is a cosmological constant parameter
and σ = ±1 allows us to choose the sign of the Einstein-Hilbert term. The parameter
space of this theory is quite complicated and we will now summarise the most important
aspects of it following [179].

First of all, we are interested in whether the corresponding equations of motion allow for
AdS solutions. This can be shown to be the case if the AdS radius L satisfies the equation

1

L2
= 2m2

(
σ ±
√

1 + λ
)
, (4.6)

i.e. only for λ ≥ −1 [179]. Unfortunately, NMG is known to be plagued by several problems
that cast doubt on its validity as a physical theory1. First of all, ghosts, i.e. negative energy
gravitons, are only absent when

m2(Λ− 2m2σ) > 0 (4.7)

where we defined Λ = −1/L2 [179]. As a second constraint, we have to impose the
Breitenlohner-Freedman bound [179,197]

−2m2σ ≥ Λ. (4.8)

Furthermore, one can determine the central charge of the assumed CFT dual of NMG to
be [179,198]

c =
3L

2GN

(
σ +

1

2m2L2

)
, (4.9)

which should ideally be positive. Unfortunately, (4.7) and the condition c ≥ 0 in (4.9)
are mutually exclusive. An overview over the parameter space of NMG and the different
conditions discussed above is given in figure 4.2 at the end of this subsection.

1Nevertheless, as a model of gravity in 3 dimensions with propagating degrees of freedom this theory
has received much attention, just like the (similarly problematic) topologically massive gravity [188, 189].
In the recent years, much effort has been invested into two theories that are hoped to be just as interesting,
yet in many aspects physically better behaved. These are zwei-dreibein gravity [190–193] and minimal
massive gravity [194–196]. Unfortunately, these theories are not of the form (4.3) and hence (4.4) does not
apply. How to calculate entanglement entropy in these theories seems to be an open problem.
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As AdS3 is a solution to NMG for certain parameters, the same holds for the BTZ black
hole [130, 131] which is constructed via global identifications of an AdS3 background. In
Schwarzschild like coordinates, the line element for the non-rotating case reads2

ds2 = −
(
−M +

r2

L2

)
dt2 +

(
−M +

r2

L2

)−1

dr2 + r2dφ2. (4.10)

The event horizon is obviously located at rH = L
√
M . The entropy of this black hole in

NMG can then be shown to be [179,198]

SBTZ =
2πrH
4GN

(
σ +

1

2m2L2

)
. (4.11)

Positivity of the black hole entropy is hence tied to positivity of the central charge (4.9).

As shown in [199], in NMG the functional (4.4) takes the form

SEE =
1

4GN

∫
dτ
√
gττ

[
σ +

1

m2

(
R‖ −

1

2
k2 − 3

4
R

)]
, (4.12)

where
√
gττ =

√
gµν

dxµ

dτ
dxν

dτ
and τ is the parameter along the curve.3 In [1] we studied

curves extremising this functional both anchored at the boundary and closed in the bulk.
In this thesis, we will for simplicity only present the closed curve solutions in the following.4

As we have seen in section 3.3, such closed extremal curves should holographically describe
the entanglement between the two CFTs living on the two boundaries of an eternal black
hole.

In order to find such extremal curves, we would usually have to vary the functional (4.12)
in order to obtain equations of motion, just as the geodesic equations can be found by vary-
ing the length functional

∫
dτ
√
gττ . Unfortunately, the resulting equations of motion are

notoriously complicated. To simplify things, on can make something like a minisuperspace
ansatz, i.e. assume that the solutions will have certain symmetry properties, plug a cor-
responding ansatz for the curve into the functional (4.12) and obtain simplified equations
of motion by varying with respect to the remaining functions respectively the remaining
parameters of the ansatz. The solutions that are obtained this way can then be plugged
into the full equations of motion (i.e. using a computer program like Mathematica) to be
checked for their validity. So to be specific, we will make two assumptions about potential
closed surfaces extremising (4.12) in a BTZ background (4.10). First of all, as the space-
time is static outside of the horizon, we will assume our putative extremal surfaces to be

2In this thesis we will restrict ourselves to the nonrotating BTZ case. Rotating BTZ black holes and
Lifshitz black holes in NMG have also been briefly investigated in [1].

3As NMG is a theory in three bulk dimensions, the codimension two hypersurfaces that define entan-
glement entropy are one-dimensional curves in this case. See also the example in section 3.2.

4Besides [1], extremal curves anchored at the boundary have also been studied in NMG in [186,200,201].
In [200], special boundary conditions were proposed to restrict the holographic entangling curves. In [201],
field redefinitions where used to obtain the correct physical extremal surfaces.
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embedded in constant time slices, i.e. t(τ) = const. Also, we will assume these curves to
be invariant under translations generated by the angular Killing vector field ∂φ, hence our
ansatz is r(τ) = const., φ(τ) ∝ τ .

One technical problem that we encounter immediately is that the Schwarzschild coordinates
used in (4.10) are not valid on the event horizon of the black hole. This problem could easily
be solved by going to the Kruskal coordinates for the BTZ black hole [130, 131], yet these
make computations significantly more complicated. For the sake of a concise presentation,
just as in [1] we will hence continue to work in Schwarzschild coordinates. All our results
can be, and were, checked for correctness by calculations in Kruskal coordinates, both in
the Lorentzian and Euclidean BTZ metric where applicable.

As, however, the Schwarzschild coordinates do not cover the bifurcation surface B, defined
by

rB = rH = L
√
M, (4.13)

we have to be careful not to overlook this curve as an extremal curve of the entropy
functional (4.12). In fact, the bifurcation surface of a black hole extremises not only the
area functional, but in fact any physical functional like (4.4). The reason for this lies in
the symmetries of the black hole spacetime, see figure 3.4 again. We expect that if some
functional is evaluated on a given surface in the black hole spacetime, then if we move
this surface along the flow of the Killing vector field ∂t, the resulting surface yields the
same value when the functional is evaluated on it. But the bifurcation surface B is the
surface on which the two Killing horizons in figure 3.4 cross and hence it is the set of
fixed points under the flow of the Killing vector field. Also, the maximally extended static
black hole spacetimes are time inversion symmetric as well as symmetric under exchange
of the left and the right side. These symmetries of a conformal diagram as figure 3.4 imply
that the bifurcation surface B will always be a local saddle point to any functional of the
form (4.4) on a static black hole background. This means that, if no other closed solutions
do exist, the entanglement between the two CFTs on the two boundaries of the eternal
black hole will always be given by the black hole entropy (4.11), as the functional (4.4)
by definition reduces to Wald’s result (4.2) on a bifurcation surface. This would be the
physically expected result.

The problem that we will be concerned with in this chapter, and that was studied in [1],
is that generically functionals of the form (4.4) do allow for additional closed extremal
curves in black hole backgrounds. The first example that we encounter is NMG, where
upon inserting our symmetric ansatz for a potential closed surface the functional (4.12)
takes the form

S ∝ σr +
M

2m2r
(4.14)

for a closed curve of radius r. This means that apart from the bifurcation surface (4.13),
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we find a closed curve extremising (4.12) at radius

r =

√
M

2σm2
. (4.15)

Comparing this to the event horizon located at r = rH (4.13), we see that this additional
extremal surface will be outside of (or exactly on) the event horizon for σm2L2 ≤ 1

2
, which

is precisely the Breitenlohner-Freedman bound (4.8). For σm2L2 < 0, this solution is ill
defined and no additional extremal surfaces exist.5 Due to the symmetry generated by the
timelike Killing vector field ∂t (see figure 3.4), these additional curves do not appear as
solitary codimension two surfaces, but they foliate codimension one hypersurfaces invariant
under flows of ∂t. Depending on σm2L2, we hence find one of the four possible configura-
tions shown in figure 4.1. In figure 4.2 we compare these different possible configurations
with the restrictions imposed on NMG by the Breitenlohner-Freedman bound (4.8), the
condition of unitarity (c ≥ 0) and the absence of ghosts (4.7). As already said earlier, the
latter two conditions are mutually exclusive, but it is interesting to point out that none
of the possible pathologies of NMG seems to be in a one to one correspondence with the
appearance of additional extremal surfaces.

Of course, according to the RT and HRT prescriptions, we would be required to take
that extremal curve to define the entanglement entropy between the two CFTs on the two
boundaries that yields the lowest value for the entanglement entropy. By definition, the
entropy functional (4.12) evaluated on the bifurcation surface B will yield the Wald entropy
(4.11). In contrast, the additional surface (4.15) yields an entropy

Sa =
2πσ

4GN

√
2M

σm2
. (4.16)

In the parameter regime where (4.15) is a real solution, we then find |SBTZ | ≥ |Sa| with
equality for σm2L2 = 1/2, where the additional extremal surfaces are slices of the event
horizon. This is depicted as case c) in figures 4.1 and 4.2.

For positive black hole entropy SBTZ (equivalent to positive central charge (4.9)), the RT
and HRT like prescriptions for higher curvature theories discussed at the beginning of this
chapter would then suggest that the entanglement entropy between the two CFTs on the
two boundaries is in fact not given by the black hole entropy SBTZ , but by the entropy Sa
associated with the additional extremal closed curve. On physical grounds, this would be a
very counterintuitive result, as it would mean that the black hole entropy (calculated on the
bifurcation surface via Wald’s formula (4.2)) would no longer be the entanglement entropy
between the two CFTs. In fact, we will see in section 4.4 that the additional extremal
surfaces found in this section have to be discarded for reasons of causality. Yet before
studying these causality conditions, we will leave the topic of NMG and study another
higher curvature theory instead, namely the well known Gauss-Bonnet gravity. This is

5Remember that we formally allow m2 to have any sign, but L2 is positive.
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Figure 4.1: Four possible configurations of additional extremal surfaces (4.15), depending
on the value of σm2L2. The bifurcation surface B is always an extremal curve of the
entropy functional. a): σm2L2 < 0, no additional closed extremal curves exist in the BTZ
geometry. The flow of the Killing vector field ∂t is sketched by arrows. b): 0 ≤ σm2L2 < 1

2
,

and the additional curves lie outside the event horizon. They are spacelike slices of a
timelike hypersurface invariant under flows of ∂t. c): σm

2L2 = 1
2
, the additional surfaces

are slices of the event horizon. d): σm2L2 > 1
2
, the additional extremal surfaces are inside

of the event horizon. The figure is presented as in [1].

worthwhile as, as stated above and shown in figure 4.2, NMG is plagued by numerous
pathologies. We will show that Gauss-Bonnet gravity, although being much better behaved
as a physical theory than NMG, will also give rise to additional extremal closed surfaces
that pose a problem for the calculation of entanglement entropy. We hence expect that
problems of this kind for prescriptions for the calculation of entanglement entropy based
on functionals like (4.4) may to a certain extend be generic to higher curvature theories.

4.3 Gauss-Bonnet gravity

Gauss-Bonnet gravity is a special case of Lovelock gravity [202] (see also [203]) and its
action in five dimensions can be written as [177]

S =
1

16πGN

∫
d5x
√
−g

[
R +

12

L2
+ λ

L2

2

(
RµναβR

µναβ − 4RµνR
µν +R2

)]
. (4.17)

This corresponds to the special choice of the parameters a, b, c in (4.3) such that the action
and the corresponding equations of motion contain higher curvature terms, but can be
written without higher derivatives of the metric [202,203]. This means that the equations
of motion for the metric are still second order, in contrast to NMG for example. Gauss-
Bonnet and Lovelock theories of gravity are hence frequently studied models of higher
curvature gravity in higher dimensions6 both in general gravitational physics [202,203] and
AdS/CFT research [176, 177, 204, 205]. Just as it was the case for NMG, the parameter
space for Gauss-Bonnet theory (4.17) has been studied in much detail in the literature. To

6In four or less bulk dimensions, the Gauss-Bonnet term RµναβR
µναβ − 4RµνR

µν + R2 would be a
topological invariant.
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Figure 4.2: An overview over the parameter-space of NMG, where σL2m2 and σ = ±1
are used as variables. The conditions of absence of ghosts (equation (4.7)) and positivity
of the central charge (equation (4.9)) are mutually exclusive. It is also shown for which
parameters the Breitenlohner-Freedman bound (4.8) is satisfied. The brackets indicate
which of the four cases shown in figure 4.1 appear for which parameter range. The figure
is presented as in [1].

summarise these results, the presumed boundary theory for Gauss-Bonnet holography is
causal for the parameter range [206–209]7

− 7

36
≤ λ ≤ 9

100
. (4.18)

As shown in [211], this parameter choice will also guarantee the positivity of holographic
relative entropy. It is also possible to choose an AdS vacuum such that the conjectured
dual CFT is unitary [204,205] and the bulk theory is free of ghosts [212].

Gauss-Bonnet theories (4.17) were the first higher curvature models for which holographic
entanglement entropy was studied [60, 163, 176, 177] using the Jacobson-Myers entropy
functional [213]

SEE =
1

4GN

∫
Σ

d3y
√
γ
(
1 + λL2R

)
. (4.19)

This is indeed the form that the functional (4.4) takes for the theory (4.17) if the extrinsic
curvature quantities defined in appendix A.1 are re-expressed in terms of the intrinsic cur-
vature scalar R of the hypersurface Σ using the Gauss-Codazzi equations (see e.g. chapter

7After the publication of [1], on which this chapter is based, it was shown in [210] that certain causality
problems can arise in Gauss-Bonnet gravity for any non-perturbative value of λ. We will very briefly
comment on this in section 4.4.
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10.2 of [105]). The fact that the entropy functional (4.4) can be expressed completely in
terms of intrinsic curvature quantities as in (4.19) is one of the many special properties of
Gauss-Bonnet gravity.

Just as earlier for NMG, we will now try to find out whether Gauss-Bonnet gravity also al-
lows for the existence of closed hypersurfaces (other than bifurcation surfaces) extremising
the entropy functional (4.19). To begin this investigation, we will consider the background
spacetime gµν to be a spherically symmetric static black hole solution of Gauss-Bonnet
gravity [214–217]. As the functional (4.19) is only dependent on intrinsic curvature quanti-
ties, we see that the specific form of the background metric is not important at all. Suppose
that the spherically symmetric background metric is given in terms of a time coordinate t,
a radial coordinate r, and the angular coordinates θ, φ, ψ. Similar to the symmetric ansatz
that we made in the NMG case, we can again assume that our putative extremal surface
Σ is extended in the angular directions and defined by a choice of r and t = const.8 The
induced metric of Σ will hence be the one of a 3-sphere, with R = 6/r2. Consequently,
(4.19) simplifies to

SEE =
π2

2GN

(
r3 + 6λL2r

)
. (4.20)

Again, just as discussed for the NMG case in section 4.2, we should not forget that by
symmetry the bifurcation surface B will always be a saddle point of the entropy functional
(4.19), even if the formula (4.20) does not make this manifest due to the shortcomings of
Schwarzschild coordinates.

We easily see that the functional (4.20) indeed allows for additional extremal surfaces if
the parameter λ is negative. These additional extremal surfaces will then be defined by

r = ra =
√
−2λL, (4.21)

and the entropy functional evaluated on this surface will take the value

Sa =
2π2L3

GN

√
−2λλ < 0 (4.22)

as λ < 0. This would be problematic, not only because the existence of additional closed
extremal surfaces collides with the holographic interpretation of black hole entropy as
entanglement entropy between two CFTs (as we discussed already for NMG), but also
because clearly no entropy should be negative. These additional extremal surfaces that
arise in RT or HRT like prescriptions (i.e. based on extremising an entropy functional) to
calculate entanglement entropy in Gauss-Bonnet gravity are hence clearly unphysical, and
it is desirable to have a tool that allows to identify such unphysical solutions and discard

8Due to ∂t being a Killing vector, we expect that the value of the constant will not be important, and
that this value can indeed be shifted at will. The extremal codimension two surfaces found this way will
then define a foliation of a codimension one hypersurface invariant under the flow of the Killing vector
field, just as it was the case for NMG. See again figure 4.1.
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them. In the discussion of the above result (4.22) we could easily invoke the argument
that this result (and the corresponding extremal surface) are unphysical in the context
of calculating holographic entanglement entropy as the result is negative, but the reader
should be reminded that this argument would not work in the NMG case studied earlier.
Likewise, the problems encountered in the study of NMG (unitarity, ghosts) are absent in
Gauss-Bonnet gravity. In section 4.4 we will hence investigate causality arguments that
serve as a tool to rule out such unphysical extremal surfaces both in NMG and Gauss-
Bonnet gravity alike, and that can easily be applied to any other higher curvature theory
in which entanglement entropy is to be studied.9

But before we do so, a few comments are in order. First of all, we should check whether
the solution (4.21) derived via the symmetric ansatz actually satisfies the full equations of
motion for the extremal surface that can be derived from the functional (4.19) without any
prior symmetry assumptions. Luckily, these equations of motion were explicitly worked
out in [199,218–220] and take the form

X ijk
(α)
ij ≡

(
1

2
γij + λL2

(
1

2
γijR−Rij

))
k

(α)
ij = 0, (4.23)

which is the Gauss-Bonnet generalisation of (3.33). The spherical hypersurface Σ with
radius (4.21) then indeed solves this equation with X ij = 0. This is an interesting contrast

to the black hole bifurcation surface, which solves this equation due to k
(α)
ij = 0.

As a second comment, we should point out that while the case λ < 0 is not unphysical
according to (4.18), it is a case that is studied much less commonly than λ > 0. This is
because one motivation to study Gauss-Bonnet gravity models is that such higher curvature
terms appear as corrections in string theory [206,212,221]. In such a context, the parameter
λ in (4.17) should then be positive and perturbatively small. Interestingly, if we had studied
background spacetimes with hyperbolic symmetries instead of spherical symmetries above,
then we would have found R = −6/r for a symmetric ansatz and additional surfaces with
radial coordinate ra =

√
2λL would have appeared for positive λ.

The third and most important remark that we have to make at the end of this section
concerns the existence of black holes that are sufficiently small to allow for the additional
solutions described by (4.21) to exist in the spacetime at all. In Einstein-Hilbert gravity,
the singularity of the (AdS) Reissner-Nordström black holes is located at r = 0, and hence
a spherical surface of fixed positive radius could always exist in the spacetime. Even more,
by tuning the mass and charge, we could always find a black hole for which the event
horizon would lie below any spherical surface of fixed radius. Unfortunately, this is not so
easy in Gauss-Bonnet gravity: There can be shown [216, 217, 222] to be a lower bound on
the event horizon radius for Gauss-Bonnet vacuum spherical and charged hyperbolic black
holes that coincides exactly with our result for the radius of the additional extremal surface.

9In [1] we also investigated an approach of constraining additional extremal surfaces by deriving con-
straints from a conical boundary conditions method. Unfortunately, there are examples where these addi-
tional constraints are too restrictive, hence we will not discuss this ansatz in this thesis.
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Hence these additional surfaces could never exist outside of the black hole event horizon,
ruling out situations of the type b) depicted in figure 4.1. Furthermore, there may even be
a lower bound on the radial coordinate of the singularity, and in the vacuum case [216,217]
this completely rules out our additional extremal surfaces: Not only would they have to
appear below the event horizon, but also below the singularity, i.e. they are not part of
the physical spacetime. For the charged case [222] the lower bound on the singularity is
reduced sufficiently to allow the extremal surfaces derived above to appear in the spacetime
region between singularity and outer event horizon, similar to the case d) depicted in figure
4.1. Anyhow, our computations above were based only on the intrinsic curvature of the
putative extremal surfaces, and hence not sensitive to the presence of a wormhole throat
(as in figure 3.5) at all. Consequently, the additional extremal surfaces derived above would
also be problematic in global AdS space or boson star spacetimes [223, 224]10, where due
to the absence of a bifurcation surface we would expect the functional prescriptions for
calculating entanglement entropy for the boundary CFT to yield zero, corresponding to a
pure boundary state.

To close this section, it is interesting to note that after the publication of [1], there where
also other papers that found unexpected phenomena in Gauss-Bonnet gravity for λ < 0
[225,226]. See also [227] for an earlier study.

4.4 The causal influence argument

In this section, we will present a simple physical argument that can be applied to NMG,
Gauss-Bonnet gravity and any other gravitational theory to determine certain putative
bulk entangling surfaces to be unphysical. This is what we will refer to as the causal
influence argument, presented in [64].

The gist of the causal influence argument is to avoid causal paradoxes. After all, we demand
a certain quantity in the bulk (an entropy functional evaluated on a given spacelike extremal
surface) to be equal to a corresponding quantity on the boundary (entanglement entropy
of a certain subsystem on the boundary). If it was possible to influence (and hence change)
the bulk quantity at a time where the boundary quantity is already fixed, this would lead
to a causal paradox.

Let us be more specific. Assume we are trying to calculate the entanglement entropy of a
CFT subregion A using the bulk entangling curve E(A). As usual in the RT prescription,
we assume that there is a well-defined notion of equal time slices, and that A is a subregion
of such an equal time slice on the boundary. Without loss of generality, we assume that A
lies on the t = 0 slice. If we know the CFT state at t = 0, we can calculate the value of the
entanglement entropy S(A) by field theory techniques, i.e. the value is fixed at t = 0 as

10These papers only study boson stars for λ > 0, yet the authors of those papers confirmed in private
correspondence that similar solutions can be found for λ < 0.
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we said above. If it was possible for an observer at or arbitrarily close to the boundary to
send a signal into the bulk at a time t = δ > 0 such that this signal still reaches the curve
E(A) in the bulk, this signal could, due to its backreaction on the geometry, change E(A)
and hence the holographically calculated value of S(A). This would lead to the paradox
described above. A first putative version of the causal influence argument could hence be
formulated to demand that there should be no causal curve from the boundary region A
to the bulk entangling curve E(A). Likewise, by time reflection symmetry there should
be no causal curve going from E(A) to A, and as for a pure total state S(A) = S(Ā)
(section 3.1), there should be no causal curves connecting E(A) and the complement Ā. In
a choice of nomenclature differing from [64], we will refer to the set of points in the bulk
spacetime that are not in causal contact with a boundary region A to be the causal shadow
of A. See the left of figure 4.3 for an illustration. As the extremal surfaces used in the RT
prescription are calculated on the equal time slice we see that the RT prescription satisfies
this causality constraint by definition.

Figure 4.3: Left: The causal shadow of a (spacelike codimension one) boundary region A
defined on an equal time slice is the set of all bulk points that are not in causal contact with
this region. The time increases upwards in this figure. Right: In general, it is not possible
to uniquely define equal time slices. Hence, the entanglement entropy of a boundary region
A should be assigned to its entire domain of dependence ♦A, see also figure 4.4. Demanding
the bulk entangling curve E(A) to lie in the causal shadow of ♦A instead of A is then a
much severer restriction. This is the causal influence argument. The region �A is called
the causal wedge of A, see [228,229]. The figure is presented as in [1].

Let us now extend this causality requirement to the case where the bulk spacetime is
not static, and equal time slices cannot be defined. This is when the HRT prescription
or its generalisations to higher curvature theories are assumed to be applicable. From
(3.12), we remember that the important thing about the boundary region A that enters
the calculation of the holographic entangling surface E(A) is the boundary ∂A. Apart from
that, as we cannot assume unique spacelike slices to be well-defined, we could imagine to
deform A into different spacelike surfaces A′ with the same boundary ∂A = ∂A′ as shown
in figure 4.4. This would not influence the calculation of entanglement entropy according
to the HRT prescription. We hence see that instead of assigning entanglement entropy to
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be a property of the arbitrarily defined spacelike slice A, we should better consider it to
be a property of the domain of dependence of A, signified as ♦A [228]. All the possible
spacelike slices A, A′, A′′ of ♦A with the same boundary ∂A act as Cauchy surfaces of
♦A, explaining why they should all be assigned the same entanglement entropy. With this
definition at hand, we then formulate the causal influence argument of [64] as we did in [1]:

E(A) should be required to lie in the causal shadows of any possible spacelike
deformations (A′, Ā′, A′′, Ā′′...) of both A and Ā which leave the boundaries ∂A

and ∂Ā invariant,

or equivalently,

E(A) should be required to lie in the causal shadows of the interiors of both ♦A and ♦Ā.

This is illustrated on the right hand side of figure 4.3. In [64], it was proven that this
condition is always satisfied by the HRT prescription in Einstein-Hilbert gravity, assuming
the null energy condition and other technical details.

Figure 4.4: In general cases, it may not be possible to uniquely define an equal time slice,
and via the HRT prescription it should be possible to calculate the entanglement entropy
for any spacelike codimension one boundary region. The regions A, A′ and A′′ in the
above figure will have the same entanglement entropy as in the HRT prescription only the
boundary ∂A is important for determining the bulk entangling surface E(A). This makes
sense, as the surfaces A, A′ and A′′ in the above image are all Cauchy surfaces for the same
domain of dependence ♦A. The entanglement entropy S(A) should then be interpreted as
a property of the physically well-defined object ♦A, and not only of the arbitrarily chosen
slice A. The figure is presented as in [1].

For higher curvature theories in contrast, our work of the last sections has shown that
this causality condition is not automatically satisfied in physical background spacetimes.
In fact, we will turn the argument of [64] around in this section: Instead of attempting
to derive the causal influence argument (as done in 4.3 for the Einstein-Hilbert case), we
impose it to distinguish physical from unphysical extremal surfaces.
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Figure 4.5: Application of the causal influence argument to a black hole spacetime. For a
spacelike slice A that is an entire equal time slice of the right boundary, only the bifurcation
surface B satisfies the causal influence argument. The green dashed and red dotted lines
show possible configurations of additional extremal surfaces as the cases b) and d) in figure
4.1. The figure is presented as in [1].

In the case of a static black hole spacetime, such as the BTZ black hole studied in section
4.2, this argument is sketched in figure 4.5. The region A is assumed to be an entire
spacelike slice of the right boundary, consequently the complement Ā is a slice of the left
boundary. The domains of dependence ♦A and ♦Ā are then the entireties of the right and
the left boundaries, respectively. The sets of points that can both receive signals from
and send signals to the interiors of ♦A or ♦Ā are called the causal wedges �A and �Ā,
respectively [228, 229]. See also figure 4.3. By definition, these causal wedges �A and �Ā
reach all the way from the boundary to the event horizon of the black hole. Additionally,
all the points inside of the black hole event horizon are in one way causal contact with both
♦A and ♦Ā, and are hence also excluded by the causal influence argument. This argument
hence rules out any possible closed extremal surface of the types b), c) and d) in figure 4.1.
Only the bifurcation surface B is left over as a surface determining the physically correct
entanglement between the two boundary CFTs. We hence recover the notion, explained
in section 3.3, that the black hole entropy, calculated from the geometry of the bifurcation
surface B according to Wald’s formula (4.2), should have the holographic interpretation
of being the entanglement entropy between the two CFTs living on the two conformal
boundaries of the eternal black hole spacetime.

In section 4.3, we also mentioned that technically closed extremal surfaces may also appear
in spacetimes with only one asymptotic boundary, such as global AdS or boson star space-
times. These surfaces satisfy the homology condition, and when attempting to determine
the entropy of the entire boundary CFT state via holographically calculating entanglement
entropy, the only other option would be the empty surface, i.e. no surface at all. As these
spacetimes do not have event horizons, every point in the bulk is in causal contact with
the boundary, and consequently any possible closed extremal curve in the bulk would be
ruled out due to the causal influence argument. Consequently, the entanglement entropy is
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trivially defined by the empty surface to be zero, which is the result physically demanded
for a pure state (see section 3.1).

We hence obtain the desired result, namely that the causal influence argument introduced
above is a reliable tool to, at least in the concrete examples studied in sections 4.2 and
4.3, distinguish the physical surfaces extremising the entropy functional (4.4) from the
unphysical additional extremal surfaces that we have found to occur. However, after the
publication of [1], doubt on the physical validity of Gauss-Bonnet gravity for any non-
perturbative λ has been cast by [210]. Consequently, it may be necessary to turn the
logic of the above chapter around: Instead of using the causal influence argument to
distinguish between physical and unphysical curves, one might hold the viewpoint that
the existence of entangling curves violating the causal influence argument is a general
sign of an unphysical bulk theory. This viewpoint was indeed advocated for in [64], but
investigations into this topic are still ongoing [201, 225, 226]. This closes our investigation
of holographic entanglement entropy in bulk theories with higher curvature terms. In the
remaining chapters 5 and 6 we will investigate the geometry and entanglement entropy of
toy models of holographic duals of boundary CFTs.





Chapter 5

Backreaction in holographic models
of boundary CFTs

5.1 Holographic models of boundary CFTs

In the past sections we have studied models, both top-down and bottom-up, of dualities
between gravitational theories on asymptotically AdS spacetimes and conformal field the-
ories (CFTs) on the conformal boundary of these spacetimes, i.e. either on flat Minkowski
space or the (spacially compact) Einstein static universe. It is, however, also possible to
define CFTs on manifolds that have themselves a boundary, and these are called boundary
CFTs or in short BCFTs [230,231]. The study of BCFTs with codimension one boundaries
is related to the study of CFTs with defects and interfaces as often such CFTs can be for-
mulated as a BCFT [232]. By now, it should not come as a surprise to the reader that there
is a large variety of holographic models of such BCFTs or defect CFTs (see [233–236] for
a partial list of references), and in the following we will especially focus on the bottom-up
approach introduced by Takayanagi et al. in [92–94].

The idea behind this type of model is sketched in figure 5.1. Here, N is an asymptotically
AdS spacetime which, as before, we will call the bulk spacetime. The asymptotic conformal
boundary of N is called M in figure 5.1, and this is where holographically the CFT is
understood to live. So far, this is an ansatz just as in the regular AdS/CFT correspondence.
Now, for a BCFT the manifold M on which this theory lives has to have a boundary for
itself, namely P = ∂M . According to the bottom-up models of [92–94], this boundary
extends from M into the bulk spacetime N as a hypersurface Q, at which the spacetime
N abruptly ends. For reasons that will become fully clear in section 6, we refer to this
hypersurface as the brane, but the reader should be aware that it is not any of the string
theoretic branes used in 2.3 for example. Also, there is often confusion about the meaning
of the words “boundary” and “bulk” in the context of BCFT. Pure field theory papers often
use “boundary” for P and “bulk” for M in figure 5.1, but in holography this nomenclature
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is usually avoided because it would conflict with the standard AdS/CFT convention to call
M the boundary and N the bulk. We will hence refer to P as the defect. When discussing
the embedding of Q into N , will also refer to the latter as the ambient spacetime.

t

xz

Figure 5.1: Geometric setup for a bottom-up AdS/BCFT model according to [92–94]. The
(asymptotically) AdS bulk spacetime N has the usual conformal boundary M as well as
the timelike hypersurface Q on which the spacetime ends. The intersection of Q and M
is referred to as P . The coordinates t, x, z follow the usual conventions for the Poincaré
patch (2.11). The figure is presented as in [2].

The proposal of [92–94] suggests that the action for the bulk metric gµν should be amended
with the usual Gibbons-Hawking boundary term [237] and counter term Σ(h) [126,146] on
M (where h is the induced metric on M), but also with boundary terms on Q (induced
metric γ) and P :

S =
1

2κ2
N

∫
N

dd+1x
√
−g (R− 2Λ) +

1

κ2
N

∫
M

ddx
√
−h
(
K(h) − Σ(h)

)
(5.1)

− 1

κ2
N

∫
Q

ddx
√
−γK(γ) +

∫
Q

ddx
√
−γ LQ + SP .

In this formula, the quantities K(h) and K(γ) are the traces (with respect to the induced
metrics hij and γij) of the extrinsic curvature tensors of M and Q, respectively. The sign
of K has to be fixed by a convention on where the normal vector to the surface in question
points, for M we conventionally assume that the normal vector is oriented to the outside
of the spacetime, while on the brane Q we choose the normal vector to be pointing into
the bulk. This will be the more convenient convention later is chapter 6. See appendix
A.2 for definitions and further explanations. In (5.1), we have omitted terms for possible
matter fields living in N .

The model (5.1) explicitly includes the term ∼ LQ which describes matter fields living
on the worldvolume of the brane Q. These matter fields together with the embedding
of the brane Q into the ambient spacetime N will in these models (5.1) then constitute
the holographic description of the defect P and the BCFT degrees of freedom potentially
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restricted to it. Imposing Neumann boundary conditions on the bulk metric gµν at Q, we
obtain the equations of motion [92–94]

Kij − γijK = −κ2
N Sij, (5.2)

where γij is the induced metric on Q and Sij is the energy-momentum tensor derived from
the matter Lagrangian LQ. The letter S was chosen to mean “surface” or “shell”. This
way, we also distinguish the energy-momentum tensor on Q, Sij, from the bulk energy-
momentum tensor, conventionally denoted Tµν . Equation (5.2), together with the equations
of motion for the matter fields described by LQ, has to be combined with the equations
of motion of bulk fields, such as for example the bulk metric gµν , for a full description of
the classical bulk theory that is holographically dual to the BCFT defined on M and P .
For the moment this prescription may seem rather abstract, but we will see a concrete and
well motivated realisation of this setup in chapter 6, other work on setups of the type (5.1)
was presented in [238–245]. In the remainder of this chapter, we will collect a number of
results on general setups of this type that were discussed in [2].

5.2 Energy conditions and their impact on the bulk

geometry

5.2.1 Decomposition of the energy-momentum tensor

In this section, we will in detail study the equations of motion (5.2). Specifically, we will
consider the case of a 2 + 1-dimensional bulk spacetime, such that both the AdS boundary
and the brane Q are 1 + 1 dimensional, as this is the relevant case for the holographic
Kondo model to be discussed in section 6.2.

As we will see now, in this case the equations (5.2) can be considerably simplified and
made tractable. The reason for this is that when Q is a 1 + 1-dimensional timelike brane,
its worldsheet lightcone degenerates into two distinct null directions. We make use of this
by defining the worldvolume null vectors

lil
i = 0 = rir

i, lir
i = −1, (5.3)

where l stands for left pointing and r stands for right pointing. Note that this definition
does not completely fix the two vectors li, ri for a given induced metric γij, as there is still
a residual boost symmetry: li → ali, ri → 1

a
ri. Many of the expressions that we derive in

the following will be invariant under such boosts, but later we will restrict our interest to
static cases, where both the ambient spacetime N and the brane Q have a timelike Killing
vector field ∂t. One can then fix the boost symmetry by demanding li + ri ∼ δit.

The use of defining this null vector basis is that we can now decompose the energy-
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momentum tensor into scalar quantities by writing

Sij =
S

2
γij + SLlilj + SRrirj with (5.4)

S = γijSij, SL = rirjSij, SR = liljSij. (5.5)

Obviously, S is the trace of Sij while SL and SR parametrise the non-trace part of the
energy-momentum tensor. These three scalars then define the symmetric (0, 2) tensor Sij.

5.2.2 Energy conditions

In a next step we can now formulate energy conditions for Sij using the decomposition
(5.4)1. Often in general relativity, it is of interest to derive certain results concerning
solutions of Einstein’s equations even when the specific form of the energy-momentum
tensor is not known. In these cases, one usually uses energy conditions, i.e. conditions
imposed on the energy-momentum tensor that seem physically reasonable, for example the
condition that no observer should ever measure a negative energy density. It should be
pointed out that there are many different energy conditions, some stricter than others, and
not all of them are satisfied even by physical matter models as we will see. For a review
on this fascinating topic, see [246,247]. We will use:

• The null energy condition (NEC): For every null vector mi in the worldvolume of the
brane we have

Sijm
imj ≥ 0 ∀ mimi = 0. (5.6)

The interpretation of the NEC is that a hypothetical null-observer will never measure
a negative local energy density [247]. Using (5.4) it is easy to show that this implies

Sijl
ilj ≥ 0 and Sijr

irj ≥ 0 ⇒ SL ≥ 0 and SR ≥ 0. (5.7)

• The weak energy condition (WEC) generalises the NEC to timelike vectors:

Sijm
imj ≥ 0 ∀ mimi < 0. (5.8)

The interpretation of the WEC is that no physical observer will ever measure a
negative local energy density [247]. By continuity, the WEC implies the NEC. Pa-
rameterising mi = αli + βri with α · β > 0 (this ensures that mi is timelike by (5.3))
we then find

SL ≥ 0, SR ≥ 0, Sαβ ≤ SLα
2 + SRβ

2 ∀α · β > 0. (5.9)

1Note that we will only formulate conditions on Sij in terms of the intrinsic geometry, i.e. the induced
metric γij and vector fields living in the worldvolume of Q.
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Optimising the choice of α, β yields

SL ≥ 0, SR ≥ 0, S ≤ 2
√
SLSR. (5.10)

Note that these expressions are all invariant under the boosts of the null vectors
mentioned above.

• The strong energy condition (SEC) is well known in the literature of 3+1-dimensional
general relativity, but the generalisation to arbitrary dimensions is not straightfor-
ward. In our context, we will hence refer to the inequality

(Sij − Sγij)mimj ≥ 0 ∀ mimi < 0. (5.11)

as the SEC. This will prove to be very useful as the expression on the left hand side
appears when solving (5.2) for the extrinsic curvature:

Kij = −κ2
N(Sij − Sγij) (5.12)

We have however no reason to believe that a physical matter field has to satisfy this
energy condition, and in fact we will see later that in the holographic Kondo model
of section 6.2 it is indeed important that the matter fields violate this condition. In
terms of scalar quantities, (optimising again the choice of α and β in mi = αli +βri)
this yields

SL ≥ 0, SR ≥ 0, S ≥ −2
√
SLSR. (5.13)

We see that the SEC, just as the WEC, implies the NEC. On the other hand, WEC and
SEC are unrelated. Not very surprisingly, the NEC is considered the most important
and reliable energy condition. Indeed, in this thesis we have already encountered some
geometric results that were proved using the NEC as a technical assumption in sections 3
and 4. Although there are classical matter models that do even violate the NEC [246,247],
it can be proven to be satisfied in string theory [248].

5.2.3 A corollary to the barrier theorem

The ultimate reason why we are interested in understanding the geometrical properties of
AdS/BCFT models is that eventually we would like to compute entanglement entropy in
the holographic Kondo model, as we will do in chapter 6. As we have seen in chapter 3,
entanglement entropy of the boundary CFT is holographically encoded in the geometry
of extremal (codimension 2) surfaces in the bulk spacetime. In a 2 + 1 dimensional bulk,
entanglement entropy is hence defined by spacelike geodesics as we have already seen in
section 3.2. In a setup such as the one shown in figure 5.1, it is obviously of interest
whether spacelike geodesics anchored at the boundary will, when they go deeper into the
bulk, encounter the brane Q or whether they will stay in the interior of N . An intersection
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between the geodesics and the brane would potentially lead to a strong signature in the
pattern of entanglement entropy measured at the boundary, explicit examples of this were
discussed in [2].

In order to investigate this issue in more detail, we can make use of the work of Engelhardt
and Wall [249]. In this paper, the authors define the term extremal surface barrier to be a
codimension one hypersurface that is embedded in an asymptotically AdS bulk spacetime in
such a way that extremal spacelike surfaces that are anchored on the AdS boundary to one
side of the extremal surface barrier cannot cross it. In the course of this thesis we will see
several explicit examples of surfaces that are extremal surface barriers, but in this section
we will be interested in the general statement of the theorem, and the implications that it
has on our models defined by (5.2). We state the result of [249] in our own nomenclature as
introduced in figure 5.1, section 5.1 and appendix A.2. There are some subtleties related to
whether an extremal surface may touch the extremal surface barrier or not, which will not
concern us very much in the following. The theorem presented here as in [2] is a combined
result of theorems 2.1, 2.2 and corollary 2.4 in [249].

Barrier Theorem (Engelhardt, Wall [249])
Let Q be a codimension one hypersurface embedded in the spacetime N , which is assumed
to end on Q and the AdS boundary M . If

Kijv
ivj ≤ 0 for any vector field vi on Q, (5.14)

then any Q-deformable spacelike extremal surface Υ which is anchored on the AdS bound-
ary M remains in N , i.e. does not cross Q. By Q-deformable we mean that there is a
family {Υa} of extremal spacelike surfaces such that all of those are anchored on M , and
can be continuously deformed from some Υ0 ∈ {Υa} which is only located in N and does
not touch Q.

Consequently, in the setup of figure 5.1, the geodesic defining the entanglement entropy for
a boundary interval (which does not intersect with P ) on M cannot cross Q if the extrinsic
curvature on Q satisfies the assumption (5.14). See figure 5.2 for an illustration.

In [249] the authors were concerned with the geometric properties of general codimension
one hypersurfaces, but we are working with models in which the embedding of a brane Q
into an ambient spacetime is dynamically determined via the equation of motion (5.2). We
will hence reformulate the assumption (5.14) made in the barrier theorem in terms of the
energy-momentum tensor Sij and express it in terms of energy conditions. This will be
complicated by the fact that (5.14) is supposed to hold for any (including spacelike) vector
field vi while energy conditions are usually only phrased in terms of causal vector fields.

Using (5.12) and (5.4), we find that (5.14) can be written as

−S
2
viv

i + SL(liv
i)2 + SR(riv

i)2 ≥ 0. (5.15)

The last two terms are nonnegative due to the NEC, only the first term is potentially
problematic. We can now separately discuss this for the three different cases:
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Q2

Q3

Q4

Υ0 Υ1

Υ2
Υ3

M x

z

z
Q1

Υ0
Υ1

Υ2

Υ3

xM

Figure 5.2: Compared to figure 5.1, we suppress the time direction t and assume a static
embedding of the branes Qi into a static background N . Left: Q can be an extremal
surface barrier which bends back to the boundary in a ∪-shaped manner. No Q1 deformable
extremal surface can reach deeper into the bulk than Υ2, and hence none of them can cross
Q1 if it is an extremal surface barrier. Note that the dotted geodesic Υ3 would cross Q1, but
it is not anchored on M with both endpoints, hence the barrier theorem does not apply
to it. Right: Three possible cases for which the brane Qi is anchored to the boundary
only once. We see that as we move the right anchoring point of the geodesics Υ on the
boundary more and more to the right, they reach deeper and deeper into the bulk. Q4

is not an extremal surface barrier as it is crossed by Υ3, but Q3 is an extremal surface
barrier. In fact, it satisfies the assumption (5.14) trivially as KQ3

ij = 0. Q2 is automatically
an extremal surface barrier as it is completely behind the barrier Q3, even if it does not
satisfy (5.14). The figure is presented as in [2].

• S = 0: As said above, the NEC is enough to ensure (5.15) to be satisfied for any vi.

• S < 0: For null and spacelike vi, the NEC is again enough to ensure the validity of
(5.15). For timelike vectors vi, (5.15) is equivalent to the SEC as defined in section
5.2.2.

• S > 0: This is the least straightforward case, as here (5.15) is satisfied by null and
timelike vi (assuming NEC), but spacelike vectors need more investigation. Writing
vi = −αli + βri (with α · β > 0) this takes the form

−Sαβ + SLβ
2 + SRα

2 ≥ 0 for any α · β > 0, (5.16)

which can be identified as the WEC introduced in section 5.2.2, see (5.9).

To summarise, we have shown that the condition of (5.14) is, using the equations of motion
(5.2), equivalent to demand WEC and SEC (both implying the NEC) to hold at the same
time. This means that the energy conditions satisfied or violated by the matter fields



76 5. Backreaction in holographic models of boundary CFTs

defined to live in the worldvolume of Q will have profound implications on the possible
embeddings of the brane Q into the ambient spacetime N . We will see this on specific
examples in section 5.3.2 and chapter 6. In appendix B we will comment on the possible
extension of the findings of this section to higher dimensions.

5.2.4 AdS and BTZ backgrounds

After having studied the equations of motion (5.2) in great generality, we will now specialise
more to the specific cases that we will be interested in for the remainder of this thesis.
Specifically, we will be interested in background spacetimes N with a static line element
of the form

ds2 = gµνdx
µdxν =

1

z2

(
−h(z)dt2 +

dz2

h(z)
+ dx2

)
, (5.17)

which is 2 + 1-dimensional Poincaré AdS for h(z) = 1 and the BTZ black hole [130, 131]
in Poincaré coordinates for h(z) = 1 − z2/z2

H . For simplicity, we have set the AdS radius
L = 1. We will also be interested in static embeddings of the brane Q into this background
spacetime, defined by a function x(z) as for the examples in figure 5.2. On the worldsheet
of the brane, we will then use the same coordinates t and z as in the bulk. The extrinsic
curvature then reads:

Ktt =
1

N

(
∂zx

h

2

(
h′ − 2h

z

))
,

Ktz = 0,

Kzz =
1

N

(
−∂ 2

z x+ ∂zx

(
h

z
(∂zx)2 +

1

z
− h′

2h

))
,

(5.18)

where N comes from the normalisation of the normal vector nµ, see also appendix A.2 for
more information. For the induced metric we find

γij =

(
gtt 0

0 gzz + (∂zx)2 gxx

)
≡
(
−a(z) 0

0 b(z)

)
. (5.19)

where we have defined the positive functions a(z) and b(z). One can now easily write down
the null vectors ri and li (fixing their boost invariance by demanding r1 + l1 = 0) to find

Sij =
S

2
γij + SLlilj + SRrirj (5.20)

=
S

2

(
−a 0
0 b

)
+
SL
2

(
a −

√
ab

−
√
ab b

)
+
SR
2

(
a
√
ab√

ab b

)
. (5.21)

From (5.18) and (5.19) we see that, due to the equation of motion (5.2), also Sij will have
to be diagonal in the coordinate system of our choice, implying SL = SR ≡ SL/R. This
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makes sense, as it means that an observer at rest on the worldvolume of our brane at fixed
z-coordinate should not see a net flux of energy from the left to the right, or vice versa.
This should be a prerequisite for a static geometry. We hence find

Sij =
S

2

(
−a 0
0 b

)
+ SL/R

(
a 0
0 b

)
. (5.22)

For later use, we will also define the traceless symmetric tensor appearing in this equation
to be

γ̂ij ≡
(
a 0
0 b

)
, γ̂ij =

(
1
a

0
0 1

b

)
, γ̂ij γ̂

ij = 2 (5.23)

which can also be written as γ̂ij = γij + 2uiuj with the normalised timelike vector ui =(√
a

0

)
which satisfies

∇iu
i = 0, (5.24)

ui∇iu
j =

(
0

1
2
γttγzz∂zγtt

)
. (5.25)

Just as the energy-momentum tensor Sij can in the static case be expressed in terms of
two scalars S and SL/R in (5.22), the same decomposition can be applied to the extrinsic
curvature. For this, we define (5.2) as

Kij =
K
2
γij +KL/Rγ̂ij, (5.26)

≡ − (Kij − γijK) = κ2
N Sij. (5.27)

The equation of motion (5.2) then reads in scalar form

K = κ2
NS and KL/R = κ2

NSL/R. (5.28)

While S and SL/R can be constrained by energy conditions as in section 5.2.2, the scalars
K and KL/R are dependent on the embedding profile x(z). The impact of the different
energy conditions on the embedding are summarised in table 5.1.

A further important result can be derived by demanding conservation of the energy-
momentum tensor using (5.22) and (5.23):

0 = ∇iS
ij =

1

2
∂iSγ

ij + ∂iSL/Rγ̂
ij + SL/R

(
2uj∇iu

i + 2ui∇iu
j
)
. (5.29)

The term uj∇iu
i vanishes immediately due to (5.24). There are now two cases for the

index j:
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BTZ: h(z) = 1− z2/z2
H , zH > z

KL/R
z(z2

H−z
2)(zx′3+z2

Hx
′′)

2zH(z2
H+(z2

H−z2)x′2)3/2

K 2z4
Hx
′+(z4−3z2z2

H+2z4
H)x′3+zz2

H(z2−z2
H)x′′

zH(z2
H+(z2

H−z2)x′2)3/2

NEC (KL/R ≥ 0) zx′3 + z2
Hx
′′ ≥ 0

WEC (2KL/R −K ≥ 0) zz2
H (z2

H − z2)x′′ − z4
Hx
′ − (z2

H − z2)
2
x′3 ≥ 0

SEC (2KL/R +K ≥ 0) x′ ≥ 0

AdS: h(z) = 1

KL/R zx′′

2(1+x′2)3/2

K 2x′+2x′3−zx′′
(1+x′2)3/2

NEC (KL/R ≥ 0) x′′ ≥ 0

WEC (2KL/R −K ≥ 0) zx′′ − x′ − x′3 ≥ 0

SEC (2KL/R +K ≥ 0) x′ ≥ 0

Table 5.1: Impact of the energy conditions discussed in section 5.2.2 on the embedding
profile x(z) in a BTZ or AdS background (5.17). As the NEC is implied both by WEC
and SEC, we only show those inequalities of WEC and SEC that are not redundant with
NEC, i.e. in case of the WEC the NEC is satisfied and additionally 2KL/R − K ≥ 0. We
also give the extrinsic curvature scalars defined in (5.26). The table is presented as in [2].

• j = t: As we assume a static setting (∂t(...) = 0) and the diagonal metric (5.19)
as well as a diagonal γ̂ij, the first two terms in (5.29) vanish and we are left with
0 = SL/R (2ui∇iu

j) which vanishes due to (5.25).

• j = z: This case is more interesting, as we find a non-trivial result due to (5.25).
Using γzz = γ̂zz and setting h(z) = 1 as for the AdS space, we find

0 = ∇iS
iz =

1

2
S ′γzz + S ′L/Rγ

zz − 2

z
SL/Rγ

zz (5.30)

⇒
(
S + 2SL/R

)′
=

4

z
SL/R. (5.31)

Equivalently, h(z) = 1− z2/z2
H yields the analogue result for the BTZ black hole:

(
S + 2SL/R

)′
=

4

z − z3

z2
H

SL/R (5.32)
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These two equations are important for us because they have an interesting and straight-
forward interpretation: By NEC, the right hand side of both (5.31) and (5.32) should be
positive, while the combination appearing in brackets on the left hand side is related to the
SEC, see table 5.1 and section 5.2.2. Hence, the conservation of energy-momentum implies
that if the NEC holds everywhere on the worldvolume of the brane and the SEC holds near
the boundary, then the SEC will also hold deeper in the bulk, i.e. for larger z. This is also
obvious from table 5.1: If x′′ > 0 everywhere and x′ > 0 near the boundary, then x′ > 0
everywhere. The conservation of the energy-momentum tensor gives the deeper physical
reason for this.

Let us apply the findings of table 5.1 to the example embedding curves x(z) shown in figure
5.2, assuming for simplicity that the background spacetime there is the Poincaré AdS space.
On the left hand side, we see that the embedding of Q1 starts with positive x′(z) and x′′(z),
i.e. the SEC is satisfied by the matter fields on the brane. In our calculations so far and
the results presented in 5.1 we were, by the choice of the direction of the normal vector nµ,
always implicitly assuming that if the brane is given by the embedding profile x(z), then
the bulk spacetime N is located to the right of it, i.e. in the region x ≥ x(z). Consequently,
our calculations and results of table 5.1 can only be applied to Q1 in figure 5.2 from the
point x = 0, z = 0 up to the turning point of maximal z. In section 5.3.2 we will see explicit
examples of solutions of this form. On the right hand side of figure 5.2 we see that all of
the depicted example embeddings satisfy the NEC, while Q2 clearly violates the SEC.

As an example of how the barrier theorem can be used in our context, let us propose the
following question: Suppose we want to solve the equations of motion (5.2) with an energy-
momentum tensor that is defined by some kind of matter model where we can analytically
prove that it has to satisfy, say, NEC and SEC. How might the solution for the embedding
qualitatively look like? Comparing to table 5.1, we immediately see that NEC and SEC
imply x′ ≥ 0 and x′′ ≥ 0. This rules out an embedding of the type Q2 shown in figure
5.2, and if we assume a non-trivial energy-momentum tensor Sij 6= 0 this also rules out
the trivial totally geodesic embedding Q3. With NEC and SEC this is as far as we can go,
but let us next also assume that in addition the WEC holds. Then the barrier theorem
applies, and the brane is an extremal surface barrier. If it would start on the boundary at
x = z = 0 and go into the bulk indefinitely with x′ > 0, x′′ > 0, as Q4 in figure 5.2, then
we could easily construct a spacelike geodesic anchored on M that intersects the brane
somewhere in the bulk. All we would have to do is to move the one endpoint closer to
the brane, and the other one farther and farther away, until the geodesics reaches so deep
into the bulk spacetime that it intersects the brane. This would be in contradiction to the
barrier theorem, and hence a behaviour of the type of Q4 is also ruled out by SEC and
WEC. The only possibility is a behaviour of the type of Q1: The brane has to bend back
to the boundary. This means that WEC and SEC together force the brane to bend in a
∪-shaped way. Conversely, if we want our brane to go deeper into the bulk without coming
back to the boundary, either WEC or SEC has to be violated.

Suppose now that instead of a Poincaré background we are working with a BTZ back-
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ground. A brane going from the boundary into the bulk, if it does not turn around and
come back to the boundary, will then encounter the event horizon. To study this in more
detail, let us take the entries of table 5.1 for the BTZ case and take the limit z → zH .
Then we see that exactly at the horizon, WEC (x′(zH) ≤ 0) and SEC (x′(zH) ≥ 0) are
mutually exclusive.2 We have seen that when both WEC and SEC are satisfied the brane
has to turn around and bend back to the boundary, and our discussion has just shown
the converse: The brane (in the non-trivial case) can only enter the event horizon if either
WEC or SEC is violated.

5.3 Exact solutions

Although the model (5.1) explicitly allows for generic matter fields to be defined on Q,
most of the literature [92–94, 238–245] focuses on simple constant tension models, to be
studied in subsection 5.3.1. Notable exceptions are [245] where a perfect fluid living on the
hypersurface Q is defined, and [242] where the case of a non-linear sigma model as matter
content on Q is qualitatively discussed, apart from this the literature on exact solutions of
(5.1) with non-trivial LQ is surprisingly sparse. In this section we will apply our analyses of
the previous section in order to find simple analytical solutions of the equations of motion
(5.2).

5.3.1 Constant tension solutions

The simplest possible model that can be studied using the equations (5.2) is the one where
the energy-momentum tensor is defined by a constant tension λ:

Sij = −λγij ⇒ S = −2λ, SL/R = 0. (5.33)

For branes embedded in a global AdS3 background this model has already been studied
in [250], and we extensively commented on it in [2]. In this thesis we will only need the
constant tension solutions in a Poincaré or BTZ background (5.17) which were studied
in [92].

Let us begin with the case for a Poincaré background. From (5.28), (5.33) and table (5.1)
we then find

0 = K =
zx′′

2 (1 + x′2)3/2
, (5.34)

−2λκ2
N = K =

2x′ + 2x′3 − zx′′

(1 + x′2)3/2
. (5.35)

2We have been assuming the general case x′ 6= 0 and x′′ 6= 0. Of course x′(zH) = 0 would be a possible
solution, but note that the NEC implies that x′(z) is monotonously increasing. Hence, if the NEC holds
and x′(zH) = 0, then x′(z) = 0 for any z which is the trivial case.
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This has the solution

x′(z) =
−λκ2

N√
1− λ2κ4

N

= const., (5.36)

i.e. the corresponding embedding is just a straight line in Poincaré coordinates. We also
see that no solutions to (5.2) for a brane anchored at the boundary and embedded in a
Poincaré background exist when |λ| ≥ κ−2

N .

We see that for (5.33) with λ 6= 0, SEC and WEC are mutually exclusive: SEC would
demand negative tension λ < 0 while WEC would demand positive tension λ > 0. This
means that these solutions show a behaviour that was already anticipated in our discussion
in section 5.2: λ = 0 would be the trivial case Q3 in figure 5.2. The SEC satisfying but
WEC violating case where λ < 0 and consequently x′(z) > 0 would be qualitatively similar
to the curve Q4

3 in this figure, as the curve would go to the right and be intersected by
spacelike geodesics. The WEC satisfying and SEC violating case λ > 0, x′(z) < 0 would
be qualitatively similar to Q2, in that it does not satisfy the property (5.14) but still is
an extremal surface barrier simply because it is entirely on the far side of the extremal
surface barrier Q3. The positive tension case is generally considered to be physical while
the negative tension case is considered the unphysical one, for several reasons. Firstly, the
WEC is considered to be better motivated as a condition on physical theories that what we
termed the SEC in section 5.2.2 [247]. In fact we will see below that there are very sensible
models of field theories living on the brane worldvolume that effectively lead to constant
tension models with positive tension only. Secondly, as the brane can intersect geodesics in
the negative tension case, it is not known how entanglement entropy for certain boundary
regions would then have to be calculated holographically. A proposal was made in [2] which
would however be in conflict with the causal influence argument discussed in section 4.4.
This geometric situation may be similar to the case described in [251] in that there are no
extremal codimension two surfaces in the bulk spacetime connecting two boundary points
in certain cases.

This situation is qualitatively similar in a BTZ background spacetime (5.17) where h(z) =
1− z2/z2

H . There one finds the solution [92]

x(z) = −zHarctanh

 sinh(s(λ))√
z2
H

z2 + sinh(s(λ))2

 , tanh(s(λ)) = λκ2
N . (5.37)

Here we have chosen the boundary condition x(0) = 0. This can be done without loss
of generality due to the translation invariance of (5.17) in the x-direction. As pointed
out in [2, 92, 250], the solutions (5.36) and (5.37) can be geometrically constructed via a
geodesic normal flow, see figure 5.3 for an illustration in the AdS case. This construction
proceeds as follows: First, one determines the trivial embedding that solves the equations

3Except of course for the fact that Q4 would then have to be a straight line.
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(5.2) for zero tension λ = 0. By definition, this embedding will define a totally geodesic
codimension one hypersurface in the bulk spacetime. Next one constructs the geodesics
that go through this surface normally, and shifts every point of this surface along the flow
of these geodesics by an affine distance s which is a function of λ. This way the embeddings
(5.36) and (5.37) for λ 6= 0 can be constructed.

Figure 5.3: Geodesic normal flow construction of a constant tension brane embedding in a
constant curvature background, here Poincaré AdS. Points on the trivial λ = 0 embedding
are shifted along normal geodesics (dotted lines) by an affine distance s(λ).

The constant tension solutions that we discussed in this section will be important for two
reasons. First of all, the geodesic normal flow construction explained above makes it easy
to obtain analytical results for embeddings such as (5.36) and (5.37), but also for the
entanglement entropy of certain intervals. This is because the spacelike geodesics that are
explicitly used in this construction define the entanglement entropy of certain boundary
intervals, and increasing the tension, say, from λ = 0 to λ = λ0 > 0, we see that all these
geodesics get longer exactly by a distance s(λ). Hence, according to the Ryu-Takayanagi
prescription explained in section 3.2, the entanglement entropy of all these intervals will
grow by the same amount s(λ)/4:

S(λ,∆x) = S(λ = 0,∆x) +
s(λ)

4
. (5.38)

We will make use of this in sections 6.4.2 and 6.5.

The second reason why constant tension solutions will be important for us is that they can
be mimicked by a gauge field as we will now see. If the two-dimensional action of the fields
living on the brane only contains a U(1) gauge field

S = −
∫
d2x
√
−γ 1

4
fmnf

mn, (5.39)

with no sources, then the energy-momentum tensor reads

Sij = −1

4
fmnfmnγij + γmnfmifnj (5.40)

⇒ S =
1

2
fmnfmn (5.41)
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and the traceless part of (5.40) reads

Sij −
S

2
γij = −1

2
fmnfmnγij + γmnfmifnj. (5.42)

The equation of motion in the absence of sources,

∂m
(√
−γγmpγnqfpq

)
= 0, (5.43)

can then be shown to yield
√
−γf 01 = C with a constant C. It should be noted that due to

the antisymmetry of fmn and the fact that we are working in two dimensions, f 01 is the only
independent component of the field strength tensor. Using this and assuming a static case
with metric (5.19), it is then possible to show fmnfmn = −2C2 and γmnfmifnj = −γijC2.
Consequently the traceless part (5.43) vanishes and the energy-momentum tensor (5.40)
takes the form

Sij = −1

2
γijC2. (5.44)

We hence see that in the absence of charges, the U(1) gauge field mimics a constant tension
model with positive tension.

5.3.2 Perfect fluid models

Let us consider a toy model where the energy-momentum tensor Sij on the brane is given
by a perfect fluid4

Sij = (ρ+ p)uiuj + pγij, (5.45)

with ui ∼ (1, 0) for staticity, and an equation of state

p = a · ρ. (5.46)

The usual decomposition into scalar quantities then tells us

S = p− ρ = ρ(a− 1), SL/R =
p+ ρ

2
= ρ

1 + a

2
. (5.47)

and consequently the energy conditions take the form (assuming ρ ≥ 0)

NEC: a ≥ −1, WEC: a ≥ −1, SEC: a ≥ 0. (5.48)

4The ansatz that we follow in this section is different from the one presented in [245] in that we are
working in one dimension less. Also, we will explicitly pick an equation of state, while in [245] the equation
of state is fixed by the specific ansatz.
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Let us now first work in a Poincaré background, i.e. (5.17) with h(z) = 1. A useful way to
solve this equation is to use (5.31) which now reads5

ρ(z)′ =
1 + a

a

ρ(z)

z
⇒ ρ(z) =

c

κ2
N

z1+ 1
a , (5.49)

where we introduced a constant c. Now (5.28) together with K from table 5.1 allows us to
solve

x′(z) =
acz

1
2(2+ 2

a)√
1− a2c2z2+ 2

a

, (5.50)

x(z) =
a2cz2+ 1

a 2F1

(
1
2
, 1+2a

2+2a
; 3+4a

2+2a
; a2c2z2+ 2

a

)
1 + 2a

, (5.51)

with the hypergeometric function 2F1(a, b; c; d). Studying these expressions we see that,
demanding x(z) to be real, these curves only reach the boundary for a ≥ 0 (i.e. SEC) and
a ≤ −1. As we demand the NEC to be satisfied and the branes to be anchored at the
boundary, we will from now on focus on a ≥ 0, i.e. both WEC and SEC being satisfied.

The solution (5.51) is only real for 0 ≤ z ≤
(

1
a2c2

) a
2a+2 , and the derivative x′(z) diverges

as this limit is approached. This indicates that the embedding curves x(z) turn around
and go back to the boundary, which as we have seen in section 5.2 is demanded by the
barrier theorem in the case where SEC and WEC are satisfied. The solution (5.51) hence
describes an embedding similar to Q1 in figure 5.2. See figure 5.4 for plots of these solutions
for different values for a and c.

This calculation can easily be generalized in two ways. First of all, we can add a constant
tension contribution Ω to the energy-momentum tensor:

S = −2Ω + ρ(a− 1), SL/R = ρ
1 + a

2
. (5.52)

Secondly, we can generalise the Poincaré background used above to a BTZ background
(5.17), h(z) = 1 − z2/z2

H . Again, we can solve the equation (5.32) implying conservation
of the energy-momentum tensor and find

ρ(z) =
c

κ2
N

(
z2z2

H

z2
H − z2

)a+1
2a

(5.53)

5This is basically the equation of motion for the perfect fluid. We could also look at the equation of
particle number conservation, which in the static case is trivially satisfied as

∇i
(
n(ρ(z))ui

)
= ui∂in(ρ(z)) + n(ρ(z))∇iui = 0,

where we can use (5.24), uz = 0 and ∂tn(ρ(z)) = 0 to show that this equation is satisfied. The particle
number density n is related to the energy density ρ by the equation of state, see [252] for more information.
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Figure 5.4: Left: Brane profiles (5.51) for c = 1/a and, in order of increasing second
intersection with the x-axis, a ≈ 0.1, 0.2, 0.4, 0.7, 1.1, 2.0, 4.8, 100. Right: Brane profiles
with a = 1 and, from outer to inner curve, c = 0.5, 1, 1.5, ..., 5. All the turning points lie
on the dashed straight line. For clarity we added arcs leading back to the boundary in a
symmetric way on both sides of the figure. We chose κ2

N = 1 for both the left and the right
figure. The figure is presented as in [2].

which generalises (5.49). Interestingly, this result does not depend on the constant Ω. In
the next step towards solving the equations of motion (5.28) for the given matter content
(5.52), we use the results of table 5.1 to write

2aρ(z)− 2Ω = S + 2SL/R = K + 2KL/R =
2zHx

′
+(z)√

(z2
H − z2)x′+(z)2 + z2

H

, (5.54)

where for simplicity we set κ2
N = 1 from now on. This combination of terms only includes

x′(z) but not x′′(z), hence it can be algebraically solved for x′(z) to give

x′(z) =
F(z)zH√

F(z)2z2 − F(z)2z2
H + 4z2

H

, F(z) ≡ 2aρ(z)− 2Ω. (5.55)

For the general case this can only be integrated numerically to give the embedding profile
x′(z), see the left hand side of figure 5.5. Even without an analytical solution for x(z), the
expression (5.55) gives us some information on the geometry of the brane embeddings, as
we see that x′(z) diverges to infinity at

z∞ =

√
F(z∞)2 − 4

F(z∞)
zH . (5.56)

Solving this equation exactly is hard, but for z → zH , we see from (5.53) and (5.55) that
F diverges for a > 0, and hence (5.56) will always have a real solution z∞ ≤ zH . Hence
we expect that even in a BTZ background, and even in the presence of a cosmological
constant term the branes will always turn around and bend back to the boundary. This is
indeed the behaviour seen in figure 5.5.
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Figure 5.5: Left: Embedding functions for the brane with a perfect fluid in a BTZ back-
ground with zH = 1. Depicted are the cases for Ω = 0, a = c = 1 and, in order of increasing
second intersection with the x-axis, zH = 0.5, 1, 1.5, ..., 3. Additional symmetric branches
leading back to the boundary after the turning point were added. Right: Embedding
functions (5.57). Shown are the cases for a = c = 1 and, in order of increasing second
intersection with the x-axis, Ω = 2, 1, 0,−1,−2. We chose κ2

N = 1 for both the left and
the right figure. The figure is presented as in [2].

Equation (5.55) simplifies on a Poincaré background, where zH →∞. It can then actually
be integrated analytically, and one finds for the embedding function

x(z) =
z

(1 + 2a)2
√

1− Ω2
(5.57)

×

[
Ω(2a− 2)F1

(
a

1 + a
;
1

2
,
1

2
;
1 + 2a

1 + a
;
acz1+ 1

a

1 + Ω
,
acz1+ 1

a

Ω− 1

)

+ 2a2cz1+ 1
aF1

(
2 + a

1 + a
;
1

2
,
1

2
;
3 + 2a

1 + a
;
acz1+ 1

a

1 + Ω
,
acz1+ 1

a

Ω− 1

)]
where F1(a; b, c; d; e, f) is the Appell hypergeometric function. See the right hand side of
figure 5.5 for a plot of such curves.

We have no specific boundary theory in mind that we hope this simple perfect fluid model
studied in this section to be dual to, even on a qualitative bottom-up level. Nevertheless,
we think that the investigations of this section were a worthwhile digression from our main
interest (the holographic Kondo model) for two reasons: First of all, the exact solutions
presented in this chapter demonstrate how tractable our analysis has made the equations
of motion (5.2), and it nicely demonstrates the impact of the barrier theorem on the
geometry of the embedding. Secondly, as we are now going to show, this perfect fluid can
be reformulated as a massless free scalar when the equation of motion parameter is chosen
to be a = 1.
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Assume the action of the scalar field living on the brane worldvolume to be

Lmatter,Q = −1

2
γij∂iφ∂jφ. (5.58)

The equations of motion that follow from this model are

γ′11φ′ − 2

z
γ11φ′ + 2γ11φ′′ = 0 (5.59)

and can be identified with (5.49) for a = 1 by setting

ρ ≡ 1

2
γij∂iφ∂jφ =

γzz

2
(φ′)

2
. (5.60)

Similarly, using this substitution and a = 1 the energy-momentum tensor derived from
(5.58) takes the form (5.47).

This result is noteworthy because the scalar model (5.58) is a special case of the non-linear
sigma models discussed in [242]. There, it was suggested that these models would have a
holographic interpretation as describing a boundary RG flow. Unfortunately, we have seen
that due to the consequences of the barrier theorem the branes in this model will have to
bend back to the boundary as in figure 5.4, a behaviour that seems hard to interpret in
terms of a holographic RG flow. In fact, from the results presented in this section this
behaviour of bending back to the boundary seems quite generic as it happens both in
Poincaré and BTZ backgrounds and even if due to the presence on a constant tension term
the SEC is violated near the boundary. In chapter 6 on the other hand, we will study a
specific model which does have an interpretation as the dual of a physical and well-defined
holographic RG flow. In this model we will also find that the brane does not bend back to
the boundary, which in itself should be considered a non-trivial feature after the experience
gathered from the examples studied above.





Chapter 6

Entanglement entropy in a
holographic Kondo model

We will now proceed to the central interest of this thesis, namely the Kondo effect and the
holographic Kondo model of [86]. As we want to focus on presenting the contributions of
the author to the study of entanglement entropy in the holographic Kondo effect carried
out in [2–4], we will only give a very brief review of the field theory physics of the Kondo
effect in section 6.1.1 following the overview given in [86]. The top-down model of [86] will
then be recapitulated in section 6.1.2 before summarising the bottom-up model of [86] in
section 6.2. Genuine new results will then be discussed in great detail in sections 6.4-6.7.

6.1 Field theory and top-down model

6.1.1 Field theory

As already outlined in the introduction, the Kondo effect is a consequence of the spin-spin
interaction between conduction electrons and dilute magnetic impurities [65]. Using the
notation of [86] in the following, the Kondo Hamiltonian describing the interaction of the
electrons with one impurity can then be written as [65]

ĤK = −ψ†α
1

2m
∇2ψα +

1

2
λ′Kδ(~x)~S ψ†β

~Tβαψα. (6.1)

In this formula, the first term is the standard kinetic term for the conduction electrons
which are created and annihilated by the operators ψ†α and ψα. The α, β indices are

spin indices, and in the standard case of spin-1
2

particles with SU(2) symmetry ~T is just
the vector of Pauli matrices. The second term then describes the interaction between
the electron spins and the spin ~S of the impurity localised at ~x = ~0. As we saw in



90 6. Entanglement entropy in a holographic Kondo model

the introduction, the Kondo effect can be observed not only in traditional dilute alloys,
but also in quantum dot systems. A unified description of the impurities that cause the
Kondo effect in these diverse situations can be given in terms of the Anderson impurity
model [253], reviewed in [66]. See also figure 6.1. In this model, one considers a localised
site to which electrons can be bound. If one single electron is bound to this site, the
corresponding energy level εd is below the Fermi energy εF of the surrounding conduction
electrons. However, for two electrons bound to this site the Coulomb repulsion U between
the two electrons raises the energy level above the Fermi energy. The state in which one
single electron with an unpaired spin is bound to the localised site is hence energetically
preferred, and the spin of this electron will act as magnetic impurity with respect to the
surrounding conduction electrons.

Figure 6.1: Illustration of the Anderson impurity model [253]. Electrons from a conduction
band with Fermi energy εF can become bound to a localised site. Due to the Coulomb
repulsion U , the state with one localised unpaired electron spin is energetically preferred.

As pointed out in [65], the Kondo effect is caused by an anti-ferromagnetic coupling λ′K >
0. As the temperature of this system is lowered, it undergoes a renormalisation group
(RG) flow which in the anti-ferromagnetic case leads to a growth and divergence of the
running coupling at the dynamically generated Kondo temperature TK [70]. At lower
temperatures, the system flows to a state in which the impurity is effectively screened by
conduction electrons forming the Kondo screening cloud [70,72], see also [66,67,73,74] for
more information on this state.

In the following, in order to pave the way for a holographic description of the Kondo effect
we will have to both simplify and generalise the model of (6.1). First of all, before applying
the methods of the AdS/CFT duality to the Kondo system, we need to know whether and
when CFT techniques can be used in the first place. Luckily, this topic has been studied
extensively by Affleck and Ludwig in [254–258]. As shown in [254], by only considering
the s-wave channel of electrons interacting with the impurity and linearising around the
Fermi momentum kF , the model (6.1) simplifies to

ĤK =
v

2π
ψ†Li∂xψL +

v

2
λKδ(x)~S ψ†L

~TψL, (6.2)

where we have still used the notation of [86]. Specifically, v = kF/m is the Fermi velocity

and λK =
k2
F

2π2v
λ′K . The s-wave reduction leads to in- and out-going fermions moving on

the radial coordinate 0 ≤ r < +∞, but for (6.2) this is mapped to a system of chiral
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left-moving fermions ψL on the real line −∞ < x < +∞.1

This model (6.2) can then be treated by the methods of CFT and especially Kac-Moody
algebras [254–258]. For us, the most important aspect of this is that the Kondo effect in
3 + 1 dimensions, described by (6.1), obtains (at the fixed points) an additional conformal
symmetry when reduced to the effectively 1 + 1 dimensional model (6.2).

Furthermore, as in [86] we generalise the spin group from SU(2) to SU(Ns) and allow for
k different channels or flavours of conduction electrons interacting with the impurity. As
discussed in [86, 87], the symmetry group of (6.2) is then a SU(N)k × SU(k)N × U(1)
Kac-Moody symmetry. Here, the U(1) part stands for the electromagnetic charge. One
can also study different representations of the impurity spin under SU(Ns) [259]. The
benefit of promoting the spin group to SU(Ns) is that this enables the use of large Ns

techniques [259, 260]. It is known that in the large Ns limit, the formation of the Kondo
cloud happens as a phase transition similar to the phase transitions observed in models of
superconductivity, as part of the symmetry of the system is spontaneously broken [261–264].
In particular, the limit studied in [86] was the one where Ns → ∞ and λK → 0 such
that NsλK is kept fixed. Assuming the impurity spin to be in a totally antisymmetric
representation of SU(Ns), it can be phrased as [265]

Sa = χ†βT
a
βαχα, (6.3)

where the auxiliary fermions χa trapped to the localised site are referred to as slave fermions
or Abrikosov pseudo-fermions, see also [259,264]. In (6.3), the T a (a = 1, ..., N2

s −1) are the
SU(Ns) generators in the fundamental representation, under which the χ transform. These
fermions introduce an additional U(1) symmetry and unphysical states [265], a problem
that can be dealt with by imposing the constraint [86,259]

χ†χ = Q̂. (6.4)

This also means that the Young tableau of the impurity’s representation is a single column
with Q̂ < Ns boxes [86, 259]. Now, using (6.3) and the identity

T aαβT
a
γδ =

1

2
δαδδβγ −

1

2Ns

δαβδγδ (6.5)

for the SU(Ns) generators, we find as in [86] that the spin-spin coupling in (6.2) can be
simplified to

λKδ(x)~S ψ†L
~TψL =

1

2
λKδ(x)

(
OO† − Q̂

Ns

ψ†LψL

)
, (6.6)

where we defined the operator

O = ψ†Lχ. (6.7)

1In [90], where (6.2) was modelled by a spin-chain, the s-wave reduction has been commented on in
detail.
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This operator has dimension 1/2, and hence the term OO† is classically marginal, as it
lives in 0 + 1 dimensions only. In fact, in the Kondo model it is marginally relevant as
discussed in [86, 266]. In the large Ns-limit, there will be a critical temperature Tc < TK
below which the operator O condenses, i.e. gains a vacuum expectation value 〈O〉 6= 0,
while 〈O〉 = 0 at T > Tc [261–264,266]. This phase transition can be interpreted as a sign
of the formation of the Kondo cloud.

6.1.2 Top-down model

There is a number of holographic models for the Kondo effect or similar impurity systems
[76–86]. Specifically, in [86] two holographic models for the Kondo effect where proposed:
One string theoretic top-down model, and one bottom-up model. In this section we will
briefly summarise the top-down model, which is based on the setup of D-branes in type
IIB string theory shown in table 6.1.

Direction 0 1 2 3 4 5 6 7 8 9
Ns D3 • • • • - - - - - -
N7 D7 • • - - • • • • • •
N5 D5 • - - - • • • • • -

Table 6.1: Configuration of Ns D3, N7 D7 and N5 D5 branes in the top-down Kondo
model of [86].

We see that this includes the same stack of Ns D3-branes as in Maldacena’s original
construction (see table 2.1), but also N5 D5- and N7 D7-branes. Just as in section 2.3, we
can now investigate the open string and closed string perspective on this setup. Starting
with the open string perspective, it is clear that strings can stretch between the different
branes in table 6.1. This means there will be (up to orientation) 3− 3, 5− 5, 7− 7, 3− 5,
3 − 7 and 5 − 7 strings. The model of [86] is based on taking the usual Maldacena limit
where Ns →∞, gs → 0 with λ = 4πgsNs fixed, but keeping N5 and N7 finite at the same
time, so that terms like N5/Ns or N7/Ns go to zero. This is called the probe approximation.
The worldvolume theory of the 3−3 strings will then describe N = 4 SU(Ns) SYM theory
as explained in section 2.3, while the worldvolume theories of the 5 − 5 and 7 − 7 strings
decouple. Much more interesting for the holographic Kondo model will be the theories
defined by the 3 − 5, 3 − 7 and 5 − 7 strings, which live in the worldvolumes of the
intersections of the respective branes.

For example, the 3−7 strings are (in the low energy limit) confined to the 1+1-dimensional
intersection of the D3 and D7-branes. As can be seen from table 6.1, this means that in the
3+1-dimensional flat space in which the N = 4 SYM theory lives (directions x0−x3), there
is a 1 + 1-dimensional hypersurface extending infinitely both in time (direction x0) and
one spacial direction (x3). Detailed studies of the worldvolume theory on this intersection
can be found in [267–270]. The important aspect in our context is that the 3 − 7 strings
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give rise to chiral fermions living in the 1 + 1-dimensional brane intersection, and in the
top-down Kondo model these are identified with the s-wave conduction electrons ψL in
(6.2). In particular, the fermions arising in the top-down model yield a SU(Ns)N7 ×
SU(N7)Ns × U(1) Kac-Moody algebra [269]. We hence identify the number of D7-branes,
N7, with the number of channels k discussed in section 6.1.1. See [86] for more details.
Similarly, we see that the 3 − 5 strings give rise to a theory living in a 0 + 1-dimensional
worldvolume, i.e. on a localised point that extends only in time. Relevant references
include [76, 78–82, 267, 271–276]. Again, the most important aspect of this is that the
worldvolume theory of the 3 − 5 strings gives rise to N5 fermions on a 0 + 1-dimensional
space which, setting N5 = 1, will be interpreted as the slave fermions of (6.3) [86]. In
this picture, the 5− 7 strings are then responsible for the interaction between conduction
fermions and slave fermions. The open string construction in table 6.1 can hence be
interpreted as yielding a field theory system that has qualitatively similar features as the
large Ns Kondo model discussed in section 6.1.1 [86].

The gravitational dual of this field theory system can then be obtained from the closed
string construction of the setup of table 6.1 in the Maldacena limit. As in section 2.3.2,
we will then obtain an AdS5×S5 background spacetime, the probe branes do not curve the
spacetime in this setup. The probe brane worldvolumes hence become AdS2×S4 for the
D5, AdS3×S5 for the D7, and AdS2×S4 for the D5/D7 intersection. From the fields living
on AdS3×S5 one obtains a level-Ns U(N7) Chern-Simons (CS) field A living effectively on
the AdS3 [267–270]. This field is interpreted to be holographically dual to the current of the
chiral fermions ψL on the field theory side [86]. Similarly, the fields living on the AdS2×S4

will yield both a U(N5 ≡ 1) gauge field a [267, 271, 272] and a charged scalar Φ [277, 278]

living in the AdS2. Holographically, the gauge field a will then be dual to the charge Q̂
of the slave fermions χ, and the scalar field Φ, charged both under the AdS2 field a and
the AdS3 field A, will be interpreted as the holographic dual of the operator O (6.7) [86].
Indeed, it is known [277, 278] that the scalar Φ is a tachyon, i.e. introduces an instability
to the system. This instability leads to a condensation of Φ at low temperatures, which is
holographically interpreted as the formation of the Kondo cloud [86].

In this section, we have only given a very brief overview over the top-down model outlined
in table 6.1, and many more details can be found in [86]. Unfortunately, this model is very
intricate and hard to work with. Consequently, in [86] the authors went one step further
and designed a bottom-up model that was as close as possible to the top-down model in all
aspects that are relevant for the interpretation as a genuine Kondo model, but on the other
hand also as simple and tractable as possible. This bottom-up model will be discussed in
the next section, and will be the basis of the original results of the present author to be
presented in sections 6.4-6.7.
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6.2 The bottom-up Kondo model

As said before, the bottom-up model of [86] is constructed in such a way as to be as
simple as possible, while still providing a qualitative description of Kondo-like physics.
Specifically, the holographic model will, by the limits discussed in sections 6.1.1 and 6.2 as
well as by the nature of gauge/gravity duality, provide a description of a magnetic impurity
(with large spin) interacting with a strongly coupled system.

To this end, the bottom-up model discards many of the features and fields of the top-down
model, while retaining the following ingredients [86]:

• A 2 + 1-dimensional asymptotically AdS bulk spacetime, such that the field theory
model (6.2) can be interpreted as being the dual theory living on the AdS boundary.
To describe the temperature dependence of the Kondo effect, the background space-
time will be chosen to be a BTZ black hole (5.17). If the event horizon is located at
z = zH in the coordinate system of (5.17), the temperature then reads [130,131]

T =
1

2πzH
. (6.8)

Furthermore, we assume the bulk theory action to contain an Einstein-Hilbert term

Sg =
1

2κ2
N

∫
d3x
√
−g (R− 2Λ) , (6.9)

with the Ricci scalar R, the negative cosmological constant Λ = −1/L2 and the AdS
radius L. In the following, we will set L = 1 for simplicity.

• A Chern-Simons (CS) field Aµ living in the 2 + 1-dimensional bulk spacetime, dual
to the current of the chiral fermions ψL on the boundary. The action reads

SA = −N
4π

∫
Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (6.10)

The normalisation factor N is motivated from the action of the top-down model
of section 6.1.2, and is proportional to Ns. In the following, we will for simplicity
choose its gauge group to be U(1), correspondingly there will only be one channel of
conduction electrons, k = 1 [86].

• An asymptotically AdS2 subspace embedded in the background spacetime, with one
timelike direction and one radial direction. In the model of [86], this is simply taken
to be the slice of the BTZ spacetime defined by x ≡ 0. As this hypersurface is the
bottom-up remnant of the D5/D7 intersection in the top-down model, we will refer
to it as the brane. The line element of the induced metric γij reads

ds2 = γijdx
idxj =

1

z2

(
−h(z)dt2 +

dz2

h(z)

)
, (6.11)
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with h(z) = 1 − z2

z2
H

. In the worldvolume of this brane, the model then includes the

action

Sa,Φ = −N
∫
d2x
√
−γ

(
1

4
fmnf

mn + γmn(DmΦ)†(DnΦ) + V (ΦΦ†)

)
, (6.12)

DmΦ ≡ ∂mΦ + iqAmΦ− iqamΦ , (6.13)

for a 1 + 1-dimensional gauge field am and a charged scalar Φ = φeiψ. Similar to the
nomenclature of chapter 5, we use Greek indices for quantities in the 2+1-dimensional
bulk or ambient spacetime (e.g. gµν or Aµ) and Latin indices for quantities in the
1 + 1-dimensional hypersurface x ≡ 0 (e.g. am,DmΦ, or γmn). The gauge group of
the field am (dual to the charge of the slave fermions χ) is chosen to be U(1), which
is adequate for the single impurity case [86]. See [87] for a study of the two-impurity
case based on the same bottom-up model. The scalar field is charged both under the
field am and the CS field Am with opposite charges2, and in (6.13) we have explicitly
introduced the value of the charge q compared to [86]. These charges will become
relevant in section 6.3.2. As in the top-down model explained in section 6.1.2, this
scalar field will be interpreted to be holographically dual to the operator O = ψ†Lχ
and the condensation of this scalar at low temperatures will be interpreted as the
formation of the Kondo cloud.

This model was sketched in figure 1.1. See [86,87] for an extensive discussion of this model,
its features, and how good it describes Kondo physics via the holographic duality. Before
we discuss how backreaction of the matter fields onto the bulk geometry can be taken into
account in the bottom-up model in section 6.3, we will briefly summarise some of the results
obtained in [86] for the case without backreaction that will be important later on. First of
all, for high temperatures the system is in the normal phase, where the scalar Φ vanishes
everywhere and only the gauge field am is non-zero on the brane. In the convenient gauge
az = 0, the solution to the equations of motion then reads

at(z) =
Q
z

+ µ, (6.14)

where, holographically,Q ≡ Q̂/Ns fixes the charge of the slave fermions defined in (6.4) [86].
When solving the equations of motion of the Kondo model, a fixed value of Q has to be
given as a Neumann boundary condition [86], see also [279, 280] for related discussions
of vector fields in low-dimensional bulk spacetimes. At low temperatures, the scalar field
will condense, i.e. there will be a thermodynamically preferred solution to the equations of
motion with φ(z) 6= 0. In [86], the potential of the scalar appearing in (6.12) was chosen
to be only a mass term

V (ΦΦ†) = M2ΦΦ†, (6.15)

2See appendix C for a definition of the quantity Am.
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which is the simplest non-trivial possibility. This is one of the aspects where the bottom-
up model deviates strongly from the top-down model, as there the potential is much more
complicated and not even known up to all orders [86]. We will comment on this issue
more in section 6.7. To obtain the correct conformal dimension of the dual operator
O, ∆ = 1/2, the mass M2 in (6.15) is chosen such that the scalar field saturates the
Breitenlohner-Freedman [197] bound in AdS2. This also causes an instability such that at
low temperatures the scalar field shows a tendency to condense, see [266] for a review of
the instabilities arising in the 1 + 1-dimensional case under consideration here. However,
the effectively 1 + 1-dimensional case is special in the sense that due to the coupling of the
scalar to the gauge field and the asymptotic behaviour (6.14), the scalar’s effective mass
will get a contribution by Q [266], leading to the requirement (for the charge q = 1) [86]

M2
eff = M2 −Q2 = −1

4
. (6.16)

This means that in the model under consideration, the mass M2 has to be fixed to a
specific value depending on the choice of the boundary condition Q in order for the dual
operator of φ to have the right dimension [86]. With the above value of M2, the asymptotic
near-boundary behaviour of φ(z) is then

φ(z) = α
√
z ln(Θz) + β

√
z + ..., (6.17)

where we introduced a scale Θ for-dimensional reasons. In order to understand the physical
meaning of α and β, we have to remind ourselves that in the discussion of the GKPW
formula in section 2.3.3, we dealt with operators that are sourced in the dual CFT by
terms ∼

∫
ddxOϕ(0). In contrast, from (6.6) we can see that the leading contribution of

the Kondo coupling to the field theory action in the large Ns limit is the term ∼ OO†.
This is effectively a double trace deformation [86,281–283]. Defining what we will call the
Kondo coupling [86]

κ ∝ −NsλK , (6.18)

the holographic prescription to deal with such double trace deformations then yields

α ≡ κβ. (6.19)

See also [87] for a detailed discussion of this identification in the Kondo model. Interest-
ingly, one finds that this coupling runs with the energy scale Θ when this scale is changed
in (6.17) [282]. In particular, shifting the energy scale as Θ0 → Θ1 and demanding the
physical field φ(z) to be unchanged in (6.17), we can read off [86]

κ1 =
κ0

1 + κ0 ln
(

Θ0

Θ1

) . (6.20)
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Specifically, in the following we will want to use the temperature T as the energy scale
describing the RG flow of the Kondo model. To this end we introduce tilded coordinates
in which zH is set to one, i.e. [86]

z̃ = z/zH , x̃ = x/zH , t̃ = t/zH . (6.21)

As a consequence of these rescalings, we also find [86] that φ̃ = φ and ãt = at zH . Equation
(6.14) then yields

ãt =
Q
z̃

+ µT , (6.22)

where we have defined µT ≡ µ zH = µ/2πT [3]. This means that while keeping zH fixed
in numerical calculations, we can still effectively vary the temperature by varying the
coefficient µT in the near-boundary expansion of at, as only the ratio µT ∼ µ/T is physically
meaningful [3, 86]. Similar to (6.17), we define

φ(z̃) = αT
√
z̃ log(z̃) + βT

√
z̃ + . . . (6.23)

with κT ≡ αT/βT and find

κT =
κ(Θ)

1 + κ(Θ) log(ΘzH)
. (6.24)

This diverges at the Kondo temperature

TK ≡
Θ

2π
e1/κ(Θ), (6.25)

which satisfies [3]
T/TK = exp(−1/κT ). (6.26)

We hence see that this bottom up-model has the potential to describe the qualitative
Kondo-like features expected from a magnetic impurity interacting with a strongly coupled
electron system in the large Ns limit, including the formation of a Kondo cloud (conden-
sation of Φ) and the existence of a dynamically generated scale (TK) [86]. The results to
be presented in the following sections will all be derived from this specific model. Hence,
although other models for holographic impurities exist [76–85], it will be the bottom-up
model discussed above that will for brevity be referred to as the holographic Kondo model
in this thesis.

6.3 Backreaction in the Kondo model

One of the most interesting aspects about the Kondo effect is the Kondo cloud, and its
properties such as size and shape for example. So naturally we should ask how we can
investigate the Kondo cloud using the bottom-up model presented in the previous section.
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In the heuristic picture 1.1, we have depicted the Kondo cloud as a swarm of electrons
surrounding the impurity with anti-aligned spins. Although this is only a naive qualitative
picture of the CFT state, it gives us an idea about how the Kondo cloud could manifest
itself in terms of objects that can be studied holographically. Namely, in section 3.1 we
already saw the simple example of a state (3.8) where two spins are correlated such that
they have non-zero entanglement entropy, and similarly we expect that the Kondo cloud
should leave an imprint on the pattern of entanglement entropy in the field theory. We
have seen in section 3.2 that entanglement entropy is a quantity that can be studied
comparably easily in holography, but from the prescription (3.11) it is also clear that we
will only obtain non-trivial results on the entanglement entropy in the holographic Kondo
model if we include backreaction of the matter fields onto the geometry. How to do this
will be the topic of this section, and in the following section 6.4 we will then present and
discuss the results that we obtain on the entanglement entropy.

6.3.1 The Israel junction conditions

Looking at the model presented in section 6.2, we first of all note that the only fields that
are defined throughout the bulk spacetime are the metric gµν and the Chern-Simons field
Aµ. The latter is topological, and hence does not backreact on gµν . The only remaining
matter fields are the scalar Φ and the gauge field am which are constrained to live in
the worldvolume of a codimension one hypersurface embedded into the bulk spacetime.
Naively, they would hence lead to an infinitely thin distribution of mass and energy, or
equivalently to an energy-momentum tensor in the three-dimensional Einstein’s equations
that has a δ-peak like shape. The correct framework to deal with this problem is provided
by the Israel junction conditions [284], which can be geometrically understood in the
following way: The codimension hypersurface on which the matter fields Φ, an are defined
splits the bulk spacetime into two parts, one to the left of it and one to the right of it,
see figure 6.2. To make contact with the topics discussed in chapter 5 (see especially
figure 5.1), we will refer to the hypersurface as Q, to the bulk spacetime as N and to the
asymptotic boundary as M . Q then splits N into the two parts N+ and N− (with metrics
g±), and similarly M into M+ and M−. The embedding of Q into N± is then given by
an embedding profile x±(t, z), using coordinates of the Poincaré patch. As in chapter 5,
we can choose the boundary condition x±(0, 0) = 0 without loss of generality, due to the
translation invariance of (5.17) in the x-direction.

The Israel junction conditions describe how the two spacetimes N± are glued together
along the common hypersurface Q. First of all, the hypersurface Q has to be embedded
into the spacetimes N± in such a way that metrics γ± on Q that can be induced from the
ambient space metrics g± have to be equal: γ+ = γ− ≡ γ.3 The equality of the two induced
metrics means, amongst other things, that a point on Q given by certain coordinates of
N+ can be identified with a point on Q in terms of coordinates on N−. It is in this sense

3See [285] for an exploration of cases in which this condition is not assumed.
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Figure 6.2: Geometric setup of Israel junction conditions. Effectively, two spacetimes
are glued together along a common hypersurface Q by identifying points. The figure is
presented as in [2].

of identifying points that we claim that the two spacetimes N± are glued together along a
common hypersurface Q, see figure 6.2 again.

The role of the “glue” that holds these two spacetimes together along their seam is taken
by the energy-momentum of the matter fields living in the worldvolume of Q. Specifically,
in the absence of external forces acting on Q, the Israel junction conditions specify that
[284,286] {

Kij
}
Sij = 0, (6.27)

[Kij − γij trK] = −κ2
N Sij, (6.28)

where {A } ≡ 1
2
(A+ + A−), [A ] ≡ A+ − A− for any tensors A± defined on both sides of

the brane. As in chapter 5, Sij is the energy-momentum tensor and γij is the induced
metric on Q, κ2

N the coupling constant in the Einstein equations. See appendix A.2 for a
definition of the extrinsic curvature tensor K±ij . At this point it is important to point out
that equations (6.27), (6.28) are valid for the particular convention that the normal vector
of the hypersurface Q is chosen to point from the N− side to the N+ side, just as depicted
in figure 6.2.

In the following, we will assume the spacetimes N± to be BTZ black holes (5.17) and,
crucially, we will assume symmetric embeddings with x+(t, z) = −x−(t, z), such that K+

ij =
−K−ij . Equation (6.27) is then trivially satisfied while (6.28) reads

K+
ij − γijK+ = −κ

2
N

2
Sij, (6.29)

which is identical to (5.2) apart from the factor 1/2. The only difference to the AdS/BCFT
models of chapter 5 is then that there, the bulk spacetime was assumed to end on the brane
Q, while here we are working with a two sided approach. Hence our results of chapter 5
can be applied to the study of backreaction in the holographic Kondo model.
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There are indeed different ways how to derive the Israel junction conditions, and one
action-formalism based method (see [287–289]) is to start with an action

S =
1

2κ2
N

∫
N+

d3x
√
−g+(R+ − 2Λ+) + SN+ +

1

2κ2
N

∫
N−

d3x
√
−g−(R− − 2Λ−) + SN−

+
1

κ2
N

∫
M+

d2x
√
−h+K

(h+) + SM+ +
1

κ2
N

∫
M−

d2x
√
−h−K(h−) + SM− (6.30)

− 1

κ2
N

∫
Q

d2x
√
−γK(γ+) +

1

κ2
N

∫
Q

d2x
√
−γK(γ−) + SQ + SP

where we have terms similar to (5.1) both for the N+ side and the N− side, coupled to
a common boundary Q. This corresponds to our view that the Israel junction conditions
describe the gluing of the two spacetimes N± = M± ∪ N± ∪ Q± ∪ P± along the common
hypersurface Q ≡ Q+ = Q− (intersecting the AdS boundary at P ≡ P+ = P−, P± =
M± ∩ Q±). The above formula explicitly includes the possibility of matter terms in the
ambient spacetime (SN±), matter terms on the brane Q (SQ) as well as boundary and
counter terms on the AdS boundary (SM±) and on the intersection P , SP (see [288] and
the appendix in [94]). It should also be noted that we have fixed the signs of the extrinsic
curvature tensors K(γ±) according to our usual convention. It can then be shown that
(6.30) yields the Israel junction conditions (6.28) [287–289].

x−(z) x+(z)

bulk bulk

hypersurface

boundary

identify points

boundary

Figure 6.3: Left: Geometric setup with independent coordinate systems on both sides of
the brane, as in figure 6.2. Right: Gaussian normal coordinates in which the bulk metric
gµν is continuous at the brane, but not differentiable. The figure is presented as in [3].

As a final comment on the Israel junction conditions, we should note that in the above
discussion and derivation it is a priori possible to choose independent coordinate systems
in the bulk parts N±, as long as the induced coordinate system on Q is the same. This
is why the brane has two distinct embedding functions x± with respect to the two bulk
parts N± on both sides of it. As an alternative, it is in principle possible to construct
Gaussian-normal coordinates which cover a vicinity of the brane on both sides of it in a



6.3 Backreaction in the Kondo model 101

unified way. To do this, one starts by defining a coordinate system on Q and defines the
affine parameter of the geodesics normal to it as the additional coordinate in the higher-
dimensional ambient space. This is similar to the construction employed in section 5.3.1.
In Gaussian normal coordinates, it is easy to show that the bulk metric gµν is continuous
on the brane, but not differentiable. In fact the discontinuity of the (normal) derivative of
the metric on the brane Q is proportional to the expression K+

ij−K−ij . This discontinuity of
the first derivative of the metric then leads to a δ-like peak in the curvature tensors at the
location of the brane. In Einstein’s equations this δ-peak then balances the δ-peak in the
bulk energy-momentum tensor Tµν that comes from the worldvolume energy-momentum
tensor Sij exactly according to the equation (6.28). See [102] for an extensive discussion of
Israel junction conditions in Gaussian normal coordinates. As explained in section 6.2, our
bulk spacetime does not only contain the metric gµν as a dynamical field, but also the CS
field Aµ. As this field also couples to the matter localised on the brane, it will enter our
calculations with its own junction conditions. These are explained in appendix C, where
it is shown that the Chern-Simons field effectively decouples from the fields on the brane.

6.3.2 Equations of motion

The dynamical quantities in the bottom-up bulk model are the fields Φ, am, Aµ and, as
discussed in the previous section, the embedding profile of the brane x+ ≡ −x−. The bulk
metric gµν is fixed to be a BTZ background (5.17), which is possible as the CS field does
not backreact on the bulk geometry. Furthermore, the CS field Aµ effectively decouples
from the rest of the fields as discussed in appendix C. Choosing a static setup where none
of the dynamical variables depend on the t coordinate, and choosing a radial gauge az = 0
(which also allows us to set ψ = 0, see [3]), the remaining dynamical quantities are then
φ(z), at(z) and x+(z). The equations of motion of this system then read

γijDiDjφ−M2φ = 0, (6.31)

∂z
√
−γf zt + J t = 0, (6.32)

Kij −
κ2
N

2
Sij = 0 (6.33)

⇔ K =
κ2
N

2
S and KL/R =

κ2
N

2
SL/R, (6.34)

where the current reads Jm = −2
√
−γγmnanφ2 and the extrinsic curvature quantities

Kij,K,KL/R have been defined in (5.26). The energy-momentum tensor following from the
worldvolume action (6.12) reads [3]

S =
N
2
fmnfmn − 2NV

(
Φ†Φ

)
, SL/R =

N
2
γ̂ij
(
D(iΦ

)†Dj)Φ, (6.35)
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where γ̂ij was defined in (5.23). At the event horizon, or more accurately at the point
where the brane crosses the event horizon, the regularity conditions

φ′(zH) = −L
2M2 φ(zH)

2zH
, at(zH) = 0, x′+(zH) = κ2

NN
2L4M2 φ(zH)2 − z 4

H a
′
t(zH)2

4L3

(6.36)
have to be imposed [3]. As motivated above, for the study of entanglement entropy we
need solutions with non-trivial backreaction, an Kij that is not perturbatively small. From
(6.33), we see that this requires κ2

NSij to be of order one in the large Ns limit that the top-
down model requires. However, the gravitational coupling constant κ2

N = 8πGN is of order
1/N2

s , and the factor N in (6.35) is of order Ns. We hence rescale all the fields to be of
order

√
Ns, which for consistency is accompanied by a rescaling of the charges q in (6.13).

This is effectively the same as fixing κ2
NN = 1 and q = 1, as was done for the numerical

calculations of [3]. However, it is important to note that in the next section we will see how
the physical properties (specifically energy conditions) of the fields of the bottom-up model
constrain the qualitative solutions for the bulk geometry. Consequently, we believe that
the solutions found numerically for the choice κ2

NN = 1 will be qualitatively representative
for the behaviour of the system at any value of κ2

NN . Furthermore, in section 6.5 we will
derive a geometrical approximation formula that is only based on the most fundamental
geometric properties of the bottom-up Kondo model, and hence does not depend on the
specific choices of the parameters made in the numerical calculations of [3].

Solving the equations of motion (6.31)-(6.33), one finds that there is a critical temperature

Tc ≈ 0.885TK (6.37)

below which there is a thermodynamically preferred solution with φ(z) 6= 0 ⇔ 〈O〉 6= 0,
while above Tc the preferred solution is the normal phase in which φ(z) = 0⇔ 〈O〉 = 0 for
any z [3]. This normal phase has an analytical solution due to the normal flow construction,
as discussed in section 5.3.1. We then find [3]

at =
C
zH

cosh(s)

(
cosh(s)−

√
(zH/z)2 + sinh2(s)

)
(6.38)

= −C cosh(s)

z
+
C cosh(s)2

zH
. . . , (6.39)

x+(z) = −zH arctanh

 sinh(s)√
(zH/z)2 + sinh2(s)

 , (6.40)

tanh (s) =
1

4
κ2
NNC2 , (6.41)

where Sij = −N
2
γijC2 and C is the electric flux of the gauge field at the boundary. In the

numerical calculations of [3], which lead to the results presented below, we fixed C = 1/2
in order to insure comparability with the results of [86], where the same choice was made.
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By comparison with (6.14), we can also read off

Q = −C cosh(s) and µ =
C
zH

cosh2(s) (6.42)

from the above near-boundary behaviour. The solution (6.40) satisfies NEC and WEC
while violating SEC, as expected from the discussion in section 5.3.1.

It is important to note that for a non-trivial embedding, the line element of the induced
metric will read (compare to (6.11))

ds2 =
1

z2

(
−h(z) dt2 +

1 + h(z)x′+(z)2

h(z)
dz2

)
. (6.43)

Equation (6.40) shows that x′+(z) 9 0 as z → 0, and consequently the induced metric
(6.43) may be asymptotically AdS2, but the effective AdS radius will depend on Q. This
enters the Breitenlohner-Freedman bound of the scalar Φ, and instead of (6.16) we now
obtain [3]

M2 = Q2 − 1

4 cosh2 (s)
. (6.44)

This reproduces equation (6.16) in the limit of vanishing backreaction, where κ2
NN → 0.

6.4 Entanglement and defect entropy

Details on how the equations of motion (6.31)-(6.34) can be solved numerically were given
in [3] and shall not be repeated here. Instead, we will start right away with the physical
interpretation of these solutions in this section. In particular, we will discuss energy con-
ditions and their impact on the geometry in (6.4.2). Section 6.4.2 will then be denoted to
a discussion of our findings of entanglement and defect entropy in the Kondo model, while
in section 6.4.3 we will discuss the holographic g-theorem.

6.4.1 Energy conditions in the Kondo model

As we have discussed in section 6.3.2 (see also section 5.3.1), the normal phase is described
by a gauge field living on Q in the absence of charges, which is effectively a constant
tension model (6.40) satisfying WEC and NEC, but violating the SEC. This violation
of the SEC is a very important feature of the holographic Kondo model: We want to
describe one impurity on the boundary which is infinitely extended into the spacelike
direction x. This is why in the model without backreaction the brane goes straight from
the boundary into the bulk and into the black hole event horizon as depicted in figure 1.1.
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If, however, the matter fields living on Q in the holographic model would satisfy both WEC
and SEC, we have seen in chapter 5 that this would force the brane to bend back to the
boundary in a ∪-shaped way, as a consequence of the barrier theorem. This phenomenon
of bending back to the boundary would also lead to an effective compactification of the
boundary as the x-coordinate would now be restricted to a finite range of values, see [2]
for a deeper discussion. Indeed, in section 5.3.2 we have seen several analytic solutions
of physical models where precisely this was the case. The fact that the matter fields in
the holographic Kondo model of section 6.2 violate the SEC everywhere in the bulk, and
the brane consequently shows the phenomenologically desired behaviour of going from the
boundary into the event horizon (as a curve of type Q2 in figure 5.2), should hence be
considered a non-trivial consistency check: The model derived and studied in [86] without
backreaction in mind still behaves physically reasonable when turning on backreaction.
While it is possible to show analytically that the SEC is violated in the normal phase (see
section 5.3.1), for the condensed phase this is only possible numerically. We did indeed
check that for all numerical solutions discussed in this section, both WEC and NEC are
satisfied while the SEC is violated everywhere.

The behaviour of the NEC is especially interesting as we numerically find that SL/R → 0
in both the limits z → 0 and z → zH . The z → 0 is easy to understand: Near the
AdS boundary, the scalar field goes to zero as (6.17)4 and the contribution of the gauge
field (6.39) becomes dominant. Hence we expect that near the boundary, our branes will
asymptote to the exact solution for the normal phase (6.40) for any T/Tc. This expectation
is indeed verified by our numerical solutions, see figure 6.4. The perhaps more surprising
case is the one where z → zH . Using(6.35), (6.36), (5.23) and (6.43) one indeed finds

γ̂11 ∼ z2 − z2
H = (z − zH)(z + zH), (6.45)

γ̂00 ∼ (z2 − z2
H)−1 = (z − zH)−1(z + zH)−1, (6.46)

φ′ ∼ const. , (6.47)

φ ∼ const. , (6.48)

at ∼ z − zH , (6.49)

as z → zH and hence SL/R → 0 in this limit. This means that even for T/Tc 6= 1 our
branes can be approximated by a constant tension brane both in the near-boundary and
in the near horizon regime. This will be useful in section 6.5.

The numerically obtained embedding profiles for x+(z) for different temperatures T/Tc
are depicted in figure 6.4. Due to our discussions of sections 5.2.3 and 5.2.4 (see also
table 5.1) we have a very clear qualitative understanding of how the energy conditions
qualitatively constrain these embedding functions. Due to the violation of the SEC, we will
find x′+(z) < 0 everywhere, while due to the NEC the curves bend to the right (x′′+(z) > 0)
in figure 6.4. Specifically, the more the scalar field Φ condenses, the more positive energy
(in the sense of WEC and NEC) the scalar field adds to the worldvolume of the brane, and

4Its derivative diverges, but too mildly to make a contribution.
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the more the brane bends to the right. This is exactly the behaviour seen in figure 6.4.

0.0

0.2

0.4

0.6

0.8

1.0

T/Tc1 0

Φ condenses

Kondo cloud forms

z/
z H

Φ = 0, am
6= 0

x+(z)/zH

0.00−0.01−0.02−0.03−0.04−0.05−0.06

Figure 6.4: Embedding profiles x+(z) for the embedding of the brane Q into the spacetime
N+, see figure 6.2. At T = Tc, the scalar field vanishes everywhere and the embedding is
known to be given by the analytical solution (6.40). As the temperature is lowered, the
scalar field condenses and the brane bends to the right. The figure is presented as in [3].

6.4.2 Entanglement entropy in the Kondo model

Having numerically calculated the embedding profiles x+(z) as shown in figure 6.4, it is now
possible to holographically calculate entanglement entropy for the holographic bottom-up
Kondo model. To do so following the Ryu-Takayanagi prescription introduced in section
3.2, we need to calculate the lengths of spacelike geodesics in the bulk spacetime N . As
the bottom-up model includes no backreacting matter in the ambient spacetime parts N±,
the metrics g±µν will still be given by the BTZ line element (5.17). In this background, the
geodesic equations can be solved analytically, and the only remaining problem is to define
correct refraction conditions for curves crossing the brane Q. For example in the setup
depicted in figure 6.2, we may be interested in a spacelike geodesic that starts out at a
point in M+, moves through N+ to a point on Q and then starts moving towards M− from
the corresponding point of Q in N−. But if the endpoints on M± are fixed as boundary
conditions in this geodesic problem, how do we find the correct point on which the geodesic
has to cross Q? Alternatively, how do geodesic curves get refracted at Q? Problems like this
have indeed been studied before, see for example [290]. Here, we will only employ a very
simple geometrical argument: As we have seen in section 6.3.1, it is at least theoretically
possible to define a Gaussian normal coordinate system in a neighbourhood to both sides
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of the brane, such as on the right hand side of figure 6.3. In such a coordinate system,
we would then expect the geodesic curve crossing the brane to be continuous and once
differentiable. This means that at the point where the geodesic meets the brane coming
from N+, we decompose its tangent vector into components perpendicular and normal to
the brane. On the other side of the brane, the correct refracted tangent vector can then
be unambiguously reconstructed from this data and the tangent and normal vectors of the
brane in terms of the coordinate system on N−. As a special case, we note that this implies
that curves entering the brane perpendicularly in N− will also leave it perpendicularly into
N−.

In the following, we will be interested in the entanglement entropy of intervals with length
2` symmetrically centered around the defect, as depicted in figure 1.1. As we also assume
a symmetric embedding x+(z) = −x−(z) (see figure 6.2), this entire geometrical setup is
manifestly mirror symmetric around the defect, and hence the spacelike geodesics then go
from the boundary point x = −` to x = ` will cross the brane in a perpendicular manner.
As we have seen in section 3.3, the result that we would obtain for an interval of length 2`
in a pure BTZ background, where the impurity is absent, is

S(`)
∣∣
Impurity absent

= SBH(`) =
c

3
log

(
1

πεT
sinh (2πT`)

)
. (6.50)

In the setup of the holographic Kondo model, by absence of impurity we mean the trivial
embedding x+(z) = x−(z) = 0 of the brane. We can use (6.50) as a reference to compare
the entanglement entropy in the holographic Kondo model to, by defining the impurity
entropy

Simp(`) ≡ S(`)
∣∣
Impurity present

− S(`)
∣∣
Impurity absent

. (6.51)

This quantity has the useful property of being manifestly finite, as both S(`)
∣∣
Impurity present

and S(`)
∣∣
Impurity absent

diverge in the same way ∼ log(ε) visible in (6.50) for example. Im-

purity entropy (6.51) was studied in the field theory literature on the Kondo effect be-
fore [88–91], and the approximative result for small temperatures and large interval sizes
was derived in [90] to be

Simp =
π2c ξKT

6v
coth

(
2π`T

v

)
=
π2c

6

T

TK

coth

(
2π

`

ξK

T

TK

)
for T/TK, ξK/`� 1. (6.52)

Here, as before, TK is the Kondo temperature, v is the Fermi velocity, and ξK = v/TK is
the Kondo scale [90]. Our numerical results for Simp(˜̀) are plotted in figure 6.5. As in
the numerics of [3] the event horizon coordinate zH was set to one, we show our results
as functions of the tilded coordinates introduced in (6.21). There are several qualitative
features in this figure that we can easily interpret based on the findings of the previous
sections and chapters.

• First of all, we see that for T = Tc where the scalar field is still uncondensed the
impurity entropy Simp(˜̀) is constant. This is due to the fact that in this case the
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Figure 6.5: Impurity entropy Simp as a function of ˜̀ = `/zH for different values of T/Tc.
For T/Tc = 1, the embedding profile x+(z) is given by the constant tension solution (6.40)
and consequently Simp(˜̀) is a constant, see section 5.3.1. As the temperature is lowered,
we see that Simp(˜̀) decreases for fixed ˜̀. The figure is presented as in [3].

embedding is given by the constant tension solution (5.37), see section 6.3.2. We have
seen in section 5.3.1 that due to the normal flow construction, the effect of constant
tension solutions is to add a tension-dependent extra length to all normal geodesics
resulting in (5.38). From (6.40) one can then analytically calculate

3

c
Simp

(
˜̀, T = Tc

)
= arctanh

(
κ2
NNC2

4

)
= arctanh

(
1

16

)
≈ 0.0626 (6.53)

for our numerics where we have chosen κ2
NN = 1, C = 1/2 and L = 1. This is

precisely the value that can be read off from figure 6.5.

• Secondly, for fixed values of ˜̀ we see that Simp(˜̀) decreases as the temperature T/Tc
decreases. Geometrically, this is clear from figure 6.4. As explained in section 6.4.1,
the more the temperature is lowered, the more the scalar field condenses and the
more the branes bend to the right in figure 6.4. This is a direct consequence of the
NEC satisfied by the scalar field. Note that figure 6.4 shows the embedding profile
x+(z), this means that the points to the right of the branes in that figure are part of
the physical spacetime, while the points to the left of it are cut away, as in figures
6.2 and 6.3. This means that, for decreasing temperature, the volume of the bulk
spacetime is decreased as bulk points are lost when the brane sweeps past them from
the left. In section 6.6 we will investigate this volume loss phenomenon in more
detail. As far as entanglement entropy is concerned, it is intuitively clear that as the
branes bend to the right, the distance that geodesics travel from the boundary to
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the brane decreases. Consequently, the decrease of Simp(˜̀) as T/Tc is decreased is a
direct geometric consequence of the NEC. We interpret this reduction of entanglement
entropy as a holographic sign of the Kondo cloud acting as a screening cloud. The
more the scalar field condenses and the more the Kondo cloud forms, the less impact
of the impurity can be seen for a given fixed distance ˜̀.

• Thirdly, we see that in the limit ˜̀ → ∞ the curves for Simp(˜̀) go to a constant
limiting value. This again has a very simple geometrical interpretation. In section
3.3 we saw (see figure 3.3) that for very large boundary intervals, the corresponding
bulk entangling curves move almost tangentially to the event horizon. In the limit
˜̀→∞ the impurity entropy is then given by the additional strip of the event horizon
that appears in the bulk spacetime (compared to the BTZ result) due to the non-
trivial embedding of the branes:

Simp(˜̀→∞) =
c

3
· (−x̃+(zH)). (6.54)

In section 6.4.3 we will interpret this quantity in terms of the holographic g-theorem.

• Lastly, by plotting the quantity Simp(˜̀) − Simp(∞) in the log-plot 6.6, we see that
the curves in figure 6.5 show an exponential falloff behaviour towards the constant
limiting value for large ˜̀. In fact, within very good numerical accuracy this exponen-
tial falloff behaviour is of the form const.(T ) · e−2˜̀

. This is precisely the behaviour
expected from the formula (6.52), see section 6.5 for a more detailed discussion of
the geometrical origin of this behaviour and the extend to which we can (hope to)
reproduce (6.52) in the holographic Kondo model. The general decrease of Simp(˜̀)
with growing ˜̀ for fixed T/Tc can again be interpreted as a sign of the impurity
being screened by the Kondo cloud. The larger the distance to the Kondo cloud,
the smaller its effect seems to be on the entanglement entropy. Geometrically, for
small interval sizes ˜̀ the corresponding bulk geodesics will cross the brane close to
the boundary, while for large ˜̀ they would cross the brane close to the event horizon.
As the branes all asymptote to the T/Tc solution near the boundary (see figure figure
6.4 and the discussion in section) but bend increasingly to the right in the bulk as
a consequence of the NEC, it is not a surprise that in figure 6.5 the curves all start
from the same value for ˜̀= 0 but decrease with growing ˜̀.

We have seen in this section that just as the bulk geometry is qualitatively constrained
by the energy conditions of the system and the basic geometric setup of the model, the
same statement applies to the impurity entropy. In the next section, we will briefly discuss
how the impurity entropy can be used to monitor the RG flow that the Kondo system
undergoes as the temperature is lowered, and how this is related to the g-theorem.
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Figure 6.6: Exponential falloff behaviour of Simp(˜̀) − Simp(∞) for large ˜̀. The dashed

lines show curves of the form const. · e−2˜̀
as comparison. The figure is presented as in [3].

6.4.3 The holographic g-theorem

As said in the introduction, there have been numerous holographic studies of RG flows
and the corresponding c, a and F -theorems, see for example [45–49]. For BCFTs, a similar
statement is the g-theorem [92, 257, 291, 292], which states that along the RG flow from
the UV to the IR, the effective number of impurity degrees of freedom (measured by the
impurity entropy) ought to decrease.

We will now discuss this in the context of the holographic Kondo model. In section 3.3 it
was already discussed that in the limit of large boundary intervals (˜̀) the entanglement
entropy reproduces the extensive thermodynamic entropy of the boundary theory. Later in
section 6.4.2 we have seen that in the same limit, the impurity entropy goes to a constant
limiting value (6.54) proportional to the additional area of the event horizon that appears
in the bulk spacetime due to the non-trivial embedding of the brane. This limiting value
Simp(˜̀→∞) should hence be interpreted as the contribution of the impurity to the entropy
of the entire system compared to the system without an impurity, and we hence define

ln(g) ≡ Simp(`→∞). (6.55)

From (6.54) we see that this quantity is positive due to the fact that x̃+(zH) < 0 (see figure
6.4) which in turn is a direct consequence of the violation of the SEC, see table 5.1. In
fact, as we have seen in sections 5.2.3 and 5.2.4, the fact that the brane enters the event
horizon at all, and consequently that (6.54) can be defined, is a result of the violation of
either WEC or SEC.

Interpreting now the temperature T as the energy scale of the RG flow that the Kondo
model undergoes, it was shown in [292] that the g-theorem is equivalent to an increase of
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Figure 6.7: Boundary entropy ln(g) ≡ Simp(` → ∞) as a function of T/Tc. The figure is
presented as in [3].

the impurity entropy with T ,

T · ∂
∂T

ln(g) > 0. (6.56)

As can be seen in figures 6.5 and 6.7, this is indeed the case in the holographic Kondo model.
We discussed in section 6.4.2 that in fact Simp(˜̀) decreases with decreasing temperature
for any fixed ˜̀, be it large or small, as a consequence of the NEC. We have hence shown
that the holographic Kondo model satisfies the g-theorem which was expected not only
from the field theory side, but also from the holographic side. Holographic proofs of the
g-theorem were given in [92,291], both employing the NEC. Especially, the g-theorem was
already proven for certain BCFT models of the type introduced in section 5.1 and studied
throughout this thesis in [92]. There, it was shown that the NEC implies the g-theorem for
branes embedded in locally AdS background spacetimes where the radial bulk coordinate is
interpreted as the inverse energy scale of the RG flow, according to the UV/IR connection.
As large bulk coordinates z are in the calculation of entanglement entropy related to large
boundary intervals ˜̀, and as Simp(˜̀) are monotonously decreasing functions in figure 6.5, we
immediately realise that this interpretation of the g-theorem also holds in the holographic
Kondo model, as required by the proof in [92].

6.5 An analytical approximation formula for entan-

glement entropy

After discussing the numerical results depicted in figure 6.5 in the last section, we will now
derive a semi analytical approximation formula for the impurity entropy Simp(˜̀) for large
˜̀. The core observation motivating this is the one made in section 6.4.1 that the non trace



6.5 An analytical approximation formula for entanglement entropy 111

part of the energy-momentum tensor, SL/R, goes to zero both near the boundary and near
the black hole event horizon. In this section, we will hence approximate the brane near
the event horizon by fitting a constant tension brane (with SL/R = 0 for any z) to it as
depicted in figure 6.8.

horizon

brane

boundary
D̃(T )

fitted

x̃
=

0

x̃
(T

=
T
c
)

+
(z

=
z H

)

x̃
T +

(z
=
z H

)

x̃
(T

=
Tc

)

+

(z̃
)

x̃

z̃

x̃T+(z̃)

brane

Figure 6.8: Geometrical setup for the derivation of an analytical approximation formula for
Simp(˜̀) for large ˜̀. Although all constant tension branes are curves of the form (6.40) in a
BTZ background they are sketched as straight lines in this figure. This is justified because
for the scale chosen e.g. in figure 6.4, the curvature of the constant tension solutions would
not be visible to the eye. For T < Tc, the brane with embedding profile x̃T+(z̃) asymptotes
to x̃T=Tc

+ (z̃) near the boundary and can be approximated by a constant tension brane near
the event horizon. This fitted brane will reach the boundary at the position x̃ = −D̃. The
figure is presented as in [3].

Such a constant tension brane will depend on only two parameters: its tension λ and the
position at which it is anchored at the AdS boundary, x̃ ≡ −D̃. Constant tension solutions
and the way of constructing them via a geodesic normal flow were already discussed in
section 5.3.1. Using the nomenclature suited for the study of the Kondo model in this
section, we can write equation (5.38) as

SλEE(`) = SBH(`) + C(λ). (6.57)

It should be noted however that this formula is only valid for intervals with length 2`
symmetrically centered around the defect, which is supposed to be the point where the
brane meets the boundary. For convenience, this was chosen to be x = 0 so far, see
e.g. figure 6.4. In figure 6.8 however, we see that the brane is anchored to the boundary
at x = −D, effectively broadening distance between the endpoint of the brane and the
endpoints of the interval. The correct approximation formula thus reads

Sλ,DEE (`) = SBH(`+D) + C(λ). (6.58)
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Using this approximation as well as (6.50), the impurity entropy (6.51) can then be written
as

Simp(`) = C(λ) +
c

3
log

(
sinh (2πT (`+D))

sinh (2πT`)

)
(6.59)

→ C(λ) +
c

3

[
2πTD +

(
1− e−4πTD

)
e−4πT` +O

(
e−8πT`

)]
for `T � 1 (6.60)

∼ C(λ) +
2πc

3
TD

[
1 + 2e−4πT` +O

(
e−8πT`

)]
for `T � 1 and DT � 1. (6.61)

As 4πT` = 2`/zH = 2˜̀, this semi-analytical approximation formula immediately explains
the exponential falloff behaviour found in section 6.4.2 and seen in figure 6.6. Furthermore,
the temperature dependent prefactor of the exponential falloff of the curves in figure 6.6 is
identified to be 1−e−4πTD by (6.60). This can indeed be checked to be true in our numerical
data. Equation (6.60) is hence already an important result, but as (6.61) indicates, this
investigation can be brought further by assuming D to be small compared to both ` and
zH . We can then even write

Simp(`) = C(λ) + SBH(`+D)− SBH(`) (6.62)

≈ C(λ) +D · ∂`SBH(`) (6.63)

≈ C(λ(T )) +
2πc

3
TD(T ) coth (2πT`) for `T � 1 and DT � 1, (6.64)

thereby identifying the series expansion in (6.61) as the one of a coth.5 In (6.64) we
have reinstated that the temperature dependent fit-parameters λ and D are of course also
dependent on the temperature. Equation (6.64) lends itself to immediate comparison with
the field theory approximation formula [90]

Simp =
π2c ξKT

6v
coth

(
2π`T

v

)
=
π2c

6

T

TK

coth

(
2π

`

ξK

T

TK

)
for T/TK, ξK/`� 1 (6.52)

in four aspects:

• First of all, the formula (6.64) includes the constant offset term C(λ) which is not
present in (6.52). However, as λ is implicitly dependent on the temperature, it may
vanish for small T depending on the details of the model. We will have to say
more about the low temperature behaviour of the holographic Kondo model in the
remainder of this section as well as in the next one.

• Secondly, we see that the arguments of the coth agree in both (6.64) and (6.52) if
the Fermi velocity v is set equal to one, the speed of light, in the latter. This is

5Using a Poincaré instead of a BTZ background we can derive a similar approximation formula for the
T = 0 case. In particular, in this case SAdS(`) = c

3 log( 2`
ε ) and D · ∂`SAdS(`) = cD

3` lead to a similar

formula to the zero-temperature result Simp = πc
12

ξK
` for ` � ξK derived in [88–91]. Comparing this to

(6.52) respectively (6.64), we note that the limits T → 0 and `→∞ do not commute.
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precisely the appropriate choice in the Kondo model as it is based on massless chiral
fermions, see [86]. As is obvious from (6.60), the form of this argument determines
the exponential falloff seen in section 6.4.2. In contrast to (6.52) which is valid for
T/TK � 1, this prediction of our geometrical analysis is expected to be valid for any
(not necessarily small) temperature T , an expectation numerically verified by our
results in figure 6.6.

• Thirdly, we can compare the prefactors of the coth terms in (6.64) and (6.52). If
we set v = 1 as discussed above, the comparison of these two factors suggests the
identification

D(T ) ≈ π

4
ξK ⇔ D̃(T ) ≈ π2

2
ξKT (6.65)

for small T , i.e. a proportionality between the geometric bulk length scale D and the
Kondo scale ξK .

• Lastly, an important aspect of the approximation formulas (6.64) and (6.52) that
should be compared are their respective ranges of validity. In (6.64), we have stated
the condition

`T � 1 and DT � 1. (6.66)

This is necessary because the constant brane approximation depicted in figure 6.8
only yields reliable results for the entanglement entropy when the bulk entangling
curves meet the brane close to the event horizon, i.e. for `T � 1. The condition
DT � 1 is then necessary for the series (6.60) so simplify to (6.61), which is the
series expansion of the coth in (6.64). In contrast, (6.52) was derived in [90] under
the assumptions

T/TK � 1 and ξK/`� 1. (6.67)

Even with the identification D ∼ ξK ∼ 1/TK due to (6.65), we see that these sets
of inequalities (6.66) and (6.67) are not equivalent. Specifically, while the condition
T/TK � 1 is part of both (6.66) and (6.67), the condition involving ` differs between
the two as in (6.66) ` is compared to 1/T while in (6.67) it is compared to 1/TK .
From (6.66) it can be shown that

T � 1/` ⇒ ξK/`� T/TK � 1. (6.68)

This means that with the identification (6.65), (6.67) follows from (6.66), but (6.66)
is stronger because it implies the additional hierarchy ξK/`� T/TK .

Of course, the Kondo model studied in this chapter is only a bottom-up model, and is
hence only expected to give qualitative insight into the properties of the “real” Kondo
effect, nevertheless it is interesting how (6.65) seems to suggest a connection between the
length scale ξK of the Kondo cloud and the geometrical quantity D defined in figure 6.8. In
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fact, the geometrical definition of D is so simple that in principle its approximate values can
be read off from figure 6.4 using a straight edge. It hence seems worthwhile to investigate
the possible relation (6.65) in more detail. Especially, we should investigate whether in
our numerical solutions D̃(T ) becomes a linear function at low T . If this was the case, we
could argue that D(T = 0) is then a measure for the size ξK of the Kondo cloud, up to a
factor of order one.

Unfortunately, this is not the case as the plot 6.9 of our numerical values of D̃(T ) shows.
However, in order to assess this result we need to find out how the temperature T has
to be made before we can even expect a proportionality of the form (6.65). As we will
now show, there is an upper bound on the value of D̃(T ) in the holographic model, and
consequently, there is an upper bound on the temperatures T for which equation (6.65)
can in principle hold. After all, we have stated before that (6.52) and similar formulas only
hold for T/TK � 1, but in the remainder of this section we will try to answer what the �
in this expression quantitatively means, i.e. how small is small enough in this context. The
argument for this is based on the fact that x̃+(zH) can only increase as T/Tc decreases.
This can be seen in figure 6.4, and as discussed in sections 6.4.2 and 6.4.3, this is a
direct consequence of the NEC being satisfied by the condensing scalar field. Furthermore,
according to table 5.1 the violation of the SEC implies x̃′+(zH) < 0. Using these simple
facts, it then becomes clear from the sketch 6.8 that

D̃(T ) ≤ |x̃(T )
+ (zH)| ≤ |x̃(T=Tc)

+ (zH)|. (6.69)

We know from sections 6.4.2 and 6.4.3 that the latter quantity is proportional to the
boundary entropy in the uncondensed phase and using (6.53) this yields the bound

D̃(T ) ≤ |x̃(T=Tc)
+ (zH)| = 3

c
ln
(
g(T=Tc)

)
≈ 0.0626 (6.70)

for our numerics. The formula (6.65), predicting D̃(T ) to grow linearly with T for small T
can hence at most be a good approximation to the behaviour of D̃(T ) until a temperature
T ∗ is reached at which the bound (6.70) is violated. Writing (6.65) as D̃(T ) ∼ const. T

Tc

with (using (6.37)) const. = π2Tc/(2TK) ≈ 4.37 this yields that the linear behaviour of
D̃(T ) can under no circumstances be seen for temperatures

T

Tc
&
T ∗

Tc
≈ 0.014. (6.71)

This is however just a crude estimation, and realistically we would expect that we have to
go orders of magnitude below (6.71) in order to numerically check the validity of relation
(6.65) in the bottom-up model. See figure 6.9. Unfortunately, as this figure shows it was
not possible to investigate the holographic Kondo model at low enough temperatures, due
to numerical problems. We can at the present time neither confirm nor exclude a behaviour
of the form (6.65) in the holographic Kondo model. We will have to say more about the
behaviour of the holographic Kondo model at small temperatures in section 6.7.
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D̃(T ) =
π
2 Tc

2TK
· TTc ≈

4.37
T
Tc
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model reproducing (6.52)
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stop before T/Tc ≈ 0.014
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Figure 6.9: The thick points represent the fitted values of D̃ for various temperatures in
our numerical results. The dotted line is a sketch of how the behaviour may look like in a
realistic Kondo model that exactly reproduces (6.52) at low temperatures. We also indicate
the upper bound (6.70), the corresponding temperature bound (6.71) and a line indicating
the expected small temperature behaviour D̃(T ) = π2

2
T
TK

. The figure is presented as in [3].

The bounds discussed in this section are in themselves an interesting result, as they con-
strain the range of validity of approximation formulas for low temperatures in terms of
high temperature quantities such as 3

c
ln
(
g(T=Tc)

)
. In fact, the temperature bound (6.71)

that was derived from the bulk geometry of the holographic Kondo model can equivalently
be derived purely in field theory terms. To do so, note that coth(x) → 1 as x → ∞. The
formula (6.52) would hence, if it were valid for any T , predict a linear increase of 3

c
ln
(
gT
)

with T . However, by the g-theorem this quantity has to be bounded by 3
c

ln
(
g(T=Tc)

)
,

leading to the realisation that (6.52) cannot be valid above temperatures (6.71).

To end this section, we should point out that although we were not able to numerically
investigate the holographic Kondo model at low enough temperatures, both results (6.52)
and (6.64) are very general, and not dependent on specific properties of the Kondo system.
In fact, (6.52) was derived in [90] by general CFT methods, and the derivation of (6.60)
and (6.64) was based on the general geometrical properties of AdS/BCFT approaches of
the type proposed in [92–94]. We hence expect that these results are universal in the
sense that they can be applied to a large range of holographic models, irrespective of their
specific details.
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6.6 An outlook on complexity

In chapter 3 we have outlined the deep holographic connection between entanglement
entropy and bulk geometry. This connection has then be studied and employed in the
later chapter 4 as well as in sections 5.2.3 and 6.4.2-6.5. Now, we will look into another
quantity related to quantum information in the field theory that can be, according to recent
proposals [95–101], calculated from the bulk geometry. This quantity is computational
complexity.

Ideas relating to computational complexity seem to have entered gravitational physics in
discussions concerning the firewall paradox [293] in the works [95,294] where a connection
between complexity and bulk geometry was envisioned. See [295] for a review purely
from the quantum information theory point of view. Following the definition of [96] (see
also [95,98]), computational complexity is defined as the minimal number of simple unitary
operations that have to be carried out by a quantum computer in order to implement
a given unitary operation on a simple initial state, or to create a given state from a
simple initial state. Based on the findings of [95,96], it was then suggested in [98,99] that
holographically, complexity C should be measured by the volumes V of certain spacelike
codimension one hypersurfaces, i.e.

C ∝ V
LGN

. (6.72)

In the proposal of [99] for example, in a setup as depicted in figure 3.1, the complexity of
the state of the subsystem A would be assumed to be proportional to the volume V of the
spacelike hypersurface F . A proposal similar to (6.72) was made in [101] for a quantity
referred to as quantum information metric or fidelity susceptibility. Interestingly, the paper
[101] also employed a thin brane ansatz similar to the AdS/BCFT models introduced
in section 5.1, although they used spacelike branes Q. It was argued in [100, 296] that
computational complexity C should more accurately be calculated from the integral of the
bulk action over a certain bulk region. However, the simple approximation formula (6.72)
has continued to attract interest in the holography community, see [297–299].

In the above section 6.4.2, we dealt with entanglement entropy in the holographic Kondo
model, which is a divergent quantity regulated by the boundary cutoff ε. Impurity entropy
(6.51) on the other hand was defined in such a way that the divergencies cancel and the
leftover quantity is finite and has a well-defined physical meaning. We will now try to
obtain a similar notion of impurity complexity, or as we will call it, relative complexity
Crel. As we see from the definition (6.72), the complexity will be a divergent quantity due
to contributions from the part of the bulk spacetime near the boundary. To cancel these
contributions, we define

Crel(T ) ∝ VT − VT=Tc , (6.73)

where VT is meant to be the volume of the (codimension one) equal time slices of our bulk
geometry. In short, we define the relative complexity to be proportional to the loss of bulk
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volume compared to T = Tc. We discussed in sections 6.4.1 and 6.4.2 that this loss of bulk
volume is a direct geometrical consequence of the NEC satisfied by the scalar field Φ. The
overall sign is chosen such that Crel(T ) decreases with T , due to the hope that there might
be a complexity analogue to the g-theorem discussed in section 6.4.3. The induced metric
on an equal time slice of the BTZ black hole (5.17) reads

ds2 =
1

z2

(
dx2 +

dz2

1− z2

z2
H

)
, (6.74)

and consequently we find

Crel(T ) ∝ VT − VT=Tc =

zH∫
ε

dz
1

z2
√

1− z2

z2
H

xT=Tc (z)∫
xT (z)

dx (6.75)

=

zH∫
ε

dz
xT=Tc(z)− xT (z)

z2
√

1− z2

z2
H

. (6.76)

A priori, this quantity might be divergent in the limit ε → 06, but as we have discussed
in section 6.4.1 and seen in figure 6.4, the scalar field on the branes falls off so fast near
the boundary that the branes all approach z = 0 with the same leading (linear) behaviour.
This then means that the quantity (6.76) is in fact finite, see figure 6.10 for a plot. Indeed
we see that Crel decreases monotonously along the RG flow, as expected. Whether this is
related to the g-theorem or whether this is a general feature of holographic RG flows might
be an interesting question for future research.

It should be noted that although Crel is finite in the holographic Kondo model, it is much
more sensitive to the near-boundary behaviour of the branes than for example Simp(˜̀� 1):
If the curves x(z) would not approach the boundary with the same slope x′(0), Simp would
still be a finite quantity, but Crel would not. This is due to the possible divergence of the
integral (6.76) at the lower bound ε→ 0, which does only not contribute due to the well-
behaved near-boundary behaviour of the branes. The quantity (6.76) is also more sensitive
to the behaviour of the brane at intermediate values of 0 < z < zH than Simp(˜̀� 1).
While our discussion in section 6.5 showed that the behaviour of Simp(˜̀) for large ˜̀ can
be described by an approximation formula only involving the two parameters C(λ) and D,
no similar universal formula can be derived for Crel(T ). Although the idea of monitoring
the change of complexity along an RG flow is a qualitatively appealing one, the above
discussion raises concerns about how useful the investigation of (relative) complexity will
in practice be for the holographic study of RG flows. Especially, the absence of a universal
approximation formula for low temperatures is problematic, as in bottom-up AdS/CFT it
are often the universal features of a system that are of interest, as they can be compared

6Near the event horizon the integrand also diverges, but only very mildly and consequently the integral
converges at the upper bound.
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Figure 6.10: Relative complexity as defined in (6.76) shown as a function of T/Tc. Al-
though, as discussed in the text, in the Kondo model this quantity is by definition finite as
ε→ 0, we have calculated these points using an explicit cutoff ε = 10−10 in order to avoid
numerical problems.

between gravity and field theory side even if the proposed holographic duality is not exact.
We hence leave a further study of holographic computational complexity using either the
prescription (6.72) of the more involved action integral proposal of [100, 296] for future
research.

Another interesting aspect that we will leave for future research is whether holographic pre-
scriptions of computing computational complexity should be subjected to similar causality
constraints as the ones discussed in section 4.4. The way that we have used the defini-
tion (6.72) in this section is similar to the RT prescription discussed in section 3.2 in that
it explicitly assumes the existence of well-defined equal time slices. One might then call
for a causality constraint similar to the one sketched on the left hand side of figure 4.3,
which would be satisfied by construction. However, the general case where the prescription
of [100] would be more appropriate would also be more complicated in terms of causality
constraints.

6.7 T = 0 behaviour

As pointed out in section 6.5, it would be very interesting to investigate the behaviour of
the bottom-up Kondo model at very low temperatures T ≈ 0. While this is numerically
demanding, we demonstrate in this section that for the T = 0 case, where the background
spacetime is not a BTZ black hole anymore but instead the Poincaré AdS space, we can
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use analytical arguments to assess the properties of the bottom-up model.

The specific question that we want to study is whether in the T = 0 case, our system
will flow to an IR conformal fixed point. In an AdS/BCFT setting, this would mean that
deep in the bulk spacetime we expect the brane to become effectively a constant tension
solution [92–94], i.e.

Sij → const. · γij as z →∞ (6.77)

⇒ SL/R → 0 as z →∞. (6.78)

Due to our field theory intuition that a non-trivial scalar corresponds to the presence of
the Kondo cloud, we will also make the assumption

⇒ φ→ const. 6= 0 as z →∞. (6.79)

Actually, in section 6.4.1 we saw that in the finite temperature T 6= 0 case we automatically
get SL/R → 0 as z → zH as well as φ(zH) 6= 0, and as the zero-temperature limit is zH →∞,
we might be tempted to take this as evidence that at T = 0 the behaviour (6.78), (6.79)
indeed occurs. This, however, cannot be the case as we will now show.

To do so, we use the equation of motion (5.28) as well as the explicit expression for KL/R
given in table 5.1 to find that (6.78) and (6.78) necessarily imply the set of assumptions
that, as z →∞,

KL/R =
zx′′

2 (1 + x′2)3/2
→ 0, (6.80)

⇒ x′′(z)→ 0 faster than z−1 ⇒ x′(z)→ const. (6.81)

Similarly, from the form of SL/R given in (6.35) and using that γ̂ij, defined in (5.23),
behaves as ∼ z2 for large z, we find7

a0 → 0 faster than z−1, φ′ → 0 faster than z−1, (6.82)

where we already used the gauge choice of section 6.3.2. Let us now focus on the scalar
equations of motion

∂m
(√
−γγmn∂nφ

)
=
√
−γγ00a2

0φ+
1

2

√
−γ ∂V

∂φ
. (6.83)

We will now assume that as z → ∞ and φ → const. 6= 0, the force term ∂V
∂φ
6= 0 which

is necessarily the case in the simple model (6.15). Due to the factor
√
−γ, the last term

in (6.83) will then, for large z, go to zero exactly as z−2 and consequently the equation

7As a technicality, we should note that for diagonal γ̂mn, SL/R is a sum of two terms, but as γ̂mn is by
definition a positive definite matrix, these two terms cannot cancel each other. Hence when SL/R goes to
zero, both terms compromising SL/R have to go to zero separately, yielding the above conditions.
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(6.83) can only be satisfied if there is another term that also goes as z−2 in this limit. The
conditions (6.81) and (6.82) however forbid precisely this: All the other terms in (6.83) can
be shown to approach zero strictly faster than z−2 for large z. We have hence demonstrated
a contradiction between the equations of motion (6.83) and the assumptions (6.78) and
(6.79), proving the assumptions wrong for simple ansatz (6.15).

There is a loophole in our argument, however. If we would choose a more complicated
potential V such that for large z we find φ→ φ∗ and ∂V

∂φ

∣∣
φ=φ∗

= 0, then a zero temperature

fixed point might exist. To obtain this result, we could for example add quartic or higher
terms to the potential in (6.15). The model studied in this chapter so far would then be
a good approximation to this more realistic model at higher temperatures T . Tc where
φ(z) stays comparably small, and only at lower temperatures T ≈ 0 where φ(z) attains
larger values for large z would the corrections to the potential become important. In this
context, we should note again that in the bottom-up model, the quadratic form (6.15) of
the potential was in fact chosen purely for convenience. This is hence one of the features
in where the bottom-up model deviates qualitatively from the top-down model discussed
in section 6.1.2, and it should consequently not be surprising that one might need a more
intricate form of the potential to obtain more realistic results from the bottom-up model
at low temperatures.

Let us now try to gain as much insight into the desired properties of the potential V (φ) as
possible. What we already know is that there needs to be a φ∗ 6= 0 such that

∂φV
∣∣
φ=φ∗

= 0 , V
∣∣
φ=φ∗

≡ V ∗, (6.84)

i.e. there needs to be another extremum or saddle point away from φ = 0. But we can learn
more: The geometry that we would expect to get is one where near the boundary, as well
as deep in the bulk, the system is effectively described by constant tensions S = −2λi ≡
Si, SL/R=0 (see section 5.3.1), and the brane interpolates between the two corresponding
constant tension solutions. By NEC and (5.31), we know that the traces have to increase
and by WEC they have to stay non-positive along the brane, hence

S1 < S2 ≤ 0, (6.85)

where S1 is the trace near the boundary (where φ falls off to zero) and S2 is the trace
deep in the bulk, for large z. These effective tensions receive different contributions. As
already explained in section 6.4.1, near the boundary the main contribution comes from
the a-field and its flux ∼ C2. Generally allowing for a non-zero V (φ = 0) ≡ V 0 (equivalent
to a non-zero constant tension added to the brane) we find from equation (6.35):

S1 = −N
(
C2 + 2V 0

)
. (6.86)

Deep in the bulk in contrast, we assume the a-field to vanish because of (6.82), so that the
trace is

S2 = −2NV ∗. (6.87)
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Comparing to (6.85), we immediately find

V ∗ ≥ 0 (6.88)

C2 > 2
(
V ∗ − V 0

)
≡ 2∆V. (6.89)

The first equation has a straightforward interpretation: The value of the potential for the
field value φ∗ that the scalar asymptotes to in the bulk has to be non-negative. The second
equation is also interesting, it should be discussed separately for the two cases ∆V > 0
and ∆V < 0, see figure 6.11.

Figure 6.11: Different cases for a possible potential V (φ), all satisfying (6.88).

In the case ∆V > 0 (figure 6.11a)), the new extremum lies higher than the extremum in
the middle, and hence V 0 = 0 as we had it before is possible. Equation (6.89) is in this
case a genuine constraint on the flux of the gauge field of the boundary. Also, in this case
we would effectively want the scalar field to go from a “low” region of its potential (V 0)
at high temperature to a “high” region of its potential (V ∗) at low temperature. This is
quite in contrast to the usual field theory intuition. After all, in the large Ns limit, the
formation of the Kondo cloud is a phase transition, and the condensed phase needs to be
thermodynamically preferred.

The case ∆V < 0 seems more physical. The new extremum lies lower than the extremum
in the middle (figure 6.11b)), and hence V 0 > 0. The equation (6.89) is trivially satisfied.
Intuitively, this seems to be the more physical scenario, but it would in its easiest form
demand a negative bare mass squared

V (φ) = V 0 +m2
bareφ

2 + V 4
2 φ

4 (6.90)

= V 0 − V 2
1 φ

2 + V 4
2 φ

4 , V1, V2 real. (6.91)

It should be noted that the flux C2 also enters the calculation of the effective mass at
the boundary, hence when we want to ensure the Breitenlohner-Freedman bound (and
consequently the correct conformal dimension for the scalar), we get a relation between
the bare mass and the flux. Demanding the bare mass to be negative (as in fig. 6.11b))
would constrain C2 depending on the value of the gravitational coupling κ2

N . Imposing a
negative bare mass squared in the backreaction-less case κ2

NN = 0, equation (6.16) would
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demand

Q2 = C2 <
1

4
. (6.92)

For finite values of κ2
NN , this bound gets stricter. Setting κ2

NN = 1 for example, equation
(6.44) and the imposition of a negative bare mass squared would lead to

C2 < 4

(√
2−

√
2
√

2− 1

)
≈ 0.248. (6.93)

This concludes our study of how to make the bottom-up Kondo model more realistic in the
lower temperature regime by adding higher order terms to the potential V (φ). As we have
seen, this would have to be done under a number of strict constraints on the potential and
the asymptotic flux C. We leave a study of such a more realistic model and an investigation
into the physical meaning of the constraints derived above to the future.



Chapter 7

Outlook

It is now time to conclude our investigations into the geometrical properties of of entan-
glement and defect entropies. In the introduction, we explained how gauge/gravity duality
offers a concrete manifestation of the holographic principle, and even generally of the old
belief that “physics is geometry”. We have then studied concrete formulations and re-
alisations of holography in chapter 2, and the geometrical manifestation of entanglement
entropy in chapter 3. The original results of the present author summarised in chapters
4-6 were then consequently concerned with this topic of “entanglement from geometry”.

Entanglement entropy was studied in higher curvature theories in chapter 4. It is clear
that this is an ongoing research topic with steady progress, see [200, 201, 210, 225, 226]
for only a partial list of work on this topic published after [1]. In particular, we dealt
with new massive gravity in section 4.2 and Gauss-Bonnet gravity in section 4.3. In both
cases we found unexpected solutions to the equations for the extremal surfaces that are
thought to define holographic entanglement entropy. In section 4.4 we also pointed out
the importance of causality conditions such as the causal influence argument of [64]. In
fact, causality conditions like this one are an important subject even in the absence of
higher curvature corrections: If entanglement entropy (or another physical quantity of
the boundary theory) is encoded in the bulk geometry in the form of extremal surfaces,
it is of interest to find out which part of the bulk spacetime these surfaces have access
to [155]. This is related to the ongoing research into such topics as bulk locality and bulk
reconstruction, [154–158], which we briefly commented on in the end of section 2.4.

Chapters 5 and 6 were then devoted to holographic models of AdS3/BCFT2 in general and
of the Kondo effect in particular. Specifically, we were able to prove general theorems (in
sections 5.2.3 and 5.2.4) that restrict the possible qualitative features of the bulk geometry,
depending on whether or not certain energy conditions are satisfied by the matter fields of
the model. This, together with the study of exact solutions in section 5.3, gave us a very
firm and intuitive understanding of the geometrical properties of the holographic Kondo
model, which we put to use in chapter 6. There, we presented numerical and semi-analytical
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results on the entanglement entropy in the holographic Kondo model (sections 6.4.2 and
6.5), and compared them to field theory results obtained by Affleck et al. in [90] with good
agreement. We also verified that the holographic Kondo model satisfies the g-theorem,
as expected, in section 6.4.3. Section 6.6 was devoted to the study of computational
complexity in the holographic Kondo model. Finally, the zero-temperature behaviour of the
model was investigated more closely in section 6.7, with clear suggestions for improvements
of the bottom-up model being made. This work presented in chapters 5 and 6 has opened
up some fascinating possible avenues for future research on the junctions of geometry,
gravity and quantum theory of impurities:

• As pointed out the introduction, AdS/CFT techniques have been applied to problems
in QCD with great success. Interestingly, it has been shown in [300] that a Kondo-
like effect can occur in light quark matter, when heavy quarks act as impurities.
This is a motivation to ask whether the results derived from the holographic Kondo
model of [86] can also be applied to the QCD Kondo effect, or whether a realistic
holographic QCD-Kondo model can be constructed.

• In [301], the single impurity Kondo model has been described holographically in
terms of a multiscale entanglement renormalisation ansatz (MERA) network [302].
In particular, the defect or impurity on the field theory side was holographically
described by introducing boundary tensors into the tensor network. Assuming that
the MERA construction leads to the emergence of an effective bulk geometry (as
conjectured in [303]), these boundary tensors bear a striking resemblance to the
boundary Q introduced into the bulk spacetime (see figure 5.1) in the holographic
Kondo model and similar models of a general AdS/BCFT duality. It would hence
be of great interest to compare the Kondo model with the one of [301], to find out
whether some of our results and techniques can be applied to the MERA model,
and to investigate whether these two types of models are sharing a common physical
foundation.

• One important part of our work presented in section 6.4.3 was the study of the g-
theorem, proven in the holographic context already in [92,291]. Here, the g-function is
a renormalisation group monotone for BCFTs, similar to the c-function for standard
CFTs. We found in section 6.6 that the field theory RG flow manifested itself in
a reduction of the volume of our bulk spacetime due to the loss of certain bulk
points, and consequently via the Ryu-Takayanagi approach also in a reduction of
entanglement entropy. Indeed, entanglement entropy has been very successfully used
before to monitor RG flows e.g. in [46, 304]. The reduction of volume that is visible
in the holographic Kondo model on the other hand may be related, as explained in
section 6.6, to measures of computational complexity or a quantum information metric
[95–101]. It would certainly be interesting to investigate the interconnection between
the boundary RG flow, the loss of bulk points and quantities such as complexity in
more detail, as this might yield new insights about how the geometry emerges from
the field theory side of the duality.
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• Last but not least, in [86] it was pointed out that by using a higher spin theory
in the 2 + 1-dimensional bulk, it may be possible to construct a holographic model
that is precisely dual to the large Ns Kondo effect, as this model has an infinite
number of conserved currents of arbitrarily high spin. This may be a way around the
usual pitfalls of a merely qualitative duality present in many bottom-up holographic
models.

We hence see that there are many potential connections between the specific topics pre-
sented in this thesis and the important current questions in AdS/CFT research. Without
any doubt, the coming years will show a number of remarkable interconnections between
such diverse topics as (dynamical) geometry and quantum (information) theory.





Appendix A

Extrinsic curvature quantities

A.1 Codimension two hypersurfaces

As discussed in chapters 3 and 4, the holographic prescriptions for calculating entanglement
entropy are based on the geometry of spacelike codimension two extremal hypersurfaces.
In this appendix we will define some geometric quantities describing the extrinsic curvature
properties of such a hypersurface. Specifically, we will clarify the notation (following [60,
199]) used in equation (4.4) which shall be reproduced here for convenience:

SEE =
1

4GN

∫
Σ

dd−1y
√
γ

[
1 + 2aR + b

(
R‖ −

1

2
k2

)
+ 2c

(
R‖‖ − Tr(k)2

)]
. (4.4)

Here, Σ stands for a spacelike codimension-two hypersurface in a d + 1-dimensional bulk
spacetime, y are the coordinates on this surface and its induced metric is γij with positive
determinant γ. It is easy to see that in the case a = b = c = 0, (4.4) simplifies to the
standard area functional. We will now define the quantities R‖, R‖‖, k

2 and Tr(k)2. R is
just the standard Ricci scalar of the background spacetime gµν .

To begin, we will assume the background metric gµν to be Euclidean. The codimension
two hypersurface Σ will then have two spacelike normal vectors nµ(α) (α ∈ {1, 2}) with

nµ(1)n
ν
(1)gµν = nµ(2)n

ν
(2)gµν = +1, nµ(1)n

ν
(2)gµν = 0. (A.1)

R‖ and R‖‖ are derived from the background Ricci and Riemann tensors according to
[60,199]

R‖ ≡ Rµν [g]nµ(α)n
ν
(α), R‖‖ ≡ Rµρνσ[g]nµ(α)n

ν
(α)n

ρ
(β)n

σ
(β), (A.2)

where we are summing over double bracketed Greek indices like (α). The extrinsic curva-
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ture terms k2 and Tr(k)2 can be defined according to [60] in the following way:

hµν = gµν − (n(α))µ(n(α))ν , (A.3)

k(α)
µν = hλµh

ρ
ν(n(α))λ;ρ, (A.4)

k2 = (k(α))µµ(k(α))νν , (A.5)

Tr(k)2 = (k(α))µν (k(α))νµ, (A.6)

where again summation over double indices like (α) is implied. In fact, we can imagine
such indices to be contracted via a flat Euclidean metric δ(α)(β), although we do not use
the convention here that indices (α) are raised and lowered.

For Lorentzian background metrics gµν , we will effectively replace this by a Minkowski
metric η(α)(β). Specifically, we then get

nµ(1)n
ν
(1)gµν = −1, nµ(2)n

ν
(2)gµν = +1, nµ(1)n

ν
(2)gµν = 0, (A.7)

R‖ ≡ Rµνn
µ
(α)n

ν
(α) = −Rµνn

µ
(1)n

ν
(1) +Rµνn

µ
(2)n

ν
(2) (similarly for R‖‖), (A.8)

hµν = gµν + (n(1))µ(n(1))ν − (n(2))µ(n(2))ν , (A.9)

k(α)
µν = hλµh

ρ
ν(n(α))λ;ρ, (A.10)

k2 = −(k(1))µµ(k(1))νν + (k(2))µµ(k(2))νν , (A.11)

Tr(k)2 = −(k(1))µν (k(1))νµ + (k(2))µν (k(2))νµ. (A.12)

These definitions ensure that k2 and Tr(k)2 are independent of the choice of the nµ(α) as

long as nµ(1) is the timelike and nµ(2) is the spacelike normal vector.

A.2 Codimension one hypersurfaces

In the discussions of chapters 5 and 6 we deal with the embeddings of codimension one
timelike hypersurfaces into an asymptotically AdSd+1 ambient spacetime, as in [92–94]. To
be specific, we are interested in the extrinsic curvature tensor or second fundamental form

Kij ≡
∂Xα

∂ξi
∂Xβ

∂ξj
∇αnβ = −nα

(
∂2Xα

∂ξi∂ξj
+ Γαβγ

∂Xβ

∂ξi
∂Xγ

∂ξj

)
, (A.13)



A.2 Codimension one hypersurfaces 129

where the Xα are the ambient space coordinates (α ∈ {0, ..., d}), the ξi are the coordinates
on the hypersurface (i ∈ {0, ..., d − 1}) and nβ is the normal form of the hypersurface in
the ambient spacetime. Obviously, the sign of Kij needs to be fixed by a convention on
the direction of nβ. For one-sided models as the one described in section 5.1 we choose nβ
to be pointing into the spacetime, which is in contrast to the convention of [92–94]. We
choose this convention because it is the more common one in two-sided models based on
the Israel junction conditions (6.28), such as the holographic Kondo model of section 6.2.
There, for the equations of motion to take the form (6.29), the convention has to be that
the normal form nβ points from the − side into the + side, as in figure 6.2.

The trace of the extrinsic curvature tensor can be straightforwardly defined by contraction
with the induced metric:

K = γijKij. (A.14)

Let us compare the expressions (A.13) and (A.14) with those presented in appendix A.1.
Although the notation used here is a little bit different, we see that the underlying geometric
ideas are the same. Both in (A.13) and (A.4) respectively (A.10) we take the covariant
derivative of the normal form and project it onto the worldvolume of the hypersurface in
question. The difference is that firstly, in appendix A.1 we are dealing with codimension two
hypersurfaces, hence there are two independent normal forms and two extrinsic curvature
scalars. Secondly, in appendix A.1 we have avoided introducing worldvolume coordinates
ξi and their indices i. Hence, the induced metric (A.3) respectively (A.9) is effectively a
(d+ 1)× (d+ 1) matrix, but a degenerate one. In contrast, the induced metric γij used in
this section and chapters 5 and 6 is a non-degenerate d× d matrix.

As a special case, in section 5.2.4 we calculate the extrinsic curvature tensor of a hyper-
surface embedded into a background of the form (5.17). We assume ξ0 = X0 = t and
ξ1 = X2 = z, using the profile function x(t, z) to define the embedding of the hypersur-
face into the ambient spacetime. The derivatives in (A.13) then simplify considerably.
As the brane is defined by the embedding profile x(t, z), i.e. by viewing the x-coordinate
as a function of the other coordinates, it is located at the set of zeros of the function
f(t, z, x) ≡ x− x(t, z). The normal form nµ is then proportional (up to its normalisation)
to the exterior derivative of f :

nµdx
µ ∼ df = dx− ∂tx(t, z)dt− ∂zx(t, z)dz. (A.15)

Raising the index and calculating the normalisation, we explicitly find

nµ =
z2

N

 ∂tx
h

−h∂zx
1

 , (A.16)

N = z

√
1− (∂tx)2

h
+ h (∂zx)2, (A.17)
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where the order of bulk coordinates is chosen to be t, z, x. The extrinsic curvature tensor
is

K±tt =
1

N

(
−∂ 2

t x+ ∂zx

(
h

2

(
h′ − 2h

z

)
+
h

z
(∂tx)2

))
,

K±tz = Kzt =
1

N

(
−∂t∂zx+ ∂tx

(
h

z
(∂zx)2 +

h′

2h

))
,

K±zz =
1

N

(
−∂ 2

z x+ ∂zx

(
h

z
(∂zx)2 +

1

z
− h′

2h

))
,

(A.18)

and the induced metric reads

γij =

(
gtt + (∂tx)2 gxx (∂tx) (∂zx) gxx
(∂tx) (∂zx) gxx gzz + (∂zx)2 gxx

)
. (A.19)

In the last expression, we made use of the fact that (5.17) is a diagonal metric.



Appendix B

Corollary to the barrier theorem in
higher dimensions

This appendix will be devoted to discussing an extension of our findings of section 5.2.3
to higher dimensions. This is non-trivial, but also potentially useful for model building
purposes. For example, in [243] a holographic model of the quantum Hall effect was
presented using the AdS/BCFT ansatz (5.1) with a 3 + 1-dimensional bulk spacetime.
There, it was argued (see especially figure 2(d) of [243]) that in a realistic model, the
branes should bend back to the boundary in a ∪-shaped manner. A better understanding
of the implications of the barrier theorem on AdS/BCFT models in higher dimensions
might then enable for a more efficient model building yielding such a desired behaviour.

First of all, we see that our results of section 5.2.3 cannot be straightforwardly carried over
to higher dimensions as it is possible to construct explicit examples of codimension one
branes in 3 + 1-dimensional Poincaré space that satisfy both WEC and SEC and yet do
not satisfy (5.14). We do not have analytical results on the energy conditions needed to
ensure (5.14) in higher dimensions, but by studying a large number of randomly generated
energy-momentum tensors1 for 2+1-dimensional branes obeying (5.2) we found that (5.14)
is ensured by the SEC (generalised to higher dimensions compared to (5.11)) together with
the dominant energy condition (DEC, [246, 247]) and the determinant energy condition
(DetEC, [247, 305]). The generalisation of the ∪-shaped branes encountered in sections
5.2.3 and 5.3.2 are then bowl shaped surfaces, as sketched on the left hand side of figure
B.1.

However, for the phenomenological purposes of [243] one does not need bowl-shaped hy-
persurfaces, but such ones which are anchored at the boundary in the form of an infinite
strip. Such surfaces cannot satisfy the barrier theorem, as shown in figure B.1. But if it

1Note that the condition (5.14) as well as all energy conditions are pointwise conditions, i.e. they do
not depend on derivatives of Sij or Kij . Hence we can check them at any point on the brane separately,
and Sij can then be treated as a symmetric matrix with numerical entries.
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Figure B.1: Left: A bowl shaped hypersurface, anchored to the boundary in a circle. The
time direction is omitted in this sketch, u and v are spacelike coordinates on the asymptotic
boundary and z is the bulk coordinate, as in Poincaré coordinates. Right: A surface that is
anchored on the boundary in a strip-like geometry is not an extremal hypersurface barrier
in the sense of section 5.2.3 as it can e.g. be crossed by a geodesic shown as Υ in the figure.
Nevertheless, a section of this in the v = const. plane yields a ∪-shaped profile. The figure
is presented as in [2].

was possible to formulate the barrier theorem only for curves in the z, u-plane, the barrier
theorem might tell us how to choose the matter content on the brane such that a ∪-shaped
profile in the z, u-plane is inevitable. This is what we will study in the remainder of this
appendix.

Assuming a strip-like setup for the brane defined by the profile function U(z) as in the
right hand side of figure B.1 and a 3+1-dimensional Poincaré background spacetime (2.11)
with L = 1, the extrinsic curvature reads (coordinates x0 = t, x1 = z, x2 = v)

Kαβ =


− u′(z)

z2
√

1+u′(z)2
0 0

0 u′(z)+u′(z)3−zu′′(z)
z2
√

1+u′(z)2
0

0 0 u′(z)

z2
√

1+u′(z)2

 . (B.1)

Comparing this to (5.18), we can map this to the lower dimensional case by realising that
the first two entries on the diagonal of (B.1) are the extrinsic curvature of a brane with
profile u(z) embedded in 2 + 1-dimensional Poincaré space. Comparing this then to the
results in table 5.1 we see that, apart from the trivial case u′(z) = 0, u(z) has to be ∪-
shaped when u′(z) ≥ 0 and u′(z) + u′(z)3 − zu′′(z) ≤ 0 hold2. This automatically implies
Kyy ≥ 0 and hence a violation of (5.14) for spacelike vectors vi in y-direction. Hence,
extremal curves moving in the y-direction such as Υ in figure B.1 may cross the brane.

2Note that, due to our convention on the orientation of the normal vector, these expressions only hold
for the one branch of the brane that goes into the bulk up to the turning point.
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Setting κ2
N = 1 for simplicity, we find from (5.2) that

Sαβ =


−2(u′+u′3)−zu′′

z2(1+u′2)3/2 0 0

0 2u′
√

1+u′2

z2 0

0 0 −−2(u′+u′3)+zu′′

z2(1+u′2)3/2

 . (B.2)

As we are only interested in establishing the brane to be an extremal surface barrier in
the u-z-plane, we will in the following only use vectors with vanishing v-component. The
NEC then implies u′′ ≥ 0, the WEC implies the NEC together with 2u′ + 2u′3 − zu′′ ≤ 0
and consequently u′′ ≥ 0, WEC implies 2u′ + 2u′3 − zu′′ ≤ 0 and together, these imply

u′ + u′3 − zu′′ ≤ 0. (B.3)

This expression also appears in the zz-component of (B.1). Projecting out the v-component
from the tensors above yields

K⊥ij =

(
− u′

z2
√

1+u′2
0

0 u′+u′3−zu′′
z2
√

1+u′2

)
, (B.4)

S⊥ij =

 −2(u′+u′3)−zu′′

z2(1+u′2)3/2 0

0 2u′
√

1+u′2

z2

 , (B.5)

γ⊥ij =

(
− 1
z2 0

0 1+u′2

z2

)
. (B.6)

If we then replace the SEC with the inequality(
S⊥ij − γ⊥ijS⊥

)
vivj ≥ 0, (B.7)

with S⊥ = γ⊥ijS⊥ij , we get the familiar condition u′(z) ≥ 0 which together with the WEC
ensures that K⊥ij is negative definite. If the matter fields living on the brane are chosen to
satisfy the given energy conditions, the branes necessarily have a ∪-shaped profile u(z) in
the v = const. plane, as desired in [243].





Appendix C

Junction conditions for abelian
Chern-Simons fields

The bottom-up Kondo model described in section 6.2 had two fields defined in the entire
bulk spacetime (N in the nomenclature of figure 5.1), namely the metric gµν and the
Abelian Chern-Simons (CS) field Aµ. At the locus of the brane, the metric needs to satisfy
the Israel junction conditions, as discussed in section 6.3.1. Similarly, junction conditions
have to be imposed on the CS field, and we will derive these junction conditions in this
section. Just as for the Israel junction conditions, there are several ways how to do this,
and here we will follow the ansatz of starting with a smoothed out worldvolume current,
and then take the limit in which the current is localised at a codimension one hypersurface.
This is somewhat related to the study of domain wall solutions in CS theories, see [306,307].

To begin, we assume that we are working in a Gaussian normal coordinate system, such
that the brane is located at x = 0. In the holographic Kondo model, the current is defined
by the charged scalar Φ = φ eiψ and reads

Jm = γmn i
(
ΦDnΦ† − Φ†DnΦ

)
= 2 γmn (An − an + ∂nψ)φ2 , (C.1)

which we can write as Jm ∼ Q(z) (∂t)
m in the static case. As depicted in figure C.1, we

now assume the current to be smoothed out by a profile function f(x) with stem-function
F (x), such that there exists a well-defined limit in which f(x)→ δ(x), F (x)→ θ(x). Here,
δ(x) is the Dirac delta distribution and θ(x) is the Heaviside step function.

Due to our assumption of staticity, all time-derivatives vanish, and hence the CS equations
of motion,

ερµνFµν = −4π Jρ, (C.2)

have only the non-trivial component

2 εtz (∂zAx − ∂xAz) = −4π J t = −4π f(x)Q(z). (C.3)
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z

t�
x

� Jµ = δµt f(x)Q(z)

C

x = 0

Figure C.1: The static worldvolume current of a brane located at x = 0 is assumed to be
smoothed out to have a bell-shaped profile f(x). A possible Wilson loop is depicted as C.
The figure is presented as in [3].

The worldvolume ε-tensor appearing in this equation is defined from the three-dimensional
ε-tensor via contracting with the normal form of the brane. In Gaussian normal coordi-
nates, this reads ερµx ≡ ερµ. We can now solve (C.3) in two simple ways, depending on a
gauge choice:

Gauge Ax = 0: With this gauge, we find

−εtz∂xAz = −2π f(x)Q(z) , (C.4)

⇒ εtzAz = 2π F (x)Q(z) . (C.5)

Taking the limit F → Θ, f → δ, these equations then tell us that the parallel component
of the CS field has a discontinuity proportional to the charge density Q on the brane.

Gauge A′z = 0: To distinguish this gauge from the one used above, we add primes to the
CS field. A′z = 0 leads to

εtz∂zA
′
x = −2π f(x)Q(z) (C.6)

⇒ −ε̃tzA′x = 2π f(x)

z∫
0

√
−γQ(ẑ) dẑ , (C.7)

where ε̃ denotes the Levi-Civita symbol, which is related to the Levi-Civita tensor by
εmn = ε̃mn/

√
−γ(z). The limit F → Θ, f → δ then implies that the component of

the Chern-Simons field normal to the brane acquires a contribution ∼ δ(x) in this gauge
convention.
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We can explicitly verify that the two results presented in (C.5) and (C.7) are related by a
gauge transformation, dα = A′ − A, with

α =
2π

ε̃tz
F (x)

z∫
0

√
−γQ(ẑ) dẑ. (C.8)

We hence see that even in the step-function limit F → Θ, this gauge function α need not
vanish far away from the brane, i.e. for large |x|. Consequently, we see that (open) Wilson
lines crossing the brane pick up a phase under this gauge transformation,

W (a, b)→ eiα(a)W (a, b)e−iα(b), (C.9)

as expected. Furthermore, simple Wilson loops, such as the one following the rectangular
path in figure C.1, can explicitly be calculated in both gauges with agreeing results, as
expected. In fact, we can use the equations of motion of the CS field to find the general
formula for the static case ∮

C

A =

∫
int(C)

dA
EOMs∝

∫
int(C)

Q , (C.10)

where int(C) denotes the interior of C.

Now that we have convinced ourselves that the results (C.5) and (C.7) are physically
sensible, we should try to formulate them in a general way that does not depend on the use
of Gaussian normal coordinates or a specific gauge choice. When a current Jµ is localised
at the infinitely thin brane, then the CS field satisfies its vacuum equations of motion in the
ambient space to both sides of the brane and junction conditions on the brane. The physical
content (C.5) and (C.7) is that the localised current Jµ leads either to a discontinuity in
the parallel component of the A-field or a δ-peak in the normal component, and the two
things can be transformed into each other by a gauge transformation. In the case of a
discontinuity of the parallel component, we will assume that in (6.13) and (C.1) the scalar
field Φ couples to the mean value of the A field when projected from the left and from the
right onto the brane, i.e.

Am ≡
1

2

(←−
P µ
m Aµ +

−→
P µ
m Aµ

)
. (C.11)

where
−→
P is the projector that acts on the A-field from the left hand side of the brane and←−

P acts from the right hand side of the brane. Complementarily, we define the discontinuity
to be

Cm ≡
←−
P µ
m Aµ −

−→
P µ
m Aµ (C.12)

and the δ-peak contribution to the normal component of the A-field via

A0(z, t) ≡
ε∫

−ε

Aµnµ ds , (C.13)
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where nµ is the normal form of the brane and we integrate along an integral curve of the
vector field nµ that intersects the brane at coordinates (z, t). The generalised form of (C.5)
and (C.7) then reads

−2π Jm = εim
(
Ci − ∂iA0

)
. (C.14)

Let us comment on the physical properties of this equation. First of all, for the equations
of motion of the worldsheet fields Φ and a, as well as for the calculation of the current
(C.1), we only need the projection Am as defined in (C.11), and not the quantities Cm
and A0 which appear only on the right hand side of (C.14). This means that we can first
solve the equations of motion of the fields Φ and a assuming the gauge Am = 0, then
calculate the current Jm, and then solve the algebraic equation (C.14) for the combination
Ci − ∂iA0. We hence find that the CS field effectively decouples from the dynamics of the
brane and its worldvolume fields, just as found in [86] for the case without backreaction
on the geometry. Also, it is interesting to note that the current Jm is gauge invariant, and
so has to be, due to (C.14), the combination Ci − ∂iA0. Consequently, in this expression
A0 acts as a gauge function for Cm.

In chapter 5, after introducing the equations of motion (5.2) and studying them in gen-
erality in section 5.2, we refined our intuition for this type of setup by studying simple
toy-models such as constant tension models and perfect fluids in section 5.3. In order to
get a better understanding for the junction conditions (C.14), we will in the remainder
of the section apply them to a simple toy model, too. In particular, we will consider a
spacetime of the form T 2 × R, as shown in figure C.2. We assume the torus to be defined
by the two non-contractible cycles θ and φ. Furthermore, we assume two currents Jµ1/2
(constant in both space and time) to be located at the two equatorial planes Q1/2 (defined
by φ = 0 and φ = π), and a bulk Chern-Simons field to be present which we for simplicity
call Aµ above the equator and Bµ below the equator.

In the “bulk”, i.e. away from Q1/2, there are no currents and hence the CS equations of
motion demand dA = 0, dB = 0, i.e. A and B to be closed. Due to the cohomology classes
of the torus, this means the general bulk solutions can be written as

A = aφdφ+ aθdθ + dα, (C.15)

B = bφdφ+ bθdθ + dβ. (C.16)

Here aφ et cetera are assumed to be constants, and it should be noted that the cycles are
periodically identified: For example, φ ∼ φ + 2π, hence φ is not a globally well-defined
function, and dφ is a closed, but not an exact form. The same holds for θ. The form dt,
on the other hand, is both closed and exact. The well-defined scalar functions α, β hence
have to be periodic in φ and θ.

Let us ignore any possible localised A0 modes for a second. Then the junction-conditions
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Figure C.2: A simple toy model for the illustration of the junction conditions for the
Chern-Simons field. We assume the bulk space to be a three dimensional space with the
topology T 2 ×R, and two charge distributions to be confined to the two equatorial circles
of the torus.

Cm ∝ εmnJ
n give

aθ − bθ + ∂θα− ∂θβ
∣∣
Q1

= J t1, (C.17)

bθ − aθ − ∂θα + ∂θβ
∣∣
Q2

= J t2, (C.18)

where we have set a numerical proportionality constant to one. We see that if there is
a time component in the current, we get a θ component in the jump Cm. While Jtdt
is topologically trivial, const. · dθ is an element of a non-trivial cohomology class of the
torus. Being in a different cohomology class, the terms ∂α can hence not contribute to the
solution and the previous equations read

aθ − bθ = J t1, ∂θα− ∂θβ
∣∣
Q1

= 0, (C.19)

bθ − aθ = J t2, ∂θα− ∂θβ
∣∣
Q2

= 0. (C.20)

For the currents, this means

J t1 = −J t2, (C.21)

i.e. the total charge on the torus has to vanish. This is a result that we would expect on any
space with closed spacial sections, also for Maxwell theory for example. Due to dt being
an exact form, we do not get these topological complications for the equations involving
Jθ1/2, and hence there is no restriction on these components (if time is not compactified).
It makes sense that the constraints between J1/2 that are conveyed by the CS field only
concern conserved charges which have to be fixed once: As the CS field has no propagating
degrees of freedom, it cannot communicate dynamical information from Q1 to Q2.

We claimed above that the addition of the term ∼ ∂mA
0 in the junction condition restores a

sense of gauge freedom for Cm. This may be correct on topologically simpler backgrounds,
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but in this example it would not be possible to gauge away the jump Cm, as again ∂mA
0

would be in the wrong cohomology class to make Cm vanish.
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